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Zusammenfassung
Kondensstreifen bilden sich in der oberen Troposphäre (UT) durch Aerosolemissionen
von Flugzeug und können bei Eisübersättigung bestehen bleiben. Kondensstreifen-Zirren
stellen den größten Anteil des wärmenden Nettostrahlungsantriebs (RF) des Luftver-kehrs
auf das Klima dar. Die mikrophysikalischen Eigenschaften und Strahlungseffekte von
Kondensstreifen-Zirren und natürlichen Zirren unter den gleichen meteorologischen Be-
dingungen sind jedoch nach wie vor unklar, und die Verteilung von Wasserdampf in der
UT und der unteren Stratosphäre (LS) ist mit großen Unsicherheiten behaftet.

In dieser Arbeit wird eine ausgedehnte, durch den Flugverkehr gestörte Zirrusregion im
Nordatlantik (NAR) während des Midlatitude Cirrus (ML-CIRRUS) Experiments durch
die Kombination von Flugzeugmessungen und geostationären Meteosat Second Genera-
tion Satelliten (MSG) Beobachtungen untersucht. Mit einer neuen Methode, die auf
in situ Messungen der Eisanzahlkonzentrationen und des NO Gases basiert, wird zwis-
chen Kondensstreifen, Kondensstreifen-Zirren und natürlichen Zirrenunterschieden. Die
Effektivradien (Reff ) von Kondensstreifen erreichen höchstens 11 µm, während die Reff

von Kondensstreifen-Zirren bis zu 51 µm groß sein können. Der mittlere Reff von Kon-
densstreifen und Kondensstreifen-Zirren ist 18% kleiner als der von natürlichen Zirren.
Eine neue Methode zur Schätzung des instantanen RF-Wertes im solaren und thermis-
chen Bereich wird auf der Grundlage von Strahlungstransportrechnungen entwickelt, die
in situ und Lidar-Messungen, Satellitenbeobachtungen und Reanalysedaten nutzen. Der
Zirrusausbruch wirkt am frühen Morgen wärmend und tagsüber kühlend. Diese Methoden
könnten mit einem breiteren Datensatz zur Bewertung der Strahlungswirkung von Zirren
und Kondensstreifen angewendet werden.

Um die Vorhersage der Luftfeuchte in Reiseflughöhe zu verbessern, wurde ein neuronales
Netz (NN) entwickelt. Das Modell benutzt modellierte thermodynamische Bedingungen
und dynamische Zustände aus ERA5-Reanalysedaten als Input und gemessene Luftfeuchte
aus den Flugzeugbeobachtungen des In-Service Aircraft for Global Observing System (IA-
GOS) als Output. Dabei werden frühere (-6, -2 Stunden) mit aktuellen atmosphärischen
Zuständen innerhalb von ±2 ERA5-Druckschichten um die Position der IAGOS-Flugzeuge
kombiniert. Im Vergleich zu ERA5 verbessert dieser NN-Ansatz die Übereinstimmung
zwischen vorhergesagter und beobachteter relativer Feuchte über Eis, mit einer Erhöhung
der Korrelation um bis zu 0,25 und einer Verringerung des mittleren absoluten Fehlers
um bis zu 9,07%. Die prognostizierte relative Feuchte des ANN-Ansatzes stimmt besser
mit unabhängigen Flugzeugmessungen überein. Die Steigerung der Genauigkeit für die
Vorhersage von Eisübersättigung beträgt etwa 43% in NAR im Jahr 2020. Eine erhöhte
Feuchte in der LS, zusammen mit einer Verringerung in der UT, führt zu einem stärkeren
Erwärmungseffekt des Wasserdampfs an der Oberfläche und zu einem schwächeren Erwär-
mungseffekt in der UTLS. In einem Testfall stimmen die simulierten Strahlungseffekte der
Kondensstreifen besser mit den MSG-Beobachtungen überein als die Ergebnisse ohne Ko-
rrektur der Feuchtevorhersage. Dabei nehmen die optische Dicke und der RF-Wert des
Kondensstreifens zu. Dank dieser Methode können Maßnahmen zur Kondensstreifenver-
meidung effizienter durchgeführt werden.
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Abstract
Contrails form in the upper troposphere (UT) from aircraft aerosol emissions and can per-
sist in ice supersaturation conditions. Contrail cirrus constitute the largest net warming
radiative forcing (RF) component to the total aviation effect on climate. However, micro-
physical properties and radiative effects of contrail cirrus and natural cirrus in the same
meteorological conditions remain unclear, and the distribution of water vapor in the UTLS
is subject to large uncertainties. The contrail cirrus radiative impact is still not completely
resolved in remote sensing and climate modelling.

An extended cirrus region perturbed by aviation in the North Atlantic region (NAR)
during the Midlatitude Cirrus (ML-CIRRUS) experiment is then investigated by combining
airborne and geostationary Meteosat Second Generation satellite (MSG) observations. A
new method for in situ measurements was used to distinguish between contrails, contrail
cirrus and natural cirrus based on ice number and NO gas concentrations. Contrail effective
radii (Reff ) reach at most 11 µm, while contrail cirrus Reff can be as large as 51 µm.
Contrail and contrail cirrus mean Reff is 18% smaller than that of natural cirrus in this
case. A new method to estimate top-of-atmosphere instantaneous RF in the solar and
thermal range is developed based on radiative transfer model simulations exploiting in situ
and lidar measurements, satellite observations and reanalysis data. For a larger spatial
area around the flight path, the contrail cirrus outbreak is warming in the night and early
morning and cooling during the day. This study could be applied to a broader data set for
the assessment of radiative impacts of cirrus and contrail cirrus.

To improve the humidity prediction at the cruise levels, a novel approach is developed
utilizing artificial neural networks (ANN). The model combines relevant parameters in-
cluding modelled thermodynamic conditions and dynamical states from ERA5 reanalysis
data as input, and measured humidity from the In-Service Aircraft for Global Observing
System (IAGOS) aircraft observations as output. Correlation analyses indicate that the
combination of previous (-6, -2 hour) and current atmospheric states within ±2 ERA5
pressure layers around the IAGOS flight latitude shows the high predictive skill for the
current humidity status. Compared with ERA5, the ANN approach improves the consis-
tency between predicted and observed humidity from IAGOS in cloudy and cloud-free UT
and lower stratosphere (LS), with an increase in correlation by up to 0.25 and a decrease
of mean absolute error up to 9.07% and 0.03 g/kg for relative humidity and specific humid-
ity, respectively. The predicted relative humidity from the ANN approach shows better
agreement to independent airborne measurements. The increase of the accuracy for ice
supersaturation forecast is about 43% over NAR in 2020. An increased specific humidity
in the LS but a decrease in the UT induce a stronger warming effect at the surface and a
locally weaker warming effect of water vapor in the UTLS. The simulated contrail cirrus
radiative effects better compares to MSG observations than the results without humidity
forecast correction. In a test case, optical thickness and contrail RF increase for the im-
provements of humidity prediction. For contrail mitigation, the diversion of flights to avoid
ice supersaturation can be implemented with higher efficiency when the ANN method is
applied to weather forecast products.
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Chapter 1

Introduction

1.1 Background and motivation
Condensation trails (contrails) are line-shaped ice clouds generated by jet aircraft in the
upper troposphere at 8-13 km altitude. Depending on whether retaining the linear shape,
they are referred to persistent contrails and contrail cirrus, respectively. Figure 1.1 depicts a
contrail cirrus outbreak characterized by linear-shaped contrails (white lines), forming over
the North Atlantic Region (NAR), extending southeast towards the European continent,
and passing over Belgium, the Netherlands, Spain, and Germany. The observation is
captured by the geostationary Meteosat Second Generation (MSG)/Spinning Enhanced
Visible and InfraRed Imager (SEVIRI).

Figure 1.1: Brightness temperature difference image (10.8 µm and 12.0 µm) obtained from
the SEVIRI sensor on the MSG-3 satellite. The image is at 10:00 UTC on 10 April 2014.
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By reflecting incident solar radiation and trapping upwelling radiation within the Earth’s
atmosphere, contrail cirrus result in an imbalance of radiation budget in both the short-
wave (SW) solar and longwave (LW) terrestrial spectrum [Stuber et al., 2006]. Thereby
the contrail cirrus radiative forcing (RF) describes the change of the energy budget at the
top of the atmosphere (TOA) or in the Earth-atmosphere system due to a perturbation of
aircraft aerosol emissions [Lee et al., 2009]. Recent studies, for instance Lee et al. [2021],
suggest that the effective radiative forcing (ERF) from contrail cirrus, which takes into
account atmospheric adjustments, accounts for almost two thirds of net positive RF from
aviation (all terms) and can be larger than the climate impact from aviation CO2 emis-
sions (Figure 1.2). Only a small percentage of the flights worldwide [Teoh et al., 2023]
contributes strongly to global contrail cirrus RF [Burkhardt and Kärcher, 2009], many of
them associated with long-lived contrail cirrus outbreaks [Burkhardt et al., 2018]. Thus,
the significant climate impact of contrail cirrus from aviation serves as the motivation for
this thesis to investigate the contrail cirrus outbreak and explore potential strategies for
contrail avoidance.

Figure 1.2: Climate forcing terms from global aviation from 1940 to 2018. The bars and
whiskers show ERF best estimates and the 5–95% confidence intervals, respectively. Red
bars indicate warming terms and blue bars indicate cooling terms. Numerical ERF are
given in the columns with 5–95% confidence intervals along with ERF and confidence
levels. From Lee et al. [2021].
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Contrails form when the hot and humid jet engine exhaust at cruise levels mixes with the
cool ambient atmosphere [Schumann, 1996]. The emitted soot particles act as condensation
nuclei to form liquid droplets that freeze subsequently into ice crystals as the young contrails
[Kärcher, 2018]. Ice supersaturated regions (ISSRs), with relative humidity with respect to
ice (RHi) larger than 100%, support the growth, suppress the sublimation, and influence
the deposition rate and further the sedimentation of ice crystals. In ISSRs, persistent
contrails grow and spread out to form contrail cirrus [Schumann et al., 2017]. Natural
cirrus are also high level clouds composed of ice crystals that form and evolve in ISSRs
[Minnis et al., 2004]. The difference of microphysical properties and radiative effects of
natural cirrus and contrail cirrus and their evolution are still subject of current research.

Airborne measurements and spaceborne observations have provided detailed properties
of contrails and contrail cirrus. Contrail cirrus can be detected and separated from natural
cirrus to some extent in in situ measurements by combining ice crystal microphysical data
with observations of aircraft emissions such as nitrogen oxides (NOx) or aerosols [Voigt
et al., 2017]. Heymsfield et al. [2010a] provides a comprehensive overview of contrail and
contrail cirrus properties and extensive data sets exist on their microphysical properties,
their particle shapes [Gayet et al., 2012] and optical properties [Chauvigné et al., 2018], as
well as the influence from aircraft on ice crystal number in cirrus [Jeßberger et al., 2013].
From satellite observations, linear contrails can be detected with polar orbiting and geo-
stationary satellites [Mannstein et al., 2010]. Thanks to their high temporal resolution,
contrails can be tracked [Vazquez-Navarro et al., 2010] and their LW and SW RF can be
estimated [Vázquez-Navarro et al., 2015]. Some studies have taken the NAR and North
America with the largest air traffic density as target regions, and analysed the temporal
evolution of contrail cirrus coverage, outgoing radiation, and properties [Schumann et al.,
2013]). Early climate models estimated contrail cirrus RF through associating air traffic
with regional cirrus coverage and assumed equal radiative efficiencies of contrails and con-
trail cirrus [Stordal et al., 2005]. Subsequently, the numerical and global climate models
represent contrail cirrus as a separate cloud class [Schumann, 2012, Bock and Burkhardt,
2016a].

Despite substantial progress in recent years, the characterization of geometrical, optical,
and microphysical properties of contrails and their evolution within natural cirrus fields
[Voigt et al., 2021] as well as the calculation of the radiative impact [Grewe et al., 2017] are
still subject to large uncertainties partly due to the large number of variables, for example
RHi, influencing the contrail life cycle [Kaufmann et al., 2018].

The upper troposphere and lower stratosphere (UTLS) are of special interest for inves-
tigations of microphysical properties of both contrail and natural cirrus clouds and their
associated atmospheric RF. Cirrus in this region can survive for hours if the surrounding
RHi is larger than 100%. However, the distribution of water vapor in the UTLS is subject
to large uncertainties, even with the enhanced ISSRs parameterized scheme including the
cloud glaciation process in the forecast model [Tompkins et al., 2007]. A significant wet
bias in the lower LS humidity has been identified in the operational European Centre for
Medium-Range Weather Forecasts (ECMWF) forecast and analysis data when compared
with in situ measurements from the Midlatitude Cirrus [ML-CIRRUS, Voigt et al., 2017]
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experiment [Kaufmann et al., 2018], and Civil Aircraft for the Regular Investigation of
the atmosphere Based on an Instrument Container (CARIBIC) passenger aircraft flights
[Dyroff et al., 2015] (Figure 1.3). In contrast, a dry bias of RHi is observed in the UT from
lidar measurements on aircraft [Krüger et al., 2022]. The assimilation of in situ measure-
ments, radiosonde data sets and satellite observations into the numerical weather prediction
(NWP) model is the state-of-the-art way to improve the weather forecast [Lawrence et al.,
2019, van der Linden et al., 2020]. However, the procedure of saturation adjustment, where
supersaturation relaxes to saturation if cloud formation occurs, still leads to the systematic
underestimation of the frequency and degree of ISSRs at cruise altitudes in NWPs [Sperber
and Gierens, 2023].

Figure 1.3: (a) Dependence of model bias on the pressure of the airmass five days prior
to sampling as determined by backwards trajectory analyses. The contour lines depict the
area in which 90% data of the two latitude bins 20–30°N (red) and 70–80°N (blue) fall. The
horizontal solid line represents the mean sampling pressure. (b) same as for (a), however
using H2O gas as colour code. Contour lines indicate where 90% of the data fall within
the humidity bins < 10 ppmv (blue) and > 50 ppmv (red). From Dyroff et al. [2015].

The accurate prediction of humidity is a prerequisite for simulating contrail formation
and persistence, and implementing contrail avoidance strategies. ISSRs typically have
large horizontal (150 ± 250) km but shallow vertical extensions [Spichtinger et al., 2003].
Therefore, in the short term, a slight, weather-dependent adjustment in cruising altitude
(±600 m) could minimize the flight distance within regions characterized by high humidity
and warming contrails, thereby reducing the contrail lifetime and ERF. Unlike the gradual
transition to sustainable aviation fuel or hydrogen-based combustion, a flight optimization
strategy could eventually be implemented without substantial technological changes. In
order to achieve this goal, current weather forecasts have to demonstrate their capability
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to predict ISSRs for warming contrails with a certain degree of accuracy. However, as
discussed before, the distribution of ISSRs in the UTLS is subject to large uncertainties.

Gierens and Brinkop [2012] and Gierens et al. [2020] investigate the typical distributions
of dynamical fields within ISSRs, and infer that accurate prediction of ice supersaturation,
particularly for the associated strong contrails, may be possible by incorporating the dy-
namical state of the ambient atmosphere through general regression. Teoh et al. [2022a]
use in situ measurements from In-Service Aircraft for Global Observing System (IAGOS)
to develop a new RHi correction methodology, which confirms that the probability density
function of ERA5-derived RHi inside ISSRs resembles the IAGOS measurements. Their
simulated contrail cirrus net RF in NAR in 2019 exhibits a notable sensitivity to this ERA5
humidity correction (Figure 1.4). The estimated contrail cirrus net RF is doubled from
simulations where the correction is applied. Kadow et al. [2020] has demonstrated the
skill of artificial intelligence (AI) in improving observational surface temperatures when
combined with climate model data. Lam et al. [2023] also suggests that AI could serve as
an effective approach to mitigate uncertainties and biases in weather forecasting including
atmospheric humidity fields.

Figure 1.4: Comparisons of the contrail cirrus net RF in the NAR provided by the nominal
simulations using ERA5 and the sensitivity analyses for 2019. From Teoh et al. [2022a].

A more comprehensive understanding of the origin of the humidity bias in the UTLS
can contribute to the improvements of humidity prediction. Backward trajectories analyses
from Dyroff et al. [2015], as shown in Figure 1.3, indicate that the moist bias is linked to air
masses originating from high northern latitudes at the aircraft flight level. In the vertical
direction, part of the model bias arises from small-scale stratospheric intrusions that remain
unresolved by the model but are frequently observed features in the UTLS. Riese et al.
[2012] and Krüger et al. [2022] further point out the connection between uncertainties in
atmospheric mixing and the simulated composition of water vapor in the UTLS, along with
its associated radiative effects.

The ambition of this thesis is to resolve the microphysical properties and radiative



6 1. Introduction

effects of natural cirrus, contrail cirrus and contrails in the same meteorological conditions,
and improve the RHi forecast based on AI in the UTLS region to identify the climate
impact of contrail cirrus for the research applications. Although some of the previous
work have included the analysis of natural cirrus and contrail cirrus simultaneously, the
evolution of contrails is still an open question. The large majority of the previous humidity
correction is limited to regression fitting, during which the vertical stratospheric intrusions
and horizontal airmass transport which lead to the humidity bias are less discussed.

1.2 Scientific topics
The main limiting factors for investigating microphysical properties and radiative effects
of contrail cirrus and ambient natural cirrus in an contrail cirrus outbreak have been the
small spatial scale of airborne measurements as well as the low spatiotemporal resolution
of polar orbiting satellite instruments. The first part of this thesis aims to combine the
detailed in situ data sets and lidar profiling and the large spatial scale and high temporal
resolution of geostationary satellite observations (required to study the variation of the
contrail cirrus outbreak) with a new cirrus classification method and a radiative transfer
model (RTM) based TOA irradiance estimation algorithm. Large uncertainties for predict-
ing the contrail cirrus life cycle and their climate impact stem from insufficient knowledge
about atmospheric humidity at cruise levels. Here, satellite observations do not have the
sufficient horizontal resolution for strong gradients in temperature and water vapor at the
tropopause, and few models are able to predict the related short temporal scales and fast
spatial development. Thus, the goals of this thesis also involve the improvement of the
RHi prediction based on modelled parameters from ERA5 and measured water vapor from
airborne campaigns using a machine learning technique. These efforts allow for a compre-
hensive and quantitative analysis of the microphysical properties and radiative effects of
the contrail cirrus outbreak, and a significant advancement of RHi forecast for the estima-
tion of the cirrus cloud life cycle and climate impact, as well as atmospheric water vapor
radiation budget.

While much of the previous work on contrail cirrus and natural cirrus clouds has focused
on their separate microphysical properties and radiative effects, the strength and novelty
of this study is the combination of detailed in situ and lidar measurements (from the
German High Altitude and LOng range research aircraft HALO) together with the large
spatial coverage and high temporal resolution from a geostationary imager. This results
in a new cirrus identification and RF retrieval algorithm, that allows for distinguishing
natural cirrus, contrail cirrus and contrails in similar meteorological conditions from in situ
measured cloud particle properties and enhanced Nitric oxide (NO) aircraft gas emissions,
and for computing the corresponding RF, derived by satellite observations, atmospheric
profiles of trace gases and natural clouds from ERA5, and RTM in a favourable air traffic
region with a temporal resolution up to 5 min. This provides a quantitative analysis of
the cirrus microphysical properties and radiative effects throughout the diurnal cycle of
the outbreak and makes it possible to address scientific questions related to the physical
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processes of contrails. Thus, the following scientific question is addressed:

1. What are the microphysical properties and radiative effects of contrail cirrus and
natural cirrus in a contrail cirrus outbreak?

For the identified cirrus classes ice crystal properties are estimated and related to RHi.
It is suggested that the ISSRs where RHi is larger than 100% provide the water vapor for
the growth of the ice crystals, while they prevent the sublimation, and affect the deposition
rate and further the efficiency of sedimentation. Currently, widely used modelled humid-
ity data records have large uncertainties in the UTLS region, which are due not only to
thermodynamic conditions but also to dynamical processes. While the humidity correction
from regression fitting between modelled humidity and long term and large scale humidity
measurements has been presented in the literature, this thesis aims to improve humidity
data records more accurately through building an artificial neural networks (ANN) algo-
rithm between modelled thermodynamic conditions and previously neglected but crucial
dynamical states from ERA5 as well as measured water vapor from IAGOS, allowing for
the evaluation of changes in the atmospheric water vapor radiation budget. Hence, the
following scientific question is addressed:

2. Is there a possibility to improve the RHi prediction from ERA5 with thermodynamic
conditions and dynamical states?

To further investigate the prediction of contrails and their climate impact with the
improved humidity using Contrail Cirrus Prediction model CoCiP simulations and satellite
observations, the following scientific question is finally addressed:

3. How does an improved prediction of RHi influence the predicted climate impact of
contrail cirrus?

To approach and answer these scientific questions, this thesis is divided into six chap-
ters. Chapter 2 describes the theoretical background of this study including the radiative
transfer theory, climate impact of aviation, ISSRs, and ANN. The satellite remote sensing,
airborne measurements, data and methods used in this study are introduced and described
in Chapter 3. Chapter 4 shows the observations of a contrail cirrus outbreak over the NAR
(SQ-1). Chapter 4.1 describes a novel cirrus classification method and the further analysis
of microphysical properties of natural cirrus, contrail cirrus and contrails, while the RF
estimation of the contrail cirrus outbreak is presented in Chapter 4.2. Chapter 5 displays
the improved relative humidity prediction (SQ-2). First, the preparation of the data sets
and the model training are described in Chapter 5.1 and 5.2. Second, the humidity predic-
tion model is interpreted and validated with independent data sets in Chapter 5.3 and 5.4.
Third, the new atmospheric radiation budget induced from water vapor is investigated in
Chapter 5.5, and other applications and comparisons with the existing method are shown
in Chapter 5.6. Chapter 6 compares contrail cirrus from improved relative humidity to
satellite observations (SQ-3). Finally, the conclusions drawn from this study together with
an outlook on how to transfer my data evaluation techniques to future studies are presented
in Chapter 7.
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Chapter 2

Fundamentals

2.1 Radiative transfer theory
The physical phenomenon of energy transfer in the form of electromagnetic radiation
through the atmosphere is called atmospheric radiative transfer. The radiation is propa-
gated through a medium and affected by absorption, emission, and scattering processes.
The foundations of the radiative transfer theory for this thesis, based mainly on Liou [2002]
and Mayer and Kylling [2005], are summarized in this Chapter for the understanding and
interpretation of satellite remote sensing.

2.1.1 Radiative quantities
Electromagnetic radiation can be described as a wave or as a stream of photons. The wave
properties are characterised with its frequency ν (in s−1 or Hz) by the speed of light c at
which it oscillates and its wavelength λ (the distance between two peaks, in the context of
atmospheric radiation usually in nm or µm)

ν = c

λ
, (2.1)

where c is the constant propagation velocity of the electromagnetic radiation in vacuum.
The energy E (in J) of a photon is described by the Planck-Einstein relation

E = hν = hc

λ
, (2.2)

where h = 6.626 × 10−34 Js is the Planck constant. Since c and h are constants, the
electromagnetic radiative energy is directly related to the wavelength and frequency.

Depending on wavelength, electromagnetic radiation is qualitatively categorized in ma-
jor spectral ranges. The wavelengths at ca. 400–700 nm are called the visible spectrum.
Longer wavelengths of 0.7–1000 µm are defined as the infrared spectrum, which includes
the ranges of the near infrared at 0.7–1.4 µm, short-wavelength infrared at 1.4–3.0 µm,
mid-wavelength infrared at 3.0–8.0 µm, long-wavelength infrared at 8.0-15.0 µm, and the
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far infrared at 15.0–1000 µm. This study focuses on measurements in the spectral ranges
mentioned above.

The radiant flux Φ (in W) describes the radiant energy per unit time

Φ = dE

dt
. (2.3)

And the irradiance I (in W m−2) describes the radiant flux received by or leaving a surface
element dA per unit area:

I = dE

dAdt
. (2.4)

dA is used to define the polar coordinate system such that the zenith angle θ is the
angle between the normal of the polar coordinate system dA and the direction towards the
solid angle dΩ. The normal vector points in the direction given by θ and the azimuth angle,
and the radiance L (in W m−2 s−1) is corrected by a factor cos(θ) to project dA parallel to
the surface. Here, the radiance L describes the radiant flux received by or leaving a surface
element dA per solid angle per area per time:

L = dE

cos(θ)dΩdAdt
. (2.5)

Finally, the spectral radiance Lλ (in W m−2 s−1 nm−1) describes the radiance L at a
given wavelength

Lλ = dE

cos(θ)dΩdAdλdt
. (2.6)

2.1.2 Black body radiation
All bodies absorb and emit electromagnetic radiation. A black body is an idealised object
that absorbs all incident electromagnetic radiation. The approximation of a black body is
a cavity: radiation enters, and is reflected inside again and again until it is finally absorbed.
The emitted radiance (in W m−2 s−1 nm−1) of a black body is described by Planck’s law,

Bλ(T ) = 2hc2

λ5(e
hc

λkBT − 1)
, (2.7)

where kB = 1.381 × 10−23 JK−1 is the Boltzmann constant. The spectral black body
radiance Bλ is a function of the black body temperature T and independent of any other
property of the black body. Black bodies only exist in theory. A real object (so-called
grey body) at temperature T emits only a fraction of the electromagnetic radiation, and
the emissivity ϵλ is introduced as

ϵλ = Lλ

Bλ(T ) (2.8)

with ϵλ = 1 for a black body but ϵλ < 1 for a grey body. The absorptivity αλ, reflectivity
Rλ and transmissivity Tλ are defined as the ratios between the absorbed, reflected or
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transmitted radiance, respectively, and the incoming radiance. The Kirchhoff’s law is
derived under the condition of a thermodynamic equilibrium

αλ = ϵλ . (2.9)

2.1.3 Absorption and scattering
In the atmosphere, atmospheric molecules, including gas, aerosols, cloud droplets and ice
crystals interact with the radiation through absorption, emission and scattering processes.

