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Abstract

Understanding how an enormous diversity of neuronal cell types is generated has been a
major objective of neurobiology. This task is particularly challenging in the case of inhibitory
neurons because they migrate long distances during development. It is believed that a combi-
nation of intrinsic factors and external signals influence progenitor cells to differentiate into
distinct types of inhibitory cells, such as interneurons or long-range projection neurons.

To tackle this issue, one approach involves examining the clonal relationships between in-
hibitory cell types in the brain. In this thesis, I established a single-cell RNA sequencing com-
patible, lineage-tracing method, TrackerSeq, that enables both the identity of a neuron and its
developmental history to be retrieved simultaneously to analyze developmental relationships of
inhibitory cell types in the mouse brain. TrackerSeq achieves this by tagging progenitors with
inheritable DNA barcodes followed by transcriptome sequencing at a later time point to ana-
lyze developmental relationships of inhibitory cell types in the mouse brain. Using TrackerSeq,
I found different inhibitory cell types occupying different regions in the brain shared inherited
the same lineage barcodes, suggesting that mitotic progenitors can give rise to different cell
types.

Subsequently, I explored whether specific transcription factors expressed in inhibitory neu-
rons, such as Meis2 and Lhx6, play a crucial role in determining the fate of inhibitory cell types.
Single-cell sequencing compatible perturbation methods, like tCROP-seq, have emerged as an
effective way to interrogate the impact of these factors on the outcome of neuronal fates. In a
typical tCROP-seq protocol, sgRNAs are delivered to cycling progenitors via in utero electropo-
ration to introduce fameshift mutations in genes of interest, followed by sequencing of neurons
at a later timepoint.

By analyzing the tCROP-seq data obtained from perturbing Meis2, I observed that interneu-

ron genes were upregulated in projection neuron cell types, leading to an increased proportion



xvi Abstract

of interneurons. Interestingly, perturbing Lhx6 had the opposite effect. These findings suggest
that when Meis2 is perturbed, progenitor cells originally destined to become projection neu-
rons may instead differentiate into interneurons. To confirm this possibility, I employed Track-
erSeq barcodes to tag non-perturbed and Meis2-perturbed cells. The analysis revealed that
Meis2-perturbed mitotic cells shared more clones with interneurons than projection neurons,
providing further evidence that Meis2 perturbation promotes the preferential differentiation of
progenitor cells into interneurons.

My findings reveal that specification of inhibitory subtypes already takes place at the pro-
genitor stage and require the expression of select transcription factors. Gaining a better under-
standing of how genetic programs such as lineage and transcription factor expression influence

subtype specification can improve our modeling of neurodevelopmental disorders.
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1 Introduction

1.1 Developmental origins of GABAergic neurons

The adult mammalian forebrain has long fascinated scientists with its ability to form con-
scious thoughts, emotions, and store memories. Such tasks are due to billions of neurons that
form thousands of connections with one another, including both glutamatergic excitatory and
[GABAkrgic inhibitory cells. Excitatory neurons comprise the largest proportion of cortical cells
and are responsible for transmitting information across different regions of the brain through
long-range connections. Although inhibitory neurons only represent around 10-20% of the
brain, they play an important role in preventing or inhibiting the firing of other neurons. Most
[GABAkrgic neurons use the [GABAkrgic neurotransmitter which binds to synaptic re-
ceptors, to dampen nerve cell activity. They are proportionally more abundant in human brain
than other species and exhibit different molecular, morphological, and physiological properties.

Ramon y Cajal was one of the first neuroscientists to explore the diversity of [GABAkrgic
neurons. By combining microscopy with an innovative staining technique, he documented the
intricate morphology of different cortical[GABAkrgic interneurons, which he called "butterflies
of the soul". Since Cajal’s Nobel-prize-winning work in 1906, our understanding of how this
incredible diversity is generated has advanced considerably.

[GABAkrgic neurons can be divided into two main types: interneurons or projection neu-
rons. Interneurons generally project locally and are characterized by their diverse morphol-
ogy, connectivity pattern, expression of molecular markers, and electrophysiological proper-
ties (Kepecs and Fishell 2014). For example, parvalbumin (PV) interneurons are a subset of
fast-spiking interneurons. Long-range [GABAkrgic projection neurons, as their name would

suggest, project to other regions of the brain with distinct function (Caputi et al. 2013). The
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Figure 1: Multiple dimensions of interneuron diversity. Interneuron cell types are usu-
ally defined using a combination of criteria based on morphology, connectivity pattern, synap-
tic properties, marker expression and intrinsic firing properties. The highlighted connections
define fast-spiking cortical basket cells. Taken from Kepecs and Fishell 2014,

most abundant [GABAkrgic projection neurons, called medium spiny neuron (MSN)s, are lo-
cated in the striatum, where they make up 95% neurons in that region.

After the[GABAkrgic cell types are born, they migrate long distances tangentially to settle in
various regions such as the cortex, striatum, hippocampus, amygdala or olfactory bulb (Bandler,
Mayer, and Fishell 2017). Typically, [GABAkrgic interneurons are found mainly in the cortex,

while long-range [GABAkrgic neurons are located in subcortical regions.

1.1.1 GABAergic neurons are born from ganligoninc eminences

Inhibitory interneurons are born separately from their excitatory counterparts during devel-
opment and do not have a shared origin (Sultan and Shi [2018). Radial glia residing in the
ventricular zone (VZ) of the embryonic subpallium generate all[GABAkrgic neurons in the te-

lencephalon until the subventricular zone (SVZ) later takes over the as the main site of
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cell proliferation (Garcia and Harwell 2017). Postmitotic cells derived from these proliferative
regions move basally into the mantle zone, where they migrate to their final location.

In mice, [GABAkrgic neurons are generated from E11 to E17 in different parts of the ventral
telencephalon, in regions termed ganglionic eminence (GE)s and preoptic area (POA). The[GElis
a transient structure during embryonic development. It first appears as protrusions in the lateral
ventricles at E11 in the mouse; as embryonic development comes to an end, the morphological
boundaries within the GE disappear until it is no longer visible in the postnatal brain. The
can be divided into three subregions: medial, caudal, and lateral GE (MGE] and[LGE
respectively).

A great diversity of cell types is generated from subpallial progenitors that reside in the
They produce progenitors that eventually differentiate into non-overlapping neuronal
subtypes. Around 60% cortical interneurons are generated from the medial ganglionic emi-
nence (MGE) and express[PVlor somatostatin (Xu et al. 2004}, Butt et al.2005; Miyoshi et al.[2007).
The lateral ganglionic eminence (LGE) is located near the developing neocortex and gives rise
to the interneurons of the olfactory bulb, as well as the of the striatum. The [LGFl and
[MGElfuse into caudal ganglionic eminence (CGE)), which is towards the caudal end of the telen-
cephalon. Producing a smaller proportion of interneurons, [CGE|produces cortical interneurons
that express the vasoactive intestinal peptide or the Reelin glycoprotein (Bandler, Mayer, and

Fishell 2017).

1.1.2 Inhibitory neuron specification by transcription factors

Here, we will dive into the cell-autonomous role of transcription factor (TE)s in inhibitory neu-
ron specification. Loss-of-function studies have identified several early-expressing [IFs within
inhibitory neurons and their progenitors that are necessary for informing cell fate. Early-
expressing [TFs tend to be broadly expressed in other ventral telencephalic lineages or are re-

quired for early regional patterning and identity of in general (Miyoshi, Machold, and
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Figure 2: Ganglionic eminences produce GABAergic interneurons and projection neu-
rons. A) Image showing the boundary between the dorsal and ventral telencephalon. The ven-
tral telencephalon produces[GABAkrgic neurons that migrate long distances to different regions
in the brain. The dorsal telencephalon generates excitatory cells that migrate short distances
radially into the cortex. B) Diagram illustrating the various cell types that each ganglionic emi-
nence produces and the brain structures they occupy, which includes[GABAkrgic interneurons
(red),[GABAkrgic projection neurons (green), and Cholinergic interneurons (dark blue). Taken
from Bandler, Mayer, and Fishell

Fishell 2013). For example, sonic hedgehog and fibroblast growth factor signaling induce tran-
scriptional pathways are crucial for the proper specification of the [MGE] [LGE] and [CGEl(Guille-
mot and Zimmer Hébert and Fishell [2008).

Once ganglioninc eminence (GEs) are formed, the birth of more specific types of inhibitory
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neurons requires combinations (specific codes) of dynamic[TFs expressed at mitotic and postmi-
totic time points (Lodato and Arlotta [2015). Commitment to the inhibitory lineage is initiated
by transcription factors DIx1/2, which then go on to activate downstream [TFs (Petryniak et
al.|2007). Later, the homeobox1 gene Nk2 homeobox1 (Nkx2-1) is expressed in the
where it is critical for the establishment and maintenance of progenitors in the and
NKX2-1 and its downstream [TF, LHX6, are necessary for the development of [MGE}derived in-
terneurons, since their absences cause MGElFderived interneurons to fate switch into more
and [LGEHike derived inhibitory subtypes.

Expressed primarily in the LGE/CGE neuroepithelium, the homoebox factor GSX2 appears
to be another [TH involved in interneuron specification. It controls the expression of other
pro-neural genes such as DIx2, Olig2, and Ascl2, and its loss leads to a selective reduction in
calretinin-expressing interneurons in the cortex (Waclaw et al. 2009). Other [TEs involved in
[CGE}derived interneuron production include NR2f1, NR2f2, PROX1, and ADARB2 (Flames et
al. 2007; Miyoshi et al. 2015). The LGE ventricular zone is characterized by the expression of
Gsx2, Er81, and low levels of Pax6. MEIS2, a member of the TALE family of [TEs containing
the homeodomain, has DLX1/2 driven expression in Its deletion leads to an improper
differentiation of [MSNE, suggesting that it is important for the specification of [LGEl-derived
[GABAErgic neurons.

Upon being postmitotic, progenitors diverge and differentiate into transcriptionally distinct
precursor cell states that represent populations fated to give rise to interneurons or projec-
tion neurons (Mayer et al.2018). Branch 1 (precursor state 1) expresses a known regulator of
interneuron development (Arx, Maf; branch 2 (precursor state 2) expresses known projection
neuron marker genes (Isl1, Ebf1); branch 3 contains the transcription factor Lhx8, a marker gene
for cholinergic populations. The expression of some of these precursor-specific genes is
driven by the [TFs discussed earlier. NKX2-1 induces the fate of cholernergic neurons through

induction of Lhx8, and LHX6 drives the expression of Arx to promote the maturation of cortical
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interneurons (Sussel et al.[1999; Vogt et al. 2014). This genetic relationship between these GE-
specific[TFs and these precursor-specific genes indicates that these early emerging branches of
transcriptomic identity are enforced and maintained by [TFks.

However, translating these region-specific patterns of gene expression into a combinatorial
transcription factor code for cell fate specification has been challenging, especially for finer cell
types (Garcia and Harwell [2017). Many of the studied are expressed in gradients or are
expressed dynamically. Therefore, it is necessary to find a scalable way to investigate which

TFs promote and repress certain[GABAkrgic fates and at which time points.

