
Machine Learning with Knowledge Graphs
for Explainable Artificial Intelligence

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Yushan Liu

München, 2023

Machine Learning with Knowledge Graphs
for Explainable Artificial Intelligence

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von
Yushan Liu

aus Beijing, China

München, den 18.12.2023

Erstgutachter: Prof. Dr. Volker Tresp

Zweitgutachter: Prof. Dr. Florian Büttner

Drittgutachter: Prof. Dr. Michael Färber

Tag der Disputation: 09.04.2024

Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8 Abs. 2 Pkt. 5.)

Hiermit erkläre ich, Yushan Liu, an Eides statt, dass die vorliegende Dissertation von mir
selbstständig und ohne unerlaubte Beihilfe angefertigt worden ist.

München, den 18.12.2023
Yushan Liu

Contents

Abstract vii

Zusammenfassung ix

Acknowledgments xi

List of Publications and Declaration of Authorship xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Summary of Contributions . 3

2 Graph Machine Learning 5
2.1 Fundamentals of Graphs . 5
2.2 Machine Learning Tasks . 7

2.2.1 Tasks . 7
2.2.2 Evaluation . 8

2.3 Subsymbolic Approaches . 9
2.3.1 Knowledge Graph Embeddings . 9
2.3.2 Graph Neural Networks . 13

2.4 Symbolic Approaches . 15
2.5 Path-Based Approaches . 18

3 Explainable Artificial Intelligence 21
3.1 Explainability in Graph Machine Learning 22
3.2 Calibration in Graph Machine Learning . 23

v

Contents

4 Neural Multi-Hop Reasoning with Logical Rules on Biomedical Knowl-
edge Graphs 25

5 TLogic: Temporal Logical Rules for Explainable Link Forecasting on
Temporal Knowledge Graphs 49

6 A Knowledge Graph Perspective on Supply Chain Resilience 63

7 On Calibration of Graph Neural Networks for Node Classification 75

8 Conclusion 93

Bibliography 97

vi

Abstract

In many real-world datasets, relations exist between the involved entities, such as in drug-
disease interactions, supplier-customer partnerships, and citation networks. To visualize
and model such data, knowledge graphs have been established, in which entities (e.g.,
diseases, suppliers, or publications) are represented as nodes and the relations between
them (e.g., treat, supply, or cite) as edges. As knowledge is often not static but has a
dynamic nature, like in event data, the edges in the graph can also be equipped with
temporal information to indicate the validity of a fact at a specific timestamp or during a
certain time range, leading to the concept of a temporal knowledge graph.

Even though knowledge graphs already contain a large amount of curated information,
they tend to be incomplete, meaning that there is likely information regarding nodes and
edges that is not included in the graph. Therefore, two common tasks concerning knowledge
graph completion are node classification and link prediction in order to find missing node
labels and edges, respectively. For temporal knowledge graphs, a task of interest is link
forecasting, which predicts links involving future timestamps.

Due to the high domain complexity and expenditure of time required for manual effort,
machine learning algorithms have been applied to knowledge graph completion tasks to
great success. However, a drawback of many graph machine learning algorithms is their
back-box property, i.e., it is often not transparent why exactly the algorithm has arrived
at a particular result and how the output values can be interpreted, which impacts their
usability in real-world applications. In classification tasks, the output is usually associ-
ated with a probability value, which reflects the confidence of the model regarding the
prediction. Uncalibrated probabilities could lead to dangerous situations, e.g., accidents
with autonomous vehicles, if the user’s decisions depend strongly on the output values.
Explainable artificial intelligence aims at increasing the interpretability, transparency, and
trustworthiness of machine learning models, thus promoting user acceptance and facilitat-
ing a wider adoption of artificial intelligence.

vii

Abstract

In this thesis, we consider the tasks of link prediction, link forecasting, and node clas-
sification with respect to different use cases, for which we introduce novel graph machine
learning approaches that achieve state-of-the-art performance while providing explainabil-
ity for the results. First, we study drug repurposing and predict links that connect drugs
with new treatment targets in a biomedical knowledge graph. We retrieve policy-guided
walks based on reinforcement learning and integrate metapaths as background information
for prognosticating drug efficacy. The traversed paths in the graph can serve as explana-
tions for the predictions. Next, we address the extrapolation task of link forecasting in
the context of future event prediction, based on temporal knowledge graphs. We learn
and apply temporal logical rules, which are extracted via temporal random walks. The
logical rules act as explanations and can also be transferred to related datasets with a
common vocabulary. Furthermore, we explore the industrial use case of identifying impor-
tant suppliers to assist supply chain managers in the automatic detection of criticalities in
the supply network. After the application of knowledge graph completion methods to the
supply chain knowledge graph, we deploy graph analytics to rank the suppliers according
to their importance in the graph. Finally, we look into the calibration of graph neural
networks for the node classification task. We investigate the calibration of several graph
neural network models on citation networks and propose a topology-aware method that
yields improved calibration compared to baselines.

viii

Zusammenfassung

In vielen realen Datensätzen existieren Relationen zwischen den involvierten Entitäten,
z. B. bei Interaktionen zwischen Medikamenten und Krankheiten, Kunden-Lieferanten-Be-
ziehungen und in Zitationsnetzwerken. Für die Visualisierung und Modellierung solcher
Daten wurden Wissensgraphen eingeführt, die Entitäten (z. B. Krankheiten, Lieferanten
oder Publikationen) als Knoten und deren Relationen (z. B. behandeln, beliefern oder
zitieren) als Kanten in einem Graphen repräsentieren. Da Wissen aber oft nicht statisch,
sondern dynamisch ist, wie z. B. bei Eventdaten, können die Kanten in einem Graphen
auch mit zeitlichen Informationen ausgestattet werden, um die Gültigkeit einer Aussage zu
einem spezifischen Zeitpunkt oder während eines bestimmten Zeitraums zu signalisieren.
Ein Wissensgraph mit zeitlichen Angaben wird temporaler Wissensgraph genannt.

Auch wenn Wissensgraphen bereits große Mengen an kuratierten Informationen um-
fassen, sind sie meist unvollständig, d. h., es gibt vermutlich Informationen zu Knoten
und Kanten, die nicht im Graphen enthalten sind. Daher sind zwei übliche Aufgaben zur
Vervollständigung von Wissensgraphen die Knotenklassifizierung und Kantenvorhersage,
um jeweils fehlende Knotenkategorien und Relationen zu finden. Bei temporalen Wissens-
graphen ist unter anderem die Prognose von Kanten mit zukünftigen Zeitstempeln von
Interesse.

Bedingt durch die hohe Domänenkomplexität und den zeitintensiven Aufwand bei
manuellen Bemühungen wurde maschinelles Lernen äußerst erfolgreich zur Vervollständi-
gung von Wissensgraphen angewandt. Jedoch sind viele maschinelle Lernalgorithmen
Black Boxes, bei denen oft die Transparenz fehlt, wieso der Algorithmus zu einem be-
stimmten Ergebnis gekommen ist und wie die ausgegebenen Werte interpretiert werden kön-
nen, was ihre Nutzbarkeit in realen Anwendungen beeinträchtigt. Die Vorhersage bei Klas-
sifizierungen ist in der Regel mit einem Wahrscheinlichkeitswert verbunden, der das Ver-
trauen des Modells in das Ergebnis widerspiegelt. Unkalibrierte Wahrscheinlichkeitswerte
können zu gefährlichen Situationen führen, z. B. Unfällen mit autonomen Fahrzeugen, falls

ix

Zusammenfassung

die Entscheidungen des Nutzers stark von diesen Werten abhängen. Erklärbare künstliche
Intelligenz hat das Ziel, die Interpretierbarkeit, Transparenz und Vertrauenswürdigkeit von
maschinellen Lernmodellen zu erhöhen, damit die Benutzerakzeptanz zu fördern und eine
breitere Einführung von Methoden der künstlichen Intelligenz zu ermöglichen.

In der vorliegenden Arbeit betrachten wir die Aufgaben Kantenvorhersage, Kanten-
prognose und Knotenklassifizierung für verschiedene Anwendungsfälle und stellen neuar-
tige Methoden vor, die sowohl state-of-the-art Performance als auch erklärbare Ergebnisse
liefern. Zuerst prognostizieren wir Kanten für den Anwendungsfall Drug Repurposing, die
existierende Medikamente mit neuen Behandlungszielen in einem biomedizinischen Wis-
sensgraphen verbinden. Wir durchlaufen Pfade im Graphen auf Basis von bestärkendem
Lernen und integrieren Metapfade als Hintergrundinformation über die Wirksamkeit der
Medikamente. Diese Pfade können dann als Erklärungen für die Vorhersagen dienen. Als
Nächstes befassen wir uns mit der Kantenprognose im Kontext von Eventdaten auf tem-
poralen Wissensgraphen. Wir lernen und verwenden temporale logische Regeln, die über
temporale zufällige Irrfahrten extrahiert werden. Die logischen Regeln verbessern die Ver-
ständlichkeit der Ergebnisse und können außerdem auf verwandte Datensätze mit einem
gemeinsamen Vokabular übertragen werden. Darüber hinaus betrachten wir den indus-
triellen Anwendungsfall der Identifizierung wichtiger Lieferanten, um Supply Chain Ma-
nagern bei der automatischen Erkennung von Kritikalitäten im Liefernetzwerk zu unter-
stützen. Nach der Anwendung von Methoden zur Vervollständigung des Graphen führen
wir Graphanalysen durch, um die Lieferanten nach ihrer Relevanz im Netzwerk zu sortieren.
Zuletzt untersuchen wir die Kalibrierung von neuronalen Netzen auf Graphen für Knoten-
klassifizierung. Wir analysieren die Kalibrierung von mehreren Modellen auf Zitationsnetz-
werken und schlagen eine Methode vor, die die Topologie berücksichtigt und eine bessere
Kalibrierung als die Vergleichsmethoden erreicht.

x

Acknowledgments

This dissertation is the product of the last four years that I spent with Siemens and the
Ludwig-Maximilians-Universität of Munich. During this time, I have been supported by
many amazing people without whom the completion of the thesis would not have been
possible.

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Volker
Tresp for guidance throughout my entire PhD journey. Volker gave me the freedom to
explore interesting research directions and define my own research questions. He was always
available for discussions, giving constructive advice and invaluable feedback. Volker is an
inspirational role model of how to become a great researcher and inventor. In addition, I
am very honored that Prof. Dr. Florian Büttner and Prof. Dr. Michael Färber have agreed
to be the external examiners of my thesis.

I would like to acknowledge Siemens and BMWK for funding my research within the
projects RAKI and CoyPu. Special thanks go to Dr. Steffen Lamparter who has offered
me a PhD position in his research group SMR and has provided the necessary resources
and a great environment for conducting my research.

I am deeply grateful to all my co-authors and collaborators in my projects, who have
contributed to the publications in significant ways, especially Dr. Marcel Hildebrandt,
Dr. Mitchell Joblin, Dr. Yunpu Ma, and Tong Liu for the development of many innova-
tive ideas, insightful discussions, and continuous motivation. I would like to extend my
appreciation to all colleagues in SMR and all fellow PhD students in Volker’s PhD group,
in particular Dr. Zhiliang Wu, Dr. Martin Ringsquandl, Bailan He, Hang Li, Dr. Zhen Han,
Dr. Gerd Völksen, Anna Himmelhuber, and Dagmar Beyer. Thank you for your support
and commitment, thought-provoking exchanges, and fruitful collaborations.

Last but not least, I would like to thank my parents for their unconditional love and
encouragement in any situation. I am also thankful to my partner Luca who has always
believed in me. I am very fortunate to have you by my side.

xi

List of Publications and Declaration
of Authorship

• Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Martin Ringsquandl, Rime Rais-
souni, and Volker Tresp. Neural multi-hop reasoning with logical rules on biomedical
knowledge graphs. In The 18th Extended Semantic Web Conference, volume 12731,
pages 375-391, 2021. DOI: 10.1007/978-3-030-77385-4_22

Marcel Hildebrandt and I conceived of the original research contributions. I
performed the main implementations, experiments, and evaluations. Mar-
cel Hildebrandt and Mitchell Joblin supported me in conducting experiments
on two baselines. I wrote the initial draft of the manuscript with assistance
from Marcel Hildebrandt, Mitchell Joblin, and Martin Ringsquandl. All
co-authors discussed this work regularly and contributed to improving the
manuscript.

This publication serves as Chapter 4 of this thesis.

• Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp.
TLogic: Temporal logical rules for explainable link forecasting on temporal knowledge
graphs. In The 36th AAAI Conference on Artificial Intelligence, volume 36(4), pages
4120-4127, 2022. DOI: 10.1609/aaai.v36i4.20330

I conceived of the original research contributions and performed all im-
plementations, experiments, and evaluations. I wrote the initial draft of
the manuscript and did most of the subsequent corrections. All co-authors
discussed this work regularly and contributed to improving the manuscript.

This publication serves as Chapter 5 of this thesis.

xiii

List of Publications

• Yushan Liu, Bailan He, Marcel Hildebrandt, Maximilian Buchner, Daniela In-
zko, Roger Wernert, Emanuel Weigel, Dagmar Beyer, Martin Berbalk, and Volker
Tresp. A knowledge graph perspective on supply chain resilience. In The 2nd
International Workshop on Linked Data-Driven Resilience Research, Extended Se-
mantic Web Conference, volume urn:nbn:de:0074-3401-3, pages 1-11, 2023. URL:
https://ceur-ws.org/Vol-3401/paper3.pdf

I conceived of the original research contributions and performed all exper-
iments and evaluations. Bailan He supported me with the implementation
of the knowledge graph completion methods. I wrote the initial draft of
the manuscript and did most of the subsequent corrections. All co-authors
contributed to the discussion of the use case and results.

This publication serves as Chapter 6 of this thesis.

• Tong Liu*, Yushan Liu*, Marcel Hildebrandt, Mitchell Joblin, Hang Li, and Volker
Tresp. On calibration of graph neural networks for node classification. In The 2022
International Joint Conference on Neural Networks, 2022. *Equal contribution. DOI:
10.1109/IJCNN55064.2022.9892866

I conceived of the original research contributions. Tong Liu performed most
of the implementations. Tong Liu and I designed the experimental proto-
col, conducted the experiments, and evaluated the results. Tong Liu and
I wrote the initial draft of the manuscript and did most of the subsequent
corrections. All co-authors discussed this work regularly and contributed to
improving the manuscript.

This publication serves as Chapter 7 of this thesis.

Other Publications

• Yushan Liu, Markus M. Geipel, Christoph Tietz, and Florian Buettner. TIMELY:
Improving labeling consistency in medical imaging for cell type classification. In The
24th European Conference on Artificial Intelligence, volume 325, pages 1858-1865,
2020. DOI: 10.3233/FAIA200302

xiv

https://ceur-ws.org/Vol-3401/paper3.pdf

List of Publications

• Yushan Liu*, Marcel Hildebrandt*, Mitchell Joblin, Martin Ringsquandl, and Volker
Tresp. Integrating logical rules into neural multi-hop reasoning for drug repurposing.
In Workshop on Graph Representation Learning and Beyond, International Confer-
ence on Machine Learning, 2020. *Equal contribution. URL: https://grlplus.gi
thub.io/papers/60.pdf

• Zhiliang Wu, Yinchong Yang, Yunpu Ma, Yushan Liu, Rui Zhao, Michael Moor,
and Volker Tresp. Learning individualized treatment rules with estimated translated
inverse propensity score. In The 2020 IEEE International Conference on Healthcare
Informatics, 2020. Best Paper Award. DOI: 10.1109/ICHI48887.2020.9 374397

• Agnés Masip Gómez*, Martin Heß*, Philipp Ulrich*, Albert Eckert*, Yushan Liu*,
Theodor Isinger*, and Michael Martin*. Challenges for achieving supply chain re-
silience and transparency within CoyPu. In The 1st International Workshop on
Linked Data-Driven Resilience Research, Data Week Leipzig, 2022. *Equal contribu-
tion. URL: https://ceur-ws.org/Vol-3376/paper09.pdf

• Caglar Demir, Anna Himmelhuber, Yushan Liu, Alexander Bigerl, Diego Mous-
sallem, and Axel-Cyrille Ngonga Ngomo. Rapid explainability for skill description
learning. In The ISWC 2022 Posters, Demos and Industry Tracks, International
Semantic Web Conference, 2022. URL: https://ceur-ws.org/Vol-3254/paper4
03.pdf

xv

https://grlplus.github.io/papers/60.pdf
https://grlplus.github.io/papers/60.pdf
https://ceur-ws.org/Vol-3376/paper09.pdf
https://ceur-ws.org/Vol-3254/paper403.pdf
https://ceur-ws.org/Vol-3254/paper403.pdf

Chapter 1

Introduction

1.1 Motivation

The volume and availability of data have been steadily increasing over the last decade,
spanning a diverse range of domains and applications [1]. Machine learning (ML) algo-
rithms are able to exploit massive amounts of information and make predictions based
on patterns in the data, reaching or even surpassing human-level performance on specific
tasks [17]. Applications of ML can be found in a variety of areas, such as recommender
systems [44], social networks [47], image recognition [105], sentiment analysis [61], drug
repurposing [109], and cybersecurity [85].

Data are often collected from different sources, where the involved entities are not inde-
pendent but related to each other via numerous relationships, e.g., in drug-disease interac-
tions [15], supplier-customer partnerships [5], and citation networks [27]. A potential way
to model this kind of relational data is to represent the entities as nodes and their intercon-
nections as edges in a graph, which is also termed a knowledge graph (KG) [87]. Well-known
knowledge bases, which also serve as benchmarks for measuring the performance regarding
graph learning and reasoning tasks, include Wikidata [103], Freebase [14], DBpedia [4],
WordNet [65], Hetionet [36], and the Unified Medical Language System (UMLS) [12], just
to name a few examples. Conventional KGs are static and do not contain temporal informa-
tion, which indicates the validity of a fact at a certain point in time. However, knowledge
usually evolves over time, e.g., the president of a country changes regularly, or a person
might move to a new place of residence. To capture time-related developments, temporal
KGs (tKGs) have been introduced, in which the facts can be equipped with timestamp
or time range information. Many event databases have been converted to tKGs, like the

1

1.1. Motivation

Integrated Crisis Early Warning System (ICEWS) [72], the Global Database of Events,
Language, and Tone (GDELT) [53], and Wikidata [103].

Even though KGs already contain a considerable amount of curated content, they tend
to suffer from incompleteness, i.e., there is information regarding nodes and edges that is
missing in the graph or not up-to-date. Therefore, two classical tasks concerning knowledge
graph completion are node classification and link prediction, which deal with predicting
missing node labels and edges, respectively. On tKGs, a further topic of interest is link
forecasting, the prediction of facts containing future timestamps. ML algorithms have
been successfully applied for graph analysis as well as graph completion tasks [34, 90, 116].
Symbolic approaches perform reasoning based on symbolic representations and logical rules,
which are transferable and interpretable but often not scalable to large data volumes and
unable to handle noisy data. Another paradigm involves subsymbolic approaches, which
make use of neural networks and vector representations for entities and relations. These
approaches are more scalable and can handle noisy data but are black boxes, so it is
not directly apparent why the model has arrived at a certain conclusion or how exactly
the results can be interpreted. The combination of symbolic and subsymbolic approaches,
called neuro-symbolic methods, tries to alleviate the respective limitations and incorporate
the best of both worlds [115].

For many real-world applications, the explainability of the model outputs is important
to ensure the usability of the method, especially in safety-critical situations. The field
of explainable artificial intelligence (XAI) aims to provide explanations for AI models to
increase the interpretability, transparency, and trustworthiness of these models [3]. Possible
explanation techniques include textual descriptions, visualizations, feature relevance scores,
illustrative examples, and logical rules [13]. In node classification tasks, the model output
is usually associated with a probability value that reflects the confidence of the model
regarding the prediction. The calibration of these probabilities could increase the user’s
trust in the results and support the user in making more informed decisions. XAI tackles
a crucial issue in AI and is an essential step towards greater user acceptance and wider
adoption of AI in many domains.

In this thesis, we consider the tasks of link prediction, link forecasting, and node clas-
sification with applications in drug repurposing, future event prediction, identification of
criticalities in supply chains, and calibration on citation networks. We introduce novel
graph ML approaches that yield state-of-the-art performance while providing improved
explanability for the results.

2

Chapter 1. Introduction

1.2 Summary of Contributions

This section summarizes the main contributions of the thesis and provides an overview of
the included publications.

• Chapter 2 provides an introduction to the graph structures and ML tasks addressed
in the subsequent publications. We give an overview of different approaches to solving
graph-related ML tasks, where we differentiate between subsymbolic, symbolic, and
path-based approaches. The focus lies on the description of methods and related
literature that are necessary to follow our work.

• Chapter 3 gives a brief overview of the field of explainable artificial intelligence (XAI),
with an emphasis on explainability in graph ML and calibration of graph learning
approaches.

• In Chapter 4, we study the use case of drug repurposing and predict links that
connect existing drugs with new treatment targets in a biomedical KG [57]. We pro-
pose the neuro-symbolic approach Policy-Guided Walks with Logical Rules (PoLo),
which combines representation learning and logic. Given a compound, we predict a
treatable disease by retrieving policy-guided walks based on reinforcement learning
and integrating logical rules in the form of metapaths as background information for
prognosticating drug efficacy. The metapaths are part of a novel reward function,
which guides the reinforcement learning agent according to domain principles. We
apply our method to the biomedical KG Hetionet [36] and show that the integration
of metapaths leads to better performance, while the extracted paths from the graph
can serve as explanations for the predictions.

• In Chapter 5, we address the extrapolation task of link forecasting in the context
of future event prediction based on tKGs [58]. Future event prediction has many
application areas, such as supply chain management [69], catastrophe modeling [91],
and clinical decision support [118]. We focus on the tKGs based on ICEWS [72],
which model political events as facts equipped with timestamps. We introduce the
symbolic approach TLogic, which learns and applies temporal logical rules, extracted
from the graph via temporal random walks. Experiments on three ICEWS benchmark
datasets show better overall performance compared to state-of-the-art baselines. The
logical rules act as explanations for the forecasts and can also be transferred to related
datasets with a common vocabulary without retraining.

3

1.2. Summary of Contributions

• In Chapter 6, we explore the industrial use case of identifying important suppliers
to assist supply chain managers in the automatic detection of criticalities in supply
networks [56]. Due to the complexity and intransparency of supply chains [18], it is
difficult for supply chain managers to obtain precise predictions about prospective
risks manually. We connect and model supply chain-related entities as a KG and
apply KG completion methods to find missing relationships. Then, we deploy graph
analytics, including the calculation of centrality measures, to rank the suppliers ac-
cording to their importance in the graph. The interpretation of the computed graph
measures and resulting scores are discussed with domain experts, making the process
and findings more comprehensible.

• In Chapter 7, we look into calibration of graph neural networks for the node classifi-
cation task [55]. The calibration of deep neural networks has already been analyzed
in many works [33, 96, 97], but the calibration of graph neural networks has not
been sufficiently explored yet. We investigate the calibration of several graph neural
network models on three citation networks under varying model capacity, graph den-
sity, and loss functions. We further propose the topology-aware calibration method
Ratio-Binned Scaling (RBS), which takes the predicted labels of neighboring nodes
into account and yields improved calibration compared to other post-processing base-
lines. In many cases, calibrated probabilities can lead to a deeper understanding of
the results and increased trustworthiness in the ML algorithms.

4

Chapter 2

Graph Machine Learning

2.1 Fundamentals of Graphs

Definition 2.1.1. A graph is defined as a tuple G = (V , E), where V denotes a set of nodes
and E a set of edges. An edge e ∈ E is described by a pair of nodes (vi, vj) ∈ V × V , with
i, j ∈ {1, 2, . . . , |V|}. A graph is undirected if the existence of an edge (vi, vj) ∈ E implies
(vj, vi) ∈ E . Otherwise, a graph is called directed.

Nodes in a graph represent entities or concepts, while the edges show the interactions
or relations between the nodes.

Definition 2.1.2. A node v ∈ V can be associated with a feature vector xv ∈ Rf . The
feature matrix containing the feature vectors of all nodes is denoted by X ∈ R|V|×f .

Feature vectors specify more detailed information about the nodes, e.g., a collection of
words for nodes representing documents.

Definition 2.1.3. A graph can be represented by an adjacency matrix A ∈ {0, 1}|V|×|V|.
With A[i, j] denoting the entry in the i-th row and j-th column, A[i, j] = 1 if (vi, vj) ∈ E ,
and A[i, j] = 0 otherwise.

Definition 2.1.4. A graph G = (V , E) is homogeneous if G only contains one node type
and one edge type. A graph is heterogeneous if it contains multiple node types or multiple
edge types.

An example of a homogeneous graph is a social network in which the nodes represent
people and the edges the friendship relation (see Figure 2.1). An example of a heteroge-
neous graph is a supply chain network that includes entities such as suppliers, countries,

5

2.1. Fundamentals of Graphs

Figure 2.1: A social network graph. The nodes represent people, and the edges display their
friendship relations. The people have different labels indicated by distinct colors, which
represent, e.g., favorite sports, political orientations, or locations. The node classification
task aims to predict missing node labels in the graph.

and industries, which are connected via different edge types (see Figure 2.2). Heterogeneous
graphs are often referred to as knowledge graphs.

Definition 2.1.5. A knowledge graph (KG) is defined as a set of triples KG ⊂ V ×R×V ,
where V denotes a set of nodes and R a set of binary relations. A triple in the form
(subject, predicate, object) ∈ KG indicates a directed edge (or link) between the subject
node and the object node via the predicate relation. For a relation r ∈ R, the inverse
relation is represented by r−1, so the inverse triple is (object, predicate−1, subject).

Conventional KGs encode static facts, e.g., (Leonhard Euler, born in, Basel) or (Budes-
onide, treats, Asthma). However, real-world knowledge is usually dynamic and evolves con-
tinuously. Events happen at a specific timestamp, e.g., Leonhard Euler was born in Basel
on April 15, 1707, or properties of a person, such as the place of residence, can change
during his lifetime. Temporal information can be captured by temporal knowledge graphs,
which extend triples to quadruples by adding corresponding timestamps.

Definition 2.1.6. A temporal knowledge graph (tKG) is defined as a set of quadruples
T KG ⊂ V×R×V×T , where V denotes a set of nodes, R a set of binary relations, and T a
set of timestamps. A quadruple in the form (subject, predicate, object, timestamp) ∈ T KG
indicates the occurrence or validity of the fact (subject, predicate, object) at the given times-
tamp. The inverse quadruple is represented by (object, predicate−1, subject, timestamp).

Figure 2.3 shows an exemplary tKG based on the event dataset ICEWS14 [30], which
contains information about political events from the year 2014. Each event triple is addi-
tionally equipped with a timestamp that signifies the date of occurrence.

6

Chapter 2. Graph Machine Learning

Figure 2.2: A supply chain knowledge graph including supplier, country, and industry
entities with their connections. Link prediction methods propose new edges (dotted blue
lines) to connect entities in the graph.

2.2 Machine Learning Tasks

2.2.1 Tasks

Many KGs contain a lot of content, but they are usually still incomplete, so common graph
ML tasks involve KG completion, such as node classification on graphs, link prediction on
KGs, and link forecasting on tKGs.

Node Classification In many graphs, the nodes possess labels that reflect certain prop-
erties of the nodes. As shown in Figure 2.1, some nodes might lack the label information
though. The goal of the node classification task is to assign each node v ∈ V a unique
label ŷv ∈ C := {1, 2, . . . , C}, where C stands for the total number of labels. The node
classification task on citation networks is considered in Chapter 7.

Link Prediction Not only node labels are likely to be missing in graphs but also edges
between the nodes, where the corresponding ML task for finding missing edges is called
link prediction (see Figure 2.2). Link prediction on a KG can be phrased as an object
prediction task. Given a query in the form (subject, predicate, ?), the goal is to predict
the correct object entity or a list of possible object candidates that are most likely to
complete the query. Subject prediction can be realized by reformulating the query as
(object, predicate−1, ?). Chapter 4 and Chapter 6 focus on the link prediction task on a
biomedical KG and a supply network, respectively.

7

2.2. Machine Learning Tasks

Figure 2.3: A subgraph from the event dataset ICEWS14 containing the entities Angela
Merkel, Barack Obama, France, and China. The timestamps are represented as days in
the format yy/mm/dd. The dotted blue line connects to the correct answer of the link
forecasting task with the query (Angela Merkel, consults, ?, 2014/08/09).

Link Forecasting For a tKG, let tmin be the earliest observed timestamp and tmax the
latest observed timestamp in the graph so that all edges are associated with a timestamp
from the interval [tmin, tmax]. Similarly to link prediction, we can formulate the link fore-
casting task as an object prediction problem with a prespecified timestamp. Given a query
in the form (subject, predicate, ?, timestamp), where the timestamp occurs later than tmax,
we want to find the correct object entity or a list of possible object candidates (see Fig-
ure 2.3). Subject prediction can be performed by using the inverse relation and defining
the query as (object, predicate−1, ?, timestamp). We study the link forecasting task on
event tKGs in Chapter 5.

2.2.2 Evaluation

Node Classification For evaluating a model’s performance regarding node classifica-
tion, we use the metric accuracy, which is typically applied for evaluating ML classification
tasks. Let yv ∈ C be the ground-truth label and ŷv ∈ C the predicted label of a node
v ∈ V . The accuracy is the proportion of correctly classified instances, i.e., the percentage
of nodes with ŷv = yv.

