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Abstract

Our project aims to develop a high-throughput neural volumetric scan acquisition machine
capable of scanning brain tissue with an isotropic resolution of 10 nm3 to enable anal-
ysis of neural pathways at synaptic resolution. We utilize a 91-beam Scanning Electron
Microscope (SEM) to achieve the required resolution.

A key innovation of our project is the development of a novel and robust focusing routine
for electron microscopy, Power-Focus, which recovers reliably from large aberrations. The
experiments conducted with single-beam SEM demonstrated successful recovery from up
to 120 µm in defocus and 75 µm in astigmatism. This method uses multiple images taken
at known shifts around the aberration state and then uses the power spectrum of these
images to deduce the aberration. The novel contribution of this work is the ability to
circumvent the usage of the phase values of the input data by decoupling it from the final
solution. As the phase values are insensitive to the system’s aberrations, their information
offered no gain in the final estimation, and by removing them, the method became resilient
towards any potential misalignment between images. We introduced an adaptive filtering
technique based on every frequency’s signal-to-noise ratio, adjusting the filter with each
iteration as the system approaches the correct focus. We finally formulated a closed-form
solution for the aberration, previously based on curve optimization, by determining the
curve’s polynomial expression in terms of its first and second-order derivatives using Taylor
expansion and then solving it to find the aberration at the maximum. The computational
time is ∼270 ms for a 512×512 sized image pair. With parallelization on a multicore
system, the processing time for 91 such beam pairs is 1.8 seconds, achieving a 14-fold
speedup. We have also developed visualization tools to facilitate detailed examination of a
small part of the dataset at high resolution or a large part at low resolution, along with a
few validation techniques to ensure gap-free acquisitions. These are crucial for maintaining
the continuity of scans as we acquire them in segments by performing stage movements.
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Abstrakt

Unser Projekt zielt darauf ab, eine volumetrische Scanmaschine mit hohem Durchsatz zu
entwickeln, die in der Lage ist, Hirngewebe mit einer isotropen Auflösung von 10 nm3

zu scannen, um eine Analyse der neuronalen Bahnen mit synaptischer Auflösung zu er-
möglichen. Wir verwenden ein 91-Strahl-Rasterelektronenmikroskop (SEM), um die er-
forderliche Auflösung zu erreichen.

Eine Schlüsselinnovation unseres Projekts ist die Entwicklung einer neuartigen und
robusten Fokussierungsroutine für die Elektronenmikroskopie, Power-Focus, die sich zu-
verlässig von großen Aberrationen erholt. Die mit einem single-beam SEM durchgeführten
Experimente haben gezeigt, dass eine Defokussierung von bis zu 120 µm und ein Astig-
matismus von 75 µm erfolgreich behoben werden können. Bei dieser Methode werden
mehrere Bilder verwendet, die bei bekannten Verschiebungen um den Aberrationszustand
herum aufgenommen wurden, und dann wird das Leistungsspektrum dieser Bilder ver-
wendet, um die Aberration abzuleiten. Der neuartige Beitrag dieser Arbeit besteht darin,
dass die Verwendung der Phasenwerte der Eingabedaten umgangen werden kann, indem
sie von der endgültigen Lösung abgekoppelt wird. Da die Phasenwerte unempfindlich
gegenüber den Aberrationen des Systems sind, bieten ihre Informationen keinen Gewinn
für die endgültige Schätzung, und durch ihre Entfernung wird die Methode unempfind-
lich gegenüber potenziellen Fehlausrichtungen zwischen Bildern. Wir haben eine adaptive
Filtertechnik eingeführt, die die Frequenzfilterung auf der Grundlage des signal-to-noise
ratio jeder Frequenz optimiert und den Filter mit jeder Iteration anpasst, wenn sich das
System dem korrekten Fokus nähert. Schließlich formulierten wir eine geschlossene Lö-
sung für die Aberration, die zuvor auf einer Kurvenoptimierung basierte, indem wir den
Polynomausdruck der Kurve in Form ihrer Ableitungen erster und zweiter Ordnung mit
Hilfe der Taylor-Erweiterung bestimmten und dann lösten, um die Aberration im Maxi-
mum zu finden. Die Rechenzeit beträgt ∼270 ms für ein 512×512 großes Bildpaar. Mit
Parallelisierung auf einem Multicore-System beträgt die Verarbeitungszeit für 91 solcher
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Strahlenpaare 1,8 Sekunden, was eine 14-fache Beschleunigung bedeutet. Wir haben auch
Visualisierungstools entwickelt, um die detaillierte Untersuchung eines kleinen Teils des
Datensatzes mit hoher Auflösung oder eines großen Teils mit niedriger Auflösung zu er-
leichtern, sowie einige Validierungstechniken, um lückenlose Aufnahmen zu gewährleisten.
Diese sind entscheidend für die Aufrechterhaltung der Kontinuität der Scans, da wir sie in
Segmenten durch Bühnenbewegungen erfassen.



Chapter 1

Introduction

The series of efforts initiated in the 1960s by Sydney Brenner, a South African-born biolo-
gist, with the aim to construct a wiring map of the nervous system of an animal successfully
culminated after almost 2 decades with the publication of the wiring map of the brain of
a nematode worm, C. elegans which consisted of just 302 neurons [1]. The result received
global acclaim and adulation from others pursuing similar goals. The wiring map was
extensively reproduced and analyzed - one of the early findings being the identification
of specific neurons that were selectively responsive to particular odorants, showing that
different sensory neurons have specialized roles in detecting distinct chemicals in the envi-
ronment [2]. Insights such as these led to the emergence of a new field of scientific study
which came to be known as connectomics, and the wiring map aka. wiring diagram aka.
synaptic connectivity matrix became popularly known as connectome. Central to the field
is the belief that the connectomes will serve as an essential tool for understanding animal
behavior, analogous to how the genomes have been critical in facilitating and expediting
research in genetics.

In recent years, projects have been underway to produce the connectomes for animals
with larger brains - some of the popular picks being the Drosophila melanogaster (fruit
fly), mouse, and zebra finch - a songbird [3–7] (for a more comprehensive list see Table
1 in the work by Kornfeld et al., [8]). Several teams worldwide are working towards
acquiring the connectome of the whole or a fraction of the nervous system of these animals
at a resolution of 4-20 nm using volume electron microscopy (VEM) [9]. Recently, the
connectome of a large fraction of the brain of the fruit fly, Drosophila melanogaster, was
presented by the FlyEM team at HHMI Janelia in collaboration with Google Research.
With around 25k neurons and 20 million synaptic connections between them [10], it boasted
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as the largest connectome produced until last year when the FlyWire team at Princeton
University produced the connectome of the whole brain of an adult female fruit fly [11] by
using the VEM data acquired by the team led by Davi Bock at HHMI Janelia [5]. Although
currently available only as a preprint on bioRxiv, if it undergoes a successful peer review,
this work will become the largest connectome mapped to date, encompassing 120k neurons
and more than 30 million synaptic connections.

This rapid advancement in tackling large brain sizes can be primarily attributed to
improvements in computing power and the implementation of advanced machine learning
algorithms, which have significantly enhanced automation capabilities. Still, the Curse of
Time weighs heavy on connectomics.

Figure 1.1: Curse of time in connectomics. The scan time required to image the whole
brains of a fruit fly, a zebra finch, a mouse, and a human using a scan speed of 10 MHz,
imaging at a cubic voxel resolution of side 10 nm. (The artistic images of the four animals
were created using ChatGPT 4 [12])

Simple calculations show where we stand with the typical current capacities of a single-
beam scanning electron microscope (SEM) to acquire whole brain scans at synaptic reso-
lution. The time needed quickly mounts to thousands or even millions of years with the
increasing brain volume (Fig 1.1). The pursuit of the connectomes of such large brain
volumes has steered the efforts of the field toward developing methods that explore the
parallelization of different stages of the connectome acquisition pipeline. The development
of MultiSEM technology by Carl Zeiss GmbH, featuring SEMs with multiple electron
beams - 61, 91, and an upcoming model with 331 beams [13, 14] - is one such innovation
that was aimed at dramatically improving the imaging throughput. To truly utilize the
high-throughput multi-beam imaging, however, needs a closely coupled high-throughput
tissue-sample milling process as well. The team at HHMI Janelia, [15] developed a wide-
area tissue-sample milling method compatible with the MultiSEM - the Gas Cluster Ion
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Beam (GCIB). It used ionized argon clusters hitting a rotating sample at a glancing an-
gle of 30◦ to achieve uniform depth removal within 10 nm, giving the voxel an isotropic
dimension of 10 nm.

The principal project of our lab is centered on utilizing a 91-beam MultiSEM, in com-
bination with a GCIB milling method, to set up a maximally automated high-throughput
acquisition machine, targeting volumetric scales significantly beyond the entire brain of
a fruit fly. The team is currently working towards acquiring the individual brain nuclei
of a zebra finch, with the aspirational undercurrent of wanting to map the whole brain
of a mouse or a zebra finch eventually. Over the course of setting up the equipment, a
multitude of interesting challenges emerged, one among them being the routine of focusing
the images which became a major bottleneck, and removing this bottleneck became the
primary part of my doctoral work.

Acquiring a large volumetric scan involves prolonged continuous operations - spanning
weeks or months, preferably with little human intervention. So, consistently high resolution
can only be maintained if the imaging system stays focused and recovers quickly from
any aberration abruptly appearing over the period of acquisition process. Furthermore,
the current high-throughput acquisition machine is markedly more sophisticated than its
single-chambered predecessors [16, 17], (a schematic of our setup: Fig. 1.2) necessitating
frequent movements of the sample as part of the acquisition. This complexity demands
a focusing routine capable of recovering from aberrations resulting from the uncertainties
inherent in these movements, which can sometimes be substantial.

Our initial attempts at automated focusing involved implementing and testing an aber-
ration estimation technique, developed by Paxman et al. [18], on our single-beam SEMs.
This technique was based on the work done by Robert Gonsalves, RW Gerchberg, and WO
Saxton in the 1970s [19, 20], modified derivations of which are used in astronomy even
today [21, 22]. This technique was proven to work on SEM data taken for brain samples in
the study done by Jonas Binding and Winfried Denk in 2013 [23]. Testing with our imag-
ing parameters and expected window of aberrations on the single-beam SEMs, we found
that recovering from relatively large aberrations would often fail, and manual intervention
would be usually needed.

In pursuit of expanding this narrow recovery range, one crucial observation was the
irrelevance of the object’s phase values in determining the transfer function of our optical
system. Decoupling the phase and power information in the derived probability equations
(revisited in detail in the next chapter) became the core of our research efforts. As a
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successful consequence of these efforts, the first chapter of this thesis presents a novel
focusing method, named Power-Focus, capable of consistently correcting large aberrations,
with the robustness originating from circumventing the use of phase values of the input
data and utilising an adaptive frequency filter based on the signal-to-noise ratio (SNR) of
each frequency.

The experiments on single-beam SEMs, performed at 10 nm pixel size show that in the
absence of astigmatism, defocus as high as ±150 µm converges to below 0.1 µm within 5-8
iterations. The range decreases by ∼20% when astigmatism is introduced in the system
but still surpasses the previously attempted methods. The recoverable area with defocus
and astigmatism is (120, 75) µm. The normed aberrations fall below 1 µm within 10±5
iterations. We find that it takes ∼270 ms to run the computations for a single pair of
frames of size 512 × 512. In case of MultiSEM with 91 beam pairs, the same computation
takes ∼1.8s by utilising parallelization on a multi-core machine (machine configuration
details in Ch. 2) with a speedup of ∼ 14×.