1.1.3 Intrinsic versus extrinsic determination of GABAergic neuron

subtypes

It is not clear to what extent[GABAkrgic neuron subtypes are prespecified at the precursor level
and how crucial extracellular cues are during post-mitotic maturation for cell fate determina-
tion (Corbin and Butt 2011). The importance of genetic specification of inhibitory neurons, as
discussed in the last section, has led researchers to present the hypothesis of progenitor spec-
ification. According to this model, cell-type-specific genetic programs are already established
at birth (intrinsic), where neurons follow a specific differentiation program to develop into a
particular subtype. Supporting the progenitor specification hypothesis, PV chandelier cells
were observed to originate from a spatially restricted pool of progenitors born relatively late in
embryogenesis (Miyoshi, Machold, and Fishell 2013).

In contrast, the progressive specification hypothesis posits that the identity of the corti-
cal interneuron subtype is acquired later through interaction with environmental cues, such
as activity-mediated calcium signaling (extrinsic). In fact, some studies indicate that intrinsic
genetic mechanisms may not be the sole determinant of [GABAkrgic neuron subtype identity.

Many subtype-specific features of cortical interneurons—from morphology, settling position,
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synapse sensitivity, and connectivity—rely on activity imprinting upon interneruons as they
mature (Wamsley and Fishell 2017). Furthermore, recent lineage-tracing experiments show
that clonally related interneurons born from the same progenitor are dispersed over all cortical
areas and within the basal telencephalon, sharing no spatial relationship. The ones that are in
proximity of each other and form isolated clusters may be influenced by environmental cues
(Mayer et al. 2015; Harwell et al.|2015). It has been shown that electrical activity influences the
migration patterns of postmitotic interneurons (Bortone and Polleux |2009; Garcia, Karayannis,
and Fishell 2011).

These postmitotic events do not diminish the importance of intrinsic properties for broad
subtype determination (Wamsley and Fishell [2017; Pensold 2017). Rather, the mechanism of
differentiation for [GABAlrgic neurons is more likely to lie somewhere between both models,
where intrinsic genetic programs are instructive for broad subtype determination and extrin-
sic signals are important for interneuron circuit integration and positioning after migration
(Wamsley and Fishell 2017; Pensold 2017). Consistent with this idea, after migrating to the cor-
tex, postmitotic interneurons express certain maturation genes and proteins ((such as potas-
sium—chloride cotransporter 2 (Kcc2; also known as Slc12a5)) and the transcription factors
Satb1l and Mef2c), which are modulated by calcium signaling resulting from neuron depolar-
ization (Denaxa et al.|[2012; Bortone and Polleux 2009; H. Ma et al.|[2012).

Intrinsic genetic cascades are crucial in establishing the broad identity of the inhibitory
neuron subtype before migration. However, it appears that intrinsic genetic signaling can be
influenced by post-migration activity-mediated regulation to specify the connectivity and po-
sitioning of inhibitory neurons. Thus, both intrinsic and extrinsic mechanisms are instructive

for the final identity of inhibitory neurons.
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Figure 3: Models of GABAergic neuron specification. A) During embryogenesis, cortical
interneurons are generated from the medial ganglionic eminence (MGE) and the caudal gan-
glionic eminence (CGE). They then undergo a long tangential migration to the cortex, followed
by radial migration into the developing cortical layers. During postnatal development, they
reach a settling position within a laminar layer and establish their distinct morphology and
synaptic contacts. The expression of particular neuronal markers and physiological attributes
are acquired in parallel. B) The progenitor specification model hypothesizes that an|[GABAkrgic
neuron’s subtype is genetically determined at the progenitor stage during neurogenesis. The
progressive specification model speculates that an [GABAkrgic neuron’s fate is first defined
with intrinsic genetic programmes, followed by context-specific changes that are later induced.

Taken and modified from Wamsley and Fishell
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1.2 Lineage tracing in the murine CNS

The gold standard for linking cell states across periods of time is lineage tracing, where the
lineage of differentiated cells is examined by tracing it back to the cell it originates from. John
Sulston’s pioneering work in C. elegans is one such classic example. He elegantly demonstrated
how cell lineage for a nematode’s developing nervous system is unchanging and progenitors
further down the lineage are fate restricted to generating only certain types of neurons (White
1986). In other words, every nematode undergoes the same program of cell division and there
was correspondence between lineage ancestry and cell type. However, how cell lineage governs
neuronal differentiation in vertebrates is less clear.

Certain neuronal progenitors produce progeny that are more readily influenced by environ-
mental cues rather than intrinsic factors like cell lineage. Nevertheless, lineage has been found
to play a role in the developing cortex of mice. Consecutive rounds of asymmetric cell division
produce lineage-related sister excitatory neurons that migrate short distances toward the pia.
After migration, this results in spatially organized vertical clusters of excitatory sibling neurons
that form functional columnar microcircuits in the neocortex (Noctor et al.2001; Li et al.[2012).
Unlike their excitatory counterparts, [GABAkrgic neurons—despite also having embryonic ori-
gins—are entirely derived from the ventral telencephalon or subpallium and migrate over large
distances to integrate into the developing cortex, hippocampus or other subcortical forebrain
structures (Marin and Rubenstein 2001). For this reason, it is difficult to track the complex
and wide dispersion of interneurons throughout the brain with conventional techniques like

time-lapse imaging.

1.2.1 Mouse engineering for lineage tracing

The earliest studies of lineage tracing of the mammalian forebrain relied on mouse genetics.

Mouse genetic engineering labels specific cell populations by driving the expression of marker
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genes in a cell. Specificity labelling can be achieved by using certain promoters alone in trans-
genics or through gene recombination facilitated by sequence-specific recombinase. In the lat-
ter case, the system comprises a Cre recombinase that recognizes the loxP sequence. To create
this mouse line, mouse are engineered to express the recombinase under a cell-type or region
specific promoter. These mice are then crossed with a reporter line, in which loxp transcrip-
tional/translational stop cassette precedes a marker gene, like green fluorescent protein (GFP)
or f-gal. The marker gene is typically inserted into an ubiquitously expressed locus, such as
Rosa26. Upon Cre-induced recombination, the stop sequence is excised, and the marker gene is
expressed.

Using this technique, Xu et al. (2004) could comprehensively fate-mapped Nkx2-1-lineage
cells in the mouse telencephalon. In line with previous studies, they found that Nkx2-1 express-
ing progenitors generate subpopulations of interneurons in the striatum and cerebral cortex, as
well as projection neurons of the globus pallidus. Furthermore, a minor population of putative

olfactory bulb interneurons was identified.

1.2.2 Viral infection for lineage tracing

Two studies attempted to address whether clonally related interneurons are also exhibiting
spatial organization (i.e., confined to discrete anatomical units) using a combination of mouse
genetics and retrovirus-based fluorescent labeling. Brown et al. (2011) and Ciceri et al. (2013)
found that MGE-derived clones form nonrandom, spatially isolated clusters in cortical columns
or laminae. In detail, Brown et al. (2011) postulated that putative clones aligned into horizontal
and radial columns similarly to their excitatory counterparts. Rather than columns, Ciceri et
al. (2013) described interneuron clones forming clusters in laminae. However, they assumed
that dispersed interneurons labeled with the same fluorophere were assumed ab initio to be
derived from independent clones.

To overcome these shortcomings, Mayer et al. used a replication-defective retroviral libary
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encoding and a highly diverse set of DNA barcodes (Golden, Fields-Berry, and Cepko
1995), comprised of approximately 100, 000 random 24-bp oligonucleotide tags. The barcodes
were recovered from the mature progeny of infected progenitor cells with Sanger sequencing,
enabling them to specifically determine the lineal relationship between clones regardless of
their geometric distribution within the brain. In contrast with the aforementioned studies,
they found that clonally related interneurons could disperse broadly across both functional
areas and structural boundaries, suggesting that intrinsic genetic programs are not predictive
of an interneuron’s ultimate circuit specificity or location in the brain.

However, it remains possible that lineage has an influence on the phenotypic identity of
clonally related siblings. One hypothesis is that each progenitor domain of the contains
progenitor cells dedicated to producing specific[GABAkrgic neuron subtypes. Sister cells might
share certain traits and form transcriptomically similar cell types across brain regions such as
the cortex, hippocampus, and striatum. Such a finding would indicate that lineage predeter-
mines the formation of distinct neuronal types. Alternatively, subtype differentiation might be

independent of lineage and instead depend on factors such as environmental cues.
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Figure 4: Schematic depicting different scenarios of how lineage could influence cell
type diversity. Different cell types could either arise from fate-restricted progenitor cells A)
or be born temporally from the same pool of progenitor cells (B, left). These lineage-dependent
processes suggest that cell-intrinsic mechanisms, or local cues at the mitotic progenitor level,
determine the fate of newborn cells. Alternatively, lineage-independent mechanisms such as
extracellular induction, activity-dependent processes, or stochastic regulation (B, right) could
drive the differentiation into different subtypes. Lineage-dependent and independent mech-
anisms are not mutually exclusive. Both scenarios in B) are examples of lineage divergence,
where different cell types could arise from a common progenitor. C) Convergence is the pro-
cess by which similar cell states arise from different lineages. Taken from Bandler et al. 2022,

1.3 Single cell RNA-sequencing

A long-standing question in developmental biology is how much neuronal differentiation is
driven by intrinsic genetic programs at the progenitor stage as opposed to extrinsic factors,
such as patterned brain activity, during and after migration. In order to disentangle this ques-
tion, neuronal cell types must first be characterized and defined. Although neurons could be
characterized by their morphology, connectivity and patterns of activity, their molecular de-
scriptions were limited to individual genes validated by immunohistochemistry.

The emergence of high-throughput single-cell RNA sequencing methods has
revolutionized how cell states are defined and, consequently, how development is studied. Com-

pared to other methodologies such as bulk RNA-sequencing (RNA-seq), microarrays, and in situ



1.3 Single cell RNA-sequencing 13

A B
Chromium Next GEM Chip G GABA Class Cluster
e Gluta = .
F . N Non-neu. : t.‘;, e . &
L] L N | L W, | GEMs ¥ a Tx k. -
LoV ¢ ¢ “»

e . T B
Gel Beads Partitioning Oil dm‘ é? lg -l ? i .

Labeled Cells 1
Enzyme g@ * '

Figure 5: Cell type classification using scRNA-seq A) Diagram showing microfluidic-based
high-throughput single cell RNA-sequencing. Single cells are co-encapsulated in oil droplets
with beaded barcodes. Cells are lysed inside the droplet and the beaded barcodes attached to
the transcriptome of each cell, enabling each gene to be traced back to the cell it came from. B)
Molecular classification of neurons collected from the mouse neocortex using deep, single-cell
RNA sequencing (scRNA-seq). 23, 822 cells are grouped into 133 transcriptomic cell types, of
which 61 are [GABAkrgic. Figure adapted from Tasic et al.

hybridization, which have been limited to querying population averages or a limited number of
genes in a supervised manner, [scRNA-seq enables monitoring of global expression of thousands
of genes within individual cells (Bandler 2019).

The transcriptomes retrieved from these individual cells contain a wealth of information
(for example, cell-specific molecular signatures, cell cycle phase, and metabolic state). Many
studies have used single cell transcriptomes as an initial framework and anchor to define cell
types (Zheng, 22), and one study even identifying up to 60 types of [GABAkrgic neurons in the
cortex alone (Tasic et al.[2018).

