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Zusammenfassung

Der jüngste Erfolg des Maschinellen Lernens (ML) hat zu einer weiten Ver-
breitung in verschiedenen Bereichen geführt, z. B. bei Haushaltsprodukten, bei
der Verarbeitung natürlicher Sprache und bei Empfehlungsprogrammen. Techno-
logische und rechnerische Fortschritte sowie die zunehmende Verfügbarkeit von Da-
ten haben diesen Trend begünstigt. In diesem Zusammenhang wird erwartet, dass
ML die Sicherheit von autonomen, sicherheitskritischen Systemen aufgrund seiner
überzeugenden Leistungsfähigkeit erhöhen wird.

In einer Sicherheitsargumentation soll aufgezeigt werden, dass eine Funktion aus-
reichend sicher ist, also ein akzeptables Restrisiko nicht überschritten wird. Dazu
soll der Nachweis erbracht werden, dass bestimmte Eigenschaften, die die Sicherheit
gewährleisten, erfüllt sind und Fehlerursachen angemessen mitigiert werden. Aus
diesem Grund besteht das Ziel dieser Arbeit darin, Eigenschaften der ML-basierten
Funktion und der Daten, die für das Sicherheitsargument wesentlich sind, zu ex-
trahieren und zu bestätigen. Die Arbeit befasst sich also mit der Forschungsfrage,
welche Eigenschaften für ein sicheres Verhalten einer ML-basierten Wahrnehmungs-
funktion notwendig sind und wie wir sie erwerben können.

Dabei ist der Einsatz von ML in sicherheitskritischen Systemen, wie z. B. Wahr-
nehmungsfunktionen beim automatisierten Fahren, mit der Herausforderung verbun-
den, ein überzeugendes Sicherheitsargument zu liefern. So verarbeiten ML-basierte
Wahrnehmungsfunktionen Sensordaten und extrahieren Informationen, z. B. Ob-
jekte und befahrbare Bereiche. Wenn die Wahrnehmung versagt, kann es zu großen
Schäden und Todesfällen kommen. Daher muss in komplexen Umgebungen das Risi-
ko eines Versagens von ML-Funktionen auf ein akzeptables Niveau gesenkt werden.
Etablierte Normen in der Automobielbranche wie die funktionale Sicherheit ISO
26262 und die Sicherheit der intendierten Funktionalität ISO 21448 geben nicht
ausdrücklich an, wie mit ML umzugehen ist. Zudem können etablierte Ansätze, die
in den Normen empfohlen werden, nicht direkt auf ML-Funktionen angewendet wer-
den. Aus diesem Grund arbeiten wir in dieser Arbeit zunächst die Herausforderungen
bei der Validierung von Wahrnehmungsfunktionen heraus [44].

Einerseits ist der Eingaberaum eines automatisierten Systems und die beabsich-
tigte Funktionalität sehr komplex. Andererseits ist die Formulierung der Spezifika-
tion einer Wahrnehmungsfunktion eine Herausforderung für sich. Darüber hinaus
ist es schwierig, die geforderten Eigenschaften für den gesamten Eingaberaum zu
implementieren und die implementierte Funktion in Bezug auf die beabsichtigte
Funktionalität zu verifizieren und zu validieren.

Unser Fokus liegt auf der Spezifikation der notwendigen Eigenschaften einer
Wahrnehmungsfunktion für automatisierte, sicherheitskritische Systeme und deren
Realisierung, vom Entwurf bis zur Verifizierung und Validierung. Nur beides zusam-
men, Spezifikation und Realisierung, ermöglichen es, ein umfassendes Sicherheitsar-
gument zu entwickeln. Konkret wird der Anwendungsfall einer sicherheitskritischen
Fußgängererkennungsfunktion für das automatisierte Fahren untersucht. Zu diesem
Zweck wird ein “Deep Neural Network” (DNN) zur Fußgängererkennung trainiert
und auf seine Eigenschaften hin untersucht. Darüber hinaus werden neuartige Me-
thoden entwickelt [41, 42, 96], um diese Anforderung zu erfüllen.

Zunächst wird eine Reihe von Sicherheitsanforderungen an die Wahrnehmungs-
funktion abgeleitet und auf ihre Auswirkungen auf die Aktivitäten imML-Lebenszyklus
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untersucht [43]. Zusätzlich werden funktionale Unzulänglichkeiten untersucht, weil
sie zu Gefahren führen können [42]. Zu diesem Zweck werden die relevanten Da-
tencharakteristiken extrahiert. Es werden Fehlerkategorien identifiziert und Abhilfe-
maßnahmen vorgeschlagen, wobei der Schwerpunkt auf der Eignung der Trainings-
daten liegt. Zusätzlich zu dem Ansatz, die Trainingsdaten zu verbessern, werden
weitere Maßnahmen getroffen. Es wird der Fall, bei dem sich die Daten sehr stark
von den bereits eingesetzten Daten unterscheiden, analysiert werden. Dabei schlagen
wir vor, die Dateneignung durch eine Online-Anomalieerkennung zu ergänzen, die
das Verhalten des DNNs überwacht[42].

Hierzu stellen wir zwei neue Arbeiten zur Anomalieerkennung vor. Während
FACER darauf trainiert ist, verschiedene Arten von Rauschen zu erkennen, die die
Daten verzerren können [96], ist ReverseVAE in der Lage, Anomalien außerhalb der
Verteilung zu erkennen [41]. Beide Anomalien können einen großen Einfluss auf das
sichere Verhalten einer ML-Komponente haben. Eine weitere Fähigkeit von Rever-
seVAE [41] ist die Möglichkeit, die Daten mit bestimmten visuellen Attributen zu
manipulieren. So können Daten mit definierten visuellen Attributen generiert wer-
den, die später zum Beispiel zum Trainieren oder Testen der ML-basierten Funktion
eingesetzt werden können.

Da das Testen einer ML-Funktion nicht nur durch die Spezifikation geleitet
werden kann, werden unterschiedliche Ansätze zur Spezifikation eines Testorakels
und Testansätze aus unterschiedlichen Domänen und Anwendungsgebieten analy-
siert und neue Test Setups entwickelt [2].

All die Herausvorderungen führen dazu, dass die Entwicklung, inkl. der Verfei-
nerung von Anforderungen in der Spezifikation, iterativ und damit kontinuierlich
stattfindet. Um die Rückverfolgbarkeit zu kompensieren, die zwischen den Anfor-
derungen und den Codezeilen bei einer ML-basierten Funktion fehlt, schlagen wir
explizite Verbindungen zwischen den Artefakten vor und illustieren diese mit Bei-
spielen [40].

Im Ergebnis bietet diese Arbeit eine ganzheitliche Sicht auf die Forschungsfrage,
welche Eigenschaften für ein sicheres Verhalten einer ML-basierten Wahrnehmungs-
funktion erforderlich sind und wie wir sie gewährleisten können. Damit soll die Lücke
zwischen bereits etablierten Sicherheitspraktiken und wissenschaftlichen Erkenntnis-
sen in der ML-Entwicklung geschlossen werden.





Abstract

The recent success of Machine Learning (ML) has led to the widespread ap-
plication of ML in various domains, such as household products, natural language
processing, and recommendation programs. Technological and computational ad-
vances and the increasing availability of data have fueled this trend. In this context,
machine learning is expected to enhance the safety of autonomous safety-critical
systems due to its compelling performance.

In a safety case, it shall be shown that a function is sufficiently safe, i.e., an
acceptable residual risk is not exceeded. To this end, it should be demonstrated
that certain properties that ensure safety are satisfied and that causes of failures
are adequately mitigated. For this reason, the goal of the work is to extract and
confirm properties of the ML-based function and the data that are essential to the
safety argument. Thus, the work addresses the research question, what properties
are necessary for a safe behaviour of an ML-based perception function, and how can
we acquire them.

Thereby, the use of ML in safety-critical systems, such as perception functions
in automated driving, comes with the challenge of providing a convincing safety
argument. For example, ML-based perception functions process sensor data and
extract information about objects and drivable areas. When perception fails, major
damage and fatalities can result. Therefore, in complex environments that evolve
over time, the risk of ML functions failing must be reduced to an acceptable level.
Established standards in the automotive industry such as functional safety ISO
26262 and safety of intended functionality ISO 21448 do not explicitly state how
to ensure the safety of ML-based functions. In addition, established approaches
recommended in the standards cannot be directly applied to ML components. For
this reason, we elaborate the challenges in validating perception functions [44].

On the one hand, the input space of an automated system and the intended
functionality is very complex. On the other hand, formulating the specification of
a perception function is a challenge in itself. Moreover, it is difficult to ensure the
required properties hold over the entire input space and to verify and validate the
implemented function with respect to the intended functionality.

Our focus is on the specification of the essential properties of a perception func-
tion for automated safety-critical systems and its realization, starting with design up
to verification and validation. Only the two together, specification and realization,
make it possible to develop a comprehensive safety argument. Specifically, the use
case of a safety-critical pedestrian detection function for automated driving is inves-
tigated. For this purpose, a Deep Neural Network (DNN) for pedestrian detection is
trained and its properties are investigated [42, 43]. In addition, novel methods are
developed [41, 42, 96] to satisfy its essential properties.

First, a set of safety requirements is derived and examined for their impact on
the activities of the ML lifecycle [43]. In addition, functional insufficiencies are inves-
tigated as they might lead to hazards [42]. To this end, relevant data characteristics
are extracted. Error categories are identified and remedial actions are proposed, fo-
cusing on the suitability of the training data. In addition to the approach to improve
the training data, other measures are taken. When input data strongly differs from
that used in training and test, its impact on the performance should also be anal-
ysed. In this case, we propose to complement data suitability with online anomaly
detection that monitors the behaviour of the DNN [42].
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To this end, we present two recent publications on anomaly detection. While
FACER is trained to detect different types of noise that can distort the data [96],
ReverseVAE is able to detect anomalies outside the distribution of training data [41].
Both of these anomalies can have a large impact on the safe behaviour of an ML-
based function. Another capability of ReverseVAE [41] is the ability to manipulate
the data with certain visual attributes. Thus, data can be generated, with defined
visual attributes, which could later be used for training or testing of an ML-based
function.

Since testing of an ML function cannot be guided only by the specification alone,
we present different approaches to specifying a test oracle and testing approaches
from different domains and application areas and novel test setups developed [2].

In order to address the challenges outlined above, an iterative and continuous
specification of requirements in interaction with the development is proposed. To
compensate for the traceability that is missing between the requirements and the
lines of code in an ML-based function, we propose explicit artefact links and illustrate
this with examples [40].

All in all, this work provides a holistic view on the research question of what
properties are required for a safe behaviour of a ML-based perceptual function and
how we can acquire them. This is intended to bridge the gap between already estab-
lished safety practices applied to non ML-based systems and scientific knowledge in
ML development.
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If cars were like computers...
“For no reason at all, your car would crash twice a day.”
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1 Introduction

In this chapter, we start with the motivation in Section 1.1 that established safety stan-
dards are not suitable for ML-based perception functions. Then we present the scientific
contributions in Section 1.2. Finally, we show the outline of our work in Section 1.3.

1.1 Motivation

A crossing truck with white tarpaulin was misclassified by a perception function in
Tesla’s Autopilot, leading to a fatal accident [70]. The driver was not steering and the
car crashed into the truck. The driver did not survive. Of course, the Autopilot is not
developed to be used as a self-driving car, an Automated Driving System (ADS), but
as an assistance system. However, many users apply and rely on it, as if the Autopilot
would be already an ADS. Further fatal accidents followed [8, 37]. According to Tesla
Deaths [109], which provides a crowd-sourced list of accidents involving Tesla vehicles,
15 deaths through August 20, 2022 are related to Autopilot use. This is almost certainly
an underestimate of the total number of fatalities.

Other fatal accidents from other providers also occurred where either an assisted
driving function or an automated driving function was tested: In 2018, a pedestrian
pushing her bike was run over by an Uber car, even though there was a safety backup
driver in the Uber car who was supposed to prevent exactly such a situation [10, 28].

Such accidents and others have followed, as there are no established standards, guid-
ing the development of a safe perception function in automated driving. UL4600 [87]
claims to guide this development. However, it is not yet established and still under revi-
sion. Other standards focusing on Artificial Intelligence (AI) and its subcategory Machine
Learning (ML), such as ISO/AWI PAS 8800 [54], are also still under development.

As the consensus of main academic and the industrial players on safe behaviour of
automated systems including ML components applied to complex environments has not
been reached [22], this thesis contributes to the necessary, corresponding discussion.

Furthermore, the verification of components that usually supports the claims in a
safety argument, is not trivial for ML-based systems [77]. While it is also not trivial even
with components handcrafted during coding, there are established standards and many
years of experience. ML components are trained on data, e.g. encoding the learnt pattern
e.g. with weights [46]. There are approaches providing a proof via formal verification [61,
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112, 115]. However, a formal verification and a mathematical proof remains for perception
functions challenging for many reasons [77].

One of these reasons is the difficulty to come up with a thorough specification for a
perception function [91]. The environment that an ADS is meant to control is complex
and changes in over time [116]. While the high environmental complexity might be
reduced for particular Operational Domains (ODs), such as operation of a ADS on
private terrain with specifically educated persons with slow ego vehicle velocity [88],
other ODs, such as urban driving will remain complex. Also the changes over time
might lead to a malfunction under unexpected conditions [79, 120].

Furthermore, improvements on developing of ML methods, e.g. anomaly detection [6,
95, 121], explainability [11, 25, 73], uncertainty estimation [62, 86, 92] are measured based
on a benchmark improving the performance of a novel method in comparison to other
similar methods [15, 50, 81, 85]. This assessment is not appropriate for a safety argument.
The best method might be still not good enough and - vice versa - a function with lower
average performance might be safe, if it meets the safety requirements.

In summary, both the established safety concepts do not sufficiently address ML-
specific challenges and the approaches widely used in the ML community do not meet
the safety requirements. It is therefore all the more important to build a bridge between
the different fields, such as AI, safety, and data management and to raise awareness of the
challenges of the respective fields.We are the first in providing contributions within this
context. We show how to specify essential properties of ML functions that are required for
the safe behaviour of perception functions in automated driving. We provide two novel
approaches to anomaly detection as well as a publication on testing. Finally, we present
novel work on traceability to provide the linkage between requirements and evidence
that e.g. utilize the results from testing.

1.2 Contributions

In this thesis we focus on the following stages of the ML lifecycle: safety assurance scop-
ing, requirements elicitation, data management, design and training, and verification and
validation. Please note that the artefacts of the first two stages, safety assurance scoping
and requirements elicitation, are not necessarily required for training an ML function.
In order to develop a safety-critical ML function, they are indispensable, though.

Figure 1.1 shows how the articles are located within the stages of the ML lifecycle.
Since assuring safety of an ML-based perception function cannot be done with one
method alone, we have made contributions in all stages of the ML lifecycle for our
holistic approach. Furthermore, we show within the last contribution, that and how the
artefacts generated in each stage of the ML lifecycle have to be linked explicitly with each
other. Based on this, the missing traceability between the requirements and the lines of
code can be established. The explicit artefact links in turn support the validity of the
safety case. Although the articles often influence other stages besides their placement,
this diagram is intended to contribute to the general understanding of the relationships
among the articles.
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Figure 1.1: Overview of the articles in Chapter B and their placement in the ML lifecycle:
While the article from Section B.1 contributes a first draft of a safety case for the
pedestrian detection function, the article from Section B.2 is mainly in the stage of safety
requirements driving the activities of the other stages. Since the article from Section B.3
covers the stages of requirements, data management and model training, its placeholder
is between these stages. We assign the articles from Section B.4 and Section B.5 in
design and training stage of the component, because they provide novel methods for
anomaly detection and data augmentation. The article from B.6 is located in the stage of
verification and validation. The article from Section B.7 concentrates on the traceability,
so that its placeholder is set next to the link in the legend.

Our work comprises the following contributions:
• In Section B.1 we present validation targets to demonstrate which challenges must
be overcome when specifying the safe behaviour of an ML function. Further, we
provide first suggestions how to approach these challenges.

• In Section B.2 we present a method for generating safety requirements for an
ML-based perception function of ADS. They are derived from the system level
requirements of the ADS and embody the essential ML properties performance
and robustness and the essential data properties accurateness, balance, relevance,
completeness.

• In Section B.3 we provide a list of semantic categories for systematic errors of
DNNs for pedestrian detection. In addition, we propose mitigation measures for
the error categories by extending the training dataset with samples representing
the error categories. Further, we introduce and evaluate an anomaly detection as
a mitigation method.

• In Section B.4 we introduce the Feature Activation CheckER (FACER), an ef-
ficient and effective approach for the concurrent detection of multiple anomalies
during the operation of DNNs. We evaluate detection performance and general-
ization abilities on eight noise types with different severities applied to images of
three different datasets, CIFAR-10, CIFAR-100, and SVHN. We find that training
on low severities of noise makes the anomaly detector generalize well to higher
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severity levels. Furthermore, by combining multiple noise types during the train-
ing of FACER, we achieve high detection capabilities also on noise types not seen
during training. We also evaluate the detection of unseen classes, meaning that the
classes were not observed during training. FACER offers the advantage of being
more flexibly applicable to other anomaly detection problems, while its detection
performance is in the range of other state-of-the-art methods for this task.

• In Section B.5 we introduce the reconfigurable ML-based model Reverse Varia-
tional Autoencoder (Reverse-VAE) that it is used either for anomaly detection or
for visual attribute manipulation as a data augmentation method to improve the
DNN model robustness against anomalies. This means that the Reverse-VAE can
not only learn an accurate mapping of high dimensional space to low dimensional
space, but also generate realistic and diverse images (due to novel form of training
setting). The good reconstruction performance of the Reverse-VAE is restricted
on distribution of training data. In this context, every sample that is out of train-
ing distribution of Reverse-VAE is anomalous. Thereby, we assume that training
distribution of Reverse-VAE is the same as from the ML-Component.

• In Section B.6, we analyse and evaluate existing work from different domains re-
garding their suitability for testing DNNs for visual perception in ADS. Thereby,
we consider test input and test oracle generation as well as test adequacy sepa-
rately. We conclude that testing of DNNs in this domain requires several diverse
test sets. We show how such test sets can be constructed based on the presented
approaches addressing different purposes and identify open research questions. By
doing so, we present novel test setups to reduce safety concerns.

• In Section B.7 we show which links between the artefacts that are generated in dif-
ferent stages of the development must be established explicitly. Further, we demon-
strate how that can be instantiated to provide traceability. These links enable us
to build confidence in our safety argumentation. We concretize these explicit links
in two examples, namely pedestrian detection and vehicle detection.

1.3 Outline

We structure this thesis as follows. Chapter 2 presents the foundations on which we
have built our work. We start with an introduction to the use case in Section 2.1. Then
we provide an overview of important standards in Section 2.2 which we divide into the
subsection of safety standards in the automotive domain and the subsection of standards
in the ML domain. Subsequently, we present safety cases in Section 2.3.

Chapter 3 provides an overview of the related work of research fields that also aim
to assure the safety of ML components in automated systems, as each of our publication
contains the corresponding related work itself. We start with approaches that strengthen
the link between system and component level. We complete this section with an overview
of further methods that are adjacent to our work and have the potential to provide
evidence of essential properties.
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In Chapter 4 and in Chapter 5 we present a summary of our contributions, which
can be read in full detail in the respective original articles in the appended Chapter B.
Each of these is introduced with a brief description of the underlying problem. While
Chapter 4 is mainly dedicated to the specification, Chapter 5 covers the work on the
realization of the essential properties.

Finally, we give a conclusion of our work and outlook on future research in Chapter 6.
Chapter A presents the credits and Chapter B contains the original print versions of the
presented articles.
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2 Background

In this section we provide background information for a better understanding of the
work. First, we motivate our chosen use case in Section 2.1 and second, we present the
most important standards for automotive safety and ML in Section 2.2. In addition, we
introduce safety cases in Section 2.3.

2.1 Use Case

In this section we introduce the role of perception of the environment in automated
systems, such as ADS. Then we provide an overview of approaches for camera-based
perception. Finally, we present our implementation that is used in several publications
attached to this work.

Failure in the Perception of the Environment

An ADS perceives its environment via various sensors, such as camera, ultra sonic, radar,
etc., whose data are processed [107]. Among other information, dynamic objects such as
other road users must be identified, but also all the information needed for the driving
task. This includes, for example, self-localization [59], recognition of drivable area [103]
and road signs [106].

In contrast to human drivers, automated vehicles have so far only been able to extract
missing information from the context to a limited extent [113, 114]. Humans can draw
conclusions very quickly in unknown situations based on their experience and knowledge
in order to drive safely [90]. This ability to generalize, to adapt and to be aware of risk
is of the greatest value [64]. For example, human drivers can anticipate a lane change
without a turn signal more than two seconds before before a vehicle in front leaves the
lane [34].

On the other hand, most accidents are primarily due to human error, especially due
to inadequate perception of the environment and distraction. The inadequate perception,
for example when changing lanes, results from the complex competing goals of perceiving
the front and rear lanes and observing the neighboring lane [36]. The likelihood for
safety-critical events increases while being distracted by other tasks than driving, such
as texting message on cell phone or rummaging through a grocery bag [84]. According
to the Federal Statistical Office of the Federal Republic of Germany [117], human error
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Figure 2.1: Data sample with predicted bounding boxes of an ML-based pedestrian
detection.

was by far the most common cause of accidents: 88.0% of the causes in accidents with
personal injury in Germany in 2021 were driver error and 2.7% pedestrian error.

This is also where the potential of ADSs is hidden: Vehicle automation is expected
to reduce the accident rate if a high level of confidence in signal processing can be
achieved [118]. In this context, guarantees can be made that the signal processing path
identifies dangerous situations [118]. Thus, automated driving is not only about increas-
ing efficiency, reducing the number of human drivers or even substituting them, but also
about increasing road safety [79].

However, it should also be noted that the introduction of ADSs also means that
automation failures will occur that would not be expected with human drivers [105].
The perception of an ADS in particular can make significant contributions to increasing,
but also reducing, the number of traffic accidents. This applies in particular to the
detection of vulnerable road users such as pedestrians.

If pedestrians are not detected by an ADS, also called False Negatives (FN), this
can lead to human injury under certain circumstances. Therefore, pedestrians shall be
prevented from being overlooked. If braking is applied to a falsely detected object that
does not actually exist, a so-called ghost object or False Positive (FP), a sudden braking
maneuver can lead to a rear-end collision [105].

Camera-based Perception

Images provided by a camera installed in the vehicle are processed to make sense of
complex input data in the current scenario of the environment. Thereby, the scenarios
are very diverse [124]. Especially, ML is used to recognize objects, such as vehicles,
pedestrians, as ML outperforms non-learning algorithms [68]. ML-based functions learn
to map inputs to outputs, by recognizing patterns existing in the data. In particular,



2.2. STANDARDS ON AUTOMOTIVE SAFETY AND ML 9

Deep Learning (DL) [46], a subcategory of ML, is an important driver for perception
tasks. DL is based on Deep Neural Networks (DNNs) and for perception functions DNNs
are mostly trained supervised using labeled data.

Perception tasks are object detection [5, 125], semantic segmentation [30, 39, 48],
instance segmentation [16, 47], to name only few. For example, object detection is con-
ducted when a DNN predicts bounding boxes to localise a particular classes in an im-
age [123]. Fig. 2.1 demonstrates an example of pedestrian detection from the Joint At-
tention for Autonomous Driving (JAAD) dataset [66] where predicted Bounding Boxes
(BB) of different DNNs are shown. A DNN trained for semantic segmentation predicts
for each pixel of the image a class [48].

Implementation of a Perception Function

We describe here the DNN that is implemented and the dataset that is used for our use
case of a pedestrian detection in automated driving.

DNN: The ML component used for pedestrian detection in several publications that
are attached to this work is a DNN, which consists of a Squeezenet and Region Proposal
Network (RPN) [SafeComp2020, 42]. The architecture is comparably small, so that it
can be implemented with low computation demand on dedicated hardware in an ADS.
Pedestrian detection is a safety-critical function that, if it does not function as intended,
can lead to serious damage.

Used Dataset: The DNN is trained and evaluated on the JAAD dataset [66]. The
JAAD dataset includes 346 video clips recorded over 240 hours with approximately
82000 image samples while driving in America, Canada, Germany and Ukraine. These
data includes various driving situations with a variation of all seasons, weather conditions
(e.g., rain, snow and fog), and day and night time.

2.2 Standards on Automotive Safety and ML

As perception functions in automated driving are safety-critical, we discuss in this section
safety standards that are established in automotive domain and how they refer to ML
as well standards that focus on ML and their relation to safety.

Safety in Automotive Domain

Avizienis et al. [9] and their preceding work [71] provide well established generalized
basic concepts and terminology of dependable computing. There safety is defined as
“the absence of catastrophic consequences for the user(s) and the environment” [9].
Faults, errors, and failures pose a threat to the dependability of the system and must be
handled accordingly. A failure is an event that occurs when the system does not provide
the correct service. The system is subsequently in a sequence of external states of the
system at least one of which deviates from the correct state. The deviation from the
correct state is defined as an error. The term fault is used to denote an adjudged or
hypothesized cause for an error. A fault can occur internal or external of a system.
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Our goal is to show that the ML-based perception function is safe. For this purpose,
the industry-specific safety standards must be complied with. In this section, we give
an overview of the standards and at the same time show in which respects they provide
insufficient guidance for ML-based functions.

The current main automotive safety standards, ISO 26262 and ISO 21448, comple-
ment each other and have been introduced mainly for assisted, manually-driven vehi-
cles. The standard draft ISO/AWI PAS 8800 is planned to cover both, ISO 26262 and
ISO 21448 while mainly focusing on the development and operation of ML components.
Further, UL 4600 focuses specifically on automated vehicles.

ISO 26262 [58] focuses on the functional safety of electric and electronic systems
used in road vehicles and has been established for many years in the automotive domain.
Automated vehicles with higher automation level than level 2 on the SAE standard
J3016 [108] are expected to comply with ISO 26262. However, this standard fails to pro-
vide guidance on the treatment of ML components. Relevant deficiencies of ISO 26262
with respect to ML are discussed by Salay et al. [94] and by Henriksson [51], for exam-
ple. Besides that, it is complemented by Safety of the Intended Functionality (SOTIF)
addressed in ISO 21448 which is the focus of this thesis.

ISO 21448 SOTIF [53] refers to the absence of unreasonable risk due to hazards re-
sulting from functional insufficiencies of the intended functionality or by reasonably fore-
seeable misuse. Functional insufficiencies might result from inappropriate specification of
the functionality on system level or from technical limitations in the implementation of
the system. In this context, functional insufficiencies are caused by triggering conditions
in combination with performance limitations. Triggering conditions are particular condi-
tions of the environment leading to a system respond with hazardous behaviour. SOTIF
appendix D provides a first guidance on the treatment of ML components. Appendix
D states that “ML is mainly used when a full specification of the problem at hand is
not possible (e.g. it is impossible to specify the data representation of a pedestrian in
all varieties such that it could be always recognized by rule-based algorithm)” [53]. In
addition, appendix D.2.3 of ISO 21448 indicates that the ODD and data sufficiency have
an important role in the SOTIF activities. Both are concerned with the identification of
triggering conditions that uncover limitations of the functionality. Our work contributes
primarily to SOTIF.

