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Abstract
Advancing Single-Molecule Imaging Analysis via Deep Learning

by Simon Martin Wanninger

Single-molecule experiments have revolutionized our understanding of the physical world, offering unparal-
leled insights into dynamic processes. However, a bottleneck persists in the time-consuming and potentially
biased nature of data analysis. The main goal of this thesis is to address these issues through the devel-
opment of deep learning techniques tailored for the analysis of fluorescence data specifically focusing on
surface-based single-molecule measurements of Förster resonance energy transfer (FRET). The culmination
of this effort is Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), a software suite lever-
aging the predictive capabilities of deep neural networks (DNNs). Designed for rapid analysis of single-color,
two-color FRET, and three-color FRET data, Deep-LASI fully automates trajectory sorting and FRET correc-
tion factor determination, followed by the automated prediction of observed states and state dwell times for
each molecule. The pre-trained ensemble of DNNs are able to analyze previously unseen data sets in approxi-
mately 20–100 ms per trajectory. In extensive benchmarking, the DNNs demonstrated their efficacy through
ground truth simulations and comparisons with manually analyzed experimental data, validated by expert
users. Beyond the development of these deep learning techniques, Deep-LASI has evolved into a compre-
hensive software suite that provides robust methods for extracting raw intensity data from single-molecule
movies across multiple channels. A key feature was the integration of alternative approaches for user in-
tervention, applicable to every step that the DNNs undertake automatically. This user-centric framework
of Deep-LASI encompasses human evaluation of single-molecule trajectories, offering flexibility to override
DNN classifications, and the option to employ hidden Markov models (HMM) for the analysis of kinetic
rates, along with various downstream analysis methods post trajectory sorting. Additionally, the evaluation
of various software tools for extracting kinetic rate constants from single-molecule FRET trajectories is pre-
sented in this thesis. By analyzing specific data sets with different levels of complexity, the comparison of all
employed methods shed light on their limitations and revealed important aspects that need to be considered
for consistent analysis results. Lastly, established computational methods were coupled with experimen-
tal data to elucidate the conformational dynamics of bacterial adhesin SdrG, which can form an extremely
mechanostable complex with its target peptide human fibrinogen β (Fgβ). The SdrG:Fgβ complex can with-
stand forces greater than 2 nN, representing the strongest non-covalent bond of known to date. Combining
molecular dynamics simulations with single-molecule FRET measurements provided new insights into the
behavior of the locking strand and ligand-induced structural changes of the SdrG protein.
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Chapter 1

Introduction

Artificial intelligence in single molecule research

In recent years, the field of artificial intelligence, especially deep learning, has emerged as a powerful tool for
various fields, enabling machines to learn complex patterns in data and make accurate predictions. While
deep learning gained prominence as a modern technology, its origins can be traced back several decades,
with roots in the development of neural networks. The concept of neural networks came from the field of
neuroscience, where researchers sought to understand the workings of the brain. Early models of neural
networks were based on the idea of a perceptron, a mathematical model of a single neuron. The perceptron
model was first introduced by Frank Rosenblatt in 1957 and it was designed to learn from examples by adjust-
ing its weights to minimize the error between its predicted output and the correct output.1 The limitations
of the perceptron model, especially its inability to learn nonlinear patterns from the data, prevented it from
becoming popular. These shortcomings were addressed later by Ivakhnenko and Lapa with the development
of neural networks with multiple layers, known as deep neural networks.2 However, training deep neural
networks was a challenging task, as it required significant computational resources and a large amount of
labeled data. In the 2000s, the emergence of graphics processing units (GPUs) and the availability of large
datasets led to a resurgence of interest in deep learning. Researchers developed new algorithms, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), that were capable of learning
complex patterns in data.3 In addition, new training techniques, such as dropout4 and batch normalization5,
were developed to improve the training of deep neural networks. The substantial progress in deep learning led
to a wide range of applications across all data-driven research fields and industries. In the natural sciences,
particularly in the field of single-molecule studies, deep learning techniques have enabled new possibilities
for understanding complex biological processes at the molecular level. Notable example applications include:

• Single-molecule Förster Resonance Energy Transfer (smFRET): Deep neural networks have been devel-
oped to rapidly categorize a large number of fluorescence intensity traces in smFRET data.6,7

• Localization Microscopy: Deep learning models have been employed to precisely localize individual
point emitters and analyze single molecule tracking data. These models can predict the trajectory of
individual molecules with high accuracy, enabling the study of dynamic processes within cells.8,9

• Protein Folding Prediction: Predicting the 3D structure of proteins is a critical task in bioinformatics.
Deep learning approaches, including AlphaFold developed by DeepMind, have shown remarkable suc-
cess in predicting protein structures from amino acid sequences, contributing to our understanding of
protein function.10

• Drug Discovery: Deep learning models have been used to predict the binding affinities of molecules
to specific protein targets. This is invaluable in drug discovery, as it accelerates the identification of
potential drug candidates and reduces the need for expensive and time-consuming laboratory experi-
ments.11
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• Genomic Sequence Analysis: Deep learning techniques, such as convolutional neural networks (CNNs),
have been applied to analyze genomic sequences. They can identify important motifs, regulatory ele-
ments, and potential disease-associated mutations, aiding genetic research.12

• Molecular Dynamics Simulations: Deep learning has been integrated into molecular dynamics sim-
ulations to enhance their efficiency and accuracy. Neural networks can provide approximations of
complex energy landscapes, improving our understanding of molecular behavior under different con-
ditions.13

• Cryo-Electron Microscopy (Cryo-EM): Deep learning has had a significant impact on Cryo-EM, allow-
ing for faster and more accurate reconstruction of 3D structures from noisy and limited data. Cryo-EM
combined with deep learning has advanced structural biology research.14

• Single Molecule Sensing: Deep learning models have been applied to the analysis of signals from single
molecule sensors. They can enhance the detection sensitivity and specificity in fields like nanopore
sequencing, facilitating DNA and RNA sequencing at the single molecule level.15

• Phylogenetics: Deep learning has been used for phylogenetic tree construction and species identifi-
cation based on DNA and RNA sequences. This aids in understanding evolutionary relationships and
biodiversity.16

These examples represent only a fraction of the application scenarios realized since deep learning methods
are essentially employed in every field that provides sufficient data for training and benefits from large-scale
prediction or analysis. However, it is of utmost importance to approach these technologies with caution
and critical scrutiny, primarily due to the lack of transparency on how deep neural networks arrive at their
conclusions. Furthermore, hidden biases and unwanted behaviors of all kinds can arise when training such
models, rendering them useless or even detremental. This thesis introduces the theoretical fundamentals of
deep learning, outlines the challenges encountered during the training of deep neural networks and provides
guidelines on how to address these challenges.

Fluorescence microscopy

Within the scope of this thesis, deep neural networks (DNNs) are mainly developed for the application in
fluorescence microscopy. Therefore, it is crucial to emphasize the fundamentals of fluorescence microscopy
as they provide the theoretical foundation of generating and understanding the datasets used for training
DNNs. Fluorescence microscopy is a powerful research tool with a rich history and a wide range of appli-
cations. Especially in single-molecule research, it is an invaluable technique due to its high sensitivity and
precision. Unlike bulk measurements that provide averaged information across a multitude of molecules,
single-molecule approaches offer distinct advantages by enabling the observation and analysis of individual
systems. Isolating single molecules in a controlled environment enables the confirmation or reevaluation of
hypotheses generated by molecular dynamics simulations or other computational predictions. Combined
with fluorescence microscopy, single-molecule studies provide insights into the heterogeneity inherent in
biological systems, including the impact of environmental factors and local conditions. At its core, fluores-
cence microscopy harnesses the unique property of certain molecules to absorb photons at one wavelength
and emit them at another, longer wavelength. This phenomenon, known as fluorescence, serves as the basis
for visualizing specific molecules and extracting information over time. Fluorescence microscopy operates
by selectively exciting fluorescent molecules, called fluorophores, and capturing the emitted fluorescence to
either create high-resolution images or to probe the behavior of single molecular systems one at a time. In
many cases, covalent labeling is employed, where the fluorescent dye is chemically attached to the molecule
of interest. This labeling method is particularly useful for investigating the conformational dynamics of pro-
teins or nanosystems such asDNA origami structures. To obtain information about differentmolecular states,
quenching techniques are often used to deliberately introduce alterations in the emitted fluorescence inten-
sity. One of the most important quenching mechanisms is called Förster resonance energy transfer (FRET),
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which can be used to precisely determine the proximity between two or more fluorophores on a nanometer
scale.17–23 Acting as a molecular ruler, FRET reveals changes in distances within or between molecules over
a time. However, when using two fluorophores (2-color FRET), only a single distance is obtained, which
is often insufficient for a comprehensive interpretation of the data. To overcome this limitation, a common
strategy involves labeling the molecule of interest at different positions and measuring them separately. This
approach allows for the acquisition of various distances, leading to a more thorough understanding of the
molecular structure of the biomolecule and its kinetics. However, this strategy entails measuring multiple
samples at similar conditions with each measurement containing thousands of molecules that need to be
analyzed. Another approach is labeling the molecules with three fluorophores (3-color FRET), yielding three
distances simultaneously and providing insights into intricate kinetic behaviors.24–29 The drawback of 3-color
FRET is the increased complexity of data analysis due to the interdependence of the three FRET efficiencies
and the higher number of available intensity channels that need to be considered. Regardless of the num-
ber of employed fluorophores, research projects often involve probing molecules in different environments
or binding kinetics that depend on the concentration of a specific substrate. The extensive data collection
and statistical analysis significantly increase the amount of effort, required expertise and time consumption
needed to obtain accurate results. Therefore, high-throughput analysis tools are indispensable for process-
ing large volumes of data in a reliable way. This thesis provides a detailed discussion of multi-color FRET
and its practical considerations, including a theoretical basis for fluorescence microscopy in single-molecule
research.

Outline

Chapter 2 begins with a concise definition of artificial intelligence, describes the fundamentals of deep learn-
ing and continues with detailed aspects regarding the training process of deep neural networks. Various deep
neural network (DNN) architectures, ranging from traditional feedforward networks to specialized structures
like convolutional neural networks (CNN) and long short-term memory (LSTM) networks, are introduced
and explored. This chapter also provides detailed insights into learning algorithms employed in the actual
training procedure, including initialization, backpropagation and adaptive moment estimation (ADAM). Ad-
ditionally, a comprehensive summary of state of the art regularization techniques is presented, which play a
crucial role in forcing DNNs to generalize a task and correctly handle new data. The final sections of chapter
2 describe the nuances of training and monitoring models, discussing critical aspects like hyperparameters
and model inspection. Chapter 3 introduces the principles of fluorescence with a focus on Förster resonance
energy transfer (FRET), a key phenomenon used for all publications presented in this thesis. In detail, chapter
3 introduces the fundamentals of FRET and its applications in single-molecule research employing two and
three fluorophores. The section concludes with a description of common data acquisition techniques includ-
ing total internal reflection fluorescence (TIRF) and confocal microscopy. Chapter 4 provides an overview of
the work published in the context of this thesis, where the integration of deep learning techniques with fluo-
rescence studies is explored and exploited. The developed software suite Deep-LASI for the analysis of single
molecule time trajectories and the integrated deep neural networks are presented in two distinct publications.
Two additional publications involve a blind benchmark of various software tools used for analyzing kinetic
rates from single-molecule FRET trajectories and the study of conformational changes of bacterial adhesin
SdrG upon ligand binding via single-molecule FRET and molecular dynamics (MD) simulations. Chapter 5
summarizes the work presented in this thesis and offers final conclusions for each project.
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Chapter 2

Deep Learning

2.1 Definition of deep learning

Artificial intelligence (AI) is a growing field with many practical uses, ongoing research areas and encom-
passes different disciplines (Figure 2.1). Historically, the real challenge for AI emerged in solving problems
that humans find effortless to do but struggle to describe formally, e.g. via mathematical equations or com-
plex rules. Most of these tasks are solved by humans intuitively, such as identifying written words or rec-
ognizing distinct patterns in images. Numerous AI projects have attempted to encode information about
the world into formal languages. Subsequently, computers are capable of autonomously processing these
statements using logical inference rules. This approach is commonly referred to as the knowledge base ap-
proach in the field of AI. However, knowledge bases require a high level of human supervision to implement
formal rules and still struggle to tackle complex problems.30 The general issue with hard-coded knowledge is
that AI models do not have the capability to learn on their own. The automatic extraction of patterns from
raw data without human interference is termed machine learning. Popular machine learning algorithms are
the logistic regression, widely used for binary classification tasks, and naive Bayes, which employs Bayes’
theorem for probabilistic classification. While these methods are very efficient, they rely on distinct features
that have to be designed and clearly defined beforehand. As the complexity of these features increases, the
learning process becomes more difficult and susceptible to errors. This challenge can be tackled by using
machine learning to simultaneously identify how the input representation relates to the desired output and
what the input representation should be. This is referred to as ”representation learning” and circumvents
manual feature engineering. It also allows AI systems to quickly adapt to new tasks without needing much
human intervention. With representation learning, algorithms can find suitable features in a fraction of time
compared to the manual design process and often achieve higher accuracy.31 A classic example of represen-
tation learning is the autoencoder. It consists of two parts: an encoder that changes the input data into a
different form and a decoder that changes this new form back to the original. Autoencoders are trained to
keep as much information as possible during this transformation while also making sure the new form has
certain useful properties. However, real-world applications need to consider the extremely high diversity in
data that may represent only one desired class. Hence, a major contributor to the performance of an autoen-
coder is the size of the training data. Ideally, the training data should represent features with high variance,
such that the autoencoder can learn abstract features in an unbiased way and ignore redundant information.
This shifts the workload from designing features by hand to obtaining a training dataset with feature rep-
resentations of high quality. Moreover, the requirement for a substantial amount of training data can be an
obstacle for those who lack the resources to gather such data. Deep learning provides a effective solution to
this problem by introducing representations that are formulated using simpler, underlying representations.
This can be achieved by training a deep neural network (DNN). Essentially, a DNN is amathematical function
that transforms a set of input values into output values. This function is constructed by combining multiple,
simpler functions. Each application of these distinct mathematical functions can be viewed as generating a
new representation of the input. While the demands on the training dataset in deep learning remain high,
they can be more readily met since the training data is labeled with the desired categories, i.e. the clustering
of information is supervised by a human, in contrast to the training data for an autoencoder. As a result, a
DNN can efficiently learn the most accurate method to compress the information within the training data
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into the specified categories. In the scope of this thesis the focus lies on the supervised learningmethod using
deep neural networks. The following section discuss the elementary operations of DNNs, their architectural
aspects, and the training algorithms.

Figure 2.1 | Venn diagram of AI. Deep learning is a form of representation learning, which is in turn a subset
of machine learning—a technique employed in various but not all AI methodologies.

2.2 Deep Neural Networks

Deep neural network (DNN) is a term that encompasses a broad category of neural network models that
are characterized by having multiple layers, known as hidden layers, between the input and output layers.
These hidden layers enable DNNs to learn hierarchical and complex representations of data, making them
particularly effective in capturing intricate patterns and features in various domains. Within the field of
deep neural networks, several different model types exist, each designed for specific tasks or data types. For
various classification tasks, commonly used model types are:

• Feedforward Neural Networks (FNNs): FNNs (section 2.2.1) are a fundamental type of neural network
where information travels forward in one direction from the input layer through one or more hidden
layers to the output layer. In these networks, the neurons in a given layer connect to the neurons in
the subsequent layer. This property differentiates FNNs from recurrent neural networks (listed below),
that include connected between neurons in the same layer.

• Convolutional Neural Networks (CNNs): In principle, CNNs (section 2.2.2) are a specialized form of a
FNN, since the information flows forward from the input to the output. However, CNNs are specialized
for processing grid-like data, such as images and videos. They perform convolutions to automatically
learn features from input data and are widely used in computer vision tasks like image classification
and object detection.

• Recurrent Neural Networks (RNNs): Recurrent Neural Networks (RNNs) are a type of neural network
designed for sequential data processing. Unlike FNNs, RNNs have connections that form directed
cycles, allowing them to maintain a hidden state that captures information about previous inputs in
the sequence. This inherent memory capability makes RNNs well-suited for tasks involving temporal
dependencies, such as natural language processing, time series analysis, and speech recognition. How-
ever, traditional RNNs face challenges in capturing long-term dependencies due to issues like expo-
nentially diminishing gradients during backpropagation2.3.2. Variants like Long Short-Term Memory
(LSTM) networks and Gated Recurrent Unit (GRU) networks have been developed to address these
challenges and improve the effectiveness of RNNs in handling sequential data.
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• Long Short-TermMemory (LSTM): LSTMs (section 2.2.3) distinguish themselves from traditional RNNs
by incorporating a more sophisticated memorymechanism that mitigates the vanishing gradient prob-
lem. LSTMs address this issue through a carefully designed memory cell and gating mechanisms. The
memory cell, equipped with input, forget, and output gates, enables precise control over the informa-
tion flow. The intricate architecture of LSTMs allow them to selectively store and access information
over extended sequences, making them more adept at capturing long-term dependencies in data.

It is important to note that these different model types can also be a single layers within an overarching
architecture, i.e. a DNN does not have to be exclusively designed in one particular way. Such hybrid DNNs
can contain elements of multiple techniques and use their strengths at different layers of depth. FNNs, CNNs
and LSTMs are explained in detail below.

2.2.1 Feedforward Neural Networks

Feedforward neural networks (FNNs) are classic models in the field of deep learning. The primary objective of
a FNN is to approximate a given function 𝑓 ∗. For instance, in the case of a classifier, the function 𝑦 = 𝑓 ∗(𝒙)
maps an input 𝒙 to a corresponding class 𝑦. Within a FNN, a mapping 𝑦 = 𝑓 (𝒙 ;𝜽 ) is defined, and the
network learns to optimize the parameters 𝜽 to achieve the most accurate function approximation. The
term ’feedforward’ comes from the sequential flow of information during the evaluation of the function,
originating from 𝒙 , traversing through the intermediate computations and ultimately arriving at the output
𝑦. Notably, there are no feedback connections within the model where outputs are fed back into the network
itself. When FNNs are expanded to incorporate feedback connections, they are referred to as recurrent neural
networks (section 2.2.3).

Figure 2.2 | Multilayer perceptron (MLP). The input data 𝒙 , embedded in the first layer, is guided through
the network and undergoes various mathematical operations, represented as neurons. In the final layer, all
inputs are compressed and transformed into a probability value for each class.
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FNN architecture and operations

The first conception of a feedforward neural networks (FNN) was a multilayer perceptron (MLP), also known
as a dense neural network.1 In a MLP, illustrated in Figure 2.2, all neurons are connected between two con-
secutive layers, which are commonly referred to as fully connected or dense layers. Therefore, output values
from neurons in one layer serve as inputs to neurons in the next layer. While MLPs are less commonly used
in modern deep learning models, they continue to serve as a foundational concept that leads to recurrent
neural networks. The main structure of MLPs, consisting of an input layer, hidden layers, and an output
layer, is also retained in modern convolutional neural networks (section 2.2.2). Additionally, their essential
component, the fully connected layer, is still frequently used in the output layer of advanced classifiers. In
the context of aMLP, several equations govern the flow of information and transformations within the neural
network. Figure 2.2 shows the concept of a MLP architecture and introduces the following parameters:

• 𝒙 is the input data, which can be one- or multidimensional. Each element of 𝒙 typically corresponds
to a specific input feature, i.e. a recorded intensity value of a camera.

• 𝑾 (𝑙 ) represents the weights associated with the connections between neurons in the (𝑙 − 1)th layer
and the 𝑙 th layer of a neural network. Each element 𝑤 (𝑙 )𝑖 𝑗 in this matrix corresponds to the weight of

the connection between the 𝑖th neuron in the (𝑙 − 1)th layer and the 𝑗 th neuron in the 𝑙 th layer.

• 𝒂 (𝑙 ) contains the activation values of all neurons in the 𝑙 th layer of a neural network. These activations
are calculated using a specific activation function (section 2.2.1) applied to the weighted sum of inputs
to each neuron. The values in 𝒂 (𝑙 ) represent the output of the neurons in that layer after processing
the input.

• 𝒑 represents the probabilities of different classes in the final output layer of a classification model.
Each element 𝑝𝑖 in 𝒑 corresponds to the probability of the input belonging to the 𝑖th class. These
probabilities are often generated using a softmax activation function, ensuring that they sum to 1 and
can be interpreted as probabilities. The class with the highest probability is typically predicted as the
final output.

For the first layer of neurons, the weighted sum of inputs is calculated for each neuron as:

𝑧 𝑗 =
𝑛∑
𝑖=1

(
𝑤𝑖, 𝑗 · 𝑥𝑖

)
+ 𝑏 𝑗 (2.1)

where 𝑧 𝑗 represents the weighted sum of the 𝑗 th neuron, 𝑤𝑖, 𝑗 is the weight of the connection between the
𝑖th input and the 𝑗 th neuron, 𝑥𝑖 is the value of the 𝑖th input and 𝑏 𝑗 is the bias term for the 𝑗 th neuron. The
bias term is a learnable constant that can be intuitively understood as the activation potential observed in
biological neurons. Note that the input 𝑥𝑖 changes to 𝑎𝑖 for subsequent layers, as they take the output of
previous neurons as input:

𝑧 𝑗 =
𝑛∑
𝑖=1

(
𝑤𝑖, 𝑗 · 𝑎𝑖

)
+ 𝑏 𝑗 (2.2)

The weighted sum is then passed through an activation function to introduce non-linearity, as discussed in
the next subsection 2.2.1. This was not the case in the original MLP, which employed simple step functions
that did not allow the network to solve non-linear problems.

Activation functions

Activation functions play a crucial role in deep learning, as they allow for solving non-linear problems and
have a significant influence on the learning process. They are continuously being developed to improve the
training and performance of deep neural networks. Figure 2.3 summarizes modern activation functions that
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have shown to be effective for specific types of data and address common challenges during the training
procedure. Assuming sigmoidal activation functions, the output of a single neuron, 𝑎 𝑗 , can be expressed as:

𝑎 𝑗 =
1

1 + 𝑒−𝑧 𝑗 (2.3)

In the final layer of a classifier model, the sigmoid activation function can be only used for binary classifica-
tion and has to be extended for multi-classification. This is called the softmax function, which converts the
weighted sums into probabilities of multiple classes. The softmax function for the 𝑘 th class is defined as:

𝑝𝑘 =
𝑒𝑧𝑘∑𝑁
𝑛=1 𝑒

𝑧𝑛
(2.4)

where 𝑝𝑘 represents a probability that the output belongs to the 𝑘 th class, 𝑧𝑘 is the unnormalized score of for
class 𝑘 and

∑𝑁
𝑛=1 𝑒

𝑧𝑛 is the sum of the exponential unnormalized scores over all classes. The probability-like
value 𝑝 is also commonly referred to as the confidence of a model.

Figure 2.3 | Activation functions overview. Commonly used activation functions used in deep neural net-
works. Each function applies a non-linear transformation to the input data, allowing the model to learn complex
relationships and enabling gradient-based learning.
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2.2.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) represent a pivotal advancement in deep learning, particularly suited
for tasks involving grid-like data such as images and videos.32 CNNs are inspired by the human visual sys-
tem and have demonstrated remarkable performance improvements in tasks like image classification, object
detection, and even natural language processing. They also offer a distinct advantage in terms of model
efficiency, i.e. a reduced number of trainable parameters while retaining the performance. CNNs follow the
same principles as feedforward networks (FNNs, subsection 2.2.1), being designed to approximate complex
functions by undergoing training to optimize all network parameters and provide accurate classifications.
The term ’convolutional’ derives from the specialized layers and operations employed in the network’s eval-
uation. In particular, neurons in a CNN consist of a small weight matrices, referred to as kernels, which scan
the input data in a raster-like manner for feature extraction. The outputs of neurons are frequently collected
in pooling layers (section 2.2.2) to pass on the most important features, a process that is often repeated until
the final classification layer.

CNN architecture

Unlike traditional FNNs, CNNs incorporate convolutional and pooling layers, introducing a hierarchy to fea-
ture extraction and abstraction. This hierarchy allows CNNs to automatically learn and detect local patterns
and features within the input data. The sequential flow of information within CNNs mirrors that of feedfor-
ward networks, originating from the input data and proceeding through these layers of computation to yield
the final output. One of the key innovations brought by CNNs is the fundamental neuron operation, referred
to as convolution, which allows the network to capture local patterns while sharing parameters across dif-
ferent regions. This operation not only enhances performance but also significantly reduces the number of
parameters that need to be trained. Hence, the key distinction is the absence of fully connected layers inmost
parts of CNNs, which sets them apart from classical MLPs. However, modern CNNs often retain the core
structure of MLPs, comprising input layers, convolutional layers, and output layers. The essential concept of
CNNs is preserved in various deep learning architectures, hence they provide fundamental building blocks
in the realm of computer vision and image processing. Furthermore, specialized CNNs have been recently
developed to extend their application to time series data by using a variable filter size for their convolutional
operations. Hence, they can also be employed to simultaneously identify patterns that appear on different
timescales. Figure 2.4 shows the architecture of VGG16 (Visual Geometry Group)33, an image classifier that
achieved an increased depth by using small 3 × 3 convolutional filters.

Convolution and cross-correlation

The term convolution is widely used in the context of CNNs but technically is a misnomer since the actual
mathematical operation performed in CNNs is the cross-correlation. Both convolution and cross-correlation
combine two functions to produce a third function. The resulting function is an expression of how the shapes
of the original functions influence each other. The key difference is that convolution involves reflecting one of
the functions about the y-axis (”flipping”) one of the functions before sliding it over the other and computing
the integral of their dot product:

(𝑓 ∗ 𝑔) (𝑡) =
∫ ∞

−∞
𝑓 (𝜏) · 𝑔(𝑡 − 𝜏) 𝑑𝜏 (2.5)

The cross-correlation performs the sliding dot product without reflecting and shifting one of the functions:

(𝑓 ★𝑔)(𝑡) =
∫ ∞

−∞
𝑓 (𝜏) · 𝑔(𝑡 + 𝜏) 𝑑𝜏 (2.6)

Although both functions are closely related, convolution is commutative, whereas cross-correlation is not.
This non-commutative property of cross-correlation underlines the intuitive explanation of how CNNs utilize
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Figure 2.4 | CNN architecture of VGG1633. The VGG16 model employs convolutional (blue), pooling (red)
and dense (cyan) layers for image classification. The 2 × 2 pooling operation is illustrated in the first pooling
layer. Each block of layers has specific dimensions, annotated to the right, showing the sequential compression
of the data in the first two dimensions, i.e. width and height.

kernels to extract features from input data. Kernels are trainable weight matrices of fixed size and specified
as a hyperparameter before training. Given an input feature map (𝑰 ) and kernel (𝑲 ) of size 𝑚 × 𝑛, the
cross-correlation performed in CNNs can be expressed as:

(𝑰 ★ 𝑲 ) (𝑚,𝑛) =
∑
𝑚

∑
𝑛

𝑰 (𝑥 +𝑚,𝑦 + 𝑛) · 𝑲 (𝑚,𝑛) (2.7)

Here, the input feature map (𝑰 ) can represent any multi-dimensional data such as colored images but also
one-dimensional time series data. The cross-correlation operation is performed with a pre-defined step size
across the input. The step size, also referred to as stride, and the kernel size directly influence the dimen-
sionality of the output. Additionally, the input can be padded to increase the space for the kernel to cover
the input such that the number of kernel operations and output dimensionality increases. In general, the
output dimension of a CNN layer can be calculated as:

Output Dimension =
Input Dimension − Kernel Size + 2 × Padding

Stride
+ 1 (2.8)

After cross-correlation, an activation function (section 2.2.1) is applied element-wise to introduce non-
linearity. Assuming the rectified linear unit (ReLU) activation function is employed, the output feature map(
𝑶 𝑗

)
of the 𝑗 th neuron in a given CNN layer can be expressed as:

𝑶 𝑗 = ReLU
(
𝑰 ★ 𝑲 𝑗 + 𝑏

)
(2.9)
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where 𝑲 𝑗 is the kernel matrix of the 𝑗 th neuron and𝑏 is the bias term. After scanning the whole input, the out-
puts of all neurons are concatenated and the next layer operates on the concatenated outputs. Upon reaching
the final classification layer, the activated output of all neurons is typically flattened into a one-dimensional
vector such that it can be passed through a fully connected layer and transformed into class probabilities via
a softmax function (see 2.2.1 for details). An illustration of learned features by a CNN (VGG1633) is shown
in Figure 2.5 via the maximized activations of single convolutional filters. It becomes apparent that low level
features are extracted first in the shallow layers and high level features are extracted last in the deep layers.
By viewing the high level features one can draw conclusions about the data the DNN was trained on, e.g. a
dataset containing various kinds of animals.

Figure 2.5 | Feature hierarchy of a CNN (VGG1633). Visual representation of the hierarchical progression of
features within VGG16. The network extracts increasingly abstract patterns from coarse to complex across its
convolutional layers. The images represent the learned features of individual filters. Each image is generated
separately through a training process with the objective of maximizing the activations of an individual filter.

Pooling operations

Pooling is a down-sampling technique used in CNNs to reduce the spatial resolution of feature maps while
preserving important features. This operation helps in controlling the computational complexity of the net-
work and increasing its ability to detect patterns at different scales. Two common types of pooling used in
CNNs are Max Pooling and Average Pooling. In Max Pooling, for each local region (usually a small square)
of the feature map, the maximum value within that region is retained while the rest are discarded. This
process effectively emphasizes the most important features within each region. For a 𝑘 ×𝑘 window centered
at position (𝑥,𝑦) in the input feature map (assuming a single channel), the max pooling operation is defined
as follows:

MaxPooling (𝑥,𝑦) = 𝑘−1
max
𝑝=0

𝑘−1
max
𝑞=0
(Input (𝑥 + 𝑝,𝑦 + 𝑞)) (2.10)
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Average Pooling, on the other hand, calculates the average value of the elements in a local region, providing
a smoother down-sampling effect compared to Max Pooling. It is defined as:

AveragePooling (𝑥,𝑦) = 1
𝑘2

𝑘−1∑
𝑝=0

𝑘−1∑
𝑞=0

(Input (𝑖 + 𝑝, 𝑗 + 𝑞)) (2.11)

Note that these equations describe the process for pooling in a single channel. For multi-channel input
feature maps, the same operation is applied independently to each channel, resulting in a pooled feature map
with the same number of channels. There are several purposes for pooling layers. By reducing the spatial
dimensions of feature maps, pooling helps decrease the number of parameters and computational load in
subsequent layers. This is especially important when processing high-resolution images. Pooling also helps
make the network invariant to small translations of the input. This is crucial for tasks like image recognition
where the object’s position in the image should not affect the network’s ability to recognize it. By abstracting
and summarizing information in the featuremaps, pooling retains themost important features while filtering
out less relevant details, making the network more robust to variations in the input. During training, pooling
can reduce overfitting by preventing the network from memorizing exact details of the training data and
promoting the learning of more general, high-level features. However, one trade-off when using pooling is
the reduction in spatial resolution. While this is often beneficial for capturing high-level features, it can lead
to a loss of fine-grained details, which may be especially important in timeseries data. To address this, some
CNN architectures incorporate skip connections, which allow the network to access information from earlier
layers with higher resolution. This type of model is called a Residual Neural Network (ResNet).34 The core
concept of using skip connections was already used in LSTM networks (discussed below) and is implemented
in all modern deep neural networks such as ChatGPT, BERT35 and AlphaFold10.

2.2.3 Long short-term memory (LSTM) networks

Figure 2.6 | Long short-term memory concept. The schematic illustrates the fundamental operations in a
LSTM cell. The input data 𝒙 is combined with the hidden state 𝒉 of the previous time step and transformed via
the forget gate and the input gate. The transformed data updates the cell state 𝒄 , which can preserve and recall
information across extended sequences. The cell state is again transformed in the output gate 𝒐, yielding the
hidden state of the current time step. This hidden state serves as input for the next LSTM cell and for the next
layer in the neural network.

Long short-termmemory (LSTM) networks represent an advanced type of recurrent neural networks (RNNs),
designed to model sequential data and capturing long-range dependencies.36 In contrast to feedforward
networks (FNNs, section 2.2.1), the emphasis of LSTMs lies on tasks where data unfolds over time. Within
the architecture of an LSTM, a dynamic mapping is established, but the unique feature that sets LSTMs apart
is their ability to preserve and selectively propagate information over extended sequences. LSTMs encompass



Chapter 2. Deep Learning 13

specialized recurrent layers that use gating mechanisms to facilitate the retention of important information
and the discarding of irrelevant details. The flow of information within LSTMs mirrors the sequential nature
of the data with each time step building upon the previous one. This allows the network to capture temporal
patterns. Hence, in contrast to FNNs, the single LSTM units within one layer are interconnected and form
feedback connections. In principle, a LSTM unit represents a neuron in traditional FNNs but it is composed
of several interacting components:

• Cell state
(
𝒄𝑡

)
: The cell state acts as a memory cell that can store and retrieve information over long

sequences. It runs straight down the entire chain of the LSTM, with only minor linear interactions.
This cell state can store information that is considered important for the sequence.

• Hidden state
(
𝒉𝑡

)
: The hidden state is analogous to the output of the LSTM unit. It carries information

that the network has deemed relevant up to the current time step. It is computed based on the cell
state but filtered through the output gate as discussed below.

• Gates:

1. Forget gate
(
𝒇 𝑡

)
: The forget gate decides what information from the cell state should be discarded

or kept. It takes input from the previous hidden state
(
𝒉𝑡−1

)
and the current input

(
𝒙𝑡

)
and

produces values between 0 (completely forget) and 1 (completely keep).

2. Input gate
(
𝒈𝑡

)
: The input gate controls what new information should be stored in the cell state.

It consists of two separate layers with different activation functions (Figure 2.3): a sigmoid layer
that decides which values to update (between 0 and 1) and a tanh layer that produces potential
new values (between -1 and 1).

3. Output gate
(
𝒐𝑡

)
: The output gate determines what the next hidden state

(
𝒉𝑡

)
should be. It takes

into account the cell state but filters it through a sigmoid layer.

The cell states and hidden states in each LSTM cell are continuously updated by the information passing
through the forget gate, input gate and output gate. Each of these gates represent a neural network layer
and have their own set of trainable parameters. These gate specific parameters are:

• 𝑼 gate: Weight matrix associated with the inputs 𝒙𝑡 at time step 𝑡 .

• 𝑾gate: Recurrent weight matrix associated with the previous hidden state 𝒉𝑡−1 at time step 𝑡 − 1.

• 𝒃gate: Bias term vector added to the weighted sums of inputs and weighted sums of the previous hidden
state.

With the above defined gate parameters, the update equations can be formulated. Note that the following
equations for the three gates represent the output of the 𝑗 th neuron within the corresponding gate layer.
The forget gate

(
𝒇 𝑡

)
calculates a value for each element in the cell state, indicating the extent to which the

corresponding information should be forgotten:

𝑓 𝑡𝑗 = 𝜎

(
𝑏
𝑓
𝑗 +

∑
𝑖

𝑈
𝑓
𝑖, 𝑗𝑥

𝑡
𝑖 +

∑
𝑖

𝑊
𝑓
𝑖, 𝑗ℎ

𝑡−1
𝑖

)
(2.12)

where 𝜎 represents the sigmoid activation function, 𝑥𝑡𝑖 is the input of feature 𝑖 at time step 𝑡 and ℎ𝑡−1𝑖 is the
𝑖th feature of the hidden state vector (𝒉𝑡−1) of the previous time step.
The number of entries in the feature vectors of the hidden state and the cell state, i.e. their dimensions, is
determined by the number of neurons employed in each layer and the number of features in each time step.
The input gate

(
𝒈𝑡

)
calculates a value for each element in the cell state, indicating the importance of new

input information:

𝑔𝑡𝑗 = 𝜎

(
𝑏𝑖𝑗 +

∑
𝑖

𝑈 𝑖
𝑖, 𝑗𝑥

𝑡
𝑖 +

∑
𝑖

𝑊 𝑖
𝑖, 𝑗ℎ

𝑡−1
𝑖

)
(2.13)
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The update candidate
(
�̃�𝑡

)
represents the new candidate values that could be added to the cell state at time

step 𝑡 . It is based on the input
(
𝒙𝑡

)
and the previous hidden state

(
𝒉𝑡−1

)
:

𝑐𝑡𝑗 = tanh

(
𝑏𝑐𝑗 +

∑
𝑖

𝑈 𝑐
𝑖, 𝑗𝑥

𝑡
𝑖 +

∑
𝑖

𝑊 𝑐
𝑖, 𝑗ℎ

𝑡−1
𝑖

)
(2.14)

where tanh represents the hyperbolic tangent activation function.
The output gate

(
𝒐𝑡

)
calculates a value for each element in the cell state, indicating the extent to which the

corresponding information should contribute to the hidden state:

𝑜𝑡𝑗 = 𝜎

(
𝑏𝑐𝑗 +

∑
𝑖

𝑈 𝑜
𝑖,𝑗𝑥

𝑡
𝑖 +

∑
𝑖

𝑊 𝑜
𝑖,𝑗ℎ

𝑡−1
𝑖

)
(2.15)

Finally, after the computation of all gates for all neurons, the cell state
(
𝒄𝑡

)
and hidden state

(
𝒉𝑡

)
are deter-

mined as follows:

𝒄𝑡 = 𝒇 𝑡 ⊙ 𝒄𝑡−1 + 𝒈𝑡 ⊙ �̃�𝑡 (2.16)

𝒉𝑡 = tanh
(
𝒄𝑡

)
⊙ 𝒐𝑡 (2.17)

where ⊙ symbolizes the Hadamard product (i.e. element-wise product) of two matrices. While the cell state
is not directly transferred to the next layer it serves as an additional weight for the hidden state, which is the
output of the LSTM. If the next hidden layer is a LSTM layer or the output is classified per time step via a fully
connected layer, the hidden states are returned in sequence as depicted in Figure 2.6. However, LSTMmodels
are also capable of classifying the complete time series as a single class by only returning the hidden state of
the last time step. To date, many different LSTM variants have been developed, showing different advantages
depending on the type of data. While the performance of a specific LSTM model cannot be predicted before
training, numerous empirical studies and surveys have shown the strengths and weaknesses of all kinds of
recurrent neural networks.37

2.3 Learning Algorithms

A machine learning algorithm is characterized by its ability to learn patterns in data. However, the concept
of learning in this context is extremely diverse and strongly depends on the specialized field within the realm
of machine learning. Typically, learning algorithms propose a task for a computer program that is being fed
with ’experiences’, i.e. data of all kinds, and continuously advanced by using a particular performance metric.
In the following sections, these principles are discussed in the context of training deep neural networks for
classification tasks.

2.3.1 Initialization

The initialization of neural network parameters is a critical step in the training process, as it can significantly
impact the convergence speed and the quality of the learned representations. A common practice is to
initialize neural network weights using different probability distributions, each suited to specific network
architectures and activation functions. Random initialization is the simplest and most widely used method.
It initializes weights with values drawn from a random distribution, e.g. uniform or normal distribution. The
choice of initialization method depends on the specific network architecture, activation functions, and the
task of the model. Experimentation and hyperparameter tuning are often required to determine the most
effective initialization strategy for a given neural network.



Chapter 2. Deep Learning 15

Glorot Initialization

Glorot initialization is a distribution-based method designed to address the problem of vanishing and explod-
ing gradients, which can occur during training (section 2.3.2).38 It is tailored to the sigmoid and hyperbolic
tangent (tanh) activation functions. Glorot initialization samples weights from a uniform distribution defined
as follows:

𝑤𝑖, 𝑗 ∼ Uniform(−𝑎, 𝑎) (2.18)

with the limit 𝑎 calculated as:

𝑎 =

√
6

𝑛input + 𝑛output
(2.19)

where 𝑛input and 𝑛output are the number of input and output units, respectively.

He Initialization

He initialization is another distribution-based initialization method designed to alleviate the vanishing gra-
dient problem for rectified linear unit (ReLU) activation functions.39 It initializes weights by sampling from
a normal distribution defined as follows:

𝑤𝑖, 𝑗 ∼ N(0, 𝜎) (2.20)

with the standard deviation 𝜎 calculated as:

𝜎 =

√
2

𝑛input
(2.21)

where 𝑛input is the number of input units.

Custom Initialization

In some cases, custom initialization schemes are designed based on domain-specific knowledge or network
architecture requirements. Custom initialization can help accelerate training or achieve better convergence
properties.

2.3.2 Backpropagation

Backpropagation, a core concept in neural network training, is the process that enables models to learn from
data.40 It involves the iterative adjustment of network parameters, namely weights and biases, to minimize
prediction errors. Backpropagation is not limited to a specific network architecture, making it a universal
tool for training various types of neural networks, including feedforward networks, convolutional neural
networks, and recurrent neural networks.

Forward Pass

The first step is the forward pass, where input data is processed layer by layer through the neural network.
This process involves calculating the weighted sum of inputs, applying activation functions, and producing
predictions (section 2.2). The output of a neuron in the final classification layer can be expressed as:

𝑝 = 𝜎

(∑
𝑖

(𝑤𝑖 · 𝑥𝑖) + 𝑏
)

(2.22)

where 𝑝 represents the probability for a class, 𝜎 is the sigmoid activation function,𝑤𝑖 is the weight of the 𝑖th

connection associated with the input 𝑥𝑖 and 𝑏 is the bias term. With the output 𝑝 and a given ground truth
of the training data, an error can be calculated.
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Loss Function

The loss function measures the error between the predicted output and the actual target values. The choice
of the loss function depends on the specific task, such as regression or classification. Common loss functions
include mean squared error (MSE) for regression and cross-entropy (CE) for classification. The CE Loss 𝐿 is
defined as follows:

𝐿 = −
𝑁∑
𝑖=1

𝑦𝑖 log𝑝𝑖 (2.23)

where 𝑦𝑖 and 𝑝𝑖 are the ground truth and the neuron output probability of the 𝑖th, respectively, and 𝑁 is the
total number of classes. In the next step, the error is propagated backwards through the network.

Backward Pass

In the backward pass, gradients of the loss with respect to weights and biases are computed. The chain rule
is applied for error propagation through the layers:

𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐿

𝜕𝑎
· 𝜕𝑎
𝜕𝑧
· 𝜕𝑧
𝜕𝑤𝑖

(2.24)

where 𝐿 is the loss, 𝑤𝑖 is the weight, 𝑎 is the neuron’s output and 𝑧 is the weighted sum of all inputs of the
neuron.

Parameter Update

The weights and biases are updated using an optimization algorithm, such as stochastic gradient descent
(SGD)41,42 or adaptivemoment estimation (ADAM)43. In recent years, many different optimization algorithms
have been published and continue to be developed.44 In general, most methods adjust the parameters in the
direction that minimizes the loss by computing the gradient of the loss with respect to a parameter.

𝜃 ← 𝜃 − 𝛼 · 𝜕𝐿
𝜕𝜃

(2.25)

where 𝜃 is the parameter being updated in the network and 𝛼 represents a step size, which is typically defined
as a hyperparameter before training. Since ADAM is one of the commonly used optimization algorithms, it
is discussed in more detail in section 2.3.3.

2.3.3 Adaptive Moment Estimation (ADAM)

ADAM is an advanced optimization algorithm that was introduced to overcome some of the limitations of
traditional optimizationmethods such as stochastic gradient descent (SGD) ormini-batch gradient descent.43

It belongs to the family of adaptive learning rate methods, where it dynamically adjusts the learning rates
for each parameter during the training process. ADAM was built upon the principles of two other meth-
ods, namely Root Mean Square Propagation (RMSprop)45 and Momentum40. In essence, both methods are
combined in ADAM by considering the first order moment (the gradient) and the second order moment
(uncentered variance of the gradients). Additionally, ADAM introduces bias correction terms to further en-
hance its performance and stability during training. This adaptive learning rate mechanism allows ADAM to
converge more efficiently and robustly when dealing with complex loss surfaces, making it particularly well
suited for deep learning tasks. The individual steps of the algorithm start with initialization of all parameters
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in the neural network:

𝑡 = 0

Initialize 𝜽 - Model parameters to be optimized.

𝛼 - Learning rate (typically a value around 0.001).

where 𝜽 are the parameters to be optimized. Note that 𝜽 represents a vector of possibly billions of parameters
in a deep neural network and every optimization ADAM undertakes is specific to each parameter. The next
steps involve the first forward pass and gradient calculation of the loss function with respect to the model
parameters (see section section 2.3.2 for details):

𝒈𝑡 = ∇𝜽𝐿 (𝜃𝑡−1) (2.26)

where ∇𝜃𝐿 represents the gradient vector of the loss function with respect to the model parameters 𝜽 and
𝒈𝑡 is the gradient vector, consisting of the partial derivatives at time step 𝑡 . Next, the first and second order
moment estimates are calculated, i.e. the exponentially weighted moving average (EMA) of past gradients
(𝒎𝑡 ) and the EMA of past squared gradients (𝒗𝑡 ):

𝒎𝑡 = 𝛽1 ·𝒎𝑡−1 + (1 − 𝛽1) · 𝒈𝑡 = (1 − 𝛽1)
𝑡∑
𝑖=1

𝛽𝑡−𝑖1 · 𝒈𝑖 (2.27)

𝒗𝑡 = 𝛽2 · 𝒗𝑡−1 + (1 − 𝛽2) · 𝒈𝑡 ⊙ 𝒈𝑡 = (1 − 𝛽2)
𝑡∑
𝑖=1

𝛽𝑡−𝑖2 · 𝒈𝑖 ⊙ 𝒈𝑖 (2.28)

where 𝛽1 and 𝛽2 are hyperparameters, representing the exponential decay rates for the first and second
moment estimates. They are usually set to 𝛽1 = 0.9 and 𝛽2 = 0.999, which provides the best compromise
between a smooth path to convergence and momentum to cross local minima or saddle points. In the early
stages of training, the moment estimates are biased towards the initial estimate used in the first time step.
Rather than using a random initial guess, the first and second order moments are initialized as 𝒎0 = 0 and
𝒗0 = 0, making them biased towards zero. However, this bias can be easily corrected by using the correction
term

(
1 − 𝛽𝑡1

)
:

�̂�𝑡 =
𝒎𝑡

1 − 𝛽𝑡1
(2.29)

𝒗𝑡 =
𝒗𝑡

1 − 𝛽𝑡2
(2.30)

With the bias-corrected moment estimates, the parameters of the previous time step (𝜽𝑡−1) are updated by
the following rule:

𝜽𝑡 = 𝜽𝑡−1 − 𝛼 ·
�̂�𝑡√
𝒗𝑡 + 𝜖

(2.31)

where 𝜽𝑡 is the vector of resulting parameters and 𝜖 is a small constant
(
10−8

)
added for numerical stability.

2.4 Regularization Techniques

In deep learning, regularization refers to a set of techniques used to prevent overfitting in neural network
models. Overfitting occurs when a model becomes too complex and fits the training data too closely, leading
to poor performance when encountering new data. Deep neural networks that not only fit training data well
but also generalize effectively to new, unseen data is a central challenge. One of the fundamental issues
faced in this endeavor is the need to strike a balance between complexity and simplicity in neural network
architectures. Models that are too complex are prone to overfitting, where they memorize the training data
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but fail to generalize. On the other hand, overly simplistic models may not capture the underlying patterns in
the data. Regularization techniques play a pivotal role in addressing this challenge by imposing constraints
on model parameters, thus preventing overfitting and promoting generalization. Specifically, the aim of
regularizers is to find the best tradeoff between two key aspects: bias and variance. Bias refers to the error
introduced by approximating a real-world problem, which may be complex, by a simplified model. In the
context of regularization, introducing bias means making the model simpler. This can be achieved by adding
constraints or penalties to the learning algorithm, making it less flexible or less capable of fitting noise in
the data. Variance refers to the model’s sensitivity to small fluctuations or changes in the training data.
In the context of regularization, reducing variance means making your model less prone to overfitting by
reducing its complexity. Figure 2.7 shows a visual representation of the tradeoff between bias and variance.
It illustrates how increasing the bias of a model (by adding regularization) reduces its variance and vice
versa. Furthermore, the graph indicates a straightforward technique of regularization, which is stopping the
training process early when overfitting is detected. The goal is to find the right balance that minimizes the
overall error on unseen data, which is the ultimate objective in deep learning. This cannot be achieved by
training one particular model for an extended period of time due to the high degree of overfitting that neural
networks are susceptible to. While underfitting models simply do not learn abstract features, overfitting
models find features that do not correspond to a specific class but to an individual example or biases in the
training data. Additionally, different classes often contain overlapping attributes. The training data may
contain outliers or some examples in the data may be ambiguous. Since neural networks have plenty of
parameters at their disposal, they are easily capable of ”memorizing” the whole training data set and hence
must be properly regularized to actually learn the class-relevant features.

2.4.1 L1 and L2 Regularization

L1 regularization, also known as LASSO (Least Absolute Shrinkage and SelectionOperator), is a regularization
technique that adds a penalty term to the loss function of a neural networkmodel. The purpose of this penalty
is to encourage the model to minimize the absolute values of its weights. Mathematically, L1 regularization
can be expressed as:

LossL1 = Loss + 𝜆
𝑁∑
𝑖=1

|𝑤𝑖 | (2.32)

where 𝜔𝑖 is the model’s weights and 𝜆 is the regularization strength controlling the variance-bias tradeoff.
The main characteristic of L1 regularization is that it introduces sparsity in the model. It encourages some
of the coefficients to become exactly zero, effectively performing feature selection. On the other hand, L2
regularization, referred to as Ridge regularization, achieves the opposite by penalizing the squared values of
themodel’s coefficients. Hence, L2 regularization encourages themodel to distribute the weight across all the
features and is particularly useful when there are many correlated features in the dataset. Mathematically,
L2 regularization can be expressed as:

LossL2 = Loss + 𝜆
𝑁∑
𝑖=1

𝑤2
𝑖 (2.33)

Both L1 and L2 regularization techniques provide a way to control the complexity of a machine learning
model. The choice between them depends on the specific characteristics of the data and the desired trade-
off between sparsity and stability. In practice, a combination of L1 and L2 regularization, known as Elastic
Net, is often employed to leverage the advantages of both techniques.

2.4.2 Batch Normalization

One common problem that arises during training of a deep neural network is the issue of internal covariate
shift, where the distribution of activations in hidden layers changes over time, making training slow and can
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Figure 2.7 | The variance-bias tradeoff. (a) Illustration of the variance-bias tradeoff in a graph. As the model
complexity increases during training, the error and bias decreases, whereas the variance increases. This pro-
gression typically reaches an optimal balance between the parameters followed by a continuous degradation
of the model performance due to overfitting the training data. (b) Scatter plots showing two classes and deci-
sion boundaries of an underfitting (left panel), optimally balanced (middle panel) and overfitting (right panel)
model. Due to outliers and inherent feature overlap, a balanced and regularized model outperforms an overfit-
ting model, which merely ’memorized’ the training data by capturing properties of individual samples that are
not representative of the corresponding class.

lead to instability. This is commonly referred to as internal covariant shift. BatchNormalization (BatchNorm)
is a technique designed to address this problem by normalizing the activations within each mini-batch. Here,
mini-batch refers to the number of individual samples that are fed into the neural network at each iteration.
Specifically, BatchNorm normalizes the input to have a mean of 0 and unit variance. For each mini-batch of
size𝑚, the mean (𝜇) and variance

(
𝜎2) are calculated for each dimension of the input (𝒙):

𝜇 =
1
𝑚

𝑚∑
𝑖

𝑥𝑖 and 𝜎2 =
1
𝑚

𝑚∑
𝑖

(𝑥𝑖 − 𝜇)2 (2.34)

The normalized input of all features in one dimension (�̂�) is then given by:

�̂� =
𝒙 − 𝜇
√
𝜎2 + 𝜖

(2.35)

where 𝒙 are the original input features, 𝜇 is the mean of the mini-batch and 𝜎2 is the variance of the mini-
batch. To restore the representational power and add flexibility in the network, the normalized data is trans-
formed using two learnable parameters, namely the scaling factor (𝛾) and the shifting factor (𝛽). This enables
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the network to adjust the amplitude and center position of the output as follows:

𝒚 = 𝛾 �̂� + 𝛽 (2.36)

where 𝒚 is the transformed output, which is subsequently passed to other network layers. BatchNorm has
become a standard component in modern deep learning architectures. It is commonly applied before ac-
tivation functions in convolutional and fully connected layers. Overall, BatchNorm improves the training
stability, regularizes the model, accelerates convergence and reduces the sensitivity to the choice of the
weight initialization.

2.4.3 Dropout

Dropout is a simple yet effective regularization technique that combats overfitting by introducing random
noise during training.4 The idea behindDropout is to randomly deactivate, or ”drop out”, a fraction of neurons
in a neural network during each forward and backward pass. This prevents the network from relying too
heavily on any individual neuron or feature. In each iteration, only a subset of the total architecture is trained
and hence the training process essentially draws from a distribution of network architectures. Therefore,
Dropout provides an ensemble effect, emulating the behavior of training multiple models at once and taking
their average. As a result, the final neural network model is more robust, generalized better and is less likely
to overfit. In detail, Dropout randomly sets a fraction of neurons to zero. The fraction, referred to as the
dropout rate, is typically set between 0.2 and 0.5. The choice of the dropout rate depends on the specific task
and architecture. Mathematically, the input is multiplied by a binary mask with the same dimensions as the
input. This mask is newly created for each iteration using the dropout rate, i.e. a new set of neurons are
deactivated for each mini-batch.

2.4.4 Data augmentation

Data augmentation involves creating new training samples by making reasonable alterations to the existing
data. The newly generated samples then become part of the entire training data set including the validation
data set. Especially in case of purely synthetic training data, data augmentation is one of the most important
methods to address biases and improve the performance of the neural network model. Depending on the
type of data, the alterations can include various transformations such as:

• Geometric transformation: Rotations, translations, scaling and cropping.

• Noise: Adding random noise drawn from appropriate distributions.

• Flipping: Mirroring the input data horizontally or vertically.

• Perturbations: Replacing parts of the input data or implementing reasonable perturbations.

The specific choice of augmentations strongly depends on the type of data and the task. Therefore, data
augmentation demands a comprehensive understanding of the dataset and expertise in the relevant field of
application for neural networks.

2.4.5 Label smoothing

The idea behind label smoothing is to introduce a degree of uncertainty into the training labels used to
supervise the neural network during training.46 In supervised learning techniques, the data is not labeled as
an ascending number sequence but with a binary vector. This vector has the same length as the number of
unique classes and contains all zeros except for a single one at the index corresponding to the assigned class.
Thismethod is called (hard) one-hot encoding of categorical data. However, instead of assigning hard one-hot
labels (i.e. a single class with a label of one and all others with labels of zero), label smoothing redistributes the
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label probabilities among the classes. This prevents the neural network from becoming overly confident in its
predictions since no single class can be predicted with 100 % certainty. Besides improving the generalization
to unseen data, label smoothing reduces the penalty of erroneously labeled samples that may exist in the
training dataset. Additionally, it allows neural networks to learn an overlap of classes and various probability
distributions of the class labels in a supervised manner.

2.4.6 Pruning

Pruning in deep neural networks is inspired by synaptic pruning in the human brain, a natural process where
axons and dendrites decay, leading to synapse elimination between early childhood and puberty.47 Similarly,
the goal of pruning is to eliminate redundant or less informative parts of a neural network, creating a more
compact and streamlined architecture. The difference to Dropout (section 2.4.3) is that pruning the complete
removal of certain parts of the neural network after training while dropout only temporarily deactivates neu-
rons during training. However, this has to be achieved without significantly compromising the performance.
The selection of which elements to prune can be guided by various criteria such as weight values close to zero
and redundant activation patterns. Based on these metrics, entire neurons, filters or layers can be eliminated
in the final model. In most cases, unnecessary variables in the model can only be identified during or after
training. Therefore, pruning is an iterative process that can entail time-consuming fine tuning. While the
technique is effective, the elimination process during pruning often leads to a loss in model performance that
has to be recovered. Therefore, proper validation and evaluation are crucial to ensuring that pruned models
maintain their performance while becoming more efficient.

2.5 Training and Monitoring

This section serves as a general guideline on how the training process of deep neural networks can be ap-
proached and describes an exemplary parameter distribution of a neural network trained on simulated single-
molecule FRET intensity trajectories. Training neural networks is an iterative process and monitoring the
learning progress is crucial to achieve the desired performance while prevent overfitting and ensuring that
the model generalizes well to unseen data. Before training, the data and their labels are separated into a
training and validation set. The training set is used for the actual learning procedure and the validation set
is used as unseen data for testing the prediction accuracy after each epoch (training cycle). One epoch is
complete when the full training set has been used once. During an epoch, the progression of the training
loss can be monitored since the training data is fed into the neural network in small batches, which is an
important aspect of introducing noise into the learning procedure and prevent overfitting. After one epoch,
the validation loss is calculated by classifying the full validation data set. When the validation loss eventu-
ally plateaus, the learning rate can be reduced and/or the batch size increased to reduce noise and converge
faster to the global minimum.

2.5.1 Hyperparameters

While the loss function can be visualized as a surface, the relationship between the network parameters
and the loss function is high-dimensional. This loss landscape can be extremely complex, with multiple
local minima, saddle points and regions of high curvature. Optimization algorithms (section 2.3.3), initial-
ization strategies (section 2.3.1) and regularization techniques (section 2.4) are employed to navigate this
high-dimensional landscape and find the global minimum. However, all these methods involve specifying
hyperparameters, i.e. parameters that do not change during training one particular model. Any of these
hyperparameters, can act as a bottleneck for a model’s performance. Furthermore, every trained neural net-
work is unique due to the large number of involved parameters and near infinite ways the error landscape
can be traversed. Hence, a given model is trained not only once but multiple times using the same hyperpa-
rameters. Identifying limiting factors and finding the right combination of hyperparameters is a central task
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that constitutes an additional, iterative learning process layered upon the training of the deep neural net-
work itself. Note that hyperparameters can include parameters that define the architecture the deep neural
network such as the depth, the number of neurons, dropout rates, convolutional strides or filter sizes and
the initialization technique, and can also include parameters that only influence the training process such as
mini-batch size, learning rates and the type of optimizer used. Several techniques can be used to search for
optimal hyperparameters, for example:

• Grid Search: Grid search involves defining a set of values or ranges for each hyperparameter and
exhaustively searching all possible combinations. While thismethod can be computationally expensive,
it’s a simple and systematic approach.

• Random Search: Random search selects hyperparameter values randomly from predefined ranges. It
is more efficient than grid search and often provides good results with fewer evaluations.

• Bayesian Optimization: Bayesian optimization is a more sophisticated approach that models the ob-
jective function (e.g. validation accuracy) and uses probabilistic models to guide the search for optimal
hyperparameters. It can be more efficient than grid or random search.

• Genetic Algorithms: Genetic algorithms use a population-based approach to evolve sets of hyperpa-
rameters over multiple generations. Through selection, crossover, and mutation operations, genetic
algorithms adaptively explore the search space. Essentially, an evolutionary process is emulated by
training multiple models and identify the best performer via natural selection.

• Ensemble Methods: Ensemble techniques combine predictions from multiple models trained with dif-
ferent hyperparameters. By leveraging the diversity of these models, ensembles can improve perfor-
mance. However, this requires additional computation time for predictions since the data has to be
fed into multiple models.

The choice of which technique to use depends on factors such as the computational resources available, the
complexity of the problem, and the specific characteristics of the dataset. A reasonable approximation for
the first range of hyperparameters can also be found in machine learning libraries and histories of similar
tasks. Of course, since deep learning is rapidly evolving and naturally requires trial and error methodologies,
staying informed about the latest publications and advances in the field is key to efficiently optimize the
training process.

2.5.2 Model inspection

Monitoring the training of deep neural networks is crucial to ensure that models converge effectively and
to diagnose issues when they arise. While the training and validation loss provide straightforward insights
into a model’s performance, they only scratch the surface of what can be understood about the training
process. The distribution of model parameters, particularly weights and biases, are at the core of a neural
network’s functionality. Hence, examining the evolution of these distributions during training can reveal
important aspects about the model’s behavior. In general, the parameter distributions are influenced by
various factors, such as the training data, the initialization and preceding layers. The parameter distributions
alone cannot reveal an underfitting or overfitting model and need to be interpreted together with the training
and validationmetrics. However, they can help identify underperforming substructures in the neural network
architecture and performance bottlenecks. The following graphs (Figures 2.8 - 2.11) show various parameters
of the training procedure of a hybrid CNN-LSTM model, developed for classifying single-molecule intensity
trajectories in FRET experiments.48 For illustrative purposes, the size of the training data set was deliberately
reduced to increase the number of necessary epochs for convergence.
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Loss and accuracy

Figure 2.8 displays the training loss and accuracy for every epoch. The accuracy is only based on correct and
false class predictions, whereas the loss encompasses the error of both false and accurate predictions. For
example, a training sample can have a ground truth label of 0.95 for one particular class and the deep neural
network can accurately predict this class but only with a probability value of 0.6. At the beginning of training,
the validation loss is typically higher than the training loss and can be unstable. When the model continues
to be well regularized, the validation loss follows the training loss since the model learns to generalize the
desired features. However, even with several regularization employed, the validation and training loss may
diverge after a number of epochs. The divergence point in Figure 2.8 is indicated at 62 epochs. While the
validation loss still slightly decreases in the subsequent epochs, the model starts to overfit the training data,
as can be seen by no further improvement in the predictions of the validation dataset.

Figure 2.8 | Loss and accuracy during training. The loss (a) and classification accuracy (b) are monitored
for each epoch. The training metrics (cyan) are calculated based on the last batch of the training data set
while the validation metrics (blue) are calculated based on the complete validation data set that is classified
after each epoch. For a well regularized model, the validation metrics closely follow the training metrics up a
divergence point (black arrow). Training beyond this point leads to an overfitting model and does not improve
its performance for classifying unseen data.

CNN weight distributions

The trained model is composed of three one-dimensional CNN layers followed by two LSTM layers and
a fully connected classification layer. Here, one-dimensional refers to the directionality of the CNN and
not the individual kernel sizes, which can still be two-dimensional. Since the training data set is based
on 2-color ALEX data, there are three channels that are analyzed simultaneously by the model. Figure 2.9
shows the weight distributions of different kernel sizes in the first layer for each epoch. The purpose of
using a range of kernel sizes at the same level of depth is to extract important features on different time
scales. It can be seen that all weight distributions are approximately centered around zero and mostly show
an increasing tail to negative values as the training progresses. This is a typical phenomenon for neural
networks that learn to disregard most of the noise in the data and mainly focus on distinct features. The
shape of the weight distribution approximates a normal distribution with increasing kernel size. The sparsely
distributed weights of smaller kernels originates from the fact that single-molecule intensity trajectories are
inherently noisy and only short events hold important information for these kernels. Sparse distributions
indicate distinct and easily recognizable features and the information extracted by small kernels can be
useful for the following LSTM layer. However, the distributions for small kernels in the first layer remain
unstable throughout the training process. Hence, removing these layers in the next training cycle reduces
the number of parameters that need to be trained and may improve the convergence time without sacrificing
performance. On the other hand, larger kernels learn to recognize features within a larger time frame and
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are capable of removing noise more effectively than smaller kernels. Their weight distributions are stable
and show a continuously increasing variance. However, larger kernels are at a higher risk of becoming too
specialized to certain features, exploiting biases in the training data and leading to a model that overfits the
data. Depending on the number of employed neurons in a layer, overfitting kernels may not be identifiable by
only viewing their weight distributions. A static variance and extreme values are typically the first indicators
for a lack of learning and overfitting, respectively. In general, the weights have to be considered together with
the bias, the activation function and the batch normalization parameters, which can significantly transform
their values. For example, if the neural network shifts most of the weights to negative values via the batch
normalization layer, it has learned to render this particular layer useless by turning all outputs to zero.

Figure 2.9 | CNN weight distributions. Weight distributions of differently sized kernels employed in the
first layer of the neural network, shown for the whole training process. With increasing kernel size, the weight
distribution approximates a normal distribution, showing a higher stability than the weights of smaller kernels.
All distributions increase in variance and shift to negative values on average, signifying that the neural network
assigns positive weights only to important features, filtering them from random noise.

LSTM parameter distributions

Figure 2.10 shows the parameter distributions of the last LSTM layer in the neural network. In this archi-
tecture, each LSTM layer is bidirectional, i.e. each sequence is processed from both directions. After the full
time series is processed, the forward and backward layer outputs are concatenated before being transferred
to the next layer. The biases in the input and output gates are initialized with zeros since their primary roles
is to control the inflow and outflow of information. Here, the emphasis lies on importing and exporting
only important features. During training, there is a shift in the distribution mean towards negative values,
indicating that the network learned to focus on specific features and disregards most others. Conversely,
the forget gate biases are initialized with values of one. This choice ensures that, in the initial stages, the
network preserves all available information, learning to forget only when necessary. As training progresses,
the distribution of forget biases gradually smooths out and the average bias values increase. This trend im-
plies that the network deems every time step valuable throughout the entire sequence while adjusting their
significance accordingly. When examining the weights across all layers, they exhibit a normal distribution
centered around zero, displaying an increasing variance as training continues. Most importantly, the distri-
butions are consistent and show a stable development over training epochs. For example, a static uniform
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distribution of input weights would indicate that the LSTM layer does not capture important features and
relies on other parameters for classification or prediction.

Figure 2.10 | BiLSTMparameter distributions. Evolution of biases and weights in a bidirectional LSTM layer
(BiLSTM), processing a given sequence forward and backward. All distributions show a stable development
with increasing variance during the training process. The biases of the input and output gates are initialized
with zeros. During training, they show increasing negative values and hence an increase in suppression of
redundant information. In contrast, the forget gate biases are initialized with ones and flatten during training
to values between 0.8 and 1.3. This indicates that all information in the sequences is retained with a scaled
importance. The weights are all approximating a normal distribution centered around zero, indicating a well
balanced inclusion, suppression and retention of features.

Dense layer parameter distributions

Figure 2.11 shows the parameter distributions of the dense layer, serving as the final classification layer. It
consists of eight neurons and is fully connected to the previous LSTM layer. The sparsity of the bias distribu-
tion, with values well separated between positive and negative, suggests that the individual neurons in the
dense layer are serving distinct classification decisions. This also implies that the neurons are specialized in
their response to different aspects of the input data, contributing to the overall discriminative power of the
neural network. Positive bias values indicate that certain neurons are more inclined to activate for particular
patterns or features in the input data. This could imply that these neurons have learned to respond strongly
to specific cues relevant for the classification task. Negative bias values indicate neurons that are biased
towards not activating for certain input patterns, suggesting they play a role in suppressing specific features
or patterns. Note that each neuron only has one bias term, which means negative bias values make it more
likely that a neuron will output low activation scores for specific input patterns, effectively reducing the like-
lihood of classifying an input as the associated class. The weight distribution of the dense layer resembles
two overlapping normal distributions centered around zero. This reveals that the layer has evolved to have
subgroups of neurons that are responsive to different subsets of features. With one population comprised
of mostly negative values, it is likely that the neural network learned to recognize the random noise that is
omnipresent in single-molecule intensity trajectories. By assigning negative weights to certain features, the
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network can reduce the impact of noise or unwanted variations in the input data. The other population con-
sists of more positive values and it is likely, that these weights are associated with features that correspond
to a specific class and hence result in higher activations.

Figure 2.11 | Dense layer parameter distributions Bias distributions (left panel) and weight distributions
(right panel) of the last classification layer for eight classes, consisting of eight neurons that are fully connected
to the previous layer. During training, the zero-initialized biases are increasingly separated and contribute to
the decision boundaries of the neural network for each class. Positive bias values indicate that the neuron
is biased towards recognizing patterns associated with a specific class, while negative bias values indicate a
bias against classifying input patterns as that class. The uniform initialized weights develop into two main
populations resembling two overlapping normal distributions, suggesting that the neural networks learned to
make a relatively clear distinction between important features and random noise.
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Chapter 3

Fluorescence

3.1 Principles of fluorescence

Fluorescence is a versatile phenomenon that has emerged as a powerful tool in the realm of scientific research
and technology over the past century. This phenomenon, which encompasses the emission of light by certain
substances when they absorb photons of a specific wavelength, has found applications in a wide range of
fields in chemistry, physics and biology. Its ability to provide valuable insights into the properties of matter
at various scales has made fluorescence an important technique for investigating intricate processes at the
molecular and cellular levels. The central feature of fluorescence is the interaction between incident light
and a substance capable of fluorescing, often referred to as a fluorophore. When a fluorophore absorbs
photons, it transitions into an excited state and, upon returning to its ground state, it releases energy in
the form of lower-energy photons. This emitted light is characterized by its longer wavelength, typically
within the visible spectrum, making it easily detectable. The specific spectral characteristics of the emitted
light, including its intensity, lifetime, and polarization, hold information about the environment, structure,
and dynamics of the fluorophore. Hence, fluorescence methods allow the observation of processes at the
molecular level, making it particularly useful for studying cells, DNA and proteins.

