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Summary 

 
 
 The purpose of this thesis is to describe how magnitude estimation 
enables path integration, which in turn provides a foundation for human 
navigation as a whole. This will be done over the course of four chapters, 
which are written to provide essential background concepts for two 
unpublished experiments conducted by the author. 
 
The first chapter will introduce the cognitive process known as path 
integration and explain a probabilistic approach to modeling its function. It 
will also clarify the essential role of Bayes’ Theorem and how we use 
modeling in the manuscripts to come. 
 
In Chapter 2, we introduce how Bayes’ theorem can be applied to the field of 
multimodal integration and, through the first manuscript, demonstrate how 
humans may combine optic flow with vestibular input when measuring 
angle. 
 
In the third chapter, we will extend the previously used Bayesian models to 
investigate how the biasing influence of Bayesian priors can differentiate 
between applied navigation strategies.  
 
Lastly, in Chapter 4 we will discuss the results from the two manuscripts, 
their interactions between each other, and what implications the results may 
have on our general understanding of navigation.  
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PREFACE  

 
 
If someone were to have asked me about navigation, before I became 
scientifically involved in the topic, my first thoughts would have inevitably 
involved western society’s historic journeys of exploration. I grew up with 
stories of the Oregon Trail, where countless souls adventured into the 
unknown wilderness of the now United States. Every day would have been a 
new environment, every landmark strange and devoid of context. In my 
fantasy, the only tools they had to guide themselves were the heavens, their 
memories, and the logical turnings of their mind. It was a story full of danger 
and excitement. However, most navigation that people do is significantly 
more mundane. To quote anthropologist Thomas Widlok, “They do not 
aspire to colonize the world and occupy places they’ve never visited. They are 
mobile but they are mobile in a restricted sense, they stay within a more or 
less defined cosmos., They are not going into unchartered territory. They are 
doing something quite different.” (O’Connor, 2019). 
 
When I did start researching navigation as a Master’s Student, I was focused 
on this dichotomy between familiar and foreign environments. For me, the 
latter represented a difficult and interesting navigational problem, whereas 
the former was an easy and trivial every-day task. In a familiar environment, 
mostly people follow oft-practiced routes to get to their destinations. People 
would also know many landmarks with established spatial relationships 
between them that would allow them to easily improvise novel paths. 
Whereas in a foreign environment, the navigation-relevant information is 
comparatively sparse. Even if one has a vague idea of the destination, they 
need to closely monitor how far they have walked and in which direction, so 
they can methodically approach their destination. This process of combining 
orientation and distance estimates to determine position is often called “path 
integration”, and although it is central to the more difficult problem of 
navigating unfamiliar environments, I would later find out that path 
integration is a fundamental process likely be involved in all navigation tasks.  
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CHAPTER 1: Introduction 

 
Path Integration 

 Some of the most well-known experiments on path integration were 
conducted on Saharan Desert Ants. The ants could reliably execute straight 
return paths to their home location after heavily circuitous outbound paths 
without being able to see their nest. Researchers revealed that the ants were 
integrating the distance traveled as measured by number of steps (Wittlinger 
et al., 2007), and their orientation in space using primarily the polarization 
of the surrounding light (Muller & Wehner, 1988). We know now that path 
integration is a ubiquitous skill in the animal kingdom (for an overview, see 
Shettleworth, 2010). A diverse array of animals have been shown to use PI 
including, but certainly not limited to: crabs, ants, honeybees, spiders, 
gerbils, mice, bats, birds, monkey, and humans (Aharon et al., 2017; Collett, 
2019; Fraser, 2006; Mittelstaedt & Mittelstaedt, 1982; Mittelstaedt & 
Glasauer, 1991; Moller & Görner, 1994; Muller & Wehner, 1988; Zeil & Layne, 
2002). Naturally, among this exceptionally wide array of organisms is also a 
wide array of senses that can be used to execute PI. For example in 
crustaceans, hydrostatic pressure receptors are used to estimate angular 
rotations (Fraser, 2006) and in mice the airflow past their whiskers can 
provide information about displacement (Savelli & Knierim, 2019). Based 
solely on the wide-spread adoption of path integration as a solution to 
navigating, it is clearly a beneficial strategy in an evolutionary context, 
though we cannot know how ancient the ability might be. 
 
In navigation research, path integration can be further subdivided into 
allothetic and idiothetic subtypes based on the information used to estimate 
orientation and distance. In idiothetic path integration (iPI), the navigator 
only uses self-motion information, which is sensory information produced 
because of the organism’s movement. In humans, this includes cues from 
internal sources, like the vestibular organ, proprioceptive pathways, and 
efference copies of motor commands. It also includes cues from external 
sources like optic flow, which is the movement of the visual scene across the 
retina due to self-motion. In allothetic PI (aPI), the navigator also uses the 
location of external landmarks like the sun, a specific star, or another distant 
object to further inform calculations. Due to noise accumulation, self-motion 
information alone is not sufficient to accurately estimate one’s position 
(Cheung & Vickerstaff, 2010) and, perhaps as a result, organisms always use 
allothetic PI if possible (Collett & Collett, 2000). In fact, the author is not 
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aware of any naturalistic situation during which an organism relies 
exclusively on iPI. What is therefore often done in order to study iPI in 
isolation, is to deprive the organism of all sensory information that might 
enable aPI (Fujita et al., 1990; Glasauer et al., 2002; Loomis et al., 1993; 
Wiener et al., 2010; Worchel, 1951). 
 
Sidebar: Allocentric vs. Egocentric Navigation 
The well-established sub-types of navigation called 
allocentric and egocentric navigation relate to the 
categorization of path integration into allothetic 
and idiothetic PI, and therefore deserve some 
background. 
 Allocentric navigation involves a map-like 
representation of space where objects and locations 
are defined relative to each other. This form of 
navigation is independent of the individual’s 
current location or orientation. It is akin to viewing 
a map where you can understand the ’spatial 
relationships between different landmarks, 
regardless of where you are on that map. This type 
of spatial representation is crucial for 
understanding complex environments and complex 
navigation behaviors like making shortcuts. For 
example, when you navigate a city using a map, you 
are relying on allocentric representations to 
understand how different streets and landmarks 
relate to each other, irrespective of your current 
position (Klatzky, 1998). 
 On the other hand, egocentric navigation is 
centered around the individual’s perspective. In 
this form of navigation, objects and locations are 
defined relative to the individual’s current position 
and orientation. It is like navigating based on what 
you see in front of you, where spatial relationships 
are understood in terms of your immediate 
surroundings. This type of navigation is crucial for 
immediate, short-term movements and actions. For 
instance, when walking a familiar path through a 

city and you know which direction to turn at each 
intersection based on your orientation when 
entering each intersection (Klatzky, 1998). 
 The interplay between allocentric and 
egocentric navigation is a subject of ongoing 
research. Studies have shown that these two 
systems are not mutually exclusive but rather work 
together to facilitate effective navigation. For 
example, while navigating a familiar environment, 
you might switch between an allocentric view 
(understanding the layout of the environment as a 
whole) and an egocentric view (navigating through 
immediate obstacles) (Gramann et al., 2010). 
 Interestingly, the preference for allocentric 
or egocentric navigation can vary among 
individuals and can be influenced by various 
factors, including age and cognitive abilities. 
Research has shown that while some individuals 
may predominantly rely on an allocentric strategy, 
others may prefer an egocentric approach. This 
variability can have implications for understanding 
spatial cognition in different populations, including 
in the context of aging and neurodegenerative 
diseases (Colombo et al., 2017). 
 In summary, allocentric and egocentric 
navigation represent two fundamental ways in 
which space is perceived and navigated. 
Understanding the interplay between these two 
types of spatial representations is crucial for a 
comprehensive understanding of navigation and 
spatial cognition.

 
A foundational framework 
 As opposed to being a capability which is conditionally applied based 
on the navigational problem at hand, humans perform path integration 
automatically during all movements, regardless of task relevance (May & 
Klatzky, 2000). Work with model organisms, specifically ants, suggest that 
such a constant estimation of position may provide a spatial framework for 
memorizing landmarks (Müller & Wehner, 2010), which would be 
immensely helpful in unfamiliar environments. Further evidence from 
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insects suggest that the use of path integration in familiar environments is 
still helpful in that it allows the navigator to tolerate changes made to known 
landmarks (M. Collett & Collett, 2000).  
 
In additional to experimental evidence, there are evidenced-based 
theoretical systems which outline how path integration could be used to 
construct map-like representations of complex spaces (Biegler, 2000; Wang, 
2016). In 2000, Robert Biegler published a well-supported theoretical 
description of how path integration could support navigation at varying 
levels of complexity, from simple homing to a system that could “provide [a] 
unified, internally consistent, metric representation [of space].” In his paper, 
a “path integrator” functions as an accumulator which can be reset upon 
reaching a goal location. Although homing can be explained by a single 
integrator with one goal, which is also the reset location, he posits that a path 
integrator with multiple goals and resetting locations would be ideally suited 
to creating cognitive maps. His argument is supported by evidence from 
model organisms, showing that rats and gerbils can remember multiple 
destinations while performing path integration and that they have been 
shown to reset path integration at multiple locations (Gothard et al., 1996; 
Griffin & Etienne, 1998). A simple example of one variant he presented would 
be if the navigator performed path integration from one landmark to another, 
thereby establishing a spatial relationship between the two, and then reset 
their integrator in preparation for the next exploration. 
 
Taking measurements 

 A prerequisite for path integration is the ability to accurately measure 
distances and angles. The first manuscripts presented in this Thesis will focus 
on two of the human senses required for idiothetic path integration (iPI) and 
the second manuscript will investigate iPI more holistically. Thus, in this 
section, I will outline the relevant types of self-motion information and 
describe the senses we use to measure them. 
 
The main types of sensory information used by humans during iPI are 
vestibular input, optic flow, and proprioception. Additionally, though not 
sensory in origin, efference copies from the motor cortex can also provide 
useful information regarding self-motion. The vestibular organ can measure 
both linear and angular accelerations using the otolith organs and the 
semicircular canals, respectively. Since, they are only sensitive to 
acceleration, then moving at constant velocity will not be differentiable from 
being stationary (Bear et al., 2007). Optic flow on the other hand (the 



 9 

movement of the visual environment through our field of view) can provide 
information about acceleration and velocity, including the direction of 
movement (Redlick et al., 2001). Proprioception is mediated by 
mechanosensory neurons in the muscles, tendons, and joints and provides 
us with information concerning the movement and position of our body parts 
(Tuthill & Azim, 2018). Lastly, the outgoing signals from the motor cortex 
controlling movement can be received by other parts of the brain, and this is 
called an “efference copy.” The three previously listed senses accumulate 
noise inherent to producing the movement and sensing the movement, but 
the efference copy more directly reflects the intended action of a person. The 
role of efferent copies in human iPI is difficult to isolate, but research in rats 
has shown that disrupting both efference copies and proprioception has a 
profound impact on the rats’ ability to perform directional path integration; 
more so even than removing visual cues (Stackman et al., 2003). Although it 
is clear that these 4 sources of information are all involved in iPI, the relative 
contributions to the process of path integration are still being researched. 
 
Sidebar: Path Integration vs. Dead Reckoning 
 Historically, Dead reckoning is a 
traditional navigation method, particularly 
significant in maritime contexts. It involves 
estimating one's current position by starting from 
a known position and then applying knowledge of 
speed, time, and direction. This method is heavily 
reliant on external references, known as "fixes," 
which serve as crucial references in correcting 
accumulated errors and ensuring accurate 
navigation. In the absence of modern tools like 
GPS, dead reckoning was indispensable for 
maritime travel, with navigators using celestial 
bodies, landmarks, and later, chronometers and 
compasses to determine their position and course 
(Bennett, 2017). 
 The explicit nature of these calculations is 
what primarily distinguishes dead reckoning from 
path integration. The process is methodical and 
often involves tools and instruments to aid in these 
calculations, ensuring accuracy in navigation. 
While it can also use information about the 
external environment, path integration primarily 
occurs as an implicit process within neurological 

systems. It is a navigation strategy where an 
individual or animal internally updates its position 
relative to a starting location by integrating the 
distances and directions traveled. This process is 
less about explicit calculations and more about an 
innate, continuous updating mechanism within the 
brain (Etienne & Jeffery, 2004). 
 There are some interesting commonalities 
between the two concepts despite their differences. 
Both dead reckoning and path integration require 
a starting point and orientation to provide relevant 
information, they both involve the integration of 
self-movement information, whether it be about a 
ship or an organism, and they also share the 
challenge of accumulating errors over time. In dead 
reckoning, errors can arise from inaccurate 
measurements or changes in conditions, while in 
path integration, drifts in the internal sense of 
direction or distance can lead to inaccuracies 
(Cheung et al., 2007).  In some ways dead 
reckoning seems to be a human invention that 
mirrors the biological process that is path 
integration.

 
Probabilistic representation of measurements 

One complication involved in taking measurements is that the noise 
resulting from the sensory organs (measurement noise), neural 
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computations (system noise), and movements (motor noise) increase the 
variability of sensory measurements. If a person is asked to measure the 
same value 100 times consecutively, they will make different measurements 
over time due to the noisiness of their sensory organs. Similarly, if you ask a 
person to kick a ball at the same spot 100 times, the ball will land in a variety 
of locations due in part to motor noise. Since the vestibular system, vision, 
and proprioception all measure self-motion and we must first generate self-
motion, then both sources of noise interfere with our measurements. With 
regards to path integration specifically, recent research has demonstrated 
that not only is noise present while executing planned paths (Chrastil & 
Warren, 2017), there is substantial noise during the encoding of distance and 
angle (Chrastil et al., 2019). Another study on the growing contribution of 
noise with age showed that the majority of noise present during PI originates 
during measurement of velocity, rather than integrating the measurements 
(Stangl et al., 2020). 
 
Researchers who seek to better understand the cognition behind PI by using 
computational models represent a measurement not as a single value, but as 
a distribution of probable values. In this way, the noise or uncertainly 
regarding a sensory measurement can be quantified and propagated through 
the model. Often the distribution is normal, and the width of the distribution 
reflects uncertainty. As an example, imagine you are preparing to shoot an 
arrow at a target 10 meters away. In situations where measurement noise is 
low, e.g. assessing the distance to the target on a sunny day, then we would 
expect to see a narrower distribution of probable measurements. On the 
other hand, if we attempt to estimate distance in near darkness then we 
would expect to see a much wider distribution of probable measurements. 
 
Formally speaking, this distribution is called a likelihood distribution. In the 
archery example, it is the probability of our current sensory measurement of 
distance, d, given that we are measuring distance to the target, D. This can 
be written as the conditional probability: P(d|D). But in order to hit the target 
with the arrow, we do not want to know the probability of our measurement, 
we want to know the probability of the actual distance D, i.e. 10 meters. Thus, 
we need to compute the probability of the true distance, D, given our sensory 
measurement, d: P(D|d). 
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Bayesian inference 
 This latter conditional probability, P(D|d), is called the posterior 
distribution in Bayes’ theory and can be computed by considering both the 
current estimate of distance and previously accumulated information about 
the distance to the target. In our specific example, assume we have shot 
arrows from this same spot many times before. We have therefore repeatedly 
measured the distance and shot our arrows based on predictions of the 
distance. Assuming only that our predictions are noisy and not biased, the 
average of our prior predictions would eventually converge to the true 
distance D.  After enough time we would attain a probability distribution for 
this context, i.e. this distance from the target: P(D). We call this the prior 
distribution and along with the probability of our immediate sensory 
measurement P(d), we can compute the posterior distribution: 
 

!(#|%) = !(%|#) ∗ !(#)
!(%)  

 
The derivation of the above equation is based on the equality of !(% ∩ #) and 
!(# ∩ %), which are both the probability of the true distance and current 
distance being true, i.e. that our current distance matches the true distance. 
 

!(%|#) ≜ !(% ∩ #)
!(#) 										!(#|%) ≜ !(# ∩ %)

!(%)  

 

!(# ∩ %) = !(%|#)
!(#) = !(#|%)

!(%)  

 
In the context of behavioral neuroscience, we can use equation 1 to model a 
person’s internal estimates of real-world values. This is exceedingly powerful 
because it allows us to quantify unmeasurable representations in the human 
brain. Of course, this assumes that a Bayesian model’s predictions actually 
match human behavior and luckily research has shown that this is very often 
true of human perception and movement (Rescorla, 2021). In terms of 
measuring or estimating real-world magnitudes like distance and angle, 
Bayesian models can successfully explain behavioral effects like the central 
tendency effect, range effect, scalar variability, and sequential effects 
(Petzschner et al., 2015). 
 
 

(1) 
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The Bayesian prior and the Central Tendency of Judgement 
 There is a ubiquitous and regularly documented behavioral effect 
characterized by the underestimation of large magnitudes and 
overestimation of small magnitudes when experimental subjects attempt to 
reproduce those magnitudes. This biasing of estimations toward the mean 
magnitude has been called the "Central Tendency of Judgement" 
(Hollingworth, 1910), "Central Tendency Bias" (Olkkonen et al., 2014), 
"Regression to the Mean" (Glasauer et al., 1995; Kaliuzhna et al., 2015; 
Loomis et al., 1993), as well as simply "Regression Effect"(Petzschner et al., 
2015; Stevens & Greenbaum, 1966). It is well established that changing the 
range of stimulus magnitudes or their average size both impact the size of the 
bias, and more recent insights have shown that the order of stimuli probably 
plays a pivotal role in the size of the bias (Glasauer & Shi, 2021). 
 
Early studies were primarily focused on documenting and manipulating the 
effect, but recent work has been focused on understanding the cognition that 
leads to the effect. One approach has been to model magnitude estimation 
data with computational models built on hypothesis about cognition. The 
Bayesian variety of these models have proven to be quite successful, 
suggesting the relevant cognitive process might be Bayesian in nature (see 
Glasauer & Shi, 2021 for review). In a Bayesian context, the Regression Effect 
is caused by the bias of the Bayesian prior on estimations of the magnitude 
stimulus. More specifically, when the prior distribution is integrated with the 
likelihood distribution, the mean of the resulting posterior is an intermediate 
value between the means of the prior and likelihood. Since the mean of the 
likelihood approximates the observed stimulus and the mean of the prior 
distribution eventually converges to the mean of all experienced magnitude 
stimuli, then over many trials, the consistent bias of the prior on the posterior 
produces the Regression Effect. 
 