8

Chapter 2. Graph Machine Learning

Link Prediction and Forecasting As output of the link prediction and forecasting
task, we obtain a ranked list of possible object candidates, where a higher rank (i.e., a
rank with a smaller number) indicates a higher probability that the corresponding object
is the correct answer. To measure the quality of the predicted list, we calculate the standard
metrics mean reciprocal rank (MRR) and hits@k for k ∈ N. For a rank x ∈ N, i.e., the
position in the ranked list of object candidates, the reciprocal rank is defined as 1

x
, and the

MRR is the average of all reciprocal ranks of the correct query answers over all queries.
The metric hits@k denotes the proportion of queries for which the correct answer appears
under the top k candidates. Generally, a query might have multiple valid answers but only
a unique one that is correct for a specific test query. Therefore, we filter the candidate
list according to Bordes et al. [16] and remove the other valid objects from the list so that
these objects do not worsen the performance of the model if they are ranked higher than
the correct answer. For link forecasting, we implement time-aware filtering [35] and filter
out all valid objects at the given query timestamp except for the true query object.

2.3 Subsymbolic Approaches

Subsymbolic approaches aim to automatically learn connections between input and out-
put. The models try to imitate biological behavior by relying on distributed representa-
tions without explicitly defining logical rules. These approaches can learn from large-scale
datasets and handle noisy data but are often black boxes where the reasons for particu-
lar predictions are not transparent. Subsymbolic methods include, e.g., statistical learn-
ing [39], Bayesian learning [68], genetic algorithms [41], artificial neural networks [110],
and deep learning [52]. In the context of graph ML, we will take a closer look at KG
embeddings and graph neural networks. For a more in-depth investigation of graph repre-
sentation learning on static and temporal KGs, comprehensive overviews can be found in
the following surveys: [20], [34], [42], [45], [54], and [104].

2.3.1 Knowledge Graph Embeddings

The idea of representation learning on KGs is to learn low-dimensional vector represen-
tations, called embeddings, of entities and relations that preserve both local and global
information from the graph. Intuitively, we expect that two nodes with similar semantic
meanings also have similar embeddings. The learned embeddings can then be used for

9

2.3. Subsymbolic Approaches

downstream tasks like node classification and link prediction.
The basic approach learns shallow embeddings where the entities and relations are

mapped to vectors stored in a table. Each entity or relation has a unique ID for identifi-
cation purposes. The optimization of the embeddings is usually based on a reconstruction
loss function. The loss function measures the discrepancy between the predicted output
given the embeddings and the ground-truth output with respect to the task of interest.
The trained embeddings can then be retrieved by looking up the corresponding IDs in the
table. First, we describe link prediction methods for static KGs. These methods learn
entity and relation embeddings for a scoring function f that assigns a value f(vs, r, vo) ∈ R
to a triple (vs, r, vo) ∈ V × R × V , which indicates the likelihood that the triple exists in
the KG. Let vs, r, and vo be the embeddings of the subject entity vs, relation r, and object
entity vo, respectively.

• RESCAL [70] was the first approach to be published for learning KG embeddings.
It models triples in the KG as a three-way tensor, applies tensor factorization, and
learns a full-rank matrix Rr for each relation r. The scoring function is given by

f(vs, r, vo) = vT
s Rrvo, vs, vo ∈ Rd, Rr ∈ Rd×d.

• DistMult [108] has the same scoring function as RESCAL but restricts the relation
matrix to be diagonal to reduce the number of parameters. Thus, the scoring function
can be formulated as the component-wise multiplication of three vectors and the
subsequent summarization of all components, represented by the function ⟨ · , · , · ⟩:

f(vs, r, vo) = ⟨vs, r, vo⟩, vs, r, vo ∈ Rd.

• ComplEx [98] is an extension of DistMult that operates on the complex space. The
object embedding of an entity v is defined as the complex conjugate of the subject
embedding v ∈ Cd. The score is represented by the real part of the resulting vector
multiplication, i.e.,

f(vs, r, vo) = Re(⟨vs, r, v̄o⟩), vs, r, vo ∈ Cd,

where ·̄ denotes the complex conjugate of a vector.

• TuckER [8] is a tensor factorization model based on the Tucker decomposition [99].
The models RESCAL, DistMult, and ComplEx can be seen as special cases of

10

Chapter 2. Graph Machine Learning

TuckER. The scoring function is given by

f(vs, r, vo) = W×1 vT
s ×2 rT ×3 vT

o , vs, vo ∈ Rdv , r ∈ Rdr , W ∈ Rdv×dr×dv ,

where W is the trainable core tensor of the Tucker decomposition and ×i the tensor
product along the i-th mode.

• TransE [16] models relationships between two entities as translations between the
corresponding entity embeddings, with

f(vs, r, vo) = −||vs + r− vo||, vs, r, vo ∈ Rd.

• RotatE [92] models relationships between two entities as rotations in the complex
space. With ⊙ denoting the component-wise multiplication,

f(vs, r, vo) = −||vs ⊙ r− vo||, vs, r, vo ∈ Cd,

under the constraint that the absolute value of each component in r should be 1.

• SimplE [43] learns two embeddings for an entity v, where v(s) stands for the subject
embedding and v(o) for the object embedding. The score of a triple is computed as
the average of two components:

f(vs, r, vo) = 1
2

(
⟨vs(s), r, vo(o)⟩+ ⟨vo(s), r−1, vs(o)⟩

)
,

where vs(s), vs(o), r, r−1, vo(s), vo(o) ∈ Rd. The vector r−1 denotes the embedding
of the inverse relation of r.

• ConvE [25] models the interactions in a KG by convolutional and fully connected
layers. The subject and relation embeddings are reshaped, concatenated, and used
as input for a 2D-convolutional layer with filters U. The result is flattened and
transformed by a trainable matrix W ∈ Rnm1m2×d, where n represents the number of
filters and m1 and m2 are the dimensions of the feature maps. The complete scoring
function is given by

f(vs, r, vo) = σ
(

flatten
(
σ([ṽs; r̃] ∗U)

)
W

)
vo, vs, r, vo ∈ Rd,

where ṽs, r̃ ∈ Rd1×d2 with d = d1 · d2. The function σ denotes a non-linear activation
function.

11

2.3. Subsymbolic Approaches

In tKGs, triples are additionally associated with time intervals or timestamps, and we
are interested in the validity of a quadruple (vs, r, vo, t) ∈ V ×R× V × T . Many methods
for static KG completion have been extended to take the temporal dimension into account
for calculating the scoring function.

• Temporal TransE (TTransE) [51] extends TransE and adds the timestamp as another
vector to the scoring function

f(vs, r, vo, t) = −||vs + r + t− vo||, vs, r, vo, t ∈ Rd.

• Temporal-Aware DistMult (TA-DistMult) [30] uses the same scoring function as the
method DistMult, now including temporal information in the relation embedding.
The relation type, temporal modifiers (e.g., since, until), and temporal tokens that
represent a point in time are concatenated and processed by a Long Short-Term
Memory (LSTM) model [37] to obtain the relation embedding rtemp. The resulting
scoring function is

f(vs, r, vo, t) = ⟨vs, rtemp, vo⟩, vs, rtemp, vo ∈ Rd.

• TNTComplEx [48] is an extension of ComplEx and can handle both static and tem-
poral facts by introducing two relation embeddings. The relation embedding for
temporal facts is additionally multiplied with a time embedding:

f(vs, r, vo, t) = Re(⟨vs, r + rtemp ⊙ t, v̄o⟩), vs, r, rtemp, vo, t ∈ Cd.

• DE-SimplE [32] replaces the entity embeddings in SimplE with diachronic entity
embeddings. The i-th component of the diachronic embedding of an entity v at time
t is defined as follows:

v(t)[i] =

av[i] · σ(wv[i]t + bv[i]) for 1 ≤ i ≤ λd,

av[i] for λd < i ≤ d,

where av ∈ Rd and bv, wv ∈ Rλd are trainable vectors and σ is a non-linear activation
function. The hyperparameter λ ∈ [0, 1] determines the proportion of time-dependent
entries.

12

Chapter 2. Graph Machine Learning

• The Temporal Copy-Generation Network (CyGNet) [117] learns patterns from his-
torical facts, based on the observation that many events occur periodically. Given an
object prediction query (vs, r, ?, t), CyGNet employs a copy-generation mechanism.
The copy mode infers the probabilities for objects that have appeared together with
the query subject and query relation in the previous history, while the generation
mode infers probabilities based on all entities in the vocabulary. The final scores are
obtained by combining the probability distributions from both modes.

This section focused on shallow embeddings, where we directly optimize a vector for
each entity, relation, and timestamp. However, shallow embeddings are inefficient since
no parameters are shared between embeddings, incapable of using node features, and in-
applicable in inductive settings, i.e., cases where previously unseen nodes, relations, or
timestamps are involved. In the next section, we will look at graph neural networks, which
take the graph structure as well as node features into account for learning embeddings.

2.3.2 Graph Neural Networks

Graph neural networks (GNNs) operate on graph data and learn embeddings that depend
on the graph structure and existing node features. The basic underlying principle is neural
message passing, where adjacent nodes exchange information in the form of vectors. For
learning the embedding of a node v, information from all neighbors of v is collected, ag-
gregated, and normalized during each message passing iteration. The aggregated message
is used to update the embedding of v, and we obtain the final node embedding after a
specific number of iterations. The update is often achieved by adding self-loops to the
graph. After N iterations, the node embeddings contain information from their respective
N -hop neighborhoods.

We first describe GNNs for a simple graph G = (V , E), with A ∈ {0, 1}|V|×|V| denoting
the adjacency matrix and X ∈ R|V|×f the feature matrix. The node embeddings at iteration
n ∈ N, also called hidden embeddings, are saved in the matrix H(n), where the i-th row
H(n)[i] represents the hidden embedding of the node vi. The final embedding of the node
vi is given by the column vector vi := H(N)[i]T ∈ Rd.

• The Graph Convolutional Network (GCN) [46] normalizes the aggregated messages
from neighboring nodes and adds self-loops to the adjacency matrix. The hidden
layer at iteration n + 1 is computed as follows:

H(n+1) = σ
(
D̃− 1

2 (A + I)D̃− 1
2 H(n)W(n)

)
,

13

2.3. Subsymbolic Approaches

where I is the |V|-dimensional identity matrix and D̃ the degree matrix of A + I,
i.e., D̃[i, i] = ∑|V|

j=1(A + I)[i, j]. The matrix W(n) is a trainable weight matrix σ a
non-linear activation function. Further, we set H(0) := X.

• The Graph Attention Network (GAT) [101] introduces an attention mechanism to
express the importance of a node during message aggregation. The attention of the
node vi towards its neighbor vj is formulated as

αij =
exp

(
LeakyReLU(aT [WH(n)[i]T ; WH(n)[j]T])

)
∑

vj′ ∈N (vi) exp
(
LeakyReLU(aT [WH(n)[i]T ; WH(n)[j′]T])

) ,

where W and a are trainable parameters and N (vi) denotes the neighbors of vi.
LeakyReLU [59] is applied as activation function.

• The authors of Simple Graph Convolution (SGC) [106] hypothesize that GCNs mostly
benefit from the aggregation of local neighborhood information and not from the
application of non-linearities. Therefore, they propose to remove the non-linear ac-
tivation functions so that the resulting embeddings are given by

H(N) = ÃNXW,

where ÃN is a normalized adjacency matrix to the power of N and W ∈ Rf×d a
trainable weight matrix.

In KGs, there is typically not only one edge type, but multiple relations exist between
the nodes. Conventional GNNs have been extended to multi-relational models to accom-
modate this situation.

• The Relational Graph Convolutional Network (R-GCN) [86] is an extension of GCN,
which introduces relation-dependent transformations Wr. The hidden embedding of
the node vi is computed by

H(n+1)[i]T = σ

∑
r∈R

∑
vj∈Nr(vi)

1
ci,r

W(n)
r H(n)[j]T

 ,

where W(n)
r is a trainable weight matrix and ci,r ∈ R a normalization constant. The

set Nr(vi) denotes the neighbors of the node vi that are connected to vi via the
relation r.

14

Chapter 2. Graph Machine Learning

• CompGCN [100] is a composition-based multi-relational GCN, which learns joint
embeddings for nodes and relations via composition operations ϕ. The embeddings
of the node vi and relation r are then obtained through the following equations:

H(n+1)[i]T = σ

∑
r∈R

∑
vj∈Nr(vi)

W(n)
dir(r)ϕ

(
H(n)[j]T , r(n)

) , r(n+1) = W(n)
rel r(n),

where W(n)
rel is a learnable weight matrix for all relations and W(n)

dir(r) a learnable
weight matrix that depends on the direction of the relation r.

GNNs have also been adapted to tKGs to incorporate temporal knowledge. Unlike
shallow KG embeddings, GNNs can generate embeddings of previously unseen entities,
relations, and timestamps, which is especially helpful regarding the link forecasting task.

• The Recurrent Event Network (RE-Net) [40] consists of an autoregressive architec-
ture, which treats link forecasting as a multi-step inference task. The tKG is repre-
sented as a sequence of graph snapshots, where a graph snapshot contains all events
that occurred at the same timestamp. RE-Net first applies a neighborhood aggre-
gator such as R-GCN to encode the graph structure and local information within
each graph snapshot. Then, a recurrent neural network [21] learns the probability
distribution of events at a certain point in time while taking previous events into ac-
count. Finally, the probability of the current graph is obtained by using a feedforward
artificial neural network [110] as decoder.

• xERTE [35] is an explainable reasoning framework for link forecasting on tKGs that
employs a temporal relational graph attention mechanism to propagate messages
and guide the extraction of relevant information from the graph. The attention
mechanism introduces temporal constraints on message passing while the learned
entity embeddings contain a time-dependent component. xERTE samples a query-
dependent subgraph around the query subject that includes important entities and
relations for answering the query. The final object is predicted as one of the nodes
in the extracted subgraph, which serves as a graphical explanation for the answer.

2.4 Symbolic Approaches

Symbolic approaches have a long history in knowledge modeling and reasoning. Prominent
reasoning approaches rely on logic-based systems, such as description logic [6], which con-
sists of knowledge representation languages like the Web Ontology Language (OWL) [2],

15

2.4. Symbolic Approaches

logic programming [31], which are implemented in methods like Prolog [22] and the First-
Order Inductive Learner (FOIL) [79], and fuzzy logic [112], which associates a real number
as truth value with logical statements. Symbolic approaches are easier to interpret than
subsymbolic algorithms and yield good performance for well-defined problems but can be
computationally expensive with increasing domain complexity and have difficulties han-
dling noisy or ambiguous data.

One basic building block of logic-based reasoning is the application of logical rules that
are formulated as Horn clauses [38] in the form

h← b1 ∧ b2 ∧ · · · ∧ bK , K ∈ N,

where h represents the head of the rule and the conjunction of atomic formulas bk, also
called atoms, the body of the rule. The arrow denotes logical implication, i.e., if the rule
body evaluates to true, then the statement in the rule head is also true. In a KG context,
the rule head and body atoms can be realized as triples, e.g.,

(X:Person, born in, Y:Country) ←

(X:Person, born in, Z:City) ∧ (Z:City, located in, Y:Country),

where X, Y , and Z are variables that represent entities of the types Person, Country,
and City, respectively. For the application of a logical rule, we can ground the logical
expression by replacing the variables by instance values, i.e., for the example above, a
possible grounding could be

(Isa, born in, Germany) ← (Isa, born in, Munich) ∧ (Munich, located in, Germany).

Since the implications in logical rules are not necessarily always true, probabilistic logic [71]
introduces uncertainty by attaching a numerical value to the logical rule to reflect the
probability that, given a grounded rule body, the rule head is true. For example, Markov
Logic Networks (MLNs) [80] combine first-order logic [88] with probabilistic graphical
networks to model logical statements with weights, where the nodes are atoms and the
edges logical operators.

Logical rules can either be manually crafted by domain experts or automatically mined
from the KG. The method AMIE [28] retrieves Horn rules from the KG by following the
steps of rule mining and rule pruning. In the rule mining step, atoms are added iteratively
to an initially empty rule to generate rule candidates that are closed, i.e., rules where each
variable appears at least twice. In the second step, the candidate rules are pruned based

16

Chapter 2. Graph Machine Learning

on their confidence values and head coverage, a normalized proportion of instantiations
in the graph that are supported by the rule. The follow-up work AMIE+ [29] improves
the efficiency of AMIE by refining the rule mining process and approximating the metrics
for pruning. A more recent version, AMIE 3 [49], introduces even more efficient pruning
strategies, faster evaluation of exact confidence values, and parallelization of specific tasks,
making it possible to apply AMIE to large-scale knowledge bases.

Anytime Bottom-Up Rule Learning (AnyBURL) [62, 63] is a symbolic approach based
on random path sampling, which is guided by reinforcement learning [93]. AnyBURL
learns three types of rules: binary rules, unary rules with an ending dangling atom, and
unary rules with an ending constant entity. The rule head of binary rules contains two
variables that represent the subject and object nodes, while the rule head of unary rules
contains one variable and one constant entity. The rules are constructed from the sampled
paths, which are generalized to Horn rules by introducing variables and dropping redundant
atoms. Due to a multi-threaded implementation in the newest version of AnyBURL [62],
the method can be efficiently scaled to large knowledge bases. The framework Scalable
and Fast Non-Redundant Rule Application (SAFRAN) [74] is another approach based on
AnyBURL, which employs a novel rule clustering and aggregation mechanism to improve
the performance.

In the case of tKGs, logical rules can be adapted to incorporate temporal information.
Temporal logical rules can be defined by adding a timestamp to the rule head and body
atoms, such as

(v1, r, vK+1, t)← (v1, r1, v2, t1) ∧ (v2, r2, v3, t2) ∧ · · · ∧ (vK , rK , vK+1, tK).

To preserve time consistency, we can add a temporal constraint t1 ≤ t2 ≤ · · · ≤ tK < t,
with the interpretation that the rule body expresses a sequence of events that lead to the
event in the rule head at a future timestamp.

StreamLearner [73] learns temporal logical rules by first extracting static rules from
a subgraph and then extending them with timestamp information. The final temporal
rules are selected based on the quality metrics dynamic confidence and dynamic head
coverage, the generalizations of the metrics confidence and head coverage to the dynamic
case. StreamLearner retrieves rules in the form

(v1, r, vK+1, t + k)← (v1, r1, v2, t) ∧ (v2, r2, v3, t) ∧ · · · ∧ (vK , rK , vK+1, t),

where all facts in the rule body are concurrent and occur at the timestamp t, while the
rule head is an event with the future timestamp t + k.

17

2.5. Path-Based Approaches

Generally, the respective groundings of the logical rules in the graph can serve as an
explanation of the predictions and lead to more interpretable results.

2.5 Path-Based Approaches

A further kind of approach is based on graph traversal to extract reasoning paths, which is
often a combination of subsymbolic and symbolic methods [115]. Starting from the query
subject of a link prediction task, the traversed path is extended sequentially, with the aim
of finding the correct query object at the end of the traversal. The extracted paths provide
multi-hop reasoning chains and increase the transparency of the predictions, which can be
especially helpful for embedding-based methods. We define a path of length L in a KG as
a sequence of triples

(v1, r1, v2), (v2, r2, v3), · · · , (vL, rL, vL+1),

where the triples are distinct, but the nodes can be recurrent. If the nodes v1 and vL+1 are
the same, we call the path closed. Some literature refers to such sequences as walks and
defines only sequences with distinct nodes and edges as paths.

A possible way to retrieve paths is via random walks [76], which are stochastic processes
that determine the steps and directions of a walk from a specific starting point. The Path
Ranking Algorithm (PRA) [50] uses random walks to connect query subjects with potential
object candidates for link prediction. PRA learns a weighting for the connecting paths and
defines the paths as input to a linear model to rank the object entities.

Besides sampling random walks in a discrete space, it is also possible to guide the walk
by exploiting embeddings and reinforcement learning (RL) to make it easier to evaluate
similar nodes and entities based on their embeddings. DeepPath [107] is an RL-approach
that extracts policy-guided random walks as part of a Markov Decision Process (MDP) [9].
The current state encodes the RL agent’s location in the graph based on entity embeddings,
which is then mapped to a stochastic policy to determine the next action. The reward of
the agent depends on the correctness of the final entity, the length of the path, and the
diversity of paths. Similar to PRA, the extracted paths are used in a linear model to
predict an object ranking.

MINERVA [23], which stands for Meandering in Networks of Entities to Reach Verisim-
ilar Answers, is also an RL-based reasoning method, which defines a Partially Observable
Markov Decision Process (POMDP) [119] where the correct query answer is unknown dur-

18

Chapter 2. Graph Machine Learning

ing graph traversal. The RL agent starts from the query subject and navigates to a node
that might be a possible option for the query object. A positive reward is given to the
agent if the correct answer has been reached in the final step.

The extracted paths remind of the formulation of logical rules in the previous section.
One way to obtain logical rules is to generalize the paths from the graph to Horn clauses,
which are then applied for inference. AnyBURL [62, 63] was at first based on sampling
random walks [63] to generate rules and then added RL to achieve better performance [62].
Closed paths can be transformed into logical rules, where the relation in the rule head
connects the variables from the body atoms b1 and bK , so the rule body describes the
reason why an edge is likely to exist between the corresponding two entities.

Random walks can also be extended to tKGs, and we define a temporal random walk
of length L as a sequence of quadruples

(v1, r1, v2, t1), (v2, r2, v3, t2), · · · , (vL, rL, vL+1, tL),

where t1 ≤ t2 ≤ · · · ≤ tL or t1 ≥ t2 ≥ · · · ≥ tL, i.e., it is only feasible to traverse
the graph following one direction of time. Nguyen et al. create continuous-time dynamic
network embeddings (CTDNEs) [60] by extracting temporal random walks and learning
time-preserving node embeddings with a generalized Skip-Gram architecture [64]. The
dynamic node embeddings can then be used in downstream tasks with suitable scoring
functions. Temporal random walks produce time-consistent explanations, which are aligned
with the intuition that previous events might trigger future developments.

19

Chapter 3

Explainable Artificial Intelligence

The emergence of high-performing ML algorithms and generative AI led to widespread
adoption of AI approaches in various domains, but explainability and validation are es-
sential to ensure reliable and secure usage. Explainable artificial intelligence (XAI) aim
to provide human-understandable explanations for black-box AI models to reduce bias,
make the results more interpretable, and increase the trustworthiness of the models. Ex-
planations can have diverse forms depending on the data modality, such as rule-based
explanations, saliency maps, feature importance scores, textual descriptions, prototypes,
and counterfactuals [13]. Different taxonomies and categorizations exist for key concepts
in XAI [3, 13, 19, 66, 84], but there is no commonly agreed definition what explainabil-
ity actually means. We use the following terminology, which is mostly aligned with the
definitions proposed by Arrieta et al. [3].

• Explainability is the ability of an AI model to provide explanations through an in-
terface to a human, where the explanation serves as a justification of the model
output.

• Interpretability is the ability of an AI model to provide explanations in a way that is
understandable by humans.

• Transparency is a property of an AI model that is by itself understandable, i.e., a
human can understand how the model works by looking at the model structure and
algorithm without further explanations.

• Trustworthiness is one of the goals of XAI and can be seen as the confidence in
whether the model acts in an expected way.

21

3.1. Explainability in Graph Machine Learning

Another challenge is that there exist no standard metrics for evaluating the expla-
nations. Plausible criteria and metrics have been proposed [26, 67, 89], but the general
usefulness and quality of an explanation are highly dependent on the background knowledge
of the target group and the use case.

3.1 Explainability in Graph Machine Learning

Knowledge graphs model concepts as nodes and their connections as edges, which are
inherently understandable by humans. Therefore, paths and subgraphs that are influential
for the results are often highlighted to make the reasoning process more transparent. For
example, the method GNNexplainer [111] is a model-agnostic approach that can generate
explanations for any GNN by identifying relevant node features and subgraphs for the
prediction. The selection of critical information from the graph is based on a mean-field
variational approximation [11], which helps to maximize the mutual information between
predictions and explanatory subgraphs. Further, a feature mask is learned that masks out
irrelevant node features.

In an effort to make KG approaches not only explainable but also scalable and robust to
noise, many neuro-symbolic methods have been introduced that combine logical reasoning
with neural aspects to improve the interpretability [10].

The probabilistic Logic Neural Network (pLogicNet) [78] combines KG embeddings with
MLNs and optimizes the architecture through a variational expectation-maximization (EM)
algorithm [24]. In the E-step, a KG embedding model performs link prediction to infer the
probabilities of missing edges in the graph. Then, in the M-step, the weights of the logical
rules that are modeled by an MLN are updated based on all triples.

Badreddine et al. propose Logic Tensor Networks (LTNs) [7] and Real Logic, a fully
differentiable fuzzy logical language that supports LTNs regarding learning and reasoning
on KGs. Entities, relations, atomic formulas, and functions are represented by tensors or
tensor operations. During the optimization of LTNs, logical formulas encoded with Real
Logic are inserted into the loss function to integrate constraints and background knowledge.

Neural Theorem Provers (NTP) [81] are similar to LTNs and represent entities and
relations as real-valued vectors. The symbolic unification operation is defined as a differ-
entiable function that takes these vector representations as input. Link prediction queries
correspond to basic theorems, which can then be proven by following a backward chaining
algorithm.

22

Chapter 3. Explainable Artificial Intelligence

3.2 Calibration in Graph Machine Learning

Besides offering explicit explanations for the predicted results, the outputs of many graph
ML models are associated with a score, such as a probability value that a node has a
specific label. This score is often interpreted as the model’s confidence in its prediction. If
these scores are not calibrated and thus do not reflect the ground-truth probability of the
results, the user could be misled, and dangerous situations could arise if the user puts too
much trust in these values.

Let the output of an ML model consist of the set of labels C where each label is
associated with a score in the range [0, 1] and all scores sum up to 1. For a node v, we call
the label with the highest confidence score the predicted label ŷv, and the corresponding
confidence score is denoted by p̂v ∈ [0, 1]. Let yv be the ground-truth label of v. Then,
perfect calibration for a node classification task is defined as follows [33]:

Probability(ŷv = yv | p̂v = p) = p, p ∈ [0, 1].

It means that the confidence score should reflect the true probability of the prediction. For
example, if 100 nodes have a confidence score of 0.7 with respect to their predicted node
labels, then exactly 70 nodes are expected to be correctly classified.

A commonly used metric to judge the calibration performance of a model is the expected
calibration error (ECE). First, the node instances are divided into bins based on their
confidence scores. Then, the difference between the average confidence score and the
accuracy is calculated for each bin. The ECE is the weighted sum

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|,

where B1, B2, · · · , BM are the bins and N stands for the total number of instances.
Many calibration methods are post-processing methods, which modify the output scores

after inference. Classical methods, which can be used to calibrate classification approaches
and are not restricted to ML on graph-structured data, include, e.g., Platt scaling [77],
temperature scaling [33], histogram binning [113], and isotonic regression [114]. In some
cases, these approaches can also be applied effectively to GNNs [102], but depending of the
dataset, there might be other methods specifically developed for GNNs that can achieve
better performance [95].

Similarly to node classification, the scores associated with link prediction results are
also often unreliable. A particular challenge is the open world assumption, i.e., there is no

23

3.2. Calibration in Graph Machine Learning

ground truth for the correctness of a triple since KGs are often incomplete and a triple that
does not exist in the graph is not necessarily false. Tabacof and Costabello [94] generate
synthetic negatives by corrupting existing triples and combine them with Platt scaling or
isotonic regression for the calibration of KG embeddings models. The experiments show
that the combination with isotonic regression leads to best calibration. Safavi et al. [83]
conduct a user study in which they provide annotators with calibrated probability values
for the link prediction task. They find that users with calibrated scores give faster and more
accurate answers than users who are only provided with ranked lists of object candidates.

24

Chapter 4

Neural Multi-Hop Reasoning with
Logical Rules on Biomedical
Knowledge Graphs

This chapter contains the publication

Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Martin Ringsquandl, Rime
Raissouni, and Volker Tresp. Neural multi-hop reasoning with logical rules on
biomedical knowledge graphs. In Ruben Verborgh et al. The Semantic Web,
ESWC 2021, Lecture Notes in Computer Science, volume 12731, pages 375-391,
Springer, Cham, 2021. DOI: 10.1007/978-3-030-77385-4_22

25

Neural Multi-hop Reasoning with Logical
Rules on Biomedical Knowledge Graphs

Yushan Liu1,3(B), Marcel Hildebrandt1,3, Mitchell Joblin1,
Martin Ringsquandl1, Rime Raissouni2,3, and Volker Tresp1,3

1 Siemens, Otto-Hahn-Ring 6, 81739 Munich, Germany
{yushan.liu,marcel.hildebrandt,mitchell.joblin,martin.ringsquandl,

volker.tresp}@siemens.com
2 Siemens Healthineers, Hartmanntraße 16, 91052 Erlangen, Germany

rime.raissouni@siemens-healthineers.com
3 Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1,

80539 Munich, Germany

Abstract. Biomedical knowledge graphs permit an integrative compu-
tational approach to reasoning about biological systems. The nature of
biological data leads to a graph structure that differs from those typi-
cally encountered in benchmarking datasets. To understand the impli-
cations this may have on the performance of reasoning algorithms, we
conduct an empirical study based on the real-world task of drug repur-
posing. We formulate this task as a link prediction problem where both
compounds and diseases correspond to entities in a knowledge graph.
To overcome apparent weaknesses of existing algorithms, we propose a
new method, PoLo, that combines policy-guided walks based on rein-
forcement learning with logical rules. These rules are integrated into the
algorithm by using a novel reward function. We apply our method to
Hetionet, which integrates biomedical information from 29 prominent
bioinformatics databases. Our experiments show that our approach out-
performs several state-of-the-art methods for link prediction while pro-
viding interpretability.

Keywords: Neural multi-hop reasoning · Reinforcement learning ·
Logical rules · Biomedical knowledge graphs

1 Introduction

Advancements in low-cost high-throughput sequencing, data acquisition tech-
nologies, and compute paradigms have given rise to a massive proliferation of
data describing biological systems. This new landscape of available data spans a
multitude of dimensions, which provide complementary views on the structure
of biological systems. Historically, by considering single dimensions (i. e., single
types of data), researchers have made progress in understanding many important
phenomena. More recently, there has been a movement to develop statistical and

c© Springer Nature Switzerland AG 2021
R. Verborgh et al. (Eds.): ESWC 2021, LNCS 12731, pp. 375–391, 2021.
https://doi.org/10.1007/978-3-030-77385-4_22

376 Y. Liu et al.

computational methods that leverage more holistic views by simultaneously con-
sidering multiple types of data [40]. To achieve this goal, graph-based knowledge
representation has emerged as a promising direction since the inherent flexibility
of graphs makes them particularly well-suited for this problem setting.

