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Summary

The synthesis of novel, complex drug molecules to establish structure-activity relationships
(SAR) is often the limiting step in early drug discovery. To expedite SAR exploration and
enhance the pharmacological profiles of lead structures within the design-make-test-analyze
(DMTA) cycle, it is crucial to refine synthetic methodologies. Late-stage functionalization
(LSF) offers an effective, step-saving approach for modifying advanced leads by directly sub-
stituting C–H bonds with other moieties, thereby facilitating chemical space exploration and
modulating adsorption, distribution, metabolism and excretion (ADME) properties. How-
ever, the similarity of C–H bonds within structurally intricate drug and drug-like molecules
necessitates a detailed understanding of their reactivity for targeted functionalization, which
complicates the standardization of experimental protocols. This complexity often results in
resource-intensive wet lab explorations, which may conflict with the stringent timelines and
budgets of drug discovery projects.

High-throughput experimentation (HTE) has emerged as a key technology to streamline
synthesis by efficiently evaluating reaction conditions in a plate format using automation
equipment. Tackling certain remaining bottlenecks of HTE, specifically in the field of soft-
ware/hardware integration and data governance, the technology has the potential to efficiently
assess LSF reaction methodologies with the lowest possible material consumption. The LSF re-
action data sets from HTE campaigns combined with big data analytics and machine learning
(ML) are expected to enable the development of predictive models for C–H bond transforma-
tions. This would allow the estimation of reaction outcomes before carrying out resource and
time-intensive experimentation in the laboratory facilitating the synthesis of target molecules
in an environmentally conscious and material-efficient manner.
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Despite the potential of making LSF a more efficient methodology to enable fast drug diversifi-
cation and, consequently, speed up the development of novelmedicines, a seamless connection
between all three research fields, namely, LSF,HTE and reactivity prediction has not beenmade
so far.

This thesis presents the development of a digital, semi-automated HTE system designed
to systematically evaluate LSF methodologies on drug-like molecules. Dolphin, the Data-
orchestrated laboratory platform harnessing innovative neural network, is an end-to-end plat-
form tailored for LSF that incorporates automation, digitalization, and ML to enhance com-
pound synthesis efficiency in early drug discovery. Advanced automated laboratory equip-
ment, such as solid and liquid dosing robots, is employed to simultaneously initiate reactions
and prepare controls, ensuring sample quality for subsequent analyses. A high level of soft-
ware/hardware integration supports the workflow from literature analysis and reaction plate
screening to scale-up planning and data management.

To allow the extraction, curation, storage and analysis of reaction data from the literature, in
parallel with the development of Dolphin, efforts have been directed towards the develop-
ment of a simple, user-friendly reaction format (SURF). After evaluating current data-sharing
practices and identifying bottlenecks, SURF was designed to be both human- and machine-
readable, streamlining the use of reaction data in ML applications. Application of this format
to curate data from selected publications enabled systematic HTE plate design and provided
high-quality data sets for ML model development.

Applying Dolphin and SURF in two case studies with different LSF reaction types enabled
reactivity prediction. The first case study was centered around assessing the applicability of
C–H borylation reactions for the late-stage diversification of complex molecules. Hundreds
of HTE reactions were performed on systematically chosen commercial drugs under a wide
array of conditions. The data generated from these experiments were captured in SURF and
used to support the development of an ML algorithm capable of predicting binary reaction
outcomes, yields, and regioselectivity for novel substrates. The influence of steric and electronic
effects on model performance was quantified by featurization of the input molecular graphs
with 2D, 3D and quantum mechanics (QM) augmented information. The reactivity of novel
reactions with known and unknown substrates was classified with a balanced accuracy of
92% and 67%, respectively, while computational models predicted reaction yields for diverse
reaction conditionswith amean absolute error (MAE)margin of 4–5%. The platformdelivered
numerous starting points for the structural diversification of commercial pharmaceuticals and
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advanced drug-like fragments.

The second case study investigated a library-type screening approach for determining the
substrate scope of late-stage Minisci-type C–H alkylations to explore new exit vectors. This
approach aimed to facilitate the in silico prediction of suitable substrates that can undergo cou-
pling with a diverse array of sp3-rich carboxylic acids. Again, Dolphin and SURF provided
the experimental data sets to trainMLmodels for the described task. The algorithms predicted
reaction yields with an MAE of 11–12% and suggested starting points for scale-up reactions
of 3180 advanced heterocyclic building blocks with various carboxylic acid building blocks.
From those, a set of promising candidates was chosen, reactions were scaled up to the 50 to
100 mg range and products were isolated and characterized. This process led to the creation
of 30 novel, functionally modified molecules that hold potential for further optimization. The
results from both case studies positively advocate the application of ML based on high-quality
HTE data for reactivity prediction in the LSF space and beyond.

In summary, this thesis established a semi-automatedplatform (Dolphin) and a new reaction
format (SURF), facilitating the development ofMLmodels for LSF reaction screening, thereby
contributing to enhancing the compound synthesis efficiency in drug discovery through the
strategic application of laboratory automation and artificial intelligence.
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Kurzfassung

Die Synthese neuartiger, komplexer Arzneimoleküle zur Etablierung von Struktur-Aktivitäts-
Beziehungen (structure-activity-relationships,SAR) ist oft der limitierende Schritt in der frühen
Arzneimittelforschung. Um die Aufklärung von SAR zu beschleunigen und die pharmakolo-
gischen Profile von Leitstrukturen innerhalb des Design-Synthese-Test-Analyse (design-make-
text-analyze, DMTA)-Zyklus zu verbessern, ist es von entscheidender Bedeutung, neue, syn-
thetischeMethoden zu explorieren. Die späte Funktionalisierung (late-stage functionalization,
LSF) bietet einen effektiven, schrittsparenden Ansatz für die Modifizierung fortgeschrittener
Leitstrukturen durch die direkte Substitution von C-H-Bindungen durch andere Reste oder
funktionalle Gruppen Komponenten. Dadurch kann die Erforschung des chemischen Raums
und die Modulation der Adsorption, Verteilung, Metabolismus und Ausscheidung (ADME)
Eigenschaften erleichtert werden. Allerdings erfordert die Ähnlichkeit der C–H-Bindungen in
komplexen arzneistoff- undwirkstoffähnlichenMolekülen für eine gezielte Funktionalisierung,
ein detailliertes Verständnis ihrer Reaktivität, wodurch sich die standar-disierte Applikation
von Reaktionsvorschriften schwierig gestaltet. Diese Komplexität führt häufig zu umfang-
reichen Laborexperimenten, die mit den strengen Zeit- und Budgetplänen von Arzneimittel-
entwicklungsprojekten in Konflikt geraten können.

Hochdurchsatz-Experimente (high-throughput experimentation, HTE) haben sich als Schlüs-
seltechnologie etabliert, um die Synthese von Molekülen durch paralleles Screening von Reak-
tionsbedingungen im Plattenformat unter Verwendung von Laborautomatisierung effizienter
zu gestalten. Indem bestehende Limitierungen im Gebiet der HTE, insbesondere die Bereiche
Software-/Hardware-Integration und Datenverwaltung, addressiert werden, hat die Technolo-
gie das Potenzial, die Anwendbarkeit von LSF-ReaktionenmitminimalemVerbrauch von Start-
materialien zu analyiseren. Es wird erwartet, dass die aus diesen Experimenten gewonnenen
qualitativ hochwertigen Reaktionsdatensätze, kombiniertmit Datenanalyse undmaschinellem
Lernen (ML) die Entwicklung von computergestützten Modellen zur Vorhersage von LSF
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Transformationen ermöglichen könnten. Dies würde die Abschätzung von Reaktionsergeb-
nissen ermöglichen, bevor ressourcen- und zeitintensive Experimente im Labor durchgeführt
werden, wodurch die Synthese von Zielmolekülen in der medizinischen Chemie umweltbe-
wusster und effizienter gestaltet werden könnte.

Trotz des Potenzials, LSF zu einer effizienteren Methode zu machen, die eine schnelle Derivati-
sierung von arnzeimittel-ähnlichen Molekülen ermöglicht und damit die Entwicklung neuer
Medikamente beschleunigt, wurde bisher keine nahtlose Verbindung zwischen den drei For-
schungsbereichen, LSF, HTE und der computergestützten Vorhersage von Reaktions-
produkten, hergestellt.

Aus diesem Grund hat die vorliegende Dissertation ein digitales, halbautomatisierten HTE-
System mit dem Namen Dolphin (Data-orchestrated laboratory platform harnessing inno-
vative neural networks, deut. daten-getriebene Laborplatform, die innovative neuronale Netz-
werke nutzt) entwickelt. Dolphin ist darauf ausgelegt,dieAnwendbarkeit vonLSF-Methoden
an wirkstoffähnlichen Molekülen systematisch zu analysieren. Dabei integriert die Plattform
Automatisierung, Digitalisierung und ML, um die Effizienz der Synthese von Verbindung-
en in der frühen Arzneistoffforschung zu verbessern. Moderne, automatisierte Laborgeräte,
wie zum Beispiel Feststoff- und Flüssigkeitsdosierroboter, werden eingesetzt, um Reaktionen
gleichzeitig anzusetzen und den Reaktionsfortschritt zu kontrollieren. Ein hohes Maß an
Software-Hardware-Integration unterstützt den Prozess von der Literaturanalyse über die
Planung und Ausführung von Screening und Scale-up Experimenten bis hin zum Datenma-
nagement.

Um die Extraktion, Kuratierung, Speicherung und Analyse von Reaktionsdaten aus der Litera-
tur zu ermöglichen, wurden parallel zur Entwicklung von Dolphin die Bemühungen auf die
Entwicklung eines einfachen, benutzerfreundlichen Reaktionsformats (simple user-friendly
reaction format, SURF) gerichtet. Nach einer Bewertung der derzeitigen Praktiken für die
gemeinsame Nutzung von Daten und der Ermittlung von bestehenden Limitierungen wurde
SURF so konzipiert,dass es sowohl vonMenschen als auchvonMaschinen verstandenwerden
kann und damit die Verwendung von Reaktionsdaten in ML-Modellen vereinfacht wird. Die
Anwendung dieses Formats zur Kuratierung von Daten aus ausgewählten Veröffentlichungen
ermöglichte das systematische Design von HTE-Platten und lieferte hochwertige Datensätze
für die Entwicklung von ML-Algorithmen.
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Die Anwendung von Dolphin und SURF in zwei Fallstudien mit verschiedenen LSF-Reak-
tionstypen wurde genutzt, um ML Modelle zur Vorhersage der chemischen Reaktivität zu
entwickeln. Die erste Fallstudie konzentrierte sich auf die Bewertung der Anwendbarkeit
von C–H-Borylierungsreaktionen für die LSF von komplexen Molekülen. Hunderte von HTE-
Reaktionen wurden unter einer Vielzahl von Bedingungen an systematisch ausgewählten
kommerziellen Arzneistoffen durchgeführt. Die aus diesen Experimenten gewonnenen Daten
wurden in SURF erfasst und für die Entwicklung eines ML-Algorithmus verwendet, der
in der Lage ist, binäre Reaktionsergebnisse, Ausbeuten und Regioselektivität für neue Sub-
strate vorherzusagen. Der Einfluss sterischer und elektronischer Effekte auf die Genauigkeit
der Modelle wurde durch die Kodeierung der Startmaterialien mit 2D-, 3D- und quanten-
mechanischen (QM) Informationen quantifiziert. Die Reaktivität neuartiger Reaktionen mit
bekannten und unbekannten Substraten wurde mit einer ausgewogenen Genauigkeit von 92%
bzw. 67% klassifiziert, während die Algorithmen die Reaktionsausbeuten für verschiedene
Reaktionsbedingungenmit einermittleren absoluten Fehlermarge (mean absolute error,MAE)
von 4-5% vorhersagten. Die Plattform lieferte zahlreiche Startpunkte für die strukturelle Di-
versifizierung kommerzieller Pharmazeutika und fortgeschrittener arzneistoffähnlicher Frag-
mente.

Die zweite Fallstudie untersuchte einen bibliotheksbasierten Screening-Ansatz zur Bestim-
mung des Substratspektrums von späten C-H-Alkylierungen des Minisci Reaktionstyps, um
neue Exitvektoren zu erforschen. Diese Forschung zielte darauf ab, die in silico Vorhersage
geeig-neter Substrate zu erleichtern, welche mit einer vielfältigen Palette von sp3-reichen
Carbonsäuren gekoppelt werden können. Auch hier lieferten Dolphin und SURF die ex-
perimentellen Datensätze, um ML-Modelle für die beschriebene Aufgabe zu trainieren. Die
Algorithmen sagten Reaktionsausbeuten mit einem MAE von 11-12% voraus und schlugen
Startpunkte für Reaktionen in grösserem Massstab ausgehend von einem Datensatz mit 3180
fortgeschrittenen heterozyklischen Bausteinen und verschiedenen Carbonsäurebausteinen
vor. Aus den Vorhersagen wurden vielversprechende Kandidaten ausgewählt, die Reaktionen
wurden auf einen Bereich von 50 bis 100mg hochskaliert, und die Produkte isoliert und charak-
terisiert. Auf dieseWeise entstanden 30 neuartige, funktionell veränderteMoleküle, die sich für
eine weitere Optimierung eignen. Die Ergebnisse beider Fallstudien befürworten die Anwen-
dung vonML auf der Grundlage hochwertigerHTE-Datensätze für die Reaktivitätsvorhersage
von LSF Reaktionen und weiteren Reaktionstypen.
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Zusammenfassend hat diese Dissertation eine halbautomatisierte Plattform (Dolphin) und
ein neues Reaktionsformat (SURF) entwickelt, welche die Entwicklung vonML-Modellen für
das in silico Screening von LSF-Reaktionen ermöglicht haben. Damit hat diese Forschung dazu
beigetragen, die Effizienz der chemischen Synthese in der Arzneistoffforschung durch die
strategische Anwendung von Laborautomatisierung und künstlicher Intelligenz zu steigern.
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Passion is the fuel that ignites the fire within.

- Jan Frodeno

1
Introduction

1.1 Drug discovery

The discovery and development of new pharmaceuticals is an intricate and multifaceted chal-
lenge that persists despite considerable advancements in the understanding of disease mecha-
nisms and breakthroughs in technological capabilities. The early pre-clinical drug discovery
process consists of a series of stages classically starting from target identification through lead
identification and lead optimization (LO) to candidate selection, which underlines the com-
plexity of developing an efficient drug compound with suitable pharmacokinetic parameters
and a strong safety profile. [1] Demonstrating both, safety and efficacy in humans, during
clinical trials, which resemble the next step of the pharmaceutical development process, plays
a vital role. Despite multiple iterative design cycles and precise optimization of properties, a
high proportion of potential therapies still fail in clinical studies generating high costs with-
out delivering any return on investment (ROI). [2] This decline in research & development
(R&D) efficiency, often related to pre-clinical assumptions lacking human validation leading
to late-stage failures, has inflated the overall cost of drug development. [3]
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Over the years, several studies have analyzed the development of R&D efficiency across the
global pharmaceutical industry. [4–9] In line with their conclusions, recent research revealed
that the overall average R&D cost to develop a compound from discovery to launch has ap-
proximately doubled over the last decade. [10]While on average 1.3 billion USDwere required
to get a compound to market in 2013, by 2022 the drug discovery process demanded over 2.2
billion USD (Figure 1.1). Unsurprisingly, the average expected ROI dropped from 6.5 per cent
to 1.2 per cent in the same period. Lower costs and higher ROIs reported during the pandemic
in 2021, mainly due to the fast approvals of vaccinations and treatments, have to be seen as
outliers due to unexpected external circumstances and do not brighten up the overall outlook
for the pharmaceutical industry.

Figure 1.1: Average R&D cost to develop a compound from discovery to launch, 2013-2022. Data and
figure derived from Terry & Lesser (2023). [10]

The discrepancy between investment and output has not only failed to meet investor expec-
tations but has also raised questions about the sustainability and speed of the current R&D
model to address unmetmedical needs across the globe, prompting the industry to deliberately
focus on efficiency improvements. [7, 8] Benchmarks from the industry have shown that not
only the clinical trials, which represent the core of the development phase of a potential drug,
are expensive and possess long cycle times, but that the LO phase in discovery also requires
substantial resource allocation (Figure 1.2). [6] More importantly, this phase is responsible
for defining the molecular structure of the future pharmaceutical industry, thereby largely
determining pharmacokinetics and pharmacodynamics. [11] Further, during this part of the
drug discovery process, a large amount of intellectual property (IP) is generated, which is
paramount to the pharmaceutical industry’s business model. [12, 13] Therefore, identifying
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ways to accelerate the LO phase and improving the outcomes of this stage of drug discovery
to generate high-quality and safe drug candidates have been a major focus of researchers in
academia and industry. [14–17]

Figure 1.2: Distinct phases of drug discovery and development from the initial stage of target identi-
fication to launch. The model is based on a set of industry-appropriate R&D assumptions (industry
benchmarks and data from Eli Lilly and Company) defining the performance of the R&D process at
each stage of development. R&D parameters include the probability of successful transition from one
stage to the next (p(TS)), the phase cost for each project, the cycle time required to progress through
each stage of development and the cost of capital, reflecting the returns required by shareholders to
use their money during the lengthy R&D process. Abbreviations: WIP: Work in Process, NME: New
Molecular Entity. Data and figure derived from Paul et al. (2010). [6]

LO is the cornerstone ofmedicinal chemistry research and, in general, follows the concept of the
design-make-test-analyze (DMTA) cycle (Figure 1.3). In this iterative process, the obtained
lead structure from hit identification is altered through chemical modifications to identify
molecules with maximal therapeutic efficacy and minimal undesired effects. [18–20] In the
first step, based on biological data, new ligand ideas are generated that could enhance the
pharmacological properties of the lead compound (i.e., design). Next, based on the ranking of
the designed molecules they are chemically synthesized in the laboratory, purified and charac-
terized (make). The compounds are then undergoing biological testing in a variety of assays to
identify their pharmacological and physicochemical properties (test). In the final stage of the
DMTA cycle, the obtained experimental data is analyzed and interpreted to aid the next round
of the process (i.e., analyze). [21] Identifying ways to make the cycles faster and cheaper by
advancing the different phases with technology, thereby contributing to reducing the required
time and costs to get a drug from concept to the market, has been widely discussed. [2, 22–24]
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Figure 1.3: The design-make-test-analyze (DMTA) cycle. In an iterative process, newmolecules are con-
ceptualized (design) and synthesized in the laboratory (make). Purified chemical matter is subjected
to biological assays (test) and the data is interpreted (analyze), delivering the foundation for the next
design cycle. In addition to time, DMTA loops require resources in terms of manpower, material and
machines to conduct the scientific experiments. Importantly, the generated experimental data needs to
be structured systematically, easily accessible and analyzable to make informed decisions.

The accumulation of compound profiling data and the advances in computing power have
paved the way for several computational methods that support and accelerate the design pro-
cess of new chemical entities (NCEs). Quantitative structure–activity relationships (QSARs)
determination, [25, 26] the prediction of physicochemical properties, [27–29] virtual screen-
ing, [30, 31] binding affinity predictions, [32, 33], and free energy perturbation calculations [34,
35] are some of many methodologies that belong to this computational drug discovery tool-
box. Consequently, to date, a plethora of molecule ideas can be generated within short time
frames requiring a limited amount of resources. [22] Based on the technological innovation
happening for and in high throughput screening (HTS), automated testing capabilities for
the determination of drug metabolism and pharmacokinetic properties were established. [36,
37]. Those capabilities reduced the turnaround times within the "test" phase to a large extent,
allowing for screening more molecules in a shorter time while broadening the testing scope in
parallel. [22] Through the faster generation of experimental data, storage and rapid analysis
infrastructures were needed, leading to significant investments of the pharmaceutical industry
into computational support of the discovery departments. [38–40] Specifically, the access to
and visualization of large data sets plays a critical role in advancing drug discovery programs
by validating hypotheses and enabling informed decision-making. [41]
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Further, machine learning (ML) has become an invaluable tool for analyzing large amounts
of data, summarizing findings and predicting a broad range of compound properties, thereby
closing the loop to the design stage. [42–46]

Despite these advances, the duration of a DMTA cycle remains lengthy, often exceeding 4–8
weeks until one loop is closed. As the identification of a clinical candidate generally demands
several iterations of the cycle, the LO phase requires a substantial investment into resources,
materials and long timelines. [2] As discussed above, the ideation of novel molecules (design),
the running of biological assays of different types, (e.g., potency and adsorption, distribution,
metabolism, excretion and toxicity (ADMET) (test), and the analysis of large data amounts
(analysis) has already been expedited. The "make" phase, however, is more difficult to opti-
mize and slows down the whole cycle to a large extent since the multi-step organic synthesis
of new complex chemical matter typically requires weeks. [1] Thus, reducing the length of the
"make" step could considerably decrease the overall resource and time demand for a single
DMTA cycle, consequently contributing to the accelerated development of an optimized drug
candidate. The utilization of laboratory automation equipment to speed up reaction set-up, an-
alytics and purification is starting to become increasingly important for organic synthesis. [47–
50] However, these automated systems are not the industry standard and, consequently, even
common and simple reaction types are still carried outmanually in classic fashion. [51, 52] As a
consequence, the synthesis of structurally novel, complex drug molecules and their analogs to
build structure-activity relationships (SAR) often remains the rate-limiting step in medicinal
chemistry. [53]

To overcome this bottleneck and accelerate rapid SAR exploration to efficiently improve the
pharmacological activity and physicochemical properties of lead structures in the DMTA cycle,
it is paramount to make synthetic strategies more efficient. The late-stage functionalization
(LSF) of complex scaffolds, where abundant C–H bonds serve as a starting point for the in-
corporation of functional groups to aid derivatization, has emerged as a powerful and step-
economical approach as it bypasses the necessity for de novo synthesis or the incorporation
of specific functional handles. [54] Therefore, the methodology can contribute to efficiently
exploring closely related chemical space of the parent structure to potentially serve as an
accelerator in the LO phase of drug discovery programs. [55]
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1.2 Late-stage functionalization

The foundation of this chapterwas published in:Nippa,D. F., Hohler, R., Stepan,A. F., Grether,
U., Konrad, D. B. &Martin, R. E., Late-stage Functionalization and its Impact on Modern Drug
Discovery, Chimia, 76, 258 (2022). [55] Figure 1.4 is reprinted from the original manuscript.

Author contributions: Conceptualization of the article, data search and analysis, figure prepara-
tion and manuscript writing.

1.2.1 Concept

The activation of C–H bonds to enable chemical transformations that generate direct analogs
from complex molecular structures, such as advanced drug-like compounds or natural prod-
ucts, is seen as an important tool in synthetic organic chemistry. [56–59] LSF, in particular,
describes the chemoselective direct substitution of C-H bonds by other functional groups in a
single step without necessitating any pre-functionalization on structurally intricate molecules.
[60] This offers the opportunity to achieve higher efficiency during the diversification of lead
structures compared to the de novo synthesis of new analogs (Figure 1.4). [61] Despite the
progress in methodology development in academia, the transferability of the methodologies
for utilization in drug discovery campaigns remains challenging. [62] Nevertheless, the re-
search in the field delivered some novel chemo-selective protocols with functional group com-
patibility that allow for wider applicability of LSF, which have been discussed in several com-
prehensive reviews. [54, 63–67]

Apart from avoiding molecule decomposition and maintaining functional group tolerance,
the main difficulty of applying the LSF approach efficiently for drug discovery problems lies
within the challenge of achieving site-selectivity among the numerous C–H bondswith similar
bond dissociation energies in a complex organic molecule. [66] To circumvent these selectivity
challenges, two principal strategies have been predominantly employed: innate and directed
C–H functionalizations. [68] Innate C–H functionalization involves the substitution of a C–H
bond by a new functional group at the most reactive site of the compound, determined by the
intrinsic reactivity of the molecule itself. This reactivity is influenced by several factors, includ-
ing bond dissociation energies, steric hindrance, electronic influences and kinetic acidity. The
innate functionalization can be steered through variation of the reaction conditions leading to
complementary functionalization at alternate C–H sites within one molecule. [69] In contrast,
directed C–H functionalization leverages Lewis basic functionalities to selectively position the
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Figure 1.4: Stepwise synthesis and parallel diversification chemistry. Classic stepwise synthesis (left)
represents the predominant strategy in medicinal chemistry for the construction of novel chemical
entities from commercially available precursors. The assembly of the desired structure necessitates
multiple, consecutive chemical reactions, with each derivative requiring a distinct synthetic route. In
contrast, the parallel diversification approach (right) involves the rapid construction of a core structure,
which is subsequently diversified through a variety of techniques, obviating the requirement for de
novo synthesis of each analog. This approach facilitates the rapid generation of a multitude of new
chemical entities (NCEs), potentially with an equal or reduced number of synthesis steps conducted
in the laboratory. Consequently, an increase in the overall efficiency of compound synthesis can be
achieved, which also aligns with the objectives of sustainable chemistry.

catalyst near a targeted C–H bond, facilitating C–H bond cleavage through a chelation effect.
Typical directing groups include heterocycles, amides, and carboxylic acids, functionalities
that also frequently appear in drug-like structures. [68] The distinction between the two LSF
concepts is not always possible, as multiple factors contribute to the site selectivity observed.
The full potential of both strategies is generated through their synergistic application to allow
for strategic and efficient LSF of complex molecular structures. In general, the LSF concept is
in alignment with the shift towards more sustainable chemical methods, which aim to work
less toxic, with better atom economy and more cost-effective. [69]

Consequently, the LSF approach has been considered for drug discovery campaigns, especially
within the LO phase, and the main application scope is described in the following section.

1.2.2 LSF application in drug discovery

LSF has emerged as a pivotal technique in drug discovery, addressing several critical aspects
of the development process and the four main applications are shown in Figure 1.5. It enables
the early identification and characterization of metabolites, thereby revealing potential safety
risks such as toxicity, which is essential for assessing the viability of lead compounds. [70] By
facilitating the introduction of functional groups, LSF allows for the precise modulation of
ADMET properties, including solubility, permeability, stability, half-life, bioavailability, and
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distribution, thereby optimizing the pharmacokinetic profile of drug candidates. [53, 64]

Figure 1.5: The impact of late-stage functionalization (LSF) on modern drug discovery. LSF enables
access tometabolites, allowing the identification and characterization of potential safety risks, including
toxicity, at an early stage in the discovery process (t.l.). Further, the introduction of functional groups al-
lows the specific modulation of adsorption, distribution,metabolism and excretion (ADME) properties
efficiently (t.r.). Those properties include solubility, permeability, stability, half-life, bioavailability and
distribution, among others. LSF also contributes to the exploration of structure-activity relationships
(SARs) by generating close analoges to the parent molecule without requiring de novo synthesis of each
compound (b.l.). This facilitates access to novel intellectual property (IP) space and on-target potency
optimization. LSF can also be seen as a tool to derivatize advanced intermediates or building blocks,
which can help to introduce new exit vectors or three-dimensional-rich fragments (b.r.).

Moreover, LSF is instrumental in the exploration of SARs, as it permits the generation of ana-
logues closely related to the parent molecule, thus bypassing the need for their complete de
novo synthesis and accelerating the hit-to-lead and LO stages. [66, 71] This approach not only
expedites the optimization of on-target potency but also opens new avenues for IP space. Ad-
ditionally, LSF serves as a strategic method for the derivatization of advanced intermediates
or building blocks, introducing new exit vectors or three-dimensional fragments that can sig-
nificantly enhance the structural diversity and complexity of lead molecules. [61, 62]

Over the past decade, the number of methodology publications in the LSF field has witnessed
a strong increase across various reaction types and a short overview with selected examples
will be given in the following subchapter.

1.2.3 Reaction types

The results from a comprehensive literature search conducted in Scopus, Web of Science and
SciFindern are depicted in Figure 1.6. The analysis of the literature search revealed that the
LSF toolbox of today encompasses a large number of chemical and enzymatic methods such
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as fluorination, [72] amination, [73] hydroxylation [70] and methylation. [74] Over the last
decade, tremendous progress towards providing reaction conditions for the functionalization
of almost any (C-sp2)-H or (C-sp3)–H bond without the need of installing a synthetic handle
was made. In the following, a short overview highlighting selected LSF reactions and their
application to drug discovery projects using representative examples will be given.

Figure 1.6: Overview of the LSF literature landscape (2012-2021). Increase in publications of the most
common LSF methodologies from 2012 to 2021 (center). Selected applications of LSF fluorination,
amination, arylation, methylation, oxidation, trifluoromethylation, borylation and acylation found in
the literature. The number in brackets next to the methodology name states the publication count as of
2021. Published with permission from [55].

The substantial number of studies (31) addressing fluorination techniques and their elevated
mean citation count (60) underscore the significance of C–F bond formation in the realm of
drug discovery (Figure 1.6). Late-stage fluorination strategies are instrumental in enhancing
the metabolic stability of labile C-H bonds and in augmenting protein–ligand interactions. The
Britton group has established protocols that facilitate the selective fluorination of pyridinic
C-H bonds, even in the presence of benzylic groups. This protocol was effectively employed
in the modification of an aldosterone synthase inhibitor 1. [72] Additionally, the same team
has illustrated that 18F, a radionuclide frequently utilized in positron emission tomography
(PET) imaging agents, can be incorporated in a site-specific manner into the methine position
of leucine residues within unprotected peptides. [75] Several other LSF methodologies that
aid the introduction of 18F were disclosed as well, including a two-step site-selective approach
via aryl sulfonium salts, [76] a procedure on benzylic procedure with manganese, [77] and
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a copper-mediated transformation of electron-rich heteroarenes [78]. Roque et al. presented
a methodology employing deconstructive fluorination for the synthesis of mono- and diflu-
orinated amine derivatives, achieved through the cleavage of C(sp3)–C(sp3) bonds within
saturated nitrogen-containing heterocycles, including piperidines and pyrrolidines. [79]

Amines are extensively utilized in medicinal chemistry, serving various purposes such as
enhancing target interactions or improving drug solubility. Additionally, they act as versa-
tile intermediates for subsequent chemical transformations and provide pivotal points of at-
tachment for conjugation with entities such as chemical biology tools and antibodies. Given
their broad range of applications, it is unsurprising that, as of 2021, late-stage amination tech-
niques are classified as the secondmost prevalent category of reactions in LSF. Exploiting their
novel conditions, Weis et al. showcased the utility of late-stage amination through the success-
ful synthesis of a Tranilast biotin conjugate 2, a compound with the potential to be applied
as a chemical biology probe. [73] Further, Wan et al. disclosed the development of a novel
flow photoreactor that facilitates regioselective and scalable C(sp3)–H aminations through
decatungstate photocatalysis. [80] Other examples cover the γ-selective C(sp3)–H amination
of unactivated alkenes with varying alkyl chain lengths [81] or the light-driven C–H amination
applying iron porphyrin catalysts [82].

Aromatic systems often enhance the potency of pharmaceutical agents through non-covalent
interactions with proteins. Although cross-coupling reactions are the primary synthetic means
to incorporate aryl groups, there is a growing need formore economical and efficient synthetic
approaches, as evidenced by the plethora of late-stage arylation methods reported in the lit-
erature. Within this context, Simonetti et al. introduced a strategy that enables the arylation
of various commercial pharmaceuticals, such as Sulfaphenazole (3). [83] In addition, a site-
selective late-stage C(sp3)–H arylation of peptides utilizing the native side chain of asparagine,
thereby enabling the synthesis of di-, tri-, and tetrapeptides without the need for external di-
recting groups was published. [84] Further work on peptides, delivered a versatile, late-stage
palladium-catalyzedC(sp3)–H arylation of peptides using thiazolemotifs as internal directing
groups, enabling regio- and site-selective functionalization of peptide side chains to facilitate
diverse, bioactive peptidomimetic libraries with thiazole-modified backbones. [85]

The "magic methyl effect," a term coined within medicinal chemistry, refers to the significant
enhancement of pharmacological attributes such as potency, metabolic stability, and reducing
cytochrome P450 inhibition, achieved by the mere addition of a methyl group to a lead com-
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pound. [86] Consequently, the development of efficient late-stage methylation techniques has
garnered considerable interest among researchers specializing in LSF. A notable contribution
to this field is the cobalt-catalyzed C-H methylation discovered by Friis et al., which has been
successfully applied to Celecoxib (4) and other small molecule drugs. [74] Moreover, a regios-
elective and chemoselective oxidative C(sp3)–H methylation method utilizing a manganese
catalyst at low loadings enabled the use of amildly nucleophilic organoaluminiummethylating
agent to modify a set of different heterocyclic cores and drug-like compounds. [87] Another
report highlights the selective methylation of arenes employing a non-chelation-assisted ap-
proach that integrates C-H functionalization with nickel-catalyzed cross-coupling, facilitating
the access to modified arenes with high selectivity for monosubstituted examples. [88]

Oxidative modification of molecules can exert a comparable influence. Beyond solubility en-
hancement, late-stage oxidation processes facilitate early identification, characterization, and
evaluation of prospective metabolites during the initial phases of drug development. For trans-
formations demanding high regio- and stereoselectivity, enzymatic oxidations at the late-stage
have demonstrated their efficacy, often outperforming chemical methodologies. An example
of this is the enzyme-mediated synthesis of the phosphodiesterase inhibitor 5, where the addi-
tion of a hydroxyl group improved the overall compound parameters compared to the parent
molecule, leading to its selection as a potential clinical candidate based on its positive toxico-
logical profile in rat and dog studies. [70] Another team highlighted the use of cytochrome
P450 monooxygenases for the chemo-, regio-, and stereoselective oxidation of β-cembrenediol,
a tobacco cembranoid with multiple potential oxidation sites, achieving high regio- and di-
astereoselectivity through first-sphere active site mutagenesis and minimal library screening
of P450 BM3 variants. [89] Chemical oxidation methods were published as well, including an
iron-catalyzed, undirected arene C-H hydroxylation using hydrogen peroxide encompassing
broad substrate scope, high selectivity, functional group compatibility and good yields, [90] or
an aerobic oxidation of benzylic C(sp3)–H bonds to ketones under continuous-flow conditions
was achieved using N-hydroxyphthalimide and tert-butyl nitrite catalysts, with high catalyst
and solvent recyclability [91].

Trifluoromethylation facilitates the synthesis of compounds with enhanced metabolic stabil-
ity, augmented permeability, or superior potency. The MacMillan group demonstrated this
through the photocatalytic trifluoromethylation of Prilocaine (6) and a curated assortment of
other structurally intricate molecules. [92] Another method used a bench-stable copper(III)
complex, bpyCu(CF3), in a mild, operationally straightforward C(sp3)-H trifluoromethylation
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of unactivated alkanes, involving the visible-light photoinduced generation of a CF3 radical
and anion. [93] An iron(II)-catalyzed trifluoromethylation of enamides undermild conditions
employing cost-effective Togni’s reagent for electrophilic CF3 introduction, achieved good re-
gioselectivity, broad substrate scope, and showed functional group tolerance. [94]

Despite the limited role of boron in pharmaceuticals, its regioselective incorporation into
advanced drug-like entities as a synthetic handle can be a beneficial strategy to enable late-
stage diversification, offering extensive synthetic options for post-borylationmodifications and,
thereby offering the exploration of SARs through the addition of various functional groups.
The significance of this methodology is underscored by the high citation average (46 citations)
of such studies. One of them is the efficient borylation of c-Met kinase inhibitor 7 published
by the Hartwig lab. [95] Other examples include the C7 borylation of indole units within
Aspidosperma alkaloids for late-stage synthesis facilitating the conversion of a polycyclic
lactam to Vallesine [96] and undirected C-H borylation that generated five distinct borylated
analogues of the kinase inhibitor Staurosporine, which were separated upon oxidation to
phenols [97]. Outside the iridium-catalyzed borylation reaction space, Kim et al. developed
an azine method employing stable, cost-effective amine-borane reagents and photocatalysis to
generate boryl radicals for Minisci-style radical addition, enabling predictable, site-selective
carbon–boron bond formation. [98]

α-Ketones have been identified as valuable intermediates for drug discovery, a concept recently
exemplified by Huan et al. through their development of an asymmetric benzylic acylation
process for the generation of α-aryl ketones from carboxylic acids. [99] This methodology
was successfully applied to the functionalization of the therapeutically significant molecule
Flurbiprofen (8), as illustrated in Figure 1.6. Segundo and Correa reported a Pd-catalyzed
C–H acylation of Tyrosin-containing peptides with aldehydes. [100] The water-compatible,
site-specific and scalable tagging method with full tolerance of sensitive functional groups
offers direct routes to oligopeptideswith varied side-chain topologies, including endomorphin-
2 and neuromedin N mimetics. Another example describes the merger of transition metal
and photoredox catalysis to enable the direct enantioselective acylation of α-amino C(sp3)–H
bonds with carboxylic acids to offer a novel approach to stereocontrol in metal-photoredox
catalysis. [101]

Even though some LSF examples on selected large, drug-like molecules can be found in the
literature, broader application scopes have not been established. Consequently, despite the
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plethora of LSF methodologies reported, numerous obstacles persist that must be surmounted
to enable the routine and effective integration of this synthetic technology into various drug
discovery campaigns.

1.2.4 Challenges and opportunities

Expectations are high that LSF will imminently establish itself as a standard technology for the
efficient generation of bioactive compounds without requiring de novo synthesis. However, the
vast array of complex pharmaceutical compounds, encompassing small molecules, proteolysis-
targeting chimaeras (PROTACs), peptides, nucleic acid-based therapeutics, antibody-drug
conjugates, and monoclonal antibodies, represents a substantial structural complexity. These
different modalities frequently possess sterically and electronically similar C–H bonds, requir-
ing a nuanced comprehension of the reactivity of and accessibility to specific reactive centers
within diverse reaction contexts. [61, 66, 69] Enhancing the compatibility of LSF with common
functional groups found in bioactive molecules, such as polar and basic moieties or hetero-
cycles, is essential for its widespread adoption. This will involve the refinement of reaction
conditions to circumvent harsh temperatures, strong acids, and potent oxidizing agents that
may trigger deleterious side reactions. In general, LSF suffers from a lack of predictability and
selectivity of the reaction sites mainly driven by similar C-H bond dissociation energies in
complex molecules.

The resurgence of photoredox, radical, and electrochemical methodologies promises to aug-
ment current C–H activation strategies with innovative approaches. [61, 64] Furthermore, the
strategic use of biocatalysis, mirroring nature-like selective modification of multifunctional
molecules, holds promise for addressing these synthetic challenges. [102] In the realm of
diversity-oriented synthesis, the exploration of new reactions that introduce transient func-
tional groups, such as those containing boron or phosphorus, will enhance the repertoire of
LSF techniques. [60, 103]

Low yields and the complexity of LSF transformations have restricted their application in
process chemistry and scale-up operations. To overcome this barrier, catalytic systems must
be refined to decrease catalyst loadings, enhance turnover frequencies, and ensure compat-
ibility with aqueous media, while also replacing toxic transition metal complexes to foster
more sustainable and cost-effective processes. [54, 104]. The integration of flow chemistry is
poised to play a pivotal role, particularly in the scale-up of photochemical and electrochemical
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reactions. [66] Emerging technologies that streamline the purification and characterization
of reaction products, as well as the assessment of pharmacological activity, will significantly
bolster the impact of the field.

Importantly, LSF can potentially be enabled by the latest developments in laboratory automa-
tion, specifically high-throughput experimentation (HTE), which enables the rapid optimiza-
tion of reaction conditions with minimal material use. [61, 66] Using the generated data from
such HTE campaigns and combining them with big data analysis and ML methods is antici-
pated to yield predictivemodels for the reactivity and selectivity of C–H bond transformations,
facilitating the synthesis of target molecules in an environmentally conscious and material-
efficient manner. [66]

1.3 High-throughput experimentation

1.3.1 Background

Established during the 1980s to enhance the efficacy of drug discovery and optimization pro-
cesses, high-throughput methodologies incorporated an array of experimental approaches
that enabled the swift parallel synthesis of thousands of compounds, utilizing broad reaction
conditions to generate libraries of structurally related organic molecules. [105–107] In contrast,
HTE emerged as an instrumental approach to expedite the identification and application of
novel, efficient methodologies.

Whereas parallel synthesis applies existing reaction protocols to generate novel compounds,
HTE focuses on the quick determination of optimal conditions for specific chemical transfor-
mations, particularly with substrates that are unique or pose significant challenges. In brief,
HTE allows researchers to (i) swiftly refine existing methodologies, (ii) aid in the innova-
tion of new reaction conditions, and (iii) reveal unexpected lead compounds that might be
overlooked with conventional methods due to the impracticality of conducting numerous
individual experiments. [108–112]
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The initially developed laboratory automation systems for combinatorial work, which were
able to robotically handle liquid chemicals, usemulti-well plates ormicro vials as experimental
containers to rapidly analyze samples and were first applied for HTE approaches in the mid-
1990s to early 2000s. [113] Mainly materials science, solid-supported synthesis, as well as, both
heterogeneous and homogeneous catalysis benefited from these advances at that time. [114–
119]

Pioneers at Merck Sharp & Dohme Corporation (MSD) started utilizing HTE for targeted
applications in the pharmaceutical industry at the beginning of the 2000s. Their initial work
focused on the optimization of asymmetric hydrogenation by assessing a variety of chiral
phosphine ligands with noble-metal precursors using a parallel screening set-up. [120] Due to
the success of the methodology, which involved treating pre-dispensed 96-vial ligand libraries
in glass vials with stock solutions of catalysts, the MSD team aimed at expanding the scope
to more reaction types, even though this necessitated overcoming several new engineering
challenges. [110]

Transitioning to Pd- and Cu-catalyzed cross-coupling reactions required workflows for han-
dling heterogeneous reaction mixtures with magnetic tumble stirrers, retaining volatile sol-
vents during heating through sealing mats, and dosing bases as solids with a custom-made
robot rather than using slurries with a consequent tedious evaporation step. [111] After numer-
ous iterations validating the system with literature reactions, the first successful applications
of the platform on projects included the optimization of a Kumada coupling for the synthesis
of Vaniprevir, and the development of an efficient, regioselective copper-catalyzed indazole
coupling for the synthesis of Niraparib. [121, 122] Despite the available automation equipment
for ligand and base handling, back then manual pipetting of catalyst precursors and substrates
was preferred due to its flexibility and low cost. [111]

Over time, MSD and others expanded these semi-automated HTE workflows to additional
reaction types, e.g., chiral phase transfer catalysis (PTC) or photoredox bond forming trans-
formations to solve difficult synthetic problems in process development (More details and
selected examples on HTE applications are described in Chapter 1.3.3). [123–130] For specific
transformations, where the set-up and execution protocols did not require extensive engineer-
ing, fully automated solutions with robotic platforms were developed. [111, 131] Importantly,
with increased experimental throughput, the development of innovative, automated analyti-
cal technologies, especially improved high-performance liquid chromatography (HPLC) and
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supercritical fluid chromatography (SFC) methods, was required for rapid and reliable as-
sessment of reaction outcomes. [132–134] In parallel, obtained analytical raw data processing
and analyzing, either manually or automated, to identify reaction outcomes, became another
important cornerstone of HTE operations. [135]

While originally started in process chemistry, HTE soon also expanded into medicinal chem-
istry, where it serves the purpose of generating diverse chemical entities for biological pro-
filing. [136] Parallel screening became of high value in discovery chemistry as it helped to
overcome synthetic biases by enabling the efficient synthesis of complex target molecules,
which are often structurally different from simple model substrates typically used in catalytic
method development. [137, 138] To align with the fast-paced and material-conserving nature
of drug discovery, MSD developed reaction-specific HTE kits, which are pre-assembled 24-
vial arrays containing the best catalysts and conditions derived from literature and internal
data, thus facilitating rapid, resource-efficient experimentation. A move that was followed by
vendors, including Sigma-Aldrich, which commercialized the solution for some re-occurring
transformations, including Suzuki–Miyaura and Buchwald-Hartwig couplings. [111] Over
the years, the HTE scope was further expanded to the area of C–H functionalization chemistry,
which received increasing attention in academia and industry. [61, 139, 140] As a consequence,
the adoption of HTE has started to foster a community that makes use of parallel screening to
successfully solve synthetic bottlenecks in process research and medicinal chemistry, thereby
accelerating the discovery and synthesis of molecules. [141]

This is underlined by a recent survey, in which several large pharmaceutical companies com-
plemented by two academic institutes participated to assess the current application scope of
HTE. [112]Due to perceived lowengineering requirements, e.g.,water as the solvent, room tem-
perature reactions, biocatalysis, in particular transaminations, keto-reductions, and hydrolysis,
remains the most important application for HTE. Unsurprisingly, these enzymatic transforma-
tions are closely followed by two frequently used reaction types, namely, the Suzuki–Miyaura
cross-coupling and the Buchwald–Hartwig amination. Both are key bond connecting transfor-
mations, possessing a broad substrate scope and working under rather mild reaction condi-
tions, making them commonly applied reactions in the research and development process of
active pharmaceutical ingredients (API). [71, 138, 142]

Heterogeneous catalysis, including protecting group removal and reductions, is also prevalent
but requires specialized high-pressure equipment. Hence, the utilization of such transforma-
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tions strongly depends on the technical capabilities available at each company. Non-catalytic
reactions applied on HTE systems include chiral salt resolution, scavenger, solvent or base
screenings are frequently conducted to meet regulatory specifications for metal impurities.
Despite the strong academic interest and first applications (see above), C–H activation and
non-Suzuki–Miyaura cross-coupling reactions are still less common in HTE due to various
chemistry challenges (see Chapter 1.3.4).

The following chapters will give a more detailed overview of the HTE concept (Chapter 1.3.2),
applications (Chapter 1.3.3), and remaining challenges as well as resulting opportunities for
future directions of the technology (Chapter 1.3.4).

1.3.2 Concept, requirements and advantages

Concept

Today, HTE is known as a systematic approach that enables the parallel execution of multiple
reactions to optimize chemical transformations, expanding the scope of known reactions and
exploring mechanisms. [112]. The workflow is facilitated by the use of standardized 24- or 96-,
sometimes even 384- or 1536-well plates, allowing chemists to rapidly assess a large number of
variables and optimize reactions more effectively than traditional one-factor-at-a-time (OFAT)
methods. [110–112, 134, 143] HTE is particularly advantageous when numerous parameters
such as solvents, bases, catalysts, or additives are involved, as it allows for a comprehensive
screening across a diverse set of conditions. [108, 144] Thereby,HTE enables the rational design
of large arrays of experiments to test hypotheses, systematically encompassing a wide range
of conditions referenced in literature and further expanded by scientific intuition. [123, 145]

The integration of automation in HTE has enhanced productivity, decreased errors and im-
proved safety by reducing human intervention in handling hazardousmaterials andgenerating
high-quality, consistent data sets. Automated workflows, including the use of liquid and solid
handling robots, have been developed to efficiently generate knowledge for robust and scalable
chemical processes. [48] Many systems are now designed to be robust and compatible with a
wide range of reaction conditions, ensuring broad applicability. [108] Efforts to miniaturize
reactions in HTE formats have enabled the use of minimal starting material amounts, thus
enhancing resource efficiency and sustainability. [109, 141]
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Analytical techniques such as reverse-phase HPLC or UPLC, equipped with well-plate au-
tosamplers, are employed for rapid analysis of reaction outcomes, with UV detection and MS
analysis providing insights into conversion rates, compound identification, and byproduct
formation. [135, 146] For chiral compounds, fast SFC analysis with chiral columns is used to
determine enantiomeric excess. [147] Recent development of advanced techniques like sample
pooling and multiple injections in a single experimental run (MISER) can further expedite
analysis when necessary. [109, 148]

Overall, HTE has become a cornerstone in drug discovery and process optimization, enabling
the exploration of reaction optimization, catalyst design, reaction discovery, and LSF, among
other applications. The adoption of HTE has expanded across all research areas in organic
synthesis, leveraging the power of automation and high-throughput data generation where
complexity renders first principles and rational design challenging. [48, 109, 112, 114, 123]

Requirements

For an HTE system to be highly effective, it should fulfill stringent requirements that align
with the diverse and complex nature of chemical synthesis. [108] While certainly not all of the
prerequisites are always or straight-away achievable, and they also depend on the purpose
and application of the system, the criteria can be assembled into two main groups (Figure 1.7.
The first category contains mandatory characteristics to ensure that the system is producing
trustworthy results.

A paramount requirement for an HTE system is guaranteeing high accuracy throughout all op-
erations of the screening process. This includes both, manual and automated tasks and might
involve routine overhauls including potential re-calibration of equipment or the introduction
of checklists to avoid human errors. [149] Especially, the analytical instrumentation is of ut-
most importance as these machines deliver qualitative and quantitative outputs of the HTE
campaigns. [135] An equally important characteristic concerns the fidelity from vial to vial
on the same plate, which guarantees that the observed outcomes of reactions are attributable
to the experimental conditions rather than to experimental errors, such as incorrect dosing or
temperature inconsistencies. This level of consistency is vital for the accurate interpretation of
results and subsequent use of those to make informed synthesis decisions. [110]

In addition, the HTE system must be designed to be economical concerning the starting mate-
rial and reagent use. It should enable the execution of a high number of reactions, ranging from

18



Chapter 1. Introduction

Figure 1.7: Requirements to run an HTE system. Essential criteria (l.) and application-based criteria
(r.). The essential criteria need to be fulfilled to allow the smooth operation of the system and de-
liver accurate results. Those include the accuracy of the system including all equipment components,
reproducibility of reactions between vials, very low material requirements and the translatability of
small-scale screening reactions to a larger scale. Application-based requirements are closely associated
with the actual reactions that run on the system. Depending on the application scope of the system,
chemicals in different aggregate states need to be handled. Further temperature control could be de-
sired if a reaction specifically necessitates heating or cooling. Since many chemical transformations
only deliver the desired reaction outcome if they are conducted under an inert or gaseous atmosphere,
changes thereof need to be accommodated if needed. If the HTE system should be able to run special
reaction types, such as photo- or electrochemistry, the components and workflows need to be adjusted
accordingly, potentially requiring a significant amount of engineering and validation.

24 to several hundred wells, requiring only minimal amounts of chemicals per reaction. This
efficiency in reagent consumption not only reduces costs but also minimizes waste, aligning
with sustainable laboratory practices. [109] Lastly, the system should facilitate the scaling of
results from small-scale experiments, in the range of µmol or nmol, to larger scales that are of
interest for medicinal or process chemistry. This scalability is crucial for the transition from
experimental to practical application, ensuring that discoveries made at the microscale can be
translated into tangible chemical processes. [150]

The second category of requirements depends more strongly on the desired application scope
of the HTE system, i.e., which reaction types and technologies are planned to be screened
using the instrumentation. [108] In an ideal setting, the HTE set-up is capable of running a
wide range of reactions that are used by the bench chemists within the organization. Such
an approach presumably requires system compatibility with a diverse array of solvents, from
non-polar solvents such as hexane to highly polar solvents like hexamethylphosphoramide
(HMPA). [151]

Further, the HTE system must be able to operate effectively across the desired temperature
spectrum. This could encompass the ability to conduct reactions at cryogenic temperatures
as well as at temperatures that exceed the boiling points of solvents, thereby facilitating a
wide range of reaction kinetics. [112] The versatility of the platform is further underscored
by its requirement to handle homogeneous solutions, more complex heterogeneous or even
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biphasic reaction mixtures, which are often encountered in synthetic chemistry. [151] Many
chemical transformations also require anhydrous or anoxygenic conditions, which are crucial
for reaction components that are sensitive tomoisture or air. Therefore, the HTE system should
be able to offer dosing and reaction environments in inert atmospheres. [110] Specific reactions
could also demand the use of reactive gas, e.g., H2 for hydrogenation reactions, potentially
requiring the installation of the necessary environment and instrumentation. [120]

The outlined requirements, especially the second group that is dependent on the type of re-
actions that are conducted, highlight the challenges faced in the engineering of HTE systems
for chemistry applications. As opposed to biology and biochemistry, where experiments gen-
erally take place in water and ambient temperatures, chemical reactions demand solutions to
avoid material decomposition, prevent solvent evaporation, and ensure heating and stirring
material compatibility. [110] To circumvent these, specialized equipment has been developed
over the last decade that supported the uptake and success of HTE campaigns in industry and
academia. A short overview of the most used instrumentation and tools based on a recently
conducted survey across HTE labs is given below. [112]

Manual tools such as single and multichannel pipettors, and a variety of well plates, remain
ubiquitous due to their ease of use and low entry barrier. [110] Nitrogen-filled gloveboxes
are commonly used for setting up screens, while nitrogen purge boxes are employed for
compound storage and workflows requiring a less pristine inert atmosphere. [48] Solvent
removal is typically performed using centrifugal evaporators within gloveboxes or nitrogen
blow-down tools formore accessibleHTE approaches. [110] Reaction agitation and heating are
achieved through a range of equipment including tumble stirrers, hot plate stirrers, incubators,
heater/cooler shakers, and custom-designed shaker/heaters. [112] Reactive gas delivery plat-
forms are also widespread, enabling experiments under atmospheric and elevated pressures
for reactions such as hydrogenations and carbonylations. [120] Automation enhances HTE
by providing accurate and efficient screen setup through liquid and solid handlers, with a no-
table presence of Unchained Laboratories/Freeslate/Symyx systems across many teams. [112]
Solid handling platforms from various vendors address the challenges of manually weighing
reagents atmilligram scales. [152]While themajority of automatedplatforms operate under an
inert nitrogen atmosphere, a fraction is used on the bench for non-sensitive applications. [111]
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Analytical tools are crucial for processing HTE screens, with ultra-high-performance liquid
chromatography (UPLC) systems measurably reducing analysis time and maintaining high-
quality data. Mass spectrometers are coupled to some UPLC systems, while HPLC and SFC
systems are used to a lesser extent. Gas chromatography (GC) with mass detector sees limited
use. The integration ofmanual, automated, and analytical tools is key tomaximizing the impact
of HTE, streamlining workflows, and enhancing research productivity.