ISO/AWI PAS 8800 [54], with the focus on safety and AI, targets the utilization
of ML in road vehicles. It defines a set of safety-related properties that are compatible
with existing approaches currently used in the standards ISO 26262 and ISO 21448.
However, it is still under development.

UL 4600 [87] is, in contrast to ISO 26262 and ISO 21448, developed specifically to
guide the safety assurance of automated and connected vehicles. UL 4600 requires the
ADS to perform safely and as intended without human interaction and places the safety
case as the most important working product. ADSs include partial driving automation
on level 3 and higher levels of driving automation [108], where a human driver is not
steering, breaking or accelerating besides during required situations. In this case, the
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human only has to take control of the vehicle within a defined transition period. ML is
one of many components referenced in the standard that shall function safely, though.

Standards on AI and ML

At the time of writing this work, the main standards in the context of AI and ML are
still in the formation phase.

ISO/IEC DTR 5469 [57] belongs to the AI community and is a technical report
that discusses functional safety and AI in a generic sense and is not focused on automotive
applications. This document is also still under development.

ISO/IEC 22989 [55] provides AI concepts and terminology which is helpful, but
does not give guidance on the safety assurance of ML.

ISO/IEC 23053 [56] presents a framework describing the system components and
their functions in the AI ecosystem.

Although both, ISO/IEC 22989 and ISO/IEC 23053, do not focus on safety-critical
applications, they consider the topic of risk management that includes safety as part of
the AI lifecycle. However, it does not contain sufficient guidance for ensuring the safety
of a safety-critical system.

A wide-ranging presentation about AI standardisation landscape is found in the meta
study conducted by the European Commission [29].

2.3 Safety Cases

In this section we explain what a safety case is and how it can be represented by graphical
notations. Safety cases are not mandatory, but recommended in ISO 26262 [58] and
ISO 21448 [53].

Safety Cases

A Safety Case (SC) is “a structured argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a system is safe for a given
application in a given operating environment.” [1, 80]. A safety case mainly consists of
a safety argument and evidence while the safety argument forms the spine of the safety
case showing how artefacts are related and combined to provide assurance of safety.

A safety argument focuses on the identification and mitigation of hazards associated
with the system [49]. Therefore, it must show how the available evidence supports the
overall claim that a component or a system is sufficiently safe. Safety arguments break
down this claim into arguments that justify that an acceptable level of residual risk is
achieved. This residual risk, in turn, is attained by identifying system hazards, their
potential causes and measures for eliminating or mitigating the effects of the causes.
Evidence, such as test results, development processes, etc. underpin such arguments [14].
The evidence provided to support the sub-claims as well as the safety argument are
usually not perfect [49]. There is always some residual uncertainty in the validity of the
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argument or the completeness of the evidence, as the test coverage might be imperfect
or the sub-claim on the selected test data samples might be questionable.

Safety goals usually are established by avoiding hazards at a system level [58]. For
example, the hazard of unintended acceleration is specified in the safety goal to prevent
unintended acceleration. During the design process safety goals are then decomposed
with respect to the components in further safety requirements. In contrast to the safety
goals, the refined safety requirements are allocated to components.

The SC must not only be subject to internal and external reviews by assessors, but
could be used to establish a liability. While several automotive safety standards suggest
to provide a SC, it is not mandatory for all of them, such as in ISO 26262 [58] and
ISO 21448 [53]. If there is no SC, then the documentation of the component development
is used in legal proceedings instead. However, developing a SC plays an significant role for
the development of a safety-critical component that is used in automated systems. The
safety load for ADS is particularly high compared to assisted, long-established systems
where errors can also often be mitigated due to many years of experience in development
and operation and by user involvement.

Goal

Sub-goal Sub-goal

Strategy

Evidence Evidence

Context

Justification

Figure 2.2: Basic example of a Goal Structuring Notion (GSN)
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Graphical Notations for Safety Cases

Graphical representations, such as the Goal Structuring Notation (GSN) [1] depicted in
Fig. 2.2 can be used to specify arguments. A graphical representation facilitates com-
munication of the argument structure with colleagues, reviewers, and other authorities.

The standardized GSN[1] is a graphical argumentation notation that can be used
to explicitly document the individual argumentation elements and artefacts. Claims are
represented by goals and strategies indicate how goals are supported by other goals and
finally by solutions representing evidence. Further, the context provides information that
are needed to understand the corresponding goal and that are usually found in linked
documents.

In consequence, a GSN-compliant SC includes a top-level goal that is decomposed via
an argumentation strategy into subgoals determining the validity of the goal decomposi-
tion. The subgoals are either decomposed into further subgoals or supported by solution
elements referring to the corresponding evidence. Context, reasoning, and assumption
elements specify relevant contextual information usually provided by linked to artefacts.
These artefacts are documents or products, such as the documentation of the ODD or
the requirements, generated during the development.

Essential Properties

In this work, we consider essential properties for safe behaviour as properties that are
necessary with respect to safety. These properties can also be referred to as safety-aware
properties or safety-related properties.

These properties are usually embodied in the safety requirements, which are derived
from the safety goals. We also consider ML-specific properties that cannot be associated
at system level, although they also have a large impact on safe behaviour. For example,
robustness against different sorts of noise, would not be derived from system level, as
this depends on the implemented ML-function.

Since we focus on SOTIF, triggering conditions that can reveal systematic errors
and thus, functional insufficiencies, are investigated. At the same time, special attention
is paid to detection of and robustness to anomalies. We show different investigations
and different measures to mitigate them. The presence of essential properties can be
confirmed indirectly through the fulfillment of safety requirements or through extensive
testing. In addition, the linking of essential artefacts in the safety argumentation ensures
that these properties have been realized in a traceable way.
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3 Related Work

Each article in Chapter B provides its corresponding related work separately. Here,
we give an overview on other research fields that also aim to ensure the safety of ML
components in automated systems. We divide them into (1) approaches to strengthen the
link between system and component level and thus, the safety argument in Section 3.1
and (2) approaches to realize essential properties in Section 3.2. The latter are intended
to provide evidence that supports the safety argument.

3.1 From System to Component Level

One shortcoming in safety case for ML is the linking argument that connects safety
requirements at the system level to component requirements at the component level [93].
Thereby, only a valid decomposition of the safety requirements at the system level, so-
called safety goals in automotive domain, into safety requirements at the component
level justifies a high level of confidence in the safety of an ML component.

Salay et al. [93] propose a generic template on a deductive and formal approach to
trace the requirements from system level to component level. In their formal claim de-
composition, they identify a set of risk-aware safety metrics that can be used to evaluate
perception components. These metrics, in turn, strengthen the link between requirements
and Verification and Validation (V&V) during the development and assurance iterations.
As an acceptance criteria, risk-aware safety metric, they use the misperception rate. In
comparison to established performance metrics, this metric lends itself better to link the
system level to the component level. This misperception rate is similar to the miss-rate
that is used in our requirement RQ 1.1 [43].

Based on post-hoc segmentation of sub-objects, Schwalbe [98] proposes a consistent
body part similarity of detected pedestrians and shows the invariance of internal repre-
sentations of body parts with respect to the size in pixels of the depicted person. The
findings that the representation of body parts is mostly size invariant which for example
can be traced back to requirements that refer to body parts within the ODD. Due to
the challenge of under-specification [43], relying only on concept embedding hides the
risk of performance limitation. Data might include also occluded body parts that cannot
be traced back to requirements or object parts are not well defined, so that the concept
embedding would lead to an inappropriate functionality.
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Lyssenko et al. [75] incorporate domain knowledge into the metric, so that the metric
is used in a task-oriented way during the evaluation of an ADS pedestrian detection. To
this end, the annotation of distance between the pedestrian and the ADS is essential,
since close pedestrians are safety-relevant and a false detection likely becomes critical.
They are able to adapt the data according to the extended data requirements, data
acquisition specification and data labeling specification, since they use the CARLA sim-
ulator [23] to generate synthetic data. Thereby, the data set for training and test include
pedestrians in a broad range of distances.

The Data Driven Engineering (DDE) process presented by Zhang et al. [122] links
the operational design domain with the requirements and semi-automated generation
of data sets. The process automation enables automated data set compilation. As the
DDE offers traceability of all development artefacts including data sets and tools [122],
it reflects the idea of continuous safety assurance. This provides the possibility to check
data sets against well-defined data requirements and to detect gaps in data sets. This data
analysis simplifies error analysis, especially with regard to errors caused by certain under-
or over-represented data features. They demonstrate their approach for a use-case where
data requirements are less complex than for pedestrian detection. Meaningful analysis in
latent space for functions with high dimensional input space, e.g. in Lyssenko [75], Acar-
Celik [3] and our work [43], might be challenging, as dimensions might be not clearly
assignable. However, the DDE generally illustrates the importance of data in the safety
assurance of ML-based components.

While safety analysis approaches for identifying potential failure modes in a system
and their causes and effects, e.g. Fault Tree Analysis (FTA) within ISO 26262, are
established safety methods, there is still a lack of experience on safety analysis approaches
that can be applied to ML-based perception functions in complex environments. In this
context, Thomas et al. [110] propose an approach to create useful safety analysis models
for ADS perception functions. Their framework combines Event Sequence Diagrams
(ESDs), FTA, and Bayesian Networks (BNs). To compensate this link between system
and component level, they transform a BN into FTA utilizing the BN probabilities in
FTAs. This framework is also capable to include evaluated basic events, such as triggering
conditions, during the V&V phase.

3.2 Realization of Essential Properties

In this section we address selected methods that are adjacent to our work and have the
potential to provide evidence of essential properties to support the safety argument. In
particular, these include anomaly detection, explainability, and uncertainty estimation.

Anomalies are patterns in data that do not conform to a well-defined notion of normal
behaviour [26]. Breitenstein et al. [18] provide a systematization of corner cases for visual
perception in automated driving while referring to anomaly detection in computer vision
as a well defined term used in different domains. Corner cases occur in many different
forms and can be sample- or sequence related [17]. For example, there are collective
anomalies that are instances and occur in unusually large quantities in an image. These
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collective anomalies can be detected by comparing the instance distribution of a test
set (subset) with a training instance distribution (i.e. reference). Both distributions are
obtained by instance-based semantic segmentation [17].

It is important for visual perception in automated driving to be able to reliably
detect anomalies and corner cases during run-time [17] or if possible offline, during
development. In this context, the investigation of triggering conditions [42] might fall
under the definition of anomaly detection and corner case detection. If anomalies are well
understood, it might be even possible to generate data with the particular anomalies to
robustify the ML-based function [102]. In our work [42], we address the data suitability
that leads to robustification. Furthermore, we complement data suitability with anomaly
detection to compensate for the overconfidence of the ML-function and for the lack of
robustness in the presence of certain anomalies.

Approaches on explainability and interpretability might make prior knowledge us-
able and solve the black-box problem of ML [19, 78]. Various approaches have been
developed, such as Grad-Cam [100], to investigate which properties and features usually
stored in the data are relevant to the model outcome [19]. Beckh et al. [11] present an
overview and highlight open challenges, such as explanation quality that is often not
addressed. Another open challenge is the transformation of intuitive knowledge as hu-
man understandable feedback to other e.g. formalized knowledge representations. These
findings overlap with the challenge to document the leveraged knowledge in the safety
argument properly, e.g. in form of ODD refinement or requirements refinement. We also
encounter this challenge in requirements elicitation and have associated it with the se-
mantic gap [44].

Furthermore, uncertainty approaches [7, 45, 97] might be investigated with respect
to their potential to be included in the safety assurance [72], e.g. in relation to the cor-
rectness of the inference. Uncertainty is distinguished between aleatoric and epistemic
uncertainty [52, 62]. Aleatory uncertainty is inherent in the data and refers to the inher-
ent noise in the data, such as noise from the camera. This uncertainty cannot be reduced
by adding more data to the model during training. In contrast, epistemic uncertainty ad-
dresses uncertainty due to lack of knowledge. It refers to the model parameters, i.e., the
model-inherent uncertainty regarding the prediction. Therefore, epistemic uncertainty
can be reduced by adding more data in training. In the development of such uncertainty
methods, investigations are rarely performed that allow conclusions to be drawn about
physical effects or particular data properties.

However, there are already uncertainty-based active learning approaches [81, 83,
101] for training data selection that improve the performance of the ML-based func-
tion. Thus, the uncertainty-based approaches contribute to data suitability and hence
robustness. Unfortunately, hardly any research has been found that addresses whether
uncertainty-based data selection improves the performance on data samples that are con-
sidered particularly difficult or reflect safety-critical situations. However, this and other
approaches on data analysis, e.g. fuzzy sets in data analysis [31] could be an enrichment
for the safety assurance of ML-based functions.
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4 Specification of a Safe ML-based
Perception Function (B.1–B.3)

In this section and in the next section we present each article that is appended in Chap-
ter B with a short motivation and the main findings.

4.1 Safety Case for the Pedestrian Detection Function

The absence of unreasonable risk due to hazards caused by functional insufficiencies can
only be achieved by a rigorous overall development approach - but what this entails
for an ML-based perception function in automated driving is not covered by either the
state-of-the-art or standards.

In the publication “Structuring Validation Targets of a Machine Learning Function
Applied to Automated Driving” (Section B.1), we present the first detailed safety case
for a pedestrian detection supporting the argument of the absence of unreasonable risk
due to hazards caused by functional insufficiencies by structuring the validation targets.
We visualize our approach by a graphical notation GSN. We build upon our early work
on making the safety case of ML in highly automated driving [20] and apply it focusing
on the confidence in the safety argument [21].

Following the previously described challenges in ADS development - underspecifica-
tion [65], semantic gap [12] and deductive gap [104] - we asses their implications for the
safety-relevant function “pedestrian detection”. Based on the ML-specific case study, we
propose approaches to answer the following questions: (i) Underspecification: what is
the intended functionality and what are its limitations? (ii) Semantic gap: How can the
intended functionality be described? (iii) Deductive gap: How can requirements on the
functional layer (here: ML) be implemented?

First, we introduce a pedestrian detection function of an ADS and the functional
specification of this function. Then the known challenges of automated driving are in-
vestigated as causes of functional insufficicncies. Furthermore, we build our validation
targets upon the functional insufficiencies, as they prevent inappropriate specification
of the functionality on system level and technical limitations in the implementation of
the system. By doing so, the causes of functional insufficiencies shall be mitigated. In
addition, we provide concrete suggestions on which evidence might be valid to support
the goals on the validation targets. Besides the validation targets of the ML-based func-
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tion, not only functional modifications on functional level, but also on system level are
discussed to achieve the intended functionality.

Reduction of risk due to hazards caused by underspecification. If the intended
functionality is more diverse than it is specified [65], it may be underspecified. As a result,
the defined use cases are only a subset of the intended functionality. To decrease the
risk of underspecification, we suggest the following sub-goals of the validation targets:
Environment is sufficiently well known; the task of the function is sufficiently well known;
sensitivity against impact of environmental attributes is sufficiently low.

Reduction of risk due to hazards caused by semantic gap. The semantic gap
occurs when implicit knowledge about the satisfaction of safety goals [12] is applied
without documenting or justifying it. In the context of ML, the semantic gap may refer
to statements about the relevance of references used for training, testing, and validation
datasets. We propose the following sub-goals to underpin the goal to reduce the risk
due to semantic gap: Pedestrian classes are sufficiently accurately described; location
accuracy is sufficiently well described; the discrepancy between the real and described
environments is sufficiently small.

Reduction of risk due to hazards caused by deductive gap. Deductive gap can
occur when invalid assumptions are made at different levels of abstraction [104]. This can
lead to unintended functionality. In the context of ML, features can be incorrectly learned
or incorrectly implemented. The following sub-goals are proposed to be satisfied: Data set
is sufficient for the intended functionality; overfitting is sufficiently reduced; underfitting
is sufficiently reduced; essential influences on the ML function are sufficiently understood;
ML function is sufficiently robust; learnt features are sufficient for function.

4.2 Safety Requirements of an ML-based Perception
Function

As the environment of an ADS is very complex and changes over time, the derivation of
the requirements for the perception function is not trivial.

While in Section B.1 we elaborate the objectives of the requirements specification
process in terms of the subgoals in the GSN, we concretize the requirements for a specific
scenario and show how they are met in the publication “Assuring the Safety of Machine
Learning for Pedestrian Detection at Crossings” (Section B.2). We focus on pedestrian
detection at intersections and perform an evaluation using the publicly available JAAD
dataset. In particular, we are the first to derive ML safety requirements for a concrete
scenario based on essential properties and analyse how these requirements guide safety
activities in the data management and model learning phases.
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Model learning safety assurance process. We discuss the ML lifecycle that is
divided into five stages: Requirements elicitation, data management, model learning,
model verification and model deployment. For each of these stages we define essential
properties, so-called desiderata. However, each function, e.g. pedestrian detection with
bounding boxes, results in a different set of requirements that can be refined based on
the desiderata.

Pedestrian detection at crossings scenario: safety requirements and their sat-
isfaction. We specify first a safety goal that is a safety requirement at system level [53,
58]. Based on this requirement, we identify refined safety requirements that apply to the
corresponding component, a pedestrian detection function in our use case. The defini-
tion of the ODD plays a crucial role here. Among the reasons to specify the ODD is to
minimize the complexity of the input space and to document implicit assumptions on
the input space.

To the best of our knowledge, we are the first that provided an traceable link between
system safety requirements and ML safety requirements. First, we maintain the link
with hazardous events at the vehicle level, and second, we ensure that safety aspects are
considered in each stage of the ML lifecycle. We show that the ML safety requirements
can guide and constrain safety assurance activities.

4.3 Triggering Conditions

Despite a thorough requirements elicitation, dangerous events might occur caused by
performance limitations in combination with triggering conditions [53]. Thus, in addi-
tion to a thorough requirements elicitation, triggering conditions that occur specifically
for each ML-based function shall be analysed. That is why we investigate how can trig-
gering conditions be identified for an ML-based perception function and what are the
implications for safety assurance.

In the publication “Considering Reliability of Deep Learning Function to Boost Data
Suitability and Anomaly Detection” (Section B.3) we stress the increasing importance
of the suitability of the training data for ML. First, we show how to extract the relevant
data characteristics, such as relevant semantic features, and we identify error categories
associated with triggering conditions. In addition, we propose to focus on data suitability.
Complimentary to this, other measures should also be taken because not all data, such as
out-of-distribution data, can be anticipated during development or accurately attributed
to physical effects in reality. To deal with unknown out-of-distribution data that results
also in triggering conditions we employ online anomaly detection with FACER, which
monitors the behaviour of the DNN.

Analysis of performance limitations and known triggering conditions. Time-
dependent, sequential data can change only to a limited extent from one sample to
another due to physical constraints of the environment and can thus often be attributed
to physical effects. This a-priori knowledge is used in the analysis of the triggering
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conditions and allows us to distinguish between errors caused by systematic seman-
tic insuffciencies in the trained function and other effects, such as missing robustness.
Therefore, we investigate whether there are recurring errors of the pedestrian detection
(PDET) function in a sequence which results in functional insufficiencies. This allows us
to extract learned correlations, some of which are not intuitively detected by looking at
the data alone. We proceed in two steps. First, we extract FNs and FPs on pedestrian
detections from video sequences. If the PDET function does not detect a pedestrian in
the data sample, it is a FN. If a ghost is detected, it is a FP. In the second step, faulty
sequences are checked for similarities in the data characteristics. If correlations can be
detected between FP or FN and similar data characteristics, this may be a false learned
correlation. This suggests weaknesses in the suitability of the training data. With the
division of the errors into different error categories, we aim to gain a deeper understand-
ing of the FPs and FNs to improve the training dataset. For the JAAD dataset and the
PDET function in our case study, we identify ten error categories that can be assigned
to known triggering conditions.

Unknown data - unknown triggering conditions. To simulate unknown triggering
conditions we use unknown data to investigate the performance of the PDET function. In
our case, we utilize random erasing. Two box types are erased from the data: rectangular
boxes with and without noise, since they activate the feature detectors of the DNN in
different ways. We then also provide a first solution to mitigate functional insufficiency.
We introduce an anomaly detector that we train with different types of noise and evaluate
its performance on different types of noise. We also investigate the performance on
data that is not used in training in two different ways. We demonstrate the benefit of
the anomaly detector for JAAD test data with random boxes added on the data and
Cityscapes test data as out-of-distribution.
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5 Realization of a Safe ML-based
Perception Function (B.4–B.7)

In this chapter we present each article with a short motivation and the main findings.

5.1 Anomaly Detection

As robustness is one of the essential properties for safe behaviour of a perception function,
robustness to anomalies must be ensured. To this end, DNN prediction performs best
with data seen during training. These data are also called data within the distribution
of the training data. When the input data is not part of the training distribution, it is
called Out-Of-Distribution (OOD). OOD are among the various types of anomalies that
can lead to incorrect inferences in ML based functions. Input data is affected by weather
conditions, e.g. precipitation and lighting conditions. Sensors and other data processing
components, such as filters, also manipulate the data. If some of these variations in the
training data occur infrequently or not at all, they can eventually lead to being OOD.

In the publication “FACER: A Universal Framework for Detecting Anomalous Oper-
ation of Deep Neural Networks” (Section B.4), we introduce a novel approach to anomaly
detection: the feature activation consistency checker (FACER). This consists of a very
small DNN that receives intermediate results in the form of features of a main DNN as
input. Thus, FACER forms a second head of the main DNN and outputs a binary result,
anomalous or not. Since anomalies in the input lead to inconsistencies in the feature
representation, FACER can detect them.

Our approach has several advantages. In contrast to other anomaly detectors that
operate on the data samples directly, FACER processes intermediate results of the main
DNN. Consequently, FACER takes into account the inconsistencies not only of the data
samples, but of the learnt feature representation. As a result, the anomaly detection
depends on the learnt patterns of the DNN with respect to the input data. In addition,
FACER is trained independent from the main DNN that is used for the prediction task.
Thus, FACER is applicable without retraining the main DNN. Different sets of weights
for FACER can be used to detect different anomalies.

Evaluation of noise detection. We investigate the detection performance and gen-
eralization abilities of FACER on eight noise types with different severity levels applied
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to images from the CIFAR-10 [67], CIFAR-100 [67], and SVHN [82] tasks. CIFAR-10 in-
cludes colour images of 10 classes, such as cat and car, and the CIFAR-10 of 100 classes,
respectively. SVHN includes colour images of street view house numbers. The results
show that the anomaly detector can generalize well to higher severity levels by training
it on low severity levels. In addition, FACER is able to generalize, as it achieves high
detection performance even for noise types not seen during training.

Evaluation of unseen classes detection. Unseen class samples are also considered
to belong to OOD and play an important role for safety. Our research shows that the
detection performance of our method on unseen class samples is similar to other state-
of-the-art methods. At the same time, it has the advantage of being more flexible for
other anomaly detection problems than state-of-the art methods.

5.2 Anomaly detection and Data Augmentation

Variational Autoencoder (VAE) is one of the first models to target both image encoding,
which allows data distribution analysis and image generation. Despite meaningful image
embedding, VAEs tend to produce images with blurring effects, which limits its use in
image generation and manipulation.

In the publication “Reverse Variational Autoencoder for Visual Attribute Manipu-
lation and Anomaly Detection” (Section B.5), we introduce the Reverse Variational Au-
toencoder (Reverse-VAE), which can both learn an accurate mapping to low-dimensional
space, the latent space, and generate realistic and diverse images. Reconfiguring our
model allows us to detect anomalies and modify the images by manipulating attributes.
Combining both applications enables us to detect anomalies and generate them in large
quantities through attribute manipulation. This would ultimately reduce the training
overhead for robust perception functions and make development more efficient. To this
end, we use the recently proposed progressively growing strategy [60] to process high-
resolution images with good scalability.

The approach. We minimize the Kullback-Leibler divergence [69] such that the novel
form of training settings reduces the gap between the joint latent/data distribution of
the generator and the joint distribution of the encoder.

The simple architecture results in our model being easily trained with fewer param-
eter settings. In addition, it can be upscaled using a PGGAN setting [60] to generate
and reconstruct high-resolution images.

Applications. Both applications, the detection of anomalies and the subsequent gen-
eration of more realistic manifold samples of these anomalies, allow us to increase robust-
ness to the corresponding anomalies. We show that the same model can implement both
applications. The anomalous data contains a class that is not trained to be predicted and
is therefore not part of the training data of the main model. The good reconstruction
performance and good anomaly detection performance is achieved by being constrained
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to the distribution of the training data. For attribute manipulation, we train the model
without auxiliary information, such as labeled attributes. After training, we extract
dedicated visual attribute vectors in the latent space. For this, we use a small subset of
labeled images. We can very flexibly edit desired attributes without having to re-train
the model.

5.3 Testing

ML evaluations for benchmark purposes, purely statistical approaches based on splitting
the data set, are not sufficient as testing approach for a safety-critical application, since
essential properties and performance limitations remain unrevealed: Testing needs to
be targeted towards multiple objectives, not just average performance in a single case.
Most importantly, a complete specification including all essential properties is difficult to
achieve in the open context of automated driving due to the complexity of the perception
task.

In the publication “Testing Deep Learning-based Visual Perception for Automated
Driving” (Section B.6), we mainly concentrate on the practical verification and especially
on the functional testing of DNNs used for computer vision tasks in an automotive
application. We consider approaches in terms of test input generation, test oracle and
test adequacy that come from different domains such as software testing, ML, Computer
Vision (CV), automated driving, and cyber-physical systems. We then discuss their
applicability to the CV tasks in an automotive context. Combining different approaches
has the potential to uncover properties or triggering conditions depending on the test
objective.

Test input generation. Test data has a different purpose than training data. While
training data is used to optimize the weights of the DNN to achieve the best possi-
ble overall performance, test data is intended to be able to highlight weaknesses in the
DNN’s functionality. After discussing local sampling techniques, we highlight the impor-
tance of both, domain and data analysis and present different approaches to conduct
them. Finally, we discuss different ways of synthetic data generation, including augmen-
tation techniques and their potential for improving testing. Based on these different data
generation techniques, essential data properties can be embedded in the data, which in
turn can be used for training a model or for testing essential properties.

