Dissertation zur Erlangung des Doktorgrades der

Fakultat fur Chemie und Pharmazie der

Ludwig-Maximilians-Universitat Minchen

Multi-omics studies of tissue-specific
molecular alterations in insulin-
deficient pigs and their offspring

Bachuki Shashikadze
aus

Khelvachauri, Georgia

2024



Erklarung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung
vom 28. November 2011 von Herrn Prof. Dr. Eckhard Wolf betreut
und von Herrn Prof. Dr. Klaus Forstemann von der Fakultat fur

Chemie und Pharmazie vertreten.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenstandig und ohne unerlaubte Hilfe
erarbeitet.

01.03.2024
Munchen,

Bachuki Shashikadze

Dissertation eingereicht am 01.03.2024

1. Gutachter: Prof. Dr. Klaus Forstemann
2. Gutachter: Prof. Dr. Eckhard Wolf

Mundliche Prafung am 10.04.2024



This work is dedicated to Mom, Dad and Esma

b 6sTmmdo 99036905 @ b, 5L s gbdsl



Table of Contents

SUIMIMARY ..eiiiiiiiiiiiiieiieiieiieiieiiectesiatioiisestesiottsstesstossastasssssssstassassssssossassassssssassassassssssans 1
LIST OF PUBLICATIONS.....cc.cttiiitiiiuiiiniiieiiensiensiesiiesisssssssisstsssssssssssssssesssssssssasssasssanssanssans 4
1. INTRODUCTION....cciiiiiitiiiiiieiieiresiaiiaiiasessiottastescsessasiasssssssssssssssessssssassassassssssnssas 7
1.1. MASS SPECTROMETRY-BASED OMICS ...eeeuvveeureeeureesereesseeesssesaseeesssesssasessssssssesessseesnsesessssssssessnnnes 7
1.1.2. PPOTEOIMUCS ...ttt ettt e e e ettt e e e e e e eaeeeaas 8
1.1.3. 1Y =2 ] oTe) o 1 ok USSR 9
1.1.1. Muti-omics approaches to study diseases: focus on proteomics and metabolomics. 10

1.2. DIABETES MELLITUS: A GLOBAL HEALTH PROBLEM ...cuvveeeuveeeeeeesteeesueeessesenseeessessssseesssessssenssssesenns 10
1.3. THE PIG AS AN ANIMAL MODEL FOR HUMAN DISEASE....cecuvveerureeereeessseessesenseeesssesssesessessseessssessnns 11
1.3.1. GENEIAl CONSIACIALIONS ....oeeveeeieeeiieeeiieete et s st s e s e s stteessteeesateestaesastsesasessnseen 11
1.3.2. Pig GENOME PrOJECT .......eeeeiieeeeeeeeeiieeee ettt e e e e e st e e e e e sssssssbareaaaeeeas 12
1.3.3. Genetic eNnginEering Of PIGS ....ccuueeeeeueeeeeiiieeeeiieeeeecteeeeeetteeesstreeesstraaessseaeesssnaaesans 13

1.4. INSULIN DEFICIENT DIABETES OF YOUTH ..uvviiiuieeevieesteesseeessteesseeessseessssassseesssessssseesssessnssessssesanns 13
1.4.1. INSUIIN DIOSYNTRESIS ...ttt e et e et e e e e e e st aaeatteaaessseseessseeaes 13
1.4.2. INSUTIN MUSFOITING ..ottt et e e s a e e s e e e st a e e s saeea s 14
1.4.3. MUnich MIDY Pig MOGEL.........cco.eeeeeeeeiieeeeeie ettt ette e e stee e e saea e s ssteaeessaseaas 15

1.5,  AIM OF THE THESIS.....cccciitiiiiiiiiiinniinniiniiiniiniimeiinsirssississiasisssessssnsssssssssssanss 16

2. SECTION A: INVESTIGATION OF THE EFFECT OF MATERNAL HYPERGLYCAEMIA ON

NEONATAL OFFSPRING LIVER METABOLISM .....ccciviiiiiimeninnniinicianiinsiasiesiensssnssnsrssssanes 17

2.1 LITERATURE REVIEW ..veeevveesuteeeteeesnsesesseeesssesasesssssesssesessessasesssssessnsesensssssssesssssesssessnssessssesnnns 17

2.1.1. Y o ol L= PP UPPTRPIRR 17
2.1.2. Previous studies on effects of maternal hyperglycemia on offspring using transgenic

Lo Ta1Tag o] WaaTo e [=1 ST PP UUPTTPR 45

2.2, ARTICLE 2 .ttt ettt ettt eetee ettt e site e st eesate e sabaeeateesabaeesabeesabaesabbeesabaesabteensbaesabaeesasaesasaessteesasaeensees 47

3. SECTION B: INVESTIGATION OF THE EFFECT OF HYPERGLYCAEMIA ON LUNG............ 66

3.1. LITERATURE REVIEW .veeeuvveeeuteeeueeessteseseeesssesassesssssesssesassessansessssssesssesanssssssessssseessesssssessnsesnnns 66

3.1.1. Physiology and anatomy of lung — susceptibility to diabetes..............cccccccvvvvveecunnn... 66

3.1.2. Pig lung — relevance to study human diSEASE...............uuvueeeeeeeessciiiiiiaaeeeeieciiiveaaaeann, 67

3.2. ARTICLE 3 1o iiittteee e e ettt et e e e e e e bbbttt e e e e e e s bbb et e e e e e e e s nbe bt e eeeeeeaaanbbbaeeeeeseaannbeaaeeeeeseannnraeaaeens 68



4.

5.

6.

APPENDIX ...

4.1. PRESENTATIONS, AND CONFERENCE CONTRIBUTIONS ..cceeeeeiiiuenrireeeeeeerinireeeeeeeeesanneneeeeessssnannnenes

ACKNOWLEDGEMENTS ...ctttuuiiiiiinniiiiiinniiiniinniiiiemiiieesiiiiimmsiimssseesssscsnse.

REFERENCES



Summary 1

Summary

iabetes mellitus is a global health problem whose prevalence is increasing
Dworldwide. Central metabolic pathways such as glycolysis, gluconeogenesis,
glycogenesis, and glycogenolysis are responsible for regulating blood glucose levels
and therefore are highly relevant in the context of diabetes. Although these pathways
are known for a long time, the molecular consequences of diabetes on different organs
are not fully understood. The broad maijority of metabolic disorders including diabetes
are associated with alterations in the complex network of biological pathways.
Understanding these alterations is crucial for developing effective prevention and
treatment strategies. Since no in vitro system can fully mimic human whole-body
pathophysiology, and due to ethical reasons only samples with minimal or non-
invasive ways are available from humans, pathomolecular characterization of various
organs is mostly feasible using animal models. To ensure animal-to-human
translational success, clinically relevant animal models with high physiological
similarities with humans are essential. Due to the pathophysiological resemblance with
humans, the availability of genetic modification toolkits and good ethical acceptance,
the pig has become an attractive animal model to study various diseases including

diabetes.

Omics technologies, especially multi-omics, further combined with relevant
histological examinations can significantly contribute to the understanding of diseases
and disorders. The proteome and metabolome are the downstream products of gene
transcription and therefore resemble a substantial part of the phenotype of the
biological system. In this thesis, shotgun proteomics and targeted metabolomics in
tandem with histological investigations were used to study (i) the molecular effects of
maternal diabetes on offspring liver and (ii) the molecular effects of diabetes on lung.
In the case of proteomics, a data-independent acquisition-based (DIA) approach was
employed which provided high analytic depth and data completeness, as well as
quantitative accuracy. As part of the DIA method, high-quality DIA libraries of the lung
and liver tissues were generated which contain relevant physical-chemical
characteristics of thousands of peptides that can be used in future studies and
therefore were deposited in a public database (Liver, PXD040305; Lung, PXD038014).

When appropriate, a highly sensitive peptide-level quantification strategy was used,



Summary 2

which allowed the detection of quantitative changes, otherwise not detectable with
traditional statistical methods. Furthermore, an R package with a wide range of
functionalities, allowing convenient proteomics data analysis, was developed. The
package is freely available on a GitHub page:

https://github.com/bshashikadze/pepquantify.

In the first part of this thesis, the effect of maternal diabetes on the offspring’s liver is
described. Maternal diabetes is known to predispose offspring to a future metabolic
disorder, thus exploring associated molecular alterations in the key metabolic tissue —
the liver — is essential for the development of effective prevention and treatment
strategies. Prior to this investigation, we reviewed systematically the published
literature. This revealed a clear lack of knowledge about molecular alterations in
offspring liver induced by maternal diabetes. To address this, we performed molecular
and histological profiling of liver and serum samples from offspring born to a
genetically engineered diabetic pig model for mutant INS gene-induced diabetes of
youth (MIDY)) (PHG) and from offspring born to WT littermate controls (PNG). In PHG,
we observed stimulated gluconeogenesis and increased hepatic lipid content
independent of de novo lipogenesis (DNL). Latter is in line with the observation that
DNL capacity is limited in fetuses and drivers of fat accumulation are provided
transplacentally. Similarly, although phosphatidylcholines (PC) were increased, key
enzymes involved in its synthesis were downregulated. Conversely, enzymes involved
in PC breakdown and translocation were elevated. Shifting the balance of lipid
metabolism away from de novo synthesis to favor lipid breakdown potentially

represents counter-regulatory mechanisms to maternally elevated lipid levels.

In the second part, molecular effects of hyperglycemia on lung tissue are described.
The rich vascularization makes the lung prone to deleterious effects of hyperglycemia,
similar to other organs affected by diabetic microvascular complications. However, the
molecular mechanisms of diabetes-associated pulmonary damage have not yet been
investigated comprehensively. This is a highly relevant topic, as increased
susceptibility to respiratory infections is frequently observed in the context of diabetes.
Using a combined proteomics and lipidomics approach we found alterations of key
biomolecules involved in inflammatory and immune system-related pathways.
Specifically, polyunsaturated fatty acid lipoxygenase (ALOX15) involved in eicosanoid

metabolism was strongly decreased. As ALOX15 products are well-known to be


https://github.com/bshashikadze/pepquantify
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involved in inflammation resolution, its downregulation provides molecular insights into
the impoverished ability of inflammation resolution as a hallmark of diabetes lung

disease.



List of publications 4

— ——

List of publications

This thesis is based on the following publications and manuscripts, reprinted in
Sections A (1, 2) and B (3)

1.

Shashikadze, B., F. Flenkenthaler, J.B. Stockl, L. Valla, S. Renner, E. Kemter,
E. Wolf, and T. Frohlich, Developmental Effects of (Pre-)Gestational Diabetes
on Offspring: Systematic Screening Using Omics Approaches. Genes (Basel),
2021.12(12).

Shashikadze, B., L. Valla, S.D. Lombardo, C. Prehn, M. Haid, F. Riols, J.B.
Stockl, R. Elkhateib, S. Renner, B. Rathkolb, J. Menche, M. Hrabe de Angelis,
E. Wolf, E. Kemter, and T. Frohlich, Maternal hyperglycemia induces alterations
in hepatic amino acid, glucose and lipid metabolism of neonatal offspring: Multi-
omics insights from a diabetic pig model. Mol Metab, 2023. 75: p. 101768.
Shashikadze, B., F. Flenkenthaler, E. Kemter, S. Franzmeier, J.B. Stockl, M.
Haid, F. Riols, M. Rothe, L. Pichl, S. Renner, A. Blutke, E. Wolf, T. Frohlich
Multi-omics analysis of diabetic pig lungs reveals molecular derangements
underlying pulmonary complications of diabetes mellitus

Manuscript submitted

Additional publications and manuscripts with contributions by Bachuki Shashikadze

during the preparation of this thesis:

4. Shashikadze, B., S. Franzmeier, |. Hofmann, M. Kraetzl, F. Flenkenthaler, A.

Blutke, T. Frohlich, E. Wolf, and A. Hinrichs, Structural and proteomic
repercussions of growth hormone receptor deficiency on the pituitary gland:
Lessons from a translational pig model. J Neuroendocrinol, 2023: p. e13277.
Stirm, M., B. Shashikadze, A. Blutke, E. Kemter, A. Lange, J.B. Stockl, F.
Jaudas, L. Laane, M. Kurome, B. Kessler, V. Zakhartchenko, A. Bahr, N.
Klymiuk, H. Nagashima, M.C. Walter, W. Wurst, C. Kupatt, T. Frohlich, and E.
Wolf, Systemic deletion of DMD exon 51 rescues clinically severe Duchenne
muscular dystrophy in a pig model lacking DMD exon 52. Proc Natl Acad Sci U
S A, 2023. 120(29): p. €2301250120.

Horanszky, A., B. Shashikadze, R. Elkhateib, S.D. Lombardo, F. Lamberto, M.
Zana, J. Menche, T. Frohlich, and A. Dinnyés, Proteomics and disease network

associations evaluation of environmentally relevant Bisphenol A concentrations



List of publications 5

in @ human 3D neural stem cell model. Front Cell Dev Biol, 2023. 11: p.
1236243.

Lamberto, F., B. Shashikadze, R. Elkhateib, S.D. Lombardo, A. Horanszky, A.
Balogh, K. Kistamas, M. Zana, J. Menche, T. Frohlich, and A. Dinnyés, Low-
dose Bisphenol A exposure alters the functionality and cellular environment in
a human cardiomyocyte model. Environmental Pollution, 2023. 335: p. 122359.
Jaudas F., Bartenschlager F., Shashikadze B., Santamaria G., Schnell A.,
Graber S., Bahr A., Cambra-Bort M., Krebs S., Schulz C., Zawada D., Janda2,
Ignacio Caballero-Posadas M., Kunzelmann K., Morretti A., Laugwitz K.L.,
Kupatt C., Saalmdller A., Frohlich T., Wolf E., Mall M., Mundhenk L., Gerner
W., Klymiuk N., Increased pulmonary infiltration and attenuated phagocytosis
defines perinatal dysfunction of innate immunity in Cystic Fibrosis

Manuscript submitted

Sen, P., B. Shashikadze, T. Sittig, J. Hamers, S. Bierschenk, L. Zandbergen,
H. Zhang, N. Hesse, V. Pauly, S. Clauss, T. Frohlich, and D. Merkus,
Mitochondrial and contractile dysfunction in a swine model of early chronic

kidney disease. European Heart Journal, 2023. 44.

10.Zandbergen, L., C. Dijk, P. Sen, O. Sorop, R. van Drie, B. Shashikadze, T.

11.

Frohlich, M. Verhaar, C. Cheng, D. Duncker, and D. Merkus, Impaired cardiac
BCAA catabolism associated with impaired myocardial efficiency during
exercise in a porcine model with multiple risk factors. European Heart Journal,
2023. 44.

Sarala Raj Murthi, A. Petry, B. Shashikadze, M. Schmid, G. Santamaria, K.
Klingel, D. Kracun, X. Chen, Y. Qin, J. P. Schmitt, J. B. Stockl, F. Flenkenthaler,
J. M. Gorham, C. Toepfer, D. Potésil, P. Hruska, Z. Zdrahal, S. Bauer, M. Klop,
L. Lehmann, Z. Mayer, L. Papanakli, N. Spielmann, A. Moretti, T. Frohlich, P.
Ewert, S. Holdenrieder, J. Seidman, C. E. Seidman, A. Goérlach, C. M. Wolf
Hypoxia-Inducible Factor 1a signaling contributes to disease pathogenesis in
sarcomeric hypertrophic cardiomyopathy

Manuscript submitted

12.Baehr A., P. Hoppmann, T. Bozoglu, M. Stirm, |. Luksch, T. Ziegler, N.

Hornaschewitz, S. Shresta, B. Shashikadze, J. Stockl, N. Raad, H. Blum, S.
Krebs, T. Frohlich, C. Baumgartner, M. N. Imialek, M. Walter, C. Weber, S.



List of publications 6

Engelhardt, A. Moretti, N. Klymiuk, W. Wurst, K. L. Laugwitz, R. Hajjar, E. Wolf,
and C. Kupatt
Gene Therapy for Cardiomyopathy associated with Duchenne Muscular
Dystrophy in a Pig Model
Manuscript submitted

13.Sen, P., B. Shashikadze, F. Flenkenthaler, E. Van de Kamp, S. Tian, C. Meng,
M. Gigl, T. Frohlich, and D. Merkus, Proteomics- and Metabolomics-Based
Analysis of Metabolic Changes in a Swine Model of Pulmonary Hypertension.
International Journal of Molecular Sciences, 2023. 24(5): p. 4870.

14.Flenkenthaler, F., E. Landstrom, B. Shashikadze, M. Backman, A. Blutke, J.
Philippou-Massier, S. Renner, M. Hrabe de Angelis, R. Wanke, H. Blum, G.J.
Arnold, E. Wolf, and T. Frohlich, Differential Effects of Insulin-Deficient Diabetes
Mellitus on Visceral vs. Subcutaneous Adipose Tissue-Multi-omics Insights
From the Munich MIDY Pig Model. Front Med (Lausanne), 2021. 8: p. 751277.

15.Stirm, M., L.M. Fonteyne, B. Shashikadze, M. Lindner, M. Chirivi, A. Lange, C.
Kaufhold, C. Mayer, I. Medugorac, B. Kessler, M. Kurome, V. Zakhartchenko,
A. Hinrichs, E. Kemter, S. Krause, R. Wanke, G.J. Arnold, G. Wess, H.
iNagashima, M. Hrabe de Angelis, F. Flenkenthaler, L.A. Kobelke, C. Bearzi,
R. Rizzi, A. Bahr, S. Reese, K. Matiasek, M.C. Walter, C. Kupatt, S. Ziegler, P.
Bartenstein, T. Frohlich, N. Klymiuk, A. Blutke, and E. Wolf, A scalable, clinically
severe pig model for Duchenne muscular dystrophy. Dis Model Mech, 2021.
14(12).

16.Stirm, M., L.M. Fonteyne, B. Shashikadze, J.B. Stockl, M. Kurome, B. Kessler,
V. Zakhartchenko, E. Kemter, H. Blum, G.J. Arnold, K. Matiasek, R. Wanke, W.
Wurst, H. Nagashima, F. Knieling, M.C. Walter, C. Kupatt, T. Frohlich, N.
Klymiuk, A. Blutke, and E. Wolf, Pig models for Duchenne muscular dystrophy
- from disease mechanisms to validation of new diagnostic and therapeutic
concepts. Neuromuscul Disord, 2022. 32(7): p. 543-556.



Introduction 7

— ——

1. Introduction
1.1. Mass spectrometry-based omics

1.1.1. General aspects

Mass spectrometry (MS) is a sophisticated analytical technique that is used to identify
and quantify molecules [1], and provides a rapid and sensitive assessment of
biomolecules such as proteins, peptides, metabolites, or even DNA and RNA.
Furthermore, the signal measured by MS can additionally provide quantitative
information [2]. Before entering the mass spectrometer, analytes are often separated
with liquid chromatography (LC). During LC separation, the sample with the liquid
mobile phase will pass through the column packed with a stationary phase. The
separation of analytes is driven by the chemical or physical interactions of the sample
with the mobile and stationary phases [3]. After LC separation, analytes are desolvated

into the gas phase, ionized and are then analysed by the mass spectrometer.

MS-based omics can be performed in a targeted or untargeted way. In the case of
targeted omics, preselected analytes, e.g., peptides or lipids, are analysed in a
hypothesis-driven manner. In turn, the untargeted strategy, which is also referred to
as shotgun approach, provides a comprehensive analysis of all detectable analytes.
Untargeted proteomics or metabolomics can be performed using data-dependent
(DDA) or data-independent acquisition (DIA). In the case of DDA, a tandem mass
spectrometer is programmed to select the most intense ions in the first stage of tandem
mass spectrometry (MS1, precursor ion selection), followed by fragmentation and
analysis of a fixed number of most abundant ions in a second stage of tandem mass
spectrometry (MS2, precursor fragmentation). Already fragmented precursors are
excluded from fragmentation for a fixed time to avoid redundancy. Due to the
complexity of biological samples this process leads to “run to run” variabilities since a
given biomolecule may not always be selected for fragmentation in each sample.
Conversely, in DIA mode [4], during each cycle, the MS focuses on a wide mass
window of precursors and acquires MS/MS data from all precursors detected within
that window. DIA avoids precursor-based selection and yields higher coverage at the
expense of more complex MS2 spectra. Recent implementations of machine learning
and deep learning methods in omics data analysis have greatly advanced analysis of

complex DIA datasets [5].
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1.1.2. Proteomics

Recent developments in next-generation DNA sequencing technologies (NGS) have
revolutionized our understanding of the biological state of health and disease.
Although genes are the basic units of heredity, the most fundamental level at which
the genotype gives rise to the phenotype is when genes are translated to proteins. The
first ground-breaking demonstration of the importance of proteins was the
characterization of the “molecular disease” by Linus Pauling in 1949 in which a change
in a single protein (hemoglobin) was identified as the cause of a devastating human
disease: sickle cell. Transcript levels have been frequently assumed as the main
contributors to the protein abundances and thus were used as proxies for the
concentrations and activities of the corresponding proteins [6]. However, studies
quantifying transcripts and proteins revealed that beyond transcript concentration,
multiple other processes determine protein abundance and therefore transcript levels
alone are not sufficient to predict protein levels (reviewed in [7]). The proteome is the
complete set of proteins present in biofluids, cells and tissues and reflects the
functional state of the biological system. Proteomics can address challenges that
cannot be approached by the analysis at the DNA/RNA level, specifically, post-
translational modifications, compartmentalization and turnover, as well as protein

interactions [8].

One of the early attempts to analyse protein sequences was Edman degradation,
sequentially removing one residue at a time from the amino terminus of a peptide.
Because of its sensitivity and speed, mass spectrometry (MS)-based techniques, in
which biomolecule masses are measured after ionization replaced laborious Edman
degradation during the 1990s. In the last few decades, further technological
improvements such as introduction of high precision, fast scanning mass
spectrometers have established MS not only as the definitive tool to study the structure
of proteins but also as a central technology for the analysis of protein abundance,
modifications, and interactions in biological and clinical investigation. One of the most
used approaches is bottom-up proteomics where complex mixtures of proteins are
digested into smaller peptide sequences. The resulting peptide mixtures are separated
based on their hydrophobicity via nano-flow reversed-phase liquid chromatography
(nano-LC). Eluted peptides are then ionized and introduced into a mass spectrometer.

In the mass spectrometer, peptide ions generally encounter three fundamental stages:
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(i) precursor selection, (ii) fragmentation, and (iii) detection. Post-analysis data
processing allows protein inference from peptide-specific precursor and/or fragment

ions.

1.1.3. Metabolomics

According to the central dogma of molecular biology, the genetic information is
encoded in the DNA and is transcribed into RNAs, which are then translated to
functional proteins. Proteins then affect the abundance of their substrates, which are
integrated into complex metabolic pathways. Metabolomics is the systematic study of
a wide range of small molecules, typically in the context of stimuli or disease states.
Genetic and epigenetic regulation affects cellular homeostasis and subsequently
metabolic output, thus the metabolome closely reflects environment—gene interactions
and is a sensitive indicator of an organism’s physiological state [9]. Metabolomics
measurements fall into two distinct categories. Untargeted metabolomics aims to
comprehensively assess all measurable analytes in a sample including chemical
unknowns. In turn, targeted metabolomics measures preselected annotated
metabolites. While an untargeted approach provides an unbiased survey of molecules
and can sometimes lead to novel unexpected findings, many of the detected analytes
remain unannotated. Conversely, a targeted approach is performed in hypothesis-
driven studies and yields an accurate quantification of a wide class of metabolites [10].
Mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) are the two
most commonly used approaches in the field of metabolomics. During the past few
years, great progress has been made in the metabolomics field. Specifically, improving
instrument performance, experimental design and sample preparation, facilitated
broader analytical capabilities. Moreover, progress in bioinformatics tools greatly
advanced data acquisition and analysis. These allowed sensitive and accurate
assessment of metabolites in various samples to reveal biomarkers that are reflective

of various pathophysiological states [10].
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1.1.1. Muti-omics approaches to study diseases: focus on proteomics and

metabolomics

Genome analysis answers what can be performed, transcriptome analysis answers
what is currently performing while proteomics can say what was done. Finally,
metabolome profile confirms what was and is going on [11]. Even if the information
from DNA is transcribed to mRNA properly, the synthesis of proteins can be altered or
specific enzymes may be present in an inactive form. Moreover, specific metabolites
might not be synthesized [11]. Many diseases are associated with disturbances in the
complex network of biological molecules essential to accomplish a particular biological
function. Understanding the interplay between the genes, their products (RNAs,
proteins, and metabolites) and many environmental factors that influence their
functioning is essential to empower more effective investigation and complete
understanding of biological systems [12]. The recent advances in so-called systems
biology techniques enable the characterization of these integrative pathways. Multi-
omics data analysis is complex since a huge amount of data is generated and proper
statistical evaluation is critical [13]. However, with a carefully planned study design
and sample handling followed by suitable data analysis, multi-omics represents a

powerful approach to decipher the molecular basis of various diseases.

1.2. Diabetes mellitus: a global health problem

Diabetes mellitus (DM) along with its associated complications is a global health
problem with rapidly expanding prevalence. According to the International Diabetes
Federation, 537 million people had DM in 2021. DM is a heterogeneous metabolic
disorder characterized by the presence of hyperglycemia due to impaired insulin
secretion, defective insulin action, or both. The disease can be classified into the
following general categories [14]: I. type 1 diabetes mellitus (T1DM) (autoimmune-
mediated pancreatic beta-cell loss, leading to absolute insulin deficiency); Il. type 2
diabetes mellitus (T2DM) (combination of insulin resistance and dysfunctional
pancreatic (B-cells failing to provide adequate compensatory insulin secretion); Ill.
gestational DM (a glucose intolerance which manifests in the second or third trimester
of pregnancy); IV. other specific types of DM include a broad range of causes e.g.,

drug- or chemical-induced diabetes, diseases of the exocrine pancreas, monogenic
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diabetes syndromes, permanent neonatal diabetes, etc. Despite several approved
treatment options, there is still no cure for any form of diabetes mellitus. Due to the
high heterogeneity of diabetes, a renewed classification was proposed to individualize
treatment regimens. Ahlqvist et al. identified five clusters of patients with diabetes,
which had significantly different patient characteristics and risk of diabetic
complications: (1) severe autoimmune diabetes (SAID), (2) severe insulin-deficient
diabetes (SIDD), (3) severe insulin-resistant diabetes (SIRD), (4) mild obesity-related
diabetes (MOD) and (5) mild age-related diabetes (MARD) [15].