The second chapter presents the imaging-related tasks within the pipeline, the neces-
sity of which emerged alongside the progression of the acquisition project. A significant
enhancement to the MultiSEM in our project was the addition of a new physical stage,
developed in-house by Winfried Denk and Juergen Tritthardt, to the MultiSEM system’s
in-built mechanical stage. This newly added stage, in principle, should contribute upto a
2x increase in acquisition speed, primarily due to its better stabilization characteristics.
I contributed towards calibration of this stage which proved surprisingly challenging, one
reason being the observed non-linearities in the stage control parameters. Further, we
developed tools to streamline the validation of the completeness of the acquisitions. The
total sample area in our setup can reach up to 25 mm2 and is covered in sections, achieved
by a combination of movements between both stages. The precision of these movements
can vary depending on the distances moved or the specifics of the stage hardware. There-
fore, adequate overlap, between the different segments of data is essential for a gap-free full
surface scan. The tools also montage raw data in various resolutions to visually inspect the
scans quickly. Moreover, the work towards aligning the surface scans from different layers
into a volumetric scan allowed for immediate verification of the milling progress during
the acquisition process, as evidenced by observable changes in the neural data with each
milling cycle.
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1.1 From a neural tissue to a connectome

The complete workflow of creating a connectome from a neural tissue involves several
stages, each at a different level of developmental maturity at present. Several teams are
simultaneously working on addressing the challenges of each of these stages.

The initial step of the pipeline is to prepare the brain sample, which involves expert
laboratory work. I did not work with these methods in my doctoral project; however, a
high level description of a typical sample preparation process should be helpful for the
reader. The first step in sample preparation is fixation of the neural tissue to preserve
the cellular structure, which arrests their activity and prevents dehydration. The next
step is staining since the biological tissue has a low natural contrast for EM where the
differential in electron scattering and/or secondary electron emissions provide the contrast.
To enhance the contrast, the tissue is impregnated with a heavy metal, a popular pick
being osmium. The membranes inside tissue get laden with the heavy nuclei of the metal,
which increases the scattering of the incoming electron beam. The final step is embedding,
usually with a resin. When the tissue is infiltrated with it, a supportive matrix is formed
after polymerization, which preserves the structural integrity of the sample and hardens
it, which ends up feeling like a rigid plastic block to the touch. Researchers in this field
frequently note that the quality of tissue embedding significantly influences the ease of
tissue sectioning. The sample is then trimmed to reveal the target area, and sections with a
thickness ranging from 50 nanometers to 1 micron are precisely cut using an ultramicrotome
fitted with a diamond knife. Methods to collect sections with minimal loss are also an
ongoing area of research. In our lab, the choice of surface on which the sections are
collected are 2-inch silicon wafers, doped with boron and with a low resistivity of 0.005
Ω/cm. The wafers are exceptionally flat, ensuring the focus variation across the surface is
not abrupt. They also have sufficient thermal stability to tolerate the local heating due to
the electron beam.

The next step in the pipeline is the raw data acquisition cycle which is an alternating
cycle of imaging and milling of the sample surface. In our lab, a 91-beam Carl Zeiss
Scanning Electron Microscope (SEM) is used in combination with a GCIB for milling to
achieve a high-throughput scan acquisition system. The setup is depicted in Fig 1.2. A
typical MultiSEM acquisition with 91 beam frames, referred to as the MultiSEM hexagon,
is also shown. Inside the milling chamber, the milling stage is positioned to create a glancing
angle of 30◦ with the ion beam. A gate valve, installed between the two chambers, controls
the isolation of the two chambers. A robotic mechanism is also used to transfer the wafer
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between these chambers. My work in the lab was focused on the development of the
necessary methods and instrument control software for the imaging process. Working on
the hardware components or the milling process was not part of my doctoral research.

MultiSEM 
imaging chamber

GCIB
milling chamber

robot control

robot arm

imaging
stage

milling
stage

gate valve

wafer
gripper

single beam frame

91 beam frames
of a MultiSEM hexagon

Figure 1.2: Left: the acquisition setup. Right: single acquisition from the MultiSEM
showing 91 beam frames - a single frame shown in the blue rectangle.

At the beginning of an acquisition cycle, two wafers with prepared samples on them
are manually placed inside the system - one each on top of the imaging and the milling
stage. Then the surfaces of the samples on the wafer inside the imaging chamber are
imaged with MultiSEM before the robot swaps the positions of the two wafers. After the
switch, the robot retracts, and the gate valve closes isolating the two chambers. After
two chambers have been isolated, the imaging of surfaces of the samples on the second
wafer starts. Simultaneously, the first wafer undergoes milling inside the milling chamber,
removing a tissue layer of 5 - 10 nm thickness to expose a deeper layer of all samples,
which novel surfaces are then imaged after the next deisolation-exchange-isolation cycle.
The acquisition cycle ends with all the samples on both of the wafers completely milled
down to the respective wafer surface. The raw VEM data of the complete neural tissue at
a voxel size of 10 nm3 is then available in computer storage.

The next step in the pipeline is the processing of raw data into an aligned volumetric
scan of the neural tissue. Our lab is capable of validation and rough alignment for small
subsets of this dataset. However, given its massive scale, which can extend to several
petabytes, we collaborate with the connectomics team led by Viren Jain at Google Re-
search, [24]. They employ advanced alignment techniques, notably the Adversarial Image
Alignment method based on Convolutional Neural Networks [25] for aligning the scans.



1.2 Focusing in Scanning Electron Microscopes 7

The next step following the alignment is the segmentation of the neural structures.
A leading method for segmentation is the flood-filling networks [26]. Segmentation is
followed by thorough proofreading. Sophisticated visualization tools like Knossos [27] or
Neuroglancer [28] allow researchers to navigate and inspect the segmented volumetric scan
across all three planes. Synapses are identified based on their characteristic features, which
pave the way for mapping the synaptic connections which then leads to a fully constructed
connectome of the neural tissue.

1.2 Focusing in Scanning Electron Microscopes

In SEMs with Field-emission guns (FEG), the electron beam is largely coherent, and the
lens aberration in such an optical system is described using wave optical theory as the
coherence results in interference upon interacting with the sample, which can amplify or
diminish the electron intensity at the area of contact ([29, Ch. 2, p. 34-38]). Ideal focusing
occurs when a converging lens operates on the incoming wavefront, adds a phase shift,
and transforms it into a spherical wavefront that converges to a single point. Assuming
geometric optics, the point spread function (PSF) for a spherical wavefront is a delta
function. In the presence of aberrations, the shape of the wavefront deviates from its
ideal spherical form, broadening the cross-section of the PSF. This aberration can be
interpreted as a superimposing corrupting set of phase shifts (or the aberration wavefront),
and breaking it down into a polynomial expression of ρ and ϕ (polar coordinates) simplifies
its inversion process. Similar to light optics, a compound of correcting lenses is employed in
SEMs, where the different lenses address individual terms in this function. A mathematical
framework used often in lens design is the Zernike polynomials. They are a set of orthogonal
polynomials that form a complete basis set over the unit circle [30], of which the phase
aberrations for defocus and astigmatism are shown in Fig. 1.3.
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defocus on-axis astigmatism diagonal astigmatism

top-view

front-view

Figure 1.3: The phase shifts added to the spherical wavefront in the case of defocus and
astigmatism as seen from along the optical axis (top-view) and normal to the optical axis
(front-view).

In modern SEMs, such as the ones offered by Zeiss, aberrations such as spherical, coma,
and distortion are effectively minimized to meet the resolution requirements of our project.
This achievement is the result of precise engineering and the foundational theoretical con-
tributions made by researchers, with Otto Scherzer, whose theoretical insights laid the
groundwork for correcting spherical aberration in magnetic electron lenses, being particu-
larly noteworthy [31]. Defocus and astigmatism, however, are still fickle and can change
abruptly to the detriment of the image sharpness. These aberrations can be manually
corrected by changing the strength of the current in the stigmator and the objective lens
using control dials on the microscope. To automate the process of correction, Power-Focus
routine was developed as a script which can be used from programs running on the control
computers for either the single-beam SEM or the MultiSEM. This script enables the con-
trol software to estimate and correct defocus and astigmatism across a broad, recoverable
area, correcting for normed aberrations up to ∼140 µm.

The concept of treating aberrations as phase shifts added to the spherical wavefront
is further explored in Section 2.2, which delves into the principle of phase-diversity (PD).
Power-Focus, a technique encompassed within PD methods for focusing, employs known
phase shifts to the aberration and captures multiple images as measurements [19]. The
premise is that acquiring at least two such images provides enough data to estimate the
system’s initial aberration state.
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1.2.1 From the electron beam source to an image in SEM

Field- emission gun

Anode cup system

Condenser system

Inlens detector and �lter
system

Electromagnetic lens
assembly 

scan coils
electrostatic lens

sample

Figure 1.4: General parts of Zeiss, Gemini
family, SEM. [32].

The optical principles underlying the Mul-
tiSEM are built on the same foundational
concepts as those of a traditional single-
beam SEM, as illustrated in the basic
schematic in Fig. 1.4. A distinctive fea-
ture of the MultiSEM is its ability to divide
a single beam, generated - in case of Zeiss
MultiSEM - by a Schottky Field-Emission
Gun (FEG), into multiple beams using a
micro aperture array [33]. The beam then
traverses a condenser lens system that de-
magnifies it, typically by a factor of ∼5000
[29, 34].

The electromagnetic and electrostatic
lens system manipulates the electrons’ tra-
jectory, bringing the beam’s cross-section to
within 10 nm. Similar to the functioning of
a confocal light microscope, in an SEM, the

electron probe is finely focused on the sample surface and then raster scanned across the
field of view by energizing two sets of electromagnetic scan coils in x and y.

The interaction between the electron beam and the sample generates both back-scattered
and secondary electrons, with the ratio between these emissions largely dependent on the
beam landing energy, the mean atomic number of the sample interaction area, and the
angle at which the beam strikes the sample. Low-voltage imaging (with beam landing
energy of less than 10 keV) is advantageous for biological samples as it lessens radiation
damage and reduces charging effects. So the Zeiss machine which is specifically designed
for biological samples by operating within a voltage range of 1.2-1.5 keV features in-lens
secondary electron detectors since the signal from secondary electron emissions is stronger
in this range of landing energy.

In general the configuration of the detector system varies; it can either be integrated
within the optical column or installed externally. In this study, the microscopes are
equipped with an in-lens detector system located inside the chamber, designed for sec-
ondary electron detection [32].
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Chapter 2

Power-Focus

2.1 Introduction

Typically, manual focusing involves adjusting the focal plane incrementally in a specific
direction and visually inspecting whether the image becomes sharper or more blurred. So
unsurprisingly, a part of focusing efforts branched out in favor of search-based algorithms
using a sharpness measure computed in real space [35–39], or frequency space [40]. These
approaches notably fall short in addressing astigmatism, with only a few attempting to
correct it. Among these attempts, some need up to 50 recordings [41] or rely on theo-
retical frameworks lacking empirical validation [42]. Furthermore, the burden of deciding
multiple operational parameters often falls on the operator. A reason for this failure to ad-
dress astigmatism adequately could be the substantial expansion of the search space when
introducing astigmatism in the system and the sharpness curve becoming multimodal.
So, the research trend seems to have pivoted towards leveraging deep learning models to
manage this increased complexity. However, this approach also brings challenges, such as
data collecting and training periods spanning several days. Furthermore, they report that
they fail when there are significant changes in imaging parameters, with attempts at quick
recalibration using the same model resulting in diminished performance [43, 44].

