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Zusammenfassung

Numerische Wettervorhersagemodelle (NWP) haben in den letzten Jahrzehnten er-
hebliche Fortschritte gemacht. Dank der ständig wachsenden Rechenleistung werden
NWP-Systeme, die sich von der synoptischen bis zur konvektiven Skala erstrecken, jetzt
routinemäßig in Wettervorhersagezentren weltweit gerechnet. Obwohl sich die Qualität
der NWP-Vorhersagen unbestreitbar verbessert hat, stößt jede Vorhersage irgendwann
an ihre Grenzen. Insbesondere bei Vorhersagen auf der Kilometerskala (auch bekannt
als Vorhersagen auf der konvektiven Skala) wird diese Grenze der Vorhersagbarkeit
immer deutlicher, da die Vorhersagefehler um ein Vielfaches schneller wachsen als auf der
synoptischen Skala. Das übergeordnete Ziel dieser Dissertation ist es, ”das Verständnis
der strömungsabhängigen Vorhersagbarkeit und des Wachstums des Vorhersagefehlers in
Vorhersagemodellen der konvektiven Skala zu verbessern”. In dieser Dissertation werden
drei Einzelstudien durchgeführt, um das übergeordnete Ziel zu erreichen.

Die erste Studie nutzt die konvektive Zeitskala, um Wettersituationen objektiv zu
identifizieren und eine Klimatologie der konvektiven Wetterlagen im Bereich der kontinen-
talen USA (CONUS) zu erstellen. Klimatologisch zeigen konvektive Wetterlagen regionale
Abhängigkeiten. Im nördlichen CONUS ist der Einfluss der synoptischen Strömung
stärker, ähnlich wie in Deutschland, während im südlichen CONUS die lokal angetriebene
Konvektion stärker ausgeprägt ist. Diese objektive Klassifizierung spiegelt nachweislich
unser grundlegendes physikalisches Verständnis wider, wenn wir die jahreszeitlichen und
tageszeitlichen Abhängigkeiten untersuchen. Darüber hinaus zeigt diese Studie, dass
Gleichgewichtskonvektion in konvektiven Vorhersagen besser vorhersagbar ist als Nicht-
Gleichgewichtskonvektion, was mit den Ergebnissen früherer Studien übereinstimmt, die
über viel kleinere Gebiete durchgeführt wurden. Da es sich um die erste klimatologische
Studie in diesem Bereich handelt, können die Ansätze und Ergebnisse als wertvolle Orien-
tierungshilfe für zukünftige Studien dienen, die sich auf den CONUS-Bereich konzentrieren.

Unter Verwendung der in der ersten Studie beschriebenen Klassifizierungsmetrik
für Wetterlagen werden in der zweiten Studie Fallstudien zu Konvektion ausgewählt, die
sich über Winterstürme als auch sommerliche Tage mit starkem und schwachem Antrieb
erstrecken. Das strömungsabhängige Wachstum des Vorhersagefehlers wird in einem
Wettervorhersagemodell der konvektiven Skala untersucht. Die Ergebnisse deuten darauf
hin, dass Winterstürme die höchste Vorhersagbarkeit besitzen, während sommerliche



Konvektion bei schwachem Antrieb, insbesondere hinsichtlich des Niederschlags, die
geringste Vorhersagbarkeit aufweist. In dieser Studie wird der Modellfehler bezüglich der
Unsicherheit in zwei subgrid-skaligen Prozessen formuliert: Stochastisch gestörte Parame-
ter, angewandt auf die Mikrophysik (SPPMP) und die Unsicherheit in der Grenzschicht,
die mit dem physikalisch basierten stochastischen Störungsschema (PSP) beschrieben
wird. Der zentrale Gedanke ist, zu verstehen, ob das Wachstum des Vorhersagefehlers
durch die Strömungsdynamik oder durch Details der Formulierung des Modellfehlers
kontrolliert wird. Die Ergebnisse deuten darauf hin, dass bei längeren Vorlaufzeiten
der Vorhersagefehler trotz verbleibender geringer Amplitudenunterschiede hauptsächlich
durch feuchte Konvektion und nicht durch Details der Störung beeinflusst wird. Dies
erklärt, warum in früheren Studien argumentiert wurde, dass die Auswirkungen der
stochastischen Verfahren nicht additiv sind, da ihre Auswirkungen nicht orthogonal
sind. Im Gegensatz dazu kann der Unterschied zwischen PSP und SPPMP bei kurzen
Vorlaufzeiten ausgeprägter sein, da das Fehlerwachstum hauptsächlich auf der konvektiven
Skala stattfindet. Trotz ihrer insgesamt geringeren Wirkung können mikrophysikalische
Störungen unter bestimmten Bedingungen wichtig sein, da sie Instabilität früher auslösen
können, insbesondere zu Zeiten, in denen das PSP-Schema aufgrund einer stabilen
Grenzschicht nicht aktiv ist. Dies ist eine wichtige Erkenntnis für Forschende, die sich auf
die Entwicklung stochastischer Formulierungen des Modellfehlers für NWP-Systeme mit
kurzer Vorhersagefrist konzentrieren.

In der dritten Studie wird ein Fall von Starkregen verwendet, um die Auswirkungen
der Unsicherheit in den Anfangsbedingungen und des Modellfehlers bei Kurzfrist-
Konvektionsvorhersagen zu untersuchen. Im Vergleich zur Unsicherheit in den Anfangsbe-
dingungen ist die Niederschlagsvorhersage nicht empfindlich gegenüber dem Modellfehler,
der durch das SPPT-Schema (Stochastically Perturbed Parameterization Tendency)
dargestellt wird. Da das SPPT-Schema ein ganzheitlicherer Ansatz ist als die SPPMP-
und PSP-Schemata, deutet dieses Ergebnis darauf hin, dass der Unterschied zwischen
den beiden Schemata bei kurzen Vorhersagefristen nicht signifikant ist, wenn man kleine
Fehler bei den Anfangsbedingungen berücksichtigt. Dieses Ergebnis rechtfertigt weitere
Untersuchungen in zukünftigen Studien. Diese Studie schließt an Kuo et al. (2023) an,
die gezeigt haben, dass die Integration von Radio-Okkultationsdaten (RO) in ein Modell
auf der Kilometerskala die Vorhersagbarkeit von konvektivem Niederschlag verbessern
kann. Durch die Darstellung von zufälligen Anfangs- und Modellfehlern untermauert
diese Studie die Schlussfolgerung von Kuo et al. (2023) weiter, indem sie zeigt, dass die
Verbesserung nicht rein zufällig ist, da Vorhersagen, die von Anfangsbedingungen mit
RO-Assimilation ausgehen, im Durchschnitt besser sind als solche ohne.

Zusammenfassend umfasst diese Dissertation eine klimatologische Analyse, eine Un-
tersuchung des Fehlerwachstums bei verschiedenen Modellfehlerformulierungen und eine
Erforschung des Fehlerwachstums bei Fehlern in den Anfangsbedingungen. Während jede
Studie mehrere Forschungsfragen vertieft, trägt diese Dissertation insgesamt zu einem
besseren Verständnis von Vorhersagbarkeit und der Rolle verschiedener Fehlerquellen bei.



Abstract

Numerical Weather Prediction (NWP) models have made significant strides in recent
decades. Thanks to the ever-increasing computing power, NWP systems focusing on
synoptic- to convective scales are now running routinely at weather forecasting centers
worldwide. While there has been undeniable improvement in NWP forecast skills,
inevitably, every forecast will ultimately encounter its predictability limit. Especially for
kilometer-scale (also known as convection-permitting) forecasts, this predictability limit
becomes increasingly evident as their forecast errors grow several times faster than those
of synoptic-scale forecasts. In this dissertation, the overarching goal is to “advance the
comprehension of regime-dependent predictability and forecast error growth
in kilometer-scale models”. To achieve the overarching goal, three individual studies
are conducted.

The first study utilizes the convective adjustment time scale to identify weather
regimes objectively and establish convective regime climatology in the Contiguous United
States (CONUS) domain. Climatologically, convective regimes demonstrate regional
dependencies. In the northern CONUS, there is a stronger influence from synoptic
flow, akin to Germany, whereas in the southern CONUS, locally forced convection is
more prevalent. This objective classification is proven to reflect our basic physical
understanding when examining seasonal and diurnal dependencies. Furthermore, this
study demonstrates that equilibrium convection is more predictable than nonequilibrium
convection in convection-permitting forecasts, which aligns with findings from previous
studies conducted on much smaller domains. As the first climatological study in this area,
the approaches and findings can serve as valuable guidance for future studies focusing on
the CONUS domain.

Utilizing the regime classification metric outlined in the first study, the second study
selects winter storm, strong forcing, and weak forcing convection cases, and investigates
regime-dependent forecast error growth in a convection-permitting model. The findings
suggest that winter storm cases possess the highest predictability, while nonequilibrium
summer convection, especially regarding precipitation, exhibits the lowest predictability.
In this study, the forecast error stems from the uncertainty in the model formulation, as
represented by the Stochastically Perturbed Parameter applied to Microphysics (SPPMP)
scheme and the Physically based Stochastic Perturbation (PSP) applied to the Planetary
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Boundary Layer (PBL) scheme. The central idea is to understand whether forecast
error growth is primarily controlled by the flow dynamics or the details of the error
representation schemes. The results suggest that for longer lead times, despite remaining
small amplitude differences, the forecast error is primarily controlled by moist convection
rather than the perturbation details. This explains why previous studies argue that the
effects of stochastic schemes are not additive, as their impacts are not orthogonal. In
contrast, the distinction between PSP and SPPMP can be more pronounced at short
lead times, where the error growth predominantly occurs at the convective scale. Despite
its overall smaller effect, microphysics perturbations can be important under certain
conditions, as they may trigger instability earlier, particularly during times when the
PSP scheme is not active due to a stable PBL. This conveys an important message for
researchers focusing on developing stochastic physics suites for short-lead-time NWP
systems.

The third study utilizes a heavy rainfall case to explore the impact of initial and
model uncertainty in short-range convection-permitting forecasts. Overall, the precipita-
tion forecast is not sensitive to the model uncertainty represented by the Stochastically
Perturbed Parameterization Tendency (SPPT) scheme compared to the initial uncertainty.
As the SPPT scheme is a more holistic approach than the SPPMP and PSP schemes,
this result suggests that the difference between the two schemes at short lead times
may not be significant when considering small initial condition errors. This finding
warrants further investigation in future studies. This study represents a follow-up to Kuo
et al. (2023), which illustrated that assimilating Radio Occultation (RO) data into a
kilometer-scale model can improve the predictability of convective precipitation. Through
representing random initial and model errors, this study further supports their conclusions
by demonstrating that the improvement is not purely coincidental as forecasts initialized
from initial conditions with RO assimilation, on average, outperform those without.

In summary, this dissertation encompasses a climatological analysis, an investigation
into error growth from model error formulations, and an exploration of error growth from
initial condition errors. While each study delves deeper into multiple research questions,
collectively, this dissertation advances the understanding of predictability and error growth
characteristics across various weather regimes in convection-permitting NWP models.
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Chapter 1

Introduction

Numerical Weather Prediction (NWP) models have evolved rapidly in recent decades
and are now running routinely at major operational centers worldwide (Bauer et al.,
2015). Their applications span from short-range weather to long-range climate prediction,
addressing phenomena ranging from convective storms to synoptic patterns. Despite their
undeniable success, every forecast will inevitably encounter its predictability limit (Lorenz,
1963, 1969). This limitation is particularly evident in the prediction of convective storms,
where errors amplify several times faster than in the prediction of synoptic weather
patterns (Hohenegger and Schar, 2007). In recent decades, efforts to improve convective
storm predictability involved the development of kilometer-scale models, observational
systems, and data assimilation techniques (Sun, 2005; Gustafsson et al., 2018). In
addition, kilometer-scale Ensemble Prediction Systems (EPSs), which generate a range of
potential outcomes by representing sources of forecast uncertainty, have been developed in
operational and research centers to offer uncertainty quantification in forecasts (Gebhardt
et al., 2011; Schwartz et al., 2015; Beck et al., 2016). However, Romine et al. (2014)
have reported that kilometer-scale EPSs are often under-dispersive or overly confident,
requiring further investigation into the error representations and their associated forecast
error growth within these models. One key objective of kilometer-scale NWP models is
to provide Quantitative Precipitation Forecasting (QPF) for convective storms, such as
their intensity, location, and timing, given their significant economic and societal impacts
(Ahmadalipour and Moradkhani, 2019; Brázdil et al., 2021; Turner et al., 2021). According
to prior studies (Keil et al., 2014, 2019), the predictability of convective precipitation
varies and may depend on their convective regimes, with certain cases demonstrating high
predictability while others exhibiting almost no predictability.

This dissertation has an overarching goal to “improve the comprehension of
regime-dependent predictability and forecast error growth within kilometer-
scale models”. In pursuit of the overarching goal, this dissertation identifies three
research topics: climatological analysis, forecast error growth from different model error
formulations, and forecast error growth from initial condition errors, as further detailed
below. As this dissertation primarily focuses on weather systems within the Contiguous
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United States (CONUS) domain, the first study systematically identifies convective
regimes using the convective adjustment time scale (Done et al., 2006) and establishes
convective regime climatology using historical forecast datasets from an operational
kilometer-scale NWP system. Furthermore, this study aims to explore whether these
historical forecasts over the CONUS domain climatologically exhibit regime-dependent
precipitation predictability. Utilizing the regime classification procedure established in the
first study, the second study investigates regime-dependent forecast error growth, specif-
ically focusing on forecast errors stemming from different model error representations.
This investigation aims to elucidate whether incorporating different sources of model
error leads to distinct forecast error growth within a kilometer-scale model. Finally, the
third study investigates the predictability of a convective precipitation event occurring
in a distinct geographic region over East Asia. Using a kilometer-scale model, the third
study compares the impact of initial and model uncertainties on short-range forecasts by
examining the evolution of precipitation forecast errors.

In summary, the three studies in this dissertation collectively contribute to un-
derstanding predictability and forecast error growth across various weather systems in
kilometer-scale NWP models. For example, establishing a convective regime climatology
within the CONUS domain and elucidating its connection to regime-dependent predictabil-
ity can aid future studies in distinguishing convection behavior in forecasts. Moreover, as
further exploration of error representations in kilometer-scale EPSs is necessary, investi-
gating forecast error growth originating from initial and model errors can provide valuable
insights. In the subsequent sections, I will provide an overview of deterministic and proba-
bilistic NWP systems, subgrid parameterization schemes and their uncertainty representa-
tions, deep convection and its classification, and conclude with a summary of the research
questions.

1.1 Numerical Weather Prediction

NWP models utilize a set of prognostic equations to predict the temporal evolution of the
atmospheric states (e.g., temperature, wind, and water vapor) from the observed current
weather. These prognostic equations, such as momentum, continuity, and thermodynamic
equations, describe the essential physical processes of atmospheric flow with a certain
level of complexity. Its inception can be traced back to the 1920s (Richardson, 1922), with
the first operational NWP system established in the United States in the 1950s (Lynch,
2008). Owing to the rapid evolution of NWP models and high-performance computing
techniques, NWP systems have become indispensable tools for both operational and
research communities. In this section, I will discuss NWP models of different scales, delve
into the predictability challenges, and elucidate the emergence of ensemble prediction in
recent decades.
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1.1.1 NWP models of different scales

Given the challenges in solving partial differential equations analytically, these equations
are solved numerically through spatial (Kasahara, 1974) and temporal (Wicker and Ska-
marock, 2002) discretization. The discretization results in a distinction between resolved
and unresolved processes. The trajectory of resolved processes is explicitly predicted
by stepping the prognostic equations forward in time (typically called dynamics). On
the contrary, unresolved processes occurring at scales smaller than the grid spacing are
handled by subgrid parameterization schemes (typically called physics). In a general
sense, parameterization schemes use the resolved variables and parameters to estimate
sources and sinks in the prognostic equations, playing a crucial role in closing the set
of primitive equations (Stensrud, 2007). The processes falling into the physics category
can vary among NWP models and may depend on their grid spacing (Yu and Lee, 2010;
Pearson et al., 2014).

Before exploring NWP models of different scales, it’s important to delineate various
types of NWP systems: either deterministic or probabilistic, and either regional or global.
Broadly speaking, a comprehensive NWP system comprises two essential components: (1)
a numerical model with complete dynamics and physics and (2) a Data Assimilation (DA)
system that determines the initial state from observations (Lorenc, 1986). Deterministic
forecasting generates a single forecast outcome based on a single realization of the
numerical model and initial state, while probabilistic forecasting predicts a range of
potential forecast outcomes, as further explained in Section 1.1.3. Global and regional
models vary in their spatial coverage, which is configured according to factors such
as forecast range and targeted weather phenomena. Since regional models depend on
prescribed boundary conditions (Warner et al., 1997; Davies, 2014) and may suffer from
incomplete scale interaction, their solutions become increasingly contaminated as forecast
length increases (Gustafsson et al., 1998). Therefore, they are not suitable for weather
prediction beyond a 4-5 day horizon. Usually, such medium-range forecasts are provided
by global NWP models in common practice (Whitaker et al., 2008).

Figure 1.1 illustrates various weather systems with their spatial and temporal
scales. To accurately predict a system of interest, models must feature suitable grid
spacing to effectively resolve its motion. For example, a grid spacing between 1-4 km
is generally required to resolve convective-scale weather systems, such as thunderstorms
(Kain et al., 2008; Schwartz et al., 2009). Ideally, one would prefer a high-resolution
global model without the need to assign lateral boundary conditions. Yet, due to
computational constraints, contemporary operational high-resolution models are typically
used regionally and integrate over limited areas of interest (Reinert et al., 2020; Dowell
et al., 2022). Another difference between coarse-resolution global and high-resolution
regional models lies in the parameterization schemes they employ. An important ex-
ample is that coarse-resolution models (typical grid sizes ∼ 10 km) require convection
parameterization to estimate precipitation clouds, modify convective instability, and
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Figure 1.1: A schematic diagram illustrating typical time and length scales of various
weather phenomena. The figure is sourced from Brisch and Kantz (2019), and the original
publication can be accessed at https://doi.org/10.1088/1367-2630/ab3b4c.

redistribute moisture (Kain and Fritsch, 1993; Stensrud, 2007). On the other hand,
high-resolution (kilometer-scale) models can realistically resolve convective storms,
hence they are referred to as convection-permitting models (Clark et al., 2016). An
accurate simulation of precipitating clouds is critical, as it affects the dynamic solu-
tion while also influencing other physical processes such as radiation (Boucher et al., 1995).

Bauer et al. (2015) note a significant improvement in NWP forecast skill over the
past 40 years, with a gain of about one day per decade in the accuracy of forecasts within
the 3 to 10-day range. Although the progress in NWP over the past few decades has been
indisputably successful, inevitably, every forecast will eventually encounter its predictabil-
ity limit. This limit has been reported as two weeks for synoptic-scale (Zhang et al., 2019;
Selz et al., 2022) and a matter of hours for convective-scale forecasts (Hohenegger and
Schar, 2007), respectively. In the upcoming section, I will discuss the predictability limit
and its connection to atmospheric flows.

https://doi.org/10.1088/1367-2630/ab3b4c
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1.1.2 Predictability of atmospheric flows

According to Lorenz (1996), atmospheric predictability can be further divided into two
categories: (1) practical predictability, which refers to the best achievable prediction
based on current forecast techniques such as DA systems and NWP models (Melhauser
and Zhang, 2012), and (2) intrinsic predictability, which refers to the best possible
prediction using nearly flawless initial states and forecast models (Lorenz, 1996; Zhang
et al., 2006; Sun and Zhang, 2016). While the practical predictability may be extended by
reducing errors in forecast procedures, the intrinsic predictability represents an inherent
predictability limit due to the chaotic nature of the flow and cannot be extended. Even
with nearly perfect forecast procedures, tiny and inevitable initial condition errors can
amplify rapidly and restrict the predictability of all scales (Lorenz, 1963).

Figure 1.2: An idealized schematic illustrating the distinction between (a) practical and
(b) intrinsic predictability. The figure is sourced from Melhauser and Zhang (2012), and
the original publication can be accessed at https://doi.org/10.1175/JAS-D-11-0315.1.
©American Meteorological Society. Used with permission.

A schematic plot provided by Melhauser and Zhang (2012) delineates the difference
between intrinsic and practical predictability. As shown in Fig. 1.2, the black dots
represent individual forecasts starting with slightly different initial values, which are
referred to as initial uncertainty. The three black circles indicate the gradual reduction
of initial uncertainty. The two shaded regions depict two potential outcomes; the white
dots denote the mean of forecasts, and the white crosses mark the forecast truth. With
the largest initial uncertainty, the forecasts predict that both outcomes are equally likely.
Two distinct scenarios occur when initial uncertainty is reduced contingent on whether a
system is constrained by practical predictability (Fig. 1.2a) or intrinsic predictability (Fig.
1.2b). Reducing initial uncertainty enhances forecast accuracy in systems constrained by
practical predictability, while in systems constrained by intrinsic predictability, reducing

https://doi.org/10.1175/JAS-D-11-0315.1
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initial errors does not enhance the forecast as the two outcomes remain equally likely.

A clear distinction between “the model predictability of the atmospheric state” and
“the predictability of the model state” has been articulated in Bachmann (2019). The
former represents the model forecast accuracy when compared to observations, while
the latter relies on the perfect model assumption, acknowledging the possibility of other
systematic errors in comparison to the truth. To elaborate further, a perfect model
experiment assumes that the model processes can realistically describe the atmospheric
processes, which holds true to a certain extent (Bachmann, 2019). A perfect model
experiment allows for an investigation into how a specific error source influences the
evolution of model states, thereby implying its impact on the predictability of actual
weather systems. It is important to note that the first study in this dissertation assesses
precipitation predictability against true observations. On the other hand, the subsequent
two used perfect model experiments to investigate the forecast error growth in convection-
permitting EPSs (as introduced later in section 1.1.3). Here, I outline three factors that
significantly influence predictability.

Flow-dependence of predictability

Chaos theory explains that nonlinear deterministic equations can lead to entirely random
behavior, termed deterministic chaos when these equations are unstable to small initial
perturbations (Lorenz, 1963). The atmospheric processes are recognized as nonlinear
deterministic systems, and the degree of chaos depends on the characteristic of atmospheric
flow (Slingo and Palmer, 2011). For instance, studies have shown that synoptically forced
convection exhibits higher predictability with less diverging solutions in the presence of
small uncertainties, while weakly forced convection may have large diverging solutions
under similar conditions (Keil et al., 2019; Puh et al., 2023). Furthermore, Palmer (1993)
suggests that forecasts are expected to encounter a loss of intrinsic predictability during
the regime transitions. In this situation, the distribution of forecasts is broad or even
multi-modal, and reducing initial uncertainty does not enhance forecast accuracy (like Fig.
1.2b); conversely, the reduction of initial errors enhances forecast accuracy when forecasts
possess a dominant solution (like Fig. 1.2a). These examples collectively demonstrate
that varying levels of predictability are anticipated within different flow regimes.