One aspect of the likelihood distribution that contributes to its plausibility is 
that it represents the uncertainty of sensory measurements, and that our 
internal representation of the true real-world value is not the same as the 
true value. The biological transformation of the true stimulus into an internal 
representation is included in some Bayesian models, including the two-stage 
Bayesian estimator model that will be described later. Similarly, the Bayesian 
prior distribution is stored as an internal representation and is also not 
strictly bound to the true stimulus values. What this means, is that the 
biasing effects of the prior can produce the Regression Effect as it is 
classically defined, but might not always. 
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This can be demonstrated by disrupting the cognitive processes of calibration 
and adaptation. As an example, let us take a visuomotor adaptation 
experiment like the one originally conducted by Von Helmholz in 1867 
(Helmholtz, 1867). In this study, participants were instructed to reach 
towards specific targets while their vision was altered by prism glasses, 
causing a lateral shift in their field of view. Initially, when the visual shift was 
towards the left, participants tended to overshoot the target in the same 
direction. However, with practice, they adjusted to the altered visual input. 
This adjustment process is often called "recalibration" or "adaptation" of 
their sensorimotor system. Interestingly, Helmholtz noted that upon 
removal of the prism glasses, participants' attempts to reach the targets 
inaccurately veered to the right, a phenomenon referred to as the after-effect 
of adaptation. Recalibration is made possible by the feedback loop between 
initiated motor commands and visual feedback concerning the outcome.  
 
Now imagine we remove the feedback, perhaps by blocking vision directly 
after the participant initiates the motor command. A constant disparity 
between the true stimulus values and the internal representation would 
remain throughout the experiment since recalibration would not be possible. 
In the data, we would still likely see overestimation of small stimuli and 
underestimation of large stimuli, but the global over- or underestimation of 
all stimuli would be there too (Figure 1). The combination of a centralizing 
bias with a constant underestimation seen in the far-right plot of Figure 1, 
does not conform to the classic definition of the Regression Effect. If we 
define the Regression Effect as the biasing effect of the “mean stimulus” then 
the resulting data would not demonstrate a Regression Effect as per the 
original definition, since the mean of the prior is now different than the mean 
of the stimulus. This special case is relevant to this thesis because all 
experiments presented here were designed not to include feedback for 
participants, so we cannot assume that the mean of the prior distribution 
matches the mean of the stimulus distribution. Furthermore, it is possible 
that the size of the global over or underestimation would be different from 
one participant to another, due to individual differences in sensory 
processing, and these would not be corrected by calibration. 
 
In conclusion, within this thesis and the manuscripts contained therein, we 
will refrain from using the classically defined terms listed in the first 
paragraph of this section. To assure a conceptual separation from the 
behavioral effect observed by Hollingworth in "The Central Tendency of 
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Judgement", we will refer to this more specific type of bias as the Prior's 
Centralizing Bias (or PCB). Furthermore, we will conceptually separate the 
PCB from a global shift in estimated magnitudes, since the latter is impacted 
by a lack of recalibration based on feedback. Lastly, we will often measure 
PCB as 1 minus the slope of the regression line in plots of stimuli versus 
estimations. 
 

 
Figure 1: Disassociating Global Shift from the Centralizing Bias. In situations where 
sensorimotor recalibration is not possible, an experimenter might find a global bias in 
estimates of perceived magnitudes due to a mismatch between the pre-existing and actual 
stimuli ranges in the participants. In these cases, the centralizing bias of the prior distribution 
(first panel, termed Prior’s Centralizing Bias, or PCB) on estimates would be dissociable from 
the global bias (second panel), but both would still be present in the data (see third panel for 
example of summed effect). 
 
The PCB and the role of relative variance 

 For humans, conceiving of and representing the world is a continuous 
and recurrent process of measurement and estimation. If we can understand 
the influence of our prior experiences on our immediate estimations, we 
would be better prepared to understand how we perceive and act in the 
world, including how we navigate. In this section, we will look at how the 
noisiness of our sensory measurements in relationship to the noisiness of our 
own internal processing, impacts our estimations of measured magnitudes. 
In a Bayesian context, this relationship is that between the variance of the 
Likelihood distribution and the variance of the Prior, both of which are 
assumed to be Gaussian probability density functions and could therefore be 
represented as:  
 

,(-|., 0!) ≜ 1
√240!

5"
($"%)!
!'!  

 

(2) 



 15 

Using this equation as a foundation, we can calculate the mean of the 
Posterior distribution as follows: 
 

.( ≜
.)
20)!

+ .*
20*!

1
20)!

+ 1
20*!

= .)0*! + .*0)!
0*! + 0)!

= 0*!
0*! + 0)!

∗ .) +
0)!

0*! + 0)!
∗ .* 

 
.( = 7) ∗ .) +7* ∗ .* 

 
 
In this formulation, we can see how means of the component distributions 
are summed, and the weighting of the summation is determined by the 
relative variances of each distribution. Since it is not intuitive that the 
weight of mean A is determined by standard deviation of B, let us 
reorganize the variables.  
 

7) =
0*!

0*! + 0)!
=	

1
0)!

1
0)!

+ 1
0*!

						5. 9. 7+,-.+,/001 =
1

0+,-.+,/001!

1
0+,-.+,/001! + 1

023,03!
 

 
Now we see how the weight, for example, of the likelihood’s mean to the mean 
of the posterior distribution is related to the variances of the prior and 
likelihood. Namely, the greater the variance of the likelihood in comparison 
to the prior, the less its mean contributes to the mean of the posterior 
distribution. This is intuitive since measurements that have low variance are 
more consistent and reliable and should contribute more to our final 
estimate. 
 
If we were to experimentally manipulate the variability or noisiness of 
sensory stimuli, thereby increasing the variance of the associated likelihood 
distribution, we should see a proportional increase in the biasing effects of 
the prior on people’s estimates. In 2014 Olkkonen et al. demonstrated this 
exact outcome in the context of color perception by adding chromatic noise 
to their color stimuli (Olkkonen et al., 2014). In doing so, they saw a clear 
increase in the Regression Effect with added noise. This relationship between 
likelihood variance and the Regression Effect has also been demonstrated in 
the context of length comparison, where the variance of the likelihood was 
assumed to increase with elapsed time after the stimulus was experienced 

(3) 

(5) 

(4) 
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(Ashourian & Loewenstein, 2011). Thus, by looking at the Regression Effect, 
or more specifically the PCB, we can gain valuable insight into how much the 
prior is relied upon in a given context. 
 
The two-stage Bayesian estimator model 

 In this section, let us consider how the treatment of Bayesian priors can 
differentiate between models. One approach is to assign a fixed mean and 
variance to the prior distribution based on the characteristics of the stimulus 
distribution (Cicchini et al., 2012; Jazayeri & Shadlen, 2010). This assumes 
that the participants know the distribution of stimuli before experiencing 
them. Another approach is to include a rule for updating the prior based on 
predictions so that after every prediction the mean and variance of the prior 
will change. In this case, it is still necessary to make an assumption at trial 
one, however the model will learn the stimulus distribution over time much 
like a person would. Furthermore, with this type of model it is possible to 
predict sequential trial effects, which are how recent stimuli affect 
predictions of the current stimulus through modifying the prior, and range 
effects, which are how the strength of the PCB grows with mean stimulus size 
(Glasauer, 2019; Petzschner et al., 2015). The model utilized in the following 
manuscripts takes the latter approach and is therefore capable of predicting 
nuanced behavior despite having very few free parameters. Since the 
Bayesian models are core features of both manuscripts, let us take some time 
to examine the structure and the underlying assumptions of this model. (For 
justification and full mathematical formulation, please see Glasauer, 2019 
and Petzschner & Glasauer, 2011) 
 
Originally described by Petzschner and Glasauer in 2011, the “two-stage 
Bayesian estimator” model iteratively: 1) converts the incoming stimuli to a  
measurement on a logarithmic scale, 2) updates the prior distribution based 
on the likelihood distribution of said measurement, 3) integrates the 
likelihood with the prior to yield a posterior distribution, and 4) converts the 
posterior distribution back onto a linear-scale before 5) selecting a value as a 
response. Within the logarithmic space where Bayesian integration happens, 
all probability distributions are assumed to be normal, which means that the 
final posterior-distribution on a linear-scale is log-normal. 
 

.+,-.+,/001 = ln <1 + %4%5
= + >4 

 

(4) 

(6) 
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The 2-stage Bayesian model converts the incoming measurement of the 
stimuli (dm) into the logarithmic scale because it mirrors the well-established 
Weber–Fechner principle, which asserts that perception scales 
logarithmically with stimulus intensity; a notion first put forth by Gustav 
Fechner. Recent psychophysical studies corroborate this, demonstrating that 
human estimations of numerosity (Dehaene et al., 2008), angular velocity 
(Jürgens & Becker, 2006), and locomotor distance(Durgin et al., 2009) 
usually adhere to this logarithmic pattern. Consequently, the model 
incorporates this logarithmic transformation in a way that is comparable to 
the methodology used in modeling speed discrimination behavior published 
by Stocker & Simoncelli in 2006 (Stocker & Simoncelli, 2006). Within the log 
function, 1 is added to accommodate measurements of 0, and the 
measurements are dividing by a scaling variable (d0) which can be used to 
adjust the “flatness” of the log-function. Additional sensory noise (nm) 
associated with the measurement of the stimuli can be included if desired. 

 
The model does not explicitly maintain the variance of each distribution. 
Instead, when combining distributions, e.g. A and B, the mean of the product 
distribution is calculated via weighted summation of the means of A and B 
(Laming, 1999). As seen in equation 3, the weights during this summation 
reflect the ratio of the variances of distributions A and B. Since the ratios of 
variances in equation 3 are compliments of each other: 
 

1 −
1
0*!

1
0)!

+ 1
0*!

=
1
0)!

1
0)!

+ 1
0*!

 

 
we can rewrite equation 4 to be the following: 
 

.( = 7) ∗ .) + (1 − 7)) ∗ .* 
 
This way, only one weight needs to be calculated to determine the mean of 
distribution C. There are 2 weights like this in the 2-stage Bayesian model, 
corresponding the 2-stages: one for updating the prior based on the 
likelihood and another for computing the posterior distribution from the 
likelihood and prior. The calculation of means in these two situations, 
respectively, are: 
 

.23,03⬚7 = 78 ∗ .23,03 + (1 − 78) ∗ .+,-.+,/001 

(8) 

(7) 

(9) 
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.209:.3,03 = 7! ∗ .23,03⬚7 + (1 − 7!) ∗ .+,-.+,/001 

 
In practice, both weights are derived from a single fitted parameter according 
to a 1-dimentional derivation of the Kalman filter. This fitted parameter is 
the ratio of measurement noise (variance of the likelihood) to system noise 
(variance during updating). In basing both weights on the same fitted 
parameter, the model creates an interaction between the influence of the 
prior during posterior calculation and during prior update. Specifically, as 
measurement noise increases (in relationship to system noise), the prior is 
weighted less when calculating the posterior and when updating the prior 
(Figure 2). 
 

  
 
This is intuitive since an unreliable measurement (high variance of the 
likelihood) should bias our internal estimates less and contribute less to our 
final responses. One important feature here, is that the weight of the prior 
during posterior calculation can be no less than 0.5, meaning that the 
likelihood always contributes to the posterior equally or more than the prior.  
 
The model as a whole only has 2 free parameters, and the second one 
determines how the prediction is selected from the posterior distribution. 
Before the posterior is transformed back to a linear scale (the reverse process 
of equation 6), the model adds a fitted shift to the mean of the posterior 
distribution. 
 

%3 = 5%"#$%;∆$ ∗ %5 
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Figure 2: The weight of the prior 
as a function of system noise over 
measurement noise (q/r). As q/r 
grows, the weight of the prior 
decreases during prior update and 
during the calculation of the 
posterior. The lower limit on the 
weight of the prior during 
calculation of the posterior is 0.5, 
meaning the likelihood is always 
weighted equally or more than the 
prior. 

(11) 

(10) 
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The terms here are the selected response (%3), arbitrary scaling constant (%5), 
mean of the posterior (.209:) and the shift parameter (∆-). The shift 
parameter is necessary since, unlike a normal distribution, the final log-
normal posterior distribution has a different mean, median, and mode. 
Rather than assuming which value is appropriate in all cases, the model fits 
the shift parameter for each training data set. Changes to the shift parameter 
can lead to a general over or underestimation of the model’s responses. 
 
One final point for consideration are the assumptions associated with 
evaluating the model over experimental data. As is standard, the free 
parameters of the model will be fit in one experimental condition and 
evaluated in another. As long as the context of the conditions remains 
constant, in terms of the sensory input and task requirements, we assume 
that the fitted parameters will be appropriate in both conditions. 
 
In summary, the described model assumes that:  

1)  our sensory representation of a magnitude is dependent on the real-
world value. 

2)  during the first measurement, the mean of the prior equals the 
measurement. 

3)  Bayesian Integration takes place in a logarithmic scale. 
4)  all probabilistic distributions directly involved in Bayesian integration 

are normal. 
5)  the ratio of measurement noise and system noise is constant within a 

stable context. 
6) the tendency to over- or underestimate is constant within a stable 

context. 
7)  motor noise will not cause a systematic bias of responses. 

 
The two-stage Bayesian estimator model is both efficient in its use of free 
parameters and efficacious in predicting human responses. The variations on 
this model presented in the following manuscripts will represent competing 
hypotheses and their success relative to each other will resolve open 
questions in the fields of magnitude estimation and navigation. 
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CHAPTER 2: Magnitude Estimation 

 
Improving noisy measurements 
 As previously stated, when discussing the use of likelihood 
distributions, there is noise during sensory processing and neural integration 
which leads to more variability in our measurements and actions. We can 
mitigate measurement noise to some extent by taking redundant 
measurements of the same quantity. A good example of this is source 
localization: let us say you are one a hike in the woods and something moves 
in the bushes next to you. By combining the auditory and visual senses, you 
could locate the cause more quickly than using either alone (Vilares & 
Kording, 2011). This area of research is called multi-modal integration and is 
especially relevant to path integration because our senses for self-motion are 
very redundant. When we perform a whole-body rotation, our semicircular 
canals register the angular acceleration, optic-flow provides a visual cue that 
we are turning, proprioceptive information tells us about our postural 
changes involved in turning, and we receive efference copies of the motor 
command to turn. It seems intuitive that measuring the same quantity in 
multiple ways would increase the precision of our measurement, but this idea 
has also been formalized using Bayesian statistics (Ernst & Banks, 2002; 
Ernst & Bülthoff, 2004; Landy et al., 1995).  
 
Let us return our attention to equations 3 through 5. So far, we have applied 
these equations when integrating the likelihood and prior distributions, but 
the same equations can be applied to integrating two likelihood distributions 
as well. What was not shown earlier is how to calculate the variance of the 
resulting distribution: 
 

1
0(!

≜ 1
0)!

+ 1
0*!

 

 

0(! =
1

1
0)!

+ 1
0*!

=	 1
0*!

0)!0*! +
0)!

0)!0*!
=	 0)

!0*!
0)! + 0*!

 

 
Interestingly, the variance of the resulting distribution is less than or equal 
to the variance of either contributing distribution. As an example, this means 
that if we combine the likelihood distributions associated with visual and 

(12) 

(13)  



 21 

vestibular sensory measurements, the resulting multimodal likelihood 
distribution would have an equal or lesser variance then either.  
 
If we consider this fact in the context of calculating the posterior mean via a 
weighting sum (equation 4), we can see that a multimodal likelihood would 
have a weight equal to or less than the likelihood of either visual or vestibular 
senses alone:  
 

723,03( ≤ 	BC>(723,03), 723,03*) 
 
Weighting the prior less and the likelihood more over many trials would lead 
to a smaller PCB and overall, more accurate estimations of magnitudes. 
Thus, we have a formal Bayesian mechanism for calculating how multimodal 
integration results in more accurate estimations overall. 
 
Individual differences when measuring rotation 
 Another interpretation of the width of the likelihood distribution is as 
a measure of the trustworthiness or reliability of a sensory input. When 
measuring one value, an ideal sensory organ would always provide the same 
measurement. So a wide distribution, which indicates highly variable sensory 
inputs, would not be reliable. This inverse relationship between variance and 
reliability is included in equations 4 & 5, where we can see that a larger 
variability (standard deviation) leads to a lower weighting when determining 
the multimodal mean.  
 
It has been shown that experimentally modulating the reliability of a sense 
impacts its influence on perception and in many cases the degree of this 
effect can be explained by Bayesian MLE (Alais & Burr, 2004; Battaglia et 
al., 2003; Ernst & Banks, 2002; Kaliuzhna et al., 2015; Prsa et al., 2012). A 
sense’s reliability can also be altered via a pathology. For example patients 
who have had Vestibular Neuritis often rely more on their visual input 
afterwards due to damage of their vestibular nerve (Cousins et al., 2014).  
 
Similarly, variability in age, genetics, and life experience will lead to 
differences in the acuity of vision, hearing, and vestibular function that 
would inevitably influence inter-modality weightings. It has also been shown 
that the ability to integrate multisensory information is limited in children 
and matures over the course of one’s life, being molded extensively by 
experience (Murray et al., 2016). Thus, when performing experiments on 

(14) 
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multi-modal integration, one would expect to see variable inter-modal 
weightings among participants. 
 
Sidebar: Circular Data and Statistics

Circular or periodic data is a fascinating 
type of data that stands apart from traditional 
linear data due to its bounded and cyclical nature. 
This form of data is best understood through 
examples such as calendar years, time of day, and 
angles, each embodying the concept of periodicity. 
The end of one cycle seamlessly connects to the 
beginning of the next, creating a continuous loop. 
This characteristic poses distinct challenges and 
opportunities for analysis and interpretation. 

For instance, in calendar years, 
December leads into January, forming a cycle that 
repeats annually. Similarly, the time of day cycles 
every 24 hours, with midnight flowing into the early 
hours of a new day. Angles, measured in degrees, 
also exhibit circularity; 360 degrees brings you back 
to 1 degree when rotating clockwise. Unlike linear 
statistics, where data points are spread along a 
straight line, circular statistics deal with data that 
wraps around a circle, presenting unique 
challenges and requiring different analytical 
approaches. 

In linear statistics, the concept of average 
or mean is straightforward, but in circular 
statistics, calculating an average becomes more 
complex due to the *cyclical* nature of the data. For 
example, the average of 359 degrees and 1 degree 
isn't 180 degrees, but rather 0 degrees, illustrating 
the need for specialized methods in circular 
statistics. This same property also complicates the 
calculation of variance, i.e. how far data points are 
spread out from the mean. Variance also must 
account for the circularity, where two points close 
on the circle might be far in linear terms. 

In terms of angles specifically, which are 
often used to represent periodic data, the 
application of circular statistics can be particularly 
relevant. When deciding if circular statistics is an 
appropriate choice for a data set, consider if 1, the 

data is inherently bounded within the limits of a 
circle; meaning that the values are constrained 
within a 0 to 360 degrees range. And 2, if the data 
is cyclical, mean that an angle of 370 degrees would 
instead be recorded as 10 degrees. These qualities 
of being both bounded and cyclical are good 
indicators that circular statistical methods may be 
appropriate. 