So it appears that the focusing efforts in SEM have not effectively leveraged insights
from its peers in astronomy, who have managed to exploit the knowledge of the imaging
process itself very cleverly [45, 46]. Since the imaging process is fairly well understood,
we can predict how the image will change with the perturbation. The sensitivity of the
frequency values is tied to its aberration value through the PSF, and the ratio of these
frequency values for multiple measurements taken at two known distances from the current
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aberration is also unique for the current aberration (ignoring noise). This technique of
recording multiple measurements with known phase shifts to infer the aberration state
became known as phase diversity.

It was initially introduced in the 1970s through the Gerchberg-Saxton algorithm [19,
20], a variation of which is still being used in the focusing routine of the James Webb
Space Telescope ([47]). Around the same time, a similar algorithm was developed by Robert
Gonsalves, who also introduced a likelihood function in his work. This was then generalized
for an arbitrary number of phase diversities by Paxman et al. [18], who also laid the
theoretical foundation for systems with translation-invariant PSF based on Gaussian and
Poisson noise models using a maximum likelihood approach. Its focusing and stigmating
capability on an SEM was reported by Binding et al. [23], where they referred to the
method as Maximum-A-Posteriori Focusing and Stigmation (MAPFoSt), and this is where
we began our investigation.

We found that MAPFoSt lacked the robustness needed to fully automate the focusing
routine in SEM because recovery from large aberrations (beyond 20 µm for 10 nm pixel size)
often failed. As the expected window of the aberrations in our machine was much broader,
the advancement of this narrow recovery range was our primary area of investigation,
starting at the limits where the method began failing.

The initial key observation was the irrelevance of the spectral phase values of the
input measurement in the aberration estimation. MAPFoSt is a frequency-based method,
initiating with the Fourier transformation of the multiple measurements, hereafter referred
to as phase diverse images. It uses both the phase and the magnitude which makes it
sensitive to shifts between the phase diverse images, and aligning them within a single pixel
becomes more difficult with increasing aberrations and/or when the object becomes sparser.
We successfully decoupled the spectral phase from the power in the course of deriving the
final likelihood equation. This removed the alignment constraint. Furthermore, we derived
a closed-form solution for the aberration by performing a Taylor expansion of the newly
formulated likelihood function around the aberration state (0, 0, 0) up to the second order
and then solving for the aberration which maximized the approximated curve. Addressing
the effect of noise in the system, several investigators independently reported a strong
bias in estimation as the SNR is lowered [48–50] and this is what we observed as well.
Filtering the frequencies still stands as the simplest and the most effective technique for
reducing this bias. Advancing further on this path, we have found that filtering out the
frequencies according to their individual SNR is superior to a low-pass filter set at a
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constant cutoff. This adapts the number of frequencies to the remaining aberration as it
reduces in successive iterations and checks the retention of high frequencies with high SNR,
making the method robust without compromising precision. The experiments on single-
beam EMs, performed at 10 nm pixel size, show defocus as high as ±150 µm converges
to below 0.1 µm within 5-10 iterations. The performance drops slightly when astigmatism
is introduced in the system the recoverable volume with defocus and astigmatism is (120,
50, 50) µm. The normed aberrations fall below 1 µm within 10±5 iterations. We find that
the computation for a single frame of size 512 × 512 takes ∼ 270ms and parallelizing on a
multi-core machine in case of 91 beams brings the total time to ∼1.8 s, with a speedup of
∼ 14× (machine configuration in section 2.3.8). We further demonstrate it on SEM using
inorganic samples.

2.2 Method

The PSF is usually parametrized by following the cross-section of the electron probe spot
as the optical system spans the aberration space. The boundary of this spot is defined
by the propagation of the marginal rays at the exit pupil. The ray aberration diagram
is shown in Fig. 2.1a. Assuming geometrical optics, if the astigmatism coefficients are
negligible, then the spread of the PSF is a circular disk of radius (ρ/f) ∗

√
δ2, where ρ is

the pupil radius, f is the focal length, and δ is the defocus as shown as the cross-sections
given in Fig 2.1b.

When astigmatism is present in the system, the focal points of the ray fans are not at a
single point but are spread out over a distance, η, along the optical path. The focal points
at the extremities of this distance belong to a pair of ray fans normal to each and at an
arbitrary angle, ϕ, from the scan direction x and y as shown in Fig 2.1a and 2.1c. The PSF
is no longer strictly circular in such a system as the imaging plane travels along the optical
path. It is a line at the two extreme focal points, a circular disk at the midpoint, and an
ellipse in between. The two parameters, (η, ϕ) can be used to parametrize astigmatism.
However, the stigmator system is generally a pair of quadrupole electromagnets placed
concentric to the optical path and at an angular distance of 45◦. By varying the ratio of
the current in the electromagnets, the ϕ space could be spanned entirely, without having
to rotate a single quadrupole electromagnet mechanically. The normed strength of current
in the excitation coil of the two quadrupole magnets control the astigmatic difference, η,
in physical space. The mathematical relation between (η, ϕ) and (α, β) has been explained
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in the Supplementary section C.1. The scaling from µm to microscope units is done by
the astigmatism scaling calibration parameter, γ, and has been explained in section 2.3.6.
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Figure 2.1: Ray aberration diagram: a) Top view: Orthogonal ray fans (in blue and red),
at a variable angle from the image scan direction (x, y) as seen from the exit pupil, along
the optical path. b) Side view: In the absence of astigmatism, the pair of ray fans share the
same focal point. The cross-section of the beam is circular and its diameter varies linearly
with the distance between the image plane and focal plane, and is a point when δ = 0. c)
In the presence of astigmatism, the shape of the cross-section is no longer constrained to a
circle. The two side-views, one from the direction P1 and the other from the direction P2
show the focal points separated by a distance of η. The cross-section of the beam is a line
at the two endpoints, a circle at the midpoint, and an ellipse in between. The elliptical tilt
varies with ϕ. d) The scans in real space are shown for a focused, defocused, and defocused
+ astigmatic system (top to bottom). The corresponding zero-centered power spectrums
are shown on the right. e) The three figures plot the spectral power (y-axis) against the
steps taken along the circle, drawn in red, in the center of the third power spectrum and
its variation with increasing δ, η, and ϕ is shown. The scale bars (in blue) are 1 µm.

The MTF, being the Fourier transformation of the PSF, is a Bessel function of the first
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kind J1. The MTF derivation has been given in the Supplementary section C.1. This study
uses a Gaussian approximation of this function as proposed by Binding [23]. The numerical
aperture, na, is equal to sin(p) in vacuum, where p is the electron probe convergence angle
(see Fig 2.1b). It has been approximated as tan(p), for very small values. Estimating the
na of the system has been explained in the section 2.3.6.

MTF (δ, α, β, kx, ky, na) = exp(−1
8 ∗ na2((k2

x + k2
y)(δ2 + α2 + β2)

+2δα(k2
x − k2

y) − 4δβkxky)))

Here, kx, ky are the two wave vectors.

2.2.1 Power-Focus workflow

With the MTF formula at our disposal, we can proceed to a typical application of the
Power-Focus method.

Figure 2.2: Method workflow
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The workflow is shown in Fig. 2.2. The aberration state (δ, α, β) of the system is shifted
by two known defocus values T1, T2 independently, and images are acquired after each
shift. The images are Fourier transformed and their power spectrums are computed. The
signal-to-noise ratio (SNR) for every frequency is estimated by dividing the powers by total
noise power Nσ2

n, where N is the number of frequencies and σn is the standard deviation
of the system noise. The noise in the signal in SEM is statistical and follows a Poisson
distribution but can be approximated to a Gaussian distribution with a sufficiently high
average number of secondary electrons collected per pixel. Some experimental evidence
suggests that a reasonable limit of this value is 3.2 electrons per pixel, as presented in
Hayes et al. [51]. If the σn of the system is not known, an estimation of it can be
made by plugging the mean power at the four edges (Σn) of the zero-centered power
spectrum in σn =

√
Σn/N . The frequencies lower than the SNR threshold are filtered

out, and the selected pairs are fed into the likelihood function 2.9. The aberration vector,
which maximizes the likelihood function, is then determined using numerical optimization
methods. Alternatively, the closed-form solution can be used (eq. 2.13-2.15, sub-section
2.2.2).

Derivation of the likelihood function

We assume that the optical properties of the SEM can be described by a linear MTF
because the PSF is invariant under translation [52]. The image formation can be written
as,

i(kx, ky) = o(kx, ky)MTF (δ, α, β, kx, ky, ) + n(kx, ky) (2.1)

Here i(kx, ky) is the image frequency, and o(kx, ky) is the object frequency for the wave-
vector (kx, ky). The aberration state is (δ, α, β) for defocus, astigmatism x, and astigmatism
y, and n(kx, ky) is the noise term. The diversity is added by adding t1, t2 to the defocus,
and the two power spectrums pj(kx, ky), j ∈ (1, 2) are then computed (eq. 2.2).

pj(kx, ky) = |o ∗ MTF (δ + tj, α, β, kx, ky) + nj(kx + ky)|2, j ∈ (1, 2) (2.2)

Power pairs for which SNR >> 1, the second-degree noise term in the expansion can be
ignored, and the equation 2.2, can then be approximated to,

pj = (oImj)2 + 2nIjoImj + (oRmj)2 + 2nRjoRmj (2.3)
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where, o = ioI + oR, n = inI + nR , o, n ∈ C,
mj = MTF (δ + tj)
The probability distribution function (PDF) for pj, given δ, α, β,and o is

fPj
(pj|o, δ, α, β) =

exp −(m2
j (o2

I+o2
R)−pj)2

8m2
j (o2

I+o2
R)σ2√

8π(m2
j(o2

I + o2
R)σ2)

(2.4)

where σ = σn√
2 , where σn is the standard deviation of the Gaussian noise model in real

space.
The joint probability can then be written as

fP (p1, p2|o, δ, α, β) =
2∏

j=1

exp − (m2
j oP −pj)2

8m2
j oP σ2√

8π(m2
joP σ2)

(2.5)

where oP = o2
I + o2

R, oP being the object power.
Using Bayes’ theorem the PDF for δ, α, β, given p1, p2, o can be formulated as,

fA(δ, α, β|p1, p2, o) = fP (p1, p2|o, δ, α, β)fA|O(δ, α, β , o)
fP |O(p1, p2, o) (2.6)

where the likelihood, fP can be plugged in from eq. 2.5. So far, the object is an unknown
variable in the density functions. To eliminate it we followed the same trick which the
Fineup team [18] used in their method, which is to compute the object solution that
maximizes the joint probability, fP . For this, we found the derivative function of the fP

for the object and equated it to 0 (eq. 2.7). The object solution of the resulting equation
(eq. 2.8) is the maximal probable object which is then plugged back in fP .

∂fP

∂oP

!= 0 (2.7)

→ oP =
−8σ2 +

√
−4(m2

1 + m2
2)(−p2

1/m2
1 − p2

2/m2
2) + 64σ4

2(m2
1 + m2

2)
(2.8)

The likelihood is derived by plugging in eq. 2.8 in eq. 2.5 and then the eq. 2.5 in eq.
2.6. The prior fA|O is assumed to be flat because the availability of object information
does not offer any evidence of the aberration. The marginal likelihood, fP |O is a constant
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normalization factor because it is independent of the aberration and is dropped out. Taking
the log of the resulting function gives us the final log-likelihood, eq. 2.9.