Advantages

HTE, if designed and executed successfully, can offer a multitude of advantages for chemical
reaction development and optimization, particularly in terms of efficiency and sustainability.

The HTE approach is distinguished by its resource-efficient experimental framework, which is
particularly advantageous when only small quantities of starting materials and reactants are
available. [111] In stark contrast to traditional methods that may use hundreds of milligrams
of starting material, HTE operates on the micromolar scale, reducing the amount of material
needed for each reaction [66, 153, 154]. This reduction in material requirements not only con-
serves valuable resources but also lowers the threshold for initiating experiments when the
outcomes are uncertain. [112] Consequently, HTE enables the use of less material to conduct
a higher number of experiments, thereby optimizing the use of resources and facilitating a
more exploratory approach to chemical research. [155]

Moreover, HTE revolutionizes the optimization of chemical processes by allowing the simul-
taneous exploration of numerous reaction parameters, a stark contrast to the OFAT method
prevalent in classic single-batch reactions. [112, 154, 156] The rapid and efficient experimental
setup enables the assessment of a diverse class of variables within days, thereby expediting the
development of robust processes. [120] Further, not only the reaction conditions themselves
can be optimized, but HTE also unlocks the assessment of a broader chemical space by screen-
ing structurally diverse sets of compounds. [110] Consequently, HTE is an invaluable tool for
tackling complex challenges in chemical synthesis through rapid multi-parameter screening,
thereby contributing to a more comprehensive understanding of reaction landscapes. [112]

HTE also automates repetitive manual tasks, which are still commonplace in traditional labo-
ratory settings. The integration of automation technology within HTE systems diminishes the
need for labour-intensive activities such as the weighing of solids or the dispensing of stock
solutions. [109, 110, 149] The automation of tasks substantially reduces the time required for
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synthetic experimentation and as a result, affords opportunities for scientists to reallocate
their time from routine tasks to more intellectually demanding and creative problem-solving
endeavours.

Finally, HTE contributes to the generation of high-quality, consistent data sets, which are es-
sential for in-depth analysis and the application of ML algorithms. The automation of sophis-
ticated analytical instrumentation within HTE workflows ensures the acquisition of reliable
experimental endpoints. [155, 157] This is specifically of high value, as data sets derived from
literature often miss failed or low-yielding reactions, which can detrimentally affect the anal-
ysis and the predictive capabilities of ML models. [154, 158, 159] Additionally, the substrate
scope reported in the literature for catalytic reactions is frequently limited to simple model
substrates, which may not accurately represent the complexities encountered in LSF within
drug discovery and development. [111] Therefore, HTE is considered an invaluable tool for
generating high-quality reaction data for broad chemical space and diverse reaction space to
enable successful big data analysis and reactivity prediction with ML algorithms. [160]

1.3.3 Application scope

HTE has emerged as a transformative approach in chemical research, offering a multitude of
advantages that streamline the development and optimization of chemical reactions. [110–112,
143]

Development of novel reaction methodologies

Firstly, HTE can be utilized in the development of novel reaction methodologies. Through
sequential screening iterations, scientists can rapidly evaluate the effect of a wide array of
catalysts, ligands, reagents, additives and solvents on the success of the reaction.

MSD demonstrated the discovery of a ligand that enhanced the reactivity of a palladium-
catalyzed cross-coupling reaction to aid the synthesis of a diverse set of benzophenones. [161]
In another application of HTE at MSD, a late-stage direct alkylation of heterocycles was devel-
oped, utilizing iridium-based excited-state reductants to generate alkyl radicals from perac-
etates under mild conditions, marking the first instance of the room-temperature introduction
of methyl groups into complex heterocycles. [124] The MSD HTE group facilitated the de-
velopment of photoredox-catalyzed processes for late-stage pharmaceutical development in
collaboration with the Britton group. This partnership yielded one-step direct fluorination
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of leucine using sodium decatungstate, producing λ-fluoroleucine, a key intermediate in the
synthesis of Odanacatib. [126]

The use of HTE enabled another rapid optimization of a fluorination reaction, mediated by D-
proline in trifluoroethanol, that afforded a congested quaternary stereocenter with high yield
and improved diastereoselectivity. The team at Lilly could also demonstrate the successful
scaling to kilogram quantities, with the added benefit of trifluoroethanol recovery and reuse.
Critical to the process was the optimization of α-fluorination conditions, which altered the
diastereoselectivity from 1:7 to 7:1. [162]

Furthermore, AstraZeneca disclosed a cobalt-catalyzed late-stage C–H methylation strategy
for complex drug molecules. HTE was instrumental in addressing this synthetic challenge
through selective multiparameter optimization, culminating in a broadly applicable method-
ology that leverages functional groups to direct C–H activation, transforming C-H bonds into
methyl groups using a boron-basedmethyl source. [74] Additional work from AstraZeneca re-
ported an iridium-catalyzed directed C–H amination methodology derived from investigating
numerous directing groups and substrate scope using an HTE-based strategy. [163]

Expansion of known reactions

Secondly, in addition to identifying novel methodologies, HTE also facilitates the logical exten-
sion of already-known reactions through the systematic exploration of both, substrate scope
and reaction parameters. The scope of the above-described late-stage alkylation methodology
by Di Rocco and colleagues [124] was expanded to hydroxymethyl groups. The enhanced
protocol introduced the new scaffold into a variety of heterocycles using benzoyl peroxide
as the oxidant and methanol as the hydroxymethyl radical source. [125] In another example,
the MSD HTE team explored the cross-coupling of nitromethane with aryl halides, which
traditionally yielded low product yields and multiple side products. The systematic screening
of various ligands, bases, and solvents with a range of aryl nitromethanes identified reagent
combinations that yielded high conversions and minimized side product formation. [164]

A team of Pfizer scientists noted that an existing Ni-catalyzed reductive cross-coupling pro-
tocol for electrophiles [165] was not amendable for their envisaged application. Using the
broad library of nitrogen-containing molecules at Pfizer and screening those substances as
nitrogen-donor ligands in an efficient HTE setting, the scope of the reaction could be extended
successfully. [166] The scope of the Buchwald-Hartwig amination reaction was thoroughly
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investigated through the analysis of 48 electrophiles, revealing specific challenges with ami-
dation side reactions and the incompatibility of certain substrates, highlighting the strength
of HTE to explore uncharted chemical space for a well-know reaction. [167] The assessment
of coupling DNA-conjugated aryl iodides in a Ullmann-type transformation provides another
example of how systematic screening can expand the scope of a frequently used chemical re-
action for a specific application, in this case, DNA-encoded library technology (DELT). [168]

Enhancement of existing chemical transformations

Thirdly,HTE also proves invaluable in the refinement of existing transformations, especially fre-
quently used C-C cross-coupling reactions, such as the Suzuki–Miyaura or Buchwald-Hartwig
reactions. MSD showed that by conducting a multidimensional HTE screen that simultane-
ously optimized multiple variables, including ligands, bases, and solvents, across different
temperatures, a library campaign in discovery was accelerated. The comprehensive approach
identified a set of conditions that yielded high conversions, which were then applied to syn-
thesize a variety of heterodiarylmethanes with high efficiency. [169]

GlaxoSmithKline (GSK) highlighted the advances of multivariate screening through HTE
compared to OFAT optimization from a paper for a single palladium-catalysed carbonylative
esterification reaction. An academic group approached the problem with the well-known
optimization table. 16 different phosphines were screened against a single solvent or base
system of acetonitrile (MeCN) andN,N-diisopropylamine delivering a certain reactivity range
and leading to disclosure of one condition as the ideal combination. [170] GSK approached
the same transformation with HTE, screening all combinations of the 16 ligands, three bases
and two solvents. Those 96 reactions revealed that the 21 reactions, which were carried out in
the OFAT protocol, missed out on the ideal set of conditions. [143] This highlights the power
of HTE, which overcomes the issue that limiting a reagent or catalyst assessment to a single
set of parameters will only deliver the best reagent or catalyst under the tested parameters,
likely missing the overall optimal set of conditions.

Further evidence can be found in the literature, e.g., the HTE team from MSD demonstrated
the optimization of conditions for various Pd-catalyzed C-O, C-N, and C-C cross-coupling
reactions that elevated success rates. [109] An academic group also showed that a difficult es-
terification coupling was solved using an HTE approach,where a selection of ligands, catalysts
and additives could be assessed efficiently to deliver optimal transformation parameters. [160]
One publication from academia described an approach to teaching HTE to undergraduate
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students using the Suzuki-Miyaura coupling as an example. [171]

Thus, HTE has become an invaluable tool for optimizing in a streamlined and efficient way
contributing to significantly reducing material consumption and improving transformations
from small to large scale.

Serendipity

Serendipitous discoveries have been pivotal in advancing the chemical sciences, particularly
in the realm of bond-forming reactions. [172] Notably, seminal synthetic transformations in-
cluding Friedel-Crafts, Wittig olefination, and Brown hydroboration transformations emerged
when experimental outcomes diverged from the original objectives. [173–175] HTE can lead to
directed serendipity, where the rapid screening of diverse reaction conditions can yield novel
and unexpected, yet potentially efficient reaction pathways.

This was demonstrated in the improvement of a thermal cyclization protocol for the synthesis
of pyrimidinone heterocycles, important intermediates in the development of HIV Integrase
inhibitors. By utilizing a reaction discovery platform with pre-dosed compounds, researchers
at MSD were able to conduct and analyze hundreds of experiments in a single day, ultimately
identifying catalytic systems that enhanced the reaction outcome. [145] Another serendipity
discovery using HTE was observed at MSD when optimizing the synthesis of Letermovir. A
key step of the synthesis was the establishment of a single single stereocenter through an
aza-Michael reaction. It was observed that bis-quaternized PTC impurities led to more active
and selective catalysts. These results provided an impetus for the development of subsequent
bis-quaternized PTC libraries that found unique utility for the construction of the chiral cyclic
ureamoiety in Letermovir. [130] Through the deployment of an automatedHTEworkflow, the
McMillan lab assessed numerous reactions indiscriminately, which led to a novel photoredox-
catalyzed C–H arylation reaction. This transformation facilitates the synthesis of benzylic
amines, a crucial structural motif in pharmaceutical compounds, from simple substrates under
mild and straightforward conditions. [123]
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HTE has emerged as a powerful strategy that accelerates chemical research by enabling the
rapid and efficient evaluation of reaction conditions serving multiple purposes from new
methodology development, through extending and refining known reactions to the discovery
of unexpected outcomes, underlining its indispensable role in modern synthetic chemistry.
However, limitations and challenges remain that curtail the full potential of the technology
(Figure 1.8).

1.3.4 Challenges and opportunities

Capital investment

The substantial capital investment in acquiring automated, robotic synthesis and related ana-
lytical instruments has generally restricted the widespread adoption of comprehensive HTE
workflows to primarily industrial environments. [135, 176]Unfortunately, equipment purchase
remains a major obstacle, especially for academic institutions and smaller entities, limiting the
wide adoption of HTE considerably. While there have been reports from academia where HTE
techniques are applied for reaction optimization or platform development, the technology has
not been broadly established so far. [110, 177–184] Therefore, it is important to address the
urgent need for more affordable and accessible HTE solutions, which would widen their use
and facilitate application in academia to support, e.g., methodology research campaigns or
total synthesis projects.
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Figure 1.8: Overview of the main challenges currently observed in high-throughput experimentation
(HTE). The seamless connection between equipment components (hardware) and application inter-
faces (software) remains a significant bottleneck leading to missing information and inefficient work-
flows. Further, the monetary investments to buy and set up an HTE are high and, therefore, act as
an entrance barrier. This directly influences the education of new scientists on HTE systems, since
equipment is hardly available outside of an industry setting. Miniaturizing reactions still belong to an
area of improvement as the accurate weighing of small amounts of material (<1 mg) through robots
has not been achieved so far. In addition, HTE faces a broad range of reaction procedures and needs
for specialized equipment to accommodate the breadth of chemical transformations. With increasing
throughput, analytical measurements and their accuracy need to be further enhanced, which requires
innovative approaches and technological developments. Lastly, managing and systematically storing
the generated data of the HTE system to make it accessible for machine learning (ML) applications
still appears to be a bottleneck.
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Equipment availability

Without HTE equipment available at the university, be it in teaching or research labs, future
chemists can hardly be educated and familiarized with state-of-the-art technologies, which
they might encounter later in their careers. [179] While there are certain exceptions, e.g., the
Cernak lab at the University of Michigan [185], the Swiss CAT+ initiative at ETH Zurich
and EPFL Lausanne [186], or a rare report on undergraduate courses focusing on optimiz-
ing Suzuki–Miyaura reactions in parallel [171], most university students will not be in touch
with automated synthesis equipment or parallel experimental design throughout their edu-
cational journey. While it is close to impossible to establish HTE facilities at all universities
across the globe, strengthening the exchange between industry and academia could help to
familiarize talent with the technology from early on. Several examples of such collaborations
have shown to be fruitful for both parties, many leading to the discovery of novel chemical
transformations. [163, 187–190]

Chemical reaction space

Furthermore, HTE requires a fair amount of engineering to accommodate the vast diversity of
reaction types and chemical reagents. Whereas running HTE plates under standard conditions
already requires a thought-through set-up to ensure reproducibility, the two main reaction
types that add additional complexity to reaction protocols are photo- and electrochemical
methods. [191, 192]

Employing illumination to catalyze a chemical reaction presents certain obstacles in guarantee-
ing the consistent reproducibility of the photochemical process. It needs to be ensured that the
irradiation across all wells is identical, that the heat generated by the shining light bulbs does
not influence the reaction, and that different wavelengths as well as the light intensity can be
controlled. [192–195] Despite these challenges, the literature describes successful applications
of photochemical HTE campaigns for different reaction types. [196–200] With the growing
importance of photo-induced chemistries, further improvements and standardized set-ups are
required to allow broad application of photochemical methodologies in an HTE setting that
consistently deliver reliable results.

Similarly, in electrochemistry, several parameters need to be controlled, and potentially modu-
lated, to allow the screening towards optimal reaction conditions. Those include the material
of the electrodes, the voltage, the current density, type and concentration of assisting elec-
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trolyte or the surface shaping during the transformation. [201] Consequently, the technical
difficulties in setting up a suitable, reproducible HTE platform for electrochemistry are mani-
fold. Examples include the independent electrical regulation within each well, the design of
dependable reference electrodes and the management of potential pressure changes due to
gas formation. [191] Despite these issues, over the last couple of years, progress in electro-
chemical HTE can be witnessed. A small number of platforms were disclosed, which helped to
improvemethoxylations, radical–radical cross-couplings, azidooxygenations, silylations or am-
inations. [201–204] These starting points need to be improved further to simplify optimization
and discovery of electrochemical transformation using HTE equipment.

Despite recent progress, the accurate and efficient dispensing of a diverse range of chemical
reagents on the submilligram scale remains a challenge as well. [110, 205] To work in a stream-
lined high-throughput fashion, the dosing of reagents needs to be carried out through auto-
matedpowderdispensing or liquidhandling of stock solutions. [112] The initial transformative
advancements were centred around automated liquid handling to enable high-throughput
nanomolar scale reaction screening using bioassay equipment in the 2010 decade. [109] MSD
and Pfizer, the first movers in the field, established an array of systems that were capable of
accurately dosing micro- or nanoliter amounts, e.g., the TTP LabTech Mosquito HTS, which
are still main parts of the industry today. [109, 206] Still, these applications are limited to chem-
icals that are soluble in a solvent compatible with the reaction solvent. Some workarounds,
including solvent evaporation after dosing or the generation of homogeneous slurries through
acoustic mixing to enable, e.g., the dosing of solid inorganic bases solids, were established to
overcome these limitations. [196] Yet, automated solid dosing remains an important alterna-
tive to and also circumvents the production of stock solutions, which are time-intensive to
prepare and can be prone to chemical degradation during storage. [207]

When working with solid components, the HTE operations heavily rely on the ability to dis-
pense diverse powders accurately and precisely. [206, 208] The automation of solid handling
is complex due to the heterogeneity of compound properties, such as particle size distribution,
powder type, density and flowability. Current methodologies rely on gravimetric distribution,
primarily employing either hopper/feeder or positive displacement technology. [151] Employ-
ing rotary valves and tapping actions for flow regulation, hopper/feeder modules like the
Mettler-Toledo Auto Chem Quantos provide gravimetric solid dispensing, particularly effec-
tive for free-flowing substances in quantities ranging from milligrams to grams. Positive dis-
placementmodules, such as the Chemspeed Technologies GDU-S SWILE, utilize piston-driven
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capillaries for gravimetric dispensing, excelling in sub-milligram to low-milligram quantities
and accommodating solids with diverse physical characteristics, including adhesiveness. [152,
206]

Recently, AbbVie pioneered an approach to allow the precise dosing of sub-milligram quanti-
ties of solid reagents using the technology of chemical-coated glass beads, often referred to as
ChemBeads. [205] ChemBeads are generally produced using resonant acoustic mixing, which
ensures the uniform adhesion of solid reagent "guests" onto the surfaces of inert glass bead
"hosts". The application of solid reagents onto glass beads merges the intrinsic characteristics
of the solid reagents with the advantageous attributes of the glass beads. [209] Importantly,
the coating effectively increases the bulk of the solid reagents, thereby allowing the accurate
dispensation, including with the use of automated equipment, of sub-milligram quantities
directly into reaction vessels. This obviates the necessity for the preparation of reagent stock
solutions, thereby conserving time, resources, potential solubility issues, and undesired co-
solvent mixtures. [210, 211]

The AbbVie team also expanded their approach to enzymes to unlock the class of biocatalytic
transformations. [212] Based on the reports fromAbbVie, the technology has been successfully
implemented and applied to a broad range of transformations, including Suzuki–Miyaura cou-
plings, Buchwald–Hartwig aminations, nickel-catalyzed cross-electrophile couplings, C(sp2)–
C(sp3) decarboxylative couplings, and nitrene transfer reactions. [205, 209, 213–215] However,
apart from the AbbVie publications, only very recently reports using ChemBeads have sur-
faced. [216–218] To further evaluate the potential of the technology, uptake from the wider
research community is required to prove that the technology is reproducible in other labora-
tories, applicable to a wide range of chemistries and the dosing can be carried out accurately
utilizing automated equipment.

Miniaturization

With an increasing focus on sustainability, green chemistry and the limited availability of
high-value intermediates in discovery chemistry campaigns, it is of utmost importance to
miniaturize the reaction scale to use only milligram starting material quantities when running
arrays of reaction conditions. [48, 111, 141]Main challenges of reactionminiaturization include
the need to handle very small amounts of heterogeneous materials, sufficiently stir reaction
mixtures and avoid the evaporation of volatile solvents. [109]
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Volatility has been reported as a reoccurring issue due to the use of low solvent volumes
compared to the rather large surface area of the well, which resulted in the utilization of
high-boiling solvents with low flash points, e.g., dimethylsulfoxide (DMSO) or N-methyl-2-
pyrrolidone (NMP), limiting the diversity of the usable chemical reaction space. [150, 219]
CurrentHTE equipment, predominately the Analytical Sales plates in 24-, 48- or 96-well format
with glass vials in different volume sizes (1, 2, 4, and 8 mL), partially address the issue based
on their plate sealing technique with rubber mats and tightening using screws. [111, 112]
Further enhancements to this set-up could allow higher solvent flexibility and open up new
chemical reaction space.

The above-described ChemBeads have the potential of helping to overcome the sub-milligram
dispensing of compounds while also contributing to improved mixing of the reaction. [209]
While miniaturization might be ideal for identifying the most suitable conditions with limited
material consumption, ultimately, in most cases, the reaction will be carried out with greater
material quantities. As a consequence, the translatability from small to large scale,whichmight
vary from reaction to reaction, needs to be understood. [150] Even though there are examples
in the literaturewheremicroscale screening results were seamlessly scaled to gram or kilogram
quantities, [109, 144, 220–223] it is not a given for every transformation due to e.g., heat and
mass transfer or kinetic challenges. [224, 225]

The collection and analysis of data sets containing information on miniaturized reactions
and their large-scale counterparts, further enriched through the development of suitable ML
algorithms that can predict the correlations for new examples could increase synthetic success.
Finally, the monitoring of miniaturized reactions also poses challenges, as sample drawing
becomes technically challenging and the analytical resolution is interconnected with material
quantities. [135]
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Sample analysis

To determine the reaction outcome for the large number of samples generated by HTE, fast
sample analysis and processing of analytical data are essential to theworkflow. Often, analytics
constitute a large time investment in HTE, dwarfing the time required for reaction setup. [134,
135, 151] In one of their early HTE publications, MSD reported the following time splits for
their campaign with 1536 reactions: 30 minutes spent on reagent dosing, 1 hour on sampling,
and 52 hours on UPLC analysis [109] However, they also highlighted the use of the MISER
technology.

This method does not carry out any chromatographic separation of the sample and utilizes
flow injection analysis (FIA) to sequentially introduce multiple samples in a single, continu-
ous analytical sequence. Single samples are tracked by selected ion monitoring (SIM) across
various chromatographic techniques. [135] As a consequence, MISER is capable of requiring
only 10 seconds per sample analysis, [146] potentially reducing the analysis time of a 1536 well
plate to roughly 4 hours. Since MISER can be used on standard liquid chromatography-mass
spectrometry (LCMS) hardware if the chromatographic data system is capable of working in
FIA mode, the barrier to introducing the technology is low. [135]

In addition, the automation of other analytical methods for potential application in HTE to
allow rapid sample analysis was explored over the last decade. Those approaches include
matrix-assisted laser desorption/ionization (MALDI), [226, 227] desorption electrospray ion-
ization (DESI), [177, 228] acoustic ejectionmass spectrometry (AE-MS), [229–231] andnuclear
magnetic resonance (NMR) spectroscopy. [153, 232–234]

Ultimately, the chosen analytical method needs to be in line with the desired output from the
HTE system, ranging from binary (i.e., the reaction works/does not work) through quanti-
tative information (i.e., conversion, yield) to full characterization (i.e., confirmed molecular
structure) information depth, and the available analysis time. Advances in analytical meth-
ods will contribute to further increasing the efficiency of sample analysis in the future. [134]
Importantly, the interplay between the analytical instruments and the rest of the HTE system
needs to be intact to allow seamless data flow to enable accurate analysis. [135]
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Hardware and software integration

The various devices that are needed to run semi-automated HTE campaigns range from solid
and liquid handling through stirring and temperature control to the analysis of the reaction
samples. Advanced automated solutions also include robots for the translocation of samples
and materials between devices. This aggregation of heterogeneous instrumentation is of no
practical use without the integration of user-friendly, yet pragmatic software solutions. In
most cases, researchers need to navigate the integration of individual software for each in-
strument and between devices themselves as fully consolidated software frameworks are only
offered for integrated robotic systems that originate from one vendor and, hence, often limit
the application scope of the system. [151] While seldom emphasized in automation-related
publications, error handling and data governance in automated processes critically influence
the functionality and robustness of the HTE workflow. [235]

Despite the increased use of automation solutions in industry and academia, there are only
a few examples in literature that contain a detailed description of the actual hardware and
software integration. [236–241] The applications include the set up of a customized robotic
system, limited to certain chemistries, [236] are tailored around small to medium through-
put [239, 240] or focus only on one part of the HTE workflow, e.g., analysis by LCMS [241]. A
promising approach was very recently published by the Cernak lab, which developed phac-
tor™, a software that supports scientists throughout their HTE workflow, from set-up through
execution to analysis. [237, 238]

Apart from the interplay between the systems, data governance of in- and output data re-
mains a tremendous bottleneck, which has a direct impact on the ability to carry out rapid
data analysis, detection of patterns, highlighting of chemical insights, design of experiments
and reactivity prediction using ML. [155, 242] Currently, laboratory notebooks capable of
systematically cataloging HTE information for straightforward access are not available. Most
electronic lab notebooks support the creation of custom experiments but do not feature an intu-
itive interface for extracting data sets in a standardized format and conclusions from multiple
experiments in aggregate. [151]

Data governance

Since HTE produces extensive and reliable data sets that capture both successful and, notably,
also unsuccessful outcomes of chemical reactions across various chemical domains, it is of
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utmost importance to capitalize on the information. [158, 160, 243, 244] Given the volume of
data generated, it is essential to tackle the issue of data sharing by adopting standardized,
human- and machine-readable formats (see Chapter 4). Initiatives like the Open Reaction
Database (ORD)[245] and the Unified Data Model (UDM)[246] have contributed to enhanc-
ing the accessibility of reaction data sets, even though these mainly contain frequently used
transformations. As a result, HTE remains a critical source for generating high-quality data
sets to expand the use of ML for reactivity prediction and reaction condition screening. [159,
247]

Summary and outlook

As this chapter showed, HTE is a powerful technology that still requires continuous inno-
vation to cope with the manifold chemical reaction diversity. Many challenges that remain
are interconnected with one another and require thought-through innovations to be solved.
Nevertheless, by addressing some of the outlined aspects, specifically reaction miniaturiza-
tion, soft-/hardware integration and data governance (Figure 1.8), HTE can be used as an
invaluable tool to enable LSF for drug discovery. Running multiple different methodologies
in a broad chemical space and systematically collecting all data points, including all in and
outputs of the reactions, can facilitate reactivity prediction and retrosynthesis among others,
with ML.

1.4 Reactivity prediction

1.4.1 Background

ML falls under the umbrella of artificial intelligence (AI) and involves applying sophisticated
algorithms to substantial data pools. The goal is to build systems that simulate the human
learning experience. Through this process, ML algorithms progressively achieve greater ac-
curacy, allowing for the discovery of core relationships and patterns in the data. [248] Today,
ML has become integral to various technologies, [249–254] including those aiding in the ac-
celeration of drug discovery and the exploration of chemical reaction space. [1, 44, 248, 255]
Chemical reactions, which detail the transformation of reactants into products, are central to
this exploration, and machine intelligence can play a pivotal role in enhancing the success rate
of these chemical reactions. [256–258] The groundwork for computer-assisted synthesis plan-
ning (CASP) was laid by Corey, [259] who codified retrosynthetic rules, which was further
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advanced by the development of knowledge bases and classification schemes by Hendrickson
and others. [260–263] These efforts facilitated the use of ML models to recommend similar
transformations in chemical reaction planning.

The encoding of chemical reactions in terms of bond-electron matrices by Dugundji and
Ugi [264] marked an important milestone, inspiring subsequent developed expert systems
based on formal reaction logic. [265, 266] Approaches, such as Sophia, [267] and Chemat-
ica/Synthia, [268, 269] which amassed over 100’000 rules, have expanded the capabilities of
synthesis planning. Over the last decade, ML in combination with access to large reaction data
sets, e.g., extracted information from the US patent space or the ORD initiative, [245, 270] have
propelled the field, specifically CASP, forward. [157, 271–276]More recently, the field of digital
chemistry is undergoing rapid evolution, having delivered many novel developments beyond
traditional CASP applications. [277–279]

A set of recent, comprehensive reviews on reactivity prediction by Coley et al., [248] Stocker et
al., [255] Jorner et al., [277]Meuwly, [278], andErtl et al., [279] can be found in the literature. In
the following, only a brief overview of the topicwith an emphasis on fundamentalML concepts
(Chapters 1.4.2 and 1.4.3), and the forecasting of binary reaction outcome (Chapter 1.4.4),
reaction yield (Chapter 1.4.5) and regioselectivity (Chapter 1.4.6) will be given as those topics
are of main relevance for the desired application of reactivity prediction by training graph
neural networks (GNNs) (Chapter 1.4.7) with HTE data originating from LSF screenings.

1.4.2 Molecular representation of chemical reactions

The reliance onmolecular descriptors has been a cornerstone in the evolution of cheminformat-
ics tools, i.e., implementation of computer-based techniques to explore chemical phenomena,
applied in drug discovery over multiple decades. [280, 281] Chemical equations are utilized
by chemists to abstract the transformation of starting materials, often also referred to as reac-
tants, into products using a defined set of reagents, catalysts, solvents and - in some cases -
additives under specific physical conditions (e.g., temperature, time, atmosphere). [282, 283]
The molecular structures of components in chemical reactions can be represented in vari-
ous computer-readable formats, including line notations, MOLfiles, and structure data (SD)
files. [284–288]

Graphs are commonly used to depict molecules with nodes and edges that symbolize atoms
and bonds, respectively. These descriptors emerge from the application of logical and mathe-
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matical operations that translate the chemical information contained in a symbolic representa-
tion of a molecule into either a vector or scalar. [289] Researchers have developed a variety of
molecular descriptors to represent different aspects of molecular features. Notably, the descrip-
tors that have gained widespread prominence for use in predictive and explanatory tasks are
those that are based on the two-dimensional (2D) structural attributes of molecules. [290–292]
The introduction of molecular descriptors that capture pharmacophore properties in 2D has
facilitated their use in the discovery of novel compounds through scaffold hopping and virtual
screening. [30, 293–298]

However, 2D graphs have limitations in describing stereocenters of molecules, leading to the
use of Cartesian coordinates for atomistic modelling tasks. [283] Initially developed to encap-
sulate the shape and structural characteristics of ligands, these three-dimensional (3D) shape
descriptors have expanded to include both ligand-centric shape attributes and pharmacophore
features, as well as the 2D and 3D aspects of protein-ligand complexes. [299–305] The appli-
cation of 3D descriptors across various tasks relies on the a priori encoding of feature vectors
through rule-based algorithms, with the success of such applications hinging on the premise
that structurally similar features imply similar molecular properties. [26]

The Simplified Molecular-Input Line-Entry System (SMILES) notation is the prevalent for-
mat for chemoinformatic tasks, capable of encoding stereochemistry to an extent, acting as
an identifier and serving as a versatile representation for database and search queries. [285,
286] Advances in chemical language models (CLMs), i.e., ML models that handle molecu-
lar sequences as in- and/or outputs (Chapter 1.4.3), have popularized SMILES as molecule
representation. [274, 306, 307] Reaction SMILES use characters to separate molecules and
stages within reactions, and atom-mapped reactions can be represented using various formats
such as Condensed Graph of Reaction (CGR), reaction SMILES arbitrary target specification
(SMARTS), or ReactionCode. [308–312] Self-referencing embedded strings (SELFIES) is an
alternative string-based representation ensuring syntactically valid molecules in generative
tasks. [313, 314]

1.4.3 Chemical language models

CLMs are ML frameworks designed to process molecular sequences, such as SMILES, using
neural networks (NNs). [307, 315, 316] NNs, often also referred to as artificial neural networks
(ANNs), are computational models composed of interconnected nodes (artificial neurons)
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arranged in layers, including an input layer, one or more hidden layers, and an output layer,
which process information by simulating the signalling behaviour of biological neurons in
the human brain. Each node is linked to others and possesses a specific weight and threshold,
transmitting data to the subsequent layer only when its output exceeds this threshold. NNs
depend on training data to improve their performance through iterative adjustments to the
connections and thresholds. [317–319]ML that utilizes NNswithmultiple layers of processing
is commonly known as deep learning. [320, 321]

CLMs mostly employ recurrent neural networks (RNNs) and Transformers for sequence data
handling. [322–324] RNNs are a class of NNs that process sequential data by maintaining a
dynamic hidden state influenced by both the current input and the previous state, capable of
handling sequences of variable lengths and often employed in an auto-regressive manner to
predict subsequent elements in a sequence. [322] Transformers, the common architecture of a
large language model, process sequences through graph-based structures, utilizing attention
mechanisms to dynamically weigh the relevance of different tokens for predictive tasks, and
are particularly effective in sequence-to-sequence applications like language translation. [325,
326]

RNNs are capable of handling variable-length sequences and predicting subsequent elements
in a sequence. To address the limitations of basic RNNs, such as gradient vanishing or ex-
ploding, advanced architectures like long short-term memory (LSTM) [327] and gated recur-
rent units [328] have been developed. RNNs have been extensively applied to generate novel
molecules with desired properties, learning both the syntax of SMILES notation and captur-
ing molecular semantics. [307, 329–331] Techniques like data augmentation and bidirectional
learning have enhanced the quality of chemical language learned by RNNs. [332, 333] RNNs
have also been used for feature extraction, outperforming traditional descriptors in tasks like
virtual screening and property prediction. [334] Compared to other deep learning approaches,
like generative adversarial networks and variational autoencoders, RNNs have shown superior
or comparable ability in learning SMILES syntax for de novo molecule design. [335]

Transformers have been specifically adapted for tasks such as predicting chemical reaction
outcomes, multi-step syntheses, and molecular properties [274, 275, 336–338]. They were also
combined with equivariant layers to predict 3D protein structures from amino acid sequences,
achieving state-of-the-art results. [339, 340]
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1.4.4 Binary reaction outcome assessment

The objective in binary reaction outcome prediction is to ascertain in silico if a reaction will
deliver desirable products based on given starting materials and conditions. [341] Specifically
focusing on the most recent deep learning methods applied for this task, three different NN-
based methodologies are prevalent in the literature: Template-based, graph-edit-based, and
sequence-based strategies. [157, 272–274, 342, 343]

Template-based methods operate by matching reactants to predefined reaction templates ex-
tracted from databases like Reaxys, which encapsulate the transformation rules and the re-
action center. [283] Early attempts constructed a NN that predicts reactions by identifying
electron flow within an in-house dataset of elementary reactions. [344–346] This approach
was further advanced by training models to classify reactions based on molecular fingerprints
and ranking the likelihood of different reaction rules from extensive template libraries. [290,
342, 347] More recently, Coley et al. introduced a ranking system for the multiple products
that can arise from template matches, addressing the issue of template multiplicity. [157]
Template-based NNs are inherently limited by the diversity and specificity of the templates in
the dataset. The balance between the granularity of these templates, which may include the
effects of distant functional groups, and the manageability of the template set size is a critical
trade-off. [283]

Graph-basedmethods for reaction outcome prediction represent chemical structures as graphs
and forecast alterations inmolecular bonds usingNNarchitectures. [283] Pioneeredby Jin et al.,
a first approach with a graph convolutional NN that infers bond changes in reactants without
the need for predefined reaction center sizes was developed. [348] Subsequent developments
that included a gated GNN, [343] a graph transformation policy network, [349] and a rela-
tional graph convolution NN [350] have further refined the prediction of bond changes. The
graph-based model was, again by Coley et al., further enhanced to predict a broader range of
bond changes, demonstrating improved performance on the USPTO_MIT dataset which lacks
stereochemical information. [273]

Sequence-based methods treat the reactants and products as textual sequences, typically em-
ploying SMILES notation. These methods adapt models from natural language processing
to translate precursor sequences into product sequences, a technique initially described by
Nam and Kim. [351] The efficacy of atom-wise tokenization for reactants and molecule-wise
for reagents demonstrated that sequence-based models can effectively predict reactions and
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handle stereochemical information when encoded in the sequence. [272] A key advantage of
this approach is its ability to train on diverse data sets without the need for atom mapping,
as exemplified by the Molecular Transformer, which remains the top-performing model on
a benchmark data set, including those with stereochemical details. [274] This representation
also eliminates the need to distinguish between reactants and reagents, a step that presupposes
knowledge of the product and is not always feasible in all scenarios. Based on the Molecular
Transformer, transfer learning (i.e., re-using of knowledge learned from a task to boost perfor-
mance on a related task) has been explored to enhance model applicability to specific reaction
types. [352–354]

1.4.5 Reaction yield prediction

Reaction yield estimation has become an important tool for chemical engineering and chem-
istry, particularly in industrial processes where efficiency and cost-effectiveness are paramount.
[355]While binary reaction outcome only covers whether the reaction takes place or not, yield
prediction adds a quantitative measure of how well the reaction performs. [283] Successful es-
timations build on a deep understanding of the complex relationship between various reaction
participants, including their stoichiometric amounts, the reaction concentration, temperature
and time as well as the resulting output. [356, 357] As a consequence, reaction yield estimation
can be approached as a regression problem, aiming to quantify the functional dependencies
that dictate the efficiency of the reaction. [283] Given the specificity required for accurate
predictions, most models are often tailored to individual reactions or closely related reaction
families. [358] These predictive tools range from simple linear equations derived from princi-
ples of physical organic chemistry to sophisticated multi-variate and non-linear models that
have emerged in recent years, boosting improved accuracy and broader applicability. [337,
358–361]

Recent advancements in ML have led to increased research activities in the field of reaction
yield prediction. A collaboration between MSD and Princeton University pioneered these ef-
forts in 2018 by creating a yield database from over 4000 C-N cross-coupling reactions, and
training ML models with 120 descriptors, including molecular, atomic, and vibrational char-
acteristics. [359] However, the featurization methods used sparked a debate regarding their
transferability and effectiveness compared to non-chemical fingerprints. [362] Subsequent
studies have sought to refine these models with Sandfort et al. introducing automated molec-
ular fingerprints, [360] while Schwaller et al. utilized reaction SMILES with the molecular
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bidirectional encoder representation Transformer (BERT) architecture, demonstrating supe-
rior performance and robustness, especially in data-scarce scenarios. [337] In addition, a per-
formance comparison of computed descriptors and molecular fingerprints was conducted,
favouring the latter for yield prediction. [361]

Despite these advances, challenges persist when data is limited, as evidenced by work on a
small database of deoxyfluorination reactions, which yielded less accurate predictions but re-
mained valuable for optimization. [363] The growing interest and capabilities in HTE promise
an influx of data to further refine ML models. First explorations have applied active learn-
ing and NNs to enhance data efficiency and discover new reactivity patterns using fewer
training instances using the examples of Pd-catalyzed Suzuki–Miyaura cross-coupling reac-
tions. [364, 365] Very recently, Fitzner et al. evaluated the potential of ML to predict the yield
of Pd-catalyzed C–N coupling reactions, where the training data was derived from chemical
reaction databases. [358] The study revealed that the models are effective within the chemical
space of the training data but struggle with generalization to new reactions, highlighting the
need for more diverse data to improve yield predictions. Another study focusing on the same
reaction type expedited the identification of substrate-adaptive conditions using NN models
and relying on an experimental dataset that encompassed a wide array of reactant combina-
tions and reaction conditions, demonstrated high efficacy in experimental validation. [366]

Yet, there remains a high need for standardized data recording to mitigate issues with noisy
and incomplete data sets to make models capable of generalizing across the chemical diversity
of reactants. [358, 367] The difficulty in yield prediction stems not only from computational
limitations but also from a fundamental need to better understand chemical principles. This
could be achieved by the use of classification models to better handle data variability. [356]
Throughenhanceddata sets from synthesis automation,uncertainty-basedpredictions, and the
development of chemically relevant, reaction-specific descriptors throughdetailedmechanistic
studies, future improvements in the field are anticipated.
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1.4.6 Regioselectivity forecasting

Selectivity, including regio-, site-, diastereo-, and enantioselectivity, is a crucial property in
chemical reactions, often more challenging to achieve than binary outcome or yield due to the
need for an understanding of competing reaction pathways. [283]
Advancements in predicting the regioselectivity of chemical reactions have beenmarked by the
development of various ML models, each leveraging unique representations and descriptors.
The RegioSQM protocol was a pioneering semi-empirical method for predicting electrophilic
aromatic substitutions. [368] This method was later complemented by a GNN architecture
using SMILES graphs and RDKit descriptors, offering faster performance. [369] The GNN
approachwas expanded to address broader regioselectivity challenges through amultitasking
framework that combines atomic descriptors and quantum chemical data. [370]

In radical C-H functionalization, Li et al. demonstrated the efficacy of random forest mod-
els, particularly when using selected physical organic descriptors, for site selectivity predic-
tion. [371] Banerjee et al. achieved over 90% accuracy in predicting difluorination outcomes on
alkenes with a small dataset and expert-crafted descriptors. [372] Beker et al. utilized a large
Diels–Alder reaction database to construct ML models, with a random forest model showing
superior performance in predicting regio-, site-, and diastereoselectivity, particularly when
employing physically meaningful descriptors. [373]

While underscoring the advances of recent developments in regioselectivity prediction, the
limited amount of studies highlights the need for more sophisticated, generalized ML models
that can be applied to a broader reaction scope. Lately, GNNs that have been partially applied
for initial attempts in reaction outcome, yield and regioselectivity prediction have gained
increased interest across drug discovery.

1.4.7 Graph neural networks for reactivity prediction

GNNshave emergedas a powerful class ofdeep learningmethods tailored forgraph-structured
data,with significant implications for chemistry anddrug discovery. [374]While chemists have
utilized GNN-like algorithms for some time, [375–377] it is the recent advancements in NN de-
sign and the availability of large data sets that have propelled GNNs to the forefront, achieving
state-of-the-art results in various chemical applications. [378, 379] These networks, particularly
message-passing NNs, iteratively update node features through graph convolutional opera-
tions, effectively capturing the intricate relationships between atoms within molecules. [378]
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In quantum chemistry, GNNs have been adept at predicting molecular properties by incor-
porating 3D spatial information, such as radial and angular data, into the graph’s edge fea-
tures. [380–382] In drugdiscovery,GNNshave surpassed traditional human-engineeredmolec-
ular descriptors in predicting biologically relevant properties, with their performance being
relatively unaffected by the inclusion of single or multiple molecular conformers during net-
work training. [383–385] Their inherent compatibility with molecular structures makes GNNs
particularly advantageous for explainable AI applications, aiding in the interpretation of mod-
els predicting molecular properties of pre-clinical and quantum chemical significance. [386,
387] Moreover, GNNs have been instrumental in de novo molecule generation, simulating the
stepwise construction of molecules through node and edge additions. [388–390]

In parallel, GNNs have also been established for chemical reaction planning, including ret-
rosynthesis planning, regioselectivity- and reaction product prediction, originating from small
substrates and culminating in the synthesis of complex drug molecules. [207, 248, 271, 348,
370, 385, 391] Literature indicates that models trained on activation energies derived from
transition-state geometries can accurately forecast competing reaction pathways. [392–394]
Incorporating graph-based features with properties calculated at the density functional theory
(DFT) level has been shown to enhance regioselectivity predictions in electronically driven
reactions. [395] Furthermore, the integration of graph-basedMLwith HTE data has facilitated
the refinement of reaction conditions for C-H activation in organic molecules. [396] Neverthe-
less, the applicability of thesemodels is currently constrained by their focus on smallermolecu-
lar structures, presenting a challenge for their use with complex, drug-like molecules. [278] A
significant knowledge gap persists regarding the impact of steric and electronic influences on
model accuracy for C-H activation, particularly in the context of regioselectivity in compounds
with multiple aromatic rings. This could be approached by identifying or generating reaction
data sets that contain transformations of large, drug-like or drug molecules with a vast set of
functional groups.
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1.4.8 Reaction data availability

The availability of curated, complete and trustworthy reaction data sets containing successful
and failed transformations is crucial for reaction prediction and retrosynthesis tasks. [158, 243,
244, 358, 367] Data sets extracted from US patents such as USPTO_MIT, USPTO_STEREO, and
USPTO_full provide a range of reaction records with varying levels of stereochemistry and
reagent information. [157, 270, 272, 352, 397, 398] Specialized data sets include NameRXN-
generated reactions and reaction super classes with high-quality atom mapping. [399–401]
Schwaller et al. introduced the USPTO 1 k TPL for reaction classification, [338] and commercial
databases like Pistachio, Reaxys, SciFindern, and Science of Synthesis offer partially curated
reaction data. [402–405] However, access to these databases is often restricted, and literature-
extracted data sets face challenges with structural representation, missing reaction conditions
and biases toward successful reactions. [337, 367, 406]

In 2021, a novel ML-based method for removing incorrect entries from chemical reaction data
sets, enhanced the predictive quality of deep learning models in organic chemistry, as demon-
strated by improved metrics in retrosynthetic models trained on the cleaned data. [407] Just
recently, HTE analyser, a versatile and statistically sound framework that reveals interpretable
correlations within HTE data sets, validated by uncovering significant hidden relationships in
over 39’000 proprietary reactions, including cross-couplings and chiral salt resolutions, was
presented. [242] In general, reaction data sets derived fromHTE platforms offer an alternative,
focusing intensively on the impact of different conditions on the yield or selectivity, but often
only focus on a specific reaction or transformation type. [283, 358, 359, 363] In addition, the
ORD [245] and the UDM [246] are two recent initiatives designed to standardize and central-
ize chemical reaction data in machine-readable formats. Both initiatives aim to enhance the
accessibility and utility of reaction data across the scientific community.

UDM and ORD initiatives are pivotal in advancing the standardization of reaction data, yet
they introduce complexities that can impede data entry and utilization in laboratory and
data science settings due to their extensive documentation requirements and the need for IT
proficiency. These systems also present obstacles to interdisciplinary data sharing, as their spe-
cialized formats are not inherently accessible to non-experts, and their intricate data structures
can complicate the direct exchange of information between researchers. Hence, the integration
of accessible data methodologies in chemistry is vital for the progressive enhancement of ML
implementations in the field. [244]
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Don’t let fear of failure hold you back; let the anticipation of success propel

you forward.

- Jan Frodeno

2
Aims of the thesis

LSF is a promising methodology to alter complex molecular structures in the LO stage of
drug discovery delivering novel chemical matter that supports the understanding of SARs.
An increasing amount of new LSF transformations are being disclosed year by year. HTE has
become an established technology to efficiently assess an array of reaction conditions in plate
format leveraging automation equipment to streamline synthesis. Reactivity prediction using
machine learning (ML) methods receives increased interest from the chemistry community as
it allows the estimation of reaction outcomes before carrying out resource and time-intensive
wet lab experimentation. Interestingly, a connection between all three disciplines has not been
made yet, despite the potential of making LSF a more efficient methodology to enable fast
drug diversification and, consequently, speed up the development of novel medicines.

To interconnect the three research fields, LSF, HTE and reactivity prediction, the seamless
integration of automation, digitalization and ML is needed. Thus, this thesis focuses on: (a)
Setting up an LSF-tailored semi-automated HTE system that is capable of systematically as-
sessing relevant methodologies in drug-like chemical space by automating and digitalizing
typical procedures in the laboratory to efficiently design and execute reaction screening plates;
(b) developing a simple, human- and machine-readable format that captures literature and
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experimental reaction data to enable data analysis, systematic experiment designs and ML ap-
plications; (c) applying the platform (a) and reaction format (b) to two relevant LSF reaction
types for drug discovery within the drug-like chemical space to generate high-quality reaction
data that enable the assessment of the potential of ML tools for reactivity prediction.

(a) Set up of a digital LSF-tailored semi-automated HTE system:

• Conceptualizing, developing and implementing an end-to-end data-orchestrated semi-
automated laboratory platform that allows the systematic and efficient assessment of
LSF methodologies on complex drug-like substances.

• Integrating an automated liquid handler into the workflow capable of automatically
setting up reactions in parallel and preparing process controls to ensure high sample
quality for accurate analytical measurements.

• Establishing data workflows that serve as the backbone of the platform to allow seamless
literature analysis, plate design, reaction execution, sample analysis, reaction outcome
analysis, reaction data management, as well as the planning, execution and analysis of
scale-up reactions.

(b) Development of the simple, user-friendly reaction format (SURF):

• Analyzing current reaction data sharing practices and assessing the reaction data format
landscape to develop an understanding of the existing bottlenecks and of the needs that
a new format should fulfill.

• Designing and implementing a new human- andmachine-readable reaction data format
that overcomes the identified gaps to feed ML algorithms without the need for pre-
cleaning seamlessly.

• Curating reaction data from selected publications into the new reaction data format to
enable systematic reaction screening plate design to provide high-quality HTE reaction
data sets in the drug-like space using (a).

(c) Combination of (a) and (b) on selected LSF reaction types to enable reactivity prediction:

• Assessing the applicability of C-H borylation for late-stage drug diversification by car-
rying out hundreds of HTE reactions on systematically selected commercial drugs with
a broad range of reaction conditions to enable the development of an ML algorithm that
predicts binary reaction outcomes, yields and regioselectivity for novel substrates.
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• Running a library-type screening approach aimed to explore the substrate landscape
for late-stage C-H alkylations to facilitate the in silico prediction of suitable substrates
that can be coupled with a diverse set of sp3-rich building blocks using Minisci-type
chemistry.

Through approaches (a), (b), and (c), the overall aim of this thesis is to contribute to improving
compound synthesis efficiency in early drug discovery through the systematic application of
laboratory automation and artificial intelligence.
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I am made of all the days you don’t see, not just the ones you do.

- Jan Frodeno

3
Semi-automated LSF screening platform

This chapter describes the set-up of a semi-automated and data-driven high-throughput exper-
imentation (HTE) screening platform to systematically evaluate late-stage functionalization
(LSF) reactions on complex drug-like molecules to increase synthesis efficiency. The platform
was coined Dolphin (Data-orchestrated laboratory platform harnessing innovative neural
networks). The following sections will describe the design, development, and implementation
process of Dolphin, highlighting all important features of the system.

3.1 Approach and concept

As highlighted in Chapter 1.2, LSF can capitalize on the usually abundant presence of C–H
bonds within complex molecular frameworks to streamline the derivatization process, thus
eliminating the need for de novo synthesis, the introduction of functional handles or the de-
velopment of a protecting group strategy. [54, 55, 66] However, the presence of functional
groups and the array of C–H bonds, varying in bond strength and influenced by electronic
and steric environments, complicates the direct application of LSF. [55] Hence, the application
of general reactivity and selectivity principles for LSFmust be approached cautiously, [61] and
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potential wrong judgements of the envisaged reactivity can clash with the limited time and
resources available in medicinal chemistry projects. As a consequence, an integrated approach
combining automation, digitalization and artificial intelligence (AI) to efficiently apply LSF
in drug discovery was developed.

The concept of Dolphin is centered around semi-automated miniaturized HTE screening
to evaluate the applicability of LSF methodologies on a lead structure before conducting
resource-intensive single reactions (Figure 3.1). In the first step, all important information on
the molecule of interest is collected and, importantly, captured in a digital, machine-readable
format (Chapter 3.2.3). Desired chemical transformations, e.g., borylation or fluorination, are
determined and screening plate layouts designed. Desirably, the choice of methodology and
plate designs will be guided by machine learning (ML) models that are capable of assessing
the reactivity in silico, thereby further reducing reaction failures. Initial successful case studies
covering the application of reactivity predictions are described in subsequent chapters of this
thesis (Chapters 5 and 6).

Figure 3.1: Overall approach of Dolphin to increase the efficiency of LSF campaigns. Potential LSF
substrates are analyzed and the compound information is captured digitally. With increasing amounts
of experimental data from the two consequent steps, miniaturized reaction screening and scale-up,
reactivity prediction can be carried out to guidemethodology and screening plate selection. The chosen
transformations are then tested in small-scale parallel screening experiments with minimal material
consumption to determine potential LSF products rather than running single experiments that provide
little information on reactivity and require more amount of the compound. All data is reported in a
structured format to aid the decisions for scale-up experiments through data analysis and to feed ML
algorithms. Scale-up experiments are carried out on a standard medicinal chemistry scale to isolate
sufficient material for full analytical characterization. Those analyzed molecules can then undergo
biological testing,delivering SAR information that can initiate additional iterations or further refinement
of LSF reaction conditions.

Cornerstones for reactivity prediction are the next two parts of the approach, which cover
the actual experimental work to create new chemical matter in the laboratory. The already
mentioned miniaturized HTE screening only utilizes small amounts of complex drug-like
molecules to aid the identification of suitable LSF methodologies and conditions. Importantly,
an efficient and data-driven workflow is needed to rapidly identify and analyze reaction out-
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comes. Those results also need to be made directly available in a machine-readable format for
ML applications (Chapter 4). Once, screening hits are identified, the scale-up experiments are
conducted on a standard medicinal chemistry scale, typically mg amounts, to obtain and fully
characterize the products of the LSF transformations. It is critical that these experiments are
well connected with the previous screening workflow to avoid the use of unfavourable condi-
tions andalso report back the exact structure of the newchemicalmatter obtained (Chapter 3.3).
Finally, the novel-obtained analogs can undergo biological testing to determine pharmacoki-
netic and physicochemical properties. Depending on these outcomes, new iterations of the
process can be initiated, which might involve the assessment of different LSF methodologies
or a more granular screening of reaction conditions to establish a highly efficient synthesis of
the target molecule.