Fig. 1. (a) Visualization of the heterogeneous biomedical KG Hetionet [13] (reprint
under the use of the CC BY 4.0 license). (b) Schema of Hetionet: Hetionet has 11
different entity types and 24 possible relations between them. Source: https://het.io/
about/.

Biomedical knowledge graphs (KGs) are becoming increasingly popular for
tasks such as personalized medicine, predictive diagnosis, and drug discovery [9].
Drug discovery, for example, requires a multitude of biomedical data types com-
bined with knowledge across diverse domains (including gene-protein bindings,
chemical compounds, and biological pathways). These individual types of data
are typically scattered across disparate data sources, published for domain-
specific research problems without considering mappings to open standards. To
this end, KGs and Semantic Web technologies are being applied to model ontolo-
gies that combine knowledge and integrate data contained in biomedical data
sources, most notably Bio2RDF [2], for classical query-based question answering.

From a machine learning perspective, reasoning on biomedical KGs presents
new challenges for existing approaches due to the unique structural characteris-
tics of the KGs. One challenge arises from the highly coupled nature of entities
in biological systems that leads to many high-degree entities that are themselves
densely linked. For example, as illustrated in Fig. 1a, genes interact abundantly
among themselves. They are involved in a diverse set of biological pathways and
molecular functions and have numerous associations with diseases.

A second challenge is that reasoning about the relationship between two
entities often requires information beyond second-order neighborhoods [13].

Neural Multi-hop Reasoning with Logical Rules 377

Methods that rely on shallow node embeddings (e. g., TransE [4], DistMult [38])
typically do not perform well in this situation. Approaches that take the entire
multi-hop neighborhoods into account (e. g., graph convolutional networks, R-
GCN [30]) often have diminishing performance beyond two-hop neighborhoods
(i. e., more than two convolutional layers), and the high-degree entities can cause
the aggregation operations to smooth out the signal [16]. Symbolic approaches
(e. g., AMIE+ [10], RuleN [21]) learn logical rules and employ them during infer-
ence. These methods might be able to take long-range dependencies into account,
but due to the massive scale and diverse topologies of many real-world KGs, com-
binatorial complexity often prevents the usage of symbolic approaches [14]. Also,
logical inference has difficulties handling noise in the data [24].

Under these structural conditions, path-based methods present a seemingly
ideal balance for combining information over multi-hop neighborhoods. The key
challenge is to find meaningful paths, which can be computationally difficult if
the search is not guided by domain principles. Our goal is to explore how a path-
based approach performs in comparison with alternative state-of-the art methods
and to identify a way of overcoming weaknesses present in current approaches.

We consider the drug repurposing problem, which is characterized by finding
novel treatment targets for existing drugs. Available knowledge about drug-
disease-interactions can be exploited to reduce costs and time for developing new
drugs significantly. A recent example is the repositioning of the drug remdesivir
for the novel disease COVID-19. We formulate this task as a link prediction
problem where both compounds and diseases correspond to entities in a KG.

We propose a neuro-symbolic reasoning approach, PoLo (Policy-guided walks
with Logical rules), that leverages both representation learning and logic.
Inspired by existing methods [5,12,18], our approach uses reinforcement learning
to train an agent to conduct policy-guided random walks on a KG. As a modifi-
cation to approaches based on policy-guided walks, we introduce a novel reward
function that allows the agent to use background knowledge formalized as logical
rules, which guide the agent during training. The extracted paths by the agent
act as explanations for the predictions. Our results demonstrate that existing
methods are inadequately designed to perform ideally in the unique structural
characteristics of biomedical data. We can overcome some of the weaknesses
of existing methods and show the potential of neuro-symbolic methods for the
biomedical domain, where interpretability and transparency of the results are
highly relevant to facilitate the accessibility for domain experts. In summary, we
make the following contributions:

– We propose the neuro-symbolic KG reasoning method PoLo that combines
policy-guided walks based on reinforcement learning with logical rules.

– We conduct an empirical study using a large biomedical KG where we com-
pare our approach with several state-of-the-art algorithms.

– The results show that our proposed approach outperforms state-of-the-art
alternatives on a highly relevant biomedical prediction task (drug repurpos-
ing) with respect to the metrics hits@k for k ∈ {1, 3, 10} and the mean recip-
rocal rank.

378 Y. Liu et al.

We briefly introduce the notation and review the related literature in Sect. 2.
In Sect. 3, we describe our proposed method1. Section 4 details an experimental
study, and we conclude in Sect. 5.

2 Background

2.1 Knowledge Graphs

Fig. 2. Subgraph of Hetionet illustrating the
drug repurposing use case. The two paths that
connect the chemical compound sorafenib and
the disease kidney cancer can be used to pre-
dict a direct edge between the two entities.

Let E denote the set of entities in
a KG and R the set of binary rela-
tions. Elements in E correspond
to biomedical entities including,
e. g., chemical compounds, dis-
eases, and genes. We assume that
every entity belongs to a unique
type in T , defined by the map-
ping τ : E → T . For example,
τ(AURKC) = Gene indicates
that the entity AURKC has type
Gene. Relations in R specify how
entities are connected. We define
a KG as a collection of triples
KG ⊂ E × R × E in the form
(h, r, t), which consists of a head
entity, a relation, and a tail entity.
Head and tail of a triple are also
called source and target, respectively. From a graphical point of view, head
and tail entities correspond to nodes in the graph while the relation indicates
the type of edge between them. For any relation r ∈ R, we denote the cor-
responding inverse relation with r−1 (i. e., (h, r, t) is equivalent to (t, r−1, h)).
Triples in KG are interpreted as true known facts. For example, the triple
(Sorafenib, treats,Liver Cancer) ∈ KG in Fig. 2 corresponds to the known fact
that the kinase inhibitor drug sorafenib is approved for the treatment of primary
liver cancer. The treats relation is of particular importance for this work since
we frame the task of drug repurposing as a link prediction problem with respect
to edges of the type treats. The domain of treats consists of chemical compounds,
and the range is given by the set of all diseases.

We further distinguish between two types of paths: instance paths and meta-
paths. An instance path of length L ∈ N on KG is given by a sequence

(e1
r1−→ e2

r2−→ . . .
rL−→ eL+1) ,

where (ei, ri, ei+1) ∈ KG. We call the corresponding sequence of entity types

(τ(e1)
r1−→ τ(e2)

r2−→ . . .
rL−→ τ(eL+1))

1 The source code is available at https://github.com/liu-yushan/PoLo.

Neural Multi-hop Reasoning with Logical Rules 379

a metapath. For example,

(Sorafenib
treats−−−→ Liver Cancer

resembles−−−−−−→ Kidney Cancer)

constitutes an instance path of length 2, where

(Compound
treats−−−→ Disease

resembles−−−−−−→ Disease)

is the corresponding metapath.

2.2 Logical Rules

Logical rules that are typically employed for KG reasoning can be written in the
form head ← body. We consider cyclic rules of the form

(τ1, rL+1, τL+1) ←
L∧

i=1

(τi, ri, τi+1) ,

where τi ∈ T . The rule is called cyclic since the rule head (not to be confused
with the head entity in a triple) connects the source τ1 and the target τL+1 of

the metapath (τ1
r1−→ τ2

r2−→ . . .
rL−→ τL+1), which is described by the rule body.

The goal is to find instance paths where the corresponding metapaths match the
rule body in order to predict a new relation between the source and the target
entity of the instance path. For the drug repurposing task, we only consider rules
where the rule head is a triple with respect to the treats relation.
Define CtD := (Compound, treats,Disease). Then, a generic rule has the form

CtD ←
(
Compound

r1−→ τ2
r2−→ τ3

r3−→ . . .
rL−−→ Disease

)
.

In particular, the rule body corresponds to a metapath starting at a compound
and terminating at a disease. For example (see Fig. 2), consider the rule

CtD ← (Compound
binds−−−→ Gene

binds−1

−−−−−→ Compound
treats−−−→ Disease) .

The metapath of the instance path

(Sorafenib
binds−−−→ AURKC

binds−1

−−−−−→ Pazopanib
treats−−−→ Kidney Cancer)

matches the rule body, suggesting that sorafenib can also treat kidney cancer.

2.3 Related Work

Even though real-world KGs contain a massive number of triples, they are still
expected to suffer from incompleteness. Therefore, link prediction (also known
as KG completion) is a common reasoning task on KGs. Many classical artificial
intelligence tasks such as recommendation problems or question answering can
be rephrased in terms of link prediction.

380 Y. Liu et al.

Symbolic approaches have a far-reaching tradition in the context of knowl-
edge acquisition and reasoning. Reasoning with logical rules has been addressed
in areas such as Markov logic networks (MLNs) [28] or inductive logic pro-
gramming [25]. However, such techniques typically do not scale well to modern,
large-scale KGs. Recently, novel methods such as RuleN [21] and its successor
AnyBURL [19,20] have been proposed that achieve state-of-the-art performance
on popular benchmark datasets such as FB15k-237 [31] and WN18RR [7].

Subsymbolic approaches map nodes and edges in KGs to low-dimensional vec-
tor representations known as embeddings. Then, the likelihood of missing triples
is approximated by a classifier that operates on the embedding space. Popular
embedding-based methods include translational methods like TransE [4], more
generalized approaches such as DistMult[38] and ComplEx [32], multi-layer mod-
els like ConvE [7], and tensor factorization methods like RESCAL [26]. Moreover,
R-GCN [30] and CompGCN [34] have been proposed, which extend graph convo-
lutional networks [16] to multi-relational graphs. Despite achieving good results
on the link prediction task, a fundamental problem is their non-transparent
nature since it remains hidden to the user what contributed to the predictions.
Moreover, most embedding-based methods have difficulties in capturing long-
range dependencies since they only minimize the reconstruction error in the
immediate first-order neighborhoods. Especially the expressiveness of long-tail
entities might be low due to the small number of neighbors [11].

Neuro-symbolic methods combine the advantages of robust learning and
scalability in subsymbolic approaches with the reasoning properties and inter-
pretability of symbolic representation. For example, Neural LP [39] and Neural
Theorem Provers (NTPs) [29] integrate logical rules in a differentiable way into
a neural network architecture. The method pLogicNet [27] combines MLNs with
embedding-based models and learns a joint distribution over triples, while the
Logic Tensor Network [8] inserts background knowledge into neural networks
in the form of logical constraints. However, many neuro-symbolic approaches
suffer from limited transferability and computational inefficiency. Minervini et
al. have presented two more scalable extensions of NTPs, namely the Greedy
NTP (GNTP) [22], which considers the top-k rules that are most likely to prove
the goal instead of using a fixed set of rules, and the Conditional Theorem
Prover (CTP) [23], which learns an adaptive strategy for selecting the rules.

Multi-hop reasoning or path-based approaches infer missing knowledge based
on using extracted paths from the KG as features for various inference tasks.
Along with a prediction, multi-hop reasoning methods provide the user with
an explicit reasoning chain that may serve as a justification for the prediction.
For example, the Path Ranking Algorithm (PRA) [17] frames the link prediction
task as a maximum likelihood classification based on paths sampled from nearest
neighbor random walks on the KG. Xiong et al. extend this idea and formulate
the task of path extraction as a reinforcement learning problem (DeepPath [37]).
Our proposed method is an extension of the path-based approach MINERVA [5],
which trains a reinforcement learning agent to perform a policy-guided random
walk until the answer entity to an input query is reached.

Neural Multi-hop Reasoning with Logical Rules 381

One of the drawbacks of existing policy-guided walk methods is that the
agent might receive noisy reward signals based on spurious triples that lead
to the correct answers during training but lower the generalization capabilities.
Moreover, biomedical KGs often exhibit both long-range dependencies and high-
degree nodes (see Sect. 4.1). These two properties and the fact that MINERVA’s
agent only receives a reward if the answer entity is correct make it difficult for the
agent to navigate over biomedical KGs and extend a path in the most promising
way. As a remedy, we propose the incorporation of known, effective logical rules
via a novel reward function. This can help to denoise the reward signal and guide
the agent on long paths with high-degree nodes.

3 Our Method

We pose the task of drug repurposing as a link prediction problem based on
graph traversal. The general Markov decision process definition that we use
has initially been proposed in the algorithm MINERVA [5], with our primary
contribution coming from the incorporation of logical rules into the training
process. The following notation and definitions are adapted to the use case.
Starting at a query entity (a compound to be repurposed), an agent performs
a walk on the graph by sequentially transitioning to a neighboring node. The
decision of which transition to make is determined by a stochastic policy. Each
subsequent transition is added to the current path and extends the reasoning
chain. The stochastic walk process iterates until a finite number of transitions
has been made. Formally, the learning task is modeled via the fixed-horizon
Markov decision process outlined below.

Environment. The state space S is given by E3. Intuitively, we want the state
to encode the location el of the agent for step l ∈ N, the source entity ec, and the
target entity ed, corresponding to the compound that we aim to repurpose and
the target disease, respectively. Thus, a state Sl ∈ S for step l ∈ N is represented
by Sl := (el, ec, ed). The agent is given no information about the target disease
so that the observed part of the state space is given by (el, ec) ∈ E2. The set of
available actions from a state Sl is denoted by ASl

. It contains all outgoing edges
from the node el and the corresponding tail nodes. We also include self-loops for
each node so that the agent has the possibility to stay at the current node. More
formally, ASl

:= {(r, e) ∈ R × E : (el, r, e) ∈ KG} ∪ {(∅, el)}. Further, we denote
with Al ∈ ASl

the action that the agent performed in step l. The environment
evolves deterministically by updating the state according to the previous action.
The transition function is given by δ(Sl, Al) := (el+1, ec, ed) with Sl = (el, ec, ed)
and Al = (rl, el+1).

Policy. We denote the history of the agent up to step l with Hl := (Hl−1, Al−1)
for l ≥ 1, with H0 := ec and A0 := ∅. The agent encodes the transition history
via an LSTM [15] by

hl = LSTM (hl−1,al−1) , (1)

382 Y. Liu et al.

where al−1 := [rl−1;el] ∈ R2d corresponds to the vector space embedding of
the previous action (or the zero vector for a0), with rl−1 and el denoting the
embeddings of the relation and the tail entity in Rd, respectively. The history-
dependent action distribution is given by

dl = softmax (Al (W 2ReLU (W 1 [hl;el]))) , (2)

where the rows of Al ∈ R|ASl
|×2d contain the latent representations of all admis-

sible actions from Sl. The matrices W1 and W2 are learnable weight matrices.
The action Al ∈ ASl

is drawn according to

Al ∼ Categorical (dl) . (3)

The Eqs. (1)–(3) are repeated for each transition step. In total, L transitions
are sampled, where L is a hyperparameter that determines the maximum path
length, resulting in a path denoted by

P := (ec
r1−→ e2

r2−→ . . .
rL−→ eL+1) .

For each step l ∈ {1, 2, . . . , L}, the agent can also choose to remain at the current
location and not extend the reasoning path.

Equations (1) and (2) define a mapping from the space of histories to the
space of distributions over all admissible actions. Thus, including Eq. (3), a
stochastic policy πθ is induced, where θ denotes the set of all trainable parame-
ters in Eq. (1) and (2).

Metapaths. Consider the set of metapaths M = {M1,M2, . . . ,Mm}, where
each element corresponds to the body of a cyclic rule with CtD as rule head. For
every metapath M , we denote with s(M) ∈ R>0 a score that indicates a quality
measure of the corresponding rule, such as the confidence or the support with
respect to making a correct prediction. Moreover, for a path P , we denote with
P̃ the corresponding metapath.

Rewards and Optimization. During training, after the agent has reached its
final location, a terminal reward is assigned according to

R(SL+1) = 1{eL+1=ed} + bλ

m∑

i=1

s(Mi)1P̃=Mi
. (4)

The first term indicates whether the agent has reached the correct target disease
that can be treated by the compound ec. It means that the agent receives a
reward of 1 for a correct prediction. The second term indicates whether the
extracted metapath corresponds to the body of a rule and adds to the reward
accordingly. The hyperparameter b can either be 1, i. e., the reward is always
increased as long as the metapath corresponds to the body of a rule, or b can be
set to 1{eL+1=ed}, i. e., an additional reward is only applied if the prediction is

Neural Multi-hop Reasoning with Logical Rules 383

also correct. Heuristically speaking, we want to reward the agent for extracting a
metapath that corresponds to a rule body with a high score. The hyperparameter
λ ≥ 0 balances the two components of the reward. For λ = 0, we recover the
algorithm MINERVA.

We employ REINFORCE [35] to maximize the expected rewards. Thus, the
agent’s maximization problem is given by

arg max
θ

E(ec,treats,ed)∼D EA1,A2,...,AL∼πθ

[
R(SL+1)

∣∣∣∣ ec, ed

]
, (5)

where D denotes the true underlying distribution of (ec, treats, ed)-triples. During
training, we replace the first expectation in Eq. (5) with the empirical average
over the training set. The second expectation is approximated by averaging over
multiple rollouts for each training sample.

4 Experiments

4.1 Dataset Hetionet

Hetionet [13] is a biomedical KG that integrates information from 29 highly
reputable and cited public databases, including the Unified Medical Language
System (UMLS) [3], Gene Ontology [1], and DrugBank [36]. It consists of 47,031
entities with 11 different types and 2,250,197 edges with 24 different types.
Figure 1b illustrates the schema and shows the different types of entities and
possible relations between them.

Hetionet differs in many aspects from the standard benchmark datasets that
are typically used in the KG reasoning literature. Table 1 summarizes the basic
statistics of Hetionet along with the popular benchmark datasets FB15k-237 [31]
and WN18RR [7]. One of the major differences between Hetionet and the two
other benchmark datasets is the density of triples, i. e., the average node degree
in Hetionet is significantly higher than in the other two KGs. Entities of type
Anatomy are densely connected hub nodes, and in addition, entities of type Gene
have an average degree of around 123. This plays a crucial role for our application
since many relevant paths that connect Compound and Disease traverse entities
of type Gene (see Fig. 1b and Table 2). The total counts and the average node
degrees according to each entity type are shown in Appendix A. We will discuss
in Sect. 4.5 further how particularities of Hetionet impose challenges on existing
KG reasoning methods.

We aim to predict edges with type treats between entities that correspond
to compounds and diseases in order to perform candidate ranking according to
the likelihood of successful drug repurposing in a novel treatment application.
There are 1552 compounds and 137 diseases in Hetionet with 775 observed links
of type treats between compounds and diseases. We randomly split these 755
triples into training, validation, and test set, where the training set contains 483
triples, the validation set 121 triples, and the test set 151 triples.

384 Y. Liu et al.

4.2 Metapaths as Background Information

Himmelstein et al. [13] evaluated 1206 metapaths that connect entities of type
Compound with entities of type Disease, which correspond to various pharmaco-
logical efficacy mechanisms. They identified 27 effective metapaths that served
as features for a logistic regression model that outputs a treatment probability
of a compound for a disease. Out of these metapaths, we select the 10 metapaths
as background information that have at most path length 3 and exhibit positive
regression coefficients, which indicates their importance for predicting drug effi-
cacy. We use the metapaths as the rule bodies and the confidence of the rules
as the quality scores (see Sect. 3). The confidence of a rule is defined as the rule
support divided by the body support in the data. We estimate the confidence
score for each rule by sampling 5,000 paths whose metapaths correspond to the
rule body and then computing how often the rule head holds. An overview of
the 10 metapaths and their scores is given in Table 2.

Table 1. Comparison of Hetionet with the two benchmark datasets FB15k-237 and
WN18RR.

Dataset Entities Relations Triples Avg. degree

Hetionet 47,031 24 2,250,197 95.8

FB15k-237 14,541 237 310,116 19.7

WN18RR 40,943 11 93,003 2.2

Table 2. All 10 metapaths used in our model and their corresponding scores.

s(M) Metapath M

0.446 (Compound
includes−1

−−−−−−−→ Pharmacologic Class
includes−−−−−→

Compound
treats−−−→ Disease)

0.265 (Compound
resembles−−−−−−→ Compound

resembles−−−−−−→ Compound
treats−−−→

Disease)

0.184 (Compound
binds−−−→ Gene

associates−1

−−−−−−−−→ Disease)

0.182 (Compound
resembles−−−−−−→ Compound

treats−−−→ Disease)

0.169 (Compound
palliates−−−−−→ Disease

palliates−1

−−−−−−−→ Compound
treats−−−→ Disease)

0.143 (Compound
binds−−−→ Gene

binds−1

−−−−−→ Compound
treats−−−→ Disease)

0.058 (Compound
causes−−−−→ Side Effect

causes−1

−−−−−→ Compound
treats−−−→

Disease)

0.040 (Compound
treats−−−→ Disease

resembles−−−−−−→ Disease)

0.017 (Compound
resembles−−−−−−→ Compound

binds−−−→ Gene
associates−1

−−−−−−−−→ Disease)

0.004 (Compound
binds−−−→ Gene

expresses−1

−−−−−−−→ Anatomy
localizes−1

−−−−−−−→ Disease)

Neural Multi-hop Reasoning with Logical Rules 385

4.3 Experimental Setup

We apply our method PoLo to Hetionet and calculate the values for hits@1,
hits@3, hits@10, and the mean reciprocal rank (MRR) for the link prediction
task. All metrics in the paper are filtered [4] and evaluated for tail-sided predic-
tions. During inference, a beam search is carried out to find the most promising
paths, and the target entities are ranked by the probability of their corresponding
paths. Moreover, we consider another evaluation scheme (PoLo (pruned)) that
retrieves and ranks only those paths from the test rollouts that correspond to
one of the metapaths in Table 2. All the other extracted paths are not considered
in the ranking.

We compare PoLo with the following baseline methods. The rule-based
method AnyBURL [19,20] mines logical rules based on path sampling and
uses them for inference. The methods TransE [4], DistMult [38], ComplEx [32],
ConvE [6], and RESCAL [26] are popular embedding-based models, and we use
the implementation from the LibKGE library2. To cover a more recent paradigm
in graph-based machine learning, we include the graph convolutional approaches
R-GCN [30] and CompGCN [34]. We also compare our method with the neuro-
symbolic method pLogicNet [27]. The two neuro-symbolic approaches NTP [29]
and Neural LP [39] yield good performance on smaller datasets but are not scal-
able to large datasets like Hetionet. We have also conducted experiments on the
two more scalable extensions of NTP (GNTP [22] and CTP [23]), but both were
not able to produce results in a reasonable time. More experimental details can
be found in Appendix B.

4.4 Results

Table 3 displays the results for the experiments on Hetionet. The reported values
for PoLo and MINERVA correspond to the mean across five independent training
runs. The standard errors for the reported metrics are between 0.006 and 0.018.

PoLo outperforms all baseline methods with respect to all evaluation metrics.
Applying the modified ranking scheme, our method yields performance gains of
27.7% for hits@1, 14.9% for hits@3, 8.1% for hits@10, and 16.2% for the MRR
with respect to best performing baseline.

Figure 3a shows the rule accuracy, i. e., the percentage of correct target enti-
ties for extracted paths that follow rule metapaths, for PoLo and MINERVA
during training. Both lines behave similarly in the beginning, but the rule accu-
racy of PoLo increases significantly around epoch 20 compared to MINERVA. It
seems that giving the agent an extra reward for extracting rules also improves
the probability of arriving at correct target entities when applying the rules.
We also compare the metric hits@1 (pruned) for the evaluation of the validation
set during training (see Fig. 3b). Around epoch 20, where the rule accuracy of
PoLo increases compared to MINERVA, hits@1 (pruned) also increases while it
decreases for MINERVA. The additional reward for extracting rule paths could

2 https://github.com/uma-pi1/kge.

386 Y. Liu et al.

Table 3. Comparison with baseline methods on Hetionet.

Method Hits@1 Hits@3 Hits@10 MRR

AnyBURL 0.229 0.375 0.553 0.322

TransE 0.099 0.199 0.444 0.205

DistMult 0.185 0.305 0.510 0.287

ComplEx 0.152 0.285 0.470 0.250

ConvE 0.100 0.225 0.318 0.180

RESCAL 0.106 0.166 0.377 0.187

R-GCN 0.026 0.245 0.272 0.135

CompGCN 0.172 0.318 0.543 0.292

pLogicNet 0.225 0.364 0.523 0.333

MINERVA 0.264 0.409 0.593 0.370

PoLo 0.314 0.428 0.609 0.402

PoLo (pruned) 0.337 0.470 0.641 0.430

Fig. 3. (a) Rule accuracy during training. (b) Hits@1 (pruned) for the evaluation of
the validation set during training.

be seen as a regularization that alleviates overfitting and allows for longer train-
ing for improved results.

The metapath that was most frequently extracted by PoLo during testing is

(Compound
causes−−−−→ Side Effect

causes−1

−−−−−→ Compound
treats−−−→ Disease) .

This rule was followed in 37.3% of the paths during testing, of which 16.9%
ended at the correct entity.

During testing, PoLo extracted metapaths that correspond to rules in 41.7%
of all rollouts while MINERVA only extracted rule paths in 36.9% of the cases.
The accuracy of the rules, i. e., the percentage of correct target entities when
rule paths are followed, is 19.0% for PoLo and 17.6% for MINERVA.

Neural Multi-hop Reasoning with Logical Rules 387

4.5 Discussion

We have integrated logical rules as background information via a new reward
mechanism into the multi-hop reasoning method MINERVA. The stochastic pol-
icy incorporates the set of rules that are presented to the agent during training.
Our approach is not limited to MINERVA but can act as a generic mechanism
to inject domain knowledge into reinforcement learning-based reasoning meth-
ods on KGs [18,37]. While we employ rules that are extracted in a data-driven
fashion, our method is agnostic towards the source of background information.

The additional reward for extracting a rule path can be considered as a
regularization that induces the agent to walk along metapaths that generalize to
unseen instances. In particular, for PoLo (pruned), we consider only extracted
paths that correspond to the logical rules. However, the resulting ranking of the
answer candidates is not based on global quality measures of the rules (e. g.,
the confidence). Rather, the ranking is given by the policy of the agent (i. e.,
metapaths that are more likely to be extracted are ranked higher), which creates
an adaptive reweighting of the extracted rules that takes the individual instance
paths into account.

Multi-hop reasoning methods contain a natural transparency mechanism by
providing explicit inference paths. These paths allow domain experts to evaluate
and monitor the predictions. Typically, there is an inherent trade-off between
explainability and performance, but surprisingly, our experimental findings show
that path-based reasoning methods outperform existing black-box methods on
the drug repurposing task. Concretely, we compared our approach with the
embedding-based methods TransE, DistMult, ComplEx, ConvE, and RESCAL.
These methods are trained to minimize the reconstruction error in the immedi-
ate first-order neighborhood while discarding higher-order proximities. However,
most explanatory metapaths in the drug repurposing setting have length 2 or
more [13]. While MINERVA and PoLo can explicitly reason over multiple hops,
our results indicate that embedding-based methods that fit low-order proximi-
ties seem not to be suitable for the drug repurposing task, and it is plausible
that other reasoning tasks on biomedical KGs could result in similar outcomes.

R-CGN and CompGCN learn node embeddings by aggregating incoming
messages from neighboring nodes and combining this information with the node’s
own embedding. These methods are in principle capable of modeling long-term
dependencies. Since the receptive field contains the entire set of nodes in the
multi-hop neighborhood, the aggregation and combination step essentially acts
as a low-pass filter on the incoming signals. This can be problematic in the pres-
ence of many high-degree nodes like in Hetionet where the center node receives
an uninformative signal that smooths over the neighborhood embeddings.

The approaches pLogicNet and AnyBURL both involve the learning of rules
and yield similar performance on Hetionet, which is worse than PoLo. Most
likely, the large amount of high-degree nodes in Hetionet makes the learning and
application of logical rules more difficult. Other neuro-symbolic methods such
as NTP, its extensions, and Neural LP were not scalable to Hetionet.

388 Y. Liu et al.

To illustrate the applicability of our method, consider the example of the
chemical compound sorafenib (see Fig. 2), which is known for treating liver can-
cer, kidney cancer, and thyroid cancer. The top predictions of our model for new
target diseases include pancreatic cancer, breast cancer, and hematologic cancer.
This result seems to be sensible since sorafenib already treats three other cancer
types. The database ClinicalTrials.gov [33] lists 16 clinical studies for testing
the effect of sorafenib on pancreatic cancer, 33 studies on breast cancer, and 6
studies on hematologic cancer, showing that the predicted diseases are mean-
ingful targets for further investigation. Another example of drug repurposing on
Hetionet is provided in Appendix C.

4.6 Experiments on Other Datasets

We also conduct experiments on the benchmark datasets FB15k-237 and
WN18RR and compare PoLo with the other baseline methods. Since we do
not already have logical rules available, we use the rules learned by AnyBURL.
We can only apply cyclic rules for PoLo, so we also compare to the setting where
we only learn and apply cyclic rules with AnyBURL.

Our method mostly outperforms MINERVA and Neural LP on both
datasets. For FB15k-237, PoLo has worse performance than AnyBURL and most
embedding-based methods, probably because the number of unique metapaths
that occur a large number of times in the graph is lower compared to other
datasets [5]. This makes it difficult for PoLo to extract metapaths sufficiently
often for good generalization. pLogicNet yields better performance on FB15k-
237 than PoLo but worse performance on WN18RR. The results of AnyBURL
on FB15k-237 and WN18RR when only using cyclic rules are worse than when
also including acyclic rules. It seems that acyclic rules are important for predic-
tions as well, but PoLo cannot make use of these rules. The detailed results for
both datasets can be found in Appendix D.