3.1.1 Energy diagram

Figure 3.1 | Jablonski diagram. Excitation and relaxation pathways of one-photon (blue) and two-photon
absorption (red), vibrational relaxation (dark red), internal conversion (black), fluorescence (green), phospho-
rescence (orange) and intersystem crossing between the excited singlet and triplet states (purple). Radiationless
transitions are represented by dashed lines.

Fluorescence refers to the spontaneous release of electromagnetic radiation shortly after excitation of a flu-
orescent molecule or fluorophore. Figure 3.1 depicts a Jablonski diagram of various processes.49 At room
temperature, the vast majority of fluorescent molecules will be in the ground state S0. When a fluorophore
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absorbs a photon of a specific wavelength, a molecular orbital electron, typically a π electron, moves from the
S0 state to a higher electronic state such as S1 or S2. While not specifically relevant in this thesis, the excited
state can also be reached in other ways. For example, two photons with the combined energy matching
the gap between the ground and excited state can be absorpted via an intermediate virtual state. At each
electronic state, the electron can occupy multiple vibrational energy levels. Due to frequent collisions with
surrounding molecules, the fluorophore relaxes radiationless to the vibrational ground state of the respective
electronic state on a picosecond timescale. If the vibrational ground state is that of a high electronic state,
e.g. S2, a transition to a lower electronic state occurs with high probability due to the closely spaced higher
electronic energy levels. This process is termed internal conversion and describes radiationless transitions
between energy states with the same spin. The emission of photons during relaxation from energy states
of the same spin state, e.g. S1 to S0, is termed fluorescence and occurs on a timescale of nanoseconds. In
case of relaxation between electronic states with different spin states, e.g. T1 to S0, the emission is termed
phosphorescence. Since this spin forbidden process occurs with a lower probability than fluorescence, phos-
phorescence can have much longer lifetimes, typically in range of microseconds but lifetimes up hours are
also possible.50 The triplet state, T1 or higher triplet levels, can be occupied via intersystem crossing, a radi-
ationless transition between different spin states.

3.1.2 Franck-Condon principle and Stokes shift

Figure 3.2 | The Franck-Condon principle. (a) The transitions depicted by arrows are favored due to higher
overlap of the vibrational wave functions. (b) Illustration of vibrational transitions in absorption and emission
spectra of dilute gases (transparent narrow lines) and liquids (solid lines).

The Franck-Condon principle, a quantummechanical law, explains vibrational transition intensities and their
relevance to photon absorption and emission.51–53 This principle asserts that the likelihood of a vibrational
transition depends on the degree of overlap between the vibrational wave functions corresponding to the
initial and final electronic states following excitation. An essential assumption of the Franck-Condon prin-
ciple is that when a molecule undergoes electronic transitions, which occur on the order of femtoseconds,
the nucleus can be considered stationary. This assumption, known as the Born-Oppenheimer approxima-
tion, mathematically separates the electronic and vibrational wave functions. The states S0 and S1 shown in
Figure 3.2a can be described as the product of the electronic, vibrational and spin wave functions:

𝛹 =𝛹e𝛹v𝛹s (3.1)

The scalar product of the initial state |Ψ⟩ and the final state |Ψ′⟩ can be used to calculate the probability 𝑃
of a transition:
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P = |⟨𝛹′ |𝝁 |𝛹⟩|2 (3.2)

where 𝝁 is the molecular dipole operator, given by the sum of the charges and locations of the electrons and
nuclei:

𝝁 = 𝝁e + 𝝁N (3.3)

Equation 3.2 can be written as:

P = |⟨𝛹′e𝛹′v𝛹′s |𝝁e |𝛹e𝛹v𝛹s⟩ + ⟨𝛹′e𝛹′v𝛹′s |𝝁N |𝛹e𝛹v𝛹s⟩|2 (3.4)

= | ⟨𝛹′v |𝛹v⟩︸  ︷︷  ︸
vibrational
overlap
integral

• ⟨𝛹′e |𝝁e |𝛹e⟩︸      ︷︷      ︸
orbital
selection

rule

• ⟨𝛹′s |𝛹s⟩︸  ︷︷  ︸
spin

selection
rule

+ ⟨𝛹′e |𝛹e⟩︸  ︷︷  ︸
0

• ⟨𝛹′v |𝝁N |𝛹v⟩ • ⟨𝛹′s |𝛹s⟩|2 (3.5)

The wave functions𝛹e and𝛹′e describe distinct electronic states, and they are orthogonal to each other with
an integral |⟨𝛹′e |𝛹e⟩|2 of zero, in accordancewith the Born-Oppenheimer approximation. However, vibrational
changes can still be significant and are not restricted by this approximation. During electronic transitions,
vibrational changes

(
⟨𝛹′v |𝛹v⟩

)
can occur, allowing for non-zero vibrational overlap due to the movement of

the nuclei. The intensity of a vibrational transition between different electronic states is proportional to the
square of the vibrational overlap integral |⟨Ψ′v |Ψv⟩|2, termed the Franck-Condon factor. An example of equally
favored transitions is depicted in Figure 3.2a (v = 0 and v = 2). This principle extends to other transitions,
resulting in an approximate mirror symmetry in absorption and emission spectra, as shown in Figure 3.2b.
Cold and dilute gases exhibit sharp peaks, while inhomogeneous broadening in liquids and solids leads to
broadening when the individual transitions are no longer observable.54 Fluorescence emission spectra remain
independent of the excitation wavelength due to the high degree of overlap in vibrational wave functions of
the excited electronic states. Hence, the relaxation from any high electronic state to the S1 state occurs on
a much shorter timescale than the relaxation from the S1 to the S0 state, a principle termed Kasha’s rule.55

Following the vibrational relaxation, the emission spectrum of a fluorophore experiences an additional shift
towards higher wavelengths and correspondingly lower energy levels. This is due to the realignment of dipole
moments between the solvent and fluorophore after vibrational relaxation causes additional energy loss. The
resulting energy difference between absorption and emission spectra, known as the Stokes shift, is observed
experimentally as a shift in the maxima of the two spectra.56

3.2 Förster resonance energy transfer

Förster resonance energy transfer (FRET) has established itself as a widely used method in molecular and cel-
lular research to probe interactions and dynamics. FRET yields distances between two or more fluorophores
at the nanoscale, providing insights into the intricacies of diverse systems. The phenomenon of FRET is
named after the German physicist Theodor Förster. It was first described classically in 194657 and later for-
mulated in a quantum-mechanical framework in 194858. Since then, it has become an important tool for
studying molecular interactions, structural changes, and energy transfer processes.

3.2.1 Fundamentals of FRET

Förster resonance energy transfer (FRET) is a mechanism describing the radiationless energy transfer from
an excited donor fluorophore (D) to an acceptor fluorophore (A). For FRET to occur, the energy level of the
excited donor has to match the energy required for the acceptor to transition to a higher energy state, i.e. the
two energy gaps have be in resonance, as shown in Figure 3.3. The rate of the transfer process 𝑘T is highly
sensitive to the spacial separation 𝑟 between the two fluorophores:
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Figure 3.3 | Theory of FRET. (a) Jablonski diagram for FRET. Upon excitation of a donor fluorophore, a photon
can be emitted or the energy can be transferred to an acceptor fluorophore via dipole-dipole interaction. (b)
Relevant angles of the donor emission dipole and acceptor absorption dipole for the FRET efficiency.

𝑤𝑘T =
1
𝜏D

(
𝑅0
𝑟

)6
(3.6)

where 𝜏𝐷 is the fluorescence lifetime of the donor and 𝑅0 is the Förster distance, representing the separation
distance at which the energy transfer efficiency is 50 %. The FRET efficiency is then calculated as:

𝐸 =
𝑘T

𝑘Dem + 𝑘T +
∑
𝑘𝑖

=
1

1 +
(
𝑟
𝑅0

)6 (3.7)

where 𝑘Dem and
∑
𝑘𝑖 are the rates of photon emission and all other radiationless relaxation pathways of the

donor fluorophore. The Förster distance depends on various parameters and is given by:

𝑅6
0 =

9000 (ln 10)𝑄D 𝐽 (𝜆)𝜅2
128𝜋5𝑁A𝑛4

(3.8)

where 𝑄𝐷 is the quantum yield of the donor, 𝐽 (𝜆) is the dimensionless overlap integral as calculated from a
normalized donor spectrum, 𝜅2 represents the relative orientation between the transition dipole moments of
the donor and acceptor fluorophores, 𝑁A is Avogadro’s number and 𝑛 is the refractive index of the medium.
The orientation factor 𝜅2 depends on the angle between the two dipole vectors 𝜃T and the angles between
the dipole vectors and the distance vectors, 𝜃D and 𝜃A:

𝜅2 = (cos𝜃T − 3 cos𝜃D cos𝜃A)2 = (sin𝜃D − sin𝜃A cos𝜙 − 2 cos𝜃D cos𝜃A)2 (3.9)

The value of 𝜅2 ranges between [0, 4] with 𝜅2 = 0 and 𝜅2 = 4 implying the lowest transfer efficiency and
highest transfer efficiency, respectively. In most FRET experiments, all orientations are assumed to be equally
probable, resulting in the isotropically averaged value of 𝜅2 = 2/3. If the fluorophores are not freely rotating
or their rotation speed is slow relative to the fluorescence lifetime, 𝜅2 can be estimated using the residual
anisotropies of the donor and acceptor fluorophores. If the fluorophores are not freely rotating or their
rotation speed is slow relative to the fluorescence lifetime, 𝜅2 can be estimated using the residual anisotropies
of the donor and acceptor fluorophores.59,60 In this context, the angles that can be determined experimentally
are 𝜃D, the angle between the transition dipole of the donor and a reference axis, 𝜃A, the angle between the
transition dipole of the acceptor and a reference axis, and 𝜃T, the angle representing the rotational orientation
between the donor and acceptor transition dipole moments. However, lifetime and anisotropy information
are only obtainable using microscope setups that employ advanced techniques for excitation and photon
detection, e.g. multiparameter fluoresence detection (MFD)61 combined with pulsed interleaved excitation
(PIE)62, and time correlated single photon counting (TCSPC)63.
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Figure 3.4 | Spectral overlap integral. Normalized absorption and emission spectra of the dye pair Atto465-
Atto565. The striped area represents the overlap integral, normalized by the donor emission spectrum.

When designing FRET experiments, the choice of fluorophores is has an influence on the Förster distance
(equation (3.8)) due to different quantum yields of the donor fluorophores and due to the spectral overlap
integral 𝐽 (𝜆). Example spectra of the dye pair Atto465-Atto565 and their corresponding overlap are shown in
Figure 3.4. The overlap integral 𝐽 (𝜆) is calculated as:

𝐽 (𝜆) =
∫ ∞

0
𝐹D (𝜆) 𝜖A (𝜆) 𝜆4𝑑𝜆 (3.10)

where 𝐹D (𝜆) is the normalized emission spectrum of the donor and 𝜖A (𝜆) is the extinction coefficient of the
acceptor in mol−1 cm. The overlap integral in Figure 3.4 is normalized by the donor emission spectrum for
illustration purposes.

3.2.2 Two-color FRET

In single-molecule experiments, the FRET efficiency is typically obtained by exciting the donor fluorophore
and using two detection channels for measuring the donor and acceptor intensity, which can be achieved by
spectrally separating the emitted fluorescence using a dichroic mirror. In all following equations, the back-
ground corrected channel intensities are labeled as 𝐼XY and 𝐼 corrXY for the fully corrected intensities including
the correction factors. Here, ’X’ refers to the excitation source, and ’Y’ refers to the emission channel. For
example, 𝐼DA represents the background-corrected emission of the acceptor in the red channel (A) following
the excitation at the wavelength used for the donor (D), excluding all other correction factors. The apparent
FRET efficiency can then be expressed as:

𝐸 =
𝐼DA

𝐼DD + 𝐼DA
(3.11)

where 𝐼DD and 𝐼DA is the donor and acceptor intensity after donor excitation, respectively. Experimentally, a
number of correction factors have to be considered to accurately determine the FRET efficiency. Due to the
broad fluorescence emission spectra, a fraction of the donor fluorescence is usually detected in the acceptor
channel (spectral crosstalk). Likewise, the broad absorption spectra result in non-negligible excitation of the
acceptor fluorophore by the donor excitation laser (direct excitation). Lastly, donor and acceptor fluorophores
have different quantum yields and the photon detection efficiency of the apparatus and detectors shows a
spectral dependence. The necessary corrections and the determination of correction factors are discussed in
subsections 3.2.4 and 3.2.5. If the lifetime information of donor is available, the accurate FRET efficiency can
be calculated without performing any corrections:

𝐸 = 1 −
𝜏D(A)

𝜏D(0)
(3.12)
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where 𝜏D(0) and 𝜏D(A) are the donor lifetimes in the absence and presence of the acceptor, respectively. The
lifetime approach also works if the acceptor labeling is incomplete, in which case the lifetimes of unquenched
and quenched donor fluorophores can be extracted using a bi-exponential model function.

3.2.3 Three-color FRET

Figure 3.5 | Energy transfer in a three-color FRET system. (a) All possible transition pathways upon ex-
citation of fluorophore D. (b) Excitation of fluorophore A1 represents the two-color FRET case. (c) In ALEX
measurements, the acceptor fluorophore A2 is additionally excited to obtain information about the photophys-
ical state of A2 and thereby the stoichiometry and the direct excitation factor can be determined.

In a three-color FRET system as shown in Figure 3.5, the energy of an excited donor fluorophore (D) can be
transferred to on of two acceptors (A1 and A2) or emitted as a photon (𝐼DD). If the energy is transferred to
the first acceptor A1, the energy can be transferred again to the second acceptor A2 or emitted as a photon
(𝐼DA1 ). Upon excitation of the donor fluorophore (D) as shown in Figure 3.5a, the apparent FRET efficiencies
are given by:

𝐸DA𝑖 =
𝑘T,𝑖

𝑘Dem + 𝑘T,1 + 𝑘T,2
{𝑖 ∈ (1, 2)} (3.13)

Analogously to equation (3.7) and excluding radiationless relaxations, the FRET efficiency between acceptor
A1 and A2 is given by:

𝐸A1A2 =
𝑘T,12

𝑘A1
em + 𝑘T,12

(3.14)

It is important to note that the above defined FRET efficiencies are not directly related to distances, thus
they are termed apparent FRET efficiencies. The donor fluorophore (D) is quenched by two acceptors, which
results in a distance dependent change of the donor quantum yield. When calculating the distance-related
FRET efficiency of the donor to one of the acceptors, the distance to the other acceptor has to be considered.
Assuming ideal fluoresence intensities, denoted as shown Figure 3.5, the distance-related FRET efficiencies
can be calculated as:
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𝐸A1A2 =
𝐼A1A2

𝐼A1A1 + 𝐼A1A2

(3.15)

𝐸DA1 =
𝐼DA1

𝐼DD
(
1 − 𝐸A1A2

)
+ 𝐼DA1

(3.16)

𝐸𝐷𝐴2 =
𝐼DA2 − 𝐸A1A2

(
𝐼DA1 + 𝐼DA2

)
𝐼DD + 𝐼DA2 − 𝐸A1A2

(
𝐼DD + 𝐼DA1 + 𝐼DA2

) (3.17)

While calculating the FRET efficiency 𝐸A1A2 between acceptor A1 and A2 is straight forward, the equations
for calculating the FRET efficiencies of the donor (D) to the other two acceptors (equations (3.16) and (3.17))
reveal the importance of determining 𝐸A1A2 as accurately as possible. This can be achieved experimentally by
exciting acceptor A1 directly using alternating excitation techniques such as ALEX64 or PIE62. However, the in-
herent uncertainties in 𝐸A1A2 cause significant broadening of 𝐸DA1 and 𝐸DA2 . Careful consideration is required
in three-color FRET experiments since the interdependence of all possible energy transfers and propagating
errors in the analysis may lead to an ambiguous interpretation of the data. Obtaining the distance-related
FRET efficiencies is further complicated by the necessary corrections applied to the measured intensities,
which is discussed in subsection 3.2.4.

3.2.4 Accurate FRET efficiencies

This subsection focusses on the determination of accurate, distance-related FRET efficiencies in a three-color
system. For two-color FRET, the necessary calculations simply revert to a system illustrated in Figure 3.5b. To
obtain accurate FRET efficiencies, it is necessary to apply several corrections to the acceptor signal intensity.
These corrections account for various factors that can affect the measurements. Specifically:

• Direct excitation (𝑑𝑒): The intensity of the acceptor signal must be adjusted to account for the direct
excitation of the acceptor fluorophore, which can occur for the wavelength used for donor excitation.
This correction factor is denoted as 𝑑𝑒XY, where X represents the excitation source, and Y represents
the acceptor fluorophore.

• Spectral crosstalk (𝑐𝑡 ): Another correction is required to compensate for spectral crosstalk, where some
of the donor’s emission is detected in the acceptor channel. This correction factor is denoted as 𝑐𝑡XY,
where X represents the fluorophore emitting the signal, and Y represents the emission channel.

• Detection sensitivity differences (𝛾 ): To account for variations in detection sensitivity between the
donor and acceptor fluorophores, a correction factor denoted as 𝛾XY is applied.

These corrections are crucial to obtain FRET efficiencies that correspond to actual distances by accounting
for various sources of signal contamination and differences in detection sensitivity. In 3-color FRET ex-
periments employing a blue, yellow and red fluorophore, the crosstalk from the blue emission into the red
detection channel and the direct excitation of the red fluorophore by the wavelength used for exciting the
blue fluorophore is typically below 5 %. On the other hand, the crosstalk and direct excitation factors can
be much higher (up to 40 % depending on the setup) for two channels that have higher spectral overlap (e.g.
blue/yellow and yellow/red). The three gamma factors (𝛾 ) are given by:

𝛾𝐷𝐴1 =
𝜂𝐴1

𝜂𝐷
· Φ𝐴1

Φ𝐷
, 𝛾𝐴1𝐴2 =

𝜂𝐴2

𝜂𝐴1

· Φ𝐴2

Φ𝐴1

, 𝛾𝐷𝐴2 =
𝜂𝐴2

𝜂𝐷
· Φ𝐴2

Φ𝐷
(3.18)

where ΦX is the quantum yield of fluorophore X and 𝜂X is the detection efficiency of channel X corresponding
to the emitted wavelength of fluorophore X. From these definitions of 𝛾 it follows:

𝛾𝐷𝐴2 = 𝛾𝐷𝐴1 · 𝛾𝐴1𝐴2 (3.19)



Chapter 3. Fluorescence 34

Hence, if only two gamma factors are obtainable in a three-color FRET experiment the third gamma factor can
be approximated using the relationship above. However, this relationship is only theoretically true since, in
practice, the excitation and detection volumes do not match due to chromatic aberrations. There are various
strategies to experimentally determine the correction factors (see subsection 3.2.5). Following the notation
from Figure 3.5, i.e. the intensities are denoted as 𝐼fluorophore emission, detection channel, the corrected intensities
are calculated as:

𝐼 corrDA1
= 𝐼DA1 − 𝑐𝑡DA1𝐼DD − 𝑑𝑒DA1𝐼A1A1 (3.20)

𝐼 corrDA2
= 𝐼DA2 − 𝑐𝑡DA2𝐼DD − 𝑑𝑒DA2𝐼A2A2 (3.21)

− 𝑐𝑡A1A2

(
𝐼DA1 − 𝑐𝑡DA1𝐼DD

)
(3.22)

− 𝑑𝑒DA1𝐼A1A1

(
1 − 𝐸A1A2

)−1
𝐸A1A2 (3.23)

𝐼 corrA1A2
= 𝐼A1A1 − 𝑐𝑡A1A1𝐼A1A1 − 𝑑𝑒A1A2𝐼A2A2 (3.24)

It is clear that the detected acceptor signal, 𝐼DA2
, needs the most amount of corrections due to the different

possible energy pathways. In detail, the first terms (3.21) accounts for crosstalk from the donor channel
and direct excitation of acceptor A2. The next term (3.22) subtracts the additional crosstalk contribution of
the crosstalk corrected fluorescent signal of acceptor A1. The last term (3.23) consider the direct excitation
of acceptor A1 and the subsequent energy transfer to acceptor A2, depending on the FRET efficiency 𝐸A1A2 .
Using the corrected fluorescence intensities, the distance-related FRET efficiencies are given by:

𝐸A1A2 =
𝐼 corrA1A2

𝛾A1A2𝐼A1A1 + 𝐼 corrA1A2

(3.25)

𝐸DA1 =
𝐼 corrDA1

𝛾DA1𝐼DD
(
1 − 𝐸A1A2

)
+ 𝐼 corrDA1

(3.26)

𝐸𝐷𝐴2 =
𝐼 corrDA2
− 𝐸A1A2

(
𝛾A1A2𝐼

corr
DA1
+ 𝐼 corrDA2

)
𝛾DA2𝐼DD + 𝐼DA2 − 𝐸A1A2

(
𝛾DA2𝐼DD + 𝛾A1A2𝐼

corr
DA1
+ 𝐼 corrDA2

) (3.27)

Due to the high number of correction terms, three-color FRET efficiencies are subjected to broader error
distributions and inherent uncertainties. However, the detection of conformational changes does not rely
on corrected signals and the apparent FRET efficiencies are well suited for extracting state dwell times, pro-
vided the duration of the time traces is sufficient. Moreover, the adoption of three-color FRET enhances
the analysis by offering a higher-dimensional dataset. This increased dimensionality leads to a more de-
tailed understanding of dynamic processes and enables the study of complex biological systems, especially
if multiple states are involved. In contrast to two-color FRET, three-color FRET provides a solution to the
challenge of degenerate states, enabling more robust identification of individual states and their transitions.
For distance-related FRET efficiencies, states can be identified from the apparent FRET efficiencies, corrected
individually and averaged when state transitions are analyzed.48 In the case of diffusion-based confocal data,
such as intensity bursts collected from single-molecule events, likelihood approaches have been developed
to circumvent the direct calculation of three-color FRET efficiencies while still allowing the effective analysis
of the underlying kinetics of molecular interactions.25,26

3.2.5 Determination of correction factors

The correction factors can be obtained in various ways, depending on the type of experiment and micro-
scope setup used for data acquisition. The most common methods make use of molecules without an active
donor or acceptor, either due to being single-labeled or due to photobleaching events. From these so called
’Donor/Acceptor only’ populations or regions in an intensity trace where the donor/acceptor is off, the cor-
rection factors can be determined. The contribution of spectral crosstalk (𝑐𝑡 ) from a donor channel (𝐷) to an
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acceptor channel (𝐴) is calculated as:

𝑐𝑡 =
⟨𝐼DA⟩
⟨𝐼DD⟩

����
Donor only

(3.28)

where ⟨𝐼DD⟩ and ⟨𝐼DA⟩ represent the mean intensities of the donor and acceptor channels, respectively. Sim-
ilarly, the correction factor for direct excitation of the acceptor during donor excitation can be quantified
as:

𝑑𝑒 =
⟨𝐼DA⟩
⟨𝐼AA⟩

����
Acceptor only

(3.29)

Here, ⟨𝐼DA⟩ and ⟨𝐼AA⟩ describe the mean acceptor emission after donor excitation or acceptor excitation, re-
spectively. It is important to note that obtaining an accurate direct excitation factor requires an acceptor ex-
citation laser in a well aligned microscope setup. The contribution of direct excitation can also be obtained by
independent measurements.22 The differences in the quantum yield of the donor and acceptor fluorophores
and differences in the detection sensitivity of the microscope channels are taken into account by the gamma
factor (𝛾 ). Depending on the design of the experiments and available information, 𝛾 can be determined with
several techniques.20,22,65–70 A popular method for calculating 𝛾 in confocal measurements with ALEX or PIE
makes use of the relationship between the stoichiometry (𝑆) and the apparent FRET efficiency (𝐸app) after
correcting for crosstalk and direct excitation. In this context 𝐸app is defined as:

𝐸app =
𝐼 corrDA

𝐼DD + 𝐼 corrDA
=

𝛾𝐸

1 + (𝛾 − 1) 𝐸 (3.30)

where 𝐼 corrDA is the direct excitation and crosstalk corrected FRET intensity and 𝐸 refers to the fully corrected
FRET efficiency. The stoichiometry (𝑆) can be calculated as:

𝑆 =
𝐼 corrDA + 𝐼DD

𝐼 corrDA + 𝐼DD + 𝐼AA
(3.31)

A linear relation between 1/𝑆 and 𝐸app can be obtained via:

1
𝑆
= 1 + 𝛾𝛽 + 𝛽 (1 − 𝛾) 𝐸PR = Ω +

∑
𝐸PR (3.32)

where Ω is the intercept and
∑

is the slope of the linear fit in a plot of 1/𝑆 against 𝐸app. The 𝛽 factor is
accounting for differences in excitation power of the acceptor (𝐼Aex) and the donor (𝐼Dex) as well as their
corresponding absorption cross sections 𝜎A

Aex and 𝜎D
Dex:

𝛽 =
𝐼Aex𝜎

A
Aex

𝐼Dex𝜎D
Dex

(3.33)

From the linear fit described in equation 3.32, 𝛾 and 𝛽 can be determined:

𝛽 = Ω +
∑
−1 (3.34)

𝛾 =
(Ω − 1)
Ω +∑−1 (3.35)

Since this method relies on a robust extraction of the intercept and slope, well separated populations are
necessary for an accurate determination of 𝛾 and 𝛽 . In measurements with the molecule of interest attached
to the surface, 𝛾 can also be calculated via the intensity differences in each channel upon acceptor photo-
bleaching:
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𝛾 =
⟨Δ𝐼 corrDA ⟩
⟨Δ𝐼 corrDD ⟩

����
Acceptor photobleaching event

(3.36)

Here, ⟨Δ𝐼 corr⟩ and ⟨Δ𝐼 corr⟩ refer to the corrected intensity difference for themean donor and acceptor emission
after donor excitation before and after acceptor photobleaching. This approach necessitates intensity traces
with a duration long enough to smooth out signal noise, a feature unattainable in typical diffusion-based
measurements. For wide-field data, however, molecule-wise 𝛾 factors can be extracted and applied, provided
that the acceptor bleaches before the donor fluorophore. This has the advantage of considering 𝛾 factor
distributions throughout the field-of-view, such as those caused by a heterogenous illumination profile.

3.3 Data acquisition

The foundation of data acquisition in single molecule studies lies in the ability to detect and monitor the
properties of single molecules with precision. Various experimental techniques have been developed for this
purpose, including optical microscopy, atomic force microscopy, and nanopore sensing. These techniques not
only enable the detection of single molecules but also offer valuable information on their positions, motions,
conformational changes, and interactions. Within the scope of this thesis, the most relevant techniques
are surface-based, i.e. the molecules of interest are attached to a solid surface instead of freely diffusing
through the solution. This allows for the observation of single molecules for seconds to minutes, depending
on the fluorophore stability and excitation power. In the context of fluorescencemeasurements, two common
techniques are total internal reflection fluorescence (TIRF) and confocal microscopy.

3.3.1 Total internal reflection fluorescence (TIRF)

TIRF microscopy is based on the principle of total internal reflection, which occurs when a light beam travel-
ing through a high refractive index material (e.g. glass) encounters a boundary with a lower refractive index
material (e.g. air or an aqueous sample). Under specific conditions, the incident light is completely reflected
back into the higher refractive index material, creating an evanescent wave that penetrates only a short dis-
tance into the lower refractive index medium. Snell’s Law specifies the necessary conditions by relating the
angles of incidence and refraction when light passes from one medium to another with different refractive
indices:

𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 (3.37)

where 𝑛1 and 𝑛2 are the refractive indices of the first and second medium, respectively, 𝜃1 is the angle of
incidence of the incoming light with respect to the normal to the interface between the two media and 𝜃2
is the angle of refraction within the second medium. The critical angle (𝜃c) is the angle of incidence above
which total internal reflection occurs. It is determined by Snell’s Law, and it marks the boundary beyond
which light is no longer transmitted into the second medium and is instead reflected internally:

𝜃c = arcsin
𝑛2
𝑛1

(3.38)

In TIRFmicroscopy, this critical angle is carefully controlled by adjusting the angle of incidence. The intensity
of the evanescent field (𝐼 (𝑧)) decreases exponentially with distance from the interface. This exponential
decay is characterized by:

𝐼 (𝑧) = 𝐼0 · 𝑒−
2𝑧
𝛿 (3.39)

where 𝐼0 is the initial intensity at the interface, 𝑧 is the distance from the interface and 𝛿 is the penetration
depth of the evanescent wave. This penetration depth indicates how deeply the illumination and excitation
of fluorescent molecules occur within the sample. It depends on the wavelength of the incident light (𝜆), the



Chapter 3. Fluorescence 37

refractive indices of the first medium (𝑛1) and second medium (𝑛2), and the angle of incidence (𝜃1):

𝛿 =
𝜆

4𝜋
√
𝑛22 sin

2 𝜃1 − 𝑛21
(3.40)

The penetration depth (𝛿) of the evanescent wave is typically on the order of 100-200 nanometers, thus cre-
ating a highly localized illumination region and reducing background noise from out-of-focus fluorescence.
The dependence on the angle of incidence can be used to fine-adjust the illumination of the sample. Three
commonly employed methods for achieving total internal reflection are objective TIRF (oTIRF), prism TIRF
(pTIRF) and lightguide TIRF (lgTIRF), illustrated in Figure 3.6. Objective TIRF relies on an objective lens with
a high numerical aperture (NA), e.g. oil immersion objectives. The objective lens is designed to direct the
laser beam at the glass-substrate interface at an appropriate angle for total internal reflection. Due to this
fixed geometry, the maximum angle of incidence is limited. Prism TIRF relies on the use of a glass prism
placed in contact with the glass substrate containing the sample. The light from the laser source enters
the prism at an appropriate angle and undergoes total internal reflection at the prism-substrate interface. In
lightguide TIRF, a waveguide, usually made of glass, is placed in contact with the sample surface. The waveg-
uide acts as an optical conduit, guiding the incident laser light along its length. The laser light entering the
waveguide is typically coupled into the waveguide at a specific angle and undergoes internal reflection at
the waveguide-sample interface.

Figure 3.6 | Methods in TIRF microscopy. (a) Objective TIRF (oTIRF): The excitation and emission share the
same path. TIRF can be achieved using high NA objectives and aligning the laser light such that it enters the
objective off-center. (b) Prism TIRF (pTIRF): Excitation occurs by guiding the laser through a high refractive
prism, achieving TIRF at the top the sample chamber. (c) Lightguide TIRF (lgTIRF): The laser light is confined
within a thin, high refractive index layer, continuously undergoing TIRF at the interfaces.

TIRF microscope setups are equipped with wide-field detection using cameras such as EMCCD (Elec-
tron Multiplying Charge-Coupled Device) cameras or sCMOS (Scientific Complementary Metal-Oxide-
Semiconductor) cameras. In the study of complex biological systems, camera-based approaches have become
the predominant choice, primarily due to the necessity of acquiring substantial statistical data. Regarding
the excitation techniques, Alternating Laser Excitation (ALEX) has gained prominence in single molecule
studies.22,62 ALEX utilizes two different excitation lasers that alternate in illuminating the sample. One laser
is used to excite a donor fluorophore, while the other excites an acceptor fluorophore. By carefully synchro-
nizing the laser excitations, usually on a microsecond timescale, the presence of the acceptor fluorophore
can probed continuously. This provides information about the stoichiometry and allows for the calculation
of the direct excitation factor of the acceptor by the donor laser. However, one disadvantage can arise when
studying fast molecular kinetics close to the integration time since no FRET information (section 3.2.1) is
available during direct excitation of the acceptor.
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3.3.2 Confocal microscopy

In confocal imaging, a focused laser beam illuminates a diffraction limited point. For image collection, the
beam is scanned across the sample or the sample itself is moved. This scanning process allows for the pre-
cise collection of light from the focal plane, providing improved optical sectioning. Critical components in
confocal microscopy are the pinhole apertures placed in front of the excitation source and the detector. This
pinhole selectively collects emitted fluorescence only from the focal plane while rejecting out-of-focus light.
By allowing only the fluorescence emitted from the precisely defined focal volume to reach the detector,
the pinhole significantly enhances the image contrast. This capacity for confocal microscopes to selectively
capture light from a specific plane is what distinguishes them from wide-field fluorescence microscopy. Fur-
thermore, the pinhole diameter is a critical parameter in confocal microscopy. A smaller pinhole size results
in improved axial resolution but may reduce the amount of collected fluorescence signal. Conversely, a larger
pinhole increases signal intensity but compromises axial resolution. Therefore, the selection of an optimal
pinhole size involves a trade-off between resolution and signal intensity based on the specific requirements
of the imaging experiment. For excitation, the laser light is typically coupled into an optical fiber in most
modern microscope setups. The exit of this fiber acts as a point source, effectively serving the purpose of a
pinhole and emitting a gaussian beam. However, it is worth noting that a gaussian beam can also be gen-
erated without the use of an optical fiber. This can be achieved, for instance, by focusing a laser beam on
a small pinhole in the range of 50 µm. Alternatively, if the laser itself emits a collimated beam, a pinhole
is not needed as the focussed laser beam acts a point source. The pinholes provide confocal microscopes
with an advantage over TIRF microscopes (section 3.3.1), which is the in-built removal of background and
scattered light independent of the penetration depth. While TIRF microscopes offer excellent background
rejection near the surface, imaging deeper into the sample or visualizing molecules at various depths may
require adjustments in laser power or other parameters. The specific laser power requirements depend on the
sample characteristics and the depth of the structures of interest. For example, studying molecules within a
cell may require a larger penetration depth whereas single molecules directly attached the surface may not.
In confocal microscopy, the molecules of interest can be excited with lower laser power without sacrificing
penetration depth. Lower laser powers, in general, yield longer fluorophore survival times and hence longer
intensity trajectories per molecule due to the reduced phototoxicity. However, one disadvantage is that
the data has to be collected for each molecule individually, whereas TIRF allows the recording of multiple
molecules at once. Confocal microscopes usually employ single-photon counting units as detectors and the
photon counts are time-binned after the measurement, allowing some flexibility the downstream analysis.
The concept of a confocal microscope setup is illustrated in Figure 3.7.
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Figure 3.7 | Principle of confocal microscopy. The excitation laser light (blue) is focused on a pinhole,
spatially filtering the beam. The second pinhole blocks out of focus fluorescence (red) and only in focus light
guided to the detector.
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Chapter 4

Publications

4.1 Paper 1: Deep-LASI:deep-learning assisted, single-molecule imaging
analysis of multi-color DNA origami structures

Deep-LASI:deep-learning assisted, single-molecule imaging analysis of multi-color DNA origami
structures
Wanninger, S., Asadiatouei, P., Bohlen, J., Salem, C., Tinnefeld, P., Ploetz, E., Lamb, D.C., Nature Communica-
tions, 14, 6564 (2023).
DOI: https://doi.org/10.1038/s41467-023-42272-9
This paper presents a software suite that employs an ensemble of deep neural networks to automate the
analysis of single molecule intensity trajectories.

4.1.1 Motivation and main results

Single-molecule spectroscopy has fundamentally transformed the investigation of nanoscale processes, par-
ticularly through the utilization of optical fluorescence imaging. This approach allows for non-invasive
exploration of individual dynamic biomolecules within cellular environments, membranes, and solutions.
The integration of single-molecule Förster resonance energy transfer (smFRET) with advanced microscopy
techniques, such as confocal microscopy or total internal reflection fluorescence (TIRF) microscopy, enables
precise probing of nanometer-scale distances and dynamics. While solution-based measurements yield in-
sights into sub-millisecond dynamics, immobilized molecule experiments provide a temporal view of single
molecules on the microsecond to minute timescale. The elimination of ensemble averaging permits direct
measurements of biomolecular conformational states and dynamics.
Conventional FRET experiments typically employ two colors to investigate conformational distributions and
distance changes. Multi-color FRET, involving three or more labels, extends the capability of FRET to explore
molecular interactions between distinct binding partners and simultaneously measure multiple distances,
reflecting correlated motion within the same molecule. Nevertheless, quantitative smFRET data analysis
encounters various challenges, ranging from experimental limitations such as a scarcity of usable single
molecule traces, low signal-to-noise ratio, and short traces due to photochemistry, to computational com-
plexities associated with processing large data volumes. Overcoming these challenges requires meticulous
data sorting, which intensifies the analytical efforts when performed manually. Low statistical significance
arises from factors, i.e. slow kinetics, rare transition probabilities, low labeling inefficiencies, low signal-to-
noise ratio, rapid photobleaching, or spurious background. Furthermore, arbitrary fluctuations introduced
by unwanted interactions and aggregations between binding partners complicate the analysis of the un-
derlying states and kinetics. After data categorization and extraction of potentially useful information, the
main approach to analyze kinetics is HiddenMarkovModels (HMM), which are statistical models commonly
used to analyze time-series data. In the context of smFRET, HMMs are employed to identify distinct confor-
mational states and transitions within single-molecule trajectories. However, the application of HMMs has
limitations, particularly in dealing with multi-color FRET data, where the complexity of the data sets and the
required effort for analysis increases.



Chapter 4. Publications 41

Prior to this work, efforts were made to address some of these challenges through the development of Deep-
FRET6 and AutoSIM7, which both use deep learning to analyze single molecule FRET data. However, the
employed deep neural networks (DNN) are limited to classifying two-color FRET trajectories without offer-
ing auto-correction capabilities and kinetic analysis. To bridge these gaps and advance the field further, an
ensemble of DNNs was developed in this project and integrated into the software suite called Deep-LASI
(discussed in section 4.2), which also offers common methods for raw data extraction, manual categorization
by the user, statistical evaluation techniques and HMM. The DNNs are tailored for fully automated analysis
of single-color traces, as well as two-color and three-color single-molecule FRET data. Figure 4.1 illustrates
the complete data pipeline, starting from extracted intensity traces and ending with transition density plots,
from which the user can select and fit dwelltime populations. The DNNs were trained with large data sets
of simulated trajectories of each data type and benchmarked using simulated validation data sets, achieving
high prediction accuracies. In addition, the fully automated approach was extensively benchmarked with
experimental data by comparing the DNN outputs to human evaluation and HMM. The DNN predictions
achieved a high concordance between the automated and manual results while quantitatively analyzing the
underlying kinetics of single-molecule intensity traces. This comprehensive auto-analysis can be performed
within 100ms per trajectory, reducing the total analysis time for a typical data set from days to minutes.

4.1.2 Brief description of the method

Deep-LASI employs an ensemble of pre-trained DNNs for the automated analysis of single-molecule data,
encompassing one-, two-, and three-color scenarios, along with multi-color FRET correction and kinetic anal-
yses. The DNNs processes single-molecule fluorescence intensity traces obtained directly from confocal mi-
croscopy or extracted from movies using wide-field or TIRF microscopy. Two-color fluorescence data with
continuous wave excitation or ALEX modalities, as well as three-color smFRET measurements using ALEX,
can be analyzed. All available channels are fed into hybrid models, consisting of a convolutional neural
network (CNN) using the omni-scale feature learning approach and long short-term memory (LSTM) lay-
ers. Deep-LASI simultaneously extracts spatial and temporal sequence features, categorizing each frame
into specific classes, namely: dynamic, static, noisy, artifact, aggregate, and photobleached. The number of
photobleached classes depends on the number channels, i.e. employed fluorophores, with each combina-
tion of active and inactive fluorophores representing a separate class. Traces with artifacts, aggregates, or
high noise are excluded in the auto-analysis process. The output of the trajectory classifier DNN provides
probabilities for each category, and the summed probabilities over non-photobleached frames serve as con-
fidence levels for each trace. User-defined thresholds can be applied to control the inclusion or exclusion of
non-ideal traces in further analyses. The trajectory classifier DNN detects photobleaching events, including
frames in which the fluorophores are in a dark state. This information enables Deep-LASI to automatically
calculate the correction factors for individual molecules, e.g. crosstalk and direct excitation can be corrected
via the predicted dark states of the acceptor and donor, respectively. Since all correction factors are rarely
obtainable from a single trajectory, all locally determined correction factors are used to calculate the cor-
responding global correction factors. While using the median values for global correction proved to be the
most robust approach, the user can also use the mean or mode values. After the classification of a given data
set, various features of any class can be histogramed, including the apparent and corrected FRET efficiencies,
signal intensities, fluorophore survival times, stoichiometry information, and all available correction factors.
Trajectories that are classified as dynamic are fed into a DNN designed to detect the number of observed
states for each molecule. Based on the predicted number of states, each dynamic trajectory is transferred to
a DNN that predicts the transitions of the corresponding states. This state transition classifier DNN assigns
each frame to a particular state, providing probability values for state occupancy. Hence, the state predic-
tions effectively digitize all frames and produce state trajectories for each molecule. Using this information,
a transition density plot (TDP) is generated and kinetic rates can be extracted by fitting the dwell-time dis-
tributions of each state. The TDP marks the first point of human intervention, involving manual selection
of state transitions and the fitting procedure. Optionally, the user can generate TDPs of specific number of
states classes and apply probability thresholds on the state occupancy before generating the TDP. The total
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Figure 4.1 | Deep-LASI workflow. (a) Single-molecule data with up to 3 separate channels after direct and
alternating laser excitation are identified, extracted, and presorted for further analyses. Each frame within the
time traces is classified into categories using a hybrid CNN-LSTM. (b) A second hybrid CNN-LSTM evaluates
the kinetics and state information in the presorted data. The photobleaching information can be used for de-
termining the correction factors to obtain accurate FRET efficiencies for experiments with 2 and 3 fluorophores.
(c) Next, the interconversion rates between underlying states and absolute, distance-related FRET values are
extracted from multi-color data sets.

duration of the analysis depends on the data set characteristics with a typical prediction time of 20ms to
100ms per trace. The performance also depends on several other factors such as the computational resources
and the total number of trajectories, frames and dynamic molecules. Since all employed DNNs are trained
on synthetic data, they can be retrained and tailored to specific conditions that may have not been captured
in the original training data set.

4.1.3 Outlook

The development and application of Deep-LASI represents a significant advancement in the automated anal-
ysis of single-molecule data, offering a comprehensive solution for one-, two-, and three-color scenarios, along
with multi-color FRET correction and kinetic analyses. While the robustness of the neural network predic-
tions were thoroughly demonstrated, Deep-LASI needs to be further tested with unseen data from multiple
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sources to extend its applicability. The neural network architectures were specifically developed for time
series data and can be readily used for other techniques such as DNA-PAINT, optical tweezers and electro-
physiological techniques (e.g. patch-clamp). In terms of extending the capabilities of Deep-LASI, the main
effort lies in finding a representative training data set for the desired task. If no labeled experimental data
is available for training, optimizing the existing training data set or designing simulations from the ground
up are viable options. The big advantage of applying deep learning methods in the field of single-molecule
research is that, in most cases, the obtained experimental data is well understood and can be accurately mod-
eled, enabling the generation of large training data sets. Experimental data sets are continuously growing in
size and complexity as researchers strive to examine molecules in diverse environments and quantify their ki-
netics, which depend on the concentration of specific substrates. These studies necessitate high-throughput
classification and analysis, making deep neural networks ideal candidates for addressing these challenges.
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4.2 Paper 2: Deep-LASI, Single-molecule Data Analysis Software

Deep-LASI, Single-molecule Data Analysis Software
Asadiatouei, P., Salem, C., Wanninger, S., Ploetz, E., Lamb, D.C., Unpublished Manuscript.
In this paper, the complete software suite for analyzing single-molecule time trajectories is presented. The
software description includes all preprocessing techniques before the integrated deep neural networks can
be used and all analysis features that can be employed by the user outside of the automatic AI approach.

4.2.1 Motivation and main results

Single-molecule techniques have changed how we study molecules, providing a direct and highly detailed
view of their behavior. These methodologies transcend ensemble averaging constraints, enabling a direct
examination of sample heterogeneities, subpopulations, and dynamic processes, particularly when applied
to immobilized molecules using modalities such as atomic force microscopy, optical and magnetic tweezers,
or total internal reflection fluorescence (TIRF) microscopy. In the field of single-molecule research, fluo-
rescence resonance energy transfer (FRET) experiments stand out as a non-contact method capable of de-
tecting distances ranging from 2 to 10 nanometers and capturing dynamics across a spectrum of timescales
from nanoseconds to kiloseconds. However, the transition from raw data to meaningful insights is com-
plex. Additionally, advanced excitation techniques such as alternating laser excitation (ALEX) and the use of
multiple fluorphores further complicate the data sets. As experiments embrace greater complexity, a strong
demand for advanced analysis tools becomes apparent. While a plethora of software exists to facilitate single-
molecule analysis, the majority caters to two-color FRET experiments. The software presented in this paper,
called Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis), features the data analysis of
one, two and three-color FRET experiments and facilitates the analysis of these kind of experiments by pro-
viding auto-analysis methods using pre-trained deep neural networks. Recorded particles in multiple chan-
nels, corresponding to different emission wavelengths, can be localized and aligned with sub-pixel resolution
using wavelet or intensity based algorithms. The sensitivy of the chosen particle detection method can be
adjusted by the user, making it adaptable to different experimental conditions. The background is corrected
individually for each particle during the signal extraction by using a custom or automatically determined
mask for the point spread function (PSF) and the local background in a circular region surrounding the PSF.
Following the trajectory extraction, Deep-LASI offers both manual and automatic analysis environments.
These include various features such as framewise trace classification, determination of FRET correction fac-
tors and kinetic analyses. Additionally, the software provides fitting routines for distributions of important
parameters such as background and fluorescence intensities, fluorophore survival times, and FRET efficien-
cies. The incorporation of deep-learning techniques presents a fully automated and rapid analysis of the
complete data set, including the identification of relevant sections within each trajectory, the calculation
of FRET correction factors, and quantitative analysis of multi-state kinetics. Since the software also offers
multivariate HMM analysis of all data types, i.e. one, two and three-color data, the output of the deep neu-
ral networks can be cross-checked for consistency. The software also provides environments for simulating
and training single-molecule time traces, complemented by example data sets and tutorials to accelerate
proficiency. Representing a significant advancement in single-molecule analysis, Deep-LASI addresses the
demands of progressively complex experiments, shaping the landscape of sophisticated methodologies in the
fields of life sciences and microscopy.

4.2.2 Outlook

The development and implementation of Deep-LASI mark a significant milestone in the realm of single-
molecule analysis, providing a user-friendly platform for efficient exploration of intricate molecular dynam-
ics. The commitment to user-friendly interfaces mitigates the barrier between researchers and the powerful
capabilities of single-molecule techniques. Looking ahead, Deep-LASI, being open source, invites continu-
ous collaboration and improvement. Future development may involve extending its functionalities to fully
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Figure 4.2 | Deep-LASI software overview. The main applications of the software package are to extract,
sort and analyze intensity traces from single-molecule data. This process involves a series of key steps: (a)
For multicolor experiments, the different channels need to be register to each other (i.e. mapped). Afterwards,
the raw data is read-in for each channel from a stack of frames based on the excitation scheme. (b) Single
molecules are localized and, when desired, co-localized across different channels based on the created map. (c)
The intensity traces are extracted from each detected (and co-localized) particle and corrected for background.
(d) The analysis of extracted intensity traces starts with trace classification and selection of the useful region
of each channel where the corresponding fluorophores are active. (e) The results can then be visualized by the
means of various histograms with frame-, state- and molecule-wise approaches. (f) Optionally, the method-
specific correction factors are determined. (g) For dynamic traces, a kinetic analysis can be performed by
Hidden-Markov Modeling (HMM) or deep learning approaches. The panels show a typical Viterbi path created
by HMM and Transition-Density Plots (TDP) with state transition information and the cumulative dwell-time
distribution function (CDF) determined by fitting, respectively.
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accommodate other popular techniques such as binding assays using DNA-PAINT. Since the architecture of
the employed deep neural networks is extendable and adaptible to other sources of data, Deep-LASI can be
tailored to diverse experiments. With the strong emphasis on automation features, Deep-LASI empowers
researchers to focus on the scientific essence of their work and allows them to quickly test new approaches
without having to commit large amounts of time. Since the bottleneck of analysis time almost completely re-
moved, new type of experiments are feasible and will give rise to new ideas on how to study single molecules.
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4.3 Paper 3: A blind benchmark of analysis tools to infer kinetic rate con-
stants from single-molecule FRET trajectories

A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET
trajectories
Götz, M., Barth, A., Bohr, S.SR., Börner, R., Chen, J., Cordes, T., Erie, D., Gebhardt, C., Hadzic., M., Hamilton,
G., Hatzakis, N., Hugel., T., Kisley., L., Lamb, D. C., Lannoy, C., Mahn, C., Dunukara, D., Ridder, D., Sanabria,
H., Schimpf, J., Seidel, C. A. M., Sigel, R. K. O., Sletfjerding, M. B., Thomsen, J., Vollmar, L., Wanninger, S.,
Weninger, K. R., Xu, P., Schmid, S. Nature Communications, 13, 5402 (2022).
DOI: https://doi.org/10.1038/s41467-022-33023-3
This paper addresses the challenges associated with extracting quantitative kinetic information from single-
molecule FRET (smFRET) data and compares the analysis results of leading software tools on multiple data
sets.

4.3.1 Motivation and main results

The complexity of experimental single-molecule FRET (smFRET) data has led to the development of various
analysis tools. However, a comprehensive comparison of these tools is lacking. This study presents the out-
comes of a blind benchmark assessment involving eleven software tools. From these software tools, a total
of 14 analysis techniques are used to infer kinetic rate constants from smFRET trajectories in seven different
datasets. The results provide insights into the current strengths and limitations of these tools, offering con-
crete recommendations and identifying areas for future development. The evaluation encompasses simulated
and experimental data and incorporates challenges commonly encountered in smFRET experiments such as
diverse noise levels, varying model complexities, non-equilibrium dynamics and kinetic heterogeneity.
The main goal of this study is to enhance the understanding of biomolecular dynamics through the refine-
ment of quantitative models while increasing the consistency and transparency of the employed analysis
methods. The first two datasets, one simulated and one experimental, considered a kinetic two-state system
with photobleaching events. In Wanninger et al., the Deep-LASI software was added for these two data sets,
shown in Figure 4.3.48 The results of all analysis tools are in good agreement with the ground truth of the
simulated dataset and produce consistent results for the experimental dataset with rate constants varying
by 12 % (𝑘12) and 16 % (𝑘21). The third dataset is a simulation of a kinetic three-state model with all states
interconnected in a circular flow, with intensity variations between individual dye molecules, emulating re-
alistic experimental conditions. While all analysis tools found the three FRET efficiency populations, the
extracted rates for each state showed larger variations than for the two-state datasets, with deviations rang-
ing from only 9 % to over 200 %. The fourth dataset is a simulation of a four-state model with two degenerate
FRET states and kinetic heterogeneities. Here, the challenge lied in the extraction of individual rates from
the multi-exponential dwell time distributions and solving the connectivity of the four states. Only four
analysis tools achieved a good agreement with the ground truth, whereas other tools that were restricted
to mono-exponentially decaying dwell times showed the largest deviations or were not able to produce a
kinetic model at all. The last benchmark represents the most challenging case in this study, involving three
experimental datasets of the same system (protein binding to a fluorescently labelled DNA) with different
experimental conditions and hence different kinetic behavior. Since these datasets are complex and lack a
ground truth, the results from the different analysis methods and their accuracy are subjected to data in-
terpretation. These datasets were also the only examples in which the employed analysis tools did not all
agree on the involved number of states, which ranged from two states to more than four. The determined
kinetic rates varied accordingly, making a meaningful comparison of all methods difficult. However, within
the same assumptions regarding the number of states, the agreement among the analysis tools was within
25 % of the average residence determined by these tools.
Regarding the different methodologies used for the analysis, eight tools are based on HiddenMarkovModels
(HMM) while the other tools employ correlation, step finding or clustering methods. While the underlying
theory of the HMM based techniques is the same, the implementations can differ significantly, e.g. with
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respect to the flexibility of selecting initial model parameters, constraints on learned parameters, thresholds
and the type of input data (FRET or intensities).
Our analyses in this study were performed with the software package Tracy, which provides HMM func-
tionalities for analyzing kinetics. While lacking the capability to determine the connectivity of degenerate
and not excelling in one particular discipline, Tracy was consistently in the top 3 performing tools for the
two-state and three-state data sets. As shown later in Wanninger et al., Deep-LASI performed equally well
for the simple two-state data sets. Although the fully automated analysis approach could be applied to the
other data sets, the results were not included since it was impossible to analyse these data sets in a bias free
manner.
In general, formethods that produce a state trajectory, the study revealed the importance of subtle differences
in the approaches used for actually determining the kinetic rates, e.g. the parameters used for fitting the
dwell time distributions. While these differences lead to only minor deviations for simple data sets, they
can become an important factor for complex data sets and need to be thoroughly documented for ensuring
reproducability. Overall, the most significant factor affecting the final results of the analysis of complex
datasets is the determination of the number of states, especially for generative models such as HMM that
rely on this parameter as a prior assumption.
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Figure 4.3 | Kinetic software challenge. (a) An illustration of the kinetic two-state model connected by
forward and backward rate constants: 𝑘12 and 𝑘21. (b) A framewise FRET efficiency histogram (gray) of the
simulated data. A Gaussian fit to the two populations are shown in magenta. (c) Mono-exponential dwell
time distributions of the data in (b) obtained from the state-transition classifier. (d) The ground truth FRET
histogram (gray) with state assignments labeled at the top and the inferred average FRET efficiencies in red
and blue. Numbers on the right axis refer to the analysis tools specified in (e). Vertical lines indicate the mean
over all tools. The error bars represent the standard deviations returned from the different analysis routines.
(e) Rate constants and uncertainties inferred from the data set in (d) by different labs using the respective
analysis tools. The ground truth is indicated by the horizontal red and blue lines, the intrinsic uncertainty of
the data set is represented by dark gray (1σ) and light gray (2σ) intervals. (f) A framewise smFRET efficiency
histogram (gray) of the experimental data extracted by the trace classifier. (g) The dwell-time distributions and
corresponding mono-exponential fits of the data in (f) obtained from the state-transition classifier. A Gaussian
fit to the two populations is shown in magenta. (h) A smFRET histogram of preselected traces from panel (h)
where photobleaching and photoblinking contributions have been removed. State 1 is labeled in red and state
2 in blue. The vertical lines indicate the average value returned from analysis routines 1-15. The legend for the
analysis routines is given in (e). The error bars represent the standard deviations returned from the different
analysis routines. (i) Inferred rate constants from the experimental data set in (h). The respective analysis tools
are specified in (e). Horizontal red and blue lines indicate the mean of the inferred kinetic rate constants from
analysis tools 1-15. The legend for the analysis routines is given in (e)
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4.3.2 Outlook

Moving forward, there are several key areas that warrant attention and offer ways for future exploration.
The complexity introduced by kinetic heterogeneity, especially with overlapping FRET states, underscores
the need for enhanced model selection strategies. Analysis results need cautious interpretation of uncer-
tainties in rate constants, considering variations in uncertainty measures reported by different tools. Future
efforts could focus on establishing common standards for various parameters and fitting strategies, foster-
ing consistency and comparability across diverse analysis approaches. A notable prospect lies in leverag-
ing machine learning, particularly deep learning approaches, to enhance the characterization of individual
states with distinct noise patterns. The application of machine learning for model-free kinetic analysis holds
promise for improving model selection, providing a more accurate and unbiased understanding of biomolec-
ular dynamics. This initiative is expected to facilitate future collaborations and accelerate the dissemina-
tion of theoretical developments within the single-molecule experimentalist community. Future benchmark
studies could delve into assessing the ’data greediness’ of analysis tools, exploring the amount of data and
transitions-per-trace required for accurate rate inference. Understanding these requirements will contribute
to a more informed selection of tools based on experimental conditions.
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4.4 Paper 4: Single-molecule FRET reveals conformational changes of
bacterial adhesin SdrG upon ligand binding

Single-molecule Förster Resonance Energy Transfer (FRET) reveals conformational changes of bac-
terial adhesin SdrG upon ligand binding
Bartnik, K., Wanninger, S., Milles, L., Rathnayak, I., Lamb, D.C., Unpublished Manuscript.
This paper analyses the conformational dynamics of the adhesin SD-repeat protein G (SdrG) in the absence
and presence of the human fibrinogen ß chain (Fgß).

4.4.1 Motivation and main results

The adhesin SD-repeat protein G (SdrG) plays a crucial role in the initiation of nosocomial infections caused
by the opportunistic pathogen Staphylococcus epidermis. Single-molecule force spectroscopy and MD sim-
ulations revealed that the SdrG-Fgß interaction exhibits an unusually high binding strength, surpassing
2 nN.71,72 At that time, the SdrG-Fgß interaction represent the highest known binding force for non-covalent
bonds, highlighting the extreme mechanostability of the SdrG adhesin. Regarding its binding mechanism,
a dynamic ”Dock, Lock and Latch mechanism” (DLL) was proposed based on crystal structures.73 The DLL
mechanism involves a host target, usually a peptide on the order of 15 residues, which is first bound (dock)
and then buried (lock) between two Immunoglobulin-like fold domains N2 and N3. This mechanism was
later supported by ensemble-level FRET experiments, qualitatively describing the conformational changes in
the locking strand of SdrG upon peptide addition.74 While crystallographic techniques were able to solve the
structure of the SdrG-Fgß complex, the unbound state of SdrG remained elusive due to the undefined state
of the locking strand, indicating inherent dynamics.71 Hence, this work aims to provide a detailed under-
standing of these dynamics at the single-molecule level and elucidate the unbound state of SdrG. This was
achieved by combining single-molecule FRET (smFRET) experiments with molecular dynamics (MD) simula-
tions, characterizing the conformational states of SdrG in the presence and absence of the human fibrinogen
ß chain (Fgß). In the absence of Fgß, both experimental and computational data revealed the dynamic na-
ture of the locking strand on the sub-millisecond timescale, showing a preference for a specific orientation
without spontaneous switching between open and closed states. Additionally, slow conformational changes
on the second time scale are observed on the single-molecule level, providing additional insights into the low
affinity between SdrG and Fgß. Contrary to earlier hypotheses, the data suggest that the presence of Fgß is
a prerequisite for the transition from the open to the closed SdrG conformation.

4.5 Brief description of the method

One of the main objectives of this project was to structurally resolve the unbound state of SdrG since the
position of the locking strand could not be solved by X-ray crystallography. We approached this open ques-
tion by combining FRET experiments with MD simulations. The experimental distance data was obtained
by measuring the FRET efficiency of multiple SdrG constructs with differently positioned fluorophores using
PIE MFD61. For the computational data, the unbound state of SdrG needed for initializing the simulation
was constructed starting from the well resolved crystal structure of SdrG bound to fibrinogen ß. First, the
fibrinogen ßwas removed and the locking strandwas pulled away from the protein using OpenMMdynamics
provided by the ChimeraX software.75 After local energyminimization of the locking strand and equilibration
procedures of the solvated protein, the all-atomMD simulation of the unbound state of SdrG was performed
using the Gromacs 5.1.4 software.76 The MD simulation involved a total number of approximately 120,000
atoms and a sufficient time duration of 1.2 µs to sample a broad distribution of locking strand positions. All
simulated structures were screened for specific SdrG conformations that are consistent with the experimen-
tally determined distances from a total of five different FRET pairs. This screening process was performed
using the FRET Positioning and Screening (FPS) software77. By calculating the accessible volumes (AV) of
each FRET pair for all simulated conformations, the FRET-averaged distances and expected FRET efficiencies
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Figure 4.4 | FRET-restrained screening of simulated SdrG conformations. (a) FRET 𝜒2red values and
RMSD, calculated from the superimposed crystal structure, of different conformations (points) sampled in the
all-atom MD simulation of SdrG. Conformations below the 𝜒2red threshold of 1.5 represent the best fit to the
experimentally determined inter-dye distances. (b) Structural model of the unbound SdrG based on smFRET
data and all-atom MD simulations. Illustrated are two perspectives of 57 overlayed structures below the 𝜒2red
threshold shown in panel (a). The subdomains N2 and N3 are colored in light and dark blue, respectively, and
the locking strand (residues 569-596) is shown in red. The inset shows the previous structural model based on
X-ray crystallography, which could not resolve the C-terminal part of the locking strand.74

were obtained. Subsequently, the deviations of the experimental and theoretical distances of all five FRET
pairs can be calculated and compared to the original crystal structure, which is illustrated in Figure 4.4a.
Following the recommendations of Kalinin et. al77, a 𝜒2red threshold of 1.5 was applied, yielding 57 confor-
mations that can be considered good approximations to the experimental data (Figure 4.4b). Notably, the
locking strand of SdrG is not bound to any domain in these conformations and multiple positions of the
locking strand are consistent with the measured FRET efficiencies. This is in line with the intrinsic dynamics
on the sub-millisecond timescale observed in the PIE MFD experiments.

4.5.1 Outlook

The synergy between single-molecule Förster Resonance Energy Transfer (smFRET) and all-atom molecular
dynamics (MD) simulations has proven powerful in elucidating the conformational dynamics of SdrG. The
structural model proposed for the unbound SdrG provides insights into the intrinsic dynamics of the lock-
ing strand, validating the DLL binding mechanism. In the context of developing therapeutic strategies, the
central role of the locking strand acting as a ”fishing rod” could be exploited by designing molecules that
disrupt the binding mechanism. Exploring the forces and conditions that influence the stability of SdrG-
Fgß interactions could provide valuable insights into the protein’s behavior in complex milieus such as those
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encountered during infection. This could involve experiments using relevant biological models to simulate
the physiological conditions encountered during infection. The obtained insights could have implications
not only for understanding bacterial adhesion but also for developing biomaterials and for bioengineering
applications where mechanical stability is crucial.
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Chapter 5

Summary and Conclusion

In the pursuit of unraveling the intricate dynamics of single-molecule systems, this thesis embarks on a
multifaceted exploration, combining pre-existing methods and developing novel analysis approaches. The
development of Deep-LASI (Deep-Learning Assisted Single-molecule Imaging analysis) emerged as a pivotal
contribution, addressing the persistent challenges of time-consuming and potentially biased data analysis in
single-molecule experiments. This software suite, powered by state of the art deep neural networks (DNNs),
was extensively benchmarked using ground truth simulations and experimental data, demonstrating remark-
able prediction accuracy and speed. The pre-trained ensemble of DNNs analyzed previously unseen data sets
in a fraction of the time required by a human, achieving classifications comparable with the thorough clas-
sifications of expert users and outperforming traditional hidden Markov models in quantitative kinetic rate
analysis. By removing of the time-consuming and complex analysis bottleneck, Deep-LASI unlocks the full
potential of multicolor FRET studies, enabling studies previously deemed unfeasible. Designed with robust-
ness and ease of use in mind, Deep-LASI facilitates the application of its deep learning techniques to a large
variety of data. The flexibility of the integrated DNNs to various experimental conditions is demonstrated
by their successful auto-analysis of HSP70 data and their consistent prediction of state dwell times of a DNA
origami structure measured on different microscope configurations. Notably, all this was achieved without
the need for retraining the DNNs, highlighting their ability to generalize their tasks and the advantage of
using well-designed simulations as training data. An additional key advantage of using simulations is the
possibility to refine and expand the capabilities of the software tomeet evenmore diverse needs of researchers
in the field. Since the DNN architectures are highly adaptable to other kinds of time-series data, the indi-
vidual models can be readily trained for completely different classification tasks, even beyond fluorescence
studies.
Besides software development, this thesis presents a collaborative effort to scrutinize numerous kinetic anal-
ysis tools designed for inferring quantitative kinetic rate constants from single-molecule FRET trajectories.
While acknowledging the preference toward model-free approaches for unbiased data analysis, machine
learning techniques, such as hidden Markov models (HMM), showed superior robustness toward data het-
erogeneity. Beyond the comparative analysis, this study identifies and addresses conceptual oversights in
existing tools, contributes to our understanding of human influence and offers general recommendations
for future studies. The findings further reveal that, while all tools accurately inferred the number of states
when the FRET efficiencies were clearly separated, challenges arose in the presence of overlapping FRET
states and kinetic heterogeneities. The issue of degenerate states could be solved using three-color FRET, as
it increases the dimensionality of the data. However, the limited availability of tools for three-color FRET
analysis emphasized the necessity for further advancements in this direction.
Within the framework of this thesis, a hybrid approach of combining computational methods with single-
molecule FRET experiments is used to study the conformational dynamics of the adhesin protein SdrG. Rec-
ognizing the limitations of comparing FRET distance information to crystal structures, especially in dynamic
systems, this hybrid approach leverages the strengths of both experimental and computational techniques.
While MD simulations offer highly resolved structures and dynamics, their dependence on biased crystal
structures poses challenges. Screening MD simulations for structures that are consistent with the measured
FRET distances in real experiments addresses this issue. Following this methodology, new insights and more
robust knowledge were obtained about the about the behaviour of SdrG and its dynamic locking strand.
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In the absence of the target peptide, Fgß, the locking strand of SdrG shows intrinsic dynamics on the sub-
millisecond timescale with no defined binding state, extending into solution. Additionally, the data reveals
that the presence of Fgß is a prerequisite for the transition from the open to the closed conformation of SdrG.

Concluding the examination of the conformational dynamics of the adhesin protein SdrG, it is important
to underscore the overarching emphasis on artificial intelligence (AI), which remains the primary focus of
this thesis. The application of AI in single-molecule research holds great potential for addressing various
challenges and unlocking new capabilities. One of the major advantages, as demonstrated by Deep-LASI, is
the significant acceleration of data analysis. In the future, the prediction speed of DNNs could be leveraged
to a point where real-time monitoring and classification of single molecules becomes feasible. Combined
with other machine learning methods to automate and optimize data acquisition, single-molecule imaging
studies could be conducted at a scale previously thought unimaginable. However, while AI technologies
offer substantial benefits, researchers need to exercise caution and address several critical considerations to
ensure responsible and reliable use. Despite common misconceptions, DNNs are not inherently bias-free.
They heavily depend on the quality and representativeness of the training data, leading to inherent biases
in these DNNs. Hence, DNNs are usually trained on very large data sets to mitigate these biases. While
this is an approriate solution in many fields, the question arises as to how much bias is still useful in single-
molecule data analysis. The intricate nature of molecular behaviors, coupled with the limited information
provided by noisy intensity trajectories, introduces complexities and potential ambiguities. For instance, a
specific intensity pattern in one sample may be accurately classified as an artifact by a DNN, whereas the
same pattern might contain useful information in other types of systems. Balancing the fine line between
bias and bias-free outcomes in single-molecule data analysis is paramount and navigating this equilibrium is
particularly challenging when training DNNs. One possible pathway for addressing this challenge involves
moving beyond a one-size-fits-all model. Instead of relying on a singular model, a diverse ensemble of models
could be trained, each with distinct biases deemed adequate and useful for specific scenarios. This approach
acknowledges the nuanced nature of single-molecule systems and the varying contexts inwhich they operate.
Training a multitude of models with tailored biases may enhance the adaptability of the AI system and
provides researchers with a more comprehensive toolkit. However, implementing such a strategy requires
careful consideration of the selection and validation of biases for each model within the ensemble. Striking
the right balance between diversity and relevance is crucial to ensure that the biases introduced are indeed
useful and contribute to the robustness of the overall AI system.
Since DNNs remain approximators of one particular function, it becomes evident that the broader trajectory
of AI requires a shift away from depending solely on individual models. The future of AI lies not merely in the
refinement of singular models but in the strategic orchestration of diverse ensembles. Developing ensem-
bles of DNNs emerges as a promising strategy in all fields. Much like the varied skill sets and perspectives
brought by individuals to a team, each DNN within an ensemble can contribute its unique strengths and
biases to address different aspects of a given problem. Additionally, the concept of cross-validation within
an ensemble, where different models validate and correct each other, parallels the peer-review and cross-
verification process within a human team. The ensemble approach not only mirrors the collaborative nature
of human teamwork but also underscores the importance of diversity in addressing complex problems. By
acknowledging the intricacies of biases, harnessing diverse models and prioritizing transparency, the future
of AI in science can advance securely and responsibly.
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Deep-LASI: deep-learning assisted,
single-molecule imaging analysis of
multi-color DNA origami structures

Simon Wanninger 1, Pooyeh Asadiatouei 1, Johann Bohlen 1,
Clemens-Bässem Salem1, Philip Tinnefeld 1, Evelyn Ploetz 1 &
Don C. Lamb 1

Single-molecule experiments have changed the way we explore the physical
world, yet data analysis remains time-consuming and prone to human bias.
Here, we introduce Deep-LASI (Deep-Learning Assisted Single-molecule Ima-
ging analysis), a software suite powered by deep neural networks to rapidly
analyze single-, two- and three-color single-molecule data, especially from
single-molecule Förster Resonance Energy Transfer (smFRET) experiments.
Deep-LASI automatically sorts recorded traces, determines FRET correction
factors and classifies the state transitions of dynamic traces all in ~20–100ms
per trajectory. We benchmarked Deep-LASI using ground truth simulations as
well as experimental data analyzed manually by an expert user and compared
the results with a conventional Hidden Markov Model analysis. We illustrate
the capabilities of the technique using a highly tunable L-shaped DNA origami
structure and use Deep-LASI to perform titrations, analyze protein con-
formational dynamics and demonstrate its versatility for analyzing both total
internal reflection fluorescence microscopy and confocal smFRET data.