Test oracle. Besides specification based oracles, we also present ground-truth based
and derived oracles. Here it becomes clear that testing goes far beyond the specification
to examine functionality. Besides specification-based oracles, there are also oracles from
ground truth and meta information as well as derived oracles. They all have different
advantages and disadvantages. While in the first case ground truth might include label
noise [38] and human labeling errors [30], derived oracles might include metamorphic
testing [99] requiring multiple implementations. These, in turn, might be wrong or results
in less meaningful results. Nevertheless, it is essential to fulfill the specification - and in
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certain cases to adapt the specification, should testing reveal functional insufficiencies
that can be traced back to an inappropriate specification.

Test adequacy. We use coverage to describe test adequacy which might be used for
the test justification in the safety argument. This requires information from the system
under test, e.g. for the structural coverage, or information from a mutation test as well
as information from a model of the input domain.

5.4 Traceability of Assurance Artefacts

After elaborating the aforementioned aspects of a safe ML-based perception function,
we focus on their implications for the safety case. For ML-based functions, there is no
longer a direct mapping of the requirements to the code, since they are not programmed
- created by hand - and the learned patterns are not explicit, but embedded, for example
in weights. Traceability of the various artefacts generated for safety assurance is therefore
a challenge and must be compensated for in other respects.

In the publication “On the Necessity of Explicit Artifact Links in Safety Assurance
Cases for Machine Learning” (Section B.7), we present the essential artefacts that arise
in the different phases of the ML lifecycle. In addition, we explain how they interact
and how traceability can be facilitated based on explicit artefact links. These links allow
us to build confidence in our safety argumentation. We use two examples, pedestrian
detection [75] and vehicle detection [4], to illustrate these explicit links.

First use case: pedestrian detection. The first case study addresses the evaluation
of pedestrian detection with task-oriented metrics [75]. The analysis shows that data
management artefacts containing extracted information, data analysis, labeling, and
annotations are of particular importance for traceability. The data management artefacts
must be tightly linked to the requirements elicitation. One way to do so is to link the
extracted information and data analysis with the semantic domain model, an extended
version of the ODD. Another way is to provide a precise annotation specification, so that
the annotation quality is high. The explicit links will allow us to trace the changes in
the requirements directly affecting the data. By doing so, outdated or insufficient data
can be traced and further measures taken, such as excluding invalid data.

Second use case: vehicle detection. The second case study addresses the system-
atic modeling of environmental perception constraints in the evaluation of automated
driving [4]. Here it becomes apparent that the description of the input space, for example
using a semantic domain model, is important to document the performance limitations
and to trace their impact on data, requirements, and evaluation. The proposed explicit
artefact links, used in early development and assurances phases, enables traceability in
the lifecycle of an ML-based component. This forms the basis for the validity of the
safety case, enables adaptations of autonomous systems in an evolving open context,
and enables impact analysis.
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6 Conclusion and Future Research

In this chapter we provide the conclusion of this thesis as well as ideas for future research
that could follow-up on our work.

6.1 Conclusion

We provide a foundation for the safety assurance of ML-based perception functions in
automated driving. To do so, we address the research question, what properties are
necessary for a safe behaviour of an ML-based perception function, and how we can
acquire them. We proceed as follows:

We provide a first detailed safety case for a pedestrian detection function in auto-
mated driving that is based on validation targets [44] (see also Section B.1). These form
the objectives of the requirements specification process.

To provide a convincing safety argument for ML-based perception functions, we
formulate meaningful safety requirements that guide the argumentation strategy [43]
(see also Section B.2). By investigating their impact on the ML lifecycle, we provide a
deep insight on consequences for activities artefacts of different stages of the ML lifecycle.

In addition to meeting safety requirements, we investigate functional insufficiencies
that could compromise safety requirements [42] (see also Section B.3) to further refine
the specification of the required safety-relevant properties. For this reason, we extract
the relevant data characteristics. We define error categories, and propose mitigation
measures, focusing on training data suitability. Despite all efforts to improve training
data, not all possible variants of a real-world application can be identified. Therefore, we
analyse the case of unknown, out-of-distribution data. In this case, we propose to com-
plement data suitability with online anomaly detection using FACER, which monitors
the behaviour of the DNN.

We present novel work on anomaly detection based on FACER [96] (see also Sec-
tion B.4) and ReverseVAE [41] (see also Section B.5). While FACER is trained to detect
different sorts of noise that can corrupt the data and unseen classes, ReverseVAE is able
to detect out-of-distribution anomalies. All anomalies can have a large impact on the
safe behaviour of a ML component. An additional ability of ReverseVAE is to be able
to manipulate the data with specific visual attributes.

Since testing of an ML function might be not only guided by the specification of safe
behaviour and the utilisation of safety-related metrics, we analyse and assess various
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approaches from different domains [2] (see also Section B.6). In addition, we provide
different novel test setups and explain their test purpose. By doing so, the importance of
specification is underlined as well as corresponding potential testing settings extracted.

All in all, these activities with their specific challenges have the consequence that an
iterative development process is necessary, by which all artefacts - also the requirements
- of the safety argument are affected. Traceability from the requirements to the lines
of code does not exist for ML components because the requirements cannot be linked
to specific portions of the architecture of an ML component. Instead, we require that
the artefacts that are created in different stages of the ML lifecycle are linked to each
other to ensure traceability [40] (see also Section B.7). We also illustrate these links with
examples.

Our holistic approach provides a foundation for the safety assurance of ML-based
perception functions in automated driving. We embody essential properties for a safe
behaviour in the requirements and ensure essential properties in the ML-based function
itself. Finally, we demonstrate that traceable artefacts are prerequisite for a convincing
safety argument for a safe behaviour which is built upon the safety argument including
the requirements and upon the evidence.

6.2 Future Research

In the following, we would like to point out individual issues that our work lays the
groundwork for: acceptance criteria, change impact analysis, bridging the ML and safety
community.

Acceptance criteria. It is challenging to come up with acceptance criteria on com-
ponent level and the corresponding meaningful safety-aware metrics [27]. A vast variety
of experiments and verification approaches are necessary, as there is not only the one
property, such as e.g. adversarial robustness, to be proven [115]. Other properties, such
as the ability to generalize [89], can be examined in terms of their suitability to support
safe behaviour.

Performance metrics, such as ROC [35], F1-score [18], LAMR [33, 111], mAP [74],
mIoU [18], evaluated on a given dataset that are established in the ML community might
serve as a valuable benchmark. For a safety argument, statistical performance evaluation
on one huge dataset is not appropriate, but should be extended with a specific analysis
of the essential properties.

We have already pointed out, that the analysis of data sequences and its correspond-
ing misperception rates [43] have great potential to be an essential safety-aware metric,
as they play an important role in subsequent components, such as tracking. They could
help to elevate the knowledge of the fault-error-failure relationship [9]. All these would
lead to a better understanding of further triggering conditions and ease the development
of mitigation measures and collection of relevant data. It might be possible to extract
important test cases or to determine important training data [76]. Further analysis of
relevant objects in the field of view of the ADS might be also an promising approach to
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shape safety-aware metrics [75]. Also the use of a safety-aware off-road people detection
metric might be considered in safety requirements [119]. This metric could be based on
the mean Average Precision (mAP) and include hazard risk correlated factors such as a
person’s distance to the vehicle and time-to-collision [119].

Moreover, there might be further investigations on stratified evaluations, shifted per-
formance evaluations and contrastive evaluations [32]. In stratified evaluations [32], for
example, we can focus on very specific data aspects only, e.g. particular weather condi-
tion, and provide evidence for particular required robustness, such as robustness against
particular noise types. Leveraged knowledge and automated analysis of data character-
istics would ease the identification and conformation of essential properties.

Change impact analysis. After an initially unknown triggering condition is evalu-
ated, it should be added to the ODD. For pedestrians, for example, the pose may play
an important role in the prediction quality. Thereby, an safety expert should check how
the safety argument is affected by this change.

To this end, a change impact analysis can ease this task by guiding the safety expert
with recommendations throughout the safety argument. To this end, we examine changes
to artefacts and the dependencies between the artefacts throughout the safety argument
on data sufficiency with the help of annotated change sensitive information [24]. The
propagation of a change in an artefact is (semi-)automated with the help of qualitative
and quantitative change impact analysis. Further changes in the safety argument should
be traced and checked for impacts on other artefacts.

Other developments towards combination of model checking and data-flow analy-
sis [13] could also be helpful.

Bridging the ML related and safety-related communities. Assuring the safety
of a perception function in automated driving is heavily dependent on the state of the
art. In addition, standards that incorporate the state of the art are necessary to provide
a legal basis. The standards, in turn, require consensus in industry and science regarding
the necessary claims and measures which for example is targeted in the publicly founded
project “KI-Absicherung” [63]. Our work, such as [2, 20, 21, 40, 43, 44], contributed to
the proposal of this project and to the project results. In addition, parts of the results
are included in the standard draft ISO/AWI PAS 8800 [54] that will provide further
legal guidance. The permeability of scientific and application-oriented findings in the
individual fields of knowledge is a prerequisite for the targeted development of safe,
automated systems.
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Abstract. The validation of highly automated driving vehicles is an
important challenge to the automotive industry, since even if the system
is free from internal faults, its behaviour might still vary from the original
intent. Reasons for these deviations from the intended functionality can
be found in the unpredictabiltiy of environmental conditions as well the
intrinsic uncertainties of the Machine Learning (ML) functions used to
make sense of this complex input space.
In this paper, we propose a safety assurance case for a pedestrian detec-
tion function, a safety-relevant baseline functionality for an automated
driving system. Our safety assurance case is presented in the graphi-
cal structuring notation (GSN) and combines our arguments against the
problems of underspecification [9], the semantic gap [3], and the deduc-
tive gap [16].

Keywords: safety, intended functionality, functional insufficiency, nominal per-
formance, automated driving, Machine Learning, assuance case, GSN

1 Introduction

Highly automated driving vehicles will potentially ease the daily life of millions
of commuters, increase the mobility of elderly and disabled people, and enable
numerous new business cases. A highly automated driving system can be defined
as a vehicle that monitors its driving environment and executes steering, accel-
eration and deceleration without permanent human monitoring or intervention.

In order to achieve the safety goals of a highly automated driving system, e. g.,
do not harm pedestrians, the propagation of internal faults must be prevented as
is standard in today’s automotive systems. However, we must additionally deal
with situations where the automated driving system is free from internal faults
but behaves in a manner that nevertheless leads to a hazard. For example, a cold
and foggy environment can result in blurred camera images and the radar sensors
becoming iced such that a safe automated driving operation cannot be ensured
and the probability of the system violating its safety goals is unacceptably high.
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2 Structuring Validation Targets of ML Applied to Automated Driving

In contrast to today’s driver assistance systems, an immediate non-technical fall-
back solution reliant on a human driver is not an option for highly automated
driving.

In the following, we refer to such deviations from the intended functional-
ity of a system as functional insufficiencies. Note that functional insufficiencies
are also known as performance limitations. We also like to point out that if a
functional insufficiency occurs, no guarantees about the behaviour of the system
can be made. In other words, there is a remaining probability that a functional
insufficiency causes the violation of safety goals. Therefore, we regard functional
insufficiencies as contributions to system hazards.

In order to prevent functional insufficiencies, the specification of the system
must reflect its intended functionality. Furthermore, the system’s specification
must be appropriate for any environment within which the system potentially
operates. We consider it an insufficient validation strategy to simply drive a
specific distance in automated driving mode, since a safely driven route does
not necessarily include all environmental conditions and hence does not indi-
cate the absence of failures. Instead, we consider this test driving approach only
as supplementary for a structured and validated specification of the intended
functionality of the system in all potential environments. In other words, we
argue that the absence of unreasonable risk due to hazards caused by functional
insufficiencies has to be achieved by a rigorous overall development approach -
from the specification of intended functionality, through derivation of subsystem
functionality, the implementation and integration of functions and runtime mon-
itoring with the possibility for updates to improve the system based on real-world
observations.

In addition to the inherent uncertainty and complexity of the environment,
functional insufficiencies can stem from intrinsic uncertainty within the func-
tional implementation itself. Machine learning (ML) is a prominent example for
a function with an intrinsic uncertainties, since ML has the ability of learning
without being explicitly programmed [15]. A highly automated driving system
may contain various ML functions, e. g., for detecting objects from video images.

In order to analyse functions with intrinsic uncertainties, their intended func-
tionality has to be well understood and specified. However, to correctly specify
functions with an intrinsic uncertainty, we require either expert knowledge about
the conditions under which they usually tend to fail or we need a ground truth
reference from which we can determine remaining uncertainty. In the context
of ML applied to automated driving (AD), we argue that neither the expert
knowledge nor the ground truth reference is perfect.

In order to able to nevertheless build safe systems with ML functions, we
are interested in how the potentially unknown functional insufficiencies at the
system level can be mitigated despite this intrinsic uncertainty. This includes the
question which validation targets have to be achieved to demonstrate that a ML
function fulfils its intended functionality. Furthermore, it requires the ability to
argue about the validity of these specification and validation targets themselves.
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Different challenges in AD development have been already described: un-
derspecification [9], semantic gap [3] and deductive gap [16]. In this paper we
review these contributions by means of an ML-specific case study for the safety
relevant function “pedestrian detection”. Based on this case study, we propose
approaches to answer the following questions: (i) Underspecification: What is the
intended functionality and what are its limits? (ii) Semantic gap: How can the
intended functionality be described? (iii) Deductive gap: Which requirements on
the functional layer (here: ML) can be deduced?

We present a safety assurance case that supports the argument of the ab-
sence of unreasonable risk due to hazards caused by functional insufficiencies
by structuring the validation targets. Our safety assurance case broadens the
approach of Burton et al. [4] and is visualised by a graphical notation, namely
the goals structuring notation (GSN).

The remainder of this paper is structured as follows: In Section 2, we detail
the function pedestrian detection of our case study and derive validation targets
for it. In Section 3, we present the safety assurance case of the pedestrian de-
tection function. In Section 4, we summarize our results, discuss our approach,
and present future work.

2 Validation Targets for Pedestrian Detection

In this section, we first introduce the pedestrian detection function and present
its functional specification. Then we discuss reducing the risk of hazards caused
by underspecification and semantic gap. Finally, we discuss the deductive gap
and propose functional modifications to achieve the intended functionality.

2.1 The Pedestrian Detecting Function

A typical automated driving system is comprised of the following parts: sensors,
perception, behaviour and trajectory planning, trajectory control, and actuators.
The perception part acquires and processes data from sensors, e. g., cameras,
lidars, and radar sensors, and other data sources, e. g., car2X-communication,
and creates an environmental model of the surroundings of the vehicle. For our
case study, we focus on the ML function that detects pedestrians based on video
analysis.

This pedestrian detection function is typically realized by a Convolutional
Neural Network (CNN), since CNNs are regarded to have a high potential for
classification tasks [10]. CNNs are a class of feed-forward neural networks (NN)
that consist of a large number of connected neurons - computational units that
calculate a weighted sum of their inputs and apply a nonlinear activation function
on this sum. The weights are determined by minimizing a loss function of the
network over a given set of training data (labelled images) and backpropagating
the respective error terms through the network. In this manner, CNNs allow a
classification annotated with a confidence level for each class and a localisation
of an object within a given image (e. g., frames of a video).
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4 Structuring Validation Targets of ML Applied to Automated Driving

Incorrect functioning of the pedestrian detection function can cause hazards
such as “unnecessary emergency breaking or steering” and “too late or no emer-
gency braking when necessary”. These hazards potentially violate the safety goal
“do not harm pedestrians” of the automated driving system. Thus, we consider
the pedestrian detection function as safety relevant. In the following, we con-
sider the general safety goal “ML function meets its intended functionality” as
the overall safety goal for the pedestrian detection function.

2.2 Functional Specification

In this case study the pedestrian detection function is divided into two subtasks:
1. classification and 2. localisation of the pedestrian. The specification of each
task is derived from the driving task (e. g., ego speed, distance to object) and
system boundaries (e. g., braking distance). For example, for the first subtask,
the specification is derived from the need to detect persons of a minimum height
from a particular distance travelling with a maximum relative velocity which
results in a minimum amount of pixels inhabited by the object within a single
image frame from the camera.

We propose the following requirements for the first subtask to be defined for
each pedestrian class:

– Pedestrian of height (X1 pixels) and of width (X2 pixels) are classified.
– Pedestrians are detected if Y% of the person is concealed.
– There are less than W1 False Positives per 1000 frames.
– There are less than W2 False Negatives per 1000 frames.
– There are less than B1 misclassified detections.
– Confidence level shall reflect the actual uncertainty of correctness of a clas-

sification.

Both subtasks are required for an adaptation of behaviour and trajectory
planning. If the confidence level is not high enough to result in an unambiguous
decision, defensive measures are taken (e. g., increased safety distance). This
results in the following additional requirements:

– Vertical deviation less than C1 pixels to ground truth.
– Horizontal deviation less than C2 pixels to ground truth.

The validation data used to confirm these requirements must cover those
characteristics of the environment relevant to the task and hence be represen-
tative of real-world situations. Note, this does not necessarily mean that the
validation data is representative in terms of the frequency of occurrence of cer-
tain situations. Critical situations may occur only rarely but must be adequately
trained and tested. Furthermore, the validation data must include sufficient vari-
ants of pedestrians. The data must also allow for targeted validation of certain
attributes, such as non-discrimination between age, gender or race. This requires
that these attributes are represented and labelled in the validation data.

In this paper, known challenges of automated driving, in particular when ap-
plying ML, are reviewed as sources of functional insufficiencies. These sources are
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structured into validation targets, so that a systematic approach is introduced
to arguing the goal “ML functions meets its intended functionality”. A cumu-
lative argumentation based on a diverse set of validation targets and statistical
evaluation (here formulated as sub-goals of a safety assurance case) including
the associated evidence must be discussed. In the following, a thorough investi-
gation is made into how to analyse the intended functionality and how to set the
validation targets. This approach is later used to build a safety assurance case.

First of all, the risk due to hazards caused by two sources of functional
insufficiencies shall be reduced: underspecification and semantic gap. Later the
implementation specific deductive gap will be reviewed. These validation targets
must be determined iteratively during development.

2.3 Reduction of Risk due to Hazards Caused by Underspecification

Underspecification might occur if the intended functionality is more diverse than
what is specified [9]. Consequently, defined use cases are only part of the intended
functionality. Addressing underspecification by means of a generalization can
lead to a inadequately defined safety requirements. In order to reduce risk of
underspecification, we suggest the following validation targets. Note that this
list might need to be extended and evaluated for each specific task.

– Environment is sufficiently well known.
⇒ Evidence: The hazard analysis and risk assessment (HARA) in the scope
of ISO 26262 should be extended to determine properties of the environment
that lead to critical situations, e. g., low-angled sunlight, fog and reflective
surfaces, etc. Systems safety approaches such STAMP [11] [12]) can be bene-
ficial here. While specifying the intended functionality, unintended use cases
must be excluded explicitly in order to highlight the system boundaries. As-
sumptions on the environment shall be made explicit in order that they can
be validated through review, analysis and monitoring.

– Task is sufficiently well known.
⇒ Evidence: Requirements shall be specified including task specific attributes.
In the case of generalization abilities, attributes such as colour invariances
and translations invariances might be required.

– Sensitivity against unpredictable or unspecified impact of environmental at-
tributes is sufficiently low.
⇒ Evidence: Sensitivity to environmental changes shall be investigated.
Moreover, influence due to distributional shift over time or due to geographic
changes shall be reviewed. Requirements on invariance and generalization at-
tributes shall be reviewed according their appropriateness to the intended
functionality. Run-time monitoring of assumptions and field-based validation
shall be used to investigate discrepancies between the real environment and
the assumptions as well as sensitivity to these changes. Moreover, statistical
extrapolation shall be used generalise the results of acquired data.
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2.4 Reduction of Risk due to Hazards Caused by Semantic Gap

Semantic gap refers to using implicit knowledge on the satisfaction of Safety
Goals [3]. In the context of ML, semantic gap refers to making claims on the
relevance of references used for training, test and validation data sets. We pro-
pose the following sub-goals to support the argument of “Reduction of risk due
to semantic gap”. Note that these might have to be extended and evaluated:

– Pedestrian classes are sufficiently accurately described.
⇒ Evidence: Functional specification of several validation data sub-sets shall
include all variants of classes that can be derived from the environment.
Moreover, safety requirements shall be transferred into task specific require-
ments, e.g. informal textual specifications shall be transferred into formal
specifications as far as it is possible, at least for safety-relevant requirements.
Evaluation of specific influences and appropriate object variations shall be
specified beyond statistical evaluation.

– Location accuracy is sufficiently well described.
⇒ Evidence: training and validation data shall be specified. Evaluation of
specific influences shall be specified. Additionally, evaluation of compliance
with tolerances, of size and of location variation shall be specified.

– Discrepancy between real and described environment is sufficiently small.
⇒ Evidence: Evaluation of similarity between reality and specification of
validation data shall be specified. Functional modifications, such as run-
time monitoring, degradation modes, pre-processing of ML input etc., shall
be specified and documented.

Although systems engineering approaches to ensure a rigorous and complete
derivation of the requirements reduce the risk due to hazards caused by un-
derspecification and semantic gap, further evidence must be collected through
targeted field-based observations and used to iteratively improve the specifica-
tions.

2.5 Reduction of Risk due to Hazards Caused by Deductive Gap

Deductive gap refers to using invalid assumptions on different abstraction levels
causing an unintended functionality [16]. In the context of ML, features might
be wrongly learnt or erroneously implemented. The deductive gap for ML differs
from the deductive gap for non ML functions due to its intrinsic uncertainty.
Note that reduction of underspecification and semantic gap is a prerequisite for
the implementation of the intended function and as important as the avoidance
of deductive gap.

The following validation targets can be defined for reducing the risk due to
hazards caused by deductive gap before and during training:

– Data set is sufficient for the intended functionality.
⇒ Evidence: Transfer of system-level requirements to ML-specific require-
ments as well as the attribute distribution within training, test and validation

B.1. Lydia Gauerhof, Peter Munk, and Simon Burton. “Structuring Validation
Targets of a Machine Learning Function Applied to Automated Driving”. In:
Computer Safety, Reliability, and Security. Springer Nature. Springer International
Publishing, 2018. doi: 10.1007/978-3-319-99130-6_4 53

https://doi.org/10.1007/978-3-319-99130-6_4


Structuring Validation Targets of ML Applied to Automated Driving 7

data sets shall be evaluated. Moreover, independence from unintended object
relations shall be highlighted. For example, synthesised data can be used to
broaden recorded data by special attributes.

– Overfitting is sufficiently reduced.
⇒ Evidence: overfitting measures, such as pretraining on diverse data set,
regularisation methods, Dropout or DropConnect, data augmentation shall
be documented and evaluated.

– Underfitting is sufficiently reduced.
⇒ Evidence: underfitting measures (e. g., a minimum amount of training
data for each class variant) shall be documented and evaluated.

Self-learning algorithms are difficult to understand, since parameters are set
not by an engineer, but by the learning method, e. g., back propagation. More-
over, the learnt features do not have to represent physical properties, but may
occur arbitrarily. within the data To achieve the following validation targets, it
is essential not only to consider ML in a black box manner (as it is handled
during statistical analysis) but also to understand the essential influences for
deviation from the intended functionality. In order to evaluate weaknesses of the
ML function, the following methods are currently known:

Feature Visualization. One possibility of uncovering features which have ac-
tivated a class is to visualise the part of the image that contributed to the
classification result. Saliency methods belong to such techniques. Zeiler and
Fergus [17] present a visualisation technique mapping various layers of a
CNN to an image. The pixels within the image can be highlighted according
to the scale of influence on each layer. Visualizing features might help to
understand which patterns of the training set activates the feature map.

Structuring of the Input Space. By annotating known attributes of the im-
ages that are independent from the classification task (e. g., weather condi-
tions, light conditions, contrast), the input space can be further structured
for training and validation purposes. Either these additional attributes are
chosen by developers or appropriate clusters are identified by algorithms.
Equally, sub-classes of task classifications and their properties can be defined
manually or automated and offers opportunities to further optimize the clas-
sification process [13]. Then, task-specific misclassification and mislocalisa-
tion are investigated (e. g., correlations are visible in confusion matrices [1]).
If correlations exist, either training data can be broadened appropriately or
the confidence level can be adapted appropriately during post-processing.

Formal Verification. Under certain conditions, some functions allow the ap-
plication of formal verification to investigate whether certain constraints are
met across the complete input space.
One approach based on formal verification that is applied on a neural net-
work is provided by [7]. The investigated neural network makes flight con-
trol decisions. Katz et al. investigate a fully connected neural network. After
rewriting inputs and outputs as Boolean formula, a linear real arithmetic,
the authors proof with the help of an Satisfiability Modulo Theories (SMT)
solver that the formula is satisfiable in the sense of SMT.
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Nevertheless, in our case study, a formal verification of CNNs is not real-
istically feasible, since it is difficult to describe the input and output space
(images with all kinds of variations in appearance etc.) or to formulate linear
real arithmetic for this purpose.

Uncertainty. The confidence level of each class output does not express a prob-
ability of existence of the object itself. Therefore, uncertainty calculation
might be used to measure the reliability of the classification result. Uncer-
tainty quantification can be used for further measures (e. g., in plausibility
checks and sensor fusion algorithms [8]), thus improving the overall robust-
ness and reliability of the subsequent trajectory planning tasks [14].

With the help of these methods, the following validation targets must be
proven in order to reduce the risk of hazards caused by deductive gap. We
suggest the following incomplete list of evidences:

– Essential influences on the ML function are sufficiently understood.
⇒ Evidence: The application of feature visualization, adaptation of confi-
dence level and uncertainty calculation shall be documented. Furthermore,
correlations of errors to features shall be investigated and reduced by appro-
priate training. Evaluation of these correlations shall be documented.

– ML function is sufficiently robust.
⇒ Evidence: tolerance against distributional shift, adversarial and faulty
input shall be evaluated. Statistical evaluation shall be documented. An
integrity test of ML function shall be documented.

– Learnt features are sufficient for function.
⇒ Evidence: learnt features and correlations between these and detection
results shall be analysed and documented (e. g., by feature visualization).
A well-known weakness of ML functions is the sensitivity to adversarial at-

tacks. In this case an object, e. g., a road sign [6] [5], is slightly modified such
that a human would not recognize a manipulation but it is misclassified with
a high confidence by a machine learning function. ML functions trained with
different data subsets or with adversarial examples are more robust against ad-
versarial attacks but unfortunately, to the best of our knowledge, there is no
general solution to avoid adversarial attacks as of today. Hence, special caution
is necessary while system engineering and when creating validation targets for
adversarial attacks.

Furthermore, the following validations targets regarding any changes made
during the development of the system (e. g., in its parameters or in the computing
platform) must be proven.

– Changes to parameters do not inviolate safety requirements.
⇒ Evidence: verification specification for any changes shall be documented.

– Differences between the training and target platforms do not lead to a vio-
lation of the safety requirements.
⇒ Evidence: verification specification for any changes shall be documented.