1.3. The pig as an animal model for human disease

1.3.1. General considerations

In biomedical research, the patient situation is frequently not mimicked well enough to
reliably predict the efficacy and side effects of a novel drug or device. Therefore,
despite increased scientific discoveries and financial investments, many biomarkers
proposed from basic research do not enter the market (also known as the “pipeline
problem” [16]). Human samples can usually only be collected by non- or minimally
invasive procedures. Additionally, there are no in vitro systems that can fully mimic
human whole-body pathophysiology, thus biomedical research still relies on animal
models [17]. Animal models are essential to understand the onset and progression of
diseases and to discover and validate therapeutic drugs as well as their side effects.
Due to ethical reasons, work with laboratory animals must be carefully controlled, and
researchers have a duty to ‘replace, reduce and refine’ their application whenever
possible [17]. In other words, the potential benefits of the research project to society
must outweigh and justify the costs to the animals. Therefore, to derive high-quality
data from research, the use of animal models should ideally be restricted to
investigating specific and well-defined characteristics that both resemble and are
predictive of the disease in humans [18]. Mice and other small rodents are dominant
animal models in biomedical research, and provided insights into the molecular basis
of many human diseases and enabled proof-of-principle studies. Their dominance is
due to the fact that they are convenient and cheap to maintain, have good ethical
acceptance, rapid reproduction and methods for their genetic modification are well
established [19]. However, mice considerably differ from humans in size, physiology
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and lifespan which reduces their translational value [20]. Additionally, differences exist
between rodents and humans in the regulatory networks controlling the metabolic
functions, activity of the immune system, and responses to stress [21]. There has been
a growing recognition of the limitations of some animal models since in many cases
they poorly reflect human physiology [22]. The need to check the translational
relevance of hypotheses developed in non-mammalian organisms and rodents, under
conditions more similar to human biology, has greatly increased demands for large
animal models which are better mimicking human physiology [23]. Non-human primate
models are phylogenetically very close to humans but have clear drawbacks due to
low ethical acceptance. Additionally, they have long generation intervals and are
mostly uniparous [20]. Dogs and cats have also been used, however, unless they
present spontaneous cases of disease, they also raise ethical concerns due to their
use as companion animals [24]. Pigs are one of the most common domestic animals
in the world with a rapid growth rate, short generation intervals, large litter sizes, and
standardized breeding techniques [25]. Moreover, pigs share several key similarities
with humans in terms of their body size, anatomical features, physiological and
pathophysiological responses [26]. These practical factors, combined with the
possibility of dietary and surgical interventions, efficient and specific genetic
modifications and ethical acceptance, make the pig an excellent model to overcome
gaps between proof-of-concept studies and clinical trials [23]. Importantly, major
limitations of the pig models have been tackled by the advancement in the genetic
toolbox for gene-editing [17, 27] and by the publication of the pig genome [28]. These
developments have significantly pushed the importance of the porcine model in

biomedical research, and are discussed below.
1.3.2. Pig genome project

As a member of the artiodactyls (cloven-hoofed mammal), pig is evolutionarily distinct
from the primates and rodents, which last shared a common ancestor with humans
between 79 and 97 million years ago. The release of its genome sequence has
provided a critical component for the development and broad acceptance of the pig as
a clinically relevant biomedical model [24]. Sequencing of the porcine genome was
initiated with the establishment of the Swine Genome Sequencing Consortium in
September 2003 [29]. However, the pig genome project greatly benefited from early
attempts like European PiGMap project which stretches back to early 1990s and
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USDA Pig genome coordinated activities in the US. A high-quality draft genome
sequence for the porcine was published in Nature in 2012 [28] and described the
sequencing, analysis, and annotation of the draft genome sequence. The provided
knowledge further underlined the genome-level similarity between pigs and humans.
Specifically, the pig and human genomes have similar size, complexity and

chromosomal organization [29].
1.3.3. Genetic engineering of pigs

Transgenic pigs were first described in the 1980s with the creation of pigs expressing
various hormones, including human growth hormone [30]. Since then, pigs were
genetically modified to replicate the genetic and/or functional basis of various human
diseases [27]. Current approaches for genetic modification of pigs include DNA
microinjection into the pronuclei of fertilized oocytes (DNA-MI), sperm-mediated gene
transfer (SMGT), lentiviral transgenesis (LV-TG) and somatic cell nuclear transfer
using genetically modified nuclear donor cells (SCNT) [17, 31]. Although DNA-MI is
straightforward, it is quite inefficient in terms of the proportion of transgenic animals
produced. The efficiency of SMGT which transfers genes based on the ability of sperm
cells to spontaneously bind to and internalize exogenous DNA and transport it into an
oocyte during fertilization to produce genetically modified animals is also low [32].
Gene targeting using adeno-associated viral vectors has also been established in pigs.
For example, lentiviral gene transfer was adapted to pigs and resulted in high
proportions of transgenic offspring [27]. During SCNT, the nucleus of a somatic donor
cell is transferred to an enucleated egg whose nuclear DNA has been removed. The
reconstructed SCNT oocytes are then artificially activated by the host cell to
progressively develop into blastocysts. Resulted embryos can be transferred to a
recipient, enabling development to term. SCNT produces embryos or animals that are

genetically identical to the donor cells [33].

1.4. Insulin deficient diabetes of youth
1.4.1. Insulin biosynthesis
Despite having a net weight in humans of only about 2 grams, pancreatic islets and

their secreted peptide hormones are crucial for normal body metabolism [34]. Insulin
is a master hormone that regulates and maintains metabolic homeostasis in the body
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whose structure is fairly conserved across species. In pancreatic beta-cells, the insulin
biosynthetic pathway starts when the INS gene product is translated as preproinsulin
[34] which consists of the signal peptide, the insulin B domain, the C domain flanked
by dibasic cleavage sites, and the insulin A domain [34]. Newly synthesized
preproinsulin undergoes co- and post-translational translocation across the membrane
of the endoplasmic reticulum (ER), where it is cleaved by signal peptidase to form
proinsulin [35]. Nascent proinsulin must fold properly including the formation of three
evolutionary conserved disulphide bonds (B7-A7, B19-A20 and A6-A11) [36] which
stabilizes its structure. Correct disulphide pairing appears to be one of the most
important events in determining whether proinsulin molecules can achieve their native
folded structure [35]. Noncovalently-associated homodimers of proinsulin undergo
intracellular transport from the ER to the Golgi complex and into secretory granules,
during which it forms hexamers and is proteolytically processed to C-peptide and
mature bioactive insulin that is stored in granules. Upon stimulation, insulin granule
exocytosis quickly secretes the insulin to the bloodstream to lower blood glucose
levels [35].

1.4.2. Insulin misfolding

One-third of all newly synthesized proteins may not achieve proper folding and this
has to be addressed by cell machinery via protein refolding or elimination [34]. Loss
of intermolecular disulphide bond due to insulin mutations results in the formation of
non-native intermolecular disulphide bonds with other mutant and wild-type proinsulin
molecules [34]. As a result, high molecular weight complexes are formed and they
entrap mutant and WT proinsulin, hindering the exit of insulin from the ER. Entrapment
of insulin in ER subsequently reduces circulating insulin levels which in turn
upregulates proinsulin biosynthesis. This results in ER stress and leads to beta-cell
failure [37]. Misfolded proinsulin molecules can either be refolded to their native
structure or degraded through ER-associated degradation (ERAD) and autophagy
[38]. Furthermore, even in the absence of any mutation, a defective ER folding
environment can provide a “first hit” to beta cells, affecting the folding of wild-type
proinsulin and leading to an increase of proinsulin misfolding [35]. Accumulating

evidence indicates that the underlying mechanism initiating insulin-deficient diabetes
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in Akita mice and mutant insulin deficient diabetes of youth (MIDY) patients is an
impairment of the ER export of wild-type proinsulin due to blockade by co-expressed

mutant proinsulin [34].

1.4.3. Munich MIDY pig model

Pig models for (pre)diabetes can be generated using one of the following strategies:
(1) partial or complete surgical removal of the pancreas; (2) chemical treatment (e.g.
streptozotocin or alloxan) causing selective beta cell destruction; (3) by dietary
intervention (e.g., high-energy, high-fat, high-sugar diet); or (4) by genetic modification
[39]. Advantages and disadvantages of these methods are reviewed in [39]. Dietary
interventions alone rarely cause substantial hyperglycemia in the pig [39]. A transgenic
pig model is superior to surgically and chemically induced diabetes models as it is less
invasive, the exocrine pancreas stays intact and phenotypic inter-individual variance
is minor [20]. Two different pig models for permanent neonatal diabetes were
established - transgenic pigs expressing the mutant insulin C94Y [40] or C93S [41]
based on the analogous mutations in humans and rodents. C93S had a lower level of
mutant /NS transgene expression compared to C94Y line and consequently, the
phenotype was less severe. A comprehensive biobank of body fluids and tissues was
established from long-term diabetic INSC®4Y transgenic pigs (MIDY) [42]. The review
from Renner et al. summarises results from studies showing diabetes-related
complications in various tissues of MIDY pigs including myocardium [43], retina [44]
and liver [45]. Additionally, a recent study showed significant changes in proliferative
response, CD4+ T cell proteomes and the metabolic phenotypes in MIDY pigs [45].
Furthermore, Flenkenthaler et al. used transcriptomics and proteomics for molecular
profiling of visceral and mesenteric adipose tissue of MIDY and WT pigs and identified

depot-specific alteration of key metabolic processes [46].
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1.5. Aim of the thesis

The goal of this thesis was two-fold:

(i) Investigation of the effect of maternal hyperglycaemia on neonatal offspring

liver metabolism (Section A)

Little is known about early determinants of liver disorders in offspring born to diabetic
mothers since associated molecular drivers were not yet explored in a high-throughput
manner. To address this, the hepatic proteome, lipidome, metabolome as well as
clinical parameters of serum from 3-day-old wild-type (WT) piglets born to
hyperglycemic mothers were compared to the profiles of WT controls born to
normoglycemic mothers. To complement the molecular findings, a further
histomorphological examination of the liver was performed. Additionally, protein-
protein interaction network analysis was used to reveal highly interacting proteins that
participate in the same molecular mechanisms and to relate these mechanisms with

human pathology.
(i) Investigation of the effect of hyperglycaemia on lung (Section B)

Increased susceptibility to respiratory infections is frequently observed in the context
of diabetes. So far, the research focus was mainly on epidemiological associations
between diabetes and impaired lung function and at the molecular level diabetes-
associated pulmonary damage was not addressed. To systematically study pulmonary
changes in response to chronic insulin deficiency and hyperglycemia data-
independent acquisition-based proteomics and targeted analysis of relevant lipid
molecules were performed on lung tissue samples from the Munich MIDY pig biobank.
To localize differentially abundant key molecules in their pathophysiological context,
further immunohistochemical and quantitative morphological analyses were carried

out.
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2. Section A: Investigation of the effect of maternal
hyperglycaemia on neonatal offspring liver metabolism
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Abstract: Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances
of the maternal metabolism during the periconceptional period and pregnancy, children bear an
increased risk for future diseases. It is well known that an aberrant intrauterine environment caused
by elevated maternal glucose levels is related to elevated risks for increased birth weights and
metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances
induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or
prevention a challenging task. Omics technologies allowing holistic quantification of several classes
of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate
the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant
molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support
the development of preventive and therapeutic strategies. In this review, we summarize key findings
from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.

Keywords: DOHaD (developmental origins of health and disease); gestational diabetes mellitus
(GDM); pregestational diabetes mellitus (PGDM); Omics

1. (Pre-)Gestational Diabetes Mellitus and Omics: A Brief Introduction

Pregnancy is a dynamic state associated with major metabolic adaptations [1,2], being
crucial for fetal development [3], delivery, and breastfeeding [4]. The primary source
of energy for the fetus is maternal glucose [5]. An increased rate of hepatic glucose
production [6], combined with insulin resistance (IR), are important mechanisms adopted
by the mother to meet the high demand for glucose. The development of IR, which has
diabetogenic effects during pregnancy [7], is an evolutionary mechanism to minimize
maternal glucose utilization and to ensure an adequate supply for the growing fetus [8].
In addition, during normal pregnancy, as a response to elevated glucose production and
decreased insulin sensitivity (equivalent to IR), 3 cells need to undergo changes to further
elevate insulin synthesis and to maintain a normoglycemic state [9]. Furthermore, insulin
in concert with placenta-derived hormones [10] reprograms the metabolism of lipids [11],
leading to the accumulation of maternal fat in early and mid-pregnancy and promoting fat
utilization at a later stage.

The inability to compensate for the increased demand for insulin during pregnancy
underlies the pathophysiological mechanisms of gestational diabetes mellitus (GDM) [12].
GDM is one of the most common complications of pregnancy, with a prevalence rang-
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ing from 2% to 25% depending on the used diagnostic criteria and the studied popu-
lation [13-16]. GDM is defined as glucose intolerance, firstly diagnosed during preg-
nancy [17]. Obesity, a family history of diabetes, and previous GDM pregnancies are
among the major risk factors for developing GDM [18]. In the case of GDM, maternal
glucose tolerance usually normalizes shortly after pregnancy but leads to a substantially
increased risk of developing type 2 diabetes in later life [19]. Apart from GDM, pre-existing,
poorly controlled diabetes can also lead to maternal hyperglycemia. Elevated maternal
glucose can penetrate through the placenta and reach the fetus, while insulin cannot [20].
The arising hyperglycemia can lead to insulin overproduction (hyperinsulinemia) in the
fetus. This phenomenon was first described by Jorgen Pedersen and is known as Pedersen’s
hypothesis [21]. Such an aberrant intrauterine environment induced by maternal diabetes
is related to an increased risk for complications both for the mother and the offspring
(Table 1).

Table 1. Maternal and fetal /offspring risks associated with maternal diabetes [19,22-28].

Maternal Fetal/Offspring
Pre-eclampsia Intrauterine death
Cesarean section Congenital malformations
Labor complications Macrosomia
Pre-term delivery Polycythemia and hyperbilirubinemia
Postpartum hemorrhage Respiratory distress syndrome
Recurrent GDM Metablic syndrome
Type 2 diabetes Type 2 diabetes
Complications of type 2 diabetes Complications of type 2 diabetes
(cardiovascular disease, nephorpathy, (cardiovascular disease, nephropathy,
neuropathy, retinopathy) neuropathy, retinopathy)
weight gain/obesity Weight gain/obesity

The broad majority of diseases and metabolic disorders are associated with imbalances
in the complex network of biological molecules necessary to accomplish a particular
biological function. High-throughput Omics technologies analyzing complex mixtures of
biological molecules, in combination with advanced data mining and rigorous statistical
tools, have reshaped biomedical research. In the last few decades, the application of
Omics studies on different molecular levels (e.g., genomics, epigenomics, transcriptomics,
proteomics, and metabolomics) successfully deciphered the complex nature of various
diseases [29]. Omics research in maternal diabetes and associated offspring health is
still in an exploratory phase (i.e., screening for novel biomarkers, revealing dysregulated
biological pathways). The screening and diagnostic methods for GDM are mainly based on
glucose metabolism (e.g., fasting plasma glucose (FPG), oral glucose tolerance test (OGTT),
glycated hemoglobin, etc.). However, currently, there is no broad consensus on appropriate
screening/ diagnostic tests for GDM (discussed in [30]). Additionally, there are no effective
strategies to prevent health complications to offspring due to the lack of systematic insight
into maternal diabetes-associated molecular derangements.

With the “central dogma of molecular biology” in mind that the genetic information
of a biological system is encoded in the DNA and is transcribed to RNAs, which are
translated to functional proteins, controlling an organism’s metabolism (Figure 1), this
review is focused on recent findings of (epi-)genomics, transcriptomics, proteomics, and
metabolomics studies, addressing molecular changes in offspring after exposure to (pre-
)gestational diabetes. Furthermore, studies from other growing Omics fields, such as
microbiomics and nutriomics, will be discussed. In this review, we mainly focus on studies
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reflecting molecular changes observed at birth (i.e., cord blood studies, fetal-side placenta,
and tissues from different animal models) and in later life.
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Figure 1. Overview of Omics fields addressing different classes of molecules. Interactions of the different classes of
molecules can be addressed using more than one Omics technique in a so-called multi-Omics approach.

2. Animal Models Are Valuable for Studying Effects of Maternal Diabetes on Offspring

Studies on the negative effects of maternal diabetes on the health of human offspring
show several limitations due to the number of co-occurring factors, such as the person’s
lifestyle and medical history. For example, most of the human studies include cases of
maternal diabetes accompanied by other metabolic disorders, which makes it difficult to
differentiate the consequences of diabetes from those of comorbidities. Therefore, animal
models living under tightly controlled laboratory environments with the option of stan-
dardized tissue sampling [31] are necessary. So far, a variety of animal models have been
generated to study GDM [32]. For instance, rodent models for GDM, generated by the
usage of chemicals leading to § cell loss, are widely used. However, rodent models fre-
quently lack clinical relevance due to fundamental physiological differences from humans.
Clinically more relevant, large animal models have the potential to bridge the gap between
proof-of-concept studies and clinical trials (Figure 2). Non-human primate models have
been used to study the developmental programming of diabetes and obesity [33]. Pigs
are also attractive animal models due to their similarities with humans in anatomy and
metabolism [34]. For diabetes, specific characteristics are particularly relevant (e.g., size
and distribution of  cells, similarity in insulin structure) that make the pig a valuable
model for human glucose metabolism [35,36]. Importantly, despite structural differences
between porcine and the human placenta (epitheliochorial vs. hemochorial), the transfer
of glucose, amino acids, and partially fatty acids towards the fetus take place in both
species [37].
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Figure 2. Overview of the different model systems used for translational research. Easy to handle and reproducible cellular
models are useful for deciphering molecular disease mechanisms, which can be validated in animal models. Large animal
models better mimicking human diseases are valuable to fill the gap between proof-of-concept studies and clinical trials.

3. Common Tissues and Biofluids for Studying Effects of Maternal Diabetes
on Offspring

The use of Omics technologies on human samples and samples from clinically relevant
animal models, which enable the detection of molecular changes in pathological conditions,
represents a promising strategy to study the effects of maternal diabetes on offspring future
health at a mechanistic level. Depending on the experimental aim, biological samples can
be collected from the mother (plasma, urine, vaginal fluids, milk, placenta, and hair) or the
fetus/newborn (amniotic fluid, umbilical cord blood, plasma, urine, meconium, and saliva,
etc.) [38]. Due to ethical reasons, human samples can only be collected by non or minimally
invasive procedures. Therefore, cord blood is frequently used to explore diabetes-induced
molecular changes in human neonates. Longitudinal studies exploring the postpartum
effect of maternal diabetes often use the offspring’s peripheral blood. These studies will
be extensively discussed in this review. Furthermore, molecular changes in the placenta
might be reflective of disorders during fetal development. However, as the placenta is only
available at birth, it is unclear to what extent alterations observed at delivery resemble
those in utero during fetal development [39]. Furthermore, not every study specifies if
the maternal or the fetal side of the placenta was analyzed. Therefore, this review focuses
on those studies that specifically analyzed the fetal side of the placenta (also reviewed
in [40,41]). To verify whether the findings from cord blood or placenta studies reflect
molecular derangements of different organs, animal models, which facilitate the molecular
profiling of various tissues, are necessary. Therefore, studies from human offspring and
animal models will be discussed side-by-side in this review.
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4. (Epi)Genetic Factors Affecting Offspring Qutcomes after Exposure to
Maternal Diabetes

An organism’s complete set of DNA is referred to as a genome. Genomics, which is
the oldest and most established of the Omics disciplines, uses various methods, including
DNA sequencing combined with bioinformatics, to study the structure and function of
genomes [42]. Genome-wide association studies (GWAS) are powerful approaches to
associate genetic variation with traits such as particular disease states [43].

In extensive population-based studies, elevated maternal glucose levels were associ-
ated with “large for gestational age” (LGA) fetuses, which is particularly relevant since
high birth weight is among the risk factors of future metabolic disorders, including obe-
sity [44,45] (Figure 3). In the context of GDM, insulin and glucose, together with several
adipokines (leptin, adiponectin, and others), are thought to be involved in imbalanced
fetal growth [46]. Interestingly, Hughes et al. reported that not only maternal glucose
but also the fetal genotype has an effect on birth weight. The authors generated a fetal
genetic score using birth weight-associated single nucleotide polymorphisms (SNPs) and
investigated their associations with the offspring birth weights at varying levels of ma-
ternal fasting plasma glucose (FPG). For FPG levels, data from “The Exeter Family Study
of Childhood Health” (EFSOCH) [47] and “The Hyperglycemia and Adverse Pregnancy
Outcome” (HAPO) [48] study were used. Interestingly, no association between the fetal
genetic score and cord blood insulin or C-peptide was found. The fetal genetic score
influenced birth weight independently of maternal FPG and impacted growth at all levels
of maternal glycemia. The authors concluded that fetal genetics has a major impact on fetal
growth and mainly acts through mechanisms independent of FPG levels [49].

/iMaternal —
iGIuaoseT
0 0%

'—3 Fetal Hyperinsulinemia
= Excess fetal fat

Women with Large for Metabolic
GDM Gestational Age disorders

Figure 3. Maternal diabetes predisposes offspring to future metabolic disorders. In response to elevated maternal glucose
supply, the fetus increases insulin secretion, resulting in hyperinsulinemia, increased body fat, and subsequently higher
birth weight (LGA). The latter is a risk factor for future metabolic syndrome, type 2 diabetes and obesity.
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Apart from mutations or genetic variations, covalent modifications of DNA and
histones are major regulators of gene transcription and are therefore determinants of cell
fate [50]. These modifications, without accompanying changes of the nucleotide sequence,
are collectively referred to as an epigenome and are the focus of the epigenomics field. The
most extensively studied epigenetic modification is DNA methylation, which is known
to be responsive to environmental stimuli [51]. DNA methylation is not limited to but is
generally associated with repression of gene expression (gene silencing) [52,53]. Genome-
wide DNA methylation variations induced by GDM are supposed to have an important
role in metabolic disease programming in offspring [54].

Epigenomic changes in offspring induced by maternal diabetes have been the focus of
multiple research projects (Table 2) and are discussed in various review articles [22,55-59].
Therefore, only major findings from selected studies will be discussed here. Although a va-
riety of these studies were performed with small sample sizes and limited statistical power,
several of the obtained results suggest that elevated maternal glucose during pregnancy
is associated with DNA methylation at the cytosine-guanine (CpG) dinucleotide sites in
genes related to metabolic functions within the offspring’s genome. These epigenetic alter-
ations are further supposed to result in a predisposition for metabolic, neurodevelopmental,
and immune-related disorders.

For example, a significant influence of elevated maternal glucose on the epigenetic
pattern of the offspring's leptin (LEP) gene was demonstrated. While Lesseur et al. found a
2.5 % increased methylation level of LEP in the fetal placenta portion in GDM subjects [60],
other studies revealed lower methylation levels of LEP in the fetal-side placenta [61]
and in the cord blood [62], which was associated with increased cord blood leptin levels.
In a study by C6té et al.,, more differentially methylated genes were found in the fetal-
side placenta from hyperglycemic pregnancies. Interestingly, altered methylation of the
peroxisome proliferator-activated receptor-y co-activator 1 & (PPARGC1A) gene mediated
the association between maternal hyperglycemia and the cord blood leptin levels [63].
A key function of leptin is to regulate energy balance [64,65], and in the “Project Viva”
prospective cohort study, leptin levels in the cord blood were associated with elevated
adiposity rates at the age of 3 years [66]. Therefore, altered DNA methylation at the LEP
locus might contribute to the increased risk of obesity in offspring born to hyperglycemic
mothers.

Epigenetic variation in the context of maternal diabetes was also detected at other
adipokine loci. For instance, Bouchard et al. found that elevated maternal glucose levels
during the second trimester of pregnancy were correlated with lower methylation levels
of the adiponectin (ADIPOQ) gene promoter in the fetal placenta portion. The authors
hypothesized that this could be one of the mechanisms involved in the fetal programming
of metabolic disorders [67]. Houde et al. found reduced methylation of both LEP and
ADIPOQ in the fetal-side placenta with increased maternal blood glucose concentrations.
The authors concluded that maternal hyperglycemia has similar effects on both genes [68].
Taken together, it is conceivable that maternal diabetes influences epigenetic marks of
adipokine genes, which predisposes offspring to future metabolic disorders.

In line with the role of the placenta in fetal-maternal communication and nutrient
transfer, several studies investigated epigenetic changes of genes encoding transporter
proteins. Houde et al. found in GDM pregnancies a reduced methylation level of the
lipoprotein lipase (LPL) gene in the fetal part of the placenta. LPL plays a role in the transfer
of fatty acids to the fetus. Furthermore, epivariation of LPL was associated with cord blood
lipid levels. The authors concluded that the methylation level at a specific LPL CpG locus
might influence placental lipid flux and lipid metabolism in the offspring [69]. Another
study showed that epivariation near the LPL locus in the fetal-side placenta correlates
with anthropometric characteristics (i.e., birth weight, mid-childhood weight, fat mass) of
children at the age of 5 years [70].

In addition to altered methylation of the genes coding for lipid transporters, reduced
methylation of the serotonin transporter (SLC6A4) gene was found in the fetal side of the
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placenta from GDM pregnancies [71]. Serotonin is a multifunctional signaling molecule
associated with mental health conditions, including autism spectrum disorder [72]. Inter-
estingly, a recent meta-analysis suggests a possible association of maternal GDM with an
autism spectrum disorder in offspring [73].

Multiple studies investigated epigenetic changes in cord blood in the context of
maternal diabetes. For instance, Howe et al. [13] analyzed the association between maternal
GDM and cord blood DNA methylation in the pregnancy and childhood epigenetics
(PACE) consortium [74] and identified two hypomethylated regions; one in the gene body
of CYP2E1 and another one in the OR2L13 promoter. These genes are associated with
type 1/2 diabetes and with an autism spectrum disorder, respectively [13]. As a potential
mechanism for maternal diabetes-induced autism spectrum disorder, Wang et al. found
that maternal hyperglycemia suppressed superoxide dismutase 2 (Sod2) expression in the
amygdala of rat offspring, resulting in autism-like behavior. The authors further found
that the Sod2 suppression may result from oxidative stress-mediated histone methylation
and the subsequent dissociation of the transcription factor early growth response 1 (EGR1)
from the Sod2 promoter in neurons [75].

A genome-wide comparative methylome analysis of cord blood samples from off-
spring of GDM and normal pregnancies detected differential methylation patterns of genes
mainly involved in pathways related to type 1 diabetes mellitus, immune system/major
histocompatibility complex (MHC), and neuron development [76].

Furthermore, epigenetic dysregulation of the mesoderm specific transcript (MEST)
gene was suggested as a possible risk factor for obesity in offspring. El Hajj et al. observed
reduced DNA methylation levels of MEST in the cord blood of GDM subjects. In addi-
tion, the authors detected significantly lower DNA methylation of MEST in the blood of
morbidly obese adults [77].