Retrieving the transcriptome of these cells in different states provides a powerful way to map
differentiation dynamics. The densely sampled cells can then be used to construct a manifold of
cell states or visualized as a "landscape’, a term inspired by Waddington’s illustration depicting
cell fate decisions as a ball rolling down a landscape of hills and valleys (Waddington [2014). In
the context of cell fate commitment, an uncommitted cell is positioned at the beginning of the

landscape and traverses a series of valleys until it goes from a pluripotent state to a committed
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one. Similarly, trajectory-building algorithms use transcriptomic information to order cells in a
continuum to study changes in average gene expression across the trajectories and for inferring
tree-like structures that organize cell clusters into a putative hierarchy:.

While state manifolds offer population-level views of differentiation, they do not reveal
how clonal lineages of a progenitor population explore these states. It does not account for
cell division or death rates, cell state reversibility, difference between clones that can alter the
dynamics predicted from snapshot measurements (Weinreb et al. [2018). State manifolds have
branch points that may be hypothetical; sister cells from a single division event may progress
along both branches of a manifold or continue on a single branch. Unlike trajectory trees,
each branch point in a lineage tree represents a division event. Thus, although state manifolds
could trace how a single cell might traverse a series of molecular states, it may mislead readers’

understanding of fate relationships (Wagner and Klein 2020).
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Figure 6: Visualizing cell state transitions using state manifolds. A) Conrad Wadding-
ton’s epigenetic landscape (EL). The EL model depicts a differentiating cell in the embryo as a
ball rolling down a landscape, where the valleys of the landscape represent the developmental
choices faced by the cell. B) Cell state landscapes vs cell lineage trees. Trajectory relationships
are indirectly inferred from gene expression similarities, whereas lineage relationships reflect
measured mitotic histories. (A Taken from Waddington B modified from Wagner and

Klein

il

|

!




1.3 Single cell RNA-sequencing 15

1.3.1 Single-cell lineage tracing

Due to the relatively low resolution determined from low-dimensional measurements and low
throughput, many of these early lineage tracing methods are able to identify progeny arising
from individual cells but could not meet the stricter definition of lineage tracing. To do so re-
quires that ancestor-progeny relationships are resolved to assemble lineage tree (VanHorn and
Morris 2021). By contrast, single-cell genomic technologies support a more objective assess-
ment of cell identity, enabling the capture of many thousands of gene expression measurements
while maintaining the cellular resolution required for accurate lineage reconstruction (Kester
and Oudenaarden 2018)).

single-cell lineage tracing (scLT) is achieved by prospectively introducing a heritable DNA
barcodes—-referred to as lineage barcode (LB)s from here on—into cells, then determining clonal
relationships and constructing cell lineage retrospectively from sequencing data (Kester and
Oudenaarden 2018). The first[scLT|techniques built on the principals of Cepko’s original clonal
analysis in the 1980s (Turner and Cepko [1987), where were incorporated into cells via
retroviral transgene integration or transposable elements and discriminated from each other
via sequencing (VanHorn and Morris 2021). The barcode typically lies within the 3° UTR of a
transgene containing a constitutive promoter driving its expression, allowing for parallel cap-
ture of barcodes with the transcriptome (VanHorn and Morris [2021).

Another method of relies on CRISPR-Cas9 directed genome editing (Jinek et al. [2012).
CRISPR-Cas9 and gRNA are introduced into cells, resulting in scarring of the target sequencing
in a given window. McKenna et al. (2016) genetically engineered GESTALT (genome editing
of synthetic target arrays for lineage tracing) zebrafish models, to have CRISPR-Cas9 editable
casettes within their genomes, and later rendered [scLT| compatible. Initial experiments per-
formed with GESTALT zebrafish focused on labeled cells from different adult tissues, where

after lineage reconstruction, most cells in the adult fish were found to arise from few embry-
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Figure 7: Single-cell lineage tracing techniques. Graphical depictions of A) Viral barcoding
approaches for clonal and lineage analysis, B) Cas9 scar accrual method, and C) transposon-
mediated barcode accrual. Modified from VanHorn and Morris 2021}

onic progenitors (McKenna et al.|[2016). When they looked at neural progenitors, they found
that the neural progenitors spread out to many spatial areas, suggesting that they were more mi-
gratory than expected. Furthermore, the progeny of these progenitor populations encompassed
a high diversity of cell types, indicating that these progenitor populations still maintained high
potency (Raj et al. 2018).

However, GESTALT suffers from a number of limitations. Firstly, the cassettes have a large
number of Cas9-induced deletions that erase lineage records. Moreover, Cas9 editing satura-
tion (i.e. identical edits introduced into independent cells) and narrow editing periods result
in false-positive lineage relationships. These shortcomings make this technique unsuitable for
lineage tracing in the mammalian brain, where increased LB diversity is necessary to label sub-
stantial cell populations over lengthy periods. To address this gap, a mouse line was created
that uses a "homing" guide RNA (hgRNA) to direct CRISPR-Cas9 to its own DNA locus, creating
an evolving genetic LB (Kalhor et al. 2018). But it does not have single-cell resolution. A vari-
ation of this method is the CARLIN (CRISPR array repair lineage tracing) mouse line (Bowling
et al. 2020). It couples inudcible Cas9 expression with a stably integrated Cas9 target allele that

contains 10 locations for indel accruals. Using this system, Bowling et al. (2020) observed that
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hematopoietic stem cells (HSC) clones preferentially distribute in long bones, indicating that
HSCs’s expansion potential is influenced by the niche in which they reside. Furthermore, they
found that most of replenished blood cells derive from a small progenitor population (Bowling
et al.|2020).

Although powerful, the lineage tracing potential of CRISPR-Cas9 strategies is hampered by
dropouts due to deletions or false positive relationships resulting from identical edits. By con-
trast, barcode accumulation achieves a higher diversity of unique heritable sequences through
its combinatorial power (VanHorn and Morris|2021). Lineage trees produced by lentivirus-based
methods are rudimentary due to the limited number of times cells can be transduced. Wagner
et al. bypassed these challenges by opting for a transposon-based approach of labeling cells.
TracerSeq. TracerSeq inserts barcode reporters into the genome via the Tol2 transposase,
enabling transcription and capture by to obtain lineage data. Each cell inherits a
unique label signature as the barcode accumulates over time, enabling lineage reconstruction.

TracerSeq yielded surprising insights into zebrafish development. Intriguingly, clonally re-
lated cells could yield transcriptomically disparate cell types (divergence), and clonally dis-
tant clones differentiate into similar cell types (convergence). Sulston’s lineage tracing exper-
iments in C. elegans also arrived at the same conclusion, that similar neuron types could arise
from. Taken together, these examples of lineage tracing demonstrate how single-cell compati-

ble, transposon-based lineage tracing methods can provide new insights into fate commitment.

1.4 Gene editing in the mammalian forebrain

The most direct way to study gene function is to reduce or completely ablate gene expression.
Studies traditionally turned to conditional gene knockout mice generated using the Cre / loxP
system to investigate the functions of genes in the mammalian forebrain. This technology is

powerful as it enables the user to not only selectively knockout a gene in certain populations
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but also at select time points.

However, the generation of mutant animals using conventional gene targeting technology
is laborious, time consuming, and, more importantly, requires embryonic stem cells, which are
not available for all mammalian species (Nishiyama 2019). Rapid advances in genome-editing
tools based on engineered nucleases are changing genetic engineering (Cong et al. 2013; Jinek
et al.[2012; Mali et al. 2013). Cas9 is a type of CRISPR nuclease from bacterial adpative systems
that can be used to target virtually any genomic region and is proving to be the most popular
approach for genome editing of mammalian cells.

Engineered nucleases such as Cas9 can induce double strand breaks (DSBs) at specific ge-
nomic loci, which are then repaired by two types of DNA repair pathways: non-homologous
end joining and homology-directed repair (HDR). NHE]J-mediated DSBs result in the for-
mation of unpredictable patterns of insertions and deleterious mutations (indels) at the break
site (Cox, Platt, and Zhang 2015). Thus, the mechanism can be used to knock out genes.
The CRISPR-Cas9 method of gene editing works as follows: Cas9 is directed to the target site
using a short guide RNA (sgRNA). The sgRNA consists of a CRISPR RNA (crRNA), a 17-20
nt sequence complementary to the target DNA, and a transactivating crRNA (tracrRNA) that
facilitates Cas9 recruitment to the target site.

Genome editing of cells in the brain requires efficient delivery of the genome editing ma-
chinery to cells of interest. Viral vectors, including adeno-associated virus (AAV), lentivirus,
adenovirus, and retrovirus, have been used to deliver CRISPR-Cas9-mediated gene editing con-
structs to cells. Another advantage of viral delivery systems (epsecially AAVs) is that their
capsids can be modified to target neuronal subsets of interest (ref Haggerty). AAVs allow per-
sistent long-term expression of transgenes with low immunogenecity but are limited by their
transgene capacity (4.7-5kb) (Wu, Yang, and Colosi [2010). However, an advantage of the AAV
system is that its capsid can be modified to target neuronal subsets of interest.

in utero electroporation is an efficient method to deliver transgenes to brain neuronal



1.4 Gene editing in the mammalian forebrain 19

progenitors. It allows the efficient introduction of multiple constructs into the same cells with-
out size limitations. Three plasmids, each encoding a different fluorescent protein, were shown
to be co-electroporated in 99% of transcfection neurons by [[UEl (Nishiyama 2019). Taking ad-
vantage of [UEl's features enables efficient delivery of CRISPR-Cas9-mediated gene knockouts.

The first studies to apply this technology in the mammalian forebrain was reported in 2014,
where two separate groups reported that CRIPSR-Cas9-mediated NHE] could be used to gen-
erate gene knockout in postmitotic neurons (Incontro et al.|[2015} Straub et al. 2014). They both
targeted Grinl, the gene encoding the GluN1 subunit of the N-methyl-D-aspartate-type glu-
tamate receptor (NMDAR), using different gRNAs through [UEl Interestingly, they could not
detect NMDAR-mediated current in most of the neurons tested, suggesting disruption of both
genomic alleles encoding GluN1. This phenotype was successfully rescued by co-expressing
cDNA encoding GluN1, confirming the specificity of CRIPSR-Cas9-mediated gene knockout.
The high efficiency of gene knockout in these studies may be attributed to the long-term per-

sistent expression of Cas9 and sgRNA in nondividing neurons.

1.4.1 Single-cell CRISPR perturbations

Previously, biologists had lacked the means to investigate the effects of perturbations on multi-
ple cell types. The role of TFs in specifying inhibitory neuron cell types was typically explored
using knockout mice, which is time consuming to generate. Neither classical genetic stud-
ies, recent bulk RNA-seq| nor classical genetic studies capture the entire genomic mechanisms
through which these TFs induce fate decisions.