– Changes in target platform comply with safety requirements.
⇒ Evidence: verification specification for any changes in target platform
shall be documented.
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2.6 Functional Modifications to Achieve the Intended Functionality

The validations targets for the deductive gap defined in the previous section can-
not gaurantee that hazards at a system level will not occur. In the following, we
provide a brief overview of potential safety measures to reduce the risk induced
by functional insufficiencies at a functional and system level.

Measures at the Functional Level besides demonstrating the performance
of the ML functions themselves the following measures can be introduced to
reduce the risk associated with functional insufficiencies:

– Pre-processing of ML-input might be conducted according to known fac-
tors that significantly influence performance. If the performance of the ML
function, for example, is decreased for pictures with very low contrast, a
classification might be suspended if such conditions are detected.

– Post-processing of the ML-output might include adjustment of confidence
levels based on factors known to influence performance, so that decisions
about driving behaviour and trajectory planning are adapted to the relia-
bility of the perception function. Influences might include object size (due
to resolution problems), ego travel velocity (due to blurring effect) or image
quality e. g., contrast and light conditions.

Measures at the System Level to reduce the propagation of errors through-
out the system and therefore to reduce the risk of hazards induced by functional
insufficiencies at the system level should be identified by applying rigorous sys-
tems engineering approaches. This can include the introduction of the following
measures:

– Diverse redundancy increases the dependability of a function. For pedes-
trian detection, several possibilities exist, e. g., Lidar, Radar and traditional
computer vision algorithms.

– Operating modes, also called degradation modes, depend on the vehicle’s
environmental model. As long as the environmental model is reliable, deci-
sions are taken within a wider range of possible trajectories. In contrast a
degradation mode is chosen according to a cautious and defensive driving
strategy, if an object is detected with a low confidence level.

– Transition between operating modes ensures a continuous driving behaviour.
– Run-time monitoring of assumptions allows the validation of whether as-

sumed attributes about environment are still valid. The detection of dis-
crepancies between distribution of environmental attributes and design as-
sumptions at run-time could indicate either errors in the trained function
or that the system is operating within an environment for which it was not
adequately trained.

– Established driver assistance systems (e. g., Emergency brake assist) applied
to AD must be reviewed from a system engineering perspective. It must be
clarified to what extent measures must be taken at the system level to reduce
the integrity requirements on the individual functional components.
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3 Safety Assurance Case for Pedestrian Detection

The previous section introduced validation targets that must be addressed during
development. Nevertheless, the argumentation that a ML function meets its
intended functionality has to be summarised and structured. In this section we
propose a safety assurance case using the goal structuring notation (GSN) that
structures the presented validation targets and associated evidence. The aim of
our safety assurance case is to argue the safety of ML with respect to the absence
of unreasonable risk due to hazards caused by functional insufficiencies.

The safety assurance case includes all validation targets as sub-goals and
evidence of mitigating against weaknesses in the ML function at the system as
well as functional level. An evaluation of the validation targets is not conducted
in this paper, since it is not representative for a general validation approach due
to environmental-, task-, and system-specifc dependencies. Instead we propose
and discuss an approach to structure validation targets for a safety relevant
ML function applied to automated driving and to combine diverse sources of
evidence.

Figure 1 graphically represents our approach to arguing that the ML func-
tion meets its intended functionality. In order to support the goal “Machine
Learning function meets all of its functional requirements”, the strategy “Ar-
gument over sufficient reduction of root causes of functional insufficiencies” is
given. This argument is associated with the three sub-goals to reduce risk due
to underspecification, semantic gap and deductive gap. Their sub-goals in turn
are not depicted, but stated in the following.

In the right upper context symbol all information about the ML function, its
tasks, requirements and the CNN are stated (usually as a link to an appropriate
document). The use of a CNN for the task is argued by the statement that CNNs
are currently the most successful classifier (right lower context symbol) and this
statement is justified by the contests that are won by CNNs [10]. Therefore,
this justification also depends on the assumption that classification performance
from benchmark contests are transferable and therefore highlight the potential
of CNNs for classification in general.

The goal “ML function meets its intended functionality” is stated within the
context “Pedestrian detection is a safety-relevant function, so that this ML func-
tion is also safety-relevant.” which might be linked to a hazard and risk analysis.
Furthermore, the assumptions on the environment are also stated (usually linked
to an appropriate document).

The strategy to achieve the main goal “ML function meets its intended func-
tionality” is argued by a sufficient reduction of root causes of functional insuffi-
ciencies. This argument is reflected in the three sub-goals reducing risk due to
underspecification, semantic gap and deductive gap with the arguments over ap-
propriate specification, description, deduction. Note that the justification that
these three sub-goals are sufficient is missing here, but shall be stated in general.

In figure 2, the GSN is refined for the two arguments over appropriate speci-
fication and description. The sub-goal “Reduction of risk due to semantic gap” is
achievable for the given specification that reflects the sub-goal “Reduction of risk
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Fig. 1. GSN for the Goal Machine learning function meets its intended functionality.

due to underspecification”. Moreover, all validation targets reducing the risk as-
sociated with underspecification and semantic gap lead to a refined specification
that is task-specific, but not implementation-specific.

Figure 3 depicts the sub-goal “Reduction of risk due to deductive gap” focus-
ing on the implemented function. Its refined specification is stated in the context
element. The specification holds, since it is assumed that intended functionality
is well understood and described. A justification is missing here, but shall be
stated in general.

Especially the first validation target “Data set is sufficient for intended func-
tion” of the argument over appropriate implementation points out that the data
set (that is the basis for training, test and validation data set) shall reflect the
goals “Reduction of risk due to underspecification” and “Reduction of risk due
to semantic gap”. Here the dependencies between all three goals become clear. If
underspecification or a semantic gap increases the risk of unintended function-
ality, then this will also affect the data set. For example, if a firefighter was not
explicitly included in the specification, the data set might also lack this kind of
variant of a person. Consequently, a ML function is not trained properly and
might not be able to recognize the firefighter.

Additionally, the refined specification must also approach the integrity re-
quirements on the individual functions. The awareness of attributes that might
be adverse to the intended functionality under particular conditions, might
be used to introduce a data fusion with further information processing meth-
ods and/or redundant information sources (e. g., sensors, digital maps, server).
Therefore, the deductive gap might be mitigated by other measures than within
the function itself. These measures are stated in the context element on the left
hand side (usually linked to an appropriate document).
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Fig. 2. GSN for the Goal: ”Reduction of risk due to underspecification and semantic
gap”. The following evidence is suggested to support the claims: 1) hazard and risk
analysis, 2) accident database, 3) explicit exclusion of unintended use cases, 4) ex-
plicit assumptions on environment, 5) requirements specification (colour invariances,
translations invariances), 6) documentation of functional modifications, 7) sensitivity
investigation, 8) review of distributional shift, 9) specification of invariance and general-
ization attributes, 10) run-time monitoring, 11) specification of training and validation
data, 12) evaluation of specific influences, 13) evaluation of appropriate object varia-
tions, 14) evaluation of compliance with tolerances, of size and location variation, 15)
evaluation of similarity between reality and specification of validation data, 16) degra-
dation modes, 17) pre-processing of ML input, 18) field-based validation, 19) statistical
extrapolation

4 Conclusion and Future Work

We investigated sources of functional insufficiencies and derived validation tar-
gets in order to demonstrate the intended functionality of a machine learning
(ML) function in an automated driving system, namely the pedestrian detection
function. Our approach is based on the reduction of the well-known root causes
of functional insufficiencies: underspecification [9], the semantic gap [3], and the
deductive gap [16]. From the validation targets we outlined a safety assurance
case in GSN for the safety goal “Machine learning function meets its intended
functionality” of the pedestrian detection function.

When we derived and structured the validation targets for our case study we
included well-known methods and measures. While statistical evaluation offers
a good basis to investigate improvements at a functional and system level, other
methods, such as feature visualization, are used for analysis and for reaching a
better overall understanding of the learnt functionality. However, the effective-
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Fig. 3. GSN for the Goal Reduction of risk due to deductive gap. The following ev-
idence is suggested to support the claims: 20) evaluation of transfer of requirements
to ML-specific requirements, 21) evaluation of attribute distribution within training,
test and validation data sets, 22) independence from unintended object relations, 23)
overfitting measures (pretraining on diverse data set, regularisation methods, Dropout
or DropConnect, data augmentation), 24) underfitting measures, 25) feature visualiza-
tion, 26) correlations to features, 27) adaptation of confidence level, 28) uncertainty
calculation, 29) evaluation of tolerance against distributional shift, 30) adversarial at-
tacks, 31) integrity test of ML function, 32) statistical evaluation, 33) evaluation of
faulty inputs, 34) verification specification for any changes

ness of these methods and measures must still be evaluated in detail. Therefore,
further research on the contribution of each method and measure to the vali-
dation targets of automated driving is necessary. We argue that only with an
industry consensus on an established set of methods, can a convincing and ac-
cepted argument for the safety of automated driving be made. This includes
an agreement on a sufficient ”weight of evidence” and abort criteria for each
validation activity, which has not yet been reached [2]. As part of future work
we aim to systematically evaluate the effectiveness and contribution of methods
and measures discussed in this paper to derive and structure validation targets
and evidence for series development projects. This includes the question how
the effectiveness of the individual methods and measures can be measured and
demonstrated based on quantifiable key performance indicators.
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Abstract. Machine Learnt Models (MLMs) are now commonly used in
self-driving cars, particularly for tasks such as object detection and clas-
sification within the perception pipeline. The failure of such models to
perform as intended could lead to hazardous events such as failing to
stop for a pedestrian at a crossing. It is therefore crucial that the safety
of the MLM can be proactively assured and should be driven by explicit
and concrete safety requirements. In our previous work, we defined a pro-
cess that integrates the development and assurance activities for MLMs
within safety-related systems. This is used to incrementally generate the
safety argument and evidence. In this paper, we apply the approach to
pedestrian detection at crossings and provide an evaluation using the
publicly available JAAD data set. In particular, we focus on the elicita-
tion and analysis of ML safety requirements and how such requirements
should drive the assurance activities within the data management and
model learning phases. We explain the benefits of the approach and iden-
tify outstanding challenges in the context of self-driving cars.

Keywords: Machine Learning · Safety argument · Self-driving car ·
Safety assurance process

1 Introduction

The assurance of safety-related systems which utilise Machine Learnt Models
(MLMs) can only be achieved when arguments concerning the safety of the
MLM are provided in the context of the overall system into which the model is
deployed. For safety-related applications, the performance of the model is just
one aspect that may be of interest; we must also take a much broader view of
which aspects are important to assure the safety of the MLM. These aspects
should be defined in the form of explicit Machine Learning (ML) safety require-
ments and should drive the way in which the MLM is trained and verified, with
a particular focus on the quality and suitability of the training and verification
data sources.

c© Springer Nature Switzerland AG 2020
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In [15] we introduced a process for generating assurance arguments for MLMs.
This process integrates development and assurance activities and can be used to
incrementally generate the safety assurance argument and evidence that can be
used to form a safety case for the MLM within the safety related context. We also
described the structure of such arguments in the form of safety argument pat-
terns [15]. Although some simple illustrative examples were provided, the details
of how to implement the process activities, and the nature of the evidence that
is generated were not provided. This paper seeks to address this by considering
the safety-related automated driving scenario of a self-driving car approaching a
pedestrian crossing. For this scenario we use a MLM for detection of pedestrians
at the crossing that is trained on a publicly available dataset [17]. In particular,
by considering this credible scenario and its associated safety implications, the
primary contribution of the paper is that it shows how safety requirements can
be systematically and traceably generated and refined across the different life-
cycle phases of the MLM, particularly focussing on the data management and
model learning requirements.

The rest of this paper is structured as follows. Section 2 provides an overview
of our MLM safety assurance process. In Sect. 3 we describe the autonomous driv-
ing scenario that we used for our experiment and introduce the safety require-
ments for the system. Section 4 details the ML requirements that we derived
for the scenario. Section 5 assesses the degree to which these requirements are
satisfied for the data management and model learning stages of the lifecycle
respectively. Section 6 discusses related work, draws conclusions from the paper
and discusses our future work.

2 Model Learning Safety Assurance Process

The process we developed for assuring the safety of MLMs was presented in [15].
We split the ML lifecycle into five stages: requirements elicitation, data manage-
ment, model learning, model verification and model deployment. Traditionally
ML development has focused on data collection and model performance. For
safety-related systems, a much broader view of ML development is required. In
particular, the requirements elicitation stage must ensure that the ML require-
ments reflect the intent of the broader system-level safety requirements [9]. The
model verification stage must provide an independent check that the require-
ments are satisfied and this must be particularly focused on the verification of
explicit safety requirements. The model deployment stage must ensure that the
learnt model will be acceptably safe when integrated into the larger system. To
ensure that each lifecycle stage provides what is required to support a safety
case, we can define a set of desired properties (desiderata) for each stage. It is
important to have a clear and sufficient set of desiderata. For the work reported
in this paper, we have used the assurance desiderata proposed by Ashmore
et al. in [1].

To ensure the desiderata are satisfied, specific ML safety requirements must
be specified for each lifecycle stage. This is the focus of this paper. These ML
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requirements must relate to the specific safety requirements determined for the
system into which the MLM will be deployed. The relationship between safety
requirements at a system level and detailed ML requirements is not always obvi-
ous. For example, a safety requirement may define the need to identify all stop
signs in an urban environment in sufficient time for the vehicle to stop com-
fortably. Turning this into specific and meaningful ML requirements relating to
desiderata such as data coverage, model robustness or model accuracy is chal-
lenging and rarely discussed in a way that is justifiably traceable to system
safety requirements. This paper describes how this may be done for a credible
automotive scenario, focussing on ML safety requirements for data management
and model learning. As part of a safety case, it must be demonstrated that the
defined ML safety requirements are met. We discuss the activities that may be
performed during the ML lifecycle to generate evidence to support this.

3 Pedestrian Detection at Crossings Scenario:
Vehicle-Level Safety Requirements

We consider a MLM that is being used to identify pedestrians at pedestrian
crossings so that an autonomous vehicle is able to stop safely. We consider that
a car (the Ego vehicle) is driving autonomously in an urban environment and is
approaching a crossing. We can specify a safety requirement on the Ego vehicle
as follows:

Ego Shall Stop at the Crossing If a Pedestrian is Crossing
At this level the safety requirement is defined for the vehicle as a whole. It
is important to note that this safety requirement would apply to the vehicle
irrespective of the use of ML as part of the implementation. Based on system
level safety analysis, other safety requirements could be identified (such as that
the Ego vehicle should not stop unnecessarily at a crossing) but we do not
consider those within this paper.

In order to elicit safety requirements for the MLM it is first necessary to
identify the safety requirements that apply to the relevant system component,
in this case the object detection component. The safety process decomposes the
system level safety requirement to the different components of the Ego vehicle.
This takes account of the proposed system architecture for the vehicle as well as
the relevant operating scenarios and operating environment as discussed below.

Ego is able to sense the environment using a Bosch stereo video camera [12]
that is fitted above the rear view mirror. The camera has an image size of
1280× 960 pixels and a frame rate of 30 images per second. The images are sent
to the object detection component that identifies pedestrians in the images and
creates bounding boxes around each pedestrian. Figure 1 shows an example of
an image in which all pedestrians in the scene were successfully identified. These
are indicated by the green bounding boxes in the image. In this case, the image
has also been annotated with white bounding boxes which show the ground
truth. This indicates that even though all objects were successfully detected
errors in the bounding boxes still remain. By contrast, Fig. 2 shows an image

64 APPENDIX B. ORIGINAL MANUSCRIPTS



200 L. Gauerhof et al.

from the same crossing in which there are several identification errors in the
object detection, with pedestrians who were not spotted by the object detection
indicated by blue boxes in the scene.

Fig. 1. An ideal pedestrian detection at crossings. (Color figure online)

Fig. 2. An example of missed detections at crossings. (Color figure online)

It is crucial that the context within which the vehicle is expected to function
is clearly and explicitly specified. For road vehicles this is normally done through
the specification of the Operational Design Domain (ODD) [7]. J3016 defines an
ODD as “operating conditions under which a given driving automation system or
feature thereof is specifically designed to function, including, but not limited to,
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environmental, geographical, and time-of-day restrictions, and/or the requisite
presence or absence of certain traffic or roadway characteristics” [19].

One of the reasons for specifying the ODD is to reduce the complexity of
the input space. For instance, particular geographical areas and country-specific
circumstances, such as traffic signs, can be excluded. Also weather conditions
such as snow, and time of day such as night, may be excluded, meaning that
Ego would not operate autonomously under such conditions. Measures are put
in place to ensure operation does not occur under the excluded conditions [5].
There are a number of approaches to structuring the ODD, such as equivalence
classes [18]. There are also a number of ODD ontologies that have been sug-
gested [7,11].

In the driving scenario in this paper, the ODD specifies that Ego operates
on roads in the UK and in daylight, and that the weather conditions may be
variable. In order to make our scenario concrete, we assume that pedestrians
will only cross the road at the crossing, so we do not here consider pedestrians
stepping off the pavement into the road.

Based on this we are able to specify safety requirements on the object detec-
tion component. This component is implemented in our example system using an
MLM, in this case classification using a Convolutional Neural Network (CNN)
based on SqueezeNet and localisation based on a Region Proposal Network
(RPN). It is important to note however that at this point, the safety require-
ments could apply equally to the component whether it was a MLM or a more
traditional software component.

To elicit the safety requirements we first consider the performance required
of the object detection in order to satisfy the high-level safety requirement.
Table 1 defines three performance related requirements. The justification for
these requirements is provided below.

Table 1. Performance and robustness requirements for object detection.

Performance

RQ1: When Ego is 50 m from the crossing, the object detection component shall
identify pedestrians that are on or close to the crossing in their correct
position

RQ1.1: In a sequence of images from a video feed any object to be detected
should not be missed more then 1 in 5 frames

RQ1.2: Position of pedestrians shall be determined within 50 cm of actual position

Robustness

RQ2: The object detection component shall perform as required in all situations
Ego may encounter within the defined ODD

RQ3: The object detection component shall perform as required in the face of
defined component failures arising within the system

For RQ1, 50 m is specified as this is the minimum distance at which a decision
to stop must be made if Ego is to stop comfortably at the maximum assumed
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speed. Stopping safely at a crossing requires consideration of this comfortable
braking distance for the Ego vehicle; it would not be acceptable to brake exces-
sively for pedestrians. The maximum comfortable braking distance will depend
upon the speed of Ego and the road surface conditions. We assume for this sce-
nario that comfortable braking loses roughly 20 kph per second on a damp road,
so if Ego is travelling at 60 kph in the urban area it will take around 50 m to stop
comfortably. This requires that Ego has sufficient confidence in the identifica-
tion of pedestrians at 50 m, prior to this point Ego will be detecting the possible
presence of pedestrians, however the uncertainty in those identifications may be
relatively high.

RQ1 assumes that any pedestrian close to the crossing is intending to cross.
This is certainly a conservative assumption that may result in some unrequired
stopping, but is made here to simplify the scenario. In practice this could be
mitigated through trajectory prediction for pedestrians (so for example pedes-
trians close to, but moving away from, the crossing would be rejected). It is
taken that any pedestrian within one metre of the crossing is considered to be
close to the crossing for the purposes of this scenario. Any pedestrians further
away than this are assumed to be not intending to cross prior to Ego arriving
at the crossing.

RQ1.1 and RQ1.2 further refine RQ1 by considering how good the perfor-
mance of pedestrian identification and positioning needs to be in the context of
the high-level system safety requirement and the system architecture. RQ1.1 is
based upon the frame rate of the video feed as described above, and considers
the fact that the ML model is deployed to a pipeline in which computational
power is limited. As such the model may be unable to identify all objects in the
scene for every frame at run-time. However the frame rate is such that the sub-
sequent component into which the output of object detection is fed will ignore
single frame changes in detections. RQ1.2 is based upon an assessment that
50 cm discrepancy in position provides a sufficient safety margin for pedestrians.

In addition to requirements on performance, it is also necessary for the per-
formance of the object detection to be robust to the different situations that Ego
may encounter. Table 1 defines two requirements relating to robustness. RQ2 is
justified on the basis that if a situation that Ego encounters is outside of the
defined ODD then the system will revert to a fail-safe or a manual drive mode
(it is not required for object detection to cope with such situations). The safety
of such transitions would be handled at the vehicle level. RQ3 acknowledges that
the system components cannot be assumed to always perform perfectly. Object
detection must therefore be able to cope with some defined failures or degrada-
tion. It should be noted that any failures in other system components that are
not specified or are unanticipated must still be dealt with, but this would be
done as part of the vehicle level safety case.

As the object detection is implemented using a MLM, these safety require-
ments on object detection must be interpreted to be meaningful for ML to enable
assurance of the MLM to be demonstrated. In the next section we describe how
ML safety requirements are derived.
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4 ML Safety Requirements Elicitation

In order to create a safety argument for the MLM, it is necessary to specify con-
crete and meaningful ML safety requirements, i.e. traceable to the vehicle and
component-level safety requirements as discussed in Sect. 3. That is, the ML
requirements must be sufficient to ensure that the safety requirements identified
in Sect. 3 are satisfied. The ML safety requirements are defined with a consid-
eration of each phase of the ML lifecycle and the identified desiderata for each
phase. In this paper we focus on the requirements for the data management and
model learning phases.

Tables 2, 3 and 4 show the ML requirements that we have derived for these
phases of the lifecycle. The tables enumerate requirements for each of the identi-
fied desiderata. For the data management phase, the desiderata we use are that
the data should be relevant (Table 2), complete (Table 3), accurate (Table 4), and
balanced (Table 4). These desiderata are consistent with the work of Ashmore
et al. in [1] where the desiderata are discussed in more detail. The ML require-
ments reflect these ML desiderata within the context of the safety requirement
we have identified for object detection in our scenario. A justification for these
requirements is provided below.

Table 2. ML requirement elicitation for the Relevant desiderata of the Data Man-
agement lifecyle phase.

RQ4: All data samples shall represent images of a road from the perspective
of a vehicle

RQ5: Crossings included in data samples shall be of a type found on UK
roads

RQ6: Pedestrians included in data samples shall be of a type that may use
crossings on UK roads

RQ7: The format of each data sample shall be representative of that which is
captured using sensors deployed on the ego vehicle

RQ8: Each data sample shall assume sensor positioning which is
representative of that be used on the ego vehicle

If we first consider the requirements relating to the ‘Relevant’ desiderata,
we must specify requirements that define which data is relevant to the safety
requirements. Any data that is not relevant should be excluded from the data
set. In order to have relevance in this context, the data sample must be an image
that features a road as it may appear to Ego vehicle, and where this includes
features of interest these should be relevant to the operational domain. In this
case the features of interest are crossings and pedestrians. Relevant images would
be expected to include some or all of these features. RQ4 to RQ6 capture this
requirement for relevant data samples.

In addition the format of each image must be relevant. Since we understand
the way in which images will be captured on the Ego vehicle, we can identify
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Table 3. ML requirement elicitation for the Complete desiderata of the Data Man-
agement lifecyle phase.

RQ9: The data samples shall include sufficient range of environmental
factors within the scope of the ODD

RQ10: The data samples shall include sufficient range of pedestrians within
the scope of the ODD

RQ11: The data samples shall include images representing a sufficient range
of distances from the crossing up to that required by the decision
making aspect of the perception pipeline

RQ12: The data samples shall include examples with a sufficient range of
levels of occlusion giving partial view of pedestrians at crossings

RQ13: The data samples shall include a sufficient range of examples reflecting
the effects of identified system failure modes

Table 4. ML requirement elicitation for the Accurate and Balanced desiderata of
the Data Management lifecyle phase.

Accurate

RQ14: All bounding boxes produced shall be sufficiently large to include the
entirety of the pedestrian

RQ15: All bounding boxes produced shall be no more than 10% larger in any
dimension than the minimum sized box capable of including the
entirety of the pedestrian

RQ16: All pedestrians present in the data samples must be correctly labelled

Balanced

RQ17: The data shall have a comparable representation of samples for each
relevant class and feature (any class must not be under-represented
with respect to the other classes or features)

factors that are important to ensure the images are of a relevant format. In
this case the relevant factors are the type of image created by the sensors and
the position of the sensors in the vehicle. Physical properties of sensors can
have a profound impact on the data gathered and it is often easier to collect
data from publicly available sets or test harnesses which differ from the final
deployed system. For example, the lenses on two different cameras will have
different levels of distortion, vignetting and chromatic aberration. In order to
ensure that issues of distributional shift, due to sensor variation, are avoided
we can specify a requirement to ensure that the sensors used in training and
deployment are not materially different (RQ7). The images, even if not generated
from the Ego vehicle itself, must reflect the position of Ego’s sensors. RQ8 defines
this requirement.

We next consider the desiderata ‘Complete’. From the robustness require-
ment RQ2 we know the data must include sufficient examples to reflect different
situations Ego may encounter. Through consideration of the defined ODD we
know these must include, for example, variations in the environment (a defined
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range of lighting and weather conditions), and in pedestrians (a defined range
of ages, sizes, numbers of people and variations in gait and pose). It should be
noted that an explicit enumeration of the scope of such variables is particularly
critical when using MLMs in order to ensure robustness can be achieved. Experi-
ence has shown us that complex ML models can become over reliant on features
in the image (over-fitting) if insufficient variation in those features is present in
the data. By ensuring that a range of pedestrian features are present in the data
sets we are less likely to produce models which fail to perform appropriately in
the real world. RQ9 and RQ10 capture these requirements with referenced to the
ODD, it is crucial therefore that the ODD is clearly documented and validated
as part of the vehicle safety process. As well as exploring the scope of the ODD
to consider different situations, we must also consider the impact on the images
of the distance of Ego from the crossing (affecting the size of image features),
and the possibility of occlusions in the image (we have discussed these effects in
more detail in [2]. RQ11 and RQ12 address this issue.

From the robustness requirement RQ3 it has already been identified that
the object detector must perform acceptably in the face of system failures. We
acknowledge that the performance of a sensor will degrade over time, for example
a camera lens will become scratched. Since this is generally unavoidable we must
be confident that the performance of the object detection is not impacted by
normal wear and tear. This means that the data used in the ML lifecycle must
include sufficient examples that reflect the effects of these system failures on
the images that are obtained. The relevant failures must be identified through
failure analysis of the system (for example this could be linked to the outputs of
an FMEA). RQ13 is specified to address this issue.

Another desiderata that must be considered is ‘Accurate’. The performance
of MLMs is highly dependent on the quality of the data from which they learn
and as such all labelling should be accurate. The performance requirement RQ1.2
specifies a performance requirement on the prediction of the pedestrian’s posi-
tion. In order to assess this performance it is necessary to compare model predic-
tions with the ground truth labels encoded in the training and testing data sets.
RQ14 is therefore specified to ensure that the bounding box added to the dataset
contains the whole of the pedestrian. If any part of the pedestrian, for example
an arm or a leg, were not included inside the bounding box then when the model
performance were assessed with reference to the bounding box a model could be
deemed to meet the performance requirements when it actually breached the
50 cm required by RQ1.2. Whilst this requirement specifies a minimum size for
the bounding box, it does not consider a maximum size. It would be possible to
meet RQ14 by creating very large boxes around every pedestrian, however this
is likely to make the system unusable as free space is essentially identified as
containing a pedestrian. RQ15 addresses this issue by specifying a limit on the
size of the bounding box.