Absorption describes the process when an atom or molecule extracts energy from the
incident beam of radiation according to Eq. 2.2 and transits to a discrete higher energy
level, leading to the characteristic spectral lines and bands of given atoms and molecules.
Processes require energy and hence lead to photon absorption including changes in molec-
ular vibrational and rotational motion as well. Emission describes the process opposite
to absorption.

Important atmospheric gases in Figure 2.1 are water vapor, carbon dioxide and ozone,
with water vapor producing an absorption band around 6.3 µm, carbon dioxide around
4.3 µm and especially 15 µm, and ozone around 9.6 µm. Furthermore, the influences from
other gases are comparably small such that they can be neglected when considering a
broad-band radiometer. The spectral region 8 – 12 µm is called atmospheric window, as it
is mostly transparent except for ozone. The window reveals a fragmented portion extending
from the ultraviolet to mid-wavelength infrared, spanning the range of 0.2 to 5.5 µm.

Figure 2.1: A clear electromagnetic spectral transmission window can be seen between 8
and 12 µm in the main window spectrum. A fragmented part of the window spectrum is
also shown in the ultraviolet to mid-wavelength infrared between 0.2 and 5.5 µm. From
Jiang and Razeghi [2002].

Scattering describes the redirection of electromagnetic radiation from the direction of
propagation [Efremenko and Kokhanovsky, 2021]. How the incident radiation is scattered
depends on the wavelength and the properties of the scattering molecule or particle (com-
plex refractive index, shape, size). Herein, the bulk properties of solids and liquids relevant
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to absorption and scattering are given by the complex refractive index m

m = n + ik , (2.10)

where the real and imaginary parts n and k of the complex refractive index indicate the
ability of scattering and absorption, respectively. Liquid water clouds and cirrus clouds
composed of large droplets and ice crystals are similar to black bodies in the atmospheric
window, whereas thin cirrus clouds of small particles (i.e., Reff < 30 µm) have a size-
dependent absorption peak around 12 µm which results in a spectral signature that can be
used for cloud phase discrimination and cloud detection [Smith et al., 1998].

The size parameter x describes the relationship between the wavelength of the incoming
electromagnetic radiation λ and the radius of a scattering particle r,

x = 2πr

λ
. (2.11)

Figure 2.2 shows the scattering pattern of electromagnetic radiation with λ = 0.5 µm
scattered by spherical particles with three different sizes. Larger particles lead to the
scattered radiation in the forward direction, with increasingly complex scattering patterns.
The angular re-distribution of scattered radiation from the incident direction Ω′ to the
direction Ω is described by the scattering phase function P (Ω′, Ω).

Figure 2.2: The angular distribution of visible radiation at 0.5 µm by spherical particles of
three sizes: (a) 10−4 µm, (b) 0.1 µm and (c) 1 µm. The forward scattering pattern for the
1 µm particle is extremely large and is scaled here. Figure adapted from Liou [2002].

For spherical objects with x > 1 or x ≈ 1, the Lorenz-Mie scattering is referred to, and
the corresponding theory can be derived directly from Maxwell’s equations. The strong
scattering is exhibited in the forward direction and is roughly wavelength-independent.
Spherical aerosol particles and cloud droplets (with sizes of roughly 1–10 µm) can be treated
with Lorenz-Mie theory. For x ≪ 1, Lorenz-Mie scattering simplifies to Rayleigh scattering.
Rayleigh scattering leads to a radiance being proportional to λ−4 and equal scattering in
forward and backward direction. This approximation is applied to gas molecules (a ≈ 1 ×
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10−4 µm). For x ≫ 1, scattering can be described by geometric optics, i.e., light can be
modeled by parallel rays and refracted according to Snell’s law. This simplification can be
used for raindrops (r ≈ 1 cm) and large ice particles.

In contrast to approximately spherical cloud liquid water droplets, cloud ice crystals
have a variety of more complex shapes. The scattering properties of ice crystals can be
derived for a set of idealised crystal shapes, e.g. plates, columns, bullet rosettes, droxtals,
and aggregates, for a range of sizes using various methods (e.g. geometric optics, T-matrix,
finite difference time domain). The total scattering effect can then be estimated by averag-
ing the scattering properties over multiple size distributions with prescribed crystal shapes
(see e.g. Yang et al. [2015]).

Independent of the method, a set of optical properties parameterizes the scattering and
absorption properties. The absorption and scattering cross sections σabs and σsca are defined
as the ratio between the radiance absorbed or scattered (in all directions), respectively, by
the molecule or particle and the incident radiance. The unit of a geometrical area represents
the effective area of the object presented to the incident beam with respect to scattering
and absorption. The extinction cross section σext is the sum of both, i.e.,

σext = σabs + σsca . (2.12)

The extinction coefficient βext is defined as

βext = σextn , (2.13)

with n denoting the particle number density. Similar relations for the absorption and
scattering coefficients βabs and βsca are given by

βext = βabs + βsca . (2.14)

The single scattering albedo ω is given by

ω = βsca

βext

= βsca

βabs + βsca

. (2.15)

And τ is known as the optical depth of the atmospheric path length s

τ =
∫

βext ds . (2.16)

2.1.4 Radiative transfer equation
A beam of electromagnetic radiation propagating through an atmospheric volume with the
infinitesimal thickness ds loses energy due to absorption and scattering. The combined loss
in energy in length due to absorption and scattering is quantified by the Beer-Lambert-
Bouguer law and given by

dLext,λ

ds
= −βext,λLλ . (2.17)
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The beam also gains radiant energy along the direction of propagation due to emission
by the medium. A body with a temperature T emits radiation in all directions according
to Planck’s law (Eq. 2.7). Assuming local thermodynamic equilibrium and invoking Kirch-
hoff’s law, the gain in spectral radiance due to emission along the path length is given
by

dLemi,λ

ds
= βabs,λBλ(T ) , (2.18)

where βabs,λ is the emission (absorption) coefficient of the medium.
Finally, the beam can gain energy if radiation from the outside is scattered into the

direction of propagation. The gain in spectral radiance due to scattering from an arbitrary
direction Ω′ into the direction of propagation Ω is given by

dLsca,λ(Ω′, Ω)
ds

= βsca,λP (Ω′, Ω)Lλ(Ω′) . (2.19)

Integrating over all incident angles Ω′ yields

dLsca,λ(Ω)
ds

= βsca,λ

4π

∫
4π

P (Ω′, Ω)Lλ(Ω′) dΩ′ . (2.20)

Combining Eqs. 2.17, 2.18 and 2.20, the equation of radiative transfer can be formulated
as

dLλ

ds
= dLext,λ

ds
+ dLemi,λ

ds
+ dLsca,λ(Ω)

ds

= −βext,λLλ + βabs,λBλ(T ) + βsca,λ

4π

∫
4π

P (Ω′, Ω)Lλ(Ω′) dΩ′
(2.21)

Equations of radiative transfer have applications in a wide variety of subjects including
optics, astrophysics, atmospheric science, and remote sensing. For the calculation of the
radiative transfer in this work, the libRadtran framework is used [Emde et al., 2016, Mayer
and Kylling, 2005].

2.2 Climate impact of aviation

2.2.1 CO2 and non-CO2 aviation impact
Global aviation operations contribute to anthropogenic climate change via a complex set
of processes that lead to a net surface warming [Lee et al., 2021]. Aviation emissions of
carbon dioxide (CO2), and also a number of non-CO2 climate forcing agents including
nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness
due to contrail formation are important. Aviation grew strongly over the past decades in
terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km
yr−1 (1960–2018), and in terms of climate change impacts, with CO2 emissions increasing
by a factor of 6.8 to 1034 Tg CO2 yr−1. Over the period 2013–2018, the growth rates in
both terms show a marked increase.
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In the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate
Change (IPCC) published in 2011, these non-CO2 agents caused 4% of the total global
radiative forcing (RF) from all human activities. Persistent contrails and contrail cirrus,
or together as aircraft-induced clouds (AIC), represent the largest aviation RF component
- comparable to RF induced by natural variations of the solar incident energy - followed
by aviation CO2 emissions [Kärcher, 2018]. Within AIC, the long-lived contrail cirrus
outbreaks account for 80% of the RF [Burkhardt and Kärcher, 2009].

Lee et al. [2021] present a new and comprehensive quantitative approach to evaluate avi-
ation climate forcing terms. Both RF and effective radiative forcing (ERF) and their sums
are calculated over the period 1940–2018 in Figure 1.2. RF is the instantaneous change in
energy flux in the atmosphere caused by natural or anthropogenic climate change factors.
As an alternative, ERF includes not only instantaneous forcing but also adjustments from
the atmosphere and surface. Contrail cirrus yields the largest positive net (warming) ERF
term followed by CO2 and NOx emissions. In addition, the formation and emission of sul-
fate aerosol contribute a negative (cooling) term. The mean contrail cirrus ERF/RF ratio
of 0.42 indicates that contrail cirrus is less effective in surface warming compared to other
terms. For 2018, the net aviation ERF is +100.9 mW m−2 (5-95% likelihood range of (55,
145)), with major contributions from contrail cirrus (57.4 mW m−2), CO2 (34.3 mW m−2),
and NOx (17.5 mW m−2). Non-CO2 terms sum to yield a net positive (warming) ERF that
accounts for more than half (66%) of the aviation net ERF in 2018. The contribution nor-
malized to aviation fuel use indicates that the contribution of global aviation is 3.5 (4.0, 3.4)
% of the net anthropogenic ERF of 2290 (1130, 3330) mW m−2. Uncertainty distributions
show that non-CO2 forcing terms significantly contribute to the uncertainty in the aviation
net ERF, with an approximate 8-fold impact compared to CO2. The best estimates of the
ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined.
CO2-warming-equivalent emissions based on the global warming potential method [Cain
et al., 2019] indicate that aviation emissions are currently warming the climate at approx-
imately three times the rate of that associated with aviation CO2 emissions alone. CO2
and NOx aviation emissions and contrail cirrus radiative effects remain a continued focus
of anthropogenic climate change research and policy discussions.

Recent global climate model simulations further discuss about the uncertainties in the
estimation of contrail cirrus climate impact in Lee et al. [2021]. And the new released sim-
ulation results show reduced contrail RF. For example, higher atmospheric temperature
and lower relative humidity (RHi) at the cruise level lead to the sublimation of contrails,
which is not included in the previous model study. Bier and Burkhardt [2022] demonstrate
the impact of parametrizing microphysical processes behind in the jet and vortex phase on
contrail cirrus properties and RF. The contrail cirrus formation process will be described
in the next Chapter. The effects of sublimation is included and the newly simulated
ice crystal numbers agree well with in situ measurements over central Europe. The corre-
sponding estimated global mean contrail cirrus RF for the year 2006 is 44 (31-49) mW m−2,
around 22% lower than the numbers estimated in Bock and Burkhardt [2016b]. A recent
independent approach using a physically based contrail cirrus prediction model with the
humidity correction on a global scale calculates the annual mean contrail cirrus net RF of
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64 mW m−2 in 2019, which is 44% lower than current best estimates for 2018 (111 mW m−2)
before COVID-19 [Teoh et al., 2023], in line with the decreasing trend shown in Bier and
Burkhardt [2022].

2.2.2 Contrail cirrus formation and persistence

Contrail cirrus formation
Aircraft wake evolution is classified into four different regimes namely, the jet, vortex,
dissipation and diffusion regimes [Gerz et al., 1998]. The schematic diagram of these
regimes is shown in Figure 2.3 and 2.4 and explained in the following sections.

Figure 2.3 depicts the physical processes in the contrail formation stage.

Figure 2.3: Processes influencing the contrail formation stage. The first stage is jet regime.
Plumes, which comprise exhaust aerosol particles, expand from jet engines, activate into
water droplets, and merge with vortices, forming an inhomogeneous wake. The further
evolution of ice crystals depends largely on vortex regime. The downward motion of the
vortex warms the air, which causes ice crystal sublimation in the lower part of the wake.
Ice crystals present in the upper part of the wake continue to grow by uptake of ice
supersaturated ambient water vapor. From Kärcher [2018].

After aircraft emission, the first development stages of contrails are jet regime in few
seconds [Kleine et al., 2018]. In this regime, the contrail ice crystals nucleate and simul-
taneously, the vortices form and trap the freshly nucleated ice crystals in their cores. Ice
crystals nucleate in contrails when the aircraft emitted hot and humid air mixes with the
ambient cool air if saturation with respect to water is reached locally (so called contrail for-
mation Schmidt-Appleman criterion, Appleman [1953], Schumann [1996]). Then droplets
form by condensation of water vapor on emitted soot particles and entrained ambient
aerosols and subsequently freeze [Bier et al., 2017, Kärcher et al., 2015, Kärcher and Voigt,
2017, Kärcher, 2018, Kleine et al., 2018]. The immediate freezing of the water droplets is
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essential to form persistent contrails because the upper troposphere is not saturated with
respect to water but saturated with respect to ice [Verma and Burkhardt, 2022], which can
allow ice crystals but not water droplets to persist. The number of nucleated ice crystals
in a contrail is subject to the atmospheric state as well as aircraft and fuel parameters.
In the case of contrail formation within natural cirrus, the surrounding ice crystals get
absorbed into the combustion chamber and sublimate. Furthermore, natural ice crystals
mix with the exhaust plume and sublimate as long as the plume is subsaturated. Contrails
may also overlap, merge, and interact with natural cirrus [Duda et al., 2001, Sanz-Morère
et al., 2021]. Contrail cirrus primarily differs from natural cirrus by their larger ice num-
ber concentrations (N) [Heymsfield et al., 2010b, Voigt et al., 2010, 2017]. Consequently,
microphysical process rates, which control their life cycle and radiative effects can be very
different to those in natural cirrus, and are dependent on soot number emissions [Bier
et al., 2017].

Figure 2.4: Classification of aircraft wake evolution into four regimes. From Paoli and
Shariff [2016].

Following the jet regime, the vortex regime starts, where the vortices propagate
downward depending on atmospheric stability and aircraft properties. The density contrast
between the air in the vortex and the surrounding air creates vorticity that is shed upwards,
so called the secondary wake [Gerz et al., 1998]. The secondary wake stays close to the
flight level. The primary wake often descends a few hundred meters [Kleine et al., 2018].
Many ice crystals within the primary wake sublimate due to adiabatic heating and the
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associated decrease in RHi, while the ice crystals in the secondary wake are more likely to
survive [Unterstrasser, 2016]. Survival of the ice crystals in the vortex regime depends on
atmospheric temperature, humidity, number of nucleated ice crystals and the maximum
vertical displacement of the vortices. After the vortex descent, most of the air that was
forced downwards rises again by the temperature difference, creating a vertically extended
contrail. Recent global climate model simulations show that higher temperatures and lower
relative humidities lead to significantly decreased ice crystal numbers during the vortex
phase [Bier and Burkhardt, 2022]. Initial contrail ice crystal numbers per fuel mass are on
average 50%–65% decreased relative to the soot number emission index in the extratropics
and more in tropics. In the extratropics, this is mainly caused by a high ice crystal loss
during the vortex phase and in the (sub)tropics and at lower flight levels by decreased ice
nucleation.

In the dissipation regime, vortices collapse and release the ice crystals. The surviving
ice crystals grow by uptake of the available water vapor if ambient air is ice supersatu-
rated, causing an increase in the ice water content. The growth and the sizes of the ice
crystals are dependent on the ambient RHi. In the case of contrail formation within cirrus,
cirrus ice crystals and contrail ice crystals compete for the available water vapor. Not the
aircraft dynamic controls the aircraft wake evolution but atmospheric variability controls
the further mixing and diffusion of the contrail plume. The diffusion regime may last for a
few hours [Paoli and Shariff, 2016]. Atmospheric turbulence plays an important role in the
mixing, spreading and diffusion of the contrail plume. The vertical wind shear causes an
increase in the further spreading of the contrail [Bock and Burkhardt, 2016a, Burkhardt
and Kärcher, 2009, Jensen et al., 1998, Schumann et al., 1998, 2017].

Contrail cirrus persistence
The spreading stage makes contrail geometrically and optically thin. In saturated or sub-
saturated air, the contrail cover and optical depth decreases. Spreading in the highly
supersaturated air causes the growth of contrail ice crystals and an increase of the con-
trail cover. During the diffusion regime, the ambient RHi also plays a critical role in
developing young contrails. The contrail ice particles may sublimate or grow dependent
on the atmospheric conditions, mainly ice supersaturation [Burkhardt and Kärcher, 2011,
Bier et al., 2017, Schumann et al., 2017]. For example, contrail ice crystals persist and
grow further if they spread in ice supersaturated air and sublimate if the air becomes sub-
saturated or ice crystals sediment into subsaturated air [Paoli and Shariff, 2016]. However,
in the presence of natural cirrus ice crystals, the development of the contrail is affected
because contrail ice crystals may not grow as large as they can grow in the absence of cirrus
ice crystals since contrail and cirrus ice crystals compete for available water vapor. On the
other hand, the development of cirrus is also affected due to the presence of contrail ice
crystals which will lead to a change in sedimentation rate and ice water distribution in the
cirrus [Tesche et al., 2016]. Natural cirrus locally optically thicken by embedded contrails
[Tesche et al., 2016], and contrails can also cause a decrease in natural cloudiness [Verma
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and Burkhardt, 2022].

2.2.3 Contrail cirrus observations

Macrophysical and microphysical properties
To study cirrus clouds from space it is critical to distinguish the cirrus clouds from the
surrounding cirrus-free areas i.e. to derive a cirrus cloud flag that classifies each observed
scene as cirrus-free or cirrus-covered. The cloud top height (CTH) describes the distance
between the Earth’s surface and the top of the cirrus cloud. CTH is an important variable
as it is closely related to the cloud top temperature and hence determines the outgoing
thermal radiation.

As for microphysical properties, the ice optical thickness (IOT) stems from Eq. 2.16
and is defined as the vertically integrated attenuation of electromagnetic radiation due to
scattering and absorption by cloud ice crystals within an atmospheric column ranging from
the surface to the top of atmosphere.

The ice water content (IWC) (in g m−3) measures the mass of ice per unit volume of
air

IWC =
∫

ρiceV (r)n(r) dr (2.22)

where ρice = 917 kg m−3 is the mass density of ice and V (r) and n(r) are the mean
volume and number of cloud ice crystals in the size distribution interval r to r + dr of the
particle maximum dimension per unit volume of air. Hence,

Vice =
∫

V (r)n(r) dr (2.23)

is the total volume of ice per unit volume of air (in m3m−3). IWC is, in contrast to IOT,
a physical quantity, that can be directly used for comparisons with climate and weather
models. The effective radius (Reff , in m) describes the area weighted mean radius for an
ensemble of cloud particles [Hansen and Travis, 1974]. For spherical cloud particles it is
defined as the ratio

Reff =
∫

rπr2n(r) dr∫
πr2n(r) dr

(2.24)

Several definitions of Reff for an ensemble of non-spherical ice crystals have been presented
in the literature [e.g., McFarquhar and Heymsfield, 1998] for an inter comparison. In this
study the following definition is used

Reff = 3Vice

4Aice

(2.25)

where Aice is the total projected area of ice per unit volume of air. The fraction 3/4 is
introduced for consistency with Eq. 2.24 for spherical particles. Following Eqs. 2.22 and
2.23 the total volume of ice per unit volume of air can be expressed in terms of IWC

Vice = IWC

ρice

(2.26)
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Similarly, the total projected area of ice per unit volume of air (in m2m−3) can be expressed
in terms of the (volume) extinction coefficient βext

Aice =
∫

A(r)n(r) dr =
∫ σext(r)

Qext

n(r) dr = βext

Qext

(2.27)

where A(r) is the mean projected area of cloud ice crystals in the size interval r to r + dr
per unit volume of air and Qext is the (constant) extinction efficiency. Using Eqs. 2.26 and
2.27, Eq. 2.25 can be rewritten as

Reff = 3QextIWC

4ρiceβext

(2.28)

Eq. 2.28 is used to estimate the Reff of cloud ice crystals by Jensen et al. [2009], Hong
and Liu [2015].

To study the macrophysical and microphysical properties of a contrail cirrus outbreak,
in situ measurements and satellite remote sensing technique are used. In the past few years,
various measurement campaigns have been performed to study differences between natural
cirrus and contrail cirrus microphysical properties, e.g. International Cirrus Experiment
(ICE) 1989 [Gayet et al., 1996], CONtrail and Cirrus ExpeRimenT (CONCERT) 2008
[Voigt et al., 2010], and ML-Cirrus 2014 [Voigt et al., 2017]. Schumann et al. [2017] give a
comprehensive summary on contrail measurements from campaigns and from satellite over
the individual contrail regimes. The ice crystal number concentration N in the few minutes
old contrails is comparably 2 to 3 orders of magnitude higher than that in the surrounding
cirrus cloud because of the different ice nucleation mechanisms in the contrail cirrus and
natural cirrus clouds [Voigt et al., 2010, 2011, Bräuer et al., 2021]. The high soot emission
from conventional kerosene fuel causes a high number concentration of ice crystals in the
young contrails [Kleine et al., 2018]. The mean diameters of ice crystals in the few minutes
old contrails are below 10 µm; on the other hand, the mean diameter of the aged natural
cirrus ice crystals is comparably larger (100 µm) [Schröder et al., 2002, Schumann et al.,
2017, Voigt et al., 2017]. Aged contrail cirrus can be difficult to distinguish from natural
cirrus in terms of the number concentration as well as size of the ice crystals [Voigt et al.,
2017].

From the fields of satellite observations, both natural cirrus and contrail cirrus are dis-
tinguishable on thermal infrared images, such as channels 10.8 µm and 12.0 µm of SEVIRI
because of their relatively low brightness temperature with regard to other elements in the
image. Due to smaller crystal sizes, especially young contrails [Gayet et al., 1996] tend to
show higher transmissivity in channel 10.8 µm than in channel 12.0 µm compared to natural
cirrus. By creating the brightness temperature difference (BTD) 10.8-12.0 µm, contrails
are more easily detectable [Mannstein et al., 1999, 2010]. Contrails are also detected using
their linear structures. Noteworthy are the attempts of Meinert et al. [1997] to train neural
networks for contrail detection. The great number of samples and neurons needed and the
very long training times made this method unavailable. In recent years there are some new
promising attempts in this area such as Zhang et al. [2018]. For the ABI instrument [Ad-
vanced Baseline Imager; Schmit et al., 2015] aboard GOES-16 and GOES-17 Meijer et al.
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[2022] have developed a contrail detection algorithm using convolutional neural networks.
Following the cloud detection, the CTH, IOT and Reff can also be retrieved from passive
satellite imagers during both day and night using different methods mainly including CO2
slicing [Menzel et al., 2008], and visible and near infrared two channel retrieval [Nakajima
and King, 1990].

Remote sensing of contrail radiative effects
Passive satellite sensors like the imaging radiometers SEVIRI [Schmetz et al., 2002], ABI,
MODIS [Moderate Resolution Imaging Spectroradiometer; King et al., 1992] and AVHRR
(Advanced Very High Resolution Radiometer) measure radiances of thermal radiation emit-
ted by the Earth and reflected solar radiation leaving the Earth–atmosphere system at
TOA. A passive imaging radiometer cannot resolve vertical cloud features and has a lim-
ited sensitivity to thin and sub-visual (visible optical thickness < 0.03) cirrus clouds, but
typically it views an area large enough (by scanning or otherwise) to observe complete
cloud systems.

Imaging radiometers measure the TOA radiances within given wavelength ranges, re-
ferred to as channels or spectral bands and are described by spectral response functions
φλ that indicate the sensitivity of a channel to a given wavelength. Hence, the measured
radiances in the thermal range cannot be described directly with Eq. 2.7, but are instead
given by

L =
∫

φλLλ dλ∫
φλ dλ

=
∫

φλBλTb dλ∫
φλ dλ

(2.29)

where φλ is the spectral response function of a given channel, Bλ is the spectral black
body radiance and the (equivalent black body) brightness temperature Tb represents the
temperature a black body would have in order to emit according to the spectral radiance
Lλ of the observed grey body. For channels in the solar spectrum, the reflectance R can
be calculated, describing the incident solar radiation reflected by the observed object

R = π
∫

φλLλ dλ

cos(ϑ)
∫

φλIλ dλ
= πL

cos(ϑ)I (2.30)

where Iλ is the spectral solar irradiance, I is the solar irradiance received by a given channel
and ϑ is the solar zenith angle.

The solar radiation is partly reflected back to space by the Earth’s surface and atmo-
sphere as reflected solar radiation (RSR), and is partly absorbed by the Earth-atmosphere
system. The absorbed radiation is later re-emitted according to the Earth’s and atmo-
sphere’s temperature and emissivity. Most of the emitted radiation is at longer wave-
lengths, referred to as outgoing longwave radiation (OLR) observed at TOA. Cloud ice
crystals and water droplets absorb thermal radiation and emit it in all directions. The
radiant energy emitted by a cloud out to space depends mainly on its top temperature.
Less thermal radiation reaches TOA if the absorbing cloud is optically thicker, since a
larger fraction of the thermal radiation is emitted back towards the Earth’s surface. The
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stronger radiative contrast to (cirrus) cloud free scenes, so called longwave RF, is given by
the low emission temperature of cloud top, not by the high emission temperature of cloud
bottom. Shortwave RF is not mentioned here but can be inferred.