Breaking down the comprehensive four-step concept (Figure 3.1) into its essential steps and
components led to the development of the Dolphin workflow depicted in Figure 3.2. In the
initial step, the literature needs to be searched systematically for LSF reactions to avoidmissing
out on interesting transformations. This initial (1) Method assessment step is usually carried out
by chemists through reading a review,which generally delivers a comprehensive overview of a
specific reaction type. Yet, generally, no clear methodology for selecting the publications in the
review is described. [64, 66] Therefore, Dolphin aimed at establishing a method that allows
for a systematic literature analysis (Chapter 3.2.1, Figure 3.4), which is already conducted in
many other scientific disciplines, e.g., medicine or management, [408–413] to date. This overall
process was termed the systematic assessment of chemical transformations (SACT), which
also includes the extraction and curation of the reaction data from publications of interest
(Chapter 3.2.1, Figure 3.5) to obtain high-quality data sets in a simple, user-friendly reaction
format (SURF, Chapter 4) that can undergo data analysis aiding the next step of the workflow,
the (2) Plate design.
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Figure 3.2: Overview of the Dolphin workflow. Systematic methodology assessment (1) allows effi-
cient literature search and reaction data analysis to aid the design of screening plates (2) on a miniatur-
ized scale covering a wide range of reaction conditions. Reaction screening (3) of the plates is executed
using automated liquid and solid handling technology. At defined time points, samples are prepared
and analyzed by liquid chromatography-mass spectrometry (LCMS) using automated equipment (4).
The LCMS plate hotel can carry up to seven plates. The analysis of the LCMS raw data is achieved by a
data analysis workflow (5) that accesses recorded and generated information on reaction input (start-
ing materials) and potential outcomes (products). The output of the enriched data in SURF allows
visualization of reaction outcomes (6) and aids reaction analysis (7). Promising conditions are scaled
up in standard reaction vessels on a typical synthesis scale (mg) to obtain and characterize products (8).
Standardized documentation practices (9) allow for data analysis (DA) and machine learning (ML)
applications (9).
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With the structured reaction data at hand, efficient analysis of employed reaction components,
e.g., catalysts, reagents or solvents, including their quantities and parameters, e.g., temperature,
time and atmosphere, can be carried out. With structural information on all components, espe-
cially those of starting materials and products, and quantitative reaction outcomes available,
conclusions on reactivity relationships can be drawn as well. In terms of plate design, the
analysis of such data sets reveals the influence of specific reaction components and also pin-
points parameters that have not been optimized or evaluated so far (Chapter 3.2.1, Figure 3.3).
Further, the information on scale and molarity can be used to guide reaction miniaturization
(Chapter 3.2.2, Figure 3.6).

Once the plate is designed and the layout documented (Chapter 3.2.4, Figures 3.8-3.9), re-
actions are miniaturized and the (3) Reaction screening is carried out on an ug-mg scale in
glass vials on 24- or 96-well aluminium plates with stirrers to ensure sufficient mixing of all
components. The set-up of the reactions is supported through automated liquid (Tecan EVO
100) and solid (CHRONECT Quantos) handling of the required chemicals, which reduces
error-prone and repetitive tasks for the scientist in the lab, accelerating the overall process. At
time points of interest, samples are drawn from the plate using multichannel pipettes or the
liquid handling system for (4) Liquid chromatography-mass spectrometry (LCMS) analysis. The
sample preparation for the analytical systems is executed by the liquid handler, which delivers
solutions of defined concentration in deep well plates to be inserted in the plate hotel of the
LCMS. Analysis of the samples using a two-minute gradient conducted by auto sampling
generally requires slightly more than five hours.

To avoid manual interpretation of the enormous amounts of data generated through the high-
throughput system, a (5)Data analysis pipelinewas built. This process takes care of cleaning and
curating the LCMS raw data into a structured, tabular format. This data is then interconnected
with the information on the reaction, ranging from the starting material to the potential prod-
ucts (Chapter 3.2.5, Figure 3.10). A comprehensive database, which will be further explained
in Chapter 3.2.3, is key to this part of the workflow and allows the automated assessment of
reaction outcomes through mass, and where known, retention time of components observed
in the reaction sample. The output of the tagged data in the SURF (Chapter 4) supports the
rapid (6) Data visualization of the reaction outcomes including all relevant reaction parameters
in an interactive TIBCO Spotfire interface (Chapter 3.2.5, Figures 3.13-3.16). The tool allows a
streamlined assessment based on the reaction types and several detailed analysis options.
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Using Spotfire,(7)Reaction analysis of the screenedplates basedondefined criteria is conducted
and the rationale of method or condition selection is reported. The most promising conditions
are then transferred to another tool, which guides the set-up and execution of the (8) Scale-

up reaction. Scale-ups are carried out on a standard medicinal chemistry scale, usually mg
scale, to obtain and fully characterize the reaction products. A standardized documentation
procedure was developed to make the data connectable with the screening outcomes (9). This
also enables the export of all reaction data from screening to scale-up in SURF, allowing
for in-depth data analysis and ML that can guide future Dolphin campaigns through plate
design and reactivity prediction.

In the following sections, important parts of the Dolphin workflow are explained in more
detail. These include the design of the screening plate (Chapter 3.2.1), the reaction miniatur-
ization (Chapter 3.2.2), the reaction screening workflow (Chapter 3.2.3), the data structure
(Chapters 3.2.4 and 3.2.5), the reaction analysis pipeline (Chapter 3.2.5) and visualization
(Chapter 3.2.6), and the scale-up workflow (Chapter 3.3).

3.2 Reaction screening

Theminiaturized reaction screening represents the core of the Dolphin workflow as it allows
the efficient assessment of LSF transformations before initiating resource- and time-intensive
single reactions with precious lead molecules. The following chapters will describe the main
operations and features of the screening process.

3.2.1 Plate design

In contrast to traditional chemical experimentation, where the literature review aims at se-
lecting a few testable reaction conditions, followed by single-flask laboratory experiments to
identify and potentially isolate reaction products, the parallel assessment of chemical transfor-
mations with HTE requires a more streamlined process. [110] The manual iterative literature
searchprocesswithout digital support anddocumentation of data can be very time-consuming,
especiallywhen facing complex optimization challenges or a large number of differentmethod-
ologies. Designing a screening plate with a clear rationale backed by a broad literature search
will enhance the ability to identify successful reactions, discover patterns and support poten-
tial further iterative rounds of screening. To achieve this goal, a novel plate design process was
developed, which is depicted in Figure 3.3.
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Figure 3.3: The process of designing a screening plate. At first, the literature needs to be searched for
publications of interest in a streamlined fashion. From those manuscripts, the reported methodologies
and reaction conditions need to be extracted and transferred to SURF. After potential manual curation
of the data to avoid information gaps, the data can be analyzed to identify the most promising param-
eters for a screening campaign, always balancing data and chemical understanding. In the following,
the reactions need to be miniaturized and extensive testing on the small scale needs to be carried out to
ensure reproducibility in HTE experiments. Once, miniaturized, the plate layout can be designed, in-
cluding the consideration of plate-specific characteristics, e.g., all reactions on the plate will be exposed
to the same temperature range, and engineering challenges (liquid handling, solid dosing, solubility
issues).

In the initial step of the workflow, relevant publications covering a certain reaction type, e.g.,
C-H borylation, or specific chemical transformation, e.g., Suzuki-Miyaura, need to be identified.
This approach will be further explained below (Figure 3.4). In the next step, the reaction data
from those publications needs to be extracted to obtain high-quality data sets for analysis to
uncover relevant screening conditions (Figure 3.5). This will consequently involve the curation
of the data to close all remaining information gaps. Importantly, an understanding of the
correlation between the molecular process and the corresponding reaction data is needed.
This delivers the foundation for the reaction miniaturization process, which follows in the next
step. Selected transformations will be tested on a smaller scale (µmol, nmol) than reported
in the literature and transferred to a plate format. Further details on this step are explained
in Figure 3.6. Once the reactions are validated, the design of the final screening plate can be
defined, taking into account the special requirements associated with working in a parallel
plate format. Those include a constant temperature for all vials and, generally, also identical
time points for process controls. Further, engineering challenges need to be addressed, which
can comprise the handling of a broad range of liquids and solids, the insolubility of certain
components, solvent volatility and overall small amounts of the reaction mixture that need to
be consistently stirred.

Figure 3.4 describes the developed systematic literature analysis for Dolphin. The five-step
data-driven procedure aims at identifying publications containing methodologies of interest
using a clearly defined rationale.
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In the first step of the literature analysis, a definition of precise search queries needs to be
conducted. Generally, two types of queries can be considered for chemistry, a keyword- and
a structure-based approach. Using keywords, types, names, parameters and characteristics
of reactions as well as involved functional groups or reactive centers in string format can be
interconnected through Boolean operators to deliver the syntax. In a structure-based approach,
the query is centered around a transformation described by structural information, usually by
drawing molecules in a sketch application provided by the database. To allow a comprehen-
sive literature search, the search is executed on three different, renowned scientific databases,
namely Scopus/Reaxys (Elsevier,Netherlands), [403, 414]Web of Science (Clarivate Analytics,
USA), [415] and SciFindern (Chemical Abstracts Service, USA). [404] This approach helps to
balance the strengths and weaknesses of each database, which include the number of records,
list of titles as well as the focus on certain topics. [416]

The search results obtained from each database are downloaded and the data set is cleaned, re-
moving duplicate entries and adding a database source tag. Consequently, the data is curated,
additional information e.g., the citation count or the journal impact factor, is added and calcu-
lations with the available data can be executed. The cleaned literature data set then undergoes
data analysis to identify the most suitable publications for detailed inspection. Different analy-
sis approaches can be chosen, including clustering by citations and impact factor, by chemical
information in string format occurring in the abstract or by clustering based on journal and au-
thor affiliation. Of course, furthermeans of analysis can be freely chosen as the data set contains
a broad range of information for each publication. In Chapter 5.3, an example of the application
of this literature analysis as part of the borylation case study using a keyword-based search
query is described in detail. Further, a reference implementation of the systematic literature
analysis (Figure 3.4) based on a literature search forMinisci-type reactions with the respective
Alteryx Designer (Irvine, US) workflow is available at https://doi.org/10.5282/ubm/data.469.
The information provided in this chapter also touches on the next step of the plate design
process, the extraction and curation of the reaction data from the selected publications, which
is displayed in Figure 3.5.
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Automated reaction data extraction from publications has progressed from rule-based algo-
rithms to advanced data-driven approaches using neural networks, with recent tools like Deep
lEarning forChemical ImagE Recognition (DECIMER) achieving up to 90% accuracy in optical
chemical structure recognition (OCSR). [417–421] However, the extraction from full chemical
reaction schemes remains a complex challenge, with recent developments by Qian et al. [422]
introducing an image-to-sequence translation model for parsing reaction schemes, indicating
the potential for further improvement with additional annotated data. [423, 424] Despite these
recent advances, the extraction of all information describing a chemical reaction, including
important parameters, such as the quantities of the reaction components, into a structured
format remains a challenge.

In a pragmatic approach, the Dolphin workflow gathers reaction information from different
databases, namely SciFindern [404] and Reaxys, [403] complemented by manual analysis of
the manuscript including the supplementary information (SI). To obtain all required informa-
tion for SURF (Chapter 4), structural data, identifiers (CAS number) and quantities of all
reaction components are extracted and curated. Further, important parameters, such as scale,
time, temperature and the atmosphere need to be obtained. Unfortunately, many of these data
points are not obtainable through the mentioned databases’ online view, despite as a down-
loadable file and if they are, the information is not always in line with the one reported in
the publication. Therefore, as exemplified in Figure 3.5, oftentimes, only manual extraction
of parameters from the publication leads to complete data sets. In particular, the quantities
of the reaction components and data on scale or atmosphere are not readily available and
even require a detailed analysis of the manuscript in many cases. However, once the data of
each transformation is captured in SURF, the analysis process of reaction data is accelerated,
plate layouts can be designedmore efficiently and the reaction information can also be directly
subjected to ML models. An exemplary SURF dataset of Minisci literature conditions is avail-
able at https://doi.org/10.5282/ubm/data.469, additional data sets can be downloaded from
https://github.com/alexarnimueller/surf/tree/main/data. The applications of Dolphin in
Chapters 5 and 6 describe the design of the plate layout for C-H borylation and alkylation reac-
tions. However, before being able to execute the screening in the laboratory, the reproducibility
of the literature reaction on conditions on a small scale needs to be assessed.
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3.2.2 Plate testing

The reaction miniaturization workflow is an iterative step-by-step process depicted in Fig-
ure 3.6. To avoid the generation of false positive or negative data and consequent misinter-
pretation of reaction outcomes, potentially leading to error-prone training sets for ML, this
process requires special attention. In the initial step, the reaction conditions from the literature
are reproduced as reported in the manuscript. If successful, the reaction scale can be reduced
(µmol, nmol scale) subsequently. This can be conducted stepwise to avoid large jumps in scale
that could have a strong impact on the reaction performance. Confirmation of positive results
initiates the next step, the transfer of the single reaction to the plate format.

Figure 3.6: Overview of the reaction miniaturization and plate validation process. Starting from liter-
ature conditions, which are being exactly reproduced, a five-step workflow leads to the development
of a robust and reproducible plate layout that can be applied to unknown starting materials. In every
step of the iterative optimization, only one parameter is varied at a time to allow seamless tracing of
potential errors.

To prove reproducibility across all vials of the screening plate, an experiment using a 24-
well plate, in which all wells contain the same single reaction conditions tested previously, is
executed. This also allows the identification of potential issues through inconsistent heating or
stirring across different positions. In the case that all reactions show similar, expected product
formation, reaction conditions can be varied in the subsequent iteration round. This generally
involves the variation of catalysts, solvents or reagents or the addition of other methodologies
to the plate that already passed the described assessment as well. Finally, if the designed plate
delivers reproducible results for several experiments using a defined set of model substrates,
the plate can be rolled out on an unknown starting material. If reactions fail or inconsistencies
are observed throughout the whole process, the step will be repeated until reproducibility
and robustness can be confirmed.
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The above-described,meticulous, iterative process of designing andvalidating screening plates
with data-driven decision-making ensures the screening of relevant, robust and reproducible
reaction conditions to generate high-quality reaction data.

3.2.3 Screening workflow

The following chapter describes the experimental screening plate workflow and the inter-
play with the associated databases stored as interactive Google Sheets or on Google Cloud,
which represent the core of Dolphin. An overview of the screening operations including
the required data interplay (blue text), highlighting the importance of seamless software and
hardware integration, is shown in Figure 3.7.

Upon the selection of the substrate for the screening campaign, all information on the com-
pound is digitally documented in the Google Sheet of the screening platform (see "Compound
data" in Figure 3.8 for details). The compound undergoes analytical quality control by liquid
chromatography-mass spectrometry (LCMS) to confirm the purity of the material and cap-
ture mass pattern as well as the retention time, required for the data analysis of the screening
reactions at a later point in the workflow. Next, the screening plates are selected and the conse-
quent experimental runs are connected through unique identifiers to the substrate within the
Google Sheet ("Plate definition" and "Experiment information" in Figure 3.8). Based on this
information, the material preparation can be initiated as the preparation protocols for stock
solutions (liquid handling) or dosing heads (solid handling) are generated. Once the reaction
components are prepared, stirring bars are added to each well of the plate, and the robotic
systems execute the reaction set-up using the generated files. Liquid handling with the Tecan
robot is faster compared to solid dosing, where each component needs to be milled into the
respective vial. This leads to set-up times of ten to 15 minutes for a 96-well plate using liquid
handling and up to ten hours, depending on the amount of material and reaction participants,
for solid dosing.
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Figure 3.7: The reaction screening workflow of Dolphin. All steps require data operations in the
background, which are highlighted in blue text. After digital documentation and analytical characteri-
zation of the starting material, screening plates of interest are selected and the required chemicals for
automated liquid using a Tecan EVO 100 or solid handling with a CHRONECT Quantos are prepared.
Reaction set-up is conducted using robotic systems, which are controlled through automatically gener-
ated execution files. The solid dosing of components takes place under a nitrogen atmosphere inside
a glovebox. The reaction mixtures are stirred and, if required, heated on standard heating plates or a
reaction bay within the glovebox. Sampling from the plate at defined time points allows the monitoring
of reaction progress. The drawn samples undergo a defined preparation process, which includes the
removal of the reaction solvent using centrifugal evaporators from GeneVac and automated sample
re-suspension and dilution steps by the Tecan, before being subjected to liquid chromatography-mass
spectrometry (LCMS) analysis. The LCMS raw data is processed, and, using the compound database,
tagged based on mass patterns and retention times. Visualization of this structured and complete data
provided in the simple user-friendly reaction format (SURF) allows the analysis of reaction outcomes.
Those results guide the determination of suitable scale-up conditions.
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Once all reaction components are dosed, the reaction plates from Analytical Sales are sealed
and transferred to either a standard stirring plate with a heating function or a heating bay
within the glovebox. Importantly, all reaction parameters, including the often unreported or
estimated values, such as atmosphere and time, are digitally documented. The monitoring of
reaction progress is achieved through sampling from the reaction plates using multichannel
pipettes or the liquid handler. Time points are reported and samples are subjected to solvent
evaporation in a centrifuge. Tecan workflow scripts that aid the re-dilution and mixing of the
samples in a defined amount of LCMS solvent (MeCN:H2O, 4:1) to obtain accurate sample
concentrations (1 mM) across all wells are generated based on the scale of the reaction. Fol-
lowing transfer into deep well plates, the reactions are analyzed on the LCMS system using
automatically generated files that include the chemical formula of the starting materials as
well as desired products and undesired byproducts, thereby guiding the mass spectrometry
(MS) search. The product formulae originate from a data workflow that uses the information
of the startingmaterial and the defined transformations on the plate to automatically construct
these potential products (Chapter 3.2.5, Figures 3.9 and 3.10).

The LCMS analysis of 96 samples requires approximately 5.2 hours, after which the raw data
is parsed into a tabular format and transferred to a Google Cloud. This structured data is then
used in a product tagging workflow (Chapter 3.2.5, Figures 3.9 and 3.11) that compares the
information in the database with the reaction data from the LCMS. Starting materials and
products are tagged based on mass (pattern) and, if available, retention times. The processed
data is transformed into SURF (Chapter 4),which allows visualization of the reaction outcome
in an interactive Spotfire interface (Chapter 3.2.6, Figures 3.13-3.16) and the training of ML
models. The selection of screening hits is documented and scale-up reactions are seamlessly
determined using another customized workflow and Google Sheet database (Chapter 3.3,
Figures 3.16). The following two Chapters 3.2.4 and 3.2.5 will give a more detailed insight into
the data structure and two important workflows that aid the analysis of the reaction mixtures.

3.2.4 Data backbone

The data structure of the interactive Google Sheet that captures the screening operations of
Dolphin is shown in Figure 3.8. Three main sections, which are interconnected through
unique identifiers, were defined to record all relevant HTE campaign data. Exemplary data
sets covering the data structure are available at https://doi.org/10.5282/ubm/data.469.
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Figure 3.8: Data structure of the semi-automated screening platform. Three main components are
needed to define the screening experiments. Compounddata captures all important information related
to amolecule from structural data andphysical properties to analytical characterization and the chem_id
serves as the unique identifier. The plate definition section contains all relevant information on the plate
layout, describing which chemical in what quantity and role is in a certain position of the plate. Finally,
the experimental sectionmakes use of the aforementioned databases to definewhich chemical reactions
are taking place under what type of conditions, including temperature, scale, and atmosphere among
others. Further, time points for reaction monitoring are captured, allowing the precise evaluation of
transformation outcomes.

The compound data section includes all information on the chemicals including the name, the
CAS number, the chemical formula in Hill notation, structural information in string format
(Simplified molecular-input line-entry system, SMILES), the molecular weight, the aggregate
state, the solubility in certain solvents and, importantly, the location of the chemical in the
laboratory. The chem_id serves as the unique identifier of the chemical, used in other tables
to cover analytical information or the use of the compound as a starting material or reagent
on a plate. The analytics tab, which also belongs to the compound data section contains all
LCMS, high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR)
spectroscopy information of the compound. This allows the retrieval of analytical information
for the tagging of the LCMS reaction screening data but also supports the scale-up experiments
(Chapter 3.3).
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The definition of the plates is captured by two sub-tabs, namely plates and products (Fig-
ure 3.8), which are connected through the identifier plate_id. The plates tab records the com-
ponents of the plate in each well, including their role and equivalents or molarity, which are
important for the plate execution and the documentation in SURF. The products tab defines
the expected reaction outcomes of the plate, which depends on the selected methodology and
is documented as the atomic difference between the starting material and the product. In the
case of the C-H borylation (Chapter 5), the formation of a boronic acid implies the addition
of a boron atom, two oxygen atoms and one hydrogen atom compared to the substrate. The
associated workflow that relies on this data is described in Figure 3.10.

Finally, the experimental information section combines and adds data to define each unique
screening experiment. The requests tab captures information on the screening campaign in-
cluding data on the project, the collaborating colleagues or the general research question.
For each experiment, an electronic lab journal (ELN) entry is generated, which serves as the
overall request identifier, the eln_id (elnXXXXXX-XXX). The next part of the experimental
section covers the information, on which starting material is used, captured through the cor-
responding chem_id. While the name is retrieved from the compound database to reduce tab
switching in the interactive Google Sheet, other novel information pieces, including the equiv-
alents, generally 1.0, or specific handling notices are added. In the experiments section, the
plates associated with each eln_id are defined. Since several plates (plate_no, Y) could be run
for a certain request, e.g., two borylation plates and three alkylation plates, an experiment_id
(elnXXXXXX-XXX_Y) is needed to keep the data structure unique. In the example case, five
entries would be added to this database, generating five plate numbers (1-5), which are added
to the eln_id using an underscore and followed by the number to generate the experiment_ids.
The corresponding plate_id as well as the scale, temperature, mixing information, atmosphere
and the data are captured in this section as well. Finally, for each of the plates, reaction anal-
ysis by LCMS could be carried out at different time points requiring another tab covering
these process controls. Reaction controls are counted by the internal process control (IPC)
number, which leads to the extension of the experiment_id with another underscore and the
corresponding ipc_no (Z) to generate the ipc_id (elnXXXXXX-XXX_Y_Z). Within the process
controls tab, the time of sampling, the concentration of the LCMS sample solution, the LCMS
method and file name as well as the data upload is captured. By adding the well position
(A1-D6 for 24-well or A1-H12 for 96-well plates) obtainable through the plates section, each
reaction can receive a unique identifier termed rxn_id (elnXXXXXX-XXX_Y_Z_AA).
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3.2.5 Data interplay

Figure 3.9 gives an overview of the required data interplay across the screening platform to aid
the execution and analysis of the HTE experiments. The data interplay is key to making Dol-
phin an efficient HTE system that possesses a high degree of software-hardware integration
and data governance.

Figure 3.9: Overview of the data interplay. The data structure of the Dolphin screening platform
allows efficient experiment execution due to the availability of all information for material calculations,
script and input file generations. The automated generation of potential products is aided through an
additional workflow, which uses the plate definition information and the starting material chemical
formula. The reaction analysis process resembles the generation of inputfiles for liquid chromatography-
mass spectrometry (LCMS) measurements as well as the parsing and analysis of the LCMS raw data.
Due to the reporting of all reaction-associated data, the output of simple user-friendly reaction format
SURF files is seamlessly possible.

As highlighted in the screening workflow (Figure 3.7), the execution of experiments requires
the preparation of chemicals and the generation of scripts as well as input files for the robotic
systems and the analytical measurements. Combining the data from Figure 3.8 allows for
conducting the needed calculations and determining the dosing of solutions and solids in the
definedwells of the screening plate. Due to the capturing of all reaction information, including
roles and equivalents, tabular SURF files serving as a findable, accessible, interoperable and
reusable (FAIR) output of the HTE campaigns can easily be generated as well. The automated
generation of the potential products using the starting material chemical formula and the
analysis of the reaction data are described in the following two sections.
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Potential products

Unlike a standard chemical reaction,where a certain product is targeted,LSF can yield a diverse
set of products ranging from mono-, di- and tri-substituted products to various regioisomers
thereof. [55, 61, 66] Since full structural elucidation in the miniaturized HTE screening was
not feasible due to time, equipment and cost constraints, solely LCMS was used to analyze
the reaction mixtures. Differentiation of regioisomers is possible through varying retention
times but does not elucidate the exact position of the new functional group. However, to
assess the general reaction outcome, including product formation within an acceptable time
frame, LCMS is a feasible method. To enhance the precision of LCMS results, it is beneficial to
include the chemical formulas within the input files, which the system utilizes for its search.
Consequently, the desired products should be generated in silico. In addition, the masses of
the potential products are required to enable the product tagging in the reaction analysis step
(Figure 3.11). To address the inefficiency and error-proneness of manually creating several
potential products for each new starting material and reaction type, a process that would
adversely affect the throughput and precision of Dolphin, a data pipeline was developed
(Figure 3.10).

To overcome the need to manually generate thousands of new potential products for each new
starting material and reaction type, which would be highly inefficient and prone to errors,
consequently impacting the throughput and accuracy of Dolphin, a data pipeline needed to
be developed (Figure 3.10).

Using the established data structure (Figure 3.8), the experiment information can be linked to
both, the compound data and the plate definition. While the former can provide the chemical
formula of the starting material, within the latter, the element changes of the potentially ob-
servable products are defined. Hence, the data workflow needs to disassemble the chemical
formula (Hill notation) of the starting material in the first step. Next, the product information
data and the formula need to be combined to carry out the change in atom quantity. Subse-
quently, re-assembly of the chemical formula delivers the potential products, which receive
a defined product tag and the associate experiment_id, before being stored in a separate tab
of the database. Using the chemical formula, the molecular weight and mono-isotopic mass
of the products can be calculated and added as well. Exemplified for a substrate subjected
to C-H borylation reactions, the potential product generator delivers the chemical formula of
the boronic acid pinacol ester (Bpin) and B(OH)2 products in a streamlined fashion without
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Figure 3.10: Schematic of the potential product generator including an example for the generation of
products for C-H borylation reactions. Using the substrate information from the compound database,
the chemical formula is parsed into its components. In parallel the plate definition is obtained, which
includes information on the potential products and the atomic changes taking place. Next, both in-
formation is combined and the changes for each element are executed. In the final step, the chemical
formulae are recombined following the Hill notation and tagged with an identifier (experiment_id)
connecting them to the starting material and plate. The example at the bottom of the figure shows the
creation of two possible products for C-H borylation, the boronic acid pinacol ester (Bpin) and B(OH)2
derivative.

the need for manual intervention (Figure 3.11). A reference implementation of the potential
product generator (Figure 3.10) based on the generation of potential products for Minisci-
type reactions (case study, chapter 6.2) with the corresponding Alteryx Designer (Irvine, US)
workflow is available at https://doi.org/10.5282/ubm/data.469.

Reaction analysis

Figure 3.11 provides an overview of the reaction data analysis pipeline, which supports the
processing of LCMS raw data to determine reaction outcomes. The LCMS input files in txt only
(txt) format contain the plate position of the 96-well plate, the corresponding rxn_id and the
chemical formulae that the MS is intended to search for in a line-by-line structure. Upon mea-
surement of the samples (approximately 3.2 minutes per sample), the instrument outputs the
entire run in portable document format (PDF) files and a report (rpt) file. While the PDF file
is not machine-readable and cannot be used for automated data analysis, the rpt file contains
unstructured text. Hence, a confidential customized parsing script was developed, that trans-
forms the data into a tabular format. These structured tables, which are stored on an internal
Google Cloud contain the ultra-violet (UV) peak area and the five most abundant masses of
all peaks per sample connected through the unique identifier of each reaction (rxn_id).
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Using the data pipeline software tool Alteryx Designer (Irvine, US) to connect to the Google
Cloud, the UV peak traces are connected to the mass information and sample identification
(ID), equivalent to the rxn_id is parsed to extract other identifiers, such as eln_id and plate_id.
The latter is needed for the addition of the reaction components towards the final step of
the workflow. Next, the LCMS data of each sample undergoes comparison with analytical
reference data of the corresponding starting material using the eln_id and chem_id as a joint
string. If retention times andmass patternsmatch, a peak is tagged as the startingmaterial. The
process is repeated for potential reference products, which also possess analytical information
stored in the database. The potential products (Figure 3.10) are retrieved from a different
database as their retention times are not known and multiple regioisomers could be observed.
In the subsequent matching of potential product masses with the remaining LCMS data, the
next tagging round is carried out. Peaks without any matches are designated as unidentified
products, and their mass differences relative to the starting material are computed.

After the tagging process, all consolidated data streams are unioned and the area of all peaks
is summed up. This allows the computing of the individual conversion ratios for each peak in
the following step. Using the plate_id identifier, each sample is now enrichedwith information
on the exact reaction conditions and parameters (e.g., time, temperature). This also includes
identifiers (SMILES,CASnumber) and the equivalents of each component. In the end,each line
contains all information of one reaction and is exported as a SURF file (Chapter 4), which can
directly be used for data visualization and analysis as well as ML applications. The average
run time of the data workflow takes two minutes, which ensures rapid and accurate data
preparation of the screening results. A reference implementation of the LCMS reaction data
analysis (Figure 3.11) leading to the generation of the visualization and SURF files exemplified
on a Minisci-type reaction with the corresponding Alteryx (Irvine, US) workflow including
intermediate data outputs is available at https://doi.org/10.5282/ubm/data.469.

3.2.6 Visualization and analysis

The automated reaction analysis pipeline reduces the time from the last measurement to the
visualization of the reaction data to a minimum. Using the visualization output files (exam-
ples available at https://doi.org/10.5282/ubm/data.469), different visualizations were built in
TIBCO Spotfire that support the interpretation and understanding of complex reaction screen-
ing campaigns. The following chapter describes the developed visualizations (Figures 3.12 to
3.15) exemplified by the analysis of a Minisci-library screening plate on Loratadine (9).
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Figure 3.12 presents a general overview of the full analysis page in Spotfire. The interface is
designed for intuitive navigation, allowing for the selection of experiments through the input
of the electronic laboratory notebook identifier (eln_id), the screening plate layout (plate_id),
the plate number (plate_no), and the process control (ipc_no). The visualization is structured
to provide a comprehensive snapshot of the experimental data. The central figure displays all
24 wells of the plate, with the ratio of identified components represented in pie charts, offering
an immediate visual assessment of the reaction outcomes. Adjacent to this, a scrollable tabular
field lists all components, inclusive of their retention times, facilitating a detailed examina-
tion of the chromatographic data. The right side of the panel contains essential experiment
information, such as the general reaction conditions, time, temperature, and atmosphere. By
selecting a well, the reaction components used, are shown in the section below. The structure
of the starting material, Loratadine (9), is always depicted at the bottom right of the panel. The
visualization also incorporates an MS reliability score, color-coded to reflect the confidence in
the results, with green indicating high reliability. A chromatogram with tagged and untagged
peaks would be displayed upon the selection of a specific well, providing further analytical
depth.

Figure 3.12: General overview of the full analysis page in Spotfire. The selection of the experiments is
steered through the input of the eln_id (ELN) and subsequent selection of plate_id (Plate), plate_no
(Plate nr) and ipc_no (IPC) on the left side of the panel. In this case, a Minisci-library screening plate
on Loratadine (9) was selected. The top center figure shows all 24 wells of the plate and the ratio of
the identified components in pie charts. Next to this chart, a scrollable tabular field contains all the
components including their retention times. Further to the right, the basic experiment information,
followed by the general reaction conditions, such as time, temperature and atmosphere are shown.
Below this feature, the reaction components would be displayed if a well is selected. On the bottom,
the structure of the starting material is depicted, in this case, Loratadine (9). The next visual of the
plate contains the MS reliability score, indicating the confidence of the results (green: high reliability,
grey: no reliability - unknown products). To the right, the chromatogramwith all tagged and untagged
peaks would appear if the user selects one specific well.

71



Chapter 3. Semi-automated LSF screening platform

While offering a general overview of the reaction outcome, Figure 3.12 is not tailored to imme-
diately highlight the reaction outcome of the executed reaction type, in this case, the presence
of mono- or dialkylated products. Hence, a focused analysis view was developed that sup-
ports an accelerated identification of reaction outcomes (Figure 3.13). This sub-tab of the full
analysis mirrors the initial experiment selection, thereby streamlining the workflow. The visu-
alization is split into two sections: the top row illustrates the structure of Loratadine (9) and a
chromatogram view, which populates data upon the selection of a well. The bottom row offers
a focused analysis, with a 24-well overview on the left-hand side, highlighting the ratios of the
combined ratios of the different potential product types. In this case, the visualization shows
the combined ratios of all mono- (yellow) and di-alkylation (blue) products. This provides a
fast overview of the carboxylic acids that have reacted well with Loratadine (9) and could be
of interest for a more detailed analysis.

Figure 3.13: Focused analysis for the fast identification of reaction outcomes. As a sub-tab of the full
analysis, no selection options for the experiment are needed as the initial choice is mirrored. The top
row shows the structure of the starting material, in this case, Loratadine (9) and a chromatogram view,
which only contains data if a specificwell is selected. The bottom row contains the focused analysis with
the 24-well overview on the right-hand side highlighting the ratios of the different potential products
corresponding to the reaction type. In this example, all combined mono- and di-alkylation ratios are
highlighted in yellowandblue, respectively. The right-hand side overviewoffers a drill-downpossibility
to differentiate between different mono- and di-alkylation products, helping to identify regioisomers.

Based on the viewing of the focused analysis in Figure 3.13, the reaction conditions from
well B5 seemed to have delivered a good amount of mono-alkylated product. Consequently,
in Figure 3.14, well B5 is selected, directing the tool to specifically highlight the potential
products from this condition. The chromatogram view on the top right indicates that two
mono-alkylated products were formed and the height of the peaks, which corresponds to
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the ratios, shows the proportion of 2:1 of the more polar product. To reduce the amount of
distraction, in the bottom row overviews, the opacity of all other wells is reduced, emphasizing
the outcome of selected well B5. The right-hand side overview allows for a similar granular
differentiation as the chromatogram but uses pie charts instead.

Figure 3.14: Focused analysis for the fast identification of reaction outcomes with the selection of a well.
As a sub-tab of the full analysis, no selection options for the experiment are needed as the initial choice
is mirrored. In this view, well B5 was selected. The top row shows the structure of the starting material,
in this case, Loratadine (9) and a chromatogram view of B5 only highlighting the potential products.
The height of the peaks corresponds to their ratios. In this case, a clear indication of the formation
of two mono-alkylated regioisomers due to the two yellow peaks can be observed. The bottom row
contains the focused analysis with the 24-well overview on the right-hand side highlighting the ratios
of the different potential products corresponding to the reaction type, here the combined ratios of all
mono- and di-alkylation peaks. As B5 is selected, all other wells have reduced opacity. The right-hand
side overview offers a drill-down possibility to differentiate between different mono- and di-alkylation
products, highlighting the two mono-alkylation isomers and their respective ratios.

With a potential scale-up condition at hand, the user can now return to the full analysis
overview depicted in Figure 3.15. Due to the mirroring of the tool, B5 remains selected and
all other wells are shown with reduced opacity. The tabular field now exclusively lists the
components and retention times for well B5. The reaction components used for this specific re-
action are detailed below the general reaction conditions (time, temperature, atmosphere) and
include their role and equivalents. The MS reliability score and chromatogram now highlight
the B5 results. While the MS score helps to confirm the reliability of the tagging, the chro-
matogram provides a better understanding of the overall composition of the reaction mixture.
In this case, a good number of side products have been formed, but the potential products
have a higher or similar ratio. Further, the starting material peak indicates that the reaction
might be pushed further as full conversion of Loratadine (9) has not been achieved.
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Figure 3.15: General overview of the full analysis page in Spotfire with the selection of a well. The
selection of the experiments is steered through the input of the eln_id (ELN) and subsequent selection
of plate_ids (Plate), plate_no (Plate nr) and ipc_no (IPC) on the left side of the panel. In this case,
a Minisci-library screening plate on Loratadine (9) and well B5 was selected. The top center figure
shows all 24 wells of the plate and the ratio of the identified components in pie charts. Except for
well B5, all other wells have low opacity to highlight the selected well. Next to this chart, a scrollable
tabular field contains all the components including their retention times of B5. Further to the right, the
basic experiment information, followed by the general reaction conditions, such as time, temperature
and atmosphere are shown. Below this feature, the reaction components that were used in well B5 are
displayed including their role and and the used equivalents. On the bottom, the structure of the starting
material is depicted, in this case, Loratadine (9). The next visual of the plate contains the MS reliability
score, indicating the confidence of the results (green: high reliability, grey: no reliability - unknown
products). Similar to the top plate layout, the opacity for all wells except B5 is turned down. To the
right, the chromatogram with all tagged and untagged peaks of well B5 is visible.

The above-described analysis workflow highlighted that the Spotfire tool provides a robust
and versatile platform for the analysis of the screening data, enabling the user to navigate
and interpret multiple screening plates with ease. The information depth provided through
the visualization efficiently guides the scientist towards promising scale-up conditions and
supports the thought process on the execution of those.

3.3 Scale-up

The scale-up of the most promising reaction conditions obtained through the miniaturized
screening platform is an important step in the Dolphin workflow towards obtaining novel
chemical matter. It requires running the identified chemical transformation on a typical medic-
inal chemistry scale (50 to 100 mg) to isolate and characterize material for biological testing.
Executing such reactions on this scale is the daily business of discovery chemistry depart-
ments in the pharmaceutical industry and other fields, but it has received little digital inno-
vation over the last decades. Despite the introduction of ELNs, the manual and, especially,
non-standardized reporting of all involved steps is still common practice. Establishing find-
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able, accessible, interoperable, and reusable (FAIR) principles to make use of the data points
for data analytics and ML applications and easing the documentation in the laboratory in
parallel, remains a challenge. Thus, to streamline the process and reduce repetitive and error-
prone tasks in the reporting process, a streamlined, data-orchestrated workflow to support
the scale-up reactions was developed (Figure 3.16).

Figure 3.16: Overview of data-orchestrated scale-up workflow. The screening condition selection
is aided by the Spotfire tool. Making use of the unique identifier nomenclature for each reaction
(elnXXXXXX-XXX_Y_Z_AA), the reaction components from the screening are automatically provided
in a Google Sheet for the seamless set-up of the scale-up experiment as a single reaction in the electronic
lab journal (ELN). The output includes identifiers (CAS, Smiles) and the equivalents (eq.) as well as
the reaction parameters, such as temperature (T) and time (t). With this data at hand, the reaction can
be prepared digitally and rapidly executed. The standardized reporting protocol guides the scientist
to document the reaction simple, yet comprehensively in a machine-readable format. Monitoring of
reaction progress and purification steps are reported in the Google Sheet, which automatically gen-
erates files for the analytical instruments with unique identifiers. Upon characterization of the final
product, the compound is registered and all data are exported from the ELN as a SURF file, which
can be used for machine learning (ML) applications, publication and patenting, following findable,
accessible, interoperable, and reusable (FAIR) principles.

Upon the identification of promising screening conditions aided through the Spotfire visualiza-
tion tool (Chapter 3.2.6), the input of the unique identifier nomenclature (rxn_id, elnXXXXXX-
XXX_Y_Z_AA) in an interactive Google Sheet retrieves all screening related information from
the database. This helps to avoid manual look-up of the conditions in Spotfire, but rather pro-
vides the scientist digitallywith all required data to plan the reaction in the ELN. In general, the
structural (SMILES) and inventory identifiers (chem_id, CAS number, location) are provided
together with all other parameters, such as temperature (T) and time (t). This step reduces
errors when entering information, ensures completeness of all data and speeds up the overall
process as the search for the conditions and chemicals is reduced.
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When conducting reactions, the documentation of the reaction set-up and the execution is
paramount to guarantee the reproducibility of the protocol in future experiments. Hence, a
standardized reporting protocol was developed that guides the scientist in the reporting of
the reaction. The protocol ensures simplicity and comprehensiveness while guaranteeing that
the data is recorded in a machine-readable format, essential for data sharing. The monitoring
of the reaction progress and purification steps is also captured in a dynamic Google Sheet,
which automatically generates input files with unique identifiers for the analytical instruments.
Hence, the scientist does not need to take any manual notes and determine a potentially in-
consistent file name nomenclature but can approach the instruments with the sample directly
and document the results digitally. This degree of automation and standardization minimizes
the potential for human error and enhances the efficiency of executing the scale-up reaction.

Upon successful purification of the final product, the compound is fully characterized, which
reveals the regioselectivity of the LSF reaction. The analytical characterization of the products
by LCMS, HRMS and NMR spectroscopy is captured in the analytical database of Dolphin
and the compound is registered in the compound database. Due to the standardized documen-
tation procedures, all relevant reaction data, including yields and analytics, can be exported
from the ELN as a SURF file. This enables comparison with the initial screening conditions
and aids ML applications as well as publication and patenting activities. Hence, this workflow
strictly adheres to the FAIR principles, which are key to modern data governance in chemistry
and facilitate data sharing.

In summary, the developed, data-orchestrated scale-up workflow highlights that the integra-
tion of digital tools and standardized practices can reduce repetitive and error-prone tasks in
the laboratory, thereby increasing efficiency and access to high-quality reaction data.
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3.4 Discussion

Dolphin supports the assessment and execution of LSF transformations on complex drug-like
molecules in an efficient and streamlined fashion based on data-driven and semi-automated
workflows. The integration of automation, digitalization, and AI facilitates the systematic
evaluation of LSF reactions to obtain starting points for scale-up reactions and generates high-
quality reaction datasets that deliver the foundation for the development of ML models. Such
an approach reduces the likelihood of reaction failures through the selection of suitable reac-
tion conditions for single experiments, thereby optimizing material and resource utilization
in the laboratory.

Central to the Dolphin workflow is the miniaturized HTE screening, which allows for the
efficient assessment of LSF transformations on a small scale before committing to resource-
intensive single reactions on a larger scale. The data-driven approach comprehensively cap-
tures all relevant reaction information in SURF to enable rapid identification and analysis of
reaction outcomes. The data backbone and the interplay between software and hardware com-
ponents ensure an efficient end-to-end process, from literature analysis to reaction execution
and analysis. Especially, the output of the reaction data in SURF supports the data visualiza-
tion and analysis enhancing the capability to guide scientists through complex screening data
towards promising scale-up conditions.

The scale-upprocesswithin Dolphin is equally data-orchestrated,ensuring that the transition
from screening to larger-scale synthesis is seamless and well-documented. The standardized
reporting protocols for capturing reaction progress and purification steps minimize manual
intervention and potential errors. The comprehensive documentation and data governance,
adhering to FAIR principles, not only facilitate the reproducibility of experiments but also
enable the use of collected data for ML applications, publications, and patenting. Overall,
Dolphin exemplifies how digital innovation can contribute to increasing the efficiency and
effectiveness of chemical synthesis in drug discovery.

However, to unlock the potential of LSF for drug discovery and further integrate digital tools
into the chemical synthesis process, improvements to the platform are needed. Firstly, the
development of alternatives to the mostly manual extraction of literature reaction data from
publications could accelerate access to high-quality datasets. The advances in ML and the
use of large language models (LLMs) have led to the development of several models. [417,
422, 423, 425] Yet, obtaining all important parameters as defined in SURF (Chapter 4), which
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include scale, atmosphere and equivalents based on reaction schemes and tables as well as the
procedures in the SI has not been achieved so far.

Additionally, the miniaturization of the LSF reactions utilizing the ChemBeads technology
should be investigated. ChemBeads would enable the precise dosing of sub-milligram quanti-
ties of reaction components directly into reaction vessels without the need for stock solutions,
thus saving time and resources while avoiding solubility and co-solvent issues. [205, 209–211]
This could also contribute to further broadening the reaction scope of the platform through the
implementation of C(sp2)-C(sp3) couplings. Many of these transformations, however, rely on
the use of photochemistry, another current limitation of the platform that could be addressed.
The integration of integration of light-emitting modules would allow access to a wide array
of transformations and also contribute to more sustainable reaction execution.

Even though LCMS is a standard and commonly employed analytical method in HTE, other
techniques could be tested as well. The introduction of multiple injections in a single experi-
mental run (MISER) could reduce the time required for HTE sample processing to 15 minutes
for a 96-well plate. [135, 146]. Additional methodologies of interest include matrix-assisted
laser desorption/ionization (MALDI), desorption electrospray ionization (DESI), acoustic
ejection mass spectrometry (AE-MS), and NMR spectroscopy. [153, 177, 226–234] Obtaining
this higher volume of different analytical data would also require adjustments of the reac-
tion analysis workflow and, consequently, the visualization tools as well. Further, different
approaches to conducting the quantification of the reaction outcome could be established.
Such techniques could include the use of internal standards or assay development.

Finally, to provide scientists using Dolphin with a seamless digital solution, all developed
automation solutions and digital tools could be combined in one interface. In doing so, the
current plethora of ELN,differentGoogle Sheets,Google Cloud,different data pipelines, robots
and the Spotfire visualization, would need to be integrated into a single solution. While a
highly complex information technology (IT) task, this approach could generate an integrated
software/hardware package, that could be deployed at different sites of a company supporting
technology transfer, education and FAIR data sharing.
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The greatest battles are fought within oneself, where determination meets

doubt.

- Jan Frodeno

4
The simple user-friendly reaction

format (SURF)

This chapter describes the development of the simple, user-friendly reaction format (SURF).
The following manuscript presents discusses a new human- and machine-readable reaction
data format, SURF, that allows seamless feeding of machine learning algorithms without
requiring data pre-cleaning. [426] SURF is a cornerstone of DOLPHIN and served as the
foundation to capture experimental high-throughput experimentation (HTE) experiments for
the two presented case studies (Chapter 5 and 6).

The manuscript has been uploaded on ChemRxiv and was submitted to a journal for peer-
review:Nippa,D. F.†, Müller, A. T.†, Atz, K.†, Konrad, D. B., Grether, U.,Martin, R. E., & Schnei-
der, G., Simple User-Friendly Reaction Format, ChemRxiv (2023), DOI: 10.26434/chemrxiv-
2023-nfq7h.

The author of this thesis is the co-first author of the manuscript as he analyzed the current
reaction data format landscape, conceptualised, designed and developed SURF, curated re-
action data from selected publications into the new reaction data format and built a data
infrastructure that generates SURF output files from HTE campaigns.
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Abstract

Leveraging the increasing volume of chemical reaction data can enhance synthesis planning and improve suc-
cess rates. However, machine learning applications for retrosynthesis planning and forward reaction prediction
tools depend on having readily available, high-quality data in a structured format. While some public and
licensed reaction databases are available, they frequently lack essential information about reaction condi-
tions. To address this issue and promote the principles of findable, accessible, interoperable, and reusable
(FAIR) data reporting and sharing, we introduce the Simple User-Friendly Reaction Format (SURF). SURF
standardizes the documentation of reaction data through a structured tabular format, requiring only a basic
understanding of spreadsheets. This format enables chemists to record the synthesis of molecules in a format
that is both human- and machine-readable, making it easier to share and integrate directly into machine-
learning pipelines. SURF files are designed to be interoperable, easily imported into relational databases, and
convertible into other formats. This complements existing initiatives like the Open Reaction Database (ORD)
and Unified Data Model (UDM). At Roche, SURF plays a crucial role in democratizing FAIR reaction data
sharing and expediting the chemical synthesis process.

1 Introduction

The synthesis of chemical matter is often viewed as
a rate-limiting step in material sciences, crop pro-
tection and drug discovery [1–4]. Crafting complex
molecules typically involves multi-step syntheses, en-
compassing various reaction steps, each presenting
multi-parameter optimization challenges [5, 6]. This
high complexity makes chemical reactions time- and
resource-intensive [7, 8]. Exploiting the growing vol-
ume of chemical reaction data could enhance synthesis
planning and potentially boost success rates [9–11]. In
recent years, machine learning has shown applications
to a broad variety of challenges in chemistry [12–18].
In particular, graph neural networks, transformers, and
recurrent neural networks have successfully demon-
strated their value in reaction prediction and synthesis
planning [19–26].

However, these tools can only achieve success when
trained on high-quality data presented in a structured,
machine-readable format [27]. Currently, detailed re-
action data, encompassing all parameters, reagents,
quantities, and roles, are often disclosed within the
supplementary information of publications as unstruc-
tured text or, in some cases, substrate scope tables.
These tables may also appear in the main manuscript
of methodology publications but frequently include nu-
merous footnotes highlighting exceptions, complicating
human interpretation and analysis. Moreover, both
documents are typically available in the challenging-
to-process portable document format (PDF). Con-
sequently, the barrier to accessing complete reaction

data sets in a time- and cost-efficient manner remains
high [28]. Furthermore, data derived from scientific
literature and patents often lack information regarding
unsuccessful reaction outcomes. However, these nega-
tive results are of paramount importance for training
machine learning models, as they play a crucial role in
generating reliable predictions. [29–32].

The challenges mentioned above are evident in the state
of currently accessible public and commercial databases
that encompass chemical reactions. Public resources in
this domain are notably limited, with examples includ-
ing the dataset covering chemical reactions from US
patents spanning from 1976 to 2016 [33]. Addition-
ally, there are commercial offerings like Reaxys [34]
and SciFinder [35], but these, too, face constraints in
providing comprehensive and well-structured reaction
data. While these databases do contain a consider-
able number of reactions from scientific literature and
patents, they frequently fall short in terms of providing
essential information regarding reaction conditions and
outcomes. Moreover, there is often a noticeable bias in
favor of including high-yielding reactions, potentially
overlooking the valuable insights that can be gained
from reactions with lower yields or unsuccessful out-
comes. [36, 37]. A multitude of different file formats,
in which this data is stored, further complicates ac-
cess to and harmonization of reaction data. Among
the most common formats are Reaction Data File
(RDFile), ChemDraw Extensible Markup Language
(CDXML), Reaction International Chemical Identifier
(RInChI), Reaction File (RXNFile), JavaScript Object
Notation (JSON), and Chemical Markup Language
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Reaction(CMLReact) [38–41]. While these formats can
effectively store molecular structures and correspond-
ing chemical reaction diagrams, they tend to lack a
controlled vocabulary and detailed reaction conditions,
such as equivalents. Additionally, their usability is
often compromised by the specialized technical knowl-
edge required to work with them, which can hinder
accessibility and understanding. Hence, there exists a
notable gap in achieving findable, accessible, interoper-
able, and reusable (FAIR) standards for the reporting,
collection, and storage of reaction data. Addressing this
gap is imperative to facilitate and advance data-driven
research in the field of chemistry. [42].

Recently, two initiatives have been introduced with the
aim of capturing reaction data in machine-readable and
uniform formats.

1. The Unified Data Model (UDM), initially devel-
oped by Roche and Reaxys and now managed by
the Pistoia Alliance, is an open, extendable, and
freely available data format for exchanging exper-
imental information on compound synthesis and
testing [41]. UDM employs a controlled vocabu-
lary, an explicit hierarchical data model, and sup-
ports various molecule and reaction representa-
tions. UDM, implemented through an Extensible
Markup Language (XML) schema, provides the
advantage of utilizing widely accessible, generic
tools for parsing, validation, and transformation.
The format also captures analytical data, liter-
ature references, and legal information, with ex-
tension points allowing the inclusion of vendor- or
process-specific data.

2. The Open Reaction Database (ORD) was in-
troduced as an open-access platform for making
chemical reaction data available in a structured
format [43]. The ORD schema, implemented us-
ing Protocol Buffers [44], offers nine sections to
comprehensively cover all experimental details,
including the integration of raw and processed
analytical data, ensuring reproducibility. ORD’s
high flexibility accommodates varying levels of de-
tail based on available information. Moreover,
the authors of the ORD emphasize usability by
enabling data submission via software programs
and through a web interface. Leveraging these
features, ORD data is compatible with machine
learning applications and even provides descrip-
tive fields for reaction featurization.

While UDM and ORD represent crucial steps towards
improving the standardization of reaction data for in-
formation sharing and machine learning applications,
they pose certain challenges in day-to-day laboratory
and data science environments in both academia and
industry: (i) Complexity: The availability of numerous
fields and options for data entry may lead to fewer
entries and missing data, as laboratory scientists have
limited time for documentation. Focus and simplifica-
tion, within the constraints of chemistry, are essential
for capturing as many data points as possible, including

unsuccessful reactions. (ii) IT barrier: Although ORD
offers the option of entering and searching reaction data
through a web interface in addition to programmed in-
put, this still necessitates multiple manual steps in an
external environment. UDM provides programmed in-
put only, requiring IT skills or dedicated specialists,
which precludes most chemists from using UDM for
their reaction data. (iii) Data sharing between disci-
plines: Efficient exchange of reaction data within and
across research groups, departments, or companies can
accelerate research. With UDM and ORD, direct shar-
ing of data between scientists in the same discipline,
such as chemist to chemist, or across disciplines, such as
chemist to machine learning scientist, may be hindered
depending on available IT skills and infrastructure, as
these formats are not easily human-readable for un-
trained individuals. Finally, the nested data structure
complicates streaming reactions from these file formats.

Implementing accessible data practices in chemistry is
crucial for further enhancing machine learning applica-
tions in the field [37]. We have developed the "Sim-
ple User-Friendly Reaction Format" (SURF) at Roche.
SURF addresses the limitations of UDM and ORD,
complementing these existing data formats while main-
taining interoperability. It structures reaction data re-
porting through a straightforward, yet comprehensive
tabular format, requiring only a basic understanding of
spreadsheets. SURF eliminates the need for coding ex-
perience, advanced IT skills, or a web interface, empow-
ering every chemist to document and share their chemi-
cal syntheses in a human- and machine-readable format.
As a result, the SURF format has the potential to fur-
ther democratize reaction data. We advocate making
the attachment of a SURF file to the supplementary in-
formation of manuscripts mandatory, thereby improv-
ing reaction data reporting and ultimately allowing a
broad scientific community simplified access to valuable
data.