The performance requirement RQ1.1 may be interpreted as an ML require-
ment to avoid false negatives. This leads to a requirement on the accuracy of
the training data. The training data is labelled (by a human) to identify the

70 APPENDIX B. ORIGINAL MANUSCRIPTS



206 L. Gauerhof et al.

pedestrians in each image. Manual labelling of data is error prone and drawing
bounding boxes in particular is difficult. If the images are labelled incorrectly
such that the pedestrians are not identified in the image then this can lead to
false negatives in the output of the MLM as well. RQ16 is specified to address
this.

Finally RQ17 addresses the desiderata ‘Balanced’. The requirements have
already specified the need for relevance and coverage in the data, it is also
important that certain features are not over or under represented in the data set.
Again the relevant classes and features can be identified through consideration
of the ODD.

Having defined explicit ML safety requirements it is then necessary to demon-
strate that the ML requirements are satisfied. In Sect. 5 we discuss whether the
data we used in this experiment meet the ML safety requirements and whether
additional activities are required to support a safety case. Section 5.2 then dis-
cusses this for the model that is learnt.

5 Satisfying ML Safety Requirements

In order to investigate the sufficiency of the requirements defined in this paper we
considered an experimental object detection MLM consisting of a CNN trained
using the JAAD dataset [17]. In this section the data management and model
learning for this MLM is assessed against the defined requirements to determine
whether the requirements are satisfied. This highlighted areas where the MLM is
insufficient from a safety assurance perspective, and identified additional assur-
ance activities that would be required. This highlights the key role of an explicit
elicitation of ML safety requirements in assuring MLMs.

5.1 Assessing the Data Management Safety Requirements

In this section, we discuss each data requirement presented in Tables 2, 3 and 4
with reference to the JAAD dataset used in our experiment.

RQ4–5: In the dataset there are 25 videos relative to pedestrian crossing at des-
ignated and signalised crossings. For each of these videos approximately 82,000
image samples can be extracted. The recordings were done during 240 h of driv-
ing across several locations in North America and Eastern Europe. Even if some
of the crossings could be considered similar between Eastern Europe and UK
(e.g. zebra and pegasus crossings), the data does not meet this requirements
because UK locations are not included in the recording and therefore not all UK
pedestrians crossings types are considered. In particular it can be easily noted
that Pelican crossings are not included in the data. Augmenting the data by syn-
thesising missing images can partially solve the problem, but the data samples
generated must be very close to real world images. A better solution could be
to undertake additional data collection in different UK crossing locations.
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RQ6: When considering the JAAD dataset, we see that many classes of pedes-
trian are included, e.g. examples of children are included as is a man pushing
a buggy. There are however some relevant omissions from this including people
with disabilities, and people with different colour skin or ethnicity. When con-
sidering if there are any particular characteristics of UK pedestrians it seems
important given the UK climate to ensure there are images of people carrying
umbrellas or wearing waterproof jackets. These are not found in the data. There-
fore the dataset could not be said to meet this requirement as more data would
need to be collected that included the missing categories.

RQ7: The cameras used for the recording of the dataset are describe in [16].
The resolution of the three cameras are compatible with the one deployed in
the ego vehicle (see Sect. 3). Consequently, this requirement can be considered
satisfied.

RQ8: The camera recording the data used is positioned inside the car below the
rear view mirror as described in [16]. In the ego vehicle the camera is mounted
inside the car above the rear view mirror. Although the position is not exactly
the same of the ones used for the data recording the distance is not significant
and as such the requirement is satisfied.

RQ9–10: The data represents some different weather conditions (e.g. snow and
rain). They do not consider different positions of the sun or different daytime
lighting (e.g. sunset). Limited visibility weather conditions like fog are also not
included, even though this is part of the ODD. The data includes pedestrians of
different ages and height, as well as different walking speeds. No running pedes-
trians are included however. Although there are a sufficient range of examples
for some features, for others the data is found to be lacking. Augmentation tech-
niques can be applied to address this, for example by varying the colour of pixel
or the orientation of pedestrians to the camera as done in previous work (e.g.
[6]). In particular, Zhang and colleagues [20] described a method, through the use
of a Generative Adversial Network (GAN), to synthesize scenes for autonomous
driving simulating different weather conditions and then different lighting condi-
tions. Further, possible evidence for supporting the argument in order to satisfy
the requirements can be represented by performance graphs showing the dif-
ference between original and augmented data and how the different features
included influence the performance. The data include some busy crossings that
have groups of up to a maximum of 11 people. The performance of the MLM in
identifying pedestrians when in groups compared to individuals could be used
as evidence of this requirement. If performance is seen to be worse for groups,
then more data samples for groups of people should be included.

RQ11: In most of the images included in the dataset, the pedestrians are very
close to the car so do not respect the distance necessary for the pipeline decision
making (in excess of 50 m). The dataset would therefore be inappropriate against
this requirement.

RQ12: There is partial occlusion of pedestrians in some of the data samples.
For example, some pedestrians are occluded by gates or by the car in front of
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the Ego vehicle. Again, the number of occluded data samples could be increased
through synthesis. For example artificial masking of pedestrians could be used
to help meet the requirement.

RQ13: Data samples derived from identified failures in the system are not
present in the dataset. Also the classifier is not tested with adversarial attacks.
For these reasons the requirements are not satisfied. In order to satisfy these
requirements failures need to be identified and recorded in a report that can be
used as evidence to support the argument. After failures are identified, corre-
sponding data samples need to be added to the data set.

Req.14–16: While the process used to generate the dataset is described in [16],
there is limited information regarding the generation of bounding boxes. Piotr’s
annotation toolbox [8] is used to define the bounding boxes and annotate the
images. However, there is no information regarding the process to ensure that
these are correct with respect to ground truth. The accuracy of the labelling is a
function of the skills of the individuals undertaking the task and the validation
processes used during labelling.

RQ17: Using a public dataset results in a lack of information and control in
the number of data samples recorded for each feature of interest. Features that
are under-represented have to be identified and possibly over-sampled in order
to improve the performance of the classifier in presence of these features. Aug-
mentation approaches can be used here, as well as other techniques for detecting
and mitigating rare classes, such as [14].

In short, a public dataset such as JAAD is not sufficient to satisfy the ML
safety requirements for our scenario. This result is not unexpected, but it high-
lights the role of explicit ML safety requirements in both highlighting deficiencies,
and identifying necessary actions. Public datasets can however be useful for an
exploratory analysis in order to refine the requirements as suggested by Gelman
and colleagues [10].

5.2 Assessing the Model Learning Safety Requirements

In this section we discuss the ML safety requirements that relate to the learned
model itself as presented in Table 1, with reference to the model used in our
experiment.

RQ1: In order to evaluate classifiers in the automotive domain it is common
practice to use the log average miss rate (LAMR) [13]. Having constructed a
convolution neural network as an MLM, we calculated the LAMR for images in
the dataset. When considering all pedestrians larger than 50 pixels in the image,
we obtain an LAMR of 29.03%. We note that for those pedestrians between 50
and 75 pixels this increases to 46.78%. These results are shown in Fig. 3a and
Fig. 3b with more detail provided in Table 5.

RQ1.1: The JAAD dataset does provide a labelling which allows for each object
to be tracked through frames. However, at present we do not have access to a
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a) MR vs. FPPI for pedestrians larger than
50px in height.

b) MR vs. FPPI for pedestrians detection of
the size 50px to 75px.

Fig. 3. Miss rate (MR) vs. false positive per image (FPPI) for pedestrian detection
with different heights.

pipeline which allows us to generate evidence to evaluate whether the MLM
meets this requirement. This remains as future work.

RQ2: The images in the data set only cover 5 locations with the vast majority
of videos captured in one location. Some of the images included weather fea-
tures, for example LAMR results are shown in Table 6 for LAMR under snow
conditions. Even these cases are restricted since snow is lying on the ground, so
variations such as falling snow are missing. The generation of the JAAD database
used for training required considerable effort, especially in the labelling of objects
within the scene. In order to assess the ability of the MLM to operate at locations
other than those in the JAAD dataset would require additional data collection
and significant labelling effort. Without this, it is impossible to assess if the
requirement could be met using this MLM.

Table 5. Log average miss rate (LAMR) of pedestrian detection with different heights
of bounding boxes and occlusion severity (the smaller, the better).

Heights in Pixels LAMR in % LAMR in % LAMR in %

No occlusion Occlusion 25%–75% Occlusion >75%

Small 50–75 46.78 54.12 62.18

Medium 75–100 20.22 28.91 36.49

Large 100–200 7.96 16.14 25.72

Huge 200–400 7.47 13.18 19.05

Giant 400–600 10.76 21.18 31.03

RQ3: The JAAD videos were not captured using sensors traditionally used for
autonomous vehicles. Instead, consumer video cameras were employed. In order
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to evaluate the effects of sensor wear, we would need to either simulate wear on
the images, which would require a wear model to be validated, or we would need
to collect data using sensors which had been subjected to appropriate wear,
e.g. lens scratches etc. This new set could then be used as a test set on the
candidate MLM. At present no such wear model or testing set exists and we can
not therefore assess if the requirement is met.

Table 6. Log average miss rate (LAMR) of pedestrian detection with different heights
and occlusion severity under the snow conditions

Heights in Pixels LAMR in % LAMR in % LAMR in %

No occlusion Occlusion 25%–75% Occlusion >75%

Small 50–75 39.30 47.01 55.89

Medium 75–100 13.78 19.08 27.65

Large 100–200 9.08 19.92 32.21

Huge 200–400 4.44 7.92 12.39

Giant 400–600 – 15.77 34.00

6 Discussion and Conclusions

There is no established approach to the assurance of MLMs for use in safety-
related applications. Within the automotive domain, established safety stan-
dards such as ISO26262 do not consider MLMs. Traditional testing methods and
test coverage metrics used for safety-related software, such as Modified Condi-
tion Decision Coverage, are not applicable to Neural Networks [3]. To try to
close this gap, Cheng et al. introduced metrics for measuring NN dependability
attributes including robustness, interpretability, completeness and correctness.
Building upon this and other works, in [4] they introduce an “NN-dependability-
kit” that could be used to support the development of a safety argument. Their
work is not however driven by specific requirements that are explicitly and trace-
ably linked to system-level safety analysis. Being able to demonstrate and justify
this link is crucial to creating a compelling safety case.

This traceable link between system safety requirements and ML safety
requirements is the focus of our work reported in this paper. This is impor-
tant for two reasons: to maintain the link with vehicle-level hazardous events
(and their mitigation) and to ensure that safety considerations are addressed in
the detailed ML lifecycle phases. In particular, as we have shown in this paper,
the ML safety requirements can be used to drive and scope the safety assurance
activities. In this paper we have focused on the ML safety requirements for the
data management and model learning phases. In our ongoing work, we intend to
extend this to consider ML verification and deployment, which are two crucial
aspects for a compelling safety case. Furthermore, formalizing these require-
ments in contract-based design allows machine support for refinement checks
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within a component-based system [2]. We hope that this work is of benefit to
both researchers and engineers and helps inform the current debate concerning
the safety assurance and regulation of autonomous driving.
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Abstract—The increased demand of Deep Neural Networks
(DNNs) in safety-critical systems, such as autonomous vehicles,
leads to increasing importance of training data suitability. Firstly,
we focus on how to extract the relevant data content for ensuring
DNN reliability. Then, we identify error categories and propose
mitigation measures with emphasis on data suitability. Despite
all efforts to boost data suitability, not all possible variations of
a real application can be identified. Hence, we analyse the case
of unknown out-of-distribution data. In this case, we suggest to
complement data suitability with online anomaly detection using
FACER that supervises the behaviour of the DNN.

Index Terms—data analysis, data suitability, anomaly detection

I. INTRODUCTION

In the context of automated driving, Deep Neural Networks
(DNNs) are widely used. For example, video based object
detection can be implemented using a region proposal net-
work (RPN) [1] to enable pedestrian detection (PDET) of an
automated vehicle. Thereby, an increased variety and broad
distribution of the training dataset improves DNN reliability.
However, data amount and variety alone are not sufficient to
guarantee reliable behaviour. To optimise data collection in
an effective way, missing or over-sampled data characteristics
shall be known as well. On one hand, data content might be
relevant to the task to be learned by a DNN. If this content
is under-sampled, the chances that the DNN will not perform
under this condition as intended is higher, and thus, producing
unsatisfactory results. On the other hand, data might include
content that the DNN recognises as a pattern and learn to
correlate to. If these patterns are not relevant to the task, they
might cause unreliable behaviour which is also unintended.
We use the term data suitability when no under-sampling of
relevant content and freedom from unintended correlations are
given. In this case, data reflects the intended functionality.

To analyse data regarding required properties, often data
themselves are used. For example, approaches for anomaly
detection utilise data to evaluate abnormal data. Moreover, data
density and distribution might be investigated.

Besides analysing data properties directly, the reliability of
the DNN that is trained on the corresponding data is a valuable
indicator for data suitability. Consequently, error analysis of
the DNN on test data can be used for collecting more suitable
training data.

(a) Frame analysis of videos taken in “Plaza”

(b) Frame analysis of videos taken in “Street”

Fig. 1. Error analysis on sequences: Red and green segments refer to wrong
and correct PDET predictions respectively.

In a consecutive step, we propose to complement data
suitability with online anomaly detection for two reasons.
First, test data only represent a subset of all possible variations
of a real application. Second, input data at run-time is exposed
to distributional shift and the appearance of new classes.

In our case study, we focus on a PDET function for
automated driving. Our contributions are:

• We analyse DNN performance on data sequences (Fig. 1)
and identify error categories.

• We perform sensitivity analysis of PDET on out-of-
distribution data to exhibit remaining vulnerability.

• We emphasise data suitability in mitigation measures.
• We propose the anomaly detector FACER dependent

on PDET behaviour to cover errors caused by out-of-
distribution data. The novel contribution on FACER is
that we apply it on object detection instead of a classifier.

78 APPENDIX B. ORIGINAL MANUSCRIPTS



II. RELATED WORK

Many DNNs are trained on a given dataset which is a
good starting point for training. Different data augmentation
techniques have been introduced, to improve training results.
Data augmentation can be regarded as measure to improve
data suitability, as it might help to mitigate over-fitting on un-
intended correlations and under-sampling of relevant content.

Geometric transformations are frequently used to increase
training set size in image classification [2]. For example, the
horizontally flipped version of an image can be considered
realistic in many but not all cases. Moreover, different types
of noises can be added on data to increase various notions
of robustness [3]. Hendrycks et al. [4] benchmark neural
networks robustness to common corruptions and perturbations.
Different noise types are considered to reflect physical ef-
fects that appear on real data. However, most augmentation
approaches approximate effects without considering all de-
tails, e.g., illumination, that are present in reality.

Another option to augment the training set is the use of
synthetic data. Generative adversarial models [5] exploit the
fact that high-dimensional image patterns can be encoded
in a low-dimensional latent space. Recent developments of
generative adversarial models focus on the generation of
realistic and diverse images [6], such as the Reverse Vari-
ational Autoencoder [7]. Despite these advances, the image
embedding in a latent space and image generation remain
hardly comprehensive to human understanding. Consequently,
these approaches should be combined with explainable and
trustworthy methods to increase confidence in the methodol-
ogy and data suitability.

There are also other methods to generate synthetic data. Dif-
ferent 3D rendering approaches [8], [9] enable photo-realistic
data. Despite this success, it has to be evaluated if training
on synthetic data leads to comparable DNN behaviour as with
real data. Some artefacts might be different for synthetic and
real data. Variability caused by imperfection of reality is not
present in synthetic data.

When it comes to safety-critical functions, both reliability
of the DNN and data suitability have to be verified. Plain data
augmentation without reliability analysis of the DNN may fail
to cover all relevant content for training the intended func-
tionality. Besides that, data augmentation does not completely
ensure the freedom from unintended correlations. In contrast to
previous approaches, we propose to feed back insights from
DNN reliability analysis to boost data suitability. Moreover,
we argue that handling out-of-distribution data should be a
subsequent step.

III. CASE STUDY

We perform a case study in which we evaluate reliability of
a PDET function based on safety requirements (RQ) proposed
by Gauerhof et al. [10]. Our PDET is implemented using
the SqueezeNet DNN architecture [11], combined with an
RPN [1], trained on the dataset Joint Attention for Au-
tonomous Driving (JAAD) [12]–[14] during development, and
we assume no online training in the field.

To leverage our knowledge about training data suitability,
we evaluate reoccurring errors in Section III-A based on
RQ1.1 [10]: “In a sequence of images from a video feed, any
object to be detected should not be missed more than 1 in 5
frames.” By manually extracting reoccurring error categories,
we find data content that is not well learnt by DNN. This data
content might be not intuitive to humans. By doing so, we want
to know which data content is relevant and shall not be under-
represented as specified by the safety requirement for the data
management RQ17 [10]: “The data shall have a comparable
representation of samples for each relevant class and feature
(any class must not be under-represented with respect to the
other classes or features).”

Despite all these efforts, there will always be data within
the defined operational design domain (ODD) during run-time
that we have not anticipated. Therefore, we evaluate sensitivity
to out-of-distribution data of the PDET in Section III-B.

A. Identification of Error Categories in Data Sequences

Time dependent, sequential data, where a physical continua-
tion is given, can change content-wise only to a limited extent.
Our aim is to investigate if there are reoccurring errors of the
PDET function in a sequence. This allows us to identify learnt
correlations, some of which cannot be intuitively identified by
considering data alone. Our method is divided into two steps.

First, we extract false negative (FN) and false positive
(FP) pedestrian detections from video sequences. A frame
is deemed correct when all pedestrians are detected, while
a wrong prediction means that there is at least an FN or an
FP. We group eight JAAD videos from the test dataset with
different weather conditions into two locations:

• Plaza: open space car park, mall (Fig. 1a)
• Street: buildings, sculptures, shops, traffic (Fig. 1b)

Fig. 1 reflects the occurrence of correct (green segments) and
wrong (red segments) predictions for every frame in each
of the eight video sequences. This first step can be easily
automated to evaluate large and complicated datasets.

In the second step, erroneous sequences are manually in-
spected to identify weaknesses in training data suitability. The
main idea of the breakdown of errors into different error
categories is to provide a more in-depth understanding in
regard to the FPs and FNs for improving the training dataset.
For the JAAD dataset and the PDET function of our case study
we identify ten error categories, shown in Fig. 2:

1) FN on occluded pedestrian
2) FN on fully visible pedestrian
3) FN on camouflaged pedestrian
4) Predicted bounding box (BB) shifted from ground truth

(GT)
5) Missing labels
6) FP on random objects
7) FP on signpost, lamppost, traffic light, traffic barrier pole
8) FP on tree, tree branches
9) FP on statue

10) FP on pedestrian (double detection)
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Fig. 2. Error categories: 1) FN on occluded pedestrian; 2) FN on fully visible pedestrian; 3) FN on camouflaged pedestrian; 4) Predicted BB shifted from
GT; 5) Missing labels; 6) FP on random objects; 7) FP on signpost, lamppost, traffic light, traffic barrier pole; 8) FP on tree, tree branches; 9) FP on statue;
10) FP on pedestrian (double detection)

Fig. 3. Predictions evaluation on video sequences (2) and (7).

For example in Fig. 1a, most errors, exhibited in red, are
found on a snowy day (video (2)). We identified that the snowy
weather condition is not the main reason for this. Most errors
can be allocated to error category 3, FNs on two camouflaged
pedestrians, see upper diagram of Fig. 3. We define a camou-
flaged pedestrian as concealed in the background such that it
is visually more difficult to spot the pedestrian. This implies
that the contrast between object and background is very low.
First, there is a repeated FN on a camouflaged pedestrian at the
entrance of the mall, see example of error category 3 in Fig. 2.
Second, there is an FN on a camouflaged pedestrian detection
near the vehicle. Both examples are depicted in Fig. 4a. Failing
to detect at least the pedestrian near the vehicle could lead to
an accident or even loss of human life.

In Fig. 1b, the street video (7) on a cloudy day has the
longest streak of erroneous frames. Fig. 4b provides two
samples of systematic wrong predictions from PDET. First, we
observe that FPs on statues largely contribute to the errors, see

(a) Two prediction examples on a snowy day in plaza in video (2)

(b) Two prediction examples on a cloudy day on a street in video (7)

Fig. 4. Visualisation of predictions: Bounding boxes represent false positives
(red), false negatives (blue), true positives (green), and ground truth (white).

error category 9 in the lower diagram of Fig. 3. Second, there
is also a systematic FN on a partially occluded pedestrian on
the right side of the image in the first row of Fig. 4b. This is
expressed by error category 1 in the lower diagram of Fig. 3.
It can also be seen that error category 2 contributed to a large
extent in video (7) (see Fig. 3). This is mainly due to many
far-away pedestrians on the street. In this case FN detections
of occluded or smaller-sized pedestrians at the pavement of the
street might be not a serious problem. This is because, vehicles
would not drive towards the pavement, where most pedestrians
are, under normal circumstances. Instead, the focus is on the
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(a) Grey box (b) Noisy box

Fig. 5. Examples of images with random boxes.

pedestrian crossing the road who is correctly recognized by
the PDET function (see Fig. 4b). Furthermore, the criticality
of the misidentified row of statues at the pavement might
be dependent on subsequent components, such as motion
predictors.

B. Out-of-Distribution Sensitivity Analysis

In order to gain knowledge of the PDET reliability on out-
of-distribution data, we conduct a sensitivity analysis. Random
grey and noisy boxes are injected on the test data to occlude
certain regions of the data which do not necessarily cover
pedestrians. This approach is also known as random erasing
and has been originally developed as part of data augmentation
to train DNNs to recognise objects with occlusion [15].
Nonetheless, we employ this technique for evaluating the
sensitivity of PDET to out-of-distribution data. We use two
box types, with and without noise, since they activate the
feature detectors of the DNN in different ways. Fig. 5 shows
an example of both grey and noisy boxes. We regard these
boxes as relevant test cases, especially noisy boxes, since they
could represent a noisy poster or a T-shirt with printed noise.
Similar to that might be, for example, stickers on road signs
which are already known as real world attacks to artificial
perception systems. Table I records the log-average miss rate
(LAMR) evaluated on the random erasing technique. LAMR
decreases for occlusion with grey box and degrades drastically
for occlusion with box filled with white noise. The local noise
seems to propagate through the DNN and affect PDET results
not only locally, but also globally at different positions of the
image. It seems that, especially with white noise, much of the
pixel information is distorted by the random erasing technique.

Hence, this provides evidence to substantiate that PDET is
not robust towards noisy data. One mitigation measure could
be to extend the training dataset in such a way that the required
robustness is achieved. Nevertheless, there will always be data
content that we have not considered or that might appear in
future. To cover data that is out-of-distribution, a mitigation
measure would be to implement a run-time monitor. This run-
time monitor should be an anomaly detector that takes the
reliability of the PDET into account.

IV. MITIGATION MEASURES

With the insights gained from our case study, we sug-
gest mitigation measures to increase reliability and out-of-
distribution detection in the following. First, we focus on

TABLE I
LOG-AVERAGE MISS RATE (%) OF PDET WITH RANDOM ERASING

APPROACH W.R.T. PEDESTRIANS LARGER THAN 50 PIXELS IN HEIGHT

No Box Grey Box Noisy Box
LAMR (%) 29.03 35.49 97.95

strategies for improving reliability at design time by enhancing
training data suitability in Section IV-A. Second, to mitigate
unreliable behaviour of DNN in the field due to out-of-
distribution data, we propose an anomaly detector that is
dependent on the DNN behaviour in Section IV-B.

A. Enhancing Training Data Suitability

Corresponding to the identified error categories 1 to 3 and
6 to 10, data should be collected in order to enrich the training
data. Consequently, chances that the DNN learns correlations
to data that are relevant to the task would increase, which
would in turn increase reliability. Therefore, reliability of the
DNN is an essential measure for training data suitability. For
example, FP on trees can be reduced by including more data
with trees in training dataset, so that the DNN learns to
distinguish trees from pedestrians. Lampposts and signposts
shall also be enriched in the training data. This can be done
in an iterative process where error sequence analysis (see
Section III-A) and training data adjustment are performed in
sequence until PDET reliability reaches an acceptable level.

In error category 4, the predicted BB is shifted from GT,
where in most cases the predicted BB is better fitted to
the actual pedestrian position than GT. Furthermore, in error
category 5, labels are missing. Both error categories lead to
the conclusion that labelling quality has to be increased. We
expect that this also helps to diminish errors from category 10,
where pedestrians are detected twice.

Moreover, meta-information in data regarding the detection
criticality should put emphasis on safety-critical situations.
Rare and dangerous events that might cause systematic errors
should be over-sampled for training dataset to achieve reliable
behaviour in these situations.

We conclude that balanced data is achieved and thus, RQ17
is satisfied when a reliable DNN behaviour under all relevant
circumstances, as specified by the ODD, is achieved.

B. Run-Time Monitor: FACER

As a run-time monitor, to detect out-of-distribution data,
we employ an anomaly detector known as feature activation
consistency checker (FACER) [16]. Its performance is on par
with other state-of-the-art methods. Until now, FACER has
been applied to classifiers. In this study, we extend FACER
to object detection. In contrast to many anomaly detectors
that operate only on the input data, FACER takes the PDET
behaviour into account by retrieving a condensed form of
the intermediate neuron outputs of the DNN, called feature
activation vector fact, as depicted in Fig. 6. Summation over
the values of each feature map in all layers of the DNN
leads to the vector fact composed of feature activation values.
We normalise each fact by subtracting mean and dividing by
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Fig. 6. Feature activation consistency checker (FACER) can be trained to
detect various types of anomalies in a DNN [16].

Fig. 7. Augmented data example of each noise type and increasing corruption
severity from 1 to 5.

standard deviation values per element obtained over the non-
anomaly fact training set. To avoid division by zero, we add a
small offset of 10−8 to the standard deviation. FACER predicts
the output, either anomaly or non-anomaly, using a small
feedforward neural network internally and fact as input. Hence,
FACER detects anomalies in the PDET feature representation.
PDET retraining is not necessary to that end, but only FACER
itself is trained on only binary anomaly or non-anomaly labels.

We train with the “Adam” optimizer, setting the learning
rate to 0.001, β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8,
as suggested in [17]. FACER is trained for eight epochs with
a batch size of 4000. There are 27 layers of output neurons
extracted and the feature activations are concatenated in fact
with a dimension of 2966 to form the input for FACER.