Scale interaction and predictability

The predictability of model states is reported to vary as a function of scale, and this scale-
dependent predictability is often assessed through the saturation of Kinetic Energy (KE)
error in spectral space (Durran and Gingrich, 2014; Selz and Craig, 2015; Selz, 2019;
Selz et al., 2022). The following paragraph explains the concepts illustrated in Fig. 1.3,
which is sourced from Durran and Weyn (2016). The two panels depict the KE errors
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Figure 1.3: Amplitude of background KE (the thick gray line) and KE error (dashed lines)
as a function of horizontal scale for (a) Lorenz’s experiment A and (b) Lorenz’s experiment
B at various lead times. The figure is sourced from Durran and Weyn (2016), and the
original publication can be accessed at https://doi.org/10.1175/BAMS-D-15-00070.1.
©American Meteorological Society. Used with permission.

as a function of horizontal scale at various lead times. When the KE error at a specific
wavelength matches the background KE (the thick gray line), predictability is lost at that
wavelength due to the error saturation. Figure 1.3a illustrates a butterfly effect with
upscale error growth originating from small-scale errors, while Figure 1.3b challenges this
effect by emphasizing that large-scale errors with equal absolute magnitude can rapidly
propagate downscale. These downscaled errors will then cascade upscale, similar to those
originating from small-scale errors but holding even more significance at the short lead
times. Despite their different initial error propagation, both situations exhibit similar
upscale error growth after three hours, suggesting that predictability is inherently lost
faster in small scales compared to larger scales regardless of error sources (Durran and
Weyn, 2016). For example, the KE errors saturate at horizontal scales smaller than
approximately 20 km and 1000 km at 3 hours and 1 day, respectively (Fig. 1.3).

The physical mechanisms of upscale error growth have been explained by a three-
stage error growth model proposed by Zhang et al. (2007). During the first stage, moist
convection, specifically the latent heat release, governs the error growth processes at
the convective scale (Hohenegger et al., 2006). In the second stage, mesoscale error
saturation occurs through geostrophic adjustment. Following this, error growth is driven
by baroclinic instability on a larger scale. In this dissertation, a similar KE diagnostic
is used to estimate the scale-dependent predictability of different weather systems. For
convective precipitation with scales of tens of kilometers, the rapid loss of predictability
within hours can be anticipated.

https://doi.org/10.1175/BAMS-D-15-00070.1
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Resolution-dependence of predictability

The predictability of the model state is also linked to the horizontal resolution of NWP
models. Compared to coarse-resolution forecasts, error growth is about ten times larger
at the convection-permitting resolution, primarily attributed to convective instabilities as
mentioned earlier (Hohenegger and Schar, 2007). Also, convection-permitting simulations
exhibit a higher degree of nonlinearity. In general, the tangent-linear approximation
can remain valid for 54 hours in synoptic-scale forecasts; however, it fails much faster
in high-resolution forecasts (Ancell and Mass, 2006; Hohenegger and Schar, 2007). This
indicates that nonlinear processes occur earlier as model resolution increases, making
accurate predictions inherently more challenging in such cases.

The predictability challenges outlined above collectively hinder the accuracy of a
single deterministic forecast. For example, accurately predicting convective events within
a lead time of a day is already challenging due to their high nonlinearity and small-scale
nature. To cope with limited predictability, it is advantageous to employ EPSs that
provide a spectrum of potential outcomes by considering sources of forecast uncertainty.

1.1.3 Ensemble forecasting and sources of uncertainty

In response to the limited predictability of atmospheric flow, operational centers have
developed EPSs to consider sources of forecast uncertainty and produce probabilistic
forecast products (Molteni et al., 1996; Toth and Kalnay, 1997; Winkler et al., 2018). In
this context, the term “ensemble” denotes the entire set of forecasts, while each forecast
within it is termed an “ensemble member”. To generate ensemble members, it is essential
to sample sources of forecast uncertainty as realistically as possible. It’s worth noting
that ensemble members are often assumed to have equal probabilities (Unger et al.,
2009; Fraley et al., 2010). Figure 1.4 offers a schematic visualization of the ensemble
approach sourced from Slingo and Palmer (2011). As illustrated, ensemble members may
be derived from initial condition uncertainty or uncertainty in the NWP model. It is
important to mention that for regional EPSs, additional lateral boundary condition un-
certainty must be considered (Nutter et al., 2004; Kühnlein et al., 2014; Zhang et al., 2023).

Lorenz (1963) employed a Monte Carlo approach to represent errors in the initial
conditions. Due to the nonlinear nature of atmospheric motion, these small initial
perturbations will amplify and lead to diverging forecasts as the lead time increases. In
current practice, the initial uncertainty is generally not randomly sampled but is estimated
from ensemble DA systems (Schwartz et al., 2022; Chen et al., 2023) or optimized to
ensure sufficient error growth, such as using the singular or breeding vector techniques
(Descamps and Talagrand, 2007; Magnusson et al., 2008). Despite efforts to enhance
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Figure 1.4: A probabilistic forecasting method that considers uncertainties stemming from
initial conditions and model formulations. The figure is sourced from Slingo and Palmer
(2011), and the original publication can be accessed at https://doi.org/10.1098/rsta.
2011.0161.

ensemble spread from initial errors, the EPSs are frequently under-dispersive (Buizza
et al., 2005; Berner et al., 2009). The under-dispersion, defining a condition where forecast
uncertainty is smaller than forecast errors, suggests that forecasts tend to be overly
confident, with inadequate error growth.

Further studies addressing the under-dispersion have pinpointed that uncertainty in
model formulation can lead to substantial forecast divergence (Buizza et al., 1999; Shutts,
2005; Gebhardt et al., 2011; Bouttier et al., 2012). It is comprehensible that NWP models
cannot be perfect because of the necessary approximations in the primitive equations, the
numerical discretization, and the physics parameterizations. There are several approaches
to incorporate model uncertainty, such as (1) multi-model ensembles (Ziehmann, 2000;
Weigel et al., 2008; Roberts et al., 2019), (2) multi-physics ensembles (Berner et al.,
2011; Gallo et al., 2017; Garćıa-Ortega et al., 2017), and (3) ensembles that sample
uncertainty within a single physics scheme (Bouttier et al., 2012; Jankov et al., 2017,
2019; Frogner et al., 2022). Although violating the equal probable rule of the ensemble
members, multi-model and multi-physics EPSs have been tested by several operational
centers and have demonstrated success (Roberts et al., 2020; Chen et al., 2023). It should
be noted that the interdependence of initial and model errors is evident, as model errors
are implicitly included in the initial conditions during the DA initialization process (Zeng
et al., 2018, 2019).

Convection-permitting EPSs have been reported to be under-dispersive (Romine

https://doi.org/10.1098/rsta.2011.0161
https://doi.org/10.1098/rsta.2011.0161
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et al., 2014; Frogner et al., 2019). One likely cause is the inadequate representation of
physical processes (Puh et al., 2023), emphasizing the need for further fundamental re-
search on representing model uncertainty in convection-permitting models. To address this
issue, the second study in this dissertation will examine forecast error growth originating
from different parameterization schemes. Given the close association of boundary-layer
turbulence and cloud microphysics with convective precipitation, the discussion primarily
focuses on representing errors and understanding their effects within these processes.

1.2 Atmospheric convection and weather regimes

Severe storms such as tornadoes, thunderstorms, and hailstorms are closely linked to con-
vection (Doswell, 2001, 2014), emphasizing the importance of grasping its dynamics. Con-
vection manifests in diverse forms within the atmosphere, varying between dry and moist
(Stevens, 2005), as well as shallow (Atkinson and Wu Zhang, 1996) and deep convection
(Stensrud, 2007). One distinction between shallow and deep convection is that the latter
is characterized by precipitating clouds that can extend vertically up to the tropopause
(Yano and Plant, 2012). This process involves the conversion of water vapor to liquid
water, releasing substantial amounts of latent heat that can facilitate the development of
intense convective storms (Houze Jr, 2004). This dissertation primarily focuses on deep,
moist convection as it frequently evolves into severe convective storms. In this section, I
will provide a brief overview of the moist convection dynamics, including relevant mea-
surement indices. Also, this section will introduce types of convection driven by different
forcing mechanisms, along with a diagnostic metric for an objective and physically-based
regime classification.

1.2.1 Atmospheric instability and relevant indices

The development of convective storms can be explained by atmospheric stability, which
hinges on two components: the temperature of the rising/sinking air parcel and the temper-
ature of the stratified environmental air. When an air parcel undergoes vertical motion, its
buoyancy is determined by the temperature contrast between these two components. This
temperature contrast is closely related to the lapse rate (the rate of temperature change
with altitude) in both air parcels and the surrounding environment. In parcel theory, the
lapse rates of unsaturated and saturated air parcels conform to the dry and moist adiabatic
lapse rates, respectively, and the stability is therefore contingent upon the lapse rate of the
stratified environmental air. Both the dry and moist adiabatic processes are reversible,
but they differ in whether the air parcel is saturated or not. As illustrated in Fig. 1.5a,
the faster the environmental temperature decreases with altitude, the atmosphere tends to
become more unstable. In an absolutely stable condition (the blue arrow), air parcels un-
dergoing small vertical displacements will return to their original positions due to negative
buoyancy acceleration, making deep convection unlikely as vertical motion faces resistance.
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Figure 1.5: (a) A thermodynamic diagram illustrating atmospheric stability. (b) The
yellow line illustrates the environmental sounding, with a black circle marking the initial
position of an air parcel near the surface. Red solid and blue dashed lines delineate the
dry and moist adiabatic lapse rates. Shaded regions denote CIN and CAPE, respectively.

For deep convection to take place, the atmosphere should at least be conditionally
unstable, where its lapse rate falls between the moist and dry adiabatic lapse rates (the
green arrow in Fig. 1.5a). In this scenario, the buoyancy of an air parcel is contingent
upon whether it is saturated or not. As illustrated in Fig. 1.5b, an air parcel rising from
the surface will typically undergo the following stages delineated by its position relative to
the Lifting Condensation Level (LCL), Level of Free Convection (LFC), and Equilibrium
Level (EL):

1. From the surface to the LCL: an unsaturated ascending air parcel cools at the dry
adiabatic lapse rate, requiring external forcing to counteract its negative buoyancy.
As temperature decreases, the maximum water vapor capacity of air diminishes,
ultimately causing the air parcel to reach saturation at the LCL.

2. From the LCL to the LFC: above the LCL, condensation releases latent heat, en-
abling the parcel to cool at the moist adiabatic lapse rate. It is important to note
that the air parcel is typically denser than its surroundings at the LCL and still
requires external forcing to counteract negative buoyancy until forced to ascend to
the LFC, where its temperature is equal to the environmental temperature.
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3. From the LFC to the EL: beyond the LFC, the air parcel cools at the moist adiabatic
lapse rate and maintains a higher temperature than its surrounding environment.
This positive buoyancy initiates free upward acceleration towards the EL without
the need for external forcing.

In this scenario, intense convective storms are more likely to develop. Based on
this concept, various indices have been formulated to evaluate the likelihood and intensity
of convective storms. Presented here are two key indices: Convective available poten-
tial energy (CAPE) and Convective inhibition (CIN) (Markowski and Richardson, 2011;
Groenemeijer et al., 2019):

Definition of Convective available potential energy

CAPE quantifies instability in the troposphere by the maximum potential energy that
a given parcel could accumulate when ascending from the LFC to the EL. This index
is commonly used to estimate the strength of potential convection. As illustrated by
the positive area in Fig. 1.5b, CAPE is determined by the vertical integral of positive
buoyancy (B). As shown in (1.1), the vertical integration of B is given by the difference
between the virtual temperature of the air parcel (Tv) and that of the environment (T̄v):

CAPE =

∫ EL

LFC

Bdz ≈ g ·
∫ EL

LFC

Tv − T̄v

T̄v

dz (1.1)

As mentioned in Doswell and Rasmussen (1994), neglecting the correction for virtual
temperature, which is the temperature a dry air parcel would have if its pressure and
density were equivalent to those of a moist air parcel, can be particularly detrimental
when the CAPE value is low.

Definition of Convective inhibition

For deep convection to occur, a parcel requires external forcing to counteract the negative
buoyancy until it reaches the LFC, at which point the release of CAPE can begin. The
energy required to overcome the inhibition can be measured by CIN, as indicated by the
negative area in Fig. 1.5b. The larger the area, the higher the CIN value, leading to a
lower chance of deep convection. In situations with considerable CAPE and CIN, the large
CIN has the potential to suppress convection; however, if external forcing successfully
breaks through the inhibition, strong convection can occur. Like CAPE, CIN is defined as
the vertical integral of buoyancy but from the surface up to the LFC:

CIN = −
∫ LFC

surface

Bdz ≈ −g ·
∫ LFC

surface

Tv − T̄v

T̄v

dz (1.2)
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1.2.2 Equilibrium and nonequilibrium convection

As noted earlier, the initiation of convection requires an external lifting mechanism
to overcome the CIN. Numerous forcing mechanisms exist, including convection with
synoptic forcing (Doswell and Bosart, 2001; Cannon et al., 2018), orography forcing
(Kirshbaum et al., 2018; Schneider et al., 2018), and local thermal forcing (Jucker et al.,
2020). Broadly speaking, convection cases can be classified on a continuum with two
extremes—equilibrium and nonequilibrium—based on the coupling of convection to exter-
nal forcing (Done et al., 2006; Keil and Craig, 2011; Zimmer et al., 2011; Flack et al., 2016).

For equilibrium convection, the properties of precipitation (e.g., timing and intensity)
are controlled by large-scale destabilization. For this to occur, there should be little
collocation between the CAPE and CIN so that convection is free to act immediately
in response to CAPE (Done et al., 2006). For example, large-scale uplift can cool air
masses and create large amounts of CAPE, which is then rapidly exhausted by convective
precipitation and a fast return to equilibrium. Since the CAPE is immediately converted
to upward motion, equilibrium convection is typically associated with small CAPE values
throughout its life cycle. The predictability of precipitation varies (Done et al., 2012),
with equilibrium convection generally being more predictable as it is more constrained by
environmental forcing (Keil et al., 2014; Flack et al., 2018). In contrast, nonequilibrium
convection is primarily triggered by local processes such as boundary layer turbulence
(Hanley et al., 2015; Hirt, 2020) and cold pool lifting (Hirt et al., 2020; Hirt and Craig,
2021). This type of convection occurs mostly in summer, partially due to strong radiative
heating. For nonequilibrium convection, CAPE is often co-located with CIN and thus
can build up until convection is triggered by overcoming the CIN threshold (Done et al.,
2006). Therefore, the properties of nonequilibrium convection largely depend on local
processes, such as surface and boundary layer variability, and tend to be less predictable
(Keil et al., 2014, 2019; Chen et al., 2024).

Although often used interchangeably in the literature and throughout this disserta-
tion, it’s important to note that the distinction between equilibrium and nonequilibrium
regimes is not identical to the strong versus weak forcing of convection. There is no stan-
dard quantitative definition of strong or weak forcing, but the terms generally reflect the
rate at which the atmospheric flow creates instability, for example, through the dynami-
cal forcing of synoptic and mesoscale ascent. Ascent generates CAPE, but also decreases
CIN. This makes it easy to trigger convection, which can increase rapidly in response to
the creation of CAPE, leading to a rapid adjustment to equilibrium. In contrast, after-
noon convection occurring in response to surface heating can be accompanied by a strong
temperature inversion at the top of the boundary layer giving a large CIN. Triggering
convection is difficult, and the response to increasing CAPE is delayed in a nonequilibrium
situation. There is thus a tendency for equilibrium to occur in the presence of strong
dynamical forcing, but it is also possible that the convection is, for some time, unable to
respond to strong forcing, and the instability rapidly increases. Similarly, there is a ten-
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dency for nonequilibrium to prevail when dynamical forcing is weak. However, if surface
processes are not dominant, weak equilibrium can occur in response to weak forcing.

1.2.3 Convective adjustment time scale

To measure the degree of coupling between convection and its environment, the convec-
tive adjustment time scale was first proposed by Done et al. (2006). This metric can
objectively classify convective weather according to the degree of equilibrium between
the convection and the forcing processes. To elaborate further, this metric estimates the
timescale at which convective instability is consumed by convective heating, which can be
compared to the timescale of the processes that create instability. Processes that create
CAPE, such as large-scale uplift, evolve significantly over periods of 6 to 12 hours. A
small convective adjustment time scale of a few hours indicates equilibrium convection:
convective instability is removed quickly by convective heating, and the atmosphere
returns rapidly to equilibrium. A large convective adjustment time scale of a day or
more indicates that convection is acting too slowly to follow the evolution of the forcing
processes and is indicative of nonequilibrium convection.

Given that the convective adjustment time scale mirrors the strength of the coupling
between convection and the environment, it can serve as a valuable tool in NWP to
differentiate between forecasts with distinct convective behavior (Keil et al., 2014; Flack
et al., 2018). One notable application is to differentiate the predictability of convective
precipitation, as equilibrium and nonequilibrium regimes typically exhibit varying degrees
of predictability. For example, Bachmann et al. (2020), Keil et al. (2020) and Sobash
et al. (2023) demonstrate above-average predictability of total area-averaged precipitation
in weather situations controlled by synoptic forcing (equilibrium convection).

Another crucial application is utilizing the convective adjustment time scale to de-
lineate regime-dependent forecast sensitivity. Considering the distinct error growth of
initial conditions, boundary conditions, and model uncertainties across different weather
regimes, categorizing flow situations can facilitate the interpretation of forecast sensitivity
to sources of uncertainty. Studies, primarily focused on Europe, have shown that this
metric can effectively indicate the flow-dependent impact of specific model components on
forecast performance. Here is a summary of the conclusions from the relevant studies:

• Craig et al. (2012) noted that radar data assimilation has a longer-lasting impact in
weak forcing regimes.

• Kühnlein et al. (2014) found that model physics perturbations have a larger impact
on precipitation spread in weakly forced situations than in strongly forced situations.

• Keil et al. (2014) noted that lateral boundary perturbations grow faster under
strongly forced conditions, while model perturbations have a more pronounced effect
under weak forcing conditions.
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• Zeng et al. (2018) found that the representation of model error using additive noise
is more beneficial during strongly forced weather conditions.

• The relative importance of microphysics uncertainties depends on the significance
of synoptic forcing (Surcel et al., 2017; Keil et al., 2019). During weak synoptic
forcing, the impact of microphysical uncertainty on precipitation is twice as large as
its impact in strong forcing and accounts for nearly one-third of the spread resulting
from operational initial and boundary condition uncertainties (Matsunobu et al.,
2022).

• Puh et al. (2023) demonstrated a systematic benefit of using a physically based
stochastic perturbation scheme for convection-permitting forecasts of convection cov-
ering three months. In particular, there is an increased ensemble spread of precipita-
tion during weak synoptic forcing conditions, which is much more difficult to detect
in statistics that contain all weather regimes.

So far, the convective adjustment time scale diagnostic has been mostly used as a cat-
egorical measure to classify certain weather situations into equilibrium or nonequilibrium
flow regimes. Studies over Europe have applied threshold values of 3 hours (Keil et al.,
2014, 2020) and 6 hours (Kühnlein et al., 2014; Molini et al., 2011; Grazzini et al., 2020).
The choice of these values concurs with the statistical results of Zimmer et al. (2011), who
use observations in central Europe and find a continuous distribution of these time scales
and conclude that a value somewhere between 3 and 12 h clearly distinguishes between
different regimes. However, the climatology of the convective adjustment time scale can
also vary across regions. For instance, Flack et al. (2016) established a climatology for
the British Isles and observed a twofold increase in equilibrium convection when using the
same threshold as Zimmer et al. (2011).

In conclusion, this section has discussed convection-related indices (CAPE and CIN),
described equilibrium and nonequilibrium convective regimes, and introduced the convec-
tive adjustment time scale for regime classification. These discussions offer fundamen-
tal insights into the first research topic in this dissertation, which focuses on identifying
convective regimes over the CONUS and studying the regime-dependent predictability in
convection-permitting forecasts. As the convective adjustment time scale value varies de-
pending on geographical region, season, and the intricacies of computation (e.g., hourly or
three-hourly rainfall accumulations, the exact CAPE calculation, horizontal smoothing of
input fields, mean or maximum daily values), studies over Europe may not directly apply
to different areas. Therefore, this dissertation represents the first systematic study that
utilizes this metric to establish the convective regime climatology over the CONUS and
explores whether the classification aligns with fundamental physical understanding and
reflects regime-dependent precipitation predictability.
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1.3 Parameterization of subgrid scale processes

As mentioned earlier, more fundamental studies regarding model error formulations within
convection-permitting EPSs are required to address under-dispersion, especially consid-
ering the significant uncertainty stemming from unresolved processes. Despite reaching
kilometer and sub-kilometer scales, where NWP models are anticipated to resolve more
small-scale features, achieving a complete representation of all such processes remains
unattainable (Shin and Hong, 2013; Honnert et al., 2020). However, subgrid processes can
alter the evolution of the atmospheric motion, requiring proper representation to maintain
the model forecast skills (Stensrud, 2007). Broadly speaking, parameterization schemes are
formulated to approximate the influence of subgrid processes by utilizing resolved variables
rather than directly simulating them. The approximated values from parameterization
schemes then function as tendency forcing terms to advance the prognostic equations
forward in time (Stensrud, 2007). It is worth mentioning that certain schemes may be
called less frequently due to their high computational cost. For example, the long-wave
and short-wave radiation parameterization, which estimates solar and thermal radiative
transfer and thus controls energy balance, is typically not updated at every time step
(Pincus and Stevens, 2013).

Many other subgrid parameterization schemes, including microphysics, Planetary
Boundary Layer (PBL), deep convection, shallow convection, gravity wave drag, orog-
raphy drag, and surface layer, are developed to represent different subgrid processes
(Stensrud, 2007). As discussed in section 1.1, activating all schemes is not essential;
their specific usage depends on the spatial grid structure. It’s worth clarifying that
microphysics parameterization is centered on microscale processes within clouds, while
convection parameterizations address the collective effects of cloud within a single column
and are often phased out at convection-permitting resolution (Weusthoff et al., 2010;
Clark et al., 2016). Since this dissertation focuses on convection, attention is given to
two parameterization schemes—microphysics and PBL- due to their high sensitivity as
reported (Kober and Craig, 2016; Keil et al., 2019; Hirt et al., 2019; Stanford et al.,
2019; Barthlott et al., 2022a,b; Matsunobu et al., 2022). These two subgrid processes
can directly influence convective precipitation by modulating latent heat release due to
phase change and the thermodynamic structure in the lower troposphere, respectively.
In the subsequent sections, a brief introduction to the PBL parameterization and the
microphysics parameterization will be provided. Additionally, stochastic parameterization,
a widely adopted method for sampling model uncertainty, is introduced.

1.3.1 Planetary boundary layer parameterization

The Planetary Boundary Layer refers to the lower part of the troposphere directly
influenced by the properties of Earth’s surface (Stensrud, 2007). Its depth typically
ranges from several dozen meters to kilometers, exhibiting significant diurnal varia-
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tion due to changes in ground temperature caused by solar radiation (Markowski and
Richardson, 2011). The PBL responds rapidly to surface forcing, such as momentum,
heat, and mass, transmitting their effects between the surface and the atmosphere via
transport processes. Turbulence, also known as eddies, dominates vertical transport
within the PBL, exerting a significant impact on tropospheric wind, temperature, and
humidity (Stull, 1988). Consequently, it can influence the development of various
weather systems, including convective thunderstorms (Hirt, 2020). However, as small
eddies cannot be explicitly captured within the spatial-temporal scales used in most NWP
models, the overall effect of these unresolved eddies on resolved quantities is parameterized.