Single-molecule spectroscopy has revolutionized how we investigate
the mechanism of processes on the nanometer scale. In particular,
optical fluorescence imaging allows contact-free investigations of
single, dynamicbiomolecules, one at a time, in cells,membranes and in
solutions. Single-molecule Förster Resonance Energy Transfer
(smFRET) in combination with confocal microscopy or Total Internal
Feflection Fluorescence (TIRF) microscopy probe distances on the
nanometer scale (2.5–10 nm). While solution measurements can pro-
vide information on sub-millisecond dynamics, measurements with
immobilizedmolecules give access to the temporal evolution of single
molecules on the timescale of microseconds tominutes1. By removing
ensemble averaging, it is possible to directly measure the underlying
conformational states and molecular dynamics of biomolecules. Its
ability to measure accurate distances and kinetics turned smFRET into
a powerful tool for decipheringmolecular interactionmechanisms and
structures of biomolecules1–3. Typically, FRET experiments are

performed using two colors and used to probe conformational dis-
tributions and distance changes. However, also other single-molecule
approaches can be used to investigate small distance changes or
interactions (e.g., Metal-Induced Energy Transfer (MIET)4, Graphene
Energy Transfer (GET)5, or Protein-Induced Fluorescence Enhance-
ment (PIFE)6–8).

When combining three- or more labels, multi-color FRET can
probe molecular interactions between different binding partners and
alsomeasuremultiple distances simultaneously, i.e. correlatedmotion
within the same molecule9–11. However, multi-color analyses remain
challenging. Quantitative smFRET data analysis is strongly hampered
by experimental restrictions due to, for example, a low number of
usable single molecule traces, data with a low signal-to-noise ratio
(SNR), or short traces due to photochemistry. Overcoming these lim-
itations requires large data volumes as very fewmolecules contain the
desired information with suitable quality, which significantly increases
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the efforts involved in sorting through the data when performed
manually. Low statistics result from various reasons including mole-
cular events exhibiting slow kinetics or rare transition probability,
insufficient labeling efficiency, low SNR, quick photobleaching or
spurious background. In addition, arbitrary fluctuations due to
unwanted interactions and/or aggregations between binding partners
hamper a concise analysis of the underlying state and kinetics.

Various approaches have been developed to overcome these
time-consuming burdens, employing user-defined thresholds on the
channel count rate, signal-to-noise ratio, FRET values, FRET lifetime,
and donor/acceptor correlation12–19. However, setting appropriate
thresholds requires a substantial amount of expertise. Depending on
the user, the data evaluation is prone to cognitive biases and poses a
challenge to reproducible analysis results. Recently, software packages
have been published that use deep-learning techniques to rapidly
automate trace classification and keep user bias to a minimum20–22. In
particular, Thomsen et al. comprehensively demonstrated that artifi-
cial neural networks could match manual classifications and even
outperform conventional methods of commonly used programs to
extract valid single-molecule FRET traces22. So far, deep learning has
been solely applied to single-channel and two-color FRET data to
categorize the time trajectories for downstream analysis. To study
structural dynamics, reflected by changes in intensity and FRET effi-
ciencies, the kinetics are then analyzed separately typically using
Hidden Markov Models (HMMs)23,24 approaches. Training an HMM
requires knowledge of the number of states and modeling of the
emission probabilities. Moreover, it assumes that the probability of a
transition to the next state only depends on the current state. While
the initial HMM settings are straightforward for simple systems,
obtaining the optimal parameters for multi-color FRET becomes a
challenging task. To date, only one software package, SMACKS13,
allows an ensemble HMM for three-color FRET data. As the complexity
of the datasets grows, the effort and the required knowledge about the
system also grow.

To alleviate the shortcomings of HMM analyses, the hybridization
of HMMswith Deep Neural Networks (DNN) has gained popularity25–29.
In contrast to HMMs, DNNs are capable of learning higher-order
dependencies without prior assumptions about the number and
properties of the states. A long-short-term memory (LSTM) neural
network was developed to automate stoichiometry determination via
photobleaching steps in fluorescence intensity traces30. However, the
use of DNNs for extracting quantitative kinetic information from
single-molecule data has not yet been explored.

Here, we present the Deep-Learning Assisted, Single-molecule
Imaging (Deep-LASI) approach, an ensemble of DNNs with archi-
tectures specifically designed to perform a fully automated analysis of
single-color traces aswell as two-color and three-color single-molecule
FRET data. Deep-LASI begins with raw intensity traces and provides
corrected FRET efficiencies, state determination, and dwell times
without any prior knowledge or assumptions about the system. It
classifies each time trace into different categories, identifies which
fluorophores are active in each frame, which is then used for deter-
mining FRET correction factors for spectral crosstalk, direct acceptor
excitation and detection efficiency, and performs a state transition
analysis of the different states in dynamic traces. Deep-LASI also
includes optional number-of-state classifiers to estimate the actual
number of observed states within one trace. Since the pre-trained
neural networks operate locally on each trace, they do not neglect rare
events, which would be missed in global analysis approaches. We
benchmark the performance of Deep-LASI using ground truth simu-
lations and experimental one-, two- and three-color data using an
L-shapedDNAorigami structurewith tunable dynamicbehavior5,31. The
results are further compared to the manual evaluation of the data and
the extracted dwell times obtainedwithHMM. Finally, we demonstrate
the power of Deep-LASI with multiple applications: (1) titration

experiments, which would be unfeasible without Deep-LASI; (2)
smFRET on a mitochondrial Hsp70 to extract substrate-specific dwell
times and conformational states; and (3) the applicability of Deep-LASI
to another experimental setup.

Results
The Deep-LASI approach
Deep-LASI utilizes an ensemble of pre-trained deep neural networks
designed for the fully automated analysis of one-, two- and three-color
single-molecule data includingmulti-color FRET correction and kinetic
analyses (Fig. 1; Supplementary Note 1). The designed input for Deep-
LASI is a single-molecule fluorescence intensity trace or traces mea-
sured directly using confocal microscopy or extracted from movies
using wide-field or TIRF microscopy. In the case of two-color fluores-
cence data, continuouswave excitation or Alternating Laser EXcitation
(ALEX) modalities can be analyzed. For three-color smFRET measure-
ments, ALEX data is required. All available channels are fed into a
combination of aConvolutionalNeural Network (CNN) using the omni-
scale feature learning approach and a Long Short-Term Memory
(LSTM) model (Supplementary Fig. 1.1).

Deep-LASI extracts spatial and temporal sequence features
simultaneously and classifies every frame into a specific category
(Fig. 1a). Building upon Deep-FRET for two-color FRET analysis22, we
separate the traces into six categories: dynamic, static, noisy, artifact,
aggregate as well as photobleached (see Supplementary Note 2 for
details). The total number of categories depends on the number of
input channels, i.e. the number of dyes (and alternating light sources)
used in the experiment. Traces containing random artifacts, aggre-
gates, or high noise are excluded from further analyses. The final
output of the state classifier provides an estimation of the probability
for each category. The summed probabilities over all non-
photobleached frames serve as confidence levels for each trace.
Here, user-defined thresholds can be set to increase or decrease the
tolerance towards non-ideal traces to be included in further analyses.
In contrast to previous networks, Deep-LASI detects photobleaching
events of individual dyes and, therefore, allows the calculation of
correction factors obtainable for that molecule. Traces showing no
apparent state transition are classified as static and can be included,
e.g. in the final corrected FRET histograms.

All sections in each trajectory identified as dynamic are trans-
ferred to the state classifier network (Fig. 1b), which is designed to
detect transitions basedonly on the intensity data and not via the FRET
efficiency. The state classifier assigns every frame to one of the mul-
tiple states present in a dynamic trace section and again provides a
confidence value of state occupancy that can be used for additional
thresholding. Given the state transition classifications, a Transition
Density Plot (TDP) is calculated and the kinetic rates of all identified
states can be extracted by fitting the corresponding dwell-time dis-
tributions (Fig. 1c). Starting from trace extraction, the TDP marks the
first necessary point of human intervention, i.e., the manual selection
of state transitions and the fitting procedure. Thus, user bias is kept to
a minimum. No assumptions are needed regarding the number of
states, state-specific emission probabilities, or other settings required
for conventional methods such as Hidden Markov Models (HMM). Of
course, as for any deep-learning algorithm, the output of the analysis is
dependent on the quality and appropriateness of the training data
used.Dependingon (1) the total number of frames, (2) the yield of valid
frames, (3) the computer performance, and (4) the desired confidence
threshold, a given dataset can be fully categorized on a time scale of
20–100ms per trace.

Training of Deep-LASI
To use Deep-LASI for analyzing single molecule data, we first trained
the trace-classifier network on datasets appropriate for the corre-
sponding network (i.e., one-color data, two-color data without ALEX,
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two-color data with ALEX or three-color data with ALEX). As the noise
sources in single-molecule fluorescence intensity data are well
understood, simulated traces are well suited for training the neural
network. In addition, it has the advantages of being able to minimize
biases and quickly retrain neural networkmodels to adjust for specific
circumstances. The training datasets were designed to cover a wide
range of experimental conditions and FRET efficiencies. Hence, no
initial estimation of the number of states and expected FRET effi-
ciencies are needed. A detailed description of the program archi-
tecture, simulations, training datasets and benchmarking canbe found
in the Methods section as well as in Supplementary Notes 1−4.

Deep-LASI contains a total of 16 pre-trained deep neural networks
for state classification. Four models account for the classification and
segmentation of time trajectories obtained frommeasurements using
single-channel data acquisition, two-color FRET with continuous-wave
excitation, two-color FRETwith ALEX, and three-color FRETwith ALEX.
For each type of experiment, we provide three state-transition-
classifiers trained on either two, three or four observed states, which
take the output category dynamic as the input. Note that the acceptor
intensity after direct excitation does not contain relevant kinetic

information and is not used in the state classifier networks. In addition,
a deep neural network is provided that has been optimized for
detecting the actual number of observed states and can be utilized for
model selection.Onenetworkhasbeen trained for each typeof dataset
(one-, two- and three-color data). The number-of-states neural net-
works are not essential in the automated analysis process but can serve
as a safeguard against trajectories that may be out of the scope of the
state transition classifiers.

Performance of Deep-LASI
A common approach to benchmark classifier models is using ground
truth labeled data and calculating confusion matrices, which sum-
marize the correct and incorrect predictions. For every trained model
(using ~ 200,000 traces), we generated approximately 20,000 new
traces for testing, which were not part of the training dataset. Each of
the validation datasets was then fed into the corresponding model.
The output predictions were compared to the ground truth labels for
every frame to obtain the percentage values of true positive, false
positive and false negative classifications. All trace classifier models
achieve a minimum combined precision of 97% in predicting smFRET

Fig. 1 | Overview of data extraction, evaluation, and analysis using Deep-LASI.
a Single-molecule data of up to three separate channels after direct and alternating
laser excitation are identified, extracted, and presorted for further analyses. Each
frame within the time traces is classified into categories using a hybrid CNN-LSTM.
b A second hybrid CNN-LSTM evaluates the kinetics and state information in the

presorted data. The photobleaching information can be used for determining the
correction factors to obtain accurate FRET values between two and three fluor-
ophores. cNext, the interconversion rates between underlying states and absolute,
distance-related FRET values are extracted from multi-color datasets.
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categories, i.e. static or dynamic, and 96% in predicting non-smFRET
categories (Supplementary Figs. 3.1 and 3.2).

Our number-of-states and state-transition classifiers were bench-
marked analogously. For the number-of-state classifiers, two states can
be distinguished from multi-state trajectories with at least 98% preci-
sionwhereas four states are predictedwith the lowest precision of 86%
for the single-channel model (Supplementary Fig. 3.3). For the state-
transition classifiers, the states can be identified with accuracies of
≥ 98%,≥ 90%and≥ 78% for two-state, three-state and four-statemodels
respectively (Supplementary Fig. 3.4). The comparison between all
state-transition classifiers reveals a clear trend of decreasing accura-
cies with an increasing number of states and increasing accuracy with
an increasing number of available channels. This is expected since a
higher number of states have a larger probability of lower contrast, and
a higher number of channels improves the robustness towards
uncorrelated noise. Since confusion matrices do not reveal any
underlying dependencies, we additionally benchmarked the
state transition classifierswith HMMby calculating the precisionof the
state label prediction for a broad range of noise levels, FRET state
differences and dynamic time scales (Supplementary Fig. 3.5). Overall,
the performance of state classifiers is at least on par with HMM at low
noise levels and outperforms HMM at high noise levels by up to 30%.
To investigate the advantage of using the information in the entire
dataset for the HMM analysis, we also compared the performance of
Deep-LASI with a local and a global HMM on idealized synthetic data
(Supplementary Fig. 3.6). Global HMM performs significantly better
than local HMM in this case and is on par with Deep-LASI.

As a last test, we compared the performance of Deep-LASI with
other kinetic analysis routines that have been recently published in a
multi-laboratory study32. We chose to analyze the two-state datasets as
these require no user input and the analysis can be performed without
bias. Deep-LASI returned values corresponding to the ground truth for

the simulated dataset and close to the average values obtained for the
experimental dataset (Supplementary Fig. 3.8).

Deep-LASI analyses of DNA origami structures
Next, we benchmarked the potential of Deep-LASI to automatically
analyze experimental data obtained from DNA origami structures.
DNA origami is extensively used in bio-nanotechnology and has the
advantage of being programmable with high precision and controll-
ability. In particular, we choose an L-shaped DNA nanostructure with a
dynamic, fluorescently labeled 19 nucleotide (nt) single-stranded DNA
pointer. The geometry of the DNA structure was originally designed
for measuring energy transfer to a graphene surface5,31. The single-
stranded DNA pointer, along with two or three exchangeable docking
strands of different complementary sequences, allows the number of
states, position of the dyes, and kinetic rate to be programmed as
desired. Hence, it is an ideal test system for measuring and extracting
kinetic information from smFRET traces. FRET efficiencies and kinetic
rates could be tuned by varying the position and complementary
sequence length of binding strands on the DNA origami platform. We
designed various DNA origami structures with one-, two-, and three-
color labels and measured them on the single-molecule level.

In the first assay, we assessed Deep-LASI’s capability to evaluate
single-color data. For this, we probed one-color single-molecule
kinetics where the flexible pointer was labeled with Cy3B at the 3’-end.
Two complementary binding sites with 8 nt complementary nucleo-
tides containing a 1 nt mismatch at the 5’-end (referred to as 7.5 nt)
were placed about 6 nmbelow and above the pointer position (Fig. 2a).
Binding occurred by spontaneous base-pairing to single-stranded
protruding strands. A single red dye, Atto647N, acting as a quencher,
was attached about 3 nm aside from the upper binding site (state 1).
Figure 2b shows an exemplary intensity trajectory of Cy3B classified as
dynamic until photobleaching was detected by the trace classifier with

Fig. 2 | State analysis of single-color single-molecule data. a Sketch of the used
L-shaped DNA origami structure with a single fluorophore (Cy3B) attached to a
flexible tether, which changes position from state 1→ 2 at the rate k12 and from state
2 → 1 at the rate k21. The zoom-in shows the two single-stranded binding sites
(orange) in close and distant proximity to a quencher dye (Atto647N) bound to the
DNAorigami structure.bRepresentative time transient for aDNAorigami structure
with 7.5 nt binding strands after classification and kinetic evaluation by Deep-LASI.
c Transition-density plots depicting the interconversion events between the two
detected states 1 and 2 after trace kinetics evaluation byDeep-LASI (left, number of
transitions n = 25,948) and by Hidden-Markov Modeling (HMM) analysis (right,

number of transitions n = 19,390). Both approaches identify identical states.
d Cumulative probability Distribution functions (CDFs) of the dwell times: The
mono-exponential fits obtained by both methods reveal equivalent dwell times of
approximately 1.75 and 2.65 s for the upper (State 1) and lower (State 2) binding
sites, respectively. The errors in the dwell times are the 95% confidence intervals
returned by the fitting procedure (estimated from the Jacobian matrix). e A com-
parison of the CDFs was determined using Deep-LASI and HMM. Deep-LASI is
already sensitive at time scales on the order of the acquisition time. The average
difference is less than 1% between both methods. Source data are provided as a
Source Data file.
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two corresponding states determined by the state classifier as the
linker moves up and down.

We compared the results from Deep-LASI with a Hidden-Markov-
Model analysis (HMM) trained on the same dataset. Since the state
classifier does not directlypredict a pre-trained intensity value for each
state, the TDP was generated by averaging the normalized intensity
between transitions. Both methods yield identical TDPs (Fig. 2c). The
residence time of the DNA tether in both states was determined by
fitting the cumulative dwell-time distribution functions (CDFs) derived
from the state-classifier of Deep-LASI with a mono-exponential fit and
compared to the results from HMM. The dwell times of 1.76 s versus
1.78 s (State 1) and 2.68 s versus 2.65 s (State 2) for Deep-LASI and
HMM, respectively, are in excellent agreement (Fig. 2d). The differ-
ences between the CDFs obtained by Deep-LASI and HMM (Fig. 2e)
indicate that Deep-LASI identifies fast transitions close to the frame
timemore frequently thanHMM.The overall difference at longer dwell
times remains well below 1%, which proves that Deep-LASI obtains
identical results to HMM with negligible differences in the extracted
rates. Interestingly, although the DNA binding strands are identical in
sequence and length, there are clear differences in the dwell times. We
attribute this to an inherent bias in the equilibriumposition of theDNA
pointer and non-symmetric, non-specific dye-origami interactions. In

addition, it is unlikely that the distance to each docking strand and
potentially induced stress upon binding are identical for the two
binding sites, even though the binding sequence is the same. We note
that the kinetics wemeasure here are not directly comparable to other
DNA-hybridization experiments due to both interacting DNA strands
being tethered to the DNA origami platform. This leads to a high local
concentration of the binder strand, and multiple dissociation and
rebinding events can occur before the tether switches binding sites.

In the next step, we studied Deep-LASI’s ability to deal with two-
color data. We investigated two-color FRET assays with two states and
compared the results with a pure manual evaluation of the same data.
Here, both donor and acceptor signals from the same DNA origami
sample system as shown in Fig. 2a were analyzed (Fig. 3a). TIRF mea-
surements were performed using msALEX33 yielding donor signal
(Cy3B, Channel DexDem), sensitized emission (Channel DexAem) and
acceptor signal (Atto647N, Channel AexAem) to obtain information
about acceptor photobleaching and direct excitation. Figure 3b shows
a fully classified example trace with the signals on top and the derived
FRET trace below. From the trace classifier, Deep-LASI identified
dynamic sections and individual photobleaching events (Fig. 3b; bot-
tom). The dynamic section was further classified in the state transition
classifier according to their state occupancy using only the two

Fig. 3 | Single-molecule analysis of two-color FRET data. Experiments were
performedwithDNAorigami structures exhibiting twoFRETstates.aZoom-in of an
L-shaped DNA origami structure labeled with Atto647N and Cy3B and corre-
sponding kinetic scheme. The donor is attached to the flexible tether with a 7.5 nt
overhang between the pointer and two single-stranded binding sites. FRET is
expected between a high FRET state 1 (12 o’clock) and a low FRET state 2 (6 o’clock)
interconverting at rates k12 and k21. b Representative single-molecule and apparent
FRET trace after alternating red-yellow (RY) laser excitation. Deep-LASI classifies
the trace and determines the underlying state for each frame. D: donor; A:
Acceptor; ex: excitation; det: detection. c TDPs determined using Deep-LASI (left)
and HMM (right) are shown revealing two interconverting states with apparent
FRET values of 0.8 and 0.2. The two states are labeled in white. Total number of
transitions: nDeep-LASI = 15,958, nHMM= 21,243. d CDFs extracted from the TDPs

shown in (c) and mono-exponential fits yield dwell times of 1.76 s and 2.64 s,
respectively. The errors in thedwell timesare the 95%confidence intervals returned
by the fitting procedure (estimated from the Jacobian matrix). e A comparison of
the cumulative dwell-time distribution determined using Deep-LASI - HMM for τ1
(gray) and τ2 (cyan). f Histograms of trace-wise determined correction factors for
direct excitation, crosstalk anddetection efficiency, eitherderived automatically by
Deep-LASI (gray histograms, median in black) or determined manually (blue lines,
median in cyan) (see SupplementaryNote 5).gApparent (left) and corrected (right)
frame-wise smFRET efficiency histograms for 1499 dynamic traces from a total of
6100 traces. The states have corrected peak FRET efficiencies of 0.07 and 0.81. The
histograms from traces selected by Deep-LASI are shown in gray and by manual
selection in blue. Source data are provided as a Source Data file.
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channels of the donor and acceptor intensity after donor excitation
(Fig. 3b; middle). The channel of acceptor excitation and detection
does not serve as input for the state transition classifier since it does
not contain valuable kinetic information. From a total of 6100 recor-
ded traces in the dataset, 1499 traces were classified as dynamic
smFRET trajectories with at least one transition.

The same traces were also sorted manually and the 1731 selected
dynamic traceswere analyzedusingHMM34 (see SupplementaryNote 5
for details). TDPs from the state transition classifier and from theHMM
analysis are nearly identical (Fig. 3c). Also, the corresponding dwell
times, determined via mono-exponential fits to the CDFs, are similar
(Fig. 3d) and correspond to the expected dwell times of the one-color
sample shown in Fig. 2 ( ~ 1.75 s for state 1 and 2.68 s for State 2). A
comparison of the CDFs from Deep-LASI and HMM indicates that
manually selected traces contained more fast transitions than the
traces selected by Deep-LASI in this case (Fig. 3e). We looked into the
differences between manually selected traces and traces selected by
Deep-LASI. The most common classification discrepancies between
the two are discussed in Supplementary Note 4.1. Based on individual
example traces, we observed a stronger influence of the non-ideal
behavior of the traces outside the regions of interest (e.g. a noisy ALEX
signal or nonconstant signal intensities in photobleached regions of
the trace) on Deep-LASI’s classification compared to that of manual
selection. We also compared the output of Deep-LASI with that of a
global HMM analysis executed on the same dataset (Supplementary
Fig. 4.2). As expected, the global HMM was prone to miss transitions
due to slight heterogeneities in the dataset.

Next, we investigated how sensitive Deep-LASI is to the training
dataset. Hence, we trained two additional classifier networks using
newly simulated datasets. Details are given in Supplementary Note 4.2.
The consistency between the differently trained neural networks is
~90%, similar to what would be expected from analysis run on the
validation datasets (Supplementary Fig. 3.1c). Interestingly, the con-
sistency between the different neural networks is higher than between
two independent users (Supplementary Fig. 4.3b).

To determine the distance between both dyes in the two FRET
states, the smFRET data needs to be corrected. Deep-LASI uses the
frames classified as photobleached to automatically derive the cor-
rection factors necessary for an accurate FRET calculation1,35,36. In the
manual analysis, the relevant regions are selected by hand (Fig. 3f,
Supplementary Note 5). The correction factors agree within ~3%. Using
the derived correction factors, the correct FRET efficiency is deter-
mined. The apparent (left) and corrected FRET histograms (right) of
the Deep-LASI (gray histograms) and manually (blue lines) selected
traces are shown in Fig. 3g. There is excellent agreement between the
Deep-LASI and manually analyzed apparent FRET histograms. The
difference between the corrected histograms is due to the difference
in the correction factors determined and applied from the two ana-
lyses. In this case, as Deep-LASI classifies photobleaching on a per-
frame basis, more frames can be used for determining the correction
factors and are, thus, most likely, more accurate here. The corrected
peak FRET efficiencies are 0.81 and 0.82 (State 1) and 0.08 and 0.14
(State 2) for Deep-LASI and manual evaluation, respectively, and cor-
respond to distances of 53 and 53 Å, and 103 and 92Å (assuming an R0

of 68 Å7).
In the last step, we then tested the performance of Deep-LASI for

analyzing three-color data by labeling the DNA origami structure with
an additional blue dye, Atto488, at ~3 Å distance to the binding site for
State 2 (Fig. 4a). The labeling sites of the yellow (Cy3b) and red
(Atto647N) dyes were left unchanged to provide consistency with the
previous two-color experiments. The use of three FRET pairs provides
three distances simultaneously and allows the resolution of states that
are degenerate for two-color FRET.

Using the six available intensity traces, each frame is categorized
by the fluorophores that are active and whether the trace is static,

dynamic or should be discarded. As the acceptor intensity after
acceptor excitation (RexRem) does not contain valuable kinetic infor-
mation, the other 5 intensity channels for dynamic traces (before
photobleaching) are given as input for the state transition classifier
(Fig. 4b). Movement of the flexible tether results in an anti-correlated
change in the FRET efficiency of blue to yellow (BY) and yellow to red
(YR), visible in the apparent FRETpanel of the example trace in Fig. 4b.
For each FRET pair, a TDP can be calculated, which allows the assign-
ment of the state number to the actual FRET populations (Fig. 4c).
Note, the apparent FRET efficiency of blue to red (BR) varies with the
YR FRET efficiency due to the different energy transfer pathways taken
upon blue excitation. Deep-LASI classifies a state regardless of which
dye is undergoing a transition, i.e. the extracteddwell timedistribution
of a given state is the same for all FRET pairs when there is no overlap
of multiple states in the TDP. The dwell times for states 1 and 2 match
with those for the one-color and two-color samples, which indicates
that the transition rates are not influenced by the acceptor dyes close
by (Figs. 2d, 3d, Supplementary Fig. 6.1). From a total of 2545 recorded
molecules, 581 were classified as valid, dynamic three-color FRET tra-
ces. The uncorrected, framewise smFRET histograms of BY, BR and YR
FRET pairs are very similar to those from the 694 manually selected
traces (Supplementary Fig. 4.4a). A detailed comparison between the
manual analysis of the results from Deep-LASI is given in Supplemen-
tary Notes 4.3 and 4.4.

As for two-color FRET, Deep-LASI automatically determines all
correction factors obtainable per trace depending on which dyes are
photoactive. The results of the automated extraction of correction
factors are summarized and compared tomanually derived correction
factors in Supplementary Fig. 4.4b. The corresponding apparent und
state-wise, corrected FRETefficiencyhistograms for each FRETpair are
shown in Fig. 4d. While the YR FRET efficiency can be directly calcu-
lated, the corrected BY and BR FRET efficiencies are subjected to
higher uncertainties due to the large number of correction factors
involved (see Supplementary Note 5). In particular, their dependency
on the YR FRET efficiency leads to the broadening of the distributions.
To minimize this influence, we perform the correction using the state-
averaged FRET efficiencies. After correction, the FRET efficiencies of
State 1 (0.81) and State 2 (0.08) for the YR FRET pair are virtually
identical as for the two-color system. For the BY FRET pair, State 1 and
State 2 correspond to peak FRET efficiencies of 0.36 and 0.81,
respectively. As expected, the two populations of the apparent BR
FRET efficiency merge into one static population in the corrected
histogram with a peak FRET efficiency of 0.36.

To probe the performance of the kinetic analysis fromDeep-LASI,
we used the tunability of the L-shaped DNA origami structure to vary
the timescale of the dynamics. In addition to the 7.5 nt binding sites
(Fig. 4a–d), we measured three samples using binding sites of length
7 nt with a 1 nt mismatch (referred to as 6.5 nt), 7 nt, and 8 nt (Fig. 4e).
The summary of all extracted dwell times (Fig. 4f, Supplementary
Figure 6.1) shows an exponential increase in the dwell times of both
states with increasing binding site lengths ranging from 0.33 s to 9.5 s.
Considering the camera exposure times of 32ms (6.5 nt), 50ms (7 nt
and 7.5 nt datasets) and 150ms (8 nt dataset) and frame shift time of
2.2ms, a dwell-time to frame-time ratio ranges from9 (6.5 nt State 1) to
62 (8 nt, State 2).

To test Deep-LASI with more complex dynamics with multiple
states, we constructed a three-state system with three-color labels
using 7 nt binding strands at positions 6 and 12 o’clock and an addi-
tional 7.5 nt complementary binding strand at 9 o’clock (Fig. 5a). An
example trace containing all possible transitions identified by Deep-
LASI is shown in Fig. 5b. TheTDPof the BY FRETpair (Fig. 5c, left panel)
yields clearly distinguishable populations, while the TDP of the YR
FRET pair (Fig. 5c, right panel) shows a degeneracy of state 3 transi-
tions. Using the BY TDP, we determined the dwell time distributions
with residence times between 0.65 s and 1.43 s (Supplementary
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Figure 6.2). The three states are well-resolved in the framewise
apparent BY FRET histogram, while state 2 and state 3 are degenerate
for the BR and YR FRET pairs (Fig. 5c). Applying all correction factors
yields peakYR FRET efficiencies of 0.81 (state 1), 0.08 (state 2) and0.19
(state 3). Upon correction, States 1 and 3 in the BY FRET histogram
merge into a broad degenerate FRET population. However, using the
state information for all three fluorophores allows us to separate out
the BY FRET histograms of the individual states.

For three-color FRET, the corrected BY and BR FRET efficiencies
depend on the YR FRET efficiency, and the additional corrections
broaden the population. However, even though the data may be noi-
sier, three-color experiments contain additional information, which
typically allows one to resolve states that are degenerate in two-color
experiments. This is exemplified in two-color FRET experiments on the
same construct missing the blue fluorophore near the 6 o’clock bind-
ing site (Supplementary Note 6.3). For distinguishable states, the
determined corrected FRET efficiencies and kinetic rates from two-
and three-color experiments are the same. However, three-color FRET
experiments enable the lifting of this degeneracy between states 2 and
3. To minimize the influence of the increased noise in three-color
experiments, it is advantageous to analyze the data in proximity ratio
and only convert it to corrected FRET efficiencies when necessary10.
Deep-LASI can rapidly classify a large number ofmolecules and quickly

provide an overview of multi-state dynamics with easy access to the
kinetic information.

Further applications of Deep-LASI
After extensive benchmarking, we appliedDeep-LASI to various single-
molecule datasets originating from biophysical assays, protein sam-
ples and experimental systems beyond TIRF microscopy. With the
speedup in analysis time from days to minutes, experiments become
possible that would have been unthinkable when performing
the analysismanually. One example is a titration experimentwhere the
biochemical conditions are varied. Here, wemeasured the influence of
glycerol concentrationon thedynamics of the 3-colored L-shapedDNA
origami introduced in Fig. 4a with 7.5 nt overhangs. Interestingly, we
observed a decrease in residence time in both states with increasing
glycerol concentrations (Fig. 6a, b). Dwell times start at 1.75 s (state 1)
and 2.69 s (state 2) for pure imaging buffer and decrease down to
0.62 s and 0.85 s in buffer containing 30% (v/v) glycerol. Themulti-fold
increase in binding kinetics can be explained by a reported destabili-
zation of base-pairing due to changes in the ssDNA hydration shell37

and concomitantly disturbed hydrogen bonding due to the osmolyte-
DNA interaction. The melting enthalpy and melting temperature
decreases linearly with glycerol concentration at about 0.2 °C per % (v/
v)38,39 in line with our observations (Fig. 5b). With Deep-LASI at hand,

Fig. 4 | Single-molecule analysis of three-color FRET data. Experiments were
performed on two-state DNA origami structures that were labeled with Atto647N,
Cy3B and Atto488. While Cy3B is attached to a flexible tether, Atto647N and
Atto488 are positioned close to the top (12 o’clock; state 1) and bottom (6 o’clock;
state 2) binding sites, respectively. a Zoom-in of the L-shaped DNA origami struc-
ture and corresponding kinetic scheme. b Representative single-molecule intensity
and FRET trajectories for binding sites with 7.5 nt overhang after alternating red-
yellow-blue laser excitation. First panel: Intensities after blue excitation. Second
panel: intensities after yellow and red excitation. Third panel: corresponding three-
color FRET efficiencies. Fourth and fifth panels: Deep-LASI output for state transi-
tion and trace classification. B: blue; Y: yellow; R: red; ex: excitation; det: detection.
c TDPs of the apparent FRET efficiency states reveal an apparent distance change
for all three FRET pairs (BY (left), BR (middle), and YR channel (right) with dwell
times of 1.75 s and 2.69 s for the upper and lower binding site, respectively, nearly

identical to the two-color DNA origami structures (Fig. 3c). Total number of tran-
sitions: 5,013. d Frame-wise weighted state-wise apparent (gray) and corrected
(color) smFRET efficiency histograms of the BY (left), BR (middle), and YR (right)
FRET pairs. As expected, the accurate FRET efficiency of the BR pair is static
(E = 0.36). As the position of Cy3Bchanges from state 1 to state 2, the accurate FRET
efficiency changes from 0.36 to 0.81 (BY pair) and from 0.81 to 0.08 (YR pair).
e Upper panel: Representative three-color smFRET traces for binding sites with 6.5
nt (7 nt with 1 nt mismatch), 7 nt and 8 nt overhangs after alternating RYB laser
excitation. Bottom Panel: The corresponding state determined by Deep-LASI.
f Extracted dwell times from mono-exponential fits for the lower (blue) and upper
positions (black) for 6.5 nt (τ1: 0.31 s, τ2: 0.4 s), 7 nt (τ1: 0.66 s, τ2: 1.05 s), 7.5 nt (τ1:
1.75 s, τ2: 2.69 s) and 8 nt overhangs (τ1: 6.41 s, τ2: 9.54 s) (see Supplementary
Figure 6.1 for more details). nt: nucleotides. Source data are provided as a Source
Data file.
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local screening and time-consuming parameterization of imaging
conditions become feasible.

Next, we applied Deep-LASI to smFRET measurements on pro-
teins. We previously used dual-color FRET studies to probe the
nucleotide-dependent conformational states40 of Ssc1, a mitochon-
drial heat-shock protein Hsp70 in yeast. By fluorescently labeling both
the nucleotide-binding domain and the substrate-binding domain, we
investigated the influence of ADP on the inter-domain separation via
smFRET. As the proteins were immobilized by incorporation in vesi-
cles, a photostabilizationbuffer couldnot be used for the experiments.
Hence, the signal-to-noise ratio in these experiments is lower than
those exhibited by the photostabilized DNA origami structures. A
comparison of traces selected manually and/or by the Deep-LASI
analysis is discussed in Supplementary Note 6.5. For the different ADP
concentrations, Deep-LASI identifies the underlying FRET states in line
with the manually evaluated data40 (Fig. 6c). It correctly identifies
transitions between twodistinct states, a loosely docked conformation
with high FRET efficiency (E = 81%) and a separated undocked state
(E = 50%), as shown in Fig. 6d). The automated data analysis of Deep-
LASI confirmed the ADP-dependent kinetics of the domain sensor in
good agreement with previous, manually evaluated results40 (Fig. 6e,
f). This demonstrates the proficiency of Deep-LASI for unsupervised
data evaluation of smFRET data on proteins.

Finally, we tested the automated analysis of Deep-LASI applied to
a different microscopy approach for smFRET, i.e. confocal single-
molecule data on immobilized molecules that can be collected with
microsecond time resolution. We chose the same double-labeled DNA
origami structure introduced in Fig. 2a butwithdifferent combinations
of docking strands. For these constructs, the measured FRET effi-
ciencies will be the same but with different dynamics. By changing the
hybridization length or by adding mismatched bases in the docking
strand, the interaction time of each binding site can be tuned indivi-
dually from ~ 1ms to 10 s of seconds by adjusting the stabilization
energy of DNA hybridization. As expected, shorter hybridization
sequences lead to fast dynamics. Figure 6g shows a representative

intensity trajectory of a DNA origami structure (containing 6 nt com-
plementary overhangs) that was classified as dynamic and the corre-
sponding predictions of the state classifier. Although the unquenched
state (state 2) shows a high variance in intensity, the state classifier
predicts transitions with high accuracy and confidence. In the case of
the 5 nt complementary overhangs, the dwell times approach 1ms
(Fig. 6h), and the output probability, p, of the state classifier decreases
significantly due to the low signal-to-noise ratio of the trace. Thus, the
probability value is an important parameter indicating the confidence
the state classifier has in the assignment of the state and can be used as
a threshold. Figure 6i (colored symbols) compares the mean dwell
times extracted by Deep-LASI for all the confocal datasets with the
results obtained by a newly developed shrinking-gate fluorescence
correlation spectroscopy (sg-FCS) approach41. In sg-FCS, a pulsed light
source is used such that the fluorescence lifetime information can be
incorperated into the analysis. By shrinking the analysis window of
photons based on their detected arrival time after excitation, we vary
the relative brightness of two species with different fluorescence life-
times (e.g. the low FRET and high FRET states). This leads to a robust
extraction of the kinetic rates between the two states from the auto-
correlation analysis of the FCS data. For all binding site combinations
with 6 nt to 7 nt complementary overhangs, dwell times obtained by
both methods are in excellent agreement. The largest deviation was
found for the 6 nt binding sites in the asymmetric 6 nt/7 nt sample
(Fig. 6i, purple) (a factor of 2) where there is large heterogeneity and
limited statistics41. The dwell times for the sample with 5 nt com-
plementary overhangs follow the exponential trend observed for
longer binding sites but the binning of 0.6ms, together with the
resulting low signal-to-noise ratio, reach the current limit of Deep-
LASI’s state classifier. For completeness, we have included the results
from Fig. 4e, f in Fig. 6i (gray triangles). There is a shift in dwell times
between TIRF and confocal data due to the different temperatures of
the two laboratories ( ~ 19 °C confocal, ~22 °C TIRF, see Supplementary
Note 6.4). Lower temperatures lead to a higher standard free energy
and concomitantly longer binding time42,43. In the case of the 6.5 nt

Fig. 5 | Single-molecule analysis of three-state, three-colorFRETdata. aZoom-in
of the L-shapedDNAorigami structurewith an additional binding site for the tether
(state 3 at 9 o’clock) and corresponding kinetic scheme. b A representative single-
molecule three-color FRET trace and apparent FRET for the 3-state system. The
upper panel shows the intensity in the blue, yellow and red channels after blue
excitation. The second panel shows the intensity in the yellow and red channels
after yellow excitation and the red intensity after red excitation. The middle panel
shows the corresponding FRET efficiencies for the three dye pairs. The fourth and
fifth panels show the output of the Deep-LASI analysis for state transition and trace
classification, respectively. B: blue; Y: yellow; R: red; ex: excitation; det: detection.

c Transition density plots of the apparent FRET efficiency states are shown for each
FRET pair revealing an interconversion between 3 binding sites. Total number of
transitions: n = 17,136. d Frame-wise weighted, state-wise corrected smFRET effi-
ciency histograms. Corrected, distance-related FRET values are best resolved for
the YR pair, showing three populations at 0.81, 0.19 and 0.09. The BY FRET shows
one population at 0.8, corresponding to state 2, and a broad population at 0.3 for
states 1 and 3. Individually-corrected states are indicated with the highlighted lines,
showing the actual BY FRET efficiencies of state 1 (0.4) and state 3 (0.21). The
apparent FRET states for the BR channel merge into one broad, static state with a
value of 0.35. Source data are provided as a Source Data file.
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binding sites sample (Fig. 6i, yellow), lower dwell times are consistently
observed for the TIRF data. This discrepancy is due to the difference in
temporal resolution of the two measurements (2ms for confocal vs
30ms for TIRF). The lower temporal resolution of the TIRF measure-
ments led to a higher probability of fast transitions being averaged out
and an underestimation of the actual transition time. This is a limita-
tion of the real experimental data and is not attributable to Deep-LASI.
On the contrary, Deep-LASI can back-trace shortcomings of either
technique, identify rare events and monitor conformational changes
over several time scales in an unsupervised manner.

Discussion
Deep-LASI is a deep-learning algorithm for the rapid and fully auto-
mated analysis of one-, two- and three-color single-molecule assays.
Employing state-of-the-art neural network architectures optimized for
time series data, we extended the classification of two-color FRET
trajectories to include single- and three-color data, analyzed the

photobleaching information and incorporated a full state transition
classification.

The utilization of deep-learning approaches for single-molecule
analysis comes with both advantages and potential pitfalls. One major
advantage is the ability of neural networks to capture intricate tem-
poral dependencies and complex patterns in time-series data. This
allows for improved classification accuracy and the identification of
subtle transitions or states that may be challenging to discern using
traditional analysis methods. Additionally, deep-learning models can
learn from large amounts of data, reducing the dependence on prior
assumptions that may introduce user bias.

It is essential to consider potential pitfalls when using deep neural
networks for single molecule analysis. One challenge is the interpret-
ability of the neural networks’ decisions. While mathematical models
and simpler thresholding techniques introduce user bias, they provide
explicit confidence levels or probabilities derived from the user’s
modeling choices. In contrast, the output generated by neural

Fig. 6 | Use of Deep-LASI on titration experiments, protein data, and confocal
data. a, b 3cFRET: Tuning the dissociation thermodynamics between protruding
ssDNA strands by osmolytes. a CDFs of the dwell times, assessed through mono-
exponential fits, for state 1 (left) and state 2 (right) of the L-shaped DNA origami
structure from Fig. 4a decrease with increasing glycerol concentration. b Depen-
dence of dwell times for both states versus glycerol concentration. c–f 2cFRET:
Probing domain-domain interactions in Ssc1, a mitochondrial Hsp70. c Frame-wise
smFRETdistributions of Hsp70molecules in the presence of 1mMADP classified as
dynamic by Deep-LASI (gray) and evaluated manually (blue) from a total of 3534
traces. d The TDP generated by Deep-LASI aligns with the data plotted in (c),
illustrating the interconversion between the undocked ( ~ 0.5) and docked ( ~ 0.8)
conformations. Total number of transitions, n = 3914. eCDFs of the dwell times and
mono-exponential fits to the dwell time distributions derived by Deep-LASI for
domain docking (left panel) and domain undocking (right panel) depending on the
ADP concentration. f Comparison between average dwell times extracted by Deep-

LASI (triangles) andbymanual evaluation (crosses) usingHMM.Deep-LASImatches
the published trend with similar dwell times40. g–i 1c-FRET: Deep-LASI analysis of
ssDNA binding kinetics observed via confocal microscopy. g Confocal trace (with
2ms binning) of the DNA origami structure from Fig. 2a with 6 nt binding sites and
corresponding statespredictedwith high confidence.hConfocal trace (with0.6ms
binning) of a DNA origami structure with 5 nt binding sites and predicted states.
Due to the low SNR of the data, the confidence output of Deep-LASI reaches its
lower limit. iMean dwell times obtained from confocal data for various binding site
lengths analyzed by sg-FCS41 (circles) and Deep-LASI (triangles). The results align
well, except for dwell times extracted from the 5 nt sample, which was predicted
with a low confidence distribution due to low SNR and a limited amount of infor-
mation in theone-channel input. Dwell timesobtained fromTIRFdata are displayed
in light gray for comparison. nt: nucleotides. Source data are provided as a Source
Data file.
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networks can be viewed as an artificial confidence level, minimizing
user bias and increasing the consistency of the analysis. However,
potential unknown biases inherent in the network itself may be
introduced. Although neural networks can demonstrate high accuracy
on validation datasets, understanding the underlying features and
mechanisms influencing their predictions can be more challenging
compared to conventional methods with explicit assumptions.

Ideal single-molecule traces are straightforward to model, and
Deep-LASI is trained to be stringent when encountering non-ideal
traces at a high confidence threshold. Hence, the default output of
Deep-LASI when analyzing data with poor SNR is to discard the
majority of the traces. By adjusting this threshold, users can instanta-
neously modify the accepted traces and monitor changes in the final
results. This approach ensures a very low false positive classification
rate when using a high confidence threshold and allows for gradual
threshold reduction to increase statistical coverage. However, the
outcome should be continuously monitored by the user. This iterative
process effectively balances stringent classification and the need for
increased statistical robustness in the analysis of new datasets.

Furthermore, Deep-LASI offers an advantage in terms of inter-
pretability as it is trained solely on editable and extendable simula-
tions. This characteristic provides users with greater control and
knowledge over potential biases and enables them to tailor Deep-LASI
to a wide range of experimental conditions. It is important to note that
neural networks are data-drivenmodels and heavily rely on the quality
and representativeness of the training data. Therefore, careful con-
sideration must be given to curating the training dataset to avoid
biases and ensure the generalizability of the model to diverse experi-
mental conditions. Regular validation and testing using independent
datasets are crucial steps to assess the robustness and reliability of the
model’s performance. In addition, when measuring an unknown
experimental system for the first time, it is helpful to visually inspect
the traces that are being discarded to verify that the classification is
still reasonable. By following these practices, researchers can enhance
the trustworthiness and applicability of Deep-LASI in real-world
scenarios.

In conclusion, Deep-LASI addresses the need for rapid, high-
throughput screening of fluorescence intensity trajectories. This
opens newpossibilities for single-molecule assays and enables a timely
analysis of complex experimental approaches thanks to the efficient
and retrainable neural network architecture of Deep-LASI. It has a high
potential for applications in a myriad of fields including biother-
anostics, sensing, DNA barcoding, proteomics and single-molecule
protein sequencing.We envision that deep-learning approaches, along
with single-molecule sensitivity, will dramatically assist and accelerate
analytics and be indispensable in the future.

Methods
Chemicals
Chemicals were purchased from Sigma-Aldrich and used without fur-
ther purification, if not statedotherwise. Chemicals include acetic acid,
agarose, ammonium persulfate, (3-aminopropyl-) triethoxysilane
(APTES), biotin-poly(ethylene glycol)-silane (biotin-PEG, MW3000,
PG2-BNSL-3k, Nanocs, NY; USA), bovine serum albumin (BSA; New
England Biolabs, Ipswich, MA, USA), Blue Juice gel loading buffer
(ThermoFisher Scientific), ethylene-diamine-tetraacetic acid sodium
salt dehydrate (EDTA-Na2 × 2H2O), glycerol, magnesium chloride
(MgCl2 × 6H2O), 2-[methoxy(polyethyleneoxy)propyl]trimethoxy-
silane (mPEG, #AB111226, abcr; Germany), phosphate-buffered saline
(PBS), protocatechuate 3,4-dioxygenase from Pseudomonas sp. (PCD),
protocatechuic acid (PCA), streptavidin, sodium chloride, Tris base,
Tris HCl, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
(Trolox) and beta-mercaptoethanol (βME).

All unmodified staple strands (Supplementary Note 7, Supple-
mentary Table 7.2) used for DNA origami structure folding are

commercially available and were purchased from Integrated DNA
Technologies®. Staple strands with modifications (Supplementary
Tables 7.3 and 7.4) were obtained from Biomers (Supplementary
Table 7.3: Biotin; Supplementary Table 7.4: Atto488) and Eurofines
Genomics (Supplementary Table 7.4: binding sites, Cy3b and
Atto647N).

DNA origami structures: assembly, purification and
characterization
Preparation of the L-shaped DNA origami structures follows the pro-
cedures described previously by Tinnefeld et al.5,31. In brief, the
L-shaped DNA origami structures were folded with a 10-fold excess of
252 different, unmodified and labeled oligonucleotides to the com-
plimentary 8064 bp scaffold strand in folding buffer, which contained
40mMTris base, 20mM acetic acid, 20mMMgCl2 × 6 H2O, and 1mM
EDTA-Na2 × 2 H2O. A complete list with sequences of oligonucleotides
used for producing the DNA origami structure is given in Supple-
mentary Note 7. For folding, a nonlinear thermal annealing ramp over
16 hours was used44.

After folding, the DNA origami solution was cleaned via gel
electrophoresis in 50mL 1.5% agarose-gel containing 1× gel buffer
(40mM Tris base, 20mM acetic acid, 12mM MgCl2 × 6 H2O, and
1mM EDTA-Na2 × 2 H2O). The gel pockets were filled with a solution
of 1× Blue Juice gel loading buffer and the DNA origami solution. The
ice-cooled gel was run for 2 h at 60 V. When samples were to be
recovered from the gel, the staining step was omitted and the Cy3b
fluorescence was used instead to identify the correct DNA origami
structures. Gel extraction was performed via cutting with a scalpel
and squeezing the gel with a Parafilm® (Bernis®) wrapped glass slide.
The concentration was determined by absorption spectroscopy on a
NanoDrop 2000 device (ThermoFisher Scientific). Purified DNA ori-
gami structures were kept in storage buffer, i.e. in 1× TAE buffer
(40mM Tris base, 20mM acetic acid and 1mM EDTA-Na2 × 2H2O)
with 12.5mM MgCl2 × 6 H2O (pH= 8.4).

The correct folding of the DNA origami structures was confirmed
using atomic force microscopy and transition electron microscopy
(see Supplementary Figure 7.2).

Samplepreparation formulticolor prism-typeTIRF experiments
Labeled DNA origami molecules were immobilized in flow channels
formedbetween a coverslip and a surface-functionalized quartz prism.
The surfaces were sandwiched on top of each other and sealed by a
molten, pre-cut Nesco film (Nesco) channel. The employed prism
surface was functionalized before with a biotin-PEG/mPEG coating to
achieve surface passivation and prevent unspecific binding. Before the
TIRF experiments, the prisms were first flushed with PBS and then
incubated with a streptavidin solution (0.2mg/mL) for 15min. After-
wards, the sample holder was washed 3× with PBS to remove free
streptavidin and then with storage buffer (1× TAE, 12.5mM MgCl2,
pH = 8.4). Next, the DNA origami sample was diluted to 40 pM in sto-
rage buffer, added to the flow chamber and immobilized to the prism
surface via the biotin-streptavidin linkage. After 5min, untethered
DNA origami structures were removed by rinsing the chamber 3× with
storage buffer. Next, the attached fluorophores on the DNA origami
structure were photostabilized by a combination of ROXS and an
oxygen scavenging system based on PCA/PCD45. The photostabiliza-
tion buffer was mixed as follows: 1 µL of 100mM Trolox/Ethanol
solution was added to 97 µL storage buffer. The sample was then aged
using a UV Lamp (M&S Laborgeräte GmbH, UVAC-6U, 2 × 6W; 254 and
366 nm) until an equal ratio of Trolox and Trolox-quinone was formed
(typically 6minutes)46. Immediately before starting the TIRF experi-
ments, 1 µL of 100mM PCA in methanol and 1 µL of 100mM PCD
solution (50% glycerol, 50mMKCl, 100mMTris HCl, 1mMEDTA-Na2 ×
2H2O, pH8) was added to the total volume. In the case of samples
containing Atto488, 1 µL of 14.3M βME was added to the
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photostabilization buffer. The sample chamber was flushed with
photostabilization buffer and sealed to allow for enzymatic oxygen
depletion. A minimum of 5minutes waiting time preceded the
experimental recordings. The photostabilization buffer was refreshed
every 45minutes until the end of the experiment.

All two- and three-color FRET experiments were carried out using
msALEX33, i.e. two- or three excitation lasers were alternated frame-
wise. The lasers of different excitation wavelengths were synchronized
using an acousto-optical filter (OPTO-ELECTRONIC, France) with the
camera frame rate using an FPGA that synchronizes the excitation and
simultaneous detection on the EMCCD cameras at 32ms, 50ms or
150ms exposure times (depending on the sample) for 2000 (two-
color) and 2400 (three-color) frames. The laser powers were set to
28mW (0.022mm2, 491 nm), 16mW (0.040mm2, 561 nm) and 10mW
(0.022 mm2, 640nm) for B-Y-R excitation.

Multi-color TIRF setup
Single-pair FRET experiments on surface-immobilized DNA origami
structures were carried out on a home-built TIRF microscope with
prism-type excitation as previously published47. Three laser sources
(Cobolt, Solna; Sweden) at 491 nm, 561 nm and 640nm are available,
and used for triple-color TIRF experiments with an alternation rate of
27Hz (including a 2.2ms frame transfer rate) between the B-Y-R laser
excitation. The resulting emission was collected by a 60×water
immersion objective (60×/1.27WI Plan Apo IR, Nikon), cleaned upwith
a notch filter (Stopline® Notch 488/647, AHF), and the red emission
was separated from the blue/yellow emission by a dichroic mirror
(630DCXR AHF; Germany) followed by separation of the blue and
yellow emission (560DCXR AHF). The emission was spectrally filtered
(AHF Analysentechnik, Tübingen, Germany) for the blue (ET525/50),
yellow (HQ595/50) and red (ET685/40) collection channels and after-
wards detected on three EMCCD cameras (Andor iXon (1×)/iXon Ultra
(2×), Andor Technologies, Belfast; UK) via the supplier’s software
Andor Solis (Version 4.29.30005.0; Oxford Instruments). Synchroni-
zation and alternation of the exciting laser sources, as well as the
frame-wise data acquisition on three separate cameras, were achieved
using a LabView-written program that controls a field programmable
gate array (FPGA; NI cRIO-9073). While the program starts the mea-
surement, the FPGA synchronizes the execution of the hardware via
TTL pulses, i.e. it controls switching on/off the excitation sources by
direct modulation of the AOTF (491, 561, 640 nm), while simulta-
neously starting the data acquisition by the three cameras. The videos
were analyzed afterward by a custom-written MATLAB program (Ver-
sion 9.13.0.2166757; Mathworks, Massachusetts, USA).

Single-molecule data analysis, data evaluation and
representation
Time traces of individual,fluorescently labeledDNAorigami structures
were extracted from measurements using one, two or three cameras
for one-, two- and three-color experiments, respectively, using Deep-
LASI. Deep-LASI is written in MATLAB (Version 9.13.0.2166757; Math-
works, Massachusetts, USA) and uses neural networks trained with the
Python library TensorFlow (Version 2.8.0). All raw data were recorded
by EMCCD cameras (iXon 897, i.e. frames with 512 × 512 pixels con-
taining fluorescence intensity information) and stored as TIFF stacks
using the supplier’s software Andor Solis. The resulting traces are then
analyzed either using the pre-trained neural networks (Supplementary
Notes 2, 3) or manually (Supplementary Note 5). The regions of single-
molecule traces that were classified as dynamic with photoactive
fluorophores were selected for downstreamanalysis. In the automated
analysis procedure, the state transitions and state dwell times were
predicted by a neural network model. All manually selected traces
were analyzed using Hidden Markov Models, locally fit to each inten-
sity trace (1-color data) or FRET trace (2-color data) assuming two
states with Gaussian emission distribution functions and using the

Baum-Welch algorithm. The Gaussian emission distribution functions
serve as the prior for the HMM, which are iteratively updated during
the analysis. The convergence threshold was set to 10−9 and the max-
imum number of iterations was set to 108. All predicted transitions
were extracted from a transition density plot and the corresponding
dwell times were fit to an exponential function. All correction factors
for calculating the corrected FRET efficiency were determined using
the manual or automated classification of photobleaching steps. All
employedmethods, automated andmanual, were performedusing the
Deep-LASI user interface. Final panels were all presented using
MATLAB 2022b (Version 9.13.0.2166757; Mathworks, Massachusetts,
USA), exported as vector graphics, and assembled into figures using
Adobe Illustrator CS2022 (Adobe Inc.; USA). 3D representations of the
DNAorigami structureswere rendered in Blender (Version 2.93.6), and
further assembled and labeled in Illustrator. The AFM images were
plotted using JPK Desktop Software (Version 6.1.200A).

Statistics & reproducibility
For training the neural network, we used a simulated dataset with ~
200,000 traces as it is sufficient to cover an extensive range of rea-
listic experimental parameters and thereby avoid any bias in the
analysis. This includes FRET efficiencies between0.01 and 0.99, dwell
times of 1 to 100 frames and SNR of ~0.3 to 50. Experimentally, we
typically measured 100 movies for each condition, as this usually
generates several thousand acceptable traces. The full datasets were
analyzed. The program, as part of its function, determines which
intensity traces are suitable for further analysis. The computer
selection was tested against simulated traces as well as compared
with human analyses.

The Deep-LASI software was trained on three independently
generated datasets. Deep-LASI was also compared with two users who
manually analyzed the same datasets. The number of states, FRET
efficiency histograms and kinetic rates extracted from the different
analyses are consistent and, when available, are within the confidence
intervals from the fits. Experiments were not randomized. The
researchers were not blinded as knowledge regarding the sample did
not influence the manual selection or analysis of the data. For the
neural network, the advantage is that it operates only based on the
data that it has been trained with. Hence, blinding is not applicable.

For analysis of the dwell-time distributions, a mono-exponential
function was fit to the cumulative distribution function in MATLAB
2022b. The optimal fit values, along with the 95% confidence intervals,
are given in the text and figures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for all figures and all supplementary figures have been
deposited in the Zenodo database48 [https://zenodo.org/record/
7561162], with the exception of previously published data (HSP70
SSC1 and DNA origami confocal data in Fig. 6). Source data are pro-
vided with this paper.

Code availability
The program is available on GitLab [https://gitlab.com/simon71/
deeplasi]. Extensive documentation for the Deep-LASI software pack-
age can be found at https://deep-lasi-tutorial.readthedocs.io/en/latest/
index.html.
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SUPPLEMENTARY NOTE 1: NEURAL NETWORK 

 
1.1. Architecture 

For the Deep-LASI software package, two different neural-network architectures are used. One 
architecture is for trace classification and another for the number of states and state transition 
classification (Supplementary Figure 1.1). Both architectures are hybrids of  a convolutional 
neural network (CNN) and a long short-term memory (LSTM) model, which were designed 
using TensorFlow with Keras API.1 The CNN framework was inspired by an omni-scale 1D-
CNN, which elegantly solves the problem of finding the optimal kernel sizes by making it part 
of the training process.2 Unlike traditional CNNs that operate on 2D spatial grids, the omni-
scale CNN processes time series data directly by utilizing one-dimensional convolutions. These 
convolutional operations consider the temporal dependencies among data points, enabling the 
network to effectively model the sequential nature of time series data. Single-molecule Förster 
Resonance Energy Transfer (smFRET) data often exhibit complex patterns on different 
timescales, which can be crucial for accurate classification. The omni-scale CNN architecture 
incorporates multiple convolutional layers with different kernel sizes at the same level of depth, 
enabling the extraction of features at various temporal resolutions. However, the pure CNN 
architecture can only produce a single classification for the entire input sequence, i.e. one 
category per single molecule trace. The inclusion of LSTM after feature extraction of the CNN 
enables the sequential classification of each trace, producing a classification output at each time 
step. This characteristic of LSTM allows for the fine-grained detection of valid smFRET 
frames, photobleaching steps and state transitions. For all of our presented tasks, the omni-scale 
CNN LSTM hybrid architecture outperformed pure LSTM or ResNet3 models. We did not 
employ the full range of prime numbers suggested for the kernel sizes as we found the accuracy 
did not increase above 23. Hence, the number of trainable parameters was greatly reduced. In 
the trace classifier model, we added a 1x1 convolution layer for dimensionality reduction to 
further increase efficiency without a trade-off in validation accuracy. Any down-sampling of 
the time dimension was avoided since the loss of this information significantly decreased the 
validation accuracy. This was achieved by omitting any kind of pooling or averaging layers, by 
zero-padding all inputs for the convolutional layers and setting the stride of all convolutional 
filters to 1. For kernel initialization, we used the He Normal distribution4 as it showed the fastest 
convergence rate. Each convolution layer is followed by a batch normalization layer and an 
activation layer using the rectified linear unit (ReLU) activation function.5 
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Supplementary Figure 1.1: The deep neural network architectures used for the trace classifier (a), and for the 
state transition classifier and the number of states classifier (b). 
 

1.2. Trace classifier architecture 

The trace classifier consists of four convolution layers followed by two LSTM layers and one 
fully connected layer as the feature extraction module (Supplementary Figure 1.1a). In the first 
convolution layer, the input is fed into 10 layers with 32 filters each. The kernel filter size is 
varied between layers with sizes given by the prime numbers from 1 to 23. All layers are stacked 
sequentially, i.e. they operate on the same level of depth. The second convolution layer serves 
as a dimensionality reduction layer with 32 filters and a kernel size of 1. The third convolution 
layer has the same hyperparameters as the first layer. A fourth convolution layer is added, 
composed of two branches with 32 filters each and kernel sizes of one and two, which allows 
the receptive fields of the network to cover all possible integers. The output of the CNN is fed 
into a LSTM layer with 128 units, followed by a second LSTM layer with 32 units and the final 
dense layer for classification. For the training procedure, we placed a dropout layer at a rate of 
0.22 before the first LSTM layer and two dropout layers at a rate of 0.5 after the two consecutive 
LSTM layers to maximize the validation accuracy and reduce overfitting. 
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1.3. State transition classifier and number of states classifier architecture 

The main difference in architecture between the transition classifier and the trace classifier are 
the depths and widths of the CNN and LSTM structure. The state transition classifier is 
composed of two convolution layers, three LSTM layers, and one final dense layer 
(Supplementary Figure 1.1b). The kernel sizes of the first convolution layer are prime numbers 
in the range of 1 to 23 with 64 filters each. The second convolution layer has kernel sizes of 
one and two with 32 filters each. The CNN substructure is directly followed by three LSTM 
layers with 128 units. Dropout layers are placed after each LSTM layer using a rate of 0.5. At 
the end, a fully connected layer (or dense layer) is used to reduce the output of the network into 
the number of given categories. 
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SUPPLEMENTARY NOTE 2: TRAINING 
 
Although an optimized architecture is important and improves the efficiency of a neural 
network, the functionality of the network rises and falls with the dataset used for training the 
network. There are a number of important factors to consider when training a neural network. 
Typical pitfalls include using a dataset that is too small in size or contains an intrinsic bias, or 
overfitting the training data. A neural network is biased towards features it has seen before. 
Hence, the training dataset should include the various possibilities (e.g. number of FRET states, 
kinetic rates, signal-to-noise ratios). If the training dataset includes any bias, this will also be 
reflected in the output of the algorithm. One way that bias can be introduced into the training 
dataset is from unbalanced sampling of categories. For example, for the trace classifier models, 
it is important that the training dataset includes the same number of traces from each category. 
It is also important to know when to stop the training process. Neural networks can be 
overtrained, meaning that they memorize the training data but do not learn the general principles 
behind it. Below we discuss the details of the training procedure and how we optimized the 
training process. 
 

2.1. Training procedure 

Both the trace classifier and transition classifier models were trained using the Adam optimizer 
with the default settings6. We used a hybrid method of increasing the batch size and lowering 
the learning rate during training. The entire training set of ca 200,000 traces is feed into the 
neural network in batch sizes of 32 traces until the network has seen all traces (referred to as an 
epoch). After the network has seen all traces once, some input units are randomly set to 0 using 
dropout layers and the dataset is fed again in batches to the neural network in the next epoch. 
The dropout layers reduce overfitting and allow generalization of the learned information. 
When the validation loss is not significantly lowered within 4 epochs, the batch size is doubled. 
An initial learning rate of 0.001 was decreased analogously by factors of 10 after a batch size 
of 512 was reached. 
 

2.2. Training dataset preparation 

To generate training datasets, we found the approach of using simulations, originally described 
in Thomsen et al.7, to be the most promising. This is especially true for three-color models 
capable of detecting state transitions or photobleaching events of each dye individually. A 
manual collection of labeled traces on a scale large enough for adequate training would be prone 
to biases and/or errors due to incorrect trace identification. In addition, the datasets would not 
be optimized for microscope setups with different characteristics. The signal and noise 
characteristics of smFRET data is well enough understood that simulated data can accurately 
reproduce the characteristics of real data. Beside the architecture itself, the main differences 
between our trace classifiers and the DeepFRET model7 is the ability to classify one-color and 
three-color data and to predict the photobleached frames of each fluorophore separately. We 
adopted the categories ‘dynamic’, ‘static’, ‘noisy’, and ‘aggregate’ while implementing 
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additional categories for all possible photobleaching events. The ‘artifact’ category includes 
false localizations, overestimated background and random perturbations of the intensity traces.  
For the simulated data, idealized intensity traces for each primary category (i.e. non-
photobleaching category, 'dynamic', 'static', 'noisy', 'aggregate' and 'artifact') are generated and 
then photobleaching steps are added for the different dyes by randomly determining the survival 
time of the dye from a given exponential distribution. The addition of photobleaching as well 
as other processes in the simulation may lead to alterations in the label of the given trace. For 
example, a simulated 'dynamic' trace that does not undergo a transition before photobleaching 
or by the end of the trace would be recategorized as 'static'. To ensure that the network sees the 
same number of frames for the different categories including all the photobleached categories, 
the number of traces selected for the training set needs to be balanced. Hence, we begin by 
simulating ~250,000 traces of 500 frames for each primary category. After including 
photobleaching, the number of labeled frames for each category is determined. The category 
with the minimum number of frames determines a threshold at which additional traces, 
depending on their present classification, are added or excluded from the final training dataset. 
The typical number of traces included in the final training dataset is approximately 200,000. 
This balancing procedure ensures that no category is over- or underrepresented across all frames 
and minimizes biases of the trained deep neural networks. Supplementary Figure 2.1 shows the 
cumulative distribution of category labels in each training set used for trace classification. 
 

 
Supplementary Figure 2.1: Cumulative distribution of labeled categories in training datasets for one-color (a), 
two-color (b) and three-color data (c). The same dataset was used for training the continuous wave two-color 
network as for the two-color ALEX network with the exception that the ALEX channel was not included. 
 