5 Conclusion

Biomedical knowledge graphs present challenges for learning algorithms that
are not reflected in the common benchmark datasets. Our experimental findings
suggest that existing knowledge graph reasoning methods face difficulties on Het-
ionet, a biomedical knowledge graph that exhibits both long-range dependencies
and a multitude of high-degree nodes. We have proposed the neuro-symbolic
approach PoLo that leverages both representation learning and logic. Concretely,
we integrate logical rules into a multi-hop reasoning method based on reinforce-
ment learning via a novel reward mechanism. We apply our method to the highly
relevant task of drug repurposing and compare our approach with embedding-
based, logic-based, and neuro-symbolic methods. The results indicate a better
performance of PoLo compared to popular state-of-the-art methods. Further,
PoLo also provides interpretability by extracting reasoning paths that serve as
explanations for the predictions.

Neural Multi-hop Reasoning with Logical Rules 389

Acknowledgements.. This work has been supported by the German Federal Ministry
for Economic Affairs and Energy (BMWi) as part of the project RAKI (01MD19012C).

References

1. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nat.
Genet. 25(1), 25–29 (2000)

2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF:
towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform.
41(5), 706–716 (2008)

3. Bodenreider, O.: The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 32(Database), D267–D270 (2004)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: The 27th Conference on Neural
Information Processing Systems (2013)

5. Das, R., et al.: Go for a walk and arrive at the answer: reasoning over paths in
knowledge bases using reinforcement learning. In: The 6th International Conference
on Learning Representations (2018)

6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: The 13th Conference on Neural
Information Processing Systems (2016)

7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: The 32nd AAAI Conference on Artificial Intelligence (2018)

8. Donadello, I., Serafini, L., Garcez, A.: Logic tensor networks for semantic image
interpretation. In: The 26th International Joint Conference on Artificial Intelli-
gence (2017)

9. Dörpinghaus, J., Jacobs, M.: Semantic knowledge graph embeddings for biomedical
research: data integration using linked open data. In: SEMANTiCS (2019)

10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24, 707–730 (2015)

11. Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational dependencies
in knowledge graphs. In: The 36th International Conference on Machine Learning
(2019)

12. Hildebrandt, M., Serna, J.A.Q., Ma, Y., Ringsquandl, M., Joblin, M., Tresp, V.:
Reasoning on knowledge graphs with debate dynamics. In: The 34th AAAI Con-
ference on Artificial Intelligence (2020)

13. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge priori-
tizes drugs for repurposing. Elife 6, e26726 (2017)

14. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC Textbooks in Computing (2009)

15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: The 5th International Conference on Learning Representations (2017)

17. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

18. Lin, X.V., Socher, R., Xiong, C.: Multi-hop knowledge graph reasoning with reward
shaping. In: The 2018 Conference on Empirical Methods in Natural Language
Processing (2018)

390 Y. Liu et al.

19. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bot-
tom up rule learning for knowledge graph completion. Preprint arXiv:2004.04412
(2020)

20. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-
up rule learning for knowledge graph completion. In: The 28th International Joint
Conference on Artificial Intelligence (2019)

21. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.:
Fine-grained evaluation of rule-and embedding-based systems for knowledge graph
completion. In: The 17th International Semantic Web Conference (2018)

22. Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., Grefenstette, E.: Differ-
entiable reasoning on large knowledge bases and natural language. In: The 34th
AAAI Conference on Artificial Intelligence (2020)

23. Minervini, P., Riedel, S., Stenetorp, P., Grefenstette, E., Rocktäschel, T.: Learning
reasoning strategies in end-to-end differentiable proving. In: The 37th International
Conference on Machine Learning (2020)

24. Mitchell, T.: Machine Learning. McGraw-Hill Series in Computer Science (1997)
25. Muggleton, S.: Inductive logic programming. N. Gener. Comput. 8(4), 295–318

(1991)
26. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on

multi-relational data. In: The 28th International Conference on Machine Learning
(2011)

27. Qu, M., Tang, J.: Probabilistic logic neural networks for reasoning. In: The 33rd
Conference on Neural Information Processing Systems (2019)

28. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

29. Rocktäschel, T., Riedel, S.: End-to-end differentiable proving. In: The 31st Con-
ference on Neural Information Processing Systems (2017)

30. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: The 15th
Extended Semantic Web Conference (2018)

31. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Rep-
resenting text for joint embedding of text and knowledge bases. In: The 2015
Conference on Empirical Methods in Natural Language Processing (2015)

32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embed-
dings for simple link prediction. In: The 33rd International Conference on Machine
Learning (2016)

33. U. S. National Library of Medicine (2000). clinicaltrials.gov
34. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-

relational graph convolutional networks. In: The 9th International Conference on
Learning Representations (2020)

35. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

36. Wishart, D.S., et al.: DrugBank: a comprehensive resource for in silico drug dis-
covery and exploration. Nucleic Acids Res. 34(Database), D668–D672 (2006)

37. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. In: The 2017 Conference on Empirical Methods in
Natural Language Processing (2017)

38. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: The 3rd International Conference
on Learning Representations (2015)

Neural Multi-hop Reasoning with Logical Rules 391

39. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: The 31st Conference on Neural Information Processing
Systems (2017)

40. Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., Hoffman, M.M.:
Machine learning for integrating data in biology and medicine: principles, practice,
and opportunities. Inf. Fusion 50, 71–91 (2019)

A Dataset Hetionet

(a) (b)

Fig.A1. Comparison of the (a) total counts and (b) the average node degrees
according to each entity type in Hetionet.

B Experimental Details

B.1 PoLo and MINERVA

For PoLo and MINERVA, we tune the model hyperparameters λ which balances
the two rewards, b which defines when the additional reward is added, β which
is the entropy regularization constant, the entity and relation embedding size,
the number of LSTM layers, the hidden layer size of the LSTM, and the learning
rate. The hyperparameter search spaces are shown in Table B1. The path length
is set to 3, the number of rollouts is given by 30 for training, and the number
of test rollouts at inference time is set to 100. All experiments were conducted
on a machine with 16 CPU cores and 32 GB RAM. Training our method on the
Hetionet dataset takes around 10 minutes, and testing takes around 10 seconds.

B.2 LibKGE

LibKGE1 is a library for training, evaluation, and hyperparameter optimization
of knowledge graph embedding models. We do a random search for the models
TransE, DistMult, ComplEx, ConvE, and RESCAL across the hyperparameter
search spaces given in Table B2.

1 https://github.com/uma-pi1/kge

Table B1. Hyperparameter search spaces for PoLo and MINERVA.

Hyperparameter Search space

Embedding size {64, 128, 256}
Number of LSTM layers {1, 2}
Hidden layer size {128, 256, 512}
Learning rate [0.0001, 0.01]
λ {1, 2, . . . , 5}
b {1, 1{eL+1=ed}}
β [0.01, 0.1]

Table B2. Hyperparameter search spaces for LibKGE. Models with specific
hyperparameters are indicated in parentheses.

Hyperparameter Search space

Embedding size {64, 128, 256}
Training type Negative sampling
Reciprocal {True, False}
Number of subject samples {1, 2, . . . , 1000}, log scale
Number of object samples {1, 2, . . . , 1000}, log scale

Loss Cross-entropy
Lp-norm (TransE) {1, 2}

Optimizer {Adam, Adagrad}
Learning rate [10−4, 1], log scale
Learning rate scheduler patience {1, 2, . . . , 10}

Lp regularization {None, L2}
Weight of entity embeddings [10−20, 10−5]
Weight of relation embeddings [10−20, 10−5]
Frequency weighting {True, False}

Embedding normalization (TransE)
Entity {True, False}
Relation {True, False}

Dropout
Entity embedding [0.0, 0.5]
Relation embedding [0.0, 0.5]
Feature map (ConvE) [0.0, 0.5]
Projection (ConvE) [0.0, 0.5]

B.3 AnyBURL

We use the implementation AnyBURL-RE2 by the authors. The rules are learned
for 500 seconds, and the maximum rule length is set to 3. Since AnyBURL does

2 http://web.informatik.uni-mannheim.de/AnyBURL/

not need extensive hyperparameter tuning to achieve good results, we kept the
default values of all other hyperparameters.

B.4 R-GCN

We use the implementation provided by the Python library PyG3. The hyper-
parameters are tuned according to the search spaces specified in Table B3.

Table B3. Hyperparameter search spaces for R-GCN.

Hyperparameter Search space

Embedding size {8, 16, 32}
Number of convolutional layers {1, 2, 3}
Learning rate [0.001, 1]

B.5 CompGCN

For CompGCN, we use the implementation4 by the authors. The hyperparame-
ters of CompGCN are tuned according to the search spaces specified in Table B4.

Table B4. Hyperparameter search spaces for CompGCN.

Hyperparameter Search space

Embedding size {64, 128, 256}
GCN layer size {64, 128, 256}
Number of GCN layers {1, 2}
Scoring function {TransE, ConvE, DistMult}
Composition operation Circular-correlation
Dropout rate 0.1
Learning rate 0.001

B.6 pLogicNet

For the experiments on pLogicNet, we use the implementation5 by the authors
and report the results of pLogicNet*, which yields better results than plain
pLogicNet. Table B5 shows the hyperparameter search spaces.

3 https://github.com/rusty1s/pytorch_geometric
4 https://github.com/malllabiisc/CompGCN
5 https://github.com/DeepGraphLearning/pLogicNet

Table B5. Hyperparameter search spaces for pLogicNet.

Hyperparameter Search space

Embedding size {500, 1000}
Number of negative samples {256, 512}
α {0.5, 1}
γ {6, 12}
λ {1, 50, 100}
τrule {0.1, 0.6}

C Example of Drug Repurposing on Hetionet

The compound ergocalciferol is a type of vitamin D, also called vitamin D2. It
can be found in food and is used to treat rheumatoid athritis and osteoporosis.
The disease predictions of our model include hypertension, ulcerative colitis,
and psoriasis. The database ClinicalTrials.gov lists 10 clinical studies for testing
the effect of ergocalciferol on hypertension, 2 studies on ulcerative colitis, and
2 studies on psoriasis. The following extracted paths from our model support
these predictions.

(Ergocalciferol
resembles−−−−−−→ Dihydrotachysterol

resembles−−−−−−→ Cholecalciferol
treats−−−→

Ulcerative Colitis)

(Ergocalciferol
resembles−−−−−−→ Calcidiol

resembles−−−−−−→ Cholecalciferol
treats−−−→ Ulcerative Colitis)

(Ergocalciferol
causes−−−−→ Irreversible Renal Failure

causes−1

−−−−−→ Captopril
treats−−−→

Hypertension)

(Ergocalciferol
causes−−−−→ Polydipsia

causes−1

−−−−−→ Fosinopril
treats−−−→ Hypertension)

(Ergocalciferol
resembles−−−−−−→ Calcidiol

resembles−−−−−−→ Calcipotriol
treats−−−→ Psoriasis)

(Ergocalciferol
causes−−−−→ Nephrocalcinosis

causes−1

−−−−−→ Calcitriol
treats−−−→ Psoriasis)

D Experiments on Other Datasets

All metrics are filtered [4] and evaluated for tail-sided predictions. For the exper-
iments with AnyBURL, we learn and apply either only cyclic rules (AnyBURL
(cyclic)) or include also acyclic rules of length 1 (AnyBURL).

Table D1. Comparison with baseline methods on FB15k-237. Best model hy-
perparameters are taken from: a [19], b [41], c [27].

Method Hits@1 Hits@3 Hits@10 MRR

AnyBURLa 0.354 0.479 0.611 0.432
AnyBURL (cyclic) 0.292 0.397 0.539 0.362

TransEb 0.321 0.461 0.613 0.418

DistMultb 0.340 0.486 0.634 0.439

ComplExb 0.346 0.493 0.639 0.445

ConvEb 0.342 0.481 0.630 0.439

RESCALb 0.354 0.498 0.644 0.452
CompGCN 0.356 0.496 0.638 0.452

Neural LP [5] 0.166 0.248 0.348 0.227
pLogicNetc 0.327 0.475 0.631 0.429

MINERVA [5] 0.217 0.329 0.456 0.293

PoLo 0.238 0.325 0.438 0.302
PoLo (pruned) 0.256 0.351 0.458 0.321

Table D2. Comparison with baseline methods on WN18RR. Best model hyper-
parameters are taken from: a [19], b [41], c [27].

Method Hits@1 Hits@3 Hits@10 MRR

AnyBURLa 0.490 0.547 0.609 0.527
AnyBURL (cyclic) 0.445 0.510 0.560 0.482

TransEb 0.064 0.387 0.555 0.245

DistMultb 0.443 0.495 0.556 0.481

ComplExb 0.455 0.513 0.565 0.494

ConvEb 0.426 0.475 0.532 0.461

RESCALb 0.453 0.498 0.536 0.483
CompGCN 0.460 0.512 0.564 0.497

Neural LP [5] 0.376 0.468 0.657 0.463
pLogicNetc 0.403 0.455 0.568 0.451

MINERVA [5] 0.413 0.456 0.513 0.448

PoLo 0.430 0.475 0.526 0.461
PoLo (pruned) 0.446 0.495 0.545 0.478

References

41. Ruffinelli, D., Broscheit, S., Gemulla, R.: You can teach an old dog new tricks!
On training knowledge graph embeddings. In: The 9th International Conference
on Learning Representations (2020)

Chapter 5

TLogic: Temporal Logical Rules for
Explainable Link Forecasting on
Temporal Knowledge Graphs

This chapter contains the publication

Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker
Tresp. TLogic: Temporal logical rules for explainable link forecasting on tem-
poral knowledge graphs. In The 36th AAAI Conference on Artificial Intelli-
gence, volume 36(4), pages 4120-4127, 2022. DOI: 10.1609/aaai.v36i4.20330

49

TLogic: Temporal Logical Rules for Explainable Link Forecasting
on Temporal Knowledge Graphs

Yushan Liu1,2, Yunpu Ma1,2, Marcel Hildebrandt1, Mitchell Joblin1, Volker Tresp1,2

1Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
2Ludwig Maximilian University of Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
{yushan.liu, yunpu.ma, marcel.hildebrandt, mitchell.joblin, volker.tresp}@siemens.com

Abstract

Conventional static knowledge graphs model entities in rela-
tional data as nodes, connected by edges of specific relation
types. However, information and knowledge evolve contin-
uously, and temporal dynamics emerge, which are expected
to influence future situations. In temporal knowledge graphs,
time information is integrated into the graph by equipping
each edge with a timestamp or a time range. Embedding-
based methods have been introduced for link prediction on
temporal knowledge graphs, but they mostly lack explainabil-
ity and comprehensible reasoning chains. Particularly, they
are usually not designed to deal with link forecasting – event
prediction involving future timestamps. We address the task
of link forecasting on temporal knowledge graphs and in-
troduce TLogic, an explainable framework that is based on
temporal logical rules extracted via temporal random walks.
We compare TLogic with state-of-the-art baselines on three
benchmark datasets and show better overall performance
while our method also provides explanations that preserve
time consistency. Furthermore, in contrast to most state-of-
the-art embedding-based methods, TLogic works well in the
inductive setting where already learned rules are transferred
to related datasets with a common vocabulary.

Introduction
Knowledge graphs (KGs) structure factual information in
the form of triples (es, r, eo), where es and eo correspond
to entities in the real world and r to a binary relation, e. g.,
(Anna, born in, Paris). This knowledge representation leads
to an interpretation as a directed multigraph, where entities
are identified with nodes and relations with edge types. Each
edge (es, r, eo) in the KG encodes an observed fact, where
the source node es corresponds to the subject entity, the tar-
get node eo to the object entity, and the edge type r to the
predicate of the factual statement.

Some real-world information also includes a temporal di-
mension, e. g., the event (Anna, born in, Paris) happened
on a specific date. To model the large amount of available
event data that induce complex interactions between enti-
ties over time, temporal knowledge graphs (tKGs) have been
introduced. Temporal KGs extend the triples to quadruples
(es, r, eo, t) to integrate a timestamp or time range t, where t

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A subgraph from the dataset ICEWS14 with the
entities Angela Merkel, Barack Obama, France, and China.
The timestamps are displayed in the format yy/mm/dd. The
dotted blue line represents the correct answer to the query
(Angela Merkel, consult, ?, 2014/08/09). Previous interac-
tions between Angela Merkel and Barack Obama can be in-
terpreted as an explanation for the prediction.

indicates the time validity of the static event (es, r, eo), e. g.,
(Angela Merkel, visit, China, 2014/07/04). Figure 1 visual-
izes a subgraph from the dataset ICEWS14 as an example of
a tKG. In this work, we focus on tKGs where each edge is
equipped with a single timestamp.

One of the common tasks on KGs is link prediction,
which finds application in areas such as recommender sys-
tems (Hildebrandt et al. 2019), knowledge base comple-
tion (Nguyen et al. 2018a), and drug repurposing (Liu et al.
2021). Taking the additional temporal dimension into ac-
count, it is of special interest to forecast events for future
timestamps based on past information. Notable real-world
applications that rely on accurate event forecasting are, e. g.,
clinical decision support, supply chain management, and ex-
treme events modeling. In this work, we address link fore-
casting on tKGs, where we consider queries (es, r, ?, t) for
a timestamp t that has not been seen during training.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

4120

Several embedding-based methods have been introduced
for tKGs to solve link prediction and forecasting (link
prediction with future timestamps), e.g., TTransE (Leblay
and Chekol 2018), TNTComplEx (Lacroix, Obozinski, and
Usunier 2020), and RE-Net (Jin et al. 2019). The underlying
principle is to project the entities and relations into a low-
dimensional vector space while preserving the topology and
temporal dynamics of the tKG. These methods can learn the
complex patterns that lead to an event but often lack trans-
parency and interpretability.

To increase the transparency and trustworthiness of the
solutions, human-understandable explanations are neces-
sary, which can be provided by logical rules. However, the
manual creation of rules is often difficult due to the complex
nature of events. Domain experts cannot articulate the con-
ditions for the occurrence of an event sufficiently formally
to express this knowledge as rules, which leads to a problem
termed as the knowledge acquisition bottleneck. Generally,
symbolic methods that make use of logical rules tend to suf-
fer from scalability issues, which make them impractical for
the application on large real-world datasets.

We propose TLogic that automatically mines cyclic tem-
poral logical rules by extracting temporal random walks
from the graph. We achieve both high predictive perfor-
mance and time-consistent explanations in the form of tem-
poral rules, which conform to the observation that the occur-
rence of an event is usually triggered by previous events. The
main contributions of this work are summarized as follows:
• We introduce TLogic, a novel symbolic framework

based on temporal random walks in temporal knowledge
graphs. It is the first approach that directly learns tempo-
ral logical rules from tKGs and applies these rules to the
link forecasting task.

• Our approach provides explicit and human-readable ex-
planations in the form of temporal logical rules and is
scalable to large datasets.

• We conduct experiments on three benchmark datasets
(ICEWS14, ICEWS18, and ICEWS0515) and show bet-
ter overall performance compared with state-of-the-art
baselines.

• We demonstrate the effectiveness of our method in the
inductive setting where our learned rules are transferred
to a related dataset with a common vocabulary.

Related Work
Subsymbolic machine learning methods, e. g., embedding-
based algorithms, have achieved success for the link pre-
diction task on static KGs. Well-known methods include
RESCAL (Nickel, Tresp, and Kriegel 2011), TransE (Bor-
des et al. 2013), DistMult (Yang et al. 2015), and Com-
plEx (Trouillon et al. 2016) as well as the graph con-
volutional approaches R-GCN (Schlichtkrull et al. 2018)
and CompGCN (Vashishth et al. 2020). Several approaches
have been recently proposed to handle tKGs, such as
TTransE (Leblay and Chekol 2018), TA-DistMult (Garcı́a-
Durán, Dumanc̆ić, and Niepert 2018), DE-SimplE (Goel
et al. 2020), TNTComplEx (Lacroix, Obozinski, and
Usunier 2020), CyGNet (Zhu et al. 2021), RE-Net (Jin et al.

2019), and xERTE (Han et al. 2021). The main idea of these
methods is to explicitly learn embeddings for timestamps or
to integrate temporal information into the entity or relation
embeddings. However, the black-box property of embed-
dings makes it difficult for humans to understand the predic-
tions. Moreover, approaches with shallow embeddings are
not suitable for an inductive setting with previously unseen
entities, relations, or timestamps. From the above methods,
only CyGNet, RE-Net, and xERTE are designed for the fore-
casting task. xERTE is also able to provide explanations by
extracting relevant subgraphs around the query subject.

Symbolic approaches for link prediction on KGs like
AMIE+ (Galárraga et al. 2015) and AnyBURL (Meilicke
et al. 2019) mine logical rules from the dataset, which are
then applied to predict new links. StreamLearner (Omran,
Wang, and Wang 2019) is one of the first methods for learn-
ing temporal rules. It employs a static rule learner to gener-
ate rules, which are then generalized to the temporal domain.
However, they only consider a rather restricted set of tempo-
ral rules, where all body atoms have the same timestamp.

Another class of approaches is based on random walks
in the graph, where the walks can support an interpretable
explanation for the predictions. For example, AnyBURL
samples random walks for generating rules. The meth-
ods dynnode2vec (Mahdavi, Khoshraftar, and An 2018)
and change2vec (Bian et al. 2019) alternately extract ran-
dom walks on tKG snapshots and learn parameters for
node embeddings, but they do not capture temporal pat-
terns within the random walks. Nguyen et al. (2018b) extend
the concept of random walks to temporal random walks on
continuous-time dynamic networks for learning node em-
beddings, where the sequence of edges in the walk only
moves forward in time.

Preliminaries
Let [n] := {1, 2, . . . , n}.

Temporal knowledge graph Let E denote the set of enti-
ties,R the set of relations, and T the set of timestamps.

A temporal knowledge graph (tKG) is a collection of facts
G ⊂ E × R × E × T , where each fact is represented by
a quadruple (es, r, eo, t). The quadruple (es, r, eo, t) is also
called link or edge, and it indicates a connection between
the subject entity es ∈ E and the object entity eo ∈ E via the
relation r ∈ R. The timestamp t ∈ T implies the occurrence
of the event (es, r, eo) at time t, where t can be measured in
units such as hour, day, and year.

For two timestamps t and t̂, we denote the fact that t oc-
curs earlier than t̂ by t < t̂. If additionally, t could represent
the same time as t̂, we write t ≤ t̂.

We define for each edge (es, r, eo, t) an inverse edge
(eo, r

−1, es, t) that interchanges the positions of the subject
and object entity to allow the random walker to move along
the edge in both directions. The relation r−1 ∈ R is called
the inverse relation of r.

Link forecasting The goal of the link forecasting task is
to predict new links for future timestamps. Given a query
with a previously unseen timestamp (es, r, ?, t), we want to
identify a ranked list of object candidates that are most likely

4121

to complete the query. For subject prediction, we formulate
the query as (eo, r

−1, ?, t).
Temporal random walk A non-increasing temporal ran-

dom walk W of length l ∈ N from entity el+1 ∈ E to entity
e1 ∈ E in the tKG G is defined as a sequence of edges

((el+1, rl, el, tl), (el, rl−1, el−1, tl−1), . . . , (e2, r1, e1, t1))

with tl ≥ tl−1 ≥ · · · ≥ t1,
(1)

where (ei+1, ri, ei, ti) ∈ G for i ∈ [l].
A non-increasing temporal random walk complies with

time constraints so that the edges are traversed only back-
ward in time, where it is also possible to walk along edges
with the same timestamp.

Temporal logical rule Let Ei and Ti for i ∈ [l + 1]
be variables that represent entities and timestamps, respec-
tively. Further, let r1, r2, . . . , rl, rh ∈ R be fixed.

A cyclic temporal logical ruleR of length l ∈ N is defined
as

((E1, rh, El+1, Tl+1)← ∧l
i=1(Ei, ri, Ei+1, Ti))

with the temporal constraints

T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1. (2)

The left-hand side ofR is called the rule head, with rh being
the head relation, while the right-hand side is called the rule
body, which is represented by a conjunction of body atoms
(Ei, ri, Ei+1, Ti). The rule is called cyclic because the rule
head and the rule body constitute two different walks con-
necting the same two variables E1 and El+1. A temporal
rule implies that if the rule body holds with the temporal
constraints given by (2), then the rule head is true as well for
a future timestamp Tl+1.

The replacement of the variables Ei and Ti by constant
terms is called grounding or instantiation. For example, a
grounding of the temporal rule

((E1, consult, E2, T2)← (E1, discuss by telephone, E2, T1))

is given by the edges (Angela Merkel, discuss by telephone,
Barack Obama, 2014/07/22) and (Angela Merkel, consult,
Barack Obama, 2014/08/09) in Figure 1. Let rule grounding
refer to the replacement of the variables in the entire rule
and body grounding refer to the replacement of the variables
only in the body, where all groundings must comply with the
temporal constraints in (2).

In many domains, logical rules are frequently violated
so that confidence values are determined to estimate the
probability of a rule’s correctness. We adapt the stan-
dard confidence to take timestamp values into account. Let
(r1, r2, . . . , rl, rh) be the relations in a rule R. The body
support is defined as the number of body groundings, i. e.,
the number of tuples (e1, . . . , el+1, t1, . . . , tl) such that
(ei, ri, ei+1, ti) ∈ G for i ∈ [l] and ti ≤ ti+1 for i ∈ [l − 1].
The rule support is defined as the number of body ground-
ings such that there exists a timestamp tl+1 > tl with
(e1, rh, el+1, tl+1) ∈ G. The confidence of the rule R, de-
noted by conf(R), can then be obtained by dividing the rule
support by the body support.

Algorithm 1: Rule learning
Input: Temporal knowledge graph G.
Parameters: Rule lengths L ⊂ N, number of temporal ran-
dom walks n ∈ N, transition distribution d ∈ {unif, exp}.
Output: Temporal logical rules T R.

1: for relation r ∈ R do
2: for l ∈ L do
3: for i ∈ [n] do
4: T Rl

r ← ∅
5: According to transition distribution d, sample a

temporal random walk W of length l + 1 with
tl+1 > tl. . See (4).

6: Transform walk W to the corresponding tempo-
ral logical rule R. . See (5).

7: Estimate the confidence of rule R.
8: T Rl

r ← T Rl
r ∪ {(R, conf(R))}

9: T Rr ← ∪l∈LT Rl
r

10: T R ← ∪r∈RT Rr

11: return T R

Our Framework
We introduce TLogic, a rule-based link forecasting frame-
work for tKGs. TLogic first extracts temporal walks from the
graph and then lifts these walks to a more abstract, seman-
tic level to obtain temporal rules that generalize to new data.
The application of these rules generates answer candidates,
for which the body groundings in the graph serve as explicit
and human-readable explanations. Our framework consists
of the components rule learning and rule application. The
pseudocode for rule learning is shown in Algorithm 1 and
for rule application in Algorithm 2.

Rule Learning
As the first step of rule learning, temporal walks are ex-
tracted from the tKG G. For a rule of length l, a walk of
length l + 1 is sampled, where the additional step corre-
sponds to the rule head.

Let rh be a fixed relation, for which we want to learn
rules. For the first sampling step m = 1, we sample an edge
(e1, rh, el+1, tl+1), which will serve as the rule head, uni-
formly from all edges with relation type rh. A temporal ran-
dom walker then samples iteratively edges adjacent to the
current object until a walk of length l + 1 is obtained.

For sampling stepm ∈ {2, . . . , l+1}, let (es, r̃, eo, t) de-
note the previously sampled edge and A(m, eo, t) the set of
feasible edges for the next transition. To fulfill the temporal
constraints in (1) and (2), we define

A(m, eo, t) :=

{(eo, r, e, t̂) | (eo, r, e, t̂) ∈ G, t̂ < t} if m = 2,

{(eo, r, e, t̂) | (eo, r, e, t̂) ∈ G̃, t̂ ≤ t} if m ∈ {3, . . . , l},
{(eo, r, e1, t̂) | (eo, r, e1, t̂) ∈ G̃, t̂ ≤ t} if m = l + 1,

where G̃ := G \ {(eo, r̃
−1, es, t)} excludes the inverse edge

to avoid redundant rules. For obtaining cyclic walks, we
sample in the last step m = l + 1 an edge that connects

4122

the walk to the first entity e1 if such edges exist. Otherwise,
we sample the next walk.

The transition distribution for sampling the next edge
can either be uniform or exponentially weighted. We de-
fine an index mapping m̂ := (l + 1) − (m − 2) to be
consistent with the indices in (1). Then, the exponentially
weighted probability for choosing edge u ∈ A (m, em̂, tm̂)
for m ∈ {2, . . . , l + 1} is given by

P(u;m, em̂, tm̂) =
exp(tu − tm̂)∑

û∈A(m,em̂,tm̂)

exp(tû − tm̂)
(3)

where tu denotes the timestamp of edge u. The exponential
weighting favors edges with timestamps that are closer to the
timestamp of the previous edge and probably more relevant
for prediction.

The resulting temporal walk W is given by

((e1, rh, el+1, tl+1), (el+1, rl, el, tl), . . . , (e2, r1, e1, t1)). (4)

W can then be transformed to a temporal rule R by re-
placing the entities and timestamps with variables. While the
first edge in W becomes the rule head (E1, rh, El+1, Tl+1),
the other edges are mapped to body atoms, where each
edge (ei+1, ri, ei, ti) is converted to the body atom
(Ei, r

−1
i , Ei+1, Ti). The final rule R is denoted by

((E1, rh, El+1, Tl+1)← ∧l
i=1(Ei, r

−1
i , Ei+1, Ti)). (5)

In addition, we impose the temporal consistency constraints
T1 ≤ T2 ≤ · · · ≤ Tl < Tl+1.

The entities (e1, . . . , el+1) inW do not need to be distinct
since a pair of entities can have many interactions at differ-
ent points in time. For example, Angela Merkel made several
visits to China in 2014, which could constitute important in-
formation for the prediction. Repetitive occurrences of the
same entity in W are replaced with the same random vari-
able in R to maintain this knowledge.

For the confidence estimation of R, we sample from the
graph a fixed number of body groundings, which have to
match the body relations and the variable constraints men-
tioned in the last paragraph while satisfying the condition
from (2). The number of unique bodies serves as the body
support. The rule support is determined by counting the
number of bodies for which an edge with relation type rh
exists that connects e1 and el+1 from the body. Moreover,
the timestamp of this edge has to be greater than all body
timestamps to fulfill (2).