Instead of starting with the previous random erasing ex-
periment, we want to know which types of noise are more
challenging to detect. This serves as a proof-of-concept that
FACER is able to handle different noise types which can affect
PDET reliability. Therefore, we extend our experiments to
evaluate six noise types with five levels of severity (see Fig. 7).

Fig. 8. AUROC values of FACER for all noise types and severity levels. Note
that noise types are represented by their respective acronym and the numbers
indicate the severity.

They are gaussian (GA), impulse (IM), gaussian blur (GB),
contrast (CO), brightness (BR) and pixelate (PI). Similarly to
Schorn and Gauerhof [16], we consider four different test cases
and evaluate FACER with area under the receiver operating
curve (AUROC).

a) Training and testing on a single noise type: A heat
map is drawn in Fig. 8 to represent the results yielded from all
noise types and all levels of severity. From the results obtained
in this test case, it can be observed that certain noise types
which have different properties do not perform well together.

b) Testing one noise type after training on all the others:
Fig. 9 provides a heat map for an overview of the resulting
AUROCs acquired. We can see that generally, FACER detects
each noise as anomaly relatively well even though it has not
been trained on the noise type. We also observe that FACER
has difficulty differentiating brightness noise as anomalies
when it is not trained. This could be due to an inherent problem
that exists in data. Fig. 10 shows two examples of JAAD
training data that have different degrees of brightness without
being manipulated. For example, a level five brightness on the
darker image could still be darker than a level one brightness
on the brighter image. Therefore, it is more challenging to
identify brightness anomalies.

c) Training on all noise types of a certain severity:
Fig. 11 summarises the results acquired from this test case.
The bar plot presents the mean AUROC values averaged over
all test noise types when FACER is trained on all noise types
of a specific severity level. This shows that training on the
lowest severity level of noise type is most beneficial.

d) Detecting untrained dataset samples: We employed
two untrained datasets, JAAD test set with random boxes
added on the data and Cityscapes test data in this test case.
Table II shows the AUROC values. From the AUROC value
of 1.0, we can deduce that FACER is able to recognise the
random boxes on JAAD data as anomalies. The high AUROC
values yielded from Cityscapes data suggest that FACER
performs well on unseen (out-of-distribution) data.

82 APPENDIX B. ORIGINAL MANUSCRIPTS



Fig. 9. FACER AUROC obtained with noise not trained on.

Fig. 10. Examples of JAAD data with varied brightness (images taken from
the training dataset).

V. CONCLUSION AND OUTLOOK

Analysing the PDET performance on data sequences ex-
hibits unexpected, reproducible errors. By doing so we lever-
age our knowledge on the PDET reliability as well as on
the data. This enables effective training data optimisation
and further measures to increase reliability. Therefore, we
emphasise the importance of both DNN and data for ensuring
reliable PDET behaviour.

Since not all suitable data can be determined during devel-
opment, we cannot ensure robust behaviour in all situations at
run-time. We evaluate this by identifying augmented data that
cause unreliable PDET behaviour. In consequence, we comple-
ment data suitability and propose FACER, a run-time anomaly
detector. Similar to training data optimisation, FACER also
considers the behaviour of the DNN. This distinguishes it from
other anomaly detectors taking only data as an input.

Further elaboration on merging the outputs of FACER and
PDET might contribute to improving the overall safety of an
automated vehicle.

TABLE II
AUROC VALUES OBTAINED USING FACER ON UNTRAINED DATA BEING

TRAINED WITH JAAD DATA

Test Data height x width AUROC
JAAD with random erasing (grey box) 1080 x 1920 1.00
Cityscapes (original) 1024 x 2048 0.90
Cityscapes (cropped) 1080 x 1920 0.90

Fig. 11. Mean AUROC values obtained using FACER with all noise types
for each severity level.
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Abstract—The detection of anomalies during the operation
of deep neural networks (DNNs) is of essential importance
in safety-critical applications, such as autonomous vehicles.
In the field, classifiers may face rare environmental condi-
tions, unknown objects, hardware failures, and other types of
anomalies. Nevertheless, DNNs still predict arbitrarily high class
probabilities in these cases and are unable to recognize out-
of-distribution operation modes. In this paper, we introduce
FACER, an efficient and versatile framework that is trainable to
detect various types of anomalies in pre-trained DNNs. FACER
operates on compressed intermediate feature representations
of the supervised network that can be easily obtained. We
evaluate the detection of different input corruptions as well as
outliers drawn from out-of-distribution datasets with CIFAR-
10, CIFAR-100 and SVHN classification models. The detection
performance of our method is on par with other state-of-the-
art methods, while our method can be easier implemented and
integrated into resource-constrained hardware systems.

Index Terms—deep neural networks, out-of-distribution de-
tection, anomaly detection, sensor noise, robust classification

I. INTRODUCTION

For safety-critical systems, such as automated vehicles,
correct and precise sensing is prerequisite for safe behav-
ior. Therefore, oversight of an object or erroneous object
detection has to be avoided. Otherwise trajectory planing and
decision making will be based on incomplete or wrong envi-
ronmental information and might cause hazardous situations.

There are different kinds of anomalies that can lead to in-
correct reasoning in machine learning algorithms. Especially,
deep neural network (DNN) based classification performs
best on data that were seen during training. Input data not
belonging to the training distribution are regarded as out-
of-distribution (OOD). Special weather conditions, such as
rainfall, and lighting conditions, affect the quality of input
data. Furthermore, sensors and other components of data
processing, such as filters, manipulate data. Some of these
variations might occur seldom or not at all in training data
and can consequently result in OOD conditions.

Our approach for anomaly detection is based on a trainable
feature activation consistency checker (FACER), receiving
traces from the intermediate outputs of a main DNN as input.
Fig. 1 depicts our approach. Anomalies in the input lead to
inconsistencies in the feature representation which can be
detected by FACER. Previous work by Schorn et al. [30] has
shown that this approach can be used to detect inconsistencies
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Fig. 1. Feature activation consistency checker (FACER) can be trained to
detect various types of anomalies in DNNs.

in the computing hardware, such as bit-flips. In this paper,
we extend the analysis to OOD detection.

Note that FACER differs from anomaly detection methods
operating on the input samples, since it exploits the feature
extraction capabilities of the main network. Thus, FACER
can use a small classifier for anomaly detection. Furthermore,
FACER is applicable to existing DNNs without the need
to retrain them. Only the anomaly detector itself has to be
trained and for this only binary anomaly or non-anomaly
labels but no other labeling information is required. This
results in reduced training effort and increased flexibility
during development.

Moreover, FACER can be applied to the same feature
activation input with different sets of trainable weights. This
enables an efficient check for multiple kinds of anomalies.

In this paper, we make the following contributions:
• We introduce an efficient and effective approach for the

concurrent detection of multiple anomalies during the
operation of DNNs.

• We evaluate detection performance and generalization
abilities on eight noise types with different severities
applied to images of the CIFAR-10, CIFAR-100, and
SVHN tasks. We find that training on low severities
makes the anomaly detector generalize well to higher
severity levels. Furthermore, by combining multiple
noise types during training, we achieve high detection
capabilities also on noise types not seen during training.
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• We also evaluate the detection of unseen class samples.
The detection performance of our method is in the range
of other state-of-the-art methods for this task, while it
offers the advantage of being more flexibly applicable
to other anomaly detection problems as well.

II. RELATED WORK

Before introducing our approach in detail, we give an
overview on related work. Firstly, we review different types
of anomalies, and secondly, we discuss existing measures
against anomalies.

A. Anomalies

”Anomalies are patterns in data that do not conform to a
well defined notion of normal behavior.” [6]. In the following,
anomalies regarding hardware operation, adversarial attacks,
and out-of-distribution data are introduced.

Hardware Failure. Hardware is affected by reliability
threats [11]. For example, high energy particle strikes can
result in bit-flip errors [4]. Moreover, aging effects result
in degradation of a circuit’s characteristics and may lead to
errors in computation [11]. Since computing errors can lead
to silent data corruption, it is desirable to detect them using
anomaly detection methods [30].

Adversarial Attacks. Other fields of anomalies can be
associated with security threats [11]. Attackers can corrupt
data and computation. One example are adversarial attacks
that fool a neural network by adding small distortions to
the input data [5], [21]. Novel defenses and approaches for
robustness [24], [26], [34] are followed by novel attacks [1],
[7]. Physical attacks also play a role [9]. Adversarial attacks
can be considered as a type of worst-case robustness analysis
for DNNs [12].

Out-Of-Distribution. Performance evaluation of machine
learning is based on the assumption that training and test data
are sampled from similar distributions. DNNs tend to fail
when data distributions during training and operation differ
from each other [13]. Anomalies are regarded as outliers of
the nominal distribution given by the training set. However,
anomalous data points are not limited to the tails of the
nominal distribution [8]. For computer vision tasks perturba-
tions and corruption of data are often found due to different
weather and lighting conditions as well as signal processing
effects. Hendrycks and Dietterich provide a benchmark for
common image corruptions and perturbations [12]. We treat
such anomalies as OOD, based on the assumption that they
are not included in the training data set. Moreover, data
including unseen objects or increased environmental scope
are also regarded as OOD [13].

In this paper, we focus on out-of-distribution anomalies,
because we consider them as the most commonly occurring
threat in safety-critical DNN applications.

B. Measures Against Anomalies

DNNs with a softmax classifier are known to be over-
confident even for anomalies [2], [10]. To overcome this
drawback, there are different approaches, such as increasing
robustness, uncertainty measures, and anomaly detection.

Robustness and Uncertainty. The robustness against
anomalies can be increased by training, if anomalies are
known or occur frequently. Nevertheless, input distribution
might change over time and different anomalies will occur.
For this reason, robustness against unknown anomalies can-
not be guaranteed. In this regard, well-calibrated predictive
uncertainty is indispensable for real-word applications [18],
[22], [28]. However, many uncertainty approaches cannot be
applied in safety-critical real-time applications, due to their
high computational demands and latency. We thus focus on
efficient anomaly detection methods instead.

Anomaly Detection. Anomaly detection methods can be
categorized into input-based and inference-based. We fol-
low an inference-based approach in this paper. Input-based
anomaly detectors often utilize generative models, especially
variational autoencoders (VAEs) and generative adversarial
networks (GANs) (e. g. [3]). Meinke and Hein [25] recently
proposed an input-based anomaly detection approach that
achieves state-of-the-art performance. However, their method
requires a joint training of the DNN classifier for the actual
task and density estimators for in- and out-distribution, which
results in reduced flexibility compared to our approach.
Inference-based models, on the other hand, operate on the
output or feature space of DNNs. Lee et al. [22] proposed
a method to measure the probability density of test samples
within feature spaces to detect OOD or adversarial samples.
They apply the concept of a generative (distance-based)
classifier to any pre-trained softmax neural classifier without
re-training in such a way that the Mahalanobis distance is
used for the confidence score. Liang et al. [23] proposed
the method ODIN that uses temperature scaling after adding
small perturbations to the input in order to separate the
softmax score distribution between in- and out-of-distribution
images. Hendrycks et al. [14] proposed outlier exposure
(OE), which achieves state-of-the-art OOD detection per-
formance. OE fine-tunes the classifier of the actual task
to enforce uniform probability predictions on a large out-
distribution set. Nevertheless, retraining the main classifier
may not be desirable in some cases. Metzen et al. [26]
introduced a method that, like ours, works on intermediate
feature representations for the task of adversarial example
detection. However, their choice of feature representation
requires more manual fine-tuning than our approach.

III. FACER: FEATURE ACTIVATION CONSISTENCY
CHECKER

In the following, we introduce a universal framework for
anomaly detection in DNNs. We call this method feature
activation consistency checker (FACER). FACER builds up
on previous work presented by Schorn et al. [30].

An overview of FACER’s basic principle is depicted in
Fig. 1. Based on the supervised DNN’s intermediate out-
puts, a feature activation vector fact is computed. FACER
then performs a binary classification into anomaly and non-
anomaly based on fact and a set of learned weights for the
respective anomaly type. FACER can be trained on detecting
various types of anomalies, such as random bit-flips in the
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DNN computing hardware [30], as well as OOD samples with
noise or unseen classes. This makes it universally applicable
as a consistency checker for monitoring safety-critical neural
network applications. Moreover, fact has to be computed
and transferred to FACER only a single time to perform
multiple anomaly checks, which makes this method suitable
for resource-constrained applications.

A. Computing Feature Activations

As shown in Fig. 1, the input to FACER is a vector fact
in which the neuron outputs of all layers of the DNN are
concatenated. These outputs are generated from a single input
sample given to the DNN. In the case of 2D convolutional
layers, which are commonly used in image classification
DNNs, the layer output consists of multiple 2D feature maps
corresponding to the different filter kernels of the layer.
For each feature map we append a single value to fact by
summation over all values of the feature map.

The benefit of accumulation over feature maps is twofold.
Firstly, it adds a degree of invariance against input image
transformations such as rotation and zoom to the feature
activation representation. This is desirable, since those trans-
formations happen naturally in mobile vision applications
and we therefore do not consider them as OOD. Secondly,
accumulation results in a comparatively low-dimensional
feature activation representation. This reduces the required
parameters and operations of FACER. Furthermore, data
transfer from the task DNN to FACER is reduced, which is
especially useful for system architectures in which FACER
is implemented on separated safety-monitoring hardware.

We normalize each fact by subtracting mean and dividing
by standard deviation (std) values per element obtained over
the non-anomaly fact training set. To avoid division by zero,
we add a small offset of 10−8 to the standard deviation.

An example of resulting mean and std feature values com-
puted over anomaly (CIFAR-10) and non-anomaly (CIFAR-
100) test sets is shown in Fig. 2. Normalization parameters
were derived from the CIFAR-100 training set. Note that the
mean values of anomaly data deviate stronger from zero than
those of non-anomaly data, but the deviations are small in
comparison to the standard deviation. Thus, a simple linear
classifier would not be sufficient to achieve a good separation
of anomaly and non-anomaly data. FACER outperforms state-
of-the-art methods on this specific task example by a large
margin, as will be shown in Section IV-C.

B. Training the FACER Classifier

While FACER can in principle use any trainable binary
classifier, we decided to utilize a small feedforward neural
network that takes fact as input and classifies it into anomaly
or non-anomaly. An architecture with two hidden layers, each
with 64 neurons and rectified linear unit (ReLU) activation
functions, and an output layer with a single sigmoid neuron
has proven to work well for our purposes. We employ
standard supervised training techniques using binary cross-
entropy loss, backpropagation, and the ADAM [19] optimizer
with default hyperparameters as recommended by its authors.
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Fig. 2. Mean and std of normalized fact per feature computed over anomaly
and non-anomaly test sets. In this example the DNN is trained on CIFAR-100
data (non-anomalies) and anomalies correspond to CIFAR-10 test samples.

We chose a batch size of 4096. Moreover, we apply batch
normalization [17] before ReLU activations during training.

A training dataset is required to learn anomaly detection.
In this paper we focus on OOD detection. Thus, training
data are created by presenting in-distribution samples from
the distribution Dtrain

in on which the DNN regularly operates
as well as OOD samples from a distribution Dtrain

out . Typically
not all possible types of OOD data are known at design
time. Therefore, Dtrain

out should be chosen to make FACER
generalize well across different types of OOD data. This will
be further examined in the experimental section of this paper.

For each sample presented to the DNN, the feature ac-
tivations fact are recorded and labeled with a binary label
classifying it as anomalous or non-anomalous. Test data for
the evaluation of FACER are created similarly to training data
but using DNN input samples from a distinct dataset with
distribution Dtest

out . Throughout our experiments we create
balanced datasets, which means that the number of anomaly
and non-anomaly samples in the dataset is equal. This is
beneficial for training as well as for a meaningful evaluation.

IV. EXPERIMENTS

We evaluate FACER on two different OOD detection
problems: (1) detection of excessive noise in the input data;
(2) detection of unseen classes. Performance on bit-flip error
detection has been previously evaluated by Schorn et al. [30].

A. Preliminary Remarks

We use area under the receiver operating characteristic
(AUROC) as metric for evaluating the anomaly detection
performance of FACER. AUROC corresponds to the proba-
bility that a randomly chosen negative (non-anomaly) sample
will have a smaller estimated probability of belonging to
the positive (anomaly) class than a randomly chosen positive
example [16]. We run every experiment 10 times, randomly
shuffling the training data, and report mean AUROC values.

Throughout our experiments we use three image classi-
fication DNNs trained on the CIFAR-10 [20], CIFAR-100
[20], and SVHN [27] tasks respectively. The DNNs are based
on the DenseNet [15] architecture with a depth of 40 and
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growth rate of 12. They have approximately 600k trainable
parameters and achieve classification accuracies of 94,39%
(CIFAR-10), 75,10% (CIFAR-100), and 96,95% (SVHN).
The resulting dimension of fact is 5704 for the CIFAR-10
and SVHN classifiers, and 5794 for the CIFAR-100 classifier.

To increase the detection performance of FACER, we
enlarge its training sets by applying random transformations
(shift, mirroring, rotation, zoom, and color channel shift) to
images from which fact are generated. Such transformations
are commonly used when training classifiers [29].

B. Evaluation of Noise Detection

The presence of input noise that has not been observed
in the training data distribution can severely reduce the
classification accuracy of DNNs [12]. For safety-critical
applications, such as autonomous vehicles, it is essential
to recognize such situations in order to activate appropriate
safety measures. To provide comparability, we evaluate the
noise detection capability of FACER on widely used image
classification benchmarks, though FACER can also be applied
to other data types, such as radar or sound signals.

Similar to [12], we consider eight different noise types,
as shown in Fig. 3. Gaussian noise (GA) is additive and
independent at each pixel. It occurs during image acquisition
due to the inherent electronic circuit noise of the sensor.
Shot noise (SH) arises from the discrete nature of photons
and follows a Poisson distribution. Impulse noise (IM) can
result from bit errors during transmission or in the sensor’s
analog-to-digital converters. Speckle (SP) results from in-
terference and is present in images obtained from coherent
imaging systems, such as synthetic aperture radar, laser, and
ultrasound. Gaussian blur (GB) averages the value of each
pixel with its neighborhood by convolving the image with a
Gaussian function. It mimics the effect caused e. g. by image
acquisition through fog. Contrast (CO) can be low in difficult
lighting conditions, e. g. at night or during cloudy weather.
Pixelation (PI) is caused when an image is upscaled to a
higher resolution. Brightness (BR) corrupts an image when
the pixel readout values saturate at high light intensities.
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Fig. 3. Noise types evaluated in this paper. Severity levels are defined based
on multi-scale structural similarity (MS-SSIM).

We use five different noise severity levels. The severity lev-
els 1, 2, . . . , 5 correspond to an average reduction of the multi-
scale structural similarity (MS-SSIM) [33] to 0.9, 0.8, . . . , 0.5,
respectively, where MS-SSIM is measured between a set of
original images and their noisy variants. This approach was
also used by Hendrycks et al. [12], as confirmed on request.

In the following we evaluate three different scenarios of
training FACER for excessive input noise detection. In these
scenarios the anomalous sample distributions for training
Dtrain

out correspond to: (1) a single noise type and severity;
(2) all noise types of a certain severity; (3) all except one
noise types of a certain, while the test distribution.

Training on single noise type. The resulting AUROC
values for all possible combinations of single noise type
training and testing for the CIFAR-100 dataset are shown
in Fig. 4. Results for the other two datasets are similar.

It can be seen that when training and test anomaly distri-
bution are the same (values along the diagonal line from
bottom left to top right), FACER delivers almost perfect
classification performance. Recall that an AUROC of 1 is
best and an AUROC of 0.5 corresponds to random guessing.
Furthermore, generalization between different severity levels
of the same noise type (5 × 5 blocks on the diagonal
from bottom left to top right) is generally quite high, while
especially training on a low severity level lets FACER also
detect higher severity levels. However, the opposite is not
always true, as can be observed for instance in the case of
contrast (CO) noise.

Generalization between different noise types works well
in several but not all cases. Especially for Gaussian, shot,
impulse and speckle noise, training FACER on one of them
lets it also detect the others correctly. This can be explained
by the similar effect these noise types have on the image,
namely the addition of high frequency components. On the
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TABLE I
RESULTING AUROC VALUES (AVERAGE OF 10 RUNS) AFTER TRAINING FACER ON MULTIPLE NOISE TYPES WITH A SEVERITY LEVEL OF ONE AND

EVALUATING IT ON INDIVIDUAL NOISE TYPES WITH ALL FIVE SEVERITY LEVELS

Trained Noise Dtrain
out All Types All Except Tested Type

Tested Noise Dtest
out GA SH IM SP GB CO PI BR GA SH IM SP GB CO PI BR

M
od

el CIFAR-10 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.999 1.000 1.000 1.000 1.000 0.910 0.851 0.955 0.730
CIFAR-100 1.000 1.000 1.000 1.000 1.000 0.997 1.000 0.998 1.000 1.000 1.000 1.000 0.835 0.805 0.974 0.652
SVHN 1.000 1.000 1.000 1.000 0.996 0.990 1.000 0.997 1.000 1.000 1.000 0.999 0.866 0.875 0.946 0.640

other hand, Gaussian blur and contrast noise act as low-pass
filters, i. e. they remove high frequencies from the image.
This explains why training on them results in low AUROC
values when testing on high-frequency noise types. In fact,
most AUROC values are close to zero for these cases, which
means that the classifier can distinguish the anomaly and
non-anomaly classes quite well, but does this the wrong
way round, because it was trained on the opposite type of
noise. Pixelation has a mixture of low-frequency and high-
frequency behavior. High-frequencies result from the vertical
and horizontal edges that are added by pixelation. This is
more pronounced at low severities and explains bad test per-
formance on Gaussian blur and contrast noise in these cases.
On the other hand, at high pixelation severity, the averaging
(i. e. low-pass) effect of pixelation prevails and AUROC in
high-frequency noise test cases slightly drops. Best overall
generalization is seen when training on brightness noise.

Training on all noise types. Since having a separate
anomaly detection model for each noise type results in a large
number of detection runs that have to be performed, we now
evaluate the ability of FACER to be trained on multiple noise
types simultaneously. In a preliminary evaluation, we decide
which noise severity level should be used during training.
Fig. 5 shows for the CIFAR-100 benchmark that applying
the lowest severity level during training is most beneficial,
since close to one AUROC is achieved for all test severities in
this case. Thus, in the following, we always use severity level
one during training, while testing over all severity levels.

AUROCs for individual test noise types with a training on
all noise types are listed in the left part of TABLE I. Since all
values are at least 0.99, we conclude that training a single
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Fig. 5. Resulting mean and minimum AUROC values on the CIFAR-100
task when FACER is trained on all noise types with a certain severity level
and evaluated on all noise types with a certain severity level.

FACER model for the task of detecting multiple different
noise types works very well.

Training on all except one noise type. In practice,
it cannot be assumed that all noise types are known at
design time of the classifier. Thus, we perform a further
experiment, where we exclude one of the noise types at a time
from the training set and test detection performance on this
excluded noise type. The results are shown in the right part of
TABLE I. As in the single noise training case, generalization
across high-frequency noise types (GA, SH, IM, SP) works
well. Gaussian blur, contrast, and pixelation can also be
detected to a considerable extent. However, brightness noise
turns out to be most difficult to detect, when it is not included
in the anomaly training set.

C. Evaluation of Unseen Classes Detection

Having evaluated the noise detection capabilities of
FACER, we now take a look at the task of detecting samples
with classes that were not observed during training. This
task is more commonly considered in the literature and
we benchmark the performance of FACER against state-of-
the-art approaches OE [14] and certified certain uncertainty
(CCU) [25].

A proper training set with unseen class samples is required
to generate anomalous fact values for training FACER. State-
of-the-art methods, [14], [25], employ the 80 Million Tiny
Images dataset [32] as OOD training data, because of its
large size and diversity. We noticed that FACER manages
to achieve good AUROC performance with a much smaller
training set, namely Tiny-ImageNet [31]. This dataset has
only 100 000 training images and 200 classes.

TABLE II reports the resulting AUROC values of our
experiments with FACER and values for competing methods
taken from [25]. For each of the three image classifiers, we
take its test data as in-distribution samples Dtest

in and evaluate

TABLE II
RESULTING AUROC VALUES (AVERAGE OF 10 RUNS) OF FACER ON
UNSEEN CLASS OOD DETECTION IN COMPARISON TO STATE-OF-THE

ART METHODS (OE AND CCU VALUES TAKEN FROM [25])

Din Dtest
out OE [14] CCU [25] FACER

CIFAR-10 CIFAR-100 0.953 0.942 0.966
SVHN 0.988 0.982 0.985

CIFAR-100 CIFAR-10 0.816 0.802 0.965
SVHN 0.935 0.942 0.918

SVHN CIFAR-10 1.000 1.000 1.000
CIFAR-100 1.000 1.000 1.000
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test images of the respective other two datasets as OOD
distributions Dtest

out . We see that FACER delivers state-of-the-
art OOD detection performance in four out of six cases, and
is close to the reference methods in the other two cases.

V. CONCLUSIONS

With FACER we propose a versatile and efficient frame-
work for detecting multiple types of anomalous DNN oper-
ation modes. Such anomaly detection is of essential impor-
tance for DNN-based perception in safety-critical systems,
for instance autonomous vehicles. Our method achieves state-
of-the-art out-of-distribution detection performance.

FACER utilizes the principle of consistency checking
across intermediate feature representations of a DNN. It can
be applied to existing pre-trained classifiers without the need
to retrain them. Moreover, FACER uses machine learning to
train a comparatively small detector on different types of
anomalies. Thus, it can be flexibly extended with further
anomaly detection capabilities. Since intermediate feature
representations have to be computed and transmitted only
once in order to test for multiple anomalous operation modes,
FACER is efficient in cases where a full safeguarding against
hardware failures, sensor noise, distributional shift, and other
types of anomalies is required.

Our experiments have shown that FACER is able to gen-
eralize well between multiple types of input corruptions. In
the case of unseen classes detection, FACER requires a much
smaller out-distribution training set than existing methods to
achieve state-of-the-art performance.
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Abstract

In this paper, we introduce the ‘Reverse Variational Au-
toencoder” (Reverse-VAE) which is a generative network.
On the one hand, visual attributes can be manipulated and
combined while generating images. On the other hand,
anomalies, meaning deviations from the data space used
for training, can be detected. During training the gen-
erator network maps samples from stochastic latent vec-
tors to the data space. Meanwhile the encoder network
takes these generated images to reconstruct the latent vec-
tor. The generator and discriminator are trained adversar-
ially. The discriminator is trained to distinguish between
real and generated data. Overall, our model tries to match
the joint latent/data-space distribution of the generator and
the latent/data-space joint distribution of the encoder by
minimizing their Kullback-Leibler divergence. Desired vi-
sual attributes of CelebA images are successfully manipu-
lated. The performance of anomaly detection is competitive
with state-of-the-art on MNIST.