Various studies focused on epigenomic programming effects being present years
after birth in offspring born to diabetic mothers. For instance, Shiau et al. investigated
the association between prenatal GDM exposure and offspring DNA methylation at ages
3-10 years postpartum and found signs of accelerated epigenetic aging associated with
cardiometabolic risk factors [78]. The association between the exposure to maternal diabetes
in utero and the risk of cardiometabolic disorders in children (aged 8-12 years) was
confirmed by another study performing genome-wide methylation analyses of peripheral
blood mononuclear cells. Several genes, known to be associated with cardiometabolic
traits, were found to be differentially methylated [79]. Yang et al. [80] performed DNA
methylation analyses of blood samples from the Exploring Perinatal Outcomes among
Children (EPOCH) cohort [81] (average age of investigated subjects: 10.5 years) and found
in offspring exposed to GDM several differentially methylated regions, including loci
linked to adiposity. In particular, methylation of the SH3PXD2A gene was significantly
associated with multiple adiposity-related outcomes, including body mass index (BMI),
waist circumference, as well as blood leptin levels [80]. Hjort et al. determined DNA
methylation profiles in the peripheral blood of GDM-exposed and unexposed children aged
between 9-16 years and validated potentially GDM-associated, differentially methylated
CpGs in a larger replication cohort. Ingenuity pathway analysis (IPA) analysis showed
enrichment of various functional networks, with lipid metabolism ranking highest. The
authors further discussed the association of the identified differentially methylated genes
with type 2 diabetes, obesity, diabetic nephropathy, or coronary heart disease, as found in
previous reports [82].
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Table 2. Summary of selected human studies linking maternal diabetes with the (epi-)genome profiles of offspring.
Maternal Characteristics Bio-Specimen Major Findings in Offspring Reference
Reduced methylation level of LEP,
GDM Fetal-side placenta contributing to cord blood leptin level [61]
regulation
GDM Fetal-side placenta Increased LEP methylation [60]
Altered methylation of PPARGC1A mediating
GDM Fetal-side placenta the association between maternal [63]
hyperglycemia and cord blood leptin levels
. DNA methylation profile of ADIPOQ was
GbM Fetal-side placenta associated with maternal glucose status (671
GDM Fetal-side placenta Reduced LPL methylation [69]
Epivariation near the LPL locus correlated with
. anthropometric parameters (birth weight,
GDM Fetal-side placenta mid-childhood weight, fat mass) of children at (701
age b years
GDM Fetal-side placenta Reduced SLC6A4 DNA methylation [71]
GDM Cord blood and chorionic villi Decreased MEST methylation [77]
Altered methylation of the OR2L13 promoter
(a gene associated with autism spectrum
GDM Cord blood disorder) and of the gene body of CYP2E1 [13]
(which is upregulated in type 1 and type
2 diabetes)
Differentially methylated genes associated
GDM Cord blood with type 1 diabetes mellitus, immune MHC, [76]
and neuron development
- Decreased LEP methylation; association with
GDM Cord blood increased cord blood leptin levels (62]
Differentially methylated genes associated
GDM Peripheral blood with type 2 diabetes, obesity, diabetic [82]
nephropathy or coronary heart disease
. Differential methylation of several genes
2,
GDM Peripheral bl‘c‘zﬁs’“"“"““d“a‘" known to be associated with [79]
cardiometabolic traits;
. . Accelerated epigenetic aging associated with
GEM Peripheral blood cardiometabolic risk factors (78]
Methylation of SH3PXD2A was associated
GDM Peripheral blood with multiple adiposity-related outcomes, 80]

including BMI, waist circumference, and
circulating leptin levels

5. Transcriptomic Changes in Offspring after Exposure to Maternal Diabetes

Ribonucleic acid (RNA) transcripts can have various biological functions, such as
carrying genetic information from the genome as well as regulating gene expression, both
essential for an organism’s survival [83]. The entirety of all coding and non-coding RNA

transcripts of a cell or tissue at a given timepoint is referred to as a transcriptome [84].
Transcriptomics technologies can be used to study an organism'’s transcriptome qualita-

tively (e.g., checking the presence of a transcript and spotting new splice variants) and
quantitatively (determination of levels of given RNA species) [50]. Unlike DNA, which is

generally static, RNA levels are sensitive to epigenetic regulation as well as to environmen-

tal stimuli (e.g., diseases) [85]. Two widely used techniques in the field of transcriptomics
are DNA microarrays and the more powerful RNA sequencing (RNA-seq). While the
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former quantifies a set of predetermined sequences by hybridization with probes spotted
on a solid support, RNA-seq mostly uses next-generation sequencing (NGS) and is able
to capture whole transcriptomes [86] in a highly effective and sensitive way. Since gene
expression is mediated by messenger RNAs (mRNAs), high-throughput transcriptome
studies mostly focus on this type of transcript.

The impact of maternal diabetes on offspring gene expression was the focus of several
studies (Table 3). To study the effects of chronic hyperglycemia on the fetal vascular cell
transcriptome, Ambra et al. used Affymetrix microarrays to analyze human umbilical
vein endothelial cells (HUVEC) obtained from GDM women at delivery. Several genes
coding for growth factors linked to insulin sensing and to the extracellular matrix were
upregulated in GDM-HUVEC cells [87]. Furthermore, Koskinen et al. used microarrays to
determine gene expression profiles in umbilical cord tissues from neonates born to type
1 diabetic mothers, compared to neonates born to a healthy control group. The authors
found that maternal diabetes had a major effect on the expression of genes involved in
vascular development, vessel wall integrity, and vascular function. Additionally, the
authors hypothesized that the observed alterations in cords might similarly occur in the
developmental regulation of various tissues in the offspring of diabetic mothers [88].

Other studies used animal models to reveal the effects of maternal diabetes on tran-
scriptome profiles in the offspring’s pancreas and liver, two major organs controlling blood
sugar levels. Casasnovas et al. utilized an infusion model for localized fetal hyperglycemia
in rats. Using a vascular catheter, glucose delivery was targeted to fetuses residing in the
left uterine horn, allowing the use of fetuses in the right uterine horn as genetically similar
controls with normal glucose levels. RNA-seq of pancreatic islets from gestational day
22 (GD22) fetuses detected 87 differentially expressed genes (DEGs) in hyperglycemia-
exposed offspring, which were associated with diabetes mellitus as well as inflammation
and cell-death pathways [89]. In a further study, Inoguchi et al. investigated the liver gene
expression profiles of offspring of poorly controlled diabetic female mice generated by
streptozotocin (STZ) administration. Pathway enrichment analysis showed “FOXO signal-
ing pathway” and “PPAR signaling pathway” to be enriched in the set of DEGs of male
offspring, while genes related to “AMPK signaling pathway” and “Fatty acid metabolism
pathway” as well as “PPAR signaling pathway” were overrepresented in the set of DEGs
from the female offspring. A key finding of this study was an increased activation of the
forkhead box protein O1 (Foxel) gene in the liver of the male offspring, associated with
increased FOXO1 protein levels and a decreased phosphorylation at Ser256, inhibiting its
activity. Moreover, in male but not female offspring, the transcript levels of two gluco-
neogenic genes, glucose 6-phosphatase catalytic subunit (Gépc) and phosphoenolpyruvate
carboxykinase 1 (Pck1), were upregulated. The authors suggested that dysregulation of
FOXOT1 target genes in the liver may contribute to increased gluconeogenesis in male
offspring. However, these changes were not pronounced in female offspring [90]. Interest-
ingly, decreased phosphorylation levels of FOXO1 but an increased total of FOXO1 protein
levels with increased abundance of PCK1 and other gluconeogenic enzymes were also
detected in the livers of female transgenic pigs expressing mutant insulin C94Y, a model of
insulin-deficient diabetes mellitus. Using transcriptomics, proteomics, and metabolomics
analysis, the authors were able to support the hypothesis that increased gluconeogenesis in
insulin deficiency is associated with elevated levels of retinol dehydrogenase 16 (RDH16)
and its metabolic product all-trans retinoic acid that stimulates the expression of PCK1 [91].

Several studies indicated that, apart from the pancreas and liver, other human organs,
such as the brain, are affected by maternal diabetes. For example, an increased risk of
future weight gain or obesity in children exposed to maternal diabetes was associated with
hypothalamic transcriptome alterations [92]. Moreover, the brain is particularly relevant
since maternal diabetes is supposed to predispose offspring to neurodevelopmental and
cognitive disorders. The association between maternal diabetes and cognitive impairments
in infants is underpinned by the systematic review from Robles et al. [93]. Addressing the
effects of GDM on the brain transcriptome, Aviel-Shekler et al. investigated a mouse model
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of diabetes based on STZ administration to pregnant mice. RNA-seq analysis of brains
from male nffspring detected a dysregulation of only nine genes in the frontal cortex, which
were related to forebrain development. While no significant change of gene expression was
observed in striatum, weighted correlation network analysis (WGCNA) revealed dysregu-
lation of neurodevelopment- and immune-related genes [94]. Furthermore, Money et al.
investigated in mice the impact of diet-induced maternal diabetes alone or in combination
with maternal immune activation (MIA) on the developing brain of offspring. Interestingly,
each condition alone resulted in altered expression profiles of genes related to inflammatory
and neurodevelopmental processes, which was even worsened in the combination of GDM
and MIA. Interestingly, GDM increased the expression of vascular endothelial growth
factor A (Vegfa) mRNA, which is known to be associated with hypoxic conditions. The
authors suggested that the altered hypoxia-related signature might be a consequence of
an increased oxygen requirement due to an elevated metabolic demand associated with
maternal hyperglycemia [95]. The main regulator of responses to a hypoxic environment is
hypoxia-inducible factor 1 (HIF1) [96]. In line with this, Cerychova et al. investigated in a
mouse model combinatorial effects of maternal diabetes and haploinsufficiency of Hifla
on the heart’s left ventricles (LV) of offspring. The authors found that the combination of
maternal diabetes and Hifla haploinsufficiency results in significant metabolic, structural,
and functional changes in the LV myocardium. Additionally, RNA-seq analysis revealed
alterations of transcripts associated with metabolic processes, including two genes that
are known to be HIF1A targets: Cd36 and lactate dehydrogenase A (Ldha). The authors
concluded that HIF1A deficiency and maternal diabetes exposure increase the predisposi-
tion to cardiac dysfunction in offspring [97]. These findings obtained in a mouse model
may be of translational importance because a predisposition for cardiovascular disorders
(CVD) was demonstrated in a recent population-based human cohort study with 40 years
of follow-up. The authors demonstrated that children born to a mother with diabetes have
increased rates of early-onset CVD [98]. In also addressing the impact of maternal diabetes
on the heart transcriptome in offspring, Preston et al. used microarray gene expression
profiling of heart samples from newborn offspring of diabetic rats, rats exposed to a high-fat
diet, or the combination of both. Diabetes in female rats was induced via the adminis-
tration of STZ during pregnancy. While the combination of diabetes and a high-fat diet
resulted in more pronounced changes, diabetes alone induced only a few changes. Among
the differentially abundant transcripts were « hemoglobin stabilizing protein (Ahsp) and
Kell metallo-endopeptidase (Kel), both encoding proteins highly expressed in red blood
cells. The authors assumed that the higher levels of Ahsp and Kel mRNA were due to
a higher number of residual red cells in the myocardial vasculature, and they put this
into the context of neonatal polycythemia, which is a common complication of maternal
diabetes [99].
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Table 3. Summary of selected studies linking maternal diabetes with the transcriptome profiles of offspring.
Species Maternal Bio-Specimen Major Findings in Offsprin Reference
P Characteristics P J 8 Pring
Increased mRNA levels of genes coding
Human GDM HUVEC for growth factors linked to insulin [87]
sensing and to the extracellular matrix
Altered expression of genes involved in
Human Type 1 diabetes Umbilical cord vascular development, vessel wall [88]
integrity, and vascular function
Rat STZ-induced diabetes Heart Altered expression of Alsp and Kel [99]
possible relation to polycythemia
Altered expression of Cd36 and Ldha
Mouse STZ-induced diabetes Heart induced by maternal diabetes plus [97]
haploinsufficiency of Hifla
Dysregulation of genes in frontal cortex
Mouse STZ-induced diabetes Brain related to forebrain development; [94]
dysregulation of neurodevelopment and
immune-related genes in the striatum
Altered expression of genes related to
Mouse Diet-induced diabetes Brain inflammatory and neurodevelopmental [95]
processes
Infusion model of Dysregulation of genes associated to
Rat localized Islets diabetes mellitus, inflammation and [89]
hyperglycemia cell-death pathways
Differential expression of genes related
to “FOXO signaling pathway” and
“PPAR signaling pathway” in male
Mouse STZ-induced diabetes Liver offspring, and of genes related to [90]

“AMPK signaling pathway”, “fatty acid
metabolism pathway”, and “PPAR
signaling pathway” in female offspring

6. Proteomic Changes in Offspring after Exposure to Maternal Diabetes

The proteome is the complete set of proteins expressed by a cell, tissue, or organism
at a given state. Proteins are the primary functional actors of the cell, performing diverse
functions, such as catalyzing chemical reactions, facilitating cellular transport, mediating
signaling and many other tasks necessary for living organisms. The systematic large-scale
identification and quantification of proteins and the analysis of their post-translational
modification are called proteomics. Even though NGS-based transcriptomics is a very pow-
erful technique with outstanding analytical depth, comparisons between transcriptomic
and proteomic data indicate that only about 40% of variations within proteomes can be
explained by altered transcript levels [100]. This clearly demonstrates that transcriptome
data are not sufficient to predict protein levels [101]. The need to overcome this limitation
led to the rapid development of sophisticated proteomics techniques, of which mass spec-
trometry has emerged as the most effective and sensitive technology to quantify proteins
in complex biological mixtures. Discovery proteomics (also known as shotgun proteomics)
is routinely used to effectively characterize the proteome of interest, whereas targeted
proteomics focuses on a predefined set of proteins, allowing a more accurate quantification
with a high dynamic range.

Although data at the proteome level are essential to understanding disease-related
biochemical networks, so far, mainly four high-throughput studies have investigated the
impact of maternal diabetes on offspring proteomes (Table 4). Kopylov et al. compared
cord blood samples from patients with different types of diabetes mellitus (GDM, type
1 diabetes, type 2 diabetes) who delivered either healthy newborns or newborns with
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fetopathy complications. The most altered proteins in the cord blood across the groups
were apolipoprotein M (APOM), ceruloplasmin (CP), plasminogen (PLG), angiotensinogen
(AGT), kininogen-1 (KNG1), apolipoprotein A-I (APOA1), a-1-acid glycoprotein 2 (ORM2),
serotransferrin (TF), histidine-rich glycoprotein (HRG), apolipoprotein D (APOD), and
lumican (LUM). Bioinformatics analysis revealed processes such as inflammation, extra-
cellular matrix remodeling, and lipid metabolism, etc., possibly altered due to maternal
diabetes [102]. Altered lipid metabolism and possible relation to GDM-induced macroso-
mia was also shown in the study by Miao et al., who analyzed the cord blood of GDM
patients whose offspring showed obesity at ages 67 years. In total, 318 proteins were
identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), of
which 36 were differentially abundant. The three randomly chosen proteins, rho guanine
nucleotide exchange factor 11 (ARHGEF11), phospholipid transfer protein (PLTP), and
lecithin-cholesterol acyltransferase (LCAT), were further validated by western blot (WB)
and were consistent with LC-MS/MS results. The authors suggested a close relation of
these proteins to abnormalities in glucose and lipid metabolism, while ARHGEF11 is
known to influence embryo development. Furthermore, IPPA revealed a connection of the
differentially abundant proteins to adenocarcinoma. The authors concluded that GDM
offspring might have an increased risk of adenocarcinoma, which has to be confirmed by
follow-up studies [103]. Similar to PLTP and LCAT, another protein involved in lipopro-
tein metabolism, the cholesteryl ester transfer protein (CEPT), was found differentially
abundant in a study by Liao et al. [104] comparing umbilical venous plasma samples
from offspring of GDM patients and control subjects. Out of 780 identified proteins, 98
proteins were found to be differentially abundant in umbilical venous plasma of GDM
patients compared to controls. Six of these proteins were also consistently regulated in
maternal peripheral plasma samples, including CEPT and apolipoprotein M (APOM)
that are known to be GDM-related. Notably, in line with the above-mentioned study by
Kopylov et al. [102], APOM was one of the most elevated proteins in the cord blood as
a response to maternal diabetes. Furthermore, CEPT concentration in umbilical venous
plasma was found to be correlated with the low-density lipoprotein (LDL) levels. Al-
terations of CEPT abundance were confirmed using an enzyme-linked immunosorbent
assay (ELISA) and remained significant after adjustment for age and neonatal gender.
Additionally, bioinformatics-based IPA analysis predicted the follicle-stimulating hormone
(FSH) as an upstream regulator of the detected differentially abundant proteins [104]. FSH
is essential for normal ovarian follicular maturation [105]. In line with this, in the study by
Clark et al., healthy follicles were decreased in ovaries from mice nffspring after in utero
GDM exposure and dietary stress during adulthood. In this study, aiming to investigate
the role of GDM on the developmental origins of ovarian disorder, GDM was induced by
feeding female mice with a high-fat, high-sucrose diet (HFHS) one week prior to mating
and for the duration of gestation. Offspring of HFHS fed mice and control diet mice were
further divided into two groups, with one given control and another group given an HFHS
diet. Maternal GDM in the absence of dietary stress in offspring resulted in the alteration of
89 proteins in the offspring’s ovaries. Canopy FGF signaling regulator 2 (CNPY2), deleted
in azoospermia-associated protein 1 (DAZAP1), septin 7 (SEPT7), and serine/arginine-rich
splicing factor 2 (SRSF2) were shown to be altered by GDM, adult dietary stress, or both.
Opverall, this study indicated the possible impact of GDM exposure in utero on the fertility
and oocyte quality of offspring in later life.
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Table 4. Summary of selected studies linking maternal diabetes with proteome profiles of offspring.
Species Maternal Bio-Specimen Major Findings in Offsprin Reference
P Characteristics P ! 8 pring

Altered abundance of APOM, CP, PLG,

AGT, KNG1, APOA1, ORM?2, TF, HRG,
Human GDM, type ] diabetes, Cord blood ) APOD, LPM; processes such as [102]

type 2 diabetes inflammation, extracellular matrix
remodeling, lipid metabolism, etc.
mainly affected
Umbilical venous Altered abundance of CEPT and APOM;
Human GDM lasma FSH as upstream regulator of the [104]
P differentially abundant proteins
Altered abundance of PLTP and LCAT
Umbilical venous (related to abnormal glucose and lipid
Human GPM plasma metabolism) and ARHGEF11 (known to [103]
influence embryo development)
Altered abundance of CNPY2, DAZAP1,
-y . o

Mouse Diet-induced diabetes Qvaries SEPT7, and SRSEZ; potential impact on [106]

fertility and oocyte quality of offspring
in later life

7. Metabolomic Changes in Offspring after Exposure to Maternal Diabetes

Metabolomics addresses the quantitative profile of low-molecular-weight metabolites,
such as amino acids, carbohydrates, lipids, or other compounds involved in a plethora
of biological processes [50]. Since genetic and epigenetic regulation influences cellular
homeostasis and leads to an altered metabolic output, the metabolome largely reflects
environment-gene interactions and is a very sensitive measure of an organism’s physio-
logical status [107]. To explore the metabolome, two distinct approaches are frequently
utilized: the so-called untargeted approach, assessing, the global profiles of all measurable
analytes, and the targeted approach, focusing on a predefined set of compounds [108].
Even though the untargeted strategy offers an unbiased survey of molecules and can
sometimes reveal novel, unexpected findings, many of the detected metabolites remain
unannotated. However, a targeted approach, which is often used in hypothesis-driven
studies and uses internal standards, allows accurate quantification of a variety of metabo-
lites [109]. Mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) are
the two most commonly used analytical platforms in the field of metabolomics.

Given the constant transplacental supply of maternal metabolites towards the fetus
and the fetuses’ own metabolism, metabolomics is a valuable tool to explore the effects
of intrauterine exposure to elevated glucose at the molecular level. So far, GDM-related
metabolomic studies are limited [110] and mainly refer to GDM-associated complications
and their influence on the newborn cord blood metabolome (Table 5). Furthermore, it
remains unclear if the metabolomic alterations observed in offspring born to diabetic
women are due to an imbalanced maternal supply or alterations of the feto/placental
metabolism or a combination of both.

To study the impact of GDM on cord plasma, Shokry et al. used LC-MS/MS to
metabolically characterize samples from the PREOBE cohort [111]. Compared to non-GDM,
elevated levels of the sum of hexoses were detected in both the maternal and cord blood,
indicative of maternal hyperglycemia and increased glucose transport towards the fetus
in GDM subjects. Importantly, uniquely in the cord blood but not in the maternal blood,
free carnitine was significantly decreased. Furthermore, the same tendency was observed
for acyl carnitines (AC), long-chain non-esterified fatty acids (NEFA), phospholipids (PL),
specific Krebs cycle metabolites, and p-oxidation markers [112]. Moreover, also in the
study by Dube et al., elevated cord blood glucose levels were found in newborns of GDM
women, again reflecting the consequences of maternal hyperglycemia [113]. Interestingly,
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using mass spectrometry-based untargeted metabolomics, alterations of phospholipid
levels during childhood, associated with GDM and persisting during adolescence, were
also found in the EPOCH cohort [81]. This study further confirmed an association of the
phospholipid metabolic pattern with increased adiposity, impaired insulin sensitivity, and
altered adipocytokines across the adolescent transition among girls exposed to in utero
GDM [114]. Likewise, Ott et al. aimed to investigate whether women with GDM and their
offspring show similar metabolomic patterns eight years after birth. Intergenerationally
correlated metabolites included carnitine (C0), glycerophospholipid (PC ae C34:3), two
biogenic amines (taurine, creatinine), an amino acid (proline), and sphingolipid (SM-(OH)
C14:1). The authors suggested a possible long-term programming effect of maternal
GDM on metabolic health in children [115]. Conversely, even though Shokry et al. also
found altered metabolites in the cord blood, associated with anthropometric changes in
newborn children of mothers with GDM and obesity, these alterations were not detected
longitudinally. As a conclusion, the study postulated a lack of predictive power of the cord
blood metabolome for the later development of the children [116]. Lu et al. compared
cord blood samples of newborns from GDM and from non-GDM women, using flow
injection analysis—electrospray ionization—tandem mass spectrometry (FIA-ESI-MS/MS).
The authors demonstrated that phosphatidylcholine acyl-alkyl C 32:1 and proline were
associated with maternal GDM. Further statistical analysis showed that this association
was independent of known GDM risk factors. The authors hypothesized that such an
independent association might support the idea that the fetal metabolome may contribute
to the development of maternal GDM [117]. Interestingly, Cetin et al. demonstrated that
although proline (Pro), methionine (Met), isoleucine (Ile), alanine (Ala), leucine (Leu),
and phenylalanine (Phe) were elevated in the umbilical vein blood from offspring born to
women with GDM, these amino acids were unchanged in the maternal circulation. Even
though ornithine concentration was increased in both the maternal and umbilical vein
blood in GDM pregnancies, the levels in the umbilical vein and maternal blood were not
significantly correlated. Strikingly, elevated fetal glutamate (Glu) and decreased glutamine
(GIn) were also observed while they were unchanged in the maternal circulation. In
this context, an increased hepatic GIn-to-Glu conversion, as a consequence of endocrine
changes in the fetus, was suggested [118]. Pitchika et al. used UHPLC-MS and non-
targeted metabolomics to examine fasting serum samples from the TEENDIAB [119] and
BABYDIAB/BABYDIET [120] cohorts. The study included fasting serum samples from
offspring born to mothers with type 1 diabetes and a control group of newborns born to
non-diabetic mothers but with fathers or siblings with type 1 diabetes. With this study
design, the authors aimed to elucidate to what extent health complications in offspring are
due to parental genetic transmission or due to intrauterine exposure to hyperglycemia. The
authors found that offspring of mothers with type 1 diabetes are more prone to worsening
of the metabolic profile than offspring of fathers with type 1 diabetes. This provides
evidence that in utero exposure to hyperglycemia has more influence on offspring than
parental genetic transmission. Furthermore, increased levels of fasting glucose, insulin,
and C-peptide were found in offspring of mothers with type 1 diabetes, but no significant
associations between maternal type 1 diabetes and metabolite concentrations in offspring
were observed. Overall, the authors proposed that maternal type 1 diabetes is associated
with the nffspring’s metabolic health, but this is unlikely to be caused by alterations in the
offspring’s metabolome [121]. Lowe et al. used LC-MS/MS-based targeted metabolomics
to elucidate the effect of maternal hyperglycemia on newborn cord blood from the HAPO
cohort. They found that the maternal response to a glucose load, as reflected by maternal
1h glucose levels, was correlated with concentrations of 3-hydroxybutyrate and its carnitine
ester, glycerol, and medium-chain carnitine ester in the cord blood [122]. Walejko et al.
used "H-NMR to study the effect of PGDM and GDM on serum metabolic changes in the
cord blood at birth. The authors found that metabolites of the carbohydrate and choline
metabolism were altered in the umbilical cord blood of newborns with both PGDM and
GDM [123].
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Peng et al. used liquid chromatography coupled to mass spectrometry to investigate
the influences of GDM on the newborn meconium and urine metabolome. While in the
urine, no significant differences between GDM and controls became apparent. Differences
in the meconium metabolome pointed to significantly disrupted metabolic pathways, in-
cluding lipid, amino acid, and purine metabolism. Moreover, the relationships between
potential biomarkers and GDM risk were evaluated. Nine of them (argininosuccinic acid,
methyladenosine, methylguanosine, aurodeoxycholic acid, glycocholic acid, hydroxyin-
doleacetylglycine, oxotrihydroxyleukotriene B4, tetrahydrodipicolinate, and DHAP (8:0))
showed the potential as markers for GDM-induced disorders [124]. In the study by Graca
et al., using untargeted ultra-high-performance liquid chromatography-mass spectrom-
etry (UPLC-MS)-based metabolomics, no significant alterations in the metabolome of
amniotic fluid (AF) of GDM subjects, collected between gestational week 15 and 25, were
detected [125]. It should be noted that AF from 10 weeks to 20 weeks is similar to fetal
plasma, while the contribution of fetal urine is significant during the second half of the
pregnancy [126].

Zhao et al. used 'H-NMR-based untargeted metabolomics to investigate the crosstalk
between maternal gut microbiota and neonatal blood metabolome from pregnancies with
GDM. The study showed that the maternal fecal metabolome and the matched neonatal
blood metabolome could be separated along the vector of maternal hyperglycemia. A
multi-Omics associated approach detected eight metabolites contributing to the close
connection between the maternal fecal and the neonatal blood metabolome. Notably, in the
feces, metabolites involved in biotin metabolism (lysine, putrescine, guanidinoacetate, and
hexadecanedioate) were negatively correlated with maternal hyperglycemia [127].