For every relation r ∈ R, we sample n ∈ N tempo-
ral walks for a set of prespecified lengths L ⊂ N. The set
T Rl

r stands for all rules of length l with head relation r
with their corresponding confidences. All rules for relation
r are included in T Rr := ∪l∈LT Rl

r, and the complete set
of learned temporal rules is given by T R := ∪r∈RT Rr.

It is possible to learn rules only for a single relation or a
set of specific relations of interest. Explicitly learning rules
for all relations is especially effective for rare relations that
would otherwise only be sampled with a small probability.
The learned rules are not specific to the graph from which
they have been extracted, but they could be employed in an

Algorithm 2: Rule application
Input: Test query q = (eq, rq, ?, tq), temporal logical rules
T R, temporal knowledge graph G.
Parameters: Time window w ∈ N ∪ {∞}, minimum num-
ber of candidates k, score function f .
Output: Answer candidates C.

1: C ← ∅
. Apply the rules in T R by decreasing confidence.

2: if T Rrq 6= ∅ then
3: for rule R ∈ T Rrq do
4: Find all body groundings of R in SG ⊂ G, where

SG consists of the edges within the time window
[tq − w, tq).

5: Retrieve candidates C(R) from the target entities
of the body groundings.

6: for c ∈ C(R) do
7: Calculate score f(R, c). . See (6).
8: C ← C ∪ {(c, f(R, c))}
9: if |{c | ∃R : (c, f(R, c)) ∈ C}| ≥ k then

10: break
11: return C

inductive setting where the rules are transferred to related
datasets that share a common vocabulary for straightforward
application.

Rule Application
The learned temporal rules T R are applied to answer
queries of the form q = (eq, rq, ?, tq). The answer candi-
dates are retrieved from the target entities of body ground-
ings in the tKG G. If there exist no rules T Rrq for the query
relation rq , or if there are no matching body groundings in
the graph, then no answers are predicted for the given query.

To apply the rules on relevant data, a subgraph SG ⊂ G
dependent on a time window w ∈ N∪ {∞} is retrieved. For
w ∈ N, the subgraph SG contains all edges from G that have
timestamps t ∈ [tq − w, tq). If w = ∞, then all edges with
timestamps prior to the query timestamp tq are used for rule
application, i. e., SG consists of all facts with t ∈ [tmin, t

q),
where tmin is the minimum timestamp in the graph G.

We apply the rules T Rrq by decreasing confidence,
where each rule R generates a set of answer candidates
C(R). Each candidate c ∈ C(R) is then scored by a func-
tion f : T Rrq × E → [0, 1] that reflects the probability of
the candidate being the correct answer to the query.

Let B(R, c) be the set of body groundings of rule R that
start at entity eq and end at entity c. We choose as score func-
tion f a convex combination of the rule’s confidence and a
function that takes the time difference tq−t1(B(R, c)) as in-
put, where t1(B(R, c)) denotes the earliest timestamp t1 in
the body. If several body groundings exist, we take from all
possible t1 values the one that is closest to tq . For candidate
c ∈ C(R), the score function is defined as

f(R, c) = a·conf(R)+(1−a)·exp(−λ(tq−t1(B(R, c)))) (6)

with λ > 0 and a ∈ [0, 1].
The intuition for this choice of f is that candidates gener-

ated by high-confidence rules should receive a higher score.

4123

Adding a dependency on the timeframe of the rule ground-
ing is based on the observation that the existence of edges in
a rule become increasingly probable with decreasing time
difference between the edges. We choose the exponential
distribution since it is commonly used to model interarrival
times of events. The time difference tq − t1(B(R, c)) is al-
ways non-negative for a future timestamp value tq , and with
the assumption that there exists a fixed mean, the exponen-
tial distribution is also the maximum entropy distribution for
such a time difference variable. The exponential distribution
is rescaled so that both summands are in the range [0, 1].

All candidates are saved with their scores as (c, f(R, c))
in C. We stop the rule application when the number of dif-
ferent answer candidates |{c | ∃R : (c, f(R, c)) ∈ C}| is at
least k so that there is no need to go through all rules.

Candidate Ranking
For the ranking of the answer candidates, all scores of each
candidate c are aggregated through a noisy-OR calculation,
which produces the final score

1−Π{s|(c,s)∈C}(1− s). (7)

The idea is to aggregate the scores to produce a probabil-
ity, where candidates implied by more rules should have a
higher score.

In case there are no rules for the query relation rq , or
if there are no matching body groundings in the graph, it
might still be interesting to retrieve possible answer candi-
dates. In the experiments, we apply a simple baseline where
the scores for the candidates are obtained from the overall
object distribution in the training data if rq is a new relation.
If rq already exists in the training set, we take the object
distribution of the edges with relation type rq .

Experiments
Datasets
We conduct experiments on the dataset Integrated Cri-
sis Early Warning System1 (ICEWS), which contains in-
formation about international events and is a commonly
used benchmark dataset for link prediction on tKGs. We
choose the subsets ICEWS14, ICEWS18, and ICEWS0515,
which include data from the years 2014, 2018, and 2005
to 2015, respectively. Since we consider link forecasting,
each dataset is split into training, validation, and test set so
that the timestamps in the training set occur earlier than the
timestamps in the validation set, which again occur earlier
than the timestamps in the test set. To ensure a fair compar-
ison, we use the split provided by Han et al. (2021)2. The
statistics of the datasets are summarized in the supplemen-
tary material.

Experimental Setup
For each test instance (eq

s, r
q, eq

o, t
q), we generate a list of

candidates for both object prediction (eq
s, r

q, ?, tq) and sub-
ject prediction (eq

o, (r
q)−1, ?, tq). The candidates are ranked

by decreasing scores, which are calculated according to (7).
1https://dataverse.harvard.edu/dataverse/icews
2https://github.com/TemporalKGTeam/xERTE

The confidence for each rule is estimated by sampling 500
body groundings and counting the number of times the rule
head holds. We learn rules of the lengths 1, 2, and 3, and
for application, we only consider the rules with a minimum
confidence of 0.01 and minimum body support of 2.

We compute the mean reciprocal rank (MRR) and hits@k
for k ∈ {1, 3, 10}, which are standard metrics for link pre-
diction on KGs. For a rank x ∈ N, the reciprocal rank is
defined as 1

x , and the MRR is the average of all reciprocal
ranks of the correct query answers across all queries. The
metric hits@k (h@k) indicates the proportion of queries for
which the correct entity appears under the top k candidates.

Similar to Han et al. (2021), we perform time-aware filter-
ing where all correct entities at the query timestamp except
for the true query object are filtered out from the answers. In
comparison to the alternative setting that filters out all other
objects that appear together with the query subject and re-
lation at any timestamp, time-aware filtering yields a more
realistic performance estimate.

Baseline methods We compare TLogic3 with the state-
of-the-art baselines for static link prediction DistMult (Yang
et al. 2015), ComplEx (Trouillon et al. 2016), and Any-
BURL (Meilicke et al. 2019, 2020) as well as for tempo-
ral link prediction TTransE (Leblay and Chekol 2018), TA-
DistMult (Garcı́a-Durán, Dumanc̆ić, and Niepert 2018), DE-
SimplE (Goel et al. 2020), TNTComplEx (Lacroix, Obozin-
ski, and Usunier 2020), CyGNet (Zhu et al. 2021), RE-
Net (Jin et al. 2019), and xERTE (Han et al. 2021). All
baseline results except for the results on AnyBURL are
from Han et al. (2021). AnyBURL samples paths based
on reinforcement learning and generalizes them to rules,
where the rule space also includes, e. g., acyclic rules and
rules with constants. A non-temporal variant of TLogic
would sample paths randomly and only learn cyclic rules,
which would presumably yield worse performance than
AnyBURL. Therefore, we choose AnyBURL as a baseline
to assess the effectiveness of adding temporal constraints.

Results
The results of the experiments are displayed in Table 1.
TLogic outperforms all baseline methods with respect to the
metrics MRR, hits@3, and hits@10. Only xERTE performs
better than Tlogic for hits@1 on the datasets ICEWS18 and
ICEWS0515.

Besides a list of possible answer candidates with corre-
sponding scores, TLogic can also provide temporal rules and
body groundings in form of walks from the graph that sup-
port the predictions. Table 2 presents three exemplary rules
with high confidences that were learned from ICEWS14.
For the query (Angela Merkel, consult, ?, 2014/08/09), two
walks are shown in Table 2, which serve as time-consistent
explanations for the correct answer Barack Obama.

Inductive setting One advantage of our learned logical
rules is that they are applicable to any new dataset as long
as the new dataset covers common relations. This might be
relevant for cases where new entities appear. For example,
Donald Trump, who served as president of the United States

3Code available at https://github.com/liu-yushan/TLogic.

4124

Dataset ICEWS14 ICEWS18 ICEWS0515

Model MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10

DistMult 0.2767 0.1816 0.3115 0.4696 0.1017 0.0452 0.1033 0.2125 0.2873 0.1933 0.3219 0.4754
ComplEx 0.3084 0.2151 0.3448 0.4958 0.2101 0.1187 0.2347 0.3987 0.3169 0.2144 0.3574 0.5204
AnyBURL 0.2967 0.2126 0.3333 0.4673 0.2277 0.1510 0.2544 0.3891 0.3205 0.2372 0.3545 0.5046

TTransE 0.1343 0.0311 0.1732 0.3455 0.0831 0.0192 0.0856 0.2189 0.1571 0.0500 0.1972 0.3802
TA-DistMult 0.2647 0.1709 0.3022 0.4541 0.1675 0.0861 0.1841 0.3359 0.2431 0.1458 0.2792 0.4421
DE-SimplE 0.3267 0.2443 0.3569 0.4911 0.1930 0.1153 0.2186 0.3480 0.3502 0.2591 0.3899 0.5275
TNTComplEx 0.3212 0.2335 0.3603 0.4913 0.2123 0.1328 0.2402 0.3691 0.2754 0.1952 0.3080 0.4286
CyGNet 0.3273 0.2369 0.3631 0.5067 0.2493 0.1590 0.2828 0.4261 0.3497 0.2567 0.3909 0.5294
RE-Net 0.3828 0.2868 0.4134 0.5452 0.2881 0.1905 0.3244 0.4751 0.4297 0.3126 0.4685 0.6347
xERTE 0.4079 0.3270 0.4567 0.5730 0.2931 0.2103 0.3351 0.4648 0.4662 0.3784 0.5231 0.6392

TLogic 0.4304 0.3356 0.4827 0.6123 0.2982 0.2054 0.3395 0.4853 0.4697 0.3621 0.5313 0.6743

Table 1: Results of link forecasting on the datasets ICEWS14, ICEWS18, and ICEWS0515. All metrics are time-aware filtered.
The best results among all models are displayed in bold.

Confidence Head Body

0.963 (E1, demonstrate or rally, E2, T4) (E1, riot, E2, T1) ∧ (E2,make statement, E1, T2) ∧ (E1, riot, E2, T3)

0.818 (E1, share information, E2, T2) (E1, express intent to ease sanctions−1, E2, T1)

0.750 (E1, provide military aid, E3, T3) (E1, provide military aid, E2, T1) ∧ (E2, intend to protect−1, E3, T2)

0.570 (Merkel, consult, Obama, 14/08/09) (Merkel, discuss by telephone, Obama, 14/07/22)

0.500 (Merkel, consult, Obama, 14/08/09) (Merkel, express intent to meet, Obama, 14/05/02)
∧ (Obama, consult−1, Merkel, 14/07/18) ∧ (Merkel, consult−1, Obama, 14/07/29)

Table 2: Three exemplary rules from the dataset ICEWS14 and two walks for the query (Angela Merkel, consult, ?, 2014/08/09)
that lead to the correct answer Barack Obama. The timestamps are displayed in the format yy/mm/dd.

Figure 2: MRR performance on the validation set of
ICEWS14. The transition distribution is either uniform or
exponentially weighted.

from 2017 to 2021, is included in the dataset ICEWS18 but
not in ICEWS14. The logical rules are not tied to particu-
lar entities and would still be applicable, while embedding-
based methods have difficulties operating in this challeng-
ing setting. The models would need to be retrained to obtain
embeddings for the new entities, where existing embeddings
might also need to be adapted to the different time range.

For the two rule-based methods AnyBURL and TLogic,

we apply the rules learned on the training set of ICEWS0515
(with timestamps from 2005/01/01 to 2012/08/06) to the test
set of ICEWS14 as well as the rules learned on the train-
ing set of ICEWS14 to the test set of ICEWS18 (see Ta-
ble 3). The performance of TLogic in the inductive setting
is for all metrics close to the results in Table 1, while for
AnyBURL, especially the results on ICEWS18 drop signif-
icantly. It seems that the encoded temporal information in
TLogic is essential for achieving correct predictions in the
inductive setting. ICEWS14 has only 7,128 entities, while
ICEWS18 contains 23,033 entities. The results confirm that
temporal rules from TLogic can even be transferred to a
dataset with a large number of new entities and timestamps
and lead to a strong performance.

Analysis
The results in this section are obtained on the dataset
ICEWS14, but the findings are similar for the other two
datasets. More detailed results can be found in the supple-
mentary material.

Number of walks Figure 2 shows the MRR performance
on the validation set of ICEWS14 for different numbers of
walks that were extracted during rule learning. We observe
a performance increase with a growing number of walks.
However, the performance gains saturate between 100 and
200 walks where rather small improvements are attainable.

4125

Gtrain Gtest Model MRR h@1 h@3 h@10

ICEWS0515 ICEWS14 AnyBURL 0.2664 0.1800 0.3024 0.4477
TLogic 0.4253 0.3291 0.4780 0.6122

ICEWS14 ICEWS18 AnyBURL 0.1546 0.0907 0.1685 0.2958
TLogic 0.2915 0.1987 0.3330 0.4795

Table 3: Inductive setting where rules learned on Gtrain are transferred and applied to Gtest.

Transition distribution We test two transition distribu-
tions for the extraction of temporal walks: uniform and ex-
ponentially weighted according to (3). The rationale behind
using an exponentially weighted distribution is the observa-
tion that related events tend to happen within a short time-
frame. The distribution of the first edge is always uniform to
not restrict the variety of obtained walks. Overall, the perfor-
mance of the exponential distribution consistently exceeds
the uniform setting with respect to the MRR (see Figure 2).

We observe that the exponential distribution leads to more
rules of length 3 than the uniform setting (11,718 compared
to 8,550 rules for 200 walks), while it is the opposite for
rules of length 1 (7,858 compared to 11,019 rules). The ex-
ponential setting leads to more successful longer walks be-
cause the timestamp differences between subsequent edges
tend to be smaller. It is less likely that there are no feasi-
ble transitions anymore because of temporal constraints. The
uniform setting, however, leads to a better exploration of the
neighborhood around the start node for shorter walks.

Rule length We learn rules of lengths 1, 2, and 3. Us-
ing all rules for application results in the best performance
(MRR on the validation set: 0.4373), followed by rules of
only length 1 (0.4116), 3 (0.4097), and 2 (0.1563). The rea-
son why rules of length 3 perform better than length 2 is that
the temporal walks are allowed to transition back and forth
between the same entities. Since we only learn cyclic rules,
a rule body of length 2 must constitute a path with no re-
curring entities, resulting in fewer rules and rule groundings
in the graph. Interestingly, simple rules of length 1 already
yield very good performance.

Time window For rule application, we define a time win-
dow for retrieving the relevant data. The performance in-
creases with the size of the time window, even though rele-
vant events tend to be close to the query timestamp. The sec-
ond summand of the score function f in (6) takes the time
difference between the query timestamp tq and the earliest
body timestamp t1(B(R, c)) into account. In this case, ear-
lier events with a large timestamp difference receive a lesser
weight, while generally, as much information as possible is
beneficial for prediction.

Score function We define the score function f in (6) as a
convex combination of the rule’s confidence and a function
that depends on the time difference tq − t1(B(R, c)). The
performance of only using the confidence (MRR: 0.3869) or
only using the exponential function (0.4077) is worse than
the combination (0.4373), which means that both the infor-
mation from the rules’ confidences and the time differences
are important for prediction.

Variance The variance in the performance due to differ-

ent rules obtained from the rule learning component is quite
small. Running the same model with the best hyperparame-
ter settings for five different seeds results in a standard devia-
tion of 0.0012 for the MRR. The rule application component
is deterministic and always leads to the same candidates with
corresponding scores for the same hyperparameter setting.

Training and inference time The worst-case time com-
plexity for learning rules of length l is O(|R|nlDb), where
n is the number of walks, D the maximum node degree
in the training set, and b the number of body samples for
estimating the confidence. The worst-case time complex-
ity for inference is given by O(|G|+ |T Rrq |DL|E| log(k)),
where L is the maximum rule length in T Rrq and k the
minimum number of candidates. For large graphs with high
node degrees, it is possible to reduce the complexity to
O (|G|+ |T Rrq |KLD|E| log(k)) by only keeping a max-
imum of K candidate walks during rule application.

Both training and application can be parallelized since
the rule learning for each relation and the rule application
for each test query are independent. Rule learning with 200
walks and exponentially weighted transition distribution for
rule lengths {1, 2, 3} on a machine with 8 CPUs takes 180
sec for ICEWS14, while the application on the validation
set takes 2000 sec, with w = ∞ and k = 20. For compari-
son, the best-performing baseline xERTE needs for training
one epoch on the same machine already 5000 sec, where an
MRR of 0.3953 can be obtained, while testing on the valida-
tion set takes 700 sec.

Conclusion

We have proposed TLogic, the first symbolic framework that
directly learns temporal logical rules from temporal knowl-
edge graphs and applies these rules for link forecasting. The
framework generates answers by applying rules to observed
events prior to the query timestamp and scores the answer
candidates depending on the rules’ confidences and time dif-
ferences. Experiments on three datasets indicate that TLogic
achieves better overall performance compared to state-of-
the-art baselines. In addition, our approach also provides
time-consistent, explicit, and human-readable explanations
for the predictions in the form of temporal logical rules.

As future work, it would be interesting to integrate acyclic
rules, which could also contain relevant information and
might boost the performance for rules of length 2. Further-
more, the simple sampling mechanism for temporal walks
could be replaced by a more sophisticated approach, which
is able to effectively identify the most promising walks.

4126

Acknowledgements
This work has been supported by the German Federal Min-
istry for Economic Affairs and Climate Action (BMWK) as
part of the project RAKI under grant number 01MD19012C
and by the German Federal Ministry of Education and Re-
search (BMBF) under grant number 01IS18036A. The au-
thors of this work take full responsibility for its content.

References
Bian, R.; Koh, Y. S.; Dobbie, G.; and Divoli, A. 2019. Net-
work embedding and change modeling in dynamic hetero-
geneous networks. In Proceedings of the Forty-Second In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval.
Bordes, A.; Usunier, N.; Garcı́a-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Proceedings of the Twenty-Sixth In-
ternational Conference on Neural Information Processing
Systems.
Galárraga, L.; Teflioudi, C.; Hose, K.; and Suchanek, F. M.
2015. Fast rule mining in ontological knowledge bases with
AMIE+. The VLDB Journal, 24: 707–730.
Garcı́a-Durán, A.; Dumanc̆ić, S.; and Niepert, M. 2018.
Learning sequence encoders for temporal knowledge graph
completion. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing.
Goel, R.; Kazemi, S. M.; Brubaker, M.; and Poupart, P.
2020. Diachronic embedding for temporal knowledge graph
completion. In Proceedings of the Thirty-Fourth AAAI Con-
ference on Artificial Intelligence.
Han, Z.; Chen, P.; Ma, Y.; and Tresp, V. 2021. Explainable
subgraph reasoning for forecasting on temporal knowledge
graphs. In Proceedings of the Ninth International Confer-
ence on Learning Representations.
Hildebrandt, M.; Sunder, S. S.; Mogoreanu, S.; Joblin, M.;
Mehta, A.; Thon, I.; and Tresp, V. 2019. A recommender
system for complex real-world applications with nonlinear
dependencies and knowledge graph context. In Proceedings
of the Sixteenth Extended Semantic Web Conference.
Jin, W.; Zhang, C.; Szekely, P.; and Ren, X. 2019. Recur-
rent event network for reasoning over temporal knowledge
graphs. Workshop paper at the Seventh International Con-
ference on Learning Representations.
Lacroix, T.; Obozinski, G.; and Usunier, N. 2020. Tensor
decompositions for temporal knowledge base completion.
In Proceedings of the Eighth International Conference on
Learning Representations.
Leblay, J.; and Chekol, M. W. 2018. Deriving validity time
in knowledge graph. In Companion Proceedings of the Web
Conference 2018.
Liu, Y.; Hildebrandt, M.; Joblin, M.; Ringsquandl, M.; Rais-
souni, R.; and Tresp, V. 2021. Neural multi-hop reasoning
with logical rules on biomedical knowledge graphs. In Pro-
ceedings of the Eighteenth Extended Semantic Web Confer-
ence.

Mahdavi, S.; Khoshraftar, S.; and An, A. 2018. dynn-
ode2vec: scalable dynamic network embedding. In Pro-
ceedings of the 2018 IEEE International Conference on Big
Data.
Meilicke, C.; Chekol, M. W.; Fink, M.; and Stuckenschmidt,
H. 2020. Reinforced anytime bottom-up rule learning for
knowledge graph completion. arXiv:2004.04412.
Meilicke, C.; Chekol, M. W.; Ruffinelli, D.; and Stucken-
schmidt, H. 2019. Anytime bottom-up rule learning for
knowledge graph completion. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence.
Nguyen, D. Q.; Nguyen, T. D.; Nguyen, D. Q.; and Phung,
D. 2018a. A novel embedding model for knowledge base
completion based on convolutional neural network. In Pro-
ceedings of the Sixteenth Annual Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies.
Nguyen, G. H.; Lee, J. B.; Rossi, R. A.; Ahmed, N. K.; Koh,
E.; and Kim, S. 2018b. Dynamic network embeddings: from
random walks to temporal random Walks. In Proceedings of
the 2018 IEEE International Conference on Big Data.
Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-way
model for collective learning on multi-relational data. In
Proceedings of the Twenty-Eighth International Conference
on Machine Learning.
Omran, P. G.; Wang, K.; and Wang, Z. 2019. Learning tem-
poral rules from knowledge graph streams. In Proceedings
of the AAAI 2019 Spring Symposium on Combining Machine
Learning with Knowledge Engineering.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In Proceedings of the
Fifteenth Extended Semantic Web Conference.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proceedings of the Thirty-Third International
Conference on Machine Learning.
Vashishth, S.; Sanyal, S.; Nitin, V.; and Talukdar, P.
2020. Composition-based multi-relational graph convolu-
tional networks. In Proceedings of the Eighth International
Conference on Learning Representations.
Yang, B.; Yih, W.-T.; He, X.; Gao, J.; and Deng, L. 2015.
Embedding entities and relations for learning and inference
in knowledge bases. In Proceedings of the Third Interna-
tional Conference on Learning Representations.
Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; and Zhang, Y.
2021. Learning from history: modeling temporal knowledge
graphs with sequential copy-generation networks. In Pro-
ceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence.

4127

Supplementary Material
Dataset statistics Table 4 shows the statistics of the three
datasets ICEWS14, ICEWS18, and ICEWS0515. |X | de-
notes the cardinality of a set X .

Dataset |Gtrain| |Gvalid| |Gtest| |E| |R| |T |
14 63,685 13,823 13,222 7,128 230 365
18 373,018 45,995 49,545 23,033 256 304

0515 322,958 69,224 69,147 10,488 251 4,017

Table 4: Dataset statistics with daily time resolution for all
three ICEWS datasets.

Experimental details All experiments were conducted on
a Linux machine with 16 CPU cores and 32 GB RAM.
The set of tested hyperparameter values and best values for
TLogic are displayed in Table 5. Due to memory constraints,
the time window w for ICEWS18 is set to 200 and for
ICEWS0515 to 1000. The best hyperparameter values are
chosen based on the MRR on the validation set. Due to the
small variance of our approach, the shown results are based
on one algorithm run. A random seed of 12 is fixed for the
rule learning component to obtain reproducible results.

Hyperparameter Values Best

Number of walks n {10, 25, 50, 100, 200} 200

Transition distribution d {unif, exp} exp

Rule lengths L {{1}, {2}, {3}, {1, 2, 3}} {1, 2, 3}
Time window w {30, 90, 150, 210, 270,∞} ∞

Minimum candidates k {10, 20} 20

α (score function f) {0, 0.25, 0.5, 0.75, 1} 0.5

λ (score function f) {0.01, 0.1, 0.5, 1} 0.1

Table 5: Tested hyperparameter values and best values.

All results in the appendix refer to the validation set of
ICEWS14. However, the observations are similar for the test
set and the other two datasets. All experiments use the best
set of hyperparameters, where only the analyzed parameters
are modified.

Object distribution baseline We apply a simple object
distribution baseline when there are no rules for the query
relation or no matching body groundings in the graph. This
baseline is only added for completeness and does not im-
prove the results in a significant way.

The proportion of cases where there are no rules for the
test query relation is 15/26,444 = 0.00056 for ICEWS14,
21/99,090 = 0.00021 for ICEWS18, and 9/138,294 =
0.00007 for ICEWS0515. The proportion of cases where
there are no matching body groundings is 880/26,444 =
0.0333 for ICEWS14, 2,535/99,090 = 0.0256 for ICEWS18,
and 2,375/138,294 = 0.0172 for ICEWS0515.

Number of walks and transition distribution Table 6
shows the results for different choices of numbers of walks

and transition distributions. The performance for all metrics
increases with the number of walks. Exponentially weighted
transition always outperforms uniform sampling.

Walks Transition MRR h@1 h@3 h@10

10 Unif 0.3818 0.2983 0.4307 0.5404
10 Exp 0.3906 0.3054 0.4408 0.5530

25 Unif 0.4098 0.3196 0.4614 0.5803
25 Exp 0.4175 0.3270 0.4710 0.5875

50 Unif 0.4219 0.3307 0.4754 0.5947
50 Exp 0.4294 0.3375 0.4837 0.6024

100 Unif 0.4266 0.3315 0.4817 0.6057
100 Exp 0.4324 0.3397 0.4861 0.6092

200 Unif 0.4312 0.3366 0.4851 0.6114
200 Exp 0.4373 0.3434 0.4916 0.6161

Table 6: Results for different choices of numbers of walks
and transition distributions.

Rule lengths Table 7 indicates that using rules of all
lengths for application results in the best performance.
Learning only cyclic rules probably makes it more difficult
to find rules of length 2, where the rule body must constitute
a path with no recurring entities, leading to fewer rules and
body groundings in the graph.

Rule length MRR h@1 h@3 h@10

1 0.4116 0.3168 0.4708 0.5909

2 0.1563 0.0648 0.1776 0.3597

3 0.4097 0.3213 0.4594 0.5778

1,2,3 0.4373 0.3434 0.4916 0.6161

Table 7: Results for different choices of rule lengths.

Time window Generally, the larger the time window, the
better the performance (see Table 8). If taking all previous
timestamps leads to a too high memory usage, the time win-
dow should be decreased.

Time window MRR h@1 h@3 h@10

30 0.3842 0.3080 0.4294 0.5281

90 0.4137 0.3287 0.4627 0.5750

150 0.4254 0.3368 0.4766 0.5950

210 0.4311 0.3403 0.4835 0.6035

270 0.4356 0.3426 0.4892 0.6131

∞ 0.4373 0.3434 0.4916 0.6161

Table 8: Results for different choices of time windows.

Score function Using the best hyperparameters values for
α and λ, Table 9 shows in the first row the results if only the
rules’ confidences are used for scoring, in the second row if
only the exponential component is used, and in the last row
the results for the combined score function. The combination
yields the best overall performance. The optimal balance be-
tween the two terms, however, depends on the application
and metric prioritization.

α λ MRR h@1 h@3 h@10

1 arbitrary 0.3869 0.2806 0.4444 0.5918

0 0.1 0.4077 0.3515 0.4820 0.6051

0.5 0.1 0.4373 0.3434 0.4916 0.6161

Table 9: Results for different parameter values in the score
function f .

Rule learning The figures 3 and 4 show the number of
rules learned under the two transition distributions. The to-
tal number of learned rules is similar for the uniform and
exponential distribution, but there is a large difference for
rules of lengths 1 and 3. The exponential distribution leads
to more successful longer walks and thus more longer rules,
while the uniform distribution leads to a better exploration
of the neighborhood around the start node for shorter walks.

Figure 3: Total number of learned rules and number of rules
for length 1.

Figure 4: Number of rules for lengths 2 and 3.

Training and inference time The rule learning and rule
application times are shown in the figures 5 and 6, dependent
on the number of extracted temporal walks during learning.

Figure 5: Rule learning time.

Figure 6: Rule application time.

The worst-case time complexity for learning rules of
length l is O(|R|nlDb), where n is the number of walks,
D the maximum node degree in the training set, and b
the number of body samples for estimating the confidence.
The worst-case time complexity for inference is given by
O(|G| + |T Rrq |DL|E| log(k)), where L is the maximum
rule length in T Rrq and k the minimum number of candi-
dates. More detailed steps of the algorithms for understand-
ing these complexity estimations are given by Algorithm 3
and Algorithm 4.

Figure 7: Overall framework.

Algorithm 3: Rule learning (detailed)
Input: Temporal knowledge graph G.
Parameters: Rule lengths L ⊂ N, number of temporal random walks n ∈ N, transition distribution d ∈ {unif, exp}.
Output: Temporal logical rules T R.

1: for relation r ∈ R do
2: for l ∈ L do
3: for i ∈ [n] do
4: T Rl

r ← ∅
5: According to transition distribution d, sample a temporal random walk W of length l + 1 with tl+1 > tl.

. See (4).
Sample uniformly a start edge (es, r, eo, t) with edge type r.