The invention of single-cell sequencing provides a rich transcriptomic readout for biolog-
ical phenotypes that cannot be easily measured by a single marker gene. When single-cell
sequencing is coupled with CRISPR screens, it is possible to simultaneously match the gRNAs
that induce the perturbation with the corresponding transcriptome in single cells. Methods

such as Perturb-seq, CRISPR-seq, CROP-seq and Mosaic-seq can be grouped under the um-
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Figure 8: CRISPR-Cas9 genome editing in mammalian cells. A) Gene knockout by
CRISPR-Cas9 gene editing. Cas9 nuclease is directed, by a guide RNA (gRNA), to target site
to introduce double-strand breaks; subsequent DNA repair results in frameshift mutations or
compromised gene function. B) Genome editing machinery can be delivered into neuronal pro-
genitors through IUE or postmitotic cells using viral infection. Taken from Bock et al. 2022 and
Nishiyama [2019.

brella term scCRIPSR-seq (Bock et al. 2022). Coupling CRISPR screens with a transcriptome
readout permits the determination of the type and state of perturbed cells, and allows quan-
tification of induced changes in gene expression, gene regulatory networks, signaling pathway
activity, and other properties that can be retrieved from single-cell RNA sequencing.

CRISPR perturbations at single-cell resolution could be the key to revealing more infor-
mation on the transcriptional codes that regulate the development of inhibitory neurons. One
notable advantage of scCRIPSR-seq methods is that the cell-intrinsic effects in vivo of the pertur-
bation can be observed due to the minimal disturbance of the tissue environment. Furthermore,
a high percentage of gene knockouts in mice are developmentally lethal, and those that survive
into adulthood often have morphological or physiological abnormalities that make it difficult
to determine the function of a gene in a normal developmental context.

Arlotta et al. were the first to take advantage of this feature, where they developed in vivo

Perturb-Seq to functionally evaluate 35 autism spectrum disorders (ASDs) in the mouse brain
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(Jin et al.|2020). They identified cell type-specific gene modules in both neuronal and glial cell
classes that are affected in different perturbation datasets. Similarly, Fleck et al. (2022) used
pooled CRISPR genetic perturbation followed by single-cell transcriptome readout to assess
transcription factor regulation of cell fate and state regulation in organoids. They found that
certain factors regulate the abundance of cell fates, whereas others affect the states of neuronal
cells after differentiation.

Altogether, scCRIPSR-seq methods allow for the unbiased exploration of gene function and
systematic delineation of gene regulartory networks (GRNs) (Replogle et al.|2020). It can serve
as a scalable tool to develop large gene panels and reveal cell-intrinsinc functions at single-cell

resolution in the mammalian brain.
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2 Thesis Objectives

A longstanding question in developmental neuroscience is how different types of neuronal
cell arise from undifferentiated progenitor cells. To what extent is the identity of neurons de-
termined by intrinsic rather than extrinsic factors is still unclear, particularly for inhibitory
neurons. One way of approaching this question is by studying cell lineage, the embryonic ge-
nealogy of neurons. In invertebrate systems, the cell lineage of neurons has been well mapped
(White |1986), but the clonal relationships between progenitors and their descendants are less
clear in vertebrates.

Lineage has been found to play a role in the mammalian neocortex, where asymmetric cell
division produces clonally related excitatory neurons in organized columns. Whether lineage
dictates how inhibitory neurons develop and integrate into circuits remains an open question.
For example, which inhibitory neuron subtypes can be generated from the same progenitor
and what logic governs this process, if any? The long distances that inhibitory neurons travel,
as well as their wide dispersion, make them difficult to track with conventional lineage-tracing
methods such as time-lapse imaging. Thus, the nature of how lineage influences inhibitory neu-
ron specification cannot be delineated unless an appropriate lineage-tracing method is devel-
oped. Another genetic mechanism that could drive inhibitory neuron development is the tran-
scription factors expressed in GE during early development. Several transcription factors and
their cofactors act spatiotemporally to specify GABAergic neurons (Caputi et al. 2013; Mayer
et al.[2018; Leung et al. 2022). The mechanism by which these factors operate and interact with
each other is not well understood.

Approaches combining scRNA-seq with DNA barcoding or CRISPR perturbations are ap-
propriate for addressing these questions. scRNA-seq enables a robust and very detailed clas-

sification of distinct cell types, while the tagging of progenitors and their progeny with DNA
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barcodes allows for the tracing of clonally regulated inhibitory neurons even if they disperse
widely throughout the brain. Coupling scRNA-seq with CRISPR perturbation would add an-
other perspective on fate specification by enabling the exploration of transcription factors’ role
in fate specification.

My thesis can be divided into two parts:

2.1 Establishing TrackerSeq

I developed TrackerSeq, a transposon-based lineage tracing method that uses the piggyBac
transposon to successively integrate multiple barcoded [GFP| reporters into the genome of elec-
troporated mouse cells. It is compatible with the 10X Chromium System, a commercial scRNA-
seq platform. The TrackerSeq library has a high diversity of lineage barcodes that can label
progenitors in vivo and can capture partial clones. Through a collaborative effort, we used
TrackerSeq to label dividing progenitors and found that in all ganglionic eminences, newborn

GABAergic neurons diverge into different precursor states.

2.2 Fate specification of inhibitory interneurons and pro-
jection neurons

In a team effort, [ examined the effect that Meis2 perturbation has on the fate specification of in-
hibitory neurons. To characterize the genomic transcriptional assembly orchestrated by Meis2,
we combine IUE CRISPR-based perturbation of Meis2, scRNA-seq, and synthetic oligonucleotide-
based lineage tracing in the GE. We found that Meis2 influences the composition of GABAergic

neurons by promoting projection neuron fates and suppressing interneuron fates.



3 Experimental Procedures

3.1 Animals

All mouse colonies were maintained according to protocols approved by the Bavarian govern-
ment at the Max Planck Institute of Neurobiology or the IACUC at the NYU Grossman School of
Medicine. Swiss Webster and C57BL/6 wild-type females were used, and embryos were staged
in days post-coitus, with E0.5 defined as 12:00 of the day a vaginal plug was detected after
overnight mating. Timed pregnant mice were anesthetized with isoflurane (5% induction, 2.
5 % during surgery) and treated with Metamizol (WDT) analgesic. For [UE] of the TrackerSeq
library, E12.5 embryos were injected unilaterally with 700 nl of DNA plasmid solution made of
0.5 /ul pEFla-pBase (piggyBac-transposase; a gift from R. Platt) and the TrackerSeq library 0.5
/pl, diluted in endo-free TE buffer and 0.002% Fast Green FCF (Sigma), into the lateral ventricle
via a microsyringe pump. Embryos were then electroporated by holding each head between
platinum-plated tweezer electrodes (5 mm in diameter, BTX, #45-0489) across the uterine wall,
while 5 electric pulses (35 V, 50 ms at 1 Hz) were delivered with a square-wave electroporator
(BTX, ECM 830)52. Pregnant dams were kept in single cages and pups were kept with their
mothers, in the institutional animal facility under standard 12:12 h light - dark cycles, at a room

temperature of 72° F + 2° F and a humidity of 30-70%.

3.2 Sample Collection

For embryonic lineage tracing, we collected electroporated brains from mouse embryos at E16.5
in Leibowitz medium with 5% FBS. Papain dissociation system was carried out according to the

recommended protocol (Wortington, #LK003150), and to isolate positive cells, flow cytometry
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was performed using a BD FACSAria III Cell Sorter (BD FACSDiva Software, version 8.0.2) with
a 100-um nozzle. For all FACS experiments, non-dGFPtexpressing brain tissue was used as a

negative control to exclude background fluorescence.

3.3 TrackerSeq library production

TrackerSeq is a piggyBac transposon-based34 library, developed to be compatible with the 10x
single-cell transcriptomic platform. It records the in vivo lineage history of single cells through
the integration of multiple oligonucleotide sequences into the mouse genome. Each of these
individual lineage barcodes is a 37-bp long synthetic nucleotide that consists of short random
nucleotides bridged by fixed nucleotides. This design results in a library with a theoretical
complexity of approximately 4.3 million lineage barcodes (16®) with each barcode differing from

another by at least 5 bp.

3.3.1 Library Cloning

To construct the library, the piggyBac donor plasmid (Addgene #40973) was altered to include a
number of modifications. The plasmid was digested first with Mscl and then the Read2 partial
primer was cloned into the 3° UTR of the to enable retrieval by the 10x platform. The
vector is then digested with BstXI so that the sucrose gene can be cloned into the vector. The
sucrose gene is used for counter-selection, so empty plasmids that do not incorporate a lineage
barcode during the cloning process are removed. After digestion with BstXI to remove the su-
crose gene, the plasmid was run on a gel and column purified (Zymo Research, #D4008). The
barcode oligo mix was cloned downstream of the Read2 partial primer sequence in the puri-
fied donor plasmid through multiple reactions of the Gibson Assembly, as previously described
(Gibson et al.|2009). Gibson assembly reactions (NEB, #E2611S) were then pooled and desalted

with 0.025 MCE membrane (Millipore, VSWP02500) for 40 min and finally concentrated using
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a SpeedVac. 3 pul of the purified assembly is incubated with 50 ul of NEB10--competent Es-
cherichia coli cells (NEB, C3019H) for 30 min at 4 °C, then electroporated at 2.0 kV, 200 , 25
(Bio-Rad, Gene Pulser Xcell Electroporation Systems). Electroporated E. coli was incubated for

90 min shaking at 37 ° C and then seeded in prewarmed sucrose / ampicilin plates.

3.3.2 Vector linearization

To construct the library, the piggyBac donor plasmid (Addgene #40973) was altered to include
several modifications. The plasmid was digested first with Mscl and then the Read2 partial
primer was cloned into the 3° UTR of the to enable retrieval by the 10x platform. The
vector is then digested with BstXI so that the sucrose gene can be cloned into the vector (pCAG-
SacB).

To begin library cloning, digest 1 ug of the pCAG-SacB vector with BstXI to remove the
sucrose gene, and run 4x of these reactions in parallel: assemble 501 reaction with 54l Universal
Buffer, 1IDNA, and molecular grade H,O. Add 0.2p1 of BstXI, then gently mix by pipetting. Place
the reaction on a thermoblock for 30 minutes at 50 °C. Run the entire restriction digest on
a 1% gel together with a sample of non-digested vector. Excise the 6 kb fragment from the
gel, followed by purification of the selected bands with column purification (Zymo Research,

#D4008). Finally, measure the concentration on the NanoDrop sepctrophotometer.

3.3.3 Gibson Assembly

The ssDNA oligos to be cloned into the vector were ordered from Integrated DNA Technologies
with the following specifications listed in Table 1:

Prepare the ssDNA oligo in 1X NEBuffer 2 to a final concentration of 0.2 (store at -20 °C.
Assemble a 10ul reaction mix with 5 ul of 0.2 ssDNA oligo, 50 ng of linearized vector and

molecular grade H,O. Add 10u] of NEBuilder HiFi DNA Assembly Master Mix to the reaction
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Table 1: ssDNA oligo specifications

ssDNA oligo

Product PAGE Ultramer DNA Oligo

Purification PAGE Purification

Sequence 5-GACGTGTGCTCTTCCGATCTCTGANNCT
GNNACTNNGACNNTGANNCTGNNACTNN
GACNNGACTCTGGCTCACAAATACCAC
TG-3°

Length 85

mix, and incubate the assembly reaction for 1 hour at 50 °C in a thermocycler. The resulting

stock concentration of the linearized vector should range from 30-60 ng/ul depending on the

efficiency of the gel extraction. 6x of these reactions were run in parallel.