Only a limited number of studies used animal models to investigate samples not ac-
cessible in a non-invasive way. Isganaitis et al. developed the “haploinsufficient for insulin
receptor substrate-1 (IRS1-het)” mouse model. During pregnancy, despite normal body
weights and plasma glucose levels, the mice are insulin-resistant and hyperinsulinemic,
reflecting isolated maternal IR. Using this model, gas chromatography coupled to mass
spectrometry was used to measure the liver lipids levels. The results revealed alterations
of several lipid classes, notably in the fraction of the 16:1n7 family. However, at six months
of age, the mice showed only a trend towards increased triglyceride species, while phos-
pholipids were significantly reduced. The authors concluded that maternal IR could, even
in the absence of hyperglycemia or obesity, promote metabolic perturbation in male off-
spring [128]. The liver metabolome was also targeted in a study by Pereira et al., where the
offspring from rats with maternal obesity and GDM was compared to the offspring of lean
dams. The offspring were further divided into two groups, with one given a high-fat and
-sucrose diet (HFS) and the other a low-fat diet (LF). The analysis of the hepatic metabolome
revealed increased diacylglycerol and reduced phosphatidylethanolamine levels in the
offspring of GDM dams compared to offspring of lean dams. The authors concluded that
GDM might be a driver of hepatic steatosis and insulin resistance in offspring [129]. Renner
et al. developed a transgenic pig model expressing mutant insulin C93S in pancreatic 3
cells. The model mimics isolated maternal hyperglycemia without confounding obesity
during pregnancy. Using LC/MS-based targeted metabolomics to analyze the offspring’s
plasma metabolome, increased concentrations of lysine and a-aminoadipic acid, as well as
phospholipids, were revealed. Moreover, the ratio of total and short-chain acylcarnitines to
carnitine was elevated, indicating an increased import of fatty acids into mitochondria and
an increased (3-oxidation rate. Overall, it was shown that in this large animal model, even
mild maternal hyperglycemia is associated with alterations in the plasma metabolome of
the neonatal offspring [130].
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Table 5. Summary of selected studies linking maternal diabetes with metabolome profiles of offspring.

Species

Maternal
Characteristics

Bio-Specimen

Major Findings in Offspring

Reference

Human

GDM

Blood

Concentrations of lysine, putrescine,
guanidinoacetate, and
hexadecanedioate were negatively
correlated with maternal hyperglycemia

[127]

Human

Cord Blood

Phosphatidylcholine acyl-alkyl C 32:1
and proline levels were associated with
maternal GDM

[117]

Human

Blood

Association of the phospholipid
metabolic pattern with higher adiposity,
impaired insulin sensitivity and altered

adipocytokines across the adolescent
transition, among girls exposed to in
utero GDM

[114]

Human

Blood

Intergenerational correlation of
meta-bolites (carnitine, PC ae C34:3,
taurine, creatinine, proline, SM-(OH)
C14:1) between women with GDM and
offspring 8 years after birth

[115]

Human

Cord blood

Elevated concentrations of Pro, Met, lle,
Leu, Ala and Phe; potentially, increased
Gln-to-Glu conversion

[118]

Human

GDM and PGDM

Cord blood

Altered concentrations of metabolites of
carbohydrate and choline metabolism

[123]

Human

GDM and
overweight/obesity

Cord blood

Alteration of metabolites associated
with anthropometric changes in
newborn children, which were not
detected longitudinally

[116]

Human

GDM and
overweight/obesity

Cord blood

Elevated total hexoses; decreased levels
of free carnitine, acyl carnitines,
long-chain non-esterified fatty acids,
phospholipids, specific Krebs cycle
metabolites, and B-oxidation markers in
cord blood but not in maternal blood

[112]

Human

Hyperglycemia

Cord blood

Concentrations of 3-hydroxybutyrate
and its carnitine ester, glycerol and
medium chain carnitine esters
correlated with maternal 1h glucose
levels

[122]

Human

Urine and meconium

No difference in urine; evidence for
disrupted metabolic pathways,
including lipid, amino acid, and purine
metabolism from meconium analysis;
argininosuccinic acid, methyladenosine,
methylguanosine, aurodeoxycholic acid,
glycocholic acid,
hydroxyindoleacetylglycine,
oxotrihydroxyleukotriene B4,
tetrahydrodipicolinate, and DHAP (8:0)
suggested as markers for GDM-induced
disorders

[124]

Human

Type 1 diabetes

Serum

No significant associations between
maternal type 1 diabetes and metabolite
concentrations in offspring

[121]
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Table 5. Cont.

Species

Maternal
Characteristics

Bio-Specimen Major Findings in Offspring Reference

Pig

Mutant insulin C935
causing hyperglycemia

Increased concentrations of lysine,
a-aminoadipic acid and phospholipids;
Plasma biochemical evidence for an increased [130]
mitochondrial import of fatty acids for
B-oxidation

Increased levels of diacylglycerol and

GDM Liver reduced levels of [129]

phosphatidylethanolamine

Mouse

Altered concentrations of the 16:1n7
lipid family; at 6 months of age a trend
IR Liver towards increased triglyceride species, [128]
while phospholipids were significantly
reduced

8. Microbiomics and Nutriomics Studies Addressing GDM Effects on Offspring

Microbiomics is a fast-growing field, characterizing and quantifying the community
of microorganisms found in a certain habitat [131]. The microbial community, also known
as microbiota, consists of various microorganisms, such as bacteria, fungi, etc. The rapid
development of high-throughput analytical technologies facilitated a detailed investigation
of the microbiota with regards to their genetic and functional divergence and caused
paradigm shifts in our understanding of their roles in health and disease [132]. Especially
the sequence analysis of small subunit ribosomal RNA (165 rRNA) genes as well as
shotgun metagenomics sequencing, in which total DNA is sequenced, are the leading
methods utilized for microbiome profiling. Both approaches allow an accurate quantitative
determination of microorganisms and their taxa, which can be correlated with disease or
other phenotypes of interest [50].

At first, the fetal gut was thought to be sterile at birth. However, recent studies indicate
that colonization of the gastrointestinal tract may already occur during fetal development
and could also be influenced by maternal environmental exposures and by the mode of
birth (caesarean section or vaginal) [133]. So far, there are only a few studies investigating
the influence of maternal diabetes on offspring microbiota. Furthermore, studies are often
confounded by varying perinatal conditions known to affect the microbiota colonization
of offspring. This prevents a clear distinction of the maternal diabetes effects from those
of concomitant diseases. Despite this, it seems that specific taxa associated with maternal
diabetes can be transmitted to the offspring, which differentiates their microbiota from
the offspring of non-diabetic mothers. A comprehensive review of studies investigating
the influence of maternal GDM on the neonatal microbiome was recently published [134].
Therefore, here we summarize only some major findings from the studies shown in Table 6.
For instance, Ponzo et al. compared the microbiota of offspring born to GDM mothers ver-
sus normoglycemic mothers by 165 amplicon-based sequencing of fecal samples collected
during the first week of life. The microbiota of infants from GDM women showed a lower
complexity and higher inter-individual variability. Furthermore, the relative abundance of
pro-inflammatory taxa, in particular Escherichia and Parabacteroides, was increased [135].
Similarly, Soderborg et al. investigated the gut microbiota from 2-week old neonates born
to normal-weight or overweight/obese mothers with or without GDM and found evidence
that GDM alone or together with maternal overweight/obesity influences the infant mi-
crobiota in a way that sets the stage for the future risk of inflammatory and metabolic
diseases [136]. Furthermore, Hu et al. explored the diversity of the meconium microbiome
to determine if it is affected by maternal diabetes (pre-pregnancy type 2 diabetes and GDM).
The authors concluded that the meconium microbiome of infants born to mothers with
diabetes is enriched with similar bacterial taxa as those reported in the fecal microbiome
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of adult diabetic patients [137]. This finding might indicate a non-genetic risk of trans-
mission of diabetes (i.e., through the microbiome). Therefore, it is interesting if similar
findings are observed in longitudinal studies exploring the effect of maternal diabetes on
the offspring microbiome postpartum. Using 165 rRNA gene amplicon sequencing, Crusell
et al. compared feces from children of mothers with and without GDM. The samples were
collected during the first week of life and later at an average age of 9 months. The results
indicate that differences in glycemic control during late pregnancy are linked to relatively
modest variations in the gut microbiota composition of offspring during the first week
of life and nine months after birth. In addition, similar to the above-mentioned study by
Ponzo et al. and the study by Su et al. [138], Crusell et al. found a lower richness of the
gut microbiota in GDM neonates compared with neonates born to mothers without GDM.
The authors also referred to the previous reports [139], where high-microbial richness was
associated with metabolically more advantageous phenotypes (i.e., lower BMI, and higher
insulin sensitivity, etc.). Furthermore, the authors found species in the gut microbiota that
was similar to the microbiota observed in childhood obesity and in adults with type 2
diabetes [140]. In a longitudinal study by Hasan et al., stool samples from offspring of GDM
and non-GDM mothers collected five years postpartum were analyzed for microbiome
profiling. Interestingly, the Anaerotruncus genus was more abundant in the offspring of
GDM mothers [141]. Of note, Anaerotruncus was also found to be enriched in the gut
microbiota of GDM women even after the adjustment for pre-pregnancy BMI [142]. This
may be one of the examples of an intergenerational concordance of microbial variation in
mother-offspring pairs. Nevertheless, whether an increase in Anaerotruncus in the offspring
microbiome is a risk factor for future metabolic disorders has to be elucidated in further
studies.

Table 6. Summary of selected human studies linking maternal diabetes with microbiome profiles of offspring.

Maternal
Characteristics

Bio-Specimen Major Findings in Offspring Reference

GDM alone or together with maternal
overweight/obesity influences infant
microbiota in a way that set the stage for future
risks of inflammatory and metabolic disease

Feces [136]

Glycemic regulation in late pregnancy is linked
with relatively modest variation in the gut
microbiota composition of the offspring at age
1 week and 9 months; lower richness of the gut
microbiota in GDM neonates compared with
neonates born to mothers without GDM

Feces [140]

GDM

Increased relative abundance of
Feces pro-inflammatory taxa, in particular Escherichia [135]
and Parabacteroides

GDM

Feces Increased abundance of Anaerotruncus genus [141]

Type 2 PGDM GDM

Enrichment of the meconium microbiome for
Meconium the same bacterial taxa as reported in the fecal [137]
microbiome of adult diabetic patients

Nutriomics is formed by the combination of nutritional science and different Omics
techniques, resulting in disciplines such as nutrigenomics, and nutriproteomics, etc. Taking
into account the complexity of the human body and its interplay with food, it is conceivable
that holistic molecular analyses of food—body interactions (i.e., nutri-omics) are essential
to understanding the effects of nutrients [143]. Several studies have pointed to diet-gene
interactions affecting glucose metabolism and being linked to diabetes (reviewed in [144]).
Studying dietary interventions and personalized nutrition could reveal certain diet types,
which could help prevent adverse fetal outcomes caused by maternal diabetes.
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Studies investigating combinatorial effects of maternal diabetes, the type of offspring
diet, and the influence of both on offspring health are limited (Table 7). Results from the
longitudinal, large-scale cohort study by Chu Tint et al. suggested that a high placental
inositol content may reduce the pro-adipogenic effects of maternal glycemia, resulting in
lower birth weight and reduced adiposity of offspring. The authors used the longitudinal
data from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort [145]).
Maternal FPG and 2h plasma glucose (2 hPG) were obtained in pregnant women by a
75 g oral glucose tolerance test at around 26 weeks of gestation. Placental inositol was
quantified by liquid chromatography-mass spectrometry. Interestingly, maternal glycemia
and fetal birth weight (or abdominal adiposity) correlated positively only in the case of
low, but not high, placental inositol content. The authors emphasized the anti-adipogenic
effect of inositol during maternal hyperglycemia and pointed to the potential benefits of
prenatal inositol supplementation [39]. Interestingly, a study by Pereira et al. found that
metabolic disturbances observed in the liver from offspring of gestational diabetic dams
were even worsened after the challenges of a high-fat diet. A low-fat diet did not show
protective effects against these metabolic phenotypes (obesity, hepatic steatosis, and insulin
resistance) [129] (see the chapter: Fetal metabolomic changes after exposure to maternal
diabetes).

Table 7. Summary of selected studies investigating combinatorial effect of maternal diabetes and offspring nutrition on

offspring health.
Species Maternal Characteristics Major Findings in Offspring Reference
Positive correlation of maternal glycemia and fetal birth
Human Hyperglycemia weight/abdominal adiposity in the case of low, but not [39]
high, placental inositol content
Metabolic disturbances in liver of offspring from
Rat GDM gestational diabetic dams worsened upon a high-fat diet; [129]

no protective effect of a low-fat diet against metabolic
changes (obesity, hepatic steatosis, insulin resistance)

9. Conclusions

Diabetes is a serious health concern for pregnant women and their offspring. In this
article, we have reviewed the contributions of Omics technologies in studying the effects of
maternal diabetes on offspring health. The transformation of complex and heterogeneous
Omics data into biological meaning is a daunting task. In this regard, careful interpretation
of results, especially from studies with limited numbers of samples, is necessary. Overall,
there is increasing evidence pointing to molecular disturbances in offspring exposed in
utero to maternal diabetes. Apparently, many characteristics that are based on observa-
tional cohort studies are reflected on molecular levels in Omics studies, demonstrating
that maternal diabetes influences the cellular and organ systems of the offspring. This
includes the predisposition of offspring to future obesity triggered by elevated maternal
glucose levels. Other long-term offspring health complications include cardiovascular and
neurodevelopmental disorders, as supported by Omics studies. It should be noted that the
majority of the Omics studies reviewed here were performed at birth, and the knowledge
about molecular derangements during earlier stages of embryo development is lacking.
More Omics experiments using animal models would be valuable to close this knowledge
gap and to reveal the most susceptible windows during development when alterations
due to maternal diabetes manifest. Additional research is also warranted to determine if
Omics data will result in new biomarkers for the diagnosis, treatment, and prevention of
offspring health problems related to maternal diabetes.
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2.1.2. Previous studies on effects of maternal hyperglycemia on offspring using

transgenic animal models

Animal models expressing mutant insulin allow the modelling of effects of isolated
maternal hyperglycemia without confounding obesity on offspring and provide insights
into pre-conceptional diabetes mellitus (PCDM) [47]. Several studies used offspring
born to the Akita mice model, which bears an autosomal dominant mutation causing
chronic hypoinsulinemia and hyperglycemia. Chang et al. showed marked size
reduction and delayed maturation of preovulatory oocytes in Akita mice when
compared with control animals. Furthermore, histological evaluation revealed smaller
and less developed ovarian follicles and an increased number of apoptotic foci. The
authors proposed that smaller follicle and oocyte sizes may reflect abnormal cell
growth and survival [48]. At postnatal day 2 wild-type offspring born to Akita mice had
higher transcript levels of several nephron progenitor markers. At postnatal day 34 the
total nephron numbers were decreased by around 20% (compared to controls).
Additionally, the number of early-developing nephrons was reduced, together with
decreased expression of the intracellular domain of Notch1 and the canonical Wnt
target lymphoid enhancer binding factor 1. The authors concluded that in utero
exposure to maternal diabetes impairs the differentiation of nephron progenitors into
nephrons, potentially by repression of the Notch and Wnt/3-catenin signalling
pathways [49]. Grasemann et al. investigated the effect of parental diabetes in
offspring born to Akita mice. Offspring of parental diabetes had impaired glucose
tolerance. Furthermore, lower body weight alongside lower whole-body bone mineral
density and trabecular bone mass was observed. Interestingly, the magnitude of
phenotypic changes in offspring caused by maternal and paternal diabetes differed.
Furthermore, metabolic alterations were in general more severe in male offspring of
maternal diabetes. Female wildtype offspring of diabetic fathers were the least affected
[50]. Metabolic alterations, specifically changes in myocardial triglyceride
homeostasis, were observed in wild-type offspring of Akita mice. The transcript levels
of genes involved in lipid metabolism genes (peroxisomal proliferator-activated
receptor q, lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1)
were reduced. Furthermore, their expression levels were highly correlated, suggestive
of orchestrated down-regulation. The authors showed that maternal diabetes in
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Ins2Akta mice offspring does not cause cardiac hypertrophy or triglycerides
accumulation in the fetal heart, possibly because of a coordinated down-regulation of

genes to protect against increased myocardial fatty acid uptake [51].

Although studies from mice pups provide valuable insights into maternally induced
alterations, mice offspring are born at a less mature stage than human offspring.
Therefore, the influence of maternal diabetes in the second half of pregnancy is difficult
to model in rodents. Conversely, similar to human babies, piglets are born in a more
mature state compared to rodent pups and are therefore also exposed to maternal
glycemia in a later developmental phase [52]. Additionally, pig and human embryos
share similarities in the timing of embryonic genome activation and in metabolic
characteristics [47]. Furthermore, changes in energy metabolism during both normal
and pathological birth occur similarly in pigs and humans (reviewed in [11]). Renner et
al. developed a transgenic pig model expressing mutant insulin C93S in pancreatic 3
cells. This model allows to study an isolated maternal hyperglycemia without
confounding obesity during pregnancy. The authors found increased concentrations
of lysine and a-aminoadipic acid, as well as phospholipids, in piglets born to diabetic
mothers. Furthermore, the ratio of total and short-chain acylcarnitines to carnitine was
elevated, indicating an increased import of fatty acids into mitochondria and an
increased B-oxidation. Overall, it was shown that maternal hyperglycemia, even in the
absence of maternal and neonatal obesity was associated with alterations in the
neonatal offspring’s plasma metabolome [41]. Molecular profiling of plasma provides
a global picture of whole-body metabolism. However, the investigation of different
organs is crucial to reveal the tissue-specific manifestations of developmental
programming of maternal diabetes. In the context of metabolic alterations, the liver is
highly relevant as it is a key metabolic hub of the organism. Comparative studies
revealed high anatomic and functional similarities between pig and human liver [53,

54], making the pig a suitable model to recapitulate various human liver conditions.
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ABSTRAGT

Dbjective: To gain mechanistic insights into adverse effects of maternal hyperglycemia on the liver of neonates, we performed a multi-omics
analysis of liver tissue from piglets developed in genetically diabetic (mutant /NS gene induced diabetes of youth; MIDY) or wild-type (WT) pigs.
Methods: Proteome, metabolome and lipidome profiles of liver and clinical parameters of serum samples from 3-day-old WT piglets (n = 9) born
to MIDY mothers (PHG) were compared with those of WT piglets (n = 10) born to normoglycemic mathers (PNG). Furthermore, protein—protein
interaction network analysis was used to reveal highly interacting proteins that participate in the same molecular mechanisms and o relate these
mechanisms with human pathology.

Results: Hepatocytes of PHG displayed pronounced lipid droplet accumulation, although the abundances of central lipogenic enzymes such as
fatty acid-synthase (FASN) were decreased. Additionally, circulating triglyceride (TG) levels were reduced as a trend. Serum levels of non-
esterified free fatty acids (NEFA) were elevated in PHG, potentially stimulating hepatic gluconeogenesis. This is supported by elevated hepatic
phosphoenolpyruvate carboxykinase (PCK1) and circulating alanine transaminase (ALT) levels. Even though targeted metabolomics showed
strongly elevated phosphatidylcholine (PC) levels, the abundances of multiple key enzymes involved in major PC synthesis pathways — most
prominently those from the Kennedy pathway — were paradoxically reduced in PHG liver. Conversely, enzymes involved in PC excretion and
breakdown such as PC-specific translocase ATP-binding cassette 4 (ABCB4) and phospholipase A2 were increased in abundance.
Conclusions: Our study indicates that maternal hyperglycemia without confounding obesity induces profound molecular changes in the liver of
neonatal offspring. In particular, we found evidence for stimulated gluconeogenesis and hepatic lipid accumulation independent of de novo
lipogenesis. Reduced levels of PG biosynthesis enzymes and increased levels of proteins involved in PC translocation or breakdown may represent
counter-regulatory mechanisms to maternally elevated PC levels. Our comprehensive multi-omics dataset provides a valuable resource for future

meta-analysis studies focusing on liver metabolism in newbomns from diabetic mothers.
@ 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (hifp:/ org/li o).
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Abbreviations

AGC automatic gain control

BGC blood glucose concentration
BP biological process

CcC cellular component

Cla co-inertia analysis

DIA data independent acquisition
DNL de novo lipogenesis

GDA gene-disease association
GDM gestational diabetes mellitus
GO gene ontology

GPF gas phase fractionation
GWAS genome-wide association studies

HOMA-IR  homeostatic model assessment for insulin resistance

KEGG Kyoto Encyclopedia of Genes and Genomes

LC-MS/MS nano-liquid chromatography—tandem mass spectrometry
analysis

Loocv leave-one-out cross-validation

MF molecular function

MIDY mutant /NS gene induced diabetes of youth

non-alcoholic fatty liver disease

NCE normalized collision energy

NEFA non-esterified free fatty acids

0OPLS-DA  orthogonal projection to latent structures discriminant analysis

ORA over-representation analysis
PC phosphatidylcholine

PCA principal component analysis
PE phosphatidylethanolamine

PHG wild-type piglet born to transgenic hyperglycemic pig
PNG wild-type piglet born to normoglycemic pig
PPI protein-protein interaction network

QUICKI quantitative insulin sensitivity check index
SIDD severe insulin deficient diabetes

SM sphingolipid

TG triglyceride

viP variance importance in projection

WT wild-type

1. INTRODUCTION

A disturbed prenatal environment is considered a risk factor for health
complications in offspring [1]. The environment of the developing fetus
is influenced by an altered maternal nutritional and metabolic state
[2,3]. For example, in utero exposure to elevated maternal glucose can
trigger long-term consequences in the physiology and metabolism of
the offspring [4]. Offspring of mothers with gestational diabetes mel-
litus (GDM) have a fourfold increased risk of developing a metabolic
syndrome [5]. So far, hyperglycemia-related fetal programming has
been mainly investigated by epidemiological studies and reports at the
molecular level are scarce. Furthermore, human patient data have the
drawback that confounding factors, such as the mother’s lifestyle and
medical history, are frequently not completely recorded. On the other
hand, animal models living in controlled laboratory conditions with
standardized tissue sampling [6] allow differentiating the sole conse-
quences of maternal hyperglycemia from those of comorbidities. The
pig is a promising large animal model to fill the gap between proof-of-
concept studies and clinical trials [7—9). In the context of diabetes and
pregnancy, it is worth mentioning that pig offspring, similar to human
babies, are born in a more mature state compared to rodent pups and
are therefore also exposed to maternal glycemia in a later develop-
mental phase [10]. Furthermore, piglets show similarities to human
physiology in terms of changes in energy metabolism during both
normal and pathological birth (reviewed in [11]). Since the liver is
responsible for maintaining normal blood glucose levels alongside the
homeostasis of other relevant metabolites such as lipids and amino
acids [12], it is especially relevant for the consequences of maternal
diabetes on offspring. Furthermore, as a major metabolic organ, the
liver is highly relevant in the context of metabolic syndromes. Inter-
estingly, previous studies of both human cohorts and rodent models
suggest that maternal diabetes may be associated with offspring
markers of liver pathology mainly related to an aberrant lipid meta-
bolism [13—17]. The involvement of metabolic organs in neonatal
complications is further suggested by the study of Renner et al. where
it was found that matemal hyperglycemia, even in the absence of
maternal and neonatal obesity, was associated with alterations in the
neonatal offspring’s plasma metabolome (such as amino acids and
lipids) [18]. The detection of molecular changes induced by prenatal
exposure to matemnal hyperglycemia and underlying biological
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pathways could provide the basis for novel intervention strategies
which could have far-reaching implications for child health care. In this
study, we address hepatic proteome and metabolome alterations
alongside clinical-chemical changes and histomorphological findings
in piglets developed in genetically hyperglycemic IS®*Y transgenic
pigs, a model for mutant /NS gene induced diabetes of youth (MIDY)
[19].

2. MATERIALS AND METHODS

2.1. Biological samples

In this study, the hepatic proteome, metabolome as well as clinical-
chemical parameters in serum from 3-day-old wild-type (WT) piglets
born to hyperglycemic mothers (PHG) expressing the mutant insulin
C94Y [19] were compared to the profiles of WT piglets born to nor-
moglycemic mothers (PNG). To further complement molecular findings
histomorphological evaluation of the liver was performed. The hyper-
glycemic INS™Y transgenic pig model was obtained using the INSE94Y
expression vector, including the porcine INS gene with a point mutation
introducing a Cys — Tyr exchange in position 94, which disrupts one of
the two disulfide bonds between the A- and B-chain of the mature
insulin molecule. This generates a misfolded insulin protein that in-
duces endoplasmic reticulum stress in the B-cells, resulting in early-
onset permanent insulin-deficient diabetes mellitus and B-cell loss
[19]. The non-diabetic and diabetic sows used in this project were half-
siblings produced by mating a diabetic boar with different WT sows.
The piglets of the PHG and PNG groups were derived from mating of
non-diabetic and diabetic sows with the same WT boar, reducing
genetic variance. The diabetic sows were treated daily with a com-
bination of long-acting and short-acting insulin, fo ensure a blood
glucose concentration (BGC) in a physiological range (around 150 mg/
dL). This physiological range was maintained in the diabetic sows also
during the mating and during the first 3 weeks of pregnancy to ensure
the pregnancy state. After this period, the amount of insulin admin-
istrated was reduced, to obtain a BGC of around 300 mg/dL, which
corresponds to a pathological diabetic situation during pregnancy. 30
min after birth and before first milk intake, blood glucose of newborn
piglets was measured by ear vein puncture using a glucometer
(FreeStyle-Freedom Lite). In addition, venous EDTA plasma samples of
offspring were collected, stored at —80 °C for determination of insulin
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concentration. Sows were housed in groups under control conditions,
with free access to water and fed with commercial food once per day.
Shortly before giving birth, sows were separated into a separate pen in
the farrowing unit. Newborn piglets were housed in the farrowing pen
together with the mother, and a heated nest was offered to the piglets.
At an age of 3 days, non-fasted piglets underwent necropsy. Tissues
were collected by random systematic sampling [6], shock-frozen on
dry ice and stored at —80 °C until analysis. For omics analyses, all
samples were processed in parallel to avoid possible bias related to
different storage times. All experiments were performed according fo
the German Animal Welfare Act (Deutsches Tierschutzgesetz),
following the ARRIVE guidelines and Directive 2010/63/EU.