For training of the state classifiers, only frames where all dyes are photoactive are included and 
hence photobleaching can be ignored for training these classifiers. The number of categories in 
the training sets then equals the number of states in the model. The visible states are first 
counted and sorted according to their chronological order before the state of each frame is 
assigned. This results in the first observed state always receiving the first label regardless of the 
FRET efficiency value and hence a state label only corresponds to a particular FRET value 
when a given dataset is analyzed globally. 
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2.3. Simulation of single molecule traces 

Single-molecule intensities traces are simulated by first initializing the number of traces to be 
simulated (250,000 in our case) and the probability of the trace being a single-molecule 
trajectory or an 'aggregate'. All parameters used for simulating single-molecule traces are given 
in Supplementary Table 2.1. An idealized FRET efficiency trajectory is then generated using 
an HMM routine8 in one, two or three colors where the FRET efficiency (or efficiencies) is 
randomly selected between 0.01 and 0.99. For single molecule trajectories, the number of states 
in the trajectory is selected with a probability of containing only a single state (45 % in our case 
for 'static' traces) and the remaining probability (55 % here) is equally distributed between two, 
three and four states ('dynamic'). In the case of 'dynamic' traces, the FRET efficiency or 
efficiencies of each state are randomly selected from a uniform distribution between 0.01 and 
0.99. The difference in FRET efficiency for the different states has to be above a given threshold 
(0.1 in our cases). If this is not the case, new FRET efficiencies are randomly selected until this 
criterion is fulfilled. The transition rates are generated by taking the inverse of the dwell time 
to exposure ratio drawn from a uniform distribution between 1 and 100. The generated 
transition matrices are then, in general, non-symmetric. Hence, we use the transition rate matrix 
to calculate the probability of which state is observed first. We do this by using the least-squares 
solution to the matrix equation 𝐴𝑥 = 𝑏 , where 𝐴  is the transition matrix and x is the 
probabilities for observing the different states. While the calculation of the state equilibrium is 
not mandatory for the classification accuracy, it ensures that the output matches the ground 
truth input of a defined transition matrix, which was used for benchmarking the transition 
classifier. Once the initial state has been selected, the parameters are fed into an HMM routine8 
and a state trajectory is generated. 'Aggregate' traces are always assumed to be static 
(uncorrelated dynamics are categorized as 'artifact'), but the number of dye-pairs is generated 
from a Poisson distribution with randomly selected FRET efficiencies between each pair. Next, 
the idealized FRET efficiency trace is converted into normalized fluorescence intensity traces 
for the donor and acceptor molecules based on the FRET efficiency (discussed in more detail 
below). Next, photobleaching of the fluorophores are included into the trajectories. The frame 
at which each fluorophore photobleaches is randomly drawn from an exponential distribution. 
Upon photobleaching, the affected channel intensities are either set to 0 for both channels for 
donor photobleaching, 1 for the donor intensity upon acceptor photobleaching or recalculated 
using the two-color FRET equations (for three-color simulations). Blinking is then added to a 
fraction of the traces where each dye has a probability of being in a short-lived dark state 
(Supplementary Table 2.1). At this point, 'artifact' traces are generated from 'static' or 'dynamic' 
traces with a given probability by subtracting a constant from the trace (to simulate 
overestimation of the background correction), adding random fluctuations to the total intensity 
(to simulate among other things new molecules or aggregates flowing through the observation 
volume or simulating molecules in the background mask), flipping the traces (to simulate 
molecules that turn on during the experiment) and/or adding non-correlated signal in the 
different channels. To account for non-uniform brightness of the individual molecules, all 
excitation channels are multiplied by a scaling factor that is randomly selected from uniform 
distributions. In particular, the red channel after red excitation, 𝐼!!, can reach scaling factors 
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up to three times higher than the other two channels. This allows the trace classifier to correctly 
analyze datasets in which high red laser powers were used to increase statistics for the 
calculation of correction factors and for making sure only a single red fluorophore is present. 
Without intensity scaling, the trace classifier strongly favors the aggregate category for traces 
with imperfect stoichiometry even when no second bleach step is present. With a given 
probability, additional small fluctuations in the total intensity are also added to the traces to 
simulate experimentally observed system instabilities (assuming sinusoidal oscillations of 
randomly determined frequency and amplitude). Next, we incorporate spectral crosstalk, direct 
excitation and differences in detection efficiency into the data by randomly selecting the 
respective parameters from a uniform distribution (see Supplementary Table 2.1). In the last 
step, we add two or three types of random noise to the traces. The first component is intensity-
independent background noise drawn from a Poisson distribution. The second component 
considers intensity-dependent noise contributions (i.e. shot-noise) by drawing values from 
Gaussian distributions. There are different descriptions of how to treat noise from EMCCD 
cameras. According to Basden et al., the variance in shot noise due to the EM gain is increased 
by a factor of two.9 This corresponds to a rescaling of the Gaussian distribution mentioned 
above. Hirsch et al describe the additional noise from EM-CCD cameras using a gamma 
distribution.10 Hence, with a given probability, we also add a third component to the noise 
modeled using a gamma distribution with random amplitude. After adding noise to the 
trajectories, we then recategorize traces with high noise as 'noisy'. This is done by recalculating 
the FRET efficiency trace or traces from the intensity data. When the standard deviation for 
static traces or individual states of a dynamic trace are above the given threshold 
(Supplementary Table 2.1, we used 0.25), the trace is categorized as 'noisy'. Finally, the 
classification of the individual traces is checked and, if necessary (for example a dynamic trace 
that photobleaches before a transition is observed), recategorized. The dataset is then balanced, 
as discussed above, each trace normalized to its maximum value and then used for training. 
For one-color traces, we simulated the intensity of the donor molecule although, for a single 
channel, it does not make a difference. The donor intensity (we refer to it as YY here) is given 
by: 

𝐼"" = 1 − 𝐸"! Eq. 2.1  

Since only one dye and one channel is observed, there is only one photobleaching category and 
no correction factors are included. The photoactive state of the acceptor molecule is still 
calculated and its influence on the donor intensity incorporated into the trace. For calculation 
of 'aggregates', fluorescent dye-pairs are added to the trace but only the donor signal is 
considered. Furthermore, the amount of noise is not quantified by the standard deviation of the 
FRET efficiency but by the signal-to-noise ratio of the channel intensity, which is defined as: 
 

SNR =
𝜇
𝜎	 

Eq. 2.2  
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where 𝜇 is the mean signal intensity of the observed state and 𝜎 is its standard deviation. When 
the signal-to-noise ratio falls below the given threshold, the trace is classified as 'noisy'. 
For two-color FRET simulations, we use the same approach as described in the following 
section for 3-color FRET but we only consider the equations necessary for 2-color FRET, i.e. 
all equations including the yellow/red FRET pair. 
For generating three-color FRET data, the distances and Forster radii between all three 
fluorophores need to be considered as they are interrelated. Assuming a minimum FRET 
efficiency of 0.01, the generated FRET states of the first two randomly drawn FRET pairs put 
constrains on the maximum possible distance for the third FRET pair. To guarantee a uniform 
distribution of possible FRET combinations, we randomly select two of the three FRET pairs 
and their corresponding FRET efficiencies. Using the two selected FRET efficiencies, a lower 
limited is calculated for the third FRET pair, which depends on the Förster radii of the first two 
FRET pairs. For example, when the yellow-red dye-pair is generated last, the dye-dye 
separation for 𝑟#"  and 𝑟#!  are calculated and then used to determine the minimum FRET 
efficiency (i.e. maximum separation for the third dye-pair) as given below: 

𝑟#" = 𝑅$,#" 1
1
𝐸#"

− 12
&
'
 Eq. 2.3  

𝑟#! = 𝑅$,#! 1
1
𝐸#!

− 12
&
'
 Eq. 2.4  

𝐸"!,()* =
1 − 0.01

1 + 1𝑟#" + 𝑟#!𝑅$,"!
2
' + 0.01 

Eq. 2.5  

where the Forster radii 𝑅$,#" , 𝑅$,#!  and 𝑅$,"!  are sampled over values that are typically 
available using commercially available dyes pairs. The FRET efficiency 𝐸"!,()* represents the 
lower boundary used to randomly scale the FRET trace of the yellow-red FRET pair in a 
correlated or anti-correlated manner. When a different dye-pair is generated last, the same 
equations are used where the indices are changed accordingly. For dynamic traces, this 
procedure is performed for all states. Once we have selected the FRET efficiencies for the 
different dye-pairs and states, we then convert them what would be observed for a two-color 
experiment. The YR dye-pair is already a two-color FRET efficiency and does not need to be 
corrected. When all three fluorophores are photoactive, the blue dye may be quenched by two 
acceptors. In this case, the distance-related FRET efficiencies 𝐸#"  and 𝐸#!  need to be 
converted into the apparent FRET efficiencies 𝐸#",+,, and 𝐸#!,+,, via: 

𝐸#",+,, =
𝐸#"(1 − 𝐸#!)
1 − 𝐸#"𝐸#!

 Eq. 2.6  

𝐸#!,+,, =
𝐸#!(1 − 𝐸#")
1 − 𝐸#"𝐸#!

 Eq. 2.7  

87



S11 
 

 
 

Since the input data for the neural networks are normalized, the channel intensities are 
initialized as follows: 

𝐼## = 1 − 𝐸#",-.. − 𝐸#!,-.. Eq. 2.8 

𝐼#" = 𝐸#",-..(1 − 𝐸"!) Eq. 2.9  

𝐼#! = 𝐸#!,-.. + 𝐸#",-..𝐸"! Eq. 2.10  

𝐼"" = 1 − 𝐸"! Eq. 2.11  

𝐼"! = 𝐸"! Eq. 2.12  

𝐼!! = 1 Eq. 2.13  

Upon photobleaching of one of the dyes in the three-color experiments, the system then reverts 
into the two-color case:  

𝐼#",/0 = −
𝐼##𝐸#"
𝐸#" − 1

 
Eq. 2.14 

𝐼#!,/0 = −
𝐼##𝐸#!
𝐸#! − 1

 
Eq. 2.15  

𝐼## is still determined by using  

𝐼##,/0 = 1 − 𝐸#" Eq. 2.16  

𝐼##,/0 = 1 − 𝐸#! Eq. 2.17  

where FRET to the blinking fluorophore is set equal to zero in two-color sections of the trace. 
Blinking events are treated the same way as photobleaching during the frames where the one 
dye is off and the channel intensities are either set to 0 or recalculated using Eq. 2.16/2.17.  
In three-color experiments, each channel has its own set of correction factors for differences in 
detection efficiency and quantum yield, 𝛾, direct excitation, 𝑑𝑒, and spectral crosstalk, 𝑐𝑡. The 
values are randomly drawn from a wide uniform range and implemented in the following order. 
First, the FRET channels are multiplied by the corresponding 𝛾-factor: 

𝐼#" = 𝛾#"𝐼#" Eq. 2.18 

𝐼#! = 𝛾#!𝐼#! Eq. 2.19  

𝐼"! = 𝛾"!𝐼"! Eq. 2.20  

The crosstalk of the blue fluorophore leaking into the yellow and red channel after blue 
excitation are given by: 
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𝐼#"01 =
𝑐𝑡#"

1 + (𝑐𝑡#" + 𝑐𝑡#!)
𝐼## Eq. 2.21  

𝐼#!01 =
𝑐𝑡#!

1 + (𝑐𝑡#" + 𝑐𝑡#!)
𝐼## Eq. 2.22  

where 𝑐𝑡#" and 𝑐𝑡#! denote the randomly drawn crosstalk factors (Supplementary Table 2.1). 
Spectral crosstalk of the yellow fluorophore into the red channel is calculated using: 

𝐼(#")!01 =
𝑐𝑡"!𝐼#"
(1 + 𝑐𝑡"!)

 Eq. 2.23  

𝐼"!01 =
𝑐𝑡"!𝐼""
(1 + 𝑐𝑡"!)

 Eq. 2.24  

The observed intensities including all correction factors are determined by: 

𝐼##,456 = 𝐼## Eq. 2.25 

𝐼#",456 = 𝛾#"𝐼#" + 𝑑𝑒#"𝐼"" − 𝐼(#")!01  Eq. 2.26  

𝐼#!,456 = 𝛾#!𝐼#! + 𝑑𝑒#!𝐼!! + 𝐸"!
𝑑𝑒"!𝐼""
(1 − 𝐸"!)

 Eq. 2.27  

𝐼"",456 = 𝐼"" − 𝐼"!01  Eq. 2.28  

𝐼"!,456 = 𝛾#"𝐼"! + 𝑑𝑒"!𝐼!! Eq. 2.29  

where 𝑑𝑒#", 𝑑𝑒#! and 𝑑𝑒"! are the randomly drawn direct excitation factors from a uniform 
distribution (Supplementary Table 2.1).  
 
While the non-smFRET categories ‘noisy’ and ‘aggregate’ mimic experimental data, the 
category ‘artifact’ is primarily designed to increase the robustness of the trace classifier.  It is 
important to note that the accuracy of a trained neural network to distinguish between an 
‘artifact’ and any other category depends on the number of traces which are labeled as ‘artifact’ 
but maintain a strong resemblance to the original trace. For the goal of increasing robustness, 
it is therefore not desirable to achieve 100% prediction accuracy as it would be caused by too 
easily identifiable perturbations in the training dataset. 
 

2.4. Simulation settings for training the state classifier network 

Sixteen pre-trained deep neural networks are provided for state classification. Four models 
account for the classification and segmentation of time trajectories obtained from 
measurements using single-channel data acquisition, two-color FRET with continuous wave 
excitation, two-color FRET with ALEX, and three-color FRET with ALEX. For each type of 
experiment (one, two and three-color), we provide three state-transition-classifiers trained on 
either two, three or four observed states. The state classifier networks only use traces as input 
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that are categorized as dynamic. Hence, the training datasets only contain valid FRET traces 
with at least one transition, a minimum state difference of 0.1 in FRET efficiency and no 
photobleaching. The transition rates are generated by drawing random dwell time to exposure 
ratios between 1 and 100 from a uniform distribution. Traces with a state-wise FRET 
distribution width above 0.25 on average are excluded from the training dataset. After a 
dynamic trace is simulated, it is labeled according to state occupancy. Here, the first observed 
state always receives the first label regardless of the FRET efficiency, followed by the next 
observed states until the maximum number of states is reached. For three-color FRET data, 
every transition regardless of the dye is treated as a new state. For a two-state model, transitions 
of one dye can be described whereas the multi-state model also considers transitions of two 
dyes. Thus, we have trained the network to recognize four different states. For a system with 
three independently moving dyes, a minimum of 9 states would be possible in one trace. Expert 
users can generate a corresponding training dataset by setting the algorithm parameter ‘static 
dyes’ to ‘None’.  
 
Supplementary Table 2.1. Simulation parameters for the training datasets.  

Number of 
Frames 

Maximum 
number of states 

Minimum state 
difference 

Dwell time / 
exposure ratio 

Artifact 
probability 

Stoichiometry 
tolerance 

500 4 0.1 1-100 0.25 0.1-0.9 
Aggregate 
probability 

Blue intensity 
scaling 

Yellow intensity 
scaling 

Red intensity  
scaling 

Mean bleaching 
frame 

Blinking probability 

0.1 0.7-1.3 0.7-1.3 0.5-2 400 0.2 
Gamma 
blue/yellow 

Gamma  
blue/red 

Gamma 
yellow/red 

Direct excitation 
blue/yellow 

Direct excitation 
blue/red 

Direct excitation 
yellow/red 

0.7-2 0.49-2.6 0.7-1.3 0-0.4 0-0.2 0-0.3 
Crosstalk 
blue/yellow 

Crosstalk 
blue/red 

Crosstalk 
yellow/red 

Noise scaling 
factor 

Gamma noise 
prob. 

Noisy threshold 

0-0.6 0-0.2 0-0.3 0-0.9 0.8 0.25 (SNR: 1.5) 
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SUPPLEMENTARY NOTE 3: TRAINING VALIDATION 
 
In the following sections (3.1–3.3), the final validation of every deep neural network is shown 
via confusion matrices. Approximately 20,000 new simulated traces were generated and fed 
into each trained model. Each row of the confusion matrices represents the instances in a ground 
truth category while each column represents the instances in a predicted category. The diagonal 
values report the percentage of true positives and true negatives whereas the off-diagonal values 
are the false negatives and false positives. 
 

3.1. Trace classifiers 

Confusion matrices for the trace-classifier networks are shown in Supplementary Figures 3.1 
and 3.2. The single-channel classifier has the lowest overall performance, in particular, due to 
a higher rate of falsely classifying random perturbations in ‘artifact’ frames (88 % precision) 
and misinterpreting ‘dynamic’ traces as ‘static’ (5 % false negative rate). The two-color and 
three-color models achieve similar accuracies for recovering smFRET frames with at least 93 % 
precision in correctly predicting ‘dynamic’ frames and 96 % precision for ‘static’ frames. In 
general, most of the false predictions concerning smFRET categories come from the high 
resemblance of ‘static’ frames, ‘dynamic’ frames with low contrast between states and ‘noisy’ 
frames close to the defined threshold. Here, the tolerance towards noise, defined as the mean 
standard deviation of the observed FRET efficiencies for all states, was set to 0.25. The highest 
sensitivity for detecting photobleached dyes (>98 %) is achieved by ALEX-enabled models for 
two- and three-color data. The continuous wave models depend on the contrast in intensity 
between the quenched and photobleached dyes, causing a significant decrease in sensitivity 
down to 91 % for detecting a photobleached acceptor. However, falsely predicted ‘acceptor 
bleached’ frames were mostly misclassified as either ‘aggregate’ or ‘artifact’ and would still be 
excluded from further analysis. 
In addition to the confusion matrix for all available categories, we also calculated a binary trace 
classifier confusion matrix where we separated the frames into those that were accepted for 
further analysis (i.e. from ‘static’ and ‘dynamic’ traces without photobleaching) and those that 
were rejected (‘photobleached’, ‘aggregate’, ‘artifact’ and ‘noisy’ traces and/or frames). All 
trace classifier models achieve a minimum combined precision of 97 % in predicting smFRET 
categories, i.e. ‘static’ or ‘dynamic’, and 96 % in predicting non-smFRET categories 
(Supplementary Figures 3.1 and 3.2). 
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Supplementary Figure 3.1: Confusion matrices for 1-color and 2-color trace classification. Prediction 
accuracies depicted as confusion matrices for the (a) single-channel, (b) two-color continuous wave and (c) two-
color ALEX models. The upper panels show the binary assignments into valid smFRET and non-smFRET 
categories. The detailed categorization is shown in the lower panels. 
 
 
 

 
Supplementary Figure 3.2: Confusion matrices for 3-color trace classification. The left panel shows the binary 
assignments into valid smFRET and non-smFRET categories. The detailed categorization is shown in the right 
panel. 
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3.2. Number-of-states classifiers 

After classifying the individual traces, the dynamics are analyzed. One option is to classify the 
number of states in a particular trace, i.e. to run the number of states classifier for the type of 
data measured. Supplementary Figure 3.3 shows validation of the deep neural networks trained 
on traces containing the given number of observed states. Only traces classified as ‘dynamic’ 
by the trace classifiers serve as input, hence the first category is for two observed states. The 
category of five observed states serves as a safeguard against traces that may be out of the scope 
of the pretrained state transition classifiers. All models achieve a high accuracy of at least 98 % 
in distinguishing two-state from multi state traces. The lowest accuracies are achieved in 
separating four-state from five-state traces, ranging from 86 % (single-channel) to 89 % (5-
channels). The overall performance increases with increased number of available channels. As 
only dynamic information is considered in the state classifiers, the presence of the ALEX 
channel, though very useful for the trace classification, is no longer relevant. 

 

 
Supplementary Figure 3.3: Confusion matrices for number of states classification. Confusion matrices for 
the (a) single-channel, (b) two-color FRET and (c) three-color number of states classifiers. 
 

3.3. State-transition classifiers 

After estimating the number of states in a dataset, the state trajectories of the individual dynamic 
traces are determined. This section summarizes the validation of the deep neural networks 
trained on the state occupancy and therefore also on the state transitions (Supplementary Figure 
3.4). The performance does not differ significantly for the two-state models with a minimum 
of 97 % precision for predicting the correct state and a minimum of 84 % precision for four-
state systems. The performance for multi-state models increases when more channels are 
available 
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Supplementary Figure 3.4: Confusion matrices for state classification. Confusion matrices for the single-
channel (first column), two-color FRET (second column) and three-color state classifiers (third column) and their 
corresponding two-state (first row), three-state (second row) and four-state models (third row). 
 

3.4. Limitations of the state classifiers and a comparison with HMM 

This section provides additional benchmarks and a comparison of the results from the state 
classifiers with HMM. First, we investigated how the performance of HMM and our state 
classifiers depends on noise (i.e. the width of the FRET distribution), difference between FRET 
states, the kinetic rates (dwell time to exposure ratio) and the length of observation time 
(number of frames) for dynamic transitions between two FRET states. For the three-color 
simulations, only the FRET distribution width of the yellow-red dye pair was used as the ground 
truth parameter to keep the continuity with two-color FRET traces and avoid averaging 
inconsistencies. Supplementary Figure 3.5 shows interpolated maps of the precision of state 
label recovery for all models and were generated using approximately 300,000 simulated traces 
for each condition. The precision is the fraction of true positives divided by the sum of true 
positives and false positives for the state label predictions. Each map shows the precision 
dependency on the amount of signal noise with two of three parameters being fixed, namely the 
FRET state contrast (0.2), the transition rate (0.05/frame) and the number of frames (500). In 
general, at a fixed transition probability and number of frames (top row), the precision decreases 
with broader FRET distributions and smaller differences between the FRET states. All models 
are able to achieve a precision of at least 90% for FRET differences above 0.2 and FRET 
distribution widths below 0.10 with the state classifiers outperforming HMM only at high noise 
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levels above 0.25. For a fixed contrast between FRET states (0.2) and total number of frames 
(500) (Supplementary Figure 3.5, middle row), the precision of HMM remains largely 
independent of the dwell time to exposure ratio at a constant noise level. All DNN state 
classifiers show a similar overall performance but achieves a higher precision than HMM at 
higher noise levels for larger dwell time to exposure ratios. For fixed FRET states and kinetic 
rates (Supplementary Figure 3.5, bottom row), trace length has little influence on the precision 
of all models below ~100 frames and the precision slightly increases for all models/classifiers 
above 100 frames. Again, the DNN outperform HMM at higher noise levels. In summary, while 
the precision does not differ significantly between the single-channel and two-channel state 
classifiers, the five-channel model used for three-color FRET shows an increased performance 
of up to ~10 % at high noise levels. Due to the five available channels, the signal-to-noise ratio 
is effectively increased which leads to higher precision and accuracy as soon as the signal noise 
becomes a limiting factor for the other models. In addition, DNN models still predict transitions 
in high noise trajectories, however with decreased confidence, whereas HMM no longer finds 
transitions at high noise. 

 
Supplementary Figure 3.5: Deep-LASI state prediction compared to HMM. Precision of the state-label 
recovery for HMM and for the state transition classifiers as a function of noise (i.e. width of the FRET distribution), 
contrast between FRET states and the kinetic rates (dwell time to exposure ratio). Each map shows the precision 
dependency on the noise and one additional parameter: the contrast between FRET states (top row), the kinetic 
rate (middle row) and the number of frames (bottom row). One dataset with ~300,000 traces was generated for 
each row with the corresponding two of the three parameters fixed (FRET efficiency for yellow/red: 0.4 and 0.6, 
transition probability: 0.05/frame, and number of frames: 500). The noise is defined as the mean standard deviation 
of the FRET signal from both states. The lower limit of the precision is set to 50 % since it represents the highest 
amount of uncertainty for two states. 
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3.5. Comparison of the state classifiers with local and global HMM 

We also compared the performance of Deep-LASI with a local and global HMM analysis 
(Supplementary Figure 3.6). In a global HMM analysis, the algorithm can learn from a large 
dataset rather than being limited to the number of frames in a single trace. For the comparison, 
we simulated 2000 traces of 500 frames (1 million data points) of three-color data having two 
states. To avoid difficulties for the global HMM analysis, traces were simulated with time-
independent, normally-distributed noise. From the three-color data, we analyzed the yellow 
channel alone (1-color), yellow and red together (2-color) as well as the full three-color data 
(3-color). As the ground truth is known, we were able to initialize a three-color HMM analysis 
such that it could eventually converge. Whereas local HMM struggles to analyze the traces 
yielding an almost random guestimate of the state, both global HMM and Deep-LASI perform 
similarly well in all cases. As more channels become available, the state classification becomes 
more accurate. 

 
Supplementary Figure 3.6: Confusion matrices of frame-wise state predictions for local HMM, global HMM and 
Deep-LASI, performed on a global data set containing 2000 traces with 500 frames each. Three-color traces were 
simulated and the yellow channel with yellow excitation (1-color), yellow and red channels with yellow excitation 
(2-color) and all five channels for the three-color data with blue and yellow excitation were analyzed (3-color). In 
all cases, local HMM is unable to learn states and transitions due to the limited amount of training data. Global 
HMM and Deep-LASI are both able to effectively remove background noise, showing similar accuracies. All 
models show increased performance with higher number of channels due to effectively decreasing the signal-to-
noise ratio. The data set was simulated based on 3-color FRET using the following parameters: Two states with 
only the yellow dye transitioning between E(YR) = 60 % and E(BY) = 40 % to E(YR) = 40 % and E(BY) = 60 %, 
a static blue to red FRET efficiency with E(BR) = 20 %, a symmetric transition probability of 0.05 per frame, and 
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the addition of normally distributed noise resulting in a mean FRET distribution width of 0.23 (averaged over the 
yellow-red FRET efficiency states). 
 

3.6. Training and validation loss 

The training and validation loss for all pre-trained deep-neural networks are shown in 
Supplementary Figure 3.7. Of the ~200,000 traces generated for training, ~160,000 were used 
in each epoch for training and then the capacity of the network to generalize what it learned 
was tested with the remaining ~40,000 traces. The error was calculated using the categorical 
cross-entropy, i.e. the loss function: 

𝐿𝑜𝑠𝑠 = −@𝑡) log(𝑓(𝑠)))
7

)

 
Eq. 3.1  

where 𝐶 is the total number of classes, 𝑡 is the target vector and 𝑓(𝑠) is the one-hot encoded 
vector of scores.11 The categorical cross-entropy is specifically designed for multi-class 
classification problems, where each input belongs to exactly one class out of multiple mutually 
exclusive classes. It calculates the dissimilarity between the predicted class probabilities and 
the true class labels, providing a measure of how well the model captures the correct class 
assignments. Therefore, the model is able to produce probabilistic outputs in the form of class 
probabilities. By optimizing the model to minimize the cross-entropy loss, it learns to assign 
higher probabilities to the correct class and lower probabilities to the incorrect classes. During 
training of the model, the loss should decrease but maintain similar values for the training 
dataset as for the validation set. If a lower loss is observed for the training dataset, then for the 
validation dataset, the network is overfitting (i.e. it is memorizing the traces rather than learning 
the features of the categories). All models show no or a minimal amount of overfitting. While 
the full number of epochs are displayed in each plot, the model with the lowest validation loss 
and lowest amount of overfitting was saved and implemented (indicated with an arrow). 
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Supplementary Figure 3.7: Training and validation loss of all Deep-LASI models. Each row refers to the type 
of classifier and each column refers to the corresponding data type. For two-color data, there are two trace classifier 
models, one for ALEX and a second for non-ALEX measurements. Black arrows mark the saved model used when 
following epochs did not decrease the validation loss and indicated overfitting. 
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3.7. Analysis of kinetic data from the kinsoft challenge 

We tested the performance of Deep-LASI on datasets provided by a recently published multi-
laboratory software comparison study for extracting kinetics from smFRET data. As we 
contributed to this study using conventional HMM, we chose to analyze the datasets that did 
not require additional human input for interpretation of the data. The results are shown in 
Supplementary Figure 3.8. Deep-LASI returned values corresponding to the ground truth for 
the simulated dataset and close to the average values obtained for the experimental dataset. 

 
Supplementary Figure 3.8: Kinetic analysis of datasets from the kinetic software challenge. (a) An 
illustration of the kinetic two-state model connected by forward and backward rate constants: k12 and k21. (b) A 
framewise FRET efficiency histogram (gray) of the simulated data extracted by the trace classifier. A Gaussian fit 
to the two populations are shown in magenta. (c) A mono-exponential dwell time distributions of the data in (b) 
obtained from the state-transition classifier. (d) The ground truth FRET histogram (gray) with state assignments 
labeled at the top and the inferred average FRET efficiencies in red and blue. Numbers on the right axis refer to 
the analysis tools specified in (e). Vertical lines indicate the mean over all tools. The error bars represent the 
standard deviations returned from the different analysis routines. (e) Rate constants and uncertainties inferred from 
the dataset in (d) by different labs using the respective analysis tools. The ground truth (GT) is indicated by the 
horizontal red and blue lines, the intrinsic uncertainty of the dataset is represented by dark gray (1σ) and light gray 
(2σ) intervals. (f) A framewise smFRET efficiency histogram (gray) of the experimental data extracted by the 
trace classifier. (g) The dwell-time distributions and corresponding mono-exponential fits of the data in (f) 
obtained from the state-transition classifier. A Gaussian fit to the two populations are shown in magenta. (h) A 
smFRET histogram of preselected traces from panel (h) where photobleaching and photoblinking contributions 
have been removed. State 1 is labeled in red and state 2 in blue. The vertical lines indicate the average value 
returned from analysis routines 1-14. The legend for the analysis routines is given in (e). The error bars represent 
the standard deviations returned from the different analysis routines. (i) Inferred rate constants from the 
experimental dataset in (h). The respective analysis tools are specified in (e). Horizontal red and blue lines indicate 
the mean of the inferred kinetic rate constants from analysis tools 1-14. The legend for the analysis routines is 
given in (e) 
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SUPPLEMENTARY NOTE 4: DEEP-LASI VERSUS MANUAL ANALYSES  
 

4.1 Comparison of Deep-LASI and manual analysis of 2-color DNA origami traces | 

We investigated the disagreements between Deep-LASI and manual classification and 
summarize the primary causes, illustrated through specific examples in Supplementary Figure 
4.1. First, traces that exhibit non-ideal behavior after photobleaching are often thrown out by 
Deep-LASI as the entire traces is than categorized as an artifact whereas users may ignore 
characteristics of the traces in the non-accepted regions. Secondly, in cases where the leading 
frames are photobleached and the molecules reactivate, Deep-LASI tends to classify the entire 
trace as an artifact instead of extracting potentially useful information from the middle section 
of the trace. This is due to the fact that the training dataset does not yet include valid single 
molecule FRET traces starting with inactive dyes. Thirdly, Deep-LASI categorizes high noise 
or intensity fluctuations in the acceptor channel as noisy or classifies them as dynamic, but with 
insufficient confidence (> 70%) to include in further analyses. In such cases, the user has the 
flexibility to adjust the confidence threshold or consider the unfiltered dynamic category based 
on the maximum confidence output. Lastly, Deep-LASI may select traces that were discarded 
by manual evaluation, particularly short traces with fast dynamics that may be overlooked or 
considered noisy by the user. 
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Supplementary Figure 4.1: Representative 2-color DNA origami traces with disagreements between manual 
and Deep-LASI selection. (a) Non-ideal donor signals. In the case of non-ideal donor intensities after 
photobleaching of the acceptor (left panel) or leading photobleached frames (right panel), Deep-LASI tends to 
classify the whole trace as an artifact while the manual selection still includes the middle region between the 
photobleached frames. (b) Non-ideal acceptor signals. Even though the FRET efficiency trace looks ideal, due to 
the high noise or intensity fluctuations in the acceptor channel, Deep-LASI classifies the trace as noisy (left panel) 
or is not confident enough (> 70 %) to classify the trace as dynamic (right panel). In the latter case, the user could 
influence the selection of this trace by lowering the confidence threshold. (c) Traces selected by Deep-LASI that 
were discarded by manual evaluation. Short traces (pay attention to the timescale on the x-axes) with fast dynamics 
can be either overlooked or deemed noisy by the user. 
 
We further compare representative FRET traces analyzed using global HMM and Deep-LASI 
(Supplementary Figure 4.2). Global HMM tends to struggle in accurately capturing fast 
transitions, which can be attributed to the difficulties of HMM in distinguishing between fast 
transitions and noise or due to the inherent (non-Markovian) heterogeneities commonly 
encountered in single molecule experiments. Local HMM analyses can more easily deal with 
these heterogeneities. In comparison, Deep-LASI exhibits enhanced performance in detecting 
and characterizing these fast kinetics, suggesting its potential advantages over global analysis 
approaches.  

 
Supplementary Figure 4.2: Comparison of global HMM and Deep-LASI analyses. Representative 2-color 
DNA origami smFRET traces highlighting the differences between a global HMM and Deep-LASI analyses. In 
contrast to Deep-LASI, global HMM frequently misses fast transitions due to heterogeneities in the single 
molecule data. 
 

4.2. Influence of different training datasets and comparison to user classification 

The quality of a neural network rises and falls with the data by which it has been trained. To 
see the influence of different training datasets, we simulated three different datasets using the 
same parameters and used them to train Deep-LASI. The three different networks were then 
used to classify the two-color, two-state data shown in Figure 3. The results are shown in 
Supplementary Figure 4.3a. From the confusion matrix shown in Supplementary Figure 3.1, 
one would expect a consistency on the order of 95 %, provided the experimental data are similar 
to the training datasets. Each pair of networks agree within ca 93 %. Interestingly, the 
consistency between the neural networks is higher than that from two individual users 
(Supplementary Figure 4.3b). Here, user 1 tried to maximize the statistics and selected 
subsections of traces whereas user 2 was very conservative, only classifying the best traces as 
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dynamic. This suggests that neural networks may be more consistent in the analysis than 
different users.  
 

  
Supplementary Figure 4.3: Venn diagrams for differently trained neural networks and users. a) A Venn 
diagram showing the consistency between traces classified as dynamic (with a 70% confidence threshold) for three 
networks trained using different datasets (DNN1, DNN1 and DNN3) and applied to the experimental data shown 
in Figure 3. b) A Venn diagram comparing the number of traces classified as dynamic by two different users as 
well as DNN1 (with a 70% confidence threshold) for the same dataset used in panel a.  
 

4.3 Deep-LASI versus manual analyses for 3-color DNA origami samples 

We emphasize the importance of also using experimental data for testing deep learning methods 
trained on synthetic data since the simulations used for validation are usually generated by the 
same algorithm as the training dataset. Deep neural networks can easily learn biases of any kind 
in the training data, which may have no relationship to the respective category under new 
conditions. Hence, the prediction of categories with respect to ground truth simulations can 
produce high accuracies, which may not be directly translatable to real-world examples. 
Therefore, we compared the performance of our network models on real data with that of 
experts who manually analyzed the same dataset.  
We benchmarked the three-color performance of Deep-LASI by comparing the automated 
analysis with traces manually selected by an expert user (Supplementary Note 5). We used the 
three-color L-shaped DNA origami structure with two binding locations spaced at 6 and 12 
o'clock with complementary binding regions of 7.5 nt (Figure 4). Deep-LASI yielded 581 
usable smFRET traces versus 694 for manual selection out of a total of 2545 extracted traces 
(Supplementary Figure 4.4a). The two uncorrected, framewise smFRET histograms are almost 
identical. The automatically extracted FRET correction factors, which are based on the 
predictions of the three-color trace classifier, were compared to those determined manually. 
The expert user selected the relevant regions of the traces for determining various FRET 
correction factors by hand. Very similar distributions and median values were obtained for the 
YR correction factors (Supplementary Figure 4.4b). For BR, both direction excitation and 
spectral crosstalk terms are small and the differences are not significant here. Due to the high 
stability of the yellow fluorophore, it is challenging to collect enough statistics to directly derive 
the detection correction factor. Hence, it is calculated from the product of the BY and YR γ 
factors. For BY, the distributions for spectral crosstalk from Deep-LASI and manual selection 
are consistent. However, for both direct excitation and the detection correction factor, there are 
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differences of ~15 %. Manual selection with the blue fluorophore is difficult because of the low 
fluorescence intensity of the blue dye. In the manually selected regions for direct excitation, a 
second population is visible due to difficulties of distinguishing between a Y only fluorophore 
and a dim B fluorophore undergoing high FRET. Similarly, there are differences in the 
detection correction factor distribution. As Deep-LASI has more flexibility in choosing relevant 
regions of the traces for determining the correction factors, it is most likely that Deep-LASI is 
more accurate in these cases. FRET correction-factor determination is a potential source of 
human bias in the analysis of smFRET data and we demonstrate here an advantage of using a 
well-trained neural network for automated analysis.  

 
Supplementary Figure 4.4: Uncorrected smFRET histograms and correction factors extracted by Deep-
LASI for the 3-color 2-state DNA origami. (a) Uncorrected framewise smFRET histograms for BY, BR and YR 
calculated from traces selected manually (n=694, blue line) versus the histograms determined by Deep-LASI 
(n=581, gray histograms). There is excellent correspondence between the histograms. (b) Each panel displays the 
normalized distribution of available correction factors from all traces categorized as ‘dynamic’ by Deep-LASI 
(gray filled histograms) or manually labeled as dynamic (blue histogram line). Due to the high stability of the 
yellow dye compared to the blue and red dyes, the number of usable traces to calculate blue/red detection 
correction factor was too low to be determinable. Therefore, we used the theoretical value of 1.23 (for Deep-LASI 
compared to 1.15 for manual selection) for the blue/red gamma factor determined from the product of the gamma 
factors for blue/yellow and yellow/red.  
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4.4 Comparison of 3-color DNA origami traces selected manually and/or via DNN 
classification.  

To gain insights into the selection criteria of traces performed manually and via Deep-LASI, 
we examined the traces in detail that were selected differently. Examples are shown in 
Supplementary Figure 4.5. In general, similar differences arise as observed in the two-color 
FRET classifications (Supplementary Figure 4.1). In case of three-color FRET, blinking and 
dark states of the blue dye are inherently difficult to spot during manual inspection of the trace, 
whereas Deep-LASI predicts dark frames with high accuracy. Single-molecule traces often 
exhibit ambiguity. Deep-LASI tends to disregard traces displaying non-ideal intensities due to 
the way it was trained. Conversely, when manually selecting traces, users may incline towards 
including more non-ideal traces to improve the statistics and their selection can be subjectively 
influenced by a myriad of parameters.  
 

 
Supplementary Figure 4.5: Representative 3-color DNA origami traces with disagreements between manual 
and Deep-LASI selection. (a) Short blinking events. In this trace, Deep-LASI and manual selection agree in 
general but Deep-LASI excludes frames with an inactive blue dye. Blinking events of the strongly quenched blue 
dye in 3-color experiments can be easily missed during manual selection. (b) Regions of traces with high-noise or 
fast dynamics. The trace shown here was excluded manually due to seemingly high noise at the beginning of the 
trace. Deep-LASI predictions show the competing categories of ‘dynamic’ and ‘noisy’. The summed confidence 
for the ‘dynamic’ classification exceeds the user defined threshold of 70 % and the state classifier predicts state 
transitions with high confidence. (c) Initial dark frames and non-ideal intensities. In the training datasets, we 
currently do not start with photobleached molecules the begin to fluoresce during the traces. Here is an example 
of Deep-LASI’s tendency to classify valid sections as noisy due to leading bleached frames or erratic intensities 
during bleached frames. (d) Short traces. Short section in the beginning of the trace is manually selected whereas 
Deep-LASI classifies the whole trace as an aggregate due to intensity spikes in the acceptor channel after the valid 
section.  
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SUPPLEMENTARY NOTE 5: MANUAL ANALYSIS OF SINGLE-MOLECULE TIRF 

DATA 
 

5.1. Work-flow 

We benchmarked the performance of Deep-LASI by comparing it to manually analyzed single-
molecule data from an expert user. Starting from individual movies, the procedure for extracting 
the intensity information over time is highlighted in Supplementary Figure 5.1.  
The procedure begins with:  

(1) a pixel-wise mapping of the position between two or three cameras for two- and three-
color experiments, 

(2) camera-wise localization and excitation-cycle dependent assignment of intensities, and  
(3) extraction of intensities and background correction for each detection channel. 

 

 
Supplementary Figure 5.1: Work-flow of data extraction, sorting, analysis and evaluation. a) One-, two-, or 
three-color data is collected with various excitation schemes and the time-dependent intensity traces extracted and 
corrected for background. b) The traces are then visually inspected and sorted either for further analysis or marked 
as junk. Regions of the trace can be selected for smFRET evaluation or for correction factor determination. c) 
After manual selection, trace-wise correction factors are extracted. d) For the dynamic traces selected for further 
analysis, the dwell-time distributions are determined using a Hidden Markov Model approach. e) From the HMM 
analysis, transition density plots are extracted from the smFRET data.   
 
Next, the recorded traces were analyzed (Supplementary Figure 5.1b-e) either manually 
(Section 5.4-5.9) or assisted by neural networks (cf. Supplementary Note 1). Manual evaluation 
of single-molecule or multi-color FRET traces involves: 

(4) the pre-sorting of traces suitable for 1c, 2c-, and 3c- smFRET analyses  
(5) determining consecutive regions of the trace for evaluation and for determination of local 

and global correction factors 
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(6) Hidden Markov Modeling of smFRET traces to identify underlying states and dwell-times 
(7) kinetic evaluation of transition rates and states using transition density plots (TDP), state-

wise histograms and dwell-time analyses.  

 
5.2. Camera mapping for FRET traces 

In order to extract the fluorescent intensity traces of individual, fluorescently labeled DNA 
origami structures detected in various channels, an accurate localization and mapping of the 
detected emission channels across the three cameras or detection areas needs to be achieved. 
To compensate for potential chromatic aberrations and non-ideal alignment, an image 
transformation was used to map the corresponding pixels between different cameras/regions 
onto each other. The associated transformation matrix describing the potential shifts, tilts, etc. 
was obtained by imaging a calibration pattern on all three detection channels (Supplementary 
Figure 5.1a). As a calibration pattern, we typically use a zero-mode waveguide array. 
 

5.3. Trace extraction and background subtraction 

After mapping the different detection channels, the location of the individual single emitters 
needs to be determined and the intensity extracted. When msALEX excitation is used, the 
alternating laser excitation scheme needs to be taken into account and the intensity traces 
separated based on both the detection and excitation channels. The most blue-shifted detection 
channel serves as the reference channel (Channel 1). This refers to the blue excitation, blue 
channel (BB) for BY-, BR- and BYR-labeled samples or the yellow detection channel with 
yellow excitation (YY) for YR-labeled samples (Supplementary Figure 5.1a).  
 
Individual molecules in the reference channel are identified by searching for the brightest spot 
in the summed projection of the movie. After calculating the central position of the molecule 
using a wavelet approach12, the corresponding position in all other channels is calculated using 
the transformation matrix. Molecules in the projection images exhibiting detectable intensity in 
all desired channels are then selected. The intensities and background are extracted using 
different masks. For the signal, the pixels within an approximate circle of roughly 3 pixels 
radius around the central coordinates of the molecule are summed together. With a pixel size 
of 124 nm, the fluorescence signal of a single molecule is accumulated within an area of 614 × 
614 nm2. For the background, a mask representing roughly a circle with radius of 7.5 pixels 
(850 nm) and width of 2 pixel centered on the molecule is used. The background is calculated 
as the median value of all pixels inside the ring-shaped mask and averaged over a five-frame 
sliding window depending on the excitation cycle and the detection channel. Afterwards, the 
determined background is scaled to the signal mask and subtracted from the framewise intensity 
per each channel for each molecule. When analyzing single molecule traces from hand, 
trajectories which contain molecules within the background mask are discarded. In DeepLASI, 
these traces are typically discarded in the 'artifact' category during the first characterization 
step.  
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5.4. Manual trace selection and analysis 

The background-corrected fluorescence intensity traces of the individual molecules are then 
inspected and sorted (Supplementary Figure 5.1b). The properties of the extracted traces are 
generally very heterogeneous. This stems from different sources including photochemistry, dye 
blinking, aggregates and impurities within the sample of different brightness. In all cases, 
molecules were rejected automatically if they exhibited (1) a low SNR or (2) a brightness that 
is significantly higher than expected for a single fluorophore (aggregates or impurities). We 
further classified traces according to  

(1) their static and dynamic behavior  
(2) the existence of photobleaching steps in the different intensity channels 
(3) the order of bleaching steps between the different intensity channels 
(4) the degree of labeling efficiency  

With the presorted trajectories at hand, we next prepared the data either for (1) correction factor 
determination to obtain accurate FRET efficiencies (Supplementary Note 5.5) or (2) directly to 
kinetic and state evaluation based on background-corrected trajectories (1-color data) or 
apparent FRET efficiencies (2/3-color data). In the first case, we first derived the correction 
factors per trace and marked regions for trace evaluation by HMM afterwards (Supplementary 
Note 5.6). In the second case, we manually marked the regions in traces to be analyzed and 
added them to the ‘HMM’ category.  
 

5.5. Accurate FRET determination 

In real smFRET experiments, the intensity of the acceptor signal needs to be additionally 
corrected for direct excitation of the acceptor fluorophore and spectral crosstalk from donor 
into the acceptor channel. In addition, the one needs to correct for the difference in the detection 
sensitivity between the donor and acceptor fluorophores. The correction factors are denoted as: 
 deXY for direct excitation of the acceptor fluorophore Y during excitation with X, 
 ctXY for spectral crosstalk from the fluorophore X in the detector channel Y, 
 and 𝛾8" compensates for differences in detection sensitivities between channels. 
We denote the background-corrected intensities as IXY and the corrected Intensity as IXY,corr , 
where x stands for the excitation source and y for the emission channel, i.e. IBR,corr denotes the 
background corrected emission of the acceptor within the red channel (R) after donor excitation 
in the blue channel (B). 

 

Trace-wise and global correction factors 
13Depending on when individual fluorophores photobleach, some of the correction factors can 
be extracted from the trace itself. However, in the vast majority of the traces, one cannot extract 
all correction factors individually. When a trace-wise correction factor is unavailable or 
unreasonable, the median value of the corresponding distribution of trace-wise correction 
factors for the particular correction factor is used to calculate the accurate FRET values, i.e. a 
global correction factor. Using traces that were presorted and categorized as ‘Blue dye 
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bleached’ (or ‘yellow / red dye bleached’, respectively), we first determined the trace-wise 
correction factors for direction excitation 𝑑𝑒8"	and spectral crosstalk 𝑐𝑡8" .	Having corrected 
the background-corrected intensities against both contributions, we next determined the trace-
wise correction factor 𝛾8".  
To derive the contribution of spectral crosstalk from the donor channel X in the acceptor channel 
Y, we determine the trace-wise correction factor 𝑐𝑡8"  using the intensity information after 
photobleaching of the acceptor: 

𝑐𝑡8" =
〈𝐼8"〉
〈𝐼88〉

H
*4	+00:,14;

 
Eq. 5.1 

Here, 〈𝐼88〉 refers the mean donor intensity and 〈𝐼8"〉 to the mean acceptor intensity after donor 
excitation in the region of the trace where there is no acceptor fluorescence.  
Similarly, we determined the correction factors for direct excitation of the acceptor during 
donor excitation using traces in which the donor fluorophore bleached first:  

𝑑𝑒8" =
〈𝐼8"〉
〈𝐼""〉

H
*4	<4*4;

 
Eq. 5.2 

where 〈𝐼8"〉 and 〈𝐼""〉 describes the mean acceptor emission after donor excitation or acceptor 
excitation, respectively.  
Lastly, we determined the detection correction factors 𝛾8"  compensating for differences in 
detection sensitivities between different channels. For this, we used traces where the acceptor 
photobleaches before the donor. The acceptor intensity is first corrected for direct excitation 
𝑑𝑒8" and spectral crosstalk 𝑐𝑡8". We then derive the detection correction factor 𝛾8"  per trace 
from the ratio of changes in donor and acceptor emission before and after photobleaching of 
the acceptor. The correction factors are denoted as: 

𝛾8" =
〈Δ𝐼8",04;〉
〈Δ𝐼88,04;〉

H
=	5>:+0?:6

 
Eq. 5.3 

where 〈Δ𝐼88,04;〉	and 〈Δ𝐼8",04;〉 refer to the intensity difference for the mean donor and acceptor 
emission after donor excitation before and after acceptor photobleaching. 
 
Data Correction 
Once all correction factors are determined, every trace is corrected using the local, trace-wise 
correction factors, when available and suitable. Otherwise, the global correction factor is used. 
In three-color experiments, the corrected FRET efficiency for 𝐸"! is calculated first since it is 
required for subsequent corrections. Upon yellow excitation, the same approach is used as for 
two-color FRET experiments: 

𝐼"",04;; = 𝐼""	 Eq. 5.4 

𝐼"!,04;; = 𝐼"! − 𝑐𝑡"!𝐼"" − 𝑑𝑒"!𝐼!! Eq. 5.5 
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The corrected FRET efficiency is then given by the ratio of both corrected intensities 

𝐸"! =
𝐼"!,04;;

𝛾"!𝐼"",04;; + 𝐼"!,04;;
 Eq. 5.6 

For the BY FRET pair, the fully corrected intensities after blue excitation read as: 

𝐼##,04;; = 𝐼## Eq. 5.7 

𝐼#",04;; = 𝐼#" − 𝑐𝑡#"𝐼## − 𝑑𝑒#"𝐼"" Eq. 5.8 

The accurate BY FRET efficiency follows equation 5.5 with an additional term which takes 
into account the reduction in brightness of the yellow dye due to the FRET process between the 
YR pair: 

𝐸#" =
𝐼#",04;;

𝛾#"𝐼##,04;;(1 − 𝐸"!) + 𝐼#",04;;
 Eq. 5.9 

The intensity of the red fluorophore after blue excitation needs to be corrected against direct 
excitation, contributions of both the blue and yellow dye due to crosstalk into the red channel 
and due to cascading of FRET from the blue dye over the yellow dye into the red channel:  

𝐼#!,04;; = 𝐼#! − 𝑑𝑒#!𝐼!! − 𝑐𝑡#!𝐼## − 𝑐𝑡"!J𝐼#" − 𝑐𝑡#"𝐼##K
− 𝑑𝑒#"𝐸"!(1 − 𝐸"!)@&𝐼"" 

Eq. 5.10 

The accurate FRET efficiency of the BR FRET pair is then given by: 

𝐸#! =
𝐼#!,04;; − 𝐸"!J𝛾"!𝐼#",04;; + 𝐼#!,04;;K

𝛾#!𝐼##,04;; + 𝐼#!,04;; − 𝐸"!J𝛾#!𝐼##,04;; + 𝛾"!𝐼#",04;; + 𝐼#!,04;;K
 Eq. 5.11 

 

5.6. Hidden-Markov modeling 

The kinetics and underlying states within the selected trajectories, i.e. either smFRET or 
intensity traces, were evaluated using Hidden Markov Modeling. The input data of both assays 
vary between 0 and 1. We anticipate that every molecule undergoes transitions between a fixed 
numbers of conformations described by a discrete number of states qi (i = 1, … Q). The behavior 
of the system can be captured by the joint distribution of the observed data 𝐱 = (𝑥₁, 𝑥₂, . . . , 𝑥A) 
and the corresponding hidden state sequence 𝐪 = (𝑞₁, 𝑞₂, . . . , 𝑞A). The joint distribution can be 
factorized as follows: 

𝑝(𝐱, 𝐪) = 	𝑝(𝑥₁|𝑞₁) ⋅ 𝑝(𝑞₁) ⋅U 𝑝(𝑥1|𝑞1) ⋅ 𝑝(𝑞1|𝑞1@&)
A

1B/
 Eq. 5.12 

Here, 𝑝(𝑥1|𝑞1) represents the conditional probability of observing 𝑥1 given the system is in the 
hidden state 𝑞1, 𝑝(𝑞₁)	represents the probability of being in the initial state, 𝑞&, and 𝑝(𝑞1|𝑞1@&) 
represents the conditional probability of transitioning from state 𝑞1@& to state 𝑞1. 
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For a system with Q states in total, the transition probability matrix 𝐊W  comprises 𝑄 × (𝑄 − 1) 
independent transition probabilities 𝑘)C describing the likelihood for going from state 𝑖 to state 
𝑗. Here, it is a prerequisite for the Markovian process, that the row-wise sum of transition 
probabilities is normalized to 1. For a Hidden-Markovian process, the state sequence is not 
directly observable but buried in random noise of the system. It can only be inferred from 
measured observables 𝐱, i.e. the single-molecule trajectory, with a length of T data points. Here, 
the emission probabilities 𝑓D!(𝑥1|𝜃D) serve as parameter to represent the relative likelihood for 
observing a specific FRET value (or intensity value) for a given set of model parameters 𝜃D and 
the molecule being in state 𝑞). For intensity measurements and single molecule FRET traces, it 
is appropriate to model the emission probability of a state qi as a Gaussian distribution:14,15  

𝑓D!J𝑥1|𝜃D = ^µD! , 𝜎D!`K =
1

√2𝜋𝜎D!
∙ 𝑒

@
(𝒙𝒕@F#!)

$

/G#!
$

 
Eq. 5.13 

The parameters estimators are: the mean value µD! and covariance 𝜎D!  

〈µD!〉 =
∑ 𝑤D!,1𝑥1
A
1B$

∑ 𝑤D!,1
A
1B$

 
Eq. 5.14 

	𝜎D!
/ =

∑ 𝑤D!,1𝑥1
/A

1B$

∑ 𝑤D!,1
A
1B$

− 〈µD!〉
/ 

Eq. 5.15 

For this, we introduce the relative occurrence probability 𝑤D!,1, i.e. the conditional probability 
𝑤D!,1 of being in state qi given the data 𝑥1 at a time t, which is linked to the fraction of time 
spent in state q, 𝑊D  

𝑊D =
1
𝑇	@ 𝑤D!,1

A

1B&
 

Eq. 5.16 

and emission probability 𝑓D!(𝒙|𝜃D!). 

𝑤D!,1 =
𝑊D𝑓D!(𝑥1|µD! , 𝜎D!)

∑ 𝑊D!𝑓D!(𝑥1|µD! , 𝜎D!)
H
)B&

 
Eq. 5.17 

As equations 5.16 and 5.17 are recursive, we have to optimize them iteratively. To do this, we 
indirectly maximize the likelihood function by optimizing an expectation-maximization (EM) 
criterion function. For the EM criterion, we use the log likelihood function as it allows for an 
efficient estimation of the model parameters, even in cases where the likelihood function is 
intractable or difficult to optimize directly. The log likelihood function for determining a 
sequence of states 𝐪 given the observed FRET trajectory 𝐱, is computed as the product of the 
emission probabilities weighted by the relative occurrence probabilities summed over all 
trajectories and is given by15: 

log	𝐿	 = 	@ @ 𝑤D!,1 	 log j𝑓D!J𝑥1kµD! , 𝜎D!Kl
A

1B&

H

)B&
 

Eq. 5.18 
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To optimize the log likelihood function, we employ the Baum-Welch algorithm, also known as 
the forward-backward algorithm. During each iteration of the Baum-Welch algorithm, an 
expectation step (E-step) and a maximization step (M-step) are performed. In the E-step, the 
algorithm calculates the expected values of the hidden states given the observed data and the 
current parameter estimates. These expected values are then used in the M-step to update the 
model parameters, aiming to improve the fit between the model and the observed data. The 
training of the HMM continues until the relative improvement in the log likelihood between 
consecutive iterations falls below a predefined threshold. In all of our HMM training procedures, 
we set the convergence threshold to 10-9. To derive the transition density matrix, the HMM 
needs to be trained on the dataset to be analyzed. This working step can be carried out in two 
different approaches: the analysis can be carried out either (1) trace-wise or (2) globally. In the 
first case, the transition probability and emission probability are optimized for each individual 
trace while, in the second case, one uses a shared single transition probability matrix and 
parameters for the emission probability for all trajectories together. When analyzing 1-color 
and apparent FRET traces, we use a local HMM as the exact values of the states can be shifted 
due to the above-mentioned background contributions.  
 

5.7. Parameters for Hidden Markov Modeling 

FRET efficiencies of dynamic DNA Origami structures were conventionally analyzed by HMM 
using the HMM Pomegranate toolbox written by Jacob Schreiber (2016). Molecules were 
manually classified as dynamic or static, and time windows were selected for the data analysis. 
For molecules showing dynamic transitions, we choose an HMM model with two or three 
states, depending on the designed Origami structures. Start parameters were chosen assuming 
a self-adapting width µ, and a standard deviation σ of 0.05 with random uniform distribution. 
Convergence between the experimental data and the fit was assumed, when the change in 
likelihood during consecutive iterations was less than 10-9. For visualization via TDP, each 
transition as superimposed as a 2D Gaussian function with a fixed width. 
 

5.8. Evaluation of involved FRET states and interconversion rates 

The last step involves the visualization of determined rates, i.e. dwell times, and states 
determined from the FRET and / or normalized intensity traces. We employed so called 
transition density plots (TDPs), which depict each transition that was identified by the HMM 
algorithm or the Deep-LASI state classifier in the recorded time traces as a single event in a 2D 
diagram. The diagram, hence, depicts and links the FRET value before and after an identified 
transition visually. In the case of 1-color data, we normalized the traces between the minimal 
and maximal value of observed counts of all measured single traces. The TDPs were generated 
as described by McKinney et al., i.e. all transitions are depicted as summed up two-dimensional 
Gaussian functions with an amplitude equal to the total number of transitions and a fixed 
variance of 0.0005.14  
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SUPPLEMENTARY NOTE 6: DETAILS OF DEEP-LASI ANALYSES 
 

6.1 Results for the three-color, two-state DNA origami structure with different binding 
site lengths  

The three-color DNA origami structures were measured with four different lengths of 
complementary DNA for the two binding sites. The two binding sites contained the identical 
DNA sequence and lengths. The dwell time distributions determined from the state classifiers 
of Deep-LASI for the different three-color DNA origami structures are shown in 
Supplementary Figure 6.1. The same analysis workflow was followed for each sample: a fully 
automated categorization and prediction of state occupancy in traces labeled as ‘dynamic’ were 
performed with Deep-LASI followed by a manual selection of the different states and fit to a 
mono-exponential function: 

𝑓(𝑥) 	= 1 − 𝑒@5∙J Eq. 6.1 

These experiments confirm that Deep-LASI is capable of extracting mono-exponentially 
distributed dwell times over a large range of kinetic rates.  
 

 
 
Supplementary Figure 6.1: Dwell-time distributions of the three-color, two-state DNA origamis with 
different binding site lengths. Each row corresponds to a specific state and each column depicts the TDPs (top) 
and dwell-time distributions (middle, bottom) extracted from the uncorrected blue-yellow transition density plots 
and fitted with a mono-exponential for each binding site length. The errors on the dwell times are the 95% 
confidence intervals returned by the fitting procedure (estimated from the Jacobian matrix). 
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6.2 Kinetics of the three-color, three-state DNA origami. 

From the three-color, three-state DNA origami with 7 nt binding strands at positions 6 and 12 
o'clock and a 7.5 nt complementary binding strand at 9 o'clock. Three populations were 
extracted automatically from the traces identified by Deep-LASI as dynamic. The dwell-time 
distributions of all 6 populations observed in the blue/yellow TDP plot (Figure 5c) were 
extracted manually and fit with an exponential function (Supplementary Figure 6.2). The dwell 
times of each state are in excellent agreement with the two-color, three-state DNA origami 
sample (Supplementary Figure 6.3), indicating that the additional blue dye in close proximity 
of state 2 does not influence the kinetic rates. 

 

 
Supplementary Figure 6.2: Dwell-time distributions of the 3-color 3-state DNA origami. (a) The blue/yellow 
transition density plot and (b) the dwell-time distributions extracted from the BY-TDP and fit using a mono-
exponential. The errors on the dwell times are the 95% confidence intervals returned by the fitting procedure 
(estimated from the Jacobian matrix). 
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6.3 Results for the two-color, three-state DNA origami structure 

Next, we tested the performance of Deep-LASI on a more complex, two-color, multi-state 
system by introducing a third binding site on the DNA origami (Supplementary Figure 6.3a) 
and increasing the average transition rates. In contrast to the two-state system described above, 
State 1 and State 2 at the 6 o'clock and 12 o'clock positions are now characterized by 7 nt 
binding sites in the three-state DNA origami. The added State 3 at 9 o'clock has a 7.5 nt 
overhang. In the example trace shown in Supplementary Figure 6.3b, Deep-LASI extracts the 
dynamic section and identifies all transitions between the three states summarized in the TDP 
of apparent FRET efficiencies (Supplementary Figure 6.3c). As expected, the FRET efficiency 
of state 1 (0.83) and state 2 (0.21) do not change significantly compared to the two-state system. 
In addition, a third state with an apparent FRET efficiency of 0.31 is observed. However, as 
states 2 and 3 show a similar distance to the acceptor, the states and thereby the transitions are 
not easily separable. When looking at the dwell-time distributions, the transition out of state 1 
is not affected by the degeneracy of states 2 and 3. However, the transition rates from state 2 or 
state 3 to state 1 differ significantly due to the different binding site lengths and can only be 
extracted using a bi-exponential fit (Supplementary Figure 6.3d): 

𝑓(𝑥) = 1 − 𝑎 ∙ 𝑒@5∙J − 𝑐 ∙ 𝑒@<∙J Eq. 6.2 

From the TDP, we can also extract the transitions between states 2 and 3. The transition from 
state 2 to state 3 can be well described by a mono-exponential distribution whereas the reverse 
transition from state 3 to state 2 has a second component due to the difficulties of clearly 
separating the different states. 
From the single molecule trajectories, Deep-LASI also extracts the regions of the trace that can 
be used for determining the different correction factors. The FRET correction factor 
distributions determined by Deep-LASI are shown in Supplementary Figure 6.3e and are 
consistent with the correction factors of the two-state DNA origami dataset shown in Figure 3f. 
The framewise apparent smFRET histogram is shown in Supplementary Figure 6.3f (top, gray). 
In this histogram, states 2 and 3 merge into one degenerate state (0.27) due to heterogeneous 
broadening of the two populations. After correction (Supplementary Figure 6.3f, top, orange), 
the degeneracy is decreased and the low-FRET peak broadens. However, they are still not 
clearly separable. It is only after using the state-label information, which allows us to average 
the state FRET efficiencies that the two low-FRET populations become distinguishable and the 
individual FRET populations observed (Supplementary Figure 6.3f).  
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Supplementary Figure 6.3: Analysis of 2-color, 3-state DNA origami measurements. (a) Zoom-in of the L-
shaped DNA origami structure with three binding sites. FRET is expected between a high FRET state 1 
(12 o'clock), a low FRET state 2 (6 o'clock), and an intermediate FRET state 3 (9 o'clock). (b) A representative 
single molecule intensity trace and FRET trajectory. The upper panel shows the intensity in the yellow and red 
channels after yellow excitation and the red intensity after red excitation. The middle panel shows the 
corresponding FRET efficiencies for the dye pair. The third and fourth panels show the output of the Deep-LASI 
analysis for state-transition and trace classification respectively. (c) The TDP of the apparent FRET efficiency 
states are shown. Interconversion between three conformations with apparent FRET efficiencies of 0.21, 0.31 and 
0.83 are observed. The three states are labeled in white. Total number of transitions: 174,697. (d) Exponential fits 
of the dwell time distributions for all states are plotted. The transitions from state 2 and 3 to state 1 were pooled 
together due to the high overlap and fit with a bi-exponential function. While the dwell time of state 2 in the bi-
exponential fit is close to the dwell time extracted from the single population (state 2 to state 3), the dwell time of 
state 3 is significantly overestimated compared to the single population of transitions from state 3 to state 2. The 
errors on the dwell times are the 95% confidence intervals returned by the fitting procedure (estimated from the 
Jacobian matrix). (e) Correction factors for direct excitation, crosstalk and gamma extracted by Deep-LASI. (f) 
top Frame-wise weighted state-wise smFRET histograms of apparent and accurate smFRET efficiencies. A 
broadening of the low-FRET population is observed as the correction of the FRET efficiency begins to lift the 
degeneracy. bottom Plotting the framewise-weighted statewise smFRET histograms of apparent and accurate 
FRET efficiencies improves the contrast. Three peaks are now observable with corrected FRET efficiencies of 
0.09 and 0.84 (in line with the two-state system), and a new third state at 0.19.  
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6.4 Kinetics as a function of Temperature 

To investigate the influence of temperature on the binding kinetics, we used the two-color two-
state L-shaped origami structure with minor changes (exchanged staple strands are noted with 
asterisks in Supplementary Table 7.2). Single molecule dynamics were measured between 
19.3 °C and 25.0 °C. The transitions rates between state 1 and state 2 are given in 
Supplementary Figure 6.4. The rates change roughly by a factor of 2 per 2 °C. 
 

 
Supplementary Figure 6.4: Binding kinetics as a function of temperature. An Arrhenius plot of the transition 
rates between state 1 and state 2 of the two-color, two-state L-shaped DNA-origami structure. Linear fits (dotted 
lines) are shown to guide the eye. 
 

6.5 Analysis of previous published 2-color Hsp70 Ssc1 using Deep-LASI 

To test Deep-LASI on single-molecule FRET data from proteins, we reanalyzed data that we 
published previously16. These data were collected of proteins that were encapsulated in 
~200 nm liposomes. Due to vesicle encapsulation, a photostabilization buffer could not be used. 
Hence, the protein data on this system had a lower signal-to-noise ratio than we typically had 
with the photostabilized DNA origami structures. In Supplementary Figure 6.5, we show 
examples of individual traces that were evaluated similarly or differently by the user and Deep-
LASI. From these comparisons, we see that: 1) the user and Deep-LASI agree on traces that 
have sufficient SNR and otherwise show no anomalies, 2) manually selected dynamic traces 
with erratic intensities after photobleaching or broad FRET distributions tend to be categorized 
by Deep-LASI as noisy rather than dynamic, 3) Deep-LASI tends to include short traces that 
are trashed in the manual analysis and 4) traces that show clear features of overestimated 
background, multiple bleaching steps or other anomalies are discarded by both Deep-LASI and 
the user. 
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Supplementary Figure 6.5: Representative 2-color SSC1 traces with disagreements between manual and 
Deep-LASI selection. (a) Two true positive examples of manual and Deep-LASI selection agreeing on the validity 
of dynamic sections. The state trajectory (red) and confidence levels of the state transition classifier are shown in 
the two lower panels. (b) Two example traces that were included in the manual analysis but classified by Deep-
LASI as noisy. The user could include these traces by lowering the confidence threshold of the ‘dynamic’ category. 
(c) Two examples of short traces classified as ‘dynamic’ by Deep-LASI but not selected manually. The left panel 
shows a valid dynamic trace, which was likely missed during evaluation. The right panel shows an apparent false 
positive classification by Deep-LASI. The low confidence of the state transition classifier (lower panel) allows 
this trace to be easily excluded the user. (d) True negative examples excluded from further analysis by both manual 
evaluation and Deep-LASI. The left panel shows a trace with overestimated background correction and artifact 
prediction. The right panel shows a trace two bleaching steps of the donor and aggregate prediction. 
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SUPPLEMENTARY NOTE 7: DNA SEQUENCES 
 
Here, we describe the details of the L-shaped DNA origami structures. The structures were 
previously published by Tinnefeld et al.17,18. As a scaffold, we used the p8064 scaffold derived 
from M13mp18 bacteriophages. An overview of all designed DNA origami structures including 
name, the strand IDs of the introduced modified staple strands as well as the binding sites is 
given in Supplementary Table 7.1. The unlabeled staple strands are specified in Supplementary 
Table 7.2, staple strands with biotin modifications for surface immobilization are listed in 
Supplementary Table 7.3 and staple strands with fluorescent modifications for single-molecule 
FRET are summarized in Supplementary Table 7.3. 
 

The L-shaped DNA origami structures are made of 
252 ssDNA staple strands annealed to a circular 
complementary ssDNA scaffold strand of 8064 
nucleotides. The three fluorophores ATTO488, 
Cy3b and ATTO647N are introduced into the 
structures, by replacing the unlabeled ssDNA 
strands L7, L8 and L9 (Supplementary Figure 7.1) 
with strands containing the appropriate label 
(Supplementary Table 7.4). Binding sites for the 
L7-attached tether strands consisting of different 
lengths are introduced at position L5 and L6 for the 
2 state systems with low and high FRET values and 
different binding rates, even with identical 
sequences. We refer to the binding site for staple 
strand L5 as 6 o'clock and staple strand L6 as 12 
o’clock. For generating a 3 state FRET system, an 

additional binding site was introduced on staple strands L14 at 9 o'clock. In addition, for the 
implementation of the 9 o´clock binding site, the staple strands L12 and L13 are replaced by 
L12-13-I, L12-13-II and L12-13-III (Supplementary Table 7.4). All samples share biotinylated 
attachment sites at positions L1-L4 (Supplementary Table 7.3).  
 
After folding and purification of the origami samples, the correct folding was confirmed via 
transmission electron microscopy (TEM) and atomic force microscopy (AFM) as shown in 
Supplementary Figure 7.2. They form compact structures of roughly 60×20×20 nm3.  

 

Supplementary Figure 7.1: Schematic of the 
replacement staple strands forming the 3 state, 
3color FRET clock on the L-origami. The 
strands either carry one of the three fluorophores 
(L7, L8, and L9) or represent a binding site at 6, 
9 and 12 o'clock (L5, L14 and L6 respectively). 
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Supplementary Figure 7.2: Structural characterization of L-shaped DNA origami structures. (a-b) Transmission 
electron microscopy and (c) atomic force microscopy images indicated the efficient folding of the L-shaped DNA 
origami structures. Color table: Dark Gold. 
 

AFM imaging was performed on a NanoWizard® 3 ultra AFM (JPK BioAFM AG/Bruker; 
Germany) in solution using 1x folding buffer. The DNA origami structures were immobilized 
on a freshly cleaved Mica surface (Quality V1, Plano GmbH; Germany) by Ni2+ ions, which 
were incubated on the Mica plate for 5 minutes with a 10 mM NiCl2 solution. Afterwards, the 
mica was washed three times with ultra-pure water and dried by pressurized air. 10 µL of 1 nM 
DNA origami solution were then added and incubated for 5 minutes. Measurements were 
performed with a USC-F0.3-k0.3-10 cantilever (Nano World; Switzerland). 
 
TEM imaging of the L-Origami structures was carried out on Ar-plasma cleaned TEM grids 
(Formvar/carbon, 400 mesh, Cu, TedPella, Inc.; USA). The DNA origami structures were 
stained with a 2 % uranyl formate solution. The imaging was performed on a JEM-1100 
microscope (JEOL GmbH; Japan) with an acceleration voltage of 80 kV. 
 