L(δ, α, β) =
∑ p1 + p2 −

√
p2

1 + m2
2p2

1
m2

1
+ p2

2 + m2
1p2

2
m2

2
+ 16σ4

4σ4 + ln(m2
1 + m2

2)

−ln(2m1m2πσ2(−4σ2 +

√√√√(1 + m2
2

m2
1
)p2

1 + (1 + m2
1

m2
2
)p2

2 + 16σ2))) (2.9)

The aberration state which maximizes the log-likelihood function 2.9, is then deter-
mined by either non-linear numerical optimization or a closed-form solution explained in
the next section. In the case of numerical optimizations, we observed that BFGS (or the
limited memory version, L-BFGS) [53, 54], performed the best.

2.2.2 Closed-form Solution

Closed-form solutions are derived using Taylor expansion of the log-likelihood function, eq.
2.9, around the aberration state (0, 0, 0) up to the second order. This gives a polynomial
in three dimensions. The first and second-order coefficients, clmn of this polynomial, (eq.
2.10) are determined by the Jacobian and the Hessian matrix (eq. 2.11). The log-likelihood
curve is therefore parametrized using the 12 coefficients, and an approximate paraboloid
function is determined (Fig. 2.3a). The aberration state that maximizes this curve is the
desired value, (eq. 2.13 - 2.15), which was derived by solving the set of equations 2.12 for
(δ, α, β).

g(δ, α, β) =
1∑

l,m,n=0
clmnδlαmβn , l + m + n <= 2 (2.10)

=
(
δ, α, β

)
∂L
∂δ
∂L
∂α
∂L
∂β

+
(
δ, α, β

)
∂2L
∂δ2

∂2L
∂δ∂α

∂2L
∂δ∂β

∂2L
∂α∂δ

∂2L
∂α2

∂2L
∂α∂β

∂2L
∂β∂δ

∂2L
∂β∂α

∂2L
∂β2




δ

α

β

 (2.11)

∂L
∂δ

= 0,
∂L
∂α

= 0,
∂L
∂β

= 0 (2.12)
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δ = −c2
011c100 + c002c020c100 + c010c011c101 − c001c020c101 − c002c010c110 + c001c011c110

2 (−2c011c101c110 + c002c2
110 + c2

011c200 + c020 (c2
101 − c002c200))

(2.13)

α = c011c100c101 − c010c
2
101 − c002c100c110 + c001c101c110 + c002c010c200 − c001c011c200

2c020c2
101 − 4c011c101c110 + 2c002c2

110 + 2c2
011c200 − 2c002c020c200

(2.14)

β = c110(c011c100 + c010c101 − c001c110) − c010c011c200 + c020(−c100c101 + c001c200)
2 (−2c011c101c110 + c002c2

110 + c2
011c200 + c020 (c2

101 − c002c200))
(2.15)

Figure 2.3: a) Log-likelihood curve plotted in blue (eq. 2.9) for values at different defocus
from -2 to 8 um ( no astigmatism) and an approximation (in red) made by determining the
coefficients of the parabola using first and second order derivatives at (δ, α, β) = (0, 0, 0)
(eq. 2.11). b) The estimations for a target defocus 0 to 70 µm are shown in red for
closed-form and in blue for optimization. The standard error is shown in dashed. The
experiments were done using synthetic data (2.2.3), repeated 50 times.

Figure 2.4: Comparing closed-form and opti-
mization in total response time

One advantage of using the closed-form
solution is the improvement in computa-
tion time. The estimation of derivatives
for each data point is an independent pro-
cess, which can be parallelized over multiple
cores. This is not possible when using nu-
merical optimization, where the data points
are pooled together, each with its own MTF
value. Multiple iterations are run over this
pool with updated MTF values each time
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before the convergence is reached. As can be seen in Fig. 2.4, the total response time
in the case of optimization increases with the number of beams, reaching ∼13s while the
closed-form solution saturates at ∼4s. These estimations were performed for 91 beam pairs
of size 1560x1360 on a cluster with the configuration mentioned in section 2.3.8. Further-
more, the Hessian matrix, a byproduct of this method, can be used as an error metric to
flag any improbable estimations as a higher curvature at the estimation point indicates a
more confident estimation. However, this study does not include a disciplined investigation
of the subject.

2.2.3 Sample and Setup details

The SNR threshold was set at 25 for all the experiments unless specified otherwise.

Setup A

Carl Zeiss Ultra, Field-Emission Scanning Electron Microscope operated at a beam landing
energy of 1.5 keV , the beam current at 212 pA, image pixel resolution of 2048 × 1536, and
at a dwell time of 100 ns.

Setup B

Carl Zeiss MultiSEM, Multi-Beam Electron Microscope operated at beam landing energy
1.2-1.5 keV , beam current at 692 pA, and at a dwell time of 200 ns.

Sample A

A neural tissue volume from a mouse brain, stained and embedded in Epoxy, prepared by
Maria Kormacheva using the rOPO staining protocol as described in Kormacheva 2023,
[55, see Ch. 2].

Sample B

A neural tissue volume from a zebra finch brain, stained and embedded in Epoxy, prepared
by Jonas Hemesath using the Song staining protocol [56].
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Synthetic data

The synthetic data was generated using a blank 8-bit frame of size 512×512, all valued
at 0. 30 seeds were randomly selected on the frame and were then made to walk on the
frame in random directions, turning the values of the path they took to 255. The direction
taken at every step was also chosen randomly from the 8 different directions with a higher
probability of maintaining their direction. Examples are provided in section 2.3.5.

2.3 Results

2.3.1 Resilience against phase shifts

The first claim was resilience against phase shifts. This was verified through simulations
conducted on single-frequency 1D and multi-frequency 2D objects (images), as depicted in
Fig. 2.5a and b.

Figure 2.5: Phase-shift versus error a) Comparison for single-frequency sinusoidal ob-
jects. b) Comparison for simulated 2D objects with synthetic data. The misalignment was
induced in the phase diverse images, stepwise in a single direction, and the defocus was
estimated using Power-Focus and MAPFoSt for initial target defocus of 1, 5, and 10 µm.

In single-frequency sinusoidal objects, any misalignment in the multiple diversity mea-
surements produces large systematic estimation errors for MAPFoSt, while Power-Focus is
insensitive. The errors show dependency on the object frequency. The second set of experi-
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ments involved simulated 2D objects (synthetic data in section 2.2.3). Here, it was observed
that MAPFoSt’s accuracy in estimation deteriorates rapidly with increasing misalignment
among phase diverse images, while Power-Focus remains resilient.

2.3.2 Advantage of adaptive filtering

We observed a strong dependence of low-pass filtering of the phase diverse images on
the robustness. This was also independently reported by several investigators [48–50].
While noise filtering seems the simplest way to reduce bias, we have found that targeting
frequencies based on their individual SNR works better than just using a low-pass filter
with a fixed cutoff. This clear advantage is shown in Fig 2.6. The filtering method was
explained in section 2.2.
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Figure 2.6: Convergence from large defocus: Power-Focus was compared to MAPFoSt for
large defocus-only aberrations. The frequency filters on the left are for MAPFoSt (bottom)
and Power-Focus(top three).

MAPFoSt begins to perform poorly after 40 µm while Power-Focus converges quickly
within 3 iterations, even at 70 µm because the SNR threshold filtering adapts the number of
frequencies to the remaining aberration as it reduces in successive iterations. This keeps in
check the retention of high frequencies with high SNR making the method robust without
compromising on precision. The experiments for this study were done on setup A using
sample A at 10 nm pixel size as detailed in section 2.2.3.
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2.3.3 Recovery limits

The recoverable range for defocus-only aberrations is found to be +- 150 µm, as shown by
the green line in Fig 2.7a. With astigmatism, the recoverable range is (+-120, +-50, +-50)
µm for (δ, α, β), as shown by the green shaded area in Fig. 2.7b. The images were taken
at 10 nm pixel size for a pixel resolution of 2048×1568. The frame pairs were split into 12
pairs of non-overlapping areas of size 512×512, which were then used for the estimation.
It was conducted with setup A, using sample A.

Figure 2.7: Recoverable aberration range: a) The method was tested for a range of defocus
values within +- 300 µm, repeated at 10 different locations. The recoverable range is shown
in green and is around +-150 µm. The convergence for one of the extremities of this range
is labeled L1 and the images after every iteration has been shown below the plots. The
focusing routine was stopped when the estimations were below 0.1 µm and the maximum
iterations allowed were 10 after which the convergence was labeled failed. b) Convergence
experiments were performed with astigmatism in the system, keeping α = β. Successful
convergence are dotted in green if it reached a normed residual below 1 µm within 10
iterations, otherwise, it was labeled as failed and dotted in red. The recoverable area is
shown in green, the limit of which is (120, 75) µm. The convergence at the limit has been
labeled point L2 and the image after every iteration has been shown below the plots. All
scale bars (in blue) are 1 µm.
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2.3.4 Convergence experiments with non-biological samples
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Figure 2.8: Convergence experiments on a.) a decapsulated integrated chip at pixel size
72 nm b.) sample A at pixel size 10 nm and c.) a gold-on-carbon test specimen from
Agar Scientific at pixel size 1.2 nm. Multi-fold values are plotted as dashed lines for later
iterations to show the fluctuations around zero after convergence. The before and after
FOVs are displayed on the left with smaller regions expanded.
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We further report that the usability of this method is not limited to biological samples by
performing convergence experiments on 2 other samples - a decapsulated integrated chip
(prepared with the help of Jonas Hemesath) and a gold-on-carbon test specimen. They
were all imaged using setup A but at vastly different magnifications, as shown in Fig. 2.8.
The images were taken at a pixel resolution of 2048×1568 and were split into 12 pairs
of non-overlapping areas of size 512×512, which were then used for the estimation. The
defocus diversities for different magnifications were also linearly scaled with the pixel size,
with the value being ±4 µm at 10 nm.

It should be mentioned that the decapsulated integrated chip began to charge signifi-
cantly after just a few imaging rounds. Using silver paint around the chip helped decrease
this charging to a degree. However, the limited improvement after the second iteration is
likely due to ongoing charging issues. This charging effect is visible in the ’after’ images
as the shiny white areas.

2.3.5 Simulations

We used simulations to evaluate the performance behavior of the method as the noise in
the system varies. The results are shown in Fig. 2.9. The desired aberration (δ, α, β) was
induced into synthetic objects (section 2.2.3) to produce the image. The images were then
made noisy using a Gaussian noise model with the desired standard deviation, σn, and a
zero mean. Fig 2.9a shows examples of the generated data for varying σn and δ. The SNR
of the images was calculated by eq. 2.16.

SNR =
∑

i pi − σ2
nN2

σ2
nN2 (2.16)

where ∑i pi is the total power of the input images and N is the sample size which in
this experiment is 512 × 512.

For the first simulation, we generated the input data for a target defocus of 15 µm with
very little noise variance and made an estimate. The noise variance was then increased
gradually until the SNR of the input data became very close to 0. We simulated new data
for each estimate. This was repeated 200 times, the mean of which has been plotted in Fig
2.9b against the SNR. The experiment was repeated for different targets from 0 to 30 µm

and it was observed that the estimate had an increasing bias towards 0 as the SNR was
lowered and fell sharply below SNR 1.