Atmospheric gases also absorb and emit thermal radiation, with water vapor, CO2, CH4
and O3 being some of the most important absorbers of thermal radiation in the atmosphere.
The absorption by the single molecules strongly depends on wavelength. The thermal
radiation at TOA, reaching a passive imaging radiometer, thus consists of the radiation
directly transmitted from the Earth’s surface and the radiation absorbed and emitted out
to space by clouds, aerosols and atmospheric gases. Hence, different cirrus clouds leave
their unique mark on the TOA radiances observed by an imaging radiometer, depending
primarily on the cirrus cloud temperature (height) and optical properties, but also on
the presence and properties of underlying liquid water clouds, aerosols, atmospheric gas
concentrations and the Earth’s surface properties (temperature, emissivity), which regulate
the thermal radiation emitted by the Earth.

The instantaneous net RF at TOA is the change of the total irradiation under a situation
with cirrus minus the irradiances in the same situation without cirrus. In fact, the SW
component of the cirrus RF RFSWT OA

can be diagnosed as

RFSWT OA
= SW↑no cirrus − SW↑cirrus (2.31)

Notice that SW↑cirrus corresponds to the RSR that can be observed by the satellite.
Similarly, the LW RF RFLWT OA

can be diagnosed from

RFLWT OA
= LW↑no cirrus − LW↑cirrus (2.32)

Again, the cirrus term LW↑cirrus in Eq. 2.32 corresponds to the OLR that can be
computed from satellite observations. The net cirrus RF RFNETT OA

is defined as

RFNETT OA
= RFSWT OA

+ RFLWT OA
(2.33)

Despite the attention and numerous studies on RF and other properties of contrail and
contrail cirrus in the past decades [Mannstein et al., 1999, Minnis et al., 2004, Palikonda
et al., 2005, Atlas et al., 2006, Burkhardt and Kärcher, 2011, Iwabuchi et al., 2012, Duda
et al., 2013, Schumann et al., 2021a], the level of understanding of this particular aspect
of aviation is still classified as low, and the estimation of emitted soot aerosols and cloud
interactions is determined as very low [Lee et al., 2021]. Although the global contrail
cirrus RF value may seem small, the local effect is larger in regions with high contrail
coverage. The contrail cirrus RF increases in the main air traffic corridors over Europe
and the US [Bier and Burkhardt, 2022, Teoh et al., 2023] and contributes significantly
to the anthropogenic RF in these regions. The difficulty in distinguishing natural cirrus
clouds from AIC is one of the roots of large uncertainties in contrail RF [Mannstein and
Schumann, 2005]. Vázquez-Navarro et al. [2015] used a contrail detection algorithm [CDA,
Mannstein et al., 1999] and an automatic contrail tracking algorithm [ACTA, Vazquez-
Navarro et al., 2010] to locate and track the development of contrails. RRUMS [Rapid
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Retrieval of Upwelling irradiance from MSG/SEVIRI; Vázquez-Navarro et al., 2013] and
COCS [Cirrus Optical properties derived from CALIOP and SEVIRI; Kox et al., 2014]
are additionally used to retrieve contrail RF, energy forcing, optical thickness and CTH in
Vázquez-Navarro et al. [2015]. In fact, not many studies have focused on the observation
of the contrail-to-contrail cirrus evolution.

Airborne measurements can provide detailed in situ data sets and lidar profiling, and
geostationary satellite observations are capable of capturing the large spatial scale and
high temporal resolution of contrail cirrus evolution. Thus it would also be a good option
to combine knowledge from in situ measurements and satellite observations to identify the
differences between natural cirrus and contrail cirrus and to study the diurnal cycle of the
contrail cirrus outbreak. This study will be shown in Chapter 4.

2.3 Ice supersaturated regions

2.3.1 Physical definitions
Ice supersaturation is an important atmospheric condition for the formation of cirrus clouds
and in particular for the persistence of cirrus and contrail ice crystals [Burkhardt and
Kärcher, 2011, Gierens and Brinkop, 2012, Heymsfield et al., 2010a]. Therefore, it is es-
sential to understand ice supersaturation conditions and their probability of occurrence
in high altitudes. Ice supersaturated regions are formed when water vapor exceeds its
saturation vapor pressure value, e.g. due to an ascending motion of air leading to adi-
abatic cooling or injection of water vapor into the air. Ice saturation vapor pressure is
the thermodynamic equilibrium state between water vapor and ice (also called satura-
tion vapor pressure with respect to ice) [Pruppacher and Klett, 2010]. The saturation
vapor pressure over ice increases nonlinearly with increasing temperature according to the
Clausius-Clapeyron equation. However, the atmosphere is not always in thermodynamic
equilibrium state, the concentration of water vapor can exceed its saturation vapor pres-
sure and that is called supersaturation with respect to ice. Often, it is seen that upper
tropospheric air is supersaturated with respect to ice and subsaturated with respect to
water because the saturation vapor pressure over ice is smaller than the saturation vapor
pressure over water. The ice saturation ratio, or in another word, RHi, is defined as PH2O

P ∗
H2O

,
where PH2O is the partial vapor pressure of water vapor and P ∗

H2O is the saturation vapor
pressure with respect to ice. Ice supersaturation corresponds to RHi > 100%.

The upper tropospheric air can stay ice supersaturated in the absence of ice crystals
or ice nuclei; otherwise, processes, i.e. ice nucleation in the presence of suitable ice nuclei
and deposition of available water vapor on already existing ice crystals, take place to bring
back the air to the equilibrium state of saturation. However, nucleation of ice crystals is
a complicated process that does not start immediately once saturation with respect to ice
is reached because nucleation of ice crystals needs significantly high ice supersaturation
depending on the nucleation pathway [Gettelman et al., 2010]. Therefore, the ice super-
saturation condition is called a metastable state in contrast to the unstable state. In an
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unstable state, processes, e.g. condensation, evaporation and sublimation, start immedi-
ately to revert back to the equilibrium state. In-cloud subsaturation, where the partial
vapor pressure is smaller than the saturation vapor pressure, is unstable because this state
induces the evaporation of water droplets or sublimation of ice crystals immediately.

2.3.2 Ice supersaturated regions observations
Regular in situ measurements of water vapor started in the late 1990s in Europe under
the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC)
and the successor In-Service Aircraft for Global Observing System (IAGOS) programs, in
which atmospheric water vapor was regularly measured from research quality hygrometers
installed on commercial aircraft. The MOZAIC and IAGOS database showed that ISSRs
often occur in the UTLS [Gierens and Spichtinger, 2000]. The vertical thickness of ice su-
persaturated layers is on average shallower than 500 m, but in very rare situations the ice
supersaturated layers can be thicker, up to 3000 m [Dickson et al., 2010]. The horizontal
extension of ISSRs is difficult to estimate. However, Gierens and Spichtinger [2000] esti-
mated the mean path length of ice supersaturated layers to be 150 km long with a standard
deviation of 250 km. ISSRs may contain optically thin cirrus clouds, with small ice surface
areas that cannot deplete to ambient humidity to reach ice saturation. Also atmospheric
temperature variations strongly influence ISSRs leading to warming or cooling processes.

Figure 2.5: Zonal means of ice supersaturation occurrence frequencies (%) from the Atmo-
spheric InfRared Sounder (AIRS) using RHi > 100%. Plain line: zonal-mean tropopause
(all seasons). Only good quality data used for 7 year statistics in 2003–2009. From Lamquin
et al. [2012].

ISSRs were further observed in different ways, including radiosondes, airborne mea-
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surement campaigns and satellite observations, showing the existence of ISSRs. The global
distribution of ISSRs can be obtained from satellite data. Lamquin et al. [2012] provided
a complete picture of the distribution of ISSRs globally and in the vertical dimension (see
Figure 2.5). For the analysis, the water vapor was observed from AIRS on NASA polar
orbiting AQUA satellite and calibrated using MOZAIC data. The measurements reveal
that a high frequency of ISSRs in the tropics at around 150 hPa pressure level within the
tropical tropopause layer (TTL). Ice supersaturation occurs at lower altitudes (increase in
pressure) in the extratropics. Ice supersaturation frequency is most significant in the UT
and decreases strongly in the stratosphere, due to water vapor and temperature gradients.
Since the tropopause slopes downwards when moving towards the poles, high frequencies
of ice supersaturation above 200 hPa are confined to the tropics. ISSRs in the atmospheric
pressure layer between 200 hPa to 250 hPa are found along the storm tracks in the midlat-
itudes, and below 250 hPa, ISSRs are located in the polar regions.

2.3.3 Ice supersaturated regions parameterizations in NWP
A state of ice supersaturation is observed quite often in the UT, both in clear air [e.g.,
Petzold et al., 2020] and within cirrus clouds [Dekoutsidis et al., 2023, Ovarlez et al., 2002,
Spichtinger et al., 2004]. Although this state has been first reported at the beginning of the
last century, it was ignored in numerical weather prediction (NWP) until the end of the 20th
century, when it was first introduced into the U.K. Meteorological Office Unified Model
[Wilson and Ballard, 1999] and later into the integrated forecast system (IFS) of ECMWF
[Tompkins et al., 2007]. However, NWP models that incorporate ice supersaturation in
their cirrus parameterizations, often assume (at least, one-moment parameterizations with
cloud fraction) that supersaturation relaxes to saturation in the cloudy part of a grid box as
soon as cloud formation occurs. Hence, this procedure that is termed saturation adjustment
[McDonald, 1963], ignores ice supersaturation within cirrus clouds. Subsequently, it leads
to underestimation of the occurrence frequency and the degree of ice supersaturation in
upper-tropospheric layers [Gierens et al., 2020] and this turns out to be a problem for the
forecasting of persistent contrails, which form and persist in ice supersaturated air.

Reutter et al. [2020] use IAGOS in situ water vapor measurements over the North At-
lantic Region to validate 10-year ERA-Interim reanalysis (see Figure 2.6). The agreement
of ISSRs between reanalysis and measurements is decreasing with increasing height, and an
underestimation of ISSRs from ERA-Interim is exhibited. One reason might be the data
assimilation of measurements into the reanalysis data set. The operational radiosondes
using capacity sensors show large deviations for temperatures below -40 ℃ or very low ab-
solute humidity [Spichtinger et al., 2003]. Therefore, the response time is increasing in the
UT to the tropopause layer due to the decreasing temperature. Further up in the strato-
sphere, temperatures are increasing again. However, the absolute humidity is decreasing
with height, leading to an increased response time.

Sperber and Gierens [2023] concluded two reasons for underestimation of supersatura-
tion in the current NWP parameterisations with saturation adjustment including decrease
of supersaturation right at cloud initiation and ignorance of the equilibrium supersatura-
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tion later. Thus, the in-cloud humidity as a new prognostic variable is introduced and the
humidity distribution in newly generated cloud parts from a stochastic box model is de-
rived. The new ice cloud scheme overcomes saturation adjustment by explicitly modelling
the decay of the in-cloud humidity after nucleation and even in aged cirrus if temperature
keeps decreasing, thereby allowing for both in-cloud super and subsaturation.

Figure 2.6: Vertical profiles of RHi (%) for IAGOS (blue) and ERA (red) during 1 January
2000 to 31 December 2009 over the NAR. Figure from Reutter et al. [2020].

Figure 2.7: Radiative effects of the enhanced mixing simulation (compared to the reference
simulation) for water vapor (left) at the TOA and (right) zonally averaged. The numerical
values in the left panel are TOA annual global means for 2003. From Riese et al. [2012].

To determine the sensitivity of water vapor radiative effects to the uncertainties of
water vapor amount and distribution, Riese et al. [2012] made two simulations that only
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differ in the value of the atmospheric mixing parameter λC (critical Lyapunov exponent),
a reference simulation with a value of λC = 1.5 day−1 and an enhanced mixing simulation
with a value of λC = 1.2 day−1. As a result of enhanced mixing, an increase of water vapor
concentrations in the extra-tropical lowermost stratosphere (LMS) of 10 to 15% is found.
This increase can mainly be attributed to differences in the transport of air masses from
the upper tropical troposphere into the extra-tropical LMS. Figure 2.7 illustrates that the
radiative effects of water vapor with steep gradients in the UTLS are very sensitive to
uncertainties in the water vapor concentrations. For water vapor, the largest increase of
radiative effect is found at equatorial latitudes with values reaching about 1.5 Wm−2. The
globally averaged effect from the change of water vapor at TOA is 0.72 Wm−2.

2.3.4 Influential meteorological conditions
The physical processes behind the formation of ice supersaturation are illustrated here, as
their careful treatment is the prerequisite of a realistic description of the ice supersaturation
in the UTLS region inside NWP models [Reutter et al., 2020].

Large scale ISSRs often form when water vapor is carried to upper altitudes through a
large-scale rising motion of the air and the accompanying adiabatic cooling; this increases
the saturation ratio with respect to ice [Gierens and Brinkop, 2012]. Water is transported
into the upper troposphere also through high reaching convective events in the tropics.
Gravity waves connected with convection and the slowly rising air in the TTL are respon-
sible for the formation of ISSRs in high altitudes. In the extratropics, water vapor reaches
the upper troposphere often through vertical transport connected with the synoptic-scale
baroclinic instability where optically thick natural cirrus are often observed [Carlson, 1993].
These ISSRs are suitable for persistent contrails. Then contrail cirrus outbreaks are often
seen in these regions when air-traffic density is high [Bier et al., 2017, Carleton et al.,
2008]. ISSRs are found along the storm track zones where extratropical cyclones form in
mid-latitudes. Also, ISSRs are formed in anti-cyclonic flow patterns.

ISSRs can form in cloud-free air as well as within cirrus clouds. High ice supersatura-
tion, below the homogeneous freezing threshold, can exist in the cirrus if the ice crystal
number concentration is low [Dekoutsidis et al., 2023]. Ice supersaturation within cir-
rus decreases with an increase of the ice number concentration and the ice crystal radius
[Korolev and Mazin, 2003]. Cirrus with low ice number concentration consumes available
water vapor slowly. Therefore, high ice supersaturation can exist for an extended period
of time, specifically in cold cirrus below a temperature of 205 K, since at this temperature,
diffusion of water vapor is relatively slow [Krämer et al., 2009]. Recent measurements by
Li et al. [2023b] suggest that a significant fraction of clouds may also be subsaturated with
respect to ice.

Small scale dynamics and turbulence influence the water vapor and RHi distribution
in clouds or contrails [Kaufmann et al., 2016, 2018, Li et al., 2023b]. It is not possible
to forecast ISSRs using dynamical states alone [Gierens and Brinkop, 2012], even with
the combination of dynamical fields including divergence, relative vorticity, and vertical
velocity. The history of an air parcel especially in thermodynamic states for example
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humidity and temperature has to be known as well.

2.4 Artificial neural networks
Artificial neural networks (ANN) are a branch of machine learning models. An ANN
consists of a number of neurons that exchange information with each other, in a similar
manner as biological neural networks in human brains. By assigning each neuron-neuron
connection a tunable weight, the ANN has the ability to learn patterns and approximate
functions. The goal of an ANN is to derive a vector of unknown output variables according
to a vector of known input data. ANNs can be used for classification as well as function
approximation. ANNs are applied in a variety of fields, and used frequently in the context
of atmospheric sciences [Gardner and Dorling, 1998, Hsieh and Tang, 1998], Earth system
sciences [Reichstein et al., 2019] and remote sensing [Mayer et al., 2023, Piontek et al.,
2021b,a, Strandgren et al., 2017a]. This tool is applied in Chapter 5 to the novel prediction
of humidity and is thus introduced in the following.

2.4.1 Multilayer perceptron
In this study a multilayer perceptron (MLP), a feed-forward ANN, is used. An MLP
consists of at least three layers; (1) one input layer, (2) one output layer and (3) one
or more hidden layers. The input layer holds as many neurons as input data and the
output layer as many neurons as desired output quantities. The hidden layer(s) hold an
arbitrary number of additional neurons distributed over an arbitrary number of hidden
layers. Neurons receive the weighted sum of the results of the previous layer’s neurons and
use it as the argument of an activation function; the result is forwarded to the following
layer (see Figure 2.8). All connections between the neurons within the MLP are in the
forward direction. Linear functions might be applied by single neurons (e.g., in the output
layer for the approximation of a continuous function). The non-linear activation functions
allow the ANN to solve complex problems with a limited number of neurons. The rectifier
or the rectified linear unit (ReLU) activation function [Agarap, 2018], the most widely used
non-linear activation function, is give as

f(x) = x+

= max(0, x)

= x + |x|
2

=
{

x if x > 0
0 otherwise

(2.34)

This function shows a high computational efficiency and is exploited in the input and
hidden layers for building the humidity prediction model in Chapter 5.
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Figure 2.8: The structure of a multilayer perceptron (MLP) with a form of a feed-forward
artificial neural network (ANN) used in this study. Figure updated from Strandgren et al.
[2017a].

2.4.2 Training
The use of non-linear activation functions recommends the transformation of the original
data for the normalization of the input. That is, for a data set with multiple inputs, it
generally has different scales for each of the features. The same considerations can be made
for data sets with multiple targets. This situation could give rise to greater influence in the
final results for some of the inputs, with an imbalance not due to the intrinsic nature of
the data but simply to their original measurement scales. Normalizing all features in the
same range avoids this type of problem. Another reason for input normalization is related
to the gradient problem which will be introduced in the next paragraphs. The re-scaling
of the input within small ranges gives rise to even small weight values in general, and this
makes the output of the units of the network near the saturation regions of the activation
functions less likely. Furthermore, it allows to set the initial range of variability of the
weights in very narrow intervals, typically [-1:1].

The central step in the creation of an ANN is the iterative training. After setting up
the ANN’s architecture, the weights are randomly initialized. Then one uses a training
data set consisting of samples of input data and the corresponding true output values for
supervised learning. The ANN is applied to the input data and the resulting outputs are
compared to the target output to calculate the difference in form of a loss function E. All
weights are now modified in order to reduce the loss function. The resulting ANN is again
applied to the training input data and this procedure is repeated until the loss function is
sufficiently small, i.e, a point close to the global minimum is reached [Gardner and Dorling,
1998]. In practice, this procedure is complicated, and can be trapped in local minima, at
saddle points, on plateaus, or distracted by exploding gradients. The loss function E can
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be an arbitrary error function, e.g., the mean squared error. A gradient descent algorithm
is applied to adjust all weights such that the loss function is reduced.

ωt = ωt−1 − η
δE

δωt−1
(2.35)

where ωt and ωt−1 are the old and new values for a weight connecting the two neurons.
η δE

δωt−1
describes how much a change in ωt−1 affects the total error. To adjust how aggressive

the weight updates should be, a learning rate η is multiplied with δE
δωt−1

before the weight
update. A larger learning rate means larger changes in the weights and thus a faster
training. However, it may prohibit convergence of the loss function. With a small learning
rate, the total error will not oscillate around a minimum solution, but the training is slow
and the risk of getting stuck in local minima is higher. The training speed can also be
increased by using more elaborate updating rules. Momentum denotes a weighted sum of
the current and previous error gradients. By adding the momentum to the last update of
ωt−1, possible oscillations in the iterative search for the minimum error are reduced and a
larger learning rate can be considered.

To find the minimum total error between the estimated and expected output vectors for
a complex problem and tune the weights accordingly, a large training data set is required.
Training a MLP is an iterative process, where each training example is transmitted to the
ANN multiple times until a satisfying result has been achieved. In a common ANN, after
one epoch when all examples contained in the training data set have been transmitted to the
ANN, the training completes and the weights are updated every time in one iteration. The
amount of iterations required for one epoch therefore depends on the amount of training
examples the ANN is given for every update of the weights, i.e. the batch size. With
mini-batch gradient descent an intermediate number of training examples is used for each
weight update (1 < batch size < N, where N is the total number of training examples).

A common phenomenon during training is the occurrence of overfitting, i.e. the ANN
starts to learn the inherent noise of the training data set and, as a result, performs worse
for new samples. Thus, the available data is usually split into a training, a validation
and a test data set. The training data is used for the adjustment of the ANN, whereas
the validation data set is regularly evaluated during the training. After an initial phase
of decreasing loss functions for both training and validation data, overfitting might lead
to a further decay of training loss with a simultaneous increase in validation loss. Early
stopping describes a strategy to stop training as soon as this point is reached. However, as
the loss function is usually not monotonically decreasing but might exhibit numerous local
minima, the definition of a stopping criterion is not straightforward. Since the validation
data set is now part of this extended training algorithm, the final performance of the ANN
is evaluated on the independent test data set.

2.4.3 Model interpretation
Interpretation of the trained ANNs is commonly the quantification of the importance of
single weights. First, the absolute value of a weight can be assumed to relate to its relevance
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for the model. Second, the impact on the loss function can be considered when removing a
weight, which corresponds to setting a weight to zero. Third, the change of the loss function
can be investigated when slightly varying the weight. In principle, these methods can also
be used to investigate the importance of individual input features of an ANN. For example,
Strandgren et al. [2017b], Piontek et al. [2021a] evaluated the weights connected to an input
neuron to deduce its relevance, whereas Li et al. [2022, 2023a] applied the pruning method
to find the relative importance and marginal contributions of multiple factors to observed
global trends. These methods have also been applied for pruning, i.e. the significance of
the weights of a large, trained ANN is calculated and the least important connections are
removed to obtain a smaller structure with similar performance. Alternatively, complete
neurons can be removed based on the impact of their presence on the loss function [Bishop.,
1995]. ANN will be used in Chapter 5 to improve the humidity forecast.
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Chapter 3

Instrumentation, data and methods

The text in Sects. 3.1, 3.2.1, and 3.4 in this chapter have been published in Wang et al.
[2023].

In this chapter the remote sensing and airborne instruments, data, and methods or
models developed by other used to investigate the microphysical properties and radiative
effects of the contrail cirrus outbreak (Chapter 4) and to improve the relative humidity
prediction for the contrail cirrus climate impact assessment (Chapter 5 and 6) are intro-
duced.

3.1 Satellite remote sensing from MSG/SEVIRI
SEVIRI is a passive imaging radiometer operating aboard the geostationary Meteosat
Second Generation MSG satellites since 2004. SEVIRI is the main source of input data
for CiPS and RRUMS for the investigation in Chapter 4.

The MSG spacecraft is spinning around an axis in north-south direction, thereby mea-
suring radiation coming from the Earth along lines in the east-west direction. SEVIRI
measures the up-welling radiation within 12 channels. Three bands are in the visible and
near-infrared spectrum and are centered at 0.6 µm, 0.8 µm and 1.6 µm. Eight bands are in
the thermal infrared and are centered at 3.9 µm, 6.2 µm, 7.3 µm, 8.7 µm, 9.7 µm, 10.8 µm,
12 µm and 13.4 µm. One channel is a high resolution visible (HRV) broadband, covering
roughly 0.4 to 1.1 µm and half of the SEVIRI disk at each revolution. The operational
MSG satellite is positioned ca. 35800 km above the Earth’s Equator at 0°E giving SEVIRI
an excellent view of the Earth from its remote location, with a spatial coverage from ap-
prox. 80°W to 80°E and 80° S to 80° N. As shown in Figure 3.1, the HRV channel has a
limited coverage and includes the European and most of the African continent. The spatial
sampling of SEVIRI is 3×3 km2 at nadir (1×1 km2 for the HRV channel) which increases
to approx. 3.5×5 km2 on average over Europe [Schmetz et al., 2002]. The MSG satellites
provide observations of the Earth disk every 15 min, and the temporal resolution can be
increased to 5 min using the rapid-scan mode.

Four MSG satellites have been launched, named Meteosat-8 to -11 or alternatively



34 3. Instrumentation, data and methods

Figure 3.1: Left: coverage with SEVIRI on MSG, in its nominal position at 0° lon, for a
repeat cycle of 15 min for channels except from the HRV. The full disk image has 3712×3712
pixels. Right: the HRV covers only half of the earth in the E-W direction with 11136×5568
pixels; however, the area of imaging can be selected. Figure adapted from Schmetz et al.
[2002].

MSG1 to 4. The current main operational satellite MSG4 is located at 0°E with a backup
MSG2 at 3.5°E. MSG3 operates at 9.5°E in rapid-scan mode, covering only the upper
third of the SEVIRI disk (including Northern Africa and Europe). MSG1 was moved to
41.5°E to cover the Indian Ocean. MSG-3/4 / Meteosat-10/11 observations are used for
this study.

3.1.1 CiPS
CiPS (Cirrus Properties from SEVIRI) detects cirrus with their transparency information
and retrieves the corresponding CTH, IOT, and ice water path [Strandgren et al., 2017a].
It consists of four ANNs trained using SEVIRI thermal observations, CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations) cloud products, and ECMWF
ERA5 surface temperature and auxiliary data. CiPS has been especially developed for thin
cirrus and validated against CALIPSO. CiPS detects 20%, 70% and 85% of the ice clouds
with an IOT of 0.01, 0.1 and 0.2 respectively. For IOT between 0.35 and 1.8 CiPS has a
mean absolute deviation smaller than 50%. This value increases for IOT between 0.07 and
0.35. For CTHs larger than approx. 8 km, CTH has an absolute percentage error of 10%,
with underestimation for CTH > 10 km at 50°N and overestimation for CTH < 10 km at
the same latitude. An example is shown in Figure 4.1.