6: for step m ∈ {2, . . . , l + 1} do
7: Retrieve adjacent edges of current object node.
8: if m = 2 then
9: Filter out all edges with timestamps greater than or equal to the current timestamp.

10: else
11: Filter out all edges with timestamps greater than the current timestamp.

Filter out the inverse edge of the previously sampled edge.
12: if m = l + 1 then
13: Retrieve all filtered edges that connect the current object to the source of the walk.
14: Sample the next edge from the filtered edges according to distribution d.

break if there are no feasible edges because of temporal or cyclic constraints.
15: Transform walk W to the corresponding temporal logical rule R. . See (5).

Save information about the head relation and body relations.
Define variable constraints for recurring entities.

16: Estimate the confidence of rule R.
Sample b body groundings. For each step m ∈ {1, . . . , l}, filter the edges according to the correct body relation and
the timestamps required to fulfill the temporal constraints.
For successfully sampled body groundings, check the variable constraints.
For each unique body, check if the rule head exists in the graph.
Calculate rule support / body support.

17: T Rl
r ← T Rl

r ∪ {(R, conf(R))}
18: T Rr ← ∪l∈LT Rl

r
19: T R ← ∪r∈RT Rr

20: return T R

Algorithm 4: Rule application (detailed)
Input: Test query q = (eq, rq, ?, tq), temporal logical rules T R, temporal knowledge graph G.
Parameters: Time window w ∈ N ∪ {∞}, minimum number of candidates k, score function f .
Output: Answer candidates C.

1: C ← ∅
. Apply the rules in T R by decreasing confidence.

2: Retrieve subgraph SG ⊂ G with timestamps t ∈ [tq − w, tq).
. Only done if the timestamp changes. The queries in the test set are sorted by timestamp.
Retrieve edges with timestamps t ∈ [tq − w, tq).
Store edges for each relation in a dictionary.

3: if T Rrq 6= ∅ then
4: for rule R ∈ T Rrq do
5: Find all body groundings of R in SG.

Retrieve edges that could constitute walks that match the rule’s body. First, retrieve edges whose subject matches eq
and the relation the first relation in the rule body. Then, retrieve edges whose subject match one of the current targets
and the relation the next relation in the rule body.
Generate complete walks by merging the edges on the same target-source entity.
Delete all walks that do not comply with the time constraints.
Check variable constraints, and delete the walks that do not comply with the variable constraints.

6: Retrieve candidates C(R) from the target entities of the walks.
7: for c ∈ C(R) do
8: Calculate score f(R, c). . See (6).
9: C ← C ∪ {(c, f(R, c))}

10: if |{c | ∃R : (c, f(R, c)) ∈ C}| ≥ k then
11: break
12: return C

Chapter 6

A Knowledge Graph Perspective on
Supply Chain Resilience

This chapter contains the publication

Yushan Liu, Bailan He, Marcel Hildebrandt, Maximilian Buchner, Daniela
Inzko, Roger Wernert, Emanuel Weigel, Dagmar Beyer, Martin Berbalk, and
Volker Tresp. A knowledge graph perspective on supply chain resilience. In
The 2nd International Workshop on Linked Data-Driven Resilience Research,
Extended Semantic Web Conference, volume urn:nbn:de:0074-3401-3, pages 1-
11, 2023. URL: https://ceur-ws.org/Vol-3401/paper3.pdf

63

https://ceur-ws.org/Vol-3401/paper3.pdf

A Knowledge Graph Perspective on Supply Chain
Resilience
Yushan Liu1,4,∗, Bailan He1,4, Marcel Hildebrandt1, Maximilian Buchner1,
Daniela Inzko1, Roger Wernert3, Emanuel Weigel2, Dagmar Beyer1, Martin Berbalk1

and Volker Tresp1,4

1Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
2Siemens AG, Östliche Rheinbrückenstraße 50, 76187 Karlsruhe, Germany
3Siemens Schweiz AG, Theilerstraße 1a, 6300 Zug, Switzerland
4Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, Germany

Abstract
Global crises and regulatory developments require increased supply chain transparency and resilience.
Companies do not only need to react to a dynamic environment but have to act proactively and implement
measures to prevent production delays and reduce risks in the supply chains. However, information
about supply chains, especially at the deeper levels, is often intransparent and incomplete, making it
difficult to obtain precise predictions about prospective risks. By connecting different data sources,
we model the supply network as a knowledge graph and achieve transparency up to tier-3 suppliers.
To predict missing information in the graph, we apply state-of-the-art knowledge graph completion
methods and attain a mean reciprocal rank of 0.4377 with the best model. Further, we apply graph
analysis algorithms to identify critical entities in the supply network, supporting supply chain managers
in automated risk identification.

Keywords
Supply Chain Resilience, Knowledge Graphs, Machine Learning, Graph Analytics

1. Introduction

Global crises such as pandemics, natural disasters, and economic events as well as political and
regulatory developments lead to increasing requirements regarding supply chain transparency
and resilience. To ensure smooth procurement and production processes, it is essential for
companies to react timely and flexibly to dynamic conditions and incidents to prevent production
delays and bottlenecks within the supply network.

Usually, only direct (tier-1) suppliers of a company are tracked in supply chain management
tools. The knowledge of subsuppliers is often limited and disregarded for decision making. In
a survey, almost 80% of the companies cannot even name the number of their tier-𝑛 (𝑛 ≥ 2)
suppliers [1], let alone their names and locations. Intransparent supply chains make it highly
challenging to achieve precise forecasts and react in the best way in case of disruptions.

Second International Workshop on Linked Data-driven Resilience Research (D2R2’23) co-located with ESWC 2023, May
28th, 2023, Hersonissos, Greece
∗Corresponding author.
Envelope-Open yushan.liu@siemens.com (Y. Liu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Besides the intransparency of supply chains, another challenge is posed by the decentralized
storage of relevant data and their incompleteness. The data come from different sources and are
stored in various formats and locations. The disconnectedness makes it difficult to get a good
overview of the situation and available information. Some information is also generally hard to
retrieve, e. g., the exact production location of a material. Even if the supplier that delivers the
material is known, the exact production site is often unknown.
Supply chain management involves monitoring supply chains to ensure their operability.

Due to the inherent domain complexity and the high volume of data, significant blind spots at
deeper levels of the supply chains remain, which matters because many of today’s most pressing
supply shortages (e. g., in the semiconductor industry) happen at these deeper tiers. Therefore,
possible risks in the supply chains need to be identified early, i. e., constellations in the supply
chains that lack the resistance to withstand disruptive events. For example, constellations can be
critical if many suppliers are located in the same region, multiple tier-1 suppliers buy from the
same subsupplier, only one supplier is related to a specific business scope, etc. After identifying
possible criticalities, strategic decisions and mitigation measures can be derived within the
organization. Risk identification is often based on domain knowledge and manual efforts. 75%
of the companies in a survey see a need for improvement with respect to risk identification
methods, where the potential of machine learning approaches is valued highly [1].
In this paper, we aim at increasing supply chain resilience, based on data from Siemens, by

addressing the challenges mentioned above in the following ways:

• Supply chain intransparency and data disconnectedness: We collect and connect supply
chain-related data from different sources and create a knowledge graph, which contains
information from Siemens suppliers up to tier 3.

• Data incompleteness: We apply state-of-the-art knowledge graph completion methods
for link prediction in the knowledge graph to predict missing information.

• Identification of criticalities: We use graph analysis algorithms to identify critical entities
in the supply network, where we focus on centrality measures to derive an importance
score for each supplier.

The remainder of this paper is organized as follows. Section 2 outlines related work, and
Section 3 describes the supply chain knowledge graph. In Section 4, we apply knowledge graph
completion methods to the data, while in Section 5, we use graph analytics to find criticalities
in the supply chains. The conclusion and further research directions follow in Section 6.

2. Related Work

The application of machine learning for supply chain management is becoming an increasingly
active field of research [2]. While many supervised machine learning methods (e.g., decision
trees, support vector machines, and neural networks) were successfully applied to tasks related
to supply chain design, planning, and execution [2, 3], not many works exist in the area of
knowledge graphs and graph machine learning.
In 2018, Brintrup et al. [4] published the first work to apply link prediction to a supply

network. They modeled the supply network as a homogeneous graph (i. e., containing one

relation type) with handcrafted embeddings and defined a binary classification task to predict
new links in the graph. A follow-up work used graph neural networks to predict the supplier
relationship between companies [5]. Gopal and Chang [6] also used graph neural networks to
predict new supplier relationships, where they included external information about companies,
e. g., industry classification and revenue segmentation, as features. Lu and Chen [7] discovered
potential partnerships between companies based on graph projections and connectivity patterns.
Aziz et al. [8] represented supply networks as heterogeneous graphs (i. e., containing several
relation types, also commonly referred to as knowledge graphs) and applied a relational graph
convolutional network for link prediction.

3. Knowledge Graph Dataset

The supply chain knowledge graph is constructed from both Siemens-internal and external
sources to reflect both internal knowledge such as tier-1 suppliers, business scopes, and Siemens
parts and external knowledge such as public data about smelters and substances. The infor-
mation about tier-2 and tier-3 suppliers of Siemens is obtained mainly from public customs
data, and a small part is obtained from private customs data and public media. There are in
total 16,910 tier-1, 43,759 tier-2, and 49,775 tier-3 suppliers of Siemens, where the suppliers
at different tier levels are not mutually exclusive. The graph is modeled via the graph data
platform Neo4j.

We define a knowledge graph (KG) as a collection of triples 𝒢 ⊂ ℰ ×ℛ ×ℰ, where ℰ denotes
the set of entities and ℛ the set of relation types. Elements in ℰ correspond to supply chain-
related entities, e. g., suppliers, smelters, and components, and are represented as nodes in the
graph. Every entity has a unique entity type, which is defined by the mapping 𝑡 ∶ ℰ → 𝒯, where
𝒯 stands for the set of entity types. The entities are connected via relation types specified in
ℛ, represented as directed edges in the graph. All entity and relation types and corresponding

Table 1
Entity and relation type statistics. In the graph, there are 8 entity types, where most nodes are suppliers,
and 11 relation types, where most edges are from the type supplies_to.

Entity type Nodes Relation type Edges
Supplier 61,234 supplies_to 138,197

Manufacturer Part 1,650 related_to 59,894
Siemens Part 1,295 belongs_to 56,663

Smelter 340 located_in 30,107
Substance 321 includes 10,088
Component 233 produces 7,831
Country 172 produced_in 4,381

Business Scope 32 same_as 1,847
manufactured_by 1,564

contains 764
refines 340

Total 65,277 Total 311,676

Figure 1: Knowledge graph schema. There are 8 entity types and 11 relation types.

numbers of nodes and edges are listed in Table 1.
Each relation type 𝑟 ∈ ℛ connects entities from a fixed set of source entity types𝒯𝑠𝑜𝑢𝑟𝑐𝑒(𝑟) to a

fixed set of target entity types𝒯𝑡𝑎𝑟𝑔𝑒𝑡(𝑟). For example,𝒯𝑠𝑜𝑢𝑟𝑐𝑒(supplies_to) = {Supplier, Smelter}
and𝒯𝑡𝑎𝑟𝑔𝑒𝑡(supplies_to) = {Supplier}. The schema of the graph depicts the possible connections
between the entity types and is shown in Figure 1.
A fact from the graph is represented by a triple (subject, predicate, object) ∈ 𝒢, where the

subject and object are entities and the predicate is the relation type that connects them, directed
at the object. Triples in the graph are assumed to be true facts, while the truth value of
non-existing triples could either be wrong or unknown (since the data are highly incomplete).

4. Knowledge Graph Completion

4.1. Object prediction task

Many KGs suffer from incompleteness, so a common reasoning task in graph machine learning
is KG completion or link prediction. We formulate the link prediction problem as an object
prediction task. Given a query of the form (subject, predicate, ?), the goal is to predict a ranked
list of entity candidates that are most likely the correct object of the query.
To measure the quality of the predictions, the mean reciprocal rank (MRR) and hits@𝑘 for

𝑘 ∈ ℕ are standard metrics used for link prediction on KGs. For a rank 𝑥 ∈ ℕ, i. e., the position
in the ranked list of entity candidates, the reciprocal rank is defined as 1

𝑥 , and the MRR is
the average of all reciprocal ranks of the correct query objects over all queries. The metric

hits@𝑘 represents the proportion of queries for which the correct object appears under the top
𝑘 candidates.

4.2. Knowledge graph completion methods

There exists a variety of methods for KG completion [9]. In this paper, we focus on graph
representation learning, where the underlying idea is to learn low-dimensional embeddings (i. e.,
vectors or matrices) for the entities and relation types in the graph that capture their semantic
meanings. Based on these embeddings, a score can be calculated for each entity, indicating its
likelihood to be the correct object of a query.
We apply the following traditional and state-of-the-art methods to the supply chain KG:

• RESCAL [10] was the first method to be published for learning KG embeddings. It models
the KG as a three-way tensor and performs tensor factorization for relational learning
tasks such as link prediction.

• ComplEx [11] was the first KG embedding method that learns embeddings in the complex
vector space. It is based on tensor factorization and the Hermitian dot product.

• TuckER [12] is a tensor factorization method based on the Tucker decomposition. It can
be seen as a generalized version of RESCAL and ComplEx.

• TransE [13] was the first translational method, which models the relations between two
entities as translations in the vector space.

• RotatE [14] is a roto-translational method, which models the relations between two
entities as rotations in the complex vector space.

• ConvE [15] was the first method that uses convolutional neural networks to model the
interactions between entities.

• RGCN [16] consists of a relational graph convolutional network for encoding the entities
and a tensor factorization method for scoring.

• CompGCN [17] incorporates composition operators to learn joint embeddings for entities
and relation types. It is a generalized version of RGCN.

4.3. Experimental setup

For all KG completion methods, we use the implementations provided by the Python library
PyKEEN [18]. We split the graph into training, validation, and test dataset, where we operate
under the transductive setting, i. e., all entities and relation types from the validation and test
set are also included in the training set. The training set consists of 65,277 nodes and 249,340
triples, while both the validation and test set have 31,168 triples. The number of nodes for
the validation and test set is 22,212 and 22,213, respectively. All three datasets include all
entity and relation types. We use the optimizer Adam and optimize the margin ranking loss
with a margin of 1, where one negative triple is sampled for each training triple. We tune the
hyperparameters embedding size in the range {16, 32, 64, 256, 512, 1024} and learning rate in the
range {0.0001, 0.001, 0.01}. The training of the model is stopped early if there is no improvement
regarding the metric hits@10 on three subsequent evaluations on the validation set, where the
evaluation takes place every 10 epochs.

Table 2
Results on the test dataset for the object prediction task. The best results are displayed in bold.

Method MRR Hits@1 Hits@3 Hits@10
RESCAL 0.1476 0.0684 0.1809 0.2772
ComplEx 0.2535 0.1793 0.2850 0.3949
TuckER 0.1738 0.0749 0.1878 0.4033
TransE 0.1595 0.0873 0.1733 0.3164
RotatE 0.4377 0.3686 0.4733 0.5627
ConvE 0.2289 0.1549 0.2438 0.3875
RGCN 0.2911 0.1784 0.3379 0.5195

CompGCN 0.2223 0.1271 0.2486 0.4229

4.4. Results

Table 2 displays the results of the best models for the selected KG completion methods. All
models were able to learn useful embeddings from the training set, while RotatE performed
best with respect to all metrics. For more than 36% of the test queries, RotatE predicts the
correct object as the highest-ranked entity in the candidates list, and for almost half of the
queries, RotatE is able to predict the correct object under the top three entities. Out of the
three tensor factorization methods (RESCAL, ComplEx, and TuckER), ComplEx, which learns
embeddings in the complex vector space, performs best. Out of the three neural network-based
methods (ConvE, RGCN, and CompGCN), RGCN performs best, while ConvE and CompGCN
have similar performance. Before materializing the results in the graph, domain experts should
check the predicted triples for plausibility.

In Figure 2, the results of the best models are shown for each relation type. For every model,
the performance with respect to the MRR is colored from best (green) to worst (red). RotatE
performs best for all relation types except for locate_in (where all neural network-based models
have higher MRR) and refines (where ComplEx and RGCN are better). The models show varying
degrees of performance for the different relation types, where most models tend to have good
results on related_to, includes, and belongs_to and bad performance on same_as, contains, and
refines. Especially same_as is worst for all models. The reason lies in the graph schema and
structure, where the same_as relation type connects manufacturer parts and Siemens parts,
which do not have any other connections. Without further information, it is difficult to predict
the correct Siemens part as query object.

5. Graph Analytics

5.1. Graph analysis algorithms

Supply chain managers mainly decide based on tier-1 supplier data whether there are risks in
the supply chains, and they are usually directly informed by tier-1 suppliers if there are already
existing problems. If additional data about tier-𝑛 suppliers are available, more detailed and
precise decisions can be made, and mitigation measures in an earlier phase of the supply chain

Figure 2: Results of the best models for each relation type. For each model, the performance with
respect to the MRR is colored from best (green) to worst (red).

can be enabled. However, this kind of approach is mainly reactive, and manual decision making
is not scalable to complex supply networks. Therefore, we propose to use graph analytics to
support supply chain managers by automatically identifying critical suppliers so that they can
be monitored more closely and mitigation strategies can be derived together.
For the graph analysis, we use the Neo4j Graph Data Science library and concentrate on

the subgraph consisting of supplier entities and the relation type supplies_to. We calculate the
following centrality and community detection metrics, which serve as a basis for deriving the
importance or criticality of a supplier:

• The degree centrality measures the number of incoming and outgoing edges for each
node. The number of incoming edges represents the number of suppliers and the number
of outgoing edges the number of customers for each company. Companies with high in-
or out-degree might be affected by disruptive events more often.

• The betweenness centrality for each node is based on the number of shortest paths
between all node pairs that the node lies on. A company with high betweenness connects
many companies and is more likely to cause a bottleneck.

• The closeness centrality measures the average length of the shortest paths between a
node and all other nodes. A company with high closeness is a central customer for many
suppliers.

• The triangle count is a community detection measure that calculates the number of adja-
cent triangles of a node. A company with a high triangle count is part of an interconnected
supply network.

To make the suppliers better comparable, we normalize the metrics in-degree, out-degree,
betweenness, closeness, and triangle count to be between 0 and 10 and sum them up to obtain
an aggregated importance score for each supplier in the graph.

5.2. Results

When comparing the aggregated scores of the suppliers, Siemens is obviously the center of the
supply network and has an aggregated score of 37.25. The next supplier has a score of only
16.66, and there are only 3 suppliers with a score above 15. There are in total 988 suppliers with

Table 3
Correlation matrix. There is a high correlation between in-degree, betweenness, and triangle count.

Correlation in-degree out-degree betweenness closeness triangle count
in-degree 1.0000
out-degree 0.1969 1.0000
betweenness 0.8816 0.3928 1.0000
closeness 0.0686 0.2792 0.0859 1.0000

triangle count 0.9809 0.2048 0.8774 0.0542 1.0000

a score above 10, which might be critical entities in the supply network and should be examined
by domain experts. Since an aggregated score loses information, the suppliers with the highest
values for each metric should be analyzed in more detail. Table 3 shows the correlation matrix
of the five metrics. There is a high correlation between in-degree, betweenness, and triangle
count. That means, companies with many suppliers often lie on a large number of shortest
paths (supply chains) and are part of a highly interconnected supply network.

Figure 3 illustrates a possible way to visualize the results in order to identify critical paths in
the supply network. The subgraph contains yellow and red nodes, which represent suppliers,
and purple nodes, which represent business scopes. The red suppliers have aggregated scores
above 10 and might be more critical than the yellow suppliers. Any supply chain containing
a critical supplier might have a higher risk. The size of the purple nodes corresponds to the
number of suppliers related to the corresponding business scopes. The orange edges represent
the edge type supplies_to and the blue edges the edge type related_to. If there are business
scopes to which only one supplier is related, then the supplier might be critical since a delay of
this supplier would not be compensated easily by another supplier within the same business
scope. In the figure, three such business scopes can be identified (purple nodes with blue circles),
where two of the corresponding suppliers also have a critical score.

6. Conclusion and Further Research Directions

Challenges for supply chain management include supply chain intransparency, data disconnect-
edness and incompleteness, and the scalable identification of criticalities in the supply network.
We addressed these challenges by modeling supply chain-related information as a knowledge
graph. We used state-of-the-art knowledge graph completion methods to predict missing links
and applied graph analysis algorithms to compute importance scores for all suppliers. Based on
the importance scores and the graph structure, critical supply chains could be identified, which
is an essential step towards more resilient supply networks.
For further research, we propose the following possible directions:

• Integration of node and edge properties: In this paper, we only focused on the graph
structure for link prediction and graph analysis. For some entity and relation types,
however, there exist properties that could be helpful for prediction. For example, the

Figure 3: Visualization of a subgraph. The yellow nodes and red nodes represent suppliers, where the
red suppliers have aggregated scores above 10. Business scopes are represented as purple nodes. The size
of the purple nodes correlates to the number of suppliers related to the corresponding business scopes.
The orange edges represent the edge type supplies_to and the blue edges the edge type related_to.

relation type produced_in between a substance and a country has the property Herfindahl-
Hirschmann-Index, a measure of market concentration. For the prediction of the relation
type located_in, the company name could be a good indicator. These properties could be
integrated when learning embeddings or calculating importance scores.

• Node regression or classification: Besides link prediction, node regression or classification
are common tasks on knowledge graphs. Given, e.g., risk scores or categories for a subset
of companies, one could learn risk scores or categories for companies that are missing
this information in the graph.

• Analysis of the complete graph: We conducted the graph analysis based on a subgraph
containing the suppliers and the supplies_to relation type. To calculate the importance
scores, more information from the graph could be included. For example, a supplier that
is located in a country with a high sustainability risk might also have a higher risk, or a
supplier that manufactures many Siemens parts would be more critical for Siemens.

Acknowledgments

This work has been supported by the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) as part of the project CoyPu under grant number 01MK21007K.

References

[1] M. Brylowski, M. Schröder, W. Kersten, Machine Learning im Supply Chain Risk Manage-
ment: Studie, Technical Report, Technische Universität Hamburg, 2021.

[2] M. Brylowski, M. Schröder, S. Lodemann, W. Kersten, Machine learning in supply chain
management: A scoping review, in: Proceedings of the Hamburg International Conference
of Logistics, volume 31, 2021.

[3] E. B. Tirkolaee, S. Sadeghi, F. M. Mooseloo, H. R. Vandchali, S. Aeini, Application of
machine learning in supply chain management: A comprehensive overview of the main
areas, in: Mathematical Problems in Engineering, volume 2021, 2021.

[4] A. Brintrup, P. Wichmann, P. Woodall, D. McFarlane, E. Nicks, W. Krechel, Predicting
hidden links in supply networks, in: Complexity, volume 2018, 2018.

[5] E. E. Kosasih, A. Brintrup, A machine learning approach for predicting hidden links in
supply chain with graph neural networks, in: International Journal of Production Research,
volume 60, 2021.

[6] A. Gopal, C. Chang, Discovering supply chain links with augmented intelligence, in: The
Second ACM International Conference on AI in Finance, Workshop Natural Language
Processing and Network Analysis in Financial Applications, 2021.

[7] Z.-G. Lu, Q. Chen, Discovering potential partners via projection-based link prediction in
the supply chain network, in: International Journal of Computational Intelligence Systems,
volume 13, 2020.

[8] A. Aziz, E. E. Kosasih, R.-R. Griffiths, A. Brintrup, Data considerations in graph representa-
tion learning for supply chain networks, in: The Thirty-Eighth International Conference
on Machine Learning, Workshop Machine Learning for Data: Automated Creation, Privacy,
Bias, 2021.

[9] M. Wang, L. Qiu, X. Wang, A survey on knowledge graph embeddings for link prediction,
in: Symmetry, volume 13, 2021.

[10] M. Nickel, V. Tresp, H.-P. Kriegel, A three-way model for collective learning on multi-
relational data, in: The Twenty-Eighth International Conference on Machine Learning,
2011.

[11] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, G. Bouchard, Complex embeddings for simple
link prediction, in: The Thirty-Third International Conference on Machine Learning, 2016.

[12] I. Balažević, C. Allen, T. M. Hospedales, TuckER: Tensor factorization for knowledge
graph completion, in: The 2019 Conference on Empirical Methods in Natural Language
Processing and the Ninth International Joint Conference on Natural Language Processing,
2019.

[13] A. Bordes, N. Usunier, A. Garcia-Durán, Translating embeddings for modeling multi-
relational data, in: The Twenty-Seventh Conference on Neural Information Processing
Systems, 2013.

[14] Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, RotatE: Knowledge graph embedding by rela-
tional rotation in complex space, in: The Seventh International Conference on Learning
Representations, 2019.

[15] T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D knowledge graph
embeddings, in: The Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[16] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, M. Welling, Modeling
relational data with graph convolutional networks, in: The Fifteenth Extended Semantic
Web Conference, 2018.

[17] S. Vashishth, S. Sanyal, V. Nitin, P. Talukdar, Composition-based multi-relational graph
convolutional networks, in: The Eighth International Conference on Learning Representa-
tions, 2020.

[18] M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp, J. Lehmann, PyKEEN
1.0: A Python library for training and evaluating knowledge graph embeddings, in: Journal
of Machine Learning Research, volume 22, 2021.

Chapter 7

On Calibration of Graph Neural
Networks for Node Classification

This chapter contains the publication

Tong Liu*, Yushan Liu*, Marcel Hildebrandt, Mitchell Joblin, Hang Li, and
Volker Tresp. On calibration of graph neural networks for node classification.
In The 2022 International Joint Conference on Neural Networks (IJCNN), July
2022. *Equal contribution. DOI: 10.1109/IJCNN55064.2022.9892866

©2022 IEEE. Reprinted, with permission from the authors.

75

On Calibration of Graph Neural Networks
for Node Classification

1st Tong Liu
LMU Munich

Munich, Germany
tong.liu@physik.uni-muenchen.de

3rd Mitchell Joblin
Siemens AG

Munich, Germany
mitchell.joblin@siemens.com

1st Yushan Liu
Siemens AG, LMU Munich

Munich, Germany
yushan.liu@siemens.com

4th Hang Li
Siemens AG, LMU Munich

Munich, Germany
hang.li@siemens.com

2nd Marcel Hildebrandt
Siemens AG

Munich, Germany
marcel.hildebrandt@siemens.com

5th Volker Tresp
Siemens AG, LMU Munich

Munich, Germany
volker.tresp@siemens.com

Abstract—Graphs can model real-world, complex systems by
representing entities and their interactions in terms of nodes
and edges. To better exploit the graph structure, graph neural
networks have been developed, which learn entity and edge em-
beddings for tasks such as node classification and link prediction.
These models achieve good performance with respect to accuracy,
but the confidence scores associated with the predictions might
not be calibrated. That means that the scores might not reflect
the ground-truth probabilities of the predicted events, which
would be especially important for safety-critical applications.
Even though graph neural networks are used for a wide range of
tasks, the calibration thereof has not been sufficiently explored
yet. We investigate the calibration of graph neural networks for
node classification, study the effect of existing post-processing
calibration methods, and analyze the influence of model capacity,
graph density, and a new loss function on calibration. Further,
we propose a topology-aware calibration method that takes the
neighboring nodes into account and yields improved calibration
compared to baseline methods.

Index Terms—Graph neural networks, calibration, node clas-
sification

I. INTRODUCTION

Learning graph representations for relational data structures
has been gaining increasing attention in the machine learning
community [1], [2]. A graph is able to model real-world, com-
plex systems by representing entities as nodes and interactions
between them as edges. Since the information in graphs is of-
ten incomplete, e.g., missing node attributes or edges, relevant
graph-related tasks for attaining new knowledge include node
classification and link prediction. A variety of graph neural
network (GNN) models have been developed [3]–[5], which
learn node and edge embeddings in a low-dimensional vector
space. Subsequently, these embeddings can be used to solve
downstream tasks like node classification. Usually, the focus
here lies on maximizing the accuracy – the proportion of nodes
that are classified correctly. GNNs achieve good performance
with respect to accuracy but are also black boxes and lack
interpretability.

Most machine learning models output confidence scores
associated with the predictions, and the concept of calibration

captures the idea that the score should reflect the ground-truth
probability of the prediction’s correctness. For example, if 100
instances have a score of 0.6 for a specific class k, then 60
instances are expected to actually be of class k. A real-world
application is autonomous driving, where the model should
not only be aware that the object in front of the car is more
likely to be a plastic bag than a pedestrian but also know
how much more likely it is. A score distribution of 0.99 for
plastic bag and 0.01 for pedestrian or 0.51 for plastic bag and
0.49 for pedestrian could have a huge influence on the next
action of the car. Generally, calibrated scores lead to a better
interpretation of the results and increase the trustworthiness
of machine learning models, which is especially important in
safety-critical domains.

The calibration of deep neural networks has been addressed
in several works [6]–[9]. The calibration of GNNs, however,
has not been sufficiently explored yet, and existing calibration
methods do not exploit the graph structure. Due to the different
architectures of GNNs compared to neural networks, GNNs
might exhibit different calibration characteristics. In this work,
we are interested in the following research questions:

R1. How are GNNs calibrated for the node classification
task, and are existing calibration methods sufficient to calibrate
GNNs?

R2. How do model capacity (width and depth) and graph
density influence the calibration?

R3. Can a calibration error term be added to the loss
function in a straightforward way to improve the calibration
without hurting the accuracy?

R4. Can the incorporation of topological information im-
prove calibration?

To better understand the calibration properties of GNNs,
we conduct an empirical analysis of several GNN models in a
node classification setting. Based on our experimental finding
that the nodes in the graph express different levels of over-
and underconfidence, we propose a topology-aware calibration
method that takes the neighboring nodes into account. Our
contributions are summarized as follows:

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

• We inspect the calibration of five representative GNN
models on three benchmark citation datasets for node
classification.

• We analyze the influence of model capacity, graph den-
sity, and a new loss function on the calibration of GNNs.