Circular statistics can also be helpful 
when considering the directional nature of cyclical 
data. For example, when measuring turn angle, 
positive and negative values often denote different 
directions of rotation that can sometimes lead to 
the same final orientation. For example, a 
counterclockwise turn of -120 degrees would result 
in the same final orientation as a clockwise turn of 
+240 degrees (sign signifies directionally). This 
aspect is particularly relevant when evaluating 
hypotheses about orientation data but would be less 
relevant when evaluating hypotheses about the 
magnitude of the turn angles themselves as 
magnitudes are the absolute size of the angle. In 
cases such as the former, circular statistics would 
provide a more nuanced and accurate 
understanding of circular data than traditional 
linear statistical methods (Apuzen-Ito, 2014; 
Pewsey et al., 2013). 

In the manuscripts included in this 
Thesis, we often analyze circular data, but we are 
always evaluating hypothesis about magnitudes, 
namely the absolute size of a turn's angle as 
opposed to the final orientation. These magnitudes 
are neither bounded nor cyclical, extending from 0 
to positive infinity. Directionality is often 
represented by signed numerical values, but there 
are no cases in which the outcome of different 
turning angles is considered equivalent. Thus, 
linear statistical methods are used throughout. 
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ABSTRACT 

When humans sense self-rotation, vestibular and visual sensory information can be integrated to 
reduce sensory noise and provide more accurate and precise estimates of displacement than either 
modality alone. In this experiment, 18 healthy participants completed a production-reproduction task 
where they reproduced angular displacement. We found that on average reproduction was more 
accurate and precise in the bimodal condition, where both visual and vestibular information were 
available, than when only one sensory modality was available. We show that a systematic centralizing 
bias seen during self-rotation reproduction can be well explained by a Bayesian model which maintains 
a prior for angular displacement, and a Bayesian model assuming sensory fusion explains these biases 
better than models that use a single modality. Lastly, we showed that the Bayesian model assuming 
sensory fusion outperformed either unimodal model in explaining the bimodal condition data. Taken 
all together, these results demonstrate that our participants relied on prior information and fused 
sensory inputs according to Bayes’ Theorem. 
 
INTRODUCTION 

People internally represent their position and orientation in their environment and automatically 
update this representation when they move (May & Klatzky, 2000). Essential to this process, termed 
path integration, is the ability to accurately measure angular displacement. When humans sense self-
rotation, endolymph movement through the semicircular canals and movement of the visual 
environment over the retina (optic flow) provide measurements of angular velocity that can be used 
to compute angular displacement. However, sensory measurement of angular velocity is noisy and 
thus can lead to errors in perceptual estimates of self-displacement. When both vestibular and visual 
sensory information is available, they can be integrated to reduce sensory noise and provide more 
accurate and precise estimates of displacement than either modality alone (van Dam et al., 2014). 

Previous research on multisensory integration has been able to successfully model a variety of 
behavior in humans and model organisms using Bayesian models that represent sensory 
measurements as probabilistic likelihood distributions (Alais & Burr, 2004; Ernst & Banks, 2002; Hillis 
et al., 2004; Jacobs, 1999; Jürgens & Becker, 2006; Knill & Saunders, 2003; Landy et al., 1995; van Beers 
et al., 1999, 2002). When all probabilistic distributions are Gaussian, then multiplying two unimodal 
likelihood distributions results in a multimodal likelihood distribution which has a lower variance than 
either unimodal likelihood distribution, thus providing a mechanism for the improved precision 
witnessed in multimodal contexts (Ernst & Bülthoff, 2004). Fusion of sensory inputs reliably occurs as 
long as both sensory measurements are presumed to be measuring the same thing (Kayser & Shams, 
2015; Körding et al., 2007) and the measurements themselves are not hugely different (Jürgens & 
Becker, 2006). In the experiment presented here, participants are required to measure and reproduce 
whole-body yaw rotations, which they perceive through the visual and vestibular systems. The 
multimodal stimulus is very naturalistic, consisting of redundant (i.e. fully agreeing) visual and 
vestibular measurements of the participant’s turn. Since the source is the same, i.e. the participant’s 
perceived rotation, and the measurements agree, fusion was expected to occur. 

The primary goal of this paper is to demonstrate that visual input and vestibular input generated by 
self-rotation are fused according to Bayes’ Theorem. In order to prove this, we conducted an 
experiment in which participants reproduce experienced turns in 3 experimental conditions 
differentiated by the availability of sensory modes: only visual information, only vestibular 
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information, and both information-types available. Rhetorically, we will reach this conclusion in 3 
steps: 1) demonstrate that our participants have benefits to precision and accuracy in the bimodal 
condition compared to either unimodal condition. 2) Show that a Bayesian model that assumes sensory 
fusion can predict the extent of systematic over/underestimations of the turn magnitudes. 3) The same 
Bayesian model can predict the participants’ data in the multimodal condition better than a Bayesian 
model that assumes only one sense is used for the task. 

The first step is to confirm that our participants demonstrate the benefits to precision and accuracy 
characteristic of sensory fusion. Accuracy refers to how closely reproductions of a turn match the true 
value and precision refers to the overall variability of reproductions. We expect reproductions to be 
the most accurate and precise in the bimodal condition because their multimodal representation of 
the turn angle is less variable, thanks to Bayesian integration, and this leads to reproductions that 
resemble the stimuli more closely. The second step is to determine if a probabilistic Bayesian model 
(replicated from Petzschner & Glasauer 2011) that assumes sensory fusion occurs can predict the 
bimodal condition data better than variants of the model that use only one sensory modality. To this 
end we will fit the Bayesian model to each unimodal condition to obtain a free parameter specific to 
each modality. We will mathematically calculate the bimodal version of this free parameter based on 
the unimodal values, and then use that calculated free parameter to predict the bimodal data. The 
success of predictions will be assessed via the Coefficient of Determination (R2) as well as the similarity 
of systematic under/overestimations between behavioral data and model predictions. It is necessary 
to compare the unimodal variant of the model to the bimodal variant because we are interested in 
goodness-of-fit due to the assumed sensory fusion and not just the existence of a Bayesian prior. 

METHODS 

Participants 

Twenty volunteers participated in the study without monetary compensation and two participants 
were excluded due to nausea in the visual condition. The final pool of participants (6 female, 12 male) 
had a mean age of 33.8 years and standard deviation of 10.8 years. All included participants had normal 
or corrected-to-normal vision and had little to no susceptibility to motion-induced nausea. A local 
ethics committee approved this experimental design in accordance with the Declaration of Helsinki. 

Experimental setup 

The experiment was conducted on a rotating chair positioned within a cylindrical drum that could 
rotate separately from the chair (fabricated by Toennies, see Figure 2A). Participants sat in the chair 
and were head-fixed such that they would spin around their head’s central axis. The walls of the drum 
were approximately 74 cm from the participant’s eyes and covered in vertical contrast bars 10 cm 
wide. No discernable landmarks were present aside from the repeating contrast bars and diffuse light 
was provided by a lamp positioned over the participants’ heads. White noise was played over speakers 
to obscure the sounds of the machine. Participants controlled the reproduction movement of the chair 
using handheld buttons: one button for right-ward motion, one for leftward-motion, and one button 
to confirm selections. Movement in all directions was allowed until confirmation, which was followed 
by a 3-second pause and then the next trial.  
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Figure 1. Experimental materials and procedure. (A) Photograph of the rotating chair and drum. Head was fixed and 
participants were secured using safety belts. Responses were made with handheld button boxes. (B) The experimental 
paradigm consisted of three conditions: Visual, Vestibular, and Bimodal. Each condition had two portions: production, in 
which either the drum or chair is rotated, and reproduction, in which the participant actively rotates the chair in the same 
direction and magnitude as the perceived production distance. 

Experimental procedure 

Ability to estimate angular distance was assessed using a production-reproduction task.  During the 
production phase, participants passively experienced an angular displacement of the drum or chair 
and then had to actively reproduce the same distance in the same direction by rotating the chair using 
button presses. Reproductions were always bimodal regardless of condition, i.e. the drum was visible 
as the participant’s rotated their chair via button presses Figure 2B). 

Visual Condition. The production distance was provided by rotating the drum while the chair remained 
stationary. Movement of the contrast bars induced a feeling of self-motion in the direction opposite 
to drum rotation. To reproduce the distance, the participants were instructed to actively rotate the 
chair in the direction of perceived movement. 

Vestibular Condition. The production movement consisted of passive rotation of the chair in darkness. 
The lights were switched on for reproduction and participants were instructed to replicate the 
movement in the same direction. 

Bimodal Condition. Lights were on during both production and reproduction, such that participants 
had both visual and vestibular input during rotation. Production distances were provided by rotating 
the chair. 

One hundred trials were presented for each condition. Distance stimuli consisted of 20 repetitions of 
5 different angular distances (from 50° to 130°, at intervals of 20°), which were randomly permutated. 
The sequence of trials was held constant across participants so trial-wise effects would be comparable. 
To discourage the use of time estimation, movement velocity in the production phase was varied 
within ±60% of 25 degrees/second (scaling factor drawn from a truncated Gaussian distribution). 
Whereas the velocity during the reproduction phase was always 25 deg./sec.2. The acceleration and 
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deacceleration in both phases was always 25°/sec2. Each condition lasted between 23 and 27 minutes, 
depending on how quickly participants completed the reproduction movements.  

Analysis of behavioral data 

To reveal trends in accuracy and precision, the absolute behavioral error (absolute value of 
reproduction minus stimulus) and the standard deviation of errors, respectively, were calculated for 
each stimulus size for all participants and conditions. A 2-way analysis of variance (ANOVA) was 
performed for each metric using experimental condition and stimulus size as factors. One-tailed paired 
t-tests were also performed for both metrics to validate the hypothesis that both error and standard 
deviation is larger in the unimodal conditions than the bimodal conditions. Data analysis and modelling 
was performed using custom written Matlab (Mathworks, US) scripts. 

We expected to observe a systematic error often made during magnitude estimation, which is a 
consistent overestimation of small turn angles and a consistent underestimation of large turn angles 
compared to the mean of all turn angles. This bias is referred to as the Regression to the Mean or the 
Central Tendency of Judgment (Hollingworth, 1910; Loomis et al., 1993; Olkkonen et al., 2014; 
Petzschner et al., 2015; Prsa et al., 2012), and constitutes an overestimation of small stimuli and an 
underestimation of large stimuli due to the biasing influence of the mean or median of the stimulus 
range. In all cases, the Regression to the Mean was calculated by plotting the production stimuli against 
the behavioral reproductions or model predictions, and then fitting a regression line to the data. The 
compliment of the slope of this line (1-slope) indicated the size of the Regression to the Mean. In this 
paper, we are more interested in the centralizing bias of the Bayesian prior on the reproductions, 
rather than the bias of the mean stimulus, so we will refer to the compliment of the slope as the Prior’s 
Centralizing Bias (or PCB). It is important to differentiate this because we do not provide feedback to 
our participants concerning correctness of their reproductions, and therefore they cannot recalibrate 
their sensorimotor system to eliminate global errors affecting all reproductions (would appear as a 
vertical shift of the regression line in the aforementioned plot. We use the PCB as an indicator of both 
overall accuracy and how much a participant relies on their prior (Jazayeri & Shadlen, 2010; Petzschner 
& Glasauer, 2011; Roach et al., 2017). We conducted two one-tailed paired t-tests to confirm that we 
see a lower PCB in the bimodal condition (higher accuracy and lower reliance on a Bayesian prior) when 
compared to the unimodal conditions. 

Linear statistics are applied for analyzing angular data here since we analyze only magnitudes and the 
differences between them. Since magnitudes do not exhibit the cyclical and bounded characteristics 
of circular data, but instead extend from 0 to positive infinity, linear statistical methods are 
appropriate. Regarding multiple comparisons, all hypothesis tests were grouped according to the 
assertions in the introduction or if a post-hoc question arose. Corrections of the significance threshold 
was done with the Holm-Bonferroni method. 

Bayesian estimator models of bimodal integration 

Unimodal Models 

What we refer to as the Unimodal Model (UM) is entirely equivalent to the Petzschner & Glasauer 
2011 two-stage model (Petzschner & Glasauer, 2011). This model iteratively processes the angular 
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distance stimuli in the same order as the participants experienced them. In a single iteration, the model 
works as follows:  

1. The angle stimulus is transformed into log space, where we assume all involved probability 
distributions are Gaussian.  The transformation is done to mirror the Weber–Fechner law; a 
practice which has been substantiated by related studies (Dehaene et al., 2008; Durgin et al., 
2009; Jürgens & Becker, 2006) and has been previously applied with regards to speed 
discrimination (Stocker & Simoncelli, 2006). 

2. The likelihood distribution (mean equal to the log-transformed stimulus value) is fused with 
the prior distribution (its mean is iteratively updated). To calculate the mean of the posterior 
distribution, a weighted sum of these two means is performed where the weights are 
determined by a single fitted parameter (r/q ratio), which represents the ratio of measurement 
noise (sensory noise, r) to process noise (noise during prior update, q).  

3. The mean of the prior distribution is updated according to a weighted sum of the likelihood’s 
mean and the mean of the prior from the preceding iteration. This weight is calculated using a 
Kalman filter (Kalman, 1960), which also relies on the r/q ratio. In the first iteration, the mean 
of the prior is assumed to be equal to the first measurement.  

4. Finally, the model’s prediction of the current reproduction is determined as the maximum 
(mode) of the posterior distribution plus a fitted constant, termed “shift parameter,” which 
accounts for differing choices of cost function (calculation of the difference between the 
predicted and true values that is used during model fitting). The reproduction is then 
converted back to linear space.  

Thus, the UMs each have two free parameters which are fitted over all stimuli in each condition using 
least-square fits with the Matlab function lsqnonlin. For details concerning mathematics and 
justification for model structure, please refer to Petzschner & Glasauer’s 2011 publication (Petzschner 
& Glasauer, 2011). 

Bimodal Model: Integrated Likelihood Model 

The Bayesian two-stage model used for the UMs was adapted to explain bimodal integration of 
vestibular and visual information. The measurement noise values, rvis and rvest, reflect the variance of 
the likelihood distribution for each modality. Because process noise was assumed to be equal across 
conditions and assigned a fixed value of 1, we will refer to the fitted r/q parameter as simply  
“r” in the following equation. When the unimodal likelihood distributions are combined into a bimodal 
likelihood, we can calculate the measurement noise associated with the bimodal likelihood as follows: 
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The above equation is well established in its use to combine variances between two normal 
distributions and its behavior has also been previously documented (Figure 3) (Alais & Burr, 2004). 
Besides the computation of rbi, the remainder of the ILM is identical to the UM. The reduction in 
measurement noise ultimately leads inlaid plots). It is important to note that the reduction in 
measurement, as compared to either unimodal measurement noise estimate, is proportional to the 
similarity of the respective UM noise estimates. Maximum benefit would be seen when rvest equals rvis.  

(1)	
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Figure 2. Illustration of model structures and source of the Prior’s Centralizing Bias. (A) Each colored circle represents the probability density function with a Gaussian Distribution seen in B. The 
uncolored circles (the production stimuli and angular distance predictions) are discrete values. The Unimodal Models (UMs) are identical to the 2011 Petzschner and Glasauer two-stage model 
and either visual or vestibular input can be used. The Integrated Likelihood Model (ILM) contains modifications to account for multiple sensory inputs. Prior updating is not depicted here. 
Combinations of probability distributions, represented by horizontal connections between circles, constitute multiplication and result in an intermediate mean value, as well as a reduction in 
variance. (B) The differential width of likelihood distributions result in varied biases of the Posterior’s mean from the Likelihood’s mean (grey bars). For demonstrative purposes, all priors are 
portrayed to have the same mean and variance, although in practice both will vary based on incoming distance stimuli. The mean of the posterior distribution would be biased less toward the 
prior in the ILM than the UMs because the variance of the multisensory likelihood is the least. (C) A lesser bias toward the prior leads to angular distance predictions that are closer to the stimuli, 
which produces a smaller Prior’s Centralizing Bias (PCB). In these illustrated plots of production stimuli versus predicted reproduction, we see that the ILM predictions have a heavily reduced PCB 
shown by an increase in the slope of the regression line. 
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Fitting Procedure 

The UM was fit separately to the vestibular condition and the visual condition using least-squares 
fitting to attain estimates of the unimodal r/q ratios. The r/q ratios were then combined according to 
equation 1 to obtain a bimodal r/q ratio. When predicting data from the bimodal condition, all three 
models (ILM, visual UM, vestibular UM) had fixed r/q ratios taken/calculated from the unimodal 
conditions, but the shift parameters (see Unimodal Models point 4) were fitted anew. Shift parameters 
are refitted because the under-/over- estimation of angles between conditions is not constant though 
it was expected to be, according to the assumptions of the models. The relative fit of final predictions 
compared to participant reproductions in the bimodal condition was then examined. 

Predicted PCB versus Actual PCB 

To assure that the model predictions were exhibiting the same pattern of errors as the behavioral data, 
we calculated the PCB for each model’s predictions and assessed the correlation with behavioral PCBs, 
expecting significant and positive Pearson’s correlation coefficients. We also did the same for the 
bimodal condition data and the ILM predictions. 

Goodness-of-fit 

First, we calculated the coefficient of determination (&# ) for the UM model fit to the vestibular 
conditions and the visual condition. This value reflects the amount of variance in the behavioral 
reproductions, which can be explained by each unimodal model. 

Next, we calculated the &#	for each model’s predictions of the bimodal condition data (Vestibular UM, 
Visual UM, and ILM), then compared the &# coefficients between models via a set of two-tailed paired 
t-tests. We were able to use the &#, as opposed to a method that corrects for the number of free 
parameters like the Akaike Information Criterion, because all models have only one free parameter, 
the shift parameter, when predicting the bimodal data 

RESULTS 
 
Bimodal behavioral performance benefit 

The 2-way repeated measures ANOVA of absolute behavioral error with factors ‘experimental 
condition’ and ‘stimulus size’ showed a significant main effect of stimulus size (F(4,255)=23.19, 

Figure 3: Benefit to bimodal measurement noise is 

dependent on the similarity of unimodal 

measurement noise. The figure is intended to show 
the non-linear reduction in bimodal noise as it 
relates to the relative size of unimodal 
measurement noises. The blue lines show 
theoretical values of measurement noise for the 
visual, vestibular, and bimodal conditions, where 
bimodal measurement noise is calculated according 
to equation 1. The red line shows the subtraction of 
the bimodal measurement noise values from the 
unimodal measurement noise values along the 
range of 0 to 1 and reflect the benefit of sensory 
fusion (reduction in measurement noise). The peak 
benefit occurs when unimodal values are equal.	
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p<0.001) and condition (F(2,255)=5.00, p=0.007), but no interaction effect. Similarly, the same ANOVA, 
performed for the standard deviation of errors, also found main effect of stimulus size (F(4,255)=14.53, 
p<0.001) and condition (F(2,255)=3.92, p=0.021), but no interaction. When comparing the visual 
unimodal condition and the bimodal condition via one-tailed paired t-tests, we found better 
performance in the bimodal condition in terms of accuracy (t(17)=1.94, p=0.034) and precision 
(t(17)=2.97, p=0.004). When comparing the vestibular unimodal condition and the bimodal condition 
via one-tailed paired t-tests, we also found better performance in the bimodal condition in terms of 
accuracy (t(17)=2.68, p=0.008) and precision (t(17)=2.28, p=0.018). 