Reynolds averaging is a fundamental concept used to mathematically link resolved
and unresolved processes, but it introduces the turbulence closure problem as illustrated
below. The Reynolds decomposition separates flow variables into their mean (resolved)
and fluctuating (unresolved) components (ϕ = ϕ̄+ ϕ

′
). Another assumption made is that

the average of the fluctuating part (ϕ
′
) is zero, while the average of their products does

not disappear (correlated). Equation (1.3) exemplifies the application of Reynolds decom-
position to the meridional (v) and vertical (w) wind components, while (1.4) illustrates
that averaging the product of two Reynolds averaged variables (I) is equal to adding the
product of their means (II) with the average of their fluctuation products (III).

uw = (ū+ u
′
)(w̄ + w

′
) = ūw̄ + ūw

′
+ w̄u

′
+ u

′
w

′
(1.3)

uw︸︷︷︸
(I)

= ūw̄ + ūw′ + w̄u′ + u′w′ = ūw̄︸︷︷︸
(II)

+u′w′︸︷︷︸
(III)

(1.4)

In numerical solutions of the primitive equations, discretization occurs in both time
and space, with only the mean of each grid box and time step being of interest. In
line with this concept, resolved-scale model equations can be obtained through Reynolds
averaging the primitive equations. Equation (1.5) illustrates a resolved-scale prognostic
equation for Reynolds-averaged quantities. It highlights that to predict the grid-scale
mean (I), it is necessary to consider the mean contribution of unresolved motions (II) to
close the equation. Although models cannot explicitly simulate eddies, their unresolved
effect, quantified here by vertical turbulent momentum flux (II), acts as a tendency forcing
to step the grid-scale motion forward in time. It’s important to note that the derivation
of (1.5) yields horizontal flux terms, but they are simplified here. While it’s possible to
explicitly predict the fluxes terms, it requires dealing with third-order unknown terms.
Further predicting higher-level terms results in the issue of closure (Stensrud, 2007).

∂u

∂t︸︷︷︸
(I)

= −[u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
] + fv − 1

ρ

∂p

∂x
− ∂u′w′

∂z︸ ︷︷ ︸
(II)

(1.5)
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Since the explicit prediction of all small eddies is unattainable, PBL parameteriza-
tion works to approximate turbulent fluxes, including kinematic momentum, heat, and
moisture fluxes. In most cases, PBL schemes only approximate vertical turbulent fluxes
under the assumption of horizontally homogeneous conditions, as shown in (1.5). Based
on how they estimate the vertical flux terms, PBL schemes can be classified as either
local or non-local and further categorized based on their order. Local schemes estimate
flux terms using resolved variables at nearby points, while non-local schemes typically
utilize multiple vertical grid points, often covering the entire PBL. The former tend to
perform better under stable stratification, while the latter are reported to work better
under unstable conditions, as they incorporate the effects of larger eddies (Stensrud,
2007). The order of PBL schemes represents the level at which the cascade of unknowns is
truncated. First-order closure entails equations for resolved variables with parameterized
covariance terms, while second-order closure involves equations for both resolved variables
and covariance terms with parameterized third-order terms. In general, higher-order
closure schemes tend to provide more accurate results than lower-order ones, but they
require more computational resources (Troen and Mahrt, 1986; Stensrud, 2007).

Following the operational settings, this dissertation includes the use of the Yonsei
University (YSU) and Mellor–Yamada–Nakanishi–Niino (MYNN) schemes. The former
is a first-order closure scheme that accounts for non-local mixing (Hong et al., 2006),
while the latter is a 1.5-order local closure scheme with prognostic second-order turbulent
kinetic energy (Nakanishi and Niino, 2006). Given the sensitivity of numerous weather
phenomena like deep convection to the PBL evolution, the second study in this dissertation
explores forecast error growth arising from parameterized PBL processes, recognizing that
eddies can only be partially resolved.

1.3.2 Microphysics parameterization

The accurate representation of cloud microphysical processes, which influence thermody-
namic feedback and precipitation, is another crucial yet challenging topic in the NWP
(Choudhury and Das, 2017; Bao et al., 2021; Köcher et al., 2023). Broadly speaking,
simulating cloud microphysical variables like cloud water, cloud ice, rain, snow, and grau-
pel involves two major components: (1) integrating these variables directly at the grid
scale, and (2) parameterizing their subgrid-scale processes. At the grid scale, NWP mod-
els predict mass mixing ratios for microphysical variables (x), the exact number of which
depends on the scheme employed. As illustrated in Stensrud (2007) and outlined below,
the prognostic equations can be simplified as:

∂qx

∂t
= −Madvection(qx) +Mturbulence(qx) + (S1 + S2 + S3 + ....), (1.6)

where qx, Madvection, Mturbulence represents the prognostic variable, advection effect, and
turbulence effect, respectively. The terms S1 through S3 represent sources and sinks
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arising from subgrid-scale cloud processes that need to be parameterized, including
the formation, growth, and dissipation of hydrometeor (sometimes non-hydrometeors)
particles after conversions between categories. Since microphysics processes modulate
the latent heat release, they also force the prognostic temperature and can influence
large-scale dynamics (Stensrud, 2007).

Typically, microphysics parameterization schemes describe hydrometeors through
their Particle Size Distributions (PSDs), which quantifies the number of particles per unit
size interval. Based on how they represent the PSD, microphysics schemes can be catego-
rized into either bulk or bin models. Bulk models predict the total mass mixing ratios and
describe their PSDs through predetermined functions, such as Gamma or Marshall–Palmer
distributions depending on hydrometeor types. In contrast, bin models partition the PSD
into discrete size bins and predict mass mixing ratios and number concentrations for
each bin separately (Khain et al., 2015). While bin models are designed to calculate mi-
crophysics with high accuracy, their computational cost has hindered their operational use.

Bulk microphysics schemes can be further categorized based on their microphysical
moments. Single-moment schemes predict only mass mixing ratios, while double-moment
schemes additionally predict their number concentrations. The latter is expected to per-
form better for vast regions with varying hydrometeor characteristics, but the additional
freedom it provides also introduces uncertainty (Jin and Baik, 2023). Here, the formulation
of the Thompson double-moment aerosol-aware bulk microphysical scheme (Thompson and
Eidhammer, 2014) is used for further illustration. It predicts the mass mixing ratios of
cloud ice, cloud water, snow, rain, and graupel, the number concentrations of rain, cloud
ice, and cloud water, along with the cloud condensation nuclei and ice nuclei. Then, their
PSDs are calculated using gamma functions with slope and intercept parameters derived
from the predicted mass mixing ratios and number concentrations (assigned for the one-
moment and predicted for the two-moment species), respectively. Except for the snow, all
water and ice species are assumed to conform to the generalized gamma distribution given
as follows (Thompson et al., 2008):

N(D) = N0D
µe−λD (1.7)

where D is the droplet diameter, µ is the shape parameter, N0 is the intercept parameter,
and λ is the slope of the distribution. As shown above, the microphysics parameterization
relies heavily on empirical and theoretical hypotheses, leading to considerable uncertainty
in the forecast. Moreover, fixed parameters can vary and are not universally applicable
(Tao and Li, 2016; Matsunobu et al., 2022). To explore the associated forecast uncertainty,
this dissertation also discusses forecast error growth resulting from uncertainty within the
microphysics parameterization.
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1.3.3 Stochastic parameterization

As mentioned earlier, improving the model error representation is critical to address under-
dispersion in convection-permitting EPSs. In earlier times, operational centers often uti-
lized multi-model or multi-physics EPSs to represent model uncertainty and have demon-
strated their efficacy. Over the past two decades, there has been a growing trend of
incorporating spatial-temporal correlated random noise to represent uncertainty in NWP
models. This technique, known as stochastic parameterization, has been demonstrated
to alleviate the under-dispersion of EPSs at different centers (Buizza et al., 1999; Bout-
tier et al., 2012; Jankov et al., 2017). Unlike multi-model and multi-physics EPSs, the
stochastic approach upholds the equal probability of ensemble members, an attribute that
is essential for equitable evaluation and post-processing techniques. As depicted in Berner
et al. (2017), stochastic processes can further reduce systematic model bias through noise-
induced rectification as shown in Fig. 1.6. Figure 1.6a depicts that small noise confines
the system to the deeper well, yielding an unimodal Probability Density Function (PDF)
of states (Fig. 1.6b). Further increasing the noise amplitude can induce a transition to
the secondary well (Fig. 1.6c), producing a bimodal PDF (Fig. 1.6d), hence altering both
variance and mean. Figure 1.6e-h exemplify how even within a single potential, bimodal
PDFs and changes in the mean state can arise due to multiplicative or state-dependent
noise.

In general, model uncertainty can be categorized into two groups: (1) uncertainty
originates from unresolved processes due to finite grid size, and (2) uncertainty arises from
our incomplete understanding of atmospheric phenomena, such as empirically-assigned
parameters (Puh et al., 2023). The former is frequently sampled by adding perturbation
a posteriori, while the latter is often applied a priori. Examples are provided below.

Early-developed stochastic schemes commonly introduce uncertainty a posteriori.
Two widely used schemes are the Stochastically Perturbed Parameterization Ten-
dency (SPPT) and the Stochastic Kinetic Energy Backscatter (SKEB) schemes (Buizza
et al., 1999; Shutts, 2005). Both schemes provide a bulk representation for multiple sources
of model error, yet they are based on different physics principles. The SPPT scheme
perturbs net parameterization tendencies to address the need for sampling subgrid-scale
variability as resolution increases (Berner et al., 2017). On the other hand, the SKEB
scheme perturbs the stream function and potential temperature tendencies, acting as a
means of randomly re-injecting some of the dissipated energy at the grid scale. This
approach intends to address model uncertainty arising from unresolved processes and their
interactions with resolved flows. In contrast to bulk representations, process-level stochas-
tic schemes that introduce perturbation as posteriori have also been adopted to represent
model uncertainty closer to its source (Wastl et al., 2019; Lupo et al., 2022; Zhao and
Torn, 2022). In particular, unresolved PBL processes often influence convective initiation,
especially when local mechanisms are crucial in overcoming convection inhibition. To
tackle this subgrid-scale uncertainty, the Physically based Stochastic Perturbation (PSP)
scheme perturbs tendencies from the PBL parameterization scheme, recognizing that
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Figure 1.6: System characterized by (a), (c) double-potential or (e),(g) single-potential well.
(b), (d), (f), and (h) are their associated PDFs when encountering forcing. The figure is
sourced from Berner et al. (2017), and the original publication can be accessed at https://
doi.org/10.1175/BAMS-D-15-00268.1. ©American Meteorological Society. Used
with permission.

eddies can only be partially resolved (Kober and Craig, 2016; Hirt et al., 2019; Puh et al.,
2023). While successful in practice, some posteriori schemes have been criticized for
violating conservation principles (Leutbecher et al., 2017; Lang et al., 2021).

Recently, there has been an increasing emphasis on stochastic schemes that incor-
porate uncertainty a priori. For instance, the Stochastic Perturbed Parameter (SPP)
approach is formulated to address uncertainty stemming from our incomplete under-
standing of physical processes, such as uncertain parameters. Specifically, this method
introduces variability to uncertain model parameters at the level of individual physical
processes, such as the PBL (Jankov et al., 2017, 2019), microphysics (Thompson et al.,
2021; Ollinaho et al., 2017), and radiation (Ollinaho et al., 2017). Unlike schemes
that apply stochastic perturbations directly to computed physics tendencies, the SPP
schemes can maintain the internal consistency and conservation principles of the physical
parameterization schemes (Lang et al., 2021). The performance of different SPP schemes
has been assessed in various operational systems, showcasing its potential as an option for
representing model uncertainty in EPSs (Ollinaho et al., 2017; Lang et al., 2021; Frogner
et al., 2022; McTaggart-Cowan et al., 2022).

https://doi.org/10.1175/BAMS-D-15-00268.1
https://doi.org/10.1175/BAMS-D-15-00268.1
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To sum up, this section presents microphysics and PBL parameterizations because
of their notable impact on convective precipitation. Additionally, stochastic parameter-
ization schemes designed with distinct theoretical foundations are introduced. These
discussions provide the research background for the second study in this dissertation,
which investigates regime-dependent forecast error growth in a convection-permitting
model, with errors stemming from unresolved PBL and microphysics processes. The
former will be sampled by the process-level posterior PSP scheme, while the latter is
represented by a priori SPP scheme. Given the need for more fundamental studies on
model error representations in convection-permitting resolution, this study can contribute
by elucidating how these two processes impact forecast error growth in different regimes.

1.4 Summary, research goals, and outline

In summary, Chapter 1.1 offers an overview of NWP models, discusses the predictability
limits, and introduces the concept of ensemble forecasting. Next, Chapter 1.2 introduces
deep convection and its related indices such as CAPE and CIN, discusses equilibrium
and nonequilibrium convection, and explains their classification. Lastly, Chapter 1.3 in-
troduces the PBL and microphysics parameterizations, which are crucial for convection
prediction. Additionally, stochastic parameterization schemes designed to address differ-
ent types of model errors are presented. These discussions provide the research background
for this dissertation, which has an overarching goal to “improve the comprehension
of regime-dependent predictability and forecast error growth within kilometer-
scale models”. To achieve the overarching goal, this dissertation identifies three main
areas of focus as detailed below.

• The first study aims to objectively classify convective regimes across the Contiguous
United States (CONUS) domain using the convective adjustment time scale. To
systematically evaluate its performance, this study utilizes the operational High-
Resolution Rapid Refresh (HRRR) forecast datasets to establish convective adjustment
time scale climatology over this region. Through a climatological analysis, this study
will investigate whether regime-dependent precipitation predictability is evident in
historical convection-permitting forecasts. A central research question addressed in the
first study is:

How to effectively classify convective regimes over the vast CONUS domain
and can this classification reflect physical understanding and regime-
dependent predictability? – discussed in Chapter 2

• Using the objective regime classification outlined in the first study, the second study
aims to investigate regime-dependent predictability and forecast error growth within a
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convection-permitting EPS. Specifically, it aims to explore how uncertainty in the PBL
and microphysics processes influences error growth behavior across various weather
regimes. In this study, the central research question is articulated as:

Does forecast error growth vary significantly across different weather
regimes and with different stochastic parameterizations in a convection-
permitting model? – discussed in Chapter 3

• This third study is a collaborative effort with Kuo et al. (2023), which explores the
impact of Data Assimilation (DA) on convection prediction. Utilizing the DA analyses
from Kuo et al. (2023), this study investigates the predictability of a convective
precipitation event linked with a Meiyu front. Specifically, the study aims to examine
how random errors from initial conditions and model processes influence short-range (0
to 12 hours) precipitation forecasts. Although the conclusions may be less conclusive
due to the use of a single case, this study contributes to the overarching goal by
addressing:

What is the impact of initial and model uncertainty on precipitation
predictability and forecast error growth in a convection-permitting model?
– discussed in Chapter 4

In summary, this dissertation includes a climatological study, an investigation into
error growth from various model errors, and an exploration of error growth from initial
condition errors. They all focus on convection-permitting models and collectively cover
a variety of weather systems, facilitating the discussion of regime dependency. While
individual chapters delve deeper into several research questions, as further elaborated in
each chapter, the three studies collectively advance our understanding of how predictability
and forecast error growth in kilometer-scale NWP models vary when considering different
weather systems and error representations. In addition to the key research findings
presented in Chapters 2 to 4, the subsequent structure of this thesis is as follows: Chapter
5 provides the summary and conclusions, and Chapter 6 includes the appendix.

1.5 Publications

This dissertation is composed of chapters that have either been published or are prepared
for publication in the following four works:

1. Chen, I.-H., J. Berner, C. Keil, Y.-H. Kuo, and G. Craig, 2024: Classification of
Warm-Season Precipitation in High-Resolution Rapid Refresh (HRRR) Model Forecasts
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over the Contiguous United States. Monthly Weather Review, 152 (1), 187–201.

This publication focuses on regime classification across the CONUS domain. Its content
is integrated into Chapter 1, Chapter 2, and Chapter 5 of this dissertation.

2. Chen, I.-H., J. Berner, C. Keil, G. Thompson, Y.-H. Kuo, and G. Craig, 2024: To
which degree do the details of stochastic perturbation schemes matter for convective-
scale and mesoscale error growth? Submitted to Monthly Weather Review (In review).

This work examines the regime-dependent forecast error growth resulting from different
stochastic perturbations. Its content is integrated into Chapter 1, Chapter 3, Chapter
5, and Chapter 6 of this dissertation.

3. Kuo, Y.-H., J. Sun, Y. Zhang, I.-H. Chen, Y. Ho, and J.-S. Hong, 2024: Impact
of Assimilating GNSS Radio Occultation Data on the Prediction of a Squall Line
associated with a Mei-Yu front: Part 1. Data Assimilation Study. To be submitted.

I am a coauthor involved in the case analysis and visualization of this study. Chapter 4
of this dissertation includes several figures generated from the research data.

4. Chen, I.-H., Y.-H. Kuo, C. Keil, J. Berner, and G. Craig, 2024: Impact of Assimilating
GNSS Radio Occultation Data on the Prediction of a Squall Line associated with a
Mei-Yu front: Part 2. Predictability Study. To be submitted.

This work explores how initial and model perturbations influence the predictability of a
heavy rainfall event. Its content is integrated into Chapter 1, Chapter 4 and Chapter 5
of this dissertation.



Chapter 2

Characterization of Convective
Regimes and Their Predictability

2.1 Background and overview

As mentioned in Chapter 1.2, the convective adjustment time scale diagnostic has been
employed to classify the convective weather regime. Most of these studies concentrated
on Continental Europe, and together they suggest that the exact threshold value is
contingent upon factors such as geographical region, season, and the complexities of
its computation. To the author’s knowledge, there is no systematic evaluation of this
metric covering the CONUS domain; therefore, this dissertation represents the first
comprehensive examination of the convective adjustment time scale climatology over the
CONUS, including the regional and seasonal dependencies. To account for geographical
variances, the domain is partitioned into multiple subdomains, and the climatology of
equilibrium and nonequilibrium regimes are studied regionally. The timing and amount
of precipitation are linked with the convective adjustment time scale to examine if the
classification is physically meaningful, and its relation to the precipitation forecast skills
is also investigated. Given the expansive geographic area of the CONUS domain, such
a study could offer valuable insights and serve as a basis for comparison with studies
conducted in different parts of Europe.

This chapter is organized as follows. Chapter 2.2 describes the methodology,
including the definition of the convective adjustment time scale, details of subdomains,
and forecast dataset. Chapter 2.3 and Chapter 2.4 present the convective adjustment time
scale climatology and investigate its relation to forecast skill, respectively. The summary
and discussion are given in Chapter 2.5.
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2.2 Methodology

2.2.1 Definition of the convective adjustment time scale

The convective adjustment time scale (τc) measures the timescale at which convective in-
stability is removed by convective heating. Following Done et al. (2006), the τc is defined as:

τc =
CAPE

dCAPE

dt

, (2.1)

where the change of instability, dCAPE/dt, is derived from the column-integrated rate of
latent heat release implied by the precipitation rate:

dCAPE

dt
=

1

3600

Lv

cp

g

ρ0T0

pr, (2.2)

Here, pr is the hourly precipitation rate (mmh−1), Lv the latent heat of evaporation
(J k−1

g ), cp the specific heat capacity of air at constant pressure (J k−1
g K−1), g the gravity

acceleration, T0 the reference temperature (K), and ρ0 the reference density (kg m
−3).

From (2.1) and (2.2), the final formulation of τc is derived as

τc = β ·
CAPE

dCAPE

dt

= β ·
cp

Lv

ρ0T0

g

CAPE

pr
, (2.3)

In (2.3), pr (mms−1) is derived from the hourly accumulated precipitation (mmh−1). As
in previous studies, we use an effective convective adjustment time scale by introducing an
extra factor β = 0.5 in (2.3). The factor is set to account for the reduction of CAPE by
other aspects of convection, such as cooling and drying of the boundary layer. As shown
in (2.3), τc is proportional to CAPE and inversely proportional to the precipitation rate.

There are multiple definitions of CAPE, which include the influence of different
depths, such as surface CAPE, mixed-layer CAPE, and most unstable CAPE. Through
comprehensive sensitivity tests, we chose to use the instantaneous surface CAPE directly
from the model output since it is most closely linked to the 24-hour QPF skill over the
CONUS. While τc ought to represent local features, it should be smooth enough not to
capture variability on scales smaller than the spacing between convective clouds (Craig
et al., 2012). In this study, we adopt the same smoothing method as Keil and Craig (2011)
and Flack et al. (2016), namely a Gaussian kernel with a half-width of 15 km which is
applied to both precipitation and CAPE fields. In general, the regime classification is
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insensitive to the details of the smoothing methods, as would be expected as long as the
smoothing scale is large enough to average out the effects of individual clouds while not
being so large that synoptic forcing features are significantly smoothed. To neglect the
impact of very light rainfall and avoid abnormal jumps between convective regimes, we
further introduce a precipitation threshold of 1mmh−1 after smoothing as Keil and Craig
(2011).

In this study, we utilized hourly τc values to establish the τc climatology for each
respective subdomain. The hourly τc values represent domain averages for each subdomain
and are reported only if more than a hundred grid points have a valid τc value according to
the defined criteria. For each case, the daily τc values were obtained by averaging the hourly
τc values, and their correlation with the skill of precipitation forecasts is subsequently
investigated.

2.2.2 Description of subdomains, forecast, and observation
dataset
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Figure 2.1: Frequency distributions of the convective adjustment time scale shown annually
(colors) and 4y-mean (black) for the entire CONUS domain. The dashed vertical lines
indicate 3h, 6h, and 12h, respectively.

As shown in Fig. 2.1, the τc values computed across the entire CONUS domain
generally fall within the range of 1 to 10 hours, with rare occurrences of extreme values.
This behavior is primarily caused by averaging over the vast CONUS domain, generally
encompassing various weather systems simultaneously. For this reason, this study partition
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the CONUS domain into several subdomains to account for regional differences. Guided
by the 14 verification regions (https://www.wpc.ncep.noaa.gov/rgnscr/verify.html)
used at the National Oceanic and Atmospheric Administration (NOAA), several small
subdomains with similar climatology are combined. This leaves us with four northern and
four southern subdomains roughly divided by the 40°N latitude (Fig. 2.2).

Figure 2.2: Verification and diagnostic subdomains used in the NOAA model QPF ver-
ification by regions (shaded) and this study (contour). The black numbers denote the
subdomain indexes.

This study uses historical forecast datasets from NOAA’s operational HRRR system
(Dowell et al., 2022), which forecast covers the CONUS domain. This convection-
permitting HRRR system has been operational since 2014 to provide forecast guidance
for rapidly evolving weather. It is built on the non-hydrostatic Weather Research
and Forecasting (WRF) model (Skamarock et al., 2008) with a 3 km horizontal grid
spacing that explicitly resolves convective storms. It has 51 vertical levels covering from
near-surface (roughly from 8 m) up to 15 hPa. It assimilates observations on an hourly
basis using the Gridpoint Statistical Interpolation (GSI) Hybrid Three-Dimensional
Ensemble-Variational (3DEnVar) DA and with enhancements for radar, land and cloud
assimilation, all described in Dowell et al. (2022). Note that the model is running without
a deep convective parameterization, which is crucial for this study since such schemes
often prescribe a convective adjustment time scale determining how quickly CAPE is
consumed.

In this study, the warm season, including May, June, July, and August (MJJA),
τc climatology is derived from data covering the period 2019 to 2022. The four

https://www.wpc.ncep.noaa.gov/rgnscr/verify.html
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years are chosen since HRRRV3 (operational in 2019 and 2020) and HRRRV4 (op-
erational in 2021 and 2022) provide forecasts of up to 36 hours. In this study,
the HRRR forecasts were retrieved from the NOAA open data platform (https:
//console.cloud.google.com/marketplace/details/noaa-public/hrrr?pli=1. The
12 UTC run is selected since we aim to cover the whole life cycle of summertime
convection. The first three-hour forecasts are excluded from τc computation to mitigate
the impact of model spin-up. That is, the 4-year MJJA hourly forecast dataset was
composed of +3 to +27 h forecast initialized at 12 UTC daily. The three-hour forecast
from the 12 UTC run corresponds to 11 am Local Time (LT) at CONUS East (East-
ern Daylight Time, UTC-4) to 08 am LT at CONUS West (Pacific Daylight Time, UTC-7).