• We propose a calibration method that takes the graph
topology into account and yields improved calibration
compared to state-of-the-art post-processing calibration
methods.

In Section II, we define the necessary concepts and summarize
related work. The existing GNNs and calibration methods
used in this work are also described briefly. An experimental
study on the calibration of GNNs is presented in Section III
(→ R1, R2, R3). In Section IV (→ R1, R4), we propose
a topology-aware calibration method and show experimental
results compared to state-of-the-art calibration baselines. The
results are discussed in Section V.

II. BACKGROUND

A. Definitions

1) Node classification on graphs: An undirected graph is
defined as G = (V, E), where V is the set of nodes and E the
set of edges. An edge e = {i, j} ∈ E connects the two nodes
i and j in the graph. The information about the edges can
be encoded in an adjacency matrix A ∈ {0, 1}|V|×|V|. With
Aij being the entry in the i-th row and j-th column of A,
we define Aij = 1 if {i, j} ∈ E and Aij = 0 otherwise1.
Moreover, we define N (i) as the set of neighbors of node i.
For attributed graphs, where each node i is associated with a
d-dimensional feature vector Xi ∈ Rd, we denote the feature
matrix by X ∈ R|V|×d.

The goal of the node classification task is to assign each
node i ∈ V a class label ŷi ∈ K := {1, 2, . . . ,K}, where K
stands for the total number of classes.

2) Calibration: Let Hi ∈ Rh denote the node embedding
and yi ∈ K the ground-truth label of sample (or node) i ∈ V .
Let g : Rh → [0, 1]K be a function that takes Hi as input and
outputs a probability vector g(Hi), where g(Hi)k represents
the k-th element. The predicted class label for sample i is given
by ŷi = argmaxk∈K g(Hi)k, where p̂i = maxk∈K g(Hi)k
is called the corresponding confidence score for ŷi. Perfect
calibration is defined as P(ŷi = yi | p̂i = p) = p for all
p ∈ [0, 1] and any sample i [6].

A reliability diagram [10] plots accuracy against confidence
to visualize the calibration of the model (see Fig. 1). More
formally, the samples are grouped into M ∈ N equally-spaced
interval bins according to their confidences p̂i. For each bin
Bm, m ∈ {1, 2, . . . ,M}, the accuracy and average confidence
are calculated according to

acc(Bm) =
1

|Bm|
∑

i∈Bm

1[ŷi = yi] and (1)

conf(Bm) =
1

|Bm|
∑

i∈Bm

p̂i , (2)

1We identify nodes and indices to ease the notation.

respectively, where |Bm| denotes the number of samples in bin
Bm and 1 the indicator function. In case of perfect calibration,
the equation acc(Bm) = conf(Bm) holds for all m. Reliability
diagrams also present a way to identify if the model is over-
or underconfident. If the bars are above the diagonal line, it
implies that the accuracy is higher than the average confidence,
and the model is called underconfident. If the bars are below
the diagonal, the model is overconfident.

The expected calibration error (ECE) [11] measures the
miscalibration by averaging the gaps in the reliability diagram
and is given by

M∑

m=1

|Bm|
N
|acc(Bm)− conf(Bm)| , (3)

where N is the total number of samples.
The marginal ECE (MECE) approximates the marginal

calibration error [12], which takes all classes into account. For
each bin and every class k, it compares the average confidence
of samples for class k to the proportion of samples that has
as ground-truth label class k. The MECE is defined as

K∑

k=1

wk

M∑

m=1

1

N

∣∣∣∣∣
∑

i∈Bm

1[yi = k]−
∑

i∈Bm

g(Hi)k

∣∣∣∣∣ , (4)

where wk is a class-dependent weight factor, which is set to
1/K if all classes are equally important.

B. Related work

Guo et al. [6] showed that modern neural networks are
miscalibrated and tend to be overconfident, i. e., the confidence
scores are higher than the proportions of correct predictions.
They proposed temperature scaling, a single-parameter variant
of Platt scaling [13], to calibrate the results. Several other
methods were introduced to improve the calibration of deep
neural networks (e. g., mixup training [7] and FALCON [8]).
Methods that improve calibration by preventing overconfi-
dence include label smoothing [9] and focal loss [14], [15].
In GNNs, calibration issues have only been studied recently.
A first evaluation of GNNs was done by Teixeira et al. [16],
who performed experiments on multiple node classification
datasets and concluded that GNNs are miscalibrated and
existing calibration methods are not always able to improve
the calibration to the desired extent.

C. Methods

1) Graph neural networks: Given an adjacency matrix A
and a feature matrix X, the idea of all GNNs is to learn
node embeddings H ∈ R|V|×h. The embedding for node i
is denoted by Hi ∈ Rh, which can be fed to a task-specific
decoder g. For example, since we are concerned with node
classification, we use a single-layer perceptron with softmax
activation as decoder. For our experiments, we select the
widely used models graph convolutional network (GCN) [3],
graph attention network (GAT) [4], and simple graph con-
volution (SGC) [17]. Further, we consider graph filter neural
network (gfNN) [18], a straightforward extension of SGC, and

Fig. 1. Reliability diagrams and corresponding confidence histograms for GCN on Cora. The two left plots show the results before calibration, while the two
right plots show the results after calibration with temperature scaling. The diagonal line indicates perfect calibration.

approximate personalized propagation of neural predictions
(APPNP) [5], a model with state-of-the-art performance.

GCN applies a normalized adjacency matrix with self-loops
Ã = D̂− 1

2 (A+ I)D̂− 1
2 , where I is the identity matrix and D̂

the degree matrix of A+ I. Concretely, the hidden layer of a
GCN is formed according to H(l+1) = σ(ÃH(l)W(l)), where
W(l) is a trainable weight matrix, σ an activation function,
and H(0) := X. GCN aggregates information from a node’s
neighbors by computing the normalized sum of adjacent node
embeddings.

GAT differs from GCN in the neighbor aggregation function
by introducing an attention mechanism that scales the impor-
tance of neighbors when summing over their embeddings.

SGC is a GCN without nonlinear activation functions be-
tween the layers, resulting from the authors’ conjecture that
the good performance of GCNs comes from the aggregation of
local neighborhood information and not from the application
of nonlinear feature maps.

gfNN extends SGC with a nonlinear layer σ so that the node
embeddings for layer l are obtained from H(l) = σ(ÃlXW),
where W is a trainable weight matrix.

APPNP is based on the personalized PageRank (PPR) algo-
rithm [19]. The node embeddings in layer l+1 are calculated
via H(l+1) = (1 − α)ÃH(l) + αH(0), where α ∈ (0, 1] is a
hyperparameter and H(0) := f(X), with f being a trainable
neural network.

2) Calibration methods: We consider the classical post-
processing methods histogram binning [20], isotonic regres-
sion [21], and Bayesian binning into quantiles (BBQ) [11],
which is a refinement of histogram binning. Further, we
include temperature scaling [6] as a multiclass calibration
method and Meta-Cal [22], a recently introduced approach
with state-of-the-art performance.

Histogram binning divides the confidence scores p̂i into M
bins and assigns a new score q̂m to each bin to represent
the calibrated confidences. The scores q̂m are learned by
minimizing

∑M
m=1

∑
i∈Bm

(q̂m − yi)
2.

Isotonic regression learns a piecewise constant function f by
minimizing

∑M
m=1

∑
i∈Bm

(f(p̂i)−yi)
2. It is a generalization

of histogram binning where the bin boundaries and scores are
jointly optimized.

BBQ extends histogram binning and learns a distribution
P(q̂i | p̂i,Dval) by marginalizing out all possible binnings,
where Dval is the validation set.

Temperature scaling is a single-parameter extension of Platt
scaling [13] for multiple classes. Given the output logit vector
z before the softmax activation, a rescaling z/T depending on
a temperature T > 0 is applied.

Meta-Cal combines temperature scaling as a base model
with a bipartite ranking model to weaken the limitation of
accuracy-preserving calibration methods. By investigating two
practical constraints (miscoverage rate control and coverage
accuracy control), the goal is to improve calibration depending
on the bipartite ranking while controlling the accuracy.

III. EXPERIMENTAL STUDY

A. Setup

Experiments We first inspect the calibration of GNN mod-
els on benchmark citation datasets, where we take the best
hyperparameter and training settings from the corresponding
original papers.

Then, we empirically analyze the influence of model ca-
pacity (width and depth) on calibration. It has been observed
that stacking too many GCN layers drastically worsens the
performance, which is partly attributed to a phenomenon called
oversmoothing [23]. Oversmoothing happens when repeated
neighbor aggregation leads to similar node embeddings in the
graph, and various methods have been proposed to tackle this
problem [5], [24]. In the following, we investigate if increasing
model depth also affects calibration.

One of the core mechanisms of GNNs is the message
aggregation from neighboring nodes. We examine how graph
density, i. e., the ratio of the number of edges in the graph
to the number of maximum possible edges, influences the
calibration performance.

Finally, we also test a new loss function (5) that combines
the standard cross-entropy loss Lce with an ECE-inspired term
Lcal for optimizing the calibration. We define Lcal as the cross
entropy between the confidence of the sample and the accuracy
of its corresponding bin, where the idea is that the confidence
should stay close to the accuracy. Given the original cross-
entropy loss Lce, we define the new loss as

TABLE I
DATASET STATISTICS.

Dataset K d |V| |E| Label rate
Cora 7 1,433 2,708 5,429 0.052

Citeseer 6 3,703 3,327 4,732 0.036
Pubmed 3 500 19,717 44,338 0.003

L = αLce + (1− α)Lcal with (5)

Lcal = −
N∑

i=1

acc(Bm(i)) · log(p̂i) , (6)

where α ∈ (0, 1) and Bm(i) denotes the bin that sample i
belongs to.

For the experiments on width, depth, graph density, and the
new loss function, we focus on GCN and GAT, two of the
basic and most widely used GNN models.
Datasets Cora, Citeseer, and Pubmed2 are three commonly
used benchmark datasets for node classification. They are
citation networks, where nodes represent scientific publica-
tions and edges between pairs of nodes correspond to one
publication citing the other. Each node comes with a d-
dimensional feature vector that indicates the presence of words
from a predefined vocabulary. The class label of a node is the
topic of the corresponding publication. Similar to previous
works [3], [4], we operate under a semi-supervised setting,
where only a small amount of labeled data is available during
training. The statistics of the datasets are summarized in
Table I.
Implementation The GNN models are implemented using the
PyTorch-Geometric library3. The bin number for calculating
the ECE and MECE is set to 15. More information about the
hyperparameters and experimental settings can be found in the
supplementary material4.

B. Results

Uncalibrated results We run all GNNs on the three citation
datasets and show the uncalibrated performance with respect to
accuracy, ECE, and MECE in Table II. The method APPNP
is best on Cora and Pubmed in terms of accuracy (second-
best on Citeseer), and it is also best calibrated on the datasets
Citeseer and Pubmed. For Cora, gfNN has the lowest ECE and
MECE. All models except for gfNN5 have stable calibration
values with small standard deviations. The worst method with
respect to the calibration performance is SGC, which is, apart
from the softmax activation for normalization, the only linear
model. Adding a nonlinear layer as in gfNN results in better
calibration. Moreover, we find that GAT outperforms GCN in
terms of ECE and MECE in two of three datasets.
Influence of width We compare the calibration of GCN and
GAT for varying model width, i. e., the number of hidden

2https://github.com/kimiyoung/planetoid
3https://github.com/pyg-team/pytorch geometric
4Source code and supplementary material available at https://github.com/

liu-yushan/calGNN.
5The original paper trains for 50 epochs without early stopping. A different

training setting might stabilize the results more.

TABLE II
UNCALIBRATED PERFORMANCE WITH RESPECT TO ACCURACY, ECE, AND
MECE (MEAN±SD OVER 100 INDEPENDENT RUNS). THE BEST RESULTS

ARE DISPLAYED IN BOLD.

Dataset Model Acc. ECE MECE

Cora

GCN 81.43±0.60 23.51±1.89 7.01±0.46
GAT 83.14±0.39 17.26±1.09 5.15±0.30
SGC 81.19±0.05 26.03±0.16 7.78±0.08
gfNN 78.73±5.04 6.45±2.44 3.16±1.45

APPNP 83.68±0.36 14.90±0.69 4.73±0.17

Citeseer

GCN 71.32±0.70 21.80±1.21 8.57±0.32
GAT 70.99±0.60 18.92±1.05 7.66±0.30
SGC 72.46±0.15 53.59±0.14 19.15±0.00
gfNN 67.33±6.58 15.50±4.47 8.40±1.26

APPNP 72.10±0.38 11.93±0.80 5.37±0.28

Pubmed

GCN 79.23±0.43 10.62±1.28 7.29±0.84
GAT 79.05±0.38 14.37±0.48 9.89±0.23
SGC 78.72±0.04 22.40±0.04 14.98±0.02
gfNN 77.94±2.32 6.04±2.90 5.23±2.65

APPNP 80.09±0.25 4.38±0.74 3.59±0.41

Fig. 2. Varying model width (hidden dimension per layer).

dimensions per layer. While the accuracy basically stays
constant, the ECE and MECE decrease with increasing number
of hidden dimensions initially (see Fig. 2). When a certain
width is reached, the calibration values stagnate or slightly
increase again. Generally, wider networks tend to be better
calibrated.
Influence of depth We investigate the influence of model
depth, i. e., the number of layers, on the calibration per-
formance (see Fig. 3). Oversmoothing becomes particularly
pronounced when the test accuracy decreases significantly with
increasing number of layers. The ECE first improves when
changing from two to three layers, then it increases again until
five or six layers. Using an even larger model depth, the ECE
eventually decreases again.
Influence of graph density For this experiment, we remove

TABLE III
UNCALIBRATED PERFORMANCE OF GCN AND GAT UNDER THE STANDARD AND THE NEW LOSS FUNCTION (MEAN±SD OVER 10 INDEPENDENT RUNS).

THE BETTER RESULTS WHEN COMPARING THE TWO LOSS FUNCTIONS ARE UNDERLINED.

Dataset Model Acc. (Lce) ECE (Lce) MECE (Lce) Acc. (L) ECE (L) MECE (L)

Cora GCN 81.43±0.60 23.51±1.89 7.01±0.46 81.81±0.85 14.91±2.7 4.64±0.56
GAT 83.14±0.39 17.26±1.09 5.15±0.30 82.73±0.40 5.29±1.31 2.41±0.32

Citeseer GCN 71.32±0.70 21.80±1.21 8.57±0.32 71.67±0.50 14.65±0.42 6.43±0.26
GAT 70.99±0.60 18.92±1.05 7.66±0.30 71.13±0.44 9.39±0.97 4.58±0.40

Pubmed GCN 79.23±0.43 10.62±1.28 7.29±0.84 79.00±0.37 7.50±0.91 5.60±0.73
GAT 79.05±0.38 14.37±0.48 9.89±0.23 78.88±0.40 9.58±0.79 6.91±0.63

Fig. 3. Varying depth (number of layers).

different proportions of edges randomly from the dataset,
ranging from 0% (original dataset) to 100% (no graph structure
at all). The models GCN and GAT only differ in the aggre-
gation mechanism, i. e., GAT introduces attention coefficients
to weigh the importance of neighbors. The results are shown
in Fig. 4. Similar to Table II, the ECE of GAT is consistently
lower than the ECE of GCN on Cora and Citeseer, while on
Pubmed, GCN expresses partly better calibration. Generally,
the graph density of Pubmed is the lowest. It might be that
the attention weights in GAT are beneficial for calibration and
especially useful when enough edges exist in the graph.
Influence of new loss function Table III compares the results
of the standard cross-entropy loss Lce and the new loss
function L from (5), which contains a calibration error term.
The new loss L improves the model calibration in all cases
while keeping the accuracy at the same level or even slightly
increasing the accuracy.
Underconfidence vs. overconfidence Taking the best hy-
perparameter and training settings from their corresponding
publications, all GNNs exhibit underconfidence on all three
datasets, i. e., the confidence scores are lower than the accuracy
of the predictions (see Fig. 1 and figures in the supplementary

Fig. 4. Influence of graph density. The graph density is the ratio of the number
of edges in the graph to the number of maximum possible edges.

material). In some cases, however, we find that the model
changes from underconfidence to overconfidence if it is trained
without early stopping.

The left plot in Fig. 5 shows the test accuracy, scaled test
negative log-likelihood (NLL), and scaled test ECE for a 4-
layer GCN on Cora during training, with a weight decay set
to 5e-4. Around epoch 150, the NLL and accuracy become
stable, while the ECE is still improving. At this point, GCN
is underconfident, as shown in the left-most reliability diagram
in Fig. 6. In the epochs between 200 and 300, the ECE
gains the best performance when the model changes from
underconfidence to overconfidence (see the two diagrams
in the middle of Fig. 6). After epoch 300, GCN starts to
overfit with respect to the ECE, while the NLL and accuracy
remain rather unchanged. During this process, overconfidence
aggravates, and the ECE increases to 7.8% in epoch 400,
which is displayed in the right-most diagram in Fig. 6.

In summary, GCN first optimizes NLL and accuracy during
training, then fits the confidence scores, and eventually starts
to overfit regarding the ECE without influencing the NLL
and accuracy. When we slightly increase the weight decay
to 7.5e-4 (see right plot in Fig. 5), the ECE stabilizes after
reaching the optimal value, and the values of NLL and
accuracy also stay in a smaller range compared to the left
plot.

Fig. 5. Test accuracy, scaled test NLL, and scaled test ECE for GCN on Cora, with a weight decay of 5e-4 (left) and 7.5e-4 (right).

Fig. 6. Reliability diagrams for GCN on Cora during the training process. From left to right, the corresponding number of epochs is 100, 200, 300, and 400.

IV. RATIO-BINNED SCALING FOR CALIBRATING GNNS

A. Same-class-neighbor ratio

From our experiments, we find that GNN models tend to
be underconfident. Even though the overall model exhibits
underconfidence, there might be differences depending on
node-level properties, which have not been considered before.
Especially for graph data, the topology could provide structural
information that is useful for calibration. For node classifica-
tion, the class labels and properties of a node’s neighbors have
a significant influence on the classification. We calculate for
each node i the same-class-neighbor ratio, i. e., the proportion
of neighbors that have the same class as node i, and develop
a new binning scheme that groups samples into bins based on
the same-class-neighbor ratio for calibration.

To evaluate the correlation between the same-class-neighbor
ratio and the confidence of a model, we calculate the ratio for
each node based on the ground-truth labels. In Fig. 7, we group
the nodes into 5 equally-spaced interval bins according to
their ratios. Employing a trained GNN model, we compute the
output of the classifier g for each node and draw the average
confidence of the samples in each bin as a blue bar. The
gap illustrates the difference between the average confidence
and the accuracy in each bin. We observe that the average
confidence increases with the same-class-neighbor ratio, where
bins with higher ratios express underconfidence and bins with
lower ratios overconfidence. Consequently, a binning scheme
that groups samples depending on their same-class-neighbor
ratios would take the graph structure into account and allow

for an adaptive calibration depending on the confidence level
of each bin.

B. Ratio-binned scaling

We propose ratio-binned scaling (RBS), a topology-aware
method, which first approximates the same-class-neighbor
ratio for each sample, then groups the samples into M bins,
and finally learns a temperature for each bin to rescale the
confidence scores.

In the semi-supervised setting, we only know the labels of
a small number of nodes and therefore cannot use the true
labels for binning. One natural option is to replace the nodes’
ground-truth labels with their confidence scores for estimating
the same-class-neighbor ratio. More precisely, we define the
estimated ratio for node i as

r̂(i) =
1

|N (i)|
∑

j∈N (i)

g(Hj)ŷi
∈ [0, 1] , (7)

where Hj is the node embedding of node j, which is learned
by a GNN model, and g is the classifier. g(Hj)ŷi denotes the
confidence score of node j corresponding to the class ŷi that
is predicted for the central node i.

For the ratio-based binning scheme, let {Bm | 1 ≤ m ≤M}
be a set of bins that partitions the interval [0, 1] uniformly.
After calculating the output for all nodes, each node i is
assigned to a bin according to its estimated same-class-
neighbor ratio r̂(i), i. e., B1 = {i ∈ V | r̂(i) ∈ [0, 1

M]} and
Bm = {i ∈ V | r̂(i) ∈ (m−1

M , m
M]} for m ∈ {2, . . . ,M}.

Fig. 7. The nodes are grouped according to their same-class-neighbor ratios. The blue bar represents the average confidence and the gap the difference
between average confidence and accuracy in each bin.

TABLE IV
CALIBRATED PERFORMANCE WITH RESPECT TO ECE (MEAN±SD OVER 100 INDEPENDENT RUNS). THE BEST GNN MODEL FOR EACH CALIBRATION

METHOD IS UNDERLINED. THE BEST CALIBRATION METHOD FOR EACH GNN MODEL IS DISPLAYED IN BOLD.

Dataset Model Uncal. His. bin. Iso. reg. BBQ Tem. scal. Meta-Cal RBS RRBS

Cora

GCN 23.51±1.89 4.50±0.76 3.94±0.66 4.53±0.64 3.82±0.60 4.09±0.65 3.90±0.61 3.10±0.63
GAT 17.26±1.09 4.86±0.62 4.04±0.59 4.18±0.60 3.53±0.66 3.28±0.65 3.34±0.63 2.67±0.54
SGC 26.03±0.16 4.38±0.30 4.21±0.42 4.35±0.21 4.05±0.11 4.02±0.35 3.55±0.07 2.57±0.11
gfNN 6.45±2.44 3.80±0.86 3.72±0.78 4.15±1.22 3.74±1.34 4.07±1.52 3.77±0.96 3.39±1.22

APPNP 14.90±0.69 4.20±0.62 3.43±0.60 3.90±0.57 3.14±0.50 3.48±0.57 3.01±0.53 2.68±0.44

Citeseer

GCN 21.80±1.21 4.61±0.82 4.46±0.93 5.30±1.09 4.86±0.76 5.04±0.90 4.99±0.75 4.11±0.88
GAT 18.92±1.05 5.00±0.73 4.90±0.69 5.04±0.71 5.92±0.58 6.08±0.61 4.45±0.73 4.71±0.67
SGC 53.59±0.14 7.55±0.23 6.93±0.19 7.43±0.13 4.47±0.19 4.17±0.29 4.04±0.17 2.97±0.20
gfNN 15.50±4.47 4.74±1.00 4.92±1.03 5.06±1.37 5.43±1.27 5.45±1.32 5.19±1.31 4.34±1.27

APPNP 11.93±0.80 4.75±0.85 4.50±0.67 5.10±1.02 4.98±0.67 5.29±0.67 5.08±0.69 3.97±0.58

Pubmed

GCN 10.62±1.28 4.69±0.78 4.76±0.77 4.69±0.74 4.27±0.61 4.99±1.11 4.16±0.60 3.28±0.89
GAT 14.37±0.48 4.85±0.89 4.93±0.78 5.70±1.03 3.94±0.67 4.45±0.74 3.61±0.75 2.56±0.56
SGC 22.40±0.04 4.40±0.29 4.29±0.21 5.04±0.22 4.13±0.12 4.64±0.58 4.07±0.17 3.01±0.12
gfNN 6.04±2.90 4.98±1.06 5.00±0.83 5.15±1.26 4.97±1.67 6.06±1.95 4.91±1.65 3.78±1.03

APPNP 4.38±0.74 4.86±0.75 4.72±0.57 4.79±0.84 3.98±0.59 4.34±0.72 3.80±0.60 2.60±0.47

Let the output of g be in the form g(Hi) = σ(Zi) ∈ RK

for node i, where σ is the softmax function and Zi the logits
before normalization. For each bin Bm, m ∈ {1, . . . ,M}, a
temperature Tm > 0 is learned on the validation dataset.

The calibrated confidence for a test node j is then given by

q̂j = σ(Zj/Tm) ∈ [0, 1]K if j ∈ Bm. (8)

We apply temperature scaling for calibrating the nodes in
each bin, but it would also be possible to apply other post-
processing calibration methods for obtaining calibrated scores.

C. Results

Table IV summarizes the calibration performance of all con-
sidered post-processing calibration methods and our proposed
method RBS in terms of ECE. All methods can improve the
calibration of GNN models on Cora and Citeseer. In particular,
the obtained ECE for a specific dataset and calibration method
is rather similar for all GNNs regardless of the uncalibrated
ECE. On Pubmed, most methods have difficulties improving
calibration of APPNP, which already has low ECE. RBS
gains the best performance in the majority of the cases and
outperforms classical temperature scaling in 11 out of 15
experiments.

Next to a good calibration performance, accuracy preserva-
tion is desirable for calibration methods. RBS and temperature
scaling do not change the ranking of the classes and thus the
accuracy stays unchanged. Meta-Cal trades good calibration
for lower accuracy, while the other methods yield comparable
or even slightly improved accuracy in some cases (see supple-
mentary material).

D. Effectiveness of real-ratio-binned scaling

Table IV also shows the calibrated results of real-ratio-
binned scaling (RRBS), where we assume that the ground-truth
labels are available for all nodes. RRBS outperforms the best
calibration method in 14 out of 15 experiments. Although the
correct labels are not accessible in the semi-supervised setting,
the results still indicate the effectiveness of the intuition of our
proposed method.

V. DISCUSSION

In general, the calibration performance depends on the spe-
cific GNN model and dataset, where all models perform best
on Pubmed (see Table IV). When using the hyperparameter
and training settings from the original publications, all GNNs
tend to be underconfident on all three datasets, in contrast
to the finding that deep neural network models rather exhibit

overconfidence [6], [7]. However, when plotting the reliability
diagrams for a varying number of epochs, we observe that in
some cases, underconfidence changes to overconfidence when
the number of epochs increases. It seems that underconfidence
or overconfidence is not necessarily a property of the model
architecture but is also dependent on the training setting.

Most GNNs suffer from oversmoothing, which becomes ap-
parent when increasing the number of layers in the model [5],
[23], [24]. We observe that for large numbers of layers, the
accuracy drops significantly, while the ECE improves. Over-
smoothing results in similar node embeddings, which might
be uninformative for the model. In this case, the model would
most likely learn the distribution of classes in the training data
as confidence scores. Therefore, all samples would be grouped
into one bin, resulting in low ECE if the test distribution is
close to the training distribution. However, such a model does
not make use of the underlying graph structure and is probably
not useful for application.

The results for RBS and RRBS show the potential of a
calibration method that takes the graph structure into ac-
count, where the binning scheme is constructed depending on
node-level properties. RRBS almost always outperforms RBS,
which suggests that RBS might be especially helpful for cases
where the estimated ratios are close to the real ratios, i.e., for
models with relatively high accuracy. The number of bins for
RBS was chosen from {2, 3, 4}, and it seems that even a small
number of bins can lead to improved calibration compared to
classical temperature scaling. It would further be interesting to
apply RBS to other kinds of datasets, e.g., heterophilic graphs,
where nodes from different classes are likely to be connected.

VI. CONCLUSION

We investigated the calibration of graph neural networks
for node classification on three benchmark datasets. Graph
neural networks seem to be miscalibrated, where the exact
calibration depends on both the dataset and the model. Existing
post-processing calibration methods are able to alleviate the
miscalibration but do not consider the graph structure. Based
on our experimental finding that the nodes in the graph express
different levels of over- or underconfidence depending on their
same-class-neighbor ratios, we proposed the topology-aware
calibration method ratio-binned scaling. It takes the predictions
of neighboring nodes into account and shows better perfor-
mance compared to state-of-the-art baselines. For future work,
it would be interesting to gain a more theoretical understanding
of the calibration properties and conduct experiments on larger
and a wider variety of datasets.

ACKNOWLEDGMENT

This work has been supported by the German Federal
Ministry for Economic Affairs and Climate Action (BMWK)
as part of the project RAKI under grant number 01MD19012C.

REFERENCES

[1] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy, “Ma-
chine learning on graphs: A model and comprehensive taxonomy,”
arXiv:2005.03675, 2021.

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 40, pp. 52–74,
2017.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proceedings of the Fifth International Con-
ference on Learning Representations, 2017.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Proceedings of the Sixth
International Conference on Learning Representations, 2018.

[5] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized PageRank,” in Proceedings
of the Seventh International Conference on Learning Representations,
2019.

[6] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Proceedings of the Thirty-Fourth Interna-
tional Conference on Machine Learning, 2017.

[7] S. Thulasidasan, G. Chennupati, J. Bilmes, T. Bhattacharya, and
S. Michalak, “On mixup training: Improved calibration and predictive
uncertainty for deep neural networks,” in Proceedings of the Thirty-Third
Conference on Neural Information Processing Systems, 2019.

[8] C. Tomani and F. Buettner, “Towards trustworthy predictions from deep
neural networks with fast adversarial calibration,” in Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence, 2021.

[9] R. Müller, S. Kornblith, and G. Hinton, “When does label smoothing
help?” in Proceedings of the Thirty-Third Conference on Neural Infor-
mation Processing Systems, 2019.

[10] A. H. Murphy and R. L. Winkler, “Reliability of subjective probability
forecasts of precipitation and temperature,” Applied Statistics, vol. 26,
pp. 41–47, 1977.

[11] M. P. Naeini, G. F. Cooper, and M. Hauskrecht, “Obtaining well
calibrated probabilities using Bayesian binning,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[12] A. Kumar, P. Liang, and T. Ma, “Verified uncertainty calibration,”
in Proceedings of the Thirty-Third Conference on Neural Information
Processing Systems, 2019.

[13] J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in Large
Margin Classifiers, 1999.

[14] J. Mukhoti, V. Kulharia, A. Sanyal, S. Golodetz, P. H. S. Torr, and
P. K. Dokania, “Calibrating deep neural networks using focal loss,”
in Proceedings of the Thirty-Fourth Conference on Neural Information
Processing Systems, 2020.

[15] N. Charoenphakdee, J. Vongkulbhisal, N. Chairatanakul, and
M. Sugiyama, “On focal loss for class-posterior probability estimation:
A theoretical perspective,” in Proceedings of the 2021 Conference on
Computer Vision and Pattern Recognition, 2021.