1. Introduction
Highly automated driving (HAD) has the potential to

revolutionize the way we travel. At the same time, HAD is
a safety-critical application in which the violation of safety
goals, e.g. a crash with other road users is not accept-
able. Consequently, when used for HAD, DL models such
as Deep Neural Networks (DNNs) are required to perform
robustly [9, 15, 2, 14, 11] despite all kinds of anomalies.
Causes for anomalies include lack of diversity in training
data set, or changes in sensors over time which may result
in shift of distribution of captured images with respect to
training data set [16, 29]. Therefore, it is important to de-
tect anomalies - whether the current input image of a DNN
is beyond the feature distribution of the training images data
set [32, 5]. Then these anomalies can be included to the data
set, e.g. by data augmentation based on attribute manipula-

∗equal contribution

(a) The first column is original serious faces. From second to last
column, the dominance of a smile increases with the scale factor α
changing from 0.5 to 2.5 linearly.

(b) Original images in first column are manipulated.

Figure 1: Adding single visual attributes

tion, in order to increase robustness.
Images can be regarded as high dimensional vectors

which is challenging to analyze the distribution directly.
Luckily, the fact that images usually have patterns like hu-
man faces indicates that the distribution of a set of images
may lie in a low dimensional manifold. This has been ex-
perimentally proven by the success of generative adversarial
models [12, 4, 18] which can generate various and realistic
images. However, a GAN [12] type structure can only learn
the mapping from low dimensional latent space to the im-
ages space. It is still challenging to both get the embedding
of an image and generate new images in a decent way.

Variational Autoencoder (VAE) is one of the earliest
model which aims to do both image encoding and image
generation. Although VAE can learn meaningful image em-
bedding that can be used for data distribution analysis, it
tends to generate images with blurring effects which lim-
its its usage in image generation and manipulation tasks.
Inspired by VAE, more advanced models like VAE-GAN
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[22] and ALI [8] were proposed with the goal of improving
the image generation performance while keeping the abil-
ity of encoding input images to latent space. These models
involve in either picking up a certain hidden layer of the
discriminator as feature-wise representation, or adopting a
sophisticated model structure. Moreover, in these works the
experiments are mainly done on 64×64. It remains unclear
if those models can be well scaled to deal with images with
larger resolution in a more practical scenario.

In this work, we introduce the ”Reverse Variational Au-
toencoder” (Reverse-VAE) which can not only learn an ac-
curate mapping to low dimensional space, but also generate
realistic and diverse images. Moreover, our model is com-
patible with the recently proposed progressively growing
strategy [18] to process high resolution images with good
scalability. Our model can be reconfigured such that it is
used either for anomaly detection or for visual attribute ma-
nipulation as a data augmentation method to improve the
DNN model robustness against anomalies [1, 10, 28, 34, 33]
(examples are found in fig. 1). Our contributions are:

• A novel form of training settings reduces the gap
between joint latent/data distribution of generator and
the joint distribution of encoder by minimizing the
Kullback-Leibler divergence. Image generation / re-
construction are competitive with state-of-the-art.
• A simple architecture makes our model easy to train

with less parameter tuning and able to be up-scaled
to generate and reconstruct high resolution images
using a PGGAN [18] setting.
• Good reconstruction performance is restricted on dis-

tribution of training data enables the model to per-
form well in detecting anomalies.
• For manipulating visual attributes the model is trained

without auxiliary information, such as labeled at-
tributes. After training we extract dedicated visual
attribute vectors in the latent space using a small
subset of labeled images. We gain flexibility in ma-
nipulating new attributes without retraining the model.

• Combining both applications leads to a reduced
training effort and to an increased development effi-
ciency.

Although in this paper the attribute manipulation and de-
tected anomalies do not necessarily rely on each other, this
approach strengthens the development of a unified model
for detecting an anomalies and extracting the according at-
tributes in order to augment data.

2. Related Work

First, deep generative models, such as Generative Ad-
versarial Network (GAN) [12] and Variational Autoencoder

(VAE) [20], modeling high dimensional data sets are ex-
plained. Second, models combining aspects of VAE and
GAN are introduced and difference to our model are dis-
cussed.

2.1. GAN, VAE and their extensions

The GAN [12] generates more realistic images by mak-
ing use of an adversarial training procedure. A discrimi-
nator learns to distinguish the real images from the images
synthesized by a generator. At the same time, the generator
tries to ”fool” the discriminator by generating more realis-
tic images. Wasserstein-GAN (WGAN) solves the gradient
vanishing and mode collapse problem of the original GAN
[4] with a minmax game of the Wasserstein distance. More-
over, Chen et al. [6] proposed an information-theoretic ex-
tension to the GAN (InfoGAN) which is able to learn dis-
entangled representation of limited visual attributes, such
as the rotation or stroke of MNIST [23] digits. Neverthe-
less, the GAN-type models cannot learn a low dimensional
embedding as we need for feature distribution analysis.

The VAE predicts the posterior distribution over the la-
tent variables by employing an encoder, and uses an de-
coder to reconstruct the images given the encoder output
[20]. These generated images usually look blurred, though.
The Conditional Variational Autoencoder (CVAE) and its
variants are proposed for structured output prediction based
on the conditional deep generative model with known label
information [35]. CVAE is not suitable for our purpose,
since we want a model to disentangle information without
given auxiliaries during training.

2.2. Models combining aspects of VAE and GAN

After VAE and GAN were proposed, models combin-
ing different aspects of VAE and GAN have evolved: for
example Adversarial Autoencoder (AAE), VAE-GAN and
Adversarially Learned Inference (ALI).

The AAE is a probabilistic autoencoder including a
GAN to conduct variational inference by meeting the aggre-
gated posterior of the latent vector with an arbitrary prior
distribution [26]. Compared with the original images, the
generated images still look blurred.

Apart from AAE, there is also VAE-GAN combining
VAE with GAN such that the learned feature representa-
tions in the GAN’s discriminator are used as a basis for the
VAE reconstruction loss [22]. In VAE-GAN the feature-
wise reconstruction loss is define as

Lrecon x = ‖Disl(x)− Disl(x̂)‖22 (1)

where Disl(x) means the lth hidden layer of the discrimi-
nator, and x, x̂ are input images and reconstructed images
respectively. Our model differentiates from VAE-GAN in a
way that we did not use such a feature-wise reconstruction
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loss primarily, with less parameter tuning such as the selec-
tion of l over different data set or different model size. Ex-
periments show that our model tends to balance the tasks of
generating high quality images and accurately reconstruct-
ing the input images more properly.

Furthermore, the model Adversarially Learned Inference
(ALI) was proposed to learn a generation network (genera-
tor) and an inference network (encoder) using an adversarial
framework [8]. A discriminator is trained to distinguish be-
tween joint samples (z̃, x) of the data and the corresponding
latent vector from the encoder and the joint samples (z, x̃)
from the generator. At the same time the encoder and gen-
erator are trained jointly to fool the discriminator. Assum-
ing the discriminator is optimal, the encoder and generator
are trained to minimize the Jensen-Shannon divergence [24]
between p(z̃, x) and p(z, x̃).

Compared with ALI, our approach also aims to reduce
the gap between the joint distribution p(z, x̃) and p(z̃,x).
The difference is that we achieve this goal by minimizing
the KL-divergence [21] between p(z, x̃) and p(z̃,x) (note
that the KL-divergence is not symmetric, so the order does
matter). By choosing such a loss function, the discrimina-
tor only needs to distinguish between real images and gen-
erated images, while in ALI the discriminator is more com-
plicated. We argue that a simpler discriminator structure is
advantageous since in ALI the way of combining a pair of a
latent vector and an image by concatenation to express the
”joint” relationship may influence the stability of training a
GAN. Moreover, a compact structure enables our model to
be up-scaled to generate and reconstruct high resolution im-
ages. For example, we can progressively increase the res-
olution using the method introduced in PGGAN [18]. On
the contrary, it remains unclear how to apply the progres-
sive growing scheme in ALI where the latent vectors and
images are concatenated before being fed into the discrimi-
nator.

3. Approach
Figure 2 shows the Reverse-VAE network structure. The

generator takes the latent vector z whose elements follow
Gaussian distribution z ∼ N (0, I), and generates image
x̃. Receiving the generated image x̃, the encoder aims to
reconstruct the input latent vector of the generator ẑ. The
discriminator learns to distinguish between the generated
image x̃ and the real image x. Similar to WGAN [4], the
output of the discriminator, Dis(x), is used to calculate the
Wasserstein distance, which is also called Earth Mover’s
Distance [30], .

3.1. Mathematical approach

Let θ denote the parameters for the generator, and φ de-
note the parameters for the encoder. Joint distribution of the
latent vector and the image for the generator is expressed by

z
Generator

x̃
Encoder

ẑ

Discrim-
inator

x

Dis(x)

Figure 2: The network structure of the Reverse-VAE model

pθ(z,x), and joint distribution of the latent vector and the
image for the encoder is expressed by qφ(z,x).

Although KL-Divergence DKL(qφ(z,x)‖pθ(z,x)) [36]
is not mathematically equal to DKL(pθ(z,x)‖qφ(z,x)),
minimizing DKL(pθ(z,x)‖qφ(z,x)) is leading to the same
goal of matching joint distributions qφ(z,x) and pθ(z,x).

The training goal is chosen to minimize the KL diver-
gence between joint distribution pθ(z, x) and qφ(z, x):

DKL(pθ(z,x)‖qφ(z,x)) = E(z,x)∼pθ(z,x)

[
log

pθ(z,x)

qφ(z,x)

]

=Ez∼pθ(z)

{
Ex∼pθ(x|z)

[
log

pθ(x|z)pθ(z)

qφ(x)qφ(z|x)

]}

=Ez∼pθ(z)

{
Ex∼pθ(x|z)

[
log

pθ(x|z)

qφ(x)

]

+ Ex∼pθ(x|z)

[
− log qφ(z|x)

]
+ Ex∼pθ(x|z)

[
log pθ(z)

]
}

=Ez∼pθ(z)

{
DKL(pθ(x|z)‖qφ(x))

+ Ex∼pθ(x|z)[− log qφ(z|x)] + log pθ(z)
}

(2)
Since the prior distribution of z is fixed during the training
process, Ez∼pθ(z)

{
log pθ(z)

}
is a constant, it has no con-

tribution to computing the gradient and is neglected here.
Therefore, the loss function of the Reverse-VAE model is:

LReverse-VAE =Ez∼pθ(z)

{
DKL(pθ(x|z)‖qφ(x))

}

+ Ez∼pθ(z)

{
Ex∼pθ(x|z)[− log qφ(z|x)]

}

(3)
The loss function of the Reverse-VAE contains two terms.
The first term is the KL divergence between the generator
output distribution pθ(x|z) and the prior distribution qφ(x)
representing the real image data. Similar to the AAE [26],
a discriminator is applied to distinguish between generated
image (generator output) and the real image. The generator
and the discriminator are trained adversarially to minimize
the first term Ez∼pθ(z)[DKL(pθ(x|z)‖qφ(x))] of eq. (3).
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The second term of the loss function in eq. (3) is the
reconstruction error. Suppose that z is the input latent vec-
tor of the generator, and the encoder output, ẑ, is the re-
construction of the latent vector. In our model each ele-
ment of the input vector of the generator z follows indepen-
dent normal distributionN (0, 1). According to Kingma and
Welling [20], we assume each element of the reconstruction
of the latent vector ẑ also follows independent Gaussian dis-
tribution with fixed variance. In this case, the reconstruction
error can be transformed to the sum of square error [20],
where c = 1 is a constant related with the variance of the
reconstructed latent vector:

Ez∼pθ(z)

{
Ex∼pθ(x|z)[− log qφ(z|x)]

}

∼ Ez∼pθ(z)

[
c ‖z − ẑ‖22

] (4)

3.2. Training

The training setting for the generator and discriminator
is similar to the training setting of WGAN-GP [13]. The
generator loss function is:

LGen = −Ez∼pz(z)

[
Dis(Gen(z))

]
(5)

The discriminator loss function is:

LDis =Ez∼pz(z)

[
Dis(Gen(z))

]
− Ex∼pdata(x)

[
Dis(x)

]

+ λExint∼pxint (xint)

[
(‖▽xint Dis(xint)‖2 − 1)2

]

(6)
The hyper parameter λ is set to λ = 10 [13]. The first
part of the discriminator loss function in eq. (6) is related
with the negative Wasserstein distance, similar to WGAN
[4] and WGAN-GP[13]. The second part includes the gradi-
ent penalty term that enforces the Lipschitz constraint [13].
Computing the gradient penalty requires to get random sam-
ples from the space between real data distribution and gen-
erated data distribution. To approximate this operation, data
xint is uniformly sampled along the straight lines between
the pairs of real data x and generated data x̃. This is de-
scribed in eq. (7) where ǫ is random variable following uni-
form distribution.

xint = ǫx + (1− ǫ)x̃, ǫ∼U [0, 1] (7)

During training, the encoder learns to reconstructs the gen-
erator input z ∼ pθ(z) given the generated image Gen(z).
Let ẑ = Enc(Gen(z)) represent the reconstructed latent
vector. According to eq. (4), the latent vector reconstruc-
tion loss function is:

Lrecon z = Ez∼pθ(z)

[
‖z − ẑ‖22

]
(8)

Lrecon z in eq. (8) is optimized for the encoder’s parameters
with a learning rate α = 10−4 and for the generator’s pa-
rameters with a learning rate α

5 . We choose a lower learn-
ing rate for generator for optimizing Lrecon z since we need

to ensure good quality of generated images, which is opti-
mized via minimizing LGen.

Since in our model each element of input latent vector
z follows independent normal distributionN (0, 1), the L2-
norm loss Lrecon z only ensures that encoder’s output has a
Gaussian distribution with zero mean. In order to make the
variance of elements of the encoder output to be 1, besides
Lrecon z we add an extra loss for the encoder: |σ({ẑ(i)

d })−1|,
where σ({ẑ(i)

d }) is the standard deviation of the elements
of the encoder’s outputs across all dimensions over one
mini batch. The overall training procedure is shown in
Alg. 1. Adam optimizer [19] is used. Code is available
at github.com/nianlonggu/reverse variational autoencoder .

Algorithm 1 Training the Reverse-VAE model. λ = 10,
m = 100, ndis = 5, α = 0.0001,β1 = 0,β2 = 0.99, ξ =
0.01, η = 1

Require: The gradient penalty coefficient λ, the number of
discriminator iterations per generator iteration ndis, the
batch size m, Adam hyperparameters α, β1, β2, θ is a
general notation for model parameters.

1: while not converged do
2: for l = 1, ..., ndis do
3: Sample a batch of real data {x(i)}mi=1∼px(x)
4: a batch of latent variables{z(i)}mi=1∼pz(z),
5: a batch of random variables {ǫ(i)}mi=1∼U [0, 1].
6: x̃(i) ← Gen(z(i))

7: x
(i)
int ← ǫx(i) + (1− ǫ)x̃(i)

8: L
(i)
Dis ← Dis(x̃(i))− Dis(x(i))

9: +λ(
∥∥∥▽xint Dis(x(i)

int )
∥∥∥

2
− 1)2

10: θDis ← Adam(▽θDis
1
m

∑m
i=1 L

(i)
Dis, θDis, α, β1, β2)

end for
11: sample a batch of latent variables{z(i)}mi=1∼pz(z),
12: x̃(i) ← Gen(z(i))
13: ẑ(i) ← Enc(x̃(i))

14: L
(i)
Gen ← −Dis(x̃(i))

15: L
(i)
recon z ←

∥∥z(i) − ẑ(i)
∥∥2

2

16: θGen ← Adam(▽θGen
1
m

∑m
i=1 L

(i)
Gen, θGen, α, β1, β2)

17: θGen ← Adam(▽θGen
1
m

∑m
i=1

(i)
recon z, θGen,

α
5 , β1, β2)

18: θEnc ← Adam(▽θEnc(
1
m

∑m
i=1 L

(i)
recon z +

η|σ({ẑ(i)
d })− 1|), θEnc, α, β1, β2)

end while

4. Experiments and Results

In subsection 4.1 we present results of the Reverse-VAE
for reconstructed images and randomly synthesized images
of the generator. Latent space interpolation is introduced in
subsection 4.2. Based on this, in subsection 4.4 visual at-
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Table 1: FID of Progressive Reverse-VAE on CelebA
256x256 is similar to DCGAN 64x64 and thus, generates
good and diverse images. FID of DCGAN trained by a two
time-scale update rule (ttur) and of DCGAN from [17].

Method learning rate update FID

DCGAN TTUR [17] 1e-4, 5e-4 225,000 12.5
DCGAN [17] 5e-4 70,000 21.4

PG Reverse-VAE 1e-3 107,496 29.2

tribute manipulation is proposed. Finally, in subsection 4.5
the Reverse-VAE is applied in anomaly detection.

4.1. Random Generation and Image Reconstruction

We trained and tested the Reverse-VAE model on the
MNIST [23], the SVHN data set [27] and the CelebA data
set [25].

Figures 4a, 4c, 4e show randomly generated images,
tested on the MNIST, SVHN and CelebA data set, respec-
tively looking realistic and diverse. In Figures 4b, 4d, 4f
the reconstructed images accurately capture the structure,
stroke and slope of the digits in MNIST, the center digits
as well as the surrounding distracting digits in SVHN, and
the main characteristics of faces, including skin color, hair
color, hair line, gesture, and facial emotions in CelebA data
set, respectively. Based on the results, we conclude that the
Reverse-VAE model successfully learns the mapping from
the input images to the latent vectors while generating real-
istic images.

4.2. Latent Space Interpolation

In order to interpolate between two real images, the en-
coder converts two real images x1 and x2 into the corre-
sponding latent vectors z̃1 = Enc(x1) and z̃2 = Enc(x2).
Then new points zinterp are linearly sampled between the
straight line from z̃1 to z̃2 with the interpolation factor γ
linearly increasing from 0 to 1:

zinterp = γz̃2 + (1− γ)z̃1 (9)

Afterwards the generator converts the linearly sampled la-
tent vectors to images xinterp = Gen(zinterp) where xinterp
are the interpolated images between two real images.

CelebA interpolated images in Figure 5 look realistic im-
plying that the Reverse-VAE learns latent features which
generalize well, and that the probability mass does not con-
centrate around the latent vectors of training samples.

4.3. Progressively Growing (PG) Reverse-VAE

To scale up our model to generate or reconstruct higher
resolution images, we adopted the strategy of progressively
growing resolution introduced in PGGAN [18]. We train

our Reverse-VAE model starting from a very low resolu-
tion, 4× 4, then we progressively increase the resolution to
8 × 8 by adding a block of up-sampling and convolution.
During the resolution transition stage, a weight factor α in-
creasing from 0 to 1 linearly is used to weight the contribu-
tion of the newly added 8× 8 block and the previous 4× 4
block to the generation of 8 × 8 images. For the discrim-
inator and the encoder, similar operations of adding a new
higher-resolution block and resolution transition are used.
We increase the resolution in this manner until reaching the
resolution of 256× 256, due to a limitation of computation
resources.

We also adopted the PGGAN’s strategies of stabilizing
the training, including minibatch standard deviation, pix-
elwise normalization, and equalized learning rate. Further-
more, like PGGAN, we remove the sigmoid activation func-
tion at the generator’s output and rescale the image pixel
value into the range of [-1,1]. During the training at each
resolution, we are still use the loss functions introduced in
Section 3.2 and the training setting is similar to Alg. 1.

Compared with PGGAN, our model has one extra pro-
gressively trained encoder, which increases the application
scenarios of our model beyond generating HD images. For
example, one can reconstruct an input HD image with good
accuracy. This enables our model to be used for high reso-
lution image inpainting which means reconstructing lost or
deteriorated parts of images. Moreover, our model can eas-
ily perform interpolation between two real images using the
method in Section 4.2. Figure 3 shows the image random
generation, reconstruction, inpainting and morphing results.

The progressively growing Reverse-VAE is shown to be
able to generate realistic images and accurately reconstruct
features like hair color, skin, facial emotion and gesture in
a large image scale. Although in image inpainting the in-
painted area has inconsistent brightness, the facial expres-
sion looks natural and coincides well with unmasked area.
These results further prove the scalability of our model.

Furthermore, we provide the Fréchet Inception Distance
(FID) [17, 7] for random generated images and compare
them with other models in Table 1. The smaller FID score
is, the higher the quality is and the more diverse the gen-
erated images are. The FID of Progressively Growing
Reverse-VAE on CelebA 256x256 is similar to DCGAN on
CelebA 64x64. The FID confirms that PG Reverse-VAE
generates high quality and diverse images.

4.4. Visual Attributes Manipulation

Usage of Feature-wise Reconstruction Loss Although
the results of image generation, reconstruction, morphing as
well as high resolution image reconstruction show that our
model can learn a meaningful embedding and reconstruct
the main image features accurately without the feature-wise
reconstruction loss Lrecon x from Equation 1, we do observe
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(a) Randomly generated images. (b) Image reconstructions. (c) Image inpainting.

(d) Image morphing.

Figure 3: Random image generation, image reconstruction, image inpainting and image morphing using the Progressively
Growing Reverse-VAE are tested on CelebA 256 × 256. For image reconstruction results the first column are input images
and the second are reconstructions. For image inpainting we reconstruct the input image in the first column, then only keep
the reconstructed area where the mask is, and finally combine it with the input image. For image morhing, the first and last
images are real images and the images in between are generated images.

(a) MNIST randomly generated images. (b) MNIST reconstructions.

(c) SVHN randomly generated images. (d) SVHN reconstructions.

(e) CelebA randomly generated images. (f) CelebA reconstructions.

Figure 4: In Figures 4a, 4c, 4e randomly generated images and in Figures 4b, 4d, 4f reconstructions on the MNIST, SVHN
and CelebA data set, respectively, are shown. For the reconstruction results, odd columns are the original images from test
data set and even columns are the corresponding reconstructions.

adding such a loss to the generator improves the recon-
struction performance slightly when tested on the CelebA
64× 64. This extra loss may force the model to learn to fa-
vor a better reconstruction of the detail. In the experiments
of visual attributes manipulation (section 4.4) and anomaly

detection (section 4.5), we add the loss Lrecon x by default,
since an accurate reconstruction is important for these two
tasks.

In contrast to GAN [12], the visual attributes of images
can be analyzed in the latent space and particular latent vec-
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Figure 5: The transition from real image in first column to
real image in last column (e.g. woman to man) is based on
latent space interpolations with γ increasing from 0 to 1.

tors which represent disentangled visual attributes can be
extracted. If we want to give a serious face a smile, it is
required to add a visual attribute vector vadd-smile which rep-
resents the change from ’serious’ to ’smiling’ to the latent
vector of the serious face.

After training, the CelebA validation data set which in-
cludes different celebrity identities is used to compute the
visual attribute vectors. Each image is labeled with 40 at-
tributes like hair styles, face emotions and hair colors. For
each identity i, the encoder maps each smiling face to a la-
tent vector and then the mean latent vector of smiling faces
z̄

(i)
smiling is calculated. The same is conducted for the serious

face to obtain a mean latent vector of serious faces z̄(i)
serious.

Then ’serious’ latent vector is subtracted from ’smiling’ la-
tent vector to obtain latent vector of adding smile v

(i)
add-smile

for the identity i. Afterwards the latent vector of adding
smile is averaged over all possible identities to the visual
attribute vector v̄add-smile.

After the encoder processes the corresponding latent
vector zserious for a new image of a serious face xserious, the
visual attribute vector vadd-smile is added to the latent vec-
tor zserious to get the transformed latent vector zsmiling. Fi-
nally, the generator receives zsmiling to generate an image
with smiling face xsmiling. If the visual attribute vector is
disentangled, only the desired visual attribute will be ma-
nipulated.

Furthermore, we found that the direction of the visual
attribute vector v̄add-smile determines the type of visual at-
tribute, and the magnitude determines the dominance of the
visual attribute. A scale factor α is used to adjust the mag-
nitude of the visual attribute vector. This is achieved by
adding the scaled visual attribute vector αv̄add-smile to zserious
to get the converted latent vector zsmiling.

Increasing the scale factor α linearly from 0.5 to 2.5 in
Figure 1a, the smile on faces is broadened without influenc-
ing other facial attributes. We regard the transition of smile
as natural and realistic and suppose that the Reverse-VAE
model learns disentangled visual attributes. Manipulated
images with 10 visual attributes are shown in Figure 1b.

zattri,sum = zoriginal +
m∑

j=1

αj v̄add-attri,j (10)

A set of visual attribute vectors {v̄add-attri,j}j=1...m is com-

Figure 6: Six different visual attributes are combined: I.
Black hair; II. Eyeglasses; III. Smiling; IV. Mouth slightly
open; V. Bangs; VI. Pale skin. Each column represents one
combination: (a) Original images; (b) Attri. I, III; (c) Attri.
II, III; (d) Attri. I, II, III; (e) Attri. IV, V; (f) Attri. V, VI;
(g) Attri. IV, V, VI; (h) Attri. II, IV, V, VI.

bined linearly and added to the latent vector of an image
in eq. 10, where m is the number of visual attributes and j
the attribute index. In figure 6, each αj is empirically cho-
sen such that the visual attribute is equivalently dominant.
Finally, the generator takes the latent vector zattri,sum to gen-
erate the image with desired visual attributes.

Different from ALI [8], the Reverse-VAE model is
trained without image attributes information. Nevertheless,
disentangled visual attributes vectors can be extracted in the
latent space learned by the Reverse-VAE, and used for vi-
sual attributes manipulation with comparable performance.

Further experiments show that extracting visual attribute
vectors without using identity information (such as pro-
posed by Larsen et al. [22]) leads to more entangled visual
attribute manipulation (e.g gender). In figure 7 adding the
visual attribute “blond hair”, “heavy makeup” or “pale skin”
without identity information to a male face leads to a female
face with the desired visual attribute.

4.5. Anomaly Detection

Similar to [3, 37, 31], the image reconstruction error is
used to detect anomaly samples. Learning the distribution
of training data, the Reverse-VAE can reconstruct the im-
ages which are within the distribution of training data with
small reconstruction error. For the anomaly images, the re-
construction error is large. Let x denote the input image, x̂

Figure 7: Original images in first column are manipulated
without (first row) and with identity information (second
row). Visual attribute vectors extracted without using iden-
tity information (first row) lead to more entangled visual
attribute manipulation.
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Figure 8: Comparison of anomaly detection performances
of VAE [3], Efficient-GAN [37] and Reverse-VAE on the
MNIST, evaluated by AUCROC and AUCPRC.

the reconstructed image, and Disl(x) the output of lth layer
of the discriminator (here 3rd layer). Reconstruction error
Ex of input x is defined by:

Ex = ‖Disl(x̂)− Disl(x)‖2 (11)

Ex(i) represents the reconstruction error of a sample x(i)

from the training set. The anomaly score A(x) represents
the likelihood that an input image x is an anomaly and is
defined by the ratio of number of training samples whose
reconstruction error is less than Ex to the total number of
training samples, whereas card() is the Cardinality sign:

A(x) ≃ card
(
{x(i)|Ex(i) < Ex}

)

card
(
{x(i)}

) (12)

The process of anomaly detection is shown in Alg. 2. The
Reverse-VAE is evaluated regarding its anomaly detection
performance on the MNIST [23].