Figure 2.3: Monthly total precipitation (shaded, mm) in May and June from 2019 to
2022 derived from the HRRR 3-27h forecasts (denoted as F) and NCEP StageIV products
(denoted as O). Rows are the result of different years, and columns are the result of forecasts
(the first and the third columns) and observations (the second and the fourth columns) at
different months. Black contours are the subdomain boundaries used in this study.

https://console.cloud.google.com/marketplace/details/noaa-public/hrrr?pli=1
https://console.cloud.google.com/marketplace/details/noaa-public/hrrr?pli=1
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To ensure that the HRRR system produces a realistic rainfall climatology, we first
compare the 3-27 h precipitation forecast to the National Centers for Environmental Predic-
tion (NCEP) stage IV Quantitative Precipitation Estimation (QPE) (Nelson et al., 2016).
As shown in Fig. 2.3 and Fig. 2.4, the composed monthly forecast dataset captures the
precipitation amount and structure realistically (compare also to Liu et al. 2017). Heavy
precipitation (> 200mm) covering much of the Great Plains is apparent in May on average
over these 4 years in both observations and in the HRRR forecast precipitation. In June,
the intensity of precipitation systems decreases and shifts toward the east of CONUS,
particularly toward the southeast coast. Here, the rainfall associated with hurricanes is
excluded by masking precipitation within 350 km from the hurricane center (defined by
best track) partly since hurricanes can bring long-lasting heavy rainfall that is not related
to the convective rainfall studied here. In this study, we have identified 18 tropical sys-
tems and excluded associated precipitation, primarily over eastern CONUS. Note that this
method assumes that the model forecasts have a realistic hurricane track compared with
the best track.

Figure 2.4: Same as Fig.2 but for July and August.
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2.3 Convective regime classification

Two cases are selected to illustrate the link between convective precipitation, synoptic
forcing, and the resulting convective adjustment time scale for different weather regimes.

2.3.1 Cases illustrating equilibrium and nonequilibrium convec-
tion

Figure 2.5: (a) 500 hPa geopotential height (contour, m) and wind speed (shaded, ms−1)
valid at 1200 UTC 01 July 2021. (b) 24h accumulated precipitation (shaded, mm) begin-
ning at 1200 UTC 01 July 2021. Black contours are subdomain boundaries. (c) Time series
of hourly precipitation (upper, mm), CAPE (middle, J kg−1), and convective adjustment
time scale (lower, hours) averaged over different subdomains. The dashed line in the con-
vective adjustment time scale (τc) plot marks the 6h threshold between equilibrium and
nonequilibrium convection.
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The first case initialized at 1200 UTC 01 July 2021, features precipitation events
with clear synoptic forcing, where equilibrium behavior is expected (Fig. 2.5). The
24h accumulated precipitation shows that there is an elongated precipitation system
located across subdomains 4, 6, and 7 (Fig. 2.5b). This precipitation system is located
downstream of a 500 hPa trough (Fig. 2.5a), associated with temperature, moisture,
and vorticity advection providing a favorable environment for precipitation since it is
conducive to synoptic scale ascent (Doswell, 2001). Precipitation within subdomains 1
and 8 is more scattered and rather weakly forced compared with the major rainband.

The precipitation time series (Fig. 2.5c) shows that precipitation continues for 24 h
in subdomains 4, 6, 7, and 8. In contrast, precipitation in subdomain 1 occurs at around
16 LT, exhibiting the lowest intensity among all the subdomains considered. The major
rainband initially develops within subdomain 7 and subsequently moves into subdomain
4. While being part of the major rainband, the precipitation is less intense in subdomain
6 than in subdomains 4 and 7. In contrast, precipitation in subdomain 8 exhibits a clear
diurnal pattern, implying a thermally-forced trigger mechanism. Since low-level moisture
is generally higher in southern subdomains, these regions typically attain larger CAPE
values than the northern subdomains. The instability in this case is modest, with CAPE
<= 1000 J Kg−1. The CAPE values do not vary strongly throughout the forecast period,
suggesting that CAPE does not accumulate and is converted immediately to convective
heating. For subdomains 4, 6, and 7, the τc values remain low, consistent with equilibrium
convection in a strong forcing environment. In contrast, subdomains 1 and 8 have initially
larger τc values suggesting they are situated within weaker synoptic flow, which agrees
with the general flow situation depicted in Fig. 2.5a and the precipitation texture shown
in Fig. 2.5b. The rapid decrease of τc in these cases would indicate an adjustment to
equilibrium. Note that there are no τc values at the beginning of the forecast due to low
precipitation rates (see chapter 2.2). In conclusion, this case illustrates an equilibrium
rainband that is tightly coupled to the governing flow, showing low τc values within
affected subdomains. Also, this case gives an example of the simultaneous presence of
various weather situations across the entire CONUS domain that are only distinguishable
by their τc values when splitting CONUS into subdomains.

The second case, initialized at 1200 UTC on 27 July 2021, features convective
precipitation under weak synoptic forcing (Fig. 2.6). In contrast to the trough pattern in
the previous example, this day is dominated by a high-pressure system, which corresponds
to sinking drier air and, thus, a more stable atmosphere (Fig. 2.6a). We focus on the
four southern subdomains (5-8) that are far from the synoptic wave pattern to the
north. These regions feature rather scattered precipitation, which is likely forced by
surface heating, and indeed show a clear maximum in precipitation rates in the afternoon
(Fig. 2.6c). In subdomain 8, the influence of land-sea breezes is apparent, leading to
stronger, more organized precipitation that starts in the early morning. The combination
of broad subsidence in the high-pressure area, combined with surface heating, leads
to a strong CIN that inhibits convective initiation and large CAPE values build-up
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(Fig. 2.6c). CAPE increases until convection starts to remove the instability. The τc
values reflect the buildup and slow removal of CAPE, with values exceeding 6 hours
for almost all subdomains and times. This is the behavior expected for nonequilibrium
convection, where convection is inhibited and cannot act fast enough to remove CAPE.
The exception is subdomain 5, where strong orography is present, and CAPE and
τc values remain low. In this mountainous region, even relatively weak convection is
sufficient to remove the instability as fast as it is created, leading to equilibrium conditions.

Figure 2.6: (a) 500 hPa geopotential height (contour, m) and wind speed (shaded, ms−1)
valid at 2000 UTC 27 July 2021. (b) 24h accumulated precipitation (shaded, mm) begin-
ning at 1200 UTC on 27 July 2021. (c) Time series of hourly precipitation (upper, mm),
CAPE (middle, J kg−1), and convective adjustment time scale (lower, hours) averaged over
different subdomains. The dashed line in the convective adjustment time scale (τc) plot
marks the 6h threshold between equilibrium and nonequilibrium convection.
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The two days highlighted in this section show examples of equilibrium convection,
with strong forcing by Rossby waves facilitating favorable conditions for convection that
removes CAPE as fast as it is produced, and nonequilibrium convection, with precipitation
following the diurnal cycle and convection that is unable to remove CAPE. However, the
examples of orographic convection show that simply looking for strong synoptic forcing is
not a reliable indication of convective behavior.

2.3.2 Convective adjustment time scale climatology
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Figure 2.7: Frequency distributions of the convective adjustment time scale shown annually
(colors) and 4y-mean (black) for each subdomain. The frequency is computed with a bin
size of 0.2h, and lines are smoothed by a Gaussian filter. The dashed vertical lines indicate
3h, 6h, and 12h, respectively.

The climatological frequencies of convective adjustment time scales are separately
shown for all subdomains in Figure 2.7. The frequency distribution follows roughly
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two power law lines with a scale break between 3 to 12 h. The distributions can
be divided into three different categories. The convection in the northern subdo-
mains (1 to 4) is characterized by a smooth distribution with a high occurrence of
small τc, indicating that equilibrium convection is relatively common in the northern
part of CONUS. In comparison, τc values larger than 6 h occur more often in the
southern subdomains (5 to 8), indicating that nonequilibrium convection is dominant.
In subdomain 8, τc values shorter than about 6 h are much rarer than in other subdomains.

Previous work investigated the existence of a scale break in the frequency distribu-
tions, which would be a clear indication of two distinct convection regimes. While Flack
et al. (2016) identified a distinct scale break at three hours over the British Isles, Zimmer
et al. (2011) find a continuous distribution and propose τc = 6h, a value somewhere
between 3 and 12 h to distinguish both weather situations. The results in Fig. 2.7 show
strong evidence of a scale break between 6 h to 12 h. Notably, this is the timescale
for which the frequency distributions in subdomain 8 peaks. While the convective
regimes should be regarded as a continuum with two extremes, we use a τc value of 6
hours as the threshold to categorize equilibrium and nonequilibrium convection in this
study. To get a sense of the statistical robustness of our results, Figure 2.7 also shows
the frequency distribution for each of the four years 2019 to 2022. While there is some
year-to-year variability - especially for the southern domains - all findings hold qualitatively.

The fraction of cases attaining τc values smaller than certain cumulative thresholds
represents another test of robustness (Fig. 2.8). Applying a threshold of τc = 6h
classifies 53% of the cases as equilibrium convection for the northern subdomains versus
22% equilibrium for the southern subdomains. This is consistent with the case studies
presented earlier, where the northern part of CONUS is frequently under the influence
of Rossby waves. The prevalence of equilibrium conditions in the northern subdomains
closely aligns with the fraction observed in Germany. During the summer months (June,
July, August), approximately 52% of convective precipitation cases in Germany were
classified as an equilibrium regime (Zimmer et al., 2011).

Next, we investigate the monthly variation of τc for warm-season convection (Fig.
2.9). In all subdomains, May is characterized by shorter τc than the other months, leading
to a higher proportion of equilibrium conditions. There is a transition in the precipitation
pattern over the central plains and southeast coastal region from May to June (see Fig.
2.3). The increase in rainfall over the central Plains in late spring is primarily driven by
the Great Plains low-level jet (Wang and Chen, 2009) and the passage of eastward-moving
systems (Carbone and Tuttle, 2008). Accordingly, the convection in May is predominantly
forced by synoptic flow and contributes to a high percentage of small τc values, particularly
in the central four subdomains 2, 3, 6, and 7. In June, the total precipitation in the
central Plains is reduced due to the development of an upper-level anticyclone (Wang and
Chen, 2009).
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Figure 2.8: Cumulative percentage of convective cases with τc less than 1, 3, 6, 12, and 24h
for each subdomain. τc not meeting the thresholding criteria in section 2a are excluded.
The red dashed lines indicate the percentage of equilibrium cases (τc < 6h) averaged over all
subdomains. The blue dashed line in the upper and lower panel indicates the percentage of
equilibrium cases (τc < 6h) averaged over northern and southern subdomains, respectively.

In the North, the climatology of convective regimes is similar throughout June to
August. In the South, in contrast, there is a strong monthly variation in the frequency
of equilibrium conditions, with short τc values more common in May and June, and
particularly rare in July. Much of this variability may be associated with changes in the
mean latitude of the jet stream where synoptic waves propagate, but the seasonal cycle
of solar heating may also play a role. For example, the increase in coastal precipitation
from May to June is primarily due to the seasonal transition of thermodynamic forcing
(Rickenbach et al., 2015).

2.3.3 Diurnal cycle of precipitation under different convective
regimes

To further corroborate that our classification mirrors the underlying basic dynamics, we
classify all forecasts within each subdomain into two types: equilibrium and nonequi-
librium regimes. This classification is done using a τc threshold of 6 hours. Next, we
analyze the subdomain-averaged rainfall time series to determine the presence of a
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Figure 2.9: Frequency distributions of convective adjustment time scale stratified by cal-
endar month. All other details as in Fig.2.7.

diurnal cycle. We hypothesize that nonequilibrium convection should exhibit a higher
proportion of diurnal precipitation. This is based on the assumption that under weak forc-
ing conditions, convection relies more on diurnal solar heating as the triggering mechanism.

To objectively identify diurnal and nondiurnal precipitation systems, we use a
supervised learning algorithm, namely the linear Support Vector Machine (SVM), which
has been applied to real-world applications and is reported to have significant accuracy
(Cortes and Vapnik, 1995). In particular, the SVM algorithm is suitable for solving data
regression and classification problems. For data classification, an SVM classifier functions
by identifying the optimal decision boundary that maximizes the separation between
classes. Since supervised learning is possible only if data are labeled, a hundred diurnal
and a hundred nondiurnal precipitation time series are labeled subjectively in this study.
The 200 samples with subjectively assigned labels are drawn from the eight subdomains,
with an effort to distribute them as evenly as possible. For the SVM classifier, we chose to
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Figure 2.10: Probability of precipitation maxima in a hundred of precipitation time series
subjectively labeled as (a) diurnal precipitation and (b) nondiurnal precipitation. The
dataset used in this figure consists of 200 time series data.

reduce the number of features by employing a 2-hour precipitation interval. This feature
reduction helps maintain a more manageable classifier dimensionality while retaining
valuable information capable of capturing time series patterns. As shown in Fig. 2.10, the
time series labeled as diurnal precipitation exhibit precipitation maxima primarily during
the afternoon hours. In contrast, the time series labeled as nondiurnal precipitation do
not display a distinct peak in precipitation timing. Among the sampled datasets, 70% is
utilized for training the model, while the remaining 30% is used for testing purposes. The
final SVM classifier used in this study has an accuracy of 0.94, a precision (1 - false alarm
ratio) of 0.95, and a recall (probability of detection) of 0.96. As shown in Fig. 2.11, the
classification result supports the effectiveness of the SVM classifier. Overall, the identified
diurnal precipitation time series have precipitation maxima in the afternoon to the early
evening. In contrast, the precipitation maxima of identified nondiurnal precipitation time
series tend to distribute across various hours.

As shown in Fig. 2.12, the statistical results support that about 61.9% of nonequilib-
rium convection is associated with a diurnal cycle in precipitation, while only about 33.8%
of equilibrium cases. This is consistent with our expectation that the nonequilibrium
convection should encompass more diurnal precipitation than equilibrium convection. As
the partition between equilibrium and nonequilibrium cases was determined using a τc
threshold of 6 hours, these results provide evidence that the convective adjustment time
scale, along with the 6-hour threshold, can yield a classification that aligns with our
physical understanding of the underlying dynamics. While somewhat less conclusive, it is
evident that the nonequilibrium precipitation maxima tend to be confined within a shorter
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timeframe of a few hours (Fig. 2.12). Based on visual examination, one explanation for
the noon peak in equilibrium cases is that precipitation often intensifies in the afternoon
during summertime, even under strong synoptic forcing.
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Figure 2.11: Probability of precipitation maxima in precipitation time series classified as
(a) diurnal precipitation and (b) nondiurnal precipitation for each subdomain. The figure
comprises a complete four-year MJJA dataset excluding those associated with tropical
systems, resulting in slight variations in the exact number across different subdomains.
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Figure 2.12: Identification of diurnal precipitation pattern in subdomain-averaged rainfall
time series. The (a) equilibrium convection and (b) nonequilibrium convection are clas-
sified by a τc threshold of 6 hours. Bars represent probabilities of precipitation maxima,
while annotations correspond to fractions of cases identified as having a diurnal pattern.
The figure comprises a complete four-year MJJA dataset excluding those associated with
tropical systems, resulting in slight variations in the exact number across different subdo-
mains.
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2.4 Convective adjustment time scale as a predictor

of forecast skill

One central aim of this study is to assess if the convective adjustment time scale derived
from HRRR forecasts provides some indication of their QPF skill over CONUS, as
suggested by Keil and Craig (2011) and Keil et al. (2014) for central Europe. To avoid
the double penalty problem of rainfall, where the predicted storms are realistic but in
a slightly wrong location, we complement the Gilbert Skill Score (GSS) (Doswell et al.,
1990) with a neighborhood-based skill score, the Fractional Skill Score (FSS) (Roberts
and Lean, 2008), to assess the forecast quality of 24-hour accumulated precipitation. The
GSS, also called equitable threat score, is modified from the threat score to account for
the correct hits due to random chance. This verification is performed using the Model
Evaluation Tools (Brown et al., 2021).
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Figure 2.13: Scatterplots of convective adjustment time scale (h) and Fractional Skill Score
(FSS) for the eight subdomains. Annotations denote the correlation coefficient computed
for each subdomain. The FSS presented here used a squared neighborhood of 25 grid
points and a binary threshold of 5mm 24h−1
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Figure 2.13 shows the FSS for a neighborhood of 25 grid points and an absolute
threshold of 5 mm in 24 hours against τc values, where the hourly convective time scale
is averaged over 24 hours to cover the accumulation window. In general, the FSS and τc
are negatively correlated with coefficients between 0.4 and 0.7, depending on the region.
Since the FSS cannot distinguish between false alarms and misses, we use the GSS as a
second skill metric. Again, we see a distinct anticorrelation between GSS and convective
time scale of similar amplitude (Fig. 2.14).
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Figure 2.14: As Fig. 13, but for Gilbert Skill Score (GSS).

The sensitivity to different neighborhood sizes and thresholds was also investigated.
While there is sensitivity, especially for high precipitation thresholds, our findings hold
qualitatively across a large range of neighborhood sizes and thresholds. In this chapter,
we present correlations between the FSS of 24-hour accumulated precipitation and
the 24-hour average τc. Reducing the window to 12- or 6-hour windows yields similar
conclusions. These results consistently demonstrate that forecast skill is reduced for
nonequilibrium convection and decreases with increasing values of τc.
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2.5 Summary and discussion

Previous work proposed the use of the convective adjustment time scale (τc) to classify
convective weather regimes over different parts of Europe and link them to various
properties like forecast skill and predictability of precipitation. The hypothesis is that
equilibrium convection (small τc) is governed by more predictable synoptic flow conditions
and, therefore, is expected to have higher skill and above-average predictability of
convective systems. In contrast, nonequilibrium convection (large τc) is assumed to be
less predictable since it is subject to local variations (e.g., topography, cold pools).

This chapter identifies the climatological frequency of equilibrium and nonequilib-
rium convection in different parts of the Contiguous United States (CONUS) domain.
Here, we apply these concepts to operational forecasts from the convection-permitting
High-Resolution Rapid Refresh (HRRR) model to see if these findings also hold over
CONUS. Since this domain is much larger and often comprises various weather systems
simultaneously, we develop a τc climatology over eight subdomains north and south of
∼ 40°N latitude and focus on precipitation systems during May, June, July, and August
from 2019 to 2022.

The results show that τc is a good measure for identifying equilibrium (synoptically
forced) and nonequilibrium (locally forced) convection. Unlike Flack et al. (2016), which
points out a distinct scale break at 3 h, the climatological frequency of τc generally has
a scale break between 6 and 12 h across the CONUS domain. In general, the northern
domains exhibit more equilibrium convection than the southern domains. Synoptically,
this reflects the fact that the North is dominated by a trough-ridge pattern of the Rossby
waveguide, while the South is dominated by the subtropical anticyclone with descending
air masses leading to a more stable stratification and build-up of CAPE. These results
collectively support that τc can provide a physically meaningful regime classification. For
the southern regions, a scale break of the distribution allows for a clear classification into
two distinct regimes, while it is more continuous in the North. In this study, we ap-
ply a τc of 6 hours as the threshold to categorize equilibrium and nonequilibrium convection.

One hypothesis of this study is that the precipitation of equilibrium convection
depends on the propagation and intensity of synoptic weather systems. In contrast,
nonequilibrium convection is expected to follow the diurnal cycle since it depends more
on radiative heating and local dynamic processes. Using a supervised learning algorithm,
we find that precipitation patterns with a diurnal cycle are about twice as likely to be
identified in nonequilibrium regimes based on τc values.

Finally, we investigate if the convective adjustment time scale can be used as a
predictor of forecast skill for precipitation systems over the CONUS, as suggested by Keil
and Craig (2011) and Keil et al. (2014) for a domain over Germany. To this extent, we
examine the relationship between the Fractional Skill Score and the Gilbert Skill Score
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for 24 h accumulated precipitation and τc values and find negative correlations between
0.4-0.7 for the different subdomains. Regional factors like maritime versus continental
conditions suggest why previous studies chose different thresholds for the convective
adjustment time scale. Convection over the British Isles and Germany is characterized
by synoptic flow, more like the northern CONUS domain that has, on average, ∼ 55%
of equilibrium convection. In contrast, only ∼ 22% of convection is classified as strongly
forced in southern CONUS.

This is the first study to derive a climatology of the convective adjustment time
scale over the CONUS domain using data from a convection-permitting forecast model.
By studying convective systems over several subdomains and for a wide range of synoptic
situations, our conclusions largely confirm previous work conducted on much smaller
domains. Our results indicate that the convective adjustment time scale is an effective
objective measure to classify equilibrium and nonequilibrium convection regimes, enabling
the flow-dependent assessment of the relative impact of different sources of uncertainty as
well as various aspects of predictability. Ultimately, this study offers guidance on how to
utilize the convective adjustment time scale to classify weather regimes across the CONUS
domain.



Chapter 3

Regime-Dependent Forecast Error
Growth in Convection-Permitting
Models: The Roles of Stochastic
Parameterizations

3.1 Background and overview

In this chapter, the emphasis is on analyzing regime-dependent predictability and forecast
error growth, especially focusing on understanding how different stochastic parameteriza-
tions affect forecast error growth for different weather systems. With the ever-increasing
computer resources, current state-of-the-art NWP forecasts use horizontal resolutions of
a few kilometers, which enables the explicit representation of convective storms. Since
convective parameterization schemes are arguably the leading source of model error in
convection-parameterizing models (Rodwell et al., 2013), the question arises of which pa-
rameterized processes contribute most to model uncertainties in convection-permitting
forecasts. Two primary candidates are 1) uncertainties in the formulation of the PBL
parameterization, which triggers the initiation of convective clouds through subgrid-scale
processes, and 2) uncertainties in the formulation of microphysics processes, which af-
fects clouds, precipitation, and the radiation budget. In this study, the Physically based
Stochastic Perturbation (PSP) scheme, which was originally developed in the Consortium
for Small-scale Modeling (COSMO) and ICOsahedral Nonhydrostatic (ICON) models and
has been extensively tested over central Europe (Kober and Craig, 2016; Hirt et al., 2019;
Puh et al., 2023), is implemented into the Weather Research and Forecasting (WRF)
model. Next, we assess the effects of stochastic tendencies perturbations applied to the
PBL parameterization with the PSP to the effects of perturbing internal parameters in the
microphysics parameterization using a Stochastic Perturbed Parameter (SPP) method,
separately and in combination. Since the two schemes represent different sources of model
uncertainty, they will tend to be active in different flow situations. If the perturbations are
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completely independent, their impact on the overall forecast uncertainty may be additive.
On the other hand, if the growth of perturbations is governed by the flow in which they
are embedded, as suggested by the three-stage error growth model (Zhang et al., 2007),
the effects may be independent of the detailed properties of the stochastic perturbations,
and the result is independent of which scheme or combination of schemes is used. In the
chapter, we seek to answer the following questions:

1. What is the impact of stochastic schemes on precipitation and forecast spread across
various weather situations?

2. Is the growth of forecast error primarily governed by the flow dynamics, or are there
inherent differences arising from the formulation of model error schemes?

3. Does introducing perturbations to both the PBL and microphysics schemes lead to
an additive effect, and what are the underlying reasons for this outcome?

The last question is of practical importance since several studies have found that
multiple error sources may not consistently result in an additive forecast spread (Berner
et al., 2011; Matsunobu et al., 2022; Chen et al., 2023). This study will shed light on
the underlying reasons for their findings. This chapter is organized as follows: Chapter
3.2 introduces the model configuration, selected cases, and diagnostic metrics. Two
contrasting cases are presented in Chapter 3.3, followed by general results in Chapter 3.4
and 3.5. Finally, the summary and discussion are presented in Chapter 3.6.

3.2 Methodology

This study investigates the impact of different model error formulations on convection-
permitting forecasts through the three ensemble experiments described below. Since the
effects of model error schemes may differ across weather situations and time of day, this
study selected twelve cases characterized by different forcing regimes and initialization
times. The configuration of the model, stochastic perturbation schemes, experimental
design, and diagnostic metrics are described as follows.