3.1.2 GERB and RRUMS
The GERB (Geostationary Earth Radiation Budget) instrument measures broadband solar
and thermal components which are subsequently converted to outgoing and reflected fluxes
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considering the cloud properties and surface type detected by SEVIRI [Harries et al.,
2005]. GERB’s sampling distance is larger than that of SEVIRI with a spatial resolution
of 44.6 km×39.3 km but the same image repeat cycle of 15 min. During the processing, the
finer spatial resolution of the SEVIRI data is used to improve the original GERB resolution
and results in GERB products for 3×3 SEVIRI pixels. In general, the GERB SW and LW
fluxes are found to be 7.5% higher and 1.3% lower respectively, compared to products from
the Clouds and the Earth’s Radiant Energy System (CERES), whose data records are from
polar orbiting satellites [Wielicki et al., 1996]. The bias of CERES is estimated to be 1%
and 0.5% for OLR and RSR, respectively.

Based on a linear regression and a neural network, an algorithm named RRUMS (Rapid
Retrieval of Upwelling Irradiances from MSG/SEVIRI) was also developed, which estimates
OLR and RSR at TOA from SEVIRI at pixel level. RRUMS shows excellent agreement
with OLR from CERES within 1% and a systematic overestimation of RSR from CERES
or GERB of 5% to 10% in the worst cases under high viewing angles [Vázquez-Navarro
et al., 2013].

3.2 Airborne measurements

3.2.1 In situ and lidar instruments aboard HALO
The in situ cirrus measurements used in this study have been performed by Tina Jurkat-
Witschas, the RHi data were evaluated by Stefan Kaufmann, the NOy data by Helmut
Ziereis and the lidar data were measured by Silke Groß and Martin Wirth.

During ML-CIRRUS, the German research aircraft HALO was equipped with a com-
prehensive suite of novel particle measurement sondes, and obtained a broad data set
of microphysical properties of contrail cirrus and natural cirrus for process studies and
climatological analyses. Ice number concentrations N , Reff , size distributions, IWC or
liquid water content (LWC) and extinction are derived from measurements of CAS-DPOL
(Cloud and Aerosol Spectrometer with Detector for Polarization) for particles from 3 to
50 µm and CIP (Cloud Imaging Probe) for the size range of 15 to 960 µm (diameter as
the maximum dimension). CAS-DPOL measures the forward scattered light of particles
when they pass through a laser beam [Baumgardner et al., 2011]. The uncertainty of the
particle size measurements is ±16% [Kleine et al., 2018] for the lower size range and can
be up to ±50% for Reff , if the shape of the particles is not known. This translates into
an error of up to ±100% for the IWC derived from scattering cloud probes [Baumgardner
et al., 2017]. Using 64-element linear photodiode arrays, the CIP acquires two-dimensional
shadow images of particles [de Reus et al., 2009]. The size resolution is 15 µm with the
uncertainty decreasing considerably with diameter, reaching ±15 µm when particles are
larger than 50 µm. N from CAS-DPOL, denoted by NCAS in the following, and from CIP
(NCIP ) are also combined to an overall N between 10−4 and 102 cm−3. Validation of the
measurements has been performed taking atmospheric and cloud chamber measurements
into account [Braga et al., 2017a,b].
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As for ambient conditions, the AIMS (Atmospheric Ionization Mass Spectrometer, Ju-
rkat et al. 2011, Kaufmann et al. 2016) was applied to measure water vapor concentration
in ambient air using a backward heated inlet. The range of detection is between 1 and
500 ppm with an overall accuracy from 7% to 10%. Static pressure and temperature, mea-
sured by the BAHAMAS (Basis HALO Measurement and Sensor System, Krautstrunk
and Giez 2012) with an accuracy of 0.3 hPa and 0.5 K, were used to convert water vapor
concentration to RHi with an uncertainty of 10% to 20% [Kaufmann et al., 2018]. During
the mission, NO and the sum of all reactive nitrogen species (NOy) were measured using
the AENEAS (AtmosphEric Nitrogen oxides mEAsuring System) instrument. This dual
channel instrument is based on the well-established chemiluminescence technique combined
with catalytic conversion of the NOy components. It has been regularly operated on HALO
during several missions (e.g., Ziereis et al. 2022). A detector identical in construction has
also been operated on a commercial aircraft as part of IAGOS-CARIBIC [Stratmann et al.,
2016]. The statistical detection limit is about 7 pmol/mol for NO. The overall uncertainty
depends on the ambient concentration of NO and ranges from about 8 to 6% for volume
mixing ratios between about 1 and 0.5 nmol/mol. The time constant of the instrument for
measurements in the upper troposphere is of the order of 1 s. The time offsets of NO have
been shifted about 2-3 seconds based on ice number.

Backscatter profiles of clouds and aerosols were acquired by the lidar system WALES
(Water vapor Lidar Experiment in Space, Wirth et al. 2009) at the wavelengths of 532
and 1064 nm. In this study backscatter is used to extract information about the cir-
rus cloud structures, such as CTH, geometrical depth and others. WALES also provides
two-dimensional measurements of the water vapor mixing ratio and aerosol particle linear
depolarization ratio. The backscatter ratio and aerosol depolarization (perpendicular to
parallel) are used to create a cloud mask, which helps to discriminate for ice clouds. For
these clouds the RHi is calculated from the measured water vapor mixing ratio and col-
located model temperatures from ECMWF ERA5 reanalysis data. This instrument and
method have also been applied by Groß et al. [2014] and Urbanek et al. [2018], who found
that the lidar measurements were accurate when compared with in situ data. The statis-
tical error in the retrieval of water vapor by WALES is estimated to be about 5% [Kiemle
et al., 2008] and the ECMWF temperatures induce an error of around 10-15% in the final
RHi values [Groß et al., 2014].

3.2.2 Water vapor measurements from IAGOS
The European Research Infrastructure IAGOS provides long-term in-situ measurements in
the UTLS region. The IAGOS core component, successor of the MOZAIC part [Petzold
et al., 2015], comprises the implementation and the operation of autonomous instruments
installed on long-range aircraft of internationally operating airlines for continuous, global-
scale and daily measurements of reactive gases and long-lived greenhouse gases (e.g. CO,
CO2, CH4 and water vapor), important chemically active trace gases (e.g. O3), as well as
aerosol, dust and cloud particles [Filges et al., 2015]. Especially in the UTLS region, these
measurements are very valuable as most flight tracks are situated in heights between 9 to
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13 km, depending on the actual weather conditions, seasons and geographic regions.
Starting from August 1994 more than 60,000 flights have been performed, including

data from the IAGOS predecessor MOZAIC (August 1994 to December 2014) and data
from the IAGOS project starting in July 2011 until 2020. It is obvious that the global
data distribution is not uniform in every region. The subset covering the NAR shows the
highest coverage of flights. Thus, the 10-year RHi measurements from 2000 to 2009 over
the NAR in Figure 3.2 in Reutter et al. [2020] are used as an example to illustrate the
water vapor measurements from IAGOS. RHi depends on both temperature and available
water vapor. Hence, RHi is a convolution of both variables. In the troposphere, up to
the tropopause layer, the statistics cover the whole range of saturation values until 200%.
Overall, 50% of the data in the upper troposphere are situated between 50% and 100% RHi.
The highest median values are found in the highest troposphere. In the tropopause layer,
still a significant amount of data is exceeding values of RHi > 100%. In the stratospheric
layers, the median of the RHi values is decreasing strongly. However, ice supersaturation
is still possible, especially in the lowest stratospheric layer [Kaufmann et al., 2018, Müller
et al., 2015].

Figure 3.2: Cumulative distribution of RHi for every height level in the IAGOS (a) and
ERA (b) data sets. The vertical blue line denotes saturation with respect to ice. From
Reutter et al. [2020].

In contrast to the combination of a frost point hygrometer and a photoacoustic hygrom-
eter used for Civil Aircraft for the Regular Investigation of the atmosphere Based on an
Instrument Container (CARIBIC), IAGOS uses a capacitive sensor, which shows a worse
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precision and uncertainty for very low water vapor volume mixing ratios. Therefore, the
uncertainties in volume mixing ratios of water vapor are large in the lower stratosphere
and may explain the more wet stratospheric values compared to CARIBIC [Petzold et al.,
2020].

In my study the NAR area is also focused on. For the establishment of humidity predic-
tion models based on ANN, this study profits from the high-resolution IAGOS measured
values than ERA5 data. The geographic position of the airplane, the time, data quality
flags, ambient pressure and temperature [Berkes et al., 2017], water vapor volume mixing
ratio and RHi data set from IAGOS in the year 2020 are collected as the output of the
ANN model training, and collocated with ECMWF ERA5 (see Chapter 6), which works
as the input, accordingly.

3.3 Thermodynamic conditions and dynamical states
from ERA5

ERA5, the evolution of the ERA-Interim reanalysis [Dee et al., 2011], is the fifth generation
ECMWF reanalysis for the global climate and weather [Hersbach et al., 2020]. The data
assimilation combines a previous forecast (12 hours before the given time at ECMWF) with
newly available observations in an optimal way to produce a new best estimate of the state
of the atmosphere. Then the analysis data is issued as an updated and improved forecast.
Reanalysis works in the same way, but at reduced resolution to allow for the provision of
a data set spanning back several decades. ERA5 is updated daily with a latency of about
5 days.

ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and
land-surface quantities. Data is available from 1940 onwards. These quantities have been
regridded to a regular lat-lon grid of 0.25 degrees for the reanalysis (0.5 degree for ocean
waves). Four main subsets refer to hourly and monthly products, both on pressure levels
(upper air fields) and model levels. In this study, the hourly atmospheric parameters on
pressure levels but not dense model levels are used to reduce the size of the data set used
and minimize the computation time. Notably, this might already introduce an uncertainty
as the pressure level values are interpolated from the model levels.

Temperature in the atmosphere can be used to convert water vapor mixing ratio to
specific humidity. Specific cloud ice water content (in kg/kg) is the mass of cloud ice
particles per kilogram of the total mass of moist air. The total mass of moist air is the sum
of the dry air, water vapor, cloud liquid, cloud ice, rain and falling snow. This parameter
is used to distinguish between the cirrus and the cirrus-free regions during the validation
of the humidity prediction model. Relative humidity with respect to ice (in %) is the
water vapor pressure as a percentage of the value at which the air becomes ice saturated
(the value at which the water partial pressure over the ice surface in equilibrium with the
air with respect to evaporation). Specific humidity (in kg/kg) is the mass of water vapor
per kilogram of moist air.
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Geopotential (in m2 s−2) is the potential energy per unit mass of the Earth’s grav-
ity field. The geopotential height is calculated through dividing the geopotential by the
Earth’s gravitational acceleration. The geopotential height plays an important role in
synoptic meteorology, in which field it can be used to identify weather systems such as
cyclones, anticyclones, troughs and ridges. Vertical velocity (in Pa/s in the pressure
based vertical co-ordinate system used by ECMWF) is the speed of air motion in the
upward or downward direction. Here, negative values of vertical velocity indicate upward
motion. Vertical velocity can be useful to understand the large-scale dynamics of the atmo-
sphere, including areas of upward/downward motion and ascent/subsidence. Divergence
(in s−1) represents the horizontal divergence of velocity, indicating the rate at which air
spreads out horizontally from a point per square metre. This parameter is positive when
air is spreading out, or diverging. U/V-component of wind (in m/s) correspond to the
eastward/northward component of the wind, denoting the horizontal speed of air moving
towards the east/north. A negative sign indicates air moving towards the west/south.
Combining these parameters provides the speed and direction of the horizontal wind. Rel-
ative vorticity (in s−1) is a measure of the rotation of air in the horizontal plane around
a vertical axis relative to a fixed point on the Earth’s surface. In weather systems, troughs
are associated with anticlockwise rotation (in the northern hemisphere), and ridges are as-
sociated with clockwise rotation. Potential vorticity in km2 kg−1 s−1 measures the ability
of air to rotate in the atmosphere. Its significant increase above the tropopause makes it
valuable for studies related to the stratosphere and stratosphere-troposphere exchanges.
This parameter is used to distinguish the UT or LS during the validation of the humidity
prediction model.

3.4 The libRadtran radiative transfer model

To calculate broadband solar and thermal irradiances at TOA for ice particles, the sophisti-
cated radiative transfer package libRadtran is used [Mayer and Kylling, 2005, Emde et al.,
2016]. Water and ice clouds are represented in this model in detail and realistically. Op-
tical properties of water droplets are computed using Mie scattering theory and tabulated
as a function of wavelength and Reff . Ice crystals are not spherical in shape and habit
[Letu et al., 2016], and for this simulation the parameterization of Baum et al. [2014] for
ice crystal habits has been employed to define the conversion from optical to microphysical
properties. In analogy to the MODIS products [Yang et al., 2018], rough aggregates are
selected for ice crystal shape (see Chapter 4.2.1 for a discussion about this choice). The
selected one-dimensional radiative transfer solver is DISORT (Discrete Ordinate Radiative
Transfer) 2.0 with 16 streams [Stamnes et al., 2000]. LibRadtran incorporates Kato et al.
[1999] and Fu and Liou [1992] parameterizations for integrated broadband irradiance calcu-
lations and recommends the REPTRAN band parameterization with a spectral resolution
of 15 cm−1 for spectral calculations [Buehler et al., 2010, Gasteiger et al., 2014].
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3.5 CoCiP contrail cirrus prediction model
The Contrail Cirrus Prediction Model (CoCiP) is used to predict the contrail cirrus cover
and analysis of contrail climate impact produced from individual flights [Schumann, 2012,
Schumann et al., 2012, 2017, 2021b, Teoh et al., 2020, Voigt et al., 2017]. The contrail model
uses traffic data from EUROCONTROL’s model 3 for a large part of Europe and from
the North Atlantic Tracks (NATS) for the Shanwick Oceanic Control Area. Performance
parameters, including fuel consumption and overall propulsion efficiency, are estimated
using the Base of Aircraft Data (BADA) 3 from EUROCONTROL [Nuic et al., 2010] and
a recently developed performance model for a set of subsonic turbofan-powered transport
aircraft at cruise [Poll and Schumann, 2021]. If two consecutive flight waypoints satisfy
the SAC, a contrail segment is formed. Contrail initial water content, width and depth
are determined by aircraft properties (fuel flow, mass, span, speed etc). Plume dispersion
is a function of turbulence, shear, and induced heating. RHi inside contrail plumes is at
saturation, and IWC of contrails grows or decreases according to uptake of ambient water.
A Runge-Kutta integration simulates the contrail evolution until its end of life by ambient
drying or particle losses due to aggregation and sedimentation. The end of contrail life is
defined as the point when the ice number concentration is lower than the background ice
nuclei (< 103 m−3), τcontrail is less than 10−6 or the maximum contrail lifetime of 24 h is
reached.

Soot number emissions are computed with the fractal aggregate model developed in
Teoh et al. [2019, 2020]. The initial contrail properties are dependent on the non-volatile
particulate matter (nvPM) [Kärcher, 2018]. The nvPM for different aircraft–engine types
is calculated and a lower bound of 10−13 kg−1 is set for the activation of organic volatile
particles and ambient natural aerosols. The model has also used the latest indication
from in situ measurements of contrails that the activation of nvPM particles to form con-
trail ice particles is not complete when ambient temperatures are near the SAC threshold
temperature [Bräuer et al., 2021].

CoCiP simulates the unique properties of individual contrail segments over time, and
it accounts for overlapping of contrails above or below clouds present in the meteorological
data [Schumann et al., 2021a]. The model uses meteorology from NWP forecast data
from ECMWF [Bauer et al., 2015]. The model is set up in Schumann et al. [2021b] with
humidity exchange between contrails and the background air and with radiative effects
caused by contrail-contrail overlapping. The lack of atmospheric interaction and feedback
is a limitation of CoCiP relative to general circulation models [Bickel et al., 2020, Burkhardt
et al., 2018, Chen et al., 2012]. The approximation of the contrail-atmosphere humidity
exchange in CoCiP induced a 10%–20% reduction in τcontrail and contrail net RF [Schumann
et al., 2015, 2021b], and a parametric analysis suggested that the influences of contrail-
contrail overlapping on the net RF is small (0.3 mW m−2) in regions such as the North
Atlantic [Sanz-Morère et al., 2021].

The contrail outputs are saved at flight, hourly, waypoint and gridded levels. Contrail
cirrus and natural cirrus cover in a grid cell are assumed when their respective optical depth
values are above a threshold of 0.1 as shown in Figure 3.3, which corresponds to the satellite
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Figure 3.3: Distribution of total cirrus cover composed of natural cirrus and contrail cirrus
for a North American region, with a contrail outbreak. Left: contrail cirrus pixels (red);
right: natural cirrus pixels (blue) and contrail cirrus pixels (red). Figure adapted from
Schumann [2012]

detectability threshold [Mannstein et al., 2010]. Contrail cirrus coverage as a percentage of
sky area in a region is defined as the total cirrus cover minus the natural cirrus cover. The
local contrail RF of each waypoint is parameterized using the ECMWF modeled radiation
data and CoCiP simulated cirrus microphysical properties, and also assuming a contrail
habit mixture. The final contrail RF is aggregated to obtain the contrail RF in the domain.
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Chapter 4

Observations of a contrail cirrus
outbreak over the North Atlantic

This Chapter is adapted from Wang et al. [2023].
Through reflecting incident solar radiation and trapping upwelling radiation within

the Earth’s atmosphere, the cirrus result in an imbalance of radiation budget in both
the shortwave (SW) solar and longwave (LW) terrestrial spectrum [Stuber et al., 2006].
The net radiative forcing (RF) is positive [Rädel and Shine, 2008, Burkhardt et al., 2018,
Gettelman et al., 2021] and RF due to contrail cirrus greatly exceeds that from linear
contrails [Burkhardt and Kärcher, 2011, Burkhardt et al., 2018]. Knowledge gaps still
exist regarding the large variability in the contrail life cycles [Bier et al., 2017], and optical
properties which then determine their radiative response to the climate system [Grewe
et al., 2017]. It further limits projections of aviation climate impact and formulations of
mitigation options other than carbon dioxide (CO2) emissions [Voigt et al., 2021]. This
research background motivates the observations of a contrail cirrus outbreak over the North
Atlantic in this Chapter.

In this Chapter, I use in situ data measured during the ML-CIRRUS experiment
[Voigt et al., 2017] from the HALO aircraft and simultaneous remote sensing observa-
tions [Bugliaro et al., 2011, Vázquez-Navarro et al., 2013, Strandgren et al., 2017a] with
high temporal resolution from the SEVIRI imager aboard the geostationary MSG satellite.
In particular, this study concentrates on one flight on 26 March 2014 over the NAR just
off the coast of Ireland where most of the air traffic from Europe to the US and vice versa
takes place. This situation enables to investigate properties and radiative effects of contrail
cirrus and ambient natural cirrus in an ideal contrail cirrus outbreak. In particular, a new
method is developed to classify cirrus along the HALO flight track from in situ measure-
ments based on enhanced NO aircraft gas emissions and ice number concentrations N into
three representative classes: (1) contrails, (2) contrail cirrus and (3) natural cirrus. Satel-
lite observations from MSG/SEVIRI are referred to characterise the general cloud situation
and confirm the presence of various contrails, in line with in situ measurements. In a new
approach, the ice cloud RF is determined combining in situ and satellite observations with
RTM. To this end, reanalysis data from ERA5 [Hersbach et al., 2020] are used. Since



44 4. Observations of a contrail cirrus outbreak over the North Atlantic

ERA5 does not simulate the effect of air traffic on clouds, I collect atmospheric profiles of
water vapor, liquid and ice clouds from this reanalysis and combine them with the in situ
and spaceborne observations to provide inputs to the RTM to compute RSR and OLR.
After checking the consistency of my radiative transfer calculations with the corresponding
RSR and OLR measured with the GERB instrumentation, this study is in the position to
compute instantaneous RF of this special combination of clouds in the SW and LW spec-
tral range by excluding the ice cloud layer from the radiative transfer calculations, thus
yielding a consistent ice-cloud-free irradiance. To be specific, these calculations are oper-
ated to an area encompassing the HALO flight path to compute the diurnal cycle of RF in
that region, thus exploiting the information from high resolution airborne measurements
as well as geostationary satellite observations with the high repetition rate for a holistic
view on the radiation budget from this ideal case in the NAR.

4.1 Microphysical properties of contrail cirrus and
natural cirrus

This section describes how airborne data from HALO and images from satellite remote
sensing are combined to understand microphysical properties of contrail cirrus and natural
cirrus, and the corresponding variation when contrails transit into contrail cirrus within
the contrail life cycle.

4.1.1 General situation
In the night and the very early hours of 26 March 2014 a ridge cirrus cloud band built up
North of Ireland down to the Southern tip of Portugal (Figure 4.1). Close to Iceland as
well as to the South-West of Ireland this cirrus cloud thickened (optical thickness larger
than 1 at 10:45 UTC, Figure 4.1d). While exactly off the coast of Ireland, in coincidence
with the eastbound morning and westbound afternoon air traffic to and from the US, many
linear structures can be seen in SEVIRI observations (Figure 4.1, especially Figure 4.1b
where BTD between the SEVIRI channels at 10.8 and 12.0 µm are shown) and the ice
cloud is thinner (optical thickness around 0.3 at 10:45 UTC). Please notice that Figure 4.1
is enlarged in Figure 4.2. Considering that the peak of eastbound morning air traffic is
approx. at 3 UTC [Graf et al., 2012], under favourable conditions with low temperature
and high humidity contrails induced from these aircraft are expected to form and live for
hours such that they can be identified in MSG observations in the morning of the same
day. This cloud band evolves with time towards the South, and in correspondence of the
Ireland coast the ice clouds dissipate around noon. In addition, this thin bluish/violet ice
cloud band partly overlaps with a liquid water cloud field below (yellowish clouds in the
false colour composite in Figure 4.1a).

Due to its approx. 3.5 km×4.5 km spatial resolution, SEVIRI can only observe contrails
that have already grown larger (and thicker) while young contrails cannot be detected
[Mannstein et al., 2010]. Nevertheless, the satellite observations indicate that because of
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Figure 4.1: (a) The false color RGB image from MSG/SEVIRI overlapped with the HALO
flight track on 26 March 2014 at 10:45 UTC showing Europe and the Eastern part of the
North Atlantic Ocean, (b) corresponding 10.8 µm and 12.0 µm BTD (K) with overlaid ice
clouds, (c) CTH and (d) IOT from CiPS.

these favourable meteorological conditions and the relatively high air traffic density in this
region, contrails from various aircraft could form over a long time period (12 h) that overlap
with “the remnants” of previous contrails. Thus, air traffic in this area has a strong impact
on cloudiness on 26 March 2014.

On 26 March 2014 the HALO aircraft started from Oberpfaffenhofen in Germany at
approximately 05:30 UTC and probed the cirrus over NAR from around 08:00 to 11:30 UTC
with a race track pattern between approx. 51.5°N and 54°N at a longitude of ca. -14°E
(-13.6 to -14.4°E), see the flight track in Figure 4.1a and also [Voigt et al., 2017, Figure 4].
In this area, HALO flew 3 lidar legs almost perpendicular to the NAR tracks (07:57 UTC
- 08:35 UTC, south to north, 09:17 UTC - 09:30 UTC, north to south, and 10:21 UTC -
10:52 UTC, south to north), each followed by in situ legs at different altitudes.

Figure 4.2 presents the temporal variation of contrails and surrounding clouds with one
HALO in situ/lidar leg at close time and air traffic data 2 to 3 hours before, from 08:30
(the first in situ leg) to 10:30 UTC (the third lidar leg). In addition, the area around the
flight path is investigated in Chapter 4.2.2 in more detail but that serves here as orientation
to easily capture the temporal evolution of the ice clouds. The wind speed in the east-
west direction fluctuates around 0 while winds in the north-south orientation drive the
ridge cloud to move southwards (blue arrows in Figure 4.2 indicate wind direction at 225
hPa from ERA5). The aircraft flight to and from Europe. In the BTD images – where
SEVIRI brightness temperatures at 10.8 µm and 12.0 µm are subtracted from each other -
the black areas are caused by the low-level clouds, while the bright pixels correspond to thin
cirrus. Small ice crystals, for instance in contrails, correspond to the largest BTDs. From
08:30 UTC, many thin lines (contrails) are seen in the false colour RGBs in the first column
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Figure 4.2: Time series of contrail cirrus and surrounding clouds from MSG/SEVIRI obser-
vations over the NAR corridor on 26 March 2014. The first column: RGB-composite with
overlaid cirrus, low-level liquid clouds pixels and in situ/lidar HALO leg at close time. The
red and green line of the HALO flight track represent contrail cirrus and natural cirrus,
respectively. The blue arrow indicates the wind direction almost perpendicular to the line
shaped structures of the contrail cirrus. The second column: 10.8 µm and 12.0 µm BTD
(K) with overlaid cirrus pixels. Blue points show air traffic data set interpolated to MSG
grid from M3 and NATS. The color of the HALO flight track indicates the flight direction.
HALO flies from red to blue part. Top to bottom: 08:30, 09:30, 10:00 and 10:30 UTC. The
red area is investigated in Chapter 4.2.2.
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in Figure 4.2, where also the HRV channel was used. They run parallel to most air traffic
routes (blue diamonds in the second column) and are intersected perpendicularly by the
HALO route. Some of the contrails are also visible in the BTD pictures (the second column
in Figure 4.2), that have a lower spatial resolution than the HRV channel, thus indicating
the presence of small ice crystals. These contrails form a thin cirrus layer, potentially of
anthropogenic origin but also with natural ice clouds (see discussion of Figure 4.3 below).
In the South, the ridge cirrus is thicker and no contrails can be observed. At 09:30 UTC,
the flight area is dominated by contrails. With time, from 08:30 to 10:30 UTC the typical
contrail lines become always fainter and less in number. Thus, contrails begin either to
dissipate or to lose completely their linear shape due to wind shear such that they turn
out to be indistinguishable. However, contrails can be still observed in the north-eastern
part of the satellite images at later times.