To examine the variability of accuracy within and across conditions, we plotted mean absolute 
behavioral error for all subjects and conditions. Behavioral error refers to the participants’ responses 
minus the true values. The data was sorted based on the minimum signed difference between the 
unimodal condition’s mean error and bimodal condition’s mean error. Based on this visualization, 9 of 
18 participants have mean errors in the bimodal condition that are clearly less than in both unimodal 
conditions (Figure 4C, right of line). For the other 9 participants, the mean errors in the bimodal 
condition are equal to or higher than in the unimodal conditions (Figure 4C, left of line). 

 

Figure 4. Performance benefit to accuracy and precision in the bimodal condition. A) Mean absolute behavioral error was 
computed for each condition and stimulus size combination and plotted here. The error bars are standard error. B) The mean 
variance of absolute errors was computed for each condition and stimulus size. The error bars are standard error. C) We 
plotted the mean absolute behavioral error for all subjects and conditions, and sorted the data based on the minimum signed 
difference between either unimodal condition error or bimodal condition error. The black line separates participants who 
showed a visually discernible decrease in error in the bimodal conditions when compared to both unimodal conditions. 
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Prior’s Centralizing Bias (PCB) 

The bimodal PCB was significantly lower than the vestibular unimodal PCB (t(17)=2.46, p=0.012) and 
the visual unimodal PCB (t(17)=4.23, p<0.001), demonstrating the same benefit to accuracy seen in the 
error analysis. From a Bayesian perspective, this also suggests that the prior for turn angle was relied 
upon less in the bimodal condition that in either unimodal condition. 

 

 

Figure 5. Comparison of the Prior’s Centralizing Bias (PCB) between experimental conditions. A) Example of a single 
participant’s performance in each condition. Not only are there differences in slope, but also a shift of the mean reproduction 
distance. B) The lines depicted here ignore the shift of the mean reproductions and only depict the slope of the fitted 
regression lines. The bold line in the middle shows the average slope of the reproduction-versus-production plot, and the 
shaded areas highlight the full range of slopes seen in each condition. The corresponding PCB-coefficients are overlaid on 
each plot. 

Predicted PCB versus Actual PCB 

The model predictions were plotted against the production stimuli in the same way as in 5A, and the 
PCB was calculated from the slope of the regression line. We found that predicted PCB for the unimodal 
conditions is significantly and positively correlated with actual PCB in both the vestibular condition 
(r(17)=0.97, p<<0.001) and the visual condition (r(17)=0.94, p<<0.001). In both cases, the offset of the 
regression line was close to zero, indicating that predictions showed a centralizing bias that was not 
consistently too large or small. The slope of the regression line was smaller than 1, indicating a scaling 
factor less than 1, which means that predictions tended to underestimate the centralizing bias when it 
was comparatively large. When the ILM was used to predict the bimodal condition data using the 
measurement noise parameters calculated from the unimodal data, we found that the predicted PCBs 

B)	

A)	
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were also highly correlated with the actual PCBs (r(17)=0.91, p<<0.001). The offset was close to zero 
and the scaling factor was around 0.75, which overall suggests that the PCB could be reliably predicted. 

 

Figure 6: A) Correlations of the Prior’s Centralizing Bias (PCB) coefficients for the unimodal model predictions and behavioral 
data from the unimodal conditions. In both cases we found a significant and positive correlation. The vertical offset indicates 
a global under- or over-prediction, and the scaling factor (slope) shows if accuracy of predictions changes across the range of 
PCBs in the data. B) Correlation of the bimodal behavioral PCB with the PCB predicted by the ILM was positive and significant. 
An offset close to zero and a scaling factor near 1, suggest accurate predictions of the PCB in the bimodal condition based on 
the unimodal noise parameters. 

Unimodal model fit to the unimodal conditions 

By calculating the coefficient of determination (&#), we found that the Vestibular UM explained 53.4% 
of the variance in the vestibular condition data, with a standard deviation of 22.4%. Similarly, the Visual 
UM explained 51.1% of the variance in the visual condition data with a standard deviation of 28.4% 
(for individual results, see Supplementary Table 1). 

 

Figure 7: Unimodal measurement noise derived from UM fits and calculated bimodal measurement noise. On the x-axis, 
participants were sorted based on the absolute difference between the unimodal measurement noise values, with large 
differences on the right. There is a wide range of differences between the unimodal measurement noise parameters and, for 
individual participants, neither sensory modality has consistently lower or higher measurement noise than the other. The 
measurement noise values are plotted on a logarithmic scale because the Bayesian integration in our Bayesian models occur 
in log-space (see Methods) and it enables easier comparison of measurement noise values.	
 

 

 

A)	 B)	
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Predictions of the bimodal condition 

Mean &#  was calculated for model predictions of the bimodal condition for each subject and all 
models, and then compared with two-tailed paired sample t-tests. We found a small but significant 
advantage of the ILM when fitting the bimodal data as compared to the Vestibular UM (t(17)=2.65, 
p=0.017) and the Visual UM (t(17)=2.60, p=0.019). From the individual participant’s &# coefficients, 
which are plotted behind the bars in figure 8A, we can see that often a UM fits the data similarly to the 
ILM, hence the small effect size (see Supplementary Table 1 for R2 coefficients). To further inform the 
discussion concerning why we see such a small effect size, we performed two post-hoc correlations. In 
each correlation, we first calculated the difference between unimodal measurement noise (($"%  or 
($&%') and bimodal measurement noise ((!"; calculated according to equation 1). We correlated these 
differences with the difference in &#  between the corresponding UM and the ILM. We found a 
significant negative correlation between the change in measurement noise and the differential 
goodness-of-fit for the vestibular data (r(17)=-0.80, p<0.001), and of the visual data (r(17)=-0.52, 
p=0.027). This indicates that the ILM fits the bimodal condition data better than the UMs, when we 
see a larger reduction in measurement noise. Conversely, when the unimodal and bimodal 
measurement noise is similar, the UM fits similarly to the ILM.  

 

Figure 8: A) Comparison of unimodal model fits and the ILM fit of the bimodal condition data. We see a small but significant 
advantage of the ILM over the visual UM and the vestibular UM. Error bars are the standard error and the lines in the 
background show !! values for the individual participants (see Supplementary Table 1 for the values themselves) B) Post-

hoc correlations between change in measurement noise and the differential goodness-of-fit. On the x-axis of each plot is 
difference between unimodal measurement noise and the calculated bimodal measurement noise. On the y-axis is the 
difference between the !!s of UM predictions and ILM predictions. We see a significant negative correlation in the vestibular 
and visual plots, indicating that the ILM fits the bimodal condition data better than the UMs, when we see a larger reduction 
in measurement noise. Conversely, when the unimodal and bimodal measurement noise is similar, the UM fits similarly to 
the ILM.	
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DISCUSSION 

Our expectations were that due to the process of sensory fusion, all participants should have improved 
accuracy and precision in the bimodal condition when compared to both the visual and vestibular 
unimodal conditions. Furthermore, we expected the Prior’s Centralizing Bias (PCB) to decrease, which 
reflects not only improved accuracy but potentially a decreased reliance on a Bayesian prior (Jazayeri 
& Shadlen, 2010; Petzschner & Glasauer, 2011; Roach et al., 2017). Our behavioral results validate all 
these expectations, thereby suggesting that on average our pool of participants did fuse the visual and 
vestibular sensory information. 

Our secondary goal was to see if we could accurately predict responses in the unimodal condition using 
our Bayesian models. Overall fit as assessed by the coefficient of determination (&#) was moderate, 
explaining around 50% of the variance in behavioral reproductions. However, the average trends and 
systematic errors (PCB) were accurately predicted, as demonstrated by the close agreement between 
predicted and actual PCBs. Interestingly we see smaller &#	coefficients in the UM fit of the unimodal 
conditions than in the UM fits to the bimodal condition. It may therefore be the case that the inherent 
noisiness of measurements in the unimodal conditions led to additional random errors that the 
Bayesian model could not account for. Given the relative variability of behavioral errors (Figure 4B) 
when compared to the production stimuli and the mean behavioral errors (Figure 4A), the authors 
consider the fit of the UMs to be sufficiently high. 

The next investigation was to see if we could predict the responses in the bimodal condition based on 
the reproduction data from the unimodal conditions. Results showed that calculating the bimodal 
measurement noise, based on estimates of unimodal measurement noise, allowed the ILM to explain 
more than 60% of the variance in participant reproduction data. Furthermore, the predicted PCBs were 
closely matched to actual PCBs in the bimodal condition, showing that the ILM accurately predicted 
the degree to which accuracy increased. Matching the PCBs also confirms the established relationship 
between likelihood variance (analogous to measurement noise in our case) and weighting of the prior. 
Namely, as the variance of the likelihood diminishes, the influence of the likelihood on the posterior 
distribution increases, and consequently the influence of the prior decreases. It appears that we can 
accurately predict the influence of the prior on participant’s reproductions (as reflected by PCB) by 
calculating the decrease in likelihood variance according to Bayesian sensory fusion (equation 1). 

Lastly, we wanted to see if the ILM predicted the bimodal condition data better than the UMs. This 
was an important step because the relative weighting of the prior was more important than the 
influence of a prior in general. Although we did see that the ILM fit the bimodal condition data 
significantly better than both UMs, the effect size is notably small. The cause is clearly that for many 
participants one of the UMs can explain the bimodal data about as well as the ILM. At first alarming, 
this small effect size is actually expected (Alais & Burr, 2004) and relates directly to how the ratio of 
unimodal likelihood variances ( ($"%  and ($&%' ) impact the calculated variance of the multimodal 
likelihood ((!", Figure 3). This mathematical relationship is clearly outlined by Alais & Burr (2004) who 
apply maximum likelihood estimation (MLE) when fitting their models in the context of multi-sensory 
integration. Like us, they see the largest predicted benefits in situations where the unimodal likelihood 
distributions have similar variances. In situations with different unimodal variances, bimodal 
predictions lay closer to the unimodal predictions for the modality with lower variance. For us, an 
example would be if the estimated measurement noise from the visual condition is much lower than 
the estimated measurement noise from the vestibular condition (see participant 3, Figure 7). In this 
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case, the calculated bimodal measurement noise would be very similar to the visual measurement 
noise, and consequently the ILM predictions would also then be similar to the visual UM predictions. 
This is why we see the correlations in Figure 8B. In cases where the bimodal measurement noise is 
much smaller than the unimodal measurement noise, we see a clear difference between the ILM and 
UM fit. Previous research has provided experimental evidence for the dynamic inherent to equation 1 
by manipulating the reliability (variance) of one sense in order to impact performance in the bimodal 
condition (Battaglia et al., 2003; Kaliuzhna et al., 2015; Prsa et al., 2012). Here we have provided 
additional evidence by showing that the same principal applies to pre-existing individual differences in 
inter-sensory measurement noise.  

Given that the sensory modality with lower measurement noise contributes more to the calculation of 
bimodal measurement noise, one could say a participant might favor the more reliable (less noisy) 
modality over the other. A preference for one sensory modality over another is very well documented 
in multi-sensory integration literature (Battaglia et al., 2003; Knill & Saunders, 2003), including 
experiments with visual and vestibular interactions (Butler et al., 2010; Fetsch et al., 2009; Prsa et al., 
2012). Rather than a consistent preference towards one modality, we see an equal occurrence of 
preference for the visual or vestibular modalities (Figure 7). One explanation for why a participant 
could have favored the vestibular modality is that visual information could be underweighted due to 
uncertainty regarding its origin, i.e. if it is caused by self-motion or motion in the environment (Fetsch 
et al., 2009). This is possible, since in the visual condition the environment was moving instead of the 
participant. Many participants reported that sometimes they were unsure if they were moving or if 
the drum was. If this were true, this would be a limitation of our experimental design since we cannot 
account for this influence in the bimodal condition. Still, this would only apply to participants who had 
higher visual measurement noise than vestibular measurement noise. Thus, it seems the most likely 
explanation is still that inter-sensory preferences express naturally in people and vary among 
individuals. 
 
Participants who may not have fused 

A closer look at behavioral errors in individual participants shows that the majority have reduced error 
in their behavioral condition, but some other participants have either less error in one of their 
unimodal conditions or less error in both unimodal conditions (Figure 4C, left side). These participants 
may have failed to successfully fuse the visual and vestibular sensory inputs because we do not see a 
benefit to performance. However, it is unlikely that this reveals a general inability of these participants 
to fuse visual and vestibular input. Probably it is due to the unnatural experimental separation of the 
visual and vestibular modalities. Recent research has proposed that not only are the visual and 
vestibular inputs normally fused, fusion is in fact mandatory (Prsa et al., 2012). In other words, even 
under circumstances where fusion of visual and vestibular information is unproductive, it occurs 
nonetheless. It has been found that the more correlated two senses are, the more likely they are to be 
fused. A wonderful example of this dictum is that participants can be taught to fuse two completely 
unrelated sensory inputs like luminance and haptic stiffness (Ernst, 2007) or vision and vestibular self-
motion around different axis (Kaliuzhna et al., 2015). Given that visual and vestibular inputs measuring 
yaw-rotation are exceptionally consistent under normal circumstances, even if fusion were not 
mandatory, it would be deeply entrenched. 
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Conclusion 

The visual and vestibular unimodal models fit their respective conditions suitably well and predict the 
PCB seen in the behavioral reproductions, indicating that participants are using prior information. Our 
Integrated Likelihood Model was able to accurately predict behavioral reproductions in the bimodal 
condition by combining unimodal measurement noise according to optimal fusion of unimodal 
variances. Not only that, but the ILM outperformed both UMs in the bimodal condition, strongly 
suggesting that our participants were fusing visual and vestibular sensory inputs in a Bayesian manner 
based on the variance of the likelihood distributions associated with each sensory modality. 
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SUPPLEMENTARY MATERIALS 
  

UNIMODAL CONDITION FITS BIMODAL CONDITION FITS   
Vestibular UM Visual UM Vestibular UM Visual UM ILM   

R2 R2 R2 R2 R2 
PARTICPANTS 1 0.60 0.66 0.79 0.82 0.83 

2 0.60 0.52 0.61 0.58 0.61 
3 0.74 0.91 0.88 0.90 0.90 
4 0.67 0.72 0.64 0.64 0.63 
5 0.71 0.52 0.78 0.78 0.79 
6 0.68 0.44 0.67 0.65 0.68 
7 0.21 0.65 0.57 0.69 0.70 
8 0.73 0.52 0.86 0.76 0.86 
9 0.32 0.26 0.48 0.53 0.53 

10 0.08 0.22 0.26 0.33 0.40 
11 0.49 0.47 0.49 0.48 0.49 
12 0.62 0.61 0.68 0.66 0.70 
13 0.77 0.79 0.92 0.91 0.92 
14 0.74 0.50 0.63 0.64 0.62 
15 0.43 0.37 0.44 0.44 0.43 
16 0.71 0.82 0.90 0.91 0.91 
17 0.37 -0.36 0.24 0.23 0.25 
18 0.14 0.58 0.64 0.70 0.72 

AVERAGE 0.53 0.51 0.64 0.65 0.66 
STANDARD 
DEVIATION 

0.22 0.28 0.20 0.19 0.19 

 

Supplementary Table 1. Goodness-of-fit measures for individual participants. The coefficient of determination (R2) is 
provided for all model fits and indicates the amount of variance explained by each model.  
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CHAPTER 3: Navigational Strategies  

 
 
Triangle completion experiments 

 
 The practice of blind-folding participants and asking them to walk 
along the perimeter of a triangle is truly time-honored and has taken many 
variations over the years. Some examples included: having participants 
memorize the triangle and walk around it repeatedly by themselves (Glasauer 
et al., 2002), guiding the participant through part of the triangle and asking 
them to retrace their steps (Loomis et al., 1993), or guiding them through 
part of the triangle and having them complete the missing pieces by 
themselves. In one case, participants were guided along the hypotenuse and 
asked to walk the other two sides of a right triangle (Worchel, 1951). 
However, the most common variant is that participants are guided along 2 
legs of a triangle and asked to complete the third side (Fujita et al., 1993; 
Harootonian et al., 2020; Klatzky et al., 1990, 1999; Loomis et al., 1993; 
Wiener et al., 2010).  
 
This last version of the triangle completion task is analogous to foraging 
behavior demonstrated by many animals, since the goal is to end up at the 
start location (the beginning of the first leg of the triangle). The animal will 
make trips away from their nest or home location in order to find food, and 
then return back via a straight path (Heinze et al., 2018). These foraging 
journeys are often convoluted explorations, sometimes over great distances. 
For example, the Egyptian fruit bats will fly tens of kilometers away from 
their cave, but are still able to navigate back via a more-of-less straight 
route (Tsoar et al., 2011). In order perform the blindfolded triangle 
completion task, it is necessary to compute a “homing vector” which 
represents the distance and angle from the current location back to the 
home location. 
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ABSTRACT 

Recent research by Wiener et. al. (2010) on path integration in humans demonstrated that when 
people are given specific instructions concerning a navigation strategy, they can flexibly switch 
between two dissociable strategy types: the configural strategy and the continuous strategy. They also 
showed that users of the continuous strategy tend to deviate their head’s direction towards the goal 
location. In this experiment, 23 participants completed a similar triangle completion task but were not 
instructed to use a specific strategy. By retrospectively classifying participants into strategy type based 
on head deviation and confirming a similar pattern of results seen by Wiener et. al., we provide 
additional evidence to their hypothesis. We also show, through a combination of the behavioral results 
and the application of 2 Bayesian models, that in the absence of specific instructions participants may 
not naturally employ each strategy in its purest form. Many participants appear to use elements from 
both strategies, and all seem to maintain Bayesian priors for the return distance and angle composing 
a homing vector. However, only participants who use the configural strategy maintain Bayesian priors 
for the first 2 legs of the triangle and the turn angle between them, which were traversed before 
returning to the starting location. In summary, modeling the influence of Bayesian priors on navigation 
behavior offers a more nuanced understanding of employed navigation strategies in the absence of 
explicit instructions. 