The precision of the estimate, as shown in Fig 2.9c, also worsens with decreasing SNR
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following an inverse relation.
Lastly, it was found that the SNRT was critical to the robustness of the method, and

increasing it reversed the bias towards 0. However, this came with a trade-off of increasing
standard error, which resulted in a lower precision (Fig 2.9d).
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Figure 2.9: Simulation experiments a) Examples of synthetic data for varying defocus and
noise variance. The SNR is given as an inset. b) The defocus was estimated with increasing
noise variance, which varied the SNR of the input data. Every data point in the plot is the
mean defocus estimate of 200 measurements. c) The precision of the estimates (std dev
of 200 measurements) against falling SNR is plotted for the target defocus of 70, 60, 40,
20, and 0 µm. The dashed line in red is the corresponding electron dose. d) The defocus
estimate with varying SNRT is plotted in black. Every data point is the mean defocus
estimate of 200 measurements. The standard error is plotted in red.

2.3.6 Calibrating Power-Focus

A calibration routine should be run before running experiments on a fresh sample and/or
new imaging parameters to find the three machine parameters needed to use the focusing
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model, stigmator rotation (ω), stigmator scaling (γ), and numerical aperture (na). They
are essential to calibrate the general optical model to the real-world setup. The na is used
in computing the MTF, ω is used to rotationally align the (kx, ky) coordinate space of
the MTF to the stigmator space which will often be oriented at an angle from the image
scan directions, and γ is used to scale the unit of µm of the astigmatism estimation to the
machine unit of % which is the control variable on the microscope and denotes the amount
of stigmation as compared to the maximum stigmation capacity. The astigmatism in the
machine unit % is estimated by the following eq. .

αm = α × γ, βm = β × γ (2.17)

, where α, β are the astigmatism values in µm and αm, βm are the astigmatism values in
the machine unit %. Results from a typical calibration convergence experiment are plotted
in Fig. 2.10.

numerical
aperture (milli)

stigmator
scaling

stigmator
rotation (deg.)

Figure 2.10: Calibration results: the three parameters (y-axes) against the update iteration
(x-axes)

To find these parameters, the focusing is first done manually and a known defocus (δK) is
introduced. Starting with three initial machine parameters, (ω0 = 0, γ0 = 1, na0 = 0.002),
a defocus estimate (δE) is made using the Power-Focus method, the updated value of na

is then determined by the eq. 2.18.

na =
√

na2
0
δE

δK

(2.18)
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The introduced defocus is then reversed and a known astigmatism (αK , βK) is intro-
duced in the system. As before, an astigmatism estimate (αE, βE) is made and the remain-
ing two machine parameter values are updated by minimizing the cost function, eq. 2.19
for ω and by eq. 2.20 for γ.

costΩ(ω) = [tan−1(αR

βR

) − tan−1(αK

βK

)]2 (2.19)

where,

(αR, βR) =
cos 2ω − sin 2ω

sin 2ω cos 2ω

αE

βE



γ = γ0

√
α2

K + β2
K√

α2
E + β2

E

(2.20)

The calibration routine is repeated until the values stabilize which was found to be typically
around 2-4 update cycles.

2.3.7 Field Curvature in MultiSEM

With the current state of hardware development, the field curvature in the MultiSEM is
not negligible, and minimizing it for later generations is an ongoing field of research. In
the machine we have, there is a notable difference between the focal points of the central
and peripheral beams, and the focal points of the various beams fall on a tilted parabolic
surface as shown in Fig. 2.11 (left), while the maximum difference typically ranging from
2.5 to 3.5 µm.
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Figure 2.11: Correcting for field curvature . Left: optimal focal points estimated for the 91
beams plotted across their xy positions. Right: the defocus estimations versus the beam
number, corrected for the field curvature (in maroon) and without any correction (in black)

The beams, however, share a common working distance from the objective lens because
of how the hardware is designed. This results in a varying defocus across the 91 beams.
Although the blurring of the beams is so slight that it is challenging to identify by visual
inspection and does not pose any danger to future data processing, the modeling of the
field curvature is crucial for determining the optimal shared imaging plane.

In scenarios where the MultiSEM FOV only partially contains the brain sample, and
the remaining area is blank or lacks contrast, the average focal plane can shift towards an
aggregate of the individual optimal focal planes of the beams containing some contrast.
Such a shift distorts the surface model of the wafer, which is undesirable for applications like
large-scale brain imaging projects. To correct this curvature, focus estimation is initially
conducted for each beam individually, and the model of the parabolic surface is recorded.
This model serves to adjust the defocus diversity for the individual beams. Instead of the
common value of ±4 µm, a list of 91 defocus diversities is fed, one for each beam pair.
These diversities are shifted such that the final imaging plane intersects right through the
parabolic surface, and the center and peripheral beams bear the maximum defocus. After
applying this correction, the defocus estimation loses its correlation to its beam position,
as shown in Fig. 2.11(right), where the corrected estimations are plotted in maroon, and
the uncorrected ones are plotted in black.
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2.3.8 Time profiling

The computation time for processing a pair of 512x512 frames is about ∼270 ms, as detailed
in Figure 2.12.

Reading Image
and
processing

Determining
power-spectrums

Selecting
frequencies

Computing
the closed-form
solution

Figure 2.12: Time profiling: The breakdown of total
computation time across the four main steps, analyzed
over 80 beam pairs.

Breaking it down: reading the
images is the quickest step at ∼10
ms; calculating the power spec-
trums takes ∼30 ms; filtering the
frequencies requires ∼42 ms; and
the most time-consuming part is
the solution estimation using the
closed-form method, taking ∼180
ms. We use a multicore machine
and multiprocessing for the Mul-
tiSEM to process 91 beam pairs
concurrently, reducing the compu-
tation time to approximately 1.8

seconds, achieving a speedup of ∼14×. The program was run on a cluster equipped with
72 cores, powered by an Intel(R) Xeon(R) CPU E7-8867 v4 @ 2.40GHz, with 1.4 TB of
memory. It was written in Python 3.6.8. The images were opened using Python Imaging
Library (PIL, [57]), and the image operations were done using the NumPy module(version
1.12.1).

2.4 Discussion

We have found that using a combination of a power-only based, phase diverse focusing
method with an SNR threshold filter achieves a remarkably strong level of robustness.
Aligning the phase diverse images before estimating is no longer required. We also derived
a closed-form solution of the cost function using an approximation by Taylor expansion of
the log-likelihood function around zero, which yielded a speedup of ∼3×. We find that
the recovery range in a defocus-only setup for the biological sample used in this study
imaged at 10 nm pixel size, is around +-150 µm. With astigmatism, the recovery range is
(+-120, +-50, +-50) µm. We also report that the usability of this method is not limited to
biological samples. Non-organic samples, subject to good conductivity, imaged at vastly
different magnifications also show good convergence.



Chapter 3

Data validation and visualization

For milling-based methods where the successive layers can only be exposed after the pre-
ceding layers are irrevocably lost, the scan must be validated for gaps before the next
milling starts. Any gaps in the data can potentially lead to errors when the raw data is
segmented and labeled to reconstruct neural pathways. To address this, we have created
a set of functions that serve as checkpoints, detecting data gaps before the wafer exits
the imaging chamber. Additionally, as our imaging setup includes two stages, one being
a custom, in-house addition, it was essential to calibrate this stage to correct its spatial
target positions, a part of which has been explained in this chapter.

Among the visualization tools, we have introduced functions for quick montage creation,
allowing for the detailed examination of small data segments at high resolution or broader
areas at lower resolution, which has been detailed here. Also, outlined in this chapter is
a method we used to align small data stacks, facilitating the visualization of volumetric
data.

3.1 Introduction

In the current development state, there are two stages in the imaging chamber of our
GCIB-MultiSEM setup. The lower stage is the standard feature of a MultiSEM offered
as an integrated microscope component from Zeiss, referred to as the mechanical stage as
it uses mechanical motors to span a large space in the imaging chamber and has three
degrees of freedom, x, y, and z. The second stage, fixed on top of the mechanical stage,
was designed and developed by Winfried Denk and Jürgen Tritthardt in the Denk lab, and
I assisted with its calibration. This stage has two degrees of freedom achieved by moving
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Figure 3.1: Left: The imaging chamber setup with two stages. 1: Objective lens, 2: sample
wafer, 3: piezo stage, 4: mechanical stage. Center: brain samples on the silicon wafer.
Right: movement of the piezo stage in blue and movement of the mechanical stage in red
covering a part of the sample

two sapphire rods by applying voltages to two attached stacks of piezoelectric crystals.
The mechanical stress changes by varying the two piezo voltages, producing a controlled
two-dimensional movement. This stage is referred to as the piezo stage.

The range of motion of the piezo stage is designed to be within 1 mm, much lower
than the mechanical stage, which can span a large volume of the imaging chamber. The
utility of the piezo stage is in its ability to stabilize within ∼100 ms, which is far less
than the ∼1 s ring downtime of the mechanical stage. This approach should effectively
improve the acquisition speed by ∼ 2×. The entire area of the samples on the wafer is
scanned by combining mechanical stage and piezo stage movements, shown in Fig. 3.1.
The region covered through the movement of the piezo stage, while the mechanical stage
remains stationary, is referred to as a piezo scan. In Fig. 3.1(rightmost), there are 5 piezo
scans, each centered at a different position of the mechanical stage.

The piezo scan also differs from a regular scan in the way the xy deflection is achieved
during the raster. In the regular 2D raster scan mode of a typical SEM, the beam is
deflected in the xy direction by energizing two sets of electromagnet coils built into the
microscope. In a piezo scan, however, the y deflection is achieved by moving the stage in
the −y direction instead of using the y beam deflection. This mode is called the linescan
mode and is a part of the in-built microscope functionality. It only uses the x deflection,
and the resulting scan is a line instead of a 2D image.

In our imaging setup, a single acquisition from the MultiSEM captures a hexagonal
area with a diagonal measurement of ∼165 µm, referred to as the hexagon. The piezo
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movement captures 37 such hexagons covering a larger hexagon (a piezo scan) of a diagonal
of around 1 mm. After the piezo stage has covered this path, the mechanical stage moves
to a neighboring location, which causes the whole piezo stage, along with the wafer, to be
centered at a new field of view. A new piezo scan is captured, and this process repeats
until the whole sample is covered. The mechanical stage then moves to a new sample,
usually a neighboring sample, and the cycle repeats.

3.2 Piezo Stage Calibration

The calibration of the piezo stage involved finding a set of parameters that could translate
the piezo stage’s xy movement vector into the voltages applied to the piezo stack. It was
observed that the parameters had non-linear dependencies on the piezo stage location.
Initially, the attempts to find the non-linear parameters were largely unsuccessful (I was
only partially involved). We observed that as the errors were consistent, we could use them
to adjust the 37 target piezo positions to compensate for the anticipated discrepancy. Only
rotation and scaling parameters were kept, and the non-linearity was accounted for by the
use of adjusted targets.

3.2.1 Method

The sapphire rods in the piezo stage are oriented at around 45◦ from the mechanical stage
xy coordinate space. The space in which these rods move is referred to as the ab space,
the two degrees of freedom corresponding to their movement. A coarse calibration orients
and scales the ab space to the xy space as shown in Fig 3.2. The movement in the ab space
is in green and the xy space is in red. The piezo scan corresponding to the 37 hexagons is
montaged and displayed as an inset near the top center.