2 Simple-user friendly reaction format

The development of SURF emerged from the need
for efficient sharing of reaction data among labora-
tory chemists, data scientists, and machine learning
researchers. Given the involvement of such a diverse
group of stakeholders with different backgrounds in
computer science and chemistry, creating a structured
model interpretable by both humans and machines
was of paramount importance for improving the drug
discovery process. Based on these considerations, we
opted to use simple spreadsheets, as they facilitate data
capture in a tabular format, are widely used, and re-
quire minimal training. Using spreadsheets addresses
the existing information technology barrier of other
formats and democratizes FAIR reaction data docu-
mentation and sharing. Figure 1 illustrates the current
role of SURF at Roche, serving as a connector between
the laboratory and data world, enabling FAIR reaction
data capture, storage, sharing, and application.
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Figure 1: The simple user-friendly reaction format (SURF) bridges the gap between the laboratory
and data science worlds. SURF files serve as a connector between multiple input sources from literature and
the laboratory environment (blue, top) with a broad range of output applications in data science and machine
learning (orange, bottom). The format is interoperable with the Unified Data Model (UDM) and the Open
Reaction Database (ORD) (purple, middle). The data flow is demonstrated through arrows, highlighting the
central role of SURF in connecting data from the laboratory with data science utilization.

Through SURF, laboratory scientists can indepen-
dently report their reaction data, eliminating the need
for handwritten notes, expensive software, or special-
ized training. Other means of single-batch reaction
documentation, such as data from electronic labora-
tory notebooks or spreadsheets, can also be imported
or transformed. Furthermore, various types of litera-
ture data can be curated into SURF. At Roche, we are
funnelling all high-throughput experimentation reac-
tion data from multiple sources into SURF.

SURF enables direct data loading into machine learning
models, as structural molecular features are captured
through public compound identifiers, i.e., Chemical
Abstracts Service (CAS) numbers, simplified molecu-
lar input line entry system (SMILES) or international
chemical identifier (InChI) strings. This feature en-
ables forward reaction prediction, supports the deter-
mination of useful reaction conditions and training of
retrosynthesis prediction tools. Due to its structure,
reaction databases and corresponding visualization can
be easily built and harnessed. Moreover, SURF files
enable scientists in the laboratory to efficiently track
their reaction data, directly work with their data by
conducting analyses, and make data-driven decisions
for designing new experiments based on previous out-
comes.

3 Structure of SURF

In a SURF spreadsheet, each row stores data for one re-
action. The column headers structure the data and are
divided into constant (CC) and flexible (FC) columns.
CCs remain unchanged and should always be present,
independent of the number of reaction components.
They capture the identifiers and provenance of the re-
action, as well as basic characteristics (reaction type,
named reaction, reaction technology) and conditions
(temperature, time, atmosphere, scale, concentration,
stirring/shaking). Add-ons, such as the procedure or
comments, also belong to the CCs. The FCs describe
the more variable part of a reaction, including different
starting materials, solvents, reagents, and products.
Each reaction component is represented by an iden-
tifier, such as the CAS number or molecule name, a
SMILES or an InChI string storing the chemical struc-
ture. While the SMILES/InChI string is available for
every compound and can serve as structural input for
machine learning models, the CAS number can be use-
ful for chemists in the laboratory to order, itemize, and
find chemicals. To account for starting materials and
reagents, including catalysts, ligands, and additives, a
third column is incorporated to specify the stoichio-
metric amount, that is, equivalents. SURF’s flexibility
enables the capture of multiple starting materials and
reagents, as these can be accommodated by adding
three additional columns (CAS/name, SMILES/InChI,
and equivalents). If desired, further columns for ad-
ditional identifiers or lot numbers can be added. As
shown in Figure 2, the headers are populated by adding
ascending numbers to record all used components. The
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same applies to multiple solvents or products; however,
due to their role, they possess more and partly dif-
ferent column headers. While the CAS number/name
and/or the SMILES/InChI string remain as identifiers,
the solvent fraction (recorded in decimals from [0,1])
is used instead of equivalents, allowing for the exact
determination of the ratio between solvents. The prod-
uct category contains the largest number of headers,
as the basic SURF records the reaction yield (in per-
cent, %), complemented by the reaction yield type (i.e.,
isolated, LCMS, GCMS, etc.), as well as the detected
mass by mass spectrometry and the nuclear magnetic
resonance (NMR) spectroscopy sequence(s) in addition
to the common identifiers CAS and SMILES/InChI.
Additional information, such as detailed product char-
acterization (e.g., enantiomeric excess (ee) or purity),
can be captured by introducing respective columns
with headers following the standard snake case nomen-
clature.

Utilizing the basic structure of SURF, all relevant
data for reproducing the experiment is readily avail-
able. Laboratory chemists can order chemicals, draw
structures, calculate the masses of molecules, or com-
pare NMR data without the need to consult sepa-
rate files. Since most electronic laboratory journals
already record the aforementioned parameters of the
basic SURF structure, enforcing documentation com-
pliance combined with automated data extraction and
cleaning pipelines has the potential to make numerous
new reaction data accessible in the SURF format and
available for machine learning applications.

4 File formats and interoperability

As SURF captures data in a tabular format, we rec-
ommend using universally readable file formats such
as TXT, CSV, or TSV files. Since chemical data can
contain delimiters such as commas or semicolons, we
suggest using only TAB-delimited TXT or TSV files.
These file types can be written and read with all popular
spreadsheet or text editor software available on mul-
tiple operating systems. One point to consider when
using SURF is that data is not validated upon capture.
We acknowledge that this does not prevent users from
entering false or incomplete reaction data. However,
we recommend performing validation only upon read-
ing SURF files into a database, transforming them to
other formats, or using the data for machine learning
purposes. SURF files are interoperable, as they can be
introduced into hierarchical databases and converted
into other existing reaction formats, such as the ORD
Protocol Buffers format or UDM XML format. As
part of this manuscript, we open-source the respective
Python code enabling the transformation between dif-
ferent data formats (http://reaction-surf.com).

5 Applications

When preparing for a new series of reactions, such as in
a high-throughput setting, chemists have the capability
to populate a SURF file with all the necessary condi-
tions and reagents to be tested in advance. They can
link these entries to the specific vessels, tubes, or plates
used for the reactions through the reaction identifier.
Furthermore, having the CAS numbers available for all
compounds greatly aids in locating the corresponding
materials in the laboratory. Subsequently, as the re-
actions are executed and data on their outcomes are
recorded, any potential gaps or missing data become
immediately visible and accessible within the SURF
format.

A frequently observed barrier to machine learning ap-
plication is data pre-processing and cleaning. With
SURF, reaction data is presented in a structured, both
human and machine-readable format. Hence, SURF
has shown to be a key enabler for several reaction pre-
diction case studies at Roche [27, 45]. The use of SURF
necessitated minimal data cleaning, mainly focusing on
structural information validation and the exclusion of
non-relevant columns. This approach allowed for the
rapid extraction and analysis of reaction data using
standard data science libraries. The SURF header con-
vention as shown in Figure 2 ensures reproducibility
and allows for easy identification of relevant columns
needed for model training.

Moreover, the tabular SURF format allows users to
browse and filter available reaction data directly in a
spreadsheet. Simple analyses to visualize yields or find
all reactions of a certain type, using a specific tech-
nology, substrate, or reagent, can be performed with-
out loading the data into a database. Correlating indi-
vidual columns like reaction characteristics with reac-
tion outcomes becomes a straightforward task in SURF.
Lastly, capturing reactions in a universally readable
spreadsheet format facilitates data sharing. The snake
case naming convention for headers creates human and
machine-readable tables, and if CAS numbers are used
as identifiers, compounds can be universally identified
even without loading the SMILES/InChI.

6 Discussion and Conclusion

SURF presents a streamlined and accessible solution
for chemists to document and share their chemical syn-
theses in a format that is both human- and machine-
readable. By adopting SURF, researchers can overcome
the limitations of existing data formats, promote suc-
cessful data-driven chemistry research, and foster a
culture of open data sharing and collaboration, thereby
accelerating the pace of discovery and innovation in the
field. The availability of reliable data and accompany-
ing code provided by SURF enables other researchers
to rapidly verify research findings, thereby reducing the
risk of publishing irreproducible results. Importantly,
the adoption of SURF facilitates efficient exchange of
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Figure 2: The structure of the simple user-friendly reaction format (SURF). Top: Detailed structure of
a SURF file, which contains constant (CC), flexible (FC), and optional columns (OC) to comprehensively capture
reaction data information. Reaction components are described with two identifiers, one of them containing struc-
tural information, e.g., SMILES or InChI, and the used equivalents. For solvents, an exception applies, instead of
the equivalents, the fraction is recorded (orange). In the product section, depending on the granularity required,
multiple columns for product characterization can be added (blue). In the basic SURF structure, yield, yield
type, nuclear magnetic resonance and mass spectroscopy information are added. Bottom: Condensed example
of a SURF file that demonstrates the simple structure of the format.

reaction data within and across research groups, depart-
ments, and companies, which can accelerate research
progress.

Funding agencies and journals have an opportunity to
play a more prominent role in promoting open access
and FAIR publication of reaction data, ensuring that
the necessary incentives and support are in place for
researchers to embrace these principles. By encourag-
ing the adoption of SURF as a standard for publications
and requiring its attachment to the supplementary in-
formation of manuscripts, the scientific community can
facilitate reaction data sharing and ultimately advance
chemistry research.
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Success is a result of pushing your limits beyond what you thought was

possible.

- Jan Frodeno

5
Late-stage drug diversif ication through

C-H borylation

This chapter describes the first application of the developed late-stage functionalization (LSF)
screening platform (Dolphin) and reaction data format (SURF) to assess the applicability
of C-H borylation reactions for late-stage drug diversification by carrying out HTE reactions
on systematically selected commercial drugs with a broad range of reaction conditions. This
enabled the development of a machine learning tool capable of accurately predicting binary
reaction outcomes, yields and regioselectivity for novel substrates.

First, a brief introduction to C-H borylations reactions and their potential for LSF in the context
of drug discovery is given (Chapter 5.1). Next, the prepared publication describing the case
study in detail is reprinted with permission (Chapter 5.2). [427] The final section contains the
corresponding experimental and supplementary information (Chapter 5.3).
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5.1 Introduction and background

A prevalent strategy for introducing synthetic handles in organic synthesis is the incorpora-
tion of boronic acid, B(OH)2, or boronic acid pinacol ester (Bpin) groups, through direct C-H
borylation. [428, 429] The approach has found application in various disciplines, includingma-
terials science,drug discovery,fine chemicals, andnatural product synthesis. [59, 429–431] C-H
borylation has emerged as a versatile technique due to the broad utility of organoboron com-
pounds, which can be readily converted into various functional groups. [431–433] Borylated
intermediates are of particular value as they can undergo C-C cross-coupling reactions, includ-
ing the Suzuki-Miyaura coupling, where they contribute to constructing complex molecular
architectures. [434–436] Apart from being used to couple building blocks, the organoboron
species can also be directly converted into a range of functional groups, including hydroxy
(OH), [437, 438] fluorine (F), [439–442] nitrile (CN), [443–445] trifluoromethyl (CF3), [446–
448] chlorine (Cl), [449, 450] or bromine (Br) [449, 451–453].

Selective C-H functionalization via transition metal catalysis is highly dependent on steric and
electronic factors,with the ligand environment around themetal center often dictating selectiv-
ity. [66] iridium catalysts,whichhave been extensively studied forC-Hborylation advanced the
understanding of these reactions. [454] These catalytic systems facilitate the cleavage of inert
C-H bonds and subsequent C-B bond formation, leveraging the electropositive nature of boron
and the ability to form π-bonds with the transition metal (Figure 5.1). [428] Group 9 metals,
including iridium, rhodium, and cobalt, have been explored for C-H borylation, with iridium
exhibiting superior reactivity due to stronger metal-carbon and metal-hydrogen bonds. [454]
However, palladium-based catalysts have seen limited use as palladium(II) species promote
boronic ester decomposition and by-product formation. [430]

C-H borylation can be categorized into two main classes based on the hybridization of the
carbon atom involved. In the literature, methodologies covering the aromatic C(sp2)-H bo-
rylation are more prevalent than aliphatic C(sp3)-H transformations. [59] Early aromatic
C-H borylation research required harsh conditions, but the advent of iridium-based systems
with nitrogen-containing heterocyclic ligands improved regioselectivity, yields, and functional
group tolerance while reducing reaction temperatures and starting material excess. [59, 139,
428] In general, steric effects predominantly influence aromatic C-H borylation, whereas elec-
tronic properties are crucial for heteroaromatic compounds, where steric factors still play a
role. Aromatic C-H borylations usually proceed faster than aliphatic ones, reflecting in higher
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turnover rates and better functional group tolerance for C(sp2)-H centers. [428]

Figure 5.1: General mechanism of the C-H borylation using transition metal catalysts. Pre-catalyst,
ligand and boron reagent form the activated Ir(III) complex. Through oxidative addition of the C-H
bond, an Ir(V) species is formed. Reductive elimination yields the desired C-Bpin species through C-B
bond formation, whereby Ir is reduced from (V) to (III). Next, oxidative addition of the boron source,
B2pin2 or HBpin, generates an Ir(V) species. This intermediate undergoes reductive elimination of
HBpin or H2 to yield the activated Ir(III) complex, which can start the next catalytic cycle. Data and
figure derived from Oro & Claver (2021). [455]

The desire of medicinal chemists to modify C(sp3)-H bonds has spurred research into C(sp3)-
Hborylations,whichare often catalyzedby transitionmetals suchas palladiumor copper. [433]
These reactions have enabled enantioselective borylations, yielding chiral molecules with high
enantiomeric excess using both established and novel ligands. [454] However, stringent reg-
ulations on transition metal residues and their scarcity have limited the scalability of these
methods [430, 433] Consequently, metal-free borylation techniques, including the use of BBr3
and the concept of frustrated Lewis pairs, have gained attention. BBr3 coupled with in-situ
esterification using pinacol, has successfully borylated nitrogen-containing molecules under
mild conditions with functional group tolerance. C-H borylation based on the frustrated Lewis
pair approach, involves electron density transfer from the C-H bond to the Lewis acid, hydro-
gen abstraction by the Lewis base component of the frustrated Lewis pair, and subsequent
borylation with HBpin. [430]
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Running efficient C-H borylation with subsequent post-functionalization modifications would
support medicinal chemistry campaigns to accelerate the make step of the design-make-test-
analyze (DMTA) cycle, which represents a major bottleneck in establishing structure-activity-
relationships (SARs) in the lead optimization (LO) phase. [2, 456] To evaluate the applicability
and potentially increase the synthesis efficiency of borylation reactions, a case study, that
connects laboratory automation with artificial intelligence was designed.
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5.2 Publication

The following case study has been published as: Nippa, D. F.†, Atz, K.†, Hohler, R., Müller, A.
T., Marx, A., Bartelmus, C., Wuitschik, G., Marzuoli, I., Jost, V., Wolfard, J., Binder, M., Stepan,
A. F., Konrad, D. B., Grether, U., Martin, R. E., & Schneider, G. Enabling Late-Stage Drug Diver-
sification by High-Throughput Experimentation with Geometric Deep Learning, Nat. Chem.,
16, 2, 239-248 (2024). [427] The material (DOI: 10.1038/s41557-023-01360-5) is reprinted with
permission from Springer Nature Limited (Author reuse for own thesis).

The author of this thesis is the co-first author of the publication as he carried out the literature
analysis, experimentalwork (HTE, scale-up, post-borylation), reaction data preparation for the
predictive tool and thewriting of the initialmanuscript draft. Themachine learning algorithms
were designed and developed by Dr. Kenneth Atz. Further details on the contributions of all
authors are stated on the last page of the publication.

A detailed description of the experiments conducted and methods used in the publication can
be found in Chapter 5.3.
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Enabling late-stage drug diversification by 
high-throughput experimentation with 
geometric deep learning

David F. Nippa    1,2,6, Kenneth Atz3,6, Remo Hohler1, Alex T. Müller    1, 
Andreas Marx1, Christian Bartelmus    1, Georg Wuitschik    1, Irene Marzuoli    4, 
Vera Jost1, Jens Wolfard    1, Martin Binder1, Antonia F. Stepan    1, 
David B. Konrad    2 , Uwe Grether    1 , Rainer E. Martin    1  & 
Gisbert Schneider    3,5 

Late-stage functionalization is an economical approach to optimize the 
properties of drug candidates. However, the chemical complexity of drug 
molecules often makes late-stage diversification challenging. To address 
this problem, a late-stage functionalization platform based on geometric 
deep learning and high-throughput reaction screening was developed. 
Considering borylation as a critical step in late-stage functionalization, 
the computational model predicted reaction yields for diverse reaction 
conditions with a mean absolute error margin of 4–5%, while the reactivity 
of novel reactions with known and unknown substrates was classified with 
a balanced accuracy of 92% and 67%, respectively. The regioselectivity 
of the major products was accurately captured with a classifier F-score 
of 67%. When applied to 23 diverse commercial drug molecules, the 
platform successfully identified numerous opportunities for structural 
diversification. The influence of steric and electronic information on model 
performance was quantified, and a comprehensive simple user-friendly 
reaction format was introduced that proved to be a key enabler for 
seamlessly integrating deep learning and high-throughput experimentation 
for l at e- st age f un ct io na li zation.

Structural novelty and complexity render the synthesis of chemical  
target structures challenging when aiming to establish structure–activity  
relationships in medicinal chemistry1. Structure–activity relation-
ship models guide hit-to-lead and lead optimization programmes, 
aiming to improve the pharmacological activity and physicochemical 
properties of drug candidates2–4. For structure–activity relationship 
exploration, time-efficient synthesis is important because synthesis 

represents a bottleneck of the design–make–test–analyse cycle5.  
A number of synthetic methods for the selective activation and modifi-
cation of C–H bonds allow for the late-stage functionalization (LSF) of 
organic scaffolds, ranging from molecular building blocks to advanced 
drug molecules6. Numerous catalytic systems offer both, directed 
and non-directed methods, as well as chemo- and site-selective access 
to modified analogues. LSF methods in medicinal chemistry include 
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various machine learning methods developed for chemical reaction 
planning23,29,30, GNNs have been successfully employed for retrosynthe-
sis planning, regioselectivity prediction and reaction product predic-
tion31–34. In addition, transformers and fingerprint-based methods were 
developed to tackle similar problems35,36. Other studies have shown 
that learning the activation energies of transition-state geometries 
yields accurate predictions for competing reaction outcomes37–39. 
Graph featurization with density functional theory (DFT)-level atomic 
partial charges improved the prediction of regioselectivity for reac-
tions driven by electronic effects40. The combination of graph machine 
learning with HTE enabled the optimization of reaction conditions 
for the C–H activation of organic substrates41. Recently, a GNN-based 
approach for predicting late-stage alkylation opportunities has been 
published, mainly focusing on Baran-type diversinate chemistry using 
alkyl sodium sulfinate salts42. Several studies have focused on deep 
learning models using transition states with the capability of predicting 
reaction outcomes, including, in some cases, enantioselectivity43–45. 
However, these approaches are limited to small molecular structures 
and comparably small datasets, rendering the application of such 
models to structurally more intricate drug-like molecules challeng-
ing46. A recent study has shown that hybrid machine learning models 
augmented with the quantum chemical information of transition states 
enable regioselectivity predictions for iridium-catalysed borylation 
reactions47. Importantly, the influence of steric and electronic effects 
on the model performance for C–H activation reactions and their 
application to regioselectivity for molecules with multiple aromatic 
ring systems remains unexplored.

Here we introduce a geometric deep learning approach applied 
to automated LSF borylation screening for identifying late-stage hits 

fluorination, amination, arylation, methylation, trifluoromethyla-
tion, borylation, acylation and oxidation7. Among these methods, 
C–H borylation is considered the most versatile for rapid compound 
diversification. Organoboron species can be transformed into an array 
of functional groups and serve as a robust handle for subsequent C–C 
bond couplings (Fig. 1a), which enables broad structure–activity rela-
tionship studies8–10.

However, only a few applications of LSF in drug discovery have 
been reported to date11,12. Most of these rare examples focus on a single 
LSF reaction type13–15. Multiple functional groups and various types 
of C–H bonds with different bond strengths, electronic properties 
and steric and functional group environments pose challenges for 
straightforward LSF; thus, generalizing guidelines for reactivity and 
selectivity predictions should be applied with caution11. Consequently, 
running a successful LSF campaign often requires time-consuming 
and resource-intensive experimentation, which is not compatible with 
the tight timelines and limited assets of many medicinal chemistry 
projects.

High-throughput experimentation (HTE) is an established 
approach for reaction optimization16–18, enabling semi-automated 
miniaturized low-volume screenings to rapidly and reproducibly 
perform multiple transformations in parallel with small amounts of 
precious building blocks and consumables19–21. In combination with 
FAIR (Findability, Accessibility, Interoperability, Reusability)22 docu-
mentation, which generates high-quality datasets on successful and 
failed reactions23,24, HTE provides a foundation to unlock LSF for drug 
discovery by enabling advanced data analysis and machine learning.

Graph neural networks (GNNs) have seen broad applications in 
molecular feature extraction and property prediction25–28. Among the 
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Fig. 1 | Borylation diversification opportunities and research overview of 
the study. a, Late-stage borylation of a drug molecule. The example illustrates 
mono-borylated Loratadine (1a), which can be accessed through borylation 
of the drug Loratadine (1). Borylation provides the opportunity for rapid and 
broad diversification, aiming to study structure–activity relationships and 
improve pharmacokinetic and pharmacodynamic properties. Note that the eight 
potential post-functionalization modifications shown are for demonstration 
purposes only; these transformations were not carried out in the presented 
research. b, Overview of the research study. A comprehensive literature study 
provided a manually curated, high-quality literature dataset containing 1,301 

reactions extracted from 38 publications. The dataset was used to identify 
suitable borylation reaction conditions for HTE and used for machine learning. 
The LSF informer library resulted from a cluster analysis of 1,174 approved drug 
molecules. In total, 23 drugs from the LSF informer library, 12 relevant fragments 
and 5 simple substrates were subjected to HTE to deliver 956 experimental data 
points. Both experimental and literature data provided the basis for geometric 
deep learning using different GNNs, including 2D and 3D information and atomic 
partial charges. Prediction models for substrate reactivity, reaction yields and 
regioselectivity were developed, and the results are shared in this study.
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and lead diversification opportunities (Fig. 1b). Computational deep 
learning was employed for predicting reaction outcomes, yields and 
regioselectivity for the LSF of complex drug molecules. In the first step 
of this study, a comprehensive analysis of the published literature was 
performed to provide a rationale for selecting suitable reaction condi-
tions for HTE screening and relevant substrates reflecting the nature 
of late-stage lead compounds in drug discovery. Reaction conditions 
were chosen from manually curated literature data based on 38 selected 
publications (the literature dataset). LSF substrates were chosen based 
on a cluster analysis of 1,174 approved drugs, resulting in 23 structur-
ally diverse drug molecules. This approach enabled us to work with 
relevant examples of reaction conditions and substrates in an ‘informer 
library’ approach (that is, an approach involving a chemical space tai-
lored to the assessment of a synthetic methodology) rather than using 

idealized substrates and fragments with limited applicability to lead 
optimization48. In the second step of the study, semi-automated HTE 
was used for data generation (the experimental dataset). The reaction 
data for the selected drug molecules and reaction conditions provided 
high-quality data for subsequent machine learning of the reaction 
outcomes. Finally, different GNNs were trained on two-dimensional 
(2D), three-dimensional (3D) and atomic-partial-charge-augmented 
molecular graphs, to predict binary (yes/no) reaction outcomes, reac-
tion yields and regioselectivity.

Results
High-throughput experimentation
Using a HTE set-up and liquid chromatography–mass spectrometry 
(LCMS) coupled to a reaction data analysis pipeline, 23 drug compounds 
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Fig. 2 | Screening plate overview and GNN architecture. a, Schematic of the 24-
well borylation screening plates (columns: 1–6, rows: A–D) that were used in the 
experiments. One catalyst (2), one boron source (3), six ligands (4–9) and four 
solvents (10–13) were screened for all starting materials. B2Pin2, bis(pinacolato)
diboron; CyHex, Cyclohexane; [Ir(COD)OMe]2, (1,5-cyclooctadiene)(methoxy)
iridium(I) dimer. b, Baseline model composed of a feed-forward neural network, 
using the molecular descriptor ECFP4 and the reaction conditions as input. 
Multilayer perceptron (MLP) modules are highlighted in orange, and the output 
is in blue. This baseline model was applied for the prediction of reaction yield 
and binary reaction outcomes. c, The molecular graph is featured with 2D or 

3D information, with or without atomic partial charges (Methods for details 
on atom featurization). After passing the atomic features through a first MLP, 
the atomic features are updated via three 2D or 3D message-passing layers. 
Subsequently, the learned atomic features are either transformed directly to 
the regioselectivity output, or pooled via sum pooling or multi-head attention-
based pooling operations to obtain a whole-molecule feature space. This 
learned molecular feature space is then combined with the embedded features 
of the reaction conditions (Methods for details on condition featurization) and 
transformed to the reaction output (reaction yield, binary reaction outcome) via 
a final MLP.
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(1, 14, 16–36; structures of all compounds are in the Supplementary 
Information (Supplementary Section 3 and Supplementary Figs. 3 and 
4)) and 12 drug-like fragments (37–48; Supplementary Section 3 and 
Supplementary Fig. 5) were screened using the plate layout depicted in 
Fig. 2a. Herein, the ensemble of the selected 23 drug compounds and 12 
drug-like fragments is referred to as the LSF informer library. The 24-well 
borylation screening plate was designed based on a comprehensive 
literature assessment that delivered 1,301 reactions for meta-analysis. 
A detailed description of this approach is provided in the Methods.

In addition to the LSF informer library, a small subset of five fre-
quently occurring literature substrates (49–53; Supplementary Section 
3 and Supplementary Fig. 5) was screened by applying the borylation 
conditions. In total, a dataset containing the conditions and results 
of 956 reactions was obtained. LCMS measurement, followed by data 
analysis, enabled the determination of (1) binary (yes/no) reaction 
outcomes, that is, whether the conditions in combination with the 
individual substrates resulted in the desired mono- or di-borylated 
products, as well as (2) reaction yields, providing information about the 
amount of the desired reaction product. A protocol for visualizing the 
reaction outcome was implemented in the data analysis pipeline, which 
expedited the identification of starting points for suitable scaled-up 
procedures. Running selected reactions on larger scales indicated 
that individual conditions from the miniaturized HTE screenings can 
be adapted to produce sufficient material for biological tests or fur-
ther post-borylation modification. In addition, the scale-up reactions 
enabled the determination of isolated yields and elucidation of the 
exact structure by nuclear magnetic resonance (NMR) spectroscopy 
and high-resolution mass spectrometry (HRMS) of a set of selected 
compounds (1, 25, 29, 37–39 and 45). These analyses generated a 
high-quality experimental dataset containing information on the 
binary reaction outcomes, reaction yields and regioselectivity, which 
served as the basis for the geometric deep learning platform.

Geometric deep learning
The geometric deep learning platform introduced in this study con-
sists of a set of different GNNs tailored to learn three targets: binary 
reaction outcome, reaction yield and regioselectivity. Three different 
model architectures were investigated, and four different molecular 
graph representations were evaluated for each architecture (Fig. 2c).

•	 Architectures. For the reaction tasks (binary reaction outcome, 
reaction yield), two network architectures were investigated: a 
GNN using sum pooling and a graph transformer neural network 
(GTNN) using graph multiset transformer-based pooling49. For 
regioselectivity, an atomistic GNN (aGNN), which learns directly 
from atomic features, was employed.

•	 Molecular graphs. To quantify the influence of steric (3D) and elec-
tronic (quantum mechanical (QM)) effects, the input molecular 
graph was featured using 3D- and QM-augmented information, 
resulting in four different molecular graphs per neural network: 
2D, 3D, 2DQM and 3DQM.

The various combinations resulted in eight different GNNs for 
each of the reaction tasks (binary reaction outcome and reaction yield) 
and four for regioselectivity (Table 1). For the reaction tasks, a baseline 
neural network was investigated using the well-established extended 
connectivity fingerprint (ECFP (ref. 50); Fig. 2b).

Reaction yield and reaction outcome
Eight different GNNs and the baseline method, ECFP4NN, were  
optimized to predict reaction yields and binary reaction outcomes.

The performance of the reaction yield predictions was investigated 
on a randomly split dataset to learn reaction yields for known substrates 
in combination with new conditions for the experimental dataset.  
Figure 3a shows a scatter plot of the predictions of the best-performing 
neural network, GTNN3DQM, achieving a mean absolute error (m.a.e.) 
of 4.23 ± 0.08% and a Pearson correlation, r, of 0.890 ± 0.01. Figure 3d 
(left) shows a comparison of the nine different neural networks for this 
task. The four GTNNs (4.23–4.53% m.a.e.) achieved considerably higher 
accuracy than the ECFP4NN baseline (4.55% m.a.e.) and the four GNNs 
(4.88–5.61% m.a.e.). For reaction yield prediction, atomic charges as 
well as 3D information did not influence the performance of either the 
GTNNs or GNNs. GTNN models trained on the literature dataset achieve 
substantially higher errors with m.a.e. values of 16.15–16.73% and a cor-
relation between r = 0.59 and r = 0.62 (Supplementary Section 9.2 for 
details). The observation of lower errors for reaction yield predictions 
for HTE data compared to literature data is in line with recent findings51.

Binary reaction outcomes were considered ‘successful’ if the 
reaction condition with the chosen substrate yielded a mono- or 
di-borylation product that could be confirmed by LCMS with a corre-
sponding conversion of ≥1%, or ‘unsuccessful’ if the desired transfor-
mation was not traceable with LCMS. For the machine learning models 
trained on binary reaction outcomes, two different dataset splits were 
investigated: (1) a random split to investigate the performance on new 
conditions for known substrates; and (2) a substrate-based split for 
the 23 drug molecules to investigate the performance on unknown 
substrates with different conditions. First, the binary reaction outcome 
prediction was evaluated for random data splits (that is, predicting 
reaction outcomes for novel reaction conditions on known substrates). 
Figure 3d (centre left) shows a comparison of the nine different neural 
networks developed for this task. For the binary reaction outcome as 
observed for reaction yield prediction, a similar trend can be perceived; 
that is, GTNNs slightly outperformed (90.9–91.8% area under receiver 
operating characteristic curve, AUC) the ECFP4NN model (89.3% AUC) 
and GNN model (87.5–89.1% AUC), and the augmentation with atomic 
partial charges as well as 3D information did not affect the performance 
of the models (Table 1). Figure 3b shows a confusion matrix that is 
observed for predictions with a binary threshold of ≥1%. Models with 

Table 1 | Model performance of the GNNs

Reaction yield  
r value

Reaction 
yield  
m.a.e. (%)

Binary 
reaction 
outcome 
(random 
split), AUC (%)

Binary 
reaction 
outcome 
(substrate 
split), AUC (%)

GTNN2D 0.896 ± 0.006 4.53 ± 0.09 91.8 ± 2.1 52 ± 2

GNN2D 0.866 ± 0.005 5.61 ± 0.06 87.5 ± 1.0 51 ± 2

GTNN3D 0.884 ± 0.01 4.51 ± 0.11 91.4 ± 0.7 58 ± 4

GNN3D 0.877 ± 0.001 5.33 ± 0.34 89.4 ± 0.8 65 ± 5

GTNN2DQM 0.898 ± 0.003 4.41 ± 0.17 90.9 ± 1.5 53 ± 5

GNN2DQM 0.876 ± 0.01 5.41 ± 0.10 89.0 ± 1.1 59 ± 5

GTNN3DQM 0.890 ± 0.01 4.23 ± 0.08 91.8 ± 0.9 67 ± 2

GNN3DQM 0.890 ± 0.006 4.88 ± 0.24 89.1 ± 0.9 64 ± 4

ECFP4NN 0.885 ± 0.0006 4.55 ± 0.14 89.3 ± 1.3 52 ± 3

F-score (%) PVV (%) TPR (%) Accuracy (%)

aGNN2D 38 ± 5 56 ± 1 30 ± 6 88 ± 1

aGNN2DQM 39 ± 2 54 ± 2 30 ± 3 88 ± 0.3

aGNN3D 59 ± 3 62 ± 2 56 ± 4 90 ± 1

aGNN3DQM 60 ± 4 62 ± 2 59 ± 6 90 ± 1

The top of the table shows the model performance of the nine investigated neural networks, 
predicting binary reaction outcomes and reaction yields. Pearson correlation coefficient (r) 
and m.a.e. values were used to quantify reaction yield predictions. Balanced accuracy (AUC) 
was used to quantify binary reaction outcome predictions. The bottom of the table shows 
the model performance of the four different aGNNs for regioselectivity prediction in terms of 
F-score, PPV, TPR and accuracy. The numbers represent mean and standard deviation for N = 3 
independent neural network runs. The numbers in bold indicate the best performance for 
each of the individual metrics.
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additional binary thresholds of >5%, >10% and >20% were developed 
(Supplementary Section 9.3), achieving similar accuracy (AUC for 
1% threshold, 94.5 ± 0.2%; 5% threshold, 94.5 ± 0.2%; 10% threshold, 
95.6 ± 0.3%; and 20% threshold, 94.4 ± 0.2%).

Furthermore, the binary reaction outcome prediction was evalu-
ated for substrate-based data splits (that is, predicting reaction out-
comes for novel substrates). For 20 of the 23 unseen drugs, GTNN3DQM 
achieved an accuracy greater than 50%; for 16 of the 23 unseen drugs, 

an accuracy greater than 80% was obtained. Overall, the GTNN3DQM 
model exhibited an AUC value of 67 ± 2% (Table 1). Figure 3d (centre 
right) shows a comparison of the nine different neural networks for 
this task, indicating a better performance for the GNNs trained on 3D 
graphs (58–67% AUC) in comparison to the ECFP4NN (52% AUC) and 
the GNNs and GTNNs trained on 2D graphs (51–59% AUC). Furthermore, 
augmentation with atomic partial charges did not show improvements 
for GNNs or GTNNs. Figure 3e shows three drugs (1, 25, 29) and three 
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Fig. 3 | Results of binary reaction outcome, reaction yield and 
regioselectivity predictions. a, Performance of reaction yield prediction on the 
experimental dataset. The scatter plot shows predicted reaction yields on the x 
axis and experimental reaction yields on the y axis for GTNN3DQM. Predictions 
were obtained from fourfold nested cross-validation, enabling the visualization 
of the whole dataset (details on dataset splitting are in Supplementary Section 1). 
b, Confusion matrix for binary reaction outcome prediction with a threshold of 
≥1% (confusion matrices with additional thresholds are in Supplementary Section 
9.3). c, Confusion matrix for the prediction of non-quaternary carbons in the 
test set for aGNN3DQM. d, Performance of the investigated neural networks for 
four different tasks. Each bar plot shows the worst-performing model on the left 
and the best on the right. Error bars on all bar plots show the standard deviation 
observed on a threefold cross-validation of independent neural network 

training runs on the same dataset split. The centre of the error bars denotes the 
mean performance observed for the threefold cross-validation. The number of 
predicted reaction data points in the test set (n) is annotated individually. The 
tasks are the m.a.e. as a percent for reaction yield prediction (left; experimental 
dataset, n = 239); balanced accuracy (centre left; AUC) as a percent on the binary 
reaction outcome prediction using the random dataset split (experimental 
dataset, n = 239); AUC as a percent on the binary reaction outcome prediction 
using the substrate-based dataset split (centre right; experimental dataset, 
n = 239); and the performance of the four aGNNs for regioselectivity prediction 
measured in terms of F-score (right; literature dataset, n = 164). e, Selected 
examples of validated borylation opportunities as predicted by the best-
performing neural network (GTNN3DQM) binary reaction outcomes of unseen 
substrates for three drugs (1, 25, 29) and three fragments (37, 38, 45).
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fragments (37, 38, 45) that were predicted by GTNN3DQM to yield 
successful reaction outcomes for unseen substrates. The main reac-
tion products of these six substrates were isolated with reaction yields 
ranging from 5% to 90% (Supplementary Section 11 for experimental 
details).

Regioselectivity
Four different aGNN models were developed for regioselectivity predic-
tion by training the neural networks computed for all non-quaternary 
carbons in a given molecule to determine whether the reaction will 
occur. As borylation reactions regularly occur at one atom or, in rare 
cases, at two atoms in a molecule, the atomic labels ‘reactive’ and 
‘non-reactive’ in a molecule are unbalanced (approximately 1:6). 
Therefore, the F-score (that is, the mean of positive predictive value 
(PPV) and true positive rate (TPR)) was used as a measure of neural 
network accuracy.

Figure 3d (right) shows the performance of four aGNNs trained 
on the literature dataset. The aGNNs trained on 3D graph structures 
outperformed those trained on 2D graph structures (Table 1 shows 
the exact numbers). The graph structures that included atomic partial 
charges did not appear to improve the prediction accuracy of the net-
works compared to their 2D and 3D equivalents. The aGNN3DQM model 
was the best-performing model overall, with an F-score of 60 ± 4%.  
Figure 4c shows six selected predictions of the test set using 
aGNN3DQM; on the left side, three reactions from the top 20% are 
shown, and on the right side, three molecules from the bottom 20% of 
the test set are shown. Figure 3c features the confusion matrix of the 
aGNN3DQM predictions on the test set. For the 1,259 non-quaternary 
carbons in the test set, aGNN3DQM achieved an accuracy of 90 ± 1%, 
a PPV of 62 ± 2% and a TPR of 59 ± 6%. Table 1 lists the accuracy, PVV 
values, TPR values and F-scores of the four aGNN models. The aGNNs 
trained on 2D graph structures yielded a similar false positive rate (that 
is, similar PPV), but a much higher false negative rate (that is, lower TPR) 
than the aGNNs trained on 3D graph structures.

The regioselectivity prediction method aGNN3D was trained 
and subsequently validated on the literature dataset. Test set pre-
dictions revealed many accurate examples (Fig. 4a; 54, 55) but also 
pointed to certain limitations of the computational model (Fig. 4a; 
56, 57). For additional testing, aGNN3D was retrospectively applied 
to out-of-distribution reactions containing substrates outside of the 
literature dataset found in Roche Medicinal Chemistry legacy pro-
jects (Fig. 4b). The model predicted three potential sites of reaction 
for morpholine 45, two of which were experimentally confirmed. For 
carbamate 64, the correct site of borylation and one false positive site 
were predicted. The aGNN3D model was then prospectively validated 
using six selected borylation reactions of the drugs Loratadine (1), war-
farin (25) and nevirapine (29), and three fragments (37, 38, 39; Fig. 4c).

The prediction model achieved approximately 70% accuracy in 
this experiment. Five of seven experimentally observed borylation 
sites were correctly predicted by the model. Figure 4c illustrates the 
six predictions compared to the isolated and characterized prod-
ucts obtained through the scaled-up reactions of the best-observed 

screening conditions. For fragments 37 and 38 and the drug nevirapine 
(29), the model predicted only one site of borylation. The predicted 
sites were experimentally confirmed, and neither false positive nor 
false negative predictions were observed. For Loratadine (1), aGNN3D 
predicted two potential reaction sites. The predicted mono-borylation 
product 1a was isolated, and the regioselectivity prediction was con-
firmed. For the second predicted species, the exact position of the 
two pinacol esters on Loratadine (1) could not be directly confirmed 
by NMR, but the respective mass was confirmed by HRMS. Product 1b 
was consequently subjected to hydrolysis to obtain the correspond-
ing phenol 1c (Supplementary Section 11). The analysis revealed that 
the second prediction was incorrect. For warfarin (25), aGNN3D 
predicted two potential reaction sites, scoring 93 ± 5% and 48 ± 1%. 
Mono-borylation of the C–H bond with the most confident prediction 
(93%) was experimentally confirmed. For fragment 39 the regioselectiv-
ity model did not suggest that borylation occurs, but mono-borylation 
was observed during the screening, and a scale-up was conducted. This 
analysis revealed that 39 in fact underwent mono-borylation of the 
methyl group to deliver 39a.

Finally, we investigated the influence of substitutions with dif-
ferent steric hindrances and electronic effects on the regioselectivity 
predictions. The aGNN3D model was applied to six unseen examples 
from the literature test set that introduce steric hindrance or directing 
functional groups. Figure 4d illustrates the regioselectivity predictions 
for four indole derivatives. Placing a directing amide functionality in 
position 1 yielded a prediction of 99 ± 0% at position 7 (Fig. 4d). Substi-
tuting the directing amide functionality with a bulky triisopropylsilane 
blocks position 7 and therefore yielded a score of 41 ± 7% for position 
3 (Fig. 4d). Furthermore, blocking position 3 with a cyano group and 
keeping the triisopropylsilane in position 1 in place yielded a prediction 
score of 96 ± 2% for position 5 (Fig. 4d). For a directing keto functional-
ity at position 3, a score of 84 ± 3% was obtained for position 4 (Fig. 4d, 
right). Figure 4d illustrates the regioselectivity predictions for two 
thiophene derivatives. Placing a directing secondary amide function-
ality at position 2 shows a slight preference at position 3 with a score 
value of 40 ± 1% (Fig. 4d). Replacing the directing secondary amide at 
position 2 with a bulky tertiary amide shifts the high score (72 ± 5%) to 
position 5 (Fig. 4d). For all of these examples, the highest prediction 
is in line with observed mono-borylations in the literature52–55. These 
results conclude that the regioselectivity prediction model aGNN3D 
successfully considers steric and electronic substituent effects.

Discussion
Curated high-quality reaction data are key drivers of successful deep 
learning. The results of this study were obtained using two FAIR data-
sets (that is, literature and experimental) containing 1,301 and 956 
reactions, respectively. To lower the barrier to sharing reaction data, 
we developed a comprehensive reaction data format (SURF, simple 
user-friendly reaction format) that allows for FAIR data capture. A 
detailed description of the SURF structure and data templates is pro-
vided in Supplementary Section 7. SURF complements similar initia-
tives, such as the open reaction database (ORD) and unified data model 

Fig. 4 | Selected examples from the borylation regioselectivity prediction. 
a–d, For each transformation, the predicted regioselectivity is shown on the left, 
and borylation including the reported reaction conditions and experimentally 
validated regioselectivity are shown on the right. The percentages for the 
regioselectivity predictions were generated by aGNN3D through the mean and 
standard deviation on ten individual conformers. Every prediction resulted in a 
value between zero and one, where one was set to 100%. a, Retrospective results 
obtained from the test set of the literature dataset. Results for two reactions 
from the top 20% (54, 55) and bottom 20% (56, 57) of the predictions from the 
literature dataset. b, Retrospective results obtained from out-of-distribution 
reactions from Roche legacy projects. Validation is shown for two molecules 
(45, 64). c, Prospective experimental validation of regioselectivity prediction 
models that were trained on the literature dataset. Validation is shown for three 

drugs, Loratadine (1), warfarin (25) and nevirapine (29), and three fragments, 
37, 38 and 39. d, Influence of steric hindrance and directing functional groups 
on regioselectivity prediction for six selected examples from the test set of the 
literature dataset. Regioselectivity predictions of indole derivatives (65–68) and 
thiophene derivatives (69, 70). The numbering of the shown indole molecule 
starts with 1 for the nitrogen atom and proceeds around the carbons in the 
ring, numbering the carbon atoms 2–7. DCM, dichloromethane; BBr3, boron 
tribromide; dtbbpy, 4,4′-di-tert-butyl-2,2′-dipyridyl; byp1A, 1-(2-([2,2′-bipyridin]-
5-yl)phenyl)-3-cyclohexylurea; byp, bi-pyridine; Cy, cyclohexane; HPin, 
pinacolborane; [Ir(COD)OMe]2, (1,5-cyclooctadiene)(methoxy)iridium(I) dimer; 
phen, 1,10-phenanthroline; tmphen, 3,4,7,8-tetramethyl-1,10-phenanthroline;  
N2, nitrogen.
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(UDM)56,57. It was developed to enable scientists to store and share 
reaction data in an easily editable format. High-quality literature data 
and newly generated experimental reaction data have enabled in silico 
estimation of reaction outcomes and reaction selectivity. The resulting 
geometric deep learning platform has been shown to correctly predict 
the reaction outcome for six substrates, and their main products were 
isolated (Supplementary Section 11). This approach represents a tool for 
identifying late-stage modifications of advanced drug-like molecules 
before initiating resource-intensive synthesis.

Two GNN architectures were implemented to predict the reaction 
tasks (binary reaction output and reaction yield). The two models, GNN 
and GTNN, differ only in their pooling operations. Whereas the GNN 
uses sum pooling, the GTNN relies on more complex graph multiset 
transformer-based pooling. This additional flexibility of the GTNNs 
slightly improved the reaction yield prediction but did not lead to 
increased prediction performance for binary reaction outcomes. This 
result suggests that greater neural network flexibility may lead to 
improved prediction accuracy for certain reaction prediction tasks 
but does not offer a general advantage.

The best-performing neural network model for reaction yield 
prediction (GTNN3DQM) achieved a m.a.e. of 4.23 ± 0.08% with a Pear-
son correlation of r = 0.890 ± 0.01 on the experimental dataset (Table 
1), whereas the most accurate model for literature data prediction 
(GTNN2DQM) achieved a m.a.e. of 16.11 ± 0.02% with r = 0.61 ± 0.01 
(Supplementary Section 9.2 for details). This disparity can be explained 
by the heterogeneity and quality of the two datasets. The experimental 
data were generated in the same laboratory using the same equip-
ment for syntheses and analyses and included the same standard for 
determining the reaction yield in all experiments. Furthermore, the 
experimental dataset covers a less diverse reaction parameter space 
(that is, 24 versus 864 possible conditions per substrate), thereby 
facilitating the learning task. By contrast, the reaction outcomes in the 
literature dataset originate from a variety of experiments performed 
in different laboratories that used different methods for determining 
the yield (for example, isolated yield, reaction conversion assessed by 
NMR, LCMS). Standardized, chemically diverse, high-quality datasets 
will be beneficial for building accurate machine learning models that 
enable further optimization of reaction conditions for LSF.

Importantly, the incorporation of steric information via 3D 
molecular graphs led to improved neural network performance for all 
investigated tasks, ranging from small enhancements in reaction yield 
prediction (m.a.e., 4.2% versus 4.4%) and binary reaction outcomes 
(AUC, 67% versus 59%) to substantial improvements in regioselectivity 
predictions (F-score, 60% versus 39%). Implementing partial charges 
generated with DFT accuracy into neural networks did not exhibit any 
improvements in all investigated tasks. However, the explored boryla-
tion reactions are mainly guided by steric effects and, to a lesser extent, 
electronic effects58,59, which could explain these observed effects. 
Incorporating the local 3D geometry considerably improved regiose-
lectivity predictions from 38 ± 5 for the best-performing 2D model 
to 60 ± 4% for the best-performing 3D model. These observations 
demonstrate the relevance of the local geometries and the additional 
information provided by 3D graphs for reactivity prediction on the 
level of individual atomic environments.

Regioselectivity predictions on the literature data delivered 
accurate results for the majority (90%) of the cases. The four selected 
and validated substrates from the experimental dataset highlight the 
reaction biases in the literature data used for model training. Specifi-
cally, the majority of the borylations captured in the literature dataset 
occur at sp2 carbons on substrates with no more than two ring systems. 
Substrates that fulfil these characteristics, such as fragments 37 and 
38, are predicted correctly. However, substrates outside of this scope, 
including the sp3-carbon borylation on fragment 39 or the di-borylation 
on the annulated pentadecanyl moiety in Loratadine (1), exploit the 
limitations of the available literature data. These results conclude that 

small datasets, such as the presented 1,301 reactions from the literature 
in this study, are sufficient for predicting regioselectivity with GTNNs 
on substrates similar to the ones covered by the chemical space in the 
literature. However, to predict regioselectivity in a trustworthy manner 
for a broader chemical space including larger molecules and potentially 
also sp3 borylations, further training data will be required.

The LSF informer library containing 23 structurally diverse, 
approved drugs (1, 14–36) complemented with 12 fragments (37–48) 
and five idealized substrates (49–53) yielded a dataset covering the 
essential chemical motifs relevant in drug discovery. A functional 
group analysis revealed that 33 (82.5%) of the 40 most abundant 
functional groups extracted from the 1,174 drug molecules are cov-
ered by the LSF informer library. Further analysis highlighted that 
functional groups that are known to exhibit the desired borylation 
reaction, such as aromatic nitrogens, aromatic alkyl-oxy groups and 
alcohols, are also among the functional groups in the LSF informer 
library that show the highest tolerance for successful reaction out-
comes. On the contrary, certain functional groups such as primary 
amines, carbamates and carbonates, or aromatic functional groups 
with strong electron-withdrawing moieties (for example, nitro-aryls) 
were found to be less tolerated and inhibit desired reaction outcomes 
(Supplementary Section 8.2 for further details on the functional group 
analysis). Since every substrate was screened with every reaction con-
dition, further insights about reaction conditions could be gained 
(Supplementary Tables 4 and 5). Whereas the best-performing ligand 
was 9 (33%), 6–8 (28–30%) showed similar good results, whereas 5 
(22%) and especially 4 (17%) delivered fewer successful reaction out-
comes. Moreover, reaction outcomes were further influenced by sol-
vents. Cyclohexane (10, 50%) outperformed the other three solvents 
2-methyltetrahydrofuran (Me-THF; 11, 43%), cyclopentyl methyl ether 
(CPME; 12, 38%) and acetonitrile (MeCN; 13, 29%).

HTE and GNNs have previously been used for identifying sub-
strates suitable for C–H activation41. This present study extends this 
original approach by (1) using HTE and GNNs for drug molecules, (2) 
introducing a literature search strategy that enables the selection of a 
structurally diverse set of substrates and ideal plate reaction screen-
ing conditions and (3) introducing a flexible geometric deep learning 
approach that considers the influence of steric and electronic effects 
of the substrates and allows the prediction of reaction outcome, yield 
and regioselectivity.

The structural and shape diversity of the compounds used for 
training the regioselectivity prediction model considerably exceeds the 
compound diversity of a recent report on regioselectivity prediction 
for iridium-catalysed borylation reactions47. Compound clustering, 
scaffold and shape analyses of both datasets revealed greater chemical 
diversity of our training data. Furthermore, the neural networks were 
developed with more examples and broader chemical space coverage 
(Supplementary Section 9.1, Supplementary Figs. 14 and 15 and Sup-
plementary Tables 6 and 7). Importantly, the estimated three dimen-
sionality of the data is characteristic of molecules typically observed 
in medicinal chemistry60. These findings positively advocate for using 
these computational models for drug discovery.

In conclusion, the results of this study confirm the practical applica-
bility of the geometric deep learning platform in bioorganic and medici-
nal chemistry and their potential benefit for laboratory automation. 
The approach is routinely and successfully applied to assess binary 
reaction outcome, reaction yield and regioselectivity for borylation 
opportunities in drug discovery projects at F. Hoffmann-La Roche Ltd. 
Additional data points are continuously generated by standardized 
HTE to further enhance the predictive power of the computational 
models presented. For future improvements, (1) additional reaction  
conditions for iridium-catalysed borylation will be explored. This 
extended screening panel could include exchanging the catalyst or 
boron source as well as using a broader variety of ligands and solvents. 
In addition, (2) the LSF informer library can be augmented to include 
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more frequently occurring fragments in drug molecules to expand 
the relevant chemical space and potentially improve the performance 
of the machine learning pipeline. Finally, (3) less frequently employed 
transition-metal-catalysed or even metal-free synthesis methods can be 
investigated to enhance the coverage of the reaction conditions, address-
ing reactions from publications initially excluded from the analysis.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41557-023-01360-5.
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Methods
Literature analysis
The systematic analysis of chemical transformations (SACT) of the 
data retrieved from literature consisted of four steps: (1) literature 
search, (2) literature data curation and evaluation, (3) methodology 
extraction and (4) reaction data curation and analysis. All details of 
the literature analysis are provided in Supplementary Section 2. The 
literature analysis identified 38 publications describing relevant 
borylation methods, from which the reaction data were manually 
extracted to obtain a high-quality dataset containing 1,301 chemical 
transformations. Meta-analysis of these data provided a foundation 
for an informed plate design.

LSF informer library
The concept of chemical informer libraries, initially reported by 
Merck48,61, served as the basis for developing the LSF informer library. 
Applying a clustering method based on structural features to a dataset 
containing 1,174 approved small-molecule drugs yielded eight struc-
turally diverse groups of molecules. Details of the applied clustering 
and visualization of the cluster via principal component analysis are 
provided in Supplementary Section 3. Three molecules were selected 
from each cluster based on their distance from the cluster centre, 
price and availability and were subjected to borylation screening. To 
complement the model with fragments relevant to Roche’s chemical 
space, the top 100 most popular ring assemblies found in the Roche 
corporate compound collection were identified. For these ring assem-
blies, substructure searches were performed for the entire database. 
The resulting compounds were retained if (1) the structures had a 
molecular weight below 300 g mol−1 or fewer than 20 non-hydrogen 
atoms, (2) there was at least 1 g of powder stock available and (3) the 
structures were not used in any internal project or subject to legal 
restrictions. Out of this pool of candidates, 12 fragments were manu-
ally selected. Further details on the determination and constitution 
of the LSF informer library are described in Supplementary Section 3.