2.2. Proteomics

2.2.1. Sample preparation

Frozen liver tissue samples were fransferred into prechilled tubes and
cryo-pulverized in a CP02 Automated Dry Pulverizer (Covaris, Woburn,
MA, USA) using an impact level of 3 according to the manufacturer's
instructions. Powdered tissue was lysed in 8 M urea/0.5 M ammonium
bicarbonate (Roche Diagnostics, Mannheim, Germany) by ultra-
sonication (18 cycles of 10 s) using a Sonopuls HD3200 (Bandelin,
Berlin, Germany). Pierce 660 nm Protein Assay (Thermo Fisher Sci-
entific, Rockford, IL, USA) was used for protein quantification. 20 pL of
lysate containing 20 pg of protein were processed for digestion. Di-
sulfide bonds were reduced with 45 mM dithiothreitol/20 mM tris(2-
carboxyethyl) phosphine (30 min, 56 °C). Reduced cysteine side
chains were alkylated by adding 100 mM iodoacetamide (30 min, room
temperature), followed by quenching the remaining iodoacetamide
with dithiothreitol (30 mM, 15 min, room temperature). Sequential 2-
step digestion was performed, firstly with Lys-C (FUJIFILM Wako
Chemicals Europe GmbH, Neuss, Germany) for 4 h (1:50 enzyme to
protein ratio) and subsequently with modified porcine trypsin (Prom-
ega, Madison, WI, USA) for 16 h at 37 °C (1:50 enzyme to protein
ratio). After digestion, samples were dried before analysis using a
vacuum centrifuge.

2.2.2. Nano-liquid chromatography—tandem mass spectromeiry
analysis

Nano-liquid chromatography—tandem mass spectrometry (LC-MS/
MS) analysis was performed on an UltiMate 3000 nano-LC system
coupled to a Q Exactive HF-X Orbitrap mass spectrometer via a nano-
electrospray ion source (all Thermo Fisher Scientific). 1 pg of peptides
were transferred to a PepMap 100 C18 trap column (100 pm = 2 cm,
5 uM particles, Thermo Fisher Scientific) and separated on an
analytical column (PepMap RSLC C18, 75 um x 50 cm, 2 um par-
ticles, Thermo Fisher Scientific) at 250 nL/min with an 80-min gradient
of 5—20% of solvent B followed by a 9-min increase to 40%. After the
gradient, the column was washed with 85% solvent B for 9 min,
followed by 10-min re-equilibration with 3% solvent B. Mobile phases
A and B were 99.9/0.1% water/formic acid (vv) and 99.9/0.1%
acetonitrile/formic acid (v/v), respectively. Gas phase fractionation
(GPF)-based chromatogram libraries [20] were built using 6 injections
of pooled samples with 25 x 4 m/z-wide data-independent acquisition
(DIA) (30,000 resolution, AGC target 166 maximum inject time 55 ms,
NCE 27, +3H assumed charge state) spectra using a staggered
window pattern with window placements optimized by Skyline (v.22.2)
(i.e. 400.43—502.48, 500.48—602.52, 600.52—702.57, 700.57—
802.61, 800.61-902.66, 900.66—1002.70), yielding 300 x 2 m/z-
wide windows spanning from 400 to 1000 'z after deconvolution. For
DIA measurements, 50 x 12 m/z-wide (in the range of 400—1000 m/
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2Z) precursor isolation window DIA spectra (15,000 resolution, AGC
target 1e6, maximum inject time 20 ms, NCE 27) was acquired as
described in [21] using a staggered window pattern [22]. Window
placements were calculated by Skyline software [23]. Precursor
spectra (in the range of 390—1010 m/z, 60,000 resolution, AGC target
1e6, max IIT 60 ms, +3H assumed charge state) were interspersed
every 50 MS/MS spectra.

2.2.3. Peptide and protein identification and quantification

Protein intensities were extracted from the DIA data using predicted
spectral libraries generated by DIA-NN's (v1.8.1) built-in deep-
learning-based spectra and retention time predictor which was
further refined by the experimental data from project-specific GPF-
based library (also generated by DIA-NN). For this, the Sus scrofa
protein database (UniProt Reference Proteome — Taxonomy 9823 —
Proteome ID UPO00008227, 49,792 entries) alongside the MaxQuant
contaminants fasta file [24] were used. Only tryptic peptides with a
maximum of one missed cleavage and charge state of +2, +3
and +4 were considered. Cysteine carbamidomethylation was
selected as a fixed modification and the quantification strategy was
set to robust LC (high precision mode). Retention time correction was
performed automatically by DIA-NN and quantification strategy was
set to Robust LC (high accuracy mode). Similarly, mass tolerance was
determined automatically by DIA-NN and was set to 9 ppm and
18 ppm for MS1 and MS2, respectively. The “Genes” column was
used to count unique proteins. All other settings were left default.
DIA-NN’s main output containing precursor level data was used for
the downstream analysis in R using custom scripts. Briefly, the
output was filtered at 1% false-discovery rate, using both global and
run-specific q-values for precursors and global g-values for protein
groups. Peptides derived from potential contaminants, non-
proteotypic peptides and peptides with a low signal quality were
removed. Precursor intensities for different charge states were
summed to derive peptide intensities. Normalization of raw in-
tensities was performed using the MaxLFQ algorithm [25]. Proteins
detected in at least 60% of all replicates were kept for quantitative
analysis. To handle missing values, data imputation was performed
using a random forest algorithm with the R package MissForest [26].

2.2.4. Westem blot quantification

Powdered liver tissue was lysed in Laemmli extraction buffer sup-
plemented with protease and phosphatase inhibitors (Complete®,
Sigma-Aldrich) and protein concentration was determined by BCA
assay. Equal amount of denatured tissue lysate per lane was separated
on SDS-polyacrylamide minigels and blotted on PVDF membranes.
Equal loading was controlled by Ponceau staining. The following pri-
mary antibodies were used: rabbit polyclonal antibody against
ALDH1L2 (no. 21391-1-AP, dilution 1:4000, proteintech), rabbit
polyclonal antibody against claudin 15 (no. 38-9200, dilution 1:1000,
Thermo Scientific), rabbit polyclonal antibody against RAB3D (no.
12320-1-AP, dilution 1:1500, proteintech), and mouse monoclonal
antibody against pan-actin (no. MAB1501, dilution 1:40,000; Sigma
Aldrich). As secondary antibodies, HRP-labeled goat polyclonal anti-
body against rabbit IgG (no. 7074, dilution 1:2,000, Cell Signaling) and
HRP-labeled goat polyclonal antibody against mouse IgG (no. 115-035-
146, dilution 1:10,000, Jackson ImmunoResearch), respectively, were
used. Bound antibodies were visualized using SuperSignal™ ECL re-
agents (Thermo Fisher Scientific) and ECL ChemoStar Imager (INTAS).
Stripping was done to analyze ratio of various protein abundances and
the reference protein. Therefore, membranes were incubated with the
stripping buffer (2% SDS, 62.5 mm Tris/HCI, pH 6.7, and 100 mM
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beta-mercaptoethanol) for 60 min at 70 °C. Afterward, membranes
were washed, blocked, and incubated with the next primary antibody.
Signal intensities were quantified using ImageQuant (GE Healthcare).
Standardization of equal loading was referred to the signal intensities
of pan-actin of the corresponding PYDF membrane. Data are shown as
mean + SD.

2.2.5. STRING network construction and characteristics

The pig-specific and human-specific networks were downloaded from
STRING database v11.5 (hitps:/string-db.org/) [27]. This large data-
base includes several sources of information grouped in 7 evidence
channels: neighborhood, fusion, co-occurrence, co-expression, ex-
periments, knowledge, and text-mining. Each of these sources reflects
different information (i.e. computational prediction of protein proximity,
protein expression, literature knowledge) and contributes to obtaining
a combined score. This is a metric that considers the probability of
different evidence channels and corrects for the probability of randomly
observing an interaction between two proteins. In both pig and human,
we took into consideration 4 possible networks: full, full with high
confidence interactions (combined score>0.7), physical (direct in-
teractions only), and physical with high confidence (direct interactions
and combined score=0.7). Based on the network connectivity of the
differentially abundant proteins, we decided to proceed with our an-
alyses with the full network and high-confidence interactions, resulting
in 15,360 nodes with 170,244 edges for pigs and 16,793 proteins with
251,982 edges in humans.

2.2.6. Mapping of dysregulated proteins in the PPls networks

For this aim, we selected those proteins with adjusted p-value <0.05
and fold-change >>1.5 and mapped them on the pig- and human-
specific protein—protein interactions (PPI). For each network, we
calculated the percentage coverage and the network connectivity
distinguishing between up-regulated, down-regulated, and total
differentially abundant proteins (Supplementary Figs. 1A—D). Network
conneclivity was calculated by computing a z-score of the largest
connected component for each group of proteins and comparing it
against 10,000 randomly selected protein sets of the same size.

2.2.7. ldentification and biological characterization of dysregulated
proteins core

We checked whether each connected component among the up-
regulated and down-regulated proteins would be statistically signifi-
cant in pigs and in humans. Once we extracted the main cores among
the up- and down-regulated proteins, we identified expanded net-
works that would connect at least 90% of the up- and down-regulated
proteins respectively, including their interacting proteins. For this
purpose, we have used a random walk with restart algorithm, setting
the restarting parameter, alpha, equal to 0.9, ensuring that the
propagation would remain close to the original set of seed genes. We
expanded the seed genes (up- and down-regulated proteins) until 90%
would be connected. The biological characterization of the protein
cores and the expanded networks was performed by enrichment an-
alyses for the three main branches of the gene ontology (GO) [28]
biological processes (BP), molecular functions (MF), and cellular
components (CC), and for Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway [29] using GSEAPY [30].

2.2.8. Disease relationship

Disease gene associations were retrieved from DisGeNet [31] which
represents the largest publicly available collections of genes and
variants associated with human diseases, including expert-curated
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associations from genome-wide association studies (GWAS) cata-
logues, animal models and scientific literature. Depending on the
accuracy of the type of information, each gene—disease association is
attributed with a gene—disease association (GDA) score that ranges
from 0 to 1. We selected associations with a GDA score >0.3,
retrieving information for 11,099 diseases. The relationship between
each set of differentially abundant proteins (s1) and set of disease
proteins (s2) was then computed in two different ways: 1) by calcu-
lating their Jaccard index (intersection (s1,s2)/union(s1,s2)), and by
network proximity of the two sets [32]. Network proximity computes
the closest distance between two sets of proteins in a network and by
comparing it against 10,000 random sets of similar topological fea-
tures. In this way, we considered and corrected for interactome biases
such as the heavy-tail degree distribution and the discretization of
other common network distances like the shortest path.

2.3. Targeted metabolomics

Targeted metabolomics measurements were performed using liquid
chromatography- and flow injection-electrospray ionization-tandem
mass spectrometry (LC- and FIA-ESI-MS/MS) and the Absolute/DQ™
p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). The assay
allows simultaneous quantification of 188 metabolites. For the LC-part,
compounds were identified and quantified based on scheduled mul-
tiple reaction monitoring measurements (sMRM), for the FIA-part on
MRM. The complete assay procedures as well as the tissue extraction
have been previously published [33]. In brief, tissue homogenates
were always prepared freshly as follows: frozen porcine liver tissue
samples were weighed into homogenization tubes with ceramic beads
(1.4 mm). For metabolite extraction, to each 1 mg of frozen porcine
liver tissue 3 pL of a cooled mixture (4 °C) of ethanol/phosphate buffer
(85/15 v/v) were added. Tissue samples were homogenized using a
Precellys24 homogenizer (PEQLAB Biotechnology GmbH, Germany)
three times for 30 s at 5,500 rpm and —4 °C, with 30 s pause intervals
to ensure constant temperature, followed by centrifugation at
10,000 x g for 5 min. Subsequently, 10 pL of the supernatants were
analyzed with the p180 assay. Data evaluation for quantification of
metabolite concentrations and quality assessment were performed
with the software MultiQuant 3.0.1 (SCIEX) and the Met/DQ@™ software
package, which is an integral part of the Absolute/D@™ Kit. Metabolite
concentrations were calculated using intemal standards and reported
as pmol/mg for wet tissue.

2.4. Shotgun lipidomics

All standards were purchased from Avanti Polar Lipids: Ultimate
SplashOne (#330820), dFA 18:1 (#861809), dFA 20:4 (#861810), dCer
d18:0/13:0 (#330726), Glu Cer(d18:1-d7/15:0) (#330729), dLacCer
d18:1/15:0 (#330727), 15:0-18:1-d7-PA (#791642), EquiSPLASH
(#330731).

2.4.1. Lipidomic sample exiraction

15 plL (equivalent to 5 mg) of the liver homogenates (see 2.3 for
procedure) were transferred into 1.5-mL glass vials together with
85 pL of MilliQ water (H0). For accurate quantification, 25 pL of a mix
of 77 deuterated internal standards were then added to the samples
(Uttimate SplashOne, dFA 18:1, dFA 20:4, dCer d18:0/13:0, Glu
Cer(d18:1-d7/15:0), dLacCer d18:1/15:0, 15:0-18:1-d7-PA). For lipid
extraction, 160 pL of methanol (MeOH, Optigrade, Thermofisher) and
575 pL methyl tert-butyl ether (MTBE) were added followed by incu-
bation for 30 min on an orbital shaker DOS-10L (Neolabline, Heidel-
berg, Germany) at 300 rpm. For phase separation, 200 pL of Ho0 was
added to each vial and were centrifuged at 5,000 g for 10 min at
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room temperature with a Sigma 4-5C centrifuge (Qiagen, Hilden,
Germany). The upper (organic) phase was evaporated with nitrogen
gas using a Barkey evaporator (Barkey, Leopoldshoehe, Germany). The
aqueous phase was again extracted with 100 pL MeOH and 300 pL
MTBE. After addition of 100 pL H»0, the samples were incubated for
5 min at room temperature at 300 rpm and then centrifuged for 10 min
at 5,000 < g. The organic phase was transferred into the respective vial
from the first extraction step and evaporated to dryness with gaseous
nitrogen. Samples were reconstituted in 275 pL running solvent
(10 mM ammonium acetate in Dichloromethane:MeOH (50:50, v/v))
and 267 pL were subsequently transferred into new vials with insert.
For quality control purposes (QC-pool samples), 10 pL of each study
sample were pooled. 15 plL aliquots were created and exiracted with
the above-described procedure. Additionally, 3 blank samples con-
sisting of 15 uL EtOH/phosphate buffer were prepared and extracted.

2.4.2. Shotgun lipidomics measurements

The DMS-SLA shotgun lipidomics assay is based on the method
published by Baolong Su et al. [34]. All samples were measured with a
SCIEX Exion UHPLC-system coupled to a SCIEX QTRAP 6500+ mass
spectrometer equipped with a SelexlON differential ion mobility
interface (SCIEX, Darmstadt, Germany) operated with Analyst 1.6.3.
75 pL of the re-dissolved sample were injected using the running
solvent (10 mM ammonium acetate in Dichloromethane:MeOH (50:50,
v/v)) at an isocratic flow rate of 8 ul/min. After 9 min the flowrate was
ramped to 30 pl/min for 2 min to allow washing. Each sample was
analyzed using multiple reaction monitoring (MRM) in two consecutive
flow injection analysis (FIA) runs. In the first run, phosphatidylcholines
(PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG),
phosphatidylinositols (Pl), phosphatidylserines (PS), and sphingomye-
lins (SM) were separated with the SelextON DMS cell using field
asymmetric ion mobility mass spectrometry (FAIMS) prior to analysis in
the Turbo Spray lonDrive source of the mass spectrometer. To enhance
the separation of the lipid classes, 1-propanol was used as a chemical
modifier. In the second run, cholesteryl esters (CE), ceramides (Cer
d18:1), dihydroceramides (Cer d18:0), lactosylceramides (LacCER),
hexosylceramides (HexCER), phosphatidic acid (PA), lysophosphati-
dylcholines (LPC), lysophosphatidylethanolamines (LPE), lysophos-
phatidylglycerols (LPG), lysophosphatidylinositols {LP1),
lysophosphatidylserines (LPS), free fatty acids (FFA), diglycerides (DG),
and triglycerides (TG) were measured with the DMS-cell switched off.
Lipids were quantified with the Shotgun Lipidomics Assistant (SLA)
software (v1.3) by calculating the area ratio between the analyte and
the respective internal standard [34]. Lipid concentrations (nmol/g)
were corrected for isobaric overlap with SLA. The mass spectrometer
was operated with the following conditions: curtain gas 20 psi, ion
source gas 1 14 psi, ion source gas 2 20 psi, Collision gas medium,
temperature 150 °C, separation voltage +3500 V, ion spray
voltage +4200 and +4500 V in ESI+ mode and —4400 and — 3300V
in ESI— mode for run 01 and 02, respectively. Prior to each batch, the
DMS cell was tuned, and the stability and sensitivity of the instrument
was checked with the EquiSPLASH mixture.

2.4.3. Lipidomics data processing

The shotgun lipidomics raw data set contained 1,204 individual lipid
species. Data were subsequently pre-processed using R (version
4.2.1). To assure high data quality, a multi-step procedure was
applied: in the first step of this quality control (QC) procedure, lipids
with missing values in more than 35% in the pool samples were
discarded from the data set (n = 136). In the second step, the group-
specific missingness was evaluated i.e., whether a specific lipid is
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observed in only one of the biological groups. Lipids exhibiting a group-
wise missingness of 50% in all groups were discarded from the data
set (n = 7). Next, lipids with a coefficient of variation >25%, deter-
mined by the QC-pool samples, were removed from the data set
{n = 22). The last quality control step comprised the calculation of the
dispersion ratio (D-ratio) for each lipid [35):

Otech
2 )
(1 [ 02+ cm)

where o2, is the technical variance determined by the variance of the
QC-pool samples and Uﬁw is the biological variance given by the
variance of the biological samples within the study. We used a D-ratio
threshold of 50%, as this implies that the technical variance is higher
than the biological variance (n = 43 lipids were removed). After quality
control, 996 lipid species remained in the liver data set, which con-
tained 445 missing values (equivalent to 2% of the data set). Missing
values were imputed using the k-nearest-neighbor obs-sel approach
with k = 10 nearest-neighbors [36].

2.5. Multi-omics data integration

Co-inertia analysis (CIA) was performed using R package omicaded
[37], to estimate the co-variability of proteomics and metabolomics
datasets. Before CIA, each dataset was log2 transformed and Pareto
scaled. The similarity between the two datasets was estimated with
the RV parameter, which is a multivariate extension of the Pearson
correlation coefficients. RV value close to 1 indicates a high degree of
co-structure in datasets. The permutation test with 200 iterations was
used to assess the significance of the RV coefficient.

2.6. 0il red 0 staining

Liver tissue samples of 3-day-old piglets were fixed in PBS-buffered
4% PFA for 48 h, immersed in sucrose (each 2 h in 7.5% and 15%
sucrose at room temperature, followed by 30% sucrose over night at
4 °C), embedded in Tissue-Tek® 0.C.T."™ compound, frozen on dry
ice, and stored at —80 °C till cryosectioning. 4 pum thick cryosections
were stained with oil red O stain and embedded in Kaiser's glycerin
gelatin.

2.7. Clinical chemistry and determination of HOMA-IR and QUICKI
index

For clinical-chemical analysis, frozen plasma samples derived from
non-fasted 3-day-old piglets were thawed for 1 h at room temperature,
mixed thoroughly and then centrifuged (10 min, 5000 g at 8 °C) and
afterwards analyzed immediately using an AU480 clinical chemistry
analyzer (Beckman Coulter) and adapted reagent kits from Beckman
Coulter, Randox (Glycerol) or FUJIFILM Wako Chemicals Gmbh (NEFA)
as described previously [38]. Insulin concentration was determined
with ultrasensitive insulin ELISA from EDTA plasma (#10-1132-01,
Mercodia) collected from newborn piglets before first milk intake. The
homeostatic model assessment for insulin resistance index (HOMA-IR)
[39] for estimating insulin resistance at fasting conditions was
calculated using the formula: HOMA-IR = fasting plasma insulin (uU/
mL) x fasting plasma glucose (mg/dL)/405. The ‘QUantitative Insulin
sensitivity ChecK’ (QUICKI) index [40] was calculated with the formula:
QUICKI = 1/[log(insulin (mU/L)) + log(glucose (mg/dL))].

2.8. Statistical analysis
All statistical analysis and data visualization were performed in R
(https://www.r-project.org/). Statistical significance of proteome,
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Figure 1: Experimental design, il red O stains of liver and assessment of insulin sensitivity. A: Proteomics, metabolomics and histological evaluation of liver samples alongside
serum clinical chemical parameters from PHG (n = 5 female, n — 4 male) and PNG (n — 6 female, n — 4 male). PHG, piglets bom to hyperglycemic mothers; PNG, piglets born to
normoglycemic mathers; MIDY, mutant /NS gene induced diabetes of youth; WT, wild-type. B: Oil Red O stains of liver cryosections of 3-day-old piglets show mediovesicular lipid
accumulation in hepatocytes in PHG. #, portal triad; *, central vein. C: Total diglyceride (DG) and triglyceride (TG) levels in PHG and PNG. P-values are from two-way ANOVA (group

effect). D: | ic model of insulin

(HOMA-IR) and the ‘QUantitative Insulin sensitivity ChecK’ (QUICKI) index of PHG (n = 9 female, n = 4 male) and

PNG (n = 20 female, n = 26 male) at birth. Statistical significance of the pair-wise differences was assessed using the Student's +est. Bar diagrams show means and standard

deviations.

metabolome, lipidome and clinical parameter changes was evaluated
using two-way analysis of variance (ANOVA) considering the effect of
the group (PHG/PNG), sex (female/male) and interaction between group
and sex (group*sex). All resulting p-values (group, sex and group*sex)
were pooled and adjusted for multiple-hypothesis testing with the
Benjamini-Hochberg procedure. Biomolecules with a significant
interaction effect were further followed by Tukey's honest significant
difference (HSD) post-hoc test. Principal component analysis (PCA)
was performed on log2 transformed data using prcomp() function in R.
Hierarchical clustering was performed using the R package Com-
plexHeatmap [41] with Ward's method as the clustering method and
the Euclidean as a distance measure. Supervised clustering method,
orthogonal projection to latent structures discriminant analysis (OPLS-
DA), according to the class information (PHG versus PNG), was per-
formed using the R package ropls [42]. Before the OPLS-DA, omics

datasets were log2 transformed and subsequently Pareto scaled
(mean-centered and divided by the square root of standard deviation).
The leave-one-out cross-validation (LOOCV) of all models was used to
select the best fitted OPLS-DA model. LOOCV is advaniageous for
small datasets as it maximizes the size of the training set. R2Y and Q2Y
were used to assess the fitting validity and predictive performance of
the OPLS-DA model, respectively. A 200-step permutation test was
employed to estimate whether the supervised classification according
to the known class (PHG versus PNG) is significantly better than any
other random classification. Variance importance in projection (VIP)
scores of the selected OPLS-DA model were used to rank the me-
tabolites based on their discriminating ability of PHG and the PNG.
Over-representation analysis (ORA) based on significantly changed
proteins was performed using the R package webgesialtR [43] with the
functional category “GO Biological Process nonredundant”. The false-
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discovery rate was controlled using the Benjamini-Hochberg method.
Western blot signal intensities, the homeostatic model assessment-
insulin resistance index (HOMA-IR) and the ‘QUantitative Insulin
sensitivity ChecK’ (QUICKI) index were compared using two-tailed
Student’s t-test.

3. RESULTS

3.1. General aspects

This study aimed to investigate the effect of maternal diabetes on non-
diabetic offspring. For this purpose, as a translational model for human
research, we used a non-obese genetically diabetic (INS"™ trans-
genic) pig model characterized by severe hyperglycemia [19],
mimicking severe insulin deficient diabetes (SIDD) [44]. In this study,
the hepatic proteome, metabolome as well as serum clinical param-
eters from 3-day-old wild-type (WT) piglets born to hyperglycemic
mothers (PHG) were compared to the profiles of WT controls born to
normoglycemic mothers (PNG). To complement the molecular findings,
a histomorphological evaluation of the liver was performed (Figure 1A).
Oil red O staining showed that PHG livers contained an increased
amount of microvesicular and mediovesicular lipid droplets in hepa-
tocytes (Figure 1B). To gain further molecular insights into an elevated
lipid droplet formation, hepatic triglyceride (TG) and diglyceride (DG)
levels were quantified using targeted lipidomics. Results showed
elevation of both TG and DG levels in PHG liver (Figure 1C,
Supplementary Fig. 2B). A detailed overview of the lipidomics results
can be found in Supplementary Tables 1A—G and Supplementary
Figs. 2A—C. Furthermore, homeostatic model assessment of insulin
resistance (HOMA-IR) index monitored shortly after birth was higher in
PHG (mean [SD], male: 1.24 [0.65], female: 0.64 [0.37]) than in PNG
(mean [SD], male: 0.08 [0.09], female: 0.07 [0.09]). Consistently,
quantitative insulin sensitivity check index (QUICKI) was lower in PHG
(mean [SD], male: 0.38 [0.04], female: 0.43 [0.05]) compared with
PNG (mean [SD], male: 1.20 [0.74], female: 1.25 [0.68]). QUICKI in
PHG was below the cut-off value of 0.45 indicative for decreased in-
sulin sensitivity (Figure 1D). The body weight of PHG was significantly
lower than PNG (Supplementary Fig. 3A). Liver mass, relative to body
weight, was not significantly different between the groups
(Supplementary Fig. 3B). Neither sex nor group*sex interaction-related
differences were observed for these parameters.

3.2. Overview of proteome findings in the liver

To detect effects of maternal hyperglycemia on offspring’s liver pro-
teome, we performed a label-free liquid chromatography-tandem
mass spectrometry analysis (LC-MS/MS) of liver tissue samples
from PHG and PNG. To facilitate accurate and in-depth quantitative
proteomics, a data-independent acquisition (DIA) approach was cho-
sen. In the workflow, peptides were identified using an in silico pre-
dicted library, which was further refined by the project-specific
chromatogram libraries generated with narrow-isolation window
gasphase fractionation (GPF) DIA runs. The dataset has been submitted
to the ProteomeXchange Consortium via the PRIDE [45] partner re-
pository with the dataset identifier PXD040305. A total of 61,283
unique peptides from 6,313 protein groups were identified with high
confidence (false-discovery-rate <0.01). Supplementary Table 2A
contains a full list of all identified proleins and their abundance
levels. In the unsupervised hierarchical clustering (Figure 2A) and
principal component analysis (Figure 2B), the proteome profiles of liver
tissue from PHG differed substantially from those of PNG, suggesting
group-specific alterations in protein abundance.