Figure 4.3 presents the backscatter ratio at 532 and 1064 nm from the WALES lidar
measurements in that sequences. The lidar data show that the geometrical thickness
of high-level clouds reduces from 2.0 km at 08:30 UTC to 1.5 km at around 11:00 UTC.
The temporal evolution of CTH from WALES shows that the cloud first reached up to
approximately 12 km and slowly descended to slightly above 11.5 km, with backscatter
values becoming smaller with time, in line with the passive observations that indicate
dissipation of the cloud during the day. For the investigation of contrails from in situ
measurements this study concentrates on the time period between 08:30 and 11:30 UTC,
but this time is extended to cover the period from 6:00 UTC to 14:00 UTC in Chapter 4.2.2.

Considering the three WALES legs in more detail (Figure 4.3), in leg 1 between 08:10
and 08:25 UTC there is a series of connected fall streaks with high backscatter at a height
of 11 km below a thin ice cloud layer top at 12 km. These structures resemble those in the
large eddy simulations by Unterstrasser et al. [2017a,b] where they considered contrails
within natural cirrus. Thus, these bright spots with their fall streaks can probably be
identified as contrails, with many small ice particles causing high backscatter and with
larger ice crystals sedimenting down. For leg 1, these contrails make up the majority of
the cloud in this temporal interval. The presence of developed fall streaks is a hint that
these contrails are aged (> 30 min). Unfortunately, the high WALES backscatter inhibits
the determination of RHi (Figure 4.4) for these bright spots, but the upper level of the
clouds, just below the potential contrails, show occasional ice supersaturation, with RHi
above 100%.

Lidar leg 2, much shorter than the other two, also shows the presence of some spots with
elevated backscatter ratios, although less numerous, at an altitude of 11 km at 09:26 UTC.
Unlike leg 1, many high backscatter spots do not show extended fall streaks, suggesting
the presence of younger contrails in addition to older ones. Furthermore, the top ice layer
above 11.5 km also contains some very high backscatter areas. Finally, also above 9 km
some clouds are visible that resemble contrails (or a dissipating cirrus). Thus, in this leg
the contrail-like structures do not fill the entire cloud as in leg 1, but there are indications
of young and older contrails, in addition to natural cirrus. The last lidar leg 3 took place
1 h later and also shows various bright spots at different levels, from 10 to almost 12 km,
and elongated vertical structures that remind of those in leg 1. The cloud as a whole is
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Figure 4.3: The three panels show the three lidar legs with backscatter ratios at 1064 nm
and 532 nm.
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Figure 4.4: The three panels show the RHi from Figure 4.3 in more detail. The black
contour represents the cloud edge. White areas are due to lack of measurements in these
regions, because of detector saturation.
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slightly lower than that in leg 1 with ragged edges especially at its lower border, suggesting
that the cloud is sublimating and thinning out. This is confirmed by the RHi observations
of WALES for leg 3 in Figure 4.4, where subsaturation is indicated especially at the lower
and upper edges, while around 10.5 km at selected locations RHi reaches saturation. These
WALES measurements are indicative for the cloud probed between 08:00 and 11:30 UTC
but cannot directly be compared to in situ observations taken at different times in between.

4.1.2 Identification of contrails, contrail cirrus and natural cirrus

In this Chapter, a method already used in Voigt et al. [2010] was improved to identify
where aircraft emissions are fresh, older or not detectable by using in situ measurements.
These three situations are assigned to contrails, contrail cirrus and unperturbed cirrus,
also called natural cirrus. The goal is to investigate microphysical and optical properties of
these clouds. Figure 4.5 shows the full sequence of the airborne in situ measurements of N
(NCAS, NCIP ), Reff , NO, cirrus (identified using the method in this Chapter), RHi, latitude
and altitude as a function of time between 08:30 and 11:30 UTC. N for both instruments,
CAS and CIP (NCAS and NCIP ) and Reff (Figure 4.5a, b) indicate the occurrence of
cirrus at the flight levels between 10 km and 13 km (Figure 4.5g). According to the
dilution equation by Schumann et al. [2017] and assuming 1000 particles/cm3 for 1 s-old
contrail, many contrails probed here are more than 1 h old. Furthermore, some contrails
are also visible in the low-resolution MSG/SEVIRI satellite images (BTDs in Figure 4.2)
and therefore at least 1-2 h old [Vázquez-Navarro et al., 2015]. Figure 4.5c thus shows
variable NO concentrations and various peaks. Since other sources of NO are unlikely in
this situation (no thunderstorms in the previous 12 h, no wildfires), it is assumed that the
NO concentration increases correspond to aviation exhausts, with different peak heights
caused by various factors such as contrail age, dilution and aircraft type [Voigt et al.,
2010, Jurkat et al., 2011, Jeßberger et al., 2013, Schumann et al., 2013]. In fact, after the
emission, NO is mixed with the surrounding air and dilutes with increasing plume age such
that its measured mixing ratio can be used as a rough indication for contrail age. Also,
for contrails initial ice particle concentrations N are high due to the high number of soot
particles emitted by the engine [Schlager et al., 1997, Kleine et al., 2018, Bräuer et al.,
2021] and N decreases due to dilution [Schumann et al., 1998] and further processes [Bier
et al., 2017, Unterstrasser et al., 2017a]. High NO emissions without coincident ice crystal
observations correspond to situations where the SAC is not satisfied and no contrail is
formed. This study, similarly to Voigt et al. [2010], uses N and NO to evaluate contrail
evolution. Since the contrails detected during this flight are older, the lower threshold for
the particle size was chosen to be 3 µm to neglect any influence from aerosol particles in
the size range below 3 µm. This is consistent with other cirrus and contrail cirrus studies
[Voigt et al., 2017, Righi et al., 2020].

First, the NO background concentration NOb(t) at a given time t was determined
dynamically by taking the minimum NO value in a 60-second sliding window around this
time (Figure 4.5c)
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Figure 4.5: In situ measurements of HALO on 26 March 2014 over the North Atlantic
region, including (a) ice number concentration N , (b) Reff > 1.5 µm, (c) NO and NO
background, (d) cirrus classification, (e) RHi, (f) flight latitude, and (g) altitude.



52 4. Observations of a contrail cirrus outbreak over the North Atlantic

NOb(t) = min−30s≤∆t≤−30sNO(t + ∆t) (4.1)

NOb(t) takes care of the natural variability of NO in this situation. Notably, the
RANSAC algorithm [Fischler and Bolles, 1981] is used to interpret NO outliers and confirm
that they haven’t hit the NO background but the peaks of NO values. The difference
between NOb(t) and NO(t) at each time t is termed ∆NO(t).

∆NO(t) = NO(t) − NOb(t) (4.2)

In a further step ice number concentration N is considered to classify contrails. In
accordance with Table 4.1, I first distinguish measurements in cirrus from “1. outside
cirrus” when NCAS and NCIP are zero in step 1, and then separate “3. contrail cirrus”
and “4. contrails” from “2. natural cirrus” when NO is higher than the background and
NCAS or NCIP is larger than 0.03 cm−3 in step 2, reflecting the impact of air traffic.
The rest is labelled as “5. unclassified cirrus” in step 3. This class contains on one
side those clouds that cannot be classified and likely consists mainly of natural cirrus.
On the other side, ice cloud measurements with high ∆NO (> 0.14 ppbv) but moderate
N (NCAS ≤ 0.4cm−3) do also fall in this category and should represent observations in
younger plumes where few ice crystals could form (maybe because temperature is close
to the Schmidt-Appleman criterion) or because ambient air is subsaturated leading to the
evaporation of a considerable fraction of newly formed (small) ice crystals. Summarised,
natural cirrus is identified when ice crystals are present with either NCAS or NCIP larger
than 0.03 cm−3 and NO close to the background value, i.e. ∆NO ≤ 0.02 ppbv; contrail
cirrus is characterised by moderate values of NO, i.e. 0.02 ppbv < ∆NO ≤ 0.14 ppbv, and
NCAS or NCIP > 0.03 cm−3; contrails are assumed to consist of many small ice crystals,
NCAS > 0.4 cm−3, and high NO peaks, i.e. ∆NO > 0.14 ppbv. The remaining cirrus is
denoted as “unclassified cirrus”.

Table 4.1: Cirrus classification according to microphysical properties (N), and tracer mea-
surements (NO) measured by instruments aboard HALO.

Designation N / cm−3 ∆NO / ppbv Note

1. Outside cirrus
NCAS = 0

and
NCIP = 0

Any value Step 1

2. Natural cirrus
NCAS >0.03

or
NCIP >0.03

∆NO ≤ 0.02
Step 2

3. Contrail cirrus
NCAS >0.03

or
NCIP >0.03

0.02 <∆NO ≤ 0.14

4. Contrails NCAS >0.4 ∆NO >0.14
5. Unclassified cirrus The rest Step 3
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The determination of ∆NO and N thresholds are explained in Figure 4.6. The threshold
values for ∆NO (0.02 ppbv and 0.14 ppbv) have been determined from the ∆NO distribu-
tion. ∆NO distribution decreases from 0.0 to 0.48 ppbv, with the largest bins being the
first and the second one (0 ≤ ∆NO < 0.02 ppbv). Thus, I consider NO to be close to the
background value when ∆NO ≤ 0.02 ppbv and to contain additional NO when ∆NO >
0.02 ppbv. The NO occurrences sink by two order of magnitude (from 103 to 101) until
∆NO equals 0.25-0.30 ppbv. After these values, a tail of relatively seldom high ∆NO
values (occurrences ∼ 101) is observed. In order to distinguish old emissions from younger
ones, the threshold of ∆NO = 0.14 ppbv is selected, in the middle of the range mentioned
above. Thus, ∆NO between 0.02 and 0.14 ppbv are assumed to capture only older emis-
sions, leaving high NO peaks as well as moderate ones in the range ∆NO > 0.14 ppbv
(representing the highest 5% ∆NO). For the determination of N thresholds for contrails
I proceed similarly. In particular, NCAS < 0.03 cm−3 contains an order of magnitude more
observations than the next one. Again, a value in the middle (0.4 cm−3) is taken as sep-
aration between high NCAS peaks attributable to contrails and moderate values of NCAS

< 0.4 cm−3 that are assigned to older contrails/contrail cirrus. Please notice that N and
NO are selected independently. Notably, these values are just valid for this flight sequence
over the NAR on 26 March 2014 during the ML-CIRRUS campaign.

Figure 4.6: Histograms of in situ measured N from CAS and CIP and ∆NO on 26 March
2014 over NAR.

In total, from 08:30 to 11:30 UTC for each aircraft measurement with a frequency of
1 Hz this method has classified 49 contrail observations, 1018 contrail cirrus observations
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and 2342 natural cirrus observations in Figure 4.5d from in situ measurements. Unclassified
cirrus encompasses 2472 cases, with 94 of them having ∆NO > 0.14 ppbv. At least 31%
of all classified cirrus was in contrails or contrail cirrus, confirming the indications gained
from MSG and WALES in Chapter 4.1.1 about the large number of contrails.

4.1.3 Effective radii

Figure 4.7: Reff of natural cirrus, contrail cirrus and contrails from HALO in situ measure-
ments. Each bar contains the information of the maximum, minimum, interquartile range
(25% percentile to 75% percentile), median (horizontal line) and mean (square) Reff .

Considering the entire flight and separating Reff measurements according to our classifi-
cation enables us to study the statistical properties of the ice crystal sizes. From Figure 4.7,
contrail cirrus Reff probed from airborne instruments are smaller than those of natural
cirrus, with an average Reff of about 22 µm. The natural cirrus has an average Reff of
27 µm, which is at the lower end of the particle size distributions observed in natural cirrus
[Schröder et al., 2000]. The mean radii of contrails or contrail cirrus from in situ measure-
ments is 18% smaller than that of natural cirrus. From contrails to contrail cirrus, the
mean and medium Reff mainly show an increasing tendency by an average difference of
13 µm (144%) for this situation. Despite the uncertainty of probed particle sizes, the radii
of natural cirrus reached up to 60 µm, while the majority of maximal Reff of contrail cirrus
topped at 51 µm, in agreement with findings of Voigt et al. [2017]. This is consistent with
the physical picture that contrails form initially as small particles and increase in size by
water vapor uptake in ice supersaturated air. If no supersaturation is present, contrails
dissipate. Still, contrail cirrus as well as natural cirrus can consist of sublimating particles
when air becomes subsaturated [Kübbeler et al., 2011].
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In sum, satellite, lidar and in situ measurements give combined evidence for an ideal case
of a contrail cirrus outbreak with a high fraction of contrails and contrail cirrus embedded
in natural cirrus. In the following, its radiative impact is investigated.

4.2 Radiative effects of contrail cirrus and natural cir-
rus

Here, a new estimation method is developed for TOA net instantaneous cirrus RF that relies
on satellite and in situ observations. TOA irradiance of the contrail cirrus outbreak can be
observed, but the comparable situation without ice clouds has to be obtained from another
source, e.g. from the surroundings (like e.g. in Vázquez-Navarro et al. [2015] for contrails)
or from model simulations (Haywood et al. [2009] for contrail cirrus). The instantaneous
net RF at TOA is the change of the total irradiation under a situation with cirrus minus
the irradiances in the same situation without cirrus. The equations to compute the RF at
TOA are shown in Eqs. 2.31 to 2.33.

However, the two values (TOA irradiance with cirrus and without cirrus) are similar in
size since contrail cirrus represent a small perturbation. In fact, both in Vázquez-Navarro
et al. [2015] and Haywood et al. [2009] taking the difference between the cirrus contam-
inated and the cirrus-free irradiances leads also to negative values of RF in the thermal
range (OLR with ice clouds is larger than OLR without ice clouds) or to positive RF in
the solar range (RSR with ice clouds is smaller than RSR without ice clouds). This is
unphysical and we would like to avoid it. To this end, in Chapter 4.2.1 I developed a new
method based on RTM calculations exploiting airborne measurements, satellite observa-
tions and ERA5 model atmospheric data that produces TOA irradiance fully consistent
for both cirrus and cirrus-free regions. Finally, to ensure that TOA irradiance calculated
this way is realistic, I compare our RTM simulations of RSR and OLR for the cirrus con-
taminated case with satellite observations of RSR and OLR from RRUMS at pixel level.
An additional comparison on a 3×3 pixel scale with the more accurate GERB products is
performed to assess the RRUMS accuracy on this particular day in Figure 4.8.

GERB products (RSR_G and OLR_G), comprising 3 × 3 pixels of SEVIRI, are com-
pared with RRUMS results along the HALO flight trajectory. Notably, different cirrus
classifications have the same TOA value from GERB products and RRUMS results since
the spatio-temporal resolution of the in situ data is much higher than that of SEVIRI. I
first remove the 7.5% bright bias and 1.3% cold bias of the GERB irradiances in the solar
and thermal range [Clerbaux et al., 2009] to build new revised-GERB data sets. I then
calculate the 3 × 3 pixel mean values of RRUMs results. The corresponding RSR_R corre-
lates well with RSR from GERB (RSR_G: CC = 0.72), but RRUMS tends to overestimate
GERB. In terms of OLR, the agreement is good, with a MAE around 6 Wm−2 and a CC
of 0.80 for OLR_R and OLR_G.
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Figure 4.8: Comparison of TOA (a) RSR and (b) OLR from RRUMS algorithm results
(RSR_R, OLR_R) and revised-GERB data sets (RSR_G, OLR_G) (3 × 3 SEVIRI pixels
along the HALO flight on 26 March 2014. The mean absolute error (MAE), root mean
square error (RMSE) and correlation coefficient (CC) are used as metrics.

4.2.1 RTM simulations of TOA irradiance

I illustrate the new method used to derive instantaneous cirrus RF and show that it com-
pares well to observations of RSR and OLR by RRUMS. In particular, a 2-step method
is explained to compute both cirrus-free and cirrus influenced TOA irradiances. First, an
atmosphere is set up as input to the RTM that contains a realistic representation of the
situation observed including in particular all clouds. Then in a second step the ice clouds
are removed, for which the RF is to be computed. This provides the cirrus-free reference
TOA irradiance for the calculation of cirrus RF. The basic setup of the RTM is described
in Chapter 3.4. As is shown in Figure 4.9, every RTM calculation needs an atmospheric
state as input. This is the part obtained from ECMWF ERA5 reanalysis data [Hersbach
et al., 2020]. All 137 model levels are used. The horizontal and temporal resolution are
0.25°×0.25° and 1 h. The temperature profiles, logarithm of surface pressure, specific hu-
midity, ozone mass mixing ratio, and land or sea mask are derived. Densities of gaseous
water (H2O) and ozone (O3) are derived from specific humidity and O3 mass mixing ratio.
CO2 is set to a volume mixing ratio of 400 ppm. Vertical profiles of liquid clouds are also
extracted from ERA5 data. I choose vertical profiles close to the HALO flight time, i.e.
with a time difference of 30 min at most between model and in situ measurements. This
relies on the fact that reanalysis data should provide a realistic description of cloud prop-
erties and cloud positions, but I accept that this procedure might cause small temporal
shifts such that observations close to cloud edges might not be represented in an optimal
way through the model data. However, I refrain from interpolating cloud properties in
time since also this procedure would create artificial clouds that do not exist in reality,
especially in locations where no cloud is present at a given time but it is there at the next
time. For liquid clouds, the parameterization by Bugliaro et al. [2011, 2022] is applied
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for creating Reff profiles using IWC and temperature from ERA5. The solar zenith angle
corresponds to synchronous SEVIRI observations. Besides, the albedo of ocean is param-
eterized following Cox and Munk [1954a,b] and Nakajima and Tanaka [1983], especially
involving the wind speed from ERA5. For ice clouds, another procedure is applied. Since
SEVIRI observations with CiPS are able to account for the entire cirrus cloud layers but
are only dependent on thermal channels and not affected by low lying clouds [Strandgren
et al., 2017b], SEVIRI provides accurate ice cloud properties (IOT) that can be used in
the RTM.

Figure 4.9: Structure of input data in the forward RTM simulations using LibRadtran.

Positions of ice clouds from ML-CIRRUS measurements and CTHs estimated from
WALES observations are exploited to collocate the clouds probed by HALO with the
SEVIRI observed contrail cirrus and natural cirrus. Satellite observations are functions of
both time and space. Since the temporal frequency of in situ observations is 1 Hz, various
HALO measurements are located inside each SEVIRI pixel. In general, time series of
observations are produced with the original temporal resolution of the given instrument.

Then the representation of cirrus at the flight level is complemented by adding their Reff

from in situ measurements, CTH and cirrus bottom height (CBH) from lidar legs, as well
as CiPS IOT into libRadtran in the way described in the next lines. This way I simulated a
vertically homogeneous ice cloud with the correct IOT obtained by CiPS. It is assumed that
IOT is to be constant over an entire SEVIRI pixel while Reff changes according to in situ
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information (at the altitude levels probed by HALO). Since the RTM needs IWC as input,
I determine it from IOT. First, Extinction Ext for IWC = 1 gm−3 (i.e. extinction in km−1)
for each measurement is interpolated to the given in situ Reff with the parameterisation
of optical properties of Baum et al. [2014] for rough aggregates. The selection of this
shape for all cloud types is motivated by the fact that each cloud column, even those
containing contrails, encompass ice crystals with various temporal evolution, e.g. young
small – probably round, ice particles in contrail cores together with larger sedimenting
ice crystals in the fall streaks with different shapes or with evaporating ice crystals – in
part still large in size, in subsaturated air that are starting to lose asphericity or maybe
even natural ice crystals with unknown shape. To avoid an additional arbitrary choice with
respect to ice particle shape I decided to keep the method as simple as possible and selected
this shape (rough aggregates) as e.g. for the MODIS optical property products Collection
6. A sensitivity study with respect to ice particle shape is conducted in Chapter 4.2.3.
Note that the parameterization of this shape only covers Reff from 5 to 60 µm, which
results in the inexecutable RTM calculations for larger or smaller ice crystals. 20 cases in
total are removed but have a negligible effect on the estimation of radiative effects as Reff

of contrail cirrus and natural cirrus always fall in the range where RTM could simulate
as indicated in Figure 4.7. The IWC for each measurement of Reff corresponding to a
vertically homogeneous ice cloud with given IOT is derived using the following equation:

IWC = IOT

Ext × (CTH − CBH) (4.3)

For IWC=1 gm−3, the cloud exhibits an extinction. Subsequently, the theoretical opti-
cal thickness OT is expected to be the multiplication of the extinction and the geometrical
thickness. To align with the observed IOT, IWC should be scaled down with the ratio of
IOT to OT, yielding the real IWC. CTH and CBH are obtained from the lidar legs since
they seem to vary only slowly with time and space. Thus, this IWC is used to simulate a
homogeneous ice cloud layer between CBH and CTH and corresponds to the IOT observed
by CiPS.

Finally, in situ measurements of Reff are assigned to a collocated IOT from CiPS as
well as the ERA5 properties listed above for temperature, gas and liquid water clouds.
With this atmospheric setup, TOA irradiances are computed and represent the cirrus
contaminated RSR and OLR. Then, the ice clouds only are removed from the input of
the RTM and other calculations are performed to compute cirrus-free irradiances. Both
together are then inserted in Eqs. 2.31-2.33 to compute the instantaneous net RF of the
cirrus cloud under consideration.

The RSR and OLR values influenced by cirrus as obtained from libRadtran simula-
tions (RSR_L and OLR_L) and compared with RRUMS algorithm outputs (RSR_R and
OLR_R) along the flight path of HALO are presented in Figure 4.10. The two methods
agree quite well, but the RTM calculations tend to underestimate large RSR values, prob-
ably due to too thin, missing or even mismatched liquid water clouds that are taken from
ERA5. Uncertainties in ice cloud properties cannot have such a large effect on RSR since
their optical thickness is very low around 0.2. Furthermore, a smaller overestimation of
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RSR by the RTM compared to RRUMS is also observed for the smallest RSR values below
150 Wm−2, related to the bias of estimated ocean albedo but improved by the application
of wind speed. For OLR, the agreement between the two data sets is good, with both
slight (< 10 Wm−2) overestimations and underestimations.

Figure 4.10: Comparison of TOA (a) RSR and (b) OLR from RTM simulations (RSR_L,
OLR_L) for probed ice particles and RRUMS algorithm results (RSR_R, OLR_R) for
single SEVIRI pixel along the HALO flight on 26 March 2014. The MAE, RMSE and CC
are used as metrics.

The RTM based TOA radiation estimation method provides a good representation of
the real atmosphere and will be used to determine RF of the ice clouds in the following
section.

4.2.2 Diurnal cycle of TOA RF of the contrail cirrus outbreak
In Chapter 4.2.1 TOA RF for each waypoint of the probed cirrus was presented. In order
to examine microphysical properties and radiative effects of the contrail cirrus outbreak
detected in this area and to analyse the corresponding temporal variation, I present the
regional cirrus cover (CC), average cirrus IOT and CTH (all three quantities from CiPS),
as well as mean TOA SW, LW and net RF in an area of 36×51 pixels (16500 km2, the
red area in Figure 4.2) near the HALO flight track, characteristic for contrail cirrus and
cirrus as shown in Chapter 4.1. This area extends mostly east of the HALO flight and thus
contains the contrails or contrail cirrus formed directly east of the ridge cloud. I consider
here all ice clouds in the region with high aviation impact.

RF in this section is at the SEVIRI resolution, and calculated using CTH, IOT from
CiPS, Reff from in situ mean values of all cirrus (called Reff,mean in the following), and
cloud thickness from WALES assuming the latter doesn’t change in the area with the same
procedure presented in Chapter 4.2.1 based on the RTM libRadtran.

In Figure 4.11a, it is observed that CC gradually decreases from 0.77 at 06 UTC to 0.25
at 14 UTC. The positive vertical velocity from ERA5 around that region implies the local
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Figure 4.11: The variations of (a) CC, (b) mean IOT and mean CTH, and (d) SW, LW
and net RF within the area indicated by a red box in Figure 4.2.

downward motion of airmass to warmer temperature layers and the CTH also decreases.
IOT in Figure 4.11b decreases between 07:00 (0.41) and 10:00 UTC (0.15), then slowly
increases until 12 UTC (0.17), then falls to 0.12. CTH decreases during the day and is
thus consistent with both the observations of HALO and the downward motion. Since an
underestimation of CTH by CiPS with respect to WALES (Figure 4.3) is observed there,
it is assumed that CTH is also underestimated by CiPS in this area.

Mean net RF over this area in this synoptic situation is positive in the early morning
until 9 UTC with the maximum of net RF is at 7 UTC when the sun has risen. Hence the
contrail cirrus outbreak is warming during night and early morning hours. After 9 UTC, the
forcing becomes negative. More explicitly, from around 9 to 14 UTC the net RF is negative
and thus this contrail cirrus outbreak tends to cool during daytime. The strongest cooling
is observed at 12 UTC. Notice however that the possible underestimation of CTH by CiPS
in this area would result in the general underestimation of the LW RF results since a lower
CTH reduces the contrast to the cirrus-free OLR. In turn, this would further shift cirrus
net RF towards cooling.