INTRODUCTION 

Idiothetic Path Integration (iPI) is a process that allows an agent to track their position in space using 
only self-motion information, such as information from the vestibular and proprioceptive senses 
(Mittelstaedt & Mittelstaedt, 2001). Although it has been shown to be vulnerable to noise 
accumulation, there is compelling evidence to suggest that path integration provides a framework for 
constructing more complex representations of space (Biegler, 2000; Cheung & Vickerstaff, 2010; 
Schatz et al., 1999). In research on animals, where foraging journeys are often focal, it has been 
generally assumed that the studied animal uses a homing strategy, where it constantly updates a 
homing vector that points from its current position back towards the starting location (Heinze et al., 
2018; Shettleworth, 2010). Whereas research on human participants has historically assumed that 
people perform path integration in an offline step after the outgoing path was completed (Fujita et al., 
1993; Loomis et al., 1993). This latter approach requires that people monitor the distances and angles 
while walking, but integrate them only directly before the return journey. In their 2010 publication, 
Wiener et al. named the former strategy the “continuous strategy,” in which the navigator constantly 
updates their homing vector, and the latter strategy the “configural strategy”, in which the 
configuration of the outgoing paths are remembered. Fundamentally, they asked why the strategy 
typically associated with animals was not also considered for humans, and then demonstrated that 
humans can also continuously update a homing vector. By providing different instructions to their 
participants, the same participant could navigate using either the “continuous strategy” or the 
“configural strategy.” In the absence of specific instructions, the authors speculate that an individual 
is likely to choose the strategy that is most appropriate to the task at hand (Wiener et al., 2010). 

One way that Wiener et. al. differentiated the continuous and configural strategies was to measure 
performance on a so-called triangle completion task. During such a task, people are blindfolded and 
lead along 2 legs of a triangle before being asked to walk back to the starting location by themselves 
(return distance is C in Figure 1.2).  Wiener et. al. measured performance with 4 metrics: Homing Error, 
Distance Error, Direction Error, and Response Time. The last metric is the time it took a participant to 
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decide upon and begin walking along the 3rd leg of the triangle. In the continuous strategy, integration 
of changes in distance and angle occur constantly, which means that the navigator always knows their 
position, but error associated with updating position and orientation also accumulate quickly (Cheung 
& Vickerstaff, 2010). Summarily said: response time is low, but overall error is high. In the configural 
strategy, response time is higher because the entire computation of the homing vector occurs just 
before executing the return path (Fujita et al., 1993). Error tends to be lower though, partially because 
updating occurs less often, but also because participants tend to use step counting to reduce 
uncertainty in distance estimates. 

Perhaps the more important differentiating factor presented in Wiener et. al.’s 2010 paper, is that 
head direction predicts which strategy the participant is using. They found that during the triangle’s 
second leg, participants’ head direction significantly deviated from straight ahead toward the starting 
location. Furthermore, this was much more pronounced during the continuous strategy than during 
the configural strategy. They hypothesize that this is a motor expression of top-down influences 
associated with the applied navigation strategy. Practically speaking, this provides us with a clear 
method of classifying participants as either continuous solvers or configural solvers. 

The first goal of this manuscript is to apply the above findings to a pre-existing dataset from one of our 
triangle completion experiments. Unlike in Wiener et. al. 2010 paper, we intentionally provided 
instructions that did not bias the participant toward one strategy or the other. We can therefore 
retroactively classify participants into each navigation strategy based on their head direction’s 
deviation and see if their performance metrics (error and response time) corroborate the classification. 
The experiment presented here has two conditions, one in which scalene triangles are provided to the 
participants and one in which only right triangles are provided to the participants. On average, the 
triangles in this experiment are smaller than those used by Weiner et. al. and consequently we expect 
to see ameliorated differences in homing error and direction error between strategies. This is expected 
because the continuous strategy will not accumulate sufficient error to differentiate it. We do however 
expect to see differences between strategies for response time and distance error because they are 
not as dependent on path length. 

Persistent geometric features represented as Bayesian priors 

In the 1990 publication from Fujita et al., the authors describe their model of path integration as 
“history free,” meaning that “the navigator maintains no record of the actual pathway by which [they] 
arrived at a point (Fujita et al., 1990).” Indeed many of the numerous investigations into path 
integration via mathematical modeling are also history-free (see (Vickerstaff & Cheung, 2010) for 
review), but we know from literature on magnitude estimation that prior experience has a substantial 
influence on current estimates of magnitudes (Petzschner et al., 2015). Obviously, estimating distances 
and angles is crucial to the process of path integration, and thus it is essential that we consider how 
prior experience may be influencing navigation behavior during the continuous and configural 
strategies. 

In the triangle completion experiments, all employed navigation strategies must ultimately produce 
the homing vector, but the configural and continuous strategies differ in terms of which geometric 
features need to be remembered. In the configural strategy, the distances of the first 2 triangle legs 
and the intervening angle must be remembered until they are ultimately integrated at the end of the 
second triangle leg (A, B, and f in Figure 1.2). But in the continuous strategy we assume that the 
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homing vector is updated after each triangle and turn, instead of at the end. After walking the first leg 
of the triangle and before beginning to walk the second leg of the triangle, (after A and before B in 
Figure 1.2) the participant would be remembering the updated homing vector and not the completed 
distance and angle anymore. In a Bayesian context, in which prior experience is maintained as a 
probabilistic distribution called a prior distribution (or simply a “prior”), we might expect priors to exist 
for the remembered information in each strategy. We hypothesize that these priors would cause very 
specific biases in the corresponding geometric features, leading to different response patterns 
between strategies. 

To investigate the role of prior information in these navigation strategies, we will build upon a Bayesian 
model proposed by Petzschner & Glasauer in 2011 that iteratively updates the mean of its prior based 
on each incoming stimulus. This model is preferable over others because it explains a variety of well-
known behavioral effects, but it is exceptionally efficient in its use of free parameters (Glasauer, 2019; 
Petzschner & Glasauer, 2011). We include multiple instances of this model in each of our models 
(Figures 2). Our model that corresponds more with the configural strategy is called the Trigonometric 
Model (TM) because it maintains priors for the leg and angle components of a triangle (Figure 1, A, B, 
and f). In this model, the homing vector is calculated after the priors will bias the estimates for the 
first two legs of the triangle and the intervening angle. Our second model is named the Egocentric 
Model (EM), because it maintains priors for egocentric turn angle and return distance (Figure 1, C and 
θ). It also only computes the homing vector at the end of the triangle, which is not representative of 
the continuous strategy, but our hypothesis concerns the information maintained between trials and 
not the online performance during trials. What is important in the EM, is that the homing vector is 
calculated before Bayesian Integration, and thus the priors bias the return distance and angle. 

This brings us to the second goal of this manuscript, which is to investigate if there exists a differential 
use of prior information between the navigation strategies proposed by Wiener et. al. We would 
expect the EM predictions to fit the data of continuous solvers better than TM predictions. Similarly, 
we would expect the TM predictions to fit the data of configural solvers better than EM predictions. 
We hope to reveal this by looking at the success of each model in their predictions based on explained 
variance and the overall size of errors between predicted and true values. 

If the author’s expectations are fulfilled, we will provide a demonstration of the hypothesis set forth 
by Wiener et. al. in 2010: namely that head deviation toward the goal can predict navigation strategy. 
We would also establish a modeling framework that could be used to confirm which navigation 
strategy was used by each participant and predict their trial-by-trial responses. Lastly, we would 
provide evidence that prior information is not only being used for, but predictably biases, navigation. 

METHODS 
 
Participants  

Data was collected for 23 participants (10 female) with a mean age of 29.8 years old (SD=5.3 years). 
Participants were informed about the general experimental procedure and their rights regarding 
personal data before the experiment began. Upon completion they were paid 10 euro per hour for 
their participation. 

Materials 



 46 

Due to the demolition of the initial testing space, the experiments took place in two separate rooms. 
The first 13 participants were collected in room with dimension of approximately 6.7 x 5.7 meters and 
the latter 10 participants were collected in a much larger room with a free testing space greater than 
10 meters x 7 meters. The first room contained 8 infrared motion tracking cameras (Qualisys) mounted  

 

Figure 1: 1. Triangular paths used in the Right Triangle Condition (RTC, left) and the Scalene Triangle Condition (STC, right). 

RTC: There are 4 starting locations. indicated by black circles. Each path was traversed in both directions, so that: both the 

first and second legs of a triangle could take all 5 possible distance values and both turn directions could be included. All ideal 

return paths followed the black dotted line and the first turn was always 90 degrees. STC: All triangles shared the same 
starting location, indicated by the black circle. The first leg of triangles could be either 1.6 meters or 3.2 meters, and the 

second leg was always 1.2 meters. The angle of the first turn could take 1 of 4 values: 36, 72, 108, or 144 degrees. The faded 

paths on the right side perfectly mirror the opaque paths on the left, and in these triangles the first turn was towards the left. 

2. Reference notation for triangle legs and angles. The two turns, f and θ, are calculated as 180 degrees minus a and 180 

degrees minus b, respectively. In the triangle completion experiment, the participant is guided blindfolded from position AC 

along leg A to position AB, is turned there by ɸ degrees, then guided along leg B to corner BC. At BC, the participant is asked 
to turn and walk home to the starting position. A correct response would thus require turning θ degree to the left, then walk 

the distance C and stop at the starting location. 

 
 

SCALENE TRIANGLE CONDITION RIGHT TRIANGLE CONDITION 

LEG A 1.6, 3.2 0.7, 1.4, 2.1, 2.8, 3.5 

LEG B 1.2 0.7, 1.4, 2.1, 2.8, 3.5 

LEG C 0.95, 1.68, 2.28, 2.34, 2.67, 3.05, 3.75, 4.23 2.97, 3.13, 3.57 

ALPHA 36, 72, 108, 144 90 

BETA 20.66, 26.40, 41.93, 54.27, 65.12, 86.03, 95.73, 126.44 11.30, 26.57, 45, 63.43, 78.69 

GAMMA 9.60, 15.34, 17.55, 17.72, 21.97, 30.07, 42.88, 48.27 11.30, 26.57, 45, 63.43, 78.69 

Table 1: Dimensions of triangle paths in each condition. All unique values are listed for each condition and measure. Lengths 
are in meters and angles are in degrees  
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overhead, whereas the second contained 1 additional camera to accommodate the larger space. 
Sufficient tracking accuracy was possible in both spaces.  Participants wore a helmet fitted with 5 
infrared reflecting balls (2 cm diameter), each mounted on a 12 cm pole, such that at least 3 balls were 
visible from every angle. Participants were both blindfolded and given headphones, over which white 
noise was played so that audio and visual cues were denied. Triangles of varying dimensions were 
taped onto the floor of the room and marked with identification codes. Data from the cameras was 
recorded using the Qualisys software installed on a desktop PC. The experimenter recorded relevant 
time points using key presses on a wireless keyboard. 

We administered two experimental conditions, each of which was designed to manipulate the 
theoretical outcomes of the models: the Scalene Triangle Condition (STC) and the Right Triangle 
Condition (RTC) (Figure 1.1). In the STC, the first leg of each triangle could take two lengths, either 1.6 
meters or 3.2 meters, while the second leg was always 1.2 meters. The angle between legs was either 
36, 72, 108, or 144 degrees and both left and right turns were possible. Each unique triangle was 
completed twice, resulting in a total number of 32 trials. The starting location in the room was always 
the same (Figure 2A). In the Right Triangle Condition (RTC), all triangles were right triangles where the 
first and second legs could take any of the following lengths: 0.7, 1.4, 2.1, 2.8, or 3.5 meters. Left and 
right turns were both possible and each unique triangle was repeated 3 times, resulting in a total of 30 
trials. Unlike the STC, where starting location was always the same, the RTC had 4 possible starting 
locations. 

Experimental Procedure 

Participants were greeted in a different area than the experiment room and informed about the 
experiment’s structure and about policies concerning data usage before they consented to participate. 
Afterwards the experimenter demonstrated the task, confirmed understanding, and then the 
participant was prepared for participation before being led to the experiment room. Before beginning 
each condition, the participant was led through practice trials until they demonstrated an 
understanding of the task. During these instructions the experimenter was very careful not to bias the 
participants towards a navigational strategy beyond the unavoidable influence of the task demands 
themselves. 

In each trial, the participant was gently led by their shoulders along the first leg of the triangle, turned 
once, and led along the second leg. Once at the end, their task was to first turn so that they faced the 
starting location and then walk in a straight line until they reached that location. After the participant 
had verbally confirmed their decision, the experimenter lead the participant on a circuitous and 
random walk through the room to disorient them between trials. 

Each condition lasted around 45 minutes and the order that conditions were provided was 
counterbalanced among participants. Trial order was random but fixed across participants. After each 
condition, the participant was asked four questions concerning sensory input, insight into the 
experiment, and navigation strategy (Supplementary Table 1). 
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Data Acquisition 

Raw position and orientation data from the Qualisys software was interpolated and smoothed before 
turn angle and leg length were automatically identified in Matlab using custom scripts. Data was 
visually inspected for quality and 19 trials (across all Participants) were excluded due to missing data. 

Categorizing Strategy from Head Deviation 

Head deviation during leg B of the triangle was calculated as follows: 1) calculate the participant’s 
straight trajectory from triangle corner AB to corner BC 2) subtract the participant’s head direction 
(yaw-axis) at every time-point from the straight-ahead 3) modify the sign of the result, such that 
positive was towards the perceived goal (i.e. deviated to the left when corner AB was a left turn). We 
then looked at the distribution of average head direction in triangle leg B across all trials. Participants 
whose head deviation was significantly greater than 0, as assessed at a 95% confidence interval, were 
considered to use the continuous strategy. All other participants were assumed to have used the 
configural strategy. 

Behavioral Metrics 

To reflect the analysis done by Wiener et al. 2010, we implemented the same 4 behavioral metrics: 
distance error, direction error, homing error, and response time. 

1) Distance error: The participant’s reproduction of triangle leg C (distance from their actual 
position at corner BC to their final estimate of the start location) minus the true value of leg C 
(distance from their actual position at corner BC to their starting location on that trial). 
Negative values indicate an underestimation of the true distance. 

2) Direction error: The participant’s reproduction of angle q (how far they turned before walking) 
minus the true return angle (that would have oriented them directly towards their starting 
position on that trial). Positive values indicate an overestimation of return angle.  

3) Homing error: The distance between their starting location on that trial minus their final 
estimate of the starting location. Distances are always positive. 

4) Response Time: The amount of time between when they stopped at corner BC until they exited 
an imaginary circle around the stop location with a radius of 40 cm. Response Time therefore 
includes their decision time, time taken to turn towards the perceived starting location, and 
time taken to walk 40 cm. 

In the original publication, a 2x2 repeated measures ANOVA was done for each metric using path 
length and navigation strategy as factors. Then t-tests were conducted to compare navigation 
strategies within the long and short path lengths. We imitate this by also conducting an ANOVA for 
each metric but with experimental condition and navigation strategy as factors, then we compare 
navigation strategy within each condition using t-tests. Given the differences between our 
experimental designs, all t-tests were conducted for completeness, although not all were expected to 
be significant. Although the original publican did not correct for multiple comparisons, we grouped the 
statistical tests by metric and corrected the significance threshold via the Holm-Bonferroni method 

Linear statistics are applied for analyzing angular data here for two reasons: firstly, for reproducibility, 
and secondly because linear statistics are equally appropriate in our case. The primary concern when 
analyzing angle, was that there exists a clockwise and counterclockwise rotation that both point to the 
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starting location, but participants always turned the shorter of the two angles, so this ambiguity was 
removed. We also analyze only magnitudes and the differences between them, and magnitudes do 
not exhibit the cyclical and bounded characteristics of circular data. Sign was added after magnitudes 
were calculated to denote over or underestimations. 

Model Design 

Two computational models were formulated which include the two-stage generative Bayesian model 
postulated by Petzschner and Glasauer in 2011. The unchanged model is nested within each of our 
models multiple times (e.g. Figure 2, green highlighted area). The model is highly flexible, in that it can 
take any measure as input, iteratively produce predictions of that measure, and maintain a Bayesian 
prior for said measure. The following paragraphs will describe this model in more detail, however for 
specific mathematics and the reasoning underlying its structure, please refer to the original 
publication. 

The 2-stage Bayesian model proposed by Petzschner and Glasauer iteratively predicts incoming stimuli 
on a trial-wise basis. In each iteration, the incoming stimulus is converted into log-space to attain the 
mean of the Bayesian likelihood distribution. This probability distribution is assumed to be Gaussian, 
as are all other distributions in log-space. This transformation into log-space is done to mirror the 
Weber–Fechner law, which has been applied to magnitude estimation in other contexts (Dehaene et 
al., 2008; Durgin et al., 2009; Jürgens & Becker, 2006; Stocker & Simoncelli, 2006). Also, as part of the 
transformation, the stimuli is divided by a small normalizing constant which has the same units as the 
stimuli itself. This makes the likelihood unitless and can be used to modulate the flatness of the log 
function. In all cases, we used the constant 0.01 as was done in the original publication. 

Next, the means of the likelihood and prior distributions are combined to obtain the posterior 
probability distribution’s mean using a weighted summation. Normally, the weights of the likelihood’s 
mean and the prior’s mean is determined by the relative variances of the two distributions. But in this 
case, the weights during summation are determined by a free parameter called the r/q ratio, which is 
the ratio of measurement noise (r, variance of the likelihood) to process noise (q, variance during prior 
update). In the first iteration of the model, the mean of the prior is initialized to the log-transformed 
stimulus value. Afterwards, the prior’s mean is updated on every trial via a weighted sum of the current 
likelihood’s mean and the mean of the prior from the previous iteration. The weights during this 
summation are determined by a 1-dimension derivation of the Kalman filter that relies on the r/q ratio. 

The model’s final prediction is the mode (maximum) of the posterior distribution plus a fitted constant 
(shift parameter), which accounts for the use of different cost functions. In summary, a single instance 
of this model has two free parameters: the r/q ratio and the shift parameter. Our implementation of 
the model has two important caveats regarding the shift parameter: firstly, we interpret it as an 
additive gain to predictions, not to explain cost functions. Secondly, for angles, we use 2 separate shift 
parameters for different turn directions, since there was a difference in additive bias in some 
Participants. 
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Figure 2: Differing structures of the 2 generative Bayesian models. The piece of the model highlighted in green represents 

the computational unit that is identical to the Petzschner and Glasauer 2011 two-stage model. This unit is repeated multiple 
times in each model depending on how many priors are maintained. The blue rectangles represent geometric calculations 

necessary to compute an angle or edge from available information. All models receive the first two legs (A, B) and the first 

turn angle (f) as inputs. Furthermore, they all predict the second turn angle (θ) and return distance (C).  Left: The Egocentric 
Model (EM) maintains a prior for the reproduced turn (θ) and reproduced distance (C). Right: The Trigonometric Model (TM) 

maintains three priors, one for each leg of the triangle (A, B) and the angle of the first turn (f). 

As seen in Figure 2, the 2-stage Bayesian model above occurs multiple times in each model: two times 
for the EM and three times for the TM.  

Egocentric model: Return distance (leg C) and return angle (q) are calculated from legs A and B, and 
angle f, and afterwards used as inputs for the Bayesian integration. Two priors are maintained, one 
for the return distance and one for the return angle. There are 5 free parameters in total: 2 r/q ratios 
and 3 shift parameters for each metric (2 for angle). 