 
Supplementary Table 7.1. The applied nomenclature used for the designed L-shaped DNA origami structures 
with the corresponding staple strand IDs that carry the fluorescent dyes or the attachment of the pointer. The laser 
excitation scheme for the 3cFRET B-Y-R samples involves excitation at 488, 561 and 640 nm.  
# Name Blue Yellow Red Binding sites Replaced 

1 BYR-Pos6/12-6.5nt 488-L9 561-L7 640-L8 6.5nt-L5 6.5nt-L6 --- --- 
2 BYR-Pos6/12-7nt 488-L9 561-L7 640-L8 7nt-L5 7nt-L6 --- --- 
3 BYR-Pos6/12-7.5nt 488-L9 561-L7 640-L8 7.5nt-L5 7.5nt-L6 --- --- 
4 BYR-Pos6/12-8nt 488-L9 561-L7 640-L8 8nt-L5 8nt-L6 --- --- 
5 BY-Pos6/12-7.5nt 488-L9 561-L7 --- 7.5nt-L5 7.5nt-L6 --- --- 
6 BR-Pos6/12-7.5nt 488-L9 --- 640-L8 7.5nt-L5 7.5nt-L6 --- --- 
7 YR-Pos6/12-7.5nt --- 561-L7 640-L8 7.5nt-L5 7.5nt-L6 --- --- 
8 YR-Pos6/9/12 --- 561-L7 640-L8 7nt-L5 7nt-L6 7.5nt-L14 L12-13-I-III 
9 BYR-Pos6/9/12 488-L9 561-L7 640-L8 7nt-L5 7nt-L6 7.5nt-L14 L12-13-I-III 
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Supplementary Table 7.2. Unmodified staple strands used for the L-shaped DNA origami structure given from 
the 5’ to 3’ end. All oligonucleotides were purchased from Integrated DNA Technologies. *In the origami used 
for the measurements shown in Supplementary Figure 6.4, the staple strands L141, L153 and L165 were replaced 
with the sequences highlighted with the asterisks at the end of the table.  
Staple ID Sequence (5’ to 3’) 

L1 ATCCAGAACAATATTAGTCCATCAGGAACGGT 

L2 CGTGCCTGTTCTTCGCATCCAGCGCCGGGTTA 

L3 ATAATCAGAAAAGCCCAACATCCACTGTAATA 

L4 CATAGGTCTGAGAGACAAATCGTCGAATTACC 

L5 AGAAACAGCTTTAGAAGGAAGAAAAATCTACGATTTTAAGCATATAAC 

L6 GCACCCTCCGTCAGGTACGTTAGTAAATGAATAGTTAGCGTCAATCAT 

L7 ACGATAAACCTAAAACAAAGAATACACTAAAACATTACCCAACAAAGC 

L8 TGCTCATTCTTATGCGTTAATAAAACGAACTATATTCATTGGCTTTTG 

L9 AAGGGAACCGGATATTCACTCATCTTTGACCCGTAATGCCATCGGAAC 

L10 CGGAATCTCAGGTCTGTTTTAAATATGCATGCGAACGAATCATTG 

L11 TGAATTACCAGTGAATGGAATTACGAGGCATATAGCGAGAGAATCCCC 

L12 CATTATACGGTTTACCCATAACCCTCGAAATACAATGTTTAAACAGGG 

L13 ATTCATATCAGTGATTTGGCATCAGGACGTTGTAACATAAACCAGACG 

L14 TAATAAGAAGAGCCACCCTTATTAGCGTTTGCCATTCAACAATAGAAA 

L15 GGCACCAAAACCAAAAGTAAGAGCAACACTATAGCAACGTAAATCGCC 

L16 ATAAAAATATCGCGTTCTCCTTTTGATAAGAGCTATAT 

L17 TACCAGTAACGCTAACAGTTGCTATTTTGCACCCCATCCT 

L18 GAGGGTAGTTGCAGGGTGCTAAACAACTTTCACGCCTGGAAAGAG 

L19 AGAGCCGCAAACAAATGAGACTCCTCAAGAGATTAGCGGGCAGTAGCA 

L20 AGTTGATTAGCTGAAAAGAGTACCTTTAATTGTTAATTCGGACCATAA 

L21 TCGATAGCAGCACCGTAAAATCACGTTTTGCT 

L22 AAAGACAAATTAGCAAGTCACCAATGAAACCA 

L23 ATATTCACCGCCAGCATTGACAGGCAAAATCA 

L24 TTTTCCCTTACACTGGTTGC 

L25 CTCCAATCGTCTGAAATTTT 

L26 TTTTTGCCTGAGTAGAAGAA 

L27 TTTTCCCGACTTACAAAATAAACAGTTTT 

L28 ATACGCAAAGAAAATTATTCATTAAAGGTGAATTTT 

L29 TTTTCTTTACAAACAATTCG 

L30 TTTTAAGTTACCAGGGTAATTGAGCTTTT 

L31 TTTTTAAACGATGCTGATGG 

L32 TTTTCAGGGTGGTTTTTCTT 

L33 ACAAAGTATGAGGAAGCTTTGAGGACTAAAGATTTT 

L34 CCGAATCTAAAGCATCTTTT 

L35 AGATGAAGGGTAAAGTTTTT 

L36 TTTTCGCAAATGGTCAATAAACCATTAGATGC 

L37 TCGAAGATGATGAAACTTTT 

L38 AGAGCAAATCCTGTCCAGATACCGACAAAAGGTAATTTT 

L39 TTCCGGAATCATAATTTTTT 
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L40 TTTTTGGATTATTTACAGAA 

L41 TGCGGCCAGAATGCGGTTTT 

L42 TCAGCAGCAACCGCAATTTT 

L43 TTTTAGAGCGGGAGCTAGAT 

L44 TTTTGCTAATATCAGAGAGATAACCCCGCCACCGCG 

L45 ACCTCGTCATAAACATTTTT 

L46 TTTTTTGAGGGGACGACGAC 

L47 TTTTAACAGTACCTTTTACA 

L48 TTTTTGGCCTTCCTGTATAA 

L49 TTTTGGCGCATAGGCTGGCTAACGGTGTTAAATTGT 

L50 TCACCGGAAGCATAAATTTT 

L51 TTTTTATCATCGCCTGAACAGACCATTTT 

L52 TTCATAGGGTTGAGTGTTTT 

L53 TTTTTAGCCCGGAATAGCCTATTTCTTTT 

L54 TTTTCCCTCAGAGCCACCACCCTCAGAAAGCGCTTA 

L55 TAGTAATAACATCACTTTTT 

L56 TTTTTTGTTCCAGTTTGGAACAAGA 

L57 TTTTCGGGCCGTTTTCACGG 

L58 TTTTATTGCTGAATATAATACATTTTTTT 

L59 TTTTAGTAATTCAATCGCAAGACAATTTT 

L60 TTTTGAATGCCAACGGCAGC 

L61 CAGATGAATATACAGTTTTT 

L62 TTTTCCATATTATTTATCCCAATCCAAAGTCAGAGA 

L63 TTTTTTATCACCGTCACAGCGTCAGTTTT 

L64 TTTTCTTTTTCACAACGGAGATTTGTTTT 

L65 TTTTGTGTAGGTAAAGATTC 

L66 TTTTTTTTTTTTAAAACTAG 

L67 TTTTGATTAAGACGCTGAGA 

L68 TTTGCGTATTGGGCGCTTTT 

L69 ATTATAGCGTCGTAATAGTAAAATGTTTTTT 

L70 TAGTCAGAAGCAAAGCGGATTTT 

L71 TTTTTAGACTGGCATCAGTTGAGATTTTTT 

L72 CATAATAATTCGCGTCTTTT 

L73 ATATATATAAAGCGACGACATCGGCTGTCTTTCCTTATCATTTTT 

L74 AAAACGGTAATCGTTTTTTT 

L75 ACAAATTATCATCATATTTT 

L76 TTTTTTCCTGATTATCACGT 

L77 TTTTCATATAAAAGAAAGCCGAACATTTT 

L78 TTTTGTGTAAAGCCTGGCGG 

L79 TTTTAAACATCAAGAAAAAA 

L80 AATGCAATAGATTAAGGGCTTAGAGCTTATTTT 

L81 ACATAGCGATAGCTTATTTT 

L82 TTTTTTGCATCAAAAGCCTGAGTAATTTT 
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L83 CTGATAGCCCTAAAACTTTT 

L84 GAAAGGAGCGGGCGCTAGGTTTT 

L85 TTTTGCCTCAGAGCATAAAGAAAATTAAGCAATAAATTTT 

L86 TTTTACTGTAGCCTCAGAACCGCCATTTT 

L87 TTTTACCGTTCCAGTAAGCGTCATACATGGCTTCAGTTAAT 

L88 AGTGTGCTGCAAGGCGTTTT 

L89 TTAATTAAACCATACATACATAAAGGTGGCAATTTT 

L90 CCGTGCATCTGCCAGTTTTT 

L91 TTTTTTAGGAATACCACAGTAGTAATTTT 

L92 TTTTATTGGGCTTGAGATGGCCAGAACGATT 

L93 TTTTGAACAACTAAAGGAACACTGATTTT 

L94 TTTTACTAGAAAAAGCCTGTT 

L95 TTTCGACTTGATCGAGAGGGTTGATATAAGTATTTT 

L96 ATTTAGAAGTATTAGATTTT 

L97 TTTTACCTTGCTGAACCAGG 

L98 TTTTTCCAAGAACGGGTGCGAACCTTTTT 

L99 TTTTACGCATAATGAGAATAGAAAGTTTT 

L100 TTTTAGAACGCGAGAAAACTTT 

L101 TTTTGTTTCGTCACCAGTACTGTACCGTAAT 

L102 CATGTTTACCAGTCCCTTTT 

L103 TTTTGGAATTTGTGAGAGAT 

L104 TTTTATTAAGTTGGGTACGC 

L105 TTTTGGAACCTAAGTCTCTGAATTTTTTTTTT 

L106 TTTTATCGCCATTAAAAATA 

L107 GAGCCGATATAACAACAACCATCGCCCTTTTTTT 

L108 CGGCCTCGTTAGAATCTTTT 

L109 TTTTGCGCTGGCAAGTGTAG 

L110 TAGTTGCCAGTTGCGGGAGGTTTTGAAGATCAATAA 

L111 ATGGCTACAATCAACTGAGAGCCAGCAGCAAATGAAAAACGAACCTAATGCGCTTGGCAGA 

L112 TCATCAACAAGGCAAATATGTACCCCGGTTG 

L113 TTCAAATTTTTAGAAAAAACAGGAGCAAACAAGAGAATCGATGAAGGGTGAGATATTTTA 

L114 CAACTAATGCAGACAGAGGGGCAATACTG 

L115 GTACTATGGTTGCTTTTTTAGACACGCAAATT 

L116 TGTAGCTCAACATTTACCCTCGAAAGAC 

L117 ATCAAAAAGTCATAAAACGGAACAACATTATCAACTTTAGTAGAT 

L118 AACGTCAATAGACGGGGAATACCCAAAAGAACAAGACTCCGTTTTTAT 

L119 GGAGGGAAGAGCCAGCAATCAGTAGCGACAGACCAGAACCGCCTC 

L120 AGCGAACCAGAAGCCTGGAGAATCACAAAGGCTATCAGGT 

L121 GCCCCCTGGTGTATCACCGTACTC 

L122 TACAGGCATTAAATTAACCAATAGGAACGCCATCAAAGTCAATCAGAATTAGCCTAAATCG 

L123 TATTTTTGAGAGATCTGCCATATTTCCTCTACTCAATTGA 

L124 CATTGCCTGAGAGTCTTTATGACCATAAATCATTTCATTT 

L125 CCAGCCAGCTTTCCGGGTAATGGGGTAACAAC 
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L126 ATCGGCAAAATCCCTTACGTGGACTCCAACGT 

L127 CCTGCAGCCATAACGGGGTGTCCAGCATCAGC 

L128 GGGCCTCTTCGCTATTACGTTGTACCTCACCG 

L129 ACCCTCATGCCCTCATTTTCTGTATGGGATTTAGTTAAAGCAGCTTGA 

L130 GTTGTACCACCCTCATAAAGGCCGGAGACAG 

L131 TCTTTAGGCTGAATAATGCTCATTAGTAACAT 

L132 CTCTCACGGAAAAAGAACGGATAAAAACGACG 

L133 ACGCCAGATGACGGGGCGCCGCTAGCCCCAGC 

L134 TTAATTTCATGTTCTATAACTATATGTAAATGCTGATGTCAATAGAATCCTTGACAAAATT 

L135 TTTCATCGAATAATATCCAGCTACAATACTCCAGCAATTTCTTTACAG 

L136 AATAAGTTAGCAAAAACGCAATAATAACGAGAATTAAAAGCCCAA 

L137 GACCGTGTGATAAATACAAATTCT 

L138 ACAAGAACCGAACTGATGTTACTTAGCCGGAAAAGACAGCACTACGAA 

L139 ATCAAACTTAAATTTCTGGAAGGGCCATATCA 

L140 CGCTGGCACCACGGGAGACGCAGAAACAGCGG 

L141 GAGAAACATTTAATTTTACAGGTAGAAAG 

L142 CTGCGCGGCTAACTCACAATTCCACACAACATACGAGTACCGGGGCTCTGTGGGTGTTCAG 

L143 CCGAGTAAGCCAACAGGGGTACCGCATTGCAA 

L144 AAACGGCGCAAGCTTTGAAGGGCGATCGGTGC 

L145 CAAAAGAATAAAATACCCAGCGATTATACCAAGCGCGAA 

L146 CTTAATTGAGACCGGAAACAGGTCAGGATTAGAGGTGGCA 

L147 GCCAGTGCGATTGACCCACCGCTTCTGGTGCC 

L148 CCAGAATGGAGCCGCCAATCAAGTTTGCC 

L149 CCCCCTGCGCCCGCTTTAGCTGTTTCCTGTGT 

L150 GGAAACCAGGCAAAGCGTACATAAGTGAGTGA 

L151 AAATCAACACGTGGCATCAGTATTCTCAATCC 

L152 AGGAGGTGGCGGATAAGTATTAAGAGGCTAAATCCTCTACAGGAG 

L153 GACAGATGGACCTTCATCAAGAGCCCTGAC 

L154 CTGAGGCCAACGGCTACAGAGGTTTCCATT 

L155 ATAACCTTATCAACAAAAATTGTATAACCTCC 

L156 AAATCAGCTCATTTTTGTGAGCGAATAGGTCA 

L157 CACAGACATTTCAGGGATCTCCAAAAAAAAGGTTCTTAAAGCCGCTTT 

L158 TAATAGTATTCTCCGTGCATTAAATTTTTGTT 

L159 CGTTGGTAGTCACGACGCCAGCTGGCGAAAGGGGGATATCGGCCTGCGCATCGGCCAGCTT 

L160 CTTCTGACCTAAATTTGCAGAGGCCAGAACGCAATTTACG 

L161 GCTGCGCAACTGTTGGCAGACCTATTAGAAGG 

L162 AGAACGTTAACGGCGTAATGGGTAAAGGTTTCTTTGCGTCGGTGGTGCTGGTCTTGCCGTT 

L163 TTAGTTTGCCTGTTTAGGTCATTTTTGCGGATAGGAAGCCGACTATTA 

L164 AATTACATAGATTTTCAATAACGGATTCGCC 

L165 AAACGGGGTTTTGCTACATAACGCCAAAAAAGGCTTGTAATCTTG 

L166 TGCGAATAATAATCGACAATGTTCGGTCG 

L167 TTATACTTAGCACTAAAAAGTTTGTGCCGCCA 

L168 GCCGTCACAATATAAAAGAAACCACCAGAAGGAGCGGACTCGTATTACATTTGTCAAATAT 
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L169 ATTGCGTTTAACAACATTTCAATTACCTGAGCAAAAGGGAGAAACAGGTTTAAGATGATGG 

L170 GGAGCCTTCACCCTCAGAGCCACC 

L171 CCAGCTTACGGCTGGAAACGTGCCCGTCTCGT 

L172 TTCGTAATCATGGTCATCCATCAGTTATAAGT 

L173 AACAGAGGTGAGGCGGCAGACAATTAAAAGGG 

L174 TTGAGTAAGCCACCCTCAGAACCG 

L175 CAGTATGTTTATTTTGCGAAGCCCTTTTTAATTGAGTTCTGAACA 

L176 GCCTGTTTGCTTCTGTTACCTTTTAACGTTAA 

L177 ATAAACAATCCCTTAGTGAATTTATCAAAAT 

L178 CAAAGGGCCTGTCGTGTGGCCCTGAGAGAGTT 

L179 CTCAAATGTTCAGAAATGGAAGTTTCACGCGCATTACTTCAACTGGCT 

L180 CCCGCCGCGCTTAATGAAAGCCGGCGAACGTG 

L181 TTCACCAGGTAGCAATGGCCTTGCTGGTAAT 

L182 GTCGAAATCCGCGACCTGCTCCACCAACTTTTAGCATTC 

L183 TGATTGCTTTGAATACAAACAGAATGTTTGGA 

L184 TTCTGAAACATGAAAGTGCCGGCCATTTG 

L185 AACCGTTTCACACGGGAAATACCTACATTTTGACGCTAAACTATCACTTCTTTAACAGGAG 

L186 CGTTGAAAATAGCAAGCCCAATA 

L187 CTTTTGCGTTATTTCAATGATATTCAACCGTT 

L188 AAATCCCGTAAAAAAACGTTTTTTGGACTTGT 

L189 TATCATTTTGCGGAACATCCTGATATAAAGAA 

L190 AAATTATTTGGAAACAGCCATTCGAAAATCGC 

L191 GCAGCAAGCGGTCCACAAGTGTTTTGAGGCCA 

L192 CCAACATGACGCTCAATGCCGGAGGAAATACC 

L193 TATTTTGTTAAAATTCGGGTATATATCAAAAC 

L194 TGTTGCCCTGCGGCTGATCAGATGCAGTGTCA 

L195 TGCGGGATAGCAGCGACGAGGCGCAGAGAAACGGCCGCGGTAACGATC 

L196 TACCGATAGTTGCGCTTTTTCA 

L197 TCAAATCACCATCAATACGCAAGG 

L198 GTAAGAATAGTTGAAACTTTCGCAAACACCGC 

L199 ATTGCCCTTCACCGCCCCAGCTGCTTGCGTTG 

L200 AAGCGCATAAATGAAACAGATATAGAAGGCTTAGCAAGCCTTATTACG 

L201 GGAATTAGGTAAATTTTCGGTCATAGCCCCACCGGAACCACCACC 

L202 GTTTTCCCGTAGATGGCAGGAAGATCGCACT 

L203 GCGAGAAAAGGGATGACGAGCACGTATAACGTGCTTTTCACGCTGAAGAAAGC 

L204 GGGGCGCGCCCAATTCACTAAAGTACGGTGTCACGAGAATAGCTTCAA 

L205 GAAATTGTTATCCGCTCACATTAAATTAATGA 

L206 TTTTTTAATGCACGTACAAGTTACCCATTCAG 

L207 CAATTCATATAGATAATAAATCCTTTGCCCG 

L208 CCTCAGAGCACAAGAAGAAAAGTAAGCAG 

L209 CGCTCACTATCAGACGGTCCGTGAGCCTCCTC 

L210 GCAGAGGCGAATTATTTTTCATTTGCTATTAA 

L211 TTAGAGCTATCCTGAGGCTGGTTTCAGGGCGC 
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L212 GCCAGTACGTTATAAGGCGTTAAATAAGAATAAACACAAAT 

L213 AACGTTATTAATTTTACAACTAATCAGTTGGC 

L214 GCCGGGCGCGGTTGCGCCGCTGACCCCTTGTG 

L215 CTGCAACAGTGCCACGTATCTGGTAGATTAGA 

L216 TAAAGTTTAGAACCGCTAATTGTATCGCGGGGTTTAAGTTTGGCCTTG 

L217 GAAACAACGCGGTCGCCGCACAGGCGGCCTTTAGTGACTTTCTCCACGTACAGACGCCAGG 

L218 GTCCACTAAACGCGCGGACGGGCAACAGCTG 

L219 GGAACCCAAAACTACAAACAGTTTCAGCG 

L220 ATCGGCCTTAAAGAATAAATCAAAAGAATAGCCCGAGACCAGTGAGGGAGAGGGGTGCCTA 

L221 ACAGTTGAGGATCCCCAGATAGAACTGAAAGC 

L222 CCGGAACCGCAAGAAAGCAATAGCTATCTTACTCACAATCCGATTGAG 

L223 GCAGTTGGGCGGTTGTCCAGTTATGGAAGGAG 

L224 GCCGATTAAGGAAGGGCGCGTAACCACCACA 

L225 TGTACTGGTAATAAGTTCAGTGCC 

L226 CAAATCGTCAGCGTGGTGCCATCCCACGCAA 

L227 TCTTACCATAAAGCCATAATTTAGAATGGTTTAGGGTAGC 

L228 AGGCGAAAATCCTGTTGTCTATCACCCCCGAT 

L229 GCCTAATTATCATATGATAAGAGATTTAGTTAATTTCAT 

L230 TTTTCATCGGCATATTGACGGCACCACGG 

L231 CTAGCTGATAAATTAACAGTAGGG 

L232 CCCTGAACAAATAAGAAACGCGAGGCGTT 

L233 CACATCCTCAGCGGTGGTATGAGCCGGGTCAC 

L234 CAGGAAAAACGCTCATACCAGTAAATTTTTGA 

L235 CCACCCTCTGTTAGGAAGGATCGTCTTTCCAGCAGACGATTATCAGCT 

L236 CAAACCCTTTAGTCTTACCAGCAGAAGATAA 

L237 GGCTTAGGTTGGGTTAAGCTAATGATTTTCGA 

L238 CCGTCGGAGTAGCATTCAAAAACAGGAAGATT 

L239 ATGAGTGACCTGTGCAGTTTCTGCCAGCACG 

L240 CCGGCAAATCGGCGAAGTGGTGAAGGGATAG 

L241 ACAAGAAATAGGAATCCCAATAGCAAGCAAATATAGCAGCATCCTGAA 

L242 CCATTACCAAGGGCGACATCTTTTCATAGGCAGAAAGAATAGGTTGAG 

L243 TGGAGCCGGCCTCCGGGTACATCGACATAAAA 

L244 CACTCATGAAACCACCTTAAATCAAGATTGAGCGTCTTTTTGTTT 

L245 GTATAAGCAAATATTTTAGATAAGTAACAACG 

L246 AGGAAACCGAGGACGTAGAAAAAGTACCG 

L247 CGGGAAACGAAAAACCTGATGGTGGTTCCGAA 

L248 AGCATGTACGAGAACAATCCGGTATTCTAAGAACGATTTTCCAGA 

L249 ACATTCTGAAGAGTCTCCGCCAGCAGCTCGAA 

L250 GGGGTCATTGCAGGCGGGAATTGACTAAAATA 

L251 TGCTTTCGAGGTGAATCTCCAAAA 

L252 CAGTACCATTAGTACCCAGTGCCCGTATAAATTGATGAATTAAAG 
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*L141 TGCCCTGACGAGAAACATTTAATTTTACAGGTAGAAAG 

*L153 GACAGATGGACCTTCATCAAGAGTAATCTTG 

*L165 AAACGGGGTTTTGCTACATAACGCCAAAAAAGGCT 
 
 
Supplementary Table 7.3. Modified staple strands given from the 5’ to 3’ end for the L-shaped DNA origami 
structures used. The biotin was used for surface-immobilization via a biotin/avidin interaction. All 
oligonucleotides were purchased from Biomers.  

ID Sequence (5’ to 3’) Function Replace 
Bio-L1 Biotin-ATCCAGAACAATATTAGTCCATCAGGAACGGT Attachment Biotin at 5’  L1 
Bio-L2 Biotin-CGTGCCTGTTCTTCGCATCCAGCGCCGGGTTA Attachment Biotin at 5’  L2 
Bio-L3 Biotin-ATAATCAGAAAAGCCCAACATCCACTGTAATA Attachment Biotin at 5’  L3 
Bio-L4 Biotin-CATAGGTCTGAGAGACAAATCGTCGAATTACC Attachment Biotin at 5’  L4 

 
Supplementary Table 7.4. Modified staple strands given from the 5’ to 3’end for the fluorescently-labeled L-
shaped DNA origami structures. The complementary docking sequences are highlighted in orange. The docking 
strands have a three-base extension from the DNA origami structure and the pointer contains nine single-stranded 
thymine bases plus GC and the docking sequence, highlighted in grey.  

ID Sequence (5’ to 3’) Supplier Function Replace 
488-L8 TGC TCA TTC TXA TGC GTT AAT AAA ACG AAC 

TAT ATT CAT TGG CTT TTG; X = dT- Atto488 
biomers Lower Label – V1 L8 

640-L9 AAG GGA ACC GYA TAT TCA CTC ATC TTT GAC 
CCG TAA TGC CAT CGG AAC; Y = dT- Atto647N 

Eurofines 
Genomics 

Upper Label – V1 L9 

561-L7 GGCACCAAAACCAAAAGTAAGAGCAACACTATA
GCAACGTAAATCGCCTTTTTTTTTCGGGCATTTA - 
Cy3b 

Eurofines 
Genomics 

Pointer - dye at 3’ L7 

6.5nt-L6 GCACCCTCCGTCAGGTACGTTAGTAAATGAATAG
TTAGCGTCAATCATTTTCAAATGC 

Eurofines 
Genomics 

Pos 12 catching site 7 
nt mismatch 

L6 

7nt-L6 GCACCCTCCGTCAGGTACGTTAGTAAATGAATAG
TTAGCGTCAATCATTTTTAAATGC 

Eurofines 
Genomics 

Pos 12 catching site 7 
nt 

L6 

7.5nt-L6 GCACCCTCCGTCAGGTACGTTAGTAAATGAATAG
TTAGCGTCAATCATTTTCAAATGCC 

Eurofines 
Genomics 

Pos 12 catching site 8 
nt mismatch 

L6 

8nt-L6 GCACCCTCCGTCAGGTACGTTAGTAAATGAATAG
TTAGCGTCAATCATTTTTAAATGCC 

Eurofines 
Genomics 

Pos 12 catching site 8 
nt 

L6 

6.5nt-L5 AGAAACAGCTTTAGAAGGAAGAAAAATCTACGAT
TTTAAGCATATAACTTTCAAATGC 

Eurofines 
Genomics 

Pos 6 catching site  
7 nt mismatch 

L5 

7nt-L5 AGAAACAGCTTTAGAAGGAAGAAAAATCTACGAT
TTTAAGCATATAACTTTTAAATGC 

Eurofines 
Genomics 

Pos 6 catching site  
7 nt 

L5 

7.5nt-L5 AGAAACAGCTTTAGAAGGAAGAAAAATCTACGAT
TTTAAGCATATAACTTTCAAATGCC 

Eurofines 
Genomics 

Pos 6 catching site  
8 nt mismatch 

L5 

8nt-L5 AGAAACAGCTTTAGAAGGAAGAAAAATCTACGAT
TTTAAGCATATAACTTTTAAATGCC 

Eurofines 
Genomics 

Pos 6 catching site  
8 nt 

L5 

7.5nt-L14 TGCCATTCAACAATAGAAAATTCATATGGTTTTCA
AATGCCTTTCAAATGCC 

Eurofines 
Genomics 

Pos 9 catching site  
8 nt mismatch 

L14 

L12-13-I CATTATACCAGTGATTTGGCATCAGGACGTTGTA
ACATAAACCAGACG 

Eurofines 
Genomics 

Replacement for  
Pos 9 

L12 and 
L13 

L12-13-II TAATAAGAAGAGCCACCCTTATTAGCGTT Eurofines 
Genomics 

Replacement for  
Pos 9 

L12 and 
L13 

L12-13-III TTACCCATAACCCTCGAAATACAATGTTTAAACA
GGG 

Eurofines 
Genomics 

Replacement for  
Pos 9 

L12 and 
L13 
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SUPPLEMENTARY NOTE 8: STATISTICS SINGLE-MOLECULE DATA 
 
The following section summarizes the results for all Hsp70 and origami datasets, newly 
designed, presented, and analyzed in this work. For each dataset, the total number (#) of 
recorded traces, the confidence interval, the number of dynamic traces, the retrieved number of 
states, and dwell times are specified. For the origami datasets, we refer to State 1 as the 12 
o’clock position and State 2 as the 6 o’clock position for the 2-state systems. In 3-state systems 
(as presented in Figure 5), we refer to States 1, 2, and 3 as the 12 o’clock, 9 o’clock, and 6’clock 
positions, respectively. For the Hsp70 datasets, we refer to State 1 as the undocked 
conformation (low FRET) and State 2 as the docked conformation (high FRET). More details 
can be found together with the raw data on Zenodo [https://zenodo.org/record/7561162].  
 
Supplementary Table 8.1. Statistics summarizing the single-molecule results obtained for the origami and Hsp70 
datasets. N.A.: not applicable; max: highest confidence of all possible classes. 

 
  

Fig. Name Binding Site # of 
Traces Confidence Frame 

time (ms) 
# of 

Frames 

# of 
Dynamic 
Tracers 

# of 
States 

Dwell time 
t1 (s) 

Dwell time 
t2 (s) 

Dwell time 
t3 (s) 

2 1c origami  
2 states 

8 nt / 1 MM 7448 70 % 52.2 998 2510 2 1.75 
 

2.65 N.A. 

3 2c origami  
2 states 

8 nt / 1 MM 6100 70 % 52.2 1998 1499 2 1.76 
 

2.64 N.A. 

4 3c origami  
2 states 

7 nt / 1 MM 5731 20 % 34.2 2997 482 2 0.33 0.40 N.A. 
7 nt 5093 70 % 37.5 2997 1885 2 0.66 1.05 N.A. 

8 nt / 1 MM 2545 70 % 52.5 2397 581 2 1.75 2.69 N.A. 
8 nt 8097 70 % 152.2 1797 1545 2 6.41 9.54 N.A. 

5 3c origami  
3 states 

7 nt @ 6 / 12h 
8 nt / 1MM @ 9h 

7990 70 % 52.5 2997 586 3 0.65 0.69 ~1.40 

6i 2c origami 
2 states 

5 nt 95 N.A. N.A. N.A. 95 2 0.0045 0.0063 N.A. 
6 nt 104 N.A. N.A. N.A. 104 2 0.015 0.026 N.A. 

7 nt / 1 MM 99 N.A. N.A. N.A. 99 2 0.14 0.23 N.A. 
7 nt 97 N.A. N.A. N.A. 97 2 0.84 1.62 N.A. 

6 nt « 7 nt 11 N.A. N.A. N.A. 11 2 0.017 1.524 N.A. 
7 nt « 7 nt / 1 MM 102 N.A. N.A. N.A. 102 2 0.79 0.22 N.A. 
 7 nt / 1 MM « 7 nt 21 N.A. N.A. N.A. 21 2 0.15 1.57 N.A. 

Fig. Name Glycerol 
concentration (%) 

# of 
Traces Confidence Frame 

time (ms) 
# of 

Frames 

# of 
Dynamic 
Tracers 

# of 
States 

Dwell time 
t1 (s) 

Dwell time 
t2 (s) 

Dwell time 
t3 (s) 

6a-b 3c origami  
2 states 
8 nt / 1 

MM 

1 % 1167 50 % 52.2 2397 176 2 1.65 2.45 N.A. 
2.5 % 1087 30 % 52.2 2397 150 2 1.52 2.23 N.A. 
5 % 1814 50 % 52.2 2397 382 2 1.38 2.02 N.A. 
10 % 1040 50 % 52.2 2397 120 2 1.11 1.52 N.A. 
15 % 1006 50 % 52.2 2397 204 2 0.96 1.23 N.A. 
20 % 1295 50 % 52.2 2397 101 2 0.85 1.11 N.A. 
30 % 1207 30 % 52.2 2397 101 2 0.62 0.85 N.A. 

Fig. Name ADP 
concentration (M) 

# of 
Traces Confidence Frame 

time (ms) 
# of 

Frames 

# of 
Dynamic 
Tracers 

# of 
States 

Dwell time 
t1 (s) 

Dwell time 
t2 (s) 

Dwell time 
t3 (s) 

6e-f Hsp70 
SSC1 

100 nM 12319 max 32.5 2000 466 2 1.13 0.93 N.A 
5 µM 9246 max 32.5 2000 155 2 0.92 0.75 N.A 

100 µM 5035 max 32.5 2000 258 2 0.64 0.83 N.A 
1 mM 3534 max 32.5 2000 156 2 0.58 0.79 N.A 
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Abstract 

By avoiding ensemble averaging, single molecule methods provide novel means of extracting mechanistic 

insights in to function of material and molecules at the nanoscale. However, one of the big limitations is the 

vast amount of data required for analyzing and extracting the desired information, which is time consuming 

and user dependent. Here, we introduce Deep-LASI, a software package for the manual and automatic analysis 

of single molecule traces, interactions and the underlying kinetics. The software can handle data from one-, 

two- and three-color fluorescence data, and was particularly designed for the analysis of two- and three-color 

smFRET experiments. The functionalities of the program include: the registration of multiple-channels, trace 

sorting and categorization, determination of the photobleaching steps, calculation of FRET correction factors 

and kinetic analyses based on hidden Markov modeling or deep neural networks. After a kinetic analysis, the 

ensuing transition density plots are generated, which can be used for further quantification of the kinetic 

parameters of the system. Each step in the workflow can be performed manually or with the support of 

machine learning algorithms. Upon reading in the initial data set, it is also possible to perform the remaining 

analysis steps automatically without additional supervision. Hence, the time dedicated to the analysis of single 

molecule experiments can be reduced from days/weeks to minutes. After a thorough description of the 

functionalities of the software, we also demonstrate the capabilities of the software via the analysis of a 

previously published dynamic three-color DNA origami structure fluctuating between three states. With the 

drastic time reduction in data analysis, new types of experiments become realistically possible that 

completement our currently available palette of methodologies for investigating the nanoworld.  

  

Significance 

Single molecule experiments are very powerful but, at the same time, the analysis can be very time 

intensive. Here, we present a program that eases the analysis of single-molecule time traces. We have 

incorporated machine learning methods to support the data analysis. The software performs all steps 

required for such an analysis either manually or automatically starting from data extraction through to the 

final graphical outputs. Hence, the time investment needed for the analysis of single molecule data can be 

reduced from days or even weeks to minutes.  
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Introduction 

The ability to detect individual molecules has revolutionized the way we investigate the physical world. When 

measurements are no longer limited by ensemble averaging, sample heterogeneities, subpopulations and 

dynamics processes are directly observable. With such high sensitivity, a minimal amount of sample is 

necessary, and as the analysis is done one molecule at a time, high purification of the sample can be performed 

in the analysis[1]. When performing measurements on immobilized molecules with methods such as atomic 

force microscopy, optical and magnetic tweezers[2], or total internal reflection fluorescence (TIRF) 

microscopy, the dynamic processes of a single molecule can be observed as a function of time[3, 4]. As a result 

of such measurements, a huge number of trajectories are typically produced that need to be analyzed to 

extract the desired information from the system of interest.  

Among the various valuable single-molecule techniques, fluorescence resonance energy transfer (FRET) 

experiments stand out as a non-contact method that can detect distances on the 2-10 nm scale and measure 

dynamics processes from nanoseconds to kiloseconds. Recent studies have shown that single-molecule FRET 

(smFRET) experiments are reproducible with an accuracy of 0.6 nm[5, 6]. With smFRET, it becomes possible 

to gain insights about the structural features and dynamics of materials, such as the structural fluctuations in 

biomolecules resulting from complex biological interactions[7]. Notably, smFRET promises to be an important 

method for the upcoming age of dynamic structural biology[8]. For many experiments, it is possible to detect 

subpopulations and measure dynamics directly from the collected data. For a detailed quantitative analysis, 

there are additional steps that need to be performed. Here, it is useful to monitor the fluorescence of the 

acceptor directly, which can be done using alternating laser excitation (ALEX)[9]. In ALEX, the donor and 

acceptor molecules are excited alternately. Hence, the photophysical state of the acceptor can be probed 

during the smFRET experiment, and correction factors for the determination of accurate FRET efficiencies can 

be extracted[10-12]. When analyzing ALEX data, the excitation scheme needs to be determined and 

incorporated into the analysis. As experiments grow in complexity, the intricacy of the analysis increases as 

well, and the availability of more advanced analysis tools becomes increasingly important. 

Numerous software packages have been developed to aid in the analysis of single-molecule measurements. 

The choice of the optimal program for analysis depends upon the specifics of the experimental system and 

analysis required for the study. For smFRET experiments, Lerner et al. recently summarized and published an 

extensive list of analysis programs that were released until the year 2021, including tools to analyze time 

trajectories from surface experiments [8]. In a later study, Götz et al. compared the performance of eleven 

widely used single-molecule FRET analysis tools regarding the determination of kinetic models and extraction 

of the rate constants[13]. With respect to smFRET experiments, the vast majority of software has been 
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developed for two-color FRET experiments [14-19]. Our group has also developed a MATLAB-based software 

for data analysis on two-color FRET systems for surface-immobilized molecules called Tracy [13, 20].  

Upon expanding our single-molecule TIRF setup to accommodate three-color FRET experiments, we needed 

to expand our analysis software. With this paper, we introduce our new software, Deep-LASI (Deep-Learning 

Assisted Single-molecule Imaging analysis), an open-source software package using MATLAB (but also 

available as a runtime version) which incorporates Python and C++ routines. The Deep-LASI software offers 

both manual and automatic analysis environments for a wide range of one-, two- and three-color single-

molecule experiments [21]. The features of the program include mapping of multiple detection channels, 

extraction and background correction of one-, two- and three-color FRET data, trace classification and 

selection of relevant time points for the analyses, determination of the correction factors for the calculation 

of accurate FRET efficiencies, histogram generation of various parameters and kinetic analyses using Hidden 

Markov Models (HMM) and neural networks. Deep-learning techniques are emerging in virtually all data-

driven fields and are having a big impact in the life sciences, in particular in microscopy [22-27]. Inspired by 

these developments, we incorporated deep-learning to help in trace classification. determination of the 

relevant regions of relevant traces, automated FRET correction and kinetic analyses.  

Deep-LASI supports various data file formats with extendible support to read-in new formats into the program. 

Although originally written for smFRET data, the software is adept at handling any data as long as it results in 

time traces. Furthermore, the program offers environments for simulating and training single-molecule time 

traces. We also provide example datasets and tutorials to quickly gain proficiency in using the software [28]. 

 

Results and Discussion 

Deep-LASI is a user-friendly software package with a high degree of automation and compatibility for the 

analysis of time-resolved single-molecule intensity traces. It is designed to help with the data analysis of one-, 

two- and three-color FRET experiments with interactive graphical user interfaces (GUIs) to provide enough 

freedom so that the user can extract the desired information based on their analysis needs. The source code 

is available such that the program can be adapted and further developed by expert users and software 

developers [29]. A description of these program features is given in the following sections.  

The information to be extracted from the intensity traces of single molecules and the necessary steps will vary 

depending on the measurement assay and question of interest. An overview of the most common procedures 

in single-molecule data analysis is summarized in Figure 1. The main analysis steps include reading-in the raw 

data, mapping the detection channels, (co-)localizing the particles and extracting the intensity information 

over the measurement time. In the next step, the software allows for classifying traces, determining usable 

regions within each time trace, plotting the distributions of the extracted parameters (such as FRET values, 
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labeling stoichiometry, or dwell-times), calculating the necessary correction factors and performing a kinetic 

analysis in the case of a dynamic system. In the case of the kinetics analyses, Transition Density Plots (TDP) are 

automatically generated and provide access to the Cumulative Dwell-Time Distribution functions (CDFs).  

 

Figure 1. Overview of the functionalities of the Deep-LASI software package. The main applications of the software 
package are to extract, sort and analyze intensity traces from single-molecule data. This process involves a series of key 
steps: (a) For multicolor experiments, the different channels need to be register to each other (i.e. mapped). Afterwards, 
the raw data is read-in for each channel from a stack of frames based on the excitation scheme. (b) Single molecules are 
localized and, when desired, co-localized across different channels based on the created map. (c) The intensity traces are 
extracted from each detected (and co-localized) particle and corrected for background. (d) The analysis of extracted 
intensity traces starts with trace classification and selection of the useful region of each channel where the corresponding 
fluorophores are active. (e) The results can then be visualized by the means of various histograms with frame-, state- and 
molecule-wise approaches. (f) Optionally, the method-specific correction factors are determined. (g) For dynamic traces, 
a kinetic analysis can be performed by Hidden-Markov Modeling (HMM) or deep learning approaches. The panels show 
a typical Viterbi path created by HMM and Transition-Density Plots (TDP) with state transition information and the 
cumulative dwell-time distribution function (CDF) determined by fitting, respectively. 
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Deep-LASI also offers the opportunity for expert users to simulate multi-color single-molecule FRET traces and 

to train neural networks for new single-molecule assays. To ensure flexibility and accessibility overall, the 

extracted and analyzed data can be saved and reloaded at any time, and can be additionally imported and 

exported, from and into standard data files. In the following section, we discuss the individual working steps 

and underlying mechanisms that define the program’s functionality. 

 

1. Main functionalities of Deep-LASI  

Typically, the initial step in analyzing single-molecule experiments involves read-in the raw data. The most 

elaborate features of the program are designed to work with images or movies from cameras like emCCD 

(electron-multiplying charge-coupled device) or sCMOS (scientific complementary metal oxide 

semiconductor) cameras. However, it also accommodates the direct read-in of custom, non-image data file 

formats encoding a time series (Figure 2; blue boxes). For detailed information and the latest list of supported 

file formats, please refer to the Online Tutorial available for Deep-LASI on Read the Docs [28].  

 

Figure 2. Schematic representation of the data handling workflow using the Deep-LASI software. The blue boxes show 
the raw movie data and intensity trace files that can be loaded into the program as well as the saving routines for storage 
and export of the analyzed data. The green boxes show the initial steps for data extraction and preparation with the 
Deep-LASI software. The pink boxes summarize the tools for data analysis and representation of results available through 
both manual and automatic modalities.  

Given the diversity of fluorescence-based assays and methods resulting in time traces suitable for analysis 

through Deep-LASI, we will focus on the main functionalities of the program. This includes importing data files, 

detecting and mapping molecules, extracting traces, calculating background, and manually or automatically 

sorting the collected data (Figure 2; green boxes). Following these steps, the software provides a set of 

different tools to spectrally correct, kinetically analyze and summarize the single-molecule data (Figure 2; pink 

boxes). These tools can be used for (1) determining correction factors, (2) plotting representative properties 

of the results via their distributions (e.g. of apparent or accurate FRET values of single molecules, of states or 

frames), (3) allowing unsupervised, kinetic analysis of selected regions of the appropriate traces using hidden-

Markov modeling (HMM) or deep-learning algorithms and, finally, (4) visualizing the data using TDPs and CDF 

plots. For an in-depth understanding of each feature, including the algorithms involved, the philosophy behind 
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the Graphical User Interfaces (GUIs), and tutorials featuring specific analysis examples, please refer to the 

comprehensive software documentation and manual [28]. 

 

Channel mapping 

For multiple-color experiments using separate detection channels, a registration of the different detection 

channels is needed. When measuring at different wavelengths, perfect alignment between channels in terms 

of shift, magnification, and rotation can be challenging and time-consuming. Hence, a mapping process 

between cameras or regions of interest is required to ensure that the fluorescence signatures visible in the 

different channels originate from the same immobilized molecule. When performing fluorescence-based 

single-molecule experiments using imaging, the optimal pixel size is usually in the range of 40 - 100 nm. Thus, 

the fluorescence emitted by a single molecule spans multiple pixels and alignment within a single pixel is 

sufficient. The mapping is performed using a set of emitters well distributed across the detectors’ field of view. 

We commonly employ a zero-mode waveguide pattern or a surface covered with emitting or scattering 

particles, such as fluorescent beads. Alternatively, mapping can be accomplished using the actual single-

molecule data. One channel is selected as a reference channel. Our software then utilizes a phase-correlation 

algorithm to estimate the geometric transformation necessary to align the other channels to the reference 

image (Figure 3a)[30]. This geometric transformation involves scaling, rotation, and translation of the read-in 

images. Individual emitters are detected based on a user selected threshold and their localizations are utilized 

to further refined the mapping using a 2D polynomial of order up to 3. The prerequisite for this refinement 

operation is the colocalization of individual particles within 2 pixels after application of the geometric 

transormation. Their positions are determined using a stationary wavelet algorithm with adjustable sensitivity 

[31]. A transformation matrix is generated, which is then used to map the respective coordinates between 

channels. The mapping step corrects small misalignments between the cameras originating from tilts and 

shifts of cameras, different magnifications as well as aberrations in the detection paths. Notably, the mapping 

function is only used to find the corresponding pixels in the various detection channels corresponding to the 

location in the reference channel. The actual single-molecule analysis is performed separately on the raw data. 

No mapping of the images via the transformation matrix is performed except for inspection of the quality of 

the transformation matrix.  
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Figure 3. Particle detection, localization, and mapping. (a) Mapping process with Deep-LASI for multi-color experiments: 
A reference channel is chosen and all other channels are registered with respect to the reference channel. Here, the 
chosen reference channel is the blue channel. (b) Deep-LASI first opens the images registered on a specific camera and 
segregates the detection channels according to the excitation scheme. Here we show the BB, YY and RR channels. To 
identify the position of single emitters, we use the cumulative image taken from the direction excitation frames for the 
respective channels. (c) To calculate the measured intensity coming from a detected particle, a mask function is selected. 
We typically use a particle detection mask having a circular geometry of 7 pixels in diameter. The outer dark ring with a 
width of 2-pixels is used to determine the background contribution.  

Loading imaging data collected using various excitation schemes 

Once the detection channels have been mapped onto each other, the actual single molecule data one wishes 

to analyze is loaded. Upon loading the data, the frames are segregated based on the excitation scheme used 

(when necessary). For accurate smFRET experiments using camera based data acquisition, it is advantageous 

to use millisecond alternating laser excitation (ALEX) schemes [5, 32]. For two-color experiments, alternating 

frames are collected using donor and accepter excitation respectively. Acceptor excitation is used to probe 

the presence and photoactive state of the acceptor molecule enabling the calculation of labeling 

stoichiometry. However, frames with acceptor excitation have to be excluded when calculating the FRET 

efficiency. When expanding to three-color experiments, ALEX is essential for analyzing the data and three 

excitation lasers are alternated respectively. There are also experiments where one wishes to detect the 

presence of one color at the beginning of the experiment, but then performs a smFRET experiment with 

different colors. One example would be measuring the conformation of DNA using smFRET in the absence or 

binding of a DNA-binding protein, which is labeled with a third color. In this case, the first few frames are used 

to detect the presence of the third color at the beginning of the measurement and used for selecting the traces 

that are to be analyzed. The remainder of the selected traces are then used to extract the smFRET information.  

Typically, a series of consecutive measurements is performed using the same measurement parameters 

(excitation scheme, detection channels, exposure time, etc.) to gather sufficient statistics. This results in a 
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collection of data files originating from each camera. To initiate the analysis of the entire experiment, the 

Deep-LASI read-in process begins by collectively selecting all files from a single camera at once, usually starting 

with the most blue-shifted detection channel. Next, the first movie of the chosen file set is loaded. Here, the 

user is prompted to define the frame range, excitation sequence, and detection channel. Next, a cumulative 

intensity is displayed over the user-selected range (Figure 3b) in order to facilitate a user-friendly, interactive 

parameterization for the trace extraction. The loading procedure is then repeated for the corresponding 

movies of the remaining channels. The detection method and threshold for each detection channel are then 

determined. In the last step, the extraction parameters are then provided by the user: particle and background 

mask (Figure 3c), molecule selection criteria and the frame range used for extraction. Once the detection and 

extraction thresholds are established for all channels, the corresponding sets of files are sequentially loaded 

and single molecule traces are extracted according to the given selection mode: Deep-LASI extracts the 

trajectories either (1) for all detected molecules, (2) for colocalizing molecules only, or (3) for molecules 

detected in a given detection channel. At this point, all the extracted traces from the experiment are saved 

into a single datafile with a filename adapted from the first movie filename with the extension of .tdat.  

 

Particle detection  

To extract single-molecule trajectories, Deep-LASI provides three different techniques for single-molecule 

localization. For each technique, a sensitivity threshold is applied based on the normalized metrics of the 

wavelet coefficients or intensity values. Based on the selected threshold, a binary image is generated that 

encodes the detected particles. The position of each particle is determined by the center of mass of the pixels 

associated with the particle. 

Wavelet. Wavelets are filters that can be applied to images (or time series) to enhance features with particular 

spatial (or temporal) frequencies. As the fluorescence signal coming from single molecules are diffraction 

limited, the detected fluorescence should be symmetric with the size given by the point-spread-function. By 

applying different wavelet filters, the original image is decomposed into a finite number of wavelets where 

particular spatial features are enhanced and others suppressed. More specifically, by mathematically applying 

low-pass and high-pass filters on the signal and repeating the procedure, a set of wavelet planes are generated 

at different resolutions [33-35]. Based on the median absolute deviation of the wavelet coefficients for each 

plane, unsignificant features are removed automatically.  

Intensity Thresholding. Another approach is to use intensity thresholding to detect molecules emitting 

intensities higher than a user-defined level. When enough adjacent pixels are above the threshold, the area 

would be considered as a particle and the central point taken for trace extraction. This rather easy method 
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works well as long as the signal and background are homogenous over the field of view and the signal from 

the molecules is sufficiently stronger than the background.  

Regional Maxima. An alternative method based on intensity thresholding is the regional maxima approach. 

With this method, a Gaussian filter of nine pixels is first convoluted with the image and then the MATLAB 

function imregionalmax is used to find the local maxima. This is done by locating pixels where all eight 

neighboring pixels have lower intensities. It then returns all the regional maxima pixels as a binary mask to be 

considered as single emitting particles. The pixel intensities that are below the user-defined threshold are set 

to zero to allow adjustment of the overall sensitivity. This selection criteria has an advantage over normal 

intensity thresholding when analyzing data with heterogeneous single-to-noise within a frame. 

 

Trace extraction 

From the binary image generated from the detected particles, the particle positions are extracted using the 

MATLAB in-built function regionprops. This calculates the centers-of-mass for connected pixels. Using the 

central position of the individual particles, the particle mask (Figure 3c) is then used to determine the total 

number of detected photons for the particle as well as the background contribution. Typically, we use a circular 

particle mask with a diameter of 7 pixels. The size is chosen to optimize collection of photons within the point-

spread-function of the molecule while minimizing the inclusion of addition pixel and hence potential overlaps 

between neighboring particles. The user can also adjust the particle mask settings based on their specific 

needs. 

The particle positions are then linked in consecutive frames to generate time trajectories. To extract the 

intensity traces from each detected single emitter, frame-wise intensities for each channel are determined, 

and plotted over the whole measurement or selected frame range.  

 

Background determination 

The size and shape of the particle mask surrounding each particle’s point-spread-function (PSF) (Figure 3c) and 

the method of background determination have a considerable impact on the signal-to-noise ratio, the quality 

of traces and, finally, on the resulting histograms. There are multiple approaches to background correction. 

Fortunately, the number of pixels that can be used to calculate the background intensity far outnumber the 

number of pixels within the PSF and hence can be subtracted with high accuracy. Deep-LASI extracts frame-

wise intensities for each molecule detected in the various channel(s). To avoid any potential heterogeneity 

from the illumination profile, a non-constant background level within a frame or differences between cameras, 

the background signal is calculated and subtracted from the accumulated intensity within each particle mask. 

At any time during the analysis, the user can view the raw intensity traces without background subtraction. 
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As the signal is averaged in the background mask, no molecules should be present in region used for 

determining the background. For densely populated surfaces, the default mask can be adjusted, e.g. by 

reducing the radius of the mask. To decrease the uncertainty in the background estimation, the background is 

measured in approximately twice as many pixels as the signal. In addition, as the background does not typically 

change strongly with time, an eleven-frame sliding window (± five frame) is used to average the background 

value. The average background signal (scaled to the number of pixels in the particle mask) is then subtracted 

from the total measured intensity. The total measured intensity and the local background are determined for 

each frame and the background corrected intensity traces stored. By visually checking the intensity level of a 

trace after photobleaching of all fluorophores, the quality of the background subtraction routine can be 

controlled.  

 

Trace Read-in Options 

At this point in the analysis, one has extracted and saved the single-molecule time traces from one or more 

channels for a given excitation scheme. Here, it is also possible to reload the traces as well as to directly import 

intensity traces extracted using other software for any type of single-molecule time-series data. Several data 

importing options are incorporated include ptu, hdf5, npz and txt files. For example, we have also used Deep-

LASI to analyze single-molecule intensity traces collected one at a time on a confocal microscope [21]. The txt 

file format is provided [13, 28] such that users can convert their data into a format that can be read into Deep-

LASI.  

 

Analysis Options 

Deep-LASI offers diverse tools for analyzing and presenting information derived from single-molecule time 

traces, irrespective of the methods employed for data acquisition, ranging from one- to three-color 

measurements: the software facilitates both manual and automatic processes for (1) trace categorization into, 

for example, usable static and dynamic traces, and (2) selection of specific regions within individual traces for 

further analysis. Additionally, (3) Deep-LASI provides an overview of parameters characterizing selected 

regions in the intensity traces including brightness, background intensity, signal-to-noise ratio and 

photobleaching time. Beyond these basic functionalities, Deep-LASI supports manual and automatic analyses 

of one-, two- and three-color FRET assays. Moreover, the software enables (4) extraction of kinetic information 

from dynamic traces. Two distinct approaches are available for kinetics analyses: the first involves 

conventional hidden Markov modeling (HMM) with selectable algorithms for up to three channels, as detailed 

below [36, 37]. The second approach employs neural networks for automated data analysis wherein Deep-

LASI outputs a confidence level of the time trajectory being in a specific state for each frame. In addition to 

140



 12 

kinetic analyses, Deep-LASI allows for (5) obtaining accurate FRET efficiencies by extracting the necessary FRET 

correction factors from the data. Lastly, the software provides (6) state-of-the-art tools for summarizing the 

FRET states and kinetics extracted during the analysis. These include histograms illustrating distributions of, 

e.g., FRET efficiencies (apparent and accurate FRET) of static and dynamic traces, stoichiometry, or FRET 

correction factors. Furthermore, Deep-LASI provides transition density plots (TDPs) and cumulative dwell-time 

functions (CDFs) for summarizing the kinetics information found in the single-molecule data.  

The subsequent paragraphs provide a brief introduction to manually using Deep-LASI for categorizing single-

molecule traces, selecting regions and analyzing static experimental parameters. Subsequently, we discuss 

how to obtain accurate FRET measurements and extract kinetic information from single-molecule data.  

 

Trace categorization and static analysis 

After extracting or loading single-molecule traces, the next step involves the categorization and sorting of the 

molecules. In a typical single-molecule experiment, the dataset can easily comprise several thousands of 

traces. Many of the traces may be non-informative due to rapid photobleaching, the presence of aggregates, 

incomplete labeling or inadequate signal-to-noise ratios. Hence, the primary objective in trace categorization 

is to select the suitable regions of appropriate traces for further analysis. This starts by separating out traces 

that are unsuitable. For this, Deep-LASI provides dedicated panels and GUIs for systematically reviewing and 

categorizing traces (see Figure 4a). Typical categories include “static”, “dynamic”, and “trash” although users 

have the flexibility to add custom categories as needed for their experiment. Furthermore, Deep-LASI 

facilitates the sorting of traces based on the number of photoactive fluorophores by considering which 

fluorophores are active in each frame. For two-color FRET assays, for instance, traces can be sorted into 

categories like “donor bleach” and “acceptor bleach”, which proves instrumental in determining FRET 

correction factors at a later stage. Notably, users have the flexibility to assign multiple categories to individual 

traces, allowing classifications such as “static” and “acceptor bleach” simultaneously. This functionality 

becomes particularly advantageous in three-color FRET experiments where additional statistics for FRET 

correction factors can be obtained from analyzing constructs that contain only two of the three fluorescent 

dyes. 
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Figure 4. Single-molecule trace analysis of 2c FRET data with the Deep-LASI software. (a) The analysis of extracted traces 
begins with categorization based on the (1) underlying single-molecule assay, (2) numbers of dyes, (3) trace quality, (4) 
photochemistry involved, and (5) dynamic information available. (b) Two exemplary intensity traces are shown for two-
color smFRET measurements using the ALEX scheme. (Top) A molecule exhibiting fluorescence only from the donor 
fluorophore and (bottom) a dual-labeled dynamic molecule. The donor signal (green), sensitized acceptor emission 
(orange) and direct acceptor excitation (red) are shown. Shadowed regions in green and red mark the selected regions in 
each detection channel to be considered in further analyses. (c) Deep-LASI offers an overview of information from 
selected regions of the single-molecule traces. In addition to FRET, it displays molecule-wise histograms of signal (Sig) 
and background intensities (Bkg), brightness (Hz), signal-to-noise ratio and photobleaching time (s) with the 
corresponding fits. The histograms shown are for green detection after green excitation. (d) SmFRET histograms of (top) 
a static sample and (bottom) a dynamic sample interconverting between two states characterized by low and high FRET 
efficiencies. The apparent FRET efficiency of the sample is depicted frame-wise (orange), molecule-wise (blue) and state-
wise (bottom panel, dark green). (e) Distributions of the FRET correction factors are shown, which are used to correct for 
direct excitation, spectral crosstalk and differences in detection sensitivity (gamma) for a simulated two-color smFRET 
sample. The median values of each histogram are indicated as a blue line.  

In the second step of the characterization procedure, it is necessary to mark the regions of the useful traces 

to be included in further analyses (Figure 4b). Selection of the desired regions is possible with an activated 

cursor on the intensity trace panels. The selection can be general to define the regions in all channels to be 

included in the final histograms or kinetic analyses, or can be specific to each detection channel (shaded in the 

corresponding color) for determining individual photobleaching steps and regions to be used for the 

calculation of FRET correction parameters later on. Once correction factors have been estimated, users can 

choose to visualize the data at the level of apparent or accurate FRET. Correction factors are used to account 

for donor leakage into the acceptor channel, direct excitation of the acceptor, and differences in detection 

sensitivity of the donor and acceptor molecules. In addition, the individual intensity traces can be displayed 

with or without background correction. 
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Statistical overview of selected traces 

The Deep-LASI software offers the possibility to evaluate and visualize the characteristics of selected frames, 

traces and, ultimately, the analytical results. From the first interface, the fluorescence properties of the 

different fluorophores can be assessed (Figure 4c). For EMCCD cameras, the characteristics of the 

amplification can be included to convert the camera counts to approximate photon numbers (otherwise, the 

signal in camera counts will be plotted). These distributions showcase the total signal until photobleaching 

(number of photons), the total signal and mean background per molecule (in kHz), the background-corrected 

brightness for the corresponding channels (in Hz), the individual signal-to-noise (SNR) ratios and the time until 

photobleaching of the respective fluorophores (in s). The histograms for each channel are automatically fitted 

to mono-exponential or Gaussian functions. The fit results are given in the respective panels.  

 

Single Molecule FRET Analysis 

In our research group, we focus on the single-molecule FRET experiments and evaluation. Hence, parts of the 

software are specialized for smFRET analysis from experiments carried out on immobilized molecules. With 

FRET, it is possible to investigate structural properties or dynamics due to FRET's strong dependency on the 

distance between fluorophores [8]. From the selected regions of the corresponding molecules, it is possible 

to calculate the apparent FRET efficiency histograms, that is the FRET efficiency determined from background 

corrected intensities without any further corrections. These can be plotted for each frame and molecule 

(frame-wise) or averaged value determined individually for each molecule (molecule-wise) Figure 4d. Frame-

wise FRET histograms contain all FRET values obtained across different molecules and frames, giving a 

comprehensive projection of accessible FRET states in the sample from all selected molecules (Figure 4d, 

orange line). Alternatively, the molecule-wise (or trace-wise) histogram reports an average FRET value for each 

single molecule over the selected frame range (Figure 4d, blue line). Notably, for static samples, molecule-

wise and frame-wise histograms will coincide whereas, for dynamic molecules, they will not. To overcome this, 

it is possible to plot histograms state-wise when analyzing dynamic traces (see dynamic analysis below; Figure 

4d, lower panel, green line).  

To capitalize on the ability of FRET to measure distances accurately on the sub nanometer regime, it is 

necessary to correct the apparent FRET efficiency for direct excitation of the acceptor, spectral crosstalk of 

the donor fluorophore into the acceptor channel and variations in detection sensitivity to the various 

fluorophores. Depending on which molecule photobleaches first, it is possible to determine a subset of the 

correction factors directly from the individual traces. In the case where the donor undergoes photobleaching 

before the acceptor, the software calculates the direct excitation correction factor using the residual emission 
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of the acceptor directly excited by the donor laser excitation (Figure 4e, top panel). Conversely, if the acceptor 

photobleaches before the donor molecule, the spectral crosstalk correction factor is determined as the 

residual donor emission detected in the acceptor channel (Figure 4e, middle panel). After correcting the trace 

for direct excitation and spectral crosstalk, the same trace can be used for determination of the detection 

efficiency correction factor from the ratio of the changes in acceptor and donor intensity after the acceptor’s 

photobleaching step (Figure 4e, bottom panel). Once all individual traces are assessed for possible correction 

factors, the distribution is plotted and the software computes the average, median and mode of the 

distribution for each correction factor and dye pair. For accurate estimate of the various correction factors, a 

minimum number of continuous frames after photobleaching step should be included (we use a minimum of 

20 frames). To kick out spurious values from the distributions, a maximum tolerable value for all correction 

factors can be entered.  Values above the maximum will not be included in the calculation of the average, 

median and mean. The correction factors that cannot be determined directly from the traces are taken from 

the distribution (referred to as global correction factors,). We typically use the median of the distribution as it 

was found to be most robust given typical statistics, but the average or mode can also be selected (Figure 4e). 

The user also has the option to use the global correction factors for all traces or to enter the values individually 

for each trace. Once the correction factors are determined, accurate FRET values as well as distances can also 

be displayed. These together with additional parameters such as stoichiometry and FRET efficiencies (both, 

accurate and apparent FRET) can be viewed in a second interface. All histograms can be normalized and/or fit 

to a wide variety of functions. 

 

Machine-learning analysis of dynamic trajectories 

To analyze dynamic samples, additional functionalities are available in the Deep-LASI software. One can chose 

from two HMM analyses (Kevin Murphy [37] or Pomegranate [36]) or automatically via deep neural networks 

(DNN) [21] (Figure 5a). The results provide an estimation of the underlying states and kinetics within the 

individual trajectories. Hence, one generates in the end a "digitalized" version of the state pathway, which 

allows determination of the transition rates via the calculated dwell-time distributions.  

Hidden Markov Modeling can be performed on 1-color, 2-color and 3-color data. For each data type, the FRET 

efficiencies or the intensities can be used as input. The number of states, mean values, standard deviations 

and the transition matrix can be initialized either using prior knowledge of the user, random uniform 

distributions or estimations based on k-means clustering. Other adjustable model parameters include the 

convergence threshold, the maximum number of iterations and the choice between local or global HMM. Local 

HMM creates a new model for each trace, whereas a global HMM utilizes one model (rates and states) for all 

traces of a selected category. Like other analysis tabs, this analysis can also be exploited on any desired 

category(s). The states and kinetics of 1-color and 2-color data are straightforward to model, as they inherently 
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represent distances in only one dimension. In 3-color FRET experiments, distances can be extracted in three 

dimensions by combining the FRET efficiencies of all fluorophore pairs. However, 3-color FRET is complicated 

by the strong interdependence of the FRET efficiencies and the numerous correction terms that are necessary 

to convert the apparent FRET efficiencies to actual distances. These corrections introduce significant 

uncertainties, making it difficult to properly model the system using HMM and identifying state transition. 

Therefore, The software focuses on using apparent FRET efficiencies and uncorrected intensities to accurately 

analyze 3-color FRET kinetics, treating the states of a given molecule as unique combinations of FRET 

efficiencies or intensities [38]. This is achieved by employing multivariate HMM, where each trace is 2-

dimensional and each observation is a multivariate vector. In case of 3-color FRET, the multivariate vectors 

can contain either the three FRET efficiencies or the five intensity channels that are relevant for determining 

the kinetic information. Direct excitation of the last acceptor is excluded as it provides no kinetic information. 

Regardless of the number of colors, the software provides the option to use HMM on traces that were 

manually selected or classified by a deep neural network. 

After running the HMM, multiple corresponding panels with the number of states, state values and transition 

probability matrices are updated. These will depend upon the executed mode, i.e. local or global. Figure 5a 

shows an example of a dynamic, two- state system with independent transitions between these states. One 

the trace panel of the HMM tab, the individual traces and their corresponding Viterbi path are shown (Figure 

5b, top panel). One can click through all traces present in the selected category to check the accuracy of the 

predicted states and transitions sequences.  

DNNs can also be used for the kinetic analysis after the state classification step has been performed (.e.g Figure 

5b, bottom panel). Here, there is the option to run a "number of states" classifier to determine the predicted 

number of states observed in each trace (Figure 5c, left panel). The user can then run a particular state-

classifier model (i.e. for 2 states, 3 states or 4 states) on the selected data or use the output of the "number 

of states" classifier to automatically use the corresponding model for state assignment. The software plots the 

average confidence level for the state assignment over the individual traces (Figure 5c, right panel). For the 

example shown here, the software is very confident regarding the existence of two states and their 

corresponding state assignments.  

After running the machine learning approach of choice (i.e. HMM or DNN), a digitalized state pathway is 

generated for each trace. This allows one to calculate a state-wise distribution from the state trajectories 

(Figure 4d, bottom panel, green line). The state-wise trajectories can be plotted normalized to the number of 

transitions or weighted by the number of frames contributing to each state. To analyze the underlying 

dynamics, the Deep-LASI software utilizes transition density plots (TDPs) to visualize the detected transitions 

between initial and final states within the data (Figure 5d, left panel). From the TDP, the number of states, 

their corresponding values (e.g. FRET efficiencies), their connectivity and the number of transitions between 
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different pairs of states. Transition rates can be obtained directly from the output of a global HMM analysis. 

Alternatively, they can be calculated by selecting individual populations in the TDP and then fitting the 

corresponding dwell-time distribution (Figure 5d, right panel).  

 

 

Figure 5. Kinetic analysis with the Deep-LASI software. (a) Left: Schematic representation of a two-state dynamic FRET 
system with the transition rates (kij) between the two states. Right: The software extracts the dynamic interconversion 
rates between the states through an HMM analysis or via state probabilities derived using a deep-learning algorithm 
based either on the measured FRET values or on the intensities directly. (b) Results of a kinetic analysis for an exemplary 
two-state smFRET trace. Top: The most probable state path (black) generated through an HMM analysis (i.e. the Viterbi 
path) or via the neural network and (bottom) the corresponding state probabilities. (c) For an automated kinetic analysis, 
the neural network identifies the most likely number of detected states in each individual trace (left panel). The state 
path is then determined based on the number of detected states and a histogram of the average confidence of the 
assigned states in each trace is given (right panel). (d) Left: To extract the underlying dwell times and kinetic rates, TDP 
are generated. By selected individual clusters in the TDP, which summarize transitions of dynamic molecules from an 
initial to a final FRET state, the dwell time distribution for the cluster is calculated. Right: The corresponding cumulative 
Dwell-Time Distribution function for the selected population shown on the left.  

 

Automatic Analysis 

The analysis of single-molecule data, especially for molecules immobilized on a surface, usually takes days or 

weeks, even for a single day of measurement and is prone to bias from the person analyzing the data. In 

addition, due to the time necessary for obtaining a reasonable amount of statistics, the parameter space that 

can be analyzed via such experiments is limited. To overcome such issues, automatic analysis tools using 

trained deep neural networks are available in the Deep-LASI software. Hence, each step of the analysis 

workflow described for manual evaluation above can be performed automatically. DNNs are available for trace 
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classification (with region selection), number of state determination and state trajectory analyses, and can be 

applied individually. In addition, the entire workflow from sorting and categorizing time traces, determining 

the photobleaching steps, calculating method specific correction factors, and state pathway determination 

can also be done automatically with the click of a single button [21]. After running the automated analysis, the 

workflow continues with evaluation of the TDPs by selecting clusters and fitting their dwell time distributions. 

On typically smFRET measurements with 4000 frames, the automated analysis is performed within 20-100 ms 

per intensity trace and has been implemented for one-, two- and three-color data. 

Currently, we have tested the Deep-LASI software on DNA origami structures as well as protein systems [21]. 

However, the number of possible sorting categories and traces characteristics that the DNN has been trained 

on is not exhaustive. Therefore, for advanced users, the Deep-LASI software has the option to simulate one-

color single molecule data as well as two- and three-color smFRET traces. In addition, the simulated data can 

also be used to train new neural networks, if desired.  

 

2. Additional attributes of Deep-LASI 

The motivation for designing and publishing Deep-LASI was manifold. We wanted to develop a software 

package for the community that (1) is easy to use for everyone independent of their scientific maturity or 

disciplinary background, (2) contains a high degree of automatization with respect to data extraction and 

analysis to save time and remove user bias, (3) is compatible with other single-molecule methods and setups 

with temporal resolution and (4) provides state-of-the-art tools for analyzing single-molecule trajectories. In 

addition, the program should provide (5) advanced tools for analyzing experimental data from multi-color 

FRET experiment up to three-colors (and potentially up to four in the future). These include the ability to 

simulate single-molecule data and train new machine learning approaches (HMM and neural networks) that 

are extendable for future single-molecule assays. Here, we summarize these general aspects of the developed 

software package Deep-LASI. 