3.2.1 Model configuration and experimental design

This study used the non-hydrostatic WRF model version 4.3.1 (Skamarock et al., 2019).
The 3 km computational domain (Fig. 3.1, 1023 x 1023 grid points) covers the east part of
the CONUS domain and has 51 vertical levels. The model top is positioned at 50 hPa. All
simulations use similar physics parameterization options (Table. 3.1) as the operational
HRRR system (Dowell et al., 2022). The cumulus parameterization scheme is turned
off since models with a horizontal resolution between 1 and 4 km can resolve convective
processes arguably explicitly. In this study, all simulations utilize initial and boundary
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conditions obtained from the High-Resolution Rapid Refresh (HRRR) operational
forecast system, accessible on the NOAA open data platform (see Chapter 2.2). Given
that the operational HRRR system employs an hourly cycled DA strategy, it is antici-
pated to have higher forecast skills than those initialized with downscaled initial conditions.
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Figure 3.1: Configuration of the domain (black box) for the WRF simulations in this study.
Diagnostic domains DN (light blue, 511x1023 grid points) and DS (light green, 512x1023
grid points) are partitioned along ∼ 38oN parallel. A smaller diagnostic domain LAND
(light orange, 300x600 grid points) is chosen to cover land points only.

Parameterization Options References

PBL
Mellor–Yamada–Nakanishi–Niino
(MYNN) scheme

Nakanishi and Niino (2006)

Microphysics Thompson aerosol aware scheme
Thompson and Eidhammer
(2014)

Long- and short-
wave radiation

Rapid Radiative Transfer Model for
General Circulation Models

Iacono et al. (2008)

Surface layer MYNN surface layer scheme Olson et al. (2019)

Land surface model
Rapid Update Cycle Land-Surface
Model

Benjamin et al. (2004)

Table 3.1: Configuration of physics parameterization schemes for all simulations.

Based on an unperturbed control run (abbreviated as CNTL), three ensemble
experiments are designed to investigate the effect of various model error formulations
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on forecast error growth. The experiment abbreviations (SPPMP, PSP, and BOTH)
mirror the schemes used, making interpretation simpler. Each experiment has seven
ensemble members, and no perturbations are introduced to the initial and boundary
conditions. These members vary solely based on the realization of model uncertainty,
determined by the random seeds assigned during the generation of stochastic random
patterns. All simulations have a length of 48 hours. To minimize the impact of model
spin-up, model perturbations are introduced after the first 3 h forecast, after which the
ensemble members begin to diverge. The SPPMP and PSP experiments activate the
Stochastically Perturbed Parameter applied to Microphysics (Thompson et al., 2021) and
the WRF implementation of the PSP schemes (Kober and Craig, 2016; Hirt et al., 2019;
Puh et al., 2023), respectively. The BOTH experiment combines both stochastic schemes
simultaneously to evaluate their combined effect. Details of stochastic perturbation
schemes are described in Chapter 3.2.2 and Chapter 3.2.3, respectively.

3.2.2 Formulation of the SPPMP scheme

The SPPMP scheme developed in Thompson and Eidhammer (2014) adopted the SPP
approach to sample uncertainty in the formulation of the Thompson aerosol-aware
microphysics scheme. It perturbs key internal parameters used in bulk microphysics
representations, including the cloud droplet shape parameter and the graupel/hail
intercept parameters. Also, it perturbs vertical velocity, which determines how many
aerosols and mineral dust concentrations will be activated as cloud condensation and ice
nuclei, respectively.

Parameters Magnitudes Spatial and temporal scales

Cloud droplet shape parameter ±2.0 150 km and 2 hours
Graupel and hail intercept parameters ±0.75 150 km and 2 hours
Vertical velocity for cloud condensation nu-
clei activation

+0.375 150 km and 2 hours

Activation of ice nuclei concentration +13.5 150 km and 2 hours

Table 3.2: Details of the four perturbed parameters in the SPPMP scheme. The listed
perturbation magnitudes originated from stochastic random patterns with a standard de-
viation of 0.75.

Aiming to represent realistic and physically justifiable uncertainty for each parame-
ter, the SPPMP settings closely adhere to the methodology outlined by Thompson et al.
(2021) and insights gained from personal discussions with the physics developer. As
shown in Fig.3.2a, the SPPMP scheme uses a stochastic pattern generator with larger
decorrelation time (2 hours) and length scales (200 km) compared to those used in the PSP
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scheme (Fig.3.2b). This stochastic pattern is coherent throughout each vertical column.
While the random pattern used in SPPMP scheme possesses larger spatial and temporal
scales, the effective microphysics perturbations may not inherit this property since
microphysical processes are naturally more intermittent and exhibit smaller scales than
the PBL processes. The stochastic pattern generator uses a standard deviation of 0.75 and
a cutoff threshold of 2.5 standard deviations, which leads to different perturbation ampli-
tudes for each parameter, as summarized in the Table 3.2 (see also Thompson et al. (2021)).

3.2.3 The WRF implementation of the PSP scheme

This study implements the PSP scheme into the MYNN PBL scheme (Nakanishi and
Niino, 2006), which is part of the WRF model. To distinguish it from the original im-
plementation, the current section refers to this as the WRF implementation of the PSP
scheme (WRF-PSP) to elucidate its formulation. The WRF-PSP scheme considers missing
variability in resolved potential temperature (θ) and water vapor (q) fields due to partially
resolved subgrid turbulence processes. This is achieved by adding stochastic perturbations
into the PBL tendencies (RTHBLTEN and RQVBLTEN terms in the WRF model). At
each time step, the magnitude of stochastic perturbations undergoes scaling based on the
turbulence variance. This scaling reflects the concept that uncertainties are more pro-
nounced at more turbulent grid points. The mathematical formulation of the WRF-PSP
scheme is shown as (3.1).

∂ϕ∗

∂t
i =

∂ϕ

∂t
i + ηi · αtuning ·

lmixing

5dx

1

τeddy
ri

√
Φ̄2

l , (3.1)

where terms with subscript i vary every time step.
∂ϕ∗

∂t
i and

∂ϕ

∂t
i are perturbed and unper-

turbed tendency terms, respectively. ϕ is the resolved state variable potential temperature
(θ) or water vapor mixing ratio (q) fields. Φ̄2

l is the variance for θ or q diagnosed in the
turbulence closure. Similar to Hirt et al. (2019), the mixing length (lmixing) and eddy
turnover time (τeddy) were set to 1000 m and 600 seconds, respectively. The inclusion of
the effectively resolved gridscale (5dx) makes the scheme scale-dependent by yielding it
more effective at higher resolution. The two-dimensional variable kpbl represents the model
level where the PBL top is located and is a diagnostic variable in the MYNN scheme.
As defined in (3.2), the perturbations linearly decrease from kpbl to the fourth vertical
level above kpbl. The model-level dependent ηi linearly tapers the perturbations to avoid
discontinuities near the PBL top:

ηi =


1 if k ≦kpbl

1− 0.33x k = kpbl+ x, x ∈ {1, 2, 3} ,

0 k ≦kpbl+4

(3.2)
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Figure 3.2: Stochastic random patterns (used in all vertical levels) for the (a) SPPMP and
(b) WRF-PSP schemes. (c) Water vapor turbulence variance QSQ (kg2 kg−2), (d) potential
temperature turbulence variance (K2), (e) perturbed water vapor tendency (kg2 kg−2), and
(f) perturbed potential temperature tendency (K) at the lowest model level and valid at
18 UTC on 21 July 2021.
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The tuning parameter αtuning scales the perturbation amplitude and should be
an order of unity given realistic estimations for other parameters (Kober and Craig,
2016). In this study, the αtuning is set to a fixed value of 2, a choice determined through
sensitivity experiments akin to those illustrated in Figure 7 of Kober and Craig (2016).
The stochastic pattern generator adheres to the implementation outlined by Berner et al.
(2011), producing a two-dimensional random field (ri) at each time step with predefined
amplitude, spatial, and temporal correlations. From the spectral space (rk,l) to the
physical space (ri), the random field is given as (3.3) and (3.4):

ri =

K
2∑

k=−K
2

L
2∑

l=−L
2

rk,l(t) exp
2πi( kx

X
+ ly

Y
), (3.3)

rk,l(t+ δt) = exp
−2δt
τ ·rk,l(t+ δt) + gk,l · ϵk,l, (3.4)

where X and Y are the model grid points in the x and y direction. Terms k and l are
the zonal and meridional wavenumber components, respectively. As shown in (3.4), the
coefficient rk,l(t) evolves as a autoregressive process where τ is temporal decorrelation
time. In this study, τ is set to 600 seconds, as same as eddy turnover time (τeddy ).
ϵk,l is a white-noise process following Gaussian distribution with a zero mean and a
standard deviation of one. We don’t allow for perturbations above a threshold of 2.5
standard deviations since the Gaussian distribution is theoretically unbounded. The noise
amplitude (gk,l) is a function of assigned length scale, which is set to 15 km to represent
variability at the smallest effectively resolved scale (5dx). Like the SPPMP scheme, the
WRF-PSP scheme used a vertically coherent random pattern since eddies often extend
through several vertical levels, especially for convective boundary layers Kober and Craig
(2016).

Figure. 3.2b shows a random field from the stochastic pattern generator configured
for the WRF-PSP. Since the random fields are scaled with the turbulence variance
(Fig. 3.2c and Fig. 3.2d), the resulting perturbation patterns (Fig. 3.2e and Fig. 3.2f)
show larger perturbations added at grid points where the turbulence variances are larger.
Although θ and q use the same random field, the scaling with the variance results in
distinct tendency perturbations that reflect the underlying weather situation. It is worth
mentioning that the largest perturbation amplitudes are about an order smaller than the
total PBL tendencies. In the following section, the abbreviation PSP is used to indicate
the WRF-PSP formulation introduced above. However, it’s important to note that this
implementation is not identical to the implementation in the ICON and COSMO models.
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3.2.4 Case description

To investigate the effect of model perturbations across different weather situations, we
carefully pick cases typical for strong forcing convection, weak forcing convection, and
winter storm conditions. For each case, we initialize forecasts at 00 and 12 UTC to account
for diurnal error growth behavior. The abbreviation of cases and their corresponding
initial times are summarized in Table 3.3. The precipitation events are objectively
classified using the convective adjustment time scale τc (Keil et al., 2014; Flack et al.,
2016). As detailed in Chapter 2, this index measures the degree of synoptic forcing by
estimating the timescale at which convective instability is consumed by convective heating.

Abbreviation Initial time Abbreviation Initial time

STRONG1 00 2021070100 UTC STRONG1 12 2021070112 UTC
STRONG2 00 2021070700 UTC STRONG2 12 2021070712 UTC
WEAK1 00 2021072100 UTC WEAK1 12 2021072112 UTC
WEAK2 00 2021072700 UTC WEAK2 12 2021072712 UTC
WINTER1 00 2022122200 UTC WINTER1 12 2022122212 UTC
WINTER2 00 2023030200 UTC WINTER2 12 2023030212 UTC

Table 3.3: Abbreviation and model initial time for each simulation.

Following the methodology outlined in the previous section, factor b is set to 0.5 to
account for the reduction of CAPE (Keil and Craig, 2011; Keil et al., 2014). As a recap,
Chapter 2 illustrates that equilibrium and nonequilibrium convection over the CONUS
can be properly classified by a convective adjustment time scale threshold of 6 hours. In
alignment with previous studies, it is confirmed that strong forcing convection (τc < 6h)
has higher predictability than weak forcing (τc > 6h) convection in the CONUS domain.
This study examines two diagnostic domains, denoted as DN (north of ∼ 38o longitude)
and DS (south of ∼ 38o longitude), as illustrated in Figure 3.1. The two domains are
analyzed separately due to the prevalence of distinct synoptic flows in each subdomain (see
Chapter 2). While it is challenging to have a completely homogeneous weather situation
over the entire domain for all forecast lead times, we picked the cases that exemplify
typical conditions.

The STRONG1 00 and STRONG1 12 cases (Fig. 3.3a and Fig. 3.3b) have a
northeast-southwest elongated rainband. The organized rainband is located at the leading
edge of the upper-level trough, which provides large-scale rising air motion supporting
the development of precipitation systems. For this case, τc is clearly less than 6 h in the
DN domain, and precipitation does not exhibit a diurnal pattern (Fig. 3.4a and Fig.
3.4b). In contrast, the DS domain has a τc larger than 6 h with a precipitation peak in
the afternoon, which is caused by scattered precipitation in coastal regions and over the
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Figure 3.3: 500-hPa Geopotential height (contours, m) and two-day accumulated pre-
cipitation (shaded, mm) under different flow regimes: strong forcing (top), weak forcing
(middle), and winter storm (bottom). Panels show 00 UTC and 12 UTC states for six
different days (see panel labels). Results are from the unperturbed forecasts.

ocean. Similarly, the STRONG2 00 and STRONG2 12 cases have precipitation systems
located at the leading edge of a 500 hPa trough (Fig. 3.3c and Fig. 3.3d). The heavy
precipitation systems over the DS domain are more subtropical: part of the precipitation
is associated with Tropical Storm Elsa. As shown in Fig. 3.4, this case has τc < 6h and
τc slightly larger than 6 h for the DN and DS domains, respectively. Since Chapter 2
demonstrated that more than half of the convection cases in the DS domain exhibit τc
larger than 12 h, the two precipitation cases in the DS can be viewed as a relatively strong
forcing case in comparison to climatology.

Overall, the weak forcing convection cases (Fig. 3.3e-Fig. 3.3h) have less precipita-
tion than strong forcing convection cases (Fig. 3.3a-Fig. 3.3d). As shown in Fig. 3.4e-Fig.
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Figure 3.4: Hourly accumulated precipitation rate (mmh−1; solid lines; left y-axis) and
convective adjustment time scale τc (h; dashed lines; right y-axis) for cases shown in Fig.
3.3 in the Northern (DN; blue) and Southern (DS; red) domains, respectively. Results are
from the unperturbed forecasts.

3.4h, all cases have weakly forced precipitation over the DS domain as indicated by
their large τc and diurnal precipitation pattern. In this study, the discussion of different
forcing regimes is primarily focused on the DS domain since precipitation over the DN
domain is mainly governed by the synoptic flow, albeit with varying degrees of influence.
This is a common precipitation feature over the CONUS since climatologically, more
than half of warm-season precipitation cases are classified as strong forcing in the north-
ern CONUS (see Chapter 2). Although the persistent jet stream shifts poleward during
the warm season, it still modulates precipitation over the northern regions most of the time.

In addition to summertime convection, two winter storm cases (depicted in Fig.
3.3i-Fig. 3.3l) are incorporated to account for their unique synoptic environment and
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boundary layer stability. The Winter1 cases formed on 21 Dec, reached peak intensity
on 23 Dec, and dissipated on 26 Dec 2022. Its associated winter storm produces total
precipitation of up to 100 mm over the entire forecast. As shown in Fig. 3.4i and Fig.
3.4j, the precipitation system dominantly settles in the DS domain during the early- to
mid-forecast hours. After that, the major rainband moved to the DN domain following the
counterclockwise cyclone flow. The Winter2 case formed on 01 March and dissipated on 03
March 2023. Widespread storm complexes moved throughout the DS domain and provided
favorable synoptic conditions for thunderstorm development. The two winter storm cases
have stronger synoptic forcing compared to the summer convection cases. As shown in Fig.
3.4, their τc values remain small during the whole forecast period and have an average of
0.05 h and 4.06 h for the DS and DN domains, respectively.

3.2.5 Diagnostic metric

This study evaluates how different model error formulations affect forecast errors of pre-
cipitation, wind, and temperature. Four diagnostic regions are analyzed separately: land
points situated within the DN domain (abbreviated to as DN LAND), land points situated
within the DS domain (abbreviated as DS LAND), water points situated within the DN
domain (abbreviated to as DN WATER), and water points situated within the DS domain
(abbreviated as DS WATER) domain. Furthermore, a smaller subdomain predominantly
encompassing land points (abbreviated as LAND in Fig. 3.1) is employed in the spectral
analysis. Three diagnostic metrics are introduced as follows:

Domain-averaged precipitation intensity and normalized spread

In this study, precipitation intensity is assessed using the domain-averaged precipitation
of the ensemble mean. To minimize the effect of comparing absolute precipitation spreads
across different events, we quantify the spread using the domain-average normalized
standard deviation (Keil et al., 2019):

Sn(x, y) =
1

R(x, y)

√√√√ 1

N − 1

N∑
m=1

{R(x, y)−Rm(x, y)}2, (3.5)

where Sn(x, y) denotes the normalized precipitation spread at each grid point. R(x, y)
and Rm(x, y) are the precipitation of the ensemble mean and each ensemble member,
respectively. N (equal to 7 in this study) is the number of ensemble members.

Root Mean Difference Total Energy (RMDTE)

This study calculates the total energy difference between the unperturbed forecast and
each ensemble member, taking into account both thermodynamic and kinematic fields
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(Zhang et al., 2003). For a horizontal grid point and an ensemble member, the vertically
integrated energy difference is measured by the pressure-weighted RMDTE:

RMDTE =

√√√√ z2∑
k=z1

p(k + 1)− p(k)

p(z1)− p(z2)
·
1

2
[∆u2 +∆v2 +

cpd

Tr

∆T 2], (3.6)

where ∆u, ∆v, and ∆T are zonal wind, meridional wind, and temperature departure from
the unperturbed forecast, respectively. p is the pressure field at each vertical level from
the surface (denoted as z1) up to the 300 hPa (denoted as z2). In this study, the constant
cpd and Tr are set to 1004.9 J kg−1K−1 and 270K, respectively. Similar to normalized
precipitation spread, this study compared energy differences across different cases using
Normalized Root Mean Difference Total Energy (NRMDTE), which is defined as the
standard RMDTE divided by the pressure-weighted ensemble mean KE (Nielsen and
Schumacher, 2016):

NRMDTE =
RMDTE√∑z2

k=z1

p(k + 1)− p(k)

p(z1)− p(z2)
(u2 + v2)

, (3.7)

where u2 and v2 are the zonal and meridional wind of the ensemble mean at each grid
point. Both RMDTE and NRMDTE derived above are two-dimensional total energy
differences for each ensemble member. For each experiment, RMDTE and NRMDTE are
averaged over all ensemble members. Like precipitation, domain-averaged RMDTE and
NRMDTE time series are computed over each diagnostic subdomain.

Kinetic Energy (KE) and precipitation spectra

Following Lorenz (1969) and subsequent error growth and predictability studies (Selz
and Craig, 2015; Selz et al., 2022), we analyze the spectra of total (or background)
and perturbation (or difference) fields to quantify the growth of model perturbations
in the ensemble simulations. As laid out in Selz and Craig (2015), a complete phase
decorrelation between two fields occurs when the energy of the forecast differences reaches
a level twice the magnitude of the background energy. The specific value of the energy
threshold depends on the underlying flow conditions. In line with this approach, we assess
the predictability level of wind and precipitation at various spectral wavelengths through
the ratio of perturbation energy to the background energy. The energy spectrum of
background and difference kinetic energy (BKE and DKE, respectively) and background
and difference precipitation (BPR and DPR) are derived using 500 hPa horizontal wind
and hourly precipitation forecasts, respectively.
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The power spectra are calculated using normalized wavenumbers described below
to accommodate the rectangular diagnostic subdomain (denoted as LAND in Fig. 3.1).
Two-dimensional hourly precipitation (rij), meridional (uij), and zonal wind (vij) fields
are transformed to spectral space using Discrete Cosine Transform (DCT). This choice is
made because the DCT is capable of obtaining more realistic spectra on small scales with-
out the need for detrending, particularly for limited-area atmospheric fields (Denis et al.,
2002). For a grid mesh with Ni and Nj grid points, the one-dimensional power spectrum
has wavenumber bands equally distributed from 0 to 1 with N intervals, where N=min(Ni,

Nj). The wavenumber (m,n) is normalized using

√
m2

N2
i

+
n2

N2
j

before computing their

contribution to each specific wavenumber band. Take the KE spectrum as an example.
The one-dimensional power spectra for the background wind and difference wind are
averaged across all ensemble members, as indicated by the numerator and denominator
(3.8). In each experiment, R(l) gauges the saturation level at each wavenumber consid-
ering all ensemble members, utilizing their ensemble mean as the reference background flow.

R(l) =
DKE(l)

2 ∗BKE(l)
=

1
N

∑N
m=1

1
2
[E∆u(l,m) + E∆v(l,m)]

1
N

∑N
m=1[Eu(l,m) + Ev(l,m)]

, (3.8)

where l, m, N is the spectral mode, ensemble member, and ensemble size (N=7 in this
study). Eu(l), Ev(l), E∆u(l), and E∆v(l) are the one-dimensional variance spectra of back-
ground zonal, background meridional, difference zonal, and difference meridional wind
fields for each ensemble member, respectively.

3.3 Two contrasting cases

Before proceeding to a more quantitative analysis, we consider two case studies, which
illustrate how the two stochastic parameterizations respond differently in different weather
situations. In particular, we compare a summer case (WEAK2 12) with a winter case
(WINTER2 00), since these are situations where the PSP and SPPMP schemes might be
expected to respond differently. In summertime over land, surface heating leads to intense
boundary layer turbulence, and the PSP scheme will produce large perturbations. On the
other hand, the widespread regions of cloud and precipitation in winter storms lead to large
microphysical conversion terms in the model that will be perturbed by the SPPMP scheme.

Maps of RMDTE and precipitation are shown in Fig. 3.5. For the WEAK2 12
case, the RMDTE of the PSP surpasses that of SPPMP in the beginning of the forecast.
However, they are remarkably similar for lead times of more than 24 hours. The high
values of RMDTE (shading) typically fall in the areas with high precipitation (blue
contours), signifying that error growth is organized by the atmospheric flow. As shown
in Fig. 3.6a, it is apparent that in the WEAK2 12 case, SPPMP consistently exhibits a



58
3. Regime-Dependent Forecast Error Growth in Convection-Permitting

Models: The Roles of Stochastic Parameterizations

Figure 3.5: RMDTE (ms−1) and hourly precipitation (> 0.1mm, blue contours) at lead
times of (a) 6 h, (b) 12 h, (c) 24 h, (d) 36 h, and (e) 48 h for forecast initialized at 12 UTC
on 27 July 2021. Rows are PSP, SPPMP, and BOTH experiments, respectively

lower RMDTE ratio than PSP until around 18 to 30 hours into the forecast. With the
increasing lead times, the ratio tends to approach one, indicating a convergence in spread
between the two schemes. It is noteworthy that this behavior does not show a significant
association with the domain-average precipitation intensity. When comparing BOTH with
PSP and SPPMP (Fig. 3.5), it is evident that combining both schemes does not lead to
an additive effect in this case.

The WINTER2 00 case stands out as an illustration where microphysics perturba-
tions play a more substantial role compared to their impact on the summertime convection
case (Fig. 3.7). Examining the RMDTE indicates that the influence of SPPMP can surpass
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Figure 3.6: Time series of averaged RMDTE ratio (shaded, SPPMP against PSP) at
pressure levels and domain average hourly precipitation rate (mm, white lines) for the 48-
h forecast of the (a) WEAK2 12 and (b) WINTER2 00 cases. Rows show ratios averaged
over DN LAND, DN WATER, DS LAND, and DS WATER, respectively.

that of PSP within a lead time of 12-24 hours (Fig. 3.7b). As shown in Fig. 3.6b, this is
especially notable in the DN LAND and DS LAND domains, where SPPMP significantly
takes over PSP during nighttime (0 to 12 hours forecast for 00 UTC run corresponds to
7 pm to 7 am LT). The effects are most pronounced at higher vertical levels where cloud
formation is prevalent, and the influence of the boundary layer processes diminished. Fol-
lowing the early morning period, the normalized ratios drop swiftly, indicating that the
PSP perturbation grows effectively in the morning and can catch up with or even surpass
SPPMP quickly, even during winter.
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Figure 3.7: Same as Fig. 5., but for forecast initialized at 00 UTC on 02 Mar 2023.