Trigonometric model: Three priors are maintained, one for the distance of leg A, one for leg B, and one 
prior for the angle f between these legs. Internally, the model predicts all three values and then 
geometrically calculates the return angle and distance. The TM was designed to also have 5 free 
parameters by using the same r/q parameter for both distances, A and B, and applying the shift 
parameters after the geometric calculations of return angle q and return distance C. Since the influence 
of the prior on estimates is mediated only by the r/q ratio, this should not undermine a comparison 
between the models. 

Fitting Procedure 

The EM and TM were fitted to the STC data using non-linear least-squares fitting (MATLAB function 
lsqnonlin). To ensure consistency between the models and concurrent fitting of all metrics, the fitting 
procedure minimized the linear distance between predicted final position and the participants’ actual 
final position over all trials. The fitted values for the r/q ratios from the STC were used to predict the 
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RTC data, but the shift parameters were not used. This was done primarily because the Petzschner & 
Glasauer model assumes that participants have a constant tendency toward over/under-estimation 
across conditions, and we expected this not to be true. Therefore, when predicting the RTC, the r/q 
ratios carried over from the STC and the shift parameters were fitted anew. The averages and standard 
deviation of the fitted parameters for each model can be found in Supplementary Table 3.  

Comparing Predictions to Responses 

We assessed how well the models’ predictions fit the participant responses by calculating a positional 
coefficient of determination (!"!, equation 1). The numerator of the fraction in equation 1, is the 
Residual Sum of Squares (RSS) for the linear distance between the predicted home location and the 
participant’s estimated home location, which is in fact the term that was minimized during the non-
linear least-squares fitting. The denominator is the Total Sum of Squares (TSS), which quantifies the 
variation in participant’s estimates of starting location, i.e. their final location in each trial. 

!"! = 1 − "&&'&& = 1 − ∑ (*" − *+")! +#
"$% (." − *+")!
∑ (*" − *̅)! +#
"$% (." − .0)!

 

This is a convenient measure of goodness-of-fit since it considers both distance and angle. 

We further compared model performance between the two navigation strategies (as classified by head 
deviation) by calculating the root-mean-square error (RMSE) for distance, angle, and final position 
(again predicted home location minus estimated home location). We can utilize the !"!and RMSE 
instead of a method that corrects for the number of free parameters, like the Akaike Information 
Criterion, because both the EM and TM have 5 free parameters and thus, we do not expect that the 
TM will have an advantage. We corrected for multiple comparisons by grouping the statistical tests 
according to 4 constituent assertions necessary to show that the EM and TM fit their corresponding 
solving strategy. In each case, we used at least n of 4 related to the 4 metrics (pR2 and 3 RMSE 
measures) and corrected via the Holm-Bonferroni method. 

RESULTS 

We first verified that participants had successfully performed the task by looking at: the correlation 
between individual participant responses and the stimulus values, as well as the median absolute error 
(absolute value of responses minus stimulus) (Supplementary Table 2). In most cases, correlation 
between the distance or angle stimuli and participant responses was high (R>0.5), indicating that 
participants were on task and generally successful. Median absolute error across both conditions were 
as follows: 22.9 degrees error for return angle q, 0.55 meter error for return distance C, and 1.33 meter 
error for homing distance. One exception of note is that in the Right Triangle Condition (RTC), distance 
estimates did not vary in accordance with the stimuli. This indicates that these participants, especially 
those with low correlation and high error, were not able to differentiate between the different 
distance stimuli.  

 

(1) 



 52 

 
Figure 3.1. Average trends in response-vs.-

required plots. Bottom row: The STC data from 
all participants was pooled and subdivided by 
outgoing path distance (shape) and turn angle a 
(color). Vertical grey lines show the ideal required 
values, the dashed grey line is the line of equality, 
and the regression line is dashed black. The slope 
of the regression line is shown in the white box 
for all plots. Top row: The RTC data from all 
participants was pooled and subdivided by turn 
direction (color) and triangle shape (shape). 
Otherwise, notation is the same as for the STC. 
 
Figure 3.2. Exemplary triangles from participant 

7. Plotted example paths have been interpolated, 
but not smoothed. Top: All final destinations in 
the RTC are plotted with the same shape and 
color combinations as in the response-vs.-
required plots. Example paths are shown for each 
combination of turn direction and triangle 
geometry. Bottom: All final destinations in the 
STC are plotted with the same shape and color 
combinations as in the response-vs.-required 
plots. Example paths are shown for only one turn 
direction, but for each combination of outgoing 
path length and angle a. 
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The Participants’ reproductions of angle and distance were plotted against the stimuli to observe 
average trends (Figure 3). Data from all participants were pooled and averages were calculated for 
each triangle geometry. Of particular interest was if the slope of the regression line, which was fitted 
to the data, deviated from 1 as this can indicate a centralizing bias of reproductions by the prior 
distribution.  

The computed averages of the behavioral estimations were well explained by a linear fit and the slopes 
of the regression lines were less than 1 for both distance and angle in both conditions. The slope could 
indicate a centralizing bias caused by the Bayesian priors (Jazayeri & Shadlen, 2010; Petzschner et al., 
2015), where the strength of the prior’s bias is proportional to 1 minus the slope (Petzschner & 
Glasauer, 2011). The vertical displacement of the regression lines in these plots show that angle was 
generally overestimated and distance was generally underestimated. 

Differentiating Navigation Strategy 

As part of the post-experiment interview, participants were asked if they used a strategy during the 
triangle completion task. Of the 23 participants, 5 reported not using a strategy, 3 indicated the use of 
an actively updated homing vector, 15 counted their steps, and 15 visualized the triangles geometry 
(Supplementary Table 1). Of the 3 that reported updating a homing vector, all said that they counted 
steps, and 1 said they also visualized the triangle geometry. 

When looking at head-deviation from straight ahead during the second leg of the triangle, we found 
that 11 participants in the STC and 13 participants in the RTC had significant deviations towards the 
perceived starting location. We presumed that these participants were using the continuous strategy 
and that the other participants were using the configural strategy (Figure 4.1). Then we looked at group 
differences for each behavioral metric by performing a 2x2 repeated measures ANOVA with 
experimental condition and navigation strategy as factors (Figure 4.2). 

Distance Error: We expected to see that distance error for configural solvers was closer to 0 than for 
continuous solvers. The 2x2 repeated measures ANOVA with experimental condition and navigation 
strategy as factors revealed a significant main effect of strategy (F(1,22)=4.62, P=0.037), but not 
condition. Nor was there an interaction. The differences between strategies were evaluated via 1-
tailed t-tests assuming unequal variance and were found to be significant in the STC data 
(t(1,20.8)=2.07, P=0.026), but not in the RTC data t(1,19.7)=1.16, P=0.129). 

Direction Error: Although Wiener et. al. showed lower direction error for the configural strategy, this 
was only true for long distance (average outgoing path length of 15.3 meters). Due the small size of 
our triangles in comparison to Wiener et. al., we did not expect to see differences in direction error. 
The 2x2 repeated measures ANOVA with experimental condition and navigation strategy as factors 
revealed no significant main effects or interaction. However, a t-test (1-tailed, unequal variance) 
showed that direction error in the RTC was indeed lower for the configural solvers (t(1,20.8)=1.78, 
P=0.045). 

Response Time: We expected to see robust differences in response time between solving strategies 
because it does not rely on path length. However, the 2x2 repeated measures ANOVA with 
experimental condition and navigation strategy as factors revealed no significant main effects or 
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interaction. Furthermore, t-tests (1-tailed, unequal variance) for each condition were also not 
significant (RTC: t(1,16.6)=0.90, P=0.189, STC t(1,20.5)=0.32, P=0.374). 

 
Figure 4: 1. Head deviation from straight ahead during leg B of each trial. The distance along leg B was normalized as the 

percentage of total length. Positive deviations are towards the goal location (subjective), and a participant was classified as 
a continuous-strategy user if their head deviation between 20% and 90% of the overall length was significantly greater than 

0 (95% Confidence Interval). All other participants were considered to be configural strategy users. The dotted line indicates 
the mean and the solid lines are 1 standard error. 2. Response time and error metrics organized by navigation strategy and 

experimental condition. Given the path lengths used in our experiment, we expected lower distance errors and higher 

response times for the configural-strategy users when compared to continuous-strategy users. This was only true for distance 
errors. We did however see unexpected differences between strategies for direction error data in the RTC, which conform 

with the hypothesis for Wiener et. al. 2010. Depicted error bars show the standard error.  

* 

* 
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Model Predictions 
 
First the Egocentric Model (EM) and Trigonometric Model (TM) were fit to the STC data to obtain the 
free-parameter values. To ensure that these free-parameter values were meaningful, we evaluated 
their goodness-of-fit via a positional coefficient of determination (!"!) and found that the EM and TM 
explained the behavioral data similarly well. On average, they both explained about 52% (±21%) of the 
variance in participant’s final estimates of starting location.  
 
We then applied the fitted ratios of measurement noise to system noise (r/q) from the STC data to 
predict the RTC data (see Methods: Fitting Procedure). Again, we calculated the !"!and found that 
the EM explained 45.5 ± 27.6% of the variance in participant’s final estimates of starting location. The 
TM only explained 21.5 ± 30.3% of the variance, which was significantly less than the EM (paired t-test, 
t(1,22)=3.76, P=0.001). 
 
We then divided up participants into navigation strategy users based on the head deviation and 
conducted a 2x2 repeated measures ANOVA with model type and navigation strategy as factors. The 
ANOVA revealed a main effect of model type (F(1,22)=9.46, P=0.006) and a main effect of navigation 
strategy (F(1,22)=8.45, P=0.004), but no significant interaction. We expected that the EM would 
explain the continuous strategy data better than the configural strategy data, and a 1-sided t-test with 
unequal variance revealed that this was not true (t(1,20.0)=1.55, P=0.93). In fact, the trend was 
reversed, though not significant as revealed by a post-hoc 2-sided t-test. Conversely, we expected that 
the TM would explain the configural strategy data better than the continuous strategy data, and 
another 1-sided t-test with unequal variance showed that this was very much true (t(1,20.7)=3.08, 
P=0.003). Although the effect was driven largely by an exceptionally poor fit of the TM to the 
continuous strategy data. 
 

 
We further compared model fit over the RTC data by examining the root-mean-square error (RMSE) 
between model predictions and behavioral responses for direction, distance, and final position (Figure 
6).  
 
Direction RMSE: We conducted a 2x2 repeated measures ANOVA with model type and navigation 
strategy as factors and found a main effect of navigation strategy (F(1,22)=7.79, P=0.008) and model 
type (F(1,22)=5.8, P=0.021), but no interaction. The expectation that the TM would have lower RMSE 
for the configural solvers was evaluated via a 1-tailed t-test with unequal variance and found to be 
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significant (t(1,15.1)=2.13, P=0.025). However, the EM did not have lower RMSE for continuous solvers. 
A paired t-test revealed an overall lower RMSE for the EM (t(1,22)=3.98, P<0.001), indicating a 
generally better fit to the return angles. 

Distance RMSE: The 2x2 repeated measures ANOVA with model type and navigation strategy as factors 
did not reveal any main effect nor interactions. 

Final Position RMSE: The last 2x2 repeated measures ANOVA with model type and navigation strategy 
as factors revealed a main effect of model type (F(1,22)=6.18, P=0.017), but not navigation strategy 
and there also was not an interaction. A paired t-test revealed an overall lower RMSE for the EM 
(t(1,22)=3.91, P<0.001). This metric is complimentary to the !"!, demonstrating additionally that the 
overall difference between the true final destinations and the predicted final destinations were less 
for the EM compared to the TM. 

 

Figure 6: Bayesian models predict within-strategy responses similarly, but overall fit differs. The root-mean-squared error 
(RMSE) was calculated between the model predictions and behavioral responses. Not one of the two-factor ANOVAs 

conducted for each metric revealed a significant interaction between strategy and model, however, we did see a main effect 
of model for Direction RMSEs and Homing Distance RMSEs, which is due the fact that the EM’s RMSE was lower than the TMs 

RMSE. We also found a main effect of navigation strategy for Direction RMSEs, confirming results from the positional 

coefficient of determination showing that both the EM and TM fit the configural solvers’ data better. Depicted error bars are 
standard error. 

DISCUSSION 

At the outset of this investigation, we sought to fulfill 2 goals. First, we aimed to verify the results of 
Wiener et. al. 2010 by retrospectively classifying our participants based on head deviation. In the case 
that this classification was appropriate, we expected to see the same behavioral differences between 
solving strategies seen by Wiener et. al. The second goal of this manuscript was to determine if there 
exists a differential use of prior information between the navigation strategies proposed by Wiener et. 
al. We adopted a Bayesian model from the magnitude estimation literature (Petzschner & Glasauer, 
2011), in order to construct 2 models that roughly correlated with the continuous and configural 
strategies in terms of which geometric quantities were the focus of each strategy. The Egocentric 
Model (EM) was expected to best fit data from the continuous solvers and the Trigonometric Model 
(TM) was expected to best fit data from the configural solvers. 

 

* * * 
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Verifying the success of strategy classification 

By lucky coincidence, we had a roughly equal distribution of navigation strategy users in both 
experimental conditions. When comparing strategies based on the behavioral metrics, some of the 
results were as we expected. We did not find a significant difference between strategies in homing 
error, which is presumably due to the much smaller dimensions of our triangles compared to those 
seen in Wiener et. al. We also found a significant difference between navigation strategies for distance 
error, which was not dependent on the size of the triangles in their data. 

There were also some unexpected outcomes. Despite the small triangles in our experiment, when we 
analyzed direction error, there was a significant difference between navigation strategies in the RTC. 
The direction of errors was as we would have expected with larger triangles: smaller error for the 
configural solvers than for the continuous solvers. It could be the case that the RTC geometries 
(intermediate angle f was always 90°) were much easier to integrate when using the configural 
strategy and thus this inter-strategy difference emerged. The higher slopes in the plots of behavioral 
response versus stimuli (Figure 3) would also suggest more accurate responses in the RTC when 
compared to the STC, suggesting that this condition was generally easier for our participants. 

Thus far, evidence suggests that the classification of our participants by navigation strategy was 
successful, but there was one unexpected difference which refutes this conclusion: there was not a 
difference between response times. The response time was expected to be longer for the configural 
condition because at corner BC participants must take additional time to integrate the homing vector, 
whereas for continuous solvers the integration has been happening continuously. Furthermore, this 
effect should be present regardless of outgoing path length. The overall duration of response times 
was also unexpected. In Wiener et. al. 2010, the average response time for configural solvers was 
approximately 4 seconds and the average for continuous solvers was just less than 3 seconds. Our 
participants had average response times of approximately 5 seconds or more in all navigation 
strategies and experimental conditions.  

One explanation could be that in the absence of specific instructions, our participants employed both 
navigation strategies to some extent. This hypothesis would be corroborated by the data from 
participant interviews, in which all participants who reported using a strategy also said they used some 
technique associated with the configural strategy: either step counting or visualizing the geometry of 
the triangle (Supplementary Table 1). Only three participants reported the additional use of a 
technique characteristic of the continuous strategy. That said, the head deviation data and the error 
metrics all suggest that some participants were using the continuous strategy. Thus, we would propose 
that head deviation does predict navigation strategy, but it may be the case that people do not employ 
either strategy alone, instead combining them to varying extents. 

Modeling results 

In essence, we used the Scalene Triangle Condition (STC) as a training data set for the free parameters 
of the models and used the Right Triangle Condition (RTC) as the test data set. The motivation for 
testing the data in the RTC, instead of the STC, is that to accurately estimate the noise-ratio parameter 
(measurement noise divided by system noise, see Methods) we need a range of stimuli. In the 
Trigonometric Model (RM), we have a noise-ratio that is associated with intermediate angle f, but f is 
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fixed to 90 degrees in the RTC. Therefore, the RTC data would not have been ideal for fitting the free 
parameters. 

In general, the goodness-of-fit results were not as we expected but were interesting nevertheless. The 
TM did fit the configural solver’s data better than the continuous solvers data, seemly because the TM 
fit the continuous solver’s data especially poorly. However, the Egocentric Model (EM) also fit the 
configural solver’s data better than the continuous solver’s data. Overall and irrespective of navigation 
strategy, the EM explained more variance in the participants estimates of the goal location than the 
TM. What this suggests is that all participants were maintaining priors for return distance (leg C) and 
return angle (q), at least to a greater extent than they maintained priors for distance of leg A, leg B, 
and the angle f. Given how well the EM predictions matched the data from configural strategy users, 
it could be that priors for return distance and angle had an especially large influence on configural 
solver’s responses. 

One possibility is that the TM is unfounded and none of the participants were maintaining priors for 
leg A, leg B, and the angle f. But this is refuted somewhat by the fact that the TM explained so little 
variance in the continuous solvers’ data but did explain the configural solvers’ data (Figure 5.2, right 
side). If the biasing influence of the priors on TM predictions did not somewhat mirror aspects of 
behavioral responses, then we would have expected consistently low !"! coefficients. Another more 
likely option would be that 1) the continuous solvers specifically did not maintain priors for leg A, leg 
B, and the angle f, but the configural solvers did. And 2) both configural solvers and continuous solvers 
maintained priors for return distance and angle. In this case we would see that the EM fits both 
navigation strategies, but the TM only fits the configural strategy, which closely matches our modeling 
results. 

The most likely conclusion is that we were wrong in assuming a 1:1 relationship between model type 
and navigation strategy. It may be the case that a prior is maintained for every metric that is estimated 
by the participant. In the configural strategy it is necessary to estimate leg A, leg B, and angle f to later 
estimate return distance and return angle. In this case we might expect that a participant employs 5 
priors, and this would certainly be an avenue of further testing. Whereas in the continuous strategy, 
the return distance and angle are the only metrics that are estimated and thus the EM would be 
appropriate in its use of 2 priors. 

Combined outcome of behavioral and modeling results 

The modeling results seem to conflict with our earlier hypothesis based on the behavioral analysis: 
that our participants were using both the continuous and configural strategies to varying extents. If 
the continuous solvers are not maintaining priors for leg A, leg B, and the angle f, then that might 
mean that the continuous solvers are also not using the configural strategy. And if that is true, then 
we should have seen differences in response times in the behavioral data. So why were response times 
so long for the continuous solvers?  

The problem might be with how we are defining the configural strategy. For example, although step 
counting is particularly helpful to the configural strategy, it does not mean a continuous solver couldn’t 
count steps as well to improve estimations of traversed distance. It could be that continuous solvers 
are using a combination of techniques outside of a pure continuous strategy and this underlies the 
higher response times. There is some evidence to suggest that working memory load on a spatial task 
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can interact with counting performance (Shimomura & Kumada, 2011) and we know from the 
participant interviews that the majority of our participants were employing step counting. 
Unfortunately, we can only speculate as to the reason for these longer response times for continuous 
solvers, but this could be investigated in future experiments. 