 

Ease-of use / User friendliness 

To make the software easily accessible to a broad range of users and establish a universal analysis 

environment, Deep-LASI was designed to be easy to learn with a clear workflow. Each step in the workflow is 

accompanied with its own graphical user interface (GUI) guiding the from reading-in the raw data over data 

extraction and analysis to visualization of the results. After each step of data processing and analysis, it is 

possible to save the current status of the project, giving the user complete freedom to stop the analysis and 

resume at a later point in time. The resulting parameters and plots can be exported to external programs for 

presentation or publication purposes.  
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Automation 

Gathering sufficient statistics in single molecule experiments requires collecting data from thousands of single-

molecules. Hence, the Deep-LASI software can read-in hundreds of consecutive movies and extract the single 

molecule traces automatically after the conditions have been determined for the first movie. As data 

extraction and evaluation can be performed without supervision, new analyses and experiments are now 

realizable. For example, it is now possible to utilize more of the collected information such as also analyzing 

partially labeled molecules or performing a series of measurements as a function of experimental conditions 

that would be otherwise unthinkable when performing a manual analysis.  

 

Compatibility 

Although written for the analysis of smFRET data, Deep-LASI is applicable to all single-molecule experiments 

that end up measuring time traces independent of the setup and raw data file format. The program is 

compatible with ALEX excitation schemes as well as a non-ALEX excitation for two-color experiments and can 

read-in diverse file formats such as tif, ptu, hdf5 and npz. It is also possible to import other file formats by 

converting them in to a pregiven txt format [13, 29]. Notably, for measurements with significantly different 

noise characteristics than those encountered in fluorescence-based methods, the currently incorporated 

DNNs may need to be retrained. 

 

Adaptability 

The development of single molecule methodologies is a quickly advancing field and the analysis needs are 

exceedingly dynamic and often specific for each single project. Accordingly, it should be possible to easily 

modify and adapt the analysis approaches. Therefore, the source code for Deep-LASI is freely available on the 

GitLab platform where active feedback and comments can be given (e.g., reporting bugs and suggesting 

improvements), and user can contribute new functionalities. This is not only possible, but also appreciated.  

 

Unique Methods 

Deep-LASI combines an easy-to-use manual trace analysis software with state-of-the-art deep neural networks 

for automated data processing of one-, two- and three-color data. Many researchers are exploiting the 

advantages of smFRET but often avoid three-color assays due to the intrinsic complexity of the experiments 

and time-consuming analysis. Thereby, they also miss out on additional information that can be extracted by 

adding another fluorophore to the system. In addition, the only other software we are aware of for manually 

analyzing multi-color smFRET traces is SMACKS [18, 39]. Unique features of Deep-LASI are the automated 
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analysis of state pathways in kinetic data, and its ability to automatically analyze three-color smFRET data and 

extract absolute distances. 

 

3.  Application of Deep-LASI software on Experimental Data 

Having introduced the Deep-LASI software, we now showcase its application to real three-color experimental 

data. For this, we show the results from experiments on a previously published L-shaped DNA origami 

structure [21]. The L-shaped origami structure contains a flexible tether that can bind to three distinct states 

(Figure 6a). The tether is labeled with Cy3B at the 3’-end and can bind to protruding strands placed at positions 

referred to as 6, 9 and 12 o'clock. The binding sites consist of complementary ssDNA strands of 7 nt length at 

6 and 12 o'clock and 7.5-nt length (i.e., a strand with 8 nt and 1 bp mismatch) at 9 o'clock. Binding of the 

tether occurs by spontaneous base-pairing with the single-stranded protruding strands. To monitor the 

movement, we introduced two additional fluorophores Atto488 and Atto647N on the structure close to the 

complementary strands at 6 and 12 o’clock positions, respectively. 

Data were collected using a three-color ALEX scheme of blue, green and red excitation and collected on three 

separate EMCCD cameras. Approximately 8,000 traces containing all three fluorophores were extracted from 

100 movies. Using the automated neural network analysis, a trace classification was performed. The 

distribution of classes is shown in Figure 6b. Of the 7,990 traces extracted from the data, a dynamic 

classification was most probable for 740 (or 9%) of the trace, which were then utilized for further analyses. 

Figure 6c shows a representative single-molecule dynamic trace alongside with the apparent FRET efficiencies 

and kinetic analysis. From the selected traces, the software provides an overview of various parameters. Here, 

we show the total number of photons, the signal intensity and background, the brightness, the signal-to-noise 

ratio for the BB, GG and RR channels as well as the time until the photobleaching of the corresponding 

fluorophore (Figure 6d). When the measurement is of sufficient quality, one can proceed with the analysis. 

Next, we analyzed here the regions of the traces selected for determination of the FRET correction factors for 

spectral crosstalk, direct excitation as well as differences in detection sensitivity [5, 6, 8] (exemplified in Figure 

4e for one dye pair). These are necessary for determining accurate FRET efficiencies. As neural networks also 

classify the active fluorophores in each frame, it is possible to extract the maximum number of frames in the 

data that can be utilized for the individual factors. In addition, for three-color samples it is also possible to 

utilize information from the dual-color labeled complexes. Hence, the automated analysis often more accurate 

then the corresponding manually analyzed traces. Traces that exhibit dynamic can then be further analyzed 

using either HMM or deep neural networks. Figure 6c(iv-v) depicts the Viterbi path of FRET efficiencies and 

state-probabilities returned from the deep-neural network for the representative smFRET trace. As discussed 

above, the neural network also generates confidence level histograms (Figure 6e). The left histogram indicates 
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a large number of traces containing dynamics between two of the states and a significant fraction of traces 

displaying all three expected states. The right histogram depicts the average confidence of the neural network 

in assigning the corresponding frames to the two and three states within each trace.  

 

 

Figure 6. Application of the Deep-LASI software for analyzing three-color, three-state single-molecule FRET data. (a) 
Schematic overview of an L-shaped DNA origami structure with three binding positions, which are defined as 6, 9 and 12 
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o’clock. To probe the movement of the tether (labeled with Cy3B), Atto488 and Atto647N are placed near two of the 
binding sites (6 o'clock and 12 o'clock respectively). The inset shows the corresponding kinetic scheme. (b) A pie chart 
showing the distribution of the 7990 traces that have been sorted into the given categories (Static, Dynamic, Noisy, 
Aggregate, Artifact and Other). The 740 dynamic traces have been further categorized based on the number of states 
observed on each dynamic trace. (c) An exemplary single-molecule trace showing the six intensity and three apparent 
FRET traces for the 3-state system. Panel i shows the intensity traces detected in the blue, yellow and red channels after 
blue excitation. Panel ii depicts the intensity traces after yellow and red excitation. Panel iii shows the corresponding 
FRET efficiencies for each of the three dye pairs followed by the Viterbi path (panel iv) and state probabilities (panel v) 
derived by three-color HMM and a deep-learning assisted kinetic analysis respectively. (d) Photostatistics of the three 
individual detection channels. The histograms are automatically fit to a Gaussian or exponential functions and the fit 
parameter reported. Histograms represent the total number of detected photons before photobleaching, the total signal 
and background (normalized to the number of pixels in the particle mask), the background corrected molecular 
brightness, the signal-to-noise ratio and the time until photobleaching of the respective fluorophore. (e) Distributions of 
the FRET correction factors extracted from the data for direct excitation, spectral crosstalk and differences in detection 
sensitivity (gamma) for the GR FRET pair. The mean, median and mode values for each histogram are indicated in red, 
blue and green, respectively. (f) DNN confidence output for the number of state classifier (left) and the state assignment 
classifier (right). (g) Apparent frame-wise FRET efficiency histograms are shown as shadowed plots for each dye pair with 
the three efficiency populations for the BG, BR and GR pairs. The frame-wise weighted, state-wise corrected FRET 
histograms are outlined in black. (h) TDPs are shown illustrating the transitions detected for all three dye pairs using 
apparent state-wise FRET efficiencies. Panel A is reproduced under the terms of the Creative Common CC-BY 4.0 
License[21]. Copyright 2023, The Authors. Published by Springer Nature. 

After completing the analysis, the results can be summarized using various tools. For the smFRET data shown 

here, we compare the frame-wise apparent FRET efficiency histograms (colored) and state-wise corrected 

FRET efficiency histograms (black lines) for each dye pair (Figure 6f). For the BG dye pair, three FRET states are 

well resolved with apparent efficiency values of 0.18, 0.73, and 0.48, corresponding to the states 1, 2 and 3 

respectively. As expected from the design and associated Förster radius values of 53 and 65 Å [40-42], the 9 

and 12 o’clock positions are more difficult to discern for the BR and GR FRET pairs. Nevertheless, the GR shows 

three populations with 0.83, 0.22, and 0.30 in apparent FRET efficiency for the same states 1-3. Although 

applying FRET correction factors in 3cFRET experiments usually results in broadened FRET histograms, the 

neural network correctly extracts the designed state-wise averaged accurate FRET histograms. Having the 

additional dimensions available in 3cFRET, it is possible to distinguishing the three states. Interestingly, as 

expected, the three FRET populations in BR converge into a single FRET state at a FRET efficiency of 0.35 upon 

correction. 

Lastly, the Deep-LASI software enables the creation of TDPs in separate windows for each dye pair (Figure 6g). 

The user can then manually select populations in the plot and fit the resulting dwell-time distributions to 

determine the underlying transition rates between the corresponding states. By fitting the dwell time curves 

(Figure 6h), we identified state residency times of 0.65, 0.69, and 1.40 s for the states 1, 2 and 3, respectively. 

As the same state trajectories exist for each dye-pair, the state transitions can be selected from the TDPs the 

provide the best contrast between the two corresponding states.  
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Conclusions 

In conclusion, Deep-LASI is a software package that allows for a straightforward and rapid analysis of single-

molecule time trajectories. The software supports multiple formats from a variety of methods such as wide-

field and confocal measurements. It allows for the convenient analysis single-molecule data starting with 

multiple-channel registration, trace sorting and categorization, determination of the photobleaching steps, 

calculation of FRET correction factors and kinetic analyses based on HMM or DNNs. Each step can be 

performed manually or automatically. It offers advanced functionalities for handling and interpreting single-

molecule data in one-, two and three-colors such as the quantitative analysis of three-color smFRET data. By 

introducing Deep-LASI, we encourage researchers to exploit the capacities of single-molecule techniques 

without being concerned about the software environment or complicated, time-consuming analysis steps. As 

the field develops, the analysis requirements will change. Hence, the software is open source, inviting 

programming experts to extend the capabilities of Deep-LASI to address the expanding analysis needs of a 

rapidly growing research field. 

 

Availability 

The software is publicly available as source code, requiring MATLAB or a precompiled, standalone distribution 

for Windows or MacOS are hosted in a Gitlab repository under https://gitlab.com/simon71/deeplasi. A 

detailed manual is found at https://deep-lasi-tutorial.readthedocs.io/en/latest/documentation.html. The 

experimental data are provided in the Zenodo database (https://zenodo.org/record/7561162).  
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A blind benchmark of analysis tools to infer
kinetic rate constants from single-molecule
FRET trajectories

Markus Götz 1,20 , Anders Barth 2,21, Søren S.-R. Bohr3,4,
Richard Börner 5,22, Jixin Chen 6, Thorben Cordes7, Dorothy A. Erie8,9,
Christian Gebhardt7, Mélodie C. A. S. Hadzic5, George L. Hamilton 10,23,
Nikos S. Hatzakis 3,4, ThorstenHugel 11,12, Lydia Kisley 13,14, DonC. Lamb 15,
CarlosdeLannoy 16,ChelseaMahn17, DushaniDunukara 13, DickdeRidder 16,
HugoSanabria 10, JuliaSchimpf11,18, ClausA.M.Seidel 2, RolandK.O.Sigel 5,
Magnus Berg Sletfjerding 3,4, Johannes Thomsen3,4, Leonie Vollmar11,18,
Simon Wanninger15, Keith R. Weninger17, Pengning Xu17 & Sonja Schmid 19

Single-molecule FRET (smFRET) is a versatile technique to study the dynamics
and function of biomolecules since it makes nanoscale movements detectable
as fluorescence signals. The powerful ability to infer quantitative kinetic
information from smFRET data is, however, complicated by experimental
limitations. Diverse analysis tools have been developed to overcome these
hurdles but a systematic comparison is lacking. Here, we report the results of a
blindbenchmark study assessing eleven analysis tools used to infer kinetic rate
constants from smFRET trajectories. We test them against simulated and
experimental data containing the most prominent difficulties encountered in
analyzing smFRET experiments: different noise levels, varied model com-
plexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results
highlight the current strengths and limitations in inferring kinetic information
from smFRET trajectories. In addition, we formulate concrete recommenda-
tions and identify key targets for future developments, aimed to advance our
understanding of biomolecular dynamics through quantitative experiment-
derived models.

How does biomolecular function arise from structural dynamics? This
largely unsolved question is central for the understanding of life at the
molecular scale. However, the transitions between various conforma-
tional states have remained challenging to detect, quantify, and
interpret. Over the past two decades, single-molecule Förster reso-
nance energy transfer (smFRET) detection has emerged as a powerful
technique to study the dynamics of single biomolecules under phy-
siological conditions using fluorescence as a readout1. A unique aspect
of smFRET is its ability to link space and time, i.e., to connect structural
with kinetic information under both equilibrium and non-equilibrium

conditions, which is often unachievable using ensemble methods. By
measuring the distance-dependent energy transfer from a donor to an
acceptor fluorophore, distances in the range of 4 to 12 nm can be
measured with sub-nanometer precision and accuracy2. Various
experimental implementations exist that allow one to measure
smFRET on diverse timescales from picoseconds to hours. All of this
makes smFRET an ideal tool in the growing field of dynamic structural
biology3.

To study conformational dynamics of one single molecule for an
extended time (seconds to minutes), dye-labeled biomolecules are
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most commonly immobilized on passivated glass slides and imaged
using camera-based brightfield detection, or confocal detection using
avalanchephotodiodes (APDs)2. The resulting fluorescence time traces
have a time resolution of about 10ms − 100ms for the most common
camera-based studies, and picoseconds for single-photon counting
APDs. The observation time per single molecule is limited by photo-
bleaching, leading to an average bandwidth of less than three orders of
magnitude in time4–6. Conformational transitions of the biomolecule
change the inter-dye distance leading to discrete steps in the fluores-
cence signal and the FRET efficiency (Fig. 1). This desired time-resolved
distance information is convoluted with largely Gaussian noise in the
experiment (from autofluorescence background, detector noise, laser
fluctuations, etc.). Moreover, noise and photobleaching are intrinsi-
cally coupled: increasing the laser power for a better signal-to-noise
ratio causes faster photobleaching, which reduces the temporal
bandwidth of the experiment. As a result, signal interpretation in terms
of biomolecular states and specific transitions between them is not
trivial.

A multitude of analytical approaches have been developed to
infer the number of functional states and quantify kinetic rate con-
stants from noisy experimental data. Frequently, hidden Markov
models (HMMs)7 are used to infer an idealized state sequence from
which dwell-time distributions are compiled, which are then fit (with
exponentials) to obtain kinetic rate constants8,9. Alternatively, the
transition matrix that is part of every HMM can directly be converted
to kinetic rate constants. The HMM formalism is based on a discrete
memoryless Markov process that infers a set of parameters (prob-
abilities of states, transitions, and observations) to describe the
observed sequence of FRET efficiencies. Many extensions of the HMM
formalism have been developed10–15 including Bayesian
approaches16–19, and very fast kinetics (low energy barrier crossings)
can be inferred from single-photon arrival times20–22.

Often, multiple input models are compared based on a scarcity
criterion to avoid bias in the selection of the optimal model size (i.e.,
the number of states and rate constants), andhence the number of free
parameters8,23–25. Other analysis approaches, such as correlation
analysis26–30 and discretization methods based on cluster analysis31–34,
may treat the raw data in a model-free way while the extraction of
individual rate constants (rather than residence times only) still relies
on an initial guess of a model. The growing number of analytical
methods renders it increasingly difficult to decide on the optimal tool

for a specific application and to judge whether the described
improvements justify the time cost of implementation. Hence, it was
identified during a round table discussion of the smFRET community
(Fluorescence subgroup, Biophysical SocietyMeeting 2019, Baltimore,
US) that a critical assessment of the available tools is needed.

Here, we present the results of a comparative multi-laboratory
study that provides a systematic evaluation of eleven analysis tools
(summarized in Table 1) using simulated as well as experimental data
of varied complexity. Three of the analysis tools were utilized under
different conditions, leading to a comparison of 14 different analyses.
While clearly not all existing analysis tools could be covered (new tools
are released continuously), this blind study (illustrated in Fig. 1) allows
us to directly assess the performance of the different analysis
approaches for the inference of kinetic information from single-
molecule FRET trajectories and to identify their strengths and weak-
nesses. Specifically, we assess the accuracy of the inferred kinetic
model (i.e., the kinetic rate constants and their connectivity) plus the
associated uncertainties, and this for kinetic models of varied size,
from the simple caseof a two-state system (Fig. 2) to themore complex
case of a non-equilibrium three-state system (Fig. 3), and finally to
degenerate multi-state systems (Figs. 4, 5). All analyses were per-
formed by the expert labs of each tool to ensure optimal imple-
mentation (see Methods for details).

Results
The archetypal 2-state system
We first consider the simplest case of a kinetic 2-state system, which
could represent alternation between two conformations of a biomo-
lecule in dynamic equilibrium, or transient biomolecular interactions.
The kinetics of this system are described by two rate constants
(Fig. 2a). In a blind study, we analysed simulated and experimental
smFRET data using the diverse set of analysis tools summarized in
Table 1 and detailed in the Supplementary Methods. Simulated test
data (described in Methods) has the advantage that the underlying
ground truth (GT, i.e., the simulation input) is known, which facilitates
the evaluation of the inferred results, while, for experimental data, the
GT is naturally not known. Figure 2b depicts an example of the simu-
lated traces.Wenote that it closely resembles the experimental trace in
Fig. 2e. Based on a dataset of such simulated traces (n = 75), all
laboratories inferred FRET efficiencies (Fig. 2c) and rate constants
(Fig. 2d), which agree very well: the FRET efficiencies deviate by less
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than 17% from the GT (1% average deviation), and the inferred rate
constants deviate with a maximum of 12% from the GT (5% average
deviation), with a slight systematic underestimation inmost cases, i.e.,
the determined rate constants were slower. Pomegranate, FRETboard,
and Step finding infer the most accurate rate constants under the
tested conditions (Table 3). The equilibrium constants K = k21=k12 vary
generally less since systematic deviations balance each other in this
case (Supplementary Fig. 1a). In contrast, the reported uncertainty
measures vary greatly, independent of the analysis type (0.4% to 21%
relative to the inferred rate constant). For comparison, we estimated
the minimal uncertainty given the finite size of the dataset, by quan-
tifying the standard deviation of the rate constants obtained from one
million simulated samples (see Methods). This standard deviation is
≥3% of the rate constants for the provided dataset (gray and light gray
bars in Fig. 2b shown for 1σ and 2σ, respectively). Thus, most analysis
tools reported reasonable uncertainty estimates, while some tools
reported uncertainties that are smaller than this lower limit (Tracy,
Correlation, STaSI) orprovidednouncertaintymeasures (Edgefinding).
FRETboard version 0.0.2 reported consistently very large uncertain-
ties, which was solved in their latest software version 0.0.3 (ref. 35, cf.
Supplementary Datafiles). Step finding version 0.0.1 initially found
erroneously large uncertainties that have been corrected in the latest
software version 0.0.2 (cf. Supplementary Datafiles). We note that

various methods are currently in use for estimating uncertainties
which complicates the direct comparison.

Next, we consider experimental data (see Methods), which natu-
rally contains all typical noise sources and experimental artefacts
(Fig. 2e–g). As there is no GT for experimental data, we assessed the
consistency of the inferred FRET efficiencies and rate constants using
the coefficient of variation (CV, i.e., the standard deviation divided by
the mean). We found excellent agreement for all inferred FRET effi-
ciencies (CV ≤ 2%). The rate constants vary by 12% and 16% (CV for k12
and k21, respectively), consistentwith the variation found for simulated
data (Fig. 2d). Again, no correlation of the rate constants with respect
to the analysis approach is evident, but the tendency of a given tool for
large or small uncertainties is conserved (Fig. 2d, g), with FRETboard
and Step finding reporting the largest uncertainties, and STaSI,MASH-
FRET (prob.), postFRET, and Correlation the smallest uncertainties. In
most cases, the equilibrium constants (Supplementary Fig. 1b) agree
well with each other and with the equilibrium populations of the FRET
histogram, while some results are inconsistent with the latter (Hidden-
Markury, Correlation, STaSI, and postFRET).

One important factor in dynamic smFRET data is the signal-to-
noise ratio (SNR), which depends on the acquired signal per data point
and can be controlled by the integration time (also known as exposure
time). We explicitly tested the effect of a ten-fold shorter integration

Fig. 2 | Quantification of simulated and experimental kinetics between two
states. a Illustration of the kinetic model with two states (circles) connected by
forward andbackward rate constants: k12 and k21.bA simulated FRET trace showing
the donor and acceptor fluorescence intensity (green, red) and the FRET efficiency
(FRET, black), representative for the dataset used in (c, d): n(traces) = 75, n(data-
points) = 59,486, sampling rate = 5Hz, time per datapoint = 200ms. c FRET effi-
ciency histogram (gray) with assigned states on top and inferred FRET efficiencies
in red and blue. Numbers on the right axis refer to the analysis tools specified in (d).
Vertical lines indicate the mean over all tools. Sample size as in (b). The error bars
represent standarddeviations.dRate constants anduncertainties inferred fromthe
dataset in c by different labs using the respective analysis tools. The ground truth
(GT) is indicated by horizontal red and blue lines, the intrinsic uncertainty of the
dataset (see text) is represented by dark gray (1σ) and light gray (2σ) intervals.
Sample size as in (b). Uncertainty measures (CI, SD) as listed in Table 1. e An

experimental time trace with colors as in (b), representative for the dataset used in
(f, g) with n(traces) = 19, n(datapoints) = 226,100, using 10ms time bins resulting in
100Hz sampling, kindly provided by B. Schuler. f FRET histogram with color code
and axis labels as in (c). Sample size as in (e). The error bars represent standard
deviations. No uncertainties were submitted for tool #5. g Inferred rate constants
from the experimental dataset in (f). Color code as in (d). Horizontal red and blue
lines indicate the mean of the inferred rate constants. Sample size as in e. Uncer-
tainty measures (CI, SD) as listed in Table 1. Supplementary Fig. 2 shows the
experimental data and analysis with ten times higher time resolution. ‡ denotes
results that were submitted after the GT was known. The model size was restricted
to two states. FRETboard and Step finding found erroneously large uncertainty
intervals, which has been corrected in their latest software versions. See Supple-
mentary Datafiles. Source data are provided as a Source Data file for panels
(c, d, f, and g).
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time. On the one hand, this offers better sampling of fast kinetics due
to the increased time resolution (1 kHz instead of 0.1 kHz sampling),
but, on theother hand, it results in a lower signal-to-noise ratiowhich is
more challenging for state identification. In addition, at 1 kHz sam-
pling, the data shows single-photon discretization and non-Gaussian
noise (Supplementary Fig. 2a, b), thus deviating from the basic
assumptions underlyingmost of the considered analysis tools. Indeed,
the overall agreement of the rate constants at this lower SNR was
reduced: CV = 33% and 45% for k12 and k21, respectively (Supplemen-
tary Fig. 2c), indicating that thebenefit of the increased time resolution
is minor in this case. Nevertheless, the equilibrium constants agree
very well again (CV = 2%, when excluding the two clear outliers in
Supplementary Fig. 2d) due to the cancelation of systematic shifts for
both rate constants (Supplementary Fig. 2e). Comparing the rate
constants inferred at 1 kHz and 0.1 kHz sampling, pomegranate, Tracy,
Correlation, MASH-FRET, and Step finding reported similar values
(Supplementary Fig. 2e), while STaSI inferred slower rate constants for
faster sampling. Conversely, FRETboard, and SMACKS inferred faster
rate constants for faster sampling, either due to fitting noise or due to
short events that are missed at lower time resolution. The latter is less
plausible, given that the inferred rate constants are 20-fold smaller
than the 0.1 kHz sampling rate. Thus, a comparison between 0.1 kHz
and 1 kHz sampling can serve to estimate the robustness of the analysis
tools towards non-Gaussian noise. Taken together, fundamentally
different analysis approaches inferred consistent rate constants and
FRET efficiencies from a simple, two-state system both for simulated
data and experimental data with varied SNR.

Directional sequences in a non-equilibrium steady-state system
Many biomolecular systems involve more than just two functionally
relevant states, leading tomore intricate kineticmodels withmore rate

constants and, hence, more degrees of freedom. Such systems with
three or more states can show a conceptually unique thermodynamic
phenomenon: the non-equilibrium steady-state, in which a biomole-
cule, such as amotor protein or amolecular machine such as F0F1-ATP
synthase, is driven by continuous external energy input, e.g. in the
form of a chemical gradient36, light37,38, or ATP. As a result, con-
formational statesmayappear in apreferred sequenceorder, causing a
non-zero net flow, e.g. for the 3-state system depicted in Fig. 3a:

ΔG1!2!3!1 = � kBT * ln
k21�k32�k13

k12�k23�k31

� �
≠0 ð1Þ

The unique ability to directly observe the non-equilibrium steady-state
is a prime example of the merits of single-molecule studies. Hence, we
investigated it explicitly, using smFRET data simulated with a kinetic
3-state model and a non-zero counter-clockwise flow: ΔG1!2!3!1 < 0
(Fig. 3a, b).As anadditional challenge, this data containedfluorescence
intensity variation between individual dye molecules, as observed in
experimental data due to varied local dye environment and orienta-
tion, inhomogeneities in excitation intensity and polarisation, and also
variations in detection efficiency39.

All analysis tools found the three clearly separated FRET efficiency
populations (Fig. 3c), while the inferred rate constants varied more
than for the 2-state systems above (Fig. 3d). Most tools systematically
underestimated k13 and k31 and overestimated all other rate constants.
This may be attributed to the inevitable effect of time discretization
and related intensity averaging: time-weighted averaging (e.g. camera
blurring) of the FRET efficiencies can lead to mid-FRET observations
that are indistinguishable from those caused by a bona fide biomole-
cular conformation. While, at the single datapoint level this dis-
cretization artefact cannot be prevented, the inference accuracy may

Fig. 3 | Quantitative analysis of a non-equilibrium steady-state system. a An
illustration of the simulated three-state model with a counter-clockwise net flow.
States (circles) are connected by forward and reverse rate constants as specified.
bA simulated smFRET tracewith donor and acceptorfluorescence intensity (green,
red) and FRET efficiency (FRET, black), representative for the dataset used in
(c, d, e): n(traces) = 150, n(datapoints) = 82,594, sampling rate = 10Hz, time per
datapoint = 100ms. c SmFRET histogram overlaid with the inferred FRET effi-
ciencies (right axis, numbers as in e) and assigned states on top. Sample size as in
(b). The error bars represent standard deviations. d Inferred rate constants are
shown in red and blue as specified. Vertical lines indicate the GT. The intrinsic
uncertainty of the dataset is represented by dark gray (1σ) and light gray (2σ)

intervals. Sample size as in (b). Uncertainty measures (CI, SD) as listed in Table 1.
Analysis tools are numbered as in (e). e The inferred cyclic flow in the counter-
clockwise direction determined by calculating ΔG from Eq. (1) and compared with
the GT value (solid vertical line). The uncertainty intervals (dark and light gray) are
plotted as in (d). Sample size as in (b). Uncertainty measures (CI, SD) as listed in
Table 1. Additional simulations to validate the dataset are shown in Supplementary
Fig. 3. ‡ denotes results that were submitted after the GT was known. Edge finding
did not report uncertainties. § denotes that the misassignment of start and end
states was corrected after the GT was known. Source data are provided as a Source
Data file for panels (c, d, and e).
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be improved by treating discretization-induced averaging explicitly in
the analysis33,40; or using pulsed illumination to reduce blurring41,42.
Overall, postFRET and Tracy inferred the most accurate rate constants
with average GT deviations of 9% and 14%, respectively. As shown in
Fig. 3e, qualitatively, the net flow was correctly resolved (most accu-
rately by postFRET, Tracy, and FRETboard), while quantitatively it was
mostly underestimated, which we attribute to the aforementioned
systematic misallocation of transitions between states 1 and 3. For this
simulated dataset, the theoretical lower limit of the uncertainty (as
introduced above for the 2-state system) is smaller because the dataset
is larger. About half of the tools reported uncertainties that are in line
with this lower limit (grey intervals),while the other half reported none
or too small uncertainties. We would like to stress that such a quanti-
fication of net flow is only meaningful when no detailed balance con-
straints are imposed during the rate inference, which was the case for
the tools considered here. Altogether, the rate constants of the non-
equilibrium 3-state system with intensity variation were less accurate
than those of the 2-state system, and also the uncertainty estimation
was challenging in this case. Nevertheless, the steady-state flow was
qualitatively well resolved by most tools.

States with overlapping FRET efficiencies
Many biological systems show multi-exponential dwell-time distribu-
tions with long and short dwell times for the same apparent FRET
state6,43–45. This can, for example, arise when the one-dimensional

reaction coordinate spanned by the FRET pair is not sufficient to
uniquely identify structural states in 3D space. Such kinetic hetero-
geneity is difficult to interpret because transitions between states with
identical or overlapping FRET efficiencies cannot be directly observed
in the recorded time traces, while they canoftenbe inferred kinetically.
To investigate this case, we simulated kinetic heterogeneity based on a
four-statemodel (Fig. 4a) where states 1 and 2 have the same low-FRET
efficiencies, and states 3 and 4 have the same high-FRET efficiencies.
Again, the fluorescence traces included intensity variations between
FRET pairs as observed in the experiment (introduced in the previous
section), and also donor and acceptor blinking was included, as an
additional imperfection of the data. Figure 4b shows example traces
from the simulation and Fig. 4c shows the FRET efficiency histogram
with two peaks. Without a priori knowledge of the model size, most
tools identified the correct number of two apparent FRET states, while
FRETboard used three FRET states to describe the data. Edge finding
was not developed to deal with such kinetic heterogeneity, and
Pomegranate, Correlation, STaSI and MASH-FRET (bootstrap) reported
FRET efficiencies but no kinetic models. In the following, we use
cumulative dwell-time distributions derived from each inferred model
(Fig. 4d, detailed in Methods) to compare models with the correct
number of FRET states but differences in the kineticmodel, such as the
connectivity of states or the number of hidden states (rate constants of
all inferred models are reported in the Supplementary Table 1, and in
the Supplementary Datafiles). Out of the seven independently inferred

Fig. 4 | Resolving kinetic heterogeneity: states with indistinguishable FRET
efficienciesbutdifferentkinetics. aAn illustrationof the simulatedGTmodelwith
states (circles) connected by forward and reverse rate constants. States 1 and 4 as
well as states 2 and 3 have indistinguishable FRET efficiencies, causing kinetic
heterogeneity.b Two simulated FRET traces offset in timewith donor and acceptor
fluorescence intensity (green, red) and FRET efficiency (FRET, black) are shown,
representative for the dataset used in (c,d): n(traces) = 250, n(datapoints) = 56,794,
sampling rate = 5Hz, time per datapoint = 200ms. c FRET histogram with inferred
FRET efficiencies overlaid (right axis: legend as in Table 1 and in all Figures). Sample
size as in (b). The error bars represent standard deviations. d Comparison of
cumulative dwell time distributions derived from the kineticmodels with two FRET
states (detailed inMethods). The GT histogram is shown as a bold black line. Insets
show zoomed-in views of the data indicated by the squares. e Quantitative

comparison of the four most accurately inferred kinetic models: the GT values are
represented as red and blue vertical lines. Sample size as in (b). Uncertainty mea-
sures (CI, SD) as listed inTable 1. The intrinsic uncertainty of the dataset is shownas
dark gray (1σ) and light gray (2σ) intervals. Beyond the six displayed rate constants,
these additional rate constants were inferred: for Hidden Markury k31 = 0.045 and
k34 = 0.003, for SMACKS k13 = 0.0001, k31 = 0.0055, k34 = 0.0034, for MASH-FRET
(prob.) k31 = 0.033. All inferred values of all models are reported in the Supple-
mentary Tables 1 and in the Supplementary Datafiles. ‡ denotes results that were
submitted after the GT was known. No results were reported by Edge finding. Par-
ticipants were informed that kinetic heterogeneity may be involved, but not in
which configuration. Source data are provided as a Source Data file for panels
(c, d, and e).
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kinetic models, the twomodels without kinetic heterogeneity (by Step
finding andpostFRET) show the largestdeviations from theGT, as these
models cannot reproduce the multi-exponential nature of the dwell-
time distribution. On the other hand, the four models inferred by the
HMM-based Hidden-Markury, SMACKS, SMACKS(SS), as well as MASH-
FRET (prob.) show good agreement with the GT and overlay the GT in
the low- and high-FRET case (compare Fig. 4d). A quantitative com-
parison of these four models and their uncertainties with the GT is
provided in Fig. 4e. It shows accurate rates and some collective
underestimation of rates k12, k21, k32, likely due tomissed fast events. In
addition, some rates were inferred that are not present in the GT (see
Fig. 4e caption). Taken together, several tools inferred the correct
model size (number of states) and accurate cumulative dwell-time
distributions, but model selection – and in particular the selection of
the correct connectivity of states – remains a main challenge in
inferring kinetic information from smFRET trajectories. It is, however,
encouraging that several analysis tools can already deduce kinetic
models that closely reproduce the GT even under difficult conditions
involving kinetic heterogeneity.

Full complexity of a black-box experiment
Encouraged by the previous results, we tested all tools vis-à-vis the full
experimental complexity to see if they perform similarly as in the
simulated case (Fig. 4). Three experimental datasets of the same

biological system (protein binding to a fluorescently labelled DNA, see
Methods), under different experimental conditions and thus different
kinetic behaviour, served as a test case. However, the analysts had no
prior information on themolecular system causing the dynamics. This
means that all the effects discussed so far could potentially be present
in these experimental datasets: multiple FRET states, diverse noise
sources, fluorophoreblinking, directional steady-state flow and kinetic
heterogeneity. In addition, the fluorescence intensity variation
between single molecules was particularly high in these datasets (see
Fig. 5a, d, g), which complicated the inference of the number of states
and rates involved (subsequently referred to as model selection).
Under these complex conditions, the inferred number of FRET states
(Fig. 5b, e, h) varied more than in the simulated case (discussed in
Fig. 4). Most tools found two FRET states (Fig. 5b, e, h, some of them
including kinetic heterogeneity), but also three, four, ormore different
FRET states were reported (Supplementary Fig. 4), and the kinetic rate
constants varied accordingly. Given the inherent lack of GT informa-
tion in experimental data,we cannotquantitatively assess the accuracy
in this comparison. To balance this fact, we qualitatively compare the
inferred results for all three datasets. The 6–7 models with two FRET
states (and possibly more hidden states) are compared in (Fig. 5c, f, i).
Other models with three, four, or more FRET states are compared in
Supplementary Figs. 4–6. (All inferred rate constants are given in
Supplementary Tables 2–4 and Supplementary Datafiles). Again, we

Fig. 5 | Increased experimental complexity. Results inferred from three experi-
mental datasets where naturally no GT exists. a, d, g Experimental traces, offset in
time and separated by dashed vertical lines, with donor and acceptor fluorescence
intensity (green, red) and FRET efficiency (FRET, black), representative for the
datasets used in (b, c), (e, f), (h, i), respectively, with n(traces): 134, 163, 118; and
n(datapoints): 36,604, 37,067, 43,512; sampling rate = 33Hz, time per datapoint =
30ms. All threedatasetswere kindly providedbyM. Schlierf.b, e,h FRET efficiency
histograms and FRET efficiencies inferred by the analysis tools numbered as in (j).
Sample sizes as in (a, d, g), respectively. The error bars represent standard devia-
tions. For clarity, only the smallest reported model is shown for each analysis tool,

up to a maximum of four FRET states. All inferred FRET efficiencies are shown in
Supplementary Fig. 4, and all inferred results are provided in the Supplementary
Tables 2–4 and in the Supplementary Datafiles. Purple arrow in (e): the error bar
extends to 1.61. Teal arrow in (h): the error bar extends to −0.53. c, f, i Cumulative
distribution functions (CDF) of the dwell-times simulated using the inferred kinetic
models with two FRET states, obtained with the tools numbered as in (j). j Legend
with all analysis tools. No results were reported by Edge finding. ‡ denotes results
that were submitted after all other results were known. Source data are provided as
a Source Data file for panels (b, c, e, f, h, and i).
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use cumulative dwell-time distributions (cf. last section) derived from
each inferredmodel (Fig. 5c, f, i) to facilitate the comparison ofmodels
with the same number of FRET states but possibly different state
connectivity. The distributions are thus single- or double-exponential
depending on the reported kinetic model. The five tools that inferred
two FRET states and qualitatively similar kineticmodels under all three
conditions despite different analysis approaches, are the HMM-based
Hidden-Markury and SMACKS, as well as Step finding, postFRET and
MASH-FRET (prob.). While postFRET consistently inferred slower rate
constants, the qualitative agreement among the other five tools is
surprisingly good (CV ≤ 25% for the average residence time) despite
the complexity of the input data, the missing prior knowledge about
the system, and the different analysis approaches used.

Altogether, we conclude thatmodel selection and state allocation
are currently the key challenges in the analysis of kinetic data. In this
study, we focused only on the analysis of fluorescence intensity and
FRET efficiency data. The addition of complementary information
from simulations or experiments (e.g., static molecular structures and
other observables, such as fluorescence lifetimes, anisotropy, and
more) may help to elucidate complicated or otherwise under-
determined systems30,46,47.

Discussion
In this blind study, we compared eleven kinetic analysis tools for the
inference of quantitative kinetic rate constants based on single-
molecule FRET trajectories. We explicitly considered the major
(kinetic) challenges that the single-molecule experimentalists are
typically confronted with: determining the best model to describe the
data, especially with multiple FRET states, a varying signal-to-noise
ratio, directional non-equilibrium steady-state flow, and kinetic het-
erogeneity (i.e., states with indistinguishable FRET efficiency but dis-
tinct kinetics). We assessed the inferred FRET efficiencies, rate
constants, and the reported uncertainties, based on three simulated
datasets and four experimental datasets from two biological systems
measured using two different setups in different laboratories. The
simulated data allowed us to directly assess the accuracy of the
inferred rate constants using the known ground truth model and to
judge the plausibility of the reported uncertainty measures, while the
experimental data shows the relevance and validity of this study.

We found that the number of states was correctly inferred by all
tools, as long as their FRET efficiencies were clearly separated (Figs. 2
and 3). In the presence of kinetic heterogeneity with overlapping FRET
states,model selectionwasmorechallenging (Fig. 4). In this case, three
tools successfully inferredmodels that accurately reproduce thedwell-

time distribution of the GT despite overlapping FRET states (Hidden-
Markury, MASH-FRET, SMACKS). In general, the accuracy of the rate
constants inferred by all tools decreased with increasing model size
and complexity, where time discretization artefacts and inter-trace
intensity variation become increasingly challenging. The equilibrium
constants and steady-state flow were more accurately inferred than
individual rate constants due to the cancellation of systematic errors
(Supplementary Figs. 1 and 2d, e, Fig. 3). Caution is advised with the
uncertainties of rate constants since different uncertainty measures
are reported by different approaches. Even for small models (Figs. 2
and 3), we found that some uncertainty estimates were smaller than
the uncertainties caused by the finite dataset size, while interestingly,
more plausible uncertainties were reported for the more complex
model in Fig. 4 (Supplementary Fig. 4). In general, the comparison of
uncertainties is complicated by the fact that no common standard
exists and themathematical interpretation of the reported uncertainty
intervals differs from tool to tool.

When comparing various analysis frameworks, model-free
approaches are generally considered advantageous for an unbiased
data analysis. However, HMM-based tools (that compare several input
models based on scarcity criteria) were found to be more robust
towards data heterogeneity (Figs. 4 and 5, Supplementary Fig. 2).
Nevertheless, we did not observe a clear overall clustering of the
inferred rate constants with the underlying analysis framework, likely
due to differences in the data handling beyond the used algorithms
(e.g. supervised, semi-supervised, or unsupervised inference). The
total analysis durations (processing and computation) ranged from a
few minutes to several hours depending on the analysis tool and the
model size, with StaSI and Step finding ranking among the fastest, and
SMACKS among the slower tools. In the course of this study, multiple
conceptual oversights could be found and solved in a number of tools,
which is a direct constructive result of this collaborative comparison
study that led to the general recommendations stated in Table 2.
Additionally, a simple shareable smFRET data format was introduced
(Supplementary Note 1) and utilized by all twelve labs working in
diverse software environments.We anticipate that this data formatwill
facilitate future collaborations and significantly lower the barrier for an
experimentalist to adopt a newly developed analysis tool if it supports
the accepted format.

Looking ahead, a particularly promising outlook is the possibility
to characterize individual states with individual noise patterns more
accurately, using machine learning. Recently, deep learning approa-
ches have been developed for the unbiased selection of single mole-
cule traces for further kinetic analysis48,49. Similar approaches could be

Table 2 | General recommendations for users and developers of kinetic inference toolsa

(i) As a general consistency test, the inferred kinetic model (connectivity and rate constants) can be simulated and the output of the simulation compared to the
original input data. For example, the simulator used herein is publicly available as a simple and powerful (MATLAB) tool to testwhether the proposedmodel can
generate data analogous to the original input, e.g. regarding FRET histogram, smFRET traces, etc.

(ii) Potential biases in the analysis (e.g. regardingmodel size, state occupation, etc.) can be revealed by subjecting the re-simulated data (with knownground truth)
to the same analysis approach as the experimental data.

(iii) Where possible, kineticmodels with a specific number and connectivity of states are preferred over mean residence times, since the latter leave the individual
transition rate constants undetermined for more than 2 states.

(iv) Uncertainty measures are necessary indicators of significance, and a unified standard would greatly improve their comparability. The 95% confidence interval
was the most frequently used uncertainty measure in this study, and we encourage its use as a common standard for the future.

(v) Benchmarking new analysis tools using datasets of varied complexity – includingmodels withmore than 2 states – can reveal systematic errors, e.g. regarding
the weighting of multiple rate constants that depopulate a given state, an issue encountered in this study.

(vi) Benchmarking new software with established test data helps the potential users to judge the added benefits of newly introduced analysis tools. The diverse
datasets used herein are publicly available and can serve to assess a tool’s performance under varied experimental conditions.

(vii) Supporting broadly accepted file formats for newly developed analysis tools facilitates fast dissemination in the field. We offer the simple format described in
Supplementary Note 1, which proved to be very useful for this study.

aIn the course of this study, several difficulties with the analysis of kinetic data have become apparent. Out of this experience, we have compiled a list of recommendations for those developing and
using kinetic analysis tool.
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envisioned for a model-free kinetic analysis, which bears the potential
to improve model selection significantly18,50. Demonstrating such new
tools using public training datasets and supporting the simple file
format introduced in this study, will accelerate the dissemination of
the newest theoretical developments within the community of single-
molecule experimentalists. Additional important aspects for future
benchmark studies include the ‘data greediness’of a given tool, e.g. the
amount of data and the number of transitions-per-trace (given by the
relation of biomolecular dynamics versus bleach rate) that are
required for accurate rate inference.

In conclusion, this blind study on kinetic inference from smFRET
data further validates the use of smFRET in deciphering biomolecular
rates. It unequivocally reveals the current strengths andweaknesses of
the various analysis approaches when tested against frequently
encountered phenomena in smFRET experiments, and provides a
reference standard for the continuous developments in this active
field. We anticipate that this study will serve the community as a guide
for data interpretation, spark futuredevelopments in kinetic inference,
and therefore help to advance our understanding of biomolecular
dynamics leading to function.

Methods
Procedure of this benchmark study
The need for a comparison of analysis tools for smFRET trajectories
has grown with the increasing number of smFRET users and published
tools. This was addressed at the Biophysical Society Meeting 2019
(Baltimore, US) by initiating a kinetic software challenge, short kin-
SoftChallenge. In line with more efforts to assess, promote, and
potentially standardize experimental and analytical smFRET proce-
dures (Refs. 2,3, 51 in preparation), the kinSoftChallenge represents an
important step aimed to improve the reliability and accuracy of kinetic
inference from smFRET trajectories. In a first round of the study (July
2019 to November 2019), the participants received three simulated
datasets (shown in Figs. 2, 3, and 4). In the second round (December
2019 to February 2020), the participants analyzed the experimental
dataset shown in Fig. 5. Experimental data with high and low SNR was
compared in a third round (November to December 2020, shown in
Fig. 2, and Supplementary Fig. 2). The individual test conditions are
described in the text and summarized in Table 3. All challenge rounds
were conducted as blind studies, i.e., the participants did not have
ground truth information during data analysis (exceptions are labeled
with a dagger in all Figures).

Simulation of smFRET trajectories
In short, simulated smFRET datasets were generated to mimic fluor-
escence traces obtained by TIRF-based experiments. State trajectories
were modeled with a continuous-time approach and later discretized.
Similar to experiments, this allows state transitions to occur during the
integration timewindow (timebinof the detector). Noisewas added to
thefluorescence intensity traces using experiment-derivedparameters
to generate realistic data.

In more detail, for each molecule a continuous-time state
trajectory was simulated based on the kinetic model, as specified
by a transition rate matrix. A summary of the specific simulation
parameters is given in the Supplementary Table 5 and all config-
uration files with all parameters are provided as Supplementary
Datafiles. First, the trace length was determined from an expo-
nential distribution described by the rate of photobleaching. The
trace length was rejected if it was shorter than a minimal trace
length and truncated to a maximal trace length (see Supplemen-
tary Table 5). Then, a random initial state was chosen based on the
probability of being in a particular state given the transition rate
matrix. Starting from this state, dwell times for all possible tran-
sitions to the other states were drawn randomly from exponential
distributions defined by the transition rates, and the shortest dwell
time determined the transition and the new state of the system.
This process was repeated until the full trace length was reached.
This state trajectory was then converted into discrete-time fluor-
escence intensity traces using a specified sampling rate. For each
time bin (i.e., camera frame), the donor and acceptor intensities
upon donor excitation and the intensity of the acceptor upon
acceptor excitation were drawn from state-specific Gaussian dis-
tributions (specified by the means μI and covariance matrices
given in the configuration file). The intensity in each channel
during a time bin is given by the weighted average of all states
visited during this specific time bin.

Typically, single-molecule fluorescence traces show variations in
the fluorescence level between individual molecules, due to, amongst
others, local variations in excitation power and local dye
environment13. To take these variations into account, two additional
sources of per-trace intensity variations were considered for the
simulated data shown in Figs. 3 and 4. First, for each molecule, indi-
vidual intensity levels for each state were chosen. To do so, the
intensity levelwasdrawn fromanempirically determined state-specific
Gaussian distribution (with mean μI and standard deviation 5*

ffiffiffiffiffi
μI

p
).

Second, for each molecule, an individual brightness factor was deter-
mined by 1:20r where r was randomly chosen from the interval [−1, 1].
Thus, this factor is distributed in the interval [0.83, 1.20] and all
channels were multiplied by the same factor. For the simulated data
shown in Fig. 4, independent blinking of the donor and acceptor dye
was modeled by a simple 2-state system (“bright”, “dark”). In the case
of an acceptor dark state, the FRET efficiency was set to zero. Details
are given in Supplementary Table 5.

Five hundred additional datasets from the same parameter set
were created and compared, to validate that the dwell time distribu-
tion of the dataset used in this study shows the expected behaviour
(see Supplementary Fig. 3). Configuration files with all simulation
parameters (including the ground truth for the kinetic models) for the
synthetic data in Figs. 2, 3, and 4 can be found in the Supplementary
Datafiles. The MATLAB scripts used for the simulation are publicly
available at: www.kinSoftChallenge.com and https://doi.org/10.5281/
zenodo.5701310. A Supplementary Table with the simulation

Table 3 | Summary of the test conditions for the individual datasets, including the prior information on ground truth (GT) and
number (N) states, as well as three data characteristics: kinetic heterogeneity, photo-physics, and signal-to-noise ratio (SNR)

GT known?a N states predefined? Kinetic heterogeneity Photo- physicsb SNRc

Fig. 2 (sim.) No Yes, 2. No Clean 4

Fig. 2 (exp.) No Yes, 2. Not observed Mainly clean 4

Fig. 3 (sim.) No No No Intensity variation 3

Fig. 4 (sim.) No No Yes Intensity variation & blinking 4

Fig. 5 (exp.) No No Yes observed Intensity variation & blinking 3
aExceptions are labelled with a dagger in all figures.
bSee simulation parameters in Supplementary Table 5.
cThe SNR was obtained from the FRET efficiency histogram using Gaussian fits and SNR = μ1 � μ2

�� ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2 + σ2
2

p
.
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parameters and a Supplementary Note on the file format used herein
are provided in the Supplementary Information file.

Estimated minimal uncertainty of rate constants inferred from
simulations
Because of the finite number of traces per datasets, only a limited
random sample of dwell times is observed for each given transi-
tion, resulting in a variation of the rate constants inferred from
different datasets with identical ground truth. In order to estimate
this lower bound of the uncertainty for the inference of rate con-
stants from a finite dataset, we randomly drew the same number of
dwell times as provided in the simulated challenge dataset from an
exponential distribution with time constant τ = 1=k. The maximum
likelihood estimator (MLE) for the rate constant that produced this
set of dwell times Δt is given by 1=Δt. This calculation of the MLE
was repeated one million times. The standard deviation of these 1
million MLEs is a function of the number of dwell times present in
the challenge data set – the more dwell times are observed,
the narrower the MLE distribution – and hence, it depends on
the transition rate constants and the total observation time. We
used this standard deviation as an estimate of the lower bound for
the uncertainty of inferred rate constants from the simulated
datasets.

Simulation of cumulative dwell-time distributions from inferred
kinetic models
In order to compare submissions with the same number of FRET states
but different underlying kinetic models (i.e., number of hidden states
and connectivity), we simulated dwell times from the submitted
kineticmodels for the three datasets shown in Figs. 4 and 5. This yields
cumulative dwell-time distributions that are characteristic for the
kinetic model. Dwell times were accumulated from simulations of
continuous time state trajectories (Supplementary Note 1) that inclu-
ded roughly 200x (Fig. 4d) or 400x (Fig. 5c, f, i) more time points than
the original datasets.

Origin of the experimental datasets
The experimental data shown in Fig. 2 and Supplementary Figs. 1,
2 was kindly provided by Benjamin Schuler. It shows the inter-
action between the nuclear-coactivator binding domain of CBP/
p300 (NCBD) and the intrinsically disordered activation domain
of the steroid receptor coactivator 3 (ACTR), measured using
confocal single-photon detection5. The experimental data shown
in Fig. 5 and Supplementary Fig. 4 was kindly provided by Michael
Schlierf. It shows binding of single-strand binding proteins (SSB)
to a fluorescently labelled DNA hairpin, measured in prism-type
total-internal reflection fluorescence (TIRF) mode using camera-
based detection (EMCCD)4.

Procedures of the kinetic analyses
Detailed descriptions of all analysis tools are provided in the Supple-
mentary Methods in the Supplementary Information file. All inferred
results are provided as Supplementary Datafiles.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated and experimental smFRET data used in this study are
available at www.kinsoftchallenge.com and https://doi.org/10.5281/
zenodo.5701310. All inferred results are provided in the Supplemen-
tary Data files. Supplementary figures, notes, and methods are pro-
vided in the Supplementary Information file. Source data are provided
with this paper.

Code availability
The simulation code and parameters to generate the simulated data-
sets are available at https://doi.org/10.5281/zenodo.5701310. All soft-
ware tools are available: Pomegranate v0.0.1 at https://github.com/
hatzakislab/DeepFRET-GUI; Tracy v4.4.8 upon request as it is being
replaced by a new program for multi-color analysis (contact: Don C.
Lamb [d.lamb@lmu.de], requests will be addressed as soon as possi-
ble, typically within 1 week); FRETboard v0.0.3 at https://github.com/
cvdelannoy/FRETboard; Hidden-Markury v0.0.1 at https://github.com/
ChristianGebhardt/Hidden-Markury; SMACKS v1.4 at https://github.
com/sciSonja/SMACKS; Correlation v0.1b at https://doi.org/10.5281/
zenodo.5512005; Edgefinding (CK and k-means) v0.0.1 at https://www.
physics.ncsu.edu/weninger/KinSoft.html; Step finding v0.0.2 at
https://github.com/SMB-Lab/PyStepFinder; StaSI v0.0.1 at https://
github.com/LandesLab/StaSI; MASH-FRET v.1.3.2 (bootstrap and
probabilistic) at https://github.com/RNA-FRETools/MASH-FRET; post-
FRET v4.0 at https://github.com/nkchenjx/postFRET.
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1 Supplementary Figures 

 

 

 

Supplementary Figure 1: Equilibrium constants of the kinetics between two states shown in 

Figure 2. a The inferred equilibrium constant for the simulated dataset. The vertical line indicates the 

ground truth value. Uncertainty measures (CI, SD) as listed in Table 1. b The inferred equilibrium 

constant for the experimental data with 0.1 kHz sampling rate. The vertical black line indicates the ratio 

of the two well-separated FRET efficiency populations, as estimated by dividing the number of 

datapoints with FRET E < 0.5 by those with FRET E > 0.5. Uncertainty measures (CI, SD) as listed in 

Table 1. 
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 3 

 

Supplementary Figure 2: Supplementary results from experimental data with high sampling rate 

and low SNR. a Donor (green) and acceptor (red) fluorescence and FRET efficiency (FRET, black) 

trace for the molecule shown in Fig. 2e, representative for the dataset used in b, c, d, e: n(traces)=19, 

n(datapoints)=2,261,000, using 1 ms time bins resulting 1 kHz sampling rate. b Corresponding FRET 

efficiency histogram (gray) and inferred FRET efficiencies in red and blue. The error bars represent 

standard deviations. c Corresponding inferred rate constants from experimental data, and uncertainty 

measures (CI, SD) as listed in Table 1. d Equilibrium constant for the experimental datasets with 1 kHz 

sampling. The vertical black line indicates the population ratio as estimated from the FRET efficiency 

histogram at 0.1 kHz sampling (Fig. 2f) by dividing the number of observations with FRET E < 0.5 by 

those with FRET E > 0.5. Uncertainty measures (CI, SD) as listed in Table 1. e Ratio of the rate constant 

inferred from data with 1 kHz vs 0.1 kHz sampling for rate k12 (red) and k21 (blue). The black line 

indicates a ratio of one, i.e., rate constants inferred for both sampling rates are equal. A ratio above one 

means that the rate constant inferred from the 1 kHz dataset is larger than the one inferred from the 0.1 

kHz dataset. 
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 4 

 

Supplementary Figure 3: Validation of the simulated datasets using cumulative distribution 

functions (CDF) of the dwell times. The orange line represents the simulated data used in this study. 

The spread between 500 datasets obtained from simulations with identical parameters is shown in dark 

and light grey intervals representing one and two standard deviations around the mean, respectively. a 

For the simulated data shown in Fig. 2. b For the simulated data shown in Fig. 3. c For the simulated 

data shown in Fig. 4. 

  

172



 5 

 

Supplementary Figure 4: FRET efficiency histograms and all inferred FRET states for the 

experimental datasets shown in Figure 5. a-c The number of states and corresponding FRET 

efficiencies returned by the different analysis tools are shown for the experimental dataset shown in 

Fig. 5b,e,h, respectively. The error bars represent standard deviations. Brackets next to the right-hand 

tick markers indicate where multiple models with a different number of FRET states were submitted for 

a particular tool. The legend in c is valid for the entire figure (and throughout the paper).  
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Supplementary Figure 5: Comparison of the kinetic models with three FRET states inferred for 

the dataset shown in Figure 5. a-c Cumulative distribution function (CDF) of the dwell times simulated 

using the inferred kinetic models (described in Methods) are shown for conditions 1, 2, and 3, 

respectively. Please note the variation among the inferred FRET efficiencies of the low, mid and high 

FRET states (Supplementary Figure 4), hindering a direct kinetic comparison in this case. The model 

inferred by Tracy does not populate the high FRET state under condition 2, hence Tracy data is absent 

in the right panel in b. 

 

  

174



 7 

 

Supplementary Figure 6: Comparison of the kinetic models with four FRET states inferred for 

the dataset shown in Figure 5. a-c Cumulative density function (CDF) of the dwell times simulated 

using the inferred kinetic models (described in Methods) are shown for conditions 1, 2, and 3, 

respectively. Please note the variation among the inferred FRET efficiencies of the four FRET states 

(Supplementary Figure 4), hindering a direct kinetic comparison in this case.  
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2 Supplementary Notes 

 

Supplementary Note 1: A simple file format for smFRET trajectories 

So far, no standardized and widely accepted file format for storing and exchanging smFRET trajectories 

is in use. A “single-molecule dataset” (SMD) file format has been proposed2, based on JavaScript 

Object Notation (JSON), but has not been broadly adopted in the community. In this study, we opted 

for a simple tab-delimited text file format that is sufficient for the encountered time trace datafile sizes, 

circumvents intricate parsing, and was readily utilized by all participants of this study.  

Each molecule is represented by a separate, tab-delimited text file. Each file contains a column with 

the time information and columns with the fluorescence intensities of the donor and acceptor after donor 

excitation (𝐼𝐷𝑒𝑚|𝐷𝑒𝑥, 𝐼𝐴𝑒𝑚|𝐷𝑒𝑥). Additionally, columns with the acceptor intensity after acceptor excitation 

(𝐼𝐴𝑒𝑚|𝐴𝑒𝑥) and the apparent FRET efficiency 𝐸𝑎𝑝𝑝 = 𝐼𝐴𝑒𝑚|𝐷𝑒𝑥  / (𝐼𝐴𝑒𝑚|𝐷𝑒𝑥 + 𝐼𝐷𝑒𝑚|𝐷𝑒𝑥) are present for the 

simulated dataset. The file format can be easily extended with additional columns for additional 

detection channels, e.g., more spectral and/or polarization channels. In addition to the time series data 

itself, further metadata, describing experimental conditions, acquisition parameters, and settings used 

to extract the intensities from the recorded raw data, can be included, either in the header for each tab-

delimited file or in a separate file, as outlined in a recent position paper of the FRET community3. The 

broad acceptance attained in this study forms a promising starting point for the urgently needed 

dissemination of a common shareable file format for smFRET trajectories.  

  

176



 9 

3 Supplementary Methods 

All analysis tools are detailed here in the order of the numbering in the main text. 

 

Supplementary Method 1: Pomegranate 

 

A) OVERVIEW 

The workstream in pomegranate utilizes the fast and flexible probabilistic models built into the python 

package Pomegranate for efficient and iterative model formulation, fitting and evaluation using the 

Bayesian Information Criterion (BIC). The presented version of the workstream requires data 

preprocessing, where smFRET trajectories are sorted and only valid trajectories (based on expert 

valuation) are passed on through the analysis. Dwell time analysis is subsequently performed after 

defining all transitions using a Multivariate Gaussian fitting scheme and unbinned maximum likelihood 

fitting. All parts of the process can be evaluated and customized using user inputs based on expert 

evaluation and iteratively improved. 

A solution to tedious manual data sorting has since this analysis been implemented in an “end-to-end” 

GUI software4, that allows both sorting of smFRET trajectories based on deep learning and 

simultaneously applies the full analysis workstream presented and used here. The code used here as 

well as the compiled DeepFRET programme can be freely downloaded at 

www.hatzakislab.com/#software. The Deep Neural network sorting step is not necessary here as the 

data are presorted.  

 

B) WORKFLOW 

Step 1: Model formulation 

Accepted smFRET data is loaded into the Python workstream, where the FRET efficiency is calculated 

from donor and acceptor intensities and subsequently analyzed using Hidden Markov modelling. Initially 

the number of underlying FRET distributions should be determined to optimize the model fit. To extract 

this information, the software allows the user to fit all data to a Hidden Markov model containing between 

1-n gaussian distributed state populations (shown to be a robust approximation of FRET distributions5) 

and corresponding transitions between them using and the Baum-Welch forward-backward algorithm. 

The models can then be compared and the best selected for further analysis using Bayesian Information 

Criterion (BIC) to penalize overfitting as shown earlier6,7. Once a model is accepted and finalized, it can 

be saved for further use and evaluation. 

 

Step 2: Trace by trace prediction 

A finalized model can be readily applied to analyze smFRET trajectories. The software will for each 

individual trajectory use the Viterbi algorithm to calculate the most likely state for each observation 

based on the provided model. To further validate model predictions, a subset of trajectories can be 

visualized with the corresponding idealized state (model prediction) for user evaluation and validation. 

Based on expert knowledge, users may choose to reiterate Steps 1 and 2 for optimal fitting of smFRET 

data. For each data point, the most likely state is found and all data is saved to allow any further analysis 

or visualizations. 

 

Step 3: Parameter extraction and evaluation  

Using the model predictions, each transition in each trajectory (E -> E+1) is plotted in a Transition 

Density Plot (TDP) and separated using a Gaussian Mixture Model (GMM) fitting scheme. The number 

of clusters was determined using a combination of user inspection of unfitted data and BIC evaluation. 

For each fitted cluster, only data points within a 99 % confidence interval of the cluster center would be 

included for kinetic rate extraction. This ensures tighter clusters and fewer single “off-cluster” points.  

To extract kinetic transition rates, the dwell times of each cluster were fitted using a single exponential 

decay and maximum likelihood fitting, subsequent comparison to a two-component exponential decay 

using BIC was used to check for degenerative states.  

 

C) MISCELLANEOUS 
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The software is based on publicly available packages for python 3.8.x and is thus cross-platform 

accessible – a compiled version can be found in DeepFRET as mentioned above. All analysis 

presented within this survey were performed on a desktop computer (MacBook Pro) with 3,1 GHz 

Dual-Core Intel Core i5 and 8 GB 2133 MHz LPDDR3. Total computation time varied between ~15s 

to a few minutes. 
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Supplementary Method 2: Tracy 

 

A) OVERVIEW 

The Trace Intensity Analysis toolbox, referred to as TRACY, was programmed in MATLAB and has 

been updated to run on MATLAB R2020a. The program is used for analyzing two-color single molecule 

FRET Traces. The program, written by Gregor Heiss8, performs the following tasks:  

1. Extraction of single-molecule intensity trajectories for one or two channels with only donor excitation 

or with Alternating Laser Excitation from image stacks. 

2. Allows framewise manual selection via mouse cursor. Frames providing useful fluorescence intensity 

data and bleaching steps for each dye can be selected. 

3. Allows correction of the fluorescence intensity for determination of FRET values. 

4. Allows user-defined categorization of smFRET traces and analysis of molecular subpopulations.  

5. Analysis features includes a Hidden Markov Model analysis using the HMM toolbox in MATLAB 

written by Kevin Murphy (https://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html). The HMM 

analysis can be run individually on each trace or globally on an entire dataset. The number of states 

can be estimated using a BIC analysis. 

6. From the HMM analysis, a Viterbi path can be calculated for all manually selected traces and the 

kinetic rates can be obtained by fitting dwell time distributions using the MATLAB Curve Fitting 

ToolboxTM. 

TRACY is available upon request. As TRACY is being replaced by a new program for multiple color 

analysis, it will be provided "as is" with only a limited amount of support possible.  

  

 

B) WORKFLOW 

For the analysis performed in this study, the following workflow was followed. 

 

Step 1: Data import and categorization 

Data were loaded into TRACY and categorized manually by framewise selection of valid smFRET 

regions. Unselected regions in each trace were treated as bleached frames and were not used for 

further analysis. 

 

Step 2: HMM analysis 

A global HMM analysis was performed on each data set. For the HMM analyses, only the FRET 

efficiency data were used and not the donor and acceptor intensities. The mean FRET efficiency and 

sigma were set as learning parameters. A Viterbi path was then calculated from the given HMM 

parameters for the individual traces.  

 

Step 3: Transition Density Plot (TDP) 

Using the determined transitions, a transition density plot (TDP) between the learned states was 

calculated. The number of states were estimated visually by summation of all transitions as two-

dimensional Gaussians. From the TDP, individual states were manually selected and the corresponding 

dwell-time histograms were fitted using either a single exponential function or a double-exponential 

function to obtain the transition rates.  

 

In the end, the decision regarding which model to apply and analysis of the returned dwell-time 

distributions were determined manually based on visual inspection of the data and results from the 

initial analysis. The time involved varied from 20 to 60 min depending on the size and complexity of the 

data set. 

 

 

C) Miscellaneous 

Parameter Settings 
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Except for the number of states of the HMM model, all parameters were kept the same for all data sets. 

A global HMM analysis was performed using an initial sigma of 0.1, 10,000 maximum iteration steps 

and a convergence threshold of 1E-06. 

 

Technical Specifications 

All datasets were analyzed using a MacBook Pro 2018 (Intel Core i7-8850H CPU 6 x 2.6 – 4.3 GHz, 

AMD Radeon Pro 560x, 16 GB DDR4-2400, macOS 10.14).  
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Supplementary Method 3: FRETboard 

 

A) OVERVIEW 

FRETboard is a semi-supervised FRET trace classification tool that is served remotely through a web 

browser. Using a simple click-and-point interface, the user may ‘teach’ a classification model to 

recognize certain patterns in the traces, by iteratively performing manual curation on an automatically 

classified example trace and then retraining the model using the corrected traces. This lends 

FRETboard the flexibility to easily adapt to different labeling schemes. To further expand this flexibility, 

the user may also experiment with different combinations of nine features derived from the original 

channels, and the application of different model structures. These properties and further details on 

FRETboard usage as applied in this challenge are described below. 

 

FRETboard is available for usage on the Wageningen bioinformatics servers at 

www.bioinformatics.nl/FRETboard or can be installed and run locally from 

https://github.com/cvdelannoy/FRETboard . 

 

B) WORKFLOW 

The procedure is initialized by fitting an unsupervised model on all loaded traces in a traditional manner, 

using randomly generated initial parameters that are then fitted using an implementation of expectation 

maximization. The only user-provided guidance at this point is the number of states that should be 

recognized. Traces are classified, and the trace classified with least certainty, i.e. for which the state 

path probability normalized over sequence length was lowest, is presented to the user for manual 

correction of the classification. The probability of assigned states for a given trace may be poor in this 

trace because of the presence of noise. If this is the case, a user may choose to assign noisy 

measurements to a state they deem appropriate. However, if it is more appropriate to remove the noise, 

as is the case in bleaching and blinking events, the user may filter these measurements out by assigning 

them to a separate state reserved for such events. Such a state will then be discarded before FRET 

distribution and transition rate analysis. Alternatively, the model fit may suffer if the trace contains more 

or fewer states than those included in the current model. In that case, the number of states and 

classification must be adjusted appropriately. 

 

After applying manual corrections, the first semi-supervised training round on all loaded traces is 

started. State distributions and transition rates can now be deduced from the corrected trace and be 

used as initial parameters, after which the model is refitted on supervised and unsupervised traces 

simultaneously using semi-supervised expectation maximization. After refitting, traces are reclassified, 

and the trace now marked by the lowest state path probability is presented to the user. The procedure 

is repeated until the user finds that presented traces are correctly classified. 

 

For this challenge, we chose to manually classify five traces and retrain the model after each manual 

classification. Analysis typically took 15 minutes per data set and was performed using the remote 

server version running at www.bioinformatics.nl/FRETboard. 

 

C) MISCELLANEOUS 

Model structures 

While essentially any supervise-able classification model type may be trained through FRETboard, 

three flavors of hidden Markov models (HMMs) are currently included by default. The “vanilla” structure 

produces a straightforward fully connected HMM sporting no further modifications. The “boundary-

aware” structure adds additional “edge states” between states, which are trained on measurements 

around a detected transition. Transitions between states may only occur through these edge states. If 

state transitions are marked by a signature distribution in a certain feature, this distribution is captured 

by the edge state, which allows for more accurate detection of state transitions. The “GMM-HMM” 

structure also implements edge states, and in addition models emissions using a Gaussian mixture 

model (GMM), which adds the flexibility to classify noisier distributions as a single state using multiple 

Gaussians. The number of Gaussians per GMM is determined per state using a Bayesian information 
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criterion selection procedure. Users may also write a custom model structure implementation, using the 

provided template. 

 

In this challenge, the vanilla structure was used for the two-state simulated data, while the GMM-HMM 

structure was used for the other data sets, to account for added noise and other complications. 