3.3.4 Clean-up and sample concentration

The resulting vector from the assembly must be isolated from the salts in the assembly mix
so that it does not arc when electroporated into E.coli. To desalt the sample, the bottom of a
10 cm Petri dish was filled with milliq-H,O and the membrane filter disc was placed onto the
millig-H,O so that it is floating. 120 pl of the sample (6 x 20 pl) were deposited in the center
of the membrane. A membrane was placed in the Petri dish to prevent evaporation and the
sample was dialyzed for at least 40 minutes. Most of the desalted sample was recovered.

A speed-vac was used to concentrate the sample. The speed-vac was set at 50 °C and oper-
ated for 10 minutes initially to ensure that there was sample leftover. The volume was reduced

to 20 pl.

3.3.5 Bacteria transformation and plating

3 ul of the purified assembly is incubated with 50 pl of NEB10--competent Escherichia coli cells
(NEB, #C3019H) for 30 min at 4 °C, then electroporated at 2.0 kV, 200 , 25 , with a time constant

between 3.1 and 3.3 milliseconds (Bio-Rad, Gene Pulser Xcell Electroporation Systems). 950
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ul of the pre-warmed recovery medium was immediately added to the cuvette after electropo-
ration, pipetted twice, and then the cells were transferred to a pre-warmed 2 ml Eppendorf.
Electroporated E. coli were incubated for 90 min shaking at 37 ° C and 220 rpm and then plated
in prewarmed sucrose / ampicillin plates. 190 ul of LB media with ampicillin (LB+Amp) was
added to 10 pl of the incubated bacteria before plating on 10 cm pre-warmed sucrose / ampi-
cillin plates. 10 plates of the 200 pl mix (190 pl LB+Amp + 10 ul bacteria) were plated in total.

The plates were collected 12 hours later.

3.3.6 Bacteria growth and maxi-prep

Plate colonies were collected by adding 25 ml of LB + amp medium, then scraped with a colony
picker. 25 ml of LB +amp medium was added to scrape the remaining colonies. This was
repeated for all plates. The colonies of all plates were pooled in an Erlenmeyer flask so that the
total volume was 250 ml. LB+ Amp medium was added until the total volume reached 4-5L. The
initial optical density (OD) of the medium was measured before being incubated at 37 °C at 160
rpm and then monitored hourly until the OD was <0.5. The glycerol stock (1 ml 50% glycerol
and 1 ml of bacteria) and the rest were pelleted. The pelleted E.coli was maxi-prepped and the

resulting library is stored at -20 °C.

3.3.7 Sanger sequencing of colonies

20 colonies were collected with colony pickers and cultured in individual tubes containing 2.5
ml of LB. The QIAprep® Spin Miniprep Kit was used to harvest the donor plasmid from E. coli.

The Read2 primer was added to each extracted DNA and sent to Eurofins for sequencing..
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3.4 TrackerSeq barcode library amplification and cleanup

Following the end of cDNA amplification, step 2 of the 10x protocol, the standard NEB protocol
for Q5® Hot Start High-Fidelity 2X Master Mix was used to amplify the library.

The 50 pl 1 reaction was prepared according to the formula listed in Table 2.

Table 2: NEB protocol for Q5® Hot Start High-Fidelity 2X Master Mix

_PCR reaction mix
Q5 High-fidelity 2X Master Mix 25 pl

i7 primer 10 M 2.5 ul
i5 primer 10 yM 2.5 ul
c¢DNA 1-15ng/ul 10 pl
H,0 10 pl (adjust depending on

amount of cDNA)

The primers and PCR program used to amplify the library are listed in Table 3.

Table 3: NEB protocol for Q5® Hot Start High-Fidelity 2X Master Mix

PCR Program
98 °C 30 sec
™98 °C 10 sec
18x 63 °C 20 sec
L 72 °C 10 sec
72 °C 2 min
4 °C Hold

Dual-sided SPRI selection was used to recover the 330 bp fragments amplified by the primers.
SPRIselect reagent was first resuspended by vortexing then 25 ul (0.5X) of it was added to 50
ul of PCR reaction. The mixture was pipetted 15 times and placed on the high magnet con-
figuration until the solution was clear. 75 pl of the supernatant was transferred to a new PCR
tube. The SPRIselect reagent was vortexed again to resuspend it then 60 yl of it was added to
the sample. The mixture is pipetted 15 times again and then incubated at room temperature

for 5 minutes. The mixture was placed on the high configuration of the magnet again until
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Table 4: i7 and i5 primers used to amplify library. Bolded portions are the unique indexes.

i7 primer (5’-3’)

CAAGCAGAAGACGGCATACGAGATGTC
AGAAGGTGACTGGAGTTCAGACGTGT

CAAGCAGAAGACGGCATACGAGATTGG
CAAGTGTGACTGGAGTTCAGACGTGT

CAAGCAGAAGACGGCATACGAGATGGT
TCCTTGTGACTGGAGTTCAGACGTGT

CAAGCAGAAGACGGCATACGAGATCAC
TGGTTGTGACTGGAGTTCAGACGTGT

CAAGCAGAAGACGGCATACGAGATCAC
CTGTAGTGACTGGAGTTCAGACGTGT

CAAGCAGAAGACGGCATACGAGATGAC
CACTAGTGACTGGAGTTCAGACGTGT

i5 primer (5’-3’)
AATGATACGGCGACCACCGAGATCTACA
CTAGATCGCACACTCTTTCCCTACA
CGACGCTCTTCCGATCT
AATGATACGGCGACCACCGAGATCTACA
CCTCTCTATACACTCTTTCCCTACAC
GACGCTCTTCCGATCT
AATGATACGGCGACCACCGAGATCTACA
CTATCCTCTACACTCTTTCCCTACACG
ACGCTCTTCCGATCT
AATGATACGGCGACCACCGAGATCTACA
CAGAGTAGAACACTCTTTCCCTACA
CGACGCTCTTCCGATCT
AATGATACGGCGACCACCGAGATCTAC
ACCAGGACTAACACTCTTTCCCTACA
CGACGCTCTTCCGATCT
AATGATACGGCGACCACCGAGATCTACA
CCGCTACTAACACTCTTTCCCTACACG
ACGCTCTTCCGATCT

the solution cleared. 135 pul of the supernatant was carefully removed and discarded to avoid

distrubing the bead pellet. With the tube still on the magnet, 200 pl of freshly prepared 80%

EtOH was added to the pellet for 30 seconds and the EtOH was removed. This step is repeated.

The tube was briefly centrifuged and then returned to the magnet in a low configuration. Any

residual EtOH was removed with a pipette. The tube was removed from the magnet and 22 pl

of EB buffer was added. The mixture was pipetted 15 times and then incubated for 2 minutes

at room temperature. The tube is placed in low magnet configuration until the solution clears.

22 pl is transferred to a new tube. This was the barcode library. The success of the library prep

was confirmed with the Agilent bioanalyzer.
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Figure 9: Trace from BioAnalyzer. A peak around 330 bp indicates successful amplification
of the library.

3.5 Preparation of RNA-seq and TrackerSeq libraries

For experiments utilizing the 10x Genomics platform, the following reagents were used: Chromium
Single Cell 3 Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3* Chip Kit v2 (PN-
120236) and Chromium i7 Multiplex Kit (PN-120262) were used according to the manufacturer’s
instructions in the Chromium Single Cell 3 Reagents Kits V2 User Guide; Chromium Single Cell
3’ Library & Gel Bead Kit v3 (PN-1000075), Chromium Single Cell 3 Chip Kit V3 (PN-1000073)
and Chromium i7 Multiplex Kit (PN-120262) were used according to the manufacturer’s in-
structions in the Chromium Single Cell 3 Reagents Kits V3 User Guide; Chromium Single Cell
3 Library Gel Bead Kit v3.1 (PN-1000268), Chromium Single Cell 3’ Chip Kit V3.1 (PN-1000127)
and Dual Index Kit TT Set A (PN-1000215) were used according to the manufacturer’s instruc-
tions in the Chromium Single Cell 3 Reagents Kits V3.1 User Guide (Dual Index).

The lineage barcode library retrieved from RNA was amplified with a standard NEB protocol
for Q5 Hot Start High-Fidelity 2X Master Mix (#M094S) in a 50-ul reaction, using 10 ul of cDNA

as template. Specifically, each PCR contained: 25 pl Q5 High-fidelity 2X Master Mix, 2.5 pl 10
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uM P7_indexed reverse primer, 2.5 ul 10 uM i5_indexed forward primer, 10 ul molecular grade

H,0, 10 ul cDNA.

3.6 Sequencing and read mapping

Transcriptome and barcode libraries were sequenced either on an Illumina NextSeq 500 at the
Next Generation Sequencing Facility of the Max Planck Institute of Biochemistry, at the Ge-
nomics Core Facility at the Helmholtz Center in Munich, or on a NovaSeq at the Broad Institute.
For a detailed report on each dataset, see Supplementary Data 1. Sequencing reads in FASTQ
files were aligned to a reference transcriptome (mm10-2.1.0) and collapsed into UMI counts

using the 10x Genomics Cell Ranger software (version 3.0.2 or 5.0.1).

3.7 Processing of TrackerSeq barcode reads

3.7.1 Processing of TracerSeq reads for diversity estimation

The diversity of TrackerSeq barcode libraries were assessed by RNA-seq to check whether any
barcode is overrepresented. Unique reads of the lineage barcodes were extracted from the R2
FASTQ files using Bartender (Zhao et al. 2017). Extracted barcodes within 3 bp of each other
are collapsed into one cluster, where each cluster is considered to be a unique barcode. 1000
barcodes were sampled randomly to assess the hamming distance of the lineage barcode library.
Hamming distance was assessed using the DNABarcodes package (Buschmann and Bystrykh

2013).

3.7.2 Pre-processing of TrackerSeq barcodes

Using BBduk (Brian|2014), reads in the R2 FASTQ files were pre-processed so that the sequences

to the left and right of the lineage barcodes (BC) were trimmed. Lineage barcodes shorter than
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37 bp were discarded. Whitelists for cell barcodes were generated using two different methods:
Cell barcodes (Cell) were extracted from the corresponding Seurat object of the dataset to gener-
ate a cell barcode whitelist, or the whitelist was also generated from the R1 sequencing file using
UMI-tools. The extracted cell barcodes and UMIs were added to the read names of the lineage
barcode FASTQ files. The resulting FASTQ files were processed to output a sparse matrix in csv
format, where rows were cells identified by individual cell barcodes and columns were lineage
barcodes. Using code modified from Wagner et al. 2018, only Cell-UMI-BC triples supported
by at least 10 reads and Cell-BC pairs with at least 6 UMI were considered for further analyses.
ClonelDs were assigned to cell barcodes by clustering the matrix using Jaccard similarity and
average linkage, as demonstrated by Wagner and colleagues. The resulting dendrogram was

cut at a height of 0.999 to obtain the clonal groupings.