For the WINTER2 00 case, we further study two pronounced convective systems
labeled A and B at short lead times (Fig. 3.7). In system A, SPPMP generates a
larger RMDTE than PSP. This suggests that the SPPMP scheme produces effective
perturbations in areas with existing convection. Conversely, during this period, the PSP
scheme has little impact, likely attributable to the stable nocturnal boundary layer over
land. In contrast to the results over land, PSP generates a higher RMDTE than SPPMP
at convective system B. In the BOTH experiment, there is a notable RMDTE for all three
convective systems, as it is influenced by both microphysics and PBL perturbations.

The two case studies show different responses to the two stochastic schemes at early
lead times. As expected, the PSP scheme has a stronger impact in the WEAK2 12 case,
while SPPMP dominates the WINTER2 00 case. When both schemes are included, the
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effects are not additive but rather reflect the impact of the dominant scheme. But as
time goes by, the results become more similar, and after 6-12 h the differences appear
negligible. The RMDTE ratio converges toward 1 in both cases, and the forecasts become
less distinguishable, not just in amplitude but also in spatial distribution, showing the
importance of the dynamical processes that amplify errors over time. In the following
section, we will explore when and where the two schemes are effective and how their effects
combine in different weather situations.

3.4 Impact of stochastic parameterizations in differ-

ent weather situations

In this section, we quantify the impact of stochastic perturbations on forecast error
growth for STRONG, WEAK, and WINTER conditions, focusing on the diagnostic
domains defined in Chapter 3.2.5. Domain-averaged normalized precipitation spread Sn

and NRMDTE are summarized for all cases in Fig. 3.8. We note that the stochastic
perturbations are least effective for WINTER cases as it has the smallest Sn and
NRMDTE values overall. In general, WEAK cases have larger Sn than STRONG cases
over DS LAND (Fig. 3.8a), which is consistent with previous studies which find that
nonequilibrium precipitation is more sensitive to model perturbations (Keil et al., 2019;
Puh et al., 2023). Interestingly, WEAK cases have smaller NRMDTE than strong cases
(Fig. 3.8c). This suggests that a larger precipitation spread does not necessarily translate
to a proportionately larger error energy when considering wind and temperature. In
the DN LAND, there are no systematic differences between STRONG and WEAK (Fig.
3.8b and Fig. 3.8d). This aligns with the diagnostics that, even in the WEAK cases,
the DN domain retains equilibrium convection, as indicated by its τc being smaller than
6 hours (blue dashed line in Fig. 3.4e-h). Regarding the influence of different model
error formulations, it is clear that PSP and BOTH demonstrate higher values of Sn

and NRMDTE in comparison to SPPMP. The combination of both stochastic schemes
(BOTH) does not lead to a proportional increase in NRMDTE and precipitation spread
when compared to PSP. Similar conclusions can be drawn from results over water grid
points (Fig. 6.1). As these findings apply to individual cases within each weather type,
the subsequent diagnostics evaluate the average properties associated with three specific
weather situations.

Following Lorenz (1969), previous work studied upscale error growth by analyzing
time-evolving spectra (Koshyk et al., 1999; Selz and Craig, 2015; Selz et al., 2022). To link
our study with this body of work, we compute precipitation and KE error spectra over the
LAND diagnostic domain (denoted in Fig.1) at various lead times (Fig. 3.9). For the winter
storm case, the strong synoptic forcing organizes precipitation along synoptic disturbances
(Fig. 3.3i-l), leading to large amplitudes in the background precipitation spectra at the
larger scales (Fig. 3.9a). For STRONG and WEAK cases, the background precipitation
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Figure 3.8: Domain-averaged normalized precipitation spread (Sn, unitless) over (a)
DS LAND and (b) DN LAND subregions for each 48-hour forecast. Panels (c) and (d)
are domain-averaged NRMDTE (unitless) over DS LAND and DN LAND, respectively.

spectra peak at wavelengths between 30 and 50 km (Fig. 3.9b-c), reflecting the fact that
summertime convective precipitation systems have the most variability at smaller scales.
In particular, the large-scale saturation amplitudes are the smallest for the WEAK cases,
consistent with locally triggered nonequilibrium convection (Fig. 3.3e-h). Shifting our
attention to the difference KE spectra (Fig. 3.9d-f), we note that the background KE is
largest for synoptic wavelengths above 500 km and decreases for smaller wavelengths for
all weather situations. Generally, PSP possesses faster precipitation and KE error growth
than SPPMP for all wavenumbers. An exception is the WINTER storm situation where
SPPMP stands out with higher amplitudes in both KE and precipitation at a lead time of 6
hours (Fig. 3.9a and 3.9d), mirroring the findings in the case study (section 3.3). We note
that although PSP and SPPMP schemes perturb model variables with energy peaked at 15
and 150 km horizontal scales, respectively, the difference spectra after 6 hours have peaks
in similar wavenumber bands. This confirms that the spatial scale of the perturbations
does not imprint itself onto the forecasts.



3.4 Impact of stochastic parameterizations in different weather situations 63

Figure 3.9: Spectra of difference hourly precipitation (heavy solid lines for PSP and dashed
lines for SPPMP) and background hourly precipitation (light solid lines) per unit log k for
(a) winter storm, (b) weak forcing, and (c) strong forcing cases. Figures (d), (e), and (f)
are the same but for background KE and difference KE. Each line shows the average of
four spectra (two 00 UTC and two 12 UTC runs). The difference fields are computed
against unperturbed forecasts (see section 3.2.5 for details).

As mentioned in Selz and Craig (2015), the lead time after which the pertur-
bation spectrum matches that of the background notifies the wavenumber-dependent
predictability horizon. We expect small spatial scales to saturate faster and thus have
less predictability than larger scales, which is evident in Fig. 3.9. Roughly speaking, all
wavelengths of 100 km or less are close to saturated – and thus unpredictable – after
a lead time of 36 hours no matter which scheme is used (Fig. 3.9). To go into more
detail, we plot the saturation ratio of the difference kinetic energy against difference
precipitation for various forecast leads and wavelengths (Fig. 3.10). Over time (colors
progressing from blue to red), the forecasts progress from small perturbation amplitude
(lower left corner of the plot) to fully saturated (upper right corner). For small scales
(<50 km), precipitation and KE errors saturate (defined as a ratio of 0.8 as Selz and
Craig (2015)) within one day in WEAK and STRONG cases. In contrast, the saturation
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Figure 3.10: Saturation ratios of difference KE against difference precipitation at different
forecast lead times (h, colors) for strong forcing (top), weak forcing (middle), and winter
storm (bottom) cases, respectively. Each dot shows the average of four spectra (two 00
UTC and two 12 UTC runs). Columns are saturation ratios at 15 km, 50 km, 100 km, and
200 km wavelengths.

levels are significantly lower in WINTER cases, indicating increased predictability and
suggesting that the small-scale flow is organized by the larger scales. In both the WEAK
and STRONG cases, the PSP scheme has higher saturation levels in DKE and DPR than
SPPMP for all wavelengths and lead times. The only circumstance in which SPPMP has
a higher difference error energy than PSP occurs during WINTER cases with a short lead
time, as mentioned above. This tendency is primarily observed at wavelengths smaller
than 50 km (Fig. 3.10i,j). For scales exceeding 100 km, the PSP scheme has faster error
growth than SPPMP (Fig. 3.10k,l).

In addition to understanding the saturation level, this analysis helps assess the extent
to which the increase in KE error is associated with the error in precipitation. If the KE
and precipitation errors proceed toward saturation at the same rate, the points will always
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lie on the diagonal. Zhang et al. (2007) propose that fast error growth in convective scale
is linked to local saturation due to displacement. In general, for the small scale (< 50
km), the saturation ratio of precipitation and KE grows at the same rate and is close to
the diagonal in Fig. 3.10. For wavelengths larger than 50 km, STRONG and WINTER
cases still have error saturation ratios close to the diagonal, although progress towards
saturation of both variables is slower on larger scales. In contrast, for these wavelengths,
WEAK cases have higher precipitation saturation ratios than KE, as indicated by the
markers falling below the diagonal (Fig. 3.10 g,h). This is particularly noticeable with the
PSP scheme, pointing to its more effective decorrelation of the precipitation field for weak
forcing convection. Notably, for the weak forcing situation, the precipitation error nearly
saturates at 200 km within 24 h, while the KE error has not reached saturation yet (Fig.
3.10h). Although the predictability of the weakly forced precipitation is less than a day
on all scales shown here, this is not reflected in rapid error growth in the larger-scale flow
(wavelengths of 100 km or more).

3.5 Role of the diurnal cycle

This section investigates the impact of stochastic schemes on domain average precipitation
intensity, precipitation spread, and RMDTE at various lead times. To identify potential
variations in diurnal error growth patterns, the ensemble forecasts initialized at 00 and
12 UTC are treated separately. Unlike the complete case stratification in the previous
section, this section presents the influence of stochastic schemes on average properties for
summer and winter situations. It’s important to note that each case has been individually
assessed, and the conclusions regarding error growth remain qualitatively consistent across
summertime cases. However, there remain some regime-dependent differences, which will
be further clarified in the text.

Concentrating on summertime convection cases (Fig. 3.11), the PSP scheme leads to
precipitation difference relative to the control with a distinct diurnal cycle in DS LAND
(Fig. 3.11g, dashed lines). This behavior is primarily attributed to the prevalent nonequi-
librium convective regime in this domain. Specifically, for 00 UTC initializations, PSP
increases the precipitation rate between 18-24 hours and 42-48 hours, corresponding to 1
pm until 7 pm LT. This pattern is similarly observed for 12 UTC initializations during
the respective local times. This aligns with the previous PSP studies using the ICON and
COSMO models, in that the PSP scheme yields slightly higher precipitation rates and an
earlier onset of precipitation for nonequilibrium convection. Following the peak precipita-
tion event, the precipitation rate is reduced because of the depletion of precipitable water
later in the diurnal cycle. In contrast to DS LAND, it is evident that DN LAND does not
show this intensity change (Fig. 3.11a), proving that this precipitation feature primarily
arises from weak forcing convection that is sensitive to PBL perturbations. Likewise, PSP
scheme does not lead to large variation in the precipitation intensity for winter storm cases
as they are strongly forced (Fig. 6.2). Over the DS WATER region (Fig. 3.11j), PSP
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Figure 3.11: Time series of domain-averaged normalized hourly precipitation spread (solid,
mm) and domain-averaged hourly precipitation difference against CNTL forecasts (dashed,
mm) for PSP, SPPMP, and BOTH. The rows depict results averaged over DN LAND,
DN WATER, DS LAND, and DS WATER, respectively. Each line within the figure cor-
responds to four summertime convection cases.

scheme intensifies nighttime precipitation while diminishing it during the daytime. Un-
like the stable nocturnal PBL over land, the PBL over the ocean remains turbulent during
nighttime, creating conditions that enable the generation and the subsequent amplification
of PSP perturbations (see Fig. 6.3). This elucidates the reason why PSP can result in a
larger RMDTE than SPPMP in precipitation area B, as demonstrated in the case study
(Fig. 3.7). In Fig. 3.11, one notable difference between the PSP and SPPMP schemes is
evident: SPPMP has minimal impact on domain average precipitation intensity.
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The temporal changes in precipitation intensity during summertime are reflected
in the precipitation spread (Fig. 3.11, solid lines). For instance, in DS WATER, the
rapid increase of precipitation spread in 00 UTC forecasts mirrors the fluctuations in
precipitation intensity caused by the turbulent ocean boundary layer during nighttime.
In the other three diagnostic domains, the precipitation spreads of PSP and BOTH are
significantly influenced by local time, showing faster growth in the spread for the 12
UTC run compared to the 00 UTC run. One contributing factor is the increased activity
of PSP during turbulent daytime PBL conditions. It can modify or trigger additional
convective cells during peak convective periods, resulting in rapid precipitation error
growth. It is important to note that while the PSP scheme does not significantly alter
precipitation intensity for equilibrium convection, it can decorrelate them in spatial space
and increase precipitation spread, thereby explaining the diurnal precipitation spread
growth in DN LAND (Fig. 3.11a). In contrast to the local-time dependent spread
characteristics for all summer cases, the winter storm cases exhibit precipitation spreads
more closely as a function of lead time (Fig. 6.2). Similarly, SPPMP shows consistent
spread growth behavior for both initialization times across all cases (Fig. 3.11 and Fig. 6.2).

In summary, the summertime precipitation spread induced by the PSP scheme grows
rapidly during the local daytime as boundary layer turbulence and convection intensify,
whereas the spread associated with SPPMP and winter cases increases more slowly and
steadily with forecast lead time. For all cases studied here, the PSP scheme generally
leads to a larger precipitation spread compared to that of the SPPMP scheme (Fig. 3.11
and Fig. 6.2). Further combining the two stochastic schemes (BOTH) does not result in
a proportional increase in precipitation spread compared to using a single scheme alone.

Next, we investigate the forecast error growth in temperature and wind fields as mea-
sured by the RMDTE. For summer convection cases, all experiments demonstrate faster
error growth rates during the local afternoon hours regardless of the scheme employed,
except for DS WATER (Figure 3.12). The reason behind this is that the evolution of
RMDTE is primarily modulated by the activity of moist convection, which peaks during
the afternoon in summer, rather than by the details of the perturbations introduced by the
stochastic schemes (also indicated by Chapter 3.3). While PSP and BOTH exhibit compa-
rable RMDTE growth rates across the entire forecast, SPPMP displays significantly lower
error growth rates during the first local afternoon period. Looking more closely, SPPMP
exhibits slightly larger growth rates in DN LAND and DS LAND following the peak error
growth (Fig. 3.12). This suggests that it may catch up with the spread of PSP during
the stable nighttime period. Over DS WATER, PSP leads to a rapid RMDTE growth rate
at short lead times for both 00 UTC and 12 UTC runs, which is consistent with its large
precipitation spread. This phenomenon is again attributed to the substantial water vapor
variability over the ocean during nighttime. An important finding in Fig. 3.12 is that the
two schemes demonstrate distinct error growth patterns mainly during the first afternoon
period. Following this, the differences in error growth rates between schemes decrease.
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Figure 3.12: Time series of domain-averaged root-mean difference total energy (RMDTE,
m2s2) growth rate for PSP (red), SPPMP (blue), and BOTH (green). Rows are d
RMDTE/dt averaged over DN LAND, DN WATER, DS LAND, and DS WATER, respec-
tively. Columns show forecasts initialized at (a) 00 UTC and (b) 12 UTC. Each line within
the figure corresponds to four summer convection cases. Dashed lines indicate the 12 LST
corresponding to each initial time.

The growth rate of RMDTE in the winter storm cases depicts a different scenario
(Fig. 6.4). Although PSP still exhibits slightly larger error growth rates when considering
all lead times, the distinction between the three schemes is smaller compared to their
differences in summer convection cases. Put differently, the similarity in error growth
among the three experiments suggests that the forecast error growth is not significantly
affected by the choice of scheme in the winter storm situations. The error growth evolution
is less influenced by the diurnal cycle, as the evolution of winter storms is predominantly
modulated by synoptic flow, with negligible impact from local forcing.
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Figure 3.13: Time series of domain-averaged RMDTE ratios averaged over all cases ini-
tialized at 00 UTC (blue) and 12 UTC (red). Rows show averages over DN LAND,
DN WATER, DS LAND, and DS WATER, respectively. Columns show ratios computed
as (a) SPPMP divided by PSP and (b) BOTH divided by PSP. Dashed lines indicate the
12 LT corresponding to each initial time (blue for 00 UTC and red for 12 UTC). Each line
within the figure corresponds to six cases.

The growth rate of RMDTE suggests an overall faster error growth for the PSP
scheme compared to SPPMP. This contrast is particularly noticeable during the peak
convection afternoon period in the summertime. Despite that, the SPPMP scheme can
have a larger impact after peak convection hours and to some degree catch up with the
spread of PSP. Hence, it is worthwhile to examine the total RMDTE to understand how
the two schemes influence the overall spread at various lead times (Fig, 3.13). We opted
to present the RMDTE ratios between the two experiments as they directly illustrate the
relative impact of the two schemes on the total forecast error. Since smaller RMDTE val-
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ues appear at shorter lead times than at longer lead times, this normalized quantification
facilitates a visual comparison of the two schemes regardless of their absolute amplitudes.
One might question the significance of exploring small RMDTE values. However, it’s
important to note that even though the RMDTE values are small at short lead times, they
represent the evolution of forecast errors at the convective scale, which aspect is crucial
for the convective-scale prediction. To provide a clearer illustration, the RMDTE ratios
presented in Fig. 3.13 are computed across all weather types. The regime-dependent
RMDTE ratios will be discussed later as the qualitative conclusions remain valid.

As depicted in Fig. 3.13a, the PSP scheme generally yields a higher total RMDTE
compared to SPPMP, with their ratios mostly falling below one across various lead times.
However, SPPMP may be more important under the right conditions. For forecasts
initialized at nighttime, microphysics perturbations can exert a larger impact at shorter
forecast lead times, typically before the first local noon. As illustrated in Fig. 3.13a, the
RMDTE ratio exceeds one before 16 h for the 00 UTC runs, corresponding to 11 am LT.
This conclusion remains applicable in situations where existing precipitation systems are
observed, as demonstrated in the winter storm event examined in the case study (see
Chapter 3.3). After the first noon time, the influence of PSP catches up and can surpass
SPPMP quickly. For forecasts initialized in the morning (e.g., the 12 UTC runs), PSP
outpaces SPPMP swiftly due to the activation of PBL perturbations.

It is evident that the RMDTE ratios between the two schemes stabilize over time,
approaching a value close to, though not exactly, 1 as the lead time increases (Fig.
3.13), suggesting a diminishing distinction between the amplitudes of the two schemes.
Examining each weather type individually reveals that the two schemes may have an
equal impact at longer lead times for winter storm cases (a ratio of 1), whereas the
ratios reach approximately 0.75 to 0.9 for summertime convection cases (Fig. 6.5a).
Additionally, the comparison of BOTH to PSP (Fig. 3.13b and Fig. 6.5b) reinforces the
notion that the impact of different stochastic schemes is not additive overall, especially
for longer lead times. The additional spread can sometimes be achieved in winter storm
cases by activating SPPMP in addition to PSP, resulting in an increased forecast error
of approximately 10-20% (Fig. 6.5). In contrast, the combination of the two schemes
has a negligible impact on summertime convection cases, except for short lead times as
explained above.

In summary, this section investigates the impact of different model error formulations
on precipitation intensity change, precipitation spread, and RMDTE. While differences
exist, particularly noticeable at shorter lead times, they gradually diminish as lead
time increases, indicating a convergence in their behavior over time. However, within
the 48-hour lead time, PSP still exhibits larger RMDTE than SPPMP, particularly in
summertime convection cases. A likely explanation for their amplitude differences at
longer lead times is that their convective-scale errors saturate at different times, resulting
in varied amplitudes in the mesoscale error growth mechanism simultaneously. During
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the 48-hour lead time, SPPMP fails to fully match the spread of PSP, but we expect this
to happen with longer lead times. While differences in total error amplitudes may exist,
it’s essential to note that the influence of perturbation details is minor compared to the
dominant impact of moist convection, which significantly regulates when and where error
growth occurs. The notable similarity in error distribution and growth rate at later stages
indicates that their effects are not orthogonal, explaining why adding them together
does not result in additive effects (as demonstrated in Chapter 3.3). The current study
indicates that the difference between the two schemes primarily lies within the short lead
time. Here, their relative error amplitude, which significantly influences error growth at
the convective scale, can vary considerably between the two schemes.

3.6 Summary and discussion

Current regional and next-generation global NWP models can represent convection
explicitly. With convection being resolved, the leading sources of model uncertainty
move toward the representation of microphysical and PBL processes. In this context, we
contrast two stochastic model error representations formulated with distinct theoretical
foundations in separate parameterization processes. One aims to address unresolved PBL
processes due to finite grid size, while the other considers an incomplete understanding
of microphysics processes. Firstly, this study utilizes the Thompson aerosol-aware micro-
physics scheme with stochastic parameter perturbations (SPPMP). Secondly, this chapter
integrates a physically based stochastic boundary layer perturbation (PSP) scheme within
the WRF model. In particular, we are interested in the question of whether forecast
error growth on the convective and mesoscale scale is sensitive to the details of these
model error formulations or is primarily organized by the dynamics of atmospheric flow.
Since studies have shown that error growth characteristics can depend on the weather
conditions, we study the impact of stochastic schemes across three flow regimes: weakly
forced convection, strongly forced convection, and winter storm conditions. Overall,
winter storm cases have higher predictability than summertime convection cases, as
illustrated by their lower saturation levels in both precipitation and kinetic energy errors.
On the contrary, weakly forced convection exhibits the lowest predictability, especially
for precipitation errors that saturate within a day over a range of about 100-200 km.
However, such perturbations do not necessarily result in significant variations in the
temperature and wind fields (Fig. 3.10).

Confirming earlier results in other modeling systems (COSMO and ICON), we
find that the effect of PSP scheme is more pronounced in nonequilibrium (weak forcing)
precipitation. In this situation, the PSP scheme tends to trigger additional precipitation
cells and shifts the onset of precipitation slightly earlier over land, leading to more
pronounced precipitation error growth. In addition, it slightly increases nighttime
precipitation over the ocean due to a turbulent marine boundary layer. In contrast, the
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SPPMP scheme does not modify precipitation intensity. For summertime convection over
land, the precipitation spread of PSP is more dependent on local time, whereas, for winter
storm cases and SPPMP, it relies more on the forecast lead time. In general, PSP leads to
a larger precipitation spread than SPPMP, and combining both schemes does not result
in a proportional increase in spread.

A central finding of this study is that the differences resulting from the perturbation
schemes are more pronounced at shorter forecast lead times, approximately until the first
afternoon time in the diurnal cycle. As the lead time increases, the relative impact of the
two schemes on temperature and wind fields tends to converge. In most cases and lead
times, the PSP scheme results in a larger spread compared to those of the SPPMP scheme.
Nevertheless, the SPPMP scheme has the potential for a greater impact under the right
conditions. This study reveals that for forecasts initialized at night, the SPPMP scheme
can have a discernible greater influence than the PSP. Specifically, the SPPMP scheme can
respond to existing precipitation systems and trigger the instability earlier, especially at
higher vertical levels (Fig. 3.6). In contrast, the PBL perturbations cannot grow effectively
at certain times for reasons such as the stable nocturnal boundary layer. As the lead time
increases, the ratios of forecast errors between the two schemes tend to converge in mag-
nitude with remarkably similar distributions, although they do not necessarily approach 1
in every case. Despite differences in amplitude, the alignment of large forecast errors with
precipitating areas implies that the evolution of forecast errors is primarily influenced by
the underlying atmospheric flow rather than the details of the model perturbation. As the
effects of the two schemes are not orthogonal, applying the PSP and SPPMP schemes si-
multaneously (experiment “BOTH”) generally does not result in proportional error growth
compared to those with a single scheme. Instead, forecast errors tend to reflect those of
the dominant scheme. This finding aligns with prior research and provides further insight
into the underlying reasons (Berner et al., 2011; Matsunobu et al., 2022; Chen et al., 2023).