[16] L. Teixeira, B. Jalaian, and B. Ribeiro, “Are graph neural networks
miscalibrated?” arXiv:1905.02296, 2019.

[17] F. Wu, T. Zhang, Jr. Souza, A. H. d., C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” in Proceedings
of the Thirty-Sixth International Conference on Machine Learning, 2019.

[18] H. NT and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv:1905.09550, 2019.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, 1998.

[20] B. Zadrozny and C. Elkan, “Obtaining calibrated probability estimates
from decision trees and naive Bayesian classifiers,” in Proceedings of
the Eighteenth International Conference on Machine Learning, 2001.

[21] ——, “Transforming classifier scores into accurate multiclass probability
estimates,” in Proceedings of the Eighth ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2002.

[22] X. Ma and M. B. Blaschko, “Meta-Cal: Well-controlled post-hoc cali-
bration by ranking,” in Proceedings of the Thirty-Eighth International
Conference on Machine Learning, 2021.

[23] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the Thirty-
Second AAAI conference on Artificial Intelligence, 2018.

[24] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proceedings of the Thirty-Fifth International Conference on Machine
Learning, 2018.

SUPPLEMENTARY MATERIAL

GNN models We follow the best hyperparameter and training settings given by the corresponding graph neural network
papers, using the PyTorch Geometric implementation6 of GCN [3], GAT [4], SGC [17], and APPNP [5]. For SGC, we set
the learning rate to 0.2, train for 100 epochs without early stopping, and tune weight decay for 60 iterations using Hyperopt7,
according to the original paper. We implement gfNN [18] by ourselves and follow the setting in the original paper. In order
to capture the variance across different training runs, each model is run for 100 times, and we report the averaged results
with standard deviations.

Width We conduct experiments on the influence of width on the models GCN and GAT, where we use the best hyperparameter
settings and vary the hidden dimensions per layer in the parameter space given by {2i | 3 ≤ i ≤ 10}. Dropout layers are
removed, and the number of epochs is set to 200 with early stopping after 10 epochs without improvement of the validation
loss. Each model is run for 10 times.

Depth We conduct experiments on the influence of depth on the models GCN and GAT, where we follow the experimental
setting in Appendix B by Kipf and Welling [3]. The number of layers is in the parameter space {1, 2, . . . , 10}. Each model
is run for 10 times.

Graph density We conduct experiments on the influence of graph density on the models GCN and GAT. Different proportions
of edges are removed randomly from 0% (original dataset) to 100% (no graph structure at all). Each model is run for 10
times.

New loss function We follow the setting by Tomani and Buettner [8], who also introduced an ECE-inspired loss function. An
annealing coefficient is specified for the calibration error term since the early epochs are usually more focused on reaching
the cross-entropy minimum. More precisely, we define

anneal coef = λ ·min

{
1,

epoch

EPOCHS · anneal max

}
, (9)

L̃cal = anneal coef · Lcal , and (10)

L = α · Lce + (1− α) · L̃cal , (11)

where epoch and EPOCHS are the current training epoch and the total number of epochs, respectively, and λ, anneal max,
and α are hyperparameters. We set anneal max = 1, λ = 1, and tune α on the validation set in the range
{0.95, 0.96, 0.97, 0.98, 0.99}. Each model (fixed hyperparameter setting) is run for 10 times.

TABLE V
CALIBRATED ACCURACY (MEAN±SD OVER 100 INDEPENDENT RUNS). TEMPERATURE SCALING AND RBS DO NOT CHANGE THE ACCURACY.

Dataset Model Uncal. His Iso BBQ Meta

Cora

GCN 81.43±0.60 80.38±0.82 81.80±0.57 81.34±0.67 79.23±1.61
GAT 83.14±0.39 81.39±0.48 84.05±0.51 83.52±0.59 79.99±1.70
SGC 81.19±0.05 79.91±0.13 81.16±0.11 79.83±0.24 78.77±1.88
gfNN 78.73±5.04 79.06±1.16 80.21±1.28 79.96±1.31 76.30±5.51

APPNP 83.68±0.36 82.52±0.46 83.45±0.45 83.20±0.53 81.33±1.79

Citeseer

GCN 71.32±0.70 71.93±0.84 72.39±0.66 71.79±0.99 68.22±4.13
GAT 70.99±0.60 71.78±0.56 72.21±0.52 71.81±0.70 68.28±2.63
SGC 72.46±0.15 74.13±0.05 73.81±0.12 73.32±0.13 69.19±2.08
gfNN 67.33±6.58 71.74±1.22 71.98±1.15 71.10±1.22 64.63±6.61

APPNP 72.10±0.38 72.94±0.48 72.90±0.48 72.63±0.83 69.64±2.29

Pubmed

GCN 79.23±0.43 79.01±0.55 79.03±0.46 78.85±0.67 76.99±4.62
GAT 79.05±0.38 78.50±0.61 78.85±0.38 78.19±0.56 78.00±1.43
SGC 78.72±0.04 79.05±0.08 79.30±0.03 79.88±0.19 77.83±1.57
gfNN 77.94±2.32 77.92±1.11 78.16±0.98 77.76±1.33 75.66±3.05

APPNP 80.09±0.25 80.12±0.44 80.15±0.30 79.50±0.47 78.37±1.64

6https://github.com/pyg-team/pytorch geometric/tree/master/benchmark/citation
7https://github.com/hyperopt/hyperopt

Fig. 8. Histograms and reliability diagrams for GCN.

Fig. 9. Histograms and reliability diagrams for GAT.

Fig. 10. Histograms and reliability diagrams for SGC.

Fig. 11. Histograms and reliability diagrams for gfNN.

Fig. 12. Histograms and reliability diagrams for APPNP.

Fig. 13. Influence of width.

Fig. 14. Influence of depth.

Fig. 15. Influence of graph density.

Chapter 8

Conclusion

Machine learning (ML) with graph-structured data has gained significant attention in
recent years since graphs are ubiquitous in diverse domains and ML techniques are well-
suited for learning and reasoning on graphs, leading to state-of-the-art performance. In this
dissertation, we introduced novel graph ML methods for several use cases and attempted
to make the results better understandable by humans.

In Chapter 4, we integrated domain knowledge in the form of logical rules to predict new
treatment targets in the context of drug repurposing. We showed that the inclusion of the
metapaths in the reward function indeed helps the reinforcement learning agent to navigate
to the correct target disease. The metapaths were extracted in a data-driven manner, but
it is also possible to let domain experts define rules explicitly to guide the graph traversal
mechanism. The traversed paths help us understand why a particular disease is a suitable
candidate for treatment. In future works, we will investigate the setting in which logical
rules are used to actively guide the agent during graph traversal instead of only integrating
the metapaths into the reward function.

In Chapter 5, we learned and applied temporal logical rules on a temporal knowledge
graph (tKG) to predict events with future timestamps. Our approach can be scaled to large
datasets by sampling relevant paths and subgraphs. Another advantage is the transferabil-
ity of the rules to related datasets without the need for retraining, while many subsymbolic
methods cannot easily handle previously unseen entities and timestamps in an inductive
setting. The corresponding groundings of the logical rules in the graph, which also preserve
time consistency, provide explanations of why a certain event is likely to happen. In the
paper, we only learned cyclic rules, so we are interested in learning acyclic rules as well
in future works. Further, extending the simple sampling mechanism for temporal random

93

walks, e.g., by using reinforcement learning, might lead to a more efficient identification of
promising logical rules.

In Chapter 6, we applied KG completion methods to an industrial KG about supply
chains. Due to the structure of the KG, it might not be meaningful to perform link
prediction on all relation types. The methods that achieve overall strong performance
could complement a supply chain risk management tool by updating the data on a regular
basis. Additionally, we applied graph analytics to identify critical suppliers in the supply
network, after discussing the definition of criticalities and relevant metrics with domain
experts. An extension of the adopted metrics and integration of existing node features in
future works might create an even more holistic view on a supplier’s importance.

In Chapter 7, we examined the calibration of graph neural networks for the node clas-
sification task. We observed that there is no special neural network model or post-hoc
calibration method that works best on all citation datasets. Incorporating topological in-
formation based on the predictions of neighboring nodes seems to be beneficial for the
calibration. Generally, further theoretical insights should be acquired to get a deeper un-
derstanding of the calibration properties. For future works, it would be interesting to
evaluate our method on a wider variety of datasets, e.g., heterophilic graphs.

In summary, we considered a range of diverse graph ML tasks and use cases. We
demonstrated that integrating background and topological knowledge can boost a model’s
performance and that symbolic methods can be sufficiently scalable to outperform sub-
symbolic methods on forecasting tasks. By extracting explicit paths from the graphs and
utilizing domain expertise, the results can be presented in a more understandable and con-
vincing way to the user, while calibrated probabilities can enhance the trustworthiness of
the models. Our work contributes to the set of graph ML approaches that provide increased
explainability as well as competitiveness with black-box models. Since our work only covers
a small fraction within the fields of graph ML and explainable artificial intelligence (XAI),
we outline in the following interesting directions for future exploration:

• The experimental outcomes in individual papers usually depend on a restricted set
of training settings, baselines, datasets, and use cases. A more comprehensive and
consistent evaluation of ML methods is necessary to analyze their performance under
varying circumstances. For instance, Ruffinelli et al. showed that traditional methods
like RESCAL [70] can beat newer methods when trained under the same setting [82].
The development, maintenance, and usage of such evaluation frameworks facilitate a
fairer comparison and assessment of various models.

94

Chapter 8. Conclusion

• The proposed methods in the thesis did not take possibly existent node and edge
features into account. Some KGs also have connections to multi-modal information,
e.g., images, textual descriptions, or audio recordings. The integration of specific
features and modalities might improve the prediction performance and increase the
interpretability of the results.

• The term XAI is not uniquely defined, so the separation between concepts such as ex-
plainability, interpretability, transparency, understandability, and comprehensibility
is not clear. Explainability might have different meanings for distinct target groups,
and there are no standard measures to quantify the quality of explanations. Logical
rules, extracted subgraphs, and background knowledge can increase the explainabil-
ity of the models, but especially when contemplating the integration of ML methods
into existing tools, an in-depth validation of the outputs should be conducted by the
prospective users.

• With the emergence of large language models (LLMs) and their remarkable capabil-
ities, efforts are being made to unify LLMs and KGs [75]. LLMs could be applied
to graph ML tasks, using their background knowledge to support the predictions
and outputting natural language verbalizations for better understandability. LLMs,
however, are black-box models and prone to hallucinations. A combination with KGs
could provide validated evidence for the generation process, creating more reliable
and trustworthy LLMs.

95

Bibliography

[1] Hemn Barzan Abdalla. A brief survey on big data: Technologies, terminologies and
data-intensive applications. Journal of Big Data, 9:107, 2022.

[2] Grigoris Antoniou and Frank van Harmelen. Web Ontology Language: OWL. Hand-
book on Ontologies, pages 67–92, 2004.

[3] Alejandro Barredo Arrieta, Natalia Díaz, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard
Benjamins, Raja Chatila, and Francisco Herrera. Explainable artificial intelligence
(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
Information Fusion, 58:82–115, 2020.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. DBpedia: A nucleus for a web of open data. In The 6th Inter-
national Semantic Web Conference and the 2nd Asian Semantic Web Conference,
volume 4825, pages 722–735, 2007.

[5] Ajmal Aziz, Edward Elson Kosasih, Ryan-Rhys Griffiths, and Alexandra Brintrup.
Data considerations in graph representation learning for supply chain networks. In
Workshop on Machine Learning for Data, International Conference on Machine
Learning, 2021.

[6] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

[7] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger.
Logic tensor networks. Artificial Intelligence, 303:103649, 2022.

[8] Ivana Balažević, Carl Allen, and Timothy M. Hospedales. TuckER: Tensor fac-
torization for knowledge graph completion. In The 2019 Conference on Empirical

97

Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, pages 5185–5194, 2019.

[9] Richard Bellman. A Markovian decision process. Journal of Mathematics and Me-
chanics, 6(5):679–684, 1957.

[10] Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and
Pasquale Minervini. Knowledge graph embeddings and explainable AI. Knowl-
edge graphs for explainable artificial intelligence: Foundations, applications and chal-
lenges, pages 49–72, 2020.

[11] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review
for statisticians. Journal of the American Statistical Association, 112:859–877, 2017.

[12] Olivier Bodenreider. The Unified Medical Language System (UMLS): Integrating
biomedical terminology. Nucleic Acids Research, 32:D267–D270, 2004.

[13] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-
dreschi, and Salvatore Rinzivillo. Benchmarking and survey of explanation methods
for black box models. Data Mining and Knowledge Discovery, 37:1719–1778, 2023.

[14] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: A collaboratively created graph database for structuring human knowledge. In
The 2008 ACM SIGMOD International Conference on Management of Data, pages
1247–1250, 2008.

[15] Stephen Bonner, Ian P. Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Andreas
Bender, Charles Tapley Hoyt, and William L. Hamilton. A review of biomedical
datasets relating to drug discovery: A knowledge graph perspective. Briefings in
Bioinformatics, 23(6):bbac404, 2022.

[16] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In The 27th
Conference on Neural Information Processing Systems, volume 26, pages 2787–2795,
2013.

[17] Matthew Botvinick, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell,
and Demis Hassabis. Reinforcement learning, fast and slow. Trends in Cognitive
Sciences, 23(5):408–422, 2019.

98

Chapter 8. Bibliography

[18] Martin Brylowski, Meike Schröder, and Wolfgang Kersten. Machine learning im
supply chain risk management: Studie. Technical report, Technische Universität
Hamburg, 2021.

[19] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine learning
interpretability: A survey on methods and metrics. Electronics, 8(8):832, 2019.

[20] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy.
Machine learning on graphs: A model and comprehensive taxonomy. Journal of
Machine Learning Research, 23:3840–3903, 2022.

[21] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-
ing RNN encoder–decoder for statistical machine translation. In The 2014 Conference
on Empirical Methods in Natural Language Processing, pages 1724–1734, 2014.

[22] Alain Colmerauer. An introduction to Prolog III. Computational Logic, pages 37–79,
1990.

[23] Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar,
Akshay Krishnamurthy, Alex Smola, and Andrew McCallum. Go for a walk and
arrive at the answer: Reasoning over paths in knowledge bases using reinforcement
learning. In The 6th International Conference on Learning Representations, 2018.

[24] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–
38, 1977.

[25] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Con-
volutional 2D knowledge graph embeddings. In The 32nd AAAI Conference on
Artificial Intelligence, pages 1811–1818, 2018.

[26] Finale Doshi-Velez and Been Kim. Considerations for evaluation and generalization
in interpretable machine learning. Explainable and Interpretable Models in Computer
Vision and Machine Learning, pages 3–17, 2018.

[27] Michael Färber and Adam Jatowt. Citation recommendation: Approaches and
datasets. International Journal on Digital Libraries, 21:375–405, 2020.

99

[28] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. AMIE:
Association rule mining under incomplete evidence in ontological knowledge bases.
In The 22nd International World Wide Web Conference, pages 413–422, 2013.

[29] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule
mining in ontological knowledge bases with AMIE+. The VLDB Journal, 24:707–730,
2015.

[30] Alberto García-Durán, Sebastijan Dumanc̆ić, and Mathias Niepert. Learning se-
quence encoders for temporal knowledge graph completion. In The 2018 Conference
on Empirical Methods in Natural Language Processing, pages 4816–4821, 2018.

[31] Michael R. Genesereth and Matthew L. Ginsberg. Logic programming. Communi-
cations of ACM, 28(9):933–941, 1985.

[32] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Di-
achronic embedding for temporal knowledge graph completion. In The 34th AAAI
Conference on Artificial Intelligence, volume 34(4), pages 3988–3995, 2020.

[33] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of
modern neural networks. In The 34th International Conference on Machine Learning,
volume 70, pages 1321–1330, 2017.

[34] William L. Hamilton. Graph Representation Learning. Springer International Pub-
lishing, 2020.

[35] Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning
for forecasting on temporal knowledge graphs. In The 9th International Conference
on Learning Representations, 2021.

[36] Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sab-
rina L. Chen, Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E.
Baranzini. Systematic integration of biomedical knowledge prioritizes drugs for re-
purposing. eLife, 6:e26726, 2017.

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9(8):1735–1780, 1997.

100

Chapter 8. Bibliography

[38] Alfred Horn. On sentences which are true of direct unions of algebras. The Journal
of Symbolic Logic, 16(1):14–21, 1951.

[39] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, and Jonathan
Taylor. An Introduction to Statistical Learning with Applications in Python. Springer
International Publishing, 2023.

[40] Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent Event Network:
Autoregressive structure inference over temporal knowledge graphs. pages 6669–
6683, 2020.

[41] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic
algorithm: Past, present, and future. Multimedia Tools and Applications, 80:8091–
8126, 2021.

[42] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter
Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.
Journal of Machine Learning Research, 21:2648–2720, 2020.

[43] Seyed Mehran Kazemi and David Poole. SimplE embedding for link prediction in
knowledge graphs. In The 32nd Conference on Neural Information Processing Sys-
tems, volume 31, pages 4284–4295, 2018.

[44] Shristi Shakya Khanal, P.W.C. Prasad, Abeer Alsadoon, and Angelika Maag. A
systematic review: Machine learning based recommendation systems for e-learning.
Education and Information Technologies, 25:2635–2664, 2019.

[45] Shima Khoshraftar and Aijun An. A survey on graph representation learning meth-
ods. arXiv:2204.01855, 2022.

[46] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In The 5th International Conference on Learning Representations,
2017.

[47] Chanchal Kumar, Taran Singh Bharati, and Shiv Prakash. Online social network
security: A comparative review using machine learning and deep learning. Neural
Processing Letters, 53:843–861, 2021.

101

[48] Timothee Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decomposi-
tions for temporal knowledge base completion. In The 8th International Conference
on Learning Representations, 2020.

[49] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. Fast and exact rule mining
with AMIE 3. In The 17th Extended Semantic Web Conference, volume 12123, pages
36–52, 2020.

[50] Ni Lao and William W. Cohen. Relational retrieval using a combination of path-
constrained random walks. Machine Learning, 81:53–67, 2010.

[51] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge
graph. In The Web Conference 2018, pages 1771–1776, 2018.

[52] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
444, 2015.

[53] Kalev Leetaru and Philip A. Schrodt. GDELT: Global data on events, location, and
tone. In The International Studies Association Annual Convention, 2013.

[54] Ke Liang, Lingzuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang, Sihang
Zhou, Xinwang Liu, and Fuchun Sun. A survey of knowledge graph reasoning on
graph types: Static, dynamic, and multi-modal. arXiv:2212.05767, 2023.

[55] Tong Liu, Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Hang Li, and Volker
Tresp. On calibration of graph neural networks for node classification. In The 2022
International Joint Conference on Neural Networks, 2022.

[56] Yushan Liu, Bailan He, Marcel Hildebrandt, Maximilian Buchner, Daniela Inzko,
Roger Wernert, Emanuel Weigel, Dagmar Beyer, Martin Berbalk, and Volker Tresp.
A knowledge graph perspective on supply chain resilience. In The 2nd International
Workshop on Linked Data-Driven Resilience Research, Extended Semantic Web Con-
ference, 2023.

[57] Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Martin Ringsquandl, Rime Rais-
souni, and Volker Tresp. Neural multi-hop reasoning with logical rules on biomedical
knowledge graphs. In The 18th Extended Semantic Web Conference, volume 12731,
pages 375–391, 2021.

102

Chapter 8. Bibliography

[58] Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell Joblin, and Volker Tresp.
TLogic: Temporal logical rules for explainable link forecasting on temporal knowl-
edge graphs. In The 36th AAAI Conference on Artificial Intelligence, volume 36(4),
pages 4120–4127, 2022.

[59] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. In Workshop on Deep Learning for Audio,
Speech, and Language Processing, International Conference on Machine Learning,
2013.

[60] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec: Scalable dy-
namic network embedding. In The 2018 IEEE International Conference on Big Data,
pages 3762–3765, 2018.

[61] Sunil Malviya, Arvind Kumar Tiwari, Rajeev Srivastava, and Vipin Tiwari. Machine
learning techniques for sentiment analysis: A review. SAMRIDDHI: A Journal of
Physical Sciences, Engineering and Technology, 12(2):72–78, 2020.

[62] Christian Meilicke, Melisachew Wudage Chekol, Patrick Betz, Manuel Fink, and
Heiner Stuckenschmidt. Anytime bottom-up rule learning for large-scale knowledge
graph completion. The VLDB Journal, 2023.

[63] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuck-
enschmidt. Anytime bottom-up rule learning for knowledge graph completion. In
The 28th International Joint Conference on Artificial Intelligencee, pages 3137–3143,
2019.

[64] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. In Workshop of the International Conference
on Learning Representations, 2013.

[65] George A. Miller. WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41, 1995.

[66] Mohammad Nagahisarchoghaei, Nasheen Nur, Logan Cummins, Nashtarin Nur,
Mirhossein Mousavi Karimi, Shreya Nandanwar, Siddhartha Bhattacharyya, and
Shahram Rahimi. An empirical survey on explainable AI technologies: Recent trends,

103

use-cases, and categories from technical and application perspectives. Electronics,
12(5):1092, 2023.

[67] Meike Nauta, Jan Trienes Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin
Schmitt, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. An objective
metric for explainable AI: How and why to estimate the degree of explainability.
ACM Computing Surveys, 55(135):1–42, 2023.

[68] Radford M. Neal. Bayesian Learning for Neural Networks. Springer International
Publishing, 1996.

[69] H.D. Nguyen, K.P. Tran, S. Thomassey, and M. Hamad. Forecasting and anomaly
detection approaches using LSTM and LSTM autoencoder techniques with the ap-
plications in supply chain management. International Journal of Information Man-
agement, 57:102282, 2021.

[70] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In The 28th International Conference on
Machine Learning, pages 809–816, 2011.

[71] Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986.

[72] Seam P. O’Brien. Crisis early warning and decision support: Contemporary ap-
proaches and thoughts on future research. International Studies Review, 12:87–104,
2010.

[73] Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. Learning temporal rules
from knowledge graph streams. In The AAAI 2019 Spring Symposium on Combining
Machine Learning with Knowledge Engineering, 2019.

[74] Simon Ott, Christian Meilicke, and Matthias Samwald. SAFRAN: An interpretable,
rule-based link prediction method outperforming embedding models. In The 3rd
Conference on Automated Knowledge Base Construction, 2021.

[75] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Uni-
fying large language models and knowledge graphs: A roadmap. arXiv:2306.08302,
2023.

[76] Karl Pearson. The problem of the random walk. Nature, 72:294, 1905.

104

Chapter 8. Bibliography

[77] John C. Platt. Probabilities for sv machines. Advances in Large Margin Classifiers,
pages 61–74, 2000.

[78] Meng Qu and Jian Tang. Probabilistic logic neural networks for reasoning. In The
33rd Conference on Neural Information Processing Systems, volume 32, pages 7680–
7690, 2019.

[79] J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–
266, 1990.

[80] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learn-
ing, 62:107–136, 2006.

[81] Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In The
31rd Conference on Neural Information Processing Systems, volume 30, pages 3791–
3803, 2017.

[82] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog
new tricks! On training knowledge graph embeddings. In The 8th International
Conference on Learning Representations, 2020.

[83] Tara Safavi, Danai Koutra, and Edgar Meij. Evaluating the calibration of knowl-
edge graph embeddings for trustworthy link prediction. In the 2020 Conference on
Empirical Methods in Natural Language Processing, pages 8308–8321, 2020.

[84] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-
Robert Müller. Explainable AI: Interpreting, Explaining and Visualizing Deep Learn-
ing. Springer International Publishing, 2019.

[85] Iqbal H. Sarker, A.S.M. Kayes, Shahriar Badsha, Hamed Alqahtani, Paul Watters,
and Alex Ng. Cybersecurity data science: An overview from machine learning per-
spective. Journal of Big Data, 7:41, 2020.

[86] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional networks.
In The 15th Extended Semantic Web Conference, volume 10843, pages 593–607, 2018.

[87] E.W. Schneider. Course modularization applied: The interface system and its impli-
cations for sequence control and data analysis. Technical report, Human Resources
Research Organization, 1973.

105

[88] Raymond M. Smullyan. First-Order Logic. Dover Publications, 1995.

[89] Francesco Sovrano and Fabio Vitali. An objective metric for explainable AI: How and
why to estimate the degree of explainability. Knowledge-Based Systems, 278:110866,
2023.

[90] Claudio Stamile, Aldo Marzullo, and Enrico Deusebio. Graph Machine Learning:
Take graph data to the next level by applying machine learning techniques and algo-
rithms. Packt Publishing, 2012.

[91] Wenjuan Sun, Paolo Bocchini, and Brian D. Davison. Applications of artificial intel-
ligence for disaster management. Natural Hazards, 103:2631–2689, 2020.

[92] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge
graph embedding by relational rotation in complex space. In The 7th International
Conference on Learning Representations, 2019.

[93] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2018.

[94] Pedro Tabacof and Luca Costabello. Probability calibration for knowledge graph em-
bedding models. In The 8th International Conference on Learning Representations,
2020.

[95] Leanardo Teixeira, Brian Jalaian, and Bruno Ribeiro. Are graph neural networks
miscalibrated? In Workshop on Learning and Reasoning with Graph-Structured Rep-
resentation, International Conference on Machine Learning, 2019.

[96] Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, and
Sarah Michalak. On mixup training: Improved calibration and predictive uncertainty
for deep neural networks. In The 33rd Conference on Neural Information Processing
Systems, volume 32, pages 13888–13899, 2019.

[97] Christian Tomani and Florian Buettner. Towards trustworthy predictions from deep
neural networks with fast adversarial calibration. In The 35th AAAI Conference on
Artificial Intelligence, volume 35(11), pages 9886–9896, 2021.

[98] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In The 33rd International
Conference on Machine Learning, volume 48, pages 2071–2080, 2016.

106

Chapter 8. Bibliography

[99] Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311, 1966.

[100] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar.
Composition-based multi-relational graph convolutional networks. In The 8th In-
ternational Conference on Learning Representations, 2020.

[101] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. In The 6th International Conference
on Learning Representations, 2018.

[102] I.N. Vos, I.R. Bhat, B.K. Velthuis, Y.M. Ruigrok, and H.J. Kuijf. Calibration tech-
niques for node classification using graph neural networks on medical image data. In
The International Conference on Medical Imaging with Deep Learning, 2023.

[103] Denny Vrandec̆ić and Markus Krötzsch. Wikidata: A free collaborative knowledge-
base. Communications of the ACM, 57(10):78–85, 2014.

[104] Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan, Bo Xiong, Heng Liu, Linhao
Luo, Tengfei Liu, Yongli Hu, Baocai Yin, and Wen Gao. A survey on temporal
knowledge graph completion: Taxonomy, progress, and prospects. arXiv:2308.02457,
2023.

[105] Pin Wang, En Fan, and Peng Wang. Comparative analysis of image classification
algorithms based on traditional machine learning and deep learning. Pattern Recog-
nition Letters, 141:61–67, 2021.

[106] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. Simplifying graph convolutional networks. In The 36th
International Conference on Machine Learning, volume 97, pages 6861–6871, 2019.

[107] Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A reinforce-
ment learning method for knowledge graph reasoning. In The 2017 Conference on
Empirical Methods in Natural Language Processing, pages 564–573, 2017.

[108] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. In The 3rd
International Conference on Learning Representations, 2015.

107

[109] Fan Yang, Qi Zhang, Xiaokang Ji, Yanchun Zhang, Wentao Li, Shaoliang Peng, and
Fuzhong Xue. Machine learning applications in drug repurposing. Interdisciplinary
Sciences: Computational Life Sciences, 14:15–21, 2022.

[110] B. Yegnanarayana. Artificial Neural Networks. Prentice-Hall of India, 2004.

[111] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. In The 33rd Conference
on Neural Information Processing Systems, volume 32, pages 9240–9251, 2019.

[112] L.A. Zadeh. Fuzzy logic. Computer, 21(4):83–93, 1988.

[113] Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from
decision trees and naive Bayesian classifiers. In The 18th International Conference
on Machine Learning, pages 609–616, 2001.

[114] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate
multiclass probability estimates. In The 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 694–699, 2002.

[115] Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and Haipeng Ding. Neural, symbolic
and neural-symbolic reasoning on knowledge graphs. AI Open, 2:14–35, 2021.

[116] Wen Zhang, Jiaoyan Chen, Juan Li, Zezhong Xu, Jeff Z. Pan, and Huajun Chen.
Knowledge graph reasoning with logics and embeddings: Survey and perspective.
arXiv:2202.07412, 2022.

[117] Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhang.
Learning from history: Modeling temporal knowledge graphs with sequential copy-
generation networks. In The 35th AAAI Conference on Artificial Intelligence, volume
35(5), pages 4732–4740, 2021.

[118] Esra Zihni, Vince Istvan Madai, Michelle Livne, Ivana Galinovic, Ahmed A. Khalil,
Jochen B. Fiebach, and Dietmar Frey. Opening the black box of artificial intelli-
gence for clinical decision support: A study predicting stroke outcome. PLoS One,
15(4):e0231166, 2020.

[119] Karl Johan Åström. Optimal control of Markov processes with incomplete state
information I. Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

108

	Abstract
	Zusammenfassung
	Acknowledgments
	List of Publications and Declaration of Authorship
	Introduction
	Motivation
	Summary of Contributions

	Graph Machine Learning
	Fundamentals of Graphs
	Machine Learning Tasks
	Tasks
	Evaluation

	Subsymbolic Approaches
	Knowledge Graph Embeddings
	Graph Neural Networks

	Symbolic Approaches
	Path-Based Approaches

	Explainable Artificial Intelligence
	Explainability in Graph Machine Learning
	Calibration in Graph Machine Learning

	Neural Multi-Hop Reasoning with Logical Rules on Biomedical Knowledge Graphs
	TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs
	A Knowledge Graph Perspective on Supply Chain Resilience
	On Calibration of Graph Neural Networks for Node Classification
	Conclusion
	Bibliography