4.2.3 Uncertainty of effective radii and ice crystal shape
To quantify how the estimated uncertainties in Reff (and resulting IWC) as well as assumed
crystal shapes influence the radiative forcing, I compute radiative forcing for aggregates
(agg) with Reff = Reff,mean ± 50% and perform a sensitivity study about ice crystal
shape using the general habit mixture (ghm) also available from Baum et al. [2014]. The
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simulated values are recorded in Table 4.2. The uncertainty of RF due to Reff has an
average of 0.2 Wm−2 in SW and 0.1 Wm−2 in LW. In total the effect on the net RF is
approx. 0.1 Wm−2. Compared with aggregates, the ghm model has induced a larger net
RF of 1.7 Wm−2, with the shift in SW and LW of 1.2 Wm−2 and 0.5 Wm−2, respectively.

Table 4.2: The sensitivity study on how changing the uncertainty of Reff (± 50%) and
assumed crystal shapes (aggregates agg and general habit mixture ghm according to Baum
et al. [2014]) impact the resulting radiative forcing in Figure 4.7.
UTC/h SW RF/Wm−2 LW RF/Wm−2 Net RF/Wm−2

agg -50% +50% ghm agg -50% +50% ghm agg -50% +50% ghm
6 54.1 53.9 54.0 55.1 54.1 53.9 54.0 55.1
7 -50.2 -50.7 -49.8 -47.5 90.4 90.0 90.2 91.3 40.2 39.3 40.4 43.8
8 -34.9 -35.3 -34.7 -33.7 50.4 50.2 50.3 50.8 15.5 14.8 15.6 17.0
9 -46.3 -46.6 -46.1 -44.8 49.0 48.9 48.9 49.5 2.7 2.3 2.8 4.7
10 -57.5 -57.7 -57.3 -56.1 40.2 40.2 40.1 40.6 -17.2 -17.5 -17.2 -15.5
11 -68.7 -68.9 -68.5 -67.6 40.4 40.5 40.3 40.8 -28.2 -28.4 -28.1 -26.8
12 -76.0 -76.2 -75.9 -74.5 40.5 40.6 40.4 40.9 -35.5 -35.6 -35.5 -33.7
13 -46.2 -46.2 -46.0 -45.1 31.0 31.0 30.9 31.2 -15.2 -15.2 -15.1 -13.8
14 -16.0 -16.0 -15.9 -15.4 15.0 15.1 15.0 15.1 -0.9 -0.9 -0.9 -0.3
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Chapter 5

Machine learning based
improvements of ERA5 humidity
predictions

A novel prediction method leveraging dynamic states and machine learning techniques
has been developed to enhance atmospheric humidity prediction in current models, with
a particular focus on mitigating the wet bias in the lower stratosphere (LS) and dry bias
in the upper troposphere (UT). Employing artificial neural networks (ANN), an artificial
intelligence approach recognized as a universal approximator for unknown functions (me-
teorological conditions) and truth values (measured humidity) [Hornik et al., 1989], the
objective is to extend this methodology to weather forecast datasets, including those from
the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast
System (IFS) and the German Weather Service. The investigation aims to elaborate how
atmospheric states influence the future evolution of humidity, potentially provide corrected
humidity and ice supersaturation distributions, and contribute to assessments of contrail
cirrus climate impact.

This study aims to advance atmospheric humidity prediction by integrating thermo-
dynamic conditions and dynamical states, aligning with the trajectory of comprehensive,
long-term, and accurate airborne water vapor measurements. This approach help to iden-
tify and assess parameters with the most significant impact on enhancing forecasts of rel-
ative humidity with respect to ice (RHi). In Figure 5.1, a schematic framework illustrates
the process of meteorological parameter selection, model training, and model interpretation
and evaluation. The initial step involves selecting parameters for model training, which
includes collocating ERA5 reanalysis and In-Service Aircraft for Global Observing System
(IAGOS) measured atmospheric humidity data. Detailed data descriptions are provided
in Chapter 3.2.2 and 3.3. The Spearman correlation coefficient is computed to choose
the most suitable parameters, time and pressure levels, considering the temporal and ver-
tical dependence of humidity on thermodynamic conditions and dynamical states. After
preparing the training, validation, and test data sets, the second step involves transforming
IAGOS RHi to specific humidity using temperature and pressure measurements from IA-
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GOS, as IAGOS measures water vapor mixing ratio rather than specific humidity directly.
Subsequently, the ANN technique is applied to the training dataset. For the final step,
which encompasses model interpretation and evaluation, the study discusses the relative
contributions of input variables to the model. The model is validated in both cloud-free
and cloudy conditions, spanning the LS and UT regions. A comparison is made with water
vapor measurements from the Cirrus in High Latitudes (CIRRUS-HL) research campaign
in 2021, and the equitable threat score (ETS), commonly used in weather forecast verifi-
cation [Wang, 2014], is computed to assess ice supersaturation prediction. The improved
humidity is further utilized as input for the radiative transfer model (RTM) to investigate
the corrected atmospheric water vapor radiation budget.

Figure 5.1: Schematic framework of meteorological variables selection, humidity prediction
model building, and model interpretation and evaluation.

5.1 Preparation for the neural network models

5.1.1 Input and output data collocation
For the training of the ANN model, the accurate humidity measurements provided by IA-
GOS [Petzold et al., 2015, 2020] are used as the training target. Given that the spatial
distribution of humidity is influenced by thermodynamic, dynamical, and cloud micro-
physical processes, I incorporate thermodynamic conditions and dynamical states with the
effects from clouds in ERA5 (Table 5.1). Data measured in 2020 is collected over the At-
lantic Ocean on all pressure levels from 400 hPa to 200 hPa and have a vertical resolution of
25 hPa (200 hPa-250 hPa) and 50 hPa (250 hPa-400 hPa). The latitude and longitude span
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from 80°N to 0 and from 30°W to 50°E. The ERA5 data offer a temporal resolution of 1
h and a spatial resolution of 0.05°.

ERA5 time and layers that best match the IAGOS measurements were determined, and
ERA5 variables between 400 hPa and 200 hPa were preprocessed to align with the IAGOS
humidity and temperature data sets. In addition, RHi in the UTLS is subject to vertical air
motions such as stratospheric intrusions or uplift of tropospheric air masses in convection
or frontal systems as well as horizontal airmass transport. Therefore, thermodynamic con-
ditions and dynamical states from ERA5 are linked to RHi at the IAGOS data acquisition
time and location by considering a time span of 24 hours prior, with one-hour intervals,
and examining two pressure levels above and two pressure levels below the IAGOS data
acquisition location. The ERA5 variables are subjected to linear interpolation to align with
the vertical position of the IAGOS data acquisition location, specifically adapting to pres-
sure levels. The ERA5 data maintains its original temporal and spatial resolution, whereas
the water vapor values and atmospheric conditions measured by IAGOS with four second
temporal resolution, spanning a range of 10 to 400 data points within a single ERA5 grid
box, are subjected to averaging. This collocation between model meteorological variables
and measured humidity values in the year 2020 contains 1.25 million samples, which is
used to train the ANNs. This copes with enormous variability and sharp gradients in the
humidity fields, and can help to estimate a realistic full pattern for humidity measurements
comparison and model application.

Table 5.1: Overview of the variables used in this study. Spatial resolution of ERA5: 0.05°.
Vertical resolution of ERA5 on pressure levels: 25 or 50 hPa. Temporal resolution of ERA5
and IAGOS: 1 h and 4 s. Study region: Atlantic Ocean.

source variable description unit

ERA5 on pressure levels

T air temperature K
ciwc specific cloud ice water content kg/kg
RHi relative humidity (ice) %

q specific humidity kg/kg
z geopotential m2/s2

w vertical velocity Pa/s
d divergency of wind s−1

u U component of wind m/s
v V component of wind m/s
vo relative vorticity s−1

pv potential vorticity Km2kg−1s−1

time hour 1
level pressure hPa

IAGOS
RHI_P1 relative humidity (ice) 1

air_temp_P1 air temperature K
air_press air pressure Pa
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5.1.2 Evaluation of temperature and RHi from ERA5 in the
UTLS

The aim of this section is to firstly compare and quantify the difference of RHi between the
ERA5 reanalysis data and the in situ measurements provided by IAGOS. According to the
physical definitions of ISSRs in Chapter 2.3.1, RHi depends on temperature and available
water vapor. Simmons et al. [2014] pointed out the temperature bias of ERA-Interim
reanalysis, the precursor of ERA5 data, near the tropopause in the tropics. In a first
step, IAGOS observations are used to evaluate the ERA5 temperature data sets. Given
the frequently neglected ice supersaturation within cirrus clouds due to the application
of saturation adjustment in cirrus parameterizations within numerical weather prediction
(NWP) [McDonald, 1963], this evaluation is performed not only within the UTLS region
but also over the cloud-free and cloudy conditions. Cloud-free and cloudy scenarios are
discerned based on the presence of the ciwc greater than zero, while distinguishing between
the LS and the UT is upon the threshold of potential vorticity pv exceeding 2 PVU.

Figure 5.2: Comparisons of temperature in (a) clear, (b) LS, (c) cloudy, and (d) UT from
ERA5 and IAGOS.

Figure 5.2 shows the comparison between the temperature of the IAGOS observations
and the ERA5 data for all collected IAGOS waypoints in Chapter 5.1.1 around the cruise
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altitudes (200 hPa-400 hPa) over the North Atlantic region (NAR) in 2020. The good
agreement between both temperatures is reflected in all tested cloud-free, cloudy, LS and
UT scenarios by the high correlation coefficient (R2 of 0.96 - 0.98). The spread of the
correlation corresponds to a larger variability in the IAGOS temperature measurements
when the aircraft flew through clouds, or from the interpolation of the gridded ERA5
temperature to the vertical position of aircraft. The MAE between the temperature of the
IAGOS measurements and ERA5 varies between 0.68 K and 0.87 K, with the RMSE of
0.78 K (0.35%) - 1.13 K (0.51%) over the entire data sets. The ERA5 temperature has a
relatively more obvious cold bias in the cloud-free and LS region in Figure 5.2, with the
largest MAE and RMSE values among these four scenarios.

Figure 5.3: Comparisons of RHi from ERA5 data against IAGOS measurements in (a)
clear, (b) LS, (c) cloudy, and (d) UT between 200hPa and 400 hPa over the Atlantic for
the year 2020.

In Figure 5.3, the comparison of RHi from ERA5 data and IAGOS measurements is
depicted. The ERA5 RHi shows a trend to be underestimated if compared with IAGOS
RHi. In the clear and LS regions, the RMSE are 16.46% and 12.41%, respectively. The
dry bias in RHi is more significant in cloudy and UT regions, with respective RMSE of
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18.21% and 20.24%. This discrepancy is likely attributed to water absorption during the
ice particle growth processes within cloudy regimes. As mentioned in the beginning of
this section, RHi depends on both temperature and available water vapor. ERA5 typically
underestimates specific humidity, and the cold bias in cloud-free and LS regions offsets the
dry bias of RHi, as demonstrated in the study by Kaufmann et al. [2018]. In contrast, a
dry bias persists in cirrus and the UT. This evaluation serves as the motivation behind
this thesis, aiming to enhance humidity prediction for weather forecasts.

5.1.3 Correlating model meteorological variables with measured
water vapor

What meteorological conditions and at which time and pressure level should be chosen
for training the specific humidity and RHi prediction model using ANN? To answer this
question, the dependence of measured RHi at the time and location of IAGOS data acqui-
sition on ERA5 meteorological variables at the preceding time and pressure levels nearby
is determined through the calculation of the Spearman’s correlation coefficient rs:

rs = cov(u, v)
σuσv

(5.1)

where cov(u, v) is the covariance of the variables u and v, and σu and σv are their
standard deviations. The correlation is shown in Figure 5.4 between IAGOS RHi and
different ERA5 variables sampled at the time of IAGOS measurements (time lag = 0 ) or
at previous times (time lag between -24 and -1 h). This correlation combines not only RHi
larger than 80% to investigate ISSRs but also the full range of RHi to provide sufficient
data for model building in the Chapter 5.2.

In Figure 5.4, significant correlations are observed among various thermodynamic fac-
tors, specifically RHi (blue), and temperature (T, green), obtained from ERA5 data before
the time of IAGOS data acquisition, and the corresponding IAGOS RHi values. Notably,
ERA5 RHi and T demonstrate the positive and negative correlations in predicting IAGOS
RHi, respectively. These observed relationships can be explained by established physi-
cal laws in Chapter 2.3.1. That is, RHi is the ratio of the partial vapor pressure of water
vapor and the saturation vapor pressure with respect to ice, and according to the Clausius-
Clapeyron equation, the latter vapor pressure is positively associated with T. Furthermore,
as the time lag decreases, the correlation of RHi increases from 0.3 to 0.5, indicating that
humidity values closer in time exert the most significant influence on the current humidity
state. For T, it is approximately 0.5, which is statistically most significant and somewhat
expected. The shadow surrounding the solid line represents the uncertainty associated
with these correlations. ciwc is not represented in this plot due to the absence of data for
cloud-free regions.

However, the correlations between ERA5 dynamical states and IAGOS RHi, with vary-
ing time lags, exhibit temporal fluctuations. The positive relationship between ERA5
geopotential (z) and IAGOS RHi is in accordance with the findings of Wilhelm et al.
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Figure 5.4: Temporal dependence of the target RHi from IAGOS on the selected thermo-
dynamic and dynamical variables from ERA5 pressure level data between 200hPa and 400
hPa over the Atlantic for the year 2020. x axis: time lag between ERA5 and IAGOS/h; y
axis: Spearman’s correlation coefficient.

[2022], which highlight that persistent contrails with high RF tend to occur at elevated
z values, in other words, higher altitudes. The correlation for z stands at approximately
0.4. In addition, parameters such as vertical velocity (w), divergence (d), horizontal wind
speed components (u and v), relative vorticity (vo), and potential vorticity (pv) all interact
with IAGOS RHi differently over time. w consistently demonstrates negative correlations,
with absolute values increasing between the 24-hour and 16-hour time lags before gradually
declining. The correlation for u tends to increment slightly, ranging from 0.2 to 0.3, while
that for v shows a tendency to decrease, fluctuating between 0.4 and 0.3. d generally ex-
hibits positive correlations, with the highest value occurring around the 4-hour to 5-hour
time lag. In contrast, vo persists in negative correlations, with a correlation coefficient
tending to -0.2 in relation to ERA5 values for IAGOS RHi. pv maintains an oscillating
pattern around zero, shifting from positive to negative values. In general, z, v, w, d, and
u exert the most significant influences on the current humidity state.

Regarding the vertical dimension, the effects of thermodynamic and dynamical condi-
tions from ERA5 on the IAGOS RHi as a function of vertical pressure layer differences are
also calculated. While RHi remains influential, the impacts of T and z almost diminish.
Conversely, the influences of w and d remain prominent, while the influences of horizontal
wind speed component u and v, and pv approach zero.

These findings suggest the potential to improve atmospheric humidity prediction by
considering not only traditional thermodynamic variables but also dynamical proxies and
their evolution. To keep a balance between information richness and modeling efficiency,
combining ERA5 data with IAGOS humidity fields involves a 6-hour time lag and a 2-
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pressure layer difference.
Fisher Z-transformation is calculated here to approximately find the confidence inter-

vals for the Spearman correlation coefficient rs to understand if the empirically found rs is
significant. Three steps are included in the significance test. Firstly, the Fisher transfor-
mation is performed with Eq. 5.2.

zr = 1
2 ln 1 + rs

1 − rs

(5.2)

It turns out that the sampling distribution of zr follows a normal distribution. In the
second step, log upper and lower bounds of the 95% confidence interval for meteorological
conditions are found using Eqs. 5.3 - 5.4.

L = zr −
z1−α/2√
n − 3

(5.3)

U = zr + z1−α/2√
n − 3

(5.4)

Thirdly, the confidence interval is found with Eq. 5.5.

confidence interval =
[

e2L−1
e2L+1 , e2U −1

e2U +1

]
(5.5)

The relationship between w and RHi at 5 h before and that between pv and RHi at
1 h and 3 h before are not significant as zero is within the confidence interval. Hence pv
is typically insignificant and subsequently excluded from the input data sets during the
further training of the ANN model. Other meteorological conditions are significant for their
relationships with measured humidity at the IAGOS data acquisition time and location.

5.1.4 Training and validation data
Considering the confidence interval calculations in the previous section and accounting for
the typical lifespans of water vapor transport mechanisms, including deep convection, warm
conveyor belt uplift regimes, and slow ascending flows, the criteria for data combination
involve a 2-hour and 6-hour time lag prior to IAGOS data acquisition, ±2 pressure layers
from ERA5, and the current humidity measurements from IAGOS. Following this, a dataset
comprising 8928571 samples is compiled for training, validation and testing , including the
temporal evolution of meteorological quantities.

To ensure model robustness, 10% of the samples are randomly excluded from the train-
ing set to construct an independent test data set. The remaining training sets of the ANN
model, with RHi and specific humidity q as two outputs, are further subdivided into an
80% training subset and a 10% test subset, respectively. While the primary focus is on
improving predictions of higher RHi values and ISSRs, the complete range of RHi values
is supplied to the neural networks to enhance the model’s overall accuracy.

Distributions of the input and target values in the training data sets are sketched in
Figure 5.5. Notably, they are not uniformly distributed due to the performed selections as
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Figure 5.5: Distributions of input variables including T (K), z (m2/s2), w (Pa/s), d (s−1), u
(m/s), v (m/s), vo (s−1) from ERA5 and target RHi (%) from IAGOS in the ANN model.

well as the usage of different weather conditions. The temperature spans a range from ap-
proximately 193 K to 252 K, while the geopotential z encompasses values between roughly
8000 m2/s2 and 12500 m2/s2. RHi values vary across the entire spectrum, ranging from
0 % to 275 %.

For the derivation of specific humidity (q), the saturation water vapor pressure over
ice, pice, was first calculated using the equation in Murphy and Koop [2005]:

pice = exp(9.550426 − 5723.265/T + 3.53968 ln T − 0.00728332 T ) (5.6)

T is the air temperature from IAGOS measurements. An earlier comparison between
difference parameterizations of pice showed that the differences in pice is less than 0.5% for
temperatures greater than 173.15 K [Schumann, 2012]. In the next step, q is calculated
from RHi according to

q = RHi × pice × R0

p × R1
(5.7)

where p is the pressure altitude (Pa), R0 (287.05 Jkg−1K−1) and R1 (461.51 Jkg−1K−1)
are the real gas constants for air and water vapor respectively.

5.2 Model training
Hence, the ANN model is trained with a large set of atmospheric states , including both
current and historical states, obtained from reanalysis, as well as humidity measured from
instruments aboard aircraft. The former data sets are derived by solving the primitive
equations of motion in numerical models. The latter data sets are built by combining
the large scale and long term aircraft measurements. An ANN learns to reproduce the
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statistical relationships between a series of weather conditions , incorporating their tem-
poral evolution, and humidity fields. It iteratively adjusts its parameters until it achieves
accurate predictions for the training targets.

The goal is to propose a model capable of learning relationships between current and his-
torical weather conditions and current measured humidity. The aim is to ensure the model
performs effectively under normal conditions and produce accurate humidity predictions,
thereby mitigating existing bias in the UTLS (see Chapter 5.1.2). A main advantage of
the technique is that it involves dynamic processes of water vapor vertical and horizontal
transport, and takes advantages of numerous measurements (as references). Our imple-
mentation is based on the open-source platform TensorFlow downloaded from TensorFlow
2. The required software packages are Python3.7, Keras, and Scikit-learn.

The software is adapted as follows:

1. Read, normalize, and apply a Gaussian noise with a standard deviation of 0.1 to the
input layer. The input variables, which include humidity, temperature (T), geopo-
tential (z in m2/s2), vertical velocity (w in Pa/s), divergence (d in s−1), eastward
wind speed (u in m/s), northward wind speed (v in m/s), and relative vorticity (vo
in s−1) from ERA5, are collected at the time of IAGOS data acquisition, as well as
at 2 hours and 6 hours prior, incorporating the temporal evolution of the quantities.
Additionally, variables from ±2 ERA5 pressure layers and the target humidity from
IAGOS are included, as detailed in Chapter 5.1.4.

2. Establish an ANN with 56 inputs, 100 hidden neurons for 2 hidden layers and 2
outputs. For details about the ANN different layers please refer to Chapter 2.4.1.
Set relu as an activation function for hidden layers, while using a linear function for
the output layer.

3. Utilize MSE as a loss function. Compile the ANN model with learning rate = 0.001,
decay = 10−5 and momentum = 0.99.

4. Fit (Train) the ANN model with batch sizes of 1024 and 2000 iterations (epochs) at
approximately 17 bits/s.

5. Disable the normalization of humidity predictions.

6. Convert the output data to the NetCDF4 format using NetCDF operators.

The ANN is described in Chapter 2.4 in detail. The trained model is validated against
the extra test data sets of ERA5 and IAGOS which were not part of the initial training in
Chapter 5.4. Finally, the model is applied to dynamically correct the humidity bias in the
UTLS region.
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5.3 Interpretation of the humidity prediction model
The network output is remapped back for the model interpretation and the investigation of
the relative contributions of input variables to the predicted RHi and q. Kx is the relative
change in loss when one feature of ERA5 is set to zero for the complete input data set but
the rest of the input features is kept unchanged:

Kx = Lx − L0

L0
(5.8)

where Lx is the accuracy of the model with the ratio of relative change of MSE (when the
ERA5 feature is adjusted) to the original MSE of the ANN model, and L0 is the basic
accuracy of the model. Low values of Kx indicate a small impact of the change on the
input quantities, or vice versa.

Figure 5.6: Relative contributions of multiple variables to the ANN model for predicting
specific humidity and RHi.

Figure 5.6 shows Kx of the input variables for the ANN-based specific humidity and
RHi prediction models. Qualitatively, importances of meteorological conditions for both
humidity predictions show similar patterns. For example, both plots indicate temperature
T and geopotential z to be the most important parameters, and furthermore either q or
RHi has a large weight. For the prediction of specific humidity, horizontal wind speed u
and v and relative vorticity vo are most prominent among all dynamical states. For the
prediction of RHi, Kx however highlights vertical velocity w and divergency d. In general,
for the RHi ANN model, the contrast in contributions is not markedly large among the
variables of dynamical states.

The significant importances attributed to thermodynamic conditions are explained by
the inherent relationship wherein humidity typically rises with temperature, and ice for-
mation increases in regions where water vapor can effectively deposit. The geopotential z
seems be best suited for an improved prediction of humidity. Higher humidity density is
more concentrated to the high values of z than that in general; they are specifically found
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on the upper pressure levels. The physical explanation of the relation between ISSRs and
high geopotential height can be seen in Wilhelm et al. [2022].

From the aspects of other dynamical states (see Chapter 2.3.4), the importance of
vertical motion can be explained by the formation mechanism of ISSRs, which are typically
formed when air masses move upwards, adiabatic cooling leads to an increase of humidity
[Gierens et al., 2020]. A relatively strong divergence with high horizontal wind speed, and
large negative values of vorticity in anticyclonic systems are typical for ISSRs [Wilhelm
et al., 2022].

Notably, some variables, such as vertical velocity and divergency, yield strong correla-
tion with RHi in Figure 5.4, their importance in model interpretation is not considerable.
This could be attributed to the network configuration. The developed ANN model com-
prises two hidden layers, with the primary influence stemming from the input variables
on the first hidden layer. While w and d demonstrate a robust correlation with RHi, the
ANN model might already capture the RHi measured by IAGOS effectively using ERA5
RHi, temperature and geopotential. Consequently, the contribution of other variables to
the ANN model interpretation appears reduced.

5.4 Evaluation of the humidity prediction model

5.4.1 Validation in cloud-free and cloudy, lower stratosphere and
upper troposphere

The study aims to assess the capability of an ANN model to resolve biases inherent in NWP
parameterizations evaluated in Chapter 5.1.2 and elucidate the underlying meteorological
conditions in UTLS governing ISSRs. Furthermore, considering the predominant presence
of ice supersaturation in the UT as opposed to the LS, this study seeks to investigate
whether the improved humidity data set exhibits reasonable patterns of ice supersaturation
distribution. To quantify the accuracy of the ANN model, RHi and q are predicted for
test data set and evaluated under four conditions: cloud-free (clear), cloudy, LS and UT
(Figure 5.7, Figure 5.8 and Figure 5.9).

Compared with humidity data from ERA5, the q and RHi predicted from the ANN
model are better comparable with measurements from IAGOS. The outputs of the ANN
model achieve higher correlations with IAGOS humidity fields (R2 ≥ 0.75 w.r.t. q; R2 ≥
0.94 w.r.t. RHi) and exhibit decreased biases (RMSE ≤ 0.09 g/kg w.r.t. q; RMSE ≤
8.92% w.r.t. RHi) for all scenarios when evaluated on their test data set (see Figure 5.7
and Figure 5.8). Having been trained on an independent dataset, the ANN model success-
fully learns physical patterns and interconnections within the data, evident in its accurate
humidity predictions. Notably, the humidity estimates in both cloud-free and LS regions
exhibit a closer alignment with the IAGOS dataset, resembling the pattern observed in
ERA5. However, discernible biases persist in cloudy and UT regions. In the LS and UT
area, the bias is largely reduced for q, with an increase of correlation by 0.21/0.12 and a
decrease of MAE by 0.01 g/kg / 0.03 g/kg (see Figure 5.7). The corresponding improve-
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ments of RHi prediction are proved with the increase of correlation by 0.24/0.25, and the
decrease of MAE by 4.08% / 9.01% (see Figure 5.8). The observed dry bias compared
to IAGOS data at the tropopause where the ISSRs are evident can be attributed to the
stratosphere-troposphere exchange during which process dry air from the stratosphere is
transited to the troposphere. Introducing dynamical states, the prediction accuracy at the
tropopause was significantly improved. In the cloudy (cloud-free) regimes, the increase
of correlation is relatively small, with the values of 0.08 (0.11) and 0.19 (0.14) for specific
humidity and RHi, respectively, and the decrease of MAE is 0.03 g/kg (0.02 g/kg) and 7.6%
(6.62%).