Within the two-day lead time, the SPPMP scheme generally has a smaller impact in
terms of amplitude, except in winter storm cases where its influence is more pronounced
than in summer convective events. Given its smaller spreads compared to PSP and the
effects of SPPMP and PSP are not entirely orthogonal, one might question the worthiness
of developing microphysics perturbation schemes. Our result implies that employing a
microphysics perturbation scheme in addition to a PBL perturbations scheme can be
particularly important for NWP systems focusing on nowcasting and short-range appli-
cations. Its potential advantage is contingent on the model initiation time. For forecasts
initialized at night, microphysics perturbations can potentially contribute by leading to
an earlier onset of error growth. For forecasts initialized in the morning, microphysics
perturbation can have a minor impact since PSP perturbation can activate the error
growth process within short lead times. The model uncertainty schemes studied here
were developed to represent physically justifiable uncertainties, either derived from first
principles (as in PSP) or true parameter uncertainty (as in SPPMP), in close collaboration
with the parameterization developers. An attempt was made to scale the perturbation
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amplitudes so that the two schemes introduced similar amounts of perturbation energy,
but this was not successful owing to the constantly evolving flow. However, based on a
few case studies, we confirmed that the findings reported here are still valid qualitatively
when the amplitude of the microphysics perturbations is doubled. It is conceivable that
the SPPMP scheme could have a comparable impact to the PSP scheme, even during
the afternoon convective peak, but this would involve parameters exceeding a reasonable
range within the framework of our current scheme.

Here, we study the impact of stochastic schemes on short-range forecast error
growth and find that for this metric, perturbations to the PBL have more impact than
to the microphysics. However, representing uncertainties in microphysics might play a
much bigger role in other aspects, e.g., climatological systematic errors or response to
an external forcing (Berner et al., 2017). Furthermore, the SPPMP scheme introduces
variability in cloud variables, which might help ingest satellite or radar observations in DA
systems. Our finding shows that even for weak forcing situations, upscale error growth
is primarily dominated by the underlying flow, which explains why ad-hoc stochastic
perturbation schemes - such as the SKEB and SPPT schemes- have been so successful.
Small differences, either introduced by microphysics or PBL perturbations, will naturally
grow where the underlying flow has moist instabilities. While we think that our findings
can inform the development of EPSs, the impact on forecast skill should be verified in a
comprehensive EPS, which includes initial and boundary condition uncertainties.
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Chapter 4

Predictability of a Heavy
Precipitation Event: The Impacts of
Initial and Model Uncertainty

4.1 Background and overview

To improve the comprehension of forecast error growth in convection-permitting models,
the third study explores the relative impact of initial and model uncertainties. In addition,
this study serves as a follow-up to Kuo et al. (2023) and therefore concentrates on a Meiyu
front precipitation case in accordance with their study. The Meiyu front, also referred to
as the Baiu front in Japan, plays a substantial role in shaping the weather and climate
of East Asia during the spring-to-summer transition (Chang, 2004; Qiao et al., 2021).
The Meiyu front typically manifests in the lower troposphere and is characterized by an
east-west-oriented, baroclinic narrow belt that often extends from eastern China through
Taiwan to southern Japan. This quasistationary baroclinic zone is commonly associated
with a series of eastward-propagating mesoscale convective systems, often leading to
heavy precipitation events (Takahashi and Fujinami, 2021; Wang et al., 2022; Chien and
Chiu, 2023). Accurately predicting the evolution of the Meiyu front and its associated
precipitation is challenging due to the collective influence of multiscale processes. As
summarized by Luo and Chen (2015), the Meiyu front is influenced by the convergence
of tropical and polar air masses, the subtropical high, the low-level jet in southwesterly
monsoon flows, and the low-level vortex in the southwest part of China. As demonstrated
in Luo and Chen (2015), small errors can introduce significant forecast uncertainty in
predicting the Meiyu front-associated rainfall.

Over the past decades, improvements in convection-permitting NWP models, DA
techniques, and observation systems have collectively bolstered the practical predictability
of convective storms. Aside from in-situ observations, there has been a growing emphasis
on utilizing remote sensing observations, with radar observations being a notable example
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(Sun, 2005; Bachmann, 2019). Here, another remote sensing measurement technique
known as the Global Navigation Satellite System (GNSS) Radio Occultation (RO) is
introduced (Kursinski et al., 1997). The RO technique can retrieve vertical profiles of
temperature and water vapor, which potentially can cut through the PBL. Many studies
have demonstrated the positive impact of assimilating RO data in global and regional
NWP systems (Kuo et al., 2000; Healy and Thépaut, 2006; Cucurull et al., 2007; Anthes
et al., 2008; Aparicio and Deblonde, 2008; Kuo et al., 2008). Despite this, the influence
of assimilating RO data on the prediction of meso- and convective-scale precipitation
systems has received limited attention, possibly due to its perception as a large-scale
measurement. Recently, Kuo et al. (2023) investigated the impact of RO DA on the
prediction of a pre-frontal squall line associated with a Meiyu front. The study realistically
predicted the frontal evolution and rainfall by assimilating RO data with a nonlocal
excess phase operator. Simulations using a local refractivity operator or excluding RO
data below 2.5 km failed to make accurate predictions. These findings imply that proper
assimilation of RO data in convection-permitting NWP systems can improve the practical
predictability of convection. However, the findings in Kuo et al. (2023) were based on a
deterministic forecast system and a single case study, requiring additional assessments
of their robustness. In particular, it is important to acknowledge the predictability limit
of any NWP forecast due to intrinsic predictability of nonlinear atmospheric flow(Zhang
et al., 2003, 2007; Markowski, 2020), as well as practical predictability imposed by
imperfect initial conditions, boundary conditions, and model processes (Melhauser and
Zhang, 2012; Zhang et al., 2015; Flora et al., 2018). The information regarding the forecast
uncertainty is crucial, as Palmer (2000) states:“no weather or climate prediction can
be considered complete without a forecast of the associated flow-dependent predictability”.

Using a convection-permitting EPS, this study investigates forecast error growth from
initial and model errors, and utilizes the results to evaluate the robustness of the findings
in Kuo et al. (2023). For better comprehension, below provides a detailed explanation of
the three experiments and hypotheses. The first experiment was designed to identify the
most crucial analysis correction among wind, temperature, and water vapor fields made
by RO DA. Following this, the second experiment examines the forecast error growth
from random initial and model errors, respectively. This experiment has two research
goals: comparing the impacts of initial and model errors, and gauging the robustness of
the findings in Kuo et al. (2023) when subjected to different random perturbations. If RO
DA establishes a dominant flow, its forecasts are expected to withstand and have limited
error growth from small random errors, statistically outperforming forecasts without RO
DA. Alternatively, if the successful prediction lacks robustness, occurring coincidentally
or within an unpredictable regime transition, small perturbations can result in substantial
forecast error growth (Palmer, 1993). Thus, there may be no statistical difference between
forecasts initialized with and without RO DA.

Additionally, this study intends to measure the practical predictability of this event
by taking into account the realistic analysis uncertainty. As Kuo et al. (2023) employed
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a deterministic DA system, which does not provide uncertainty measures, this study
utilized the operational Global Ensemble Forecast System (GEFS) dataset (Zhou et al.,
2022) to represent analysis uncertainty as Selz et al. (2022). Specifically, the GEFS
analysis uncertainty was downscaled to provide initial and boundary uncertainty for the
convection-permitting EPS. Motivated by Selz et al. (2022), this study further explores
how predictability evolves with the reduction of initial uncertainties, expecting an increase
in skill if the forecast falls within the realm of practical predictability (Melhauser and
Zhang, 2012).

In summary, the third study will tackle the question of: What is the impact of
initial and model uncertainty on precipitation predictability and forecast error
growth within a convection-permitting model? In addition, it supplements Kuo
et al. (2023) by answering the following research questions:

• What is the most crucial analysis correction from the RO DA for the successful
prediction of this case?

• Is the improvement made by the RO DA robust or merely coincidental when consid-
ering random errors?

• What is the practical predictability of this event given the current GEFS analysis
uncertainty?

This chapter is organized as follows: Section 4.2 introduces the Meiyu case and
presents the simulation results of Kuo et al. (2023). Section 4.3 describes the methodology,
including model configuration, experimental design, and diagnostic metrics. Results are
presented in Sections 4.4 to 4.6. Finally, the summary and discussion are presented in
Section 4.7.

4.2 Case description and numerical simulations

This study selected an intense rainfall period from 00 to 12 UTC on May 22, 2020.
Synoptically, the westerly wind prevails at the upper troposphere (Fig. 4.1a), while in the
lower troposphere, the southwesterly flow transports abundant moisture from the open
ocean to Taiwan Island (Fig. 4.1c-d). In particular, the ample moisture ahead of the
Meiyu front favors the development of convective systems. The east–west-oriented frontal
convergence zone is shallow and clearly discernible only at 950 hPa (green dashed line in
Fig. 4.1d). A series of mesoscale convective systems form along this convergence boundary
and move from west to east, leading to heavy precipitation in southern Taiwan. Figure 4.2a
presents the Quantitative Precipitation Estimation (QPE) drawn from the Quantitative
Precipitation Estimation and Segregation Using Multiple Sensors (QPESUMS) system
(Chang et al., 2021). Alongside an empirical relation tailored for the Taiwan region, the
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Figure 4.1: Geopotential height (contour, m), horizontal wind (vector m s−1), and water
vapor mixing ratio (shaded, g kg−1) at (a) 500 hPa, (b) 700 hPa, (c) 850 hPa, and (d) 950
hPa, derived from the ECMWF Reanalysis v5 valid at 00 UTC on May 22, 2020.

QPESUMS QPE undergoes a local bias correction based on rain gauge observations.
The 12-hour accumulated rainfall clearly illustrates an east–west-oriented rainband (Fig.
4.2a). In this case, the southern part of Taiwan receives the heaviest rainfall (> 700 mm),
a phenomenon shaped by the interaction of the Meiyu front and the Central Mountain
Range (CMR) of Taiwan island.

As mentioned earlier, Kuo et al. (2023) explored the effect of assimilating RO data in
a convection-permitting model on the prediction of this Meiyu front case. In this chapter,
we utilized two analysis datasets from Kuo et al. (2023): one assimilating only conventional
observations (abbreviated as CNTL), and the other additionally assimilating RO data
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Figure 4.2: The 12-hour accumulated precipitation (shaded, mm) of (a) QPESUMS QPE,
(b) CNTL, and (c) GPS ends at 12 UTC on May 22, 2020. The CNTL and GPS forecasts
depicted here are based on data from Kuo et al. (2023).

using a nonlocal excess phase operator (abbreviated as GPS). The latter was named the
“GPS2 experiment” by Kuo et al. (2023). Without RO DA, the CNTL experiment failed
to predict a structured rainband but instead two isolated precipitation areas—one over
the CMR and the other over the ocean (Fig. 4.2b). In contrast, the GPS forecast had a
significant improvement as it realistically predicted the elongated rainband (Fig. 4.2c).
Although both forecasts fell short in predicting extreme rainfall compared to the QPE, the
GPS forecast had a closer rainfall amount with the QPE than those in the CNTL forecast.
It should be noted that in Kuo et al. (2023), the 3-hour DA cycle began at 00 UTC on
May 18, 2020, and the GPS forecast presented here (initialized at 00 UTC on May 22,
2020) benefited from four days of continuous RO DA. In addition to the 12-hour QPF,
the hourly QPF is presented to illustrate the squall line evolution (Fig. 4.3). As observed
in the QPE, the squall line evolves southward as influenced by the Meiyu front and the
CMR, resulting in heavy rainfall in southern Taiwan (Fig. 4.3a). The CNTL experiment
failed to predict the organized squall line and its subsequent landfall (Fig. 4.3b). Instead,
it predicted a weaker system over the ocean with a tilted orientation in comparison to the
QPE. With additional RO DA, the GPS experiment realistically captured the squall line
evolution (Fig. 4.3c), which requires an accurate representation of flow motion and terrain
effects. It should be noted that while the GPS experiment is successful in capturing the
squall line evolution, there is a difference in timing. As the predicted squall line occurred
three hours earlier than those in the QPE, Fig. 4.3 has been adjusted for visual compar-
ison. Given that the GPS experiment realistically predicts the squall line, its forecast is
considered the ground truth in this study. Based on the GPS experiment, the key analysis
correction from RO DA is identified (Chapter 4.4), the robustness of RO DA is dis-
cussed (Chapter 4.5), and the practical predictability of this case is explored (Chapter 4.6).
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Figure 4.3: The hourly precipitation (shaded, mm) of (a) QPESUMS QPE, (b) CNTL, and
(c) GPS at various forecast lead times (columns) initialized at 12 UTC on May 22, 2020.
The CNTL and GPS forecasts depicted here are based on data from Kuo et al. (2023).

4.3 Methodology

This section outlines the model configuration, experimental design, perturbation methods,
and diagnostic metrics utilized in the study.

4.3.1 Model configuration

This study employed the non-hydrostatic WRF model version 3.8.1 (Skamarock et al.,
2008). The 15 km (denoted as D01) and 3 km (denoted as D02) computing domains were
employed with one-way grid nesting (Fig. 4.4a). Both of them have 52 vertical model
levels with the model top set at 20 hPa. As summarized in Table. 4.1, all simulations
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Figure 4.4: (a) Configuration of the 15 km (D01, blue box) and 3km (D02, red box)
domains for the WRF simulations in this study. (b) Configuration of three diagnostic
domains (denoted as A1, A2, and A3).

employed physics parameterization schemes that closely follow the operational regional
forecast systems developed at the Central Weather Administration of Taiwan (Hsiao et al.,
2020; Chen et al., 2023). The cumulus parameterization scheme was disabled in the 3 km
domain as models with a horizontal resolution between 1 and 4 km can realistically resolve
convective storms. In this study, the outermost boundary conditions were supplied by the
NCEP Global Forecast System (GFS) forecast dataset, while the initial conditions were
adopted from Kuo et al. (2023).

4.3.2 Experimental design

In alignment with Kuo et al. (2023), this study concentrates on lead times of up to 12
hours, during which the convection-permitting NWP systems with appropriate initial
conditions can often provide satisfactory forecasts for convective storms. Table 4.2
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Parameterization Options References

PBL YSU scheme Hong et al. (2006)
Microphysics Goddard Scheme Tao et al. (2016)
Long- and shortwave
radiation

Rapid Radiative Transfer Model for Gen-
eral Circulation Models

Iacono et al. (2008)

Surface Layer MM5 Similarity Scheme Paulson (1970)
Land surface model Unified Noah Land Surface Model Tewari et al. (2004)

Table 4.1: Configuration of physics parameterization schemes for all simulations.

summarizes the three tests (denoted as Test 1, Test 2, and Test 3) designed to address
the three research questions outlined in Chapter 4.1. Except for the deterministic
setup in Test 1, all experiments in Test 2 and Test 3 comprise ten ensemble members.
While all experimental settings mentioned below were applied to both the 15 and 3 km
domains, additional sensitivity experiments confirmed that the heavy rainfall in 3 km
forecasts is largely unaffected by the solutions of the outer domain in the one-way nesting
configuration (not shown). Since the RO DA corrects temperature, wind, and water
vapor, the Test 1 experiments aim to identify the most critical analysis correction leading
to differences between the CNTL and GPS forecasts. Using the GPS run as the reference,
four deterministic experiments were conducted by substituting the initial temperature,
moisture, wind, or all of them with those from the CNTL run. These deterministic runs
are denoted as T1 UV, T1 T, T1 Q, and T1 UVTQ, respectively. These experiments
allow an assessment of the degree to which each variable contributes to the changes in
forecast skill.

Group Experiment Description

Test 1 T1 {UV, T, Q, and UVTQ} Substitute the initial wind, temperature, water va-
por, or all above of GPS with those from CNTL.

Test 2 T2 IC {CNTL, GPS, Q} Randomly perturb the initial moisture field of
{CNTL, GPS, T1 Q}.

T2 MP {CNTL, GPS, Q} Activate the SPPT scheme during the {CNTL,
GPS, T1 Q} forecast.

Test 3 T3 IC p{x} Decrease the initial spread to x% of the current
level. Here, x ∈ {100%, 50%, 10%}

Table 4.2: A summary of the three sensitivity tests with detailed experimental designs.

The Test 2 experiments generate ten ensemble members by sampling random initial
(referred to as T2 IC ) and model uncertainty (referred to as T2 MP ). These random
errors were applied to CNTL, GPS, and also T1 Q as it has been identified as the



4.3 Methodology 83

Figure 4.5: Vertical profiles of the initial moisture spread (solid) and their fraction relative
to the background moisture (dashed) for D01 (blue) and D02 (red) domains.

key analysis correction in Test 1 (results shown in Chapter 4.4). To represent initial
uncertainty, this study perturbed the initial moisture field, given its heightened forecast
sensitivity in this case (Chapter 4.4). The random initial perturbations were generated
using the random CV option 3 provided by the WRF Data Assimilation (WRFDA) system
(Barker et al., 2012). In the random CV package, control variable vectors are randomly
generated from a normal distribution. Next, these vectors are transformed into the model
space and are further scaled to obtain perturbations for the state variables. As shown in
Fig. 4.5, the initial moisture spread is more pronounced at the lower model levels, making
up roughly 5% to 10% of the background states. The values at lower levels resemble those
incorporated in Luo and Chen (2015) and align closely with the uncertainties observed in
the ERA-Interim analysis (Dee et al., 2011). The model uncertainty was represented by
the Stochastically Perturbed Parameterization Tendency (SPPT) scheme, formulated as
follows:

∂x∗

∂t
=

∂x

∂t
+

n∑
i

(1.0 + γ) ·
∂x

∂ti
(4.1)

where the expressions
∂x∗

∂t
and

∂x

∂t
are the perturbed and unperturbed total parameterized

tendencies at each model grid point, respectively. The perturbed variables x included the x
and y components of wind, potential temperature, and water vapor mixing ratio. The term
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∂x

∂ti
represents the tendencies originating from each parameterization process, such as the

PBL and radiation schemes. As mentioned in Lupo et al. (2020), the SPPT scheme does
not apply to the microphysics process in the WRF model. The term γ, which is fixed and
applied to all parameterization tendencies, represents the perturbation amplitude. In this
study, a value of 0.35 was set, aligning with the setting of Lupo et al. (2020) for the Tai-
wan region. The random patterns employed in this study have a coherent vertical structure.

The Test 3 experiments aim to assess the practical predictability of the heavy rainfall
event when considering the analysis uncertainty of the NCEP GEFS system. To generate
ensemble members, the perturbations of the first ten GEFS members were interpolated
onto the 15 and 3 km domains. Next, the ten sets of initial perturbations (wind, temper-
ature, and moisture) were re-centered using the GPS as their ensemble mean. Inspired
by Selz et al. (2022), the Test 3 experiments further explore how predictability evolves
when initial perturbations are rescaled with three different factors (100%, 50%, and
10%). Here, T3 IC p100 signifies no change to the original sample, and T3 IC p10 scales
the initial spreads down to a relatively small amount to estimate how predictable this
case is with nearly perfect initial conditions, akin to the definition of intrinsic predictability.

4.3.3 Diagnostic metric

This study focuses on the predictability of precipitation forecast, with two diagnostic met-
rics described as follows:

Precipitation spectra

To examine scale-dependent predictability and forecast error growth (Selz and Craig, 2015;
Selz et al., 2022), this study analyzes the spectra of total (background) and perturbed
(difference) precipitation fields at various lead times. As detailed by Selz and Craig (2015),
a complete loss of predictability is signified when the energy of forecast differences matches
that of the background energy. The calculation of spectra follows the same procedure as
described in Chapter 3. In this study, spectral analysis was performed on the rectangular
domain labeled as A1 in Fig. 4.4.

Fractional Skill Score (FSS)

Much like the verification presented in Chapter 2, this study performs QPF verification
using the Model Evaluation Tools (Brown et al., 2021). Two analysis domains (denoted
as A2 and A3 in Fig. 4.4) were defined to examine the Meiyu rainband at a larger
scale and to focus on localized heavy precipitation over land, respectively. The FSS
with a squared neighborhood consisting of 25 grid points was chosen to avoid the
double penalty problem in the verification of high-resolution forecasts. Events and
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non-events were binary classified based on absolute rainfall thresholds for both hourly
and 12-hour accumulated rainfall. As a recap, the FSS values range from 0, indicat-
ing no forecasting skill, to 1, representing a perfect forecast. As mentioned by Skok
and Roberts (2016), an FSS larger than 0.5 can indicate a useful forecast in most situations.

4.4 The key analysis correction from RO DA

Figure 4.6: Fractional skill scores of different precipitation thresholds (mm 12 h−1) and
neighborhood sizes (km) in the A2 domain for (a) T1 UVTQ, (b) T1 Q, (c) T1 T, and (d)
T1 UV. Panels e-h represent the same analysis but for the A3 domain.

This section aims to identify the key analysis correction from RO DA that leads to
the forecast differences between CNTL and GPS experiments. Here, the 12-hour QPF is
verified over A2 (Fig. 4.6a-d) and A3 (Fig. 4.6e-h) domains using the GPS forecast as the
ground truth. It’s worth noting that a faster drop in the FSS indicates a higher sensitivity.
The results indicate that the 12-hour QPF is sensitive to changes in initial conditions,
particularly for heavy rainfall exceeding approximately 100 mm, where their FSSs largely
fall below 0.5. It is evident that T1 Q and T1 UV lead to larger FSSs decrease than T1 T
(Fig. 4.6b-d). Although RO DA does not correct the wind field directly, the correction
of other variables can alter the wind field through the background error covariance and
model adjustment during DA cycles. The T1 UV experiment indicates that this indirect
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impact can actually lead to a larger effect compared to T1 T, which is directly corrected
by RO DA. Interestingly, T1 UVTQ exhibits the least sensitivity (Fig. 4.6a), which can
be explained by the maintenance of precipitation intensity when compared to the GPS
(Fig. 4.7a and Fig. 4.2c), whereas other experiments demonstrate significant intensity
changes (Fig. 4.7b-d). In this case, the precipitation intensity weakened when either
temperature or water vapor was substituted. It is worth noting that T1 UVTQ (Fig. 4.7a)
results in a forecast closely resembling the CNTL run (Fig. 4.2b), implying the dominant
role of initial conditions on the prediction of this particular event. Here, we acknowledge
that an imbalanced initial condition can lead to spin-up and contribute partly to the
outcome. Despite that, Fig. 4.6a-d and Fig. 4.7 collectively imply that the 12-hour QPF
is sensitive to and may weaken due to incorrect initial water vapor and temperature fields.

Figure 4.7: Distribution of 12-hour QPF for (a) T1 UVTQ, (b) T1 T, (c) T1 Q, and (d)
T1 UV initialized at 00 UTC on May 22, 2020.

Moving on now to consider localized precipitation over land only, it becomes appar-
ent that T1 Q exhibits the highest sensitivity, as its FSSs drop below 0.5 for thresholds
exceeding 100 mm even with large neighborhood sizes (Fig. 4.6e-h). The time–latitude
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diagram (computed over A3) illustrates the hourly evolution of the precipitation system
(Fig. 4.8). While the CNTL run lacks a distinct evolution (Fig. 4.8a), the GPS fore-
cast (Fig. 4.8b) displays a clear southward precipitation evolution. As mentioned earlier,
predicting this movement requires a proper representation of flow motion and its inter-
action with the CMR. Despite T1 UVTQ showing the highest FSS in the 12-hour QPF
compared to other experiments, its rainband evolution deviates significantly from the GPS
(Fig. 4.8c). Substituting either temperature or wind fields still allows the forecast to cap-
ture the rainband evolution, while this evolution is seriously disrupted in T1 Q (Fig. 4.8f).
In summary, the results suggest that RO DA improves moisture analysis, which is the
most critical factor leading to differences between CNTL and GPS forecasts. This finding
aligns with Luo and Chen (2015), which underscores the crucial role of the moisture field
in predicting Meiyu-associated precipitation. However, it is important to acknowledge that
the robustness of this moisture improvement remains uncertain, as this conclusion is based
on a single deterministic forecast.