Explicit vs. implicit use of navigation strategy 

One essential characteristic of path integration (PI) is that it happens automatically, regardless of the 
current task (May & Klatzky, 2000). In other words, our updating of position and orientation happens 
implicitly without explicit thought. In the Wiener et. al. paper, participant behavior is influenced by 
top-down modulation because participants are acting according to specific instructions. In our 
experiment, we did not provide such specific instructions, but most of our participants nevertheless 
chose to employ explicit strategies. Perhaps it is natural for humans to apply explicit strategy to a 
navigation task and therefore if we are assessing PI with a triangle completion task, we can expect our 
participants to count their steps, visualize the triangles’ geometry as though drawn on paper, and use 
other techniques that they do not apply during everyday tasks where navigation is not the point of the 
task. 

A potential limitation of this study is that that the use of priors by participants could be influenced by 
the explicit strategies that participants used. For example, maybe only participants who visualized the 
triangles’ geometry maintained priors for legs 1 and 2 and the angle between them. We know that the 
use of the configural strategy is not inhibited by a concurrent task (May & Klatzky, 2000) and assuming 
that the continuous strategy isn’t either, it would be interesting to perform this paper’s analysis on 
participants who navigate while performing a concurrent task. This way, we would discourage the use 
of an explicit strategy and hopefully remove this confounding factor. 

Conclusion 

In this experiment, we provided additional evidence validating the hypothesis of Wiener et. al. that 
head deviation from straight ahead could be used to classify navigation strategy as continuous or 
configural.  However, we also showed that participants may not naturally employ each strategy in its 
purest form, instead also adding techniques such as step counting to the continuous strategy. Lastly, 
we demonstrated that participants are likely employing a Bayesian prior in their execution of the 
Triangle Completion Task. It is also probable that users of both navigation strategies maintain a prior 
for return distance and angle, but only configural strategy users maintain priors for outgoing triangle 
legs and turn angles. The authors invite further research to determine if a Bayesian prior is used during 
navigation under more naturalistic conditions.
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SUPPLEMENTARY MATERIALS 

 
 
 
 
 

Part. Q.1 Q.2 Q.3 Q.4 Notes 
1 No No No 1 

 

2 No No No 0* Imagined a tempo, but "beats" were not explicitly counted 
3 No No No 2 

 

4 No No No 2 
 

5 No No No 1*, 2 Tried to regulate his step size. He pointed to the start at the end, but did not update a header while walking. 
6 Yes* No No 2 Sometimes heard her own steps 
7 Yes* No* No 1, 2 Thought the RTC triangles were longer 
8 No Yes* No 0 Noticed the 90 degree angles in RTC, notices STC has more variable geometries 
9 No No No 0 

 

10 No Yes* No 1, 3* Noticed generally more obtuse Beta angles in STC as compared to RTC. His strategy involved imagining a ball at the start, which grew smaller as he walked away. 
11 No No No 0 

 

12 No No Yes* 1, 2 Noticed the consistent start location in STC, but was nevertheless disoriented between trials 
13 No Yes* No 1, 2 Noticed the 90 degree angles in RTC 
14 No No No 1, 2 

 

15 No No No 0 
 

16 No No No 1, 2 
 

17 No Yes* No 1, 2 Noticed the 90 degree angles in RTC 
18 No No No 1, 2 

 

19 No No No 1, 2, 3 
 

20 No No No 1, 3 
 

21 No No No 1, 2 
 

22 No No No 1, 2 
 

23 No No No 1, 2 
 

1 - Participants used some form of step counting. 
2 - Participants visualized the triangles’ dimensions to some degree. 
3 - Participants used some kind of actively updated homing vector 

Supplementary Table 1: Post-experiment questions and answers. After the completion of both experimental conditions, each participant was asked 4 questions in the order listed above. The 
questions were phrased such that participants should say “No” to all the above questions except the question concerning strategy, which was open-ended. Some participants did intuit qualities of 

the experimental design that could have improved their performance, and one participant could hear their own steps. However, these participants did not exhibit notably better performance on 

the task than others, so they were not excluded.

Post-experiment questions 
Q1 Could you hear any sounds besides my voice and the white noise? 

Q2 Did you notice any specific differences between experimental sessions? 

Q3 Did you notice a pattern with regards to the location of the home or turn positions? 

Q4 Did you use a strategy to complete the experiment? 



 63 

 
 SCALENE TRIANGLE CONDITION RIGHT TRIANGLE CONDITION 

Part. Angle (deg) Distance (m) Homing (m) Angle (deg) Distance (m) Homing (m) 

 Err R p Err R p Err Err R p Err R p Err 

1 26.70 0.60 0.001 0.95 0.69 0.000 1.70 12.28 0.80 0.000 0.99 0.31 0.096 1.32 

2 12.22 0.90 0.000 0.35 0.93 0.000 0.81 11.02 0.82 0.000 0.89 0.31 0.100 1.10 

3 13.57 0.90 0.000 0.70 0.77 0.000 0.97 10.60 0.86 0.000 0.75 0.18 0.350 1.11 

4 21.56 0.67 0.000 0.43 0.77 0.000 1.18 11.40 0.76 0.000 0.30 0.60 0.000 0.83 

5 14.92 0.86 0.000 0.56 0.55 0.002 0.96 16.44 0.74 0.000 0.56 0.50 0.005 1.07 

6 49.44 0.67 0.000 0.99 0.36 0.042 2.41 54.02 0.67 0.000 1.49 
-

0.06 0.745 2.77 

7 42.10 0.76 0.000 0.46 0.89 0.000 1.57 26.24 0.83 0.000 0.36 0.72 0.000 1.34 

8 58.41 0.38 0.037 0.63 0.50 0.004 2.41 41.62 0.65 0.000 0.36 0.06 0.764 2.36 

9 34.18 0.81 0.000 0.46 0.75 0.000 1.61 28.76 0.79 0.000 0.64 0.11 0.566 1.76 

10 11.43 0.83 0.000 0.52 0.68 0.000 0.85 13.58 0.88 0.000 0.40 0.74 0.000 0.98 

11 25.38 0.63 0.000 0.44 0.69 0.000 1.40 24.76 0.48 0.008 0.83 0.51 0.004 1.36 

12 18.33 0.70 0.000 0.66 0.76 0.000 1.17 18.36 0.67 0.000 0.44 0.63 0.000 1.08 

13 15.04 0.80 0.000 0.31 0.83 0.000 0.87 15.39 0.85 0.000 0.37 0.48 0.007 1.08 

14 29.70 0.55 0.002 0.58 0.67 0.000 1.59 15.37 0.40 0.027 0.37 
-

0.47 0.008 1.18 

15 19.80 0.83 0.000 0.51 0.79 0.000 1.18 26.32 0.20 0.293 0.27 0.71 0.000 1.48 

16 24.46 0.82 0.000 0.39 0.86 0.000 1.19 24.42 0.67 0.000 0.49 0.78 0.000 1.46 

17 33.30 0.84 0.000 0.59 0.77 0.000 1.50 35.33 0.91 0.000 0.18 0.78 0.000 1.83 

18 24.75 0.60 0.000 0.67 0.82 0.000 1.59 31.84 0.71 0.000 0.54 0.45 0.013 1.74 

19 25.26 0.92 0.000 0.35 0.92 0.000 1.12 13.92 0.83 0.000 0.36 0.43 0.023 0.87 

20 18.56 0.76 0.000 0.29 0.88 0.000 0.99 16.46 0.72 0.000 0.30 0.60 0.001 1.17 

21 11.87 0.86 0.000 0.60 0.75 0.000 0.84 13.36 0.82 0.000 0.83 0.57 0.001 1.07 

22 18.15 0.79 0.000 0.70 0.88 0.000 1.11 17.43 0.90 0.000 0.75 0.69 0.000 1.23 

23 10.40 0.83 0.000 0.53 0.78 0.000 1.00 14.72 0.84 0.000 0.26 0.30 0.114 0.82 

Avg. 24.33 0.75 0.002 0.55 0.75 0.002 1.31 21.46 0.73 0.014 0.55 0.43 0.122 1.35 

Supplementary Table 2: Median absolute error and correlation between stimuli and behavioral responses for all 

participants. Red values are Pearson’s-correlation coefficients less than 0.5. The correlation coefficients R can be interpreted 
as how well the pattern of participant responses match the pattern of stimuli presentation. The errors presented here are 

the median error (absolute value of response minus stimuli) across all trials. Median error can appear quite high, due to errors 
on small-magnitude trials. The bolded row at the bottom are the averages for each column. 

 

Supplementary Figure 1: Average response time for each trial 

of the Scalene Triangle Condition. The dotted line is the mean 
response time, and the upper and lower bounds are 1 
standard deviation. There is a slight reduction in response 
time over the course of the condition. We measured the 
reduction by fitting a line to the means (red) and looking at the 
initial value (5.94 sec) and final value (4.74 sec). In this 
condition, average response time decreased by 1.2 seconds, 
which is about 20.2% of the initial mean response time. 
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Distance r/q Distance shift 
(mm) Angle r/q 

Angle Shift      
Right Turns 

(radians) 

Angle Shift       
Left Turns 
(radians) 

STC 
EM 2.32 ± 3.03 -0.16 ± 0.19 1.66 ± 2.71 0.14 ± 0.15 0.11 ± 0.15 

TM 2.29 ± 3.6 -0.38 ± 0.34 2.06 ± 2.92 -0.30 ± 0.36 -0.22 ± 0.38 

RTC 
EM (from STC) -0.22 ± 0.15 (from STC) 0.10 ± 0.12 0.10 ± 0.13 

TM (from STC) -0.13 ± 0.14 (from STC) -0.14 ± 0.18 -0.18 ± 0.29 
 

Supplementary Table 3: Mean and standard deviation of model parameters for each model and condition. The r/q 

parameters are the same between conditions because these parameters were fitted once in the STC and held constant when 

fitting the shift parameters in the RTC. The fitting was accomplished by minimizing the distance between the Participants’ 
actual final positions and their predicted final position on every trial via the Matlab function lsqnonlin. A lower bound of 0 

and an upper bound of 9.07 was used for r/q parameters.  

 

  

Supplementary Figure 2: Average trends in prediction-vs.-stimuli plots for the RTC. Model predictions from all participants 

and trials were pooled and segregated based on turn direction (color) and triangle geometry (shape). This plot is intended to 

be compared to Figure 3. Relevant differences between these two plots include the slope of the fitted lines and the 
distribution of variance across stimulus angle. When plotting predicted angle against the required homing angle, we see that 

the EM predictions have a steeper slope than the TM, which is more similar to the slope of the behavioral data (Fig. 3). The 

standard deviation of the model predictions for each stimulus angle is larger for the EM than the TM, which again is closer to 
the behavioral data. 
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Supplementary Figure 3: Averages across participants for each experimental trail. Top: The average trial-by-trial behavioral 
responses for return distance in the Scalene Triangle Condition (STC) are plotted above in yellow alongside the average model 

predictions for each trial across all participants. Middle-Top: The average trial-by-trial behavioral responses and model 

predictions for return angle in the STC. Middle-Bottom: The average trial-by-trial behavioral responses for return distance 
are plotted above in yellow alongside the average model predictions for each trial across all participants in the Right Triangle 

Condition (RTC). Bottom: Average participant responses and model predictions for return angles in the RTC. 
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CHAPTER 4: Discussion and Conclusions 

 
 It is helpful to place the two manuscripts presented here into a context 
originally published by Wiener et al. in 2010, called the Navigational Toolbox 
(Wiener et al., 2011). The toolbox is a 4-level hierarchical framework that 
starts with sensory processes and culminates in high-level navigation 
constructs like physical maps, wayfinding signage, and human language. At 
each level of the hierarchy, representations that are meaningful to navigation 
are constructed from elements in the next lowest level. This thesis’ first 
manuscript contains research on the transition from level 1 to 2: i.e. the 
formation of “spatial primitives” from elements in the “sensorimotor 
toolbox.” Specifically, we examined the process by which angular distance 
was derived from measurements of angular velocity provided by endolymph 
movement through the semicircular canals and movement of the visual 
environment over the retina. Angular distance and velocity are both spatial 
primitives that are derived from the vestibular and visual senses. 
 
The research in this thesis’ second manuscript concerns elements of level 2 
and indirectly the transition from level 2 to level 3 of the Navigational 
Toolbox, i.e. the derivation of “spatial constructs” from spatial primitives. 
The process of path integration results in a homing vector that can be used 
to calculate position. The homing vector is another spatial primitive, but 
position is a spatial construct because it normally implies one’s position in a 
spatial context, which makes it more meaningful than distance, for example. 
In the triangle completion experiment, where participants are intentionally 
disoriented between trials, the participants don’t have a spatial context. Also, 
the participants never need to convert the homing vector to position, because 
the homing vector alone is sufficient to solve the task. Thus, in most regards 
the research contained in the second manuscript concerns level 2 of the 
toolbox. However, many subjects reported that they visualized the triangles 
from a top-down perspective, e.g. as if they were drawing them on paper. It 
is unclear if this had any outcomes on their behavior, but cognitive maps are 
clear examples of spatial constructs. 
 
Bayesian priors for spatial primitives 
 
One way in which the results from the first manuscript bolster the arguments 
of the second manuscript, is that we provided evidence for the use of a 
Bayesian prior when representing angular displacement. We found that the 
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application of a model containing a Bayesian prior for angular displacement 
accurately predicted reproduction data under conditions when only visual or 
vestibular sensory information was available, as well as when both were 
available. It is therefore likely that people are maintaining a Bayesian prior 
for turned angle and, based on other research, we suspect that Bayesian 
priors are also maintained for estimated distances (Petzschner & Glasauer, 
2011). 
 
The models formulated in the second manuscript depend entirely on the 
above findings and leverage them to differentiate between the continuous 
and configural navigation strategies. The meaningful differences between the 
models’ predictions emerge because of the different priors and how they bias 
estimations of the different geometric elements of the triangles. Obviously, 
without including priors, the models would be equivalent.  
 
Struggling against sensory noise 

 
 Another common theme between the manuscripts is the topic of 
sensory noise. In the first manuscript we show that our participants were 
reducing measurement noise by fusing the vestibular and visual sensory 
inputs. The modeling results confirmed fusion was occurring but indicated 
that combining two senses via optimal sensory fusion according to MLE often 
produces only small benefits. Still, other research suggests that the benefits 
of multimodal integration with two senses extends to the use of even more 
senses and, mathematically, the benefit of noise reduction should continue 
to increase with additional sensory inputs (Ernst & Bülthoff, 2004; Jürgens 
& Becker, 2006; Laurens & Angelaki, 2017). Since we know that 
measurements of self-rotation under naturalistic conditions use at least 3 
senses (visual, vestibular, and proprioceptive) and the motor efference copy, 
we would expect accuracy above what we demonstrated in the first 
manuscript. This is primarily because the participants in that experiment 
rotated themselves via button press and therefore proprioception and 
efference copies probably contributed very little to sensing the angular 
displacement. What is undeniable, is that multisensory integration is a very 
helpful tool for reducing noise at level 1 of the Navigational Toolbox. 
 
The problem of sensory noise is heavily exacerbated in the context of 
idiothetic path integration during blindfolded navigation, especially for 
navigators using the continuous strategy. Not only are the number of 
available senses reduced, but we continuously accumulate error during 
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measurement and movement. Theoretical evidence suggests that 
accumulated error is so immense that path integration, without calibrating 
based on external cues, become completely uninformative past 
approximately 60 steps (assuming positional updating at each step) (Cheung 
& Vickerstaff, 2010). This is also supported by experimental evidence which 
shows that idiothetic path integration by human participants becomes very 
inaccurate over longer distances (Klatzky et al., 1990). Luckily, this problem 
can be easily solved using tools from level 3 of the Navigational Toolbox such 
as external landmarks. The theoretical investigation referenced earlier 
showed that by using a distal landmark, they could eliminate accumulated 
error entirely.  
 
Thus, we have methods for reducing sensory noise in level 1 and level 3 of the 
Navigational Toolbox, but what of level 2? We have, in fact, already heavily 
discussed a method for reducing noise during measurements of spatial 
primitives: the Bayesian prior. In situations where the same spatial primitive 
must be measured many times, let say the distance covered by a single step 
during unhindered walking, the mean of the Bayesian prior would converge 
on the average step length. If, for whatever reason, sensory noise was to 
suddenly increase, the contribution of the prior to estimates of step length 
would reduce the impact of sensory noise by biasing all measurements of step 
length towards the mean. Thus, animals possess a variety of compensatory 
tools that insure accurate measurements and, by extension, accurate 
navigation. 
 
iPI suffices in bounded environments 

 
 Based on the last section, it would seem like idiothetic path integration 
(iPI) is very limited without regular calibration from external cues. Although, 
I believe this is generally true, a recent theoretical work by Allen Cheung 
presents a very interesting exception to this trend. His work suggest that iPI 
in a familiar bounded area can provide accurate estimates of one’s location 
even over long periods of time, without allothetic cues or knowledge of 
starting position and orientation (Cheung, 2014). There are only two 
preconditions: 1) the shape of the arena must possess one-fold rotational 
symmetry and 2) the navigating agent must know the geometry of the 
bounded area. Furthermore, the boundaries themselves do not need to be 
physical barriers, meaning that the navigating agent can create imagined 
boundaries using landmarks. Thus, a navigating agent could parse a large 
space into bounded areas that they are familiar with and therefore navigable 
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using only iPI. Cheung proposes that using only idiothetic cues in a familiar 
space would free up computational and attentional resources for allothetic 
processing, which aligns very well with other evidence concerning the 
automatic nature of path integration (May & Klatzky, 2000). Cheung leaves 
the question open concerning how the boundary maps would initially be 
collected, but other theoretical works exist that suggest that path integration 
could suffice for creating maps as well (Biegler, 2000; Wang, 2016). 
Therefore, the work contained in this thesis, which provides insights into the 
cognition related to PI, may help clarify how PI contributes to human 
navigation more widely. 
 
Concluding remarks 

 
 In seeking to understand the role of magnitude estimation in 
navigation, we started with the fundamental process of measuring our own 
angular displacement. This spatial primitive enables us to automatically 
update our orientation in a greater spatial context, and when combined with 
distance measurements via path integration, we can update our position as 
well. At both levels of processing, it appears as though people rely upon their 
prior measurements of distance and angle, to improve their performance and 
reduce uncertainty. If prior experience does not only influence the spatial 
primitives of distance and angle, but in fact all spatial primitives, Bayesian 
modeling can provide a powerful and widely applicable tool for predicting 
human navigation behavior. Furthermore, the approach presented here may 
be extended past level 2 of the Navigational Toolbox to predict higher-level 
navigation behaviors.  