The assessment of q compared to IAGOS measurements reveals a noticeably higher
dispersion concerning the results with respect to RHi in both ERA5 and the ANN model
predictions. This increased uncertainty can be probably attributed to biases arising from
the transition process between RHi and q. The presence of ’vertical points’ in each plot,
deviating from the regression line, signifies limited data points and infrequent measure-
ments under extreme conditions. This, in turn, contributes to the abnormal values in
these instances.

In Figure 5.9a, the mean bias percentage error (MBPE) of ERA5 q compared with
IAGOS measurements is always negative. In general, as the q values reach 1 g/kg, the un-
derestimation of the MBPE decreases from 25% to 10%. However, beyond this point, the
bias exhibits an upward trend, reaching up to 20% when q reaches 2 g/kg, except for the
statistics in LS (represented by the blue line). The accuracy of ERA5 q exhibits a notable
decline in less humid regions (i.e., q < 1 g/kg), particularly in the LS when compared to
the UT (as indicated by the grey line). In Figure 5.9b, the ANN model enhances the ac-
curacy of q predictions, primarily exhibiting a minor overestimation for lower water vapor
concentration. However, notable exceptions to this trend include a significant underesti-
mation in LS and a dry bias when humidity levels exceed 1 g/kg. Regarding the evaluation
of RHi data sets, an increasingly dry bias of ERA5 RHi is found in Figure 5.9c. In con-
trast in Figure 5.9d, the RHi prediction from the ANN model shows a better agreement
with IAGOS measured values, which is similar with that from the q prediction. The dry
bias becomes smaller in the UT compared to that in the LS in larger ice supersaturation
(RHi > 120%), where the impact of troposphere-stratosphere exchange is exhibited. This
humidity evaluation using predicted q and RHi and corresponding ERA5 values shows a
distinct improvement from the predicted values from the ANN model compared to ERA5
data set, especially in the ISSRs. This also provides evidence that the improvements in
humidity and ISSRs predictions are crucial, with the aim of advancing further simulations
of contrail cirrus life cycles and accessing their climate impact.

5.4.2 Validation against CIRRUS-HL measurements
The AIMS (Atmospheric Ionization Mass Spectrometer) water vapor measurement instru-
ment has been evaluated and shown a good agreement with other high quality water vapor
instruments [Kaufmann et al., 2018]. Therefore, in addition to the IAGOS measurements,
this study uses the independent humidity data records from the AIMS instrument [Kauf-
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Figure 5.7: Overall test of specific humidity in clear, cloudy, LS and UT from ERA5 and
the ANN model.
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Figure 5.8: Overall test of RHi in clear, cloudy, LS and UT from ERA5 and the ANN
model.
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Figure 5.9: Overall accuracy of specific humidity and RHi against IAGOS measurements
in clear, cloudy, LS and UT from ERA5 and the ANN model.
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mann et al., 2016] aboard the HALO aircraft in special weather situations during the
CIRRUS-HL campaign to validate the accuracy of RHi prediction from the ANN model.

On 21 July 2021, HALO departed from Germany in the early morning and detected one
strong contrail case over the Iberian Peninsula at cruise level. Figure 5.10a and c present
RHi from ERA5 and from the ANN model along the HALO flight track from 07:49 UTC to
08:17 UTC within the pressure levels from 161 to 262 hPa. Compared with AIMS measured
RHi, the wet bias of ERA5 data can reach up to 40% (reddish points) in Figure 5.10b. In
contrast, the ANN model can reduce the RHi overestimation in the UTLS region within
the range of ± 10% (cyan or green points in Figure 5.10d).

Figure 5.10: RHi derived from (a) ERA5 or (c) the ANN model and the differences relative
to AIMS measurements in (b) and (d) obtained from the HALO aircraft on 21 July 2021
during the CIRRUS-HL campaign.

5.4.3 Skill of ISSR prediction against IAGOS data
The ISSRs (RHi ≥ 100%) prediction is also evaluated based on the 2×2 contingency table
shown in Figure 5.11 and the equitable threat score (ETS) calculated with Eqs. 5.9 - 5.10.
The ETS values measure the forecasting skill relative to chance and is often used in the
verification of weather forecasts [Wang, 2014].

The table and the variables are defined here. Hits (a): occasions where both pre-
diction and observation show supersaturation. False negative (b): occasions where the
RHi observation is larger than 100% and prediction is smaller than 100%. False alarms
(c): occasions where RHi prediction is above 100% whereas observation is below this
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threshold. No forecasts (d): occasions where both prediction and observation show sub-
saturation. The auxiliary quantity r is the expected number of correct predictions in
the random predictions where prediction occurrence/non-occurrence is independent from
observation/non-observation:

r = (a + b)(a + c)
(a + b + c + d) . (5.9)

The ETS value is then computed as

ETS = a − r

(a + b + c − r) . (5.10)

The ETS should get larger when the ISSRs prediction is improved. An ETS = 1
indicates all the in-situ IAGOS measurements match up with the ERA5. ETS = 0 means
a completely random relation between IAGOS and ERA5 while ETS = -1 implies the
reverse relation.

Figure 5.11: The contingency table used for the evaluation of ISSRs prediction.

Table 5.2 records ETS values for both ERA5 ISSRs and the ISSRs predicted by the
ANN model. The scores for ERA5 ISSRs in cloud-free, cloudy, LS and UT regions are
0.05, 0.25, 0.14 and 0.22, respectively. The ability for ERA5 to predict ISSRs is limited,
particularly in the clear and LS area. The ANN model improves the prediction of ISSRs
to reach up to 0.65, with the increase of the score about 0.4.
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Table 5.2: Recorded ETS values for the prediction of ISSRs from ERA5 and the ANN
model between 200hPa and 400 hPa over the Atlantic in 2020.

Scenarios ERA5 ISSRs ANN ISSRs
Cloud-free 0.05 0.45

Cloudy 0.25 0.65
LS 0.14 0.65
UT 0.22 0.64

5.5 Investigation of the corrected atmospheric radia-
tion budget

Atmospheric water vapor, an important climate data record [Hegglin et al., 2014], plays an
important role in the radiation budget at TOA [Riese et al., 2012] and also exerts a strong
RF affecting temperatures both locally [Forster and Shine, 1999] and at Earth’s surface
[Manabe and Strickler, 1964]. Figure 2.7 illustrates that the radiative effects of water vapor
in the UTLS are very sensitive to uncertainties in the water vapor concentrations. This
study aims to determine the sensitivity of the TOA RF and profiles of the heating rates
to water vapor either derived from ECMWF ERA5 or predicted from the ANN model in
the UTLS, and the uncertainty is computed with LibRadtran.

To this end, meteorological conditions described in Chapter 5.1.4 from ECMWF model
level data between 100.66 hPa (level 60) and 1031.25 hPa (level 137) are used as input to the
ANN model. The resulting q profiles are used to update the original ERA5 humidity profiles
and serve as input for libRadtran. The case selected for LibRadtran RTM simulations is
14 April 2021 and the area of interests is over the Atlantic Ocean (Please refer to details
about the latitude, longitude, spatial and temporal resolution in Table 5.1 in Chapter 5.1.1).
The cloud liquid water content and ciwc are kept consistent and derived directly from ERA5
in these two RTM experiments to avoid the potential effects from cloud RF. The surface
properties are also obtained from ERA5.

The differences in the vertical humidity profiles from modelled dataset or from the
ANN model are first investigated. The H2O gas density (in number of molecules) from the
original ERA5 in Figure 5.12a is compared with that from the ANN model in Figure 5.12b
for the case in 14 April 2021. Figure 5.12c suggests that the ANN model reduces the water
vapor around 8 km (in blue), while increases the humidity density in the higher levels (in
red).
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Figure 5.12: Water vapor number density from (a) ERA5 or (b) the ANN model and (c)
the differences at 10:00 UTC on 14 April 2021.

Figure 5.13: TOA (a) RSR and (b) OLR from RTM simulations using the humidity from
ERA5 or the ANN model and the comparison with ERA5 radiation products at 10:00
UTC on 14 April 2021. Each bar contains the information of the maximum, minimum,
inter-quartile range (25th percentile to 75th percentile), median (horizontal line) and mean
(square) radiation.

Figure 5.13 shows the comparison of the SW and the LW radiation at the TOA (i.e.
RSR and OLR) between RTM simulations with original humidity data set from ERA5 or
improved humidity from our ANN model, and ERA5 radiation products. ERA5 provides
a mean RSR of about 150 Wm−2 and a mean OLR of around 195 Wm−2 over the Atlantic
Ocean. RTM simulations are generally smaller than ERA5 data in RSR but larger than
that in OLR. The discrepancy observed in RSR is not attributable to the absorption of
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water vapor, as this solely affects thermal spectral irradiances. Instead, this variation in
RSR can be attributed to the different cloud overlap assumptions [Morcrette and Jakob,
2000] and surface information derived from ECMWF model simulations. Compared with
original humidity, my corrected humidity values lead to a similar TOA RSR in Figure 5.13a
but a slight smaller OLR of 2 Wm−2 in Figure 5.13b, which are more comparable to ERA5
data.

The humidity profiles in Figure 5.12a and b are incorporated into the LibRadtran RTM
and the simulated heating rate profiles are shown in Figure 5.14a and b. Comparing with
the ERA5 humidity, the increased humidity from the ANN model contributes to the local
temperature decrease - smaller warming effect as shown in Figure 5.14c with the heating
rate of 0.1 K/day in the UTLS, but the temperature increase - stronger warming effect of
0.1 K/day above the surface, even if lower tropospheric humidity is unchanged. It can be
explained by the additional thermal radiation of water vapor from the upper levels. The
RTM simulations are in agreement with the findings from Forster and Shine [1999]. When
water vapor is changed, the variation in temperature in the UTLS depends on the balance
between increased absorption of upwelling infrared radiation from the troposphere and the
emission of more infrared radiation by the stratosphere. This study has the potential to
improve humidity forecasts for the UTLS region, and thus to improve radiation budget
calculations for climate research applications.

Figure 5.14: Atmospheric heating rate profiles influenced by the humidity from (a) ERA5
or (b) the ANN model and (c) the variations at 10:00 UTC on 14 April 2021.

5.6 Application to other geographic regions and com-
parisons with the existing method

The ANN humidity prediction model is built upon ERA5 meteorological conditions and
IAGOS water vapor measurements in 2020 over the North Atlantic Ocean. Here I intend to
test the feasibility of the model applied to other regions apart from NAR for the preparation
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of further contrail cirrus simulations, and to compare the accuracy of humidity prediction
with the metrics from the existing method, for instance, Teoh et al. [2022a].

The model was exploited for the prediction of q in Asia and Australia, and US, sep-
arately. In Figure 5.15, the comparisons between q either from ERA5 or from the ANN
model and IAGOS measurements in these two regions are shown. ERA5 data show an
underestimation of q in Asia and Australia and US in Figure 5.15a and c, which is similar
with the findings in Figure 5.7. Considering the IAGOS measurements as the reference,
in contrast to ERA5 q, the ANN predicted q in Figure 5.15b shows an increase of R2
from 0.41 to 0.61, reducing the MAE from 0.12 g/Kg to 0.09 g/Kg and the RMSE from
0.16(58.17%) to 0.13(47.24%). However, the predicted q is a little overestimated in US.

Figure 5.15: Overall accuracy of specific humidity from ERA5 and the ANN model against
IAGOS measurements in Asia and Australia, and US. (a) ERA5 in Asia and Australia. (b)
q predicted from the ANN model in Asia and Australia. (c) ERA5 in US. (d) q predicted
from the ANN model in US.

Teoh et al. [2022a] developed a new statistical approach to correct the ERA5 humid-
ity fields in particularly ISSRs, with the aim to resemble the probability density func-
tion (PDF) of the ERA5-derived RHi and the IAGOS in situ measurements inside ISSRs.
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Through a comparison of ISSR occurrences measured from the IAGOS campaign in 2019
and those derived from the ERA5 high-resolution realization and 10-member ensemble with
the humidity correction, the ETS can reach up to 0.424 and 0.395 for the high-resolution
and ensemble data sets, respectively. This existing statistical method acknowledges its
inherent limitation that the errors could be introduced at an individual waypoint level be-
cause the optimisation was performed using the PDF for the full trend of ISSRs. Table 5.2
shows the ETS of the ISSRs derived from ERA5 data and predicted from the ANN model.
The statistical method outperforms ERA5 in predicting ISSRs, as the latter achieves an
ETS of approximately only 0.2. While not a direct comparison within the same time frame,
the ANN model excels in forecasting ISSRs, demonstrating superior accuracy with an ETS
as high as 0.65.
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Chapter 6

Predicted contrail cirrus from
improved humidity

In Chapter 5, the possibility has been demonstrated to improve ERA5 RHi using thermo-
dynamic conditions and dynamical states along with their temporal evolution as input and
measured humidity as output to an ANN. In this chapter, for climate research applications,
the contrail cirrus prediction model CoCiP (in Chapter 3.5) and MSG satellite observed
SW and LW irradiances (in Chapter 2.2.3) are combined to reveal the influence of the
improved prediction of RHi on the assessments of climate impact of contrail cirrus. CoCiP
has adopted different correction methods [Schumann et al., 2021b, Teoh et al., 2022a] to
improve humidity which is the key to contrail persistence. In this context, ECMWF IFS
forecast data are used instead of the ERA5 reanalysis as input for the ANN model to
leverage the contrail prediction capabilities of CoCiP for the upcoming hours and possibly
even days. So as to determine the efficiency of humidity prediction improvements from the
ANN model developed in Chapter 5.2, CoCiP was run for two experiments first without
any correction and then with the humidity correction from the ANN model. The vertical
pressure levels used here are between 200 hPa and 400 hPa.

6.1 Contrail cirrus prediction with improved humid-
ity

As an illustrative example, this section compares the simulated optical properties and ra-
diative effects of contrail cirrus using CoCiP with original IFS humidity and that derived
from the ANN model at 10:00 UTC on 14 April 2021 (the same case discussed in Chap-
ter 5.5). The case in Figure 6.1 is from the ECLIF-3 campaign and can be validated in
details with the aircraft measurements in the future. The contrail cirrus cloudiness in this
scene situate above the ocean, extending from west of Ireland to the Apennine Peninsula,
and move eastwards, surrounded by thick natural cirrus fields.

In Figure 6.2a, CoCiP simulations show large contrail optical thickness being roughly
0.5 over the North Atlantic flight corridor and reaching up to 0.75 above the continent.
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Figure 6.1: RGB and BTD over the NAR and the Europe continent at 10:00 UTC on
14 April 2021.

Upon substituting the input humidity dataset from ECMWF IFS with the corresponding
humidity values from the ANN model, a visual comparison of the CoCiP simulated optical
thickness reveals an enhanced contrail formation and an expanded classification of pixels
as contrails in Figure 6.2b. The IOT values within the cores of contrails increases to levels
exceeding 1.0.

For the radiative effects, contrails in Figure 6.2c have larger SW RF (ca. 30 Wm−2,
negative values also in the following description) over the ocean surface than 20 Wm−2 over
the Iberian Peninsula. In contrast, the core of contrails simulated with improved humidity
in Figure 6.2d shows values around 40 Wm−2 and even larger, with values of 20 Wm−2 at
the edges. Abundant water vapor promotes the growth of contrails and prolongates their
life time. The simulated LW RF using humidity data set from ECMWF IFS in Figure 6.2e
has values of 20 Wm−2 close to the core of contrails. With an increased concentration of
moisture, the simulations of LW RF correspondingly increase up to 35 Wm−2 in Figure 6.2f,
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showing subtle variations compared to those observed between Figure 6.2c and d.

Figure 6.2: Comparisons of contrail cirrus derived from CoCiP simulations using humidity
from ECMWF IFS and the ANN model for (a) and (b) IOT, (c) and (d) SW RF, (e) and
(f) LW RF, and (g) and (h) net RF at 10:00 UTC on 14 April 2021.



90 6. Predicted contrail cirrus from improved humidity

Ultimately, negative net RF is found in Figure 6.2g around 10 Wm−2 over the ocean and
then positive values around 10 Wm−2 over Spain. For Figure 6.2h, the significant change is
observed in the simulations at the core of the simulated contrails. This observation suggests
that the presence of sufficient moisture leads to the increase of both SW and LW radiation,
particularly pronounced in the SW range because of the higher reflection from larger IOT.
In addition to the influence of increased actual humidity, CoCiP simulations are subject
to inherent limitations that could contribute to inaccuracies. The transformation process
of IAGOS measured water vapor data sets to specific humidity, as utilized in the training
data, has introduced a certain wet bias when compared to the official ECMWF IFS.

6.2 Contrail cirrus predictions against MSG observa-
tions

6.2.1 Macrophysical and optical properties

Figure 6.3 and 6.4 provide a comparison of spatial distributions and occurrences of model-
simulated and MSG-observed IOT, focusing on the accuracy difference induced from ECMWF
IFS humidity and predicted humidity from the ANN model. Regarding microphysical prop-
erties, the reference IOT is extracted from MSG observations using the CiPS algorithm, as
detailed in Chapter 3.1.1. It is assumed that the observed contrail signatures are not pre-
dominantly influenced by model and observation errors. The modeled and observed spatial
distributions of IOT exhibit similarities, quantified by assessing the occurrences across the
entire NAR area. The distribution of IOT simulated using ECMWF IFS humidity exhibits
a decrease from 0.0 to 1.0, with the highest bin encompassing IOT values up to 0.2, and
the subsequent bins (second to fourth) indicating lower IOT levels ranging from 0.2 to 0.8.
There is a sharp decrease in IOT occurrence from 0.8 to 1.0. Conversely, the IOT distri-
bution simulated using the improved humidity prediction from the ANN model decreases
almost smoothly from 0.0 to 2.0, showing a comparable value range and trend to MSG
observations, except for an underestimation of IOT between 0.8 and 1.6. Generally, the
correlation is higher between simulated results using predicted humidity and observations,
followed by simulations with ECMWF IFS and reference values. The inclusion of predicted
humidity from the ANN model enhances the model-observation agreement. Notably, con-
trail cirrus and natural cirrus IOT simulated from CoCiP serve as masks for both model
simulations and satellite observations. Due to the challenge in collocating CoCiP grid
boxes with MSG observed pixels in different temporal and spatial scales, a pixel-to-pixel
comparison is not operationally feasible in this context.
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Figure 6.3: Distributions of IOT simulated from the CoCiP model using humidity from
ECMWF IFS or the ANN model and that retrieved from MSG observations using the CiPS
algorithm at 10:00 UTC on 14 April 2021.

Figure 6.4: Occurrences of IOT simulated from the CoCiP model using humidity from
ECMWF IFS or the ANN model and that retrieved from MSG observations using the
CiPS algorithm at 10:00 UTC on 14 April 2021. All IOT values are masked with CoCiP
simulated cirrus grid boxes for the histogram of the IOT occurrence statistics.

6.2.2 Radiative effects
Figure 6.5 illustrates the spatial distributions of model simulations and satellite observa-
tion results for OLR and RSR, highlighting mean differences arising from the utilization
of ECMWF IFS humidity versus humidity from the ANN model. In this context, ob-
served OLR and RSR are derived from MSG observations using the RRUMS algorithm,
as outlined in Chapter 3.1.2. Consistent with the findings on IOT, regions indicating a
significant enhancement of RSR and a noticeable increase in OLR when simulated with im-
proved humidity compared to ECMWF IFS are notably evident over the NAR ocean. The
occurrences of SW and LW irradiances have been analysed to explore the mean modeled
and observed spatial differences.
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Figure 6.5: Distributions of RSR and OLR simulated from the CoCiP model using humidity
from ECMWF IFS or the ANN model and those retrieved from MSG observations using
the RRUMS algorithm at 10:00 UTC on 14 April 2021.

Figure 6.6: Occurrences of RSR and OLR simulated from the CoCiP model using humidity
from ECMWF IFS or the ANN model and those retrieved from MSG observations using
the RRUMS algorithm at 10:00 UTC on 14 April 2021.
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As depicted in Figure 6.6, the RSR distribution observed from MSG spans from 0 to
800 Wm−2, suggesting a combination of contrail cirrus and thick natural cirrus. The initial
bin is the highest, concentrating around 200 Wm−2, with a following gradual decrease in
RSR occurrence. The model-simulated RSR using ECMWF IFS humidity and improved
humidity aligns reasonably well with observed values, exhibiting larger or smaller values,
respectively. Regarding OLR, observed values range from 150 to 300 Wm−2. The model-
simulated OLR with predicted humidity from the ANN model corresponds closely to MSG
observations. However, occurrences of OLR simulations using ECMWF IFS humidity
decrease by one order of magnitude when OLR falls between 150 and 250 Wm−2. In
general, the model results demonstrate increased comparability with MSG observations
when the improved humidity prediction from the ANN model is incorporated. In the test
case, contrail cirrus optical thickness and radiative effects increase following this humidity
correction. These contrail cirrus simulations provide the basics for addressing contrail
cirrus climate impact mitigations. Given that ISSRs typically exhibit large horizontal
but shallow vertical extensions [Spichtinger et al., 2003], a minor adjustment in cruising
altitude, avoiding regions of high humidity, can potentially reduce contrail forcing.

6.3 Small-scale diversion strategy
Several studies have evaluated different flight diversion strategies to minimize the formation
of persistent contrails and their climate impact by avoiding ISSRs [Teoh et al., 2019, Sausen
et al., 2023]. Here, an alternative metric that has been used to quantify the contrail climate
forcing is the energy forcing (EF, in units of J) integrating local contrail RF, length, and
width, and the contrail lifetime.

Figure 6.7: The concept of the contrail climate impact mitigation strategy with small scale
diversion strategy. Figure from Teoh et al. [2020].
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In Figure 6.7, the concept of the contrail avoidance strategy with small scale diversion
strategy to avoid the contrail formation region is shown. In fact, a fleet-wide diversion
strategy is neither practical nor necessary given that only 2.2% of flights contribute to 80%
of the total contrail EF over Japan [Teoh et al., 2020]. In the short term, a small-scale
strategy which selectively diverts flights with the largest EF could significantly reduce the
contrail climate forcing, minimize disruptions to air traffic management, and be imple-
mented quickly without technological changes.

Previous studies found that ISSRs typically have large horizontal (150 ± 250 km) but
shallow vertical extensions (of order 488 m) [Spichtinger et al., 2003]. Therefore, a small
adjustment in cruising altitude could minimize the flight distance within regions charac-
terized by high humidity, thereby leading to a reduction in both contrail lifetime and EF.
Notably, because of seasonal variations of the tropopause height, contrail EF is more ef-
ficiently reduced when the aircraft are directed to lower cruising altitudes in the summer
months and conversely during winter.

Over the longer term, widespread adoption of cleaner fuel and engines could reduce
the contrail forcing. 50% biofuel blending has the capability to reduce the number of soot
particles and further N by 70% [Voigt et al., 2021]. Soot emissions from the lean burn
engine are also reduced to a similar degree with the biofuel blending. The water-enhanced
turbofan (WET) engine traps the water vapor mixing ratio for the initiation of contrails.
Contrail segments produced by hydrogen turbofan combustion have fewer ice particles
with larger mean radii than those of biofuel blending [Ström and Gierens, 2002, Bier and
Burkhardt, 2022]. For a 50% reduction in N , Bock and Burkhardt [2019] found a 14%
reduction in net RF in the Eastern China and Japan region, and for an 80% reduction in
N , Burkhardt et al. [2018] calculated a 50% reduction in net RF globally. However, the
operation of these strategies takes time.
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Summary, conclusions and outlook

The focus of this dissertation is the investigation of microphysical properties and radiative
effects of a contrail cirrus outbreak, and the improvement of relative humidity predictions
from a NWP model to better assess contrail cirrus climate impact. The contrail cirrus
outbreak study combines detailed airborne in situ and lidar measurements from the HALO
aircraft over the NAR and MSG/SEVIRI geostationary satellite observations, and develops
a new cirrus classification method and a RTM based TOA irradiance estimation algorithm,
with the aim to be applicable to a broader data set of any natural and anthropogenic clouds
as far as possible. The novel prediction of humidity uses the modelled thermodynamic
conditions and dynamical states with their temporal evolution from ECMWF ERA5 as
input and measured humidity from IAGOS as output, and is based on artificial neural
networks, targeting to simulate more accurate contrail cirrus radiative effects. This research
provides new knowledge on the differences between natural cirrus and contrail cirrus and
their evolution, and supplies reference data of clouds and water vapor for numerical and
global climate models.