3.8 Cell filtering, data normalization batch correction and

clustering of datasets

3.8.1 Processing the MUC28072 dataset

The Seurat pipeline (version 3.1.4) was used for cluster identification in scRNA-seq datasets.
Embryonic transcriptome datasets (MUC28072) were read into R (version 3.6.0) as a count ma-
trix. Each dataset was filtered with cut-offs for: maximum or minimum gene expression, maxi-
mum nCount_RNA and the percentage of total reads that aligned to the mitochondrial genome.
In addition, embryonic datasets were filtered with DoubletFinder version 2.0.3 (McGinnis, Mur-
row, and Gartner [2019).

We used regularized negative binomial regression59 to normalize UMI count data for all em-
bryonic datasets. Cells with UMI counts for Neurod2 > 2 and Neurod6 > 2, which are markers

of excitatory neurons, were removed. The TrackerSeq dataset was clustered using Seurat stan-
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dard procedures and clusters expressing marker genes for excitatory neurons were removed.
We created an ‘integrated’ data assay including all embryonic datasets for downstream analysis
as described by Stuart and colleagues60. Clusters of cells were identified by a shared nearest
neighbour modularity optimization-based clustering algorithm. Uniform manifold approxima-
tion and projection (UMAP) dimensional reduction (https://github.com/Imcinnes/umap) was

applied to the integrated data assay for visualization.

3.8.2 Processing embryonic tCROP-seq datasets.

Embryonic E16 tCROP-seq datasets, including those that contained TrackerSeq barcodes, were
processed together for cell filtering, data normalization and cluster annotation following the
standard Seurat workflow (4.0.6, Hafemeister and Satija 2019). Data was read into R as a count
matrix. Each dataset was preprocessed according to a set of criterions: minimum and maximum
genes expressed, maximum nCount_RNA, and mitochondrial mapping percentage. CRISPR-
perturbed cells were identified using a CSV file output by CellRanger that contained the cell
barcodes and the sgRNA detected in that cell. We removed excitatory clusters by removing
those that have UMI counts for Neurod2>2 and Neurod6>2, which are markers of excitatory
neurons. To create an 'integrated’ data assay, we combined the embryonic tCROP-seq dataset
with wt GE datasets that were collected at E13.5 and E15.5 as described by Stuart et al. 2019,
Briefly, after each dataset is normalized using SCTransoform(), anchors are identified using
FindIntegrationAnchors() then the anchors are used to integrate the embryonic tCROP-seq and
wt datasets with IntegrateData().

To group cells into clusters, we first constructed a shared-nearest neighbour using the Find-
Neighbors() algorithm, then input the graph into an SLM algorithm that is implemented through
the FindClusters() function in Seurat (dimensions = 30, res = 0.8). We obtained cluster-specific
marker genes by performing differential expression analysis (DEA) using FindAllMarkers(),

comparing cells of each cluster to cells from all other clusters. Genes were considered differen-
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tially expressed if they met the fold change, minimum expression and adjusted P value cut-offs
as dictated by the Wilcoxon rank sum test implemented via Seurat. Clusters were assigned to
cell types based on marker gene expression from literature, primarily http://mousebrain.org/dev-

elopment/ (La Manno et al. 2021).

3.8.3 Processing postnatal tCROP-seq datasets.

Each post-natal P7 dataset was preprocessed according to a set of criterion: minimum and
maximum genes expressed, maximum nCount_RNA, and mitochondrial mapping percentage.
We normalized and regressed out technical effects introduced by nFeature_ RNA, nCount_RNA,
and mitochondrial mapping percentage using SCTransformy().

We used Harmony (v1.0, Korsunsky et al. 2019) within the Seurat workflow using default
settings (theta = 2, lambda = 1, sigma = 0.1) to integrate different CRISPR datasets. We used
the first 30 Harmony embeddings for UMAP (https://github.com/lmcinnes/umap) visualizations
and clustering analysis.

To group cells into clusters, we first constructed a shared-nearest neighbour graph from
Harmony embeddings using the FindNeighbors() algorithm, then input the graph into the Find-
Clusters() function in Seurat (dimensions = 30, res = 0.8). We obtained cluster-specific marker

genes by performing differential expression analysis using FindAllMarkers().

3.9 scRNA-seq analysis of tCROP-seq datasets

3.9.1 Comparing cell type composition between perturbations

We compared the perturbation effect on cell type composition using the method described by
(Jin et al.|2020). More specifically, we used a Poisson regression model to test the relationship

between perturbations and cell number in each cluster, correcting for batch and total number
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of cells. The formula is as follows:

Num ~ offset(logTot) + Batch + Pert

3.9.2 Differential expression analysis

We used Libra package to perform DEA (Squair et al. [2021). We ran the run_DE functions on
Seurat objects directly with the following parameters (de_family = pseudobulk, de_family =
pseudobulk, de_method = edgeR, de_type = LRT). We obtained DEGs of PNs or INs by using
run_DE function on cells grouped into classes (mitotic, projection neurons, and interneurons).
To obtain differentially expressed gene (DEG)s of individual subclusters, we used the run_DE
function on individual clusters. We filtered for statistically significant genes (FDR-adjusted p-
value threshold = 0.05). Genes were considered differentially expressed if avg_logFC < -1.0 or

avg_logFC > 1.0.

3.9.3 Hotspot analysis of gene coexpression

Hotspot(v0.91) is a tool for identifying co-expressing gene modules in a single-cell dataset
(DeTomaso and Yosef|2021). It computes gene modules by evaluating the pairwise correlation
of genes with high local autocorrelation, then clusters the results into a gene-gene affinity ma-
trix. Gad2-expressing inhibitory population in the P7 dataset was first subset out from the rest
to identify inhibitory specific modules in the embryonic dataset. We ran the depth-adjusted
negative binomial model on the entire count matrix and Harmony (v1.0) corrected principal
components (see batch correction of tCROP-seq datasets). We computed a k-nearest-neighbors
(KNN) graph with 30 neighbours, 9154 non-varying genes were subsequently detected and re-
moved. Autocorrelations between each gene were calculated, and the top 500 significant (FDR
< 0.05) genes were used to evaluate pairwise gene associations (local correlations). After pair-

wise local correlations are calculated, we grouped genes into modules. Modules were created
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through agglomerative clustering, where the minimum number of genes per module was set
to 30. 8 modules were identified, and 103 genes were not assigned to a module. Summary per-
cell module scores are calculated using the calculate_module_scores() function as described by

(DeTomaso and Yosef|2021).

3.9.4 Testing Hotpot module gene sets

As described by Jin et al. (2020), linear regression was used to test the relationship between
perturbation and Hotspot module gene scores. The batch and number of genes were corrected
for using the Im function from the stats package (version 3.6.2), with the following formula:

Gene Score ~ perturbation + batch + nGene

3.9.5 GO Term analysis of differentially expressed genes and module

genes

GO Term analysis was done using the package enrichR (Kuleshov et al. 2016). The and
module genes of each module were queried against the following databases: GO_Molecular_Fun-
ction_2018, GO_Cellular_Component_2018, and GO_Biological_Process_2018. Only GO Terms

that were significant (p-value adjusted < 0.05) were kept.

3.10 Preparation of RNA-seq and TrackerSeq libraries

For experiments utilizing the 10x Genomics platform, the following reagents were used: Chrom-
ium Single Cell 3 Library & Gel Bead Kit v2 (PN-120237), Chromium Single Cell 3’ Chip Kit v2
(PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used according to the manufac-
turer’s instructions in the Chromium Single Cell 3 Reagents Kits V2 User Guide; Chromium

Single Cell 3’ Library & Gel Bead Kit v3 (PN-1000075), Chromium Single Cell 3 Chip Kit V3
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(PN-1000073) and Chromium i7 Multiplex Kit (PN-120262) were used according to the manu-
facturer’s instructions in the Chromium Single Cell 3 Reagents Kits V3 User Guide; Chromium
Single Cell 3 Library Gel Bead Kit v3.1 (PN-1000268), Chromium Single Cell 3* Chip Kit V3.1
(PN-1000127) and Dual Index Kit TT Set A (PN-1000215) were used according to the manufac-
turer’s instructions in the Chromium Single Cell 3 Reagents Kits V3.1 User Guide (Dual Index).

The lineage barcode library retrieved from RNA was amplified with a standard NEB protocol
for Q5 Hot Start High-Fidelity 2X Master Mix (#M094S) in a 50-ul1 reaction, using 10 pl of cDNA
as template. Specifically, each PCR contained: 25 ul Q5 High-fidelity 2X Master Mix, 2.5 pl 10
uM P7_indexed reverse primer, 2.5 pul 10 uM i5_indexed forward primer, 10 pl molecular grade

H,0, 10 ul cDNA.

3.11 Sequencing and read mapping

Transcriptome and barcode libraries were sequenced on an Illumina NextSeq 500 at the Next
Generation Sequencing Facility of the Max Planck Institute of Biochemistry, at the Genomics
Core Facility at the Helmholtz Center in Munich, or on a NovaSeq at the Broad Institute. For
a detailed report on each dataset, see Supplementary Data 1. Sequencing reads in FASTQ files
were aligned to a reference transcriptome (mm10-2.1.0) and collapsed into UMI counts using

the 10x Genomics Cell Ranger software (version 3.0.2 or 5.0.1).

3.12 Processing of TrackerSeq barcode reads

3.12.1 Processing of TracerSeq reads for diversity estimation

The diversity of TrackerSeq barcode libraries was assessed by RNA-seq to check whether any
barcode is overrepresented. Unique reads of the lineage barcodes were extracted from the R2

FASTQ files using Bartender (Zhao et al. 2017). Extracted barcodes within 3 bp of each other
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are collapsed into a cluster, where each cluster is considered to be a unique barcode. 1000
barcodes were randomly sampled to assess the Hamming distance of the lineage barcode library.
Hamming distance was assessed using the DNABarcodes package (Buschmann and Bystrykh

2013).

3.12.2 Pre-processing of TrackerSeq barcodes

Using BBduk (Brian 2014), reads in the R2 FASTQ files were preprocessed so that the sequences
to the left and right of the trimmed. [LBks barcodes shorter than 37 bp were discarded. The
whitelists for cell barcodes were generated using two different methods. Cell barcodes (cellbc)
were extracted from the corresponding Seurat object of the dataset to generate a cell barcode
whitelist, or the whitelist was also generated from the R1 sequencing file using UMI tools. Cell
barcodes and extracted UMIs were added to the read names of the lineage barcode FASTQ files.
The resulting FASTQ files were processed to output a sparse matrix in csv format, where rows
were cells identified by individual cell barcodes and columns were lineage barcodes. Using code
modified from Wagner et al. (2018), only Cell-UMI-BC triplets supported by at least 10 reads
and Cell-BC pairs with at least 6 UMI were considered for further analyses. ClonelDs were
assigned to cell barcodes by clustering the matrix using Jaccard similarity and average linkage,
as demonstrated by Wagner et al. (2018). The resulting dendrogram was cut at a height of 0.999

to obtain the clonal groups.
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3.13 Cellfiltering, data normalization batch correction and

clustering of datasets

3.13.1 Processing the MUC28072 dataset

The Seurat pipeline (version 3.1.4) was used for cluster identification in scRNA-seq datasets.
Embryonic transcriptome datasets (MUC28072) were read into R (version 3.6.0) as a count ma-
trix. Each dataset was filtered with cut-off points for: maximum or minimum gene expression,
maximum nCount_RNA and the percentage of total reads aligned to the mitochondrial genome.
Furthermore, embryonic datasets were filtered with DoubletFinder version 2.0.3 (McGinnis,
Murrow, and Gartner [2019).