8 MOLECULAR METABOLISM 75 (2023) 101768 © 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (htip://creaive

To identify differentially abundant proteins, a two-way ANOVA was
performed (Supplementary Table 2B). 123 proteins were found to be
differentially abundant (Benjamini-Hochberg adjusted p-value <0.05
and I12fc > 1.5) by the effect group (PHG/PNG), of which 62 were
increased and 61 decreased in abundance (Supplementary Table 2C,
Figure 2C). The protein with the highest increase in abundance in the
PHG liver was ISG15 ubiquitin like modifier (ISG15) (5.3-fold). Like-
wise, the levels of other proteins involved in interferon signaling
pathway such as interferon-induced GTP-binding protein Mx2 (MX2),
interferon induced protein 44 (IFl44), and interferon induced protein
with tetratricopeptide repeats 5 (IFIT5) were elevated in PHG samples.
Moreover, proteins involved in glucose metabolism, such as phos-
phoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphate
isomerase (GPI) were increased in abundance. Several proteins
involved in retinol metabolism, such as retinol-binding protein 4 (RBP4)
and dehydrogenase/reductase 7B (DHRSY), were also elevated.
Further proteins with increased abundance in PHG liver were tyrosine
aminotransferase (TAT), branched-chain-amino-acid aminotransferase
(BCAT1), and aromatic-L-amino-acid decarboxylase (DDC), all known
to be involved in amino acid metabolism. A large fraction of up-
regulated proteins is known to be involved in lipid homeostasis,
among which are acyl-CoA synthetase long chain family member 6
(ACSLS6), long-chain specific acyl-CoA dehydrogenase (ACADL), mito-
chondrial acyl-CoA dehydrogenase very long chain (ACADVL),
propionyl-CoA carboxylase alpha and beta chain (PCCA and PCCB), and
others. Furthermore, proteins involved in glycerophospholipid meta-
bolism (e.g. choline dehydrogenase (CHDH) and phospholipase A2
(PLA2G4A)) and transport (e.g. ATP-binding cassette 4 (ABCB4)) were
elevated in abundance. On the other hand, some of the down-
regulated proteins are also known to be involved in lipid meta-
bolism, among others fatty acid synthase (FASN), O-acyltransferase
(DGAT1), acetyl-CoA carboxylase 1 (ACACA), ceramide synthase 4
(CERS4), and others. Furthermore, S-adenosylmethionine synthase
(MATZ2A), a protein involved in the methionine cycle, was decreased in
abundance.

To get functional insights from proteome alterations between PHG and
PNG, over-representation analysis (ORA) was performed using Web-
Gestalt. The detailed results of the enrichment analysis are provided in
Supplementary Table 2D and Figure 2D. Briefly, proteins involved in
the nucleoside bisphosphate metabolic process, carbohydrate meta-
bolic process, cellular ketone metabolic process, cellular modified
amino acid metabolic process, and cofactor biosynthetic process were
significantly overrepresented in the set of up-regulated proteins, while
proteins involved in DNA replication, regulation of plasma lipoprotein
particle levels, telomere organization, nucleotide-excision repair, DNA
replication, lipid homeostasis, and membrane lipid metabolic process
were overrepresented in the set of down-regulated proteins.

In terms of sex-related differences, only UDP-glucuronosyitransferase
was changed significantly and was elevated in the liver of female
compared to male offspring (Supplementary Table 2E). To explore
proteins changed in the offspring’s liver due to maternal glycemia in a
sex-dependent manner, the group*sex interaction effect from the two-
way ANOVA was used. This revealed only a few proteins that were
significantly influenced by the group*sex interaction effect
(Supplementary Fig. 4, Supplementary Table 2F). The proteins most
significantly affected by the interaction effect were vacuolar protein
sorting-associated protein 41 homolog (VPS41) and 60S ribosomal
protein L26-like 1 isoform X1 (RPL26L1), both increased in female PHG
(compared to female PNG) but decreased in male PHG (compared to
male PNG). A similar regulation pattern was observed for further
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proteins like glutaredoxin 5 (GLRX5) and complement component 1 Q
subcomponent-binding protein, mitochondrial (C1QBP).

Furthermore, to confirm quantitative changes detected by mass
spectrometry by other means of quantification, we selected three
candidates where working porcine-specific antibodies were available
and quantified them using Western blot. Supplementary Fig. 5 shows
the abundance change of formyltetrahydrofolate dehydrogenase
(ALDH1L2), Ras-related protein Rab-3 (RAB3D) and claudin (CLDN15)
between PHG and PNG and they are in line with our mass
spectrometry-based quantitative data.

3.3. Protein—protein interaction construction

Next, we evaluated whether among the differentially abundant proteins
we could identify subsets of highly interacting proteins that participate
in the same molecular mechanisms and tried to relate these mecha-
nisms with human pathology. To do so, we first generated a pig-
specific and a human-specific protein—protein interaction network
(PPIs) compiled from the STRING database v11.5 (hitps://string-db.org/
) [27], obtaining 15,360 nodes and 170,244 edges, and 16,793 pro-
teins and 251,982 edges respectively. At this point, we compared the
size of the connected components of the differentially abundant pro-
teins against 10,000 random groups of proteins of equal size. In this
way, we were able to identify two main cores among the up-regulated
proteins in both pigs and humans (Figure 3A). The first module consists
of five interacting proteins (ACADVL, ACADL, ACSLG, PCCB, PCCA)
conserved in pig (p-value = 0.001) and in human (p-value = 0.003),
which is responsible for lipid homeostasis (Supplementary Table 3A
contains the full list of significantly enriched terms (adjusted p-value
<0.05)). The second up-regulated core is formed of five proteins in pig
(MX2, IFTS, IFI44, IFI44L, ISG15) (p-value = 0.001) and seven in
human (MX2, IFIT5, IF44, IFI44L, 1SG15, SP110, RNASEL) (p-
value = 1e-05), which is related to an interferon type | response (full
list of enriched terms Supplementary Table 3B for pig and 3C for
human). In both species, the down-regulated proteins form a con-
nected core, 17 proteins in pigs (p-value = 1.7e-60), and 22 in
humans (p-value — 3e-74) (Supplementary Fig. 6A).

Based on the fact and our observation that pigs and humans share
similar core mechanisms on a network level, we decided to focus on
the latter. Using a random walk with restart algorithm (see methods),
we identified a network of 312 up-regulated proteins and their inter-
actors (Figure 3B) and another network for 363 proteins which were
down-regulated in PHG (Supplementary Fig. 6B). These two networks
are very different as shown by their poor edge overlap (Jaccard
index = 0.002), proving once again that they lay in two different parts
of the PPl network contributing to different biological mechanisms.
Their enrichment analysis resembles our previous findings
(Supplementary Tables 3D—E) pointing to those interacting proteins
that in tandem with the differentially abundant ones contribute to
specific phenotypes (i.e. “fatty acid degradation”). Finally, to check the
relationship of these dysregulated proteins with disease onset, we
extracted disease—gene associations from DisGeNet [31], leading fo a
list of 11,099 diseases (after fittering). We computed two measures:
the Jaccard index between the set of perturbed genes in diseases and
the dysregulated proteins in our set-up and the network proximity [32]
(Supplementary Table 3F). Since the Jaccard index does not make use
of any network properties, these relationships can be driven even by a
very small pool of genes. To address this, we decided to pursue our
analyses by using network proximity and identified a plethora of related
diseases (227, for the first up-regulated core, and 1,275, for the
second one) (adjusted p-value <0.05, Supplementary Table 3G).
Among the 227 proximal diseases to the first up-regulated core, we
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focused on those relevant to metabolic disorders and liver diseases
(Figure 3C), observing very small z-scores compared to those of all
diseases, standing for their closeness to the up-regulated core in the
human PPI. The genes known to be responsible for these pathological
conditions are strictly related to lipid metabolism, such as lipoprotein
lipase (LPL), its receptor (LPLR), and hepatic triacylglycerol lipase
(LIPC) (Figure 3D). This tight distance in the human PPI suggests that
frequently reported susceptibility of GDM offspring to childhood and
adolescence overweight may be caused by the network pathways that
connect the up-regulated core genes (PCCA, PCCB, ACADL, ACADVL,
ACSL6), to APOAS5, CETP, and APOA1 (Figure 3D). Similar consider-
ations can be applied to the second up-regulated core (related to the
IFN pathway) and to the expanded unified up-regulated core
(Supplementary Table 3G). After expansion, also by using the Jaccard
index measure, we could observe among the most statistically sig-
nificant associated diseases, primary and secondary biliary cholangitis
(Benjamini-Hochberg adjusted p-value: 0.03), Glutaric Aciduria Il (type
A, B, C) (Benjamini-Hochberg adjusted p-value: 0.004), and Multiple
Acyl Coenzyme A Dehydrogenase Deficiency (Benjamini-Hochberg
adjusted p-value: 0.004), which could hint changes in bilirubin
metabolism due to perturbations of the immediate neighbors in the
human PPl of the up-regulated proteins.

3.4. Overview of metabolome findings in the liver

To gain further insights into the alteration of metabolic pathways as
revealed by proteomics, quantitative readouts of relevant metabolite
classes were performed. The resulis of the targeted metabolomics
analysis are shown in Supplementary Table 4A. Hierarchical clustering
(Figure 4A) and principal component analysis (Figure 4B) separated
samples of PHG and PNG. To reveal metabolites changed by the effects
of group, sex, and group*sex, a two-way ANOVA was performed
(Supplementary Table 4B). Metabolites with Benjamini-Hochberg
adjusted p-value <0.05 and I2fc > 1.5 were considered significant.
31 metabolites were changed by the effect group (Supplementary
Table 4C, Figure 4C). The supervised OPLS-DA method was used to
evaluate to what extent metabolomics data can discriminate PHG from
PNG. OPLS-DA clearly separated groups (Figure 4D). Statistical evalu-
ation of the OPLS-DA indicated a robust model (R2X = 0.58,
R2Y = 0.99, Q2 = 0.93). The permutation test with 200 iterations
showed the significance of both predictive (Q2Y) and fitting (R2Y)
components (p = 0.002). Variable importance in projection (VIP) plot
(Figure 4E) revealed metabolites with the highest contribution to the
separation of PHG from PNG animals on the OPLS-DA plot. Figure 5
provides a detailed overview of differentially abundant metabolites.
24 different glycerophospholipids (specifically phosphatidylcholines
(PC)) were changed in abundance of which 22 were increased and only
two (PC ae C30:0 and PC aa C32:1) were decreased (Figure 5A).
Furthermore, two sphingolipids (SM (OH) C14:1 and SM (OH) C16:1)
were elevated (Figure 5A). In the PHG liver, enzymes and metabolites
involved in the breakdown and removal (franslocation from hepatocytes
fo bile) of the PC were elevated while those involved in biosynthesis
were reduced (Figure 5B—C). Several members of biogenic amines
were changed in abundance between PHG and PNG, of which total DMA
(dimethylaming), SDMA (symmetric dimethylargining) and ADMA
(asymmetric dimethylarginine) were elevated while trans-4-
hydroxyproline (t4-OH-Pro) was reduced. Furthermore, the amino acid
proline was reduced by 1.7-fold (Figure 50). Only one metabolite, PC ae
C42:4, was affected by the effect sex (decreased in female offspring)
(Supplementary Table 4D) and only two metabolites (PC ae G42:3 and
SM C26:0) were affected by the interaction group*sex (Supplementary
Table 4E, Supplementary Fig. 7). Only three metabolite ratios, poly-
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Figure 4: Overview of metabolome differences in the liver from hyperglycemia exposed and control offspring. A: Unsupervised hierarchical clustering of metabolite levels (pmol/mg
tissue) leads to the clustering of each sample according to the materal glycemic status. The color code shows standardized abundance values. B: Principal component analysis of
log2 transformed and unit variance scaled data reveals maternal glycemic status as the strongest contributor to the inter-sample variation of the liver metabolome. The shape of
each spot cormesponds to the sex, and the color to the mother's genotype. C: Volcano plot comparing the metabolite abundance change between conditions (PHG/PNG). Significantly
changed metabolites (Benjamini-Hochberg adjusted p-value <0.05 and fold change >1.5) are shown as up- and down-pointing triangles for i and

in PHG versus PNG, respectively. Circles correspond to non-significant changes. The x and y axis show the log2 fold-change in metabolite levels and the log10 two-way ANOVA
group p-value, respectively. Different metabolite classes are color-coded. D: Supervised classification of PHG from PNG samples using the cross-validated orthogonal partial least
squares discriminant analysis (OPLS-DA). The x and y axis show the predictive (between class separation) and orthogonal component (within class separation), respectively. The
best fitted OPLS-DA model was selected based on leave-one-out cross-validation followed by permutation test with a 200-step iteration which yielded R2X — 0.58, R2Y — 0.99,
02 = 0.93 (R2Y p — 0.002, 02, p — 0.002). E: Variance importance on projection (VIP} plot. Metabolites with the strongest impact on the supervised classification of PHG and PNG
samples were exiracted from the OPLS-DA model. Metabolites with VIP >1.5 are shown.
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unsaturated to mono-unsaturated glycerophosphocholines (PUFA (PC)/
MUFA (PC)), total PC ae and total sphingolipid (SM), were significantly
changed between PHG and PNG (Benjamini-Hochberg adjusted p-value
<0.05) and were elevated in PHG liver (Supplementary Tables 4F—G,
Figure 5C). To check for similarities between the metabolic alterations
in offspring and mother, plasma metabolomics data from this study was
compared to a previously published set of plasma metabolite alterations
from MIDY versus WT pigs [46] (Figure 5E). The mother of the offspring
used in this study had the same insulin mutation as MIDY pigs pub-
lished previously [19]. The majority of PCs changed in abundance in the
offspring were also significantly changed in the same direction in the
MIDY versus WT plasma. Total DMA was elevated in the offspring liver
while it was significantly reduced in the MIDY plasma. Proline which
was significantly increased in the offspring liver was not significantly
changed in the MIDY plasma. The same is true for sphingolipids (SM
(OH) G14:1 and SM (OH) C16:1) and biogenic amines (SDMA and ADMA,
t4-0OH-Pro).

3.5. Cross-omics correlation

Using a co-inertia analysis (CIA) [47], we investigated the complex as-
sociation between proteomics and metabolomics datasets. CIA projects
multiple omics datasets simultaneously onto the same plane. Repre-
sentation of samples on a lower-dimensional space reveals global co-
variability ~between proteomics and metabolomics datasets
(Figure 6A). CIA reveals that proteomics and metabolomics datasets are
more similar within groups than between groups. The first component of
the CIA (horizontal) accounted for 56% of the variance, and the second
component {vertical) accounted for 25%. The CIA showed clear clus-
tering of PHG and PNG samples. In line with this RV coefficient which
represents the degree of association was 0.79 and was significant as
revealed by 200-step permutation-based test (p = 0.005). The corre-
sponding score plot shows the proteins and metabolites responsible for
partitioning PHG and PNG samples on the CIA plot (Figure 6B). In the
score plot, each quantified protein and metabolite is depicted by the
black square and grey circles, respectively and some of the most
informative biomolecules across datasets are labelled.

3.6. Overview of clinical-chemical findings in the serum

To clarify if maternal diabetes is associated with alteration of circu-
lating biomarkers of liver damage, relevant clinical-chemical param-
eters were measured in the serum of PHG and PNG. The detailed
clinical-chemical data and the results of the two-way ANOVA anal-
ysis are shown in Supplementary Table 5A and Supplementary
Table 5B, respectively. Clinical-chemical parameters with statistically
significant (p-value <0.05) changes between PHG and PNG serum
samples were bilirubin (increased in PHG), non-esterified free fatty
acids (NEFA) (increased in PHG), and albumin (increased in PHG)
(Supplementary Table 5C). Glycerol (decreased in PHG, p = 0.06) and
triglycerides (decreased in PHG, p = 0.07) levels were changed as a
trend (Figure 7). High-density lipoprotein levels were significant for the
effect of sex (increased in female offspring) (Supplementary Table 5D).
Alanine transaminase (ALT) showed a significant interaction effect,
with significantly higher levels in male PHG versus male PNG
(Supplementary Table 5E, Supplementary Fig. 8).

4. DISCUSSION
To investigate to what extent maternal hyperglycemia affects the off-

spring’s liver metabolism, a multi-omics analysis combining data-
independent acquisition proteomics and targeted metabolomics was

12 MOLECULAR METABOLISM 75 (2023) 101768 © 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (htip://creaive

performed. Additionally, relevant clinical-chemical parameters that
reflect the liver state were measured in the serum. In this work, the
liver and serum samples were collected from offspring born to a
genetically engineered diabetic pig model for mutant /NS gene-induced
diabetes of youth (MIDY) [19] (PHG) and from offspring born to WT
littermate controls (PNG), according to the principles of systematic
random sampling [6]. The body weight of PHG was significantly lower
than PNG. Similarly, in human studies, neonates of mothers with se-
vere diabetic complications tended to have a lower birthweight (SGA)
[48,49]. Like macrosomia, SGA is a risk factor for a variety of diseases
in future life (reviewed in [50]). To clarify if hepatic damage in the
offspring due to maternal glycemia is apparent already in the neonatal
period, we investigated livers from 3-day-old piglets. To our knowl-
edge, this is the first holistic multi-omics study from a clinically rele-
vant large animal model addressing the molecular derangements in
the offspring liver caused by maternal hyperglycemia.

Circulating bilirubin was significantly elevated in the offspring born to
hyperglycemic mothers which was also observed previously in human
offspring studies [51,52], underlining the clinical relevance of our
finding. A higher level of bilirubin may reflect different types of liver or
bile duct complications [53]. In line, disease—gene association revealed
several diseases associated with disturbed bilirubin metabolism. One of
the primary constituents of bile are phospholipids (predominantly
phosphatidylcholines (PC)) [54]. PC excretion into bile is mediated by the
PC-specific floppase ABCB4 [53,55]. Our targeted metabolomics
revealed consistent elevation of multiple PC (with mainly one acyl- and
one alkyl-bound fatty acids (PC ae), and a higher proportion of poly-
unsaturated PCs), while proteomics showed significantly elevated levels
of ABCB4, suggesting an active translocation of PCs to bile. Trans-
location of PCs is considered to have hepatoprotective properties as PCs
inactivate the detergent activity of bile salts to prevent damage to cell
membranes [56]. Besides translocation to bile, hydrolysis of PCs by
phospholipase A2 to produce fatty acids and a lysoPC is an important
step in PC homeostasis [57]. The products of PC hydrolysis are important
precursors for generating key inflammatory mediators, oxylipins [58]. In
our data, phospholipase A2 was significantly elevated while one of the
downstream enzymes leukotriene a4 hydrolase (LTA4H) was moderately
increased (LTA4H, 12fc = 0.31, adjusted p-value = 0.006), suggesting a
breakdown of PC molecules and generation of leukotrienes in PHG liver.
Finally, PC homeostasis in the liver is achieved via the metabolic
pathways involved in its biosynthesis, predominantly from choline via the
CDP-choline pathway (also known as the Kennedy pathway) [59].
Choline kinase (CHKA), the initial enzyme in the sequence, catalyzes the
transfer of a phosphate group from adenosine triphosphate (ATP) to
choline to form phosphochaline. Subsequently, the key regulatory
enzyme in this process, CTP:phosphocholine cytidylyltransferase
(PCYT2, alias CCT) catalyzes the transfer of a cytidylyl group to phos-
phocholine to form CDP-choline, which then forms PC (catalyzed by
choline phosphotransferase 1 (CHPT1 alias CPT1)). Although with a
moderate fold change (CHKA, 12fc = —0.31; PCYT2, 12fc = —0.22),
CHKA and PCYT2 were reduced significantly (adjusted p-value <0.05).
CHPT1 levels were also reduced but did not reach statistical signifi-
cance. CDP-choline is the major pathway of PC synthesis, however, in
the hepatocytes where PG demand is high, it can also be synthesized by
sequential methylations of phosphatidylethanolamine (PE) where
MAT2A-catalyzed S-adenosyl-methionine (SAM) transformation o S-
adenosylhomocysteine (SAH) donates the methyl groups. We found
significantly reduced levels of MAT2A together with non-significantly
reduced levels of other enzymes involved in this pathway. Additionally,
LPCAT3, which catalyzes the third mechanism of PC synthesis -
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reacylation of lysoPC to PC [60] - was moderately reduced (12fc — —0.4,
adjusted p-value — 0.03). Collectively, our data show reduced levels of
enzymes involved in PC synthesis, but elevated levels of enzymes and
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Figure 7: Changes in selected clinical-chemical parameters in the PNG and PHG blood.
Bar diagrams show the mean and standard deviation. P-values are from two-way
ANOVA (group effect). NEFA, non-esterified fatty acid; TG, triglyceride; ALT, alanine
transaminase.

downstream products involved in its elimination and breakdown.
Elevated PC levels in the PHG, despite reduced biosynthesis, may be
explained by increased transplacental transfer from the hyperglycemic
mother and subsequent hepatic uptake. This is in line with the previous
data where PC levels were shown to be elevated in the serum of hy-
perglycemic pigs [46]. We suggest that the feedback loop mechanism by
which increased PC levels downregulate enzymes involved in its
biosynthesis is plausible. Supporting our hypothesis, previous reports
showed a correlation of maternal and fetal metabolites during both the
peripartum period [61] and even several years postpartum [62].

In line with increased lipid species as revealed by targeted metab-
olomics and targeted lipidomics, higher total hepatic lipid content was
detected using Oil red O staining. Accumulation of liver fat is recog-
nized as a risk factor for non-alcoholic fatty liver disease (NAFLD) [63],
cardiometabolic disease [64,65] and other complications. Although the
presence of liver steatosis in the offspring born to a diabetic mother is
supported by several recent human [13,17,66,67] and rodent studies
[68], another human study found that in predicting infant hepatic fat
content, maternal diabetes may be less important than the presence of
maternal obesity [14]. Authors of two systematic reviews proposed that
the evidence for an association between maternal diabetes and
offspring adiposity, which is strongly associated with NAFLD, remains
inconclusive due to the attenuation of the association when adjusting
for maternal pre-pregnancy BMI [69,70]. Lipogenesis as well as
availability of plasma fatty acids are considered as important con-
tributors to hepatic steatosis [71]. The initial rate-limiting step of he-
patic de novo lipogenesis (DNL) is acetyl-CoA carboxylation to malonyl-
CoA by the action of acetyl-CoA carboxylase (ACACA) [72]. Subsequent
conversion of malonyl-CoA into palmitic or various other fatty acids is
catalyzed by fatty acid synthase (FASN) which plays a central role in
hepatic DNL [73]. The terminal step of triglyceride (TG) synthesis - the
acylation of diglyceride - is catalyzed by diacylglycerol O-acyl-
transferase 1 (DGAT1) [74]. Despite increased hepatic fat content,
levels of ACACA, FASN and DGAT1 were significantly reduced.
Decreased circulating TG levels in PHG may be explained by an
elevated hepatic TG accumulation and reduced release in the serum.
This is in line with the downregulation of DGAT1 in PHG, as DGAT1
overexpression is associated with higher rates of very-low-density
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lipoprotein-TG complex secretion from rat hepatoma cells [75].
Conversely, inhibition of DGAT1 in mouse liver and isolated hepato-
cytes resulted in an increased transfer of fatty acids into mitochondria
for beta-oxidation [76—78]. In PHG beta-oxidation markers such as
ACSL6, ACADL and ACADVL were elevated suggesting aclive degra-
dation of long-chain and very long-chain fatty acids. Furthermore,
although with a moderate fold-change (12fc — 0.32) both HADHA and
HADHB which catalyze the last three steps of beta-oxidation were
increased in abundance (adjusted p-value <0.05). Decreased lipo-
genic enzymes in the liver suggests that elevated hepatic lipid content
in PHG is not linked to DNL. This is in line with the observation that
limited capacity for DNL exists in human fetus, and the drivers of fetal
fat accumulation are primarily supplied transplacentally [79]. Shifting
the balance of lipid metabolism away from de novo synthesis to favor
lipid breakdown via beta-oxidation, mechanistically resembles the
observation made for PC (see above). Decreased DNL together with
increased beta-oxidation might be a way of adaptation developed in
offspring to slow down or prevent the progression of increased fat
content into liver steatosis, which is especially relevant in pigs as they
seem to be protected against steatosis even in morbid obesity [80]. In
line, previous studies reported protection against steatosis through
pharmaceutical inhibition of DNL enzymes [81,82]. The resistance of
pigs to hypertriglyceridemia is not well understood but extrahepatic
lipogenesis has been proposed as a potential mechanism [83]. Another
key driver of reduced lipogenesis might be PC which were elevated in
PHG (see above). An elevated lipogenesis and steatosis in early stages
of fatty liver disease was shown in the setting of reduced PC [84].
Additionally, several clinical studies observed the attenuation of
steatosis after treatment with PC (reviewed in [85]).