For further improvements after a coarse calibration, the error vectors are calculated
between the input target xy positions and xy positions reconstructed from scan data.
Error vectors are then used to correct the input target vectors to compensate for the error
vector along the 37 positions.

Implementing a fast method that uses scan data to estimate the actual path that
the piezo stage took actually served two purposes. We could use it to fine-calibrate the
piezo target positions and validate the scan for sufficient overlaps along the border of the
MultiSEM hexagons (hereafter referred to as hexagons). To compute this path estimate,
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referred to as the reconstructed piezo positions, the following step-by-step approach was
found to be a working solution.

x (mm) / a (mm)

y 
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m
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)
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3

20

Figure 3.2: Left: The path taken by the piezo stage in the xy space (in red) and ab space
(in green) sampled at 2 ms. Right: Magnified view between hexagons 3 and 20 of the
piezo scan montage shown on the top left. The hexagons are positioned at deliberately
stretched-out locations, which produces some space between them. The frames connected
using circle-ended lines are examples of the frame neighbors between hexagons 3 and 20.

Listing neighboring frames

We first list the neighboring frames within the same piezo scan but belonging to different
hexagons, an example of which is shown in 3.2 (right). A k-d tree of frames is used to
find k nearest neighbors for each frame lying on the perimeter of each hexagon. Since k

depends on the uncertainty of overlaps of neighbouring frames, a value of 2 was found to
work for our setup.

Computing shift vectors

The next step is finding all the shift vectors between every neighbor. A standard way to
determine the shift vector is by cross-correlating the frames and locating its highest peak
(eq. 3.1). We also treat the cross-correlation to an operation that enhances the prominent
features of the signal, which in our case is the peak, and also suppresses the noise before
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computing the shift vector. This operation is given by eq. 3.2. The vector from the center
of the cross-correlation to the peak is the shift vector between the two frames. To be robust
against large shifts that are greater than the frame’s half-size, a well-known problem called
phase-wrapping, we first pad the images with 0s along all 4 edges, increasing its size to
twice the original, and then windowing it using a Tukey filter.

CC = F −1(F (f).F ∗(g)) (3.1)

SCC = ∆2
xCC∆2

yCC − G ∗ ∆2
xCC∆2

yCC (3.2)

, where ∆2
i is the discrete second difference along axis i and the convolution with G is

a Gaussian smoothing operation.

peak

shift-vector

padding with 0s

image pair processed images (padded and Tukey windowed) SCC

needlicity: 13.5

Figure 3.3: From left to right: The two EM scan pairs with some translation. After
processing, the two images are padded with 0s from all sides, and a Tukey window is
applied. The SCC (3.2) shows the shift vector from the center to the peak (also shown in
the zoomed square).

A confidence metric, which we call needlicity is also calculated, given by eq. 3.3. It is
an unpublished heuristic metric, developed by Winfried Denk, that gives a numeric value
to the sharpness of the peak. This value is critical in filtering out the false shift vectors,
often the result of cross-correlating frames with little to no overlap.

needlicity = 15 − 0.4 × ln
(

10−20 +
n∑

i=1
1

CCi>
max(CC)

20

)
(3.3)

, where the value is 1
CCi>

max(CC)
20

stands for 1 when the cross-correlation value at index
i is greater than 20 times the maximum value of the cross-correlation, otherwise it is 0. In
most cases, the needlicity value is characteristically higher for true values but in case of lit-
tle overlap between neighboring frames, the chances of the shift vector computation giving



36 3. Data validation and visualization

a false value substantially increase. To address this issue, we use the target location of the
frames to estimate roughly the overlapping area of the neighboring frames. We then use this
cropped intersecting area to compute the shift vector by cross-correlation as shown in Fig.
3.4.

(x, y)1

(x, y)2

Figure 3.4: Cropping the frames in case of little over-
lap. (x, y)1 and (x, y)2 are the target positions of the
two frames. The scale bar in black is 1 µm.

Also, as the shift vector in the
cropped case involves an extra
translation of the second frame,
absent in the full frame case, this
new translation vector is added
to the shift vector before return-
ing. In our setup, the needlicity
of 12.5 or greater is classified as
qualifying. One challenge that re-
quires further attention is that the
needlicity threshold is susceptible
to changing frame size. For vali-
dating shift vectors of full frames
in our dataset, a needlicity thresh-
old of 12.5 works well. However, if

we compute the shift vectors of cropped frames, the effectiveness of the same needlicity
threshold diminishes.

Reconstructing the piezo positions

After the computation of shift vectors, the reconstruction problem essentially boils down to
just solving a system of linear equations, and constructing these linear equations from the
shift vectors is the next step. Every shift vector estimation has a corresponding needlicity,
and we use a needlicity threshold of 12.5 to reject the false values. Every neighboring frame
pair is given an index of 5 dimensions: (αa, βa, αb, βb)η. Here, αa, αb is the hexagon index,
and βa, βb is the beam index of the first and second frame respectively. η is the index that
runs from 1 to ns, where ns is the total number of qualifying shift vectors.

H(αa) − H(αb) = B(βa) − B(βb) + δη (3.4)

,where δη is the shift vector of neighboring frame pair index η , H(i) is the reconstructed
position of hexagon index i and B(i) is the beam position of beam index i. There are ns
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equations like these, and the objective is to solve them for H(i) where i runs from 1 to 37,
for 37 hexagons in a piezo scan. Changing the left hand-side of the equation and moving
to its matrix-form, we can write the set of equations as,



1 −1 0 0 . . 0
0 1 −1 0 . . 0
0 0 0 1 . . 0
0 1 0 −1 . . 0
1 0 −1 0 . . 0


×



H(1)
H(2)

.

.

H(ns)


=



B(62) − B(83) + δ1

B(72) − B(91) + δ2

.

.

B(76) − B(88) + δn


(3.5)

Solving for H(1), H(2), .., H(ns)

H(i) = S+ × (B(βa) − B(βb) + δη) (3.6)

where S+ is the pseudoinverse of the sparse matrix in eq. 3.5 (with 1s, -1s and 0s).
The beam numbers given in the matrix taken are just exemplary. The final solution is eq.
3.6.

Fine calibration of piezo stage target positions

We estimated the new targets by correcting the original targets using the reconstruction
as given by eq. 3.7.

tn(i + 1) = tn(i) + (to − r(i)) (3.7)

tn(0) = to

, where tn(i) are the new targets for iteration i, to are the original targets and r(i) are the
reconstructed positions for iteration i. We adjusted the target positions by incorporating
the anticipated error, thereby offsetting the identified discrepancy. This cycle is repeated
till the maximum discrepancy is in the window of tolerance.
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3.2.2 Result

The results from a recent calibration procedure for the corrected targets of a piezo stage
are presented here. The targets (t0) are shown in Fig 3.5(left). The new targets, (tn)
are iteratively determined following the equation 3.7. The objective is to find a set of
corrected targets tn for which the reconstruction agrees well with t0. After five iterations
of calibration, the maximum discrepancy between the original target positions (t0) and the
reconstructed (or recalibrated) positions is approximately 1.3 µm, with the average value
being around 0.2 µm. The reduction in error through subsequent iterations is visually
represented in the Fig. 3.5(right). The analysis of errors involves comparing the target
positions (t) and the reconstructed positions (r) using the equation 10 × t − 9 × r. The red
lines in Fig. 3.5(right) represent this comparison, highlighting the discrepancies between
the t0 and reconstructed positions and how they change iteratively over the course of
calibrating.

100 µm 100 µm

TARGETS (10 × TARGETS) −  (9 × RECONSTRUCTION)

Figure 3.5: Left: The 37 xy target positions of the piezo stage are shown in green dots,
and the target path is shown as the green line. Right: The error between the reconstructed
and the target positions is visually represented in red through the equation 10×t - 9×r,
where t are the target positions and r are the reconstructed positions. The variation in
transparency among the lines corresponds to different iterations, ranging from 1 to 5, with
the transparency decreasing progressively; the final iteration is depicted with the least
transparency.
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3.3 Detecting gaps within the piezo scan

Once the piezo is well calibrated, the likelihood of finding gaps is low. However, it is
still important to continue validating the incoming piezo scans to keep the calibration in
check. The presence of gaps in the data can be catastrophic at a later stage in the pipeline,
rendering the full dataset or a part of it useless.

3.3.1 Method

The sufficient condition for a piezo scan to have no internal gaps is that the complete
perimeter of each of its hexagons intersects with the neighboring hexagon’s perimeter.
There should not be any residual perimeter that has no intersection.

Figure 3.6: Left: The perimeter of 37 sequentially numbered hexagons of a piezo scan is
shown in purple. The target sequence of the piezo stage is shown in blue. Right: A
zoomed-in view of the yellow shaded area from the left image, showing the border beam
frames’ indices.

This perimeter is shown in Fig 3.6 as purple lines. The piezo positions are stretched
out by 10 % to clearly show this perimeter. Every purple edge belongs to a beam frame
which itself belongs to a hexagon. The amount of overlap is a simple subtraction problem
involving the neighboring frames’ width, height, and location. The complete routine has
been presented in detail below.
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Inputs

1. List of 37 piezo positions (hx, hy)i where i runs from 0 to 36.

2. List of frame positions for a zero-centered hexagon, (bx, by)j, where j runs from 0 to
90 for 91 beam frames

3. The width (w) and height (h) of the beam frames.

Output

A list of overlapping areas and a list of remaining exposed edges.

Steps

1. Create a lookup table in the form of a dictionary that maintains a record of the edges
of each of the 37 hexagons in a piezo scan, including only the edges that border a
frame belonging to the same hexagon, as shown by purple lines in Fig 3.6. This
lookup table is referred to as exposed edges. Each frame should have four values
corresponding to the top, bottom, left, and right edges.

2. Create a k-d tree using the 30 × 37 frame coordinates belonging to the 30 border
frames of the 37 hexagons. These frames are indexed from 61 to 90 because only the
border beams are taken.

3. Iterate over the frames in the exposed edges and query the k-d tree for 6 nearest
neighbors within a radius of

√
w2 + h2.

4. Iterate over all the found neighbors. Skip and continue if a neighbor belongs to the
same hexagon. If it belongs to a different hexagon, calculate the overlap using the

overlapx = w − |xa − xb| & overlapy = h − |ya − yb| (3.8)

, where (xa, ya) is the coordinate of the current frame and (xb, yb) is the coordinate
of the neighboring frame.

5. If the overlap (eq.3.8) is positive, update the exposed edges of that frame by sub-
tracting the intersecting perimeter from the corresponding direction - top, bottom,
right, or left.
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6. Append the positive overlaps to a result list.

7. Repeat the steps for every frame updating the overlaps result list and the exposed
edges.

If the exposed edges have no positive values at the end of the iteration, then the piezo
scan has no gaps and the acquisition proceeds without interruption. The result list can be
used to keep track of the amount of overlap within the piezo scan.

3.3.2 Result

A

B

C

O

horizontal overlap

vertical overlap

Figure 3.7: A triplet of neighboring hexagons
with sufficient overlap.