Screening plate design
Following the SACT approach that delivered a curated high-quality 
literature data set, a meta-analysis was conducted to define a clear 
rationale for determining the conditions for the 24-well borylation 
screening plate used for the LSF informer library. This analysis included 
the temperature (T), time (t), reaction concentration (c) and scale (n), 
selected based on the median values for our screening plate (T = 80 °C, 
t = 16 h, c = 0.2 M, n = 100 mmol). Subsequently, the number of reaction 
components generally used for borylation reactions (catalyst, ligand, 
boron source and solvent) was determined. Owing to the limited space 
on the 24-well plate and the high occurrence of [Ir(COD)(OMe)]2 (2), 2 
was chosen as the catalyst. Analysis of the reagents used in combina-
tion with 2 provided the rationale for choosing B2Pin2 (3) as the boron 
source. This selection made it possible to screen a set of six ligands 
and four solvents. Six rather than four ligands were used because 
the dataset showed a greater variety of ligands than solvents. The 
ligands were assessed based on the chemical diversity of the converted 
starting materials and their commercial availability. Based on these 
results, six ligands from four chemical classes were selected. While the 
meta-analysis revealed that low-boiling solvents are the predominant 
solvents for borylation, their corresponding higher-boiling analogues 
(for example, Me-THF instead of tetrahydrofuran, THF) were selected 
to avoid potential solvent evaporation at 80 °C and reduce the risk of 
cross-contamination. The detailed meta-analysis results leading to the 
final plate design are described in Supplementary Section 4.

HTE borylation screening
Using a 24-well plate design (Fig. 3), all drug molecules from the LSF 
informer library and selected fragments (Supplementary Section 3 and 
Supplementary Figs. 3–5) were screened. The reaction set-up (automated 

solid dosing and solvent addition) and execution (heating and stirring) 
in glass vials on a parallel screening plate were conducted in a glove box 
under a nitrogen atmosphere. Upon completion of the reaction, the 
solvents were removed through evaporation, followed by automated 
resuspension of the residues in MeCN/H2O and dilution to a defined 
concentration for LCMS analysis using a liquid handler. The samples 
were then analysed by LCMS, and the resultant data were subjected to 
an automated reaction data analysis pipeline (Supplementary Figure 6) 
to rapidly determine all components within the mixture. Standardized 
reaction data output (SURF; Supplementary Section 7) allowed direct 
visualization of reaction outcome with the TIBCO Spotfire software as 
well as the direct loading into machine learning models. The general 
screening procedure, including detailed information on the hardware 
and software used, is provided in Supplementary Sections 5 and 6).

Scaled-up reactions
Selected molecules (three drugs, 1, 25 and 29; and four fragments, 37, 
38, 39 and 45) showing substantial conversion to the respective boryla-
tion products were scaled up using the most promising conditions. All 
reactions were conducted under a nitrogen atmosphere in a glove box 
using glass reaction vessels with pressure release caps and standard 
stirring bars. Purification was performed using flash chromatography 
or reversed-phase high-pressure liquid chromatography. In selected 
cases, where separation of the borylated species could not be achieved, 
the boronic ester was transformed into a hydroxyl group. Structural 
elucidation was performed using NMR and HRMS. The full analytical 
results and spectra for all compounds are shown in Supplementary 
Sections 11 and 12.

Deep learning
Graph neural network architecture. The following paragraphs 
describe the neural network architecture of the three introduced GNNs 
(that is, GNN, GTNN and aGNN). GNN and GTNN were trained to learn 
the two reaction properties (that is, binary reaction outcome and 
reaction yield), and aGNN was trained to learn regioselectivity. Details 
about dataset splitting are in Supplementary Section 1.

Molecular graph. For each of the three GNNs (that is, GNN, GTNN 
and aGNN), four different input molecular graph representations were 
investigated, which include steric (3D) and electronic (QM) features in 
different combinations, yielding four different molecular graphs: 2D, 
2DQM, 3D and 3DQM.

E(3)-invariant message passing. The atomic features and option-
ally DFT-level partial charges were embedded and transformed using 
a MLP, resulting in atomic features h0

i . E(3)-invariant message passing 
in a similar fashion as suggested by Satorras et al.62 was applied to l 
layers over all atomic representations h0

i  and their edges. Edges were 
defined by covalent bonds for the 2D graph and all atoms within a radius 
of 4 Å for the 3D graph, respectively. All networks contained three 
message-passing layers. In each message-passing layer, the atomic 
representations were transformed via equation (1)

hl+1
i = ϕ(hl

i, ∑
j∈𝒩𝒩𝒩i)

ψ (hl
i,h

l
j)) , (1)

for 2D graph structures, and equation (2)

hl+1
i = ϕ(hl

i, ∑
j∈𝒩𝒩𝒩i)

ψ (hl
i,h

l
j , ri,j, )) , (2)

for 3D graph structures.
In equations (1) and (2), hl

i is the atomic representation h of the ith 
atom at the lth layer; j ∈ 𝒩𝒩𝒩i) is the set of neighbouring nodes con-
nected via edges; ri,j the interatomic distance features (Methods, “Atom 
featurization” for details); ψ is a MLP transforming node features into 
massage features mij as mij = ψ𝒩hl

i,h
l
j , ri,j) for 3D graphs and mij = ψ𝒩hl

i,h
l
j) 
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for 2D graphs; ∑ denotes the permutation-invariant pooling operator  
(that is, sum) transforming mij into mi as mi = ∑j∈𝒩𝒩𝒩i)mij ; and ϕ is a  
MLP transforming hl

i  and mi into hl+1
i . The atomic features from all  

layers [hl=1
i ,hl=2

i ,hl=3
i ] were concatenated and transformed via a MLP, 

resulting in final atomic features H. H was then transformed differently 
by the three GNNs, using sum pooling (GNN) or multi-head attention- 
based pooling (GTNN) to obtain molecular outputs (that is, reaction 
yield and binary reaction outcome), or no pooling (aGNN) for regio-
selectivity prediction.

GNN. Atom features H were pooled via sum pooling, transformed 
via an additional MLP, concatenated to a learned representation of the 
reaction conditions (Methods, “Condition featurization” for details) 
and transformed to the desired output via a final MLP.

GTNN. A graph multiset transformer49 was incorporated into the 
GTNN architecture for pooling the atomic features into a molecular  
feature. The nodes H were transformed using the Attn function: 
Attn(Q,K,V) = QKTV, where query Q, key K and value V are learned 
features from the node representations H. Q is learned via individual 
embedding vectors per attention head. K and V are learned via indi-
vidual GNNs GNNK and GNNV resulting in the overall graph attention 
head via equation (3):

oi = Attn𝒩HWQ,GNNK
i 𝒩H, ℰ),GNN

V
i 𝒩H, ℰ)) (3)

where oi denotes the weighted pooling vector from one attention head, 
and WQ is a linear layer to learn the query vectors from H. Herein, four 
attention heads are incorporated, yielding the pooling scheme graph 
multi-head attention block GMH: GMH(Q,H,ℰ) = [o1, o2, o3, o4]Wo. This 
learned molecular representation was transformed via an additional 
MLP, concatenated to a learned representation of the reaction condi-
tions (Methods, “Condition featurization” for details) and transformed 
to the desired output via a MLP network.

aGNN. No pooling of atom features was applied, and H was directly 
transformed to the desired atomic output via a final MLP with a sigmoid 
activation function.

Training details. PyTorch Geometric (v.2.0.2)63 and PyTorch 
(v.1.10.1+cu102)64 functionalities were used for neural network training. 
Training was performed on a graphical processing unit, GPU (Nvidia 
GeForce GTX 1080 Ti) for four hours, using a batch size of 16 samples. 
The Adam stochastic gradient descent optimizer was employed65 with 
a learning rate of 10−4, a mean squared error (m.s.e.) loss on the training 
set, a decay factor of 0.5 applied after 100 epochs and an exponential 
smoothing factor of 0.9. Early stopping was applied to the model that 
achieved the lowest validation m.a.e. within 1,000 epochs. All the 
models considered in this study were trained on the Euler computing 
cluster at ETH Zurich, Switzerland.

Atom featurization. Atomic properties were encoded via the follow-
ing atomic one-hot-encoding scheme: twelve atom types (H, C, N, O, F, 
P, S, Cl, Br, I, Si, Se), two ring types (true, false), two aromaticity types 
(true, false) and four hybridization types (sp3, sp2, sp, s). Additionally, for 
molecular graphs that contained electronic features, the atomic partial 
charges were calculated on the fly using DelFTa software66–68, obtaining 
DFT-level (ωB97X-D/def2-SVP (refs. 69,70)) Mulliken partial charges71. For 
molecular graphs that contained 3D information, the interatomic dis-
tances were represented in terms of Fourier features, using a sine-based 
and cosine-based encoding as previously shown in ref. 66.

Condition featurization. Molecular reaction conditions, that is, sol-
vents, ligands, catalysts and reagents, were one-hot encoded. Whereas, 
the experimental dataset covered six ligands and four solvent types 
(that is, 24 possible conditions per substrate), the literature dataset 
covered twelve ligands, nine solvents, two reagents and four catalyst 
types (that is, 864 possible conditions per substrate). Supplementary 

Section 4 gives a detailed description of the structures covered by 
these one-hot-encodings.

Conformer generation. The 3D conformers were calculated using 
RDKit (AllChem.EmbedMolecule (ref. 72)) followed by energy minimi-
zation via the universal force field (UFF) method73. For each molecule, 
ten different conformers were calculated for training and testing. A 
conformer was randomly selected at each training step. For testing, the 
final predictions were obtained by averaging the individual predictions 
calculated for each of the ten conformers.

Baseline model. The ECFP4NN baseline model combined three 
MLPs for input transformation, namely the ECFP4 fingerprint and 
two embedded reaction conditions (that is, solvent and ligand). The 
ECFP4 feature dimension was set to 256 after screening the feature 
dimensions in the range of 27−210. Additional baseline experiments 
using binary reaction fingerprints with two popular decision tree algo-
rithms, gradient boosting and extreme gradient boosting (XGBoost), 
can be found in Supplementary Section 10.

Number of hyperparameters. The feature dimension of the GNN 
internal representation was set to 128, except for (1) the embedding 
dimension of the reaction and atomic properties,tr which was set to 64, 
and (2) the first MLP layer after the graph multiset transformer-based 
pooling, which was set to 256. This setting resulted in neural network  
sizes of ~2.0 million trainable parameters for the GNN and aGNN  
models and ~3.0 million trainable parameters for GTNN. The dimen-
sions within ECFP4NN were maintained at 128 yielding a neural network 
size of ~2.0 million trainable parameters.

Dataset filtering and reaction yield. From the total number of 1,301 reac-
tions in the literature dataset, 492 reactions were used for yield prediction. 
Two filtering criteria were applied to obtain these training data: (1) dupli-
cate reactions were removed, that is, reactions with identical annotations 
for starting material, catalyst, solvent, reagent, and product, and (2) only 
those reactions were included that included catalysts, solvents, reagents, 
and that occurred at least four times in the whole dataset (in line with the 
one-hot encoding described in Methods, “Condition featurization”).

Dataset filtering and regioselectivity. From the total number of 1,301 
reactions in the literature dataset, 656 reactions were used for regiose-
lectivity prediction. Three filtering criteria were applied to obtain these 
training data: (1) duplicate products (reactions with identical products) 
were removed, (2) only reactions using B2Pin2 (that is, bis(pinacolato)
diboron) as the borylation product were kept and (3) an annotated 
yield of ≥30% was required.

Data availability
The SURF-formatted literature and experimental datasets containing 
1,301 and 956 reactions, respectively, as well as a SURF template are 
available at https://github.com/ETHmodlab/lsfml (https://zenodo.
org/record/8118845).

Code availability
A reference implementation of the geometric deep learning platform 
based on PyTorch64 and PyTorch Geometric63 is available at https://
github.com/ETHmodlab/lsfml (https://zenodo.org/record/8118845).
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5.3 Experimental and supplementary information

The following pages contain the experimental and supplementary information supporting
the results described in the publication from the previous section. Citation of the publica-
tion:Nippa, D. F.†, Atz, K.†, Hohler, R., Müller, A. T., Marx, A., Bartelmus, C., Wuitschik, G.,
Marzuoli, I., Jost, V., Wolfard, J., Binder, M., Stepan, A. F., Konrad, D. B., Grether, U., Martin, R.
E., & Schneider, G. Enabling Late-Stage Drug Diversification by High-Throughput Experimen-
tation with Geometric Deep Learning, Nat. Chem., 16, 2, 239-248 (2024). [427] The material
(DOI: 10.1038/s41557-023-01360-5) is reprintedwithpermission from SpringerNature Limited
(Author reuse for own thesis).
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SI1 Data set splitting

For the three random split tasks (yield-, binary-, and regioselectivity-prediction), the data set was randomly split
into training (50%), validation (25%), and test set (25%). For two of the three tasks (yield, and binary reaction
outcome prediction), three-fold cross-validation was conducted for each using the same test set, for eight different
graph neural networks and one ECFP baseline, within a random split, resulting in 27 training runs for each of
the two tasks. The scatter plot in Figure 3a in the main document was created by the best-performing neural
network (GTNN3DQM) using a nested four-fold cross-validation with four individual test sets covering the whole
data set. The regioselectivity prediction was conducted in a similar manner with the only difference that four
graph neural networks and no ECFP-baseline were trained, resulting in 12 training runs. A substrate-based
split was additionally conducted for the binary reaction outcome prediction, where all reactions for one substrate
were placed into the test set (2.5%), and the remaining data set was randomly split into training set (65%) and
validation set (32.5%). For the substrate-based split, three-fold cross-validation was conducted for eight different
graph neural networks and one ECFP baseline, for one split per substrate (23), resulting in 621 training runs.
See Table S1 for additional details w.r.t. data set splitting.

Table S1: Overview of the neural networks trained for the four different tasks.
Task Folds / N Networks / N Splits / N Runs / N data set

Binary 3 9 1 (random) 27 Experimental
Yield 3 9 1 (random) 27 Experimental
Regioselectivity 3 4 1 (random) 12 Literature
Binary 3 9 23 (substrate-based) 621 Experimental
Yield 3 9 1 (random) 27 Literature

2
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SI2 Systematic literature analysis

The systematic analysis of chemical transformations (SACT) can be split up into four major steps: (1) literature
search, (2) literature data curation and evaluation, (3) methodology extraction, (4) reaction data curation and
analysis.

The literature search (1) can be conducted using keyword- or structure-based queries for the desired transforma-
tion allowing a comprehensive assessment of the field. For this study, the keyword-based approach was selected,
which consisted of four main query categories: Methodology (M), starting material (S), review/article (R) and
catalytic system (C). The M category search aimed at identifying different types of borylations (e.g. directed,
undirected). The S pillar focused on detecting methodologies for various starting materials (e.g. aromatic,
aliphatic) and included the hybridisation of the reacting C atom (sp2, sp3) as well. Category R is centred around
the publication type (methodology or review paper). In addition to enclosing the typical borylation catalyst
metals (e.g. Ir, Rh), metal-free methods were part of the catalytic system (C) search. Tables S2 and S3 showcase
all search queries for this research paper. To balance the strengths and weaknesses, e.g. the number of records,
of scientific databases, [1] the queries were run on three different, renowned tools, Scopus (Elsevier, Amsterdam,
Netherlands), Web of Science (Clarivate Analytics, Philadelphia, USA) and SciFinder-n (Chemical Abstracts
Service, Columbus, USA), on the 3rd of November 2021.

Table S2: The first four categorized queries that were carried out on SciFinder, Scopus and Web of Science.
Sections indicated with (M) are modified for the other queries. Those modifications are shown in Table S3.
Query Methodology Starting Mate-

rial
Review / Article Catalytic System

Query Name M1 S2 R1 C1

Title borylation borylation borylation borylation

Connector AND AND AND AND

Keyword (KW)
or Abstract
(ABS)

functionalization
OR catalys* OR
activation

functionalization
OR catalys* OR
activation

functionalization
OR catalys* OR
activation

functionalization
OR catalys* OR
activation

Connector AND AND AND AND

KW or ABS (M) direct* arene* review iridium OR ir

Connector (M) AND AND AND AND

KW or ABS (M) c-h OR c h substrate OR start-
ing material

overview ligand* OR com-
plex*

The resulting publication data from Scopus was downloaded as comma-separated value files (.csv), which con-
tained information on citation, bibliography, abstract, keywords and funding details for each record. In a similar
process, extraction of full records (information density similar to Scopus) from Web of Science searches as an
Excel file (.xls) took place. The download of the reference data in SciFinder required additional manual efforts as
only 100 references are downloadable at once in Excel format (.xlsx). Therefore, upon completing the downloads
for one search tree, all excel files were combined into one sheet.

The downloaded data was subjected to a custom-built Alteryx Designer (Irvine, US) data curation (2) workflow
that removed duplicates, added information from other databases, e.g., journal impact factor, and carried out
further filtering as well as calculations before splitting the publications into four quadrants based on journal im-
pact factor and citations per year (Figure S1). After the removal of duplicates, 1723 unique publication records
were identified, highlighting the broad and comprehensive search, which reduces the error of not including a
relevant publication. Upon additional filtering for the presence of borylation and LSF-related keywords within

3
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Table S3: Additional search queries (M2-3, S2-7, R2-4, C2-5), only showing the two modified sections.
Query
num-
ber

Methodology Starting Material Review Catalytic System

2 undirect* AND c-h
OR c h

aromat* AND sub-
strate OR starting
material

review AND
overview

rhodium OR rh AND
ligand* OR complex*

3 ligand* OR complex*
AND c-h OR c h

aliphat* AND sub-
strate OR starting
material

article OR method* copper OR cu AND
ligand* OR complex*

4 - benzyl* AND sub-
strate OR starting
material

article AND method* iron OR fe AND lig-
and* OR complex*

5 - *sp2* AND substrate
OR starting material

- no and metal OR
metalfree OR metal
AND free

6 - *sp3* AND substrate
OR starting material

- -

7 - aryl* AND substrate
OR starting material

- -

the title and the abstract, 938 publications remained in the data set. With this data, various different clustering
approaches could have been carried out using a selection of the following dimensions, e.g., journal and affilia-
tion, citations, journal impact factor, technologies, catalysts, starting materials, and publication year. For this
research, clustering by citations per year over journal impact factor to determine the most relevant borylation
methodology publications (high citations/year, high journal impact factor) was chosen. Removal of review papers
delivered 242 remaining records, which underwent manual analysis to guarantee that the papers are within the
scope of the automated HTE system (e.g., photochemistry not yet possible). All deselected publications received
a tag containing the reason to allow the usage of these records for other purposes in future without re-initiating
the manual selection process. The final set of methodology papers contained 38 records, [2–40] which were sub-
jected to reaction data extraction (3) in the next step. Figure S1 illustrates the first two steps of SACT including
the results obtained for the borylation literature methodology search campaign.

While there are multiple ongoing efforts and ideas on how to establish a FAIR, simple and standardized format
for reaction data documentation, today, methodologies are still reported in a multitude of different, usually not
machine-readable structures. [41, 42] Therefore, full manual extraction of the data from reaction schemes or
tables was conducted and a suitable database structure that captures this relevant information of a chemical
transformation was determined. Rather than recording the pure minimum, all available data was stored. In
this course, the simple user-friendly reaction format (SURF) convention, a simple, yet fully comprehensive and
variable format, to document and store reaction data in a tab-delimited format, was developed. More details on
SURF are shared in the respective section (see Section SI7). While SciFinder and Reaxys are helpful resources to
obtain certain information concerning the chemical transformation, they are missing important details, such as
equivalents or reaction concentration. Therefore, those properties were sourced manually from the paper, while
unique identifiers (CAS numbers or SMILES) of reaction components could mostly be obtained through SciFinder
or Reaxys. In addition, yield types (e.g., isolated, GC-MS or NMR) and analytical data were documented. This
labour-intensive work resulted in a high-quality data set comprising 1301 borylation reactions serving as an ideal
foundation for informed plate design based on data analysis and chemical understanding. Moreover, due to the
flexibility of the SURF format, the data was readily available as input for machine learning pipelines.
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In the final step of the SACT methodology (4), the reaction data underwent analysis on various measures.
Statistical evaluations of conditions, such as temperature or reaction time, as well as equivalent ratios, were
complemented by an in-depth chemical and frequency interpretation. This included e.g., mapping ligands with
starting materials to determine what type of functional groups can be transformed by which ligands. The main
important outcomes of this analysis, i.e., those used for the informed plate design, can be found in Section SI4.
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Figure S1: Literature search (SACT 1) followed by curation and evaluation of the obtained data (SACT 2).
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SI3 LSF informer library

The substrates for the reaction screening and data generation were chosen through the agglomerative clustering
method (a subtype of hierarchical cluster analysis), [43] of 1174 approved and accessible drugs obtained from
Cortellis Drug Discovery Intelligence (Clarivate Analytics, Philadelphia, USA), and a molecular weight between
200 and 800 g/mol. The molecules were encoded using a similarity matrix of the Jaccard similarity of the
ECFP4 [44] descriptors. Thereby, the obtained similarity matrix consisted of the dimensions NxN, where N

equals the number of drugs in the similarity matrix. The similarity matrix was clustered into eight clusters from
where the ten closest molecules to the cluster centre were picked using the cosine distance. 3 / 10 were then
selected for the case study based on commercial availability and chemical meaningfulness. From this selection of
24 drugs (1, 14-36), 23 arrived within the required time frame. Figure S2 illustrates the investigated chemical
space via principal component analysis (PCA) and Figures S3-S4 the selected drugs.

Figure S2: Clustering. A Principal component analysis (PCA) into principal component (PC) 1 and 2 of the
1174 drugs grouped into the calculated eight clusters in all dimensions. B PCA into PC 1 and 2 of the 1174 drugs
grouped into the calculated eight clusters in the two reduced dimensions of the PCs. The explainable variance
for the investigated data set in the first two PCA is 22.1% for PC1 and 7.7% for PC2.

To provide the model with fragments that are relevant to Roche’s chemical space, the top 100 most popular
ring assemblies in compounds of the Roche corporate compound collection were determined first. For these
assemblies, substructure searches in the entire database were performed. The resulting compounds were kept if
the structures had a molecular weight of less than 300 and or less than 20 heavy atoms, if there was at least
1 g of powder stock available and if the structures were not involved in any internal project or subject to legal
restrictions. 268 fragments that fulfilled these criteria were identified. Out of this pool of candidates, 16 frag-
ments (37-48) were manually selected by the authors. The manual selection aimed at incorporating a variety of
frequently occurring functional groups and substituents in medicinal chemistry to test the broader applicability of
the methodology. [45–47] Thus, fragments carrying halogen atoms (F, Br, Cl) or OH groups on the aromatic ring
were chosen. Furthermore, the selection aimed to cover frequently used heterocyclic elements, such as pyridines,
pyrazoles, thiazoles, morpholines, and benzimidazoles. Moreover, five idealized substrates were picked from the
literature data set (49-53). All screened fragments and idealized substrates are depicted in Figure S5.
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Figure S3: Selected examples from drug clusters 1-4. Note: 15 did not arrive in time and was excluded from the
study.
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Figure S4: Selected examples from drug clusters clusters 5-8.
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Figure S5: Screened fragments (37-48) and idealized substrates (49-53).
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SI4 Screening plate design

To possess a clear rationale for the design of the screening plate, a statistical analysis, also referred to as meta-
analysis, of the extracted reaction data was performed. As an initial starting point, the number of reaction
components was determined. The largest number of C-H borylation reactions within the data set are constituted
of four components in addition to the starting material: catalyst, ligand, reagent (boron source) and solvent.
While there are examples with additives or additional reagents, initially it was aimed to reduce the complexity of
a general screening plate and, therefore, only four component transformations were analyzed in detail. Further,
it was opted for a 24-well plate design to reduce the time required for solid dispensing and limit the amount
of required starting material (drugs, fragments) to a minimum. Future screenings to expand the data set with
further reaction components are envisaged but will require reaction miniaturization and a flexible plate set-up.
This could also include catalysts and ligands, which are not commercially available and were excluded from this
initial study.

SI4.1 Reaction conditions

As reaction conditions are in general numerical values, a statistical analysis of the following important parameters
was carried out: Reaction temperature (T) in °C, reaction time (t) in hours (h), reaction concentration (c) in
mol/L and scale (n) in mmol. The plots showing the value distribution including the average and median for all
four parameters are depicted in Figure S6.

Figure S6: Core reaction parameter (T, t, c, n) distribution of literature data set.

Based on a calculated average (64.2 °C) and median temperature (80 °C) in the data set, 80 °C was selected
as the reaction temperature for the 24-well plate. Determination of the average (17.4 h) and median (16.0 h)
reaction time strongly indicated, running the reaction overnight for 16 hours. The reaction concentration median
was found at 0.2 mol/L and used as molarity for the screening protocol. A lower scale (0.1 mmol) compared to
the values (average: 0.51 mmol, median: 0.25 mmol) calculated from the data set was chosen to reduce material
consumption. Moreover, the atmosphere under which the borylation reactions were performed, was analyzed.
The literature data impressively showed that working under an argon or nitrogen atmosphere is preferred, which
was also taken into account for the storage of the reagents. This observation can be explained due to the usage
of oxygen and moisture-unstable Iridium catalysts.

SI4.2 Catalyst

Based on the data set (Figure S7), the top three catalysts used for borylation reactions have shown to be
[Ir(COD)OMe]2 (2, CAS: 12148-71-9), Pd(OAc)2 (58, CAS: 3375-31-3) and [Ir(COD)Cl]2 (59, CAS: 12112-67-
3). All three catalysts are commercially available and would be suitable for the desired borylation screening.
Nevertheless, 2 (N = 813) has been used 10-fold more compared to 58 (N = 74) and 59 (N = 47). Therefore, 2
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was chosen as the single catalyst for the screening plate. Based on the data set, the average catalyst loading in
borylation reactions in relation to the starting material is 3 mol% with the median being 1.5 mol%. A value in
the middle of both values was selected, leading to a catalyst loading of 2.5%.

Figure S7: Analysis of the reaction components of the 1301 reactions of the literature data set. A Barplot
illustrating the abundance of different reaction components. From left to right: ligands, catalysts, reagents, and
solvents. Each bar illustrates one unique species, and the bars are sorted from least abundant (left) to most
abundant (right) B The three most abundant species for each of the reaction components. From left to right:
ligands, catalysts, reagents, and solvents. Note: The second highest count for ligands in "none" (i.e., a ligand
free reaction). Therefore, the top-3 and top-4 most abundant ligands are shown instead.

SI4.3 Ligand

Overall, the most used ligand (N = 297) is dtbbpy (6, CAS: 72914-19-3), which was also used in combination
with 2 in 256 reactions. The second most abundant ligand is tmphen (9, CAS: 1660-93-1), which has been used
159 times across the full data set and 127 times in combination with 2. From the top twelve ligand combinations
with 2, only six are commercially available. Those six ligands were selected for the screening plate. In addition to
the above-mentioned dtbbpy and tmphen, 2-pyridinecarboxaldehyde 2,2-bis(phenylmethyl)hydrazone (4, CAS:
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237402-29-8), 8-aminoquinoline (5, CAS: 578-66-5), 4,4’-dimethyl-2,2’-bipyridine (7, CAS: 1134-35-6) and 1,10-
phenanthroline (8, CAS: 66-71-7) are included into the screening plate (main paper, Figure 2a). The analysis of
the ligand/catalyst ratio revealed an average of 1.59 and a median of 2, the median was used to give a 5 mol%
ligand loading.

SI4.4 Reagent / boron source

B2pin2 (3, CAS: 73183-34-3, N = 1052) and HBpin (60, CAS: 25015-63-8, N = 162) have been the most used
reagents (boron sources) across the data set, with BBr3 (61, CAS: 10294-33-4, N = 63) complementing the top
three. As 61 is part of a different chemistry type (metal-free borylations), only 3 and 60 were analyzed in more
detail. In combination with 2, 3 (N = 710) was used nearly nine times more often than 60 (N = 71) allowing an
informed selection decision to utilize 3 as the boron source for the 24-well plate. On average, a slight excess of
3 (1.25 equivalents) was used in the analyzed reactions. The median, though, shows an equimolar in relation to
the starting material (eq = 1), which was chosen for the plate design.

SI4.5 Solvents

The most used solvents have been shown to be aprotic solvents that are mainly non-polar or only slightly polar.
The most used solvent by far is THF (62, CAS: 109-99-9, N = 630), followed by p-xylene (63, CAS: 106-42-3, N
= 122) and acetonitrile (13, CAS: 75-05-8, N = 100). With a reaction temperature of 80 °C, 62 (boiling point:
66 °C) is not an ideal solvent if potential evaporation should be avoided. Instead, 2-methyltetrahydrofuran (11,
CAS: 96-47-9, boiling point: 80 °C) was chosen due to the higher boiling point while maintaining key properties
(e.g., polarity), even though it did not appear in the data set. Due to the potential of solvent borylation, 63 was
avoided, but the number three solvent 13 was included in the screening plate. Furthermore, CPME (12, CAS:
5614-37-9, N = 31) and cyclohexane (10, CAS: 110-82-7, N = 38) were selected due to their high boiling points
and their regular appearance in the data set. All solvents, except 11, were also used in combination with 2.

SI4.6 Plate design

Based on the considerations above, the plate design was implemented and is shown in Figure 2a of the paper.
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SI5 HTE borylation screening protocol

All generated screening data used the plate design depicted in the paper (Figure 2a) and the procedure below,
only the starting materials (SI3) were varied. In a nitrogen-filled glovebox from mbraun (Garching, DE) that
does not contain any liquids, all solid reaction components were dosed into 1 mL glass vials from Analytical Sales
(Flanders, US) on a 24- or 96-well plate from Analytical Sales (Flanders, US) using a CHRONECT Quantos
from Axel Semrau GmbH & Co. KG (Spockhövel, DE) coupled with an XPE206 balance from Mettler Toledo
(Greifensee, CH). The plate was sealed and discharged from the glovebox before being transferred to another
glovebox from LC Technologies (Salisbury, US), where solvents were added to the vials using multichannel pipettes
from Eppendorf (Hamburg, DE). The plate was heated within the glovebox (LC Technologies) on a Junior
benchtop solution from Unchained Labs (Pleasanton, US) and VP 721F-1 Parylene Encapsulated Stainless Steel
Stir Discs from V&P Scientific Inc. (San Diego, US) were used to stir the reaction mixture. For an intermediate
internal process control (IPC), samples were drawn from the plate within the glovebox using a multichannel
pipette and transferred into a new plate, which was then subjected to a Genevac centrifugal evaporator EZ3P-
VVVHz-HN0 from SP Industries (Warminster, US) to remove the solvents. For a single or the final IPC, the
plate was cooled and discharged from the glovebox before being placed into the Genevac centrifugal evaporator
to remove the solvents. Using a Freedom EVO 100 liquid handler from Tecan (Männedorf, CH), the residues were
re-suspended in MeCN/H2O (4:1) and shook on a Teleshake 95 from Inheco (Martinsried, DE). Depending on the
concentration of the suspension, further dilution steps using the Tecan liquid handler were carried out to reach
an LCMS injection concentration of 1 or 0.5 mmol/L. Finally, the samples were transferred onto a 96-deep-well
plate (1 mL) from Eppendorf (Hamburg, DE). The plates were analyzed on a Waters (Milford, US) UPLC-MS
system equipped with a Waters Acquity sample manager with a flow-through needle, a Waters Acquity sample
organizer and a Waters QDa single quadrupole mass spectrometer. The separation was achieved on a ZORBAX
RRHT Eclipse Plus C18, 95 Å, 2.1 x 30 mm, 1.8 µm column (P/N 959731-902, LOT: USUXY02479) from Agilent
(Santa Clara, USA) at 50 °C. A 2-minute gradient was used and the injection volume accounted for 2 µL. 2 min
gradient: A: 0.1% HCOOH in H2O; B: 0.07% HCOOH in MeCN at flow 1 mL/min. Gradient: 0 min, 3% B; 0.2
min, 3% B; 1.5 min, 97% B; 0.3 min, 97% B; 0.1 min 3% B. The raw data were processed with MassLynx V4.2
and the obtained .rpt file underwent parsing with a customized script, before being subjected to the automated
reaction data analysis pipeline (SI6). Due to irrevocable data loss by the LCMS, 956 instead of 960 experimental
data points (40 substrates x 24 conditions) were collected.
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SI6 Automated reaction data analysis pipeline

Figure S8 illustrates the automated reaction data analysis pipeline used to rapidly identify if drugs, fragments
and idealized substrates were borylated or not. Each reaction carries a unique identifier, which is reflected
through the LCMS sample name and the MS searches for the sum formulas of the desired products (mono- and
diborylated boronic ester and acid). The LCMS-measured data are reported into a .rpt file that needs to undergo
parsing to allow a transfer into a tabular format. The obtained data is then pushed to a server from which it is
accessible through multiple means. In this case, Alteryx Designer (Irvine, US) was chosen for further processing
of the data. In the first step, the data stream is cleaned to remove any undesired columns that would slow down
the pipeline. As the LCMS delivers a three-channel output (LC, ES+, ES-), those need to be connected for the
same peak in order to allow quantitative and qualitative assessment of the peak. In addition, the Sample ID is
disassembled to obtain the different identifiers required for the upcoming data curation.

Figure S8: Simplified schematic overview of the automated reaction data analysis pipeline.

In addition to the reaction mixtures, all starting materials and, if available, reference products using the same
solvent mixture (MeCN:H2O, 4:1) are measured on the LCMS to obtain the retention time (LC) and mass pat-
tern (MS). This data is stored in a database and needed for the initial two steps of the matching process. More
relevant for LSF though, are the desired/potential products of the reaction. Those masses and chemical formulas
are calculated based on the starting material information and the transformation. This Alteryx workflow allows
hands-free generation of the potential products including molecular weight, mono-isotopic mass and chemical
formula (Hill notation). In addition to being used for the reaction data analysis, this data is also the foundation
for generating the LCMS input file.

Once the reaction data has passed through the cleaning process, it is compared to the LCMS information from
the above-mentioned data sets, starting off with the identification of the starting material. If a trace from the re-
action mixture matches the retention time (± 0.02 min) and the mass pattern (chemical formula detected, mass
channel match with database reference), it receives the starting material tag. All unmatched traces continue
through the pipeline, where reference compounds, if available, are tagged using the same criteria. The remaining
data is then compared to the products that could potentially be formed and are desired (mono- or diborylated
species). Since the exact position of the new functional groups is not known, no reference compounds are avail-
able. Therefore, only the five most abundant masses per peak are used for tagging and compared to information
from the potential product database. Based on the abundance of the mass and if the chemical formula was found
by the LCMS, the tag is complemented by an MS reliability score. The score is higher if the chemical formula
was found and the correct mass of the desired product (± 0.5 Da) appears in a more abundant channel. For
this study, only high MS reliability scores were subjected to the machine learning platform. Last, the unmatched
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data is classified as unidentified products, and the mass differences between the peak and parent material are
calculated to avoid unnecessary manual calculating of mass differences.

After the tagging is completed, the data streams are recombined and subjected to calculations in order to quan-
tify the reaction components from starting material through reagents to products. To do so, the sum of all LC
peaks (integral) is calculated and each peak is then divided by this value. This gives a quantitative measure
of the product distribution within the sample, an LCMS conversion. While there are numerous approaches to
using internal standards or assays, due to the nature of LSF they have not been applied. LSF reactions tap into
new, unexplored chemical space and generally, multiple different components are formed. Therefore, selecting an
internal standard that does not overlap with one of these unknown components, is highly difficult.

Upon completion of the calculations, using the identifiers mentioned earlier, reaction information, such as con-
ditions and components, are added to the components that have been identified and quantified. This follows
the FAIR data principle and generates a curated, high-quality LSF screening data set that can be stored and
shared in the SURF convention (SI7). This allows rapid subjecting of the data to machine learning algorithms as
done in this research. It also allows direct visualization of the data in known interfaces, such as TIBCO Spotfire
(Somerville, USA) or Tableau (Seattle, USA). Using this workflow, the data curation of one plate usually takes
less than one minute.
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SI7 SURF convention

The simple user-friendly reaction format (SURF) aims at standardizing reaction data reporting through a simple,
yet comprehensive and structured format that is usable with a basic understanding of a spreadsheet. SURF does
not require any coding experience, advanced IT skills or a web interface. It enables every chemist within or outside
the lab to document chemical synthesis in a machine-readable and shareable format. SURF allowed extraction
and documentation of the borylation reactions from literature faster. The generated reaction screening data
were also transformed into SURF before being directly subjected to the machine learning pipelines. Reaction
documentation following SURF can be implemented in every spreadsheet as the only requirement is the existence
of rows and columns.

Each row of the spreadsheet represents the information and data for one single reaction. The SURF convention
contains constant (CC) and flexible (FC) categories. CCs never change and are always present, independent of the
number of reaction components. They capture the origin and ids of the reaction as well as basic characteristics
(reaction type, named reaction, reaction technology) and conditions (temperature, time, atmosphere, scale,
concentration, stirring/shaking). Add-ons, such as the procedure or comments, belong to the CCs, too. The FCs
describe the more variable part of a reaction, the starting material(s), solvent(s), reagent(s) and product(s). Two
identifier options (CAS and SMILES) are available for each component. While the SMILES string is available
for every compound and serves as structural input for machine learning models, the CAS number, even though
not always available, can be handy for chemists in the lab to order, itemize and find chemicals. For the starting
material(s) and reagent(s), e.g., catalyst, ligand, additive, the number and type of columns remain the same
(CAS, Smiles, equivalents). If multiple starting materials or reagents are used, additional columns are required.
In that case, the three information columns are duplicated and the X is replaced by a number, starting from 1
for the first component, 2 for the second, etc. The same accounts for multiple solvents or products, however, due
to their role, they possess more and partly different columns. While the CAS number and/or the SMILES string
remain as an identifier, the solvent fraction (in decimals) instead of equivalents is recorded. This allows exact
determination of the ratio between solvents. The product category withholds the largest amount of headers as
SURF records the yield (in percent), but also the yield type (e.g., isolated, lcms, gcms) as well as the detected
mass by MS and the 1H NMR sequence in addition to the common identifiers CAS and Smiles. This not
only allows rapid comparison when experiments are reproduced but can also deliver important increments for
machine learning models by differentiating between yield types. As most electronic lab journals already record
the above-mentioned parameters, by enforcing of documentation compliance combined with simple automated
data extraction and cleaning pipelines, numerous reaction data could be accessible in the SURF convention, and
readily available for machine learning applications. We spent thoughts on how to further reduce complexity
by introducing specific SURFs without FCs for chemical transformations where the reaction components are
generally the same. An excellent example would be Suzuki-Miyaura couplings that utilize a set of six to seven
components (organoboron species, halide, catalyst, ligand, base, solvents). [48, 49] However, generating different
tailored templates would ultimately end up in various different formats and mismatching headers falling short of
the main SURF goal to standardize reaction documentation.

The results of this paper would have not been achieved without FAIR data handling using SURF. The manually
extracted reaction data (1376 reactions from 38 publications), which were used in this manuscript for data analysis
and selectivity prediction, reported in SURF are attached to the SI as a tab-delimited text file. Moreover, two
empty SURF templates are attached as tab-delimited text files: The first file contains the general SURF template,
which can be adjusted by introducing additional columns depending on the reaction specifics. The second file is a
customized SURF template that should accommodate the vast of chemical transformations: It contains columns
for two starting materials, two reagents, one catalyst, one ligand, one additive, two solvents and two products.
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SI8 Further analysis of the experimental data set

SI8.1 Molecular property distribution

The molecular property distribution of the 40 molecules within the LSF space library for eight different molec-
ular properties is visualized in Figure S9. Furthermore, the reaction yield distribution of both the complete
experimental data set and only the positive results of the former are visualized in a histogram in Figure S10.

Figure S9: Molecular property distributions of the experimental data set. Top left to right: molecular weight,
number of rotatable bonds, hydrogen bond acceptors, hydrogen bond donors; Bottom left to right: polar surface
area, number of rings, sp3 fraction, and number stereogenic centres.

Figure S10: Histogram of reaction yield distribution of the experimental data set. Left: Reaction yield distribu-
tion on the whole dataset. Right: Histogram of reaction yield distribution of positive reactions.
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SI8.2 Functional group analysis

Functional groups are known as chemical substructures in molecules that consist of atoms and bonds which are
responsible for molecular properties such as reactivity or bioactivity. [50] The concept of functional groups has
therefore formed a cornerstone in synthetic chemistry, medicinal chemistry and toxicology. [51] To evaluate the
scope and limitations of our machine learning platform and the investigated borylation reactions, the functional
groups covered by substrates in the LSF space library have been extracted and analyzed. A substructure-free
algorithm has been used to extract functional groups from molecules. [52] The resulting functional groups from
the LSF space library were compared to the ones from all 1174 drugs and analyzed towards their tolerance for
successful borylation reactions. The 53 functional groups extracted from the LSF space library correspond to
11.6 % of the total 458 functional groups present in the 1174 drug molecules (Figure S11 A). However, of the
40 most abundant functional groups found within the drug molecules, 33 (82.5 %) are covered by the LSF space
library. The top-3 most occurring functional groups in the LSF space library (40 molecules, including fragments)
are aromatic nitrogens, aromatic alkyl-oxy groups and alcohols (Figure S11 B). Most abundant groups covered by
the drug space but not by the LSF space (Figure S11 C) are alkyl carboxylic acids or esters (first and third orange
bar from left to right, respectively), primary amines (second orange bar from left to right), and tertiary and sec-
ondary amides (fourth and fifth orange bar from left to right, respectively). Further, the functional groups which
have shown to be tolerated or not tolerated were investigated. All occurring five- and six-membered aromatic
heterocycles containing nitrogen, oxygen and sulfur are well tolerated or even cause the desired reaction outcomes
(Figure S11 D). On the contrary, certain non-aromatic functional groups such as primary amines, carbamates
and carbonates, or aromatic functional groups with strong electron-withdrawing moieties (e.g. nitro-aryls) are
found to be less tolerated and inhibit desired reaction outcomes (Figure S11 D and E).

Further, Table S5 and S4 shows the number of successful reactions for the different solvents and ligands,
respectively.

Table S4: Number of successful and failed reaction for the different ligands.
SMILES Successful reactions /

#
Failed reactions / #

N=1C=C(C(=C2C=CC3=C(N=CC(=C3C)C)C12)C)C 52 108
N=1C=CC(=CC1C=2N=CC=C(C2)C(C)(C)C)C(C)(C)C 48 111
N=1C=CC=C2C=CC=3C=CC=NC3C12 46 114
N=1C=CC(=CC1C=2N=CC=C(C2)C)C 46 113
N=1C=CC=CC1C=NN(CC=2C=CC=CC2)CC=3C=CC=CC3 35 124
N1=CC=CC2=CC=CC(N)=C12 27 132

Table S5: Number of successful and failed reaction for the different solvents.
SMILES Successful reactions / # Failed reactions / #

C1CCCCC1 80 159
O(C)C1CCCC1 68 171
O1CCCC1C 60 179
N#CC 46 193
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Figure S11: Functional group analysis. A Comparing the number of functional groups in the LSF space library
to the ones in the drug space library. Left: All functional groups; right: The 40 most abundant functional groups.
B The 53 functional groups extracted from the LSF space library are plotted by their occurrence from left to
right. C The 40 most abundant functional groups extracted from the drug space library are plotted by their
occurrence from left to right. The bars in blue (33/40) show the functional groups which are covered by the
LSF space library. The bars in orange (7/40) show the functional groups which are missing in the LSF space
library. D The 53 functional groups extracted from the LSF space library are plotted by the absolute number
of successful reactions from left to right. E The 53 functional groups extracted from the LSF space library are
plotted by the fraction of failed reactions from left to right. F The 53 functional groups extracted from the LSF
space library plotted by the absolute number of failed reactions from left to right.
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SI9 Further analysis of the literature data set

In the following, an additional analysis of the experimental data set is described. The molecular property
distribution for eight different molecular properties is visualized in Figure S12. Figure S13 shows the reaction
yield distribution. To learn the reaction yields the reactions have been binned into four different equally sized
bins in the ranges of 0-45%, 45-65%, 65-83%, and 83-100%.

Figure S12: Molecular property distributions of literature data set showing from top left to bottom right: molec-
ular weight, rotatable bonds, hydrogen bond acceptors, hydrogen bond donors, polar surface area, rings, sp3

fraction, and stereogenic centres.

Figure S13: Reaction yield distribution of the literature data set.
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SI9.1 Diversity analysis for regioselectivity data set

To further assess the diversity of the chemical space in the regioselectivity training data, the starting materials
were clustered using sphere exclusion clustering on ECFP4 fingerprints using a Tanimoto threshold of 0.55
with the ChemFP toolkit [53]. To do so, starting materials were first desalted and standardized using RDKit
v.2020.03.1 [54] and unique molecules were kept based on InChI keys. 656 unique starting materials remained,
for which the clustering results are shown in Figure S14. Overall, 119 compound clusters and 209 Bemis-
Murcko scaffolds were obtained by performing this analysis (Table S6). We argue that this is a sufficiently
diverse representation for the task of interest and exceeds the chemical diversity observed in a recent pre-print
[55] (Figure S7). As molecular shape potentially influences the performance of the regioselectivity prediction,
principal moment of inertia plots and the fraction of sp3 carbons were further calculated using RDKit (Figure
S15). We found that the three-dimensionality of the data is in the range of structures typically observed in
medicinal chemistry projects [56].

Figure S14: A / left: Tree map showing the size of the sphere exclusion clusters obtained for the regioselectivity
training data when clustering on the whole molecular structure. B / right: Number of compounds per Bemis-
Murcko scaffold. The size of the boxes as well as the color represents the number of compounds. For the 656
molecules, 119 clusters were obtained on the molecule level and a total of 209 scaffolds were observed. The largest
molecule cluster contained 56 members and the most frequent scaffold had 86 compounds.

Table S6: Number of sphere exclusion clusters per cluster size (left) and number of compounds per Bemis-Murcko
scaffold (right) observed for the regioselectivity training data.

Compounds per Cluster Count Compounds per Scaffold Count
1 40 1 146
2 24 2 19
3 16 3 9
4 7 4 9
5 3 5 9
6 3 6 3
7 2 7 4
8 3 8 1
9 1 9 1
10 2 10 2
11 2 13 1
13 2 22 1
14 2 34 1
16 1 59 1
17 1 67 1
18 1 86 1
20 3 Total Scaffolds 209
22 1
23 1
26 1
35 1
43 1
56 1

Total Clusters 119
Total Compounds 656
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Table S7: Number of sphere exclusion clusters per cluster size (left) and number of compounds per Bemis-Murcko
scaffold (right) observed in [55].

Compounds per Cluster Count Compounds per Scaffold Count
1 70 1 91
2 8 2 9
3 7 3 5
4 1 5 1
5 1 8 2
7 1 Total Scaffolds 108
10 1
12 1

Total Clusters 90
Total Compounds 145

Figure S15: Principal moments of inertia plot representing the shape of the regioselectivity training data for this
publication (A/left) and a recent pre-print (B/right) [55]. Dots represent compounds and the color represents
the fraction of sp3 carbons, with red ≤0.3, green ≥0.5 and yellow in between. Rod-shaped compounds appear in
the top left, disc-shaped compounds in the bottom and sphere-shaped compounds in the top right corner.
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SI9.2 Model performance on the literature data set

Table S9 and S10 show the accuracy of the investigated nine neural networks. The performance of the reaction
yield predictions was investigated on a randomly split data set to learn reaction yields for known substrates in
combination with new conditions for both the literature data set (Figure S16).

Table S8: Model performance of the nine investigated neural networks predicting binary reaction outcomes and
reaction yields. Mean absolute errors (MAEs) were used to quantify reaction yield predictions. Area under
receiver operating characteristic curve(AUC) was used to quantify binary reaction outcome predictions. The
numbers represent mean and standard deviation for N=3 independent neural network runs.

Reaction yield, PCC Reaction yield, MAE / %

GTNN2D 0.59 (±0.01) 4.53 (±0.09)
GNN2D 0.61 (±0.01) 5.61 (±0.06)
GTNN3D 0.62 (±0.01) 4.51 (±0.11)
GNN3D 0.63 (±0.01) 5.33 (±0.34)
GTNN2DQM 0.62 (±0.01) 4.41 (±0.17)
GNN2DQM 0.61 (±0.01) 5.41 (±0.10)
GTNN3DQM 0.61 (±0.01) 4.23 (±0.08)
GNN3DQM 0.62 (±0.01) 4.88 (±0.24)
ECFP4NN 0.530(±0.002) 4.55 (±0.14)

Table S9: Prediction accuracy of the investigated neural networks. The numbers represent mean and standard
deviation for N=3 independent neural network runs.
Prediction error Mean absolute error/ % Accurate bin / % 1 bin off / % 2 bins off / % 3 bins off / %

GTNN2D 16.7 (±0.13) 48.4 (±0.7) 36.0 (±0.9) 12.4 (±1.3) 3.1 (±0.5)
GNN2D 16.4 (±0.2) 46.5 (±1.0) 39.4 (±0.5) 11.8 (±0.5) 2.7 (±0.5)
GTNN3D 16.4 (±0.24) 49.0 (±1.8) 37.2 (±2.8) 11.1 (±1.5) 2.3 (±0.0)
GNN3D 16.2 (±0.14) 46.3 (±0.5) 40.4 (±1.5) 11.6 (±1.6) 1.9 (±0.5)
GTNN2DQM 16.1 (±0.02) 49.3 (±0.5) 36.8 (±1.1) 11.2 (±1.0) 1.9 (±0.5)
GNN2DQM 16.3 (±0.04) 46.9 (±1.4) 40.0 (±0.5) 10.3 (±1.7) 3.0 (±1.1)
GTNN3DQM 16.2 (± 0.16) 47.1 (±0.7) 38.3 (±0.8) 11.4 (±0.5) 2.3 (±0.9)
GNN3DQM 16.2 (±0.14) 46.1 (±2.7) 39.4 (±2.6) 12.4 (±1.4) 1.9 (±1.1)
ECFP4NN 18.2 (±0.05) 46.5 (±1.5) 36.0 (±1.7) 13.1 (±0.5) 1.9 (±0.5)
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Figure S16: Performance of reaction yield prediction on the literature data set. Confusion matrix visualizing
the accuracy of the best-performing neural network (GTNN3DQM) for reaction yields, divided into four equally
sized bins.
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SI9.3 Different thresholds for binary reaction outcome prediction

Binary reaction outcome prediction was investigated for different reaction yield thresholds (i.e., >1%, >5%,
>10%, and >20%) to enable tailored applications to the specific needs of different medicinal chemistry projects.
Table S10 illustrates the performance of GTNN3D for the four different thresholds. Figure S17 illustrates the
corresponding cofusion matrices thereof.

Table S10: Model performance of GTNN3D for binary reaction outcome prediction with different thresholds at
>1%, >5%, >10%, and >20%. Five metrics are shown for each of the model to quantify model performance, i.e.,
area under receiver operating characteristic curve (AUC), F -score, predictive positive value (PPV), true positive
rate (TPR), and absolute accuracy. The numbers represent mean and standard deviation for N=3 independent
neural network runs.
Binary
threshold

AUC / % F -score / % PPV / % TPR / % Absolute
accuracy / %

>1% 94.5 (±0.2) 82.9 (±0.6) 80.5 (±0.6) 85.4 (±0.5) 91.9 (±0.3)
>5% 94.5 (±0.2) 84.2 (±0.4) 82.4 (±0.3) 86.1 (±0.6) 93.3 (±0.2)
>10% 95.6 (±0.3) 81.9 (±0.6) 80.1 (±0.7) 83.6 (±0.6) 92.9 (±0.3)
>20% 94.4 (±0.2) 82.9 (±0.4) 81.1 (±0.3) 84.9 (±0.9) 90.7 (±0.3)

Figure S17: Model performance of GTNN3D for binary reaction outcome prediction with different thresholds at
>1%, >5%, >10%, and >20%. Confusion matrix visualizing the accuracy for each thresholds.
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SI10 Decision tree algorithms using reaction fingerprints

Fingerprint-based reaction representations in combination with classical machine learning algorithms (e.g. sup-
port vector machines, ridge regression, gradient boosting, or random forest) have shown applications in predicting
reaction outcomes and reaction yields. [57] Here, we compare the results achieved through binary reactions finger-
prints using two popular decision tree algorithms, gradient boosting and extreme gradient boosting (XGBoost).
While both decision tree algorithms achieve comparable results for three of the four investigated tasks, they are
outperformed by the best preforming graph neural network (Table S11) for all the investigated reaction tasks.
Binary reaction fingerprints are composed by a one-hot encoding of the reaction conditions (i.e. catalyst, reagent,
ligand, solvent) and a structure-based fingerprint of the substrate (e.g. ECFP4) (Figure S18).