In Chapter 4 the microphysical properties of natural cirrus, contrail cirrus and contrails
in similar meteorological conditions were distinguished and identified from in situ measured
clouds particles and NO, and the RF of natural cirrus and contrail cirrus are derived by
satellite observations based RTM in an air traffic region favorable for contrails formation
and evolution. Building upon the non-negligible climate impact of contrail cirrus and the
corresponding influences from ambient relative humidity, Chapter 5 described the creation
of an extensive training data set, the development of a novel relative humidity prediction,
the interpretation and the validation of the method, and the application to the investigation
of atmospheric water vapor radiation budget. Finally, Chapter 6 includes the further
comparisons of contrail cirrus simulated from numerical model using the humidity from
ECMWF IFS and the ANN model and that observed from satellite data, with a discussion
on contrail cirrus mitigation strategies. In the following, the main results are summarized in
light of the three scientific questions formulated in Chapter 1.2 and corresponding outlooks
are given.

1. What are the microphysical properties and radiative effects of contrail cirrus and
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natural cirrus in a contrail cirrus outbreak?

To answer this question, a detailed investigation of an ideal contrail cirrus outbreak
event using a case study focusing on the NAR on 26 March 2014 during the ML-CIRRUS
experiment with in situ probes and lidar measurements from the HALO research aircraft
and geostationary satellite observations was conducted. This contrail cirrus outbreak case
is chosen because of the large contrail cirrus coverage and high air traffic density. As
the flight operation in all altitudes is not easily granted due to the high air traffic load
in the NAR, the data presented here are also rare and unique in the sense that HALO
was able to operate and acquire in-flight measurements of contrail cirrus perpendicular
to the flight tracks of the NAR. From satellite remote sensing, few low-level water clouds
and the relatively homogeneous oceanic background increase the sensitivity to retrieve
cirrus properties. On the morning of that day, the HALO research aircraft flew for 3 h in
or above natural cirrus, contrail cirrus and contrails. Various contrails with related fall
streaks have been identified in airborne lidar backscatter data which merge to a larger
cloud with a vertical extent of 2 km that dissipates with time. High resolution RGBs and
BTDs from MSG/SEVIRI also reveal the presence of various line shaped structures that
represent contrails. Simultaneous airborne humidity measurements from AIMS show RHi
between 80% and 120%, in line with lidar observations indicating a region where contrails
formed, evolved and merged with natural cirrus. Thus, combined evidence from satellite
and aircraft data suggest the presence of an ideal contrail cirrus outbreak event.

Aircraft plumes are identified using peaks in NO data with an approach that takes care
of the variable NO background and contrasts contrails and contrail cirrus on the basis of
measured ice number concentrations. As shown in Figure 4.7, the mean radii of contrails
or contrail cirrus is about 18% smaller than that of natural cirrus in that case, suggesting
a self-stabilizing mechanism of smaller contrail cirrus particle sizes surviving due to higher
ice number concentrations in contrail cirrus compared to natural cirrus. Ice particle sizes
increase by about 144% during the transition from contrail to contrail cirrus by deposition
of water vapor in regions with ice supersaturation.

For the purpose of obtaining accurate radiative effects of contrail cirrus and natural
cirrus, a new TOA RSR and OLR estimation method is developed, which is based on
detailed RTM calculations and exploits in situ measurements, satellite observations and
ERA5 model atmospheric data. Using IOT from MSG/SEVIRI (CiPS), Reff from in situ,
cloud top and bottom height from the lidar, and gas, temperature and liquid water cloud
profiles from ERA5, an input atmospheric state for the RTM has been defined that enables
to compute RSR and OLR that compare well to MSG measurements (RRUMS). When the
ice cloud layer is removed from the RTM input, RSR and OLR for cirrus-free conditions
can be computed that are consistent in the background atmospheric states.

In a larger area of 36 × 51 SEVIRI pixels encompassing the HALO race track over NAR,
the diurnal cycle of the contrail cirrus outbreak was computed. Cirrus RF is associated
with the changes of cirrus coverage, CTH and IOT. Here, a positive net RF of the contrail
cirrus outbreak region is found in the early morning, and the contrail cirrus outbreak warms
at TOA till 09:00 UTC (Figure 4.11). Then, during the daytime the mean net RF of the
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contrail cirrus outbreak becomes negative, and the contrail cirrus outbreak cools. This
outbreak resulted from uplift of moist air masses in a warm conveyor belt system modified
by the jet stream circulation at cruise altitudes. In the long-term observations or hourly
resolved simulations of contrail cirrus coverage and RF in the NAR, Graf et al. [2012],
Duda et al. [2013] and Vázquez-Navarro et al. [2015] also find that the contrail coverage
is important for the corresponding contrail RF and that a high variability of the contrail
impact is exhibited. These studies indicate that contrail cirrus warm during the night,
while a larger variability in contrail cirrus RF exists during the day. Teoh et al. [2022a,b]
show that contrail cirrus often cools during daytime and that the cooling depends on many
parameters including solar zenith angle and the surface albedo. For some cases with low
clouds, Teoh et al. [2022a,b] also find warming of contrail cirrus during the day. In the
absence of sunlight during the night time, however, contrail cirrus warms the atmosphere.

In order to reduce the uncertainty of the contrail cirrus climate impact research, I have
developed a new method to derive the RF of contrail cirrus and cirrus, and this approach
is tested using in situ and lidar observations in a contrail cirrus outbreak situation. The
future study will aim at applying the method to a broader data set to investigate the
radiative effects of cirrus and contrail cirrus using RTM simulations involving CTH and
IOT from satellite, Reff from in situ values, and CBH and cloud thickness from lidar.

This work is valuable for identifying contrails, contrail cirrus and natural cirrus from
different platforms, estimating TOA RF from satellite data, and assessing microphysical
properties and climate impacts of anthropogenic cirrus and natural cirrus, and can help to
formulate appropriate contrail mitigation options.

2. Is there a possibility to improve the RHi prediction from ERA5 with thermodynamic
conditions and dynamical states?

To answer this question, the significance of ice supersaturation on the persistence and
climate impact of contrail cirrus from Chapter 4 and the bias of humidity in the UTLS
as well as the mechanisms behind were accounted for to investigate the potential in the
improvements of humidity prediction in Chapter 5.

The UTLS region is of special interest for dynamical and chemical processes as well as
the associated (contrail) cirrus cover and RF. In particular, contrails that are formed in
this region can survive for hours if the surrounding air is supersaturated with respect to ice.
Persistent contrails have a considerable impact on the radiation budget and represent the
large contribution to the ERF of aviation. However, water vapor in the UTLS is subject
to uncertain spatial distributions and temporal variations. For instance, IAGOS shows a
significantly greater amount of smaller ISSRs compared to ERA-Interim [Reutter et al.,
2020]. Sensitivity analyses are also performed in Teoh et al. [2022a] to compare the dif-
ference in mean contrail properties from individual flights between the nominal simulation
with humidity correction applied to the ERA5 or vice versa. Without correction of the
humidity fields, the estimated contrail cirrus net RF is halved relative to the simulation
where the humidity correction is applied.
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Favorable thermodynamic conditions and dynamical states are linked with RHi in
Gierens and Brinkop [2012], Gierens et al. [2020]. Thus, the improvement of ice super-
saturation predictions and the associated contrail cirrus RF estimation is possible by ac-
counting for atmospheric quantities. Dyroff et al. [2015] has also assessed that the highest
RHi bias in the UTLS originates from low pressure and high latitudes due to vertical
stratospheric intrusions and horizontal airmass transport. This highlights the need of ac-
counting for temporal and spatial meteorological variables to evaluate atmospheric water
vapor. The temporal and vertical dependence of RHi on meteorological conditions is de-
termined, through calculating the Spearman’s correlation coefficient between collocated
weather conditions at certain time and level from ERA5 and RHi at the acquisition time
and location from IAGOS, focusing on vertical water vapor transport from below and uplift
of cold air masses in the UTLS. As is described in Figure 5.4, the correlations between
thermodynamic conditions from ERA5 including RHi and temperature and IAGOS RHi
at the IAGOS acquisition time stay constant but those from dynamical states, for example
vertical and horizontal wind speed, divergency, and relative vorticity, apart from geopo-
tential, vary over time. The impact of thermodynamic conditions and dynamical states on
the RHi of the IAGOS acquisition level varies with vertical pressure. Thus I include the
atmospheric quantities with time lags and pressure differences in the humidity prediction
process. The confidence interval analysis was also performed, and the results exclude the
insignificant relationship between RHi and vertical velocity at 5 h before and that and po-
tential vorticity at 1 h and 3 h before. Sensitivity analyses indicate that the combination
of previous (-2 h, -6 h) and current atmospheric states within the difference of 2 pressure
levels present the high predictive skill for the current humidity status. In the later stage of
interpreting the built ANN humidity prediction model with modelling meteorological con-
ditions and measured humidity, relative contributions of multiple meteorological conditions
are demonstrated with the calculated quantitative relative change in loss. Humidity, tem-
perature, and geopotential (altitude) in Figure 5.6 show strong influences on the humidity
prediction, while the impact from other dynamical states on RHi is also non negligible.

The novel humidity prediction model based on ANN was developed in Chapter 5.2 with
the aim to build a general-purpose humidity correction approach for improving the existing
humidity data records, and to simulate more precise contrail cirrus radiative effects. Our
approach includes mainly two key points: input data for training the model were collected
from modelled thermodynamic conditions and dynamical states from ECMWF ERA5,
and verified to cover the temporal and vertical dependence of humidity on meteorological
conditions; an extensive set of measured humidity from IAGOS as the output data for
building the model represents the humidity distribution in the UTLS. Such a wide range
of atmospheric states and measurements, especially newly introduced dynamical states
and their temporal evolution, constitutes the main difference to other existing humidity
correction methods using the general regression.

Our model predicts the specific humidity and RHi mainly in the UTLS region. The
performance of the ANN model with respect to different humidity categories and differ-
ent UTLS regions and cloud-free and cloudy scenarios was investigated by performing
systematic tests of the predictions using independent test data set which were created
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similarly as the original training data. The model predicted humidity shows higher cor-
relation (R2 ≥ 0.75 w.r.t specific humidity q; R2 ≥ 0.94 w.r.t. RHi) and lower error
(RMSE ≪ 0.09 g/kg w.r.t q; RMSE ≪ 8.92% w.r.t. RHi) compared with the long term
airborne observed humidity from IAGOS (Figure 5.7 and Figure 5.8) than ERA5 data.
These improvements are general in cloudy or cloud-free scenarios, and UT or LS. Espe-
cially in the LS and UT area, the ERA5 RHi bias is largely reduced, with the increase of
correlation by up to 0.25 and the decrease of MAE up to 9.07% and 0.03 g/kg for RHi and
q, respectively. It is found that the underestimation of ERA5 q firstly decreases with the
MBPE from 25% to 10% when q is smaller than 1 g/kg, and then increases with the MBPE
up to 20% until the humidity is 2 g/kg. However, the dry bias from ERA5 RHi presents
an continuous increasing trend (see Figure 5.9). The ANN model improves both the q and
RHi prediction, with the slight wet bias for lower water vapor and the dry bias when the
humidity values are exceeding 1 g/kg or the RHi is saturated.

The ANN prediction model was applied to airborne in situ measurements for a specific
contrail cirrus case during the CIRRUS-HL campaign in 2021. The predicted RHi is in
very good agreement with the reference in situ data. From Figure 5.10, our developed
model can reduce the wet bias of ERA5 from 40% to the values within the range of ± 10%,
which confirms the enhanced accuracy of the RHi prediction. Furthermore, the contingency
table and the ETS calculation were used to give the quantitative validation of the ISSRs
prediction from ERA5 or from the ANN model. The "scores" for the ability of ERA5 to
predict ISSRs are 0.05, 0.25, 0.14 and 0.22 in clear, cloudy, LS and UT regions, respectively.
The ANN model partly releases the limitation to predict ISSRs, with the increases of the
ETS score values about 0.45, 0.65, 0.65 and 0.64. For the updated RTM based simulations
of atmospheric water vapor radiation budget, in agreement with the findings from Forster
and Shine [1999], a decreased q in part of the UT but an increase of q in the LS of the
vertical profiles induces a warming effect at the surface and a locally smaller warming effect
in the UTLS in Figure 5.14.

To conclude, the validation showed that the dynamic-based humidity prediction model
is able to perform with reasonable accuracy over a wide range of atmospheric conditions as
well as application scenarios. Especially the satisfying results for different UTLS regions
and cloud-free and cloudy areas indicate that the approach can be applied to arbitrary
meteorological conditions. This study has the potential to improve humidity forecasts in
the UTLS region, to constrain uncertainties in the assessment of contrail cirrus radiative
impacts, and to formulate and evaluate contrail mitigation options for climate research.

3. How does an improved prediction of RHi influence the predicted climate impact of
contrail cirrus?

To answer this question, the humidity from both ECMWF IFS data sets (not ERA5)
and the ANN model in Chapter 5 were used to perform two experiments without or with
humidity correction by contrail prediction model CoCiP simulations for the next hours
in Chapter 6. Here, one case during the ECLIF-3 campaign in 2021 was selected for the
comparisons (see Figure 6.2). An elongated contrail formation stretches from northwest
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of Ireland to the Iberian Peninsula, characterized by increased cirrus cloudiness resulting
from the forecasted humidity, surpassing that obtained from ECMWF IFS. The improved
humidity predictions lead to an increase in IOT, and the variation of the cirrus warming
and cooling proportions.

As indicated in the introduction, one important field of application of satellite ob-
served contrail cirrus radiative effects is the comparison with numerical model predictions
for configuration and validation. Here, satellite observed macro-microphysical properties
and TOA irradiances for the selected contrail cirrus case were compared to the model sim-
ulations in Figure 6.3 - Figure 6.6. The occurrence of IOT simulated using ECMWF IFS
decreases from 0.0 to 1.0, with the sharp fall from 0.8 to 1.0. The IOT frequency simulated
with improved humidity prediction from the ANN model decreases almost smoothly from
0.0 to 2.0, which are consistent with MSG observations in both range of values and trend.
The RSR, simulated with ECMWF IFS humidity and predicted humidity, closely aligns
with observed values. In contrast, the OLR, when simulated with predicted humidity from
the ANN model, exhibits stronger agreement with MSG observations. Notably, instances
of OLR simulations using ECMWF IFS humidity decrease significantly by an order of mag-
nitude when OLR is between 150 and 250 Wm−2. Generally, the simulated results with
predicted humidity from the ANN model display higher consistency with observations,
outperforming the experiment with ECMWF IFS. The humidity from the ANN model is
more suitable to simulate contrail cirrus.

Figure 7.1: The sketch of climate impact of a contrail cirrus outbreak and a novel prediction
of relative humidity for weather forecast.

A critical component of the tool, ISSRs prediction, has undergone significant improve-
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ment, potentially facilitating the implementation of contrail avoidance measures and mit-
igating the contrail climate forcing (See Figure 6.7). A small-scale diversion strategy for
aircraft to avoid the ISSRs and warming contrails is then operational, based on the ice su-
persaturation prediction using the novel ANN method with the consideration of dynamical
states, and the investigations of microphysical properties and radiative effects of contrail
cirrus and natural cirrus in Chapter 4.

The conclusive outcomes of this thesis are eventually summarized in a sketch in Fig-
ure 7.1.

Outlook
This thesis firstly provides new insights in the microphysical properties and radiative effects
of a contrail cirrus outbreak, combining airborne in situ and lidar measurements with
geostationary satellite observations, and developing a new cirrus classification method and
a RTM based TOA irradiance estimation algorithm. It also opens up for further studies.
A broader data set with more contrail cirrus clouds could be identified and analysed in
order to have a stronger statistical significance. This can be done by (1) extending the time
period from one case study and the geographic location over the North Atlantic to several
months or years and on a global scale; (2) including temporal evolution of cirrus clouds
in the wider range of spatiotemporal scales as well. Extending the size of the used data
set, however, requires a more automatized method for detecting the contrail cirrus, which
has received increased attention nowadays [Hoffman et al., 2023]. Moreover, as aerosols
can act as cloud condensation nuclei, it would be interesting to perform a similar study on
anthropogenic cirrus clouds not produced by aviation but influenced by different aerosol
sources, and compare the life cycles and the temporal evolution between them [Lohmann
and Gasparini, 2017].

This research also develops a novel humidity prediction method, and analyzes the influ-
ences of humidity variations on the estimation of contrail cirrus climate impact, using the
modelled thermodynamic conditions and dynamical states from ECMWF ERA5 as input
and measured humidity from long term aircraft measurements from IAGOS as output,
and profiting from the artificial neural network technique and contrail prediction mod-
elling. Concerning further improvements of humidity prediction capacities building upon
this developed approach, three pathways are available. First, the training data set can be
expanded and the ANN can be retrained. Samples with collocated meteorological condi-
tions and measured water vapor from the tropics or the polar regions could be included,
as geographic locations influence dynamical processes of water vapor due to various dy-
namical states. Second, one could try to make the ANN more robust by applying further
regularization to all inputs. Third, one could focus on further processing the retrieval out-
puts. It might be promising to evaluate the origin of the humidity once more and verify
the mechanisms of vertical stratospheric intrusions and horizontal airmass transport. One
ongoing next step involves comparing humidity predictions generated by the ANN model
with those produced by other existing methods, such as the IAGOS statistical approach
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proposed by Teoh et al. [2022a]. The humidity prediction could serve as a benchmark for
the measurements of further aircraft campaigns, and work as the reference or assimilation
data set of the NWP model for a better parameterization of ice supersaturation [Schumann
et al., 2021a]. The method could also be applied to other weather forecast models from
ECMWF and from German or French Weather Services, which are used for daily weather
predictions.

Figure 7.2: The sketch for contrail mitigation proposed based on addressing key scientific
questions, including detailed assessments of contrail cirrus RF and enhancements in the
RHi prediction using the ANN model for weather forecast.

This ANN method, with the better parameterization of ice supersaturation, could im-
prove and consolidate first attempts to avoid contrails in international airlines. In the
next step, I would like to test contrail cirrus mitigation strategies encompassing a wider
range of scenarios with the CoCiP model. This can include not only variations in water
vapor to support contrail growth but also reductions in soot particle emissions for contrail
formation. Figure 7.2 presents the summarized contrail mitigation strategies with the aim
to reduce the contrail climate forcing in their spreading and formation stage, including
(1) a small-scale strategy of diverting flights with the largest contrail ERF, for instance
avoiding the ISSRs, based on the investigations of microphysical and radiative effects of
contrail and natural cirrus, (2) widespread adoption of aircraft powered by cleaner fuel and
engine technologies such as biofuel blending, hydrogen combustion, lean burn engine, and
water-enhanced turbofan (WET) engine [Pouzolz et al., 2021].

Besides the correction of ISSRs, other sustainable aviation strategies mentioned above
are also applied with CoCiP simulations for the first simple attempt, with the adjustments
of soot emissions and available water vapor according to the description in Chapter 6.
Figure 7.3 shows the contrail cirrus net RF from modified aircraft emissions and ambient
RHi compared to normal conditions as one example. Applications of biofuel blending,
hydrogen combustion and WET engine have reduced microphysics (IOT) and absolute net
radiative effects of contrail cirrus incrementally. What I haven’t shown here from the first
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Figure 7.3: Simulations of contrail cirrus net RF pertaining to various contrail mitigation
strategies conducted by CoCiP.

simulation results is that the hydrogen combustion has a stronger reduction effect on SW
RF of contrail cirrus than on LW RF, and the WET engine contributes to a regional net
cooling effect of contrail cirrus. Settings or parametrizations in CoCiP need to be further
optimized based on measurements. Possibly increased CO2 emissions or cost of investment
and time have to be discussed when re-scheduling air traffic.

The previous paragraphs clearly show various possibilities to reduce the impact of con-
trail cirrus on climate. Thus, questions arise: Which is the most suitable option?Grewe
and Linke [2017] compared results on the climate impact reduction of operational and
technological mitigation options achieved within various projects. For example, AHEAD
(a multi-fuel blended wing body) has a large eco-efficiency (ratio between climate impact
reduction and operational costs) and hence seems to be well suited to be developed but
the potential starting time of this option is far in the future. On the other side, ISO (in-
termediate stop operations to reduce fuel consumption) actually are already adopted. Yet
the goal of the current implementation is rather exploiting cheap fueling possibilities and
the eco-efficiency ways. A good strategy should mix different approaches, e.g., operational
mitigation measures such as REACT4C (lateral and vertical changes in flight trajectories
to avoid climate sensitive regions) or WeCare-CRA (climate restricted areas related to cli-



104 7. Summary, conclusions and outlook

mate sensitive regions), to obtain some reductions in the climate impact from aviation by
complementing it with further technology options on the longer term. Obviously, there is
no clear answer to these questions, regarding ranking of mitigation options and measures,
and further discussions are still ongoing.

The prediction of ice supersaturation in this thesis can also be applied to the investi-
gation of microphysical processes of mixed-phase clouds (MPCs, a mixture of supercooled
liquid droplets and ice crystals). Herein, the Wegener–Bergeron–Findeisen process (or
"cold-rain process") is predominant, during which ice crystals grow in MPCs with the
depletion of liquid droplets in a subsaturated environment for liquid water but a super-
saturated environment for ice [Korolev and Mazin, 2003]. Under the condition that the
density of ice is smaller compared to liquid water, the ice crystals can grow large enough to
fall out of the cloud, melting into rain droplets if lower level temperatures are warm. When
the fraction of liquid droplets decreases from 100% to 0, more ice particles in the warming
environment will melt to liquid droplets with the higher reflection and let more energy back
to the space, and then offset the temperature to decrease about 2 °C. Thus the supercooled
liquid fraction (SLF) in MPCs is an essential variable of cloud microphysical processes and
climate sensitivity. I have retrieved the SLF in MPCs based on the differences in radiative
properties of supercooled liquid droplets and ice particles at visible and shortwave-infrared
channels of the geostationary Himawari-8 (Figure 7.4, Wang et al. 2024), thus the retrieval
results could be linked with ice supersaturation distribution predicted from the ANN model
and meteorological conditions from ECMWF to investigate the evolution of MPCs in the
future study.
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Figure 7.4: The general cloud situation and retrieved SLF in the detected MPCs at 4:00
UTC on 28 August 2017. a. RGB. b. Cloud top phase. c. Cloud water path predicted
based on the collocated Himawari-8 and CALIPSO observations. d. SLF in MPCs.
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Appendix A

List of abbreviations

ABI Advanced Baseline Imager
ACTA Automatic Contrail Tracking Algorithm
AENEAS AtmosphEric Nitrogen oxides mEAsuring System
agg aggregates
AI Artificial Intelligence
AIC Aircraft-Induced Clouds
AIMS Atmospheric Ionization Mass Spectrometer
AIRS Atmospheric InfRared Sounder
ANN Artificial Neural Networks
AR5 Fifth Assessment Report
AVHRR Advanced Very High Resolution Radiometer
BADA Base of Aircraft Data
BAHAMAS Basis HALO Measurement and Sensor System
BTD Brightness Temperature Difference

CALIPSO Cloud Aerosol Lidar and Infrared Pathfinder
Satellite Observations

CARIBIC Civil Aircraft for the Regular Investigation
of the atmosphere Based on an Instrument Container

CAS-DPOL Cloud and Aerosol Spectrometer with
Detector for Polarization

CBH Cirrus Bottom Height
CC Correlation Coefficient
CDA Contrail Detection Algorithm
CERES Clouds and the Earth’s Radiant Energy System
CIP Cloud Imaging Probe
CiPS Cirrus Properties from SEVIRI
CO2 Carbon Dioxide
CoCiP Contrail Cirrus Prediction model
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CONCERT CONtrail and Cirrus ExpeRimenT
CTH Cloud Top Height
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 Fifth generation ECMWF ReAnalysis
EF Energy Forcing
ERF Effective Radiative Forcing
ETS Equitable Threat Score
ghm general habit mixture
GERB Geostationary Earth Radiation Budget
HALO High Altitude and LOng range research aircraft
HRV High Resolution Visible
IAGOS In-Service Aircraft for Global Observing System
ICE International Cirrus Experiment
IFS Integrated Forecast System
IOT Ice Optical Thickness
IPCC Intergovernmental Panel on Climate Change
ISSRs Ice Supersaturation Regions
IWC Ice Water Content
LWC Liquid Water Content
LMS LowerMost Stratosphere
LW LongWave
MAE Mean Absolute Error
MBPE Mean Bias Percentage Error
MSE Mean Squared Error
MSG Meteosat Second Generation
ML-CIRRUS Midlatitude Cirrus
MLP MultiLayer Perceptron
MODIS Moderate Resolution Imaging Spectroradiometer

MOZAIC Measurement of Ozone and Water Vapor by
Airbus In-Service Aircraft

MPCs Mixed-Phase Clouds
NAR North Atlantic Region
NATS North Atlantic Tracks
NO Nitrogen Oxide
NOx Nitrogen Oxides
nvPM non-volatile Particulate Matter
NWP Numerical Weather Prediction
OLR Outgoing Longwave Radiation
R2 R-Square
Reff Effective Radii
ReLU Rectified Linear Unit
RF Radiative Forcing
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RGB Red Green Blue image
RHi Ice Supersaturation Regions
RMSE Root Mean Square Error

RRUMS Rapid Retrieval of Upwelling Irradiances
from MSG/SEVIRI

RSR Reflective Solar Radiation
RTM Radiative Transfer Model
SAC Schmidt-Appleman Criterion
SEVIRI Spinning Enhanced Visible and InfraRed Imager
SLF Supercooled Liquid Fraction
SW ShortWave
TOA Top-Of-Atmosphere
TTL Tropical Tropopause Layer
UTLS Upper Troposphere and Lower Stratosphere
WALES Water vapor Lidar Experiment in Space
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