Besides lipid metabolism, the homeostasis of other key biomolecules
such as amino acids and glucose is a pivotal function of the liver. Under
normal circumstances, the fetus is dependent on a continuous supply of
glucose from the mother, and no significant production of glucose
(gluconeogenesis) by the fetus has been demonstrated [86].
Conversely, a rapid rise of hepatic gluconeogenesis is observed in
newbomn mammals in parallel with the appearance of PCK1, the key
enzyme of this pathway [87]. Specifically, in humans, gluconeogenesis
is apparent soon after birth in healthy newboms and it contributes 30%
of the fofal glucose produced [88]. Our proteomics data revealed
significantly higher levels of PCK1 in PHG liver. Increased levels of
gluconeogenic precursors were observed in the plasma of piglets born
to diabetic mothers [18], and was explained by reduced insulin
sensitivity. Impaired insulin sensitivity was also observed in offspring
exposed to hyperglycemia in utero due to maternal GDM or type 1
diabetes compared with offspring from the background population [89].
It was proposed that increased rates of gluconeogenesis in the offspring
bomn to diabetic mothers may be predictive of the increased risk of
glucose intolerance in later life [89]. Interestingly, PCK1 was elevated in
the liver of the male but not in female offspring born to streptozotocin
(STZ)-induced diabetic mice [90]. Similarly, in our study increase in
PCK1 levels were almost three times higher in male than in female PHG
when compared to PNG. We also observed significantly elevated
circulating levels of ALT in the PHG male but not in female offspring. ALT
catalyzes conversion of the main gluconeogenic precursor alanine into
pyruvate for glucose production and thus plays an important role in
gluconeogenesis [91]. An ALT blood test is used to diagnose liver
disorders [92] and it has been shown that ALT activities are increased in
gluconeogenic conditions and may be implicated in the development of
diabetes. Higher rates of gluconeogenesis in PHG may be explained by a
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failure of insulin to inhibit gluconeogenesis in the setting of decreased
insulin sensitivity [93]. Indeed, as revealed by QUICKI and HOMA-IR
index, PHG had reduced insulin sensitivity with a more pronounced
effect in male offspring. In line with this observation, notable sex-
specific differences with regard to glucose metabolism were reported
and females were shown to have higher whole-body insulin sensitivity
than males [94]. The exact mechanism responsible for sex-specific
differences in insulin sensitivity is not well understood, however, sex
hormones or adipokines were proposed as potential contributors [95].
TAT which catalyzes the conversion of tyrosine to 4-
hydroxyphenylpyruvate was another transaminase elevated in the
PHG liver. In line, metabolomics showed near significance of reduced
levels of tyrosine (12fc — —0.47, adjusted p-value — 0.06), suggesting
an active tyrosine catabolism. TAT is a gluconeogenic enzyme which is
activated in the liver shortly after birth [96). A potential mediator of
decreased insulin sensitivity in PHG might be elevated NEFA levels [97].
Even slight elevation in plasma NEFA, whose flux is high, can signifi-
cantly increase hepatic uptake [98]. Interestingly, higher expression of
interferon-stimulated genes (ISGs) was observed in insulin resistant
human patients [99]. ISG15 was positively correlated with insulin
sensitivity and glucose homeostasis in humans and mice [100]. ISGs
are a group of genes that are stimulated in response to interferon, thus
their upregulation may hint towards inflammation due to an immune
response [99]. Low-grade chronic inflammation may be a potential
driver of insulin resistance in obesity and NAFLD [101]. A recent study
reported the enrichment of ISGs, including IFI44, in GDM human
amniocyles [102]. Besides, the metabolic-inflammatory circuit that
links perturbations in lipid homeostasis with the activation of innate
immunity was suggested [103]. Taken together, upregulation of glu-
coneogenic precursors and related enzymes suggests higher rates of
gluconeogenesis in PHG liver which may be associated with impaired
insulin sensitivity and glucose intolerance in later life. In conclusion,
using a clinically relevant large animal model we showed that maternal
hyperglycemia without confounding obesity results in profound meta-
bolic alterations in the neonatal offspring’s liver. Specifically, maternal
hyperglycemia was related with increased rates of hepatic gluconeo-
genesis, amino acid metabolism and beta-oxidation but decreased
rates of lipogenesis in PHG. Additionally, we found that hepatic PC
biosynthesis was reduced while catabolism and translocation to bile
was increased in PHG. We hypothesize that elevated PC levels despite
reduced biosynthesis may be due to increased transplacental transfer
and subsequent downregulation of enzymes involved in its synthesis via
a feedback loop mechanism. In this study protein abundance changes
alongside with quantitative data of metabolites were used as a proxy for
the state of biochemical processes, however, our comprehensive
dataset would greatly benefit from future studies assessing further
measures of protein activity such as protein interactions and post-
translational modifications. The generated datasets provide an impor-
tant resource for future comparative or meta-analysis studies on the
progression of hepatic complications and other associated comorbid-
ities in neonatal offspring due to isolated maternal hyperglycemia.
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3. Section B: Investigation of the effect of hyperglycaemia on
lung

3.1. Literature review

3.1.1. Physiology and anatomy of lung — susceptibility to diabetes

Historically, the lung is not recognized as a major target organ of diabetic injury.
Mechanistically, the effect of diabetes on lung tissue is multifactorial and not clearly
understood. Additionally, pulmonary damage is mostly subclinical and thus difficult to
detect [55]. The pulmonary system is prone to undergo microvascular damage and
non-enzymatic glycation because of its large alveolar-capillary network and the
abundance of connective tissue [56]. However, because of its large reserve,
substantial loss of the microvascular bed can be tolerated without developing
dyspnoea [57]. As a result, as mentioned above, pulmonary diabetic microangiopathy
may be under-recognized clinically. The first study to suggest that the lung may be a
target organ of diabetes was conducted nearly five decades ago [58], and investigated
the lung function of young patients with type 1 diabetes. The study found a decrease
in lung elastic recoil which was suggested to be a risk factor for developing chronic
airflow obstruction. The effects of diabetes on the lung are reviewed in [55, 57, 59-62].
Hyperglycemia has been shown to lead to interstitial fibrosis (reviewed in [56]), and
alveolar-capillary microangiopathy, it is associated with both restrictive and obstructive
lung function impairment and was shown to contribute to an overproduction of mucus

and surfactant associated with increased mortality rates [63].

Increased susceptibility to respiratory infections is frequently observed in the context
of diabetes. Higher hospitalization and mortality rates were observed in diabetic
patients with viral or bacterial infections such as influenza [64], COVID-19 [65], and
others. A systematic review of the association between lung function and Type 2
diabetes mellitus concluded that systemic and local inflammation may play a major
role and explain the associations between different conditions, including reduced lung
function and Type 2 diabetes [57]. Additionally, diabetes significantly increases
mortality rates in patients with idiopathic pulmonary fibrosis [66]. Furthermore,
individuals with diabetes are at increased risk of developing further pulmonary

conditions such as asthma, pulmonary fibrosis, and chronic obstructive pulmonary
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disease (COPD) [67]. One report documented a fourfold increase in leukotriene B4
(proinflammatory mediator) in subjects with chronic obstructive pulmonary disease
(COPD) who also had diabetes, compared with COPD patients and asthmatics without
diabetes [68].

3.1.2. Pig lung — relevance to study human disease

The swine lung has become an excellent model for the normal human lung, for
pathological abnormalities, for the development of therapies [69] and is even a
promising option for lung xenotransplantation. For example, porcine lungs have been
used to study lung development [70], lung transplantation [71], pulmonary artery
hypertension [72], pulmonary vein hypertension [73], asthma [74], COPD [74], cystic
fibrosis [75] and many other diseases. The morphological structure and distribution of
the porcine airways are broadly similar to the human lung although they vary according
to the age and breed of pig (extensive comparison between human and porcine lungs
can be found in [69, 76]). The lungs of pigs and humans are highly lobulated, with well-
defined pulmonary lobules distinguished by interlobular septae [76]. The porcine lung
has two lobes on the left side and four lobes on the right side, conversely, humans
have three right and two left lobes. Similar to other mammalian species pig and human
lung have extensive interlobular and intralobular connective tissue, which is not true
for the mice [77]. Anatomical similarities were also observed in the upper respiratory
tract between humans and pigs [78]. Furthermore, similarities were observed between
cellular lineages and composition [69]. Since the respiratory tract is constantly
exposed to pathogens, the normal functioning of defence mechanisms is crucial to
protect the lung. In this context, it is important that most proteins of the porcine immune

system share structural and functional similarities with their human counterparts [79].
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Highlights:

e Lung proteomes are affected by insulin deficiency and hyperglycemia ¢ Small leucine
rich proteoglycans are increased in abundance in diabetic lung e Proteins involved in
immune system processes are reduced in diabetic lung e Eicosanoid metabolism is
impaired in diabetic lung e Our study gives new insights into pathophysiological effects

of diabetes in lung
In brief:

Data independent acquisition proteomics combined with lipidomics revealed
alterations in the lipoxygenase metabolism in the diabetic lung from a clinically relevant
large animal model. We observed a strong reduction of polyunsaturated fatty acid
lipoxygenase (ALOX15) levels in the diabetic lung. Moreover, targeted lipidomics
demonstrated reduced levels of inflammatory lipid mediators produced by ALOX15.
This points to an imbalance in pro- and anti-inflammatory milieu in the diabetic lung
which may contribute to frequently observed increased prevalence of infections in

diabetic patients.
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ABSTRACT

Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus.
However, the molecular mechanisms of these pulmonary complications have not yet
been characterized comprehensively. To systematically study the effects of insulin
deficiency and hyperglycaemia on lung tissue, we combined proteomics and
lipidomics with quantitative histomorphological analyses to compare lung tissue
samples from a clinically relevant pig model for mutant INS gene induced diabetes of
youth (MIDY)) with samples from wild-type (WT) littermate controls. Among others, the
level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung

injury, was significantly elevated. Furthermore, key proteins related to humoral
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immune response and extracellular matrix (ECM) organization were significantly
altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as
indicated by a 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15
levels, associated with corresponding changes in the levels of lipids influenced by this
enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels
and an associated lack of eicosanoid switching as mechanisms contributing to a

proinflammatory milieu in the lungs of subjects suffering from diabetes mellitus.

Keywords: Diabetes, biobank, insulin deficiency, lipidome, lipoxygenase, lung, pig

model, proteome
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ABBREVIATIONS

12-HETE, 12-hydroxyeicosatetraenoic acid; 14,15-DiHETE, 14,15-
dihydroxyeicosatetraenoic; 14-HDHA, 14-hydroxydocosahexaenoic acid; 5,6-
DIHETE, 5,6-dihydroxyeicosatetraenoic acid; AA, arachidonic acid; AGC, automatic
gain control; ALOX15, polyunsaturated fatty acid lipoxygenase; APOA4,
apolipoprotein A4; ASPN, asporin; C6, complement component C6; CES1, carboxylic
ester hydrolase; CIA, co-inertia analysis; COPD, chronic obstructive pulmonary
disease; CTGF, connective tissue growth factor; DAB, 3,3’-diaminobenzidine
tetrahydrochloride dihydrate; DHA, docosahexaenoic acid; DIA, data-independent
acquisition; ECHDC1, ethylmalonyl-CoA decarboxylase 1; ECM, extracellular matrix;
EPA, eicosapentaenoic acid; FABP4, fatty acid-binding protein 4; LA, linoleic acid;
LOOCV, leave-one-out cross-validation; LOX, lipoxygenase; LTA4, leukotriene A4;
LTA4H, leukotriene A(4) hydrolase; LTB4, leukotriene B4; MIDY, mutant INS gene
induced diabetes of youth; NCE normalized collision energy; PBS, phosphate-buffered
saline; PCA, principal component analysis; PUFA, polyunsaturated fatty acid;
SFTPA1, surfactant-associated protein A; SLRP, small-leucine-rich-proteoglycan;
STZ, streptozotocin; SULT1E1, oestrogen sulfotransferase; TGFB1, transforming
growth factor beta 1; WT, wild-type; a-LA, alpha-linolenic acid; y-LA, gamma-linolenic

acid.



Section B: Investigation of the effect of hyperglycaemia on lung
74

INTRODUCTION

Diabetes mellitus alongside its associated complications has emerged as a global
health problem whose prevalence has increased over the past decades. Diabetes
causes profound long-term molecular effects on multiple tissues and organs.
Traditionally, the chronic complications of diabetes are classified as macro- and
microvascular complications [1]. The rich vascularization of the lungs and the
abundance of connective tissue suggest that it may be affected by diabetic
microvascular damage [2]. The pathophysiology of pulmonary symptoms in diabetes
is complex and so far not clearly understood. In addition, pulmonary damage is mostly
subclinical and therefore difficult to detect [2]. Multiple studies have pointed to various
pulmonary complications in diabetes (reviewed in [2-4]). In particular, an increased
susceptibility to respiratory infections is frequently observed in the context of diabetes.
Since the respiratory tract is constantly exposed to pathogens, normal functioning of
defence mechanisms is crucial to protect the lung. Higher hospitalization and mortality
rates were observed in diabetic patients with viral or bacterial infections such as
influenza [5], COVID-19 [6], and others. Additionally, diabetes significantly increases
mortality rates in patients with idiopathic pulmonary fibrosis [7]. Furthermore,
individuals with diabetes are at increased risk of developing further pulmonary
conditions such as asthma, pulmonary fibrosis, and chronic obstructive pulmonary

disease (COPD) [8].

So far, the research focus was mainly on epidemiological associations between
diabetes and impaired lung function. However, for prevention and intervention
strategies, understanding the underlying molecular mechanisms is crucial. Several

rodent models have been established and provided valuable insights into the onset
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and progression of diabetes [9]. Streptozotocin (STZ)-induced pancreatic injury in
rodents is commonly used as a model of type 1 diabetes [10]. However, the
confounding effects of STZ especially on the immune system [11] complicate the
interpretation of the findings. Furthermore, rodents frequently lack clinical relevance
due to fundamental physiological differences from humans. We thus investigated lung
samples from INS®®*Y transgenic pigs, a tailored large animal model for mutant INS
gene induced diabetes of youth (MIDY), characterized by impaired insulin secretion,
B-cell loss, and chronic hyperglycaemia [12], and lung samples from wild-type (WT)
littermate controls. Hyperglycaemia alone or the time of exposure to hyperglycaemia
in MIDY pigs may not be sufficient to induce severe diabetic complications [13].
However, MIDY pigs develop diabetes-related alterations in various tissues including
myocardium [14], retina [15], immune cells [16], liver [17], and adipose tissue [13, 18].
Although the full spectrum of complications as observed in humans is not described in
porcine models, they are becoming increasingly important in diabetes research to
bridge the gap between proof-of-concept studies in rodents and clinical trials [19, 20].
MIDY pigs exhibit a stable diabetic phenotype without further manipulation because of
a specific clinically relevant impairment of B-cells [12, 21]. The pig is a valuable model
in the context of respiratory medicine, as porcine and human lungs share many
anatomic, histological, biochemical, and physiological characteristics [22].
Furthermore, functional similarities of the porcine host defence proteins with their
human counterparts make the pig an excellent model to study the pathogenesis of

respiratory inflammation [23].

In the present study, data-independent acquisition-based proteomics and targeted

analysis of relevant lipid molecules were performed on lung tissue samples from the
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Munich MIDY pig biobank [24] to systematically address pulmonary changes in
response to chronic insulin deficiency and hyperglycaemia. Additional
immunohistochemical and quantitative morphological analyses were carried out to

localize differentially abundant key molecules in their pathophysiological context.

RESULTS
Overview of proteome differences

To investigate the molecular effects of chronic insulin deficiency and hyperglycaemia
on the lung tissue proteome, we performed a label-free liquid chromatography-tandem
mass spectrometry (LC-MS/MS) analysis of lung samples from MIDY and WT animals.
Using a data-independent acquisition (DIA) (Figure 1A), we identified 45,411 distinct
peptides from 5,465 protein groups with high confidence (false discovery rate < 0.01)
(Tables S1-2). The dataset has been submitted to the ProteomeXchange Consortium
via the PRIDE partner repository (PXD038014). Quantitative analysis using MS-
EmpiRe workflow detected 265 proteins changed in abundance between MIDY versus
WT with Benjamini—-Hochberg corrected p-value < 0.05 (Table S3), out of which 61

proteins were changed in abundance by at least 1.5-fold (Figure 1B).

The protein with the highest abundance increase (3.6-fold) in MIDY lung was
ethylmalonyl-CoA decarboxylase 1 (ECHDC1). Likewise, other proteins involved in
lipid catabolic processes, such as oestrogen sulfotransferase (SULT1E1), fatty acid-
binding protein 4 (FABP4), apolipoprotein A4 (APOA4), and carboxylic ester hydrolase
(CES1), were elevated. Furthermore, members of the small-leucine-rich proteoglycan

(SLRP) family were more abundant in MIDY versus WT samples. The most prominent
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was asporin (ASPN) with a 1.9-fold increase. In addition, SLRP levels were correlated
significantly (Figure S1). Pulmonary surfactant-associated protein A (SFTPA1) was

also elevated in MIDY lungs (Benjamini—-Hochberg corrected p-value = 0.005).

One of the most prominently reduced proteins in MIDY lung (2.6-fold) was
polyunsaturated fatty acid lipoxygenase ALOX15 (ALOX15). Several members of the
complement and coagulation cascades were also reduced, of which complement
component C6 (C6) was the most pronounced with a 1.8-fold decrease. A large
fraction of differentially abundant proteins in MIDY compared to WT pigs were ECM
proteins. We classified these proteins into the following groups: secreted factors,
proteoglycans, ECM regulators, ECM glycoproteins, ECM-affiliated proteins, and
collagens (Figure 1C). Similarly, proteins involved in the biological processes and

pathways related to insulin homeostasis are visualized in Figure S2.

Furthermore, to functionally characterize proteome alterations between MIDY versus
WT, a pre-ranked gene set enrichment analysis using STRING was performed. The
detailed results of the enrichment analysis are provided in Table S4 and are visualized
in Figure 1D. Gene sets, like acute-phase response, regulation of humoral immune
response, blood coagulation, regulation of phagocytosis, platelet degranulation, cell
killing, and humoral immune response, were enriched among the proteins decreased
in abundance, whereas proteins related to keratan sulfate biosynthetic process,
cornification, glycosaminoglycan biosynthetic process, and intermediate filament
cytoskeleton organization were enriched among the upregulated proteins. An
enrichment of proteins related to lipid storage, mucopolysaccharide metabolic
process, and aminoglycan metabolic process was simultaneously found in the sets of

more and less abundant proteins.
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Protein localization studies and quantitative stereology

In lung tissue sections of MIDY and WT pigs, ALOX15 immunoreactivity was present
in mononuclear cells within alveolar walls and inside the vascular lumina (Figure 2A,
B). Confirming the significantly reduced ALOX15 protein levels in the MIDY lung tissue
identified by proteomic analysis, quantitative stereological analysis revealed a
significantly decreased volume density of ALOX15-positive cells within the lung tissue
(Figure 2C). The volume density of interstitial connective tissue in the lung tissue
(excluding air-filled spaces) of MIDY pigs was slightly increased (p-value = 0.19) as

compared to WT animals (Figure S3).
Overview of lipidome differences

To clarify if the markedly reduced levels of ALOX15 in the MIDY animals affect the
total level of eicosanoids, we used mass spectrometry-based targeted lipidomics and
compared eicosanoid levels from MIDY and WT lungs. The results are shown in Table
S5. A global correlation map of all quantified eicosanoids is shown in Figure 3A and in
Table S6. Hierarchical clustering revealed several clusters of molecules that share the
same biosynthetic pathway and show a similar regulation trend across animals.
Hierarchical clustering revealed four homogenous regions, of which one, consisting of
lipids produced mainly by a lipoxygenase (LOX) pathway, was particularly interesting.
Magnification of this cluster (Figure 3A, right inset) shows a heatmap of lipids with
strong correlation to each other, and some of these correlations remained significant
after adjusting for all pairwise comparisons using the Benjamini-Hochberg method.
Focusing on the hypothesis of eicosanoid co-regulation in the MIDY lung, we
visualized highly correlated (JRho| > 0.8) lipids as a network (Figure 3B, C). The

community detection algorithm revealed several densely populated sub-networks. To
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visualize whether distinct communities contain lipids that share the same biosynthetic
pathway, we coloured the nodes according to the substrate (Figure 3B) and enzyme
(Figure 3C). In agreement with Figure 3A, dense clusters with strong associations
across biomolecule classes were apparent. Figure 3C further shows a network for the
selected community with significantly (Rho > 0.8 and Benjamini—-Hochberg corrected
p-value < 0.05) correlated lipids. Figure 3D shows the trend of reduced eicosanoid
levels in MIDY compared to WT lungs, from the selected cluster (1 in Figure 3A, 2 in
Figure 3C). Next, a principal component analysis was performed on the entire data set
(Figure 4A), which indicated moderate clustering of MIDY from the WT animals.
Furthermore, some of the PUFA precursors in a free state were quantified (Figure 4C,

Table S8).
Multi-omics data integration

For multi-omics data integration co-inertia analysis (CIA) [25] was used. Graphical
representation of samples (Figure 5A) and variables (Figure 5B) on a lower-
dimensional space allows interpretation of global variance structure and identification
of the most informative biomolecules across datasets. CIA of proteome (circle) and
lipidome (square) revealed a significant relationship (RV = 0.78, 500 permutation, p =
0.041). The corresponding score plot shows the proteins and lipids responsible for
partitioning MIDY and WT samples on the CIA plot. Although not displaying clear

clusters, the CIA showed trends towards separation of MIDY and WT samples.
DISCUSSION

To reveal biological processes and pathways altered by insulin-deficiency in the lung

and to identify molecular key drivers of these alterations, a multi-omics analysis
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combining in-depth data-independent acquisition proteomics, and quantitative

readouts of relevant lipid molecules was performed.

The crucial lipid-protein mixture that reduces alveolar surface tension and facilitates
breathing is pulmonary surfactant [26], which covers the entire alveolar surface of the
lungs [27]. Defects in the stimulation of pulmonary surfactant production have been
observed in various medical conditions such as COPD [28] and idiopathic pulmonary
fibrosis [29]. These defects might also be contributing factors to airway dysfunction in
diabetes [30]. Surfactant proteins leak from the alveolar space into the bloodstream,
when the alveolar-capillary barrier is damaged, which makes them useful biomarkers
for lung injury [31]. We detected a ~50% increase of the pulmonary surfactant-
associated protein A (SFTPA1 alias SP-A) in MIDY compared to WT pig lungs
(Benjamini-Hochberg-adjusted P-value 0.005). SP-A is the major protein component
of surfactant and regulates surfactant phospholipid synthesis, secretion, and recycling
[32]. Insulin is known to inhibit expression of the SP-A in the lung [33, 34], therefore
increased abundance of SP-A in our study is in line with insulin deficiency in MIDY
pigs. The clinical relevance of our finding is supported by a randomized population-
based study revealing elevated circulating SP-A levels in the blood of patients with
glucose intolerance and diabetes [35]. SP-A levels were also elevated in the lung of
obese diabetic rats compared to lean nondiabetic control [30]. The observed increased
abundance of SP-A in the MIDY model may reflect the diabetes-associated
impairment of pulmonary diffusing capacity reported in children and adolescents with

type 1 diabetes [2].

Besides pulmonary surfactant, the composition and function of lung ECM also become

markedly deranged due to pathological tissue remodelling in diabetes mellitus [36].
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Excessive production of ECM components and nonenzymatic glycation of ECM
proteins due to hyperglycaemia lead to matrix stiffening, remodelling the lung tissue
structure and promoting pulmonary fibrosis. Secreted factors such as transforming
growth factor beta 1 (TGFB1) and connective tissue growth factor (CTGF alias CCN2)
are the notorious pro-fibrotic agents involved in the initiation and progression of
pulmonary fibrosis [37]. Elevated levels of TGFB1 were found in the lungs of STZ-
induced diabetic rats and were associated with pulmonary fibrosis [38]. However, in
the MIDY lung, the abundance of TGFB1 was not increased, and CTGF was even
reduced by 1.7-fold (Benjamini-Hochberg corrected p-value = 0.01). The absence of
a pro-fibrotic environment in the MIDY lung might be related to the elevated levels of
small leucine-rich proteoglycans (SLRPs), which modulate the expression and activity
of TGFB1 and CTGF and could therefore potentially protect the tissue against their
deleterious effects [39]. Furthermore, SLRP levels were correlated significantly and
together, SLRPs could counteract the vicious cycle observed previously in the diabetic
lung, being characterized by elevated production of the pro-fibrotic growth factors and
increased matrix deposition. In line with this, analysis of histological lung tissue
sections from MIDY and WT pigs did not reveal evidence of fibrosis in the MIDY lung.
Levels of different members of SLRP were also elevated in other diabetic conditions
such as human diabetic nephropathy [40], diabetic foot ulceration [41], type 2 diabetes
and obesity [42]. In the case-cohort study, decorin — one of the best characterized
SLRP - was selected as one of the most important biomarkers for type 2 diabetes
prediction [43]. Furthermore, the occurrence of sterile inflammation, characterized by
a low-grade inflammatory response, is considered to contribute to pulmonary
complications in hyperglycaemic conditions. Reduced complement system activity and

humoral immunity associated with a reduced response of specialized immune cells
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increase the risk of infections in diabetic patients [44]. In line with this, gene set
enrichment analysis of proteomics data from the MIDY lung revealed proteins related
to the regulation of the humoral immune response to be the most overrepresented in
the set of downregulated proteins (among others, serpin family A members,
complement and coagulation proteins). In line, a proteomics study of human type 1
diabetes serum revealed dysregulation of proteins involved in innate immune
responses and in the activation cascade of complement [45]. Taken together, the
humoral immune response seems to be compromised in the MIDY lung, potentially

worsening the defence response.

A particularly novel and interesting finding of this investigation is a prominent, 2.5-fold
downregulation of polyunsaturated fatty acid lipoxygenase ALOX15 in the MIDY lung.
Alterations in ALOX15 regulation have been observed in various cardiovascular, renal,
neurological, and metabolic disorders (reviewed in [46]). Although ALOX15
orthologues are known for several decades, their biological role is still under
discussion. Like other lipoxygenases, ALOX15 is involved in the metabolism of
polyunsaturated fatty acids (PUFAs) to form biologically active lipid mediators. The
physiological substrates of ALOX15 are linoleic acid (LA), alpha-linolenic acid (a-LA),
gamma-linolenic acid (y-LA), arachidonic acid (AA), eicosapentaenoic acid (EPA), and
docosahexaenoic acid (DHA). In the lung, ALOX15 products can stimulate or resolve
inflammation and stimulate tissue repair [47]. A recent review highlighted the
importance of ALOX15 in the formation of key lipid mediators to terminate
inflammation during lung cancer in humans [48]. The strong downregulation of
ALOX15 in the MIDY lung seems to be indicative of a disturbed immune response.

Besides, leukotriene A(4) hydrolase (LTA4H) was moderately elevated in the MIDY
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lung. LTA4H converts leukotriene A4 (LTA4) to leukotriene B4 (LTB4) and therefore
plays an important role in the generation of pro-inflammatory leukotrienes. A shift from
the leukotriene to the lipoxin production, also known as eicosanoid class switching, is
necessary to resolve inflammation and to prevent the progression to chronic
inflammation [49]. The inverse regulation of LTA4H and ALOX15 therefore possibly
indicates the unbalanced production of pro-inflammatory lipid mediators. This agrees
with the observed dysregulation of proteins related to humoral immune response in
the MIDY lung discussed above. Furthermore, the lipidomics dataset showed a trend
lower levels of lipoxygenase products in the MIDY lung, which is concordant with the
strongly reduced protein levels of ALOX15. Eicosanoid levels derived from the
lipoxygenase pathway were strongly correlated suggesting an orchestrated co-
regulation of these molecules. The most pronounced from these molecules were
downregulation of 14-HDHA and 12-HETE. 12-HETE, which can be produced by
ALOX15, is known to have pro- and anti-inflammatory effects [50]. 14-HDHA, which
was reduced by ~2.2-fold, is produced through the ALOX15-catalyzed oxygenation of
docosahexaenoic acid (DHA) and is the key precursor of maresin, an anti-
inflammatory lipid mediator [50]. Taken together, strongly reduced ALOX15 and
associated eicosanoid levels reflect imbalanced production of pro- and anti-
inflammatory mediators in the MIDY lung and provide molecular insights into the

impoverished ability of inflammation resolution as a hallmark of diabetes lung disease.