The two decision tree algorithms were optimized using the following hyperparameters for screening:

• XGBoost: The XGBoost algorithm (XGBoost Python Package version 1.6.2 [58]) was optimized by fine-
tuning the following hyperparameters: n_estimators=[1, 2, 5, 10, 20, 50, 100, 200], reg_lambda=[0.01,
0.05, 0.1, 0.5, 1], eta=[0.01, 0.05, 0.1, 0.5, 1], gamma=[0.01, 0.05, 0.1, 0.5, 1], and max_depth=[1, 2, 4, 6,
8, 10, 12, 14, 16].

• Gradient boosting: The gradient boosting algorithm (GradientBoostingClassifier and GradientBoost-
ingRegressor by Sklearn version 0.23.2 [59]) was optimized by fine-tuning the following hyperparameters:
n_estimators=[1, 2, 5, 10, 20, 50, 100, 200], learning_rate=[0.01, 0.05, 0.1, 0.5, 1], and max_depth=[1, 2,
4, 6, 8, 10, 12, 14, 16].

Figure S18: Illustration of binary fingerprint representations for an exemplary borylation reaction with four
one-hot encoded reaction conditions (i.e. catalyst, reagent, ligand, solvent) and a structure-based fingerprint of
the substrate.
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Table S11: Model performance of the best graph neural network in comparison to the two decision tree algorithms,
gradient boosting and extreme gradient boosting (XGBoost) for predicting binary reaction outcomes and reaction
yields. Mean absolute errors (MAEs) were used to quantify reaction yield predictions. Balanced accuracy (AUC,
area under receiver operating characteristic curve) was used to quantify binary reaction outcome predictions. The
standard deviation is calculated through the results of three different hyperparameter initializations. Since the
XGBoost algorithm is deterministic and uses its random state only for sub-sampling and not for initialization,
the standard deviations are much lower and in all our cases even equal to zero. The numbers represent mean
and standard deviation for N=3 independent neural network runs.

Reaction yield
(literature), MAE /
%

Reaction yield
(experimental),
MAE / %

Binary reaction
outcome
(experimental,
random split),
balanced accuracy /
%

Binary reaction
outcome
(experimental,
substrate split),
balanced accuracy /
%

Gradient boosting 16.50 (±0.07) 5.56 (±0.03) 90.86 (±0.0) 52 (±4)
XGBoost 16.18 (±0.0) 5.32 (±0.0) 90.16 (±0.0) 44 (±0)
Best graph neural
network

16.11 (±0.02) 4.23 (±0.08) 91.8 (±0.9) 67 (±2)
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SI11 Borylation scale-ups

SI11.1 Reagent and purification information

Reactions were set up and conducted in nitrogen-filled gloveboxes from mbraun (Garching, DE) and LC Tech-
nologies (Salisbury, US). All chemicals were purchased from Sigma Aldrich (St. Louis, US), AstaTech (Bristol,
US), Combi-Blocks (San Diego, US), TRC (Toronto, CA), Thermo Scientific (Waltham, US) or obtained from
the Roche compound library and used as received. All solids were dosed using a CHRONECT Quantos from Axel
Semrau GmbH & Co. KG (Spockhövel, DE) coupled with an XPE206 balance from Mettler Toledo (Greifensee,
CH). Anhydrous solvents were purchased from Sigma Aldrich, stored in the glovebox and added to the reaction
vials using pipettes from Eppendorf (Hamburg, DE). The vials were heated on a Junior benchtop solution from
Unchained Labs (Pleasanton, US) and the reaction mixture was stirred by VP 721F-1 Parylene Encapsulated
Stainless Steel Stir Discs from V&P Scientific Inc. (San Diego, US). Purification by flash column chromatogra-
phy was performed using SiliaSep Premium Flash Cartridges from Silicycle (Quebec, CA) on a Combi Flash Rf
from Teledyne ISCO (Nebraska, US). Eluent solvents, gradients and cartridge sizes for flash chromatography are
described for each experiment.

SI11.2 Analytical information

All compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy and (flow injection analysis
(FIA)) high-resolution mass spectrometry (HRMS) or gas-chromatography mass spectrometry (GCMS). NMR
spectra were recorded on a Bruker Avance III, 600 MHz spectrometer equipped with a 5 mm TCI, Z-gradient
CryoProbe. NMR data are reported as follows: chemical shift in reference to the residual solvent peak (δ ppm),
multiplicity (s = singlet, d = doublet, br d = broad doublet, dd = doublet of doublet, br dd = broad doublet
of doublet, t = triplet, br t = broad triplet, m = multiplet), coupling constant (Hz), and integration. 1H NMR
residual solvent peaks in respective deuterated solvents for CHCl3 at 7.26 ppm and DMSO at 2.50 ppm. 13C
NMR residual solvent peaks in respective deuterated solvents for CHCl3 at 77.16 ppm and DMSO at 39.52 ppm.

LC-MS high-resolution spectra were recorded with an Agilent LC system consisting of Agilent 1290 high-pressure
gradient system, and an Agilent 6545 QTOF. The separation was achieved on a Zorbax Eclipse Plus C18 1.7
µm 2.1 x 50 mm column (P/N 959731-902) at 55 °C; A: 0.01% HCOOH in H2O; B: MeCN at flow 0.8 mL/min.
Gradient: 0 min 5% B, 0.3 min 5% B, 4.5 min 99% B, 5 min 99% B. The injection volume was 2 µL. Ionization
was performed in an Agilent Multimode source. The mass spectrometer was run in “2 GHz extended dynamic
range” mode, resulting in a resolution of about 20 000 at m/z = 922. Mass accuracy was ensured by internal drift
correction. GC-MS spectra were recorded on an Agilent 5975B single quadrupole mass spectrometer. Separation
was achieved on an Agilent 7890A using a HP-1ms column (15 m ID: 250 µm and 0.25 µm film) with He as carrier
gas. Sample introduction was done via a Split injector at 270°C. After 0.5 min at a constant temperature, the
temperature was ramped from 100 °C or 45 °C to 320 °C with 35 °C/min. The mass spectrometer was operated in
EI (electron ionization) mode at 70 eV. FIA-HRMS spectra were recorded with an Agilent LC system consisting
of an Agilent 1290 high-pressure gradient system, and an Agilent 6540 QTOF. No separation was intended and
the injected sample was flushed directly into the Agilent Jetstream source. The mass spectrometer was run in “2
GHz extended dynamic range” mode, resulting in a resolution of about 20 000 at m/z 922. Mass accuracy was
ensured by internal drift correction.
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SI11.3 Experimental procedures and analytical data

Ethyl 4-[13-chloro-6-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)-4-azatricyclo[9.4.0.-03,8]pentadeca-
1(11),3(8),4,6,12,14-hexaen-2-ylidene]piperidine-1-carboxylate (1a):
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N

Cl
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N

N

Cl

B
O O

[Ir(COD)OMe]2 (2.5 mol%)

dtbbpy (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 h, N2

Me-THF (0.2 M)

1 1a

(52%)

Figure S19: Monoborylation of Loratadine (1).

In an N2-filled glovebox, ethyl 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-yli-
dene)piperidine-1-carboxylate (1, 31.66 mg, 78.55 µmol, 1.00 eq.), bis(pinacolato)diboron (3, 19.95 mg, 78.55
µmol, 1.00 eq), 4,4’-dimethyl-2,2’-bipyridine (7, 723.63 ug, 3.93 µmol, 0.05 eq.) and bis(1,5-cyclooctadiene)-
dimethoxydiiridium (2, 1.3 mg, 1.96 µmol, 0.025 eq.) were dosed by a solid handler. Addition of 2-methyl-THF
(11, 398 µL) dissolved all components to give a reaction concentration of 0.2 M. The reaction was stirred at 80 °C
for 18 h. The crude material was purified using silica gel column chromatography (4 g) using a MeOH gradient
(0%-5%) in DCM. Evaporation of solvents gave the title compound 4-[13-chloro-6-(4,4,5,5-tetramethyl-1,3,2-diox-
aborolan-2-yl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl
ester (1a, 23.0 mg, 52%) as a white solid.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.78 - 8.69 (m, 1H), 7.87 - 7.77 (m, 1H), 7.12 (s, 3H), 4.25 - 4.01 (m,
3H), 3.88 - 3.75 (m, 2H), 3.36 (s, 1H), 3.43 - 3.28 (m, 1H), 3.14 - 2.99 (m, 2H), 2.82 (s, 1H), 2.89 - 2.73 (m,
1H), 2.52 - 2.42 (m, 1H), 2.40 - 2.25 (m, 3H), 1.43 - 1.30 (m, 15H). 13C NMR (151 MHz, CDCl3) δ (ppm)
155.47, 152.51, 139.52, 137.67, 132.94, 132.57, 130.63, 129.05, 126.15, 84.17, 75.02, 61.33, 44.76, 31.78, 31.21,
24.86, 24.81, 14.68. FIA-HRMS C28H34BClN2O4; calc. for (M+H+): 509.2378, found: 509.2410.
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Ethyl 4-[13-chloro-6,14-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-azatricyclo[9.4.0.03,8]pen-
tadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene]piperidine-1-carboxylate (1b):
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Figure S20: Diborylation of Loratadine (1).

In an N2-filled glovebox, ethyl 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-yli-
dene)piperidine-1-carboxylate (1, 500 mg, 1.28 mmol, 1.00 eq.), bis(pinacolato)diboron (3, 325 mg, 1.28 mmol,
1.00 eq.), 3,4,7,8-tetramethyl-1,10-phenanthroline (9, 15.1 mg, 64.0 µmol, 0.05 eq.) and bis(1,5-cyclooctadi-
ene)dimethoxydiiridium (2, 21.2 mg, 32.0 mmol, 0.025 eq.) were dosed by a solid handler. Addition of cy-
clohexane (10, 6.39 mL) dissolved all components to give a reaction concentration of 0.2 M. The reaction
was stirred at 80 °C for 18 h. The crude material was purified using silica gel column chromatography (40
g) using an EtOAc/EtOH (3:1) gradient (10%-30%) in heptane. Evaporation of solvents gave the title com-
pound ethyl 4-[13-chloro-6,14-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-azatricyclo[9.4.0.03,8]pentadeca-
1(11),3(8),4,6,12,14-hexaen-2-ylidene]piperidine-1-carboxylate (1b, 51.0 mg, 6%), which could only be character-
ized by HRMS. For confirmation of the regioselectivity, 1b was transformed into 1c.

FIA-HRMS C34H45B2ClN2O6; calc. for (M+H+): 635.3231, found: 635.3458.
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Ethyl 4-(13-chloro-6,14-dihydroxy-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-
ylidene)piperidine-1-carboxylate (1c):
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Figure S21: Hydroxylation of di-borylated Loratadine (1b).

Ethyl 4-[13-chloro-6,14-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3-
(8),4,6,12,14-hexaen-2-ylidene]piperidine-1-carboxylate (1b, 51.0 mg, 0.08 mmol, 1.00 eq.) was dissolved in THF
(64, 1.0 mL) to give a reaction concentration of 0.08 M. Next, NaOH (3.20 mg, 0.08 mmol, 1.00 eq.) and
H2O2 (5.50 mL, 6.25 mg, 0.18 mmol, 2.30 eq.) were added to the reaction mixture, which was then stirred
at 25 °C for 2 h. The reaction was worked up with H2O2 (10 mL) and extracted with EtOAc (3 x 10 mL).
Combined organic phases were washed with brine and dried over Na2SO4. Evaporation of solvents gave the title
compound Ethyl 4-(13-chloro-6,14-dihydroxy-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-yli-
dene)piperidine-1-carboxylate (1c, 30.0 mg, 90%) as a white solid.

1H NMR (600 MHz, DMSO) δ (ppm) 9.93 (s, 1H), 9.73 (s, 1H), 7.88 (d, J = 2.7 Hz, 1H), 7.15 (s, 1H), 6.91
(d, J = 2.7 Hz, 1H), 6.64 (s, 1H), 4.02 - 4.05 (m, 2H), 3.56 - 3.61 (m, 2H), 3.12 - 3.18 (m, 4H), 2.68 - 2.72 (m,
1H), 2.63 - 2.67 (m, 1H), 2.25 - 2.30 (m, 1H), 2.20 - 2.24 (m, 2H), 2.13 - 2.16 (m, 1H), 1.17 (t, J = 7.1 Hz, 3H).
13C NMR (151 MHz, DMSO) δ (ppm) 155.03, 152.89, 151.08, 148.02, 139.90, 135.66, 134.78, 134.49, 134.18,
130.39, 130.02, 123.76, 118.33, 116.88, 61.15, 31.77, 30.33, 15.11. HRMS C22H23ClN2O4; calc. for (M+H+):
415.1424, found: 415.1420.
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4-Hydroxy-3-(3-oxo-1-phenyl-butyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)chromen-2-one (25a):

[Ir(COD)OMe]2 (2.5 mol%)

4,4'-dimethyl-2,2'-bpy (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 hr, N2
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Figure S22: Borylation of Warfarin (25).

In an N2-filled glovebox, 4-Hydroxy-3-(3-oxo-1-phenylbutyl)- 2H-chromen-2-one (25, 247 mg, 0.8 mmol, 1.00 eq.),
bis(pinacolato)diboron (3, 203 mg, 0.8 mmol, 1.00 eq.), 4,4′-dimethyl-2,2′-bipyridine (7, 7.4 mg, 0.04 mmol, 0.05
eq.) and bis(1,5-cyclooctadiene)dimethoxydiiridium (2, 13.2 mg, 0.02 mmol, 0.025 eq.) were dosed by a solid
handler. Addition of cyclohexane (10, 6.39 mL) dissolved all components to give a reaction concentration of
0.2 M. The reaction was stirred at 80 °C for 18 h. The crude material was purified using silica gel column
chromatography (12 g) using an EtOAc/EtOH (3:1) gradient (0%-25%) in heptane, followed by another silica gel
chromatography (4 g) using a EtOAc/EtOH (3:1) gradient (0%-10%) in heptane. Evaporation of solvents gave the
title compound 4-Hydroxy-3-(3-oxo-1-phenyl-butyl)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)chromen-2-one
(25a, 48.0 mg, 18%) as a white solid.

1H NMR (600 MHz, DMSO) δ (ppm) 8.43 - 8.33 (m, 3H), 7.83 - 7.68 (m, 4H), 7.38 (s, 1H), 7.29 - 7.11
(m, 7H), 3.99 (br dd, J = 6.7, 11.2 Hz, 1H), 2.38 - 2.25 (m, 2H), 2.22 - 2.04 (m, 1H), 1.90 (br t, J = 12.1 Hz,
1H), 1.69 - 1.55 (m, 4H), 1.42 - 1.13 (m, 2H). 13C NMR (151 MHz, DMSO) δ (ppm) 158.31, 151.58, 143.69,
128.13, 126.96, 125.83, 122.20, 121.16, 117.82, 104.47, 99.67, 84.18, 42.63, 27.07. FIA-HRMS C25H27BO6; calc.
for (M+H+): 435.1979, found: 435.1824.
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2-cyclopropyl-7-methyl-13-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,4,9,15-tetrazatricyclo[9.4.0.03,8]-
pentadeca-1(15),3(8),4,6,11,13-hexaen-10-one (29a):

[Ir(COD)OMe]2 (2.5 mol%)

4,4'-dimethyl-2,2'-bpy (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 hr, N2

CyHex (0.2 M)
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Figure S23: Borylation of Nevirapine (29).

In an N2-filled glovebox, 11-cyclopropyl-4-methyl-5,11-dihydro-6H- dipyrido[3,2-b:2′,3′-e][1,4]diazepin-6-one (29,
26.6 mg, 0.1 mmol, 1.00 eq.), bis(pinacolato)diboron (3, 253 mg, 1.0 mmol, 1.00 eq.), 4,4′-dimethyl-2,2′-bipyri-
dine (7, 9.3 mg, 0.05 mol, 0.05 eq.) and bis(1,5-cyclooctadiene)dimethoxydiiridium (2, 16.5 mg, 0.025 mmol,
0.025 eq.) were dosed by a solid handler. Addition of cyclohexane (10, 0.5 mL) dissolved all components to
give a reaction concentration of 0.2 M. The reaction was stirred at 80 °C for 18 h. The crude material was
purified using silica gel column chromatography (4 g) using an EtOAc/EtOH (3:1) gradient (5%-25%) in hep-
tane, followed by another silica gel chromatography (4 g) using a EtOAc/EtOH (3:1) gradient (0%-25%) in
heptane. Evaporation of solvents gave the title compound 2-cyclopropyl-7-methyl-13-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)-2,4,9,15-tetrazatricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,11,13-hexaen-10-one (29a, 9.0 mg,
5%) as a white solid.

1H NMR (600 MHz, DMSO) δ (ppm) 9.89 (s, 1H), 8.66 (d, J = 2.0 Hz, 1H), 8.22 (d, J = 2.0 Hz, 1H), 8.10
(d, J = 4.8 Hz, 1H), 7.10 (dd, J = 4.8, 0.7 Hz, 1H), 3.63 (dt,J = 6.9, 3.3 Hz, 1H), 2.35 (s, 3H), 1.31 (d, J =
4.8 Hz, 10H), 1.08 (s, 1H), 0.92 (s, 2H), 0.30 - 0.44 (m, 2H). 13C NMR (151 MHz, CDCl3) δ (ppm) 168.21,
162.26, 158.12, 153.51, 147.06, 144.34, 138.52, 124.66, 121.99, 119.07, 84.18, 29.78, 24.85, 24.83, 17.68. LCMS
C21H25BN4O3; calc. for (M+H+): 392.2, found: 392.2.
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3-(2,5-dimethylpyrrol-1-yl)-1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (37a):

[Ir(COD)OMe]2 (2.5 mol%)

dtbbyp (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 h, N2

Me-THF (0.2 M)

37 37a

(60%)

N

NN

N

NN

B
O

O

Figure S24: Monoborylation of 37.

In an N2-filled glovebox, ethyl 3-(2,5-dimethylpyrrol-1-yl)-1-methyl-pyrazole (37, 140.18 mg, 800 µmol, 1.000 eq),
bis(pinacolato)diboron (3, 203.15 mg, 800 µmol, 1.000 eq), dtbbpy (6, 10.74 mg, 40.0 µmol, 0.05 eq) and bis(1,5-
cyclooctadiene)dimethoxydiiridium (2, 13.26 mg, 20.0 µmol, 0.025 eq) were dosed by a solid handler. Addition
of Me-THF (11, 4.0 mL) dissolved all components to give a reaction concentration of 0.2 M. The reaction was
stirred at 80 °C for 18 h, followed by evaporation of the solvent. The crude material was purified by silica gel
column chromatography (40 g) using a MeOH gradient (0%-5%) in DCM. Evaporation of solvents gave the ti-
tle compound 3-(2,5-dimethylpyrrol-1-yl)-1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole (37a,
146.00 mg, 60%) as an off-white solid.

1H NMR (600 MHz, CDCl3) δ (ppm) 6.57 (s, 1H), 5.85 (s, 2H), 4.09 (s, 3H), 2.10 (s, 6H), 1.38 (s, 12H).
13C NMR (151 MHz, CDCl3) δ (ppm) 146.14, 129.33, 1124.55, 105.86, 84.44, 39.76, 24.88, 12.92. GCMS
C16H24BN3O; calc. for (M*+): 301.2, found: 301.2.
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4-[5-bromo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-pyridyl]morpholine (38a):

[Ir(COD)OMe]2 (2.5 mol%)

dtbbyp (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 h, N2

Me-THF (0.2 M)

38 38a

(54%)

N

O

N
Br

N

O

N
Br

B
O

O

Figure S25: Monoborylation of 38.

In an N2-filled glovebox, 4-(5-bromo-2-pyridyl)morpholine (38, 194.48 mg, 800 µmol, 1.00 eq.), bis(pinacolato)-
diboron (3, 203.15 mg, 800 µmol, 1.00 eq.), dtbbpy (6, 10.74 mg, 40.0 µmol, 0.05 eq.) and bis(1,5-cyclooctadiene)-
dimethoxydiiridium (2, 13.26 mg, 20.0 µmol, 0.025 eq.) were dosed by a solid handler. Addition of 2-methyl-THF
(11, 4.0 mL) dissolved all components to give a reaction concentration of 0.2 M. The reaction was stirred at
80 °C for 18 h, followed by evaporation of the solvent. The crude material was purified by silica gel column
chromatography (40 g) using a MeOH gradient (0%-5%) in DCM. Evaporation of solvents gave the title compound
4-[5-bromo-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-pyridyl]morpholine (38a, 161.00 mg, 54%) as a white
solid.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.25 (d, J = 0.6 Hz, 1H), 6.84 (s, 1H), 3.80 - 3.82 (m, 4H), 3.48 - 3.50
(m, 4H), 1.38 (s, 12H). 13C NMR (151 MHz, CDCl3) δ (ppm) 157.59, 149.20, 113.51, 112.82, 84.84, 66.70,
45.59, 24.83. GCMS C15H22BBrN2O3; calc. for (M*+): 368.1, found: 368.1.
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6-bromo-1-[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]-3-(trifluoromethyl)indazole (39a):

[Ir(COD)OMe]2 (2.5 mol%)

dtbbyp (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 h, N2

CyHex (0.2 M)

39 39a

(60%)

F

F

F

N

N

Br

F

F

F

N

N

Br

B
O

O

Figure S26: Monoborylation of 39.

In an N2-filled glovebox, 6-bromo-1-methyl-3-(trifluoromethyl)indazole (39, 223.25 mg, 800 µmol, 1.00 eq), bis-
(pinacolato)diboron (3, 203.15 mg, 800 µmol, 1.00 eq), dtbbpy (6, 10.74 mg, 40.0 µmol, 0.05 eq) and bis(1,5-cy-
clooctadiene)dimethoxydiiridium (2, 13.26 mg, 20.0 µmol, 0.025 eq) were dosed by a solid handler. Addition of
cyclohexane (10, 4.0 mL) dissolved all components to give a reaction concentration of 0.2 M. The reaction was
stirred at 80 °C for 18 h, followed by evaporation of the solvent. The crude material was purified by silica gel
column chromatography (40 g) using a MeOH gradient (0%-5%) in DCM. Evaporation of solvents gave the ti-
tle compound 6-bromo-1-[(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl]-3-(trifluoromethyl)indazole (39a,
197.0 mg, 60%) as a light yellow solid.

1H NMR (300 MHz, CDCl3) δ (ppm) 7.68 (d, J = 8.6 Hz, 1H), 7.61 - 7.62 (m, 1H), 7.37 (dd, J = 1.6, 8.7 Hz,
1H), 4.11 (s, 2H), 1.31 (s, 12H). 13C NMR (151 MHz, CDCl3) δ (ppm) 141.53, 125.99, 121.21, 113.11, 84.99,
24.72. GCMS C15H17BBrF3N2O2; calc. for (M*+): 404.1, found: 404.1.
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[6-hydroxy-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthyl]-morpholino-methanone (45a)
and [6-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthyl]-morpholino-methanone
(45b):

[Ir(COD)OMe]2 (2.5 mol%)

tmphen (5 mol%)

B2Pin2 (1.0 eq.)

80 °C, 18 hr, N2

CyHex (0.2 M)

45 45a

(9%)

45b

O

OH

N

O

O

OH

N

O

O

OH

N

O

B
O

O

B
O

O

+

Figure S27: Monoborylation of 45.

In an N2-filled glovebox, (6-hydroxy-2-naphthyl)-morpholino-methanone (45, 25.7 mg, 0.1 mmol, 1.00 eq), bis-
(pinacolato)diboron (3, 253 mg, 1.0 mmol, 1.00 eq.), tmphen (6, 11.82 mg, 0.05 mmol, 0.05 eq) and bis(1,5-cy-
clooctadiene)dimethoxydiiridium (2, 16.5 mg, 0.025 mmol, 0.025 eq.) were dosed by a solid handler. Addition of
cyclohexane (10, 0.5 mL) dissolved all components to give a reaction concentration of 0.2 M. The reaction was
stirred at 80 °C for 18 h, followed by evaporation of the solvent. The crude material was purified by silica gel col-
umn chromatography (4 g) using a MeOH gradient (0%-75%) in DCM. Evaporation of solvents gave the title com-
pounds 6-hydroxy-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthyl]-morpholino-methanone (45a) and -
[6-hydroxy-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthyl]-morpholino-methanone (45b) as an isomeric
mixture (combined 3.4 mg, 9%).

1H NMR (600 MHz, CDCl3) δ (ppm) 8.72 - 8.75 (m, 1H), 8.07 - 8.10 (m, 1H), 8.05 (d, J = 1.9 Hz, 1H), 7.89
(d, J = 1.9 Hz, 1H), 7.72 (d, J = 2.5 Hz, 1H), 7.69 - 7.73 (m, 1H), 7.60 (s, 1 H), 7.46 - 7.50 (m, 1H), 7.15 - 7.19
(m, 1H), 7.09 - 7.14 (m, 1H), 5.54 - 6.30 (m, 1H), 3.70 - 3.89 (m, 8H), 1.40 (s, 12H). 13C NMR (151 MHz,
CDCl3) δ (ppm) 171.40, 153.93, 135.61, 134.55, 131.03, 130.75, 129.69, 128.26, 127.80, 127.50, 125.09, 113.17,
84.09, 83.98, 67.12, 66.96, 25.04, 25.00. HRMS C21H26BNO5; calc. for (M+H+): 384.1982, found: 384.1979.
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tert-butyl (6-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)car-
bamate (64a):

[Ir(COD)OMe]2 (5 mol%)

phen (10 mol%)

B2Pin2 (1.0 eq.)

80 °C, 15 h, Ar

THF (0.1 M)

(63%)

NH

O

OCl
NH

O

OCl

B

64 64a

OO

Figure S28: Monoborylation of 64.

Under an Ar atmosphere, tert-butyl (5-chloro-2,3-dihydro-1H-inden-2-yl)carbamate (64, 2.50 mg, 9.34 mmol, 1.00
eq), bis(pinacolato)diboron (3, 2.42 g, 9.34 mmol, 1.00 eq.), phen (8, 221 mg, 0.93 mmol, 0.10 eq) and bis(1,5-
cyclooctadiene)dimethoxydiiridium (2, 309 mg, 0.47 mmol, 0.05 eq.) were added to a vial. The addition of THF
(62, 10 mL) dissolved all components to give a reaction concentration of 0.1 M. The reaction was stirred at 80 °C
for 15 h, followed by evaporation of the solvent. The crude material was purified by silica gel column chromatog-
raphy (20 g) using an EtOAc gradient (0%-30%) in heptane. Evaporation of solvents gave the title compound
tert-butyl (6-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)carbamate (64a) as
an off-white solid (2.30 g, 63%).

LCMS C20H29BClNO4; calc. for (M-Boc+H+): 293.1324, found: 294.2.

tert-butyl (6-chloro-4-hydroxy-2,3-dihydro-1H-inden-2-yl)carbamate (64b):

NaBO3 x H2O (3.0 eq.)

25 °C, 18 h

THF/H2O (1/0.1)

(42%)

NH

O

OCl

64b

OH

(regioselectivity not confirmed)

NH

O

OCl

B

64a

OO

(regioselectivity not confirmed)

(0.3 M)

Figure S29: Conversion of 64a to 64b.

tert -butyl (6-chloro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3-dihydro-1H-inden-2-yl)carbamate (64a, 850.0
mg, 1.84 mmol, 1.00 eq.) was dissolved in THF (62, 5.56 mL) and H2O (556 uL), followed by addition of sodium
perborate monohydrate (549 mg, 5.51 mmol, 3.00 eq.). The reaction was stirred at 25 °C for 18 hours. The
solvent evaporated and the residue was taken up in H2O, followed by extraction with EtOAc to separate the two
layers. The aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine,
dried over anhydrous sodium sulfate and evaporated to dryness. The crude material was purified by silica gel
column chromatography (10 g) using an EtOAc gradient (0%-50%) in heptane. Evaporation of solvents gave the
title compound tert -butyl (6-chloro-4-hydroxy-2,3-dihydro-1H-inden-2-yl)carbamate (64b) as an off-white solid
(220 mg, 42%).

LCMS C20H29BClNO4; calc. for (M-H+): 282.1, found: 282.2.
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2-((tert-butoxycarbonyl)amino)-6-chloro-2,3-dihydro-1H-inden-4-yl trifluoromethanesulfonate (64c):

NEt3 (1.1 eq.)

25 °C, 3 h

DCM (0.2 M)

(57%)

NH

O

OCl

64b

OH

NH

O

OCl

64c

O
S

O

O
F

F

F

(regioselectivity not confirmed)(regioselectivity not confirmed)

N
SS

O
CF3

O

O
F3C

O

(1.1 eq.)

Figure S30: Conversion of 64b to 64c.

tert -butyl (6-chloro-4-hydroxy-2,3-dihydro-1H-inden-2-yl)carbamate (64b, 50.0 mg, 176 umol, 1.00 eq.) was
dissolved in dry DCM (750 uL) and triethylamine (19.6 mg, 27 uL, 194 umol, 1.10 eq.) was added. To this
stirring solution, 1,1,1-trifluoro-N-phenyl-N-((trifluoromethyl)sulfonyl)methanesulfonamide (69.2 mg, 194 umol,
1.10 eq.) was added. The reaction was stirred at 25 °C for three hours. The reaction was poured into EtOAc
and the layers were separated. The aqueous layer was extracted twice with EtOAc. The combined organic
layers were washed with brine, dried over anhydrous sodium sulfate and evaporated to dryness. The crude
material was purified by silica gel column chromatography (4 g) using an EtOAc gradient (0%-50%) in heptane.
Evaporation of solvents gave the title compound tert -butoxycarbonyl)amino)-6-chloro-2,3-dihydro-1H-inden-4-yl
trifluoromethanesulfonate (64c) as a white solid (42.0 mg, 57%).

LCMS C20H29BClNO4; calc. for (M-H+): 414.0, found: 414.1.

tert-butyl (6-chloro-4-cyano-2,3-dihydro-1H-inden-2-yl)carbamate (64d):

Zn(CN)2 (0.55 eq.)

 Pd(PPh3)4 (10 mol%)

110 °C, 2 h, Ar

DMF (0.2 M)

(57%)

NH

O

OCl

NH

O

OCl

64c 64d

N

O
S

O

O
F

F

F

(regioselectivity not confirmed)

Figure S31: Conversion of 64c to 64d.

2-((tert -butoxycarbonyl)amino)-6-chloro-2,3-dihydro-1H-inden-4-yl trifluoromethanesulfonate (64c, 60.0 mg, 144 umol,
1.00 eq.), zinc cyanide (9.32 mg, 79.4 umol, 0.55 eq.) and tetrakis(triphenylphosphine) palladium (16.7 mg,
14.4 umol, 0.10 eq.) were dissolved in dry DMF (721 uL) and Argon was bubbled through the reaction for five
minutes. The reaction was stirred at 110 °C for two hours. The reaction was poured into LiCl 10% and extracted
with EtOAc. The layers were separated and the aqueous layer was extracted twice with EtOAc. The combined
organic layers were washed with brine, dried over anhydrous sodium sulfate and evaporated to dryness. The
crude material was purified by silica gel column chromatography (2 g) using a EtOAc gradient (0%-50%) in
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heptane. Evaporation of solvents gave the title compound tert -butyl (6-chloro-4-cyano-2,3-dihydro-1H-inden-2-
yl)carbamate (64d) as a white solid (24.0 mg, 57%).

1H NMR (600 MHz, CDCl3) δ (ppm) 7.44 - 7.45 (m, 1 H), 7.42 (d, J = 1.9 Hz, 1 H), 4.74 (s, 1 H), 4.54 (s, 1
H), 3.43 (dd, J = 17.1, 7.3 Hz, 1 H), 3.34 (dd, J = 16.6, 7.2 Hz, 1 H), 2.97 (dd, J = 17.1, 5.2 Hz, 1 H), 2.88 - 2.92
(m, 1 H), 1.46 (s, 9 H). 13C NMR (151 MHz, CDCl3) δ (ppm) 155.2, 144.6, 110.3. GCMS C15H17ClN2O2;
calc. for (M*+): 292.1, found: 292.1.
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SI12 NMR spectra
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Figure S32: 1a, 1H-NMR spectra.
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Figure S33: 1a, 13C-NMR spectra.
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Figure S34: 1c, 1H-NMR spectra.
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Figure S35: 1c, 13C-NMR spectra.

46

Chapter 5. Late-stage drug diversif ication through C-H borylation

152



Chemical Shift (ppm)8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

2.24.31.31.01.91.47.31.44.33.0

8.38 3.997.38 2.112.31 1.62 1.277.76

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
39

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

8.
38

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
81

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
78

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
77

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
74

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
72

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
38

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
28

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
25

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
23

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
20

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
18

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

7.
17

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
02

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

4.
00

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
98

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

3.
96

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
36

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
34

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
32

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
30

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
28

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
27

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

2.
11

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
94

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
90

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
69

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
64

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
57

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
33

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
27

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1.
23

1H NMR (600 MHz, DMSO)

25a

O

O

OH

O

B
OO

Figure S36: 25a, 1H-NMR spectra.
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Figure S37: 25a, 13C-NMR spectra.
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Figure S38: 29a, 1H-NMR spectra.
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Figure S41: 37a, 13C-NMR spectra.
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Figure S42: 38a, 1H-NMR spectra.

53

Chapter 5. Late-stage drug diversif ication through C-H borylation

159



Chemical Shift (ppm)170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

15
7.

59
15

7.
59

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

14
9.

20
14

9.
20

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
3.

51
11

3.
51

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

11
2.

82
11

2.
82

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

84
.8

4
84

.8
4

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

66
.7

0
66

.7
0

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

45
.5

9
45

.5
9

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

24
.8

3
24

.8
3

13C NMR (151 MHz, CDCl3)

38a

N
O

N
Br

B O

O

Figure S43: 38a, 13C-NMR spectra.
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Figure S44: 39a, 1H-NMR spectra.
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Figure S45: 39a, 13C-NMR spectra.
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Figure S46: 45a & 45b, 1H-NMR spectra.
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Figure S47: 45a & 45b, 13C-NMR spectra.
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Figure S48: 64d, 1H-NMR spectra.
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Stay committed to the process, and the results will follow.

- Jan Frodeno

6
Late-stage Minisci-type C-H alkylation

chemistry

This chapter describes the first application of the developed late-stage functionalization (LSF)
screening platform (Dolphin) and reaction data format (SURF) to explore the substrate
scope of late-stage C-H alkylations. A library-type screening approach aims to facilitate the in
silico reactivity prediction of suitable substrates coupled to a diverse set of sp3-rich building
blocks using Minisci-type chemistry.

First, a short overview covering C-H alkylations, specifically Minisci-type transformations,
and their potential for LSF in the context of drug discovery is given (Chapter 6.1). Next, the
publication that describes the case study in detail and was published in Communications
Chemistry is reprinted with permission (Chapter 6.2). [457] The final section contains the
corresponding experimental and supplementary information (Chapter 6.3).
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6.1 Introduction and background

Minisci-type reactions, first reported by Francesco Minisci with silver salts as catalysts in 1971,
facilitate the introduction of alkyl groups to electron-deficient heterocycles. [458] The transfor-
mation is based on a radical mechanism that aids the substitution of a hydrogen atom on the
heteroaromatic core with a nucleophilic radical. [459] Over the past decades, an expansion
of the original methodology, including the development and application of a diverse array of
radicals was investigated. [460, 461]

Today, a wide range of radical precursors can be employed for Minisci-type reactions, those
include aldehydes, [462] alkyl halides, [463] ethers, [464] alkyl boronic acids, [465] sulfi-
nates, [466] and even simple alkanes. [467] The generation of radicals from these precursors
involves distinct mechanisms such as decarboxylation, decarbonylation, dehalogenation, hy-
drogen abstraction, deboronation, or desulfonylation. Additionally, the scope of functional
groups that can be introduced has been extended from simple alkyl chains to aryl, [468] car-
bonyl, [469] and broadly functionalizedmethyl groups. [470, 471] The introduction of complex
alkyl groups is of particular interest as it enhancesmolecular three-dimensionality (3D),which
can lead to improved selectivity and reduced off-target effects, thereby accelerating the DMTA
cycle. [472, 473]

In his foundational work, Minisci described the alkylation of N-heteroaromatic bases through
a novel method of alkyl radical generation, catalyzed by silver ions and mediated by the decar-
boxylation of carboxylic acids with persulfate as the oxidant. [458] The proposed mechanism
for this transformation, using cyclohexane carboxylic acid (10) as the radical source and 6-
methoxy-2-methylquinoline (11) as the heterocyclic substrate, is exemplified in Figure 6.1. At
first, a hydrogen atom is abstracted from the carboxylic acid 10 by the transition metal catalyst
(Ag), which is then transferred to the oxidant anion through hydrogen atom transfer (HAT).
This step produces the intermediate radical I1 and regenerates the catalyst. Then, the carboxyl
radical I1 releases carbon dioxide (CO2) to form the carbon-centered radical I2. Tertiary alkyl
radicals are the most stable and reactive due to hyperconjugation. [474] Upon protonation of
the nitrogen atom in starting material 11 to form 11a, the alkyl radical I2 attacks the electron-
deficient heteroaromatic system to deliver intermediate I3. To restore the aromaticity of the
heterocyclic system, intermediate I3 loses a proton at the alkylated position by HAT to form
intermediate I4, which is followed by deprotonation to yield the final, alkylated heterocyclic
product 12.
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Figure 6.1: General mechanism of the Minisi-type C-H alkylation exemplified by the reaction of cyclo-
hexane carboxylic acid (10) with 6-methoxy-2-methylquinoline (11). Hydrogen abstraction facilitated
by the catalyst (Ag) on 10 generates radical intermediate I1 and facilitates hydrogen atom transfer
(HAT). Decarboxylation of I1 leads to a carbon radical species I2. Heteroarene 11 is protonated and
attacked by the alkyl radical I2 to generate intermediate I3. Restoring of aromaticity on I3 is facilitated
through HAT to deliver I4, followed by deprotonation to the alkylated product 12.

Although the originalMinisci reactionswere conducted at 70 °C, [458] subsequent studies have
demonstrated their feasibility undermilder conditions, including room temperature [475] and
40 °C. [476] The use of readily available carboxylic acids as alkylating agents, the requirement
for only a few reagents, and the typically good to acceptable yields contribute to the attractive-
ness of Minisci-type reactions. [460] The versatility of these reactions is further supported by
the ease to varying conditions, including different oxidant/catalyst systems and technologies,
such as photo- and electrochemistry. [461, 477, 478]

Given these attributes, Minisci-type reactions could be a valuable methodology in the LSF
toolbox for the introduction of 3D-rich fragments into advanced drug-likemolecules. However,
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the predictability of introducing alkyl chains and rings into structurally complex chemical
matter is not always straightforward. To evaluate the applicability and possibly increase the
wet-lab reaction success of alkylation reactions, a case study, that connects semi-automated
high-throughput experimentation (HTE) with in silico reaction screening was designed and
conducted.
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6.2 Publication

The following case study has been published as:Nippa, D. F.†, Atz, K.†, Müller, A. T., Wolfard,
J., Isert, C., Binder, M., Scheidegger, O., Stepan, A. F., Konrad, D. B., Grether, U., Martin, R. E.,
& Schneider, G., Identifying opportunities for late-stage C-H alkylation with in silico reaction
screening and high-throughput experimentation Comms. Chem., 6, 256 (2023). [457] The ma-
terial (DOI: 10.1038/s42004-023-01047-5) is reprinted with permission from Springer Nature
Limited (Author reuse for own thesis).

The author of this thesis is the co-first author of the publication as he carried out the litera-
ture analysis, the experimental work (HTE, scale-up), the reaction data preparation for the
predictive tool, and the writing of the first manuscript draft. The machine learning algorithms
were designed and developed by Dr. Kenneth Atz. Further details on the contributions of all
authors are stated on the last page of the publication.

A detailed description of the experiments conducted and methods used in the publication can
be found in Chapter 6.3.
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ARTICLE

Identifying opportunities for late-stage C-H
alkylation with high-throughput experimentation
and in silico reaction screening
David F. Nippa 1,2,4, Kenneth Atz3,4, Alex T. Müller 1, Jens Wolfard 1, Clemens Isert 3, Martin Binder1,

Oliver Scheidegger1, David B. Konrad 2✉, Uwe Grether 1✉, Rainer E. Martin 1✉ & Gisbert Schneider 3✉

Enhancing the properties of advanced drug candidates is aided by the direct incorporation of

specific chemical groups, avoiding the need to construct the entire compound from the

ground up. Nevertheless, their chemical intricacy often poses challenges in predicting reac-

tivity for C-H activation reactions and planning their synthesis. We adopted a reaction

screening approach that combines high-throughput experimentation (HTE) at a nanomolar

scale with computational graph neural networks (GNNs). This approach aims to identify

suitable substrates for late-stage C-H alkylation using Minisci-type chemistry. GNNs were

trained using experimentally generated reactions derived from in-house HTE and literature

data. These trained models were then used to predict, in a forward-looking manner, the

coupling of 3180 advanced heterocyclic building blocks with a diverse set of sp3-rich car-

boxylic acids. This predictive approach aimed to explore the substrate landscape for Minisci-

type alkylations. Promising candidates were chosen, their production was scaled up, and they

were subsequently isolated and characterized. This process led to the creation of 30 novel,

functionally modified molecules that hold potential for further refinement. These results

positively advocate the application of HTE-based machine learning to virtual reaction

screening.
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The synthesis of novel compounds represents the bottleneck
in terms of time and effort for numerous small molecule
drug discovery projects1. Late-stage functionalization (LSF)

is a strategy that adds extra functional groups to drug molecules,
bypassing the necessity for entirely new synthesis or the
requirement for specific functional handles2. These subtle struc-
tural alterations simplify the process of understanding the rela-
tionships between the chemical structure and the biological
activity (structure–activity relationships, SARs). Additionally,
they allow for the enhancement of pharmacokinetic properties,
including absorption, distribution, metabolism, and excretion, in
lead compounds and drug candidates3. Importantly, these mod-
ifications can be achieved with lower synthetic costs4. None-
theless, it is worth noting that not all molecules readily lend
themselves to the desired functionalizations, making LSF a
challenging process in experimental terms. In response to this
challenge, we present a computational machine-learning frame-
work designed for predicting the reactivity of drug molecules.
This framework offers a more rational approach to LSF, poten-
tially reducing the time and experimental costs typically asso-
ciated with this endeavor.

An increasing number of experimental LSF methods have
recently been published that allow medicinal chemists to fluor-
inate, aminate, arylate, methylate, trifluoromethylate, borylate,
acylate, or oxidize structurally intricate molecules5,6. Alkylation
reactions have gained interest as they allow the introduction of
small cyclic and acyclic alkyl groups through carbon–carbon,
carbon–oxygen, or carbon–nitrogen bond formation7. In parti-
cular, Minisci-type alkylations8,9 are considered a valuable LSF
methodology for incorporating alkyl building blocks into het-
erocyclic systems, which often form the core of drug molecules10.

Originally described in the mid-20th century, Minisci reactions
have become a versatile tool in medicinal chemistry for the for-
mation of C–C bonds11. Using ammonium persulfate as the
oxidant and silver nitrate as the catalyst, alkyl radicals are gen-
erated from the corresponding carboxylic acids at elevated tem-
peratures. Upon radical addition to the heteroarene, the reaction
product is formed through aromaticity-driven oxidation of the
radical intermediate11. The scope of both, electron-deficient
heteroarenes and alkyl-donating coupling partners, has steadily
been expanded12,13. Various radical sources have been docu-
mented in the literature. These include alkyl carboxylic acids
capable of transferring alkyl groups, boronic acids suitable for the
incorporation of aryl groups, or sulfinates that were used to
transfer trifluoromethyl or tert-butyl fragments14,15. Employing
readily accessible and cost-effective carboxylic acids, without the
prerequisite for prefunctionalization, considerably broadens the
applicability of this transformation for drug discovery purposes16.
The growing emphasis on integrating sp3-rich building blocks
into pharmaceuticals17, coupled with the ready availability of
stable cyclic alkyl carboxylic acids, renders this approach parti-
cularly appealing for expanding hits into lead compounds and
optimizing drugs through LSF.

It has become apparent that by decreasing the count of aro-
matic rings within a drug candidate, the chances of achieving
clinical success can be heightened18. A higher proportion of sp3

centers allows for exploration of novel chemical territory, which
can potentially improve drug selectivity19. This shift can also
positively influence essential physicochemical properties, such as
solubility and metabolic stability20–22. While guidelines exist for
predicting reactivity in Minisci-type transformations, the chal-
lenge lies in the limited range of functional groups that can be
accommodated, along with the diverse array of C–H bonds and
electronic effects within complex molecules. These complexities
make the prediction of alkylation reactions a challenging task4,23.
Conducting individual reactions at the typical scale used in

medicinal chemistry (milligram scale) to enrich the reaction
database with pertinent transformation examples would be a
laborious and resource-intensive undertaking, yielding limited
value relative to the effort invested.

High-throughput experimentation (HTE) has emerged as a
valuable tool for systematically exploring and optimizing new
chemical transformations in a semi-automated manner24,25. To
effectively accomplish the miniaturization of reactions at the
nanomolar scale, it is essential to engineer the system with pre-
cision to handle extremely small quantities of materials and
ensure consistent and thorough mixing of the reaction
components26. Advanced technologies like ultra-high-
performance liquid chromatography-mass spectrometry enable
the analysis and the separation of minute quantities from
screening plates27,28. Another crucial aspect of HTE involves the
careful curation of all collected reaction data, including unsuc-
cessful transformations, in accordance with the FAIR principles
(findable, accessible, interoperable, and reusable)29. This
approach ensures the creation of high-quality datasets suitable for
machine learning applications30–32.

Graph neural networks (GNNs) that enable efficient learning
on three-dimensional (3D) molecular models have found various
applications in drug discovery and development33–35. In addition
to their prominent applications in quantum chemistry36,37, GNN
methods have been developed for the prediction of forward
reactions, starting from small substrates and leading to the
synthesis of complex drug molecules38–40. Moreover, GNNs have
recently found application in LSF to predict reaction yield, binary
reaction outcome, and regioselectivity for borylation reactions41.
A similar methodology has been introduced for predicting late-
stage alkylation, with a primary emphasis on Baran-type diver-
sinate chemistry that employs alkyl sodium sulfinate salts42.
Additionally, a recent investigation has demonstrated that hybrid
machine learning models, enriched with quantum chemical
details about transition states, can achieve accurate predictions of
regioselectivity for iridium-catalyzed borylation reactions, even
when operating with limited data43.

In this study, we showcase the application of GNNs trained on
a limited set of reaction data for machine-learning-based virtual
reaction screening. When combined with laboratory automation,
this approach has facilitated the discovery of 276 promising
alkylation possibilities with high precision (Fig. 1). This effort has
resulted in the synthesis of a diverse range of novel compounds
characterized by an enhanced sp3 fraction.

Results
HTE reaction screening. The Minisci-type reactions described by
Sutherland et al.16 were effectively downscaled from a micro-
molar (150 μmol) to a nanomolar (500 nmol) level in a parallel
configuration using a 24-well plate, achieving a reduction factor
of 300 (Fig. 2A, B). Throughout the optimization process, it
became evident that the reaction yields substantially improved
when performed inside a glovebox. Conducting the reaction with
23 distinct carboxylic acids labeled as a-w (Fig. 2C) at various
temperatures revealed that the highest conversions were achieved
at 40 °C. Elevating the temperature beyond this point primarily
resulted in the formation of di-alkylation products. To attain
increased conversions, we doubled the amounts of alkyl car-
boxylic acids (20 equivalents instead of 10) and oxidants (6
equivalents instead of 3). This adjustment led to higher conver-
sions, with an average improvement factor of 1.2–1.5. We
included a reference reaction involving Quinoline 1 and car-
boxylic acid e in position B4 (Fig. 2C) to monitor potential
performance variations and to ensure the reproducibility of the
screening results. Since this reaction is anticipated to consistently
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yield the desired outcome under the specified conditions, any
unexpected outcome in this well would serve as a warning sign,
indicating the potential influence of external factors or mis-
handling of the plates. Such deviations would prompt concerns
regarding data reliability. Therefore, in the final configuration, we
assessed the integration of 23 diverse alkyl groups, with a primary
emphasis on compact sp3 ring systems, into electron-deficient
heterocycles.

Binary reaction outcomes were labeled as “successful” when the
chosen substrate, under the specified reaction conditions,
produced a mono- or di-alkylation product that could be
confirmed by liquid chromatography-mass spectrometry (LCMS)
with a threshold of 5%. Conversely, outcomes were classified as
“unsuccessful” when the intended transformation could not be
detected through LCMS. In cases of di-alkylation, we consistently
observed three distinct products: mono-alkylation on the two
distinct carbons and di-alkylation on both. To facilitate the
training of machine learning models, the yields of all three
reaction products were combined together. Four fragments (1–4,
Supplementary Note 5, Fig. S2) and five drug molecules (5–9,
Supplementary Note 5, Fig. S2) from a chemically diverse LSF
informer library41, and 18 fragments (26–43) from the Roche
compound library were screened under these reaction conditions.
The collected data resulted in a balanced experimental data set
comprising 691 reactions, with 379 classified as successful and
312 as unsuccessful.

Machine learning-based in silico reaction screening. GNN
models (Fig. 3A) were trained using an initial dataset of 621

Minisci reactions, comprising 368 generated as decoys, 45 from
the literature, and 207 from the LSF informer library. These
models enabled in silico reaction screening of a Roche in-house
library of 3180 advanced heterocyclic building blocks. Each
substrate was assigned an ensemble score, which was determined
by aggregating the predictions from six independent models.
Specifically, this ensemble score incorporated inputs from three
models for binary reaction outcome prediction and three models
for reaction yield prediction (“Graph neural network archi-
tecture”). Subsequently, the molecules were grouped into eight
clusters using agglomerative compound clustering (Supplemen-
tary Note 2). Two compound clusters were excluded from con-
sideration due to the prevalence of unsuitable structures, namely
heterocycles lacking free C-H bonds, for the studied reaction.
From the six remaining clusters, three molecules were chosen
from each, based on their computed reactivity score, resulting in a
total of 18 N-heteroarenes.

The selected 18 N-hetero arenes were subjected to automated
HTE screening, generating an experimental data set of 414
reaction points. For each of the selected substrates, Minisci-type
alkylation products could be identified, resulting in a total of 276
successful reactions (Fig. 3C). Among the screened N-hetero-
arenes, 10 of them facilitated between 17 and 23 successful
transformations across the chosen carboxylic acids. (Fig. 3D). 7
N-hetero arenes allowed 10-17 successful transformations. For
one substrate, specifically the meta-substituted pyridine 42
(Fig. 4), fewer than ten successful reactions were observed
(Fig. 3D). Hence, for 17 out of the 18 chosen N-heteroarenes, a
wide variety of successful Minisci-type alkylation products were
identified, resulting in a 94% success rate for substrate selection.

Fig. 1 Overview of the research study. Screening plate design: Minisci literature data containing metal-free reactions were extracted and analyzed to
determine suitable reaction conditions. For parallel reaction screening, 23 sp3-rich carboxylic acids with relevance for drug discovery were included.
Reaction data generation: Using the reaction plate design, physical experiments in high-throughput experimentation (HTE) fashion were conducted with
marketed drugs and fragments from an informer library (184 reactions41) covering relevant chemical space. In addition, 16 distinctly non-reactive
substrates were screened for in silico decoy data generation (368 reactions). Geometric deep learning: The obtained reaction data (SURF, Simple User-
friendly Reaction Format)41 were subjected to geometric deep learning, incorporating 3D structural information of the chemicals. The trained model was
applied to 3000 building blocks from the Roche library, with a particular focus on electron-deficient heterocycles. This in silico screening predicted the
reactivity of the compounds for substrate ranking and clustering. Validation and application: The prediction models were experimentally validated for a
diverse set of 18 building blocks. Selected scale-up reactions led to fully characterized compounds.
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However, it is worth noting that there were three five-membered
N-heterocyclic ring systems (2, 4, 9) in the LSF informer library,
for which very low reaction yields (≤4%, averaged over 23
carboxylic acids) were observed.

To evaluate the overall performance of the GNN models that
were trained on the complete experimental data set comprising
691 Minisci reactions obtained via high-throughput experimen-
tation (207 from the LSF informer library and 414 from the
virtual reaction screening), these models underwent validation
for predicting reaction yield and binary reaction outcomes. This
validation was conducted using a random data set split. The
reaction yields were predicted with a mean absolute error (MAE)
of 18.7 (±0.2)% and a Pearson correlation coefficient (r) of 0.687
(±0.006) (Fig. 3E). Reaction yields were categorized into four
ranges: no reaction (<1% yield), poor (>1–11%), medium
(>11–35%), and high reaction yield (>35–100%). The model
predicted the correct category in 55.7 (±0.7)% of the cases.
Binary reaction outcomes were predicted with an absolute
accuracy of 81 (±1), and an F-score of 82.7 (±0.6)% (Fig. 3F). The
failed machine learning predictions with an MAE ≥ 70% (i.e.,
outliers) are illustrated and discussed in Supplementary Note 11
and Table S3.