 

Features 

As different patterns may be better discernable using different features, users may activate and de-

activate each of the nine included features as they see fit. These features include the original acceptor 

and donor channels, and the acceptor and donor channels during direct acceptor excitation if alternating 

laser excitation (ALEX) is employed. The proximity ratio EPR is included as an approximation of FRET 

efficiency and is defined as: 

 

𝐸𝑃𝑅 =
𝐹𝐴𝑒𝑚

𝐷𝑒𝑥

𝐹𝐴𝑒𝑚
𝐷𝑒𝑥  + 𝐹𝐷𝑒𝑚

𝐷𝑒𝑥  

 

Here, 𝐹𝐴𝑒𝑚
𝐷𝑒𝑥and 𝐹𝐷𝑒𝑚

𝐷𝑒𝑥 are the original donor and acceptor emission. The summed intensity 𝐹𝑠𝑢𝑚 is also 

included: 

 

𝐹𝑠𝑢𝑚 =  𝐹𝐴𝑒𝑚
𝐷𝑒𝑥 + 𝐹𝐷𝑒𝑚

𝐷𝑒𝑥  

 

Furthermore, we used two time-aggregated features that capture the variability of features over a sliding 

window of five measurements: the Pearson correlation coefficient between 𝐹𝐴𝑒𝑚
𝐷𝑒𝑥 and 𝐹𝐷𝑒𝑚

𝐷𝑒𝑥 and standard 

deviation of 𝐹𝑠𝑢𝑚. These features may aid models in capturing feature distributions characteristic for 

state transitions. For this challenge, training was started using the default combination of features (EPR, 

Isum, standard deviation of Isum and correlation coefficient). However, if training accuracy failed to reach 

levels above 95%, the best functioning combination of features was picked, by gauging the effect of 

toggling features on training accuracy. 

 

Parameter extraction 

FRET distributions are extracted by separating values from classified traces by state and calculating 

mean and standard deviation for each state. To obtain transition rates (F), a transition matrix (A) is 

derived from the classified data, which must then be converted from discrete to continuous rates and 

corrected for framerate (𝑓𝑠): 

 

𝐹 =  𝐼 + 𝑓𝑠 × log 𝐴 

 

Here 𝐼is the identity matrix and log denotes the natural matrix logarithm operation. 95% confidence 

intervals of transition rates are estimated by bootstrapping the classified traces and calculating F 100 

times.  
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Supplementary Method 4: Hidden-Markury 

 

A) OVERVIEW 
Hidden-Markury is a trace analysis software based on a global optimization of one global kinetic model. 

It supports the global analysis of 1D FRET efficiency traces and 2D donor & acceptor photon streams 

with multiple model optimization options, such as degenerate states, forbidden transitions, and fixed 

model parameters. The core of the Hidden-Markov model and its optimization is based on the open 

python library hmmlearn (https://hmmlearn.readthedocs.io/en/latest/index.html) 

 

The code of this software tool and its description is provided as interactive Jupyter notebooks and can 

be found in the GitHub repository (https://github.com/ChristianGebhardt/Hidden-Markury). Hereby, the 

notebook combines the high flexibility of individual code adaption and the user-friendly nature of 

interactive GUI elements with informative descriptions. 

 

B) WORKFLOW 
Step 0: Installation and Getting Started 
The usage of the Hidden-Markury software requires the cloning of the GitHub repository 

(https://github.com/ChristianGebhardt/Hidden-Markury) and the installation of the python packages 

(hmmlearn, numpy, pandas, scipy, matplotlib) as described in the README file in more detail. The 

repository provides exemplary data sets to get started with. 

 

Step 1: Data Import 
The data can be imported from various delimited data formats (.csv, .tsv, etc.) where the user only 

needs to specify the columns/rows of the different data sources from donor (DD) / acceptor channel 

(DA) or the FRET efficiency (E). The time information is automatically extracted from the first entry. 
The imported traces are visualized for manual inspection. 

 

Step 2: Model Specification and Initialization 
The Hidden-Markury notebook provides the options for 2D-trace analysis of donor (DD) and acceptor 

(DA) photon streams or 1D-trace analysis of the FRET efficiency traces. In both selected cases the 

states are initialised by a multi-Gaussian fit in the 2D/1D histogram, where the user needs to select the 

number of (non-degenerated) states (see Supplementary Method Figure 4.1). 

 

 
Supplementary Method Figure 4.1: 2D-histogram of donor (DD) and acceptor photon counts (DA) for 

all time traces fitted with two 2D-Gaussian distributions (left). 1D-projections of the 2D fit results and 

the 1D-histograms of DD (center) and DA (right). 
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Step 3: Model Fitting and Prediction 

 
The notebook allows to manually adapt the model fitting procedure by fixing values such as the 

Gaussian emission functions, the transition matrix or individual forbidden transitions during the model 

optimization. For degenerated states, the initial fit values from step 2 are required to be fixed in the 

model fitting step. The actual model optimization uses the expectation-maximization (EM) algorithm9 

for a global optimization of all traces. In this study all values (Gaussian emission distributions, transition 

matrix, initial distribution) were optimized during this step. For the degenerated states, only the transition 

matrix and initial distribution were optimized. 

 

 
Supplementary Method Figure 4.2: Three exemplary traces with the donor (DD) and acceptor 

photon counts (DA) in the top and center row, respectively, and the calculated FRET efficiency trace 

in the bottom row together with the predicted photon counts (blue) and FRET efficiencies (orange). 

 
The Viterbi-algorithm is used for the prediction of the states in all traces based on the optimized model 

(see Supplementary Method Figure 4.2). 
 

C) MISCELLANEOUS 

The python-based software package is cross-platform, as it is built on publicly available python 

packages. 

The analysis was performed on a desktop computer (64-bit operating system, Windows 10) with Intel(R) 

Core(TM) i5-6500 CPU @ 3.20GHz (4 cores) and 8.00 GB RAM. The computation time varied on the 

timescale of 30 s to 2 min.  
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Supplementary Method 5: SMACKS 

 

A) OVERVIEW: 

Single molecule time traces hold valuable information about a protein’s thermodynamics and kinetics. 

However, their analysis is far from trivial – especially, when their interpretation goes beyond apparent 

observations. Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) uses mathematical 

models for pattern recognition to not only resolve statistically relevant rates from such traces but also 

their uncertainties1. Thereby, SMACKS does not rely on dwell-times but takes every experimental data 

point into account to optimise one global kinetic model. Consequently, it allows for experimental 

variation between individual trajectories. At the core of SMACKS’ analysis lie hidden Markov Models 

that establish a mathematical relation between experimental observations and their subsequent 

interpretation, which in turn is limited by a predefined number of states. The general procedure of how 

SMACKS was used for data analysis within this study will be described in the following. A more detailed 

description on how to use SMACKS can be found in the associated manual 

(https://www.singlemolecule.uni-freiburg.de/software/smacks). The source code can be downloaded 

from https://www.singlemolecule.uni-freiburg.de/software/smacks. 

 

B) WORKFLOW: 

Step 1: Software Installation and Data Import 

SMACKS is implemented in Igor Pro (Wavemetrics). The program was started using the startSMACKS 

shortcut. To load the kinSoftChallenge data files, the dataID in the startSMACKS.ipf script editor was 

changed to StrConstant dataID = “time;g_g;r_g;r_r;fret;”. They were imported by using the ascii importer 

in the SMACKS menu (-->Import ascii). Afterwards, as SMACKS only accepts files with up to three 

tab- or space-separated data columns, the dataID was changed back to StrConstant dataID = 

“g_g;r_g;r_r” for further analysis. 

 

Step 2: Trace-by-Trace HMM (TbT) 

The TbT workflow was started in the SMACKS menu (-->Init TbT). In the settings, the number of 

apparent states was assigned by eye according to the user’s observation. The option FRET restraint 

was not selected. Adjustments as such were confirmed by clicking Initialize. To assign each trace a 

Viterbi path (meaning certain states according to the Viterbi algorithm), the procedure was applied to 

the whole dataset by choosing -->TbT Batch Converge in the SMACKS menu. Next, all associated 

Viterbi paths were individually checked and approved by browsing through the traces (using << and >>) 

and deleting parameters causing inappropriate Viterbi paths (using Del). For traces that were assigned 

a Viterbi path despite not reaching all states, the parameters were deleted as well. Eventually, by using 

TbT Apply Means, the mean of all saved (i.e. correct) parameters was applied to the remaining traces. 

 

Step 3: Semi-Ensemble HMM (ENS) 

Afterwards, the ENS workflow was started in the SMACKS menu (-->Init ENS). The detailed balance 

condition was not selected. Here, different state models were analysed based on the apparent states 

and optimised parameters found in the TbT workflow. Depending on the possibility of hidden states (i.e. 

states displaying the same FRET efficiencies while differing kinetically), different state configurations 

were tested. Different states were indicated by different numbers (0, 1, 2, etc.), whereas associated 

hidden states were denoted by doubling them (e.g., 001, 011, 0011, etc). Using the add-on feature --

>Compare BICs, the state model that best represented the data (i.e. the one with the lowest BIC) was 

chosen. Confidence intervals for the chosen state model were calculated using the feature --

>Confidence Intervals in the SMACKS menu. 

 

Step 4: Calculating Kinetic Rates and FRET Efficiencies  

From the -->TbT Apply Means procedure after the TbT workflow, the mean intensity values over all 

donor (D) and acceptor (A) traces were obtained. They were used to calculate the FRET efficiencies E 

according to: 

                                                       FRET E =  
𝐴

𝐴+𝐷
                        (5.1) 
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Corresponding uncertainties were calculated according to: 

 

                                              𝜎 = √(
𝐷

(𝐴+𝐷)²
)

2

 ∙ 𝜎𝐴
2  + (

−𝐴

(𝐴+𝐷)2)
2

∙  𝜎𝐷
2              (5.2) 

 

In the ENS workflow, SMACKS calculated a transition probability matrix and a covariance matrix of the 

Gaussian probability densities for all states. This calculation is performed in user-supplied time units. 

Therefore, giving specific time information is not necessary: the transition probabilities aij from state i to 

j are specified for this given time interval. Converting those probabilities from the transition probability 

matrix to rate constants kij (Hz) was done by multiplying them with with the sampling rate 

(frames/second) according to: 

 

                            kinetic rate 𝑘𝑖𝑗 = transition probability 𝑎𝑖𝑗 ∙  sampling rate                    (5.3) 

     

Confidence Intervals were converted to Hz accordingly. 

 

C) MISCELLANEOUS: 

Parameter Settings 

In steps 2 and 3, specific parameters can be set and varied. The initial parameters in the TbT workflow, 

however, were not adjusted. Instead, the given initial values were used. To find out which state model 

was most likely, the default number of iterations (500) given in the ENS workflow was halved to save 

computation time. Then, for a more precise calculation of the transition probabilities of the chosen 

model, the default values for the number of Max. Iterations (500) as well as for the Convergence 

Threshold (1E-15) were kept. However, this affected the values in the transition matrices only within 

the margins of error. 

 

Technical Specifications 

The synthetic datasets were analysed on a MiFcom desktop computer (8.00 GB RAM, Intel(R) 

Core(TM) i5-4460 CPU@3.20 GHz, 64-bit operating system, Windows 10). The experimental sets were 

analysed on a MiF desktop computer (32 GB RAM, Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 GHz 

2.30 GHz (2 prozessors), 64-bit operating system, Windows 10). In both cases, Igor Pro 6.37 was used. 

 

Computation Time 

The computation time varied depending on the complexity and size of the analysed set and the 

computer used for the analysis. The first synthetic data set containing a two-state system without hidden 

states was analysed within 30 minutes. The other two sets, in contrast, contained hidden states and – 

in case of the third set – more than two apparent states. Therefore, the second set required 4 hours, 

whereas the third took a little less than 13 hours to be analysed completely. For the experimental sets, 

computation time depended on time resolution. Under 10 kHz conditions, data analysis took 35 hours, 

whereas the 0.1 kHz data set was analysed within 1.5 hours.  
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Supplementary Method 7: Correlation 

 

A) OVERVIEW 

We recently presented a quantitative model for fluorescence correlation curves of complex multi-state 

kinetic networks obtained in single-molecule FRET experiments using MFD11. Here, we extended this 

methodology for use with fluorescence traces of immobilized molecules. In principle, this simplifies the 

analysis by removing the diffusion term of the correlation function12–14, but modifications are required to 

obtain accurate correlation functions from variable length traces. In MFD experiments, we are further 

able to compute filtered correlation functions by utilizing e.g. the lifetime information14–16, but no such 

information is available in the given case. To this end, we applied a step-finding algorithm to convert 

the observed FRET efficiency traces into digitized state trajectories, which were further used to compute 

filtered correlation functions. In the ideal case, this allows us to resolve the kinetics even in multi-state 

networks of three or more interconverting states. While an accurate estimation of the microscopic rate 

constants for the more complicated cases involving degenerate FRET states was not possible, 

correlation analysis still offers a minimally biased approach to estimate the kinetic relaxation times of 

the corresponding transition rate matrix, which allows to validate kinetic models inferred by other 

methodologies. 

 

All analysis was done in MATLAB. The code and all analysis files are available at 

https://doi.org/10.5281/zenodo.5512005. 

 

 

B) WORKFLOW 

Computation of correlation functions 

The calculation of unbiased correlation functions from the variable-length fluorescence time traces 

required three problems to be addressed: 

1. Correlation functions must be calculated for the total duration of the traces as dynamics and 

trace length may occur on a similar timescale. Edge-effects to the lower sampling of long lag 

times thus need to be accounted for. 

2. Correlation functions obtained from traces of different lengths must be correctly averaged. 

3. Errors arising due to trace-by-trace variability must be estimated. 

The correlation function between two signals 𝑆𝐴(𝑡) and 𝑆𝐵(𝑡) is defined by: 

𝐺𝐴𝐵(𝜏) =
〈𝑆𝐴(𝑡)𝑆𝐵(𝑡 + 𝜏)〉

〈𝑆𝐴(𝑡)〉〈𝑆𝐵(𝑡 + 𝜏)〉
, (7.1)  

where 𝜏 is the lag time and 〈… 〉 denotes the time average for a long measurement. Generally, the 

correlation function is calculated only up to a time lag that is a fraction of the total measurement time 

(𝜏 ≪ 𝑇, typically up to a maximum of 1/10 of the measurement time). To compute the correlation function 

over the whole length of the trace, it was calculated for every trace 𝑘 as described in references 17,18 

by: 

𝐺𝑘,𝐴𝐵(𝜏) =
(𝑇𝑘 − 𝜏) ∑  

𝑇𝑘−𝜏
𝑡=0 𝑆𝐴(𝑡)𝑆𝐵(𝑡 + 𝜏)

∑  
𝑇𝑘−𝜏

𝑡=0 𝑆𝐴(𝑡) ∑  
𝑇𝑘
𝑡=𝜏 𝑆𝐵(𝑡 + 𝜏)

, (7.2)  

where 𝑇𝑘 is the length of the trace and the sums only extend over the valid ranges of the time trace, i.e. 

0 ≤ 𝑡 ≤ 𝑇𝑘 − 𝜏 for 𝑆𝐴(𝑡) and 𝜏 ≤ 𝑡 ≤ 𝑇𝑘 for 𝑆𝐵(𝑡). 

Due to the variable length of the traces, the average correlation function over multiple traces is not 

simply equivalent to the average of all trace-wise correlation functions. To compute the average 

correlation function over all traces, the terms in the above equation were computed for every trace 𝑘 

and the final correlation function over all traces was computed as: 

𝐺𝐴𝐵(𝜏) =
∑   

𝑘 (𝑇𝑘 − 𝜏)[∑   
𝑘 ∑  

𝑇𝑘−𝜏
𝑡=0 𝑆𝐴(𝑡)𝑆𝐵(𝑡 + 𝜏)]

[∑   
𝑘 ∑  

𝑇𝑘−𝜏

𝑡=0 𝑆𝐴(𝑡)][∑  𝑘 ∑  𝑇
𝑡=𝜏 𝑆𝐵(𝑡 + 𝜏)]

. (7.3)  

Correlation functions were calculated for lag times on a multiple-tau scheme over stretches of linear 

time lags with exponentially increasing spacing, i.e. 𝜏 = 0,1,2, … ,19,20,22,24, … ,38,40,44,48 … etc (see 

reference19 for details). 
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To estimate the error due to trace-by-trace variability, we performed bootstrapping. For a set of N traces, 

we randomly selected N traces with replacement (that is, duplicate selections are allowed) 50 times, 

computed the average correlation function 𝐺𝐴𝐵 according to eq. 7.3, and determined the standard error 

of the mean from the set of correlation functions. 

FRET-FCS correlation functions were calculated from the background-corrected intensities in the donor 

and FRET channels to compute the auto- and cross-correlation functions of the donor (D) and acceptor 

(A) signals (𝐺𝐷𝐷 ,  𝐺𝐴𝐴 ,  𝐺𝐷𝐴 and 𝐺𝐴𝐷). Filtered-FCS curves were computed from the digitized state 

trajectories determined from the step-finding analysis (see below). For the analysis, all possible auto- 

and cross-correlation functions between the identified states were used (i.e., 4 in the case of two FRET 

states and 9 in the case of three FRET states). 

 

Estimation of FRET efficiencies of the different states 

The minimal number of states and their FRET efficiencies are determined by Gaussian fitting of frame-

wise FRET efficiency histograms. We used a Gaussian mixture model as implemented in the MATLAB 

function fitgmdist, based on an iterative Expectation-Maximization algorithm of the likelihood function. 

An exemplary fit is shown in Supplementary Method Figure 7.1A. 

 

Step-finding algorithm 

We apply the algorithm developed by Aggarwal et al. to identify steps in the FRET efficiency traces20. 

The algorithm does not assume any particular kinetic scheme but estimates the optimal number of steps 

based on the noise of the signal. Overfitting is avoided by introducing a penalty for each transition. For 

the analysis, we set an estimated noise of based on the distribution width obtained from the Gaussian 

fitting analysis (𝜎𝐸 = 0.05-0.1). No restraints are imposed on the FRET efficiencies of the steps. An 

exemplary result of the step-finding is shown in Supplementary Method Figure 7.1C. After the step 

finding, the stepwise FRET efficiency histograms were manually examined to identify thresholds to 

digitize the FRET efficiency trajectory (see Supplementary Method Figure 7.1B). 

 
Supplementary Method Figure 7.1: Exemplary workflow for the correlation analysis of single-

molecule time traces. A-B) FRET efficiency histograms of test dataset 2 before (A) and after (B) 

applying the step finding. Dashed lines in B indicate the used thresholds to define the state trajectory. 

C) Example of the step-finding algorithm. The idealized signal trajectory (black) is estimated from the 

noisy data (gray). Thresholds for the digitization of the FRET efficiency trajectory into states are shown 

as dashed lines. 

FCS model functions 
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Depending on the complexity of the datasets, three different analyses approaches were used 

throughout this study, depending on whether the FCS curves were calculated from the fluorescence 

intensities (FRET-FCS) or the digitized state trajectories (filtered-FCS). Further, for cases where 

insufficient information could be inferred to decide on the number of kinetic states a priori, an empirical 

model was applied to estimate the kinetic relaxation times without consideration of the correlation 

amplitudes. 

 

FRET-FCS 

For two-state dynamics, analytical functions are known for the color-FCS curves:4 

𝐺𝐷𝐷(𝜏) =
𝑘12𝑘21𝛥𝐸2

(𝑘12(1 − 𝐸1) + 𝑘21(1 − 𝐸2))2
𝑒−(𝑘12+𝑘21)𝜏     (7.4)  

 

𝐺𝐴𝐴(𝜏) =
𝑘12𝑘21𝛥𝐸2

(𝑘12𝐸1 + 𝑘21𝐸2)2
𝑒−(𝑘12+𝑘21)𝜏     (7.5) 

𝐺𝐷𝐴(𝜏) = 𝐺𝐴𝐷(𝜏) = −
𝑘12𝑘21𝛥𝐸2

(𝑘12(1 − 𝐸1) + 𝑘21(1 − 𝐸2))(𝑘12𝐸1 + 𝑘21𝐸2)
𝑒−(𝑘12+𝑘21)𝜏     (7.6)  

Here, 𝐸1 and 𝐸2 are the FRET efficiencies of the two states and 𝑘12 and 𝑘21 are the rates of going from 

state 1 to 2 and backwards, respectively. For the FRET-FCS analysis, the FRET efficiencies of the 

states were fixed to the values determined by the analysis of the FRET efficiency histograms. 

 

Filtered-FCS 

In filtered-FCS, the correlation functions represent the pure correlation functions between the different 

states. For the two-state case, the analytical correlation functions between states 1 and 2 are then given 

by: 

𝐺11(𝜏) =
𝑘12

𝑘21

𝑒−(𝑘12+𝑘21)𝜏 + 𝑐    (7.7)  

𝐺22(𝜏) =
𝑘21

𝑘12

𝑒−(𝑘12+𝑘21)𝜏 + 𝑐    (7.8)  

𝐺12(𝜏) = 𝐺21(𝜏) = −𝑒−(𝑘12+𝑘21)𝜏 + 𝑐,    (7.9)  

where 𝑐 is a constant offset. The correlation functions are calculated from the matrix exponential of the 

transition rate matrix, 𝑒𝐾𝜏, which can be obtained from the eigen-value decomposition of 𝐾: 

𝐾 = ∑  

𝑛−1

𝑖=0

𝛤𝑖𝜆𝑖    ⇒    𝑒𝐾𝜏 = 𝛤0 + ∑  

𝑛−1

𝑖=1

𝛤𝑖𝑒𝜆𝑖𝑡𝑐     (7.10)  

where 𝜆𝑖 are the eigen-values and 𝛤𝑖 the eigen-matrices of 𝐾. A transition rate matrix of dimension 𝑛 

has 𝑛 − 1 non-zero eigen-values, and the zero-th eigenvalue, 𝜆0 = 0, can be neglected in this case. 

The full correlation function is then obtained as: 

𝐺𝑎𝑏(𝜏) =
∑  𝑛−1

𝑖=1 𝑆𝑎
𝑇𝛤𝑖𝑥𝑑𝑆𝑏𝑒𝜆𝑖𝜏

〈𝑆𝑎〉〈𝑆𝑏〉
    (7.11)  

where 𝑆𝑎 and 𝑆𝑏 are the state vectors, i.e. {(
1
0
0

) , (
0
1
0

) , (
0
0
1

)}, 𝑥𝑑 is the vector of equilibrium fractions of 

the states and 〈𝑆𝑎〉 and 〈𝑆𝑏〉 are the average occupancies of the states, 〈𝑆𝑎〉 = 𝑥𝑎. Using this formalism, 

we can directly fit all rate constants of the transition rate matrix to the obtained correlation functions. A 

detailed derivation of the correlation functions is given in reference11. The filtered-FCS curves were 

analyzed globally with respect to the transition rate matrix. 

Empirical model functions for degenerate cases 

For the advanced cases where degeneracy of FRET states is involved (i.e., states with identical FRET 

efficiencies but different kinetic properties), our method cannot resolve the kinetics accurately. 

However, it is still possible to determine the relaxation times of the kinetic process from the correlation 

functions using simplified multi-exponential model functions with 𝑛 components. 

𝐺11(𝜏) = ∑  

𝑛

𝑖=1

𝐴11,𝑖𝑒
−

𝜏
𝜏𝑖 + 𝑐    (7.12)  
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𝐺22(𝜏) = ∑  

𝑛

𝑖=1

𝐴22,𝑖𝑒
−

𝜏
𝜏𝑖 + 𝑐    (7.13)  

𝐺12(𝜏) = 𝐺21(𝜏) = − ∑  

𝑛

𝑖=1

𝐴12,𝑖𝑒
−

𝜏
𝜏𝑖 + 𝑐 ,    where ∑  

𝑛

𝑖=1

𝐴12,𝑖 = 1.    (7.14)  

Here, 𝑐 is a constant offset. Here, to reduce the number of free fit parameters, we took advantage of 

the fact that the cross-correlation functions contain the same information and that the amplitudes should 

sum to 1 for the filtered-FCS curves. 

The obtained relaxation times 𝜏𝑖 correspond to the inverse of the negated eigenvalues of the transition 

rate matrix, 𝜆 = 𝑒𝑖𝑔(𝐾), and can thus be compared to the input values: 

𝜏𝑖 = −𝜆𝑖
−1.    (7.15)  

No further interpretation of the obtained amplitudes is performed in this case. All relaxation times were 

globally optimized over all correlation functions. 

 

Curve fitting 

Curve fitting was performed based on the reduced chi-square 𝜒𝑟
2 defined as: 

𝜒𝑟
2 =

1

𝑁 − 𝑘
∑  

 

𝑖

(𝐺𝑑𝑎𝑡𝑎,𝑖 − 𝐺𝑚𝑜𝑑𝑒𝑙,𝑖)
2

𝜎𝑖
2 ,    (7.16)  

where 𝑁 is the number of data points, 𝑘 is the number of parameters of the model and 𝜎𝑖 is the estimated 

error. Optimization was performed using the fminsearch function of MATLAB using the Nelder-Mead 

method21. For model selection, we applied the Bayesian information criterion22 given by: 

BIC = 𝑘 ln(𝑁) + 𝜒2 ,    (7.17)  

whereby the model with the lowest value for the BIC was chosen. Errors of the fitted parameters were 

estimated based on Metropolis-Hastings sampling of the posterior probability distribution of the model 

parameters using a flat prior23,24. The Markov chain Monte Carlo sampler as implemented in the 

mhsample function of MATLAB was run for 10.000 iterations using a symmetric proposal distribution. 

The width of the proposal distribution was estimated based on the errors of the fit parameters 

determined from the non-linear least squares fitting using the Hessian matrix at the solution, and set to 

one-tenth of this value. Every hundredth sample of the Markov chain was kept and used to calculate 

the confidence intervals. All given errors are specified as 95% confidence intervals. An example of the 

posterior distribution obtained for the elements of the transition rate matrix of the synthetic three-state 

system is shown in Supplementary Method Figure 7.2B. 

 

Analysis of the different datasets 

Correlation functions for all synthetic datasets were obtained by the filtered-FCS workflow. The 

correlation functions for the synthetic datasets of level 1 and 2 were analyzed using the analytical model 

functions for a two- and three-state system, respectively. Due to the degeneracy of the FRET states for 

level 3, the empirical analysis was performed with a three-component model. The number of 

components was hereby estimated by comparing the BIC of the models with two to four components. 

Due to the high number of FRET states in the first experimental dataset, the empirical analysis with a 

two-component model was performed. For the second experimental dataset, the filtered-FCS workflow 

was applied with a two-state kinetic model for the 10-ms dataset. In addition, the correlation functions 

revealed a slower process on the minute timescale. Two estimate the timescales of these dynamics, 

the empirical analysis with a two-component model was additionally applied to the filtered-FCS curves. 

For the 1-ms dataset, only FRET-FCS analysis could be performed as the step-finding algorithm could 

not be applied to the noisy traces. 

 

Deviations of the correlation approach for the three-state system (Synthetic Data, Level 2) 

The large deviations of the correlation approach for the synthetic three-state system were a partly 

surprising result as the method had worked better in previous benchmarks. Based on the ground-truth 

transition rate matrix of the three-state system (see Supplementary Datafiles), the two relaxation times 

of the simulated system are 𝜏1 = 1.07 s and 𝜏2 = 1.41. The accurate estimation of the microscopic rate 

constants (i.e., the elements of the transition rate matrix) crucially depend on an accurate estimation of 
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the amplitudes of the different exponential terms in the correlation curves. Given the low contrast 

between the two relaxation times (~30% difference), it is thus likely that the deviations of the inferred 

rate constants originate from inaccuracies of the estimated amplitudes due to the large overlap of the 

two exponential components. The fit of the correlation curves and the error estimation by the Markov 

chain Monte Carlo method are shown in Supplementary Method Figure 7.2. 

 

 
Supplementary Method Figure 7.2: Correlation analysis of the synthetic dataset of level 2 (three- 

state system). Same data and sample size as in Figure 3. A) Filtered-FCS correlation functions (scatter 

plots) and fits (solid lines). Error bars represent the standard error of the mean of the trace-by-trace 

correlation functions obtained by bootstrapping. B) Posterior distributions of the rate constants of the 

transition rate matrix. All rates are given in s-1. 

 

Correlation analysis of the degenerate systems (Synthetic Data, Level 3) 

While the FRET efficiency histogram analysis suggested a two-state system for this dataset, we clearly 

detected multiple relaxation times in the correlation curves that indicated a more complex kinetic 

network of three or more states. To infer the number of states, we applied the empiric model function 

with two, three or four relaxation times and compared the BIC values (Supplementary Method Table 

7.1 and Supplementary Method Figure 7.3). We found a clear minimum of the BIC for three relaxation 

times, indicating that the kinetic system involved four states. Based on the existence of two 

distinguishable FRET states, we speculated that each of these would show a two-fold degeneracy. 

While it was not possible to extract the microscopic rate constants reliably, we could compare the 

relaxation times extracted by the empirical model to the ground truth values. From the filtered-FCS 

analysis, we estimated relaxation times of 𝜏1 = 1.3 s (1.1-1.5), 𝜏2 = 10.8 s (6.6-15.2) and 𝜏3 = 41 s (30-

62) (95% confidence intervals are given in brackets, see Supplementary Method Table 7.1 and 

Supplementary Method Figure 7.3), which correspond well to the relaxation times determined for the 

ground truth transition rate matrix of 𝜏1 = 1.05 s, 𝜏2 = 8.23 s and 𝜏3 = 27.00 s. This indicates that 

correlation analysis can still be used to quantitatively assess the relaxation times corresponding to the 

transition rate matrix even for complex cases. 

 

C) MISCELLANEOUS 

Performance considerations 

On a standard desktop computer, the calculation of FRET-FCS correlation curves for the datasets used 

in this study took less than a minute. For the filtered-FCS analysis, the limiting step is the step-finding 

algorithm, resulting in typical computation times of 10-15 minutes. Curve fitting generally took less than 

one minute. However, depending on how many models were tested, the total analysis procedure 

including human intervention could take up to 1 h. 

 

Artifacts in correlation analysis of experimental data 

For experimental data, several artifacts can potentially affect the correlation analysis. Here, we briefly 

review the most common problems, their effect on the correlation function and how they can be avoided. 
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1. Model selection and user bias 

A major advantage of the correlation analysis is that the computation of the correlation function from 

the signal intensities is free of user bias. However, the quantitative analysis of the obtained correlation 

functions crucially requires estimating the number of kinetic states (and their FRET efficiencies) to 

select the correct model function. If the FRET efficiencies of the different kinetic states are sufficiently 

different, the number of states can be inferred from the framewise FRET efficiency histogram. 

Importantly, also the number of relaxation times found in the correlation curves (e.g., by use of the 

empirical model function in conjunction with the BIC) informs on the number of states, where N states 

will result in N-1 relaxation times. This information was used for the analysis of the synthetic dataset of 

level 3 with degenerate FRET states. While here the FRET efficiency histogram suggested a two-state 

system, the correlation curves indicated three relaxation times, in agreement with the four kinetic states 

of the simulated system. For the filtered-FCS analysis described here, the choice of the number of 

FRET states is also relevant for the computation of the filtered correlation curves, specifically for the 

thresholding step for the digitization of the FRET efficiency trajectory. This approach is also inapplicable 

to degenerate systems containing different kinetic states with identical FRET efficiencies. 

2. Signal spikes due to impurities 

Some of the experimental datasets used in this study showed clear signal spikes both in the donor and 

acceptor channels that exceed the variation expected for Poissonian noise and do not show the 

characteristic anti-correlated behavior expected for FRET dynamics (see Fig. 5a,d,g of the main text). 

Such signal spikes could be of photophysical nature or originate from diffusing impurities (such as 

unreacted fluorophores) that transiently enter the observation volume. The expected effect is the 

appearance of an additional fast component in the autocorrelation functions of the donor and acceptor 

channels for the FRET-FCS analysis. Notably, such signal fluctuations should not affect the cross-

correlation function as they should be uncorrelated between the donor and acceptor channels. The 

effect on the filtered-FCS analysis is more difficult to assess as it depends on whether the step-finding 

algorithm will erroneously detect the fast changes of the FRET efficiency due to the signal spikes as a 

transition. 

3. Trace-by-trace variability 

It is generally assumed that all molecules that are considered for the analysis behave identically, 

however some trace-by-trace variation might occur due to incomplete filtering of dysfunctional 

molecules, fluorescent impurities, or biologically relevant functional heterogeneity (e.g., originating from 

a variation of post-translational modifications or allosteric control). Such heterogeneity will skew the 

average correlation function away from that of the pure species of interest and result in large variations 

of the shape of the correlation functions. In turn, the experimental uncertainty from the bootstrap 

procedure will be overestimated, and consequently the reduced chi-squared estimator will be 

systematically underestimated. 

4. Slow intensity fluctuations 

Slow intensity fluctuations in measurements of immobilized molecules might originate from instabilities 

of the excitation laser, resulting in slow power fluctuation on the minute to hour timescale, or focal drift 

due to z-drift of the sample, reducing the detectable signal as the molecule moves outside of the focal 

plane. As the FRET-FCS analysis is applied directly to the fluorescence intensities, such slow 

fluctuations will be reflected in the resulting FCS curves. On the other hand, for the filtered-FCS curves 

the digitized state trajectories are determined based on the FRET efficiency trace which remains 

unaffected by the signal fluctuations, assuming that the donor and acceptor channels are equally 

affected and neglecting a change of the noise of the FRET efficiency trace due to the intensity 

modulation. Slow intensity fluctuation should thus have a minor effect on the filtered-FCS curves. 

5. Photophysical artifacts 

Correlation analysis is sensitive to all effects that modulate the fluorescence intensity. Common 

unwanted photophysical effects are photoblinking, e.g., due to the population of long-lived dark states 

such as radical ions25, and intensity changes due to spectral shifts26. Special care should be taken in 

correlation analysis to avoid that photoblinking of the acceptor fluorophore is interpreted as FRET 

dynamics, which will feature as a prominent term in the cross-correlation function. Photoblinking of the 

donor fluorophore is readily detected from a drop of the intensity to the background level. Photoblinking 

of the acceptor can be identified by the use of alternating laser excitation schemes that include the 
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intermittent probing of the acceptor fluorophore27,28, allowing to exclude those time intervals where the 

acceptor was inactive. Generally, the formation of long-lived dark states can be reduced by the 

application of reducing-oxidizing systems, e.g. by the addition of TROLOX25. 

 

Supplementary Method Table 7.1: Analysis results of the correlation analysis. Rate constants are 

reported as fitted value ± 95% confidence interval. All rate constants are given in s-1 and relaxation 

times in s. States are ordered from low to high FRET efficiency, i.e. 1=low-FRET, 2=mid-FRET, 3=high-

FRET. For asymmetric confidence intervals (dataset 3, empirical three-exp. model), the lower and upper 

bounds of the 95% confidence intervals are given in brackets. 

Dataset Method 𝑘12 [s-1] 𝑘21 [s-1] 𝑘13 [s-1] 𝑘31 [s-1] 𝑘23 [s-1] 𝑘32 [s-1] 𝜒𝑟
2 

1 

FRET-FCS 
0.142 

± 0.002 

0.210 

± 0.002 
- - - - 1.07 

fFCS 
0.142 

± 0.002 

0.212 

± 0.002 
- - - - 0.998 

2 fFCS 
0.091 

± 0.003 

0.284 

± 0.003 

0.560 

± 0.005 

0.249 

± 0.003 

0.173 

± 0.003 

0.280 

± 0.003 
1.83 

  𝜏1 [s] 𝜏2 [s] 𝜏3 [s] 𝜏4 [s]  BIC 𝜒𝑟
2 

3 

empirical. 

2 exp 

1.6 

±0.2 

23.4 

± 1.2 
- - - 71.38 0.13 

empirical, 

3 exp 

1.3 

(1.1-1.5) 

10.8 

(6.6-15.2) 

41 

(30-62) 
- - 68.89 0.03 

empirical, 

4 exp 

1.3 

(1.1-

1.5). 

8.2 

(6.3-16.1) 

11.2 

(6.2-16.8) 

40 

(30-55) 
- 91.19 0.03 
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Supplementary Method Figure 7.3: Empirical analysis of the correlation functions for synthetic 

dataset of level 3 involving degenerate FRET states. Same data and sample size as in Figure 4. The 

data were analyzed using two exponential terms (A-B) or three exponential terms (C-D). A,C) Filtered-

FCS correlation functions (scatter plots) and fits (solid lines). B,D) Posterior distributions of the relaxation 

times. All times are given in seconds.The 𝜒𝑟
2 changes from 0.13 to 0.03 and the BIC decreases from 

71.38 to 68.89, indicating that the three-exponential model is to be preferred (see Supplementary Method 

Table 7.1). Inclusion of a fourth component results in an increase of the BIC to 91.19 and shows no 

further decrease of the 𝜒𝑟
2. Error bars in A and C represent the standard error of the mean of the trace-

by-trace correlation functions obtained by bootstrapping. 
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Supplementary Method 8: Edge finding (CK) 

 

A) OVERVIEW 

Our method is based on the Chung-Kennedy filtering approach previously used in ion channel 

experiments29 and subsequently by Haran in single molecule FRET experiments30. Applied to a time-

series of points representing donor intensity, acceptor intensity or FRET ratio, we associated each data 

point with a ‘forward’ window containing a fixed number of later points and a ‘backward’ window a 

number of earlier points. The standard deviation (or variance) of the points in such a window will be 

largest when an edge occurs near the center of the window. By monitoring the standard deviation of 

the forward and backward windows when scanning through the data time trace, the location of transition 

edges can be identified by the maxima of these standard deviations (or variance)31.  

Additional description of this Chung-Kennedy edge detection method is published elsewhere31. The 

source code is available for download at: https://www.physics.ncsu.edu/weninger/KinSoft.html . 

 

B) WORKFLOW  

In our implementation for the data in this study, we considered only the FRET efficiency time record 

and constructed only a single window of points. Any window whose standard deviation exceeded a 

threshold and was also a local maximum was identified to contain a transition edge at its center data 

point. The window size and critical standard deviation value were determined empirically from the 

training sets provided with the challenge and verified by inspection by an experienced user. Next, the 

forward and backward windows were constructed around these potential transition edge locations and 

the two sample t-test was applied. Transition edges were accepted if the significance level (alpha) of 

the t-test comparing these data windows examining the FRET states before and after the potential 

transition edge was above an empirically determined value set by examining the training sets. For the 

2 level systems, parameters were: Local window size = 5 data points; threshold for FRET efficiency 

variance in the window = 0.03; t-test alpha = 0.6. For the 3 level system: Local window size = 5 data 

points; threshold for FRET efficiency variance in the window = 0.018. t-test alpha = 0.4. Bleaching and 

blinking events can be removed in a pre-processing step by identifying segments where the sum of 

donor and acceptor intensities are below a threshold. Removal of blinking and bleaching was only 

performed on the experimental data but not on the simulated data where the effect was absent. Events 

immediately before or after removed intervals were not used for kinetic analyses. 

Once transition edges were identified, FRET states were categorized according to Gaussian fitting of 

all FRET data points. FRET = 0.55 was the dividing line between states for the 2 state systems, and 

FRET = 0.35 and FRET= 0.7 were the dividing lines between states for the 3 state systems as 

determined by locating local minima in the histograms of all FRET values. The dwell time in each state 

between edges was calculated and histograms of dwell times were assembled for each FRET state. 

Fitting exponential decay functions to the dwell time histograms yielded estimates of the apparent rates 

of transitions out of the states. Multiplying apparent rates by the fraction of transitions to a specific state 

divided by the total number of transitions out of a state (‘branching ratio’) gives the true transition rate 

in the 3 state system32,33. 

C) MISCELLANEOUS  

Although not required here, it is notable that for more challenging data that Haran has demonstrated 

increased sensitivity in transition edge detection is possible by exploiting the expected anti-correlation 

of donor and acceptor intensities associated with transitions of FRET efficiency30. This method was 

implemented by examining donor and acceptor intensities separately, forming local ‘forward’ and 

‘backward’ windows for each, and identifying maxima in the sum of the donor and acceptor variances 

in these windows to reveal transition edges.  
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Supplementary Method 9: Edge finding (k-means) 

 

A) OVERVIEW 

The k-means edge finding method is based on an iterative clustering algorithm that assigns data into 

groups based on the similarity of each point to group properties34–37.  

Our application can apply the k-means edge finding algorithm to time records of donor intensity, 

acceptor intensity, or FRET efficiency, or a 2-dimensional representation of donor and acceptor 

intensities. In this project, we only considered the FRET efficiency data. The clustering algorithm groups 

the FRET efficiency data points without consideration of the time aspect of the record. The number of 

clusters to be formed is selected based on the apparent number of states in a histogram of all FRET 

efficiency points for all time traces. There are more formal approaches in k-means theory to determine 

the number of target clusters38–40, but those were unnecessary with these data. 

The goal is to group the FRET efficiency points into clusters representing the distinct states present in 

the data. The algorithm proceeds generally by choosing initial values as ‘centers’ for each group or 

cluster. All the data points are then assigned to the group which they are closest to by some distance 

measure without regard to their temporal position in the time trace. The centers of each group are then 

recalculated by averaging the value of all points in that group. The algorithm then proceeds in an 

iterative manner whereby all data points are reassigned to the groups minimizing their distance from 

the new center values. This process of recalculating the center and then reassigning points to the 

nearest group repeats until points no longer change groups. 

The source code is available for download at: https://www.physics.ncsu.edu/weninger/KinSoft.html . 

B) WORKFLOW  

In the specific application for the data in this project, we used FRET efficiency values as the input for 

the k-means algorithm. Before performing clustering, the data is preprocessed to remove bleaching and 

blinking. For this project, the simulated data did not require preprocessing, whereas bleaching and 

blinking was removed from the experimental data by excluding data points where the sum of donor and 

acceptor intensities was below a threshold determined by inspection of traces (threshold 27 after 22 

point smoothing). The events immediately before or after removed intervals were not used for kinetic 

analyses. 

We determined the number of clusters (or number of ‘centers’) to use by examining time traces and the 

FRET efficiency histograms assembled from all the data. To choose initial values for the centers of the 

clusters, all data point values were ordered by FRET efficiency value and then divided into equally sized 

groups matching the desired number of clusters. A data point was randomly selected from each cluster 

to serve as the initial “center” for the cluster. Next, each data point was assigned to the cluster for which 

the ‘distance’, which is defined as (data value –  cluster ‘center’ value)2, was minimized. Once all data 

points were assigned to clusters, the centers for each group were recalculated by averaging the values 

of all of the data points in the group. Finally, the process was repeated with data points being reassigned 

based on minimizing the distance to the new centers. This process was repeated until the data points 

no longer changed clusters. The final value of each “center” was interpreted at the FRET efficiency of 

a distinct state. All of the data points in a cluster were assigned that FRET state. The data points were 

then interpreted in the temporal order of the time trace yielding a sequence of FRET state vs. time. Data 

points where the FRET efficiency state changed were determined as transition edges. 

The k-means algorithm assigns points to clusters based on their value without reference to their 

temporal sequence. For this reason, rare assignments of points to incorrect clusters typically result in 

time records having transitions to different states that last only one time bin and then return to the 

previous state. If the data acquisition rate is substantially faster than the rates characterizing the kinetic 

system, such one time bin events are expected to be rare. For example, if kdata acquisition = 10* Kcharacteristic 

kinetics then ~10% of events are expected to be one time bin ; if kdata acquisition = 100*Kcharacteristic kinetics then 
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~1% of events are expected to be one time bin . If an erroneous one time bin event breaks up a longer 

dwell into two shorter dwells, it can have a negative impact on determining the kinetic rates of the 

system. Therefore, we designed a protocol to remove one time bin events that met certain criteria.  

For isolated transitions to other states that last one time bin where the clusters on either side are 

different from each other, we examined the donor and acceptor values in the clusters to decide how to 

reassign the one frame. We calculated the squared differences of the donor value on the one time bin 

event from the averaged donor values of all points assigned to the FRET state of each adjacent cluster 

and a similar squared differences for the acceptor values: 

 ClosenessToXCluster = √(donor value −  average donor value for cluster X)2  

+ √(acceptor value −  average acceptor value for cluster X)2 

where X indicates which cluster. The one time bin event was reassigned to the cluster for which the 

ClosenessToXCluster was smallest. If the clusters on either side of a one time bin transition were the 

same, we used an average of the donor and acceptor values of the points in that cluster to calculate 

the closeness to the current cluster ClosenessToCurrentCluster and an average of the points in the 

sections immediately adjacent to the one bin event to calculate closeness to the adjacent cluster 

ClosenessToAdjacentCluster. We then calculated:  

DifferenceInDistances =  abs(ClosenessToCurrentCluster − ClosenessToAdjacentCluster)   

and the standard deviation of points in the adjacent cluster:  

stdAdjacentCluster =  standard Deviation of all donor (or acceptor) values of adjacent cluster.   

If the ClosenessToAdjacentCluster  <   ClosenessToCurrentCluster and the  

DifferenceInDistances  <   stdAdjacentCluster for both donor and acceptor signals, then we assigned 

the point to the state of the adjacent cluster. Otherwise, we left it in the original cluster, maintaining an 

event lasting only one time bin. 

When multiple one time bin events occurred sequentially, we averaged the FRET efficiency in the 3 or 

more one time bin events and assigned all of them to the same cluster that was closest. 

Once all points were finalized into clusters, the dwell time of the behavior in a state was measured as 

the time between edges and assembled into histograms for all events in a given state (first and last 

events in every trace as well as events preceding and following blinking were discarded). The 

histograms were fit with exponential decay functions to determine the lifetimes. For the 3 state system, 

the true transition rates were determined from the apparent rates by multiplying by the fraction of 

transitions to a specific state divided by the total number of transitions out of a state (‘branching 

ratio’)32,33. 
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Supplementary Method 10: Step finding 

A) Overview  

Analysis with step finding was performed using an in-house implementation of a step identification 

algorithm written in Python (https://github.com/SMB-Lab/PyStepFinder) that sorts one-dimensional data 

into piecewise line segments without enforcing a number of states or kinetic network. Sorting is 

accomplished through iterative forward addition of line segments to a piece-wise linear fit of each trace. 

At each iteration, starting with one line for the whole trace, all current line segments are tested to find 

the optimal position at which to split the segments into two segments. The sum of squared residuals 

(𝛸2 = (𝑥 − 𝑥), with 𝑥 the value of the test statistic and 𝑥 the mean of the test statistic for the segment) 

is used as the quality of fit statistic for the fit of the two new segments. This value is compared to the 

previous segment and the addition of a segment is accepted if the improvement in the quality of fit is 

significant. This process is summarized visually in (Supplementary Method Figure 10.1). Several 

options can be specified in performing step finding with this implementation, including choice of the 

statistic of interest for fitting (mean, rms, variance, slope), a sliding window size for calculating running 

averages of observed statistics of interest for comparison to the segment means, a minimum length of 

each line segment (in number of data points), and a threshold for improvement in quality of fit per 

segment addition as well as a thresholding mode (ratiometric, flat improvement, statistical tests, etc.). 

For this study, all analysis was performed using the segment means as the statistic of interest with no 

running average, a minimum segment length of two data points, and the quality of fit threshold set to 

the variance of each trace. For other test statistics, represents a running average value of the test 

statistic, in which case the minimum segment length must be at least the size of the averaging window. 

PyStepFinder is appropriate for other series data as well. We have used a similar tool available in 

MATLAB previously for analysis of time-series force data from optical tweezer experiments41. Currently, 

PyStepFinder is unable to identify states with degenerate mean signals unless those states are 

distinguishable by other parameters, such as signal variance. Thus, for this study the step finding 

algorithm was only used to resolve the non-degenerate FRET efficiencies in degenerate datasets.  

B) Workflow  

Step finding was performed for each FRET efficiency trace to identify. When FRET efficiency was not 

provided directly, it was calculated using Efficiency = 𝐼𝐴/(𝐼𝐴 + 𝐼𝐷), where IA and ID are the donor and 

acceptor signal intensities, respectively. Following identification of each transition step in the dataset, 

each line segment was classified as belonging to one of the non-degenerate FRET states. The number 

of states was determined by user input following histogramming of FRET efficiency data. The means 

and widths of these states were determined using Gaussian fits. Line segments then were classified 

into one of the states based on their mean FRET efficiencies. Dwell times for each line segment were 

determined by multiplying the number of points in each by the binning resolution of the input dataset. 

Kinetic rate constants were determined per state from 𝐾𝑖 = 1/𝜏, with 𝜏 the average dwell time within a 

state. Rate constants for individual kinetic pathways (i.e., state i to j, 𝑘𝑖𝑗) were determined by multiplying 

𝐾𝑖 by the ratio of transitions from state i to state j the total number of transitions from state i, 𝑘𝑖𝑗 = 𝐾𝑖 ⋅

𝑁𝑖𝑗/𝑁𝑖. Uncertainty estimates for 𝑘𝑖𝑗 were determined by calculating the standard error of the mean 

(SEM) associated with the mean dwell time (SEMτ,i = 𝜎𝜏,𝑖/√𝑁𝑖) with 𝜎𝜏,𝑖 the standard deviation of the 

dwell times. The SEM was then propagated through to each kinetic rate using the standard uncertainty 

propagation formula, 𝛥𝑘𝑖𝑗 = √SEM𝜏,𝑖
2 ⋅ (𝜕𝑘𝑖𝑗/𝜕𝜏𝑖)2. The first and last line segment for each trace were 

ignored for this analysis to avoid artificially reduced dwell times associated with each state. 
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Supplementary Method Figure 10.1: Forward addition of steps in PyStepFinder. A) Data is initially 

fit with a horizontal line at the mean of the data test statistic and initial Χ2 is calculated. B) Candidate 

locations are tested for insertion of a step between two segments to replace the original segment. 

Χ2 is calculated for each potential replacement and the one with the lowest Χ2 is taken as the best 

candidate. C) The change in the Χ2 calculated for the insertion candidate relative to the original 

iteration Χ2 is compared to a threshold value. The criterion for the flat improvement is shown, but 

other thresholding modes can be defined. If the improvement in Χ2 satisfies the threshold, iteration 

continues from A for all existing segments. If the criterion is not met, the segment is accepted as 

final until no further insertions are accepted for any segment. D) The finalized trace for which 

insertion of any additional segments would not significantly improve the fit. 
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Supplementary Method 11: STaSI 

 

A) OVERVIEW 

The Step Transition and State Identification (STaSI) method was introduced in 2014 to determine the 

number of states and step transitions between states for piecewise constant data with a minimum 

description length (MDL) as the objective function42. The step transitions are detected using the 

Student’s t- test and the segments are grouped into states by hierarchical clustering. The optimum 

number of states is then established using a minimum description length equation that sums the 

goodness of fit measured using L1 norm and the complexity of the fitting model derived to consider the 

sparseness of the states and transitions among states. More details on this can be found in the original 

report42.  

Benefits of STaSI include not requiring time-tagged photon counting or photon counting in general. 

STaSI provides a better resolution to interpret noisy data with fast dynamics to avoid the need for 

binning. Binning can introduce artifact states in between real states and limits the temporal resolution 

of single-molecule FRET. STaSI also is objective, requiring no assumptions about the model and no 

user inputs other than the FRET efficiency trace in determining the number of states and transitions. 

Finally, the algorithm is written for smFRET data, but could be used for any piecewise constant signal. 

Here, we apply STaSI to the kinSoftChallenge data. While STaSI was developed only for state and step 

transition identification, we analyze the kinetics of the transitions identified by STaSI with a simple 

exponential fitting method to maintain its ease-of-use.  Overall, STaSI is a user-friendly, objective 

method developed to analyze a variety of piecewise constant data conditions, including data with low 

signal-to-noise ratios, but will require future development to handle data with degenerate kinetics in 

different states. 

CITATION: Shuang, B.; Cooper, D.; Taylor, J. N.; Kisley, L.; Chen, J.; Wang, W.; Li, C. B.; 

Komatsuzaki, T.; Landes, C. F. Fast Step Transition and State Identification (STaSI) for Discrete 

Single-Molecule Data Analysis. J. Phys. Chem. Letters. 2014, 5, 3157 – 3161. 

https://pubs.acs.org/doi/10.1021/jz501435p. 

DOWNLOAD LINK: https://github.com/LandesLab/STaSI 

 

B) WORKFLOW 

The provided donor intensity (ID) and acceptor intensity (IA) values were converted to a FRET efficiency 

(E) using: 

Eq. 1      𝐸 =  
𝐼𝐴

𝐼𝐷+𝐼𝐴
. 

The STaSI GUI was then executed on the FRET E where all traces were analyzed together.  

The grouped states and step transitions for the global minimum MDL was saved as a FRET E vector 

as the output of STaSI. Non-physical states identified with FRET E > 1 or < 0 were not considered in 

the final number of states or any of the kinetic analysis. The “FRET E” was the assigned state levels of 

the STaSI output. The “sigma FRET”/σ(FRET E) was calculated from the standard deviation of the raw 

trace_i.txt FRET E data assigned to each state level in STaSI.  

The “total duration of inference” for the STaSI analysis was recorded using the tic and toc functions in 

MATLAB R2018a executed after the user input. All the computations were done using a Dell desktop 

computer with an Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz processor, 16.0 GB RAM and 64-bit 

Windows 10 Enterprise (2018) operating system. 

The kinetics were calculated by an exponential fit of the cumulative distribution of dwell times spent in 

each state before transitioning to another state. Any false transitions caused by concatenating the 

individual traces together in the STaSI analysis were removed (i.e. connecting end of trace i with the 

beginning of trace i+1). The cumulative probability distributions of dwell times for each state were fit to 

a simple exponential decay model, 

Eq. 2      𝑃(𝑡 > 𝜏) = ∑ 𝐴𝑖𝑒−𝑘𝑖𝜏𝑛
𝑖=1 ,  

where P(t>τ) is the cumulative distribution of observing a dwell time of ≥τ for a given time t, A is the 

amplitude, k is the rate, and n being the number of components44. MATLAB’s built in ‘fit’ function using 

the Trust-Region-Reflective Least Squares was used with the inverse of the mean value of dwell time 
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as an initial guess for k and 1 for A. Data for Experiment 1 and Experiment 3 were fit with n = 1. Data 

from Experiment 2 was fit with n = 2. 

Since none of the experimental data resulted in a simple two-state transition without degeneracies we 

further analyzed the resulting values from Equation 2 by43,45: 

Eq. 3     𝑘𝑎𝑏 =  𝐴𝑎𝑏/[∑ (
𝐴𝑎𝑖

𝑘𝑎𝑖
)𝑛

𝑖=1 ]. 

Here, a is the starting state and b is the ending state for the kinetic rate transition of interest and n 

represents the total number of states. Aab can either be extracted from the fit from non-normalized 

cumulative distributions, or, as we used here, the total number of transitions observed from state a to 

state b. For example, Equation 3 states that the rate of state 1 to state 2 transition (a=1 and b=2) is 

calculated as the ratio between the number of transitions from state 1 to state 2 divided by the total 

dwell time in state 1 spent before transitioning any other state (2, 3, … n). This method is used because, 

kab≠ 1/τab for non unimolecular reactions45.  
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Supplementary Method 12 & 13: MASH-FRET 

 

A) OVERVIEW 

MASH-FRET is a MATLAB-based software package freely available on github 

(https://github.com/RNA-FRETools/MASH-FRET) demanding the following toolboxes: 

⚫ Symbolic Math Toolbox 

⚫ Image Processing Toolbox 

⚫ Statistics and Machine Learning Toolbox 

⚫ Curve Fitting Toolbox 

MASH-FRET was developed on MATLAB2016a but has recently passed to MATLAB2020b. 

Computation times were measured on a computer equipped with an Intel Core i7-3632QM CPU 

(2.2GHz) and 8GB RAM. 

The steps to reproduce the results obtained are the following52: 

1. Install and start MASH-FRET v.1.3.2 as described in the online documentation (https://rna-

fretools.github.io/MASH-FRET/Getting_started.html) 

2. Go to MASH-FRET's menu Routines > Standard analysis > All steps and select the set of files 

to analyze 

3. A first message box pops up: enter the number of FRET states if known or press "No" otherwise 

4. A second message box pops up: choose the proper noise distribution according to your data 

set 

5. Once the analysis routine is completed, you can find the analysis summary in file [data file 

name]_results_[J]states.txt at the same location as your data files. 

 

B) WORKFLOW 

a. Determination of the FRET state configuration 

The procedure used to determine the FRET state configuration with the MASH-FRET (bootstrap) and 

(prob.) methods is based on the conclusions of a preliminary comparative study of several algorithms46. 

The provided acceptor IA(t) and donor ID(t) intensity signals were not further processed as they were 

provided free of background and dye photobleaching. Additionally, the necessary data to correct the 

differences between donor and acceptor quantum yields, i.e., the control acceptor signal upon acceptor 

direct excitation, was not part of the provided data sets. FRET-time traces FRET(t) were therefore 

directly calculated according to: 

 FRET(𝑡) =
𝐼𝐴(𝑡)

𝐼𝐴(𝑡)+𝐼𝐷(𝑡)
. (12.1) 

Aberrant FRET values below -0.2 and above 1.2 FRET units were ignored in the following analysis. 

Individual FRET-time traces were discretized into FRET state sequences using the algorithm STaSI42. 

Because this algorithm does not make any assumptions about the kinetics of state transitions, and thus 

prevents the detection of false transitions towards noise-induced artefactual states, it has proven to be 

the most suitable to identify the genuine FRET states46. The maximum number of states to be found in 

each FRET trajectory was arbitrarily set to a large number, e. g. 10. 

To group the FRET states of all sequences into one global state configuration, we chose to sort them 

drawbacks of a one-dimensional distribution, i.e., the merging of state populations having similar FRET 

values, by splitting the population along an additional axis: the FRET state forwarding the transition in 

the trajectory. After smoothing with a Gaussian filter, the TDP was modelled with a mixture of isotropic 
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2D-Gaussians, which centers were locked on a V-by-V grid, with V the number of global FRET states. 

In addition, Gaussian clusters on the TDP diagonal were used to group, and then exclude from the 

analysis, the artefactual and noise-induced low-amplitude state transitions. To determine the most 

sufficient model size Vopt, Gaussian matrices with increasing dimension, i.e. V =2 to 10, were fitted to 

the TDP using an expectation-maximization (EM) approach, and the model rendering the lowest 

Bayesian information criterion (BIC), calculated as 

 BIC(𝑉) = (2𝑉2 + 𝑉 − 1)log(𝑀) − 2log[𝑙(𝑉)], (12.2) 

where M is the total number of states in the trajectories and ℓ the likelihood of the model, was selected. 

With the number of observable FRET states at hand, FRET-time traces were re-discretized into more 

accurate state sequences with the Bayesian-based algorithm vbFRET. Indeed, although a model-free 

algorithm provides a better global view of the state configuration, it is not suitable for detecting short-

lived states. However, vbFRET is designed for Gaussian-distributed trajectory noise and fails to 

properly characterize e. g. low-photon-count trajectories that generate Poisson noise. In such cases, 

the sequences generated by STaSI were used. The vbFRET algorithm was constrained to found Vopt 

states at maximum and its well-known propensity to detect artefactual blur states47 was post-corrected 

by ignoring all one-data-point states found in trajectories. 

To accurately determine the global FRET states, a mixture of multivariate Gaussians, which centers 

were locked on a Vopt-by-Vopt grid, was fitted to the new TDP using the EM approach mentioned above. 

Global FRET values were derived from the Gaussian means and the associated errors, δFRET, from the 

average Gaussian standard deviations in the x-direction σx, such as: 

 𝛿FRET,𝑣 =
1

𝑉−1
∑ 𝜎𝑥,𝑣𝑖. (12.3) 

b. Estimation of the transition rate constants 

Transition rate constants were determined in two different ways: the bootstrap and the probabilistic 

(prob.) approaches. The bootstrap approach is only suitable for non-degenerate state systems, i.e., for 

states with distinct FRET values, whereas the prob. approach suits all types of systems. 

The "bootstrap" approach 

Dwell times Δt associated to each global FRET state were collected from accurate FRET state 

sequences and normalized cumulative distributions F were built. The complementary distribution was 

subsequently fit with a single exponential function such as 

 1 − 𝐹(𝛥𝑡𝜈) ∼ 𝑒𝑥𝑝 (
−𝛥𝑡𝜈

𝜏𝜈
), (12.4) 

where τv is the state lifetime. As time-binned data suffer from the absence of very short dwell times, the 

normalized complementary cumulative histogram 1 − 𝐹(𝛥𝑡𝜈) of dwell times 𝛥𝑡𝜈 is used instead of raw 

counts. This minimizes the impact of the first histogram bins while preserving the overall shape. 

Transition rate constants k were derived from the state lifetimes and the numbers of transitions w using 

the relation 

 𝑘𝑣,𝑣′ =
𝑤𝑣,𝑣′

𝜏𝑣 ∑ 𝑤𝑣,𝑘

. (12.5) 

Please note that for a two-state system, the transition rates are the direct inverse of the lifetimes, i.e., 

𝑘′𝜈,𝜈′ =
1

𝜏𝜈
. 
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The outcome of such analysis are single estimates of the rate constants. To estimate the error δk on 

rate constants k, the variability of state lifetimes across the trajectory sample is evaluated using the 

bootstrap-based analysis called BOBA-FRET48. BOBA-FRET infers the bootstrap means and bootstrap 

standard deviations of all fitting parameters for the given sample, including τ. The variability can then 

be propagated to k such as: 

 𝛿𝑘,𝑣,𝑣′ =
𝜎𝜏,𝑣

𝜏𝑣
𝑘𝑣,𝑣′ (12.6) 

where 𝜏 and στ are respectively the bootstrap mean and standard deviation of parameter τ and 𝑘 is the 

rate constant derived from 𝜏 using Eq. 12.5. Intervals with 95% confidence were given as 𝑘 ± 2𝛿𝑘. 

The "probabilistic" approach 

The presence of degenerate states usually breaks the single exponential shape of the dwell time 

distribution, resulting in sums and convolutions of multiple distributions. The probabilistic approach first 

solves the state degeneracies, i.e. the numbers of degenerate states hidden behind the same FRET 

values, from the shapes of ensemble dwell time distributions, and second, optimizes the transition 

probability matrix for the set of FRET state sequences. 

Phase-type distributions (PH) are used, e. g. in queuing and insurance risk theory, to estimate the time, 

tabs, a Markov jump process takes to reach an absorbing state, depending on the number of phases D 

it can go through. Such a jump process involving 3 phases is illustrated below (Supplementary Method 

Figure 13.1) 

Supplementary Method Figure 13.1. Illustration of a Markovian jump process. going through a number 

of phases D = 1… 3, i.e. the number of degenerated states, before reaching the absorbing state, thus, 

the observable state transition, i.e. between two observed FRET states. 

In comparison to our problem, the phases labeled 1 to D are the degenerate states behind a same 

FRET value, the Markov jump process characterizes the transitions between these degenerate states, 

the absorbing state is any state having a different FRET value, and the absorbing times tabs are the 

dwell times Δt measured in the state sequences. Therefore, PH distributions make perfect candidates 

to model the dwell time histograms compiled for a degenerate state system. As the data provided for 

analysis were time-binned trajectories, discrete PH distributions (DPH) were used instead. The DPH 

probability density function f depends on transition probabilities between degenerate states and to the 

absorbing state (state 0), p, as well as on starting probabilities, π. All in all, it is expressed as: 

 𝑓(Δ𝑡𝑣) = (𝜋1, 𝜋2, … , 𝜋𝐷) × (

𝑝1,1 𝑝1,2 ⋯ 𝑝1,𝐷

𝑝2,1 𝑝2,2 ⋯ 𝑝2,𝐷

⋮ ⋮ ⋱ ⋮
𝑝𝐷,1 𝑝𝐷,2 ⋯ 𝑝𝐷,𝐷

)

Δ𝑡𝑣−1

× (

𝑝1,0

𝑝2,0

⋮
𝑝𝐷,0

) = 𝜋𝑇𝛥𝑡𝜈−1𝜇 (13.1) 

Where π is called the initial distribution of phases, T the sub-intensity matrix and μ the exit rate 

vector. 
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After re-binning the dwell times using a bin size 10-time larger than the resolution time in order to 

minimize the impact of the lack of very short dwell times in time-binned data while preserving the overall 

shape, dwell time histograms were modelled with a DPH involving D degenerate states. To determine 

the most sufficient model size Dopt for each histogram, DPHs with increasing dimensions, i.e. D =1 to 

4, were fitted using an EM approach described previously49 and the combined model rendering the 

lowest BIC was selected. In our particular case, the BIC of the combined model was calculated as the 

sum of the BIC values obtained for individual dwell time histograms, such as: 

 BIC = ∑ B IC(𝐷𝑣) = ∑ 𝑛𝑝(𝐷𝑣) × log(𝑀𝑣) − 2 ∑ 𝑙(𝐷𝑣), (13.2) 

where Mv is the number of dwell times in the histogram, 𝑙 the likelihood of the model, and where the 

number of free parameters np is calculated as: 

 𝑛𝑝(𝐷) = 𝐷2 − 1 (13.3) 

With the final model size at hand, we determined the corresponding transition rate constants by applying 

the Baum-Welch50 algorithm to state trajectories, i.e., to noiseless trajectories, in which the state 

assignment is inflexible. Therefore, the algorithm only optimizes the transition probability matrix by 

iterating expectation and maximization of state probabilities at each time bin of each state trajectory. It 

eventually converges to a maximum likelihood estimator of transition probabilities that are then 

converted into rate constants, using the relation 

 𝑘𝑗,𝑗′ =
𝑝𝑗,𝑗′

𝑡𝑒𝑥𝑝
  (13.4) 

where kj,j’ is the rate constant that governs transitions from state j to state j’ (in seconds-1) and texp is 

the bin time in trajectories (in seconds). 

The negative and positive errors δk
- and δk

+ on rate coefficients were estimated via a 95% confidence 

likelihood ratio test described elsewhere51, giving an estimated range delimited by the lower bound k-

δk
- and the upper bound k+δk

+. 

To ensure the validity of the inferred model, a set of synthetic state trajectories is produced using the 

kinetic model parameters and the experimental mensuration (sample size, trajectory length), which is 

then compared to the experimental data set45. Special attention is given to the shape of each dwell time 

histogram, the populations of observed states and the number of transitions between observed states. 

C) MISCELLANEOUS 

MASH-FRET delivers transition rates restricted to 2-state systems up to version v.1.2.1 and below. This 

has been corrected. The development of MASH-FRET (prob.) has been initiated by the kinsoftchallenge 

to solve degenerate FRET-state systems, i.e., FRET states comprising kinetic heterogeneity. Therefore, 

the analyses of round 1 and 2 have been repeated with the new software version of MASH-FRET (prob.) 

and are labelled as "post-ground truth submission" where necessary. Further, the determination of the 

number of observable FRET states in MASH-FRET was modified meanwhile the submission process, 

which led to discrepancies between the bootstrap and the prob. method (compare Fig. 5 of the main 

text). The most recent version v.1.3.2 of the software yields two observable FRET states for all three 

data sets for both methods and as presented for MASH-FRET (prob.) in Fig. 5b,e and h of the main 

article.  
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Supplementary Method 14: postFRET 

A) OVERVIEW  

The concept of the postFRET analysis45 is to fit the experimental single-molecule FRET (smFRET) data 

first then simulate similar data for comparison. Source codes (MATLAB) are available at 

https://github.com/nkchenjx/postFRET. A simple thresholding method is used, i.e. set a threshold (e.g. 

the FRET value in the middle of two states) to distinguish the two states. This kind of analyzed results 

contains two major errors: (1) state miss-assignment due to the noise, (2) state miss-assignment due 

to camera blurring. After assigning states with the threshold, >hundreds of virtual data are simulated in 

the hope that one can find one or more trajectories that look just like the experimental data using the 

same analysis method, e.g. the thresholding method. Because we know the ground truth of the 

simulated data, we assume that the hidden truth of the real experimental data is the same as the 

simulated data that looked the same (minimizing L1-norm, the absolute values of the percentage errors, 

as the judging standard in Ver 1.0 and 2.0). L1-norm is used instead of L2-norm (such as the least 

square root method). The former works better in many simulated conditions in postFRET. 

The guessing algorithm of the simulated data used in the codes is a semi-exhaustive searching 

algorithm called JCFit (available on GitHub, https://github.com/nkchenjx/JCFit), a fitting algorithm that 

searches a parameter in an equation (model) within a defined boundary. The searching spacing is 

exponentially distributed away from the initial guess to the boundary. E.g. -10 to 10 are the boundaries 

and 1.0 is the initial guess, and 0.1 is the searching accuracy and ln(2) is the exponential factor, then 

the searching space is [1.0, 1.1, 1.3, 1.7, 2.5, 4.1, 7.3, 10] going up, and [1.0, 0.9, 0.7, 0.3, -0.5, -2.1, -

5.3, -10] going down. The boundaries in version 2.0 are set mobile among searching iterations. 

 

B) WORKFLOW  

The MATLAB codes are divided into a few steps with the file name Sx_xxxx.m, where Sx represents 

the step order. Examples are given for the training data level 1. 

Step 1. Load data. Load all trajectories into one single matrix and mark the end of each trajectory in a 

separate vector. The photobleaching information is analyzed and used later in the postFRET analysis. 

Step 2. Load key. If the key of the rate constants is known (as in the training data), load the key (type 

in manually). This step is not needed for real data. Thus, if the key is not known, give a random guess 

based on the number of states observed. 