Histograms are used to visualize the dis-
tribution of overlaps within a piezo scan.
The vertical overlap within the piezo scan
is only taken by frames belonging to either
the top or the bottom edge of the neigh-
boring hexagons, an example of which is
shown by the red and blue hexagons in Fig.
3.7, which share the border OA. A sin-
gle example of the vertical overlap has been
shown by the red and blue frames. The hor-
izontal overlap is only taken from pairs of
frames belonging to the remaining 4 edges
of neighboring hexagons, as shown by the
red and green hexagons in the same figure,
which share the border OC, and the blue
and green hexagons, which share the border OB. The horizontal overlap is also shown
using a single pair of red and green frames. The piezo calibration experiment presented
in the previous section had accompanying histograms, which have been shown in Fig. 3.8.
The first iteration revealed vertical gaps (in red) as well as horizontal gaps (in blue) as
negative overlaps. The later histograms show a narrower distribution, indicating reduced
errors and improved alignment between the target and the reconstruction.
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Iteration 1 Iteration 3 Iteration 5 

Gaps detected !

Figure 3.8: The evolution of the histogram, showing vertical overlaps in red and horizontal
overlaps in blue (in pixel units), through a typical piezo target calibration process.

3.4 Montaging

Creating a montage from single or multiple piezo scans involves merging the encompassed
beam frames into one comprehensive image. They provide a quick way to visually inspect
the acquisition and validate the reconstruction’s accuracy.

3.4.1 Method

A single piezo scan produces 91 image files, one for each beam. A single beam file contains
accrued data from each of the 37 hexagons as shown in Fig 3.9b. This file also contains
the transitory acquisition, the region above the top red arrow and below the bottom red
arrow. The region within the arrows is the beam frame, which is cropped out when the
montage is created.

Every piezo scan follows a trigger signal, which controls the time instances when the
piezo will move to the next hexagon location. The time between two consecutive triggers
is when the scan is taken. These signals are saved along with the rest of the metadata in
the scan folder. The montaging function uses it to crop out 37 beam frames from the long
accrued frames. The conversion from the trigger signals in time to 37 y-pixel locations
from where the frame can be cropped is done using the set of eq. 3.9
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ycrop = rms × [j | ∆j > 0.1 for j ∈ (0, 1, 2, 3, ...n)] (3.9)

where ∆ is the discrete difference along the time axis, j is the time index from 0 to n,
and rms is rows traveled in 1 ms, which in our setup is ∼1.59 currently.

100 ms

2 µm

Beam 0  of hexagon 0

Beam 0  of hexagon 34

0
1

34

2
3

a)

100 ms

~40 s

9065 10425

y-pixel = time in ms X rows traveled in 1 ms

b) c) Trigger signals in time

Figure 3.9: a) A piezo scan is illustrated in blue, with the center beam frames highlighted
in orange. b) The long scan on the left is the center beams of the 37 hexagons accrued one
after the other, with the expanded view of the center beam of hexagon 4 displayed on the
side. c) The trigger signals are shown on the top with the fourth trigger expanded below,
the time between the red arrows is when the frame was acquired. The corresponding y
pixel location of the red arrows in (b) is plotted at the bottom.

We use the Python Imaging Library (PIL [57], PyPI repository: pillow) to create a
blank canvas of maximum size 1 GB on which the individual frames are pasted.

In constructing a montage from a single piezo scan, the placement of each beam frame
is determined by adding the piezo position of its hexagon to the beam location identified by
its beam index. When the montage involves multiple piezo scans, this method is adapted
to account for the varying center positions of the piezo scans. Specifically, the frames’
paste locations are further adjusted by adding the piezo center positions, which translates
the next piezo scan to a different location.
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3.4.2 Result

A piezo montage is shown below (Fig 3.10). Some hexagon borders are depicted as black
dashed lines to demonstrate effective stitching and successful piezo position calibration.
The border that appears in white is concealed beneath the overlaying frames because the
visibility of a border also depends on the sequence of the frame pasting on the montage.

100 µm

tear

radiation burn

10 µm

10 µm

Figure 3.10: A piezo montage with two rectangular regions magnified. Black dashed lines
are the hexagon borders. The white dashed line is the border concealed beneath the
overlaying frames.

An overview montage containing multiple piezo scans covering almost the complete
sample area of the two samples on the wafer (top) is shown in fig. 3.11.
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1 mm

sample 1

sample 2

2 samples on silicon wafer

a missed
sample region

Figure 3.11: Top: A camera image of a wafer with two slices of brain samples (purple)
taken by Jonas Hemesath. The sample was also prepared by Jonas Hemesath (sample B
2.2.3). Bottom: An overview montage of acquisitions taken by Winfried Denk (setup B,
2.2.3)
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3.5 Detecting gaps between piezo scans

As the mechanical stage transitions to another piezo center for subsequent piezo scanning,
we have to ascertain that there are no gaps in the interstitial space between neighboring
piezo scans. We use a similar method to the one that detects gaps within the piezo scan
(3.3).

3.5.1 Method

This validation is done using only two piezo scans at a time. The first step is to find the
beam frames along the border of the piezo scan which is neighboring the border of the
adjoining piezo scan. The pairs of neighboring frames are cross-correlated to find the shift
vectors between them. The piezo centers are reconstructed, two at a time, and the gaps
are detected using the piezo exposed edges lookup table.

Finding neighboring frames

As the piezo scans are taken sequentially and the validation is done in parallel, the neigh-
boring piezo scans are found using a k-d tree of the set of coordinates of the piezo scan
centers that have already been acquired. The overlap validation is pair-wise.

To find the bordering frame indices between a pair of neighboring piezo scans, a k-d
tree is created from the set of coordinates of all the frames belonging to them. The k-d
tree is then queried for pairs of frames closer than

√
w2 + h2 and the ones that belong to

different piezo scan indices are collected in a list. Every neighboring frame pair is labelled
with 6 indices : ((πa, αa, βa), (πb, αb, βb)), where (πa, πb) are the piezo indices, (αa, αb) are
the hexagon indices and (βa, βb) are the beam indices of the two frames a and b.

Computing shift vectors

The shift vectors between the neighboring frames are computed between full frames follow-
ing the same method explained in section 3.2.1. The list of shift vectors along with their
needlicity and the six indices ((πa, αa, βa), (πb, αb, βb)) is saved to a file.

Reconstructing piezo centers

The reconstructed piezo centers are computed following the same technique as in section
3.2.1.
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The solution to the equation Eq. 3.10 gives the reconstructed vector. One qualifying
shift vector is sufficient to solve this equation as every other quantity on the RHS is known.

Πr0(πa) − Πr1(πb) = (Π0(πa) − Π1(πb)) + (B(πa, αa, βa) − B(πb, αb, βb) − δη) (3.10)

, where Πr0(πa) − Πr1(πb) is the reconstructed vector and Π0(πa) − Π1(πb) is the target
vector for the piezo indices (πa, πb), δη is the shift vector and B(πi, αi, βi) is the frame beam
frame location belonging to the πi piezo index, αi hexagon index, and βi beam index for
the two neighbouring frames i. where i ∈ (a, b). As the set of equations is overdetermined,
we use an average of the final result.

Finding gaps between the piezo scans

As in the case of finding gaps within a piezo scan where we use a lookup table of exposed
edges along the borders of hexagons within a piezo, the gaps between two piezo scans use
a lookup table of exposed edges along the border of the piezo scan (Fig. 3.12).

Hexagon index

Beam index

1

0

2

Piezo index

Figure 3.12: The border between two piezo scans (0 and 1) is shown in blue and pink. The
hexagon and beam indices, which belong to the lookup table for this edge, are given. A
few examples of the frames that are neighboring are indicated by connecting black lines.

A single piezo scan, being a hexagon in shape, can border a neighboring piezo in 6
possible directions. and can have a maximum of 6 neighbors. For every neighbor, the
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bordering exposed edge is selected. A single piezo scan’s exposed edges lookup table is a
dictionary with keys from 0 to 36 for 37 hexagon indices. The values are dictionaries from
0 to 90 for 91 beam indices. If a beam frame is contained within a piezo and is not at the
border, then the corresponding exposed edge value is set to None. The steps of the routine
are presented below.

Inputs

1. List of piezo centers (px, py)i where i runs from 0 to the total number of piezo centers
on the wafer.

2. List of 37 piezo positions (hx, hy)i where i runs from 0 to 36.

3. List of frame positions for a zero-centered hexagon, (bx, by)j, where j runs from 0 to
90 for 91 beam frames

4. The width (w) and height (h) of the beam frames.

Output

A list of overlapping areas and a list of remaining exposed edges.

Steps

1. Create a new k-d tree with reconstructed piezo centers, using all the frame coordinates
of the frames belonging to the two piezo scans for which the gap is being estimated.
The coordinates of all the frames are calculated using their piezo index, hexagon
index, and beam index.

(fx, fy) = (px, py)π + (hx, hy)α + (bx, by)β (3.11)

where π is the piezo index, α is the hexagon index, and β is the beam index of the
frame.

2. Query the k-d tree to find pairs of neighboring frames belonging to different piezo
scans. Iterate through them while estimating the overlap as in section 3.2.1.

3. If the overlap is positive, update the exposed edges of that frame by subtracting the
intersecting perimeter from the corresponding direction - top, bottom, right, or left.
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4. Append the positive overlaps to a result list.

5. Repeat the steps for every frame updating the overlaps result list and the exposed
edges.

If no positive exposed edges are remaining for the border edge shared between the two
piezo scans as shown in Fig. 3.12, then there is no gap. In the example, the piezo scan
index 0 and 1 are immediate neighbors with a shared border in the north-west direction
from 0. The exposed edge will only have frames from hexagon indices 17, 18, 19, 22 from
piezo 1 and 7, 32, 33, 34 from piezo 0. Both the piezo scans are also bordering with another
piezo: 2. This is repeated for all the immediate neighbors of the piezo scan.

3.5.2 Result

Border between
two piezo scans

20 µm20 µm

Piezo 1

Piezo 2

Gaps detected !

a)

b)

Figure 3.13: A faulty scan: The inset (a) shows two bordering piezo scans and the region
inside the green window is magnified and shown in the left montage, with a green border.
The inset (b) is the histogram of the overlaps (in µm) between the two piezo scans, with
the horizontal overlaps in blue and vertical overlaps in red. The montage on the right with
the blue border is the magnified region within the blue window on the left montage. The
border between the two piezo scans is drawn as a shaded black line.
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The vector connecting the center positions of the two neighboring piezo scans was recon-
structed, and the updated frame coordinates were used to identify any gaps along their
border as outlined in the previous section. This analysis revealed a negative horizontal
overlap, indicating a gap between the two scans. Figure 3.13(left) shows a montage that
magnifies the area between the two piezo scans (green window in the inset (a)), making
the gaps clearly apparent. Further magnification of the area inside the blue window, as
shown in the right montage, reveals the effective stitching between the scans. This visual
inspection of the stitching quality serves as a reliable method for verifying the accuracy of
the reconstruction during the project’s development phase.

To streamline the process and maintain automation, without the need for time-consuming
visual inspection of each neighboring pair montage, an accompanying histogram of the hor-
izontal and vertical overlaps is generated as shown in the inset Fig. 3.13(b).

3.6 Stack alignment

Once multiple scan layers have been acquired, creating small volume stacks becomes ben-
eficial for observing changes in neural matter along the z-direction, confirming sufficient
milling.

The difficulty in frame alignment escalates with the increase in reinsertion errors within
the system. In setups where the brain sample experiences minimal movement between
milling sessions, aligning images is simpler since shifts typically do not go beyond single
frames. In the latest developments of our setup, we observed lateral errors that span
beyond a single frame and minor rotational differences among the different layers; because
of this, the alignment is tackled in two steps - rough and fine alignment. The rough
alignment determines the large movements and brings the shift down within a single frame.
Currently, this adjustment has only been achieved visually for each layer. Automating the
correction of insertion errors when the wafer comes back from the milling chamber is one
of the objectives for future development. The fine alignment is done by cross-correlating
overlapping frames from neighboring layers to find a set of frame coordinates that minimize
the relative shifts.