Scale-up. Selected screening conditions were used for upscaling to
the milligram range. LSF alkylation was carried out for the drug
molecules Loratadine (7) and Nevirapine (8), and structurally
complex molecular fragments. In total, 30 novel molecules were
synthesized, isolated, and characterized by nuclear magnetic
resonance (NMR) spectroscopy and high-resolution mass spec-
trometry (HRMS) (Fig. 5).

For Loratadine (7), a molecule from the LSF informer library,
several analogs with different cyclic (7b1, 7b2, 7b3, 7j1, 7j2, 7e1,
7e2) and heterocyclic (7s, 7q1, 7q2) substituents were generated.
Structurally complex scaffolds with high relevance for medicinal
chemistry projects, which could serve as starting points for the
development of SAR studies, also provided a variety of
compelling alkylation products. Different alkyl groups, covering
alkyl chains (e.g., 40h, 33h, 28h), cyclic alkyls (e.g., 26e, 41e, 38e)
and cyclic ethers (e.g., 39u, 35m) could be introduced. In general,
the observed regiochemistry was consistent with Minisci guide-
lines, with the alkyl groups being introduced in either the ortho-
or para-position on the pyridine core23. For molecule 38,
different reactivity was observed with the cyclohexyl radical
reacting exclusively with the thiocarbonyl functionality affording
thioether 38e. No reaction at the pyridine core was observed.

Reactivity trends. Examination of the produced data unveiled a
diverse range of observed reaction yields for both the carboxylic
acids and the N-heteroarenes. Cyclic ethers (e.g., u, s, a) and
alkanes (e.g., b, e, g) were reliably converted to the desired
alkylation product, whereas cyclic boc-protected amines (e.g., o,
p, q, r) and amides (d) resulted in low yields of the respective
desired reaction products (Fig. 3B). Similarly, substituted pyr-
idines (e.g., 30, 31, 36, 39; see Fig. 4) had lower yields compared
to compounds lacking a meta-substituent (e.g., 26, 32, 38, 41; see
Fig. 4). Electron-rich meta-substituted pyridines, such as 3 and
27, had a comparably low average reaction yield compared to
their less electron-rich analogs. Overall, compared to their six-
membered N-hetero analogs, five-membered N-heterocyclic ring
systems (e.g., 2, 4, 9; see Supplementary Note 5, Fig. S2) did not
show meaningful conversion to the desired alkylation product.

Fig. 2 Overview of Minisci-type reactions and screening plate. A General reaction scheme of a Minisci-type alkylation reaction. An alkyl substituent
obtained from a radical generator, e.g., through decarboxylation of the carboxylic acid, is introduced to an electron-deficient heterocycle, often a pyridine.
Depending on the development scope and applied technology, a variety of oxidants, catalysts, additives and solvents are used. B Schematic overview of the
Minisci-type reaction reported by Sutherland et al.16, including the equivalents of the components. C Reaction screening plate used in this study. This setup
allows to assess the coupling performance of a molecule of interest with 23 different alkyl carboxylic acids (a–w) that are relevant to medicinal chemistry
applications. This configuration enables the evaluation of how well a molecule of interest couples with 23 distinct alkyl carboxylic acids (labeled as a–w),
which are pertinent to medicinal chemistry applications. Condition B4 served as a reference reaction, ensuring consistent performance under the applied
conditions. On all screening plates, B4 comprised starting material 1 and carboxylic acid e, providing a quality control mechanism for the generated data. If
B4 had not yielded the expected outcome, the entire plate would have been reprocessed. The reaction conditions were adjusted to allow miniaturized
parallel reaction screening on a nanomolar scale (0.5 μmol). Boc tert-Butyloxycarbonyl, DMSO dimethylsulfoxide.
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Discussion
The Minisci reaction conditions, utilizing ammonium persulfate
((NH4)2S2O8) as the oxidizing agent and dimethyl sulfoxide
(DMSO) as the solvent at a temperature of 40 °C, were effectively
downsized and adapted into a parallel screening format. This
format allowed for the efficient and resourceful execution of the
reaction with a diverse range of alkyl carboxylic acids. The refined
reaction protocol facilitates rapid, metal-free, and resource-
efficient assessment of reaction conditions in an HTE-
compatible format, aiding in informed choices for subsequent
synthesis steps. Importantly, it eliminates the need for time-
consuming individual reactions conducted on a milligram scale.
Nonetheless, this setup has inherent limitations that merit
attention in future research:

(i) The current plate design focuses on a single set of reaction
conditions for the sake of simplicity. However, examining
additional oxidants or solvents, along with adjusting the
equivalents of reaction components, holds the potential to
deliver further enhancements in reaction yields. Moreover,

Minisci-type reactions typically involve metal catalysis, such
as with silver or iron10. A systematic HTE exploration of
various metal salts could lead to the discovery of even more
optimized conditions.

(ii) Instead of relying exclusively on carboxylic acids as the
source of alkyl radicals, alternative radical precursors like
boronic acids or sulfinates could be investigated13. This
exploration might broaden the range of alkyl groups
accessible for medicinal chemistry.

(iii) Several photochemical Minisci-type transformations have
been reported13. These reactions offer alternative mechan-
isms for radical generation that could further expand the
possibilities for late-stage functionalization (LSF).

Addressing these points in future research could enhance the
utility and scope of the Minisci reaction protocol.

The adoption of the user-friendly reaction data format
(SURF41), facilitated the collection of reaction data from literature
sources and enabled standardized reporting of results from HTE
and virtual reaction screening. Sharing reaction data in a

Fig. 3 Machine learning and in silico reaction screening results. A Schematic of the graph neural networks (GNNs) implemented within the geometric
deep learning platform. Multi-layer Perceptron (MLP) modules are highlighted in gray, and the variable modules (2D/3D convolution), pooling, and outputs
are highlighted in green. B Box plot illustrating trends observed for N-hereto arene (left) and carboxylic acids (right). N-hetero arenes: Meta-unsubstituted
pyridines are observed with a reaction yield of 44 ± 15%, meta-substituted pyridines with 20 ± 6% (including 27 as an outlier observed at 6%), and five-
membered N-heterocyclic ring systems with 2 ± 1%. Carboxylic acids: Cyclic ethers are observed with a reaction yield of 40 ± 12%, (including c as an outlier
observed at 16%), cyclic alkanes with 42 ± 6%, and Boc-protected amines with 8 ± 6%. The error bars on both box plots represent 95% confidence
intervals, the bottom and top of the box are the 25th and 75th percentiles, the line inside the box is the 50th percentile (median), and any outliers are
shown as open circles. C Bar plot illustrating the number of successful and failed reactions from HTE. The substrates selected by the model resulted in 276
successful reaction outcomes. D Bar plot illustrating the number of unique alkylation opportunities identified per substrate. The majority of N-hetero arenes
(10/17) allowed for successful transformation with 17–23 carboxylic acids. E Confusion matrix for reaction yield prediction. Reaction yields are divided into
four bins, namely, no reaction (≤1%), poor (>1–11%), medium (>11–35%), and high reaction yield (>35%). The model accurately predicts 54.6 (±0.9)% of
the reactions into the accurate bin, achieves a mean absolute error (MAE) of 18.7 (±0.2)% and a Pearson correlation coefficient (r) of 0.687 (±0.006).
F Confusion matrix for binary reaction outcome prediction achieving an absolute accuracy of 80.8 (±1.2) and an F-score of 82.7 (±0.6)%.
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standardized format plays a pivotal role in the effective utilization
of machine learning models for predicting chemical
reactivity44,45. By using SURF, the initial reaction data from three
distinct sources (45 from literature, 207 from experiments, and
368 decoy reactions) became readily available for machine
learning, obviating the need for manual data curation. Since both
the experimental and, particularly, the literature data are pre-
dominantly comprised of positive results, incorporating decoy
data from unsuccessful transformations played a crucial role in
constructing a dependable prediction model.

A detailed look at the experimental data revealed that cyclic
Boc-protected amines (o, p, q, r, v), as well as amides (e.g., d)
mainly afforded low yields (5–20%) of the desired reaction pro-
ducts (Supplementary Note 10, Fig. S10). This observation reflects
the half-lives of the generated radical intermediates46, e.g., with
tertiary carbon radicals (e.g., h) having higher stability than

primary carbon radicals (e.g., k) and the latter thus resulting in
lower product yields. Another experimental trend relates to the
substitution pattern of N-heteroarenes. Meta-unsubstituted pyr-
idines (e.g., 26, 32, 41) consistently provided higher yields than
substituted analogs, (e.g., 35, 36, 37) as residues on the meta-
position sterically hinder the reaction in ortho- and para-
positions to the pyridine (Supplementary Note 10, Fig. S11).
Finally, electron-rich meta-substituted pyridines, such as 3 and
27, had a very low (5–10%) average reaction yield on the
screening plate when compared to their less electron-rich analogs
(Supplementary Note 10, Fig. S10). This low reactivity is owed to
the electron-rich amine- and methoxy-substituents,
respectively23.

In contrast to a prior study41 where GNNs processed a single
graph input, the GNN model outlined in this research accom-
modates two distinct molecular inputs, corresponding to the two

Fig. 4 Overview of selected substrates suggested by the in silico prediction model. Structures of the 18 selected substrates 36–53 that were suggested
by the graph neural networks as suitable for Minisci-type alkylation and underwent subsequent screening to identify novel starting points. Potential, not
confirmed, carbon reaction centers are marked with a blue dot.
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reactants (N-heteroarenes and carboxylic acids). The network
architecture was tailored to the Minisci-type alkylation transfor-
mation in such a way that trained GNNs can be applied to novel
N-hetero arenes as well as carboxylic acids. Therefore, the model
can be used for in silico molecular library screening for both types
of reaction inputs. It could be shown that in silico reaction
screening using GNN models trained on a comparably small
preliminary data set consisting of 576 Minisci reactions (i.e., 368
from decoy generation, 45 from literature, and 207 LSF from an
informer library) led to the identification of 17 substrates (i.e.,
94% of the 18 selected molecules). All newly identified substrates
were successfully alkylated with a broad range of at least 10 dif-
ferent carboxylic acids. Furthermore, in total 276 successful
reactions (i.e., producing alkylation products with a median yield
of 26%) were identified. The low reaction yields observed for
three five-membered N-heterocyclic ring systems (2, 4, 9) indi-
cate that the GNN models learned to de-prioritize five-membered
N-hetero arenes during in silico reaction screening. It was shown
how a clustering approach can be combined with in silico reac-
tion screening to assess structural diversity as well as reactivity.
As previously reported41, the inclusion of partial charges did not
yield improved model performance (Supplementary Note 3). This
observation, in particular, led to the decision to prospectively
apply GTNN models that are trained on 3D molecular graphs
without electronic features. Further investigations involving more
specific electronic features, such as transition state energies, could
offer deeper insights into the relevance of quantum chemical
attributes in machine learning for reaction prediction, as
demonstrated in a recent study43. Moreover, the introduced
GNNs could be further advanced to facilitate regioselectivity

prediction or the prediction of multiple output properties. For
instance, this could encompass predicting the proportions of
mono- and di-alkylation.

With the overall goal of synthesizing novel scaffolds that are
relevant to medicinal chemistry, the visualized screening data
served to identify appropriate reaction conditions for upscaling to
the milligram scale. Again, the SURF data format was instru-
mental for the laboratory chemist to set up experiments efficiently
by providing the CAS number, SMILES string, equivalents, and
overall reaction conditions in a comprehensive and easily acces-
sible format. The reaction conditions were reproducible at a
higher scale, underscoring the applicability of this approach to
drug discovery. With the exception of compound 38e, all reac-
tions yielded C-C coupling products. In general, the observed
regioselectivity was in agreement with the expected reaction
products according to the rules reported in the literature23.

However, when moving to more densely functionalized pyr-
idines, these reported literature guidelines do not appear to apply.
While the reaction of 34b and 37b primarily generated the
expected ortho-substituted reaction products 34b1 and 37b1, also
meta-substituted reaction products 34b2 and 37b2 were obtained,
albeit in lower amounts (Fig. 5). In the literature, amides are
described as ortho-para directing groups due to their electron-
withdrawing effect, and aryl ethers as ortho-activating moieties
due to their electron-donating nature23. The formation of
regioisomer 34b2 might have been sterically hindered by the
amidyl side chain, favouring the meta- over the para position. For
37b2, an explanation of the formation could lie in the several
different functional groups that are attached to the pyridine ring,
which only leave the meta position available for substitution,

Fig. 5 Selected examples of characterized Minisci reaction products. The left panel shows examples from the LSF drug informer library and the right
panel from the fragment screening. The added alkyl groups are highlighted in blue. Late-stage drug alkylation examples include derivates of the drugs
Loratadine (7s, 7b1, 7b2, 7b3, 7q1, 7q2, 7j1, 7j2, 7t1, 7t2, 7e1, 7e2) and Nevirapine (8s). Fragment screening highlights the diverse range of introduced
substituents, covering cyclohexanes (26e, 41e, 38e), cyclobutanes in different positions (29b, 34b1, 34b2, 37b1, 37b2), heterocyclic alkanes (39u, 35m)
and tert-butyl (40h, 33h, 28h). Boc tert-Butyloxycarbony, Ph Phenyl.
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despite this position being sterically hindered by the proximity of
the aryl sulfide and the CF3 group. Lastly, 38e showed different
reactivity despite bearing a pyridine moiety. This observed reac-
tion product can be rationalized by the greater reactivity of the
lone pairs of the sulfur as compared to the C-H bonds of the
pyridine side-chain. These results of the scale-up reactions
underscore the importance of generating high-quality, single-
batch LSF reaction data.

For the continued development of this method further
exploration of Minisci-type reaction conditions is warranted,
including the variation of oxidation reagents, solvents, and the
incorporation of techniques like photoredox catalysis and
electrochemistry47. Also, the source of the alkyl radical precursor
could be diversified, leading to an expansion of the scope for alkyl
groups. Additionally, the substrate scope could be expanded to
include other electron-deficient heterocyclic systems, particularly
five-membered heterocycles, as they are commonly found motifs
in drug-like molecules. With these possibilities in mind, the
results of this study emphasize the feasibility and benefits of
combining laboratory automation, parallel miniaturized screen-
ing, and machine learning to enhance the efficiency and cost-
effectiveness of synthesis in drug discovery. This integrated
approach is currently being effectively employed at Roche. The
predictive capabilities of the computational model will be con-
tinuously enhanced by supplying the algorithm with a growing
data set of newly generated LSF reaction data points that
encompass the pertinent medicinal chemistry landscape.

Methods
Literature analysis. A systematic analysis of chemical transfor-
mations was carried out to determine the most feasible conditions
for reaction miniaturization and parallel screening. Initially, 45
publications covering different Minisci-type alkylation reactions
were selected. Most of those methods rely on photo- or electro-
chemistry. Although it has been demonstrated that these
approaches are amenable to HTE48,49, carrying out these reaction
processes requires specialized equipment that is not readily
available in every laboratory. Therefore, with the goal of enabling
widespread use in medicinal chemistry, publications were scru-
tinized for a rapid, resilient, and easily customizable procedure.
Sutherland et al.16 reported a Minisci methodology that fulfilled
those criteria. This transformation can be executed without the
necessity for additional metals and catalysts, and it can accom-
modate a variety of alkyl carboxylic acids that do not demand
pre-functionalization. This adaptability allows for the creation of
customized templates tailored to specific project requirements.
Consequently, the reaction data were manually curated and
standardized in a simple user-friendly reaction format (SURF, for
details, refer to Supplementary Note 9). These SURF data were
used as literature data set herein. All details of the literature
analysis (Supplementary Note 4) and the resulting data set in
SURF are available as supplementary information (Supplemen-
tary Note 4).

Screening plate design and testing. The screening plate was
designed around the literature data obtained from Sutherland
et al.16, which showed good yields on average (60%) for a variety
of carboxylic acid coupling partners. Aiming at assessing the
reactivity of a substrate with a variety of different alkyl groups
(rings and chains), a screening plate with 23 different alkyl car-
boxylic acids was assembled. The carboxylic acids scope from the
original publication16 covering n-alkyl (e.g., h, k, depicted in
Fig. 2), cyclic alkanes (e.g., e, g) and O-heterocyclic fragments
(e.g., m, u) was complemented by sp3-rich N-heterocyclic car-
boxylic acids with relevance to drug discovery projects (o, p, q, r).

The reactions were miniaturized to 0.5 μmol scale, downsizing by
a factor of 300 compared to the literature procedure16. To achieve
this small reaction scale, stock solutions of all components in the
reaction solvent (DMSO) were produced. Consequently, the
designed screening plate only requires 4.2 mg of starting material
(molar mass: 350 Da) to assess 23 different transformations. In
comparison, single reactions in reference16 were carried out with
52.5 mg of starting material. Using a substrate from reference16

(Molecule 1, structure depicted in Fig. S2 in Supplementary
Note 5), different oxidant to carboxylic acid ratios (3:10, 6:10,
3:20, 6:20) were tested to identify the more favorable screening
condition (higher conversion). Further, the impact of other
parameters, such as the atmosphere (under air, under nitrogen in
a glovebox), and the reaction concentration (2, 16 mmol/L) was
investigated. Upon determining the highest-yielding reaction
parameters, the best-performing condition on the plate (B4, 1
with e, under nitrogen, 16 mmol/L) was used as the reference
reaction to monitor reproducibility across different plates.
Incorporating the control experiment in position B4, which
consistently remained unchanged, served the purpose of swiftly
detecting potential handling errors with the plate and confirming
the reliability of the generated data. The plate layout including all
reaction parameters is shown in Fig. 2. Additional information on
the plate testing is provided as supporting information (Supple-
mentary Note 6, Figs. S7–S9).

LSF informer library. For the generation of the experimental
reaction dataset, the previously published informer library was
used as a starting point (see ref. 41 for details). From this col-
lection, three fragments (2–4, Fig. S2 in Supplementary Note 5 for
structures) and five drug molecules (5-9, Figure S2 in Supple-
mentary Note 5) were screened. The drug molecule library in
ref. 41 was assembled based on clustering of 1174 approved small
molecule drugs into eight structurally diverse subsets. As three
clusters did not contain any reactive functional groups required
for Minisci-type reactions (e.g., electron-deficient heterocycle),
only five drug molecules (5–9) were subjected to HTE alkylation
screening (see “HTE alkylation screening” for details). The
screening of the drugs was extended by three fragments (2-4)
from ref. 41. Furthermore, a decoy data set containing 368
unsuccessful reaction examples was generated. The chemical
structures of the eight N-hetero-arene substrates (2-9, Fig. S2) as
well as the 16 decoy substrates (10-25, Fig. S3) used to train the
machine learning are provided as supporting information (Sup-
plementary Note 5).

To assess the performance, i.e., the prediction accuracy, of the
developed machine learning model on relevant fragments for
applications in medicinal chemistry, a substructure search for
heteroaromatic ring systems containing at least one nitrogen
atom was carried out in the Roche corporate compound
collection. The resulting compounds were retained if (i) there
was at least 1 g of powder stock available, and (ii) the structures
were not used in any internal project or subject to legal
restrictions. This pool of candidates was then clustered using
sphere exclusion clustering50 on ECFP4 fingerprints51 with a
Tanimoto cutoff 52 of 0.6. Based on the clustering results, we
manually selected 18 structurally diverse fragments (26-43, Fig. 4,
Supplementary Note 2, Fig. S1).

HTE alkylation screening. Using the 24-well plate design (Fig. 2,
Supplementary Note 6), selected drug molecules and fragments
from the LSF informer library (2-9, Supplementary Note 5,
Fig. S2), a set of relevant building blocks (26-43, Fig. 4, for
detailed information: Supplementary Note 5, Figs. S4, S5) and
substrates from Sutherland et al.16 (44-48, Supplementary Note 5,
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Fig. S6) were screened. The reaction setup (stock solution, liquid
handling) and execution (heating, stirring) in glass vials on a
parallel screening plate were conducted in a glovebox under
nitrogen. Upon completion of the reactions, the residues were
diluted in MeCN/H2O to a defined concentration suitable for
LCMS analysis, using a liquid handler. The resulting mixtures
were analyzed by LCMS, and the results were subjected to
automated reaction data analysis (Supplementary Note 8) for the
determination of the molecular components. Standardized data
output (Supplementary Note 9) allowed for direct visualization of
the information in TIBCO Spotfire (Somerville, USA). The gen-
eral screening procedure, including detailed information on the
hardware and software utilized, is provided as Supporting
Information (Supplementary Note 7).

Scale up reactions. Analysis of the screening results revealed that
the drugs Loratadine (7), Nevirapine (8), and 11 fragments (26,
28, 29, 33-35, 37-41) were alkylated with different types of alkyl
fragments. From this subset, conditions showing reasonable
conversion (>40%, based on UV trace) were subjected to
upscaling. Reactions were conducted under nitrogen in a glove-
box, in glass reaction vessels with pressure release caps and
standard stirring bars. Purification was performed by flash
chromatography or reversed-phase high-pressure liquid chro-
matography (RP-HPLC). Structural elucidation was performed
with NMR spectroscopy and HRMS. All comprehensive experi-
mental details for the scale-up processes, including analytical
outcomes and spectra of the purified and fully characterized
compounds, can be found in the Supporting Information (Sup-
plementary Note 12 and Supplementary Data 1, Figs. S12–S29).

Graph neural network architecture. A graph transformer neural
network (GTNN) architecture was employed based on the E(3)
equivariant graph neural network architecture53, which has seen
use in several related applications54,55. The GTNN was designed
using the same training procedure as in reference41 and a slightly
adapted architecture that allows for two distinct and variable
molecular graphs in its input, i.e., N-hetero arenes and carboxylic
acids (Supplementary Note 1). Furthermore, the initial machine
learning framework was extended to allow for prospective
screening of individual substrates, carboxylic acids or single
reactions. For both molecular graphs, their 3D conformers were
calculated using the universal force field method56, and the graph
was constructed using nodes represented by atoms and edges
defined by all neighboring atoms within a radius of 4 Å of
each atom.

Atoms were featured using embeddings of four atom-level
features:

● 12 atom types (H, C, N, O, F, P, S, Cl, Br, I, Si, Se);
● 2 ring types (True, False);
● 2 aromaticity types (True, False);
● 4 hybridization types (sp3, sp2, sp, s).

First, the individual atomic embedding was concatenated and
transformed into an initial atomic representation h0i via a multi-
layer perceptron (MLP). Atomic representations h0i were subse-
quently transformed via three message-passing layers. In each
message-passing layer, the atomic representations were trans-
formed via Eq. (1)

hlþ1
i ¼ ϕ hli; ∑

j2N ðiÞ
ψðhli; hlj; ri;j; Þ

 !
; ð1Þ

where hli is the atomic representation of the i-th atom at the l-th
layer; j 2 N ðiÞ is the set of neighboring nodes connected via

edges; ri,j the inter-atomic distance represented in terms of
Fourier features, using a sine- and cosine-based encoding; ψ is an
MLP transforming node features into message features mij: mij ¼
ψðhli; hlj; ri;jÞ for 3D graphs, and mij ¼ ψðhli; hljÞ for 2D graphs; ∑
denotes the permutation-invariant pooling Operator (i.e., sum)
transforming mij into mi: mi ¼ ∑j2N ðiÞmij; and ϕ is an MLP

transforming hli and mi into hlþ1
i . The resulting atomic features

from all layers ½hl¼1
i ; hl¼2

i ; hl¼3
i � were concatenated and trans-

formed via an MLP, resulting in final atomic features. Atomic
features were then pooled via a graph multiset transformer
(GMT)57 with four attention heads yielding an overall molecular
feature vector.

This procedure was conducted for both input molecular
graphs, where no weights were shared between the two GNN
modules except for the initial embedding layers of atom-level
representations. The pooled molecular representations were then
concatenated to a learned representation of the reaction
conditions (Fig. 3B). This subsequent reaction representation
was further transformed via a final MLP converting the latent
space to the desired reaction output. Both of the examined
problems, namely, reaction yield prediction and binary reaction
outcome prediction, were addressed as regression tasks. The
output for reaction yield was defined within the range of floating
values from 0 to 1, whereas for binary reaction outcomes, it was
defined as either 0 or 1.

Consistent with the results outlined in ref. 41, the performance
of the models was validated for GNNs trained on molecular
graphs that included atomic partial charges58–60. This evaluation
revealed that there was no substantial improvement or decline in
model performance. Consequently, for all the applications
described, 3D graphs without electronic features were employed
(Supplementary Note 3, Tables S1, S2).

Reaction condition representation. Reaction conditions were
represented by one-hot-encoding for molecular entities, i.e.,
reagents, solvents, catalysts, additives and atmosphere, and by real
numbers for scalars, i.e., equivalents for starting materials,
reagents, carboxylic acids, catalysts, and additives, fractions for
the solvents, temperature (°C), reaction time (h), and scale
(mmol/L). The individual conditions were concatenated with
each other and transformed via an MLP. This reaction condition
representation was then concatenated to the learned representa-
tions of the two substrates, i.e., N-hereto arene and
carboxylic acid.

Number of hyperparameters. The feature dimension for the
internal representation of GTNN was established at 128, with the
exception of the embedding dimension for the reaction and
atomic properties, which was set to 64. Additionally, the first
MLP layer following the graph multiset transformer-based
pooling was configured to have 256 dimensions. The graph
multiset transformer employed two attention heads for pooling.
These parameter settings translated into neural network sizes
with ~2.0 million trainable parameters for GTNN.

Metric for model validation. For model validation and optimi-
zation, mean absolute error was used for reaction yield prediction.
For predicting binary reaction outcomes the models were vali-
dated using absolute accuracy and the F-score metric. The F-score
(F1) is used as a measure for unbalanced data sets and is calcu-
lated by the mean of precision and recall (Eq. (2)):

F1 ¼
2tp

ð2tpþ fpþ fnÞ ð2Þ
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where tp represents true positives, fp false positives, and fn false
negatives.

Decoy data set. The decoy data set comprised 308 instances of
unsuccessful reactions, derived from 16 substrates that lack
reactivity under Minisci-type conditions due to the absence of an
aromatic or heteroaromatic component in their starting materials.
These selected molecules underwent thorough scrutiny by experts
and were subsequently incorporated into the data set as instances
of negative or unsuccessful reaction outcomes. This inclusion
serves to furnish the model with knowledge about molecules that
do not exhibit reactivity when subjected to Minisci conditions
(Supplementary Note 5, Fig. S3).

Substrate selection. The selection of a diverse and reactive set of
N-hetero arenes was based on a Roche-internal library of 3180
advanced heterocyclic building blocks with a molecular weight
between 200 and 1000 g/mol. Aiming to check these compounds
for potential reactivity in the alkylation reaction, this library was
virtually screened with preliminarily trained GNN models. Each
of the N= 3180 molecules was assigned with an average score
value calculated with six independent GNNs (“Machine learning-
based in silico reaction screening” for details). Subsequently,
agglomerative compound clustering was performed61. The
molecules were encoded as an N ×N similarity matrix containing
pairwise Jaccard similarity values based on ECFP4 molecular
fingerprint descriptors51. Clustering resulted in eight clusters of
which six were used for substrate selection. Three top-scoring
compounds were selected for HTE reaction screening for each of
the six clusters. This clustering approach was chosen to allow for
the selection of chemically diverse reactive substrates.

In silico reaction screening. For model application, a total of six
GNNs were trained. Three models were trained for predicting
reaction yield, and three models were trained for binary reaction
outcome prediction. These models were then utilized to predict
the reaction outcomes and reaction yields for each combination
of the 3180 advanced heterocyclic building blocks and the 23
carboxylic acids. The predictions yielded values for both binary
reaction outcomes and reaction yields, each ranging from 0 to 1.
Given that three models were employed for each of the two
prediction values, mean and standard deviations were computed
to provide an understanding of the model’s uncertainty. The final
score was then determined as the mean of the two predictions.
Subsequently, each of the six molecule clusters was ranked based
on the calculated score, and molecules from the upper echelons of
the list were chosen for further consideration or selection.

Data availability
The SURF-formatted literature, experimental and decoy data sets containing 45, 691 and
368 reactions, respectively, are enclosed as TSV files as Supplementary Data 2–8.
Description of Supplementary Data: Supplementary Data 1: PDF file containing NMR
spectra. Supplementary Data 2: TSV file containing all reactions (i.e., literature, decoy
and experimental data). Supplementary Data 3: TSV file containing reactions from
literature. Supplementary Data 4: TSV file containing experimental reaction data.
Supplementary Data 5: TSV file containing reactions conducted to validate the literature
data. These reactions were excluded in machine learning model training. Supplementary
Data 6: TSV file containing decoy reactions. Supplementary Data 7: TSV file containing
all investigated carboxylic acids. Supplementary Data 8: TSV file containing all
investigated N-hetero arenes.

Code availability
A reference implementation of the geometric machine learning platform based on
PyTorch62 and PyTorch Geometric63 is available at https://github.com/ETHmodlab/
minisci (rep. DOI: 10.5281/zenodo.8344587, https://zenodo.org/record/8344587).
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6.3 Experimental and supplementary information

The following pages contain the experimental and supplementary information supporting
the results described in the publication from the previous section. Citation of the publication:
Nippa, D. F.†, Atz, K.†, Müller, A. T.,Wolfard, J., Isert, C., Binder,M., Scheidegger, O., Stepan, A.
F., Konrad, D. B., Grether, U., Martin, R. E., & Schneider, G., Identifying opportunities for late-
stage C-H alkylation with in silico reaction screening and high-throughput experimentation
Comms. Chem.,6, 256 (2023). [457] Thematerial (DOI: 10.1038/s42004-023-01047-5) is reprinted
with permission from Springer Nature Limited (Author reuse for own thesis).
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Supplementary Note 1 Training Details

PyTorch Geometric (2.0.2) [1] and PyTorch (1.10.1+cu102) [2] functionalities were used for neural network
training. Training was performed on a graphical processing unit GPU (Nvidia GeForce GTX 1080 Ti) for four
hours, using a batch size of 16 samples. The Adam stochastic gradient descent optimizer was employed [3], with
a learning rate of 10−4, mean squared error (MSE) loss on the training set, a decay factor of 0.5 applied after
100 epochs, and an exponential smoothing factor of 0.9. The final model was stored after 1000 epochs. All the
models considered in this study were trained on the Euler computing cluster at ETH Zurich, Switzerland.
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Supplementary Note 2 Clustering

Figure S1 illustrates the clustered chemical space of 3180 advanced heterocyclic building blocks within principal
component analysis (PCA). Exemplary chemical structures at the corners of the scatter plot are highlighted.

Figure S1: Compound clustering. Principal component analysis (PCA) of the 3180 advanced heterocyclic build-
ing blocks, based on ECFP4 molecular fingerprint descriptors. [4] Colors indicate the eight compound groups
(clusters) obtained in the clustering process. The explainable variance for the investigated data set of the first
two principal components is 22.2% and 9.6%, respectively. A-C: Chemical structures from three selected regions
of the investigated chemical space. A: Amid derivatives (54, 55) populating the bottom left of the PCA plot. B:
Benzimidazole derivatives 56 and 57 populating the upper center of the PCA plot. C: Pyridine oxide derivatives
58 and 59 populating the center right of the PCA plot.

Supplementary Note 3 Steric and electronic graph-features

To validate the influence of electronic features in the input molecular graph on model performance as conducted
in a previous study [5], two different GNNs have been trained for reaction yield and binary reaction outcome
prediction (Table S1 and S2). The QM features were calculated on-the-fly using the DelFTa software package
trained on the QMugs data collection [6–9]. Reaction yields were predicted with an error margin of 18 – 19
% and binary reaction outcome could be learned with an area under the receiver operating characteristic curve
(AUC) of 82-83 % (Table S1). Electronic effects have shown significant improvements for the investigated tasks.

Table S1: Neural network performance for reaction yields prediction.
PCC MAE / %

GNN3D 0.686 (±0.006) 18.7 (±0.2)
GNN3DQM 0.67 (±0.01) 18.6 (±0.6)

Table S2: Neural network performance for binary reaction outcome prediction.
Absolute accuracy / % F -score

GNN3D 80.8 (±1.2) 82.7 (±0.6)
GNN3DQM 80.5 (±0.7) 82.5 (±0.2)
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Supplementary Note 4 Systematic literature analysis

Following the previously reported systematic analysis of chemical transformations (SACT) concept [5], suitable
Minisci-type alkylation reactions were identified. SACT comprises of (1) literature search, (2) literature data
curation and evaluation, (3) methodology extraction, (4) reaction data curation and analysis.

The literature search (1) was conducted using three different, renowned tools, Scopus (Elsevier, Amsterdam,
Netherlands), Web of Science (Clarivate Analytics, Philadelphia, USA) and SciFinder-n (Chemical Abstracts
Service, Columbus, USA) on the 30th of August 2022. On all databases a keyword search for "Minisci reaction"
was carried out and the results download.

These files were subjected to a custom-built Alteryx Designer (Irvine, US) data curation (2) workflow that re-
moved duplicates, added information from other databases, e.g., journal impact factor, and carried out further
filtering as well as calculations before splitting the publications into four quadrants based on journal impact
factor and citations per year. After the removal of duplicates, 114 unique publication records were identified.
With the available data, various different clustering approaches could have been carried out using a selection
of the following dimensions, e.g., journal and affiliation, citations, journal impact factor, technologies, catalysts,
starting materials, and publication year. For this work, clustering by citations per year over journal impact fac-
tor to determine the most relevant Minisci methodology publications (high citations/year, high journal impact
factor and high citations/year, low journal impact factor) was chosen. Removal of review papers delivered 45
remaining records [10–54], which underwent manual analysis to guarantee that the papers are within the scope of
the automated HTE system (e.g., photo- and electrochemistry out of scope). To allow for a broad utilization in
medicinal chemistry, the publications were specially screened for a fast, robust and easily adaptable procedure.
Among those, only Sutherland and co-workers [41] delivered a Minisci methodology that fulfilled those precise
criteria. The metal- and catalyst-free setup as well as the ability to work with multiple non-pre-functionalized
alkyl carboxylic allows for customized screening template design depending on project needs.

Next, using the simple user-friendly reaction format (SURF, see Section SI9 for further details), the reaction
data from [41] was extracted and curated manually (3). This resulted in a high-quality data set comprising 45
borylation reactions serving as an ideal starting point for the development of the screening plate (see Section
SI 6) through data analysis (4). Further, as a SURF file is machine-readable, the data was directly available as
input for the machine learning pipelines.
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Supplementary Note 5 LSF informer library

Figure S2: Fragments and drugs of the LSF informer library 1-9. For compounds that have a trading name and
a CAS number, the identifiers are depicted below the molecule.
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Figure S3: Selection of decoy substrates 10-25 used to generate unsuccessful reaction data to create a balanced
training set. For compounds that have a trading name and a CAS number, the identifiers are depicted below the
molecule
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Figure S4: Relevant fragments from the Roche library 26-34. Part 1. For compounds that have a CAS number,
the identifier is depicted below the molecule.
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Figure S5: Relevant fragments from the Roche library 35-43. Part 2. For compounds that have a CAS number,
the identifier is depicted below the molecule.
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Figure S6: Selection of substrates from [41], which also underwent screening with the designed plate and showed
similar performance. For compounds that have a CAS number, the identifier is depicted below the molecule.
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Supplementary Note 6 Screening plate design and testing

As indicated in the main manuscript (Section 4.2), the screening plate was designed around the literature data
obtained from Sutherland et al. [41], which showed good yields on average (60%) for a variety of carboxylic
acid coupling partners. To assess the reactivity of a substrate with a variety of different alkyl rests (rings and
chains), a screening plate with 24 different alkyl carboxylic acids was assembled. The carboxylic acids scope from
Sutherland et al. [41] was extended by sp3-rich N -heterocyclic carboxylic acids with relevance to drug discovery
projects (o, p, q, r, Figure 2). The reactions were miniaturized to 0.5 µmol scale, downsizing by a factor of 300
compared to the literature procedure. [41] To achieve this small reaction scale, stock solutions of all components
in the reaction solvent (DMSO) were produced. Using simple substrate 1, different oxidant and carboxylic acid
ratios (3:10, 6:10, 3:20, 6:20) were tested to identify the more favourable screening condition (higher conversion).
Further, the influence of the atmosphere (under air, under nitrogen in a glovebox), and the concentration (2,
16 mmol/L) on the reaction outcome were assessed. The results of this optimization process, which led to the
final plate design (Figure 2) are disclosed below.

Air and inert atmosphere

To understand if the reaction requires an air-free atmosphere to deliver good yields, a selection of acid com-
binations were tested under air and in the glovebox on starting material 1. The experimental results revealed
that carrying out the reaction in the glovebox leads to significantly higher yields compared to the corresponding
reaction under air (Figure S7).

Figure S7: Results from the plate testing with different carboxylic acids (a, b, f, g, h, j, o, p, q, u, s, w) under
air and in the glovebox. The yield difference shown in the columns reflects the yield improvements when carrying
out the reaction in a glovebox. Reaction conditions: Starting material (1, 5 umol), oxidant (NH4)2S2O8, solvent
DMSO/H2O (600:1), c = 2 mmol/L, 18 h, 40 °C.

Based on these outcomes, all further screening experiments took place in the glovebox.

Carboxylic acid and oxidant ratio
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To identify the influence of the oxidant and carboxylic acid equivalents on the reaction success, four different
combinations (3:10, 3:20, 6:10, 6:20) were experimentally tested. For these experiments, three different carboxylic
acids (e, j, o) were reacted with starting material 1. All other parameters were held constant (c = 2 mmol/L, t
= 18 h, T = 40 °C, glovebox).

Figure S8: Results from plate testing with different oxidant and carboxylic acid equivalents on model substrate
1. The influence on three different carboxylic acids (e, j, o) was tested. Reaction conditions: Starting material
(1, 5 umol), oxidant (NH4)2S2O8, solvent DMSO/H2O (600:1), c = 2 mmol/L, 18 h, 40 °C, glovebox.

The results in Figure S8 show that for two of the three alkyl carboxylic acids (e, j), the 6:20 oxidant to carboxylic
acid ratio delivered the best results. Even though for o, the 6:10 ratio showed the best results, the performance
of 6:20 was in a similar range. Thus, the 6:20 ratio was incorporated into the final plate layout.

Reaction concentration
To avoid requiring additional solvent addition, i.e., only dosing the stock solutions and using their solvent volume,
a final comparison test was carried out comparing the influence of the solvent concentration. In the initial
experiments, a reaction concentration of 0.002 mol/L was used. This baseline was compared to an increased
concentration (0.016 mol/L, factor 8).
Experimental results (Figure S9) revealed that an increased reaction condition yields a higher amount of alkylated
products. This experiment concluded the plate testing as all reactions nearly reached full starting material con-
version. The final plate layout used for the screening experiments is depicted in Figure 2C of the main manuscript.

Application of reaction conditions to literature substrates
To verify that we did not optimize our conditions for a specific substrate, i.e., compound 1, five other starting ma-
terials (44-48, Section SI5, Figure S6) from Sutherland et al. [41] were screened with the optimized conditions on
the whole plate (Figure 2). Similar performance as described in the paper was observed for the coupling with car-
boxylic acid e, confirming that the miniaturized plate can be used for a broader range of substrates and carboxylic
acids. The detailed screening data is attached as a SURF file as one of the supplementary files of this manuscript.
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Figure S9: Results from plate testing with two different reaction concentrations on model substrate 1. The influ-
ence of using a slightly higher reaction concentration (0.016 compared to 0.002 mol/L) with different carboxylic
acids (a, b, f, g, h, j, o, p, q, u, s, w) was tested The yield difference shown in the columns reflects the yield
improvements when carrying out the reaction with higher concentration. Reaction conditions: Starting material
(1, 5 umol), oxidant (NH4)2S2O8, solvent DMSO/H2O (600:1), c = varied, 18 h, 40 °C, glovebox.
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Supplementary Note 7 HTE screening protocol

All generated screening data used the plate design depicted in the paper (Figure 2) and the procedure below, only
the starting materials (1-9 and 26-43) were varied. In a nitrogen-filled glovebox from mbraun (Garching, DE) that
does not contain any liquids, all solid reaction components were dosed into 4 mL glass vials from Analytical Sales
(Flanders, US) using a CHRONECT Quantos from Axel Semrau GmbH & Co. KG (Spockhövel, DE) coupled
with an XPE206 balance from Mettler Toledo (Greifensee, CH). The vials were sealed and discharged from the
glovebox before being transferred to another glovebox from LC Technologies (Salisbury, US), where solvents were
added to the vials to generate the stock solutions. The remaining stock solutions with liquid components were
prepared in a similar manner. Then according to the plate design, the stock solutions were transferred into 1
mL glass vials from Analytical Sales (Flanders, US) on a 24- or 96-well plate from Analytical Sales (Flanders,
US) using multichannel pipettes from Eppendorf (Hamburg, DE). The plate was heated within the glovebox (LC
Technologies) on a Junior benchtop solution from Unchained Labs (Pleasanton, US) and VP 721F-1 Parylene
Encapsulated Stainless Steel Stir Discs from V&P Scientific Inc. (San Diego, US) were used to stir the reaction
mixture. Only one internal process control (IPC) was taken after the overnight reaction by diluting the reaction
mixture using a Freedom EVO 100 liquid handler from Tecan (Männedorf, CH) with MeCN/H2O (4:1) to a
defined concentration (1 mmol/L). After shaking on a Teleshake 95 from Inheco (Martinsried, DE), the samples
were transferred onto a 96-deep-well plate (1 mL) from Eppendorf (Hamburg, DE). The plates were analyzed
on a Waters (Milford, US) UPLC-MS system equipped with a Waters Acquity sample manager with a flow-
through needle, a Waters Acquity sample organizer and a Waters QDa single quadrupole mass spectrometer.
The separation was achieved on a ZORBAX RRHT Eclipse Plus C18, 95 Å, 2.1 x 30 mm, 1.8 µm column (P/N
959731-902, LOT: USUXY02479) from Agilent (Santa Clara, USA) at 50 °C. A 2-minute gradient was used and
the injection volume accounted for 2 µL. 2 min gradient: A: 0.1% HCOOH in H2O; B: 0.07% HCOOH in MeCN
at flow 1 mL/min. Gradient: 0 min, 3% B; 0.2 min, 3% B; 1.5 min, 97% B; 0.3 min, 97% B; 0.1 min 3% B. The
raw data were processed with MassLynx V4.2 and the obtained .rpt file underwent parsing with a customized
script, before being subjected to the automated reaction data analysis pipeline (Section SI8).
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Supplementary Note 8 Automated reaction data analysis pipeline

In general, the same automated reaction data analysis pipeline as described in the SI (Section SI6) in a previous
manuscript [5] was used. In this case, the framework was applied to rapidly identify if drugs or fragments were
alkylated or not. Therefore, the MS searched for the sum formulas of the desired products (mono-, di- and tri-
alkylated products), which were generated hands-free using a customized script based on the substrate chemical
formula.

In addition to the reaction mixtures, all starting materials and, if available, reference products using the same
solvent mixture (MeCN:H2O, 4:1) are measured on the LCMS to obtain the retention time (LC) and mass pat-
tern (MS). This data is stored in a database and needed for the initial two steps of the matching process. More
relevant for LSF though, are the desired/potential products of the reaction. Those masses and chemical formulas
are calculated based on the starting material information and the transformation. This Alteryx workflow allows
hands-free generation of the potential products including molecular weight, mono-isotopic mass and chemical
formula (Hill notation). In addition to being used for the reaction data analysis, this data is also the foundation
for generating the LCMS input file.

Once the reaction data has passed through the cleaning process, it is compared to the LCMS information from
the above-mentioned data sets, starting off with the identification of the starting material. If a trace from the
reaction mixture matches the retention time (± 0.02 min) and the mass pattern (chemical formula detected,
mass channel match with database reference), it receives the starting material tag. The remaining data is then
compared to the products that could potentially be formed and are desired (mono-, di- or trialkylated species).
Since the exact position of the new functional groups is not known, no reference compounds are available. There-
fore, only the five most abundant masses per peak are used for tagging and compared to information from the
potential product database. Based on the abundance of the mass and if the chemical formula was found by the
LCMS, the tag is complemented by an MS reliability score. The score is higher if the chemical formula was found
and the correct mass of the desired product (± 0.5 Da) appears in a more abundant channel. For this study,
only high MS reliability scores were subjected to the machine learning platform. Last, the unmatched data is
classified as unidentified products, and the mass differences between the peak and parent material are calculated
to avoid manual calculating of mass differences.

After the tagging is completed, the data streams are recombined and subjected to calculations in order to quan-
tify the reaction components from starting material through reagents to products. To do so, the sum of all LC
peaks (integral) is calculated and each peak is then divided by this value. This gives a quantitative measure
of the product distribution within the sample, an LCMS conversion. While there are numerous approaches to
using internal standards or assays, due to the nature of LSF they have not been applied. LSF reactions tap into
new, unexplored chemical space and generally, multiple different components are formed. Therefore, selecting an
internal standard that does not overlap with one of these unknown components, is highly difficult.

Upon completion of the calculations, using the identifiers mentioned earlier, reaction information, such as condi-
tions and components, are added to the components that have been identified and quantified. This follows the
FAIR data principle and generates a curated, high-quality LSF screening data set that can be stored and shared
in the SURF convention (Section SI9). This allows rapid subjecting of the data to machine learning algorithms as
done in this research. It also enables direct visualization of the data in known interfaces, such as TIBCO Spotfire
(Somerville, USA) or Tableau (Seattle, USA). Using this workflow, the data curation of one plate usually takes
less than one minute.
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Supplementary Note 9 SURF convention

The simple user-friendly reaction format (SURF) aims at standardizing reaction data reporting through a simple,
yet comprehensive and structured format that is usable with a basic understanding of a spreadsheet. SURF does
not require any coding experience, advanced IT skills or a web interface. It enables every chemist within or outside
the lab to document chemical synthesis in a machine-readable and shareable format. SURF allowed extraction
and documentation of the alkylation reactions from literature faster. The generated reaction screening data
were also transformed into SURF before being directly subjected to the machine learning pipelines. Reaction
documentation following SURF can be implemented in every spreadsheet as the only requirement is the existence
of rows and columns.

Each row of the spreadsheet represents the information and data for one single reaction. The SURF convention
contains constant (CC) and flexible (FC) categories. CCs never change and are always present, independent of the
number of reaction components. They capture the origin and ids of the reaction as well as basic characteristics
(reaction type, named reaction, reaction technology) and conditions (temperature, time, atmosphere, scale,
concentration, stirring/shaking). Add-ons, such as the procedure or comments, belong to the CCs, too. The FCs
describe the more variable part of a reaction, the starting material(s), solvent(s), reagent(s) and product(s). Two
identifier options (CAS and SMILES) are available for each component. While the SMILES string is available
for every compound and serves as structural input for machine learning models, the CAS number, even though
not always available, can be handy for chemists in the lab to order, itemize and find chemicals. For the starting
material(s) and reagent(s), e.g., catalyst, ligand, additive, the number and type of columns remain the same
(CAS, Smiles, equivalents). If multiple starting materials or reagents are used, additional columns are required.
In that case, the three information columns are duplicated and the X is replaced by a number, starting from 1
for the first component, 2 for the second, etc. The same accounts for multiple solvents or products, however, due
to their role, they possess more and partly different columns. While the CAS number and/or the SMILES string
remain as an identifier, the solvent fraction (in decimals) instead of equivalents is recorded. This allows exact
determination of the ratio between solvents. The product category withholds the largest amount of headers as
SURF records the yield (in percent), but also the yield type (e.g., isolated, lcms, gcms) as well as the detected
mass by MS and the 1H NMR sequence in addition to the common identifiers CAS and Smiles. This not
only allows rapid comparison when experiments are reproduced but can also deliver important increments for
machine learning models by differentiating between yield types. As most electronic lab journals already record
the above-mentioned parameters, by enforcing of documentation compliance combined with simple automated
data extraction and cleaning pipelines, numerous reaction data could be accessible in the SURF convention, and
readily available for machine learning applications. We spent thoughts on how to further reduce complexity
by introducing specific SURFs without FCs for chemical transformations where the reaction components are
generally the same. An excellent example would be Suzuki-Miyaura couplings that utilize a set of six to seven
components (organoboron species, halide, catalyst, ligand, base, solvents). [55, 56] However, generating different
tailored templates would ultimately end up in various different formats and mismatching headers falling short of
the main SURF goal to standardize reaction documentation.

The results of this paper would have not been achieved without FAIR data handling using SURF. The manually
extracted reaction data (45 reactions from one publication), which were used in this manuscript for data analysis
and selectivity prediction, reported in SURF are attached to the SI as a tab-delimited text file. Further, the
reaction data of the scale-up experiments in SURF is also added to the SI of this manuscript and significantly
increased the efficiency when compiling the experimental part (Section SI12). Moreover, two empty SURF
templates are attached as tab-delimited text files: The first file contains the general SURF template, which
can be adjusted by introducing additional columns depending on the reaction specifics. The second file is a
customized SURF template that should accommodate the vast of chemical transformations: It contains columns
for two starting materials, two reagents, one catalyst, one ligand, one additive, two solvents and two products.
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Supplementary Note 10 Screening results of acids and fragments

For the investigated carboxylic acids (Figure S10) as well as for the N -hetero arenes (Figure S11) different average
reaction yields were observed. Figure S10 illustrates the observed reaction yields for 22 carboxylic acids (a-w).
Carboxylic acids substituted with cyclic ethers (e.g., u, s, a) and alkanes (e.g., b, e, g) were observed with high
reaction yields, whereas cyclic boc-protected amines (e.g., o, p, q, r) and amides (d) resulted in low yields of the
respective desired reaction products. Figure S11 illustrates the observed reaction yields for 27 N -hetero arenes
(1-9 and 26-43). Substituted pyridines (e.g., 30, 31, 36, 39; see Section SI5) were observed with lower yields
compared to compounds lacking meta-substituents (e.g., 26, 32, 38, 41).

Figure S10: Analysis of screening results for acids.

16

Chapter 6. Late-stage Minisci-type C-H alkylation chemistry

203



Figure S11: Analysis of screening results for substrates.

17

Chapter 6. Late-stage Minisci-type C-H alkylation chemistry

204



Supplementary Note 11 Machine learning outliers

The observed outliers (17/1148) for reaction yield prediction with a mean absolute error (MAE) ≥ 70% are
illustrated in Table S3.

Table S3: Machine learning outliers for reaction yield prediction.
Reaction ID MAE (%) Ground truth (%)

eln044720-053-1-1-b1 82.1 0.0
eln044720-053-1-1-b2 100.0 0.0
eln036496-183-15-1-b6 81.9 3.9
eln036496-188-2-1-d3 73.0 75.9
eln046486-037-1-1-a2 70.8 0.0
eln044720-053-1-1-a2 82.3 0.0
eln036496-183-15-1-b3 71.2 99.0
eln044720-053-1-1-a5 70.3 0.0
eln044720-045-1-1-d2 71.9 87.0
eln036496-191-1-1-d2 73.7 75.0
eln046486-035-1-1-a1 70.5 12.9
eln046486-037-1-1-a1 80.5 88.9
eln044720-053-1-1-c2 75.5 95.9
eln046486-035-1-1-a2 78.1 0.0
eln044720-041-1-1-d2 91.7 0.0
eln044720-053-1-1-a1 72.7 97.0
eln044720-041-1-1-c2 97.6 0.0

The outlier data does not indicate any clear trends, where the model did not perform well. However, selected
outliers are discussed below. The two most occurring acids (3x) are A1 (a) and D2 (s). For s, the oxygen
in proximity to the reactive site could have led to increased difficulties when predicting the outcome of the
transformation as the results for this acid vary broadly across the data set, which is already visible based on the
three data points in the table. While the coupling of s worked well with 1 and 5, it was not reactive at all with 38.
For a, a conversion could always be observed experimentally, however, the values for the three substrates (35, 45,
46) differ largely as well. Discrepancies of 45 and 46 might originate due to the new chemical classes (quinones),
which are not broadly represented in the data set. 35 generated difficulties for the model (six appearances in
the table) as it showed varying experimental behaviour depending on the paired acid. The complexity of the
structure including various functional groups with different demanding electronic and steric effects around the
pyridine might have led to the observed high MAEs.
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Supplementary Note 12 Scale-up reactions

Supplementary Note 12.1 Reagent and purification information

Reactions were set up and conducted in nitrogen-filled gloveboxes from mbraun (Garching, DE) and LC Tech-
nologies (Salisbury, US). All chemicals were purchased from Sigma Aldrich (St. Louis, US), AstaTech (Bristol,
US), Combi-Blocks (San Diego, US), TRC (Toronto, CA), Thermo Scientific (Waltham, US) or obtained from
the Roche compound library and used as received. All solids were dosed using a CHRONECT Quantos from Axel
Semrau GmbH & Co. KG (Spockhövel, DE) coupled with an XPE206 balance from Mettler Toledo (Greifensee,
CH). Anhydrous solvents were purchased from Sigma Aldrich, stored in the glovebox and added to the reaction
vials using pipettes from Eppendorf (Hamburg, DE). The vials were heated on a Junior benchtop solution from
Unchained Labs (Pleasanton, US) and the reaction mixture was stirred by VP 721F-1 Parylene Encapsulated
Stainless Steel Stir Discs from V&P Scientific Inc. (San Diego, US). Purification by flash column chromatogra-
phy was performed using SiliaSep Premium Flash Cartridges from Silicycle (Quebec, CA) on a Combi Flash Rf
from Teledyne ISCO (Nebraska, US) or by reversed-phase high-pressure liquid chromatography (RP-HPLC) on a
Gilson (Middleton, USA) GX-281 liquid handler equipped with a Shimadzu (Kyoto, JP) LC-20AP dual pump, a
Thermo Fisher Scientific (Waltham, US) UV/VIS-Thermo Ultimate 300 Detector, a VWR (Radnor, US) ELSD90
ELSD detector and a Thermo Fisher Scientific (Waltham, US) Thermo MSQ Plus MS Single Quadrupole using
a Phenomenex (Torrance, US) Gemini NX C18 column (12 nm, 5 um silica, 30 mm diameter, 100 mm length,
flow rate of 40 mL/min) or YMC (Kyoto, JP) Triart C18 (12 nm, 5 um, 100x30 mm) column. The used eluent
solvents, gradients and cartridge sizes for flash chromatography and RP-HPLC are described individually for
each experiment.