We used regularized negative binomial regression59 to normalize the UMI count data for all
embryonic datasets. Cells with UMI counts for Neurod2 > 2 and Neurod6 > 2, which are markers
of excitatory neurons, were removed. The TrackerSeq dataset was clustered using Seurat stan-
dard procedures and clusters expressing marker genes for excitatory neurons were removed.
We created an ’integrated’ data assay that includes all embryonic datasets for downstream anal-
ysis, as described by Stuart et al. (2019). Clusters of cells were identified by a shared nearest-
neighbor modularity optimization-based clustering algorithm. Uniform manifold approxima-
tion and projection (UMAP) dimensional reduction (https://github.com/Ilmcinnes/umap) was

applied to the integrated data assay for visualization.

3.13.2 Processing embryonic tCROP-seq datasets.

Embryonic E16 tCROP-seq datasets, including those containing TrackerSeq barcodes, were pro-
cessed together for cell filtering, data normalization, and cluster annotation following the stan-

dard Seurat workflow (4.0.6, Hafemeister and Satija [2019). Data were read into R as a count
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matrix. Each data set was pre-processed according to a set of criteria: minimum and maximum
genes expressed, maximum nCount_RNA and percentage of mitochondrial mapping. CRISPR-
perturbed cells were identified using a CellRanger CSV file output that contained the cell bar-
codes and the sgRNA detected in that cell. We excluded excitatory clusters by removing those
that have UMI counts for Neurod2>2 and Neurod6>2, which are markers of excitatory neurons.
To create an ’integrated’ data assay, we combined the embryonic tCROP-seq dataset with wt
GE datasets that were collected at E13.5 and E15.5 as described by Stuart et al. (2019). Briefly,
after each dataset is normalized using SCTransform(), anchors are identified using FindIntegra-
tionAnchors(), then the anchors are used to integrate the embryonic tCROP-seq and wt data
sets with IntegrateData).

To group cells into clusters, we first construct a shared nearest neighbor using the Find-
Neighbors() algorithm, then input the graph into an SLM algorithm that is implemented through
the FindClusters() function in Seurat (dimensions = 30, res = 0.8). We obtained cluster-specific
marker genes by performing using FindAllMarkers(), comparing cells of each cluster to
cells from all other clusters. Genes were considered differentially expressed if they met the
fold change, minimum expression, and adjusted P-value cut-offs as dictated by the Wilcoxon
rank sum test implemented via Seurat. Clusters were assigned to cell types according to the
expression of marker genes in the literature, mainly at http://mousebrain.org/development/ (La

Manno et al. [2021).

3.13.3 Processing postnatal tCROP-seq datasets.

Each post-natal P7 dataset was pre-processed according to a set of criterion: minimum and max-
imum genes expressed, maximum nCount_RNA and the mitochondrial mapping percentage.
We normalized and regressed the technical effects introduced by nFeature_ RNA, nCount_RNA,
and mitochondrial mapping percentage using SCTransform().

We used Harmony (v1.0, Korsunsky et al.[2019) within the Seurat workflow using default
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settings (theta = 2, lambda = 1, sigma = 0.1) to integrate different CRISPR datasets. We used
the first 30 Harmony embeddings for UMAP (https://github.com/Imcinnes/umap) visualizations
and clustering analysis.

To group cells into clusters, we first constructed a shared-nearest neighbor graph from Har-
mony embeddings using the FindNeighbors() algorithm, then input the graph into the FindClus-
ters() function in Seurat (dimensions = 30, res = 0.8). We obtained cluster-specific marker genes

by performing a differential expression analysis using FindAllMarkers().

3.14 scRNA-seq analysis of tCROP-seq datasets

3.14.1 Comparing cell type composition between perturbations

We compared the effect of perturbation on cell type composition using the method described by
Jin et al. (2020). More specifically, we used a Poisson regression model to test the relationship
between perturbations and cell number in each cluster, correcting for batch and total number
of cells. The formula is as follows:

Num ~ offset(logTot) + Batch + Pert

3.14.2 Differential expression analysis

We used the Libra package to perform DEA (Squair et al.|[2021). We ran the run_DE functions
on Seurat objects directly with the following parameters (de_family = pseudobulk, de_family =
pseudobulk, de_method = edgeR, de_type = LRT). We obtained[DEGE of projection neuron (PN)s
or interneuron (IN)s by using run_DE function on cells grouped into classes (mitotic, projection
neurons, and interneurons). To obtain of individual subclusters, we used the run_DE
function on individual clusters. We filtered for statistically significant genes (FDR-adjusted p-

value threshold = 0.05). Genes were considered differentially expressed if avg_logFC < -1.0 or
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avg_logFC > 1.0.

3.14.3 Hotspot analysis of gene coexpression

Hotspot(v0.91) is a tool to identify co-expressing gene modules in a single-cell dataset (DeTomaso
and Yosef|2021). It computes gene modules by evaluating the pairwise correlation of genes with
high local autocorrelation and then clusters the results into a gene-gene affinity matrix. Gadz-
expressing inhibitory population in the P7 dataset was first subset out from the rest to identify
inhibitory specific modules in the embryonic dataset. We ran the depth-adjusted negative bi-
nomial model on the entire count matrix and Harmony (v1.0) corrected principal components
(see batch correction of tCROP-seq datasets). We computed a k-nearest-neighbors (KNN) graph
with 30 neighbors; subsequently, 9154 non-varying genes were detected and removed. Auto-
correlations between each gene were calculated, and the top 500 significant (FDR < 0.05) genes
were used to evaluate pairwise gene associations (local correlations). After calculating pairwise
local correlations, we grouped genes into modules. Modules were created through agglomera-
tive clustering, where the minimum number of genes per module was set to 30. 8 modules were
identified, and 103 genes were not assigned to a module. Summary module scores per cell are
calculated using the calculate_module_scores() function as described by DeTomaso and Yosef

(2021).

3.14.4 Testing Hotpot module gene sets

As described by Jin et al. (2020), linear regression was used to test the relationship between the
perturbation and the gene scores of the hotspot module. The batch and number of genes were
corrected for using the Im function from the stats package (version 3.6.2), with the following
formula:

Gene Score ~ perturbation + batch + nGene
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3.14.5 GO Term analysis of differentially expressed genes and module

genes

GO term analysis was performed using the enrichR package (Kuleshov et al.[2016). The DEGs
and module genes of each module were queried against the following databases: GO_Molecul-
ar_Function_2018, GO_Cellular_Component_2018, and GO_Biological_Process_2018. Only GO

Terms that were significant (p-value adjusted < 0.05) were kept.

3.14.6 Link to code

The code for the analyses described in this thesis can be found in this GitHub repository: https:

//github.com/mayho3/PhD-thesis


https://github.com/mayho3/PhD-thesis
https://github.com/mayho3/PhD-thesis
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4 Results

4.1 Establishing TrackerSeq

Acknowledgement

The results presented in Part 1 "Establishing TrackerSeq" were obtained through collaborative
efforts. I co-developed the TrackerSeq protocol with Christian Mayer. Ilaria Vitali performed
the staining, IUE and scRNA-seq exerpiments. Elena Dvoretskova designed, assisted with the
experiments, and analyzed the data. I provided custom scripts to analyze TrackerSeq data.

Trajectory analysis was executed by Christian Mayer.

4.1.1 Gibson cloning is appropriate for complex library construction

To study the role that lineage plays in fate specification, we designed a single-cell compatible,
transposon-based barcoding approach, named TrakcerSeq.

We designed a 37-bp long synthetic oligos, referred to henceforth as[LB| that had 2-bp ran-
dom regions bridged with 3-bp long fixed regions. This design resulted in a library with a
theoretical complexity of approximately 4.3 million [LBllineage barcodes. The piggyBac donor
plasmid (Addgene #40973) was modified using Gibson Assembly to include a Read2 partial
primer sequence to make it compatible with next-generation sequencing. The sucrose gene
was cloned downstream of the Read2 sequencing primer for counter-selection process. Be-
tween each Gibson Assembly cloning reaction, we confirmed the integrity of the vector using
Sanger sequencing. Finally, we cloned the[LBlinto the piggyBac plasmid backbone using Gibson
Assembly. We then plated the reaction on sucrose plates so that e.coli containing plasmids that

failed to incorporate the [LB| (i.e. still contain the sucrose gene rather than [LB) cannot grow on
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sucrose plates and are not harvested. 20 colonies on the plates were sent for Sanger sequenc-

ing to confirm the diversity of the [LBk, as well as the successful incorporation of the lineage

barcode in the plasmid backbone (Figure[10JA). In addition, all the were unique.

A TrackerSeq vectors B Sanger sequencing of colonies from library
Helper plasmid:
PBase — Clone01 GGCTGAGACTATGACCGTGATGCTGGGACTGTGAC
- Clone02 CACTGCTACTGTGACAGTGACACTGGCACTGTGAC
Donor plasmid: Clone03 CTCTGAGACTGTGACGATGAACCTGTTACTTAGAC
—3‘itr—-Read 2Barcode Poly(A)—5'itr— Clone04 TTCTGGGACTTCGACGTTGAAGCTGAARACTGTGAC
/ '\. Clone05 AGCTGCGACTGGGACGCTGACTCTGCCACTGAGAC
nnCTG-nnACT-nnGAC-nnTGA-nnCTG-nnGAC-nn
Clone06 ATCTGAGACTCTGACGTTGAGTCTGACACTCCGAC
_______ Cloning Strategy Clone07 TTCTGATACTACGACCTTGATACTGCTACTGTGAC
— — Clone08 TGCTGATACTTAGACAATGATGCTGACACTAAGAC
e [11 I11 '
ﬁ Donor vector L Clone n TTCTGAGACTCCGACCATGAGACTGCGACTGGGAC
<
s — —
5 { —‘ | Consensus cTeacTIGACNTEANCTE IACTINGACHY |
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o . 104
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—
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Figure 10: Cloning the TrackerSeq library. A) Vector maps and cloning strategy of Track-
erSeq. PBase: piggyBac transposase B) Sanger sequencing results of 10 individual E.coli
colonies (’clones’) depicting the consensus sequence of the TrackerSeq lineage barcodes. C)
Pairwise hamming distance of 1000 barcodes randomly sampled from the TrackerSeq library.
D) 3.6 x 10° raw sequencing reads were collapsed into 2 x 10° clusters, where each cluster is

defined as a unique lineage barcode.
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4.1.2 The TrackerSeq library is highly diverse

To estimate the diversity of the TrackerSeq library, we first prepared the library for next-
generation sequencing (NGS). We took an aliquot of the library, amplified it with primers,
performed dual-sided SPRI selection to recover the amplified followed by We used
3.6 x 10° reads to sequence the LB library. These raw sequencing reads were collapsed into ap-
proximately 2 x 10° clusters, where each cluster is defined as a unique lineage barcode (Figure
[10D). We extracted sequencing reads with Bartender and randomly sampled 1000 barcodes to
examine the Hamming distance. In this case, the Hamming distance is as the number of bases by
which the LBs differ. If the LB library consisted of barcodes that had low Hamming distances,
that made the LBs more vulnerable to errors introduced by PCR or sequencing. We evalu-
ated the Hamming distance of the sample barcodes with the stringdistmatrix function from the
stringdist package (Loo [2014) and plotted the distribution. The minimum, average, and maxi-

mum hamming distance between barcodes in the library were 5, 11, and 16 respectively (Figure

10C).