In conclusion, this is the first multi-omics characterization of lung tissue in a clinically
relevant large animal model of insulin-deficient diabetes mellitus. The fact that — for
logistic reasons - only female pigs could be maintained for two years represents a

limitation of this study. Another limitation of the study is the relatively small group size,
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which may explain that some of the findings are trends close to the significance
threshold. However, combination of multiple layers of molecular information with
rigorous statistical and bioinformatic approaches revealed novel functional
consequences of insulin deficiency for the lungs. The generated datasets further
provide an important resource for future studies on the progression of pulmonary

complications and other associated comorbidities in diabetes mellitus.
MATERIALS AND METHODS

Proteomics

Sample Preparation

Frozen lung tissue samples were washed briefly in ice-cold phosphate-buffered saline
(PBS) supplemented with protease inhibitors (Roche Diagnostics, Mannheim,
Germany). Samples were snap-frozen in liquid nitrogen and transferred into prechilled
tubes and cryo-pulverized in a CP02 Automated Dry Pulverizer (Covaris, Woburn, MA,
USA) using an impact level of five according to the manufacturer’s instructions.
Powdered tissue was lysed in 8 M urea/0.5 M NH4HCO3 supplemented with protease
inhibitors (Roche Diagnostics, Mannheim, Germany) by ultrasonicating (18 cycles of
10 s) using a Sonopuls HD3200 (Bandelin, Berlin, Germany). Pierce 660 nm Protein
Assay (Thermo Fisher Scientific, Rockford, IL, USA) was used for protein
quantification. 20 ul of lysate containing 50 ug of protein was processed for digestion.
Briefly, disulfide bonds were reduced (45 mM dithiothreitol/20 mM tris(2-carboxyethyl)
phosphine, 30 min, 56°C) and cysteine residues were alkylated (100 mM
iodoacetamide, 30 min, room temperature), followed by quenching of excess
iodoacetamide with dithiothreitol (90 mM, 15 min, room temperature). Proteins were

then digested sequentially, firstly, with Lys-C (FUJIFILM Wako Chemicals Europe
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GmbH, Neuss, Germany) for 4 h (1:50 enzyme to protein ratio) and subsequently with
modified porcine trypsin (Promega, Madison, WI, USA) for 16 h at 37°C (1:50 enzyme
to protein ratio). Peptides were then desalted using a Sep Pak C18 cartridge (Waters,
Milford, MA) according to the manufacturer’s instructions. The SepPak eluents were

dried before analysis using a vacuum centrifuge.

Nano-liquid chromatography tandem mass spectrometry analysis

1 pg of the digest was injected on an UltiMate 3000 nano-LC system coupled online
to a Q-Exactive HF-X instrument (Thermo Fisher Scientific) operated in the data-
independent acquisition (DIA) mode. Peptides were transferred to a PepMap 100 C18
trap column (100 ymx2 cm, 5 uM particles, Thermo Fisher Scientific) and separated
on an analytical column (PepMap RSLC C18, 75 pymx50 cm, 2 ym particles, Thermo
Fisher Scientific) at 250 nL/min with an 80-min gradient of 5-20% of solvent B followed
by a 9-min increase to 40%. After gradient, the column was washed with 85% solvent
B for 9-min, followed by 10-min re-equilibration with 3% solvent B. Solvent A consisted
of 0.1% formic acid in water and solvent B of 0.1% formic acid in acetonitrile. The Q-
Exactive HF-X instrument was configured to acquire 50 x 12 m/z-wide (in the range of
400-1000 m/z) precursor isolation window DIA spectra (15,000 resolution, AGC target
1e6, maximum inject time 20 ms, NCE 27) as described in [51, 52] using a staggered
window pattern [53] with window placements optimized by Skyline software (v. 21.1)
[54]. Precursor spectra (in the range of 390-1010 m/z, 60,000 resolution, AGC target
1e6, max IIT 60 ms, +3H assumed charge state) were interspersed among every 50
ms/ms spectra. Chromatogram libraries using gas-phase fractionation [55] was built

using the same LC settings. Six injections of pooled digest were performed with 25 X
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4 m/z-wide DIA (30,000 resolution, AGC target 16 maximum inject time 55 ms, NCE
27, +3H assumed charge state) using a staggered window pattern with window
placements optimized by Skyline software (v. 21.1) (i.e. 400.43-502.48, 500.48-
602.52, 600.52-702.57, 700.57-802.61, 800.61-902.66, 900.66-1002.70), producing
300 x 2 m/z-wide windows spanning from 400 to 1000 m/z after deconvolution. Table

S9 contains the actual windowing schemes.

Identification, quantification and bioinformatics

Raw data processing was carried out using DIA-NN (v1.8) [56]. Identification was
based on predicted spectral libraries generated by DIA-NN’s built-in deep-learning-
based spectra and retention time predictor and further constrained by experimental
data from project-specific gas-phase fractionation-based library (also generated by
DIA-NN). For all searches, the Sus scrofa protein database (UniProt Reference
Proteome — Taxonomy 9823 — Proteome ID UP000008227 — last modified June 16,
2021, 49,792 entries) alongside the MaxQuant contaminants fasta file [57] were used.
The enzyme for digestion was set to trypsin and one missed cleavage was allowed.
Only peptides with a charge state of +2, +3, and +4 were considered. Cysteine
carbamidomethylation was set as a fixed modification. The precursors were filtered at
1 % false discovery rate. Retention time correction was performed automatically by
DIA-NN and quantification strategy was set to Robust LC (high accuracy mode).
Similarly, mass tolerance was determined automatically by DIA-NN as described in
[56] and was set to 8 ppm and 20 ppm for MS1 and MS2, respectively. The top 6
fragments (based on their reference library intensities) were used to calculate raw

intensities for precursors. The “Genes” column was used to count unique proteins (as
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gene products identified and quantified using proteotypic peptides only). All other
settings were left default. Table S10 contains detailed description of DIA-NN
parameters used in this study. DIA-NN’s main output containing precursor level data
was used for the downstream analysis in R [58] using custom scripts. Briefly, the
output was filtered at 1% false discovery rate, using experimental-wide g-values for
protein groups and both experimental-wide and run-specific g-values for precursors.
Non-proteotypic peptides, peptides with a low signal quality and peptides derived from
potential contaminants were excluded from further analysis. Precursor intensities for
different charge states were aggregated to peptide level by taking the sum of
intensities. Peptide intensities were normalized and proteins with at least two unique
peptides detected in at least three biological replicates of each condition were tested
for differential abundance using the MS-EmpiRe algorithm [59]. The STRING pre-
ranked gene set enrichment analysis [60] was used to reveal biological pathways
associated with differentially abundant proteins between MIDY and WT. Signed log-
transformed p-values were used as ranking metrics and false discovery rate was
controlled at 5%. To minimize redundancy, significant Gene Ontology (GO) biological
processes were grouped into similar ontological terms with REVIGO [61] at an allowed

similarity of 0.7.
Targeted lipidomics

Sample preparation for analysis of polyunsaturated fatty acid-derived lipid mediators

and metabolites

An antioxidant cocktail consisting of BHT (CAS 128-37-0), Indomethacin (CAS 53-86-
1) and TPPU (CAS 1222780-33-7) was added to 10-30 mg of the thawed tissue

sample, to protect the sample from oxidation during sample preparation. Additionally,
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an deuterated internal standard mix consisting of: 14,15-DHET-d+1, 15-HETE-ds, 20-
HETE-ds, 8,9, EET-d11, 9,10-DiHOME-d4, 12(13)-EpOME-d4, 13-HODE-d4, PGB2-ds,
LTB4-d4 100 pg each (Cayman Chemical, Ann Arbor, USA) was spiked in. Methanol
and sodium hydroxide were added for protein precipitation and alkaline hydrolysis at
60 °C for 30 minutes. After solid phase extraction, the eluate was evaporated [62] to
obtain a solid residue which was dissolved in 100 uyL methanol/water. The residues
were analysed using an Agilent 1290 HPLC system with binary pump, multi-sampler
and column thermostat with a Zorbax Eclipse plus C-18, 2.1 x 150 mm, 1.8 ym column
using a gradient solvent system of aqueous acetic acid (0.05%) and acetonitrile /
methanol 50:50. The flow rate was set at 0.3 mL/min, the injection volume was 20 pL.
The HPLC was coupled with an Agilent 6495 triple quadrupole mass spectrometer
(Agilent Technologies, Santa Clara, USA) with electrospray ionization source.
Analysis was performed with Multiple Reaction Monitoring in negative mode with at
least two mass transitions for each compound. All oxylipins were individually calibrated
using authentic standards purchased from Cayman Chemical (Ann Arbor, USA) in
relation to deuterated. Certified MaxSpec® quality was used if available. If not, the
uncertified standards have been adapted to MaxSpec® standards of similar

compounds.

Sample preparation for analysis of oxylipin precursors

All compounds were purchased from Cayman Chemicals.
Preparation of tissue samples and quality controls:

Porcine lung tissue samples were weighted into homogenization tubes with ceramic
beads (1.4 mm) (Bertin PO00933-LYSKOA tubes). To each 1 mg of frozen porcine lung

tissue 3 uL of a cooled mixture (4 °C) of ethanol/phosphate buffer (85:15, v/v) were
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added. Tissue samples were homogenized using a Precellys® 24 homogenizer
(PEQLAB Biotechnology GmbH, Germany) three times for 30 s at 5,500 rpm and 4
°C, with 30 s pause intervals to ensure constant temperature. 30 pL (equivalent to 10
mg) of the lung homogenates were transferred into a 1.5 mL Eppendorf tube. QC pool
samples were prepared in triplicates by taking out 20 pL from each study sample. The
pool sample was subsequently mixed and 30 pL were transferred into 1.5 mL

Eppendorf tubes.

QC reference samples were prepared in triplicates in 1.5 mL Eppendorf tubes by
mixing 5 uL of the standard mixture (300 ng/mL) with 45 uL of water. Blank (triplicate)
and zero (single) samples were prepared by transferring 30 uL of ethanol/phosphate
buffer (85:15, v/v) into 1.5 mL Eppendorf tubes. Calibrators were prepared in 1.5 mL
Eppendorf tubes by successive dilutions (factor 3) in water/MeOH (50:50, v/v) of the
calibration mixture (2000 ng/mL) to reach 9 calibrator points (cal.): 666.67 ng/mL (cal.
09) to 0.102 ng/mL (cal. 01). 30 pL of each cal. was then transferred to a new 1.5 mL

Eppendorf tube.

Every tube was pre-cooled in wet ice before starting sample preparation and kept on

wet ice all along the extraction procedure.

For accurate quantification, 10 pyL of ISTD mixture (50 ng/mL) were added to the

samples, except zero sample.
Extraction procedure:

For lipid extraction, 150 uL of cold MeOH (-20 °C) were added to the samples followed
by incubation for 10 min with vortexing every 3 min. Protein precipitation was

performed by centrifugation of the samples at 10,000 x g for 15 min at 4 °C. The
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supernatant (around 150 pL) was transferred to a 1 mL NuncTM 96-well polypropylene
plate (ThermoFisher), and the volume was adjusted with water to reach 1 ml (final
MeOH concentration of 15%) and mixed up. Solid phase extraction was then
performed with a Strata-X Micro 96-well plate, 33 ym, 2 mL (Phenomenex) using a
positive pressure-96 processor (Waters). After SPE plate conditioning with 2 x 0.5 mL
MeOH and then 2 x 0.5 mL water, 2 x 0.5 mL of each sample were loaded on the SPE
plate. After rinsing with 2 x 0.5 mL 10% MeOH in water (v/v) the analytes were eluted
with 2 x 100 yL MeOH into a new 1 mL 96-well plate. Samples were transferred to a
select-a-vial 96-well plate with 300 pL glass inserts (Analytical Services) and
evaporated to dryness at 30 °C with nitrogen gas. Analytes were resuspended with 30
ML 50% MeOH in water (v/v), vortexed, and centrifuged for some seconds at 1000 x g

before direct injection into the analytical system.
LC-MS/MS analysis

All samples were measured with an Exion UHPLC-system coupled to a QTRAP 6500+
mass spectrometer (SCIEX, Darmstadt, Germany) operated with Analyst 1.6.3.
Chromatographic separation was achieved using a Kinetex C18 reversed phase
column (1.7 um, 100 x 2.1 mm, Phenomenex) with a SecurityGuard Ultra Cartridge
C18 (Phenomenex) precolumn, heated at 40 °C. Mobile phases A, water:ACN (70:30,
v/v) + 100 uL AA, and B, ACN/IPA (50:50, v/v) were used with gradient program with
an isocratic flow rate of 500 yL/min as follow: 0% B at 0 min, 70% B at 6.5 min, 100%
B at 7.8 min, 100% B at 9.5 min, and 0% B at 11 min. The autosampler was operated

at 4 °C with an injection volume of 10 pL of sample.

The coupled mass spectrometer was equipped with an electrospray ionization (ESI)

Turbo-VTM source set to negative mode. Source parameters were optimized to the
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following values: source temperature 500 °C, curtain gas flow 40 psi, ionspray voltage
—4000 V, ion source gas 1 50 psi, ion source gas 2 40 psi. Metabolites were analyzed
via scheduled multiple reaction monitoring (sSMRM) with nitrogen as collision gas. All
MRM transitions were optimized for each compound, as well as the source parameters
such as declustering potential, collision energy, cell exit potential and entrance
potential. The sSsMRM detection window was set to 60 s. Acquisition time was about 8.5

min.

SciexOS software version 2.2.0.5738 (Sciex) was finally used for peak detection,
integration and for quantitation of compounds (MQ4 algorithm). For quantification,
linear calibration curves were generated from extracted calibrator samples for every
compound via the IS method using the area ratio between the analyte and its ISTD,

with a weighting factor of 1/x.

Bioinformatics

Principal component analysis (PCA) was performed to discover natural grouping
existing in the data. PCA was built on log-transformed data using prcomp function from
R package stats [58]. To reveal eicosanoid subclasses with a similar regulation
pattern, correlation analysis with rank-based approach (Spearman correlation) was
employed. The significance of correlation (p-value) was corrected for all pairwise
comparisons with Benjamini-Hochberg procedure using R package psych [63]. The
correlation matrix was first subjected to hierarchical clustering using complete linkage-
clustering as the clustering method and the Spearman correlation as the distance
measure [64]. The resulting heatmap was partitioned into four different clusters using

the k-means algorithm. A correlation matrix was also visualized as a network using R
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package igraph [65]. Community detection was performed using the walktrap
algorithm which attempts to find densely populated subnetworks by random walks [66].
Focusing on similarities between proteomics and lipidomics data, co-inertia analysis
(CIA) was performed using R package omicade4 [25], to assess global measures for
the co-variability of two datasets. The similarity between the two datasets was
evaluated with parameter RV, which is a multivariate extension of the Pearson
correlation coefficient. The significance of the RV coefficient was assessed with a

permutation test consisting of 500 iterations.
Histopathology, immunohistochemistry and quantitative morphological analyses

For qualitative and quantitative histomorphological analyses, paraffin sections stained
with haematoxylin and eosin or Masson's trichrome stain (connective tissue stain)
were examined. Immunohistochemical detection of ALOX15 was performed using
following antibodies: mouse monoclonal anti ALOX15 (clone OTI7H6, #TATA504358,
origene), followed by biotinylated goat-anti-mouse secondary antibody (#115-065-
146, Jackson ImmunoResearch) and horseradish peroxidase labelled avidin biotin
complex (#PK-6100, Vector Laboratories). Immunoreactivity was visualized using 3,3’-
diaminobenzidine tetrahydrochloride dihydrate (DAB). Sections stained with buffer
instead of the primary antibody were used as negative control. The volume density of
immunohistochemically ALOX15-positively labelled cells within the lung (VvaLox1s-
positive cells/lung)) Was determined following the principle of Delesse and calculated as the
sum of cross-sectional areas of ALOX15-positive cell profiles, divided by the sum of
cross-sectional areas of lung tissue (excluding air-filed spaces) in 48 + 2
systematically randomly sampled section areas per case. ALOX15-positive area

densities were determined by differential point counting, using an automated
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stereology system (VIS-Visiopharm Integrator System™ Version 3.4.1.0 with
newCAST™ software, Visiopharm A/S, Denmark), as previously described [17, 67]. In
each case, >100,000 points were counted. The volume density of interstitial
connective tissue within the lung (Vv(nterstitial connective tissue/lung)), Was determined
analogously in Masson-trichrome stained lung tissue sections (counting > 10,000
points per case). All quantitative morphological analyses were performed in a blinded
manner, i.e., without knowing the affiliation of the examined animals. Statistical
significance of the difference in the volume density of immunohistochemically
ALOX15-positively labelled cells and volume density of interstitial connective tissue in
the lung between MIDY and WT were evaluated using two-sample Mann-Whitney U

Test.
Statistical analysis

In this study, lung tissue samples collected by systematic random sampling [68] from
two-year-old female MIDY pigs (n=4) and female WT littermates (n=5) were used.
Tissues were shock-frozen on dry ice and stored at -80°C in the Munich MIDY Pig
Biobank [24] until analysis. During analysis, all samples were processed in parallel to
avoid possible bias related to different storage times. Histology and
immunohistochemistry were performed on lung tissue samples taken from the exactly
same locations as the proteomic and lipidomic analysis samples. All experiments were
performed according to the German Animal Welfare Act and approved by the
Government of Upper Bavaria, following the ARRIVE guidelines and Directive
2010/63/EU for animal experiments. All statistical analyses were performed in R [58].
Samples were analysed with a DIA method with MS1 spectra interspersed every 50

ms/ms scans. ldentification was performed using DIA-NN [56] and its built-in deep
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learning-based spectra and retention time predictor alongside project specific narrow-
window gas-phase fractionation-based library. A false discovery-rate cut-off of 1% was
applied on precursor and protein level. MS-EmpiRe workflow [59] followed by a
Benjamini-Hochberg multiple testing correction was used to reveal differentially
abundant proteins. Correlation between selected variables was evaluated using
Spearman correlation and resulting p-values were corrected for all pairwise

comparisons using Benjamini-Hochberg method.
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Figure 1. Quantitative proteome analysis of lung tissue from WT and MIDY pigs.
(A) Experimental design—lung tissue proteome from the MIDY and WT animals were
analysed using a multi-injection gas-phase fractionation data-independent acquisition
as described in [51, 56]. (B) Volcano plot visualization of proteome abundance
changes between MIDY and WT. Protein abundance changes with Benjamini—
Hochberg corrected p-value < 0.05, and fold-change = 1.50 in MIDY lung are coloured
in red and blue for downregulation and upregulation, respectively. (C) Abundance
change of proteins that are part of the extracellular matrix according to [70]. The colour
of the bubble corresponds to the log2 fold change of protein (red downregulation, blue
upregulation) and the size of the bubble indicates the significance of the protein
change. (D) Pre-ranked enrichment analysis using STRING with gene sets according
to gene ontology (GO) biological process databases was used to reveal processes
enriched in the top (downregulated) or bottom (upregulated) of a ranked list of genes.
Significantly enriched GO biological processes (false discovery rate < 0.05) were
summarized with REVIGO by grouping semantically similar ontology terms. Processes
related to down-regulated proteins (left column), up-regulated proteins (right column),
and simultaneously related to more and less abundant proteins (middle column) are
shown. The size of the bubble indicates the corresponding number of the quantified
proteins (referred genes mapped in the Figure) associated with the pathway, and
colour the significance of enrichment. Fold enrichment represents the magnitude of

over-representation.
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Figure 2. Immunohistochemical detection of ALOX15 in lung sections of WT (A)
and MIDY pigs (B). Histological landmarks (alveoli (a), blood vessels (v), bronchioli
(b)) are indicated. ALOX15-positive cells (dark brown colour) are present within
alveolar septae (arrowheads) and inside vascular lumina. Paraffin sections.
Chromogene: DAB, nuclear counterstain: haemalum. Size bar = 100 ym. (C) Volume
densities of ALOX15-positive cells within the lung of WT and MIDY pigs. Statistical
significance of the difference was assessed using the Mann-Whitney-U-test. The bar

diagrams show means and standard deviations.
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Figure 3. Correlation analysis of eicosanoid levels from WT and MIDY lung. (A)
Global correlation map of eicosanoid levels on the left with an inset of the selected
cluster (1) on the right. The correlation was estimated using the non-parametric
Spearman rank correlation coefficient. Red and blue patches in the correlation map
indicate positive and negative correlations, respectively. Columns and rows of the
heatmap are annotated for each lipid, based on the substrates and enzymes involved
in their production. The regulation column indicates the abundance change of
eicosanoids in MIDY versus WT. The correlation map was partitioned into
homogenous regions using the k-means method (k=4). The correlation map on the
right is labelled with an asterisk according to the significance (p-value) of the
correlation after multiple testing correction for all pairwise comparisons using the
Benjamini-Hochberg method. *p < 0.05; **p < 0.01; ***p < 0.001. (B, C) Correlation
between eicosanoid levels shown as a network. Each node corresponds to a single
lipid and edges are drawn between highly correlated (|JRho| > 0.8) molecules. Nodes
with dense connections were grouped using the random walk-based community
detection algorithm (coloured drawings around the group of nodes). The network with
nodes coloured based on a substrate (B) and enzyme (C), with an inset of the selected
community network (2) on the right that was filtered for the significant correlations
(Benjamini—Hochberg corrected p-value < 0.05). The edge thickness on the right
cluster (2) corresponds to the magnitude of the correlation (Rho) and the size of the
node to the number of its adjacent edges. AA, arachidonic acid; DHA,
docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; COX,
cyclooxygenase; CYP, cytochrome P450; LOX, lipoxygenase; NE, non-enzymatic. (D)

Eicosanoid levels from the selected clusters (1 in Figure 3A, 2 in Figure 3B) in MIDY
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versus WT. Statistical significance of the difference was assessed using the two-tailed

Welch’s t-test. The bar diagrams show means and standard deviations.
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Figure 4. Eicosanoid levels in lung tissue from WT and MIDY pigs. (A)
Unsupervised principal component analysis (PCA) based on log transformed lipid
levels from MIDY and WT animals. The first two principal components explained
67.4% of the total variance. (B) Volcano plot obtained from the univariate statistics

showing log2 fold change and two-tailed Welch’s t-test p-value. (C) PUFA precursor
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levels in a free state from MIDY and WT lungs. Statistical significance of the difference
was assessed using the two-tailed Welch'’s t-test. The bar diagrams show means and

standard deviations.
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Figure 5. Omics data integration. (A, B) Multiple co-inertia analysis of lipidome and
proteome data from the WT and MIDY lung showing the first two components in the
sample (A) and variable (B) space. Circles and squares represent the proteome and
lipidome data of a given animal, respectively. Short lines in the sample space (A)
indicate a higher cross-omics correlation. The RV coefficient (RV = 0.78, 500
permutation, p = 0.04) shows the correlation of two datasets. A RV close to 1 indicates
a strong correlation. Proteins and lipids with high scores in component 1 and

component 2 are labelled in a variable space (B).
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Figure S1. Multi-scatter plot of small-leucine rich proteoglycan levels in all animals
with regression line (black solid line) and confidence interval (grey area) (lower
triangle). Spearman correlation coefficient and the significance of the correlation (p-

value) is shown in the upper triangle. *p < 0.05; **p < 0.01; ***p < 0.001
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Figure S2. Abundance change of proteins (adjusted p-value < 0.05) related to
HP:0040214 (abnormal insulin level), HP:0031075 (abnormal response to insulin
tolerance test), HP:0008283 (fasting hyperinsulinemia), HP:0000855 (insulin
resistance), HP:0000831 (insulin resistant diabetes mellitus), GO:1900078 (positive
regulation of cellular response to insulin stimulus), GO:1900076 (regulation of cellular
response to insulin stimulus), GO:0061178 (regulation of insulin secretion involved in
cellular response to glucose stimulus), GO:0050796 (regulation of insulin secretion),
G0:0046626 (regulation of insulin receptor signaling pathway), GO:0035774 (positive
regulation of insulin secretion involved in cellular response to glucose stimulus),
GO0:0035773 (insulin secretion involved in cellular response to glucose stimulus),
GO0:0032869 (cellular response to insulin stimulus), GO:0032868 (response to
insulin), GO:0032024 (positive regulation of insulin secretion), GO:0030073 (insulin
secretion), GO:0008286 (insulin receptor signaling pathway), GO:0005158 (insulin
receptor binding). The color of the bubble corresponds to the log2 fold change of
protein (red downregulation, blue upregulation) and the size of the bubble indicates
the significance of the protein change. AGT, angiotensin 1-10; ANXA1, annexin;
APRT, adenine phosphoribosyltransferase; CAT, catalase; GNAI2, G protein subunit
alpha i2; GPD2, glycerol-3-phosphate dehydrogenase; GPLD1, glycosyl-
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phosphatidylinositol-specific phospholipase D; LMNA, prelamin-A/C; LMNB2, lamin
B2; NNT, proton-translocating NAD(P)(+)  transhydrogenase; PCK2,
phosphoenolpyruvate carboxykinase (GTP); RETN, resistin; SORBS1, sorbin and

SH3 domain containing 1.
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Figure S3. Detection and quantification of interstitial connective tissue in the
WT and MIDY lung. Masson’s trichrome-stained lung sections of MIDY (A) and WT
(B) pigs. Histological landmarks (alveoli (a), blood vessels (v), and bronchioli (b)) are
indicated. Connective tissue stains blue. Size bars: 100 ym. (C) Volume densities (in
%) of interstitial connective tissue in the lung (excluding air-filled alveolar spaces).
Statistical significance was assessed by the two-sample Mann-Whitney U Test. The

bar diagrams show means and standard deviations.
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4. Appendix
4 1. Presentations, and conference contributions

i. Gene Center retreat (Munich, June 2022)

Bachuki Shashikadze, Florian Flenkenthaler, Elisabeth Kemter, Jan B. Stockl,

Andreas Blutke, Simone Renner, Eckhard Wolf, Thomas Frohlich

Differential effects of insulin-deficient diabetes mellitus on Ilung tissue:

Multi-omics insights
ii. International Mass Spectrometry Conference (Maastricht, IMSC 2022)

Bachuki Shashikadze, Florian Flenkenthaler, Elisabeth Kemter, Jan B. Stockl,

Andreas Blutke, Simone Renner, Eckhard Wolf, Thomas Frohlich

Data-independent acquisition proteomics combined with targeted lipidomics reveals

unique molecular signatures of the lung in insulin-deficient diabetes mellitus
iii. DZD Workshop (Dresden, October 2022)

Bachuki Shashikadze, Evamaria O. Riedel, Florian Flenkenthaler, Simone Renner,
Dominik Schuttler, Sebastian Clauf3, Eckhard Wolf, Thomas Frohlich

Proteomic signatures of the heart in insulin-deficient diabetes mellitus

Bachuki Shashikadze, Libera Valla, Elisabeth Kemter, Simone Renner, Birgit
Rathkolb, Cornelia Prehn, Eckhard Wolf, Thomas Frohlich

Maternal hyperglycemia causes metabolic alterations in the liver of neonatal offspring

iv. Risk management, prevention and interventions in adversely affected

pregnancies (Rotterdam, December 2022)
Maternal hyperglycemia causes metabolic alterations in the liver of neonatal offspring
V. Gene Center seminar (Munich, June 2022)

Is the lung a target in diabetes? Proteomics insights from a transgenic pig model
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