In this study, we developed, tested, and employed the fine alignment tool to compile
stacks from acquisitions made with the setup in the year 2020. Since then, the tool has seen
limited use, and due to significant changes in the setup, the implementation has become
outdated and is not included in the code repository. However, the underlying theoretical
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methodology remains unchanged and is explained below. The stack that was produced in
2020 has been presented in the results section.

3.6.1 Method

Figure 3.14: Two pairs of overlapping frames.
The top layer is shown in blue, and the bot-
tom layer is in gray.

The rough alignment, which brings the
shifts down within a single frame, was done
visually by creating full-resolution hexagon
montages that share the same piezo and
hexagon index. The coordinates of any
distinct common feature, like an organelle
across the complete hexagon set, were
recorded. The center coordinate of the
hexagon belonging to the first layer is given
(0, 0). The center coordinates of all the
layers on top are translated using the es-
timated shift as an offset so the common
feature is aligned.

The fine alignment step is essential for ensuring smooth transitions between frames in
stack alignment, addressing any remaining relative shifts between frames. Starting with a
simple case of two layers with two overlapping pairs of frames, (3,1) and (3,2), as shown
in Fig. 3.14, we can formulate the following equations.

|(p3 − p1) − δ31| = ϵ31

|(p3 − p2) − δ32| = ϵ32

pij = pi − pj

, where pi is the position for the frame i, δij is the shift vector from frame j to frame i,
and ϵij is the discrepancy between the vectors pij and δij, i, j ∈ (1, 2, 3).

This can be extended to incorporate n pairs of overlapping frames, allowing for the
formulation of a general equation given below.

|(pi − pj) − δij| = ϵij (3.12)
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, where i and j are all the overlapping pairs. A solution of this equation which gives the
lowest errors of ∑ ϵij = 0 is,

pi − pj = δij (3.13)

Finding the positions for every frame in the stack with at least one overlapping neighbor
is trivial with the final equation being,

P = S+∆ (3.14)

, where P is the row matrix for the xy position coordinates of all the frames in the stack,
S+ is the pseudoinverse of the sparse matrix, S, with each element being either 0, 1, or -1,
that keeps track of the signs, and ∆ is the matrix with the corresponding shift vectors.

All the shift calculations in this section are done using the method explained in section
3.2. The complete workflow involves multiple steps, outlined as follows.

1. All the frames in the dataset are labeled by the index (π, α, β, γ) where π is the piezo
index, α is the hexagon index, β is the beam index, and γ is the layer index from 1
to nl, the total number of layers being nl.

2. (nl − 1) k-d trees are created for every layer except the first one.

3. A small number of neighboring seed frames are selected from the first layer, which
will be the field of view of the final volume stack. Starting with the first seed frame,
the overlapping frames from the next layer are identified by searching the k-d tree
of that layer, using the current frame’s location to find up to 5 nearest neighbors.
The initial seed frame is also assigned a single index, 0. This index denoted as f , is
then incremented by 1 each time a frame is labeled. A dictionary that maintains the
index (π, α, β, γ) of the frame belonging to each index f is also recorded.

4. During the iteration over the resulting frames, each one is checked for overlap by
verifying if the distance between any two frames is less than the frame’s width and
height. The f tuple for each overlapping frame pair is added to a list, which maintains
a record of all such pair indices, referred to as F .
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5. Steps 3 and 4 are iteratively applied to each seed frame and its selected overlapping
frames, continuing this process until all layers have been covered.

6. The set F is iterated over, and shift estimations are performed on the pairs of frames
corresponding to each f tuple while keeping track of the signs in the matrix S and
the corresponding shift vectors in the matrix ∆.

7. Equation 3.14 is used to solve for P .

While creating montages for every layer, the dictionary that kept track of the index
(π, α, β, γ) for every f is used to retrieve the appropriate frame from the dataset and
identify the layer to which it belongs.

3.6.2 Result

The presented stack was acquired by Winfried Denk and the brain sample was prepared by
Maria Kormacheva and Alexandra Rother. Fig. 3.15 shows three slices from the 39-slice
stack to show the common field of view. The changing neural matter in the subsequent
slices indicates successful milling, and the re-sliced view in the xz plane shows the alignment
as seen from the side. The link to the stack has also been given in the Fig. 3.15.

Slice 1 Slice 9 Slice 18

Reslice in the xz plane

Figure 3.15: Three aligned scan slices illustrate the changes in neural matter due to milling,
highlighted within blue circles. The bottom image is a re-sliced view of the stack in the
xz plane, with the blue arrow indicating the alignment in the z-direction. The QR code
can be scanned to directly access the link where the stack is uploaded. The direct link is :
https://jmp.sh/nyrN0Sm2

https://jmp.sh/nyrN0Sm2
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Chapter 4

Conclusion and Outlook

At the outset of the project, our EMs lacked reliable focusing routines. We have since
devised and implemented a novel focusing technique that significantly extends the recovery
range by ∼ 4× and have made it available on our machines. The newly developed focusing
routine has been operational for two years, with the latest update using the closed-form
solution implemented over the past year. With the power-only approach and effective noise
filtering, the recovery range now falls within the machine movement’s uncertainties.

While local focusing works well at specific locations, ensuring that the acquisition stays
in focus throughout requires further investigation to predict the wafer surface focus model
within tolerance limits. Moreover, we lack a solid theoretical foundation to adaptively
adjust the phase diversity (presently at ±4µm) as the system zeroes in on the precise focus.
Furthermore, the method is susceptible to sample charging, and our current implementation
involves a heuristic approach to detecting and excluding the charging patches from the
input data prior to aberration calculation. However, this heuristic method has been omitted
from the current report due to its lack of general applicability.

We developed toolkits for the acquisition pipeline that enable the detection of data gaps
and facilitate rapid montaging. The reconstruction method initially devised for detecting
gaps in piezo positions was effectively adapted to pre-correct target positions of the piezo,
proving to be valuable in the calibration of the stage. We successfully aligned a subset of
the acquired data stack as proof of concept.

While the toolkits are available for independent use, the development of a controlling
program that would automatically trigger and synchronize these functions during data
acquisition is still pending. Furthermore, a significant challenge anticipated in stack align-
ment involves aligning data from multiple slices on the wafer, as these slices may be oriented
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in various directions on the sample. This process requires sequencing the slices in the order
they were cut before standardizing their rotation.



Appendix A

Tools Used

ChatGPT4 [12] was used to find synonyms for words that were closest to my intended
thought. It was also used to improve the clarity of specific single sentences, which sounded
confusing after the first draft of the thesis. This was done with around 11 sentences
in the Introduction, around 3 in Chapter 2, and around 13 in Chapter 3. The reply
was never copied directly but a modified version was used in combination with my own
changes to write a sentence closest to my intended thought. It was also used heavily to
find information related to biology in the Introduction, which was then used as a filter
to further research on Google/Google Scholar. Grammarly was used almost constantly to
check for any grammatical mistakes and also for better sentence formation. Equations 2.8,
2.9, 2.12-2.15 were derived using Mathematica(13.2). The 4 black and white graphics used
in Fig 1.1 were made using ChatGPT4 and have been cited.
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Appendix B

Acronyms

PSF: Point Spread Function
MTF: Modulation Transfer Function
PD: Phase diversity
EM: Electron Microscope/Microscopy
VEM: Volume Electron Microscopy
SEM: Scanning Electron Microscope
FEG: Field Emission Gun
GCIB: Gas Cluster Ion Beam
FOV: Field Of View
SNR: Signal to Noise ratio
HHMI: Howard Hughes Medical Institute
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Appendix C

Supplementary

C.1 MTF Derviation
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Figure C.1
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Assuming geometrical optics, in an optical system with defocus as the only aberration
present, and a flat illumination function the cross-section of the beam is a circular disk
of radius rc = ρ/f ∗

√
δ2, where ρ is the pupil radius, f is the focal length and δ is the

defocus. The beam probe cross-section becomes elliptical when astigmatism is present in
the system. The two semi-axes of the ellipse, A and B depend on the focal length of the
sagittal and meridional ray fans which are shifted from the ideal focal point by ±η/2.

A = na ∗ (δ + η/2)2, B = na ∗ (δ − η/2)2 (C.1)

, where the numerical aperture na = sin(p) ≈ tan(p), the p being the probe convergence
angle (see Fig. C.1d). The eccentricity of the ellipse depends on the orientation of the two
ray fans from the scan direction xy as shown in Figure C.1a, c, and d. The locus of the
boundary of the elliptical disk, defined by the propagation of the marginal rays at the exit
pupil, follows the equation

(x cos(ϕ) − y sin ϕ)2

A2 + (x sin ϕ + y cos ϕ)2

B2 = 1 (C.2)

and the resulting, PSF can be written as a piece-wise function,

PSF (x, y, δ, η, ϕ) =
 1, if

√
(x cos(ϕ) − y sin ϕ))2B2 + (x sin ϕ + y cos ϕ)2)A2 < AB

0, if
√

(x cos(ϕ) − y sin ϕ))2B2 + (x sin ϕ + y cos ϕ)2)A2 > AB


(C.3)

Computing, the Fourier transform of an elliptical disk becomes significantly simpler
when starting with the Fourier transform of a circular disk, the result of which is widely
published. Goodman (p. 16, [52]) shows that the Fourier transform of a circular disk is
a Bessel function of the first kind (Fig C.1b). A normalized version of this function with
unity at the origin is eq. C.6

x′− > (x cos(ϕ) − y sin ϕ)2B2 (C.4)
y′− > (x cos(ϕ) − y sin ϕ)2A2 (C.5)

F (circ(
√

x′2 + y′2)) = 2J1(2πρ)
2πρ

(C.6)



C.1 MTF Derviation 63

, where ρ =
√

f 2
x + f 2

y

A rotation and scaling transformation of the axes can then be used to derive the Fourier
transform of an elliptical disk,

fx/(2π) =
√

(kx cos(ϕ) − ky sin ϕ)2B2 (C.7)

fy/(2π) =
√

(ky cos(ϕ) − ky sin ϕ)2A2 (C.8)

As the input stigmation vector in the microscope is in cartesian coordinate, we also do
the following transformation

η →
√

α2 + β2 (C.9)

ϕ → arctan(α

β
)/2 (C.10)

Plugging, the above equations in C.6, we arrive at the formula for the MTF,

MTF (kx, ky, δ, α, β, na) = 2
J1(
√

na2((k2
x + k2

y)(δ2 + α2 + β2) + 2δα(k2
x − k2

y) − 4δβkxky))√
na2((k2

x + k2
y)(δ2 + α2 + β2) + 2δα(k2

x − k2
y) − 4δβkxky

)

(C.11)

A close Gaussian approximation of this formula for our imaging parameters is

MTF (kx, ky, δ, α, β, na) = exp (−na2

8 ((k2
x + k2

y)(δ2 + α2 + β2) + 2δα(k2
x − k2

y) − 4δβkxky))

(C.12)

This was first published in Binding 2013 [23]. The rationale for presenting this proof lies
in the observation that I did not find the explanation provided in the supplementary part
of the thesis of Jonas Binding sufficiently detailed and that future research involving the
MTF must have a thorough understanding of the foundational derivations.
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