For the level 1 training data, the key is given: [0, 0.666; 1, 0]. Note the diagonal in postFRET is always 

0. The direction is column to row, 90 degree rotation of the kinSoftChallenge format. 

Step 3. Find the noise. Normalize the total counts of the acceptor and donor channel for each trace 

(Supplementary Method Figure 14.1). Then analyze the noise model in the sum of the two channels 

using the standard deviation of the normalized total signal. Then calculate the average noise of each 

channel. The latter is used to simulate the trajectory later. The noise model is pretended to be unknown 

and a Gaussian model is identified for the training data. 
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Supplementary Method Figure 14.1. The total photocounts of the 100 traces. This trajectory is 

used to analyze the noise level of the signal. 

  

Step 4. Manually determine the number of states (Supplementary Method Figure 14.2), the state 

values and analyze the data using the simple thresholding method (Supplementary Method 

Figure 14.3). The thresholds are set in the middle of two adjacent states. 

 

Supplementary Method Figure 14.2. Two states are identified with FRET values of 0.3 and 0.7. 

The uncertainty is the sigma of the two Gaussian peaks. 

  

The thresholding analysis gives the transition rates: [0,0.63; 0.92, 0] (Supplementary Method 

Figure 14.3). The detailed procedure has been described in the cited paper and its supporting 

information. This value is only slightly biased to the truth by the noise because the signal-to-noise level 

is high in this set of data. It will be more biased with a higher noise level. Briefly45 

𝑘𝑖𝑓 =
𝑁𝑖𝑓

∑ 𝑡𝑖𝑓
𝑁
𝑓=1

=
𝑁𝑖𝑓

𝑡𝑖𝑓

 

Where kif is the rate constant from state i to state f, Nif is the fitted total number of transitions from state 

i to state f, tif is the sum of the dwell times of state i to state f, and ti is the total dwell time in state i. If 

the dwell time is only one pixel, it is merged to the previous state as noise. The first and the last transition 

of a trace is also removed from the counting to avoid the edge effect. 
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Supplementary Method Figure 14.3. Thresholding analysis of the FRET trajectory (showing the 

first 50 s data). The dashed line indicates the threshold. 

  

The total computational time of all the above steps is negligible on a regular desktop computer for this 

set of data (less than 1 minute). The thresholding state identification takes 1.3 s, which is linearly 

proportional to the length of the data. 

 

Step 5. postFRET analysis by simulating data with the same photoblinking value and the same noise 

to find similar trajectories to the raw data. The rate constant key is ignored here so one can just compare 

the rate constants between the raw data and the simulated data. The goal is to minimize the difference 

by searching the “real rates” of the simulations. The scoring equation is: 

WL = ∑ |
𝑅𝐸,𝑖 − 𝑅𝑆,𝑖

𝑅𝐸,𝑖
|

𝑖

 

where RE is the analyzed rate of the experimental data, and RS is the rate of the simulated data, i is the 

ith non-zero rate in the rate matrix. 

The searching space (defined by boundaries) is from ½ to 2 times the initial guess that has been 

exponentially distributed from the guess value to the boundaries. Thus, the boundary is changing when 

the initial guess changes from iteration to iteration. 

For the level 1 data, the algorithm finds a simulated trajectory very similar to the raw data in the first 

iteration and this is repeated a number of iterations showing the variation of the scores (Supplementary 

Method Figure 14.4). The best score is approaching the theoretical best 0% during some iterations. 

However, the value varied in a small region from 3% to 0%. Because no consistent score decay is 

observed, all values of all iterations are kept for error analysis. 
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Supplementary Method Figure 14.4. The score of the postFRET over the iterations. The 

computation time of each iteration is ~100 s (single CPU) on a regular desktop with a 3.4 GHz Intel 

i7 CPU. Parallel computing of multiple CPU and GPU has not been activated. 

The mean value and standard deviation of the rate constants of the 55 iterations are [0, 0.66±0.02; 

0.95±0.02, 0]. Comparing to the key [0, 0.666; 1, 0], this is a better value than the results obtained from 

the simple thresholding method [0, 0.63; 0.92, 0]. An example trajectory of the 55 guesses is shown in 

Supplementary Method Figure 14.5. One can see that the simulated data is different from the raw 

data but carries similar state and kinetic information. 

 

 

Supplementary Method Figure 14.5. An example simulated trajectory comparing to the raw data. 

The bleaching time is stochastic. The simulated data in this example is longer than the real data. 

Zoom in on the trajectory of 100 traces showing a similar pattern between the simulated (sim) data 

and the raw data (left). The distribution of the two states also shows a similar pattern (right). The 

raw data is wider in the distribution than the simulated data indicates that the noise level is slightly 

lower-estimated in the simulated data. No attempt is tested to increase the noise level of the 

simulation to match the raw data. 
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The error bars associated with the mean rate constants of these iterations are obtained from the 

standard deviation of the rates among iterations. Two times the error bars represent 95% confidence 

of the boundaries. The positive (upper) and the negative (lower) standard deviation are slightly different 

in this set of data which is also reported. Because the noise is relatively symmetric in the data, the 

difference is small. 

 

C) MISCELLANEOUS  

Running time. The total computational time of steps 1 to 4 is negligible on a regular desktop computer 

(CPU Intel i7 3.4 GHz) for this set of data (less than 1 minute). The thresholding state identification 

takes 1.3 s, which is linearly proportional to the length of the data. The running time of step 5 is ~100 s 

each iteration for the training data, which is linearly proportional to the length of the raw data, and 

linearly proportional to n(n-1), where n is the number of states since the codes search each transition 

in an iteration. Parallel and GPU computation can significantly reduce the simulation time for postFRET. 

The postFRET code works for two-state and multi-states smFRET analysis but is not coded to detect 

degenerated states. The code only analyzes FRET values and does not analyze the donor and acceptor 

channel separately. To make that change, the concept should still work but a significant amount of 

modification is required. 

The postFRET code is expected to be more competitive in analyzing slightly noisier data and data with 

very fast transition rate constants approaching the time resolution of data collection. That kind of data 

has significant amounts of camera blurring events. However, it cannot analyze too noisy data when 

state mis-assignment becomes too large for the thresholding method. For those data, binning must be 

applied to increase the signal-to-noise ratio or other state-identification methods are needed to replace 

the thresholding method. 
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4  Supplementary Tables 
 

We provide here all inferred values concerning the data discussed in Figs. 4 and 5 of the main text.  

This is an excerpt of the complete inferred results found in the Supplementary Datafiles (excel sheets). 

The inferred FRET efficiency levels and kinetic models are specified using the following nomenclature: 

 

Nomenclature 

FRET E E1 E2 ... 

kinetic model 

0 k12 ... 

k21 0 ... 

... ... ... 

 

 

 

Supplementary Tables 1 

The rate constants of the GT and the inferred models shown in Fig. 4 of the main text. The rate constants 

are specified in s-1. The full submission, including standard deviations of the FRET efficiencies and 

uncertainties of the rate constants, can be found in the Supplementary Datafiles. Please note: the order 

of states in the Supplementary Datafiles corresponds to the submission of the participants and may 

thus differ from the order given here. 

 

0) Ground truth 

FRET E E1 = 0.18 E2 = 0.18 E3 = 0.73 E4 = 0.73 

kinetic model 

k11 = 0 k12 = 0.053 k13 = 0 k14 = 0.018 

k21 = 0.080 k22 = 0 k23 = 0.250 k24 = 0 

k31 = 0 k32 = 0.680 k33 = 0 k34 = 0 

k41 = 0.032 k42 = 0 k43 = 0 k44 = 0 

 

1) Pomegranate 

FRET E E1 = 0.181 E2 = 0.714 

kinetic model 
n.a. n.a. 

n.a. n.a. 

 

2) Tracy (HMM) 

FRET E E1 = 0.18 E2 = 0.18 E3 = 0.73 E4 = 0.73 

kinetic model 

k11 = 0 k12 = 0 k13 = 0.0937 k14 = 0.0291 

k21 = 0 k22 = 0 k23 = 0 k24 = 0.8846 

k31 = 0.953 k32 = 0 k33 = 0 k34 = 0 

k41 = 0.0971 k42 = 0.0484 k43 = 0 k44 = 0 

 

3) FRETboard 

FRET E E1 = 0.196 E2 = 0.658 E3 = 0.752 

kinetic model 

k11 = 0 k12 = 0.125 k13 = 0.003 

k21 = 0.513 k22 = 0 k23 = 0 

k31 = 0.027 k32 = 0 k33 = 0 

 

 

 

4) Hidden-Markury 
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FRET E E1 = 0.186 E2 = 0.186 E3 = 0.725 E4 = 0.725 

kinetic model 

k11 = 0 k12 = 0.039 k13 = 0 k14 = 0.017 

k21 = 0.047 k22 = 0 k23 = 0.246 k24 = 0 

k31 = 0.045 k32 = 0.569 k33 = 0 k34 = 0.003 

k41 = 0.037 k42 = 0 k43 = 0 k44 = 0 

 

5) SMACKS(SS) 

FRET E E1 = 0.19 E2 = 0.19 E3 = 0.72542 E4 = 0.72542 

kinetic model 

k11 = 0 
k12 = 

0.04362695 
k13 = 0 

k14 = 

0.01930565 

k21 = 0.063392 k22 = 0 k23 = 0.226308 k24 = 0 

k31 = 0 k32 = 0.601065 k33 = 0 k34 = 0 

k41 = 

0.0351999 
k42 = 0 k43 = 0 k44 = 0 

 

6) SMACKS 

FRET E E1 = 0.19 E2 = 0.19 E3 = 0.71 E4 = 0.71 

kinetic model 

k11 = 0 k12 = 0.0428 k13 = 0.0001 k14 = 0.0195 

k21 = 0.0584 k22 = 0 k23 = 0.2254 k24 = 0 

k31 = 0.0055 k32 = 0.5985 k33 = 0 k34 = 0.0034 

k41 = 0.0359 k42 = 0 k43 = 0 k44 = 0 

 

7) Correlation 

FRET E E1 = 0.18 E2 = 0.18 E3 = 0.73 E4 = 0.73 

kinetic model 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

 

8) Edge finding (CK) 

n.a. 

 

9) Edge finding (k-means) 

n.a. 

 

10) Step finding 

FRET E E1 = 0.185 E2 = 0.726 

kinetic model 
k11 = 0 k12 = 0.19 

k21 = 0.327 k22 = 0 

 

11) STaSI 

FRET E E1 = 0.2 E2 = 0.7 

kinetic model 
n.a. n.a. 

n.a. n.a. 

 

 

 

 

12) MASH-FRET (bootstrap) 
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FRET E E1 = 0.186 E2 = 0.186 E3 = 0.726 E4 = 0.726 

kinetic model 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

 

13) MASH-FRET (probabilistic) 

FRET E E1 = 0.181 E2 = 0.181 E3 = 0.708 E4 = 0.708 

kinetic model 

k11 = 0 k12 = 0.045 k13 = 0 k14 = 0.024 

k21 = 0.050 k22 = 0 k23 = 0.233 k24 = 0 

k31 = 0.033 k32 = 0.569 k33 = 0 k34 = 0 

k41 = 0.043 k42 = 0 k43 = 0 k44 = 0 

 

14) postFRET 

FRET E E1 = 0.19 E2 = 0.73 

kinetic model 
k11 = 0 k12 = 0.1 

k21 = 0.139 k22 = 0 
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Supplementary Tables 2 

Kinetic models for the data shown in Fig. 5a-c of the main text, inferred by the participating groups with 

the specified tools. Units of the rate constants are in s-1. The full submission, including standard 

deviations of the FRET efficiencies and uncertainties of the rate constants, can be found in the 

Supplementary Datafiles. 

 

 

1) Pomegranate 

FRET E E1 = 0.205 E2 = 0.489 E3 = 0.719 E4 = 0.927 

kinetic model 

k11 = 0 k12 = 0.5428 k13 = 0.7998 k14 = 0.6016 

k21 = 2.6295 k22 = 0 k23 = 2.8355 k24 = 3.7314 

k31 = 1.2125 k32 = 0.9753 k33 = 0 k34 = 1.2084 

k41 = 0.9096 k42 = 0.8069 k43 = 0.7324 k44 = 0 

 

2) Tracy (HMM) 

FRET E E1 = 0.23 E2 = 0.76 E3 = 0.9 

kinetic model 

k11 = 0 k12 = 0 k13 = 0.03 

k21 = 0.9 k22 = 0 k23 = 0 

k31 = 0 k32 = 0.029 k33 = 0 

 

3) FRETboard 

FRET E E1 = 0.229 E2 = 0.385 E3 = 0.648 E4 = 0.842 

kinetic model 

k11 = 0 
k12 = 

0.1341376 

k13 = 

0.1197335 

k14 = 

0.1764494 

k21 = 

0.5357143 
k22 = 0 

k23 = 

0.1897321 

k24 = 

0.1636905 

k31 = 

0.2962113 

k32 = 

0.0849598 
k33 = 0 

k34 = 

0.2870264 

k41 = 

0.1867587 

k42 = 

0.0371747 

k43 = 

0.1079837 
k44 = 0 

 

4) Hidden-Markury 

FRET E E1 = 0.222 E2 = 0.802 

kinetic model 
k11 = 0 k12 = 0.383 

k21 = 0.36 k22 = 0 

 

5) SMACKS(SS) 

FRET E E1 = 0.25 E2 = 0.25 E3 = 0.76 E4 = 0.76 

kinetic model 

k11 = 0 
k12 = 

0.0772712 
k13 = 0 k14 = 0.724288 

k21 = 

0.0799077 
k22 = 0 k23 = 0 k24 = 0 

k31 = 0 k32 = 0 k33 = 0 
k34 = 

0.0818057 

k41 = 0.605016 k42 = 0 
k43 = 

0.0710662 
k44 = 0 
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6) SMACKS 

FRET E E1 = 0.24 E2 = 0.24 E3 = 0.76 E4 = 0.76 

kinetic model 

k11 = 0 k12 = 0 k13 = 0.068 k14 = 0 

k21 = 0.007 k22 = 0 k23 = 0.622 k24 = 0.164 

k31 = 0.107 k32 = 0.749 k33 = 0 k34 = 0 

k41 = 0 k42 = 0.077 k43 = 0.017 k44 = 0 

 

7) Correlation 

FRET E E1 = 0.22 E2 = 0.76 E3 = 0.9 

kinetic model 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

 

8) Edge finding (CK) 

n.a. 

 

9) Edge finding (k-means) 

n.a. 

 

10) Step finding (2 FRET states) 

FRET E E1 = 0.221 E2 = 0.802 

kinetic model 
k11 = 0 k12 = 0.522 

k21 = 0.669 k22 = 0 

 

       10b) Step finding (3 FRET states) 

FRET E E1 = 0.217 E2 = 0.618 E3 = 0.851 

kinetic model 

k11 = 0 k12 = 0.295 k13 = 0.153 

k21 = 0.57 k22 = 0 k23 = 0.256 

k31 = 0.238 k32 = 0.182 k33 = 0 

 

11) STaSI 

FRET E E1 = 0.17 E2 = 0.25 E3 = 0.38 E4 = 0.54 E5 = 0.68 E6 = 0.76 E7 = 0.85 E8 = 0.92 

kinetic model 

k11 = 0 k12 = 0.17 
k13 = 

0.085 

k14 = 

0.132 

k15 = 

0.076 

k16 = 

0.054 

k17 = 

0.033 

k18 = 

0.033 

k21 = 

0.078 
k22 = 0 k23 = 0.08 

k24 = 

0.157 

k25 = 

0.094 

k26 = 

0.078 
k27 = 0.09 

k28 = 

0.025 

k31 = 

0.294 

k32 = 

0.631 
k33 = 0 

k34 = 

0.381 

k35 = 

0.268 

k36 = 

0.251 

k37 = 

0.199 

k38 = 

0.078 

k41 = 

0.356 

k42 = 

0.717 

k43 = 

0.169 
k44 = 0 

k45 = 

0.327 

k46 = 

0.423 

k47 = 

0.305 

k48 = 

0.198 

k51 = 

0.195 
k52 = 0.33 

k53 = 

0.131 

k54 = 

0.207 
k55 = 0 

k56 = 

0.178 

k57 = 

0.246 

k58 = 

0.119 

k61 = 

0.061 

k62 = 

0.228 

k63 = 

0.102 

k64 = 

0.282 

k65 = 

0.126 
k66 = 0 

k67 = 

0.105 

k68 = 

0.071 

k71 = 

0.054 

k72 = 

0.124 
k73 = 0.07 

k74 = 

0.172 

k75 = 

0.175 

k76 = 

0.073 
k77 = 0 

k78 = 

0.059 

k81 = 

0.051 

k82 = 

0.082 

k83 = 

0.048 

k84 = 

0.065 

k85 = 

0.106 

k86 = 

0.092 

k87 = 

0.065 
k88 = 0 

 

 

12) MASH-FRET (bootstrap) 
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FRET E E1 = 0.451 E2 = 0.863 E3 = 0.227 E4 = 0.702 

kinetic model 

k11 = 0 k12 = 0.193 k13 = 0.843 k14 = 0.455 

k21 = 0.106 k22 = 0 k23 = 0.264 k24 = 0.273 

k31 = 0.176 k32 = 0.279 k33 = 0 k34 = 0.221 

k41 = 0.194 k42 = 0.466 k43 = 0.353 k44 = 0 

 

13) MASH-FRET (probabilistic) 

FRET E E1 = 0.251 E2 = 0.251 E3 = 0.743 E4 = 0.743 

kinetic model 

k11 = 0 k12 = 0.015 k13 = 0.062 k14 = 0.677 

k21 = 0 k22 = 0 k23 = 0 k24 = 0.072 

k31 = 0.014 k32 = 0.003 k33 = 0 k34 = 0.028 

k41 = 0.569 k42 = 0.072 k43 = 0 k44 = 0 

 

14) postFRET (2 FRET states) 

FRET E E1 = 0.24 E2 = 0.81 

kinetic model 

k11 = 0 
k12 = 

0.2070822 

k21 = 

0.0711783 
k22 = 0 

 

      14b) postFRET (3 FRET states) 

FRET E E1 = 0.23 E2 = 0.5 E3 = 0.8 

kinetic model 

k11 = 0 k12 = 0.0009144 k13 = 0.0738384 

k21 = 0.0058854 k22 = 0 k23 = 0.0400443 

k31 = 0.0638665 k32 = 0.0002925 k33 = 0 

 

      14c) postFRET (4 FRET states) 

FRET E E1 = 0.25 E2 = 0.5 E3 = 0.69 E4 = 0.85 

kinetic model 

k11 = 0 k12 = 0.0011741 k13 = 0.08894954 k14 = 0.10552059 

k21 = 0.48463045 k22 = 0 k23 = 0.30084519 k24 = 0.01306089 

k31 = 0.03141345 k32 = 0.29437991 k33 = 0 k34 = 0.04156456 

k41 = 0.11838752 k42 = 0.00822046 k43 = 0.04257101 k44 = 0 
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Supplementary Tables 3 

Kinetic models for the data shown in Fig. 5d-f of the main text, inferred by the participating groups with 

the specified tools. Units of the rate constants are in s-1. The full submission, including standard 

deviations of the FRET efficiencies and uncertainties of the rate constants, can be found in the 

Supplementary Datafiles. 

 

1) Pomegranate 

FRET E E1 = 0.208 E2 = 0.507 E3 = 0.703 E4 = 0.93 

kinetic model 

k11 = 0 k12 = 0.754 k13 = 0.916 k14 = 0.817 

k21 = 3.101 k22 = 0 k23 = 2.773 k24 = 5.424 

k31 = 1.144 k32 = 1.088 k33 = 0 k34 = 1.779 

k41 = 0.763 k42 = 1.133 k43 = 0.945 k44 = 0 

 

2) Tracy (HMM) 

FRET E E1 = 0.23 E2 = 0.76 E3 = 0.9 

kinetic model 

k11 = 0 k12 = 0.038 k13 = 0 

k21 = 0.042 k22 = 0 k23 = 0 

k31 = 0.23 k32 = 0.52 k33 = 0 

 

3) FRETboard 

FRET E E1 = 0.267 E2 = 0.565 E3 = 0.726 E4 = 0.849 

kinetic model 

k11 = 0 k12 = 0.066317 k13 = 0.180713 k14 = 0.117159 

k21 = 0.754011 k22 = 0 k23 = 0.545455 k24 = 0.069519 

k31 = 0.448457 k32 = 0.121142 k33 = 0 k34 = 0.189866 

k41 = 0.183439 k42 = 0.049089 k43 = 0.258365 k44 = 0 

 

4) Hidden-Markury 

FRET E E1 = 0.243 E2 = 0.795 

kinetic model 
k11 = 0 k12 = 0.523 

k21 = 0.492 k22 = 0 

 

5) SMACKS(SS) (2 FRET states) 

FRET E E1 = 0.26 E2 = 0.26 E3 = 0.77 E4 = 0.77 

kinetic model 

k11 = 0 k12 = 0.0464469 k13 = 0 k14 = 0.75673 

k21 = 0.0777646 k22 = 0 k23 = 0 k24 = 0 

k31 = 0 k32 = 0 k33 = 0 k34 = 0.0767983 

k41 = 0.676816 k42 = 0 k43 = 0.0375133 k44 = 0 
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      5b)  SMACKS(SS) (3 FRET states) 

FRET E E1 = 0.24 E2 = 0.62 E3 = 0.62 E4 = 0.81 

kinetic model 

k11 = 0 k12 = 0.308986 k13 = 0.119066 k14 = 0.162909 

k21 = 1.77861 k22 = 0 k23 = 0 k24 = 1.61935 

k31 = 0.200454 k32 = 0 k33 = 0 k34 = 0.0708802 

k41 = 0.307538 k42 = 0.613002 k43 = 0.0852028 k44 = 0 

 

6) SMACKS 

FRET E E1 = 0.26 E2 = 0.26 E3 = 0.73 E4 = 0.73 

kinetic model 

k11 = 0 k12 = 0 k13 = 0.069 k14 = 0 

k21 = 0.006 k22 = 0 k23 = 0.668 k24 = 0.102 

k31 = 0.049 k32 = 0.813 k33 = 0 k34 = 0 

k41 = 0 k42 = 0.081 k43 = 0.041 k44 = 0 

 

7) Correlation 

FRET E E1 = 0.23 E2 = 0.75 E3 = 0.88 

kinetic model 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

 

8) Edge finding (CK) 

n.a. 

 

9) Edge finding (k-means) 

n.a. 

 

10) Step finding (2 FRET states) 

FRET E E1 = 0.243 E2 = 0.795 

kinetic model 
k11 = 0 k12 = 0.565 

k21 = 0.588 k22 = 0 

 

      10b) Step finding (3 FRET states) 

FRET E E1 = 0.243 E2 = 0.74 E3 = 0.87 

kinetic model 

k11 = 0 k12 = 0.436 k13 = 0.121 

k21 = 0.6 k22 = 0 k23 = 0.067 

k31 = 0.292 k32 = 0.09 k33 = 0 

 

11) STaSI 

FRET E E1 = 0.25 E2 = 0.25 E3 = 0.8 E4 = 0.8 

kinetic model 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

n.a. n.a. n.a. n.a. 

 

 

 

12) MASH-FRET (bootstrap) 

FRET E E1 = 0.755 E2 = 0.271 
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kinetic model 
k11 = 0 k12 = 0.53 

k21 = 0.66 k22 = 0 

 

13) MASH-FRET (probabilistic) 

FRET E E1 = 0.27 E2 = 0.27 E3 = 0.75 E4 = 0.75 

kinetic model 

k11 = 0 k12 = 0 k13 = 0 k14 = 0.043 

k21 = 0.006 k22 = 0 k23 = 0.047 k24 = 0.728 

k31 = 0.003 k32 = 0.062 k33 = 0 k34 = 0 

k41 = 0.026 k42 = 0.691 k43 = 0 k44 = 0 

 

14) postFRET (2 FRET states) 

FRET E E1 = 0.26 E2 = 0.8 

kinetic model 
k11 = 0 k12 = 0.338698 

k21 = 0.345414 k22 = 0 

 

     14b) postFRET (3 FRET states) 

FRET E E1 = 0.25 E2 = 0.65 E3 = 0.85 

kinetic model 

k11 = 0 k12 = 0.00109842 k13 = 0.21834065 

k21 = 0.00301381 k22 = 0 k23 = 0.08283056 

k31 = 0.27579656 k32 = 0.00353179 k33 = 0 

 

     14c) postFRET (4 FRET states) 

FRET E E1 = 0.25 E2 = 0.49 E3 = 0.69 E4 = 0.85 

kinetic model 

k11 = 0 k12 = 0.0002070865 k13 = 0.1452989654 k14 = 0.2005696159 

k21 = 0.2068609902 k22 = 0 k23 = 0.8709210325 k24 = 0.0475529494 

k31 = 0.4412775024 k32 = 0.0248333492 k33 = 0 k34 = 0.0361363519 

k41 = 0.2763561503 k42 = 0.0829865525 k43 = 0.006026129 k44 = 0 
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Supplementary Tables 4 

Kinetic models for the data shown in Fig. 5g-i of the main text, inferred by the participating groups with 

the specified tools. Units of the rate constants are in s-1. The full submission, including standard 

deviations of the FRET efficiencies and uncertainties of the rate constants, can be found in the 

Supplementary Datafiles. 

 

1) Pomegranate 

FRET E E1 = 0.239 E2 = 0.479 E3 = 0.706 E4 = 0.897 

rate model 

k11 = 0 k12 = 0.504 k13 = 0.588 k14 = 0.755 

k21 = 2.171 k22 = 0 k23 = 2.944 k24 = 4.19 

k31 = 0.946 k32 = 0.612 k33 = 0 k34 = 1.147 

k41 = 0.505 k42 = 0.597 k43 = 0.684 k44 = 0 

 

2) Tracy (HMM) 

FRET E E1 = 0.23 E2 = 0.76 E3 = 0.9 

rate model 

k11 = 0 k12 = 0.019 k13 = 0.017 

k21 = 0.048 k22 = 0 k23 = 0.027 

k31 = 0.011 k32 = 0.007 k33 = 0 

 

3) FRETboard 

FRET E E1 = 0.257 E2 = 0.691 E3 = 0.806 E4 = 0.909 

rate model 

k11 = 0 k12 = 0.106142 k13 = 0.1358 k14 = 0.045267 

k21 = 0.173973 k22 = 0 k23 = 0.280822 k24 = 0.078082 

k31 = 0.243874 k32 = 0.231039 k33 = 0 k34 = 0.038506 

k41 = 0.063406 k42 = 0.083031 k43 = 0.076993 k44 = 0 

 

4) Hidden-Markury 

FRET E E1 = 0.237 E2 = 0.815 

rate model 
k11 = 0 k12 = 0.376 

k21 = 0.256 k22 = 0 

 

5) SMACKS(SS) 

FRET E E1 = 0.27 E2 = 0.27 E3 = 0.79 E4 = 0.79 

rate model 

k11 = 0 k12 = 0.0181472 k13 = 0 k14 = 0.593785 

k21 = 0.0505473 k22 = 0 k23 = 0 k24 = 0 

k31 = 0 k32 = 0 k33 = 0 k34 = 0.270328 

k41 = 0.578138 k42 = 0 k43 = 0.431789 k44 = 0 

 

6) SMACKS 

FRET E E1 = 0.27 E2 = 0.27 E3 = 0.78 E4 = 0.78 

rate model 

k11 = 0 k12 = 0 k13 = 0.032 k14 = 0 

k21 = 0 k22 = 0 k23 = 0.442 k24 = 0.228 

k31 = 0.108 k32 = 0.926 k33 = 0 k34 = 0.393 

k41 = 0 k42 = 0.141 k43 = 0 k44 = 0 

 

 

 

7) Correlation 
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FRET E E1 = 0.23 E2 = 0.75 E3 = 0.87 

rate model 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

n.a. n.a. n.a. 

 

8) Edge finding (CK) 

n.a. 

 

9) Edge finding (k-means) 

n.a. 

 

10) Step finding (2 FRET states) 

FRET E E1 = 0.237 E2 = 0.815 

rate model 
k11 = 0 k12 = 0.443 

k21 = 0.444 k22 = 0 

 

      10b) Step finding (3 FRET states) 

FRET E E1 = 0.234 E2 = 0.722 E3 = 0.862 

rate model 

k11 = 0 k12 = 0.318 k13 = 0.106 

k21 = 0.374 k22 = 0 k23 = 0.107 

k31 = 0.126 k32 = 0.118 k33 = 0 

 

11) STaSI 

FRET E E1 = 0.14 E2 = 0.26 E3 = 0.54 E4 = 0.72 E5 = 0.85 E6 = 0.95 

rate model 

k11 = 0 k12 = 0.179 k13 = 0.129 k14 = 0.082 k15 = 0.014 k16 = 0.014 

k21 = 0.039 k22 = 0 k23 = 0.188 k24 = 0.198 k25 = 0.089 k26 = 0.025 

k31 = 0.209 k32 = 0.921 k33 = 0 k34 = 0.585 k35 = 0.381 k36 = 0.095 

k41 = 0.028 k42 = 0.298 k43 = 0.174 k44 = 0 k45 = 0.241 k46 = 0.071 

k51 = 0.007 k52 = 0.133 k53 = 0.1 k54 = 0.186 k55 = 0 k56 = 0.028 

k61 = 0.01 k62 = 0.068 k63 = 0.06 k64 = 0.123 k65 = 0.053 k66 = 0 

 

12) MASH-FRET (bootstrap) 

FRET E E1 = 0.267 E2 = 0.847 E3 = 0.668 E4 = 0.668 E5 = 0.668 E6 = 0.668 

rate model 

k11 = 0 k12 = 0.224 k13 = 0.007 k14 = 0.012 k15 = 0.084 k16 = 0.145 

k21 = 0.166 k22 = 0 k23 = 0.006 k24 = 0.01 k25 = 0.071 k26 = 0.123 

k31 = 1.749 k32 = 1.325 k33 =0 k34 =0 k35 = 0 k36 = 0 

k41 = 1.749 k42 = 0.271 k43 = 0 k44 = 0 k45 =0 k46 = 0 

k51 = 0.221 k52 = 1.325 k53 = 0 k54 = 0 k55 = 0 k56 = 0 

k61 = 0.221 k62 = 0.271 k63 = 0 k64 = 0 k65 = 0 k66 = 0 
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13) MASH-FRET (probabilistic) 

FRET E E1 = 0.298 E2 = 0.298 E3 = 0.777 E4 = 0.777 

rate model 

k11 = 0 k12 = 0 k13 = 0.017 k14 = 0.53 

k21 = 0 k22 = 0 k23 = 0 k24 = 0.009 

k31 = 0.013 k32 = 0 k33 = 0 k34 = 0 

k41 = 0.321 k42 = 0.003 k43 = 0 k44 = 0 

 

14) postFRET (2 FRET states) 

FRET E E1 = 0.27 E2 = 0.83 

rate model 
k11 = 0 k12 = 0.0304298 

k21 = 0.0217805 k22 = 0 

 

     14b) postFRET (3 FRET states) 

FRET E E1 = 0.25 E2 = 0.59 E3 = 0.83 

rate model 

k11 = 0 k12 = 0.00032411 k13 = 0.02923996 

k21 = 0.05430609 k22 = 0 k23 = 0.07807773 

k31 = 0.00175319 k32 = 0.04096638 k33 = 0 

 

     14c) postFRET (4 FRET states) 

FRET E E1 = 0.25 E2 = 0.59 E3 = 0.78 E4 = 0.91 

rate model 

k11 = 0 k12 = 0.0537498259 k13 = 0.0468467928 k14 = 0.0352511436 

k21 = 0.2059474513 k22 = 0 k23 = 0.5658220374 k24 = 0.0844386522 

k31 = 0.1690830952 k32 = 0.4614106448 k33 = 0 k34 = 0.247915522 

k41 = 0.0291453273 k42 = 0.0784158076 k43 = 0.0674403618 k44 = 0 
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Supplementary Table 5  

Parameters for the simulation of smFRET traces. 

 Fig. 2 Fig. 3 Fig. 4 

kinetic model 
(rate constants next to 
arrows are in s-1) 

   

sampling rate (s-1) 5 10 5 

bleach rate (s-1) 0.007 0.02 0.025 

min. trace length (s) 50 10 8 

max. trace length (s) 400 200 200 

kinetic heterogeneity? no no yes 

assignment state -> 
FRET level 

⓵ -> low FRET 

⓶ -> high FRET 

⓵ -> low FRET 

⓶ -> mid FRET 

⓷ -> high FRET 

⓵, ⓶ -> low FRET 

⓷, ⓸ -> high FRET 

blinking included? no no yes 
kbright = 7 s-1 
kdark = 0.007 s-1 

per trace emission 
variability?[a] 

no yes yes 

per trace excitation 
variability?[a] 

no yes yes 

SNR (estimate)[b] 4 3 4 

number of traces 75 150 250 

 [a] The exact parameters can be found in the configuration files for the simulation in the Supplementary 

Datafiles. 
[b] The SNR estimate is based on the separation and width of the peaks in the FRET efficiency 

histogram. Peaks were fitted with Gaussian distributions and the two peaks with minimal separation 

were considered. The SNR was then calculated by |𝜇1 − 𝜇2|/√𝜎1
2 + 𝜎2

2 , where 𝜇 and 𝜎 are the mean 

and standard deviation of the Gaussian functions, respectively. Exact parameters for the state-specific 

fluorescence intensities can be found in the configuration files for the simulation in the Supplementary 

Datafiles. 
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SdrG via single-molecule FRET and all-atom MD simulations



Elucidating the conformational changes of bacterial adhesin SdrG via 
single-molecule FRET and all-atom MD simulations 

ABSTRACT 

Mechanostable complexes are a key feature of bacterial virulence. Similarly, nanoscale 
domains formed by the staphylococcal adhesin SdrG promote biofilm formation and the 
development of antibiotic resistance. Therefore, a vivid understanding of the molecular 
mechanisms is crucial for the de novo design of potent antibiotic therapeutics. In this 
study, we used smFRET along with MD simulations to quantitatively describe the 
conformational states of SdrG in the absence and presence of Fgß.  Strategic placement 
of the FRET pairs enabled us to unleash the inter- and intra-domain dynamics of SdrG in 
a sub-nanometer precision. Comparison of our smFRET data with the simulations 
suggests that the locking strand lack binding sites and possess intrinsic dynamics in a 
sub-millisecond timescale, results also suggest that the locking strand prefers a specific 
orientation and does not spontaneously switch between its open and closed states. Thus, 
our data further confirms the DLL binding mechanism of SdrG, and highlight the central 
role of the locking strand, whilst providing insights into its conformational dynamics of the 
SdrG:Fgβ complex. 
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INTRODUCTION 

Staphylococcus epidermis is the causative agent of most nosocomial infections (Otto, 
2009). Accumulation of the adhesin protein SD-repeat protein G (SdrG) in nanoscale 
domains targets the N-terminus of the human fibrinogen ß chain (Fgß) and forms a highly 
mechanostable complex, which results in the formation of biofilms and the eventual 
development of antibiotic resistance (Milles et al., 2018). Thus, an extensive 
understanding of the binding mechanisms of S. epidermis is crucial for the development 
of antibiotic therapy. 

The ligand binding site of SdrG is located in subdomains N2 and N3, while the N-terminal 
N1 domain is reputed to be cleaved proteolytically in vivo. X-ray crystallographic 
experiments were performed to unravel the binding mechanisms of SdrG demonstrate 
the C terminal extension of the N3 domain ‘locking strand’ as a prominent player in the 
transition from an open to a peptide-bound closed state. Hence ‘A dock, lock, and latch 
(DLL) binding mechanism has been proposed, elaborating how the target peptide initially 
first docks into an open binding trench between the SdrG subdomains N2 and N3, which 
is fixed by the locking strand, finally resulting in the connection of locking stand to the N2 
domain through ß-strand completion thus forming a latch and resulting in a closed 
conformation (Ponnuraj et al., 2003). However, despite the clear evidence of the lack of 
a latch in the open state, as the C-terminal amino acids could not be resolved in the crystal 
structure exact conformation of the locking strand remains obscure. Further investigations 
aided by Förster Resonance Energy Transfer (FRET) in ensemble studies illustrate 
proximity of the locking strand to the N3 domain in the absence of Fgβ, and a 
conformational change after peptide addition, which hence proclaims the DLL mechanism 
(Bowden et al., 2008). Nevertheless, as the intramolecular distances were probed on the 
ensemble level with only two FRET pairs, elucidation of the conformational change 
remained qualitative. 

Therefore, in this study combination of single-molecule FRET (smFRET) and all-atom 
molecular dynamics (MD) simulation was used to quantitatively describe the 
conformational states of SdrG in the absence and presence of Fgß. As the efficiency of 
the energy transfer between a single pair of donor and acceptor fluorophores is highly 
sensitive to their proximity (Ha et al., 1996), smFRET has been proven a powerful tool to 
measure intra- and intermolecular distances with sub-nanometer precision (Hellenkamp 
et al., 2018), and to investigate dynamic processes (Dimura et al., 2016, Lerner et al., 
2018). Prudent placement of nine FRET pairs on SdrG allowed us to investigate the 
motion of the locking strand with respect to subdomains N2 and N3. Moreover, as 
illustrated in Figure 2; A we were able to unleash the inter- and intra-domain dynamics of 
SdrG. 
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As the experimental and simulated data in the presence of Fgß harmonized well with the 
intramolecular distances extracted from the SdrG: Fgß crystal structure, further 
investigations were done to evaluate the distances in the absence of the target peptide, 
yet with the full length of the ligand. A comparison of the data with the simulations 
suggests that locking strand lack binding sites and possess intrinsic dynamics in a sub-
millisecond timescale. It is evident that the locking strand prefers a specific orientation 
and does not spontaneously switch between its open and closed state. Thus, in contrast 
to an earlier hypothesis (Bowden et al., 2008), our data reveal that the presence of Fgß 
is a prerequisite for the transition from the open to the closed SdrG conformation. 

 

RESULTS 

AFM investigation of the SdrG:Fgβ complex 

AFM (Atomic Force Microscopy) control experiments were performed by our collaboration 
partner Lukas Milles to investigate the potential influence of the fluorescent labels on the 
binding of SdrG to Fgβ in wild-type (wt) and fluorescently labeled double-cysteine SdrG 
(Figure 1A). The single-molecule force spectroscopy measurements confirmed that 
rupture forces for Sdrg: Fgβ complexes are almost identical for wt and labeled SdrG 
(green and grey histograms in Figure 1B, respectively). These findings assure the binding 
affinity of the fluorescently labeled SdrG into Fgβ with the same mechnostability in the 
absence of the dyes. However, in our experiments, not all molecules are 100 % labeled 
with both donor and acceptor fluorophores, as labeling efficiencies for the single dyes 
were typically in the range of 30% − 60%. While SdrG molecules that carry no, a single, 
or both dyes could not be distinguished in the AFM experiment, the absence of additional 
populations in the rupture force histograms indicates a similar behavior for the different 
molecules and thus no obvious influence of the dyes. However, modulation of the binding 
affinity could not be measured by AFM. 
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FIGURE 1: Fluorescently-labeled SdrG double-cysteine mutants form mechanostable 
complexes with the target peptide Fgβ comparable to those with wt SdrG. A) A schematic 
of the experimental AFM setup including the ddFLN4 fingerprint domain (in green). Wt 
SdrG and fluorescently labeled double-cysteine SdrG mutants are covalently bound to 
the glass surface via PEG linkers and their ybbR-tag. Both SdrG and Fgβ are force-loaded 
from their respective C-termini. The AFM cantilever is retracted at constant velocity until 
the Sdrg:Fgβ complex breaks. The glass surface is then moved to a new spot and the 
measurement repeated. B) Rupture forces for wt and labeled SdrG binding to Fgβ (green 
and grey histograms, respectively). Shown are data acquired using SdrG double-cysteine 
mutants labeled with Alexa488 and Atto643, or with Atto532 and Atto643. No significant 
difference in rupture force and thus complex stability is detected for the various 
measurements. 

 

smFRET investigation of the SdrG: Fgβ complex 

Thus upon the confirmation of the biological functionality of the double-labeled SdrG 
mutants, smFRET measurements were performed in order to evaluate the reproducibility 
of the closed conformation of the SdrG: Fgβ crystal structure (Ponnuraj et al., 2003) in 
single molecule level. SmFRET experiments were performed in solution with the dye 
combination Atto532-Atto643 (Figure 2; A).  To precive the peptide bpund closed state 
SdrG was measured in the presence of a high molar excess of Fgβ (12.5 µM, ∼ 105 -fold 
molar excess), which is much higher than the dissociation constant (Kd) of ∼ 400 nM 
(Ponnuraj et al., 2003). Resulting FRET efficiency histograms in Figure 2; B show a single 
population for most mutants, thus indicating a well-defined protein conformation in the 
presence of Fgβ. 

Intramolecular distances extracted from smFRET data were compared with the SdrG:Fgβ 
crystal structure (PDB 1R17). Hence to obtain distances from the crystal structure, the 
sterically accessible volume (AV) of the FRET dyes was determined for each labeling 
position and the average FRET efficiency values were calculated (Kalinin et al., 2012). 
Distances from the experimental data were calculated using the photon distribution 
analysis (PDA) (Antonik et al., 2006). Many constructs demonstrated a single peak, 
therefore a dominant conformation.  
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FIGURE 2: Conformation of the SdrG:Fgß complex studied by smFRET in solution. (A) 
Structure of Fgß (orange) bound to SdrG (blue). The C-terminal locking strand of SdrG 
locks the peptide in the binding pocket between subdomains N2 (dark blue) and N3 (light 
blue). Red spheres indicate Ca-atoms of the residues that were mutated to cysteines for 
stochastic labeling with Atto532 and Atto643. The labeling combinations investigated by 
smFRET are shown as dashed lines. (B) Overview of the labeling combinations to probe 
for intra- and inter-domain dynamics as well as for motions of the locking strand towards 
subdomains N2 and N3. (C) Diffusion of a double-labeled SdrG:Fgß complex through the 
confocal volume. The energy transfer efficiency between donor and acceptor dye is 
calculated for every single-molecule event. (D) Histograms of the molecule-wise smFRET 
efficiency for the investigated label combinations, shown as cartoons. the locations of the 
cysteine residues used for stochastic labeling are indicated by green-red-circles. (E) A 
comparison of the measured, simulated and theoretical distances for the different 
constructs extracted from the smFRET experiments, an all-atom MD simulation of the 
SdrG:Fgß complex and the SdrG:Fgß crystal structure (PDB 1R17), respectively. A 
Förster radius of 59 Å was used to convert experimental FRET efficiencies into distances. 
A linear correlation is observed between the experimental and theoretical values 
(indicated by circles) and between the experimental and simulated values (indicated by 
diamonds). The color code corresponds to the smFRET efficiency histograms in D. 

Overall, the smFRET results of the peptide-bound conformation are in good agreement 
with the theoretical values with a root-mean-square deviation (RSMD) of 1.3 Å (Figure 2; 
E), which lies within the expected error range for smFRET experiments (Hellenkamp et 
al., 2018). As an additional control, we performed all-atom MD simulations of the 
SdrG:Fgβ complex and extracted distances by AV calculations. The values from the 
simulation match with the experimentally determined distances with a RSMD of 2.4 Å 
(Figure 2; E) and are also in good agreement with the theoretical data from the crystal 
structure (RSMD of 1.9 Å). Thus, the distances derived from the closed conformation of 
the SdrG:Fgβ crystal structure could be reproduced through our smFRET experiments 
and the all-atom MD simulation. 

 

smFRET investigation of the apoprotein 

Thus, upon the validation of the experimental approach, we next investigated the 
conformation of SdrG as an apoprotein. Until this stage, smFRET experiments were 
performed in the absence of Fgβ. FRET efficiency histograms for the dye combination 
Atto532-Atto643 in Figure 3 depict a single main population for each construct (in color) 
and are compared to FRET efficiency histograms of SdrG in complex with Fgß (here 
shown in grey). The intra-domain sensors with both labels placed in either the N3 domain 
(residues 461-548, in yellow) or the N2 domain (residues 353-414, in orange) show 
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almost identical FRET efficiency histograms and thus similar intermolecular distances in 
the presence and absence of Fgß. Similarly, the inter-domain sensors with a single label 
positioned in the N2 and in the N3 domain (residues 353-548, in green, and residues 353-
569, in teal) display only a minor change in FRET efficiency after peptide binding. 

 

 

 

FIGURE 3: Conformation of the SdrG apoprotein studied by smFRET in solution. 
SmFRET efficiency histograms obtained in the absence of Fgβ (in color) are compared 
to smFRET efficiency histograms of the SdrG:Fgß complex (in grey). Significant changes 
in FRET efficiency are detected for mutants with a label positioned on the locking strand 
at residue 595 and a label in the N2 or N3 domain (histograms in the second and third 
row in shades of red and blue, respectively).  

In accordance with crystallographic data (Ponnuraj, 2003) and FRET experiments on the 
ensemble level (Bowden, 2008), our smFRET data confirm different conformational states 
of the locking strand in the presence and absence of Fgß, while the conformation of the 
two subdomains does not change significantly. Even though as suggested (Bowden, 
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2008), the mobility of the locking strand is a prerequisite for the DLL mechanism and 
defines the transition from an open to a closed state, we did not observe an equilibrium 
of the open and closed conformations for the SdrG apoprotein. However, dynamics on 
the sub-millisecond time scale indicate an open conformation. Histograms of FRET 
efficiency versus donor lifetime in supplementary figure 1 show a rightward shift from the 
static-FRET line for SdrG constructs with a label on the locking strand.  As expected, no 
deviation from the static-FRET line is observed for the inter-domain sensor 353-569, as 
these label positions are insensitive to structural changes of the locking strand. The slight 
shift from the static-FRET line for the second inter-domain sensor 353-548 is most likely 
due to the close proximity of the FRET dyes in this construct. Our data thus suggest that 
the locking strand is flexible in the absence of Fgß, while adopting a conformation that 
clearly differs from its closed state in the SdrG:Fgß complex. 

 

Proposed structural model for the open conformation of SdrG 

To find a structural model for the open conformation, we compared FRET-derived 
distances to a MD simulation of the SdrG apoprotein. Although a crystal structure of SdrG 
in the absence of Fgß exists (PDB 1R19, (Ponnuraj et al., 2003)), we could not extract 
distances for comparison with our smFRET data, as almost all residues chosen as label 
positions are located in unresolved parts of the protein. However, having shown a good 
agreement of our all-atom MD simulation with the crystal structure of SdrG:Fgß, inspired 
the confidence to model the structure of the apoprotein based on our FRET data. To this 
end, we simulated an ensemble of structures in the open conformation. As a starting point, 
the crystal structure of SdrG:Fgß (PDB 1R17) was chosen, the peptide deleted and the 
C-terminus of the locking strand (residues 581-596) pulled away from its binding trench. 
For every frame of the simulation, intermolecular distances were extracted and compared 
to the FRET data. The structures that fit the experimental values best (𝑥!"#.%  < 1.5), are 
presented in Figure 3; A. As the locking strand undergoes fast dynamic conformations in 
the absence of Fgß, these structures represent kinetically averaged positions. The locking 
strand, which is colored in red for better visibility, points away from the two domains.  Its 
C-terminal part is unbound and shows a similar orientation for most selected structures. 
The absence of a specific binding site is supported by the fact that it has not been possible 
to resolve the C-terminal part of the locking strand in the crystal structure (Ponnuraj, 
2003). The inset of Figure 3; B shows the previous model of the SdrG apoprotein with 
locking strand residues 581-596 missing. Thus, our model does not only confirm the 
extension of the locking strand into solution, but also indicates the preferred position of 
its C-terminus in the open conformation of SdrG and proves the absence of specific 
interactions. 
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FIGURE 3: Structural model of the SdrG apoprotein based on smFRET data and all-atom 
MD simulations. A) Structural model resulting in (𝑥!"#.% < 1.5 (indicated by the dashed black 
line) were selected to model the SdrG apoprotein. Plotted on the x-axis is the RMSD 
comparing the conformation of the SdrG apoprotein extracted from the MD simultations 
and the conformation of the SdrG:Fgβ complex based on the crystal structure (PDB 1R17, 
Ponnuraj et al., 2003). B) Shown are two perspectives of 57 overlayed structures that fit 
the experimentally determined interdye distances ((𝑥!"#.%  < 1.5). The subdomains N2 and 
N3 are colored in light and dark blue, respectively, and the locking strand (residues 569-
596) is shown in red. The inset shows the previous structural model based on X-ray 
crystallography, which could not resolve the C-terminal part of the locking strand (PDB 
1R19, Ponnuraj et al., 2003). 

 

Switching between an open and closed conformation of SdrG occurs on the seconds 
timescale in the presence of Fgß 

While no interconversion between the open and closed conformations was indicated in 
the absence of Fgß, we observed a co-existence of two FRET efficiency populations at 
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low concentrations of Fgß (125 nM and 1.25 µM). At higher peptide concentration, the 
equilibrium shifted towards the closed state for all investigated SdrG FRET sensors 
(Supplementary figure 2). The shifts are most distinct for constructs with a label positioned 
on the locking strand at residue 595 (histograms in shades of blue and red) with black 
and orange dashed lines highlighting the FRET efficiencies associated with the open and 
closed states, respectively. 

No or little dynamic conversion of the two states was indicated on the time scale of 
diffusion, as exemplarily shown for SdrG constructs 548-595 and 277-595 (Figure 4; A 
and B). The FRET efficiency versus donor lifetime histograms in Figure 4; A clearly 
illustrate donor blinking, as the deviation from the static-FRET line follows a dynamic-
FRET line connecting high- and no-FRET efficiencies (indicated by the blue dashed lines). 
Dynamic transitions between the FRET efficiency populations of the open and closed 
state would follow the red dashed dynamic-FRET lines, which does not apply here. 

To investigate whether dynamic switching occurs on slower time scales, smTIRF 
experiments were performed with SdrG mutants 277-595 and 548-595. The 
immobilization to a biotinylated glass surface with streptavidin using the biotin-tag of SdrG 
allowed the observation of individual FRET sensors over a time range of seconds to 
minutes. The presence and photostability of both dyes was confirmed by ALEX (Kapanidis 
et al., 2005). The constructs were first measured in the absence of the peptide. As 
expected, a defined FRET efficiency population representing the open state was 
observed. Addition of Fgß to surface-immobilized SdrG resulted in the detection of a 
second FRET efficiency population, which we associated with the peptide-bound state. 
Increasing the concentration of Fgß resulted in an increase of the closed SdrG 
conformation. The respective framewise histograms are shown in Figure 4; C and D. 
Although the data quality and statistics for construct 277-595 were considerably better 
compared to experiments with construct 548-595, both SdrG mutants show similar trends. 
While most molecules were either detected in the open or the closed conformation in the 
presence of Fgß, we observed several molecules (~ 15 %) which dynamically switched 
between the two states. Exemplary fluorescence intensity time traces for constructs 548-
595 and 277-595 acquired in the presence of 1 µM Fgß are shown in Figure 4;E and F, 
respectively. In both cases, anti-correlated donor (GG) and FRET (GR) signals are 
observed, while the acceptor signal after acceptor excitation (RR) remains static. The 
FRET efficiency fluctuates on the timescale of seconds between two states associated 
with the open and closed conformation of SdrG, while no intermediate states are 
observed.  
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FIGURE 4: SdrG requires the presence of Fgβ to switch between its open and closed 
conformation. The slow conformational dynamics are not resolvable for freely diffusing 
proteins on a confocal microscope (A-B) but can be observed for surface-immobilized 
constructs on a TIRF microscope (C-F). A-B) Two-dimensional histograms of the FRET 
efficiency versus the donor lifetime show a deviation from the static-FRET line (shown as 
a solid red line), which is caused by donor blinking (indicated by dashed blue lines). 
Conformational dynamics would follow the dashed red lines. C-D) Framewise histograms 
over all recorded FRET traces show an increase of molecules in the closed conformation 
(indicated by an orange dashed line) with increasing concentrations of Fgβ. The numbers 
of analyzed molecules were 49, 46, 31 and 27 for SdrG construct 548-595 in the absence 
of Fgβ and in the presence of 100 nM, 1 µM and 10 µM Fgβ, respectively, and 87, 60, 73 
and 63 for SdrG construct 277-595 in the absence of Fgβ and in the presence of 100 nM, 
1 µM and 10 µM Fgβ, respectively. E-F) Exemplary fluorescence intensity time traces 
show the conformational switching between the open and closed conformation of SdrG 
in the presence of 1 µM Fgβ. The green signal after green excitation (GG) is shown in 
green, the red signal after green excitation (GR, i.e., FRET signal) in red, and the red 
signal after red excitation (RR) in dark red. 
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As the switching is much slower than the diffusion of the protein in solution (~ 3 ms), these 
dynamic transitions could not be resolved in confocal measurements. 

DISCUSSION 

In conclusion, the combination of smFRET experiments and all-atom MD simulations 
allowed us to propose a structural model for the dynamic SdrG apoprotein in the absence 
of its target peptide Fgß. We show that the previously unresolved C-terminus of the 
locking strand extends into solution and has no defined binding site. The absence of 
specific interactions suggests that the locking strand might act as a "fishing rod" to capture 
its target peptide, reeling it towards its binding site.  Although intrinsically dynamic on the 
sub-millisecond timescale, the locking strand prefers a specific orientation and does not 
spontaneously switch between its open and closed states. By adding this missing piece 
to the structural information, we could not only confirm the DLL binding mechanism of 
SdrG (Ponnuraj, 2003) and highlight the central role of the locking strand but could also 
give insights into its conformational dynamics.  

In contrast to an earlier hypothesis (Bowden et al., 2008), our data reveal that the 
presence of Fgß is a prerequisite for the transition from the open to the closed SdrG 
conformation, and a dynamic conversion was observed on the second timescale at 
sufficiently low peptide concentrations. As the locking strands only closes in the presence 
of Fgβ, the binding cleft is kept consistently open. 

Strategic placement of the FRET dyes into the subdomain N3 (at positions 461 and 548) 
and subdomain N2 (at positions 353 and 414, Figure 1; A) allowed us to gain insights into 
potential intra-domain dynamics.  

In its native environment, bacterial SdrG must adhere tightly to human Fgβ to withstand 
high mechanical forces and ensure a stable attachment of the microbe to the host tissue 
(Otto, 2009). The mechanical stress itself may significantly contribute to the formation of 
the tight bond. By combining smFRET with mechanical manipulation techniques such as 
AFM (He et al., 2012) - a method that has previously been used to characterize the 
extraordinarily mechanostability of the SdrG:Fgβ complex (Milles et al., 2018) - or optical 
tweezers(Comstock et al., 2015), conformational changes can be investigated under 
force to get further insights into the critical process of bacterial adhesion. The combination 
with all atom-MD simulation allowed us to propose a structural model for the dynamic 
SdrG apoprotein including all parts of the flexible locking strand, providing information 
previously inaccessible to other methods. The simultaneous assessment of structure and 
dynamics thus rivals established structural biology techniques like X-ray crystallography, 
cryo-electron microscopy or NMR spectroscopy. As these methods require the fixation of 
biomolecules to characterize their three-dimensional structures, information on dynamics 
is not available. As shown in previous studies (Dimura et al., 2016), the combination of 
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quantitative smFRET and all-atom MD simulations is a valuable hybrid-approach to 
resolve the structure of dynamic biological systems and elucidate their function. 

 

MATERIALS AND METHODS 

Gene construction 

The Staphylococcus epidermidis SdrG N2 N3 domain genes (UniProt: Q9KI13) had been 
synthesized codon-optimized for expression in Escherichia coli as linear DNA fragments 
(GeneArt – ThermoFisher Scientific, Regensburg, Germany) as described previously 
(Milles et al., 2018). These source plasmids for this work are available through Addgene 
(www.addgene.org): pET28a-SdrG_N2N3-HIS-ybbr, AddgeneID 101238 (Milles et al., 
2018). Genes were inserted into pAC4 Vectors including a hexahistidine-, ybbr-tag, and 
AviTag via Gibson assembly 47 (New England Biolabs, MA, USA). All point mutations of 
amino acids to cysteines for dye attachment were created through polymerase chain 
reactions (Phusion Polymerase, New England Biolabs, MA, USA) with appropriate 
primers, followed by blunt-end ligation cloning using the T4 Ligase (Thermo Scientific, 
Massachusetts, USA) or Gibson assembly. The resulting open reading frames of all 
constructs were verified by DNA sequencing (Eurofins Genomics, Ebersberg, Germany).  

Protein expression and purification 

SdrG mutants were expressed in the competent E. coli strain CVB101 (Avidity Biotech) 
and purified on a NiNTA column (HisTrap FF 5mL on a Äkta Start system, both GE 
Healthcare, Massachusetts, USA) via their hexahistidine-tag. A detailed protocol has 
been previously described (Milles et al., 2018). Protein concentrations were determined 
by spectrophotometry at 280 nm with typical final concentrations of 20 - 100 μM 
(NanoDrop 1000, Thermo Scientific, MA, USA). 

Fluorescence labeling of double-cysteine SdrG mutants 

A total of 9 double-cysteine mutants were generated and stochastically labeled with 
maleimide-functionalized dyes. The cysteine combinations were chosen to either probe 
the distance between domains N2 and N3 or to investigate the motion of the locking 
strand with respect to N2 and N3 (Figure 1B). As recombinant SdrG does not contain any 
cysteine residues, the introduced cysteines are the only available attachment points for 
the dyes. The protein was incubated with a 2-fold molar excess of the maleimide-
functionalized dyes Atto532 and Atto643 (Atto-Tec, Siegen, Germany or Thermo 
Scientific, Massachusetts, USA) for three hours at room temperature in the presence of 
1 mM TCEP. Excess dye was removed by ultrafiltration using molecular weight cut-off 
filters of 10 kDa (Merck Millipore, Burlington, Massachusetts, USA). 

AFM single-molecule force spectroscopy 
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Glass surfaces and cantilevers were cleaned and coated with heterobifunctional α-
Maleinimidohexanoic-PEG-NHS (Rapp Polymere, Tübingen, Germany) and incubated 
with Coenzyme A to covalently pull down SdrG proteins via their ybbR-tag. AFM single-
molecule force spectroscopy measurements were conducted at room temperature 
(approximately 25◦C) and analyzed as described previously (Milles et al., 2018). Typically, 
50.000-100.000 curves were recorded for each double labeled SdrG mutant. 

 

smFRET measurements in solution 

smFRET measurements of freely diffusing SdrG mutants were performed on custom-built 
confocal microscopes as described in (Nicoli et al., 2017, Kudryavtsev et al., 2012), which 
combine PIE (Pulsed Interleaved Excitation (Müller et al., 2005)) and 
MFD(Multiparameter Fluorescence Detection (Eggeling et al., 2001)). Excitation powers 
of 100 µW were used for the green and red lasers when measuring Atto532/643-labeled 
proteins. 

Measurements were performed in 8- or 4-well chamber slides (Nunc Lab-Tek, VWR), 
which were coated with Bovine Serum Albumin (BSA, New England Biolabs, Ipswich, 
Massachusetts, USA; 20 mg/mL diluted to 1 mg/mL in PBS). Labeled SdrG constructs 
were diluted to concentrations of 50-150 pM in imaging buffer (PBS and 1 mM Trolox to 
reduce photobleaching (Cordes et al., 2009)) and measured in the absence or presence 
of the unlabeled target peptide Fgß for up to 5 hours.  The concentration of Fgß was 
varied between 125 nM and 12.5 µM (~ 103-fold to 105- fold molar excess). 

Data were analyzed with the open-source software PAM (Pulsed Interleaved Excitation 
Analysis with MATLAB (Schrimpf et al., 2018)). Bursts were selected using the all-photon 
burst search algorithm, which is based on a sliding time window approach (Nir et al., 
2006). Parameters for the burst search were set to a minimum of 100 photons per burst, 
a time window of 500 µs and 10 photons per time window. Incompletely labeled molecules 
were removed using typical thresholds < 10 for the ALEX-2CDE filter (Tomov et al., 2012). 
Correction factors for accurate FRET efficiencies were calculated according to 
standardized procedures (Hellenkamp et al., 2018). Correction factors were determined 
for every double-cysteine SdrG mutant individually to account for potential effects of the 
labeling positions on the dyes as well as for slight changes in setup alignment. Distances 
from the experimental data were calculated by photon distribution analysis (PDA) (Antonik 
et al., 2006). 
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smFRET measurements of surface-immobilized proteins 

smFRET measurements of surface-immobilized SdrG constructs were performed on a 
custom-built objective-type TIRF microscope with lasers at 532 nm (Cobolt Samba, 100 
mW) and 647 nm (Cobolt MLD, 120 mW), which were alternated on a time scale of 100 
ms (+3 ms frame transfer). Fluorescence was collected by a 60x oil immersion objective 
(Apo TIRF 60x/1.49 Oil, Nikon) and separated by a 532/632 dichroic mirror (AHF 
Analysentechnik, Tübingen, Germany). Donor and acceptor emission were filtered using 
a HQ 580/75 and HQ 705/100 filter (AHF Analysentechnik, Tübingen, Germany), 
respectively. 

The labeled SdrG constructs were measured in flow chambers, which were assembled 
as previously described (Bartnik et al., 2019). The flow chambers were first incubated with 
Streptavidin (Sigma-Aldrich, St. Louis, Missouri, USA; 0.2 mg/mL in PBS) for 15 min and 
washed with PBS. The protein samples were diluted to 100 pM in PBS and immobilized 
on the coverslip through biotin-streptavidin-biotin binding. Unbound proteins were 
washed away with PBS. For stabilization of the fluorophores, we flushed in a photo-
cocktail containing PBS, 1 mM Trolox (Cordes et al., 2009) (UV activated for 5 min), 10% 
(v/v) glycerol, 1% (w/v) glucose and 10% (v/v) Glucoseoxidase-Catalase solution for 
oxygen removal (Stein, 2012). Varying concentrations of unlabeled target peptide Fgß 
(Stein et al., 2012). 

Data were recorded with an alternating excitation sequence of green-red with typical laser 
powers of 15 mW for the green 532 nm laser and 8 mW for the red 647 nm laser at an 
exposure time of 100 ms for 1000 frames. TIRF data were analyzed with custom-written 
MATLAB programs (Mathworks, Massachusetts, USA). For analysis we exclusively chose 
double-labeled molecules showing fluorescence intensity after both donor and acceptor 
excitation and excluded acceptor- or donor-only species. Data were analyzed using the 
MATLAB and deep learning-based program DeepLASI (Wanninger et al., 2023). 

 

TABLE 1: Correction factors α, β, γ and δ for the smFRET burst analysis of Atto532- and 
Atto643-labeled SdrG FRET sensors. 

SdrG label 
positions  

  α   β-factor  γ-factor  direct excitation 
δ 

461-548 
353-414 

0.0224 
0.0216 

0.8620 
0.9781 

0.6436 
0.3818 

0.0489 
0.0452 

353-548 
353-569 

0.0202 
0.0212 

0.9317 
1.1498 

0.4533 
0.4982 

0.0585 
0.0644 

277-595 
365-595 

0.0222 
0.0225 

0.8374 
0.9317 

0.5350 
0.4405 

0.0585 
0.0649 

242



414-595 
461-595 
548-595 

0.0193 
0.0186 
0.0271 

1.1415 
0.906 
0.9196 

0.9265 
0.6556 
0.6164 

0.0695 
0.0687 
0.1530 

 

All-atom molecular dynamics (MD) simulations 

The structure of the S. epidermidis adhesin SdrG binding to fibrinogen ß was solved by 
X-ray crystallography at 1.86 Å resolution and was obtained from the protein data bank 
(PDB: 1R17) (Ponnuraj et al., 2003). The apo state of the SdrG protein was constructed 
by first removing the fibrinogen ß from the crystal structure. The locking strand was pulled 
away from the protein using OpenMM dynamics and its energy was locally minimized 
using the program ChimeraX (Goddard et al., 2018). Missing residues were added using 
DeepView - Swiss PdbViewer (Guex and Peitsch, 1997). The Gromacs 5.1.4 software 
package (Abraham et al., 2015) was used to simulate a total amount of approximately 
120,000 atoms for both simulations. The a99SB-disp (Robustelli et al., 2018) force field 
with the TIP4P-D water model (Piana et al., 2015) was employed to describe the solvated 
protein. 

Prior to the initialization of the MD simulations, an energy minimization procedure was 
conducted for 2000 steps using the steepest descent algorithm. The system was 
subsequently heated to 300 K and equilibrated for 1 ns. The MD simulations were 
performed assuming periodic boundary conditions in the NpT ensemble using Langevin 
dynamics for temperature and pressure coupling which were maintained at 300 K and 1 
bar, respectively. A distance cut-off of 10.0 Å was applied to short-range non-bonded 
interactions using the Verlet neighbor search algorithm (Verlet, 1967). Long-range 
electrostatic interactions were treated using the particle-mesh Ewald (PME) method 
(Alston et al., 2021). For all MD simulations, Newton’s equations of motion were 
integrated using the leap-frog algorithm at a time step of 2 fs. The holo state of the SdrG 
protein was simulated for 200 ns and the apo state for 1200 ns to obtain a broad 
distribution of strand locations. 

AV calculations 

In order to compare the experimental to theoretical distances extracted from the crystal 
structure of SdrG: Fgβ (PDB: 1R17, Ponnuraj et al., 2003) or from the MD simulations, 
the accessible volumes for Atto532 and Atto643 attached to SdrG were calculated with 
the FRET positioning and screening software (Kalinin et al., 2012) using the Cα-atoms of 
the respective cysteine residues as anchor points, the three radii AV3-model and the dye 
parameters summarized in Table 2. In the AV3-model, three spherical AVs with radii R1, 
R2, and R3 are calculated separately and the grid points in the final model are weighted 
according to the number of AVs. To compute FRET-averaged distances hRDAiE and 
mean FRET efficiencies hEi, a Förster radius of 59 Å was used, which is the theoretical 
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value for the dye pair Atto532-Atto643 given by the manufacturer, calculated with the 
orientation factor κ 2 = 2 3 and a donor quantum yield of φD = 0.9 (lifetime τD = 3.8 ns).1 
We chose this theoretical value, as donor lifetimes in our experiments were close to the 
theoretical value (we thus assume no influence on the photophysical properties of Atto532 
in our system) and as fluorescence anisotropy measurements indicated no sticking of the 
dyes to SdrG.  

Table 3: Dye parameters for accessible volume simulations with the AV3-model. 

  Dye linker length 
[Å] 

linker width 
[Å] 

R1 [Å] R2 [Å] R3 [Å] 

Atto532-
maleimide 

20.5 4.5 5.5 4.5 1.5 

Atto643-
maleimide 

21 4.5 7.15 4.5 1.5 

 

Structural modeling 

To identify those structures in our all-atom MD simulations that are in good agreement 
with the measured smFRET data, the weighted data-model deviation 𝑥%  (as defined in 
Kalinin et al., 2012) was calculated, 

𝑥% =$
%𝑅&'()) −	R+,#"-())*

%

∆𝑅%&'())

.

)/0

 

where N is the number of measured distances (i.e. the degrees of freedom), RDA the 
distance calculated from the FRET measurement, Rmodel the distance obtained from the 
MD simulation and ∆RDA the uncertainty of the measured data. ∆R12 depends on 
systematic errors during the data analysis, the uncertainty of using the correct orientation 
factor κ2, as well as the uncertainty of using the correct dye model for AV calculations 
(Dimura et al., 2016). Here, we used ∆R12 = 3 Å for all measurements except for the high-
FRET efficiency state measured for construct 548-595, for which we used ∆R12 = 5 Å.  

The reduced 𝑥% value was calculated by dividing by N 

𝑥%!"#. =	
1
𝑁	𝑥

% 
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SUPPLEMENTARY INFORMATION 

 

1. FRET efficiency versus donor lifetime for SdrG FRET sensors 

 

 

SUPPLEMENTARY FIGURE 1: Conformational dynamics of the locking strand indicated 
in the absence of Fgβ. Two-dimensional histograms of the FRET efficiency versus the 
donor lifetime show a clear deviation from the static-FRET line (shown as a solid red line) 
for SdrG mutants with a label on the locking strand (residue 595). Data are based on 
SdrG labeled with Atto532 and Atto643. 
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2. SmFRET efficiency histograms of SdrG in absence and different concentrations of 
peptide 

 

SUPPLEMENTARY FIGURE 2: SmFRET efficiency histograms obtained in the absence 
and at different concentrations of Fgβ for the dye combination Atto532-Atto643. 
Increasing concentrations of Fgβ (from top to bottom) shift the equilibrium from the open 
conformation of SdrG (black dashed line) to the closed conformation (orange dashed 
line). 
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