Figure 4.8: The time-latitude diagram computed over the A3 domain for hourly precipita-
tion of (a) CNTL, (b) GPS, (c) T1 UVTQ, (d) T1 T, (e) T1 UV, and (f) T1 Q. The black
solid line indicates the FSSs of hourly precipitation verified against GPS.
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4.5 Impact of random initial and model errors

As explained earlier, the second experiment aims to compare the effects of initial and model
errors. Additionally, it seeks to evaluate the robustness of the distinction between GPS,
CNTL, and T1 QV in the presence of random errors. Since the primary objective is to
ascertain whether these errors would degrade the forecast skill, this study evaluates the
FSS of each member. Afterward, the average FSS of the ten members is used to represent
the performance of each experiment. In the following discussion, we consider a forecast to
be useful if it achieves an FSS of 0.5 or higher (Skok and Roberts, 2016).

4.5.1 12-hour Quantitative Precipitation Forecasting

Figure 4.9: Fractional Skill Scores of different precipitation thresholds (mm 12 h−1)
and neighborhood sizes (km) computed over the A2 domain for (a) T2 MP GPS, (b)
T2 MP CNTL, (c) T2 MP Q, (d) T2 IC GPS, (e) T2 IC CNTL, and (f) T2 IC Q. Dashed
lines denote FSS of 0.5, 0.7 and 0.8.

As shown in Fig. 4.9a, T2 MP GPS has FSSs predominantly above 0.8, indicating
that the SPPT scheme has little impact on the 12-hour QPF. In contrast, T2 IC GPS
has FSSs falling below 0.5 for thresholds above 150 mm when considering small neighbor-
hood sizes (Fig. 4.9d). The results suggest that uncertainty arising from initial conditions
grows much faster than that from model errors. Due to the small impact of model er-
rors, T2 MP GPS outperforms T2 MP CNTL and T2 MP Q (Fig. 4.9a-c). Despite the
degradation caused by random initial errors, T2 IC GPS still outperforms the other two
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experiments across all thresholds and neighborhood sizes (Fig. 4.9d-f). Figure 4.10 dis-
plays the probability map for precipitation exceeding 150 mm. When compared to their
unperturbed counterparts (Fig. 4.2), the rainfall distributions remain largely unchanged
due to model errors (Fig. 4.10a-c), consistent with their high FSSs (Fig. 4.9a-c). In con-
trast, T2 IC GPS suggests that initial perturbations may disrupt the elongated rainband
between land and ocean (Fig. 4.10e), resembling those observed in the CNTL forecast.
Overall, the 12-hour QPFs initialized from the CNTL, GPS, and T1 Q initial conditions
have distinct rainfall distributions, suggesting that the differences between the three ex-
periments are not coincidental but rather robust in the presence of random errors.

Figure 4.10: Probability of 12-hour QPF larger than 150 mm, derived from the 10 members
of (a) T2 MP GPS, (b) T2 MP CNTL, (c) T2 MP Q, (d) T2 IC GPS, (e) T2 IC CNTL,
and (f) T2 IC Q. The neighborhood probability is computed using 25 grids.

4.5.2 Hourly Quantitative Precipitation Forecasting

As illustrated in Fig. 4.11a, T2 MP GPS has FSSs largely above 0.8, except for the later
stages of the forecast. Its high FSSs are explainable as the SPPT scheme results in limited
error growth without reaching saturation within the first 9 hours (Fig. 4.12a and Fig.
4.12c). Even at the end of the forecast, it only leads to error saturation at small scales.
In contrast, the FSSs drop rapidly in T2 IC GPS (Fig. 4.11d) as initial errors lead to
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Figure 4.11: Fractional Skill Scores (10 mm threshold) at different forecast lead times
and with different neighborhood sizes (km) in the A2 domain for (a) T2 MP GPS, (b)
T2 MP CNTL, (c) T2 MP Q, (d) T2 IC GPS, (e) T2 IC CNTL, and (f) T2 IC Q. Dashed
lines denote FSS values of 0.5, 0.7, and 0.8.

rapid error growth (Fig. 4.12b and 4.12d). The rapid saturation of errors at small scales
limits the predictability of localized precipitation, explaining why T2 IC GPS has FSSs
drop below 0.5 for large precipitation thresholds since they are localized in nature (Fig.
4.9d). Except for T2 MP GPS and T2 IC GPS, the other four experiments have low FSSs
right from the beginning of the forecast (Fig. 4.11), confirming the earlier conclusion that
the RO DA has a positive impact that can withstand random errors.

In summary, the Test 2 experiments demonstrate that the impact of initial condition
uncertainty is much larger than model uncertainty within the 12-hour timeframe. Addi-
tionally, this study supports the conclusions of Kuo et al. (2023) that assimilating RO data
enhances short-range QPFs. Despite the sensitivity to random initial errors, forecasts with
RO DA statistically outperform those without.

4.6 Assessment of practical predictability

The previous section has shown that the positive impact of RO DA can tolerate small
random errors. However, it raises the question of whether this scenario is practically pre-
dictable given realistic analysis uncertainty. To address this question, this section explores
the predictability of this case given the current uncertainty in the GEFS analysis. The
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Figure 4.12: Background precipitation (light solid) and perturbation precipitation spectra
(dark solid) averaged over ten ensemble members of (a) T2 IC GPS and (b) T2 MP GPS
at lead times of 3, 6, 9, and 12 h. The spectra are computed over the A1 domain. Lower
panels (c and d) depict the corresponding saturation ratios at different lead times.

discussion also covers how decreasing analysis uncertainty will lead to changes in pre-
dictability. The experiments formulated here echo those conducted by Zhang et al. (2019),
who utilized initial perturbations from an ensemble DA system to represent current realistic
initial condition uncertainties. They allocated 10% of these perturbations to approximate
nearly perfect initial conditions, aiming to elucidate the intrinsic predictability limit of the
atmosphere.

As shown in Fig. 4.13a, the precipitation intensifies over the first 3 to 6 hours,
reaching its intensity peak at 6 hours, and weakening afterward — a pattern in alignment
with our visual observations (Fig. 4.3). In T3 IC p100 (Fig. 4.13d), error saturation occurs
at around 50 km at the peak precipitation hour (6h), implying that localized precipitation
smaller than this scale tends to be unpredictable given the current analysis uncertainty.
Due to the small-scale nature of extreme rainfall, the model statistically cannot deliver
useful 12-hour QPF for heavy rainfall exceeding 150 mm (Fig. 4.14a). Halving the initial
uncertainty slows down the upscale error growth (Fig. 4.13e), leading to a significant uptick
in the 12-h QPF skills. As shown in Fig. 4.14b, T3 IC p50 can make useful predictions
for all thresholds except those around 200 mm with small neighborhood sizes. Further
reducing the initial spread to 10% of the current level sustains predictability for scales
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Figure 4.13: Same as Fig. 4.12 but for (a, d) T3 IC p100, (b, e) T3 IC p50, and (c, f)
T3 IC p10.

above approximately 30 to 40 km within the 12-hour timeframe. As a result, the T3 IC p10
yields useful predictions across all thresholds considered (Fig. 4.14c). In summary, given
the current analysis uncertainty, localized precipitation with scales smaller than about
50 km has limited practical predictability during the peak precipitation hour. However,
the results indicate that the 12-hour QPF may be highly predictable, as even halving the
analysis uncertainty significantly improves the forecast accuracy.

4.7 Summary and discussion

In a recent study, Kuo et al. (2023) demonstrated that assimilating RO data (referred to
as GPS) into a convection-permitting model improves the prediction of a prefrontal squall
line associated with a Meiyu front. While their results are promising, it is based on a case
study, and the robustness of the conclusion requires further investigation. As a follow-up
to Kuo et al. (2023), this study found that the moisture correction made by RO DA is
the key factor leading to the successful prediction of the GPS in contrast to the CNTL
forecast (which did not assimilate RO data). This aligns with the conclusion drawn by
Luo and Chen (2015), which suggests the crucial role of the moisture field in predicting
Meiyu front-associated precipitation.
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Figure 4.14: Same as Fig. 4.9 but for (a) T3 IC p100, (b) T3 IC p50, and (c) T3 IC p10.

To measure if the conclusion drawn by Kuo et al. (2023) is robust or merely
coincidental, this study samples random initial and model uncertainty to generate ten
ensemble members. Within the 12-hour timeframe, precipitation forecasts are largely
unaffected by model uncertainty but are sensitive to initial condition uncertainty. Despite
the potential degradation caused by random initial errors, forecasts initialized with RO
DA consistently outperform those without it. This experiment suggests that the positive
impact of RO DA is not merely coincidental; rather, the correction induces a distinct
rainband evolution that remains robust when accounting for random errors in the forecast
procedures. Additionally, this study assesses the practical predictability of this event
by taking into account the realistic analysis uncertainty measured by the operational
Global Ensemble Forecast System (GEFS). Given the current analysis uncertainty,
the predictability of localized precipitation is constrained within a short timeframe.
Specifically, the precipitation error saturates at 50 km at 6 hours and above 100 km at
the end of the forecast, respectively. The verification of 12-hour QPF skills confirms that
the model cannot generate useful forecasts for heavy rainfall exceeding 150 mm due to
the inherently small-scale nature of such events. As we reduce the initial spread to 50%
and 10% of the current level, the results suggest that this event can be highly predictable
when the analysis uncertainty is sufficiently small (e.g., to 10% of the current level).

In conclusion, this study affirms the positive impact of assimilating RO data for the
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prediction of convective precipitation. Due to computational limitations, our results are
derived from ensemble forecast experiments rather than full ensemble DA experiments.
Further exploration is warranted as ensemble DA can provide flow-dependent initial
uncertainty. Most importantly, this chapter reveals that in short-range forecasts, pertur-
bations in initial conditions wield more influence than uncertainty in the model processes.
In particular, the SPPT scheme utilized in this study functions as a more holistic, bulk
representation of model error compared to the process-level PSP and SPPMP schemes
discussed in Chapter 3. This finding suggests that the difference between PSP and
SPPMP in short lead times (illustrated in Chapter 3) may not be significant in the
presence of random initial errors.



Chapter 5

Summary and conclusions

5.1 Summary

Although the progress of Numerical Weather Prediction (NWP) models has been unde-
niably successful in recent decades, inevitably, every forecast will eventually encounter
its predictability limit. In convection-permitting forecasts, this predictability limit be-
comes increasingly evident as their forecast errors grow several times faster than those of
synoptic-scale forecasts, posing considerable uncertainty in predicting convective storms.
The overarching goal of this dissertation is to “advance the comprehension of regime-
dependent predictability and forecast error growth in convection-permitting
models”. To achieve the overarching goal, three individual topics have been thoroughly
investigated, and their findings are summarized as follows:

(1) Characterization of Convective Regimes and Their Predictability

The first study aims to classify different weather regimes and identify regime-dependent
predictability in an objective way. As demonstrated by studies focusing on Europe, the con-
vective adjustment time scale (τc) can serve as an effective classification measure, which can
be further linked with properties such as precipitation predictability. However, the value
of τc may vary based on the geographical region and the complexities involved in its com-
putation, meaning that the classification thresholds suggested in the literature may not be
directly applicable for categorizing weather regimes in different regions. To bridge this gap,
the first study systematically evaluated the effectiveness of this diagnostic metric across
the Contiguous United States (CONUS) domain, utilizing four-year summertime forecasts
from the convection-permitting High-Resolution Rapid Refresh (HRRR) system. This ex-
ploration answers the question of “How to effectively classify convective regimes
over the vast CONUS domain and can this classification reflect physical under-
standing and regime-dependent predictability?”, as outlined in Chapter 1.4. This
study establishes the first convective adjustment time scale climatology for the CONUS
that reveals the climatological frequency of equilibrium and nonequilibrium convection.
Due to the vast size of the CONUS domain that can encompass multiple weather regimes
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simultaneously, eight subdomains divided into north and south of approximately 40°N lati-
tude were designed. Distinct climatological differences between subdomains reveal regional
factors influencing regime classification, which can explain differences observed in previous
studies. Climatologically, the northern subdomains exhibit more equilibrium convection
due to the dominance of trough-ridge patterns in the planetary waves. In general, around
53% of convection is synoptic-driven, a proportion similar to that observed over Germany
but lower than that over the British Isles. In contrast, the southern subdomains are char-
acterized by subtropical anticyclones and exhibit more nonequilibrium convection, with
only 22% of convection being linked with synoptic forcing. The classification demonstrates
physical consistency when examining its seasonal and diurnal dependencies. Precipita-
tion patterns with a diurnal cycle are approximately twice as likely to be identified in
nonequilibrium regimes, aligning with the hypothesis that convection classified as nonequi-
librium is modulated by local factors such as thermal forcing. As the τc value indicates
where the case falls along the continuum between the equilibrium and nonequilibrium ex-
tremes, this study links the τc value with precipitation skill metrics (e.g., Fractional Skill
Score and Gilbert Skill Score) to explore whether forecasts from the convection-permitting
HRRR model exhibit regime-dependent precipitation predictability. The results demon-
strate modest negative correlations between the two vectors, indicating that convection
with stronger synoptic coupling is more predictable than those without.

(2) Regime-Dependent Forecast Error Growth in Convection-Permitting Mod-
els: The Roles of Stochastic Parameterizations

The second study delves into the question: “Does forecast error growth significantly
differ across various weather regimes and with different stochastic parameteri-
zations in a convection-permitting model?” Using the regime classification diagnostic
established in the prior study, this study investigates error growth characteristics across dif-
ferent weather conditions, including winter storms, strongly forced convection, and weakly
forced convection. In general, winter storm cases demonstrate higher predictability com-
pared to summertime convection cases, as evidenced by their notably lower saturation
levels in both precipitation and kinetic energy errors, even at small scales (< 50 km). On
the contrary, forecast errors saturate rapidly at small scales in all summer convection cases.
Especially in nonequilibrium situations, the precipitation error saturates within one day
for all scales below about 200 km, while the kinetic energy error only saturates for scales
below 100 km. This difference highlights the challenging nature of precipitation predic-
tion in scenarios where there is no dominant synoptic flow. Additionally, this study raises
the question of whether forecast error growth at meso- and convective scales is primarily
influenced by the details of model error formulations or by the dynamics of atmospheric
flow. To explore this question, the study compares forecast error growth resulting from
two model error formulation schemes: (1) Stochastically Perturbed Parameter applied to
Microphysics (SPPMP) scheme, which is designed to capture uncertainty stemming from
the limited understanding of atmospheric processes, and (2) Physically based Stochastic
Perturbation (PSP) scheme, which aims to represent uncertainty arising from finite grid
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size. This dissertation implemented the PSP scheme, originally developed for the ICOsahe-
dral Nonhydrostatic (ICON) and Consortium for Small-scale Modeling (COSMO) models,
into the Weather Research and Forecasting (WRF) model and has confirmed its consistent
behavior across the three NWP systems. In general, forecast error growth at longer lead
times is less sensitive to the details of model error formulation and is primarily influenced
by atmospheric flow. Specifically, both schemes yield similar forecast error distributions
at longer lead times, albeit with differences in amplitude. This elucidates why previous
studies argue that the spreads of multiple model perturbation schemes are usually not ad-
ditive, as their effects are not orthogonal. Overall, the PSP scheme leads to larger forecast
error growth, and its combination with the SPPMP scheme does not introduce additional
forecast error compared to using the PSP alone. Exceptions can occur in certain situations,
for example, the SPPMP scheme may facilitate additional forecast error growth for winter
storm cases as the boundary layer is less turbulent. In contrast to their high similarity
at longer lead times, the forecast errors induced by the two schemes exhibit pronounced
differences at short lead times, approximately before the forecast reaches the first local
afternoon time. Most of the time, the PSP scheme induces faster error growth than the
SPPMP scheme at short lead times, with its impact converging with that of SPPMP as
the lead time increases. For forecast initialized during nighttime, the SPPMP scheme
can potentially induce instability earlier in regions with existing precipitation when the
PSP scheme is constrained by the stable nocturnal boundary layer. This has practical
implications for the development of stochastic physics suites, emphasizing the importance
of microphysics uncertainty for those focusing on rapid-update ensemble Data Assimi-
lation (DA) or short-range ensemble forecast systems. The model uncertainty schemes
studied were configured to represent physically justifiable uncertainties. It is conceivable
that the SPPMP scheme could have a comparable impact to the PSP scheme, even during
the afternoon convective peak, but this would require parameters surpassing a reasonable
range within the framework of our current scheme.

(3) Predictability of a Heavy Precipitation Event: The Impacts of Initial and
Model Uncertainty

The previous study concentrates on discussing two process-level model errors. Yet, to be
truly comprehensive, an ensemble system must address initial condition uncertainty and
model uncertainty simultaneously. As outlined in Chapter 1.4, the third study aims to
identify: What is the impact of initial and model uncertainty on precipitation
predictability and forecast error growth in a convection-permitting model?
This study serves as a follow-up study to Kuo et al. (2023) and focuses on a heavy rainfall
event associated with a Meiyu front. Using the initial conditions provided by Kuo et al.
(2023), this study generated ten ensemble members by considering random initial and
model errors. Overall, within a 12-hour lead time, introducing random initial moisture
errors results in markedly faster error growth compared to representing model uncertainty
using the Stochastically Perturbed Parameterization Tendency (SPPT) scheme. In this
case, the model 12-hour and hourly Quantitative Precipitation Forecasting (QPF) skills
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are not sensitive to model perturbations, but the impact of initial perturbations is
noticeable. Since the SPPT scheme is a bulk and more holistic model error representation
scheme, it is anticipated to be more effective than the process-level SPPMP and PSP
schemes used in Chapter 3. In this study, the limited sensitivity of the SPPT scheme
implies that while different model error formulations may indeed result in distinct
forecast error growth at short lead times (as discussed in Chapter 3), their distinctions
may not be significant compared to the uncertainty introduced by initial conditions.
To validate this speculation, further error growth studies with a more comprehensive
representation of errors are warranted. Another research objective of this study is to
complement the findings of Kuo et al. (2023), which demonstrated that assimilating Radio
Occultation (RO) data can improve the model QPF skills for convective precipitation.
While the improvement is encouraging, it is based on a deterministic NWP system and a
case study, requiring further investigation to ascertain its robustness. Despite potential
degradation caused by random initial errors, this study confirmed that forecasts with
RO DA on average outperform those without, suggesting that the RO DA leads to a
distinct flow that remains robust when accounting for random errors in the forecast
procedures. While the positive impact of RO DA is proved to withstand small random
errors, it raises the question of whether this scenario is practically predictable when con-
sidering realistic analysis uncertainty. Given the current large-scale analysis uncertainty
as measured by the Global Ensemble Forecast System, the predictability of localized
precipitation (< 50km) is limited within the short timeframe. In general, the model
cannot provide useful forecasts for heavy rainfall exceeding 150 mm due to the small-scale
nature of such events. When reducing the initial uncertainty to 50% and 10% of the
current level, the rapid increase in predictability suggests that it falls within the realm of
practical predictability, and the intrinsic predictability of this case could be relatively high.

5.2 Conclusions

The dissertation addresses three research topics, each offering unique insights into the
predictability and forecast error growth in convection-permitting models. These findings
can have a concrete impact on the research and operational community focusing on high-
resolution short-range NWP forecasts for convection prediction. Specifically, the impacts
of this dissertation include:

1. Offering a detailed guidance on how to employ the convective adjustment time scale to
classify weather regimes over a vast domain. For example, this dissertation provides a
valuable framework for future studies focusing on the United States.

2. Demonstrating the potential of using the convective adjustment time scale as an indi-
cator of convection predictability, which typically assessed through ensemble spread in
contemporary analyses.
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3. Advancing our understanding of regime-dependent predictability and forecast error
growth characteristics, including strong forcing convection, weak forcing convection,
and winter storms.

4. Advancing our knowledge on the effects of different stochastic parameterizations in
convection-permitting models for various weather systems and forecast lead times.

5. Supporting the concept that assimilating large-scale observations in convection-
permitting models can be crucial in enhancing the predictability of convection.

6. Highlighting the significance of initial perturbations compared to model perturbations
for forecast error growth at short lead times.

Despite the contributions outlined here, there are several limitations associated with
the results presented. Due to the computational limitation, all ensemble experiments in
this dissertation are conducted with a limited ensemble size, meeting the minimum require-
ment for ensemble sensitivity testing as suggested in the literature. Ideally, employing a
larger ensemble size would improve the robustness of the statistics obtained. While this
dissertation selected cases covering various weather types and regions, the number of cases
presented here may not encompass all situations. For example, it may be worthwhile to
explore the impact of different model perturbations for non-cloudy cases or cases with in-
termittent precipitation occurring later in the forecast period. Additionally, the PSP and
SPPMP schemes discussed in this dissertation are employed in specific parameterization
schemes, and their effects may not be identical when implemented in other parameter-
ization processes. While this dissertation examines the predictability and forecast error
growth in various model states, there are still other aspects that warrant further investiga-
tion. For example, exploring forecast error growth of cloud variables could be valuable as
this metric is important for satellite and radar observation assimilation. While the findings
presented in this dissertation can inform the development of convective-scale EPSs, the im-
pact of the stochastic schemes should be further validated within a more comprehensive
system that incorporates both initial and boundary condition uncertainties. Furthermore,
activating the stochastic schemes during the DA cycling is advisable, as they are expected
to address the under-dispersion issue commonly observed in convective-scale ensemble DA
systems.
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Chapter 6

Appendix

6.1 Normalized precipitation spread and NRMDTE

Figure 6.1: Domain-averaged normalized precipitation spread (Sn, unitless) over (a)
DS WATER and (b) DN WATER subregions for each 48-hour forecast. Panels (c) and
(d) are domain-averaged NRMDTE (unitless) for DS WATER and DN WATER, respec-
tively.
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6.2 Time series of precipitation spread and intensity

for winter storm cases

Figure 6.2: Time series of domain-averaged normalized hourly precipitation spread (solid,
mm) and domain-averaged hourly precipitation difference against CNTL forecasts (dashed,
mm) for PSP, SPPMP, and BOTH. The rows depict results averaged over DN LAND,
DN WATER, DS LAND, and DS WATER, respectively. Each line within the figure cor-
responds to two winter storm cases.
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6.3 Snapshots of water vapor perturbation generated

by the PSP scheme

Figure 6.3: The upper panels depict the lowest-level water vapor perturbation fields
(g kg−1 s−1) generated by the PSP scheme, valid at (a) 06 UTC, (b) 12 UTC, (c) 18
UTC, and (d) 00 UTC on July 21, 2021. The lower panels depict their corresponding wa-
ter vapor turbulence variance fields (kg2 kg−2). These forecasts are from the first member
in the PSP experiment initialized at 00 UTC on the same day.
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6.4 Time series of RMDTE growth rate for winter

storm cases

Figure 6.4: Time series of domain-averaged root-mean difference total energy (RMDTE,
m2s2) growth rate for PSP (red), SPPMP (blue), and BOTH (green). Rows are d
RMDTE/dt averaged over DN LAND, DN WATER, DS LAND, and DS WATER, respec-
tively. Columns show forecasts initialized at (a) 00 UTC and (b) 12 UTC. Each line within
the figure corresponds to two winter storm cases. Dashed lines indicate the 12 LST corre-
sponding to each initial time.
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6.5 RMDTE ratios for strong forcing convection,

weak forcing convection, and winter storm cases

Figure 6.5: Time series of domain-averaged RMDTE ratios, averaged over forecasts of each
weather type (colors) initialized at 00 UTC (solid lines) and 12 UTC (dashed lines). Rows
show averages over DN LAND, DN WATER, DS LAND, and DS WATER, respectively.
Columns show ratios computed as (a) SPPMP divided by PSP and (b) BOTH divided by
PSP. Each line within the figure corresponds to two cases.
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