 70 

References 

 
 
Aharon, G., Sadot, M., & Yovel, Y. (2017). Bats Use Path Integration Rather Than Acoustic Flow to 

Assess Flight Distance along Flyways. Current Biology, 27(23), 3650-3657.e3. 
https://doi.org/10.1016/j.cub.2017.10.012 

Alais, D., & Burr, D. (2004). The Ventriloquist Effect Results from Near-Optimal Bimodal Integration. 
Current Biology, 14(3), 257–262. https://doi.org/10.1016/j.cub.2004.01.029 

Apuzen-Ito, G. (2014, November 25). GG413: Directional Data 1, plotting and computing statistics. 
https://youtu.be/J67oydTMwEI?si=RZ4CmlodoNB25J6M 

Ashourian, P., & Loewenstein, Y. (2011). Bayesian Inference Underlies the Contraction Bias in 
Delayed Comparison Tasks. PLoS ONE, 6(5), e19551. 
https://doi.org/10.1371/journal.pone.0019551 

Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory 
signals for spatial localization. Journal of the Optical Society of America. A, Optics, Image 

Science, and Vision, 20(7), 1391–1397. 
Bear, M. F., Connors, B. W., & Paradiso, M. A. (2007). Neuroscience: Exploring the brain, 3rd ed. (pp. 

xxxviii, 857). Lippincott Williams & Wilkins Publishers. 
Bennett, J. (2017). 4. Dead reckoning, longitude, and time (Vol. 1). Oxford University Press. 

https://doi.org/10.1093/actrade/9780198733713.003.0004 
Biegler, R. (2000). Possible uses of path integration in animal navigation. Animal Learning & 

Behavior, 28(3), 257–277. https://doi.org/10.3758/BF03200260 
Cheung, A. (2014). Estimating Location without External Cues. PLoS Computational Biology, 10(10), 

e1003927. https://doi.org/10.1371/journal.pcbi.1003927 
Cheung, A., & Vickerstaff, R. (2010). Finding the Way with a Noisy Brain. PLoS Computational 

Biology, 6(11), e1000992. https://doi.org/10.1371/journal.pcbi.1000992 
Cheung, A., Zhang, S., Stricker, C., & Srinivasan, M. V. (2007). Animal navigation: The difficulty of 

moving in a straight line. Biological Cybernetics, 97(1), 47–61. 
https://doi.org/10.1007/s00422-007-0158-0 

Chrastil, E. R., Nicora, G. L., & Huang, A. (2019). Vision and proprioception make equal contributions 
to path integration in a novel homing task. Cognition, 192, 103998. 
https://doi.org/10.1016/j.cognition.2019.06.010 

Chrastil, E. R., & Warren, W. H. (2017). Rotational error in path integration: Encoding and execution 
errors in angle reproduction. Experimental Brain Research, 235(6), 1885–1897. 
https://doi.org/10.1007/s00221-017-4910-y 

Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal Encoding of Interval 
Timing in Expert Percussionists. Journal of Neuroscience, 32(3), 1056–1060. 
https://doi.org/10.1523/JNEUROSCI.3411-11.2012 

Collett, M., & Collett, T. S. (2000). How do insects use path integration for their navigation? 
Biological Cybernetics, 83(3), 245–259. https://doi.org/10.1007/s004220000168 

Collett, T. S. (2019). Path integration: How details of the honeybee waggle dance and the foraging 
strategies of desert ants might help in understanding its mechanisms. The Journal of 

Experimental Biology, 222(11), jeb205187. https://doi.org/10.1242/jeb.205187 
Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G. (2017). 

Egocentric and allocentric spatial reference frames in aging: A systematic review. 



 71 

Neuroscience & Biobehavioral Reviews, 80, 605–621. 
https://doi.org/10.1016/j.neubiorev.2017.07.012 

Cousins, S., Cutfield, N. J., Kaski, D., Palla, A., Seemungal, B. M., Golding, J. F., Staab, J. P., & 
Bronstein, A. M. (2014). Visual Dependency and Dizziness after Vestibular Neuritis. PLoS 

ONE, 9(9), e105426. https://doi.org/10.1371/journal.pone.0105426 
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or Linear? Distinct Intuitions of the Number 

Scale in Western and Amazonian Indigene Cultures. Science, 320(5880), 1217–1220. 
https://doi.org/10.1126/science.1156540 

Durgin, F. H., Akagi, M., Gallistel, C. R., & Haiken, W. (2009). The precision of locomotor odometry in 
humans. Experimental Brain Research, 193(3), 429–436. https://doi.org/10.1007/s00221-
008-1640-1 

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically 
optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a 

Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive 

Sciences, 8(4), 162–169. https://doi.org/10.1016/j.tics.2004.02.002 
Etienne, A. S., & Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192. 

https://doi.org/10.1002/hipo.10173 
Fraser, P. J. (2006). Review: Depth, navigation and orientation in crabs: Angular acceleration, gravity 

and hydrostatic pressure sensing during path integration. Marine and Freshwater 

Behaviour and Physiology, 39(2), 87–97. https://doi.org/10.1080/10236240600708439 
Fujita, N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1993). The Encoding-Error Model of 

Pathway Completion without Vision. Geographical Analysis, 25(4), 295–314. 
https://doi.org/10.1111/j.1538-4632.1993.tb00300.x 

Fujita, N., Loomis, J. M., Klatzky, R. L., & Golledge, R. G. (1990). A Minimal Representation for Dead-
Reckoning Navigation: Updating the Homing Vector. Geographical Analysis, 22(4), 324–
335. https://doi.org/10.1111/j.1538-4632.1990.tb00214.x 

Glasauer, S. (2019). Sequential Bayesian updating as a model for human perception. In Progress in 

Brain Research (Vol. 249, pp. 3–18). Elsevier. https://doi.org/10.1016/bs.pbr.2019.04.025 
Glasauer, S., Amorim, M. A., Bloomberg, J. J., Reschke, M. F., Peters, B. T., Smith, S. L., & Berthoz, A. 

(1995). Spatial orientation during locomation following space flight. Acta Astronautica, 
36(8–12), 423–431. https://doi.org/10.1016/0094-5765(95)00127-1 

Glasauer, S., Amorim, M.-A., Viaud-Delmon, I., & Berthoz, A. (2002). Differential effects of 
labyrinthine dysfunction on distance and direction during blindfolded walking of a 
triangular path. Experimental Brain Research, 145(4), 489–497. 
https://doi.org/10.1007/s00221-002-1146-1 

Glasauer, S., & Shi, Z. (2021). The origin of Vierordt’s law: The experimental protocol matters. PsyCh 

Journal, 10(5), 732–741. https://doi.org/10.1002/pchj.464 
Gothard, K. M., Skaggs, W. E., & McNaughton, B. L. (1996). Dynamics of Mismatch Correction in the 

Hippocampal Ensemble Code for Space: Interaction between Path Integration and 
Environmental Cues. The Journal of Neuroscience, 16(24), 8027–8040. 
https://doi.org/10.1523/JNEUROSCI.16-24-08027.1996 

Gramann, K., Onton, J., Riccobon, D., Mueller, H. J., Bardins, S., & Makeig, S. (2010). Human Brain 
Dynamics Accompanying Use of Egocentric and Allocentric Reference Frames during 
Navigation. Journal of Cognitive Neuroscience, 22(12), 2836–2849. 
https://doi.org/10.1162/jocn.2009.21369 



 72 

Griffin, A. S., & Etienne, A. S. (1998). Updating the path integrator through a visual fix. 
Psychobiology, 26(3), 240–248. https://doi.org/10.3758/BF03330612 

Harootonian, S. K., Wilson, R. C., Hejtmánek, L., Ziskin, E. M., & Ekstrom, A. D. (2020). Path 
integration in large-scale space and with novel geometries: Comparing vector addition and 
encoding-error models. PLOS Computational Biology, 16(5), e1007489. 
https://doi.org/10.1371/journal.pcbi.1007489 

Heinze, S., Narendra, A., & Cheung, A. (2018). Principles of Insect Path Integration. Current Biology, 
28(17), 1043–1058. https://doi.org/10.1016/j.cub.2018.04.058 

Helmholtz, H. von. (1867). Handbuch der physiologischen Optik. Leopold Voss Leipzig; WorldCat. 
Hollingworth, H. L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology 

and Scientific Methods, 7(17), 461–469. 
Jazayeri, M., & Shadlen, M. N. (2010). Temporal context calibrates interval timing. Nature 

Neuroscience, 13(8), 1020–1026. https://doi.org/10.1038/nn.2590 
Jürgens, R., & Becker, W. (2006). Perception of angular displacement without landmarks: Evidence 

for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. 
Experimental Brain Research, 174(3), 528–543. https://doi.org/10.1007/s00221-006-0486-
7 

Kaliuzhna, M., Prsa, M., Gale, S., Lee, S. J., & Blanke, O. (2015). Learning to integrate contradictory 
multisensory self-motion cue pairings. Journal of Vision, 15(1), 10–10. 
https://doi.org/10.1167/15.1.10 

Klatzky, R. L. (1998). Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, 
and Interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial Cognition (Vol. 
1404, pp. 1–17). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-69342-4_1 

Klatzky, R. L., Beall, A. C., Loomis, J. M., Golledge, R. G., & Philbeck, J. W. (1999). Human navigation 
ability: Tests of the encoding-error model of path integration. Spatial Cognition and 

Computation, 1(1), 31–65. https://doi.org/10.1023/A:1010061313300 
Klatzky, R. L., Loomis, J. M., Golledge, R. G., Cicinelli, J. G., Doherty, S., & Pellegrino, J. W. (1990). 

Acquisition of Route and Survey Knowledge in the Absence of Vision. Journal of Motor 

Behavior, 22(1), 19–43. https://doi.org/10.1080/00222895.1990.10735500 
Laming, D. (1999). Prior expectations in cross-modality matching. Mathematical Social Sciences, 

38(3), 343–359. https://doi.org/10.1016/S0165-4896(99)00024-4 
Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of 

depth cue combination: In defense of weak fusion. Vision Research, 35(3), 389–412. 
Laurens, J., & Angelaki, D. E. (2017). A unified internal model theory to resolve the paradox of active 

versus passive self-motion sensation. eLife, 6, e28074. 
https://doi.org/10.7554/eLife.28074 

Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. A. (1993). 
Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal 

of Experimental Psychology: General, 122(1), 73–91. https://doi.org/10.1037/0096-
3445.122.1.73 

May, M., & Klatzky, R. L. (2000). Path integration while ignoring irrelevant movement. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 26(1), 169–186. 
https://doi.org/10.1037/0278-7393.26.1.169 

Mittelstaedt, H., & Mittelstaedt, M.-L. (1982). Homing by Path Integration. In F. Papi & H. G. Wallraff 
(Eds.), Avian Navigation (pp. 290–297). Springer Berlin Heidelberg. 

Mittelstaedt, M. L., & Glasauer, S. (1991). Idiothetic navigation in Gerbils and Humans. 



 73 

Moller, P., & Görner, P. (1994). Homing by path integration in the spider Agelena labyrinthica Clerck. 
Journal of Comparative Physiology A, 174(2). https://doi.org/10.1007/BF00193788 

Muller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of 

the National Academy of Sciences, 85(14), 5287–5290. 
https://doi.org/10.1073/pnas.85.14.5287 

Müller, M., & Wehner, R. (2010). Path Integration Provides a Scaffold for Landmark Learning in 
Desert Ants. Current Biology, 20(15), 1368–1371. 
https://doi.org/10.1016/j.cub.2010.06.035 

Murray, M. M., Lewkowicz, D. J., Amedi, A., & Wallace, M. T. (2016). Multisensory Processes: A 
Balancing Act across the Lifespan. Trends in Neurosciences, 39(8), 567–579. 
https://doi.org/10.1016/j.tins.2016.05.003 

O’Connor, M. R. (2019). Wayfinding: The science and mystery of how humans navigate the world 
(First edition). St. Martin’s Press. 

Olkkonen, M., McCarthy, P. F., & Allred, S. R. (2014). The central tendency bias in color perception: 
Effects of internal and external noise. Journal of Vision, 14(11), 5–5. 
https://doi.org/10.1167/14.11.5 

Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian Estimation as an Explanation for Range 
and Regression Effects: A Study on Human Path Integration. Journal of Neuroscience, 
31(47), 17220–17229. https://doi.org/10.1523/JNEUROSCI.2028-11.2011 

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude 
estimation. Trends in Cognitive Sciences, 19(5), 285–293. 
https://doi.org/10.1016/j.tics.2015.03.002 

Pewsey, A., Neuhäuser, M., & Ruxton, G. D. (2013). Circular statistics in R (1. ed). Oxford Univ. Press. 
Prsa, M., Gale, S., & Blanke, O. (2012). Self-motion leads to mandatory cue fusion across sensory 

modalities. Journal of Neurophysiology, 108(8), 2282–2291. 
https://doi.org/10.1152/jn.00439.2012 

Redlick, F. P., Jenkin, M., & Harris, L. R. (2001). Humans can use optic flow to estimate distance of 
travel. Vision Research, 41(2), 213–219. https://doi.org/10.1016/S0042-6989(00)00243-1 

Rescorla, M. (2021). Bayesian modeling of the mind: From norms to neurons. WIREs Cognitive 

Science, 12(1). https://doi.org/10.1002/wcs.1540 
Savelli, F., & Knierim, J. J. (2019). Origin and role of path integration in the cognitive representations 

of the hippocampus: Computational insights into open questions. The Journal of 

Experimental Biology, 222(Suppl 1), jeb188912. https://doi.org/10.1242/jeb.188912 
Shettleworth, S. J. (2010). Cognition, evolution, and behavior. 

http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S978019971
7811 

Stackman, R. W., Golob, E. J., Bassett, J. P., & Taube, J. S. (2003). Passive Transport Disrupts 
Directional Path Integration by Rat Head Direction Cells. Journal of Neurophysiology, 90(5), 
2862–2874. https://doi.org/10.1152/jn.00346.2003 

Stangl, M., Kanitscheider, I., Riemer, M., Fiete, I., & Wolbers, T. (2020). Sources of path integration 
error in young and aging humans. Nature Communications, 11(1), 2626. 
https://doi.org/10.1038/s41467-020-15805-9 

Stevens, S. S., & Greenbaum, H. B. (1966). Regression effect in psychophysical judgment. Perception 

& Psychophysics, 1(5), 439–446. https://doi.org/10.3758/BF03207424 
Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual 

speed perception. Nature Neuroscience, 9(4), 578–585. https://doi.org/10.1038/nn1669 



 74 

Tsoar, A., Nathan, R., Bartan, Y., Vyssotski, A., Dell’Omo, G., & Ulanovsky, N. (2011). Large-scale 
navigational map in a mammal. Proceedings of the National Academy of Sciences, 108(37). 
https://doi.org/10.1073/pnas.1107365108 

Tuthill, J. C., & Azim, E. (2018). Proprioception. Current Biology, 28(5), R194–R203. 
https://doi.org/10.1016/j.cub.2018.01.064 

Vilares, I., & Kording, K. (2011). Bayesian models: The structure of the world, uncertainty, behavior, 
and the brain: Bayesian models and the world. Annals of the New York Academy of 

Sciences, 1224(1), 22–39. https://doi.org/10.1111/j.1749-6632.2011.05965.x 
Wang, R. F. (2016). Building a cognitive map by assembling multiple path integration systems. 

Psychonomic Bulletin & Review, 23(3), 692–702. https://doi.org/10.3758/s13423-015-
0952-y 

Wiener, J. M., Berthoz, A., & Wolbers, T. (2010). Dissociable cognitive mechanisms underlying 
human path integration. Experimental Brain Research, 208(1), 61–71. 
https://doi.org/10.1007/s00221-010-2460-7 

Wiener, J. M., Schettleworth, S., Bingman, V. P., Cheng, K., Healy, S., Jacobs, L., Jeffery, K. J., Mallot, 
H. A., Menzel, R., & Newcombe, N. S. (2011). Animal Navigation – A Synthesis. In Animal 

Thinking: Contemporary Issues in Comparative Cognition (pp. 51–76). MIT Press. 
Wittlinger, M., Wehner, R., & Wolf, H. (2007). The desert ant odometer: A stride integrator that 

accounts for stride length and walking speed. Journal of Experimental Biology, 210(2), 
198–207. https://doi.org/10.1242/jeb.02657 

Worchel, P. (1951). Space perception and orientation in the blind. Psychological Monographs: 

General and Applied, 65(15), i–28. https://doi.org/10.1037/h0093640 
Zeil, J., & Layne, J. (2002). Path Integration in Fiddler Crabs and Its Relation to Habitat and Social Life. 

In K. Wiese (Ed.), Crustacean Experimental Systems in Neurobiology (pp. 227–246). 
Springer Berlin Heidelberg. 

 
  



 75 

Acknowledgments 

 
 
 The work underlying this dissertation was made possible and 
enlivened by many colleagues, friends, and family, and without them it may 
not have come to fruition. In particular, I would like to offer gracious 
thanks to: 
 
My supervisor, Stefan Glasauer, for years of judicious suggestions, guiding 
advice, and understanding in the face of adverse circumstances. 
 
The administrative faculty of the GSN for their bottomless patience and 
consistent support. 
 
Kay Thurley, who’s amicable critiques brought me clarity and who’s 
supportive words spurred me over a difficult hurdle. 
 
Strongway, who provided an exceptionally thorough and punctual review of 
the first manuscript in my PhD, in addition to regular feedback in meetings. 
 
Theresa, Alex, and Johanna, who’s irreplaceable company made work fun 
and who’s help made my life so much easier. 
 
My father for always being excited about my work, even when I was not. 
 
My mother for encouraging me to achieve my passions and for broadening 
my horizons. 
 
My wife, Conny, whose strength cleared the way for me to finish this thesis, 
and whose encouragement repeatedly gave me the push needed to see it 
through. 
 
 



Declaration of author contributions 

 

Manuscript 
Bayesian priors are maintained for estimated values during 
continuous and configural navigation strategies 

Authors 
Joshua W.G. Yudice & Stefan Glasauer 

Contributions 
JWGY contributed to the design of the experiment, collected data, 
performed the analysis, and authored the manuscript. 
SG contributed to the design of the experiment, provided the computational 
models, reviewed the manuscript, and contributed to the analysis. 

Signatures 

 

 

 

Joshua W.G. Yudice  Stefan Glasauer 

 

 

  



Declaration of author contributions (continued) 

 

Manuscript 
Self-rotation perception using visual and vestibular stimuli relies 
on prior information and sensory fusion 

Authors 
Joshua W.G. Yudice, Johanna Bayer, Chris J. Bockisch, Juliane Pawlitzki, 
Zhuanghua Shi, & Stefan Glasauer 

Contributions 
JWGY collected data, modified the computational models, performed the 
analysis, and authored the manuscript. 
JB contributed to the design of the experiment and collected data. 
CJB contributed to the design of the experiment and collected data. 
JP contributing by reviewing the manuscript. 
ZS contributed to the interpretation of the results and reviewed the 
manuscript. 
SG contributed to the design of the experiment, collected data, provided the 
computational models, and reviewed the manuscript. 

Signatures 

 

 

 

Joshua W.G. Yudice  Stefan Glasauer 

 

  