4.1.3 TrackerSeq can label progenitors in vivo

We targeted the TrackerSeq library to ganglionic eminence progenitors at E12.5 and collected
electroporated brains at E16.5 to test whether the library can successfully label neuronal cells in
vivo (Figure[11]A). We examined Hoechst stained coronal section of brains harvested from E16.5
embryos and confirmed that the electroporated cells are expressing (Figure [11B). Once
we confirmed that TrackerSeq can label progenitors, we repeated the experiment and FACS-
enriched E16.5 electoporated cells and performed scRNA-seq. We embedded the TrackerSeq®!2
cells with wild-type scNRA-seq datasets that were collected at E13.5 and E15.5 from the me-
dial, caudal and lateral ganglionic eminences to gain a higher resolution of the embryonic cell

states. After processing the TrackerSeq barcode reads, we observe that 4, 282 barcodes were
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distributed over 2, 370 cells in the total dataset (Figure ) Among these labelled cells,
56.0% of them were marked by 2 or more barcode integrations, and 8.4% of them were
marked by 5 or more integrations in the total dataset. Within the rgic neurons, these

numbers were 85.7% and 9.5%, respectively. Hierarchical clustering of TrackerSeq DNA tags

organized cells into 256 distinct multicellular clones of rgic neurons (Figure ).

4.1.4 Emerging embryonic precursor states mapped to postnatal states

We performed pseudotime trajectory analysis on the TrackerSeq dataset using Monocle3, a dif-
fusion pseudotime algorithm that identifies developmental branch by learning the sequencing
of gene expression changes. After cell-cycle exit, five different trajectories (or precursor states)
of postmitotic rgic neurons emerged from a common pool of mitotic progenitors (Figure
13A)).

After clustering, we annotated the clusters based on their shared, top marker genes that are
expressed (i_Six3/Gucyla3, ’i_Ebf1/IslT’, ’i_Phlda1/Isl1, ’i_Nr2f2 and ’i_Nxph?’) (Figure ).
To examine whether postnatal cell type identity already emerge at this stage, we mapped
cells from each embryonic precursor state to GABAergic clusters in postnatal datasets using
a correlation-based distance metric (Figure -E). The majority of cells from precursor states
mapped to specific postnatal clusters: 83% of cells from the ’i_Six3/Gucyla3 mapped to the
postnatal cluster *7a D2 SPNs’, and 89% of cells from the ’i_Ebf1/IslI’ mapped to the ’7b D1
SPNs’ cluster (Figure ). In concordance with the data, OB interneuron precursors as well as
D1 and D2 striatal precursors, sustained the expression of multiple marker genes throughout

development.
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Figure 11: TrackerSeq successfully labels cells in vivo. A) Schematic of the TrackerSeq
experimental workflow. PBase, piggyBac transposase. B) Images of coronal brain sections elec-
troporated with TrackerSeqE12 and collected at E14.5. Cx, cortex; GE, ganglionic eminence.
Magnification on the bottom right panel shows a radial cluster of newborn cells (white arrow-
heads). C) UMAP plot of embryonic scRNA-seq datasets, cells coloured by dataset type (blue,
TrackerSeq; grey, wild type). D) Histogram showing distribution of clone sizes for TrackerSeq
dataset.
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Figure 12: TrackerSeq reveals lineage relationship of multicellular clones. A) Clustered
heatmap of TrackerSeqE12 barcodes. Rows are single GABAergic precursor cells for which both
transcriptome and >1 TrackerSeq barcodes were retrieved; column represents unique Track-
erSeq barcodes. The clonal groupings showed that there were 4,282 barcodes distributed over
2,370 cells in the total dataset, where 56.0% of them were marked by 2 or more barcode integra-
tions, and 8.4% of them were marked by 5 or more integrations in the total dataset. Highlighted
barcodes are those represented in Fig4.5(D). B), C) Heatmaps of individual clones 1260 and 274,
respectively.

4.1.5 Newly born GABAergic sister cells diverge

We then asked whether clonally related cells traverse the same or different trajectories. In-

triguingly, although cells derived from 63.6% of the clones entered the same trajectory, 36.4% of
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Figure 13: Mapping of embryonic datasets to postnatal GABAergic forebrain neurons.
A) UMAP plot of integrated embryonic scRNA-seq datasets, coloured by clusters. i, GABAergic;
m, mitotic. B) Heatmap showing the normalized expression of the top ten marker genes for
the five precursor states.C) Schematic of the strategy for computationally mapping embryonic
precursor state cells to postnatal clusters. D) UMAP of the embryonic dataset, with precursor
state cells coloured based on the mapping results. E) Bar graph quantifying the correlation-
based mapping of cells from the five precursor states to selected postnatal ventral GABAergic
neuron clusters. The numbers on the bars indicate the dominant mapped postnatal cluster.
Inhib., GABAergic; VS, ventral striatum. Figures adapted from Bandler et al.

the clones had cells that diverged into separate trajectories upon exiting cell cycle (Figure[14B).
For example, we discovered sister cells on the ’7b D1 SPN” and "7a D2 SPN’ trajectories, '7a D2
SPN’ and ’8 [GABAkrgic ITC-amygdala’ trajectories, and the ’2 [GABAkrgic neuron OB Meis2’
and "8[GABAkrgic ITC-amygdala’ trajectories (Figure[14A,D). While the majority of [GABAkrgic
clones traverse the same trajectory, the data shows that a subset of progenitor cells in the GE
can produce clones that differentiate into various [GABAkrgic cell types at peak neurogenesis.

This suggests that clonal divergence of [GABAkrgic sister cells is a lineage-dependent process
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that is initiated at the mitotic stage in radial glial cells (Figure [14(C).
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Figure 14: GABAergic sister cells diverge into different precursor states. A) Two hy-
potheses: Lineage-dependent vs lineage-independent mode of differentiation. B) Pie chart rep-
resents the percentage of multicellular clones that follow a single trajectory or dispersed across
multiple precursor state trajectories. C) Schematic of lineage divergence for ventral inhibitory
neuron cell types. D Examples of clones where sibling cells traverse a single developmental
trajectory (left) or different trajectories (right) on the UMAP.
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4.2 Fate specification of inhibitory interneurons and pro-

jection neurons
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4.2.1 InvivotCROP-seq to assess the function of MEIS2 during GABAer-

gic fate decisions

Our TrackerSeq data showed that diverse types of [GABAkrgic neurons can share a common
lineage. The majority of progenitors produce clones that traverse the same developmental land-
scape, but a sizable subset produce transcriptomically diverse [GABAkrgic cell types. However,
the genetic fate specification of[GABAkrgic is influenced by other intrinsic genetic factors, such
as the expression of [TEs. It is not known which [TFs determine the fate of [GABAkrgic neurons
or facilitate more fundamental, developmental processes such as maturation and proliferation.
Moreover, would the inactivation of certain [TFs impede [GABAkrgic differentiation?

How do [TEs specify different types of [GABAkrgic neurons? To answer this question, we
modified CROP-seq (Datlinger et al. [2017), a pooled CRISPR screen method with single-cell
transcriptome readout, to perturb candidate [TEs in vivo.

MEIS2 was an attractive candidate for perturbation because it has been implicated in the

generation of [LGE-derived [GABAkrgic (Su et al. [2022). Haploinsufficiency of Meis2 in
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humans results in cardiac and palate abnormalities, developmental delay, and intellectual dis-
ability. Moreover, Meis2 is highly expressed in the and fairly expressed in the [VZI(Su
et al.[2022).

To investigate the effects of MEIS2 perturbation on cellular fate decisions in a sparse pop-
ulation of precursors in the we modified CROP-seq (Datlinger et al. |[2017), a method for
pooled CRISPR screens with single-cell transcriptome readout. Instead of lentiviral vectors to
deliver single-guide RNAs (sgRNAs), we used a PiggyBac transposon-based strategy (tCROP-
seq) and in utero electroporation to efficiently deliver sgRNAs to cycling progenitors in the
The transposon system allows genes to be stably integrated into the genomes of electro-
porated cells and thus to be transmitted to their postmitotic daughter cells (Ding et al. 2005).
This increases the pool of perturbed cells and ensures that the perturbation occurs during a
period covering the peak of neurogenesis (Bandler et al. 2022). We also added specific capture
sequences to the sgRNA vectors that efficiently link sgRNAs to cell barcodes, and enable se-
quencing of the protospacer from the transcriptome (Replogle et al. [2020). tCROP-seq sgRNA
vectors also encode TdTomato to enable the labeling and enrichment of perturbed neurons.
The efficiency of sgRNAs to induce frame-shift mutations was validated in vitro prior to the
tCROP-seq experiments (data not shown).

The tCROP-seq vectors were targeted by in utero electroporation at E12.5 to progenitor
cells of the in a mouse line ubiquitously expressing Cas9 (Platt et al. [2014) (Figure [I5A).
We electroporated a total of 14 embryos from multiple pregnant females. Of these, 8 received
sgRNAs for Meis2 (gMeis2) and 6 received sgRNAs for LacZ (gLacZ), which served as a control.
At E16.5, most TdTomato+ cells had migrated away from the ventricular zone and colonized a
variety of structures, including the striatum, cerebral cortex, and olfactory bulb (Figure ),
consistent with the migration patterns of[GE}derived inhibitory neurons at this stage (Anderson
et al. 2001). Cortices, striata, and olfactory bulbs were then dissected and TdTomato+ cells

were enriched by FACS. tCROP-seq allows the retrospective assessment of which sgRNA was
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Figure 15: in vivo tCROP-seq of Meis2 in the mouse forebrain. A) Vector maps and
schematic of the in vivo tCROP-seq workflow, in which mutations in individual genes are in-
troduced in utero and the effect is determined at a later time point via scRNA-seq. B) Uniform
Manifold Approximation and Projection (UMAP) plot of inhibitory cells colored by clusters. C)
Dotplot of the top five marker genes of inhibitory clusters. D) UMAP plot of the integrated
dataset colored by sgRNA. E) Relative increase or decrease in the number of inhibitory cell
clusters in gMeis2 compared to glacZ. F) Lollipop plots showing the impact of gMeis2 on in-
hibitory clusters. G) Volcano plot depicting differentially expressed genes in gMeis2 and glacZ
projection neurons.

expressed in which cell. We pooled cells from embryos having received glacZ or gMeis2, and
conducted multiplexed single-cell RNA sequencing to minimize batch effects (Figure [15/A) (Jin

et al. [2020). We sequenced 6 independent scRNA-seq experiments. Together, this resulted in a
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dataset containing 34481 cells passing quality controls and filtering, that could be linked with
either glacZ (11009) or gMeis2 (23472). We projected cells into a shared embedding using
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