Supplementary Note 12.2 Analytical information

All compounds were characterized by nuclear magnetic resonance (NMR) spectroscopy and (flow injection analysis
(FIA)) high-resolution mass spectrometry (HRMS) or gas-chromatography mass spectrometry (GCMS). NMR
spectra were recorded on a Bruker Avance III, 600 MHz spectrometer equipped with a 5 mm TCI, Z-gradient
CryoProbe, a Bruker Avance Neo, 400 MHz spectrometer equipped with a 5 mm Z-gradient iProbe or a Bruker
Avance III HD, 300 MHz spectrometer equipped with a 5 mm BBI-Probe. NMR data are reported as follows:
chemical shift in reference to the residual solvent peak (δ ppm), multiplicity (s = singlet, d = doublet, dd =
doublet of doublet, t = triplet, dt = doublet of triplet, td = triplet of doublet, q = quintet, m = multiplet),
coupling constant (Hz), and integration. 1H NMR residual solvent peaks in respective deuterated solvents for
CHCl3 at 7.26 ppm and DMSO at 2.50 ppm. 13C NMR residual solvent peaks in respective deuterated solvents
for CHCl3 at 77.16 ppm and DMSO at 39.52 ppm.

LC-MS high-resolution spectra were recorded with an Agilent LC system consisting of Agilent 1290 high-pressure
gradient system, and an Agilent 6545 QTOF. The separation was achieved on a Zorbax Eclipse Plus C18 1.7
µm 2.1 x 50 mm column (P/N 959731-902) at 55 °C; A: 0.01% HCOOH in H2O; B: MeCN at flow 0.8 mL/min.
Gradient: 0 min 5% B, 0.3 min 5% B, 4.5 min 99% B, 5 min 99% B. The injection volume was 2 µL. Ionization
was performed in an Agilent Multimode source. The mass spectrometer was run in “2 GHz extended dynamic
range” mode, resulting in a resolution of about 20 000 at m/z = 922. Mass accuracy was ensured by internal drift
correction. GC-MS spectra were recorded on an Agilent 5975B single quadrupole mass spectrometer. Separation
was achieved on an Agilent 7890A using a HP-1ms column (15 m ID: 250 µm and 0.25 µm film) with He as carrier
gas. Sample introduction was done via a Split injector at 270°C. After 0.5 min at a constant temperature, the
temperature was ramped from 100 °C or 45 °C to 320 °C with 35 °C/min. The mass spectrometer was operated in
EI (electron ionization) mode at 70 eV. FIA-HRMS spectra were recorded with an Agilent LC system consisting
of an Agilent 1290 high-pressure gradient system, and an Agilent 6540 QTOF. No separation was intended and
the injected sample was flushed directly into the Agilent Jetstream source. The mass spectrometer was run in “2
GHz extended dynamic range” mode, resulting in a resolution of about 20 000 at m/z 922. Mass accuracy was
ensured by internal drift correction.
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Supplementary Note 12.3 Experimental procedures and analytical data

4-(13-chloro-5-cyclobutyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperi-
dine-1-carboxylic acid ethyl ester (7b1),
4-(13-chloro-7-cyclobutyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperi-
dine-1-carboxylic acid ethyl ester (7b2),
4-[13-chloro-5,7-di(cyclobutyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]-
piperidine-1-carboxylic acid ethyl ester (7b3):

(10 eq.)

40 °C, 18 h
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Figure S12: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O,
cyclobutanecarboxylic acid (b, 150.2 mg, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg, 450 umol,
3.00 eq.) was added. The reaction mixture was degassed while bubbling nitrogen through it. The reaction
mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution and extracted
with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4, filtered and
concentrated to dryness. The crude material was purified by reversed-phase HPLC (Gemini NX, 12 nm, 5 um,
100 x 30 mm) using a MeCN gradient (20-40-55%) in H2O + 0.1% HCOOH. The solvent was removed from prod-
uct containing fractions. Evaporation of solvents gave the title compounds 4-(13-chloro-5-cyclobutyl-4-azatricy-
clo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperidine-1-carboxylic acid ethyl ester (7b1, 6.3 mg,
9%) as an off-white powder, 4-(13-chloro-7-cyclobutyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-
2-ylidene)piperidine-1-carboxylic acid ethyl ester (7b2, 2.7 mg, 4%) as an off-white powder and 4-[13-chloro-5,7-di-
(cyclobutyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl
ester (7b3, 3.8 mg, 4%) as an off-white powder.

7b1:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.34 (d, J = 7.9 Hz, 1H), 7.12 - 7.18 (m, 3H), 7.01 (d, J = 7.9 Hz,
1H), 4.15 (q, J = 7.1 Hz, 2H), 3.76 - 3.81 (m, 1H), 3.60 - 3.66 (m, 1H), 3.35 - 3.40 (m, 1H), 3.26 - 3.31 (m, 1H),
3.19 - 3.24 (m, 2H), 2.75 - 2.85 (m, 2H), 2.53 - 2.56 (m, 1H), 2.30 - 2.38 (m, 6H), 2.20 - 2.30 (m, 2H), 2.00 - 2.06
(m, 1H), 1.85 - 1.89 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ (ppm) 161.96, 155.75,
140.18, 138.04, 137.48, 134.69, 132.91, 130.76, 130.28, 128.92, 126.19, 119.22, 61.51, 45.17, 42.16, 31.97, 31.68,
31.15, 30.87, 29.04, 28.73, 18.48, 14.92, 14.89. HRMS C26H29ClN2O2; calc. for (M+H+): 437.1918, found:
437.2.

7b2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.36 (d, J = 5.1 Hz, 1H), 7.12 (s, 3H), 7.08 (d, J = 4.9 Hz, 1H), 4.15
(q, J = 7.2 Hz, 2H), 3.75 - 3.85 (m, 2H), 3.61 - 3.68 (m, 1H), 3.34 - 3.40 (m, 1H), 3.11 - 3.19 (m, 3H), 2.77 - 2.87
(m, 2H), 2.35 - 2.44 (m, 5H), 2.21 - 2.24 (m, 2H), 2.07 - 2.11 (m, 2H), 1.85 - 1.90 (m, 1H), 1.26 (t, J = 7.1 Hz,
3H). 13C NMR (151 MHz, CDCl3 δ (ppm) 158.25, 155.71, 152.61, 146.89, 139.42, 136.99, 136.81, 134.78,
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133.01, 131.34, 131.15, 129.53, 126.19, 120.12, 61.52, 44.99, 44.88, 37.91, 31.91, 30.80, 30.80, 29.45, 28.30, 26.95,
18.57, 14.89. HRMS C26H29ClN2O2; calc. for (M+H+): 437.1918, found: 437.2.

7b3:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.17 (d, J = 8.1 Hz, 1H), 7.10 - 7.12 (m, 2H), 6.98 (s, 1H), 4.15 (q,
J = 7.2 Hz, 2H), 3.75 - 3.86 (m, 2H), 3.58 - 3.66 (m, 2H), 3.33 - 3.38 (m, 1H), 3.08 - 3.21 (m, 3H), 2.74 - 2.82
(m, 2H), 2.32 - 2.38 (m, 6H), 2.24 - 2.26 (m, 3H), 1.99 - 2.12 (m, 3H), 1.85 - 1.89 (m, 2H), 1.26 (t, J = 7.1 Hz,
3H). HRMS C30H35ClN2O2; calc. for (M+H+): 491.2387, found: 491.2.
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4-[5-(benzoxymethyl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]-
piperidine-1-carboxylic acid ethyl ester (7t1),
4-[7-(benzoxymethyl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]-
piperidine-1-carboxylic acid ethyl ester (7t2)

(10 eq.)

40 °C, 18 h

(10%)

(NH4)2S2O8 (3.0 eq.)

7 7t1

DMSO/H2O (1/0.05)

(0.05 M)
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Figure S13: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O,
2-benzoxyacetic acid (t, 249.3 mg, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg, 450 umol, 3.00 eq.)
was added. The reaction mixture was degassed while bubbling nitrogen through it. The reaction mixture
was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution and extracted
with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4, filtered and
concentrated to dryness. The crude material was purified by reversed-phase HPLC (Gemini NX, 12 nm, 5 um,
100 x 30 mm) using a MeCN gradient (55-75-90-100%) in H2O + 0.1% HCOOH. The solvent was removed from
product containing fractions. Evaporation of solvents gave the title compounds 4-[5-(benzoxymethyl)-13-chloro-4-
azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl ester (7t1,
8.1 mg, 10%) as an off-white powder and 4-[7-(benzoxymethyl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15)-
,3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl ester (7t2, 6.6 mg, 9%) as an off-white powder.

7t1:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.47 (d, J = 8.0 Hz, 1H), 7.35 - 7.38 (m, 4H), 7.33 - 7.34 (m, 1H),
7.29 - 7.31 (m, 1H), 7.16 - 7.17 (m, 1H), 7.14 - 7.15 (m, 2H), 4.66 (d, J = 2.4 Hz, 2H), 4.63 (s, 2H), 4.15 (q,
J = 7.1 Hz, 2H), 3.84 - 3.86 (m, 2H), 3.37 - 3.41 (m, 1H), 3.31 - 3.36 (m, 1H), 3.03 - 3.10 (m, 2H), 2.78 - 2.87
(m, 2H), 2.42 - 2.47 (m, 1H), 2.31 - 2.36 (m, 3H), 1.26 (t, J = 7.1 Hz, 3H). HRMS C30H31ClN2O3; calc. for
(M+H+): 503.2023, found: 503.2.

7t2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.42 (d, J = 5.0 Hz, 1H), 7.38 - 7.40 (m, 1H), 7.35 - 7.38 (m, 3H), 7.32
- 7.35 (m, 1H), 7.30 (d, J = 5.0 Hz, 1H), 7.11 - 7.15 (m, 3H), 4.62 (s, 2H), 4.52 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H),
3.81 - 3.82 (m, 2H), 3.36 - 3.31 (m, 1H), 3.12 - 3.19 (m, 3H), 2.78 - 2.86 (m, 2H), 2.44 - 2.46 (m, 1H), 2.33 - 2.41
(m, 2H), 2.26 - 2.29 (m, 1H), 1.26 (t, J = 7.1 Hz, 3 H). HRMS C30H31ClN2O3; calc. for (M+H+): 503.2023,
found: 503.2.
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4-(13-chloro-7-cyclohexyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperi-
dine-1-carboxylic acid ethyl ester (7e1),
4-(13-chloro-5-cyclohexyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperi-
dine-1-carboxylic acid ethyl ester (7e2)

(10 eq.)

40 °C, 18 h

(11%)

(NH4)2S2O8 (3.0 eq.)

7 7e1

DMSO/H2O (1/0.05)

(0.05 M)
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Figure S14: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, cyclohex-
anecarboxylic acid (e, 192.3 mg, 186.7 uL, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg, 450 umol,
3.00 eq.) was added. The reaction mixture was degassed while bubbling nitrogen through it. The reaction
mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution and extracted
with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4, filtered and con-
centrated to dryness. The crude material was purified by reversed-phase HPLC (YMC-Triart C18, 12 nm, 5 um,
100 x 30 mm) using a MeCN gradient (20-98%) in H2O + 0.1% HCOOH. The solvent was removed from prod-
uct containing fractions. Evaporation of solvents gave the title compounds 4-(13-chloro-7-cyclohexyl-4-azatricy-
clo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperidine-1-carboxylic acid ethyl ester (7e1, 8.1 mg,
11%) as an off-white powder and 4-(13-chloro-5-cyclohexyl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-
hexaen-2-ylidene)piperidine-1-carboxylic acid ethyl ester (7t2, 5.4 mg, 5%) as an off-white powder.

7e1:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.34 - 7.35 (m, 1H), 7.17 - 7.18 (m, 2H), 7.14 - 7.15 (m, 1H), 6.97 (d,
J = 7.8 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.82 - 3.87 (m, 2H), 3.35 - 3.40 (m, 1H), 3.27 - 3.31 (m, 1H), 3.09 -
3.13 (m, 1H), 2.68 - 2.84 (m, 1H), 2.33 - 2.36 (m, 3H), 1-94 - 1.97 (m, 1H), 1.88 - 1.90 (m, 1H), 1.73 - 1.76 (m,
1H), 1.38 - 1.49 (m, 6H), 1.27 (t, J = 7.1 Hz, 3H). HRMS C28H33ClN2O2; calc. for (M+H+): 465.2231, found:
465.2.

7e2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.32 (d, J = 5.2 Hz, 1H), 7.11 - 7.13 (m, 3H), 7.07 (d, J = 5.3 Hz,
1H), 4.15 (q, J = 7.1 Hz, 2H), 3.38 - 3.42 (m, 1H), 3.18 - 3.28 (m, 2H), 3.12 - 3.15 (m, 1H), 3.01 - 3.05 (m, 1H),
2.81 - 2.87 (m, 1H), 2.75 - 2.79 (m, 1H), 2.38 - 2.42 (m, 3H), 2.19 - 2.21 (m, 1H), 1.87 - 1-91 (m, 1H), 1.80 - 1.85
(m, 3H), 1.72 - 1.73 (m, 1H), 1.40 - 1.46 (m, 6H), 1.26 (t, J = 7.1 Hz, 3H). HRMS C28H33ClN2O2; calc. for
(M+H+): 465.2231, found: 465.2.
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4-[13-chloro-5-(4,4-difluorocyclohexyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-
2-ylidene]piperidine-1-carboxylic acid ethyl ester (7j1),
4-[13-chloro-7-(4,4-difluorocyclohexyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-
2-ylidene]piperidine-1-carboxylic acid ethyl ester (7j2)

(10 eq.)

40 °C, 18 h

(8%)

(NH4)2S2O8 (3.0 eq.)

7 7j1
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(0.05 M)
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Figure S15: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O,
4,4-difluorocyclohexanecarboxylic acid (j, 246.2 mg, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg,
450 umol, 3.00 eq.) was added. The reaction mixture was degassed while bubbling nitrogen through it. The
reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution and
extracted with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4, filtered
and concentrated to dryness. The crude material was purified by reversed-phase HPLC (YMC-Triart C18, 12 nm,
5 um, 100 x 30 mm) using a MeCN gradient (20-98%) in H2O + 0.1% HCOOH. The solvent was removed from
product containing fractions. Evaporation of solvents gave the title compounds 4-[13-chloro-5-(4,4-difluorocyclo-
hexyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl es-
ter (7j1, 7.8 mg, 8%) as an off-white powder and 4-[13-chloro-7-(4,4-difluorocyclohexyl)-4-azatricyclo[9.4.0.03,8]-
pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl ester (7j2, 6.0 mg, 6%) as an
off-white powder.

7j1:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.37 - 7.39 (m, 1H), 7.17 - 7.18 (m, 1H), 7.14 - 7.15 (m, 2H), 6.98 (d,
J = 7.9 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.36 - 3.41 (m, 1H), 3.28 - 3.32 (m, 1H), 3.11 - 3.16 (m, 2H), 2.77
- 2.86 (m, 4H), 2.46 - 2.50 (m, 1H), 2.29 - 2.35 (m, 4H), 2.18 - 2.23 (m, 2H), 2.02 - 2.04 (m, 1H), 1.96 - 1.98
(m, 1H), 1.82 - 1.90 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H). HRMS C28H31ClF2N2O2; calc. for (M+H+): 501.2042,
found: 501.2.

7j2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.37 (d, J = 5.3 Hz, 1H), 7.12 - 7.14 (m, 3H), 7.09 (d, J = 5.3 Hz,
1H), 4.15 (q, J = 7.1 Hz, 2H), 3.41 - 3.45 (m, 1H), 3.28 - 3.33 (m, 1H), 3.14 - 3.25 (m, 2H), 2.98 - 3.02 (m, 1H),
2.80 - 2.90 (m, 3H), 2.38 - 2.44 (m, 3H), 2.24 - 2.31 (m, 2H), 2.16 - 2.19 (m, 1H), 1.78 - 1.93 (m, 6H), 1.26 (t,
J = 7.1 Hz, 3H). HRMS C28H31ClF2N2O2; calc. for (M+H+): 501.2042, found: 501.2.

24

Chapter 6. Late-stage Minisci-type C-H alkylation chemistry

211



4-(13-chloro-5-tetrahydropyran-2-yl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-yli-
dene)piperidine-1-carboxylic acid ethyl ester (7s)

(10 eq.)

40 °C, 18 h

(10%)

(NH4)2S2O8 (3.0 eq.)

7 7s

DMSO/H2O (1/0.05)

(0.05 M)
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Figure S16: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O,
tetrahydropyran-2-carboxylic acid (s, 195.2 mg, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg,
450 umol, 3.00 eq.) was added. The reaction mixture was degassed while bubbling nitrogen through it. The
reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution and
extracted with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4, filtered
and concentrated to dryness. The crude material was purified by reversed-phase HPLC (Gemini NX, 12 nm,
5 um, 100 x 30 mm) using a MeCN gradient (30-65-90%) in H2O + 0.1% HCOOH. The solvent was removed from
product containing fractions. Evaporation of solvents gave the title compound 4-(13-chloro-5-tetrahydropyran-
2-yl-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene)piperidine-1-carboxylic acid ethyl ester
(7s, 7.1 mg, 10%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 7.45 (dd, J = 11.9, 7.9 Hz, 1H), 7.28 - 7.31 (m, 1H), 7.13 - 7.18 (m,
3H), 4.44 (dt, J = 11.2, 2.4 Hz, 1H), 4.12 - 4.17 (m, 3H), 3.59 - 3.66 (m, 1H), 3.29 - 3.39 (m, 2H), 2.98 - 3.12
(m, 2H), 2.78 - 2.87 (m, 2H), 2.31 - 2.46 (m, 4H), 1.88 - 1.95 (m, 1H), 1.65 - 1.73 (m, 3H), 1.57 - 1.60 (m, 1H),
1.40 - 1.47 (m, 1H), 1.26 (td, J = 7.1, 3.3 Hz, 4H). HRMS C27H31ClN2O3; calc. for (M+H+): 467.2023, found:
467.2.
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2-cyclopropyl-7-methyl-14-tetrahydropyran-2-yl-2,4,9,15-tetrazatricyclo[9.4.0.03,8]pentadeca-1(15)-
,3(8),4,6,11,13-hexaen-10-one (8s)

(10 eq.)

40 °C, 18 h

(20%)

(NH4)2S2O8 (3.0 eq.)

8 8s

DMSO/H2O (1/0.05)
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Figure S17: Alkylation of Nevirapine (8).

To a solution of 2-cyclopropyl-7-methyl-2,4,9,15-tetrazatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-10-
one (8, 40.0 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, tetrahydropyran-2-carboxylic acid
(s, 195.2 mg, 1.50 mmol, 10.0 eq.) and ammonium persulfate (102.7 mg, 450 umol, 3.00 eq.) was added. The
reaction mixture was degassed while bubbling nitrogen through it. The reaction mixture was stirred at 40 °C
for 18 hr. The reaction mixture was quenched with NaHCO3 solution and extracted with DCM. The combined
organic layers were washed with water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The
crude material was purified by reversed-phase HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN
gradient (20-45-65%) in H2O + 0.1% HCOOH. The solvent was removed from product containing fractions.
Evaporation of solvents gave the title compound 2-cyclopropyl-7-methyl-14-tetrahydropyran-2-yl-2,4,9,15-tetraza-
tricyclo[9.4.0.03,8]pentadeca-1(15),3(8),4,6,11,13-hexaen-10-one (8s, 10.6 mg, 20%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.16 (d, J = 4.9 Hz, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.38 (s, 1H), 7.25
(m, 1H), 6.91 (dd, J = 4.9, 0.7 Hz, 1H), 4.39 - 4.46 (m, 1H), 4.14 - 4.16 (m, 1H), 3.71 - 3.74 (m, 1H), 3.61 - 3.66
(m, 1H), 2.35 (s, 3H), 2.16 - 2.23 (m, 1H), 1.93 - 1.96 (m, 1H), 1.58 - 1.73 (m, 4H), 1.43 - 1.50 (m, 1H), 0.90 -
0.96 (m, 2H), 0.41 - 0.48 (m, 2H). HRMS C20H22N4O2; calc. for (M+H+): 351.1743, found: 351.18.
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4-[13-chloro-5-(4,4-difluorocyclohexyl)-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-
2-ylidene]piperidine-1-carboxylic acid ethyl ester (7q1),
4-[5-(1-tert-butoxycarbonylpyrrolidin-3-yl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-
hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl ester (7q2)

(10 eq.)

40 °C, 18 h

(4%)

(NH4)2S2O8 (3.0 eq.)
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Figure S18: Alkylation of Loratadine (7).

To a solution of 4-(13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(11),3(8),4,6,12,14-hexaen-2-ylidene)piperidine-
1-carboxylic acid ethyl ester (7, 57.4 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O,
1-tert-butoxycarbonylpyrrolidine-3-carboxylic acid (q, 322.9 mg, 1.50 mmol, 10.0 eq.) and ammonium persul-
fate (102.7 mg, 450 umol, 3.00 eq.) were added. The reaction mixture was degassed while bubbling nitrogen
through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with
NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water, and brine,
dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-phase
HPLC (Gemini NX, 12 nm, 5 µm, 100 x 30 mm) using a MeCN gradient (50-70-85-100%) in H2O + 0.1%
TEA. The solvent was removed from product containing fractions. Evaporation of solvents gave the title com-
pounds 4-[5-(1-tert-butoxycarbonylpyrrolidin-3-yl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-
hexaen-2-ylidene]piperidine-1-carboxylic acid ethyl ester (7j1, 3.73 mg, 4%) as an off-white powder and 4-[5-(1-
tert-butoxycarbonylpyrrolidin-3-yl)-13-chloro-4-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-ylidene]-
piperidine-1-carboxylic acid ethyl ester (7q2, 3.69 mg, 4%) as an off-white powder.

7q1:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.37 - 8.38 (m, 1H), 7.13 - 7.14 (m, 3H), 7.05 - 7.06 (m, 1H), 4.15 (d,
J = 7.1 Hz, 2H), 3.77 - 3.81 (m, 2H), 3.56 - 3.63 (m, 2H), 3.41 - 3.46 (m, 2H), 3.25 - 3.34 (m, 2H), 3.14 - 3.20
(m, 2H), 3.00 - 3.05 (m, 1H), 2.82 - 2.86 (m, 1H), 2.41 - 2.43 (m, 3H), 2.18 - 2.26 (m, 2H), 1.50 (s, 9H), 1.26 (t,
J = 7.1 Hz, 3H). HRMS C28H31ClF2N2O2; calc. for (M+H+): 501.2042, found: 501.2.

7q2:
1H NMR (600 MHz, CDCl3) δ (ppm) 7.33 - 7.35 (m, 1H), 7.17 - 7.18 (m, 1H), 7.12 - 7.15 (m, 2H), 6.97 -
6.99 (m, 1H), 4.15 (d, J = 7.1 Hz, 2H), 3.73 - 3.81 (m, 3H), 3.55 - 3.64 (m, 1H), 3.43 - 3.49 (m, 2H), 3.36 - 3.41
(m, 2H), 3.28 - 3.32 (m, 1H), 3.14 - 3.26 (m, 2H), 2.76 - 2.86 (m, 2H), 2.49 - 2.53 (m, 1H), 2.34 - 2.38 (m, 1H),
2.28 - 2.30 (m, 2H), 2.19 - 2.23 (m, 1H), 2.05 - 2.15 (m, 1H), 1.49 (s, 9H), 1.27 (t, J = 7.1 Hz, 3H). HRMS
C28H31ClF2N2O2; calc. for (M+H+): 501.2042, found: 501.2.
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N-[(6-tert-butyl-3-pyridyl)methyl]-N-methyl-1-naphthamide (28h)

(20 eq.)

40 °C, 18 h

(28%)

(NH4)2S2O8 (6.0 eq.)

28 28h

DMSO/H2O (1/0.05)

(0.05 M)

O N

N

O

OH
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Figure S19: Alkylation of Fragment 28.

To a solution of N-methyl-N-(3-pyridylmethyl)-1-naphthamide (28, 41.5 mg, 0.15 mmol, 1.00 eq.) in 3 mL
degassed DMSO and 5 uL H2O, pivalic acid (h, 306.4 mg, 348.2 uL, 3.0 mmol, 20.0 eq.) and ammonium
persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while bubbling nitrogen
through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with
NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water, and brine,
dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-phase
HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (30-50-65-100%) in H2O + 0.1% TEA.
The solvent was removed from product containing fractions. Evaporation of solvents gave the title compound
N-[(6-tert-butyl-3-pyridyl)methyl]-N-methyl-1-naphthamide (28h, 14.2 mg, 28%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.62 - 8.63 (m, 1H), 7.88 - 7.90 (m, 4H), 7.86 - 7.91 (m, 2H), 7.42 -
7.47 (m, 3H), 3.17 (s, 2H), 2.75 (s, 3H), 1.41 (s, 10H). HRMS C22H24N2O; calc. for (M+H+): 333.1889, found:
333.19.
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3-[4-(4-bromo-3-methyl-phenyl)-5-(cyclohexylthio)-1,2,4-triazol-3-yl]-2-phenoxy-pyridine (38e)

(20 eq.)

40 °C, 18 h

(36%)

(NH4)2S2O8 (6.0 eq.)

38 38e
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Figure S20: Alkylation of Fragment 38.

To a solution of 4-(4-bromo-3-methyl-phenyl)-3-(2-phenoxy-3-pyridyl)-1H-1,2,4-triazole-5-thione (38, 41.5 mg,
0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, cyclohexanecarboxylic acid (e, 384.5 mg, 373.31 uL,
3.0 mmol, 20.0 eq.) and ammonium persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture
was degassed while bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The
reaction mixture was quenched with NaHCO3 solution and extracted with DCM. The combined organic layers
were washed with water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material
was purified by reversed-phase HPLC (YMC-Triart C18, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient
(20-98%) in H2O + 0.1% HCOOH. The solvent was removed from product containing fractions. Evaporation of
solvents gave the title compound 3-[4-(4-bromo-3-methyl-phenyl)-5-(cyclohexylthio)-1,2,4-triazol-3-yl]-2-phenoxy-
pyridine (38e, 28.5 mg, 36%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.18 (dd, J = 4.9, 2.0 Hz, 1H), 8.11 - 8.15 (m, 1H), 7.48 (d, J = 8.4 Hz,
1H), 7.28 - 7.29 (m, 1H), 7.26 - 7.27 (m, 1H), 7.14 - 7.16 (m, 1H), 7.11 - 7.13 (m, 1H), 7.02 (d, J = 2.6 Hz,
1H), 6.77 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 7.7 Hz, 2H), 3.86 - 3.91 (m, 1H), 2.19 (s, 3H), 2.16 - 2.18 (m, 1H),
1.73 - 1.77 (m, 2H), 1.61 - 1.64 (m, 2H), 1.49 - 1.52 (m, 2H), 1.4.1 - 1.49 (m, 3H), 1.25 - 1. 30 (s, 1H). HRMS
C22H24N2O; calc. for (M+H+): 523.1089, found: 523.09.
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4-(6-tert-butyl-3-pyridyl)-3-(2,3-dichlorophenyl)-1,2,4-oxadiazol-5-one (40h)

(20 eq.)

40 °C, 18 h

(52%)

(NH4)2S2O8 (6.0 eq.)
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Figure S21: Alkylation of Fragment 40.

To a solution of 3-(2,3-dichlorophenyl)-4-(3-pyridyl)-1,2,4-oxadiazol-5-one (40, 46.2 mg, 0.15 mmol, 1.00 eq.) in
3 mL degassed DMSO and 5 uL H2O, pivalic acid (h, (306.4 mg, 348.2 uL, 3.0 mmol, 20.0 eq.) and ammonium
persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while bubbling nitrogen
through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with
NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water, and brine,
dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-phase
HPLC (YMC-Triart C18, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (20-98%) in H2O + 0.1% HCOOH.
The solvent was removed from product containing fractions. Evaporation of solvents gave the title compound 4-
(6-tert-butyl-3-pyridyl)-3-(2,3-dichlorophenyl)-1,2,4-oxadiazol-5-one (40h, 28.6 mg, 52%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.24 (dd, J = 2.6, 0.7 Hz, 1H), 7.60 (dd, J = 8.7, 2.6 Hz, 1H), 7.49
(d, J = 1.6 Hz, 1H), 7.38 - 7.42 (m, 2H), 1.33 (s, 9H). HRMS C17H15Cl2N3O2; calc. for (M+H+): 364.0541,
found: 364.06.
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N-[(6-tert-butyl-3-pyridyl)methyl]-4-chloro-N-(4-chlorobenzyl)benzenesulfonamide (33h)

(20 eq.)

40 °C, 18 h

(44%)

(NH4)2S2O8 (6.0 eq.)
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Figure S22: Alkylation of Fragment 33.

To a solution of 4-chloro-N-(4-chlorobenzyl)-N-(3-pyridylmethyl)benzenesulfonamide (33, 61.1 mg, 0.15 mmol,
1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, pivalic acid (h, (306.4 mg, 348.2 uL, 3.0 mmol, 20.0 eq.)
and ammonium persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while
bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was
quenched with NaHCO3 solution and extracted with DCM. The combined organic layers were washed with
water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by
reversed-phase HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (20-98-100%) in H2O
+ 0.1% HCOOH. The solvent was removed from product containing fractions. Evaporation of solvents gave
the title compound N-[(6-tert-butyl-3-pyridyl)methyl]-4-chloro-N-(4-chlorobenzyl)benzenesulfonamide (40h, 30.8
mg, 44%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.17 - 8.19 (m, 1H), 7.77 (d, J = 8.6 Hz, 2H), 7.51 (d, J = 8.1 Hz,
2H), 7.36 - 7.38 (m, 1H), 7.16 (d, J = 8.4 Hz, 3H), 7.02 (d, J = 7.9 Hz, 2H), 4.29 (s, 2H), 4.28 (s, 2H), 1.32 (s,
9H). HRMS C23H24Cl2N2O2S; calc. for (M+H+): 463.0936, found: 463.10.
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N-(4-chlorophenyl)-2-cyclobutyl-6-(phenylthio)-4-(trifluoromethyl)nicotinamide (37b1),
N-(4-chlorophenyl)-5-cyclobutyl-6-(phenylthio)-4-(trifluoromethyl)nicotinamide (37b2)

(20 eq.)

40 °C, 18 h
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(NH4)2S2O8 (6.0 eq.)
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Figure S23: Alkylation of fragment 37.

To a solution of N-(4-chlorophenyl)-6-(phenylthio)-4-(trifluoromethyl)nicotinamide (37, 61.3 mg, 0.15 mmol,
1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, cyclobutanecarboxylic acid (b, 300.4 mg, 3.0 mmol, 10.0 eq.)
and ammonium persulfate (205.4 mg, 900 umol, 3.00 eq.) were added. The reaction mixture was degassed
while bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture
was quenched with NaHCO3 solution and extracted with DCM. The combined organic layers were washed with
water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by
reversed-phase HPLC (YMC-Triart C18, 12 nm, 5 µm, 100 x 30 mm) using a MeCN gradient (50-20-98%) in
H2O + 0.1% TEA. The solvent was removed from product containing fractions. Evaporation of solvents gave the
title compounds N-(4-chlorophenyl)-2-cyclobutyl-6-(phenylthio)-4-(trifluoromethyl)nicotinamide (37b1, 11.5 mg,
10%) and N-(4-chlorophenyl)-5-cyclobutyl-6-(phenylthio)-4-(trifluoromethyl)nicotinamide (37b2, 11.5 mg, 7%)
as a mixture (60:40) in an off-white powder.

37b1 & 37b2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.31 - 8.35 (m, 1H), 8.11 - 8.13 (m, 1H), 7.64 - 7.67 (m, 2H), 7.51 -
7.54 (m, 2H), 7.50 - 7.55 (m, 2H), 7.50 - 7.52 (m, 3H), 7.45 (d, J = 3.8 Hz, 1H), 7.35 - 7.39 (m, 3H), 7.33 (s,
1H), 7.21 - 7.26 (m, 1H), 7.01 (s, 1H), 4.03 - 4.17 (m, 1H), 3.74 - 3.86 (m, 1H), 2.77 - 2.87 (m, 1H), 2.54 - 2.65
(m, 1H), 2.31 - 2.46 (m, 3H), 2.14 - 2.25 (m, 2H), 2.08 - 2.16 (m, 1H), 1.98 - 2.04 (m, 1H), 1.92 - 1.97 (m, 1H),
1.74 - 1.84 (m, 1H). HRMS C23H18ClF3N2OS; calc. for (M+H+): 463.0780, found: 463.08.
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N-(4-chlorophenyl)-6-cyclobutyl-2-phenoxy-4-(trifluoromethyl)nicotinamide (29b)

(20 eq.)

40 °C, 18 h
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Figure S24: Alkylation of Fragment 29.

To a solution of N-(4-chlorophenyl)-2-phenoxy-4-(trifluoromethyl)nicotinamide (29, 58.9 mg, 0.15 mmol, 1.00 eq.)
in 3 mL degassed DMSO and 5 uL H2O, cyclobutanecarboxylic acid (b, (300.4 mg, 3.0 mmol, 20.0 eq.) and
ammonium persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while
bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was
quenched with NaHCO3 solution and extracted with DCM. The combined organic layers were washed with
water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by
reversed-phase HPLC (YMC-Triart C18, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (20-98%) in H2O
+ 0.1% HCOOH. The solvent was removed from product containing fractions. Evaporation of solvents gave the
title compound N-(4-chlorophenyl)-6-cyclobutyl-2-phenoxy-4-(trifluoromethyl)nicotinamide (29b, 15.0 mg, 22%)
as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 7.55 - 7.58 (m, 2H), 7.33 - 7.36 (m, 2H), 7.18 - 7.24 (m, 3H), 7.13 (s,
1H), 3.56 (t, J = 8.4 Hz, 1H), 2.22 - 2.28 (m, 2H), 2.11 - 2.16 (m, 2H), 1.92 - 2.00 (m, 1H), 1.77 - 1.82 (m, 1H).
HRMS C23H18ClF3N2O2; calc. for (M+H+): 447.1009, found: 447.10.
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6-cyclobutyl-N-[keto-methyl-(p-tolyl)persulfuranylidene]-2-phenoxy-nicotinamide (34b1),
4-cyclobutyl-N-[keto-methyl-(p-tolyl)persulfuranylidene]-2-phenoxy-nicotinamide (34b2)

(20 eq.)

40 °C, 18 h
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Figure S25: Alkylation of fragment 34.

To a solution of N-[keto-methyl-(p-tolyl)persulfuranylidene]-2-phenoxy-nicotinamide (34, 55.0 mg, 0.15 mmol,
1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, cyclobutanecarboxylic acid (b, 300.4 mg, 3.0 mmol, 10.0 eq.)
and ammonium persulfate (205.4 mg, 900 umol, 3.00 eq.) were added. The reaction mixture was degassed while
bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was
quenched with NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water,
and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-
phase HPLC (Gemini NX, 12 nm, 5 µm, 100 x 30 mm) using a MeCN gradient (20-98-100%) in H2O + 0.1%
HCOOH. The solvent was removed from product containing fractions. Evaporation of solvents gave the title com-
pounds 6-cyclobutyl-N-[keto-methyl-(p-tolyl)persulfuranylidene]-2-phenoxy-nicotinamide (34b1, 9.7 mg, 15%) as
an off-white powder and 4-cyclobutyl-N-[keto-methyl-(p-tolyl)persulfuranylidene]-2-phenoxy-nicotinamide (34b2,
2.7 mg, 4%) as an off-white powder.

34b1:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.25 (d, J = 7.7 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.32 - 7.37 (m,
4H), 7.13 - 7.15 (m, 3H), 6.93 (d, J = 7.7 Hz, 1H), 3.49 - 3.55 (m, 1H), 3.36 (s, 3H), 2.44 (s, 3H), 2.16 - 2.23
(m, 4H), 1.89 - 1.97 (m, 1H), 1.76 - 1.81 (m, 1H). HRMS C24H24N2O3S; calc. for (M+H+): 421.1508, found:
421.15.

34b2:
1H NMR (600 MHz, CDCl3) δ (ppm) 8.09 (d, J = 5.3 Hz, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.40 - 7.44 (m, 2H),
7.28 - 7.29 (m, 2H), 7.17 - 7.21 (m, 3H), 7.02 (dd, J = 5.3, 0.7 Hz, 1H), 3.86 - 3.92 (m, 1H), 3.35 (s, 3H), 2.42
(s, 3H), 2.21 - 2.24 (m, 2H), 2.02 - 2.07 (m, 1H), 1.83 - 1.87 (m, 1H). HRMS C24H24N2O3S; calc. for (M+H+):
421.1508, found: 421.15.
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2-[(5-methyl-2-pyridyl)methylthio]-4-tetrahydropyran-4-yl-3H-benzo[f]benzimidazole (39u)

(20 eq.)

40 °C, 18 h
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Figure S26: Alkylation of Fragment 39.

To a solution of 2-[(5-methyl-2-pyridyl)methylthio]-1H-benzo[f]benzimidazole (39, 45.8 mg, 0.15 mmol, 1.00 eq.)
in 3 mL degassed DMSO and 5 uL H2O, tetrahydropyran-4-carboxylic acid (u, (390.4 mg, 3.0 mmol, 20.0 eq.)
and ammonium persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while
bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was
quenched with NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water,
and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-
phase HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (20-50-55-100%) in H2O + 0.1%
HCOOH. The solvent was removed from product containing fractions. Evaporation of solvents gave the title com-
pound 2-[(5-methyl-2-pyridyl)methylthio]-4-tetrahydropyran-4-yl-3H-benzo[f]benzimidazole (39u, 2.0 mg, 3%) as
an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.83 (s, 1H), 8.30 - 8.31 (m, 1H), 7.99 - 8.03 (m, 2H), 7.61 - 7.63 (m,
1H), 7.46 - 7.48 (m, 1H), 7.39 - 7.41 (m, 1H), 7.30 - 7.31 (m, 1H), 4.40 (s, 2H), 4.32 - 4.31 (m, 2H), 4.04 - 4.08
(m, 1H), 3.81 - 3.85 (m, 2H), 2.68 - 2.74 (m, 2H), 2.41 - 2.43 (m, 3H), 1.89 - 1.91 (m, 2H). 13C NMR (151
MHz, CDCl3) δ (ppm) 138.8, 130.9, 129.5, 127.4, 124.1, 123.1, 123.0, 114.1, 60.0, 37.4, 31.0, 18.5. HRMS
C23H23N3OS; calc. for (M+H+): 390.1562, found: 390.16.
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2-[6-(4-chlorophenoxy)-2-(tetrahydrofuryl)-4-(trifluoromethyl)-3-pyridyl]-5-(4-chlorophenyl)oxazole
(35m)
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40 °C, 18 h
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Figure S27: Alkylation of Fragment 35.

To a solution of 2-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-5-(4-chlorophenyl)oxazole (35, 67.7 mg,
0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and 5 uL H2O, tetrahydrofuran-2-carboxylic acid (m, (348.5 mg,
3.0 mmol, 20.0 eq.) and ammonium persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture
was degassed while bubbling nitrogen through it. The reaction mixture was stirred at 40 °C for 18 hr. The
reaction mixture was quenched with NaHCO3 solution and extracted with DCM. The combined organic layers
were washed with water, and brine, dried over Na2SO4, filtered and concentrated to dryness. The crude material
was purified by reversed-phase HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (60-80-
95-100%) in H2O + 0.1% HCOOH. The solvent was removed from product containing fractions. Evaporation
of solvents gave the title compound 2-[6-(4-chlorophenoxy)-2-(tetrahydrofuryl)-4-(trifluoromethyl)-3-pyridyl]-5--
(4-chlorophenyl)oxazole (35m, 2.0 mg, 3%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 7.60 (d, J = 8.1 Hz, 2H), 7.50 (s, 1H), 7.40 - 7.43 (m, 4H), 7.24 (s,
1H), 7.16 (d, J = 8.4 Hz, 2H), 4.99 (dd, J = 7.6, 5.5 Hz, 1H), 3.76 (td, J = 7.6, 5.7 Hz, 1H), 3.68 (q, J = 7.3 Hz,
1H), 2.02 - 2.08 (m, 1H), 2.01 - 2.18 (m, 1H), 1.79 - 1.87 (m, 2H). 13C NMR (151 MHz, CDCl3) δ (ppm)
163.9, 163.8, 155.3, 151.6, 151.4, 134.7, 130.7, 129.6, 129.3, 126.1, 125.6, 123.3, 123.0, 114.1, 107.6, 78.0, 69.7,
34.3, 32.3, 30.3, 29.7, 26.0 . HRMS C25H17Cl2F3N2O3; calc. for (M+H+): 521.0568, found: 521.06.
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Benzoic acid (4-cyclohexyl-8-quinolyl) ester (41e)
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Figure S28: Alkylation of Fragment 41.

To a solution of Benzoic acid 8-quinolyl ester (41, 67.7 mg, 0.15 mmol, 1.00 eq.) in 3 mL degassed DMSO and
5 uL H2O, cyclohexanecarboxylic acid (e, (384.5 mg, 3.0 mmol, 20.0 eq.) and ammonium persulfate (205.4 mg,
0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while bubbling nitrogen through it. The
reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with NaHCO3 solution
and extracted with DCM. The combined organic layers were washed with water, and brine, dried over Na2SO4,
filtered and concentrated to dryness. The crude material was purified by reversed-phase HPLC (Gemini NX,
12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (60-80-95-100%) in H2O + 0.1% HCOOH. The solvent
was removed from product containing fractions. Evaporation of solvents gave the title compound Benzoic acid
(4-cyclohexyl-8-quinolyl) ester (41e, 1.5 mg, 3%) as an off-white powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.81 (d, J = 4.5 Hz, 1H), 8.36 (dd, J = 8.4, 1.3 Hz, 2H), 8.04 - 8.06
(m, 1H), 7.65 - 7.68 (m, 1H), 7.58 - 7.61 (m, 1H), 7.54 - 7.56 (m, 1H), 7.53 - 7.57 (m, 2H), 7.30 - 7.31 (m, 1H),
3.31 - 3.39 (m, 1H), 2.02 - 2.07 (m, 2H), 1.93 - 1.99 (m, 2H), 1.84 - 1.90 (m, 1H), 1.54 - 1.59 (m, 6H). 13C NMR
(151 MHz, CDCl3) δ (ppm) 165.6, 153.4, 150.6, 148.4, 141.6, 133.5, 130.6, 129.7, 128.5, 125.6, 121.4, 120.9,
118.1, 39.2, 33.7, 27.0, 26.4. HRMS C22H21NO2; calc. for (M+H+): 332.1572, found: 332.16.
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7-chloro-4-(4-chloro-3-methyl-phenoxy)-2-cyclohexyl-quinoline (26e)

(20 eq.)

40 °C, 18 h

(22%)

Cl N

O

Cl

O

OH

(NH4)2S2O8 (6.0 eq.)

Cl N

O

Cl

26 26e

DMSO/H2O (1/0.05)

(0.05 M)

Figure S29: Alkylation of Fragment 26.

To a solution of 7-chloro-4-(4-chloro-3-methyl-phenoxy)quinoline (26, 45.6 mg, 0.15 mmol, 1.00 eq.) in 3 mL
degassed DMSO and 5 uL H2O, cyclohexanecarboxylic acid (e, 384.5 mg, 3.0 mmol, 20.0 eq.) and ammonium
persulfate (205.4 mg, 0.9 mmol, 6.0 eq.) were added. The reaction mixture was degassed while bubbling nitrogen
through it. The reaction mixture was stirred at 40 °C for 18 hr. The reaction mixture was quenched with
NaHCO3 solution and extracted with DCM. The combined organic layers were washed with water, and brine,
dried over Na2SO4, filtered and concentrated to dryness. The crude material was purified by reversed-phase
HPLC (Gemini NX, 12 nm, 5 um, 100 x 30 mm) using a MeCN gradient (60-80-95-100%) in H2O + 0.1%
HCOOH. The solvent was removed from product containing fractions. Evaporation of solvents gave the title
compound 7-chloro-4-(4-chloro-3-methyl-phenoxy)-2-cyclohexyl-quinoline (26e, 12.9 mg, 22%) as an off-white
powder.

1H NMR (600 MHz, CDCl3) δ (ppm) 8.18 (d, J = 8.9 Hz, 1H), 8.05 (d, J = 2.1 Hz, 1H), 7.45 (dd, J = 8.9,
2.1 Hz, 1 H), 7.44 (d, J = 8.6 Hz, 1 H), 7.07 - 7.08 (m, 1 H), 6.94 - 6.96 (m, 1 H), 6.46 (s, 1 H), 2.72 - 2.76 (m,
1 H), 2.43 (s, 3 H), 1.86 - 1.92 (m, 2 H), 1.83 - 1.85 (m, 2 H), 1.73 - 1.75 (m, 1 H), 1.46 - 1.50 (m, 2 H), 1.38 -
1.41 (m, 2 H), 1.25 - 1.31 (m, 1 H). HRMS C22H21Cl2NO; calc. for (M+H+): 386.1000, found: 386.10.
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Figure 1: 7b1, 1H-NMR spectrum.
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Figure 2: 7b1, 13C-NMR spectrum.
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Figure 3: 7b2, 1H-NMR spectrum.
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Figure 4: 7b2, 13C-NMR spectrum.
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Figure 5: 7b3, 1H-NMR spectrum.
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Figure 6: 7t1, 1H-NMR spectrum.
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Figure 7: 7t2, 1H-NMR spectrum.
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Figure 8: 7e1, 1H-NMR spectrum.
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Figure 9: 7e2, 1H-NMR spectrum.
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Figure 10: 7j1, 1H-NMR spectrum.
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Figure 11: 7j2, 1H-NMR spectrum.
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Figure 12: 7s, 1H-NMR spectrum.
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Figure 13: 8s, 1H-NMR spectrum.
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Figure 14: 7q1, 1H-NMR spectrum.
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Figure 15: 7q2, 1H-NMR spectrum.
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Figure 16: 28h, 1H-NMR spectrum.
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Figure 17: 38e, 1H-NMR spectrum.
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Figure 18: 40h, 1H-NMR spectrum.
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Figure 20: 37b1 & 37b2, 1H-NMR spectrum.
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Figure 21: 29b, 1H-NMR spectrum.
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Figure 22: 34b1, 1H-NMR spectrum.
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Figure 23: 34b2, 1H-NMR spectrum.
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Figure 24: 39u, 1H-NMR spectrum.
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Figure 25: 39u, 13C-NMR spectrum.
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Figure 26: 35m, 1H-NMR spectrum.
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Figure 28: 41e, 1H-NMR spectrum.
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Figure 29: 41e, 13C-NMR spectrum.
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Discipline is the bridge between dreams and accomplishments.

- Jan Frodeno

7
Conclusion and outlook

The efficient synthesis of innovative drugmolecules to establish structure-activity-relationships
(SARs) often remains a challenge in the design-make-test-analyze (DMTA) cycle, a key com-
ponent in early drug discovery. Modern synthetic methodologies, such as late-stage functional-
ization (LSF) offer an attractive approach to generating new IP space andmodulating pharma-
cological properties. However, the presence of numerous functional groups within complex
drug-like molecules renders straightforward LSF application challenging, often leading to
laborious experimentation and failed reactions. To tackle this issue, a semi-automated LSF
platform, named Dolphin, and a new, simple reaction format termed SURF were designed
and implemented. Both tools were applied in case studies to successfully develop machine
learning (ML) tools capable of accurate in silico reactivity assessment. Thereby, this work
contributed to enhancing the compound synthesis efficiency in drug discovery through the
strategic application of laboratory automation and artificial intelligence (AI).

Using data-driven and semi-automated workflows, Dolphin has proven to efficiently assess
and execute LSF transformations on complex drug-like molecules, yet some areas for future
improvement remain. Automating literature reaction data extraction through ML and large
language models (LLMs) will accelerate the assembly of comprehensive datasets, despite the
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current challenges of those models capturing all important parameters. The adoption of the
ChemBeads technology for reaction miniaturization could permit the dosing of chemicals in
sub-milligram quantities, thereby enabling a broader range of chemistries, including photo-
chemical reactions, which would require the integration of light-emitting modules into the
platform. Alternative analytical methods such as MISER, MALDI, DESI, AE-MS, and NMR
spectroscopy are set to revolutionize HTE sample processing, necessitating the refinement
of the current reaction analysis workflow and visualization tools. The integration of the elec-
tronic laboratory journal (ELN), the Google sheet and cloud databases, the robotic systems,
and the visualization tool into a unified digital interface would provide a seamless user ex-
perience, supporting technology transfer, educational opportunities, and adherence to FAIR
data principles.

Future research around SURF should prioritize the refinement of the SURF architecture
to enhance its interoperability with emerging data analysis tools and laboratory information
management systems,ELNs.Moreover, there is a pressing need to establish robust protocols for
the curation and validation of data within SURF to ensure its integrity and reproducibility. As
the chemical research communitymoves towards amore open and collaborative paradigm, the
establishment of global standards for data sharing, similar to those in genomics andproteomics,
becomes paramount. This will require not only the development of technical solutions but also
a cultural shift, supported by policy frameworks and educational initiatives that underscore
the value of data stewardship and the ethical implications of data sharing. By fostering an
environment that values transparency and collaboration, SURF has the potential to catalyze
a new wave of discovery and innovation in chemical synthesis and ML, ultimately propelling
the field towards a more efficient and reproducible scientific practice.

To advance the capabilities of ML models developed for predicting reaction outcomes, yields
and regioselectivity of C–H borylations towards being more robust and generalizable, future
research should address three key areas. Firstly, the continuous generation of data through
HTE systems to encompass a broader chemical space is of high importance. This includes
extending the scope of iridium-catalyzed borylation reaction conditions, expanding the LSF
informer library to cover a more extensive chemical space pertinent to drug molecules, and
exploring less conventional transition-metal-catalyzed or metal-free synthetic methodologies
to increase reaction condition diversity. Secondly, the impact of integrating advanced featur-
ization techniques that capture complex chemical phenomena, such as transition state energies
and 3D molecular interactions, should be investigated. This incorporation of QM descriptors
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may offer a more nuanced understanding of reactivity trends and improve prediction accuracy.
Thirdly, the development of interpretable ML models is necessary to provide insights into the
underlying reaction mechanisms and to identify novel catalysts and reaction conditions. This
step will also foster trust and acceptance among chemists, facilitating the practical application
of ML predictions in experimental settings.

Similar to the borylation case study, the further enhancement of the Minisci-type C–H alkyla-
tion reactivity prediction will require the experimental generation of larger training data sets
with a more diverse array of reaction parameters, including alternative oxidants, solvents, and
radical precursors, compared to the current single condition screening. Further, systematic
exploration of metal salts and the incorporation of photoredox catalysis and electrochemistry
could unveil novel, optimized reaction conditions, thereby extending the reaction scope. This
could also lead to a broader substrate scope, encompassing a wider range of heterocyclic sys-
tems, particularly five-membered rings, which would be instrumental in enabling the model
to accurately predict other re-occurring structural motifs prevalent in drug-like molecules. En-
hancing featurization withmechanistic insights and regioselectivity prediction combinedwith
improved interpretability of the models, as discussed above, will further support the accuracy
and, consequently, the acceptance of these models.

This work at the interface of chemistry, data science, automation, digitalization and ML has
highlighted the importance of connecting disciplines to solve challenges in drug discovery. To
increase the efficiency of compound synthesis, the highly complex, multi-dimensional prob-
lems of chemical synthesis need to be approached with innovative methods from other re-
search fields as well. Even though this thesis provided a first step into a more digitalized and
automated approach through Dolphin and SURF, many additional studies and research
will be needed to herald the digital chemistry age. To keep the digital momentum alive, the
next generation of chemists needs to be acquainted with computer science knowledge, made
aware of required interdisciplinary collaborations, receive encouraging mentoring and get the
freedom to develop ideas outside the already known.
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