In MNIST, for each type of digits a ∈ {0, 1, ..., 9}, we
treat digit a as anomaly and all the other digits as normal
data. There are 10 different models each trained to detect
an anomaly digit respectively. Similar to [3], 80% of the
normal data is used for training. The rest 20% of normal
data and all the anomaly data are used for testing. Pixels of
images are normalized to the range [0, 1]. Parameter setting
of the generator, discriminator and encoder is the same as
for EfficientGAN [37]. The performance of the anomaly
detection is evaluated by the area under the curve of the
receiver operating characteristic (AUCROC) and the area
under the curve of the precision recall curve (AUCPRC).

Figure 8 shows that Reverse-VAE model performs bet-
ter than VAE [3] and Efficient GAN [37], evaluated by

Algorithm 2 Process of anomaly detection.

1: Given input image x, compute reconstruction error Ex.
2: Compute the anomaly score A(x) according to eq. 12
3: Select threshold ǫ. x is anomaly when A(x) > ǫ, and

x is not anomaly when A(x)≤ǫ.

Figure 9: Reconstructions of anomaly digits are given. The
first row show anomaly digits and the second row show cor-
responding reconstructions.

AUCROC. As shown in Figure 9, reconstructions of the
anomaly digits resemble samples from normal data set
with structural similarity. For example, reconstructions of
anomaly digit 7 are mostly 9 or 4. By comparing the recon-
structions of anomalies (Figure 9) and normal digits (Figure
4b), we conclude that anomalies can be detected based on
reconstruction error, being larger than that of normal digits.
Our model has a state-of-the-art performance when evalu-
ated by precision and recall.

Nevertheless, the reconstruction error based strategy is
vulnerable to the anomaly images which are structurally
simple or similarly appears in other samples. This tendency
is also found for VAE and Efficient GAN. Especially de-
tecting anomaly digit 1 is worse than random guess. As
shown in Figure 9, the reconstructions of anomaly digit 1
(a) with thick stroke is usually thin version of digit 8 or 3;
(b) with normal stroke is usually 7 or 9, since its vertical
stroke makes up a large part of digit 7 and 9. The simple
structure of digit 1 is present in many other digits, so that it
is difficult to detect anomaly digit 1.

5. Conclusion and outlook
We introduced the ‘Reverse Variational Autoencoder”

(Reverse-VAE) for two applications: visual attribute manip-
ulation and anomaly detection. The Kullback-Leibler diver-
gence between joint latent/data-space distribution of gener-
ator and the latent/data-space joint distribution of encoder
is minimized during training to learn meaningful mapping
from data space to latent space. Based on this mapping
both applications are enabled. Desired visual attributes of
CelebA images are successfully manipulated. The perfor-
mance of anomaly detection is competitive with state-of-
the-art on MNIST. The anomaly detection can be used as a
monitor of a Deep Learning (DL) model trained on the same
data as the Reverse-VAE. A positive finding could lead to
measures for performing in a safe manner. Furthermore, the
good scalability enables our model to be up-scaled for high
resolution image visual attribute manipulation which can be
used for data augmentation in a practical usage scenario.
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[29] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and
N. D. Lawrence. Dataset shift in machine learning. MIT
Press, 2017. 1

[30] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for dis-
tributions with applications to image databases. In Sixth In-
ternational Conference on Computer Vision (IEEE Cat. No.
98CH36271), pages 59–66. IEEE, 1998. 3
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Testing Deep Learning-based Visual Perception for
Automated Driving
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CHRISTIAN HEINZEMANN, and MATTHIAS WOEHRLE, Robert Bosch GmbH

Due to the impressive performance of deep neural networks (DNNs) for visual perception, there is an increased
demand for their use in automated systems. However, to use deep neural networks in practice, novel approaches
are needed, e.g., for testing. In this work, we focus on the question of how to test deep learning-based visual
perception functions for automated driving. Classical approaches for testing are not sufficient: A purely
statistical approach based on a dataset split is not enough, as testing needs to address various purposes and
not only average case performance. Additionally, a complete specification is elusive due to the complexity of
the perception task in the open context of automated driving. In this paper, we review and discuss existing
work on testing DNNs for visual perception with a special focus on automated driving for test input and
test oracle generation as well as test adequacy. We conclude that testing of DNNs in this domain requires
several diverse test sets. We show how such tests sets can be constructed based on the presented approaches
addressing different purposes based on the presented methods and identify open research questions.

CCS Concepts: • Computer systems organization→ Embedded systems; • Software and its engineering
→ Software verification and validation; • Computing methodologies→ Computer vision.

Additional Key Words and Phrases: software testing, deep learning, perception, computer vision, automated
driving, autonomous driving

ACM Reference Format:
Stephanie Abrecht, Lydia Gauerhof, Christoph Gladisch, Konrad Groh, Christian Heinzemann, and Matthias
Woehrle. 2021. Testing Deep Learning-based Visual Perception for Automated Driving. ACM Trans. Embedd.
Comput. Syst. 1, 2, Article 3 (April 2021), 27 pages. https://doi.org/10.1145/3450356

1 INTRODUCTION
Deep learning-based approaches have achieved impressive performance results on a wide range of
benchmarks in various domains, especially in computer vision (CV, [105]). As industrial application
of deep neural networks (DNNs) increases, there is an increased need for their verification and
validation (V&V) in safety-critical domains such as (highly) automated driving [16]. In this paper,
we focus on practical verification and particularly on functional testing of DNNs used for computer
vision tasks in an automotive application.

Consequently, the Software under Test (SuT) is a DNN embedded in an automotive camera
with relevant tasks including, e.g., object detection and semantic segmentation. For simplicity, we
focus in the following on stateless functions that evaluate each image individually. Janai et al. [50]
provide a comprehensive survey on the use of computer vision and deep learning functions in
automated driving, describe relevant tasks and corresponding methods, datasets and evaluation
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Fig. 1. Overview of our software under test and different test setups.

metrics. While autonomous driving is of major interest for our work, the approaches presented in
this work are of relevance for any type of automated vehicle starting from SAE Level 2 (Partial
Automation, i.e. Advanced Driver Assistance Systems) up to Level 5 fully autonomous systems [79].

In an industrial development process, testing of CV functions is performed throughout various
development stages in complementary ways. First, different test methods are used to address various
concerns such as checking for implementation errors, data pre-processing concerns, labeling errors,
quantization issues, timing and consistency constraints, robustness and satisfaction of requirement
specifications. Second, different test setups may be used as shown on four examples marked in
Fig. 1 using curly braces. The smallest brace (1) concerns isolated testing of CV functions (DNNs),
where images are directly processed by the SuT. Images are subject to effects from the environment
as well as the system, e.g., from camera optics or its image sensor [108]. The test setup can also be
enlarged, e.g., (2) include the sensor hardware, e.g., in a real hardware-in-the-loop setup. We can
use a simulation setup to generate synthetic images based on a given scene description as shown
in (3) or perform system testing as shown in (4) [89] requiring closed-loop testing as described in
Sec. 3.3.3.

Using DNNs necessitates to consider the data testing debt [86]: as we leverage data to train parts
of our software system, and thus “data replaces code” [86], it seems evident that this necessitates
different testing with a particular emphasis on data and its impact. This is challenging as the input
space for a typical CV function is vast, especially for high-resolution cameras used in the context
of automated driving. In addition, machine learning in general suffers from the “oracle problem”,
i.e. a comprehensive specification of the problem at hand does not exist, as we would not need
machine learning if we would know what a model should return for each input datum [109]. The
oracle problem is further exacerbated by the open and real-world context of automated driving and
the high dimensional as well as unstructured input space of computer vision which leads us to the
questions: How can ML test engineers create relevant and meaningful test data efficiently for deep
learning-based visual perception tasks? How can ML test engineers verify relevant properties of the
corresponding DNNs? And how can ML test engineers show test adequacy of the available test data?
In this paper, we review existing works towards practical verification and testing of DNN-

based CV functions in an automotive context. Available verification techniques for DNNs are
up to now often only applied to the simpler image classification task instead of object detection
or semantic segmentation. While image classification task is less relevant for our application
domain, the corresponding methods are good starting points for further study. Please note that
verification is concerned with building the system right according to specifications, whereas
validation is concerned with building the right system. Of course, there is a synergy between the
two, e.g., an increase in specification and verification activities may decrease validation efforts (front-
loading). We focus on verification, in particular falsification of the software, during development,
i.e. identifying defects in the software early in the development cycle.
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Fig. 2. Structure of the work (building blocks).

As a key difference to related works, we jointly describe approaches from different domains such
as software testing, machine learning, computer vision, automated driving, and cyber-physical
systems and discuss their applicability to the aforementioned CV tasks in the automotive context.
We group the approaches into a test workflow inspired by the work of Zhang et al. [109] as shown
in Figure 2: Test input generation is discussed in Sec. 3 with local-sampling techniques (3.1), domain
and data analysis (3.2) as well as leveraging synthetic data (3.3). This is followed by test oracle
generation (Sec. 4) where we discuss ground truth-based (4.1), specification-based (4.2) and derived
oracles (4.3). Test adequacy in the form of coverage is described in Sec. 5 using information from
the SuT, e.g., for structural coverage (5.1), using the concept of mutation testing (5.2) as well as
using a model of the input domain (5.3).

What becomes apparent is that there is not only a single test set for performance, but there is a
need for several test sets each addressing different purposes. After presenting the building blocks for
creating test sets (cf. Fig. 2), we conclude with concrete examples of such test sets for DNNs used
in automated driving.

2 RELATEDWORK
We are interested in the question how one can ensure that a DNN functions as intended in the real
world based on finite test sets. We focus on functional properties of the DNN, i.e. non-functional
characteristics such as timing and hardware constraints are out-of-scope. Previous work has
surveyed the general topics of testing of machine learning (ML) software focusing both on imple-
mentation and conceptual issues [15]. Zhang et al. [109] refer to this as ML testing and provide a
comprehensive survey on several applications. Our application domain requires a different view
focusing on deep learning and the visual domain. For many testing aspects, there is already a strong
discipline for Cyber-Physical Systems (CPS) and (automotive) embedded systems that is too diverse
to cover. We refer the interested reader to recent trends in [80]. Here, we focus on novel aspects
related to testing of DNNs.
Willers et al. [101] provide an overview of safety concerns and possible mitigation approaches

for perception tasks. In this work, we identify several testing approaches that can be used for
mitigating certain safety concerns such as considering the data distribution as an approximation of
the real world (cf. Sec. 3.2) and brittleness of DNNs (cf. Sec. 3.1). Schwalbe et al. [84] survey several
methods for safety assurance of ML-based systems in the automated driving context and provide a
broad overview of method categories from requirements engineering to validation, while this work
focuses particularly on testing and verification.

Borg et al. [13] perform a systematic literature review on verification and validation challenges
for ML in the automotive industry. However, due to our specific application domain and the focus
on verification of perception tasks, our context differs considerably. Salay et al. [82] discuss machine
learning software in the context of ISO 26262 [47], a standard that concerns functional safety of
electrical and/or electronic systems in production automobiles. Salay et al. particularly assess
“product development at the software level” in part 6 of the standard, which is most relevant for our
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context, and how it applies to machine learning. They identify that it does not completely address
the unique characteristics of ML-based software and the work presented here identifies approaches
that could provide a contribution with respect to verification, e.g., concerning coverage (cf. Sec.5).
Please note that performance limitations such as false predictions of perception functions are not
covered by ISO 262626 but rather in the recently published ISO PAS 21448 (Safety of the Intended
Functionality) [48]. We refer to [82, 101] for more information on these standards.
Humbatova et al. [45] discuss a taxonomy of real faults in deep learning systems based on

analyzing open source projects, Q&A sites as well as structured interviews with researchers and
practitioners. The taxonomy shows the diverse types of issues that need to be considered in DNN
development.
Finally, there exists a large body of work on testing of perception functions in the context of

advanced driver assistance systems (ADAS). Feilhauer et al. [30] provide a recent overview of
approaches used in ADAS testing. They detail on open-loop testing as well as on various forms
of closed-loop testing relying on simulation. Open-loop replay tests can leverage large amounts
of curated data collected in field trials including previously identified difficult cases. Closed-loop
approaches allow testers to evaluate the overall systems reaction considering various aspects. While
these techniques remain vital for testing deep learning-based visual perception for automated
driving, the required depth and breadth of corresponding test sets increases considerably, e.g., due
to additional safety concerns [101].

A first version of this work was published in a workshop to start a discussion by asking several
open questions on testing of learned computer vision functions for automated driving [102]. In
this paper, we expand upon this work and provide a comprehensive overview on current state
of research on obtaining a good test set. In particular, we extend the discussions about test input
generation and test oracles and add a novel section on test adequacy presenting several approaches
for coverage. We provide a discussion on each individual topic as well as detailed conclusions.

3 TEST INPUT GENERATION
Software testing typically deals with large input spaces through equivalence classes, e.g., separating
variables into partitions, where within each partition a common property holds. This is, however,
not straightforward for unstructured input data such as images, where (i) in pixel space, there
are no good ways to specify partitions, except locally around individual samples (cf. Sec. 3.1) and
(ii) when trying to form this partition in a 3D world environment, this would require an accurate
mapping from this description to pixel space as input for our algorithms (cf. Sec. 3.2).
In the following we describe three approaches for generating test inputs thereby focusing on

the question: How can ML test engineers create relevant and meaningful test data efficiently for deep
learning-based visual perception tasks? First, we consider local sampling around test images (Sec. 3.1)
where additional images are created based on existing ones, mostly by small perturbations. Second,
we consider analysis approaches that characterize relevant and important factors to be considered
for a good test set (Sec. 3.2). Third, we consider testing based on synthetic test data (Sec. 3.3).

3.1 Local sampling around existing images
Local sampling methods leverage existing images and modify them. They are typically used for
training to counteract a limited amount of available data.We distinguish two approaches below: First,
we describe adversarial data generation where images are modified based on minimal perturbations.
Second, we describe a standard approach for dealing with limited data in machine learning, namely
data augmentation respectively image augmentation in the CV domain.
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3.1.1 Adversarial data generation. For adversarial examples in image classification, an input model
is sampled around a given image under the assumption that the labeling stays the same as long as the
distance of the new sample is below a selected threshold. A typical norm in the context of (minimal)
adversarial examples are Lp norms, e.g., L∞ used in [94, 103], i.e. we consider a neighborhood
around each image. Such a metric integrates well into current deep learning frameworks and thus
can be used to generate tests efficiently. However, for automated driving other notions of robustness
and therefore other distance metrics may be more relevant, e.g., based on noise characteristics of
the imager. While most work on adversarial examples is focused on image classification, attacks on
object detection and semantic segmentation as well as in the real world have also been studied [4].
Adversarial input models enable verification of satisfiability of a neural network given certain

input and output constraints, i.e. input constraint for describing the neighborhood of images and
output constraints as an invariance property (cf. Sec. 4.3). Hence, a symbolic representation of
neighborhoods around existing images is used rather than to explicitly sample from it. Liu et al. [63]
provide a framework for analyzing and comparing various algorithms for verifying neural networks
for image classification. Qin et al. [75] present a generalization for verification of non-linear
properties. They term the current approach of approximating the input space by neighborhoods
around test examples, e.g., using an Lp norm, as “weaker verification”, because defining a relevant
input set (formally) is extremely difficult. In fact, current approaches to verification of neural
networks based on such an input model formulation are more akin to concolic testing in software
testing literature [88]. Concolic test generation [88] is a white-box software test generation and
analysis technique that allows to incrementally generate a test suite that may ultimately be complete.
There is first work to apply concolic testing to deep learning functions: Sun et al. [95] use analysis
techniques from adversarial robustness for this purpose. A major concern is that for any novel test
case generated by a concolic testing tool, we also need to provide a corresponding oracle, which is
unclear how to provide due to the “oracle problem” (cf. Sec.4).

3.1.2 Image augmentation. Image augmentation for CV functions leverages a large variety of
transformations on images like rotations and flips. While its main purpose is multiplication of
training data, these transformations can also be leveraged as a basis for testing. Transformation
of inputs may be coupled with corresponding transformation of ground truth labels. Some data
augmentation techniques may be even amenable to a formal analysis such as the support of rotations
in DeepPoly [94].
Augmentation techniques are obviously only an approximation, since transformations in the

real world are much more complex than the transformation in the image space, e.g., considering
illumination. Additionally, realistic parameterization of image augmentations including thresholds
and equivalence classes is a major concern for verification. As an example, we might not use
horizontal flipping as this is outside the Operational Design Domain (cf. Sec. 3.2) of the function,
but may use vertical flipping to approximate left from right hand traffic. There is a difference in the
purpose of augmentation for training versus verification. In training, online augmentation with
random transformations is used to sample the input space sparsely for a large training set in order to
improve generalization. Verification may rather focus on a small set of important test images where
augmentation is performed densely, e.g., to better characterize robustness. Here, it is important to
know and to control which transformations will be or have been exactly covered and evaluation
criteria need to consider whether the resulting image is within the functional specification or used
for robustness or negative testing.

3.1.3 Discussion. All methods discussed above try to leverage existing, real images and extend
this dataset by small modifications, i.e. changing each image, including its corresponding ground
truth, in a defined way. This results in sampling the input space locally around existing images.
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Some of the discussed methods aspire exhaustive sampling and formal verification, however all
results are local around existing images, which results in individual (small) equivalence classes in
the vast input space. It is not clear how to check (automatically) that the images in the defined
equivalence class are still in distribution. When such tests fail, these are false warnings.

A common idea of these techniques is to leverage input perturbation models that fit to derived test
oracles based on invariance, e.g., for adversarials, or equivariance, e.g., for translation augmentation
(cf. Sec. 4.3). Apart from (formal worst-case) analyses of minimal, additive adversarial perturbations,
there are various notions of robustness [32], e.g., datasets considering robustness to corruption
and common perturbations [44] as well as computer vision hazards [107] that require different
and diverse perturbation models on the input. Robustness (and therefore perturbation models) is
stressed by practitioners in the automotive industry as a major challenge in using DNNs and that
there are further (empirical) studies needed to define robustness in the application domain [13].

3.2 Domain and data analysis
Domain and data analysis creates and leverages additional information of the relevant context.
Figure 3 summarizes the aspects in this area that are discussed in more detail in the remainder
of this section. At the center is a definition of an operational design domain (ODD, cf. Sec. 3.2.1)
in which the CV function needs to operate and under which conditions it needs to work. In the
context of automotive and automated driving applications, such factors include environmental
conditions (e.g., rain and dusk) as well as the state of the ego-system (e.g., view change due to
braking maneuver) and other actors in the environment (e.g., cyclists and pedestrians).

Fig. 3. Domain Modeling Overview

Based on an ODD, top-down methods like CV HAZOP (cf. Sec. 3.2.2) identify hazards to consider
during design and test. Expert knowledge, standards, or scenario databases can be utilized to
create semantic domain models (cf. Sec. 3.2.3) representing the current state of knowledge on
what important semantic features need to be present in a good test set. Most importantly for the
following discussion is an identification of nuisance factors [105, 111] and robustness criteria that
are not explicitly available in image and label space. This information can be used to define test
sets, e.g., by applying a mapping to concrete images [107] or by generating data synthetically
(cf. Sec. 3.3). Complementary, bottom-up data analyses like sensitivity analyses or corner case
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identification try to produce additional knowledge on critical visual parameters and combinations
of parameters (cf. Sec. 3.2.3). This includes an analysis of relevant inputs, e.g., analyze distributions
in pixel space, and an analysis of the outputs, e.g., analyze the distribution of ground truth labels.
Then, information gathered from bottom-up analyses can be used for updating, extending, enriching
and pruning an input domain model, requirements as well as the ODD. Iterating through the loop
in Fig. 3 enables to iteratively improve quality and relevance of the test data.

3.2.1 Operational Design Domain (ODD). The Operational Design Domain defines the where,
(e.g., roadway types) and when (e.g., conditions concerning daytime and weather), an automated
driving system is designed to operate [2, 57]. Most importantly, a system may exclude conditions
from the ODD such as adverse weather conditions such as heavy rain or snowstorms. To date, a
complete and detailed ODD definition is elusive due to the long-tail and continuous evolution of
the relevant open-world context. However, from a verification perspective, even an incomplete
ODD can already be utilized as it documents the current state of knowledge and, particularly, all
known corner cases. Therefore, a process as outlined in Fig. 3 is executed iteratively to further
concretize and extend the ODD.

The analysis of the ODD is thus very related to the hazard analysis discussed below, as a reduction
of the ODD may explicitly result in a reduction of relevant hazards. Similarly, an Object and Event
Detection and Response (OEDR) describes the proper handling of external situations that the
automated vehicle encounters, including perception [57].

Subsequently, safety requirements on component level are derived from safety goals on system
level. Thereby, these requirements shall be linked directly to the ODD [38]. This allows, for example,
to test robustness against ODD specific variations. For testing a further concretization such as
regarding the test setup (cf. Fig. 1) is necessary.

3.2.2 Hazard analysis. CV HAZOP [108] is a hazard analysis approach for computer vision. 1470
hazards are currently available for CV HAZOP [3]. For particular domains as in our case as well
as specific computer vision tasks, the analysis needs to be refined [106]. A concrete task in our
application domain of interest is presented in context of the WildDash dataset [107]. This work on
the construction of a hazard-aware dataset shows that the extensive list of hazards that are relevant
for generic computer vision tasks can be broken down to a small number of 9 hazard clusters for a
concrete segmentation task. Based on CVHAZOP, Zendel et al. discuss different aspects of analyzing
image data and in particular negative test cases [106, 107]. For negative test cases, we expect the
algorithm to fail, yet with expected behavior, e.g., signaling high uncertainty. Negative test cases
additionally provide a means to check that the limits of algorithms as well as the fidelity of the
test environment are well-defined. A similar analysis has been performed by Zhang et al. [111] for
stereo video focusing on specularity, texturelessness, transparency and disparity jumps. The work
also describes mapping of hazards to testing via synthetic data (cf. Sec. 3.3). Their analysis shows
that algorithms that perform better on average are not necessarily better in handling specified
hazards. The Data Safety Guidance [85] describes an approach for data management in safety-
related systems. It provides guidance relevant to testing such as properties of data that should be
considered in the analysis of a data-driven system, such as completeness (cf. Sec. 3.2) and fidelity
(cf. Sec. 3.3) as well as concrete guide words for a data-focused HAZOP analysis similar to CV
HAZOP.
A hazard analysis like CV HAZOP and the description of ODD and OEDR share several con-

siderations such as weather, glare and sensor noise [57]. However, there are differences between
an ODD/OEDR analysis and a CV HAZOP analysis: CV HAZOP is a generic analysis for any CV
function, while an ODD/OEDR analysis is focused on a specific driving system implementation.
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Fig. 4. Conceptual Structure of Semantic Domain Model

On the one side, due to the generic nature of CV HAZOP, many impact factors need to be consid-
ered that may not be relevant for a specific application and the system context the application is
embedded in. The result is that we may considerably reduce the number of hazards for a given
implementation, because hazards may not apply to the system by design or the DNN task [107].
On the other side, a vision function analyzed based on CV HAZOP may still be directly usable even
when the scope in ODD or OEDR are extended.

3.2.3 Semantic Domain Models. Semantic domain models are used to further detail the ODD. They
capture properties of image contents and metadata of images that go beyond pixel-wise descriptions
and sometimes even cannot be directly inferred from the image itself. Such models can be built in a
top-down or bottom-up fashion and may form a basis for the structured creation of (test) datasets.

In a top-down approach, one tries to structure elements contained in the ODD and to identify
properties of these elements and additional effects affecting sensor performance. Inputs for a top-
down analysis can be expert knowledge (e.g., from sensor experts), traffic-related databases, public
regulations (e.g., highway construction regulations), and (upcoming) standards (e.g., ASAM Open
Label [7]). There exist different kinds of databases like scenario databases [29, 113] and accident
databases [40]. However, these often do not include perception-specific information, which would
be necessary for deriving test information for a computer vision task.
Gladisch et al. [42] show how a morphological analysis tool can be used for creating and

maintaining a domain model focusing on a road network with different kinds of roads, lane,
markings, and traffic regulating elements. In the spirit of equivalence class-based testing, continuous
influence parameters are discretized into intervals leading to a discrete combinatorial space. Figure 4
shows a structure of an extended model that additionally includes semantic visual parameters that
are important for recognizing objects as their visual appearance including surfaces, colors, weather
conditions, and their relative positions. In the case of pedestrians, this includes defining the surface
properties and colors of the clothes, which are contained in Pedestrian Appearance. What becomes
evident is that these combinatorial spaces grow exponentially because, in principle, the interaction
of every parameter needs to be checked. While the number of combinations only for the road
network is 1.8 · 1012, it already grows to 7.6 · 1034 when including a single pedestrian. An approach
to deal with this combinatorial explosion with combinatorial testing is presented in Sec. 5.3.
Such top-down methods should be complemented with bottom-up data analysis, e.g., in an

iterative approach: This may include techniques such as error analysis from machine learning,
exploratory data analysis, e.g., for confounding factors, checking the data and label distribution and
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novelty detection for unique tests. To this end, a combination of targeted data acquisition based on
the ODD and random data acquisition for identifying additional domain elements is necessary.

As one example, Cordts et al. [22] investigate why performance on Cityscapes changes over the
seasons and their analysis concluded that this most likely depends on “softer lighting conditions
in the frequently cloudy fall”. Many issues such as corrupted images or labels, imbalances [22]
and rare data [54], variations, label noise [34] and preprocessing or data quality issues can only be
detected by inspecting the data. The same holds true for artifacts within images that are caused by
the sensor hardware, e.g., motion blur, or by preprocessing components, e.g., rectification. While
approaches such as data inspections, misprediction and error analysis (triage) are vital, they are
mostly discussed in practical discussions, e.g., [54, 56], rather than academic venues.

Input domain models can be combined with and expressed in ontologies that enable to capture
concepts and relations of the input domain and allow inference of implicit knowledge based on
rules [43]. While their use in the context of testing has already been explored for creation of traffic
scenarios [8], there are currently no ontology-based approaches for computer vision systems in the
automotive domain.

3.2.4 Discussion. All of the methods presented in this section aim at extending and documenting
knowledge about the perception function under test. By leveraging this knowledge for the definition
of test data, these methods contribute to the definition of relevant test data, whereas we consider
relevance of test data as “having a possibility to uncover errors” in this context. While there are no
formal guarantees, these methods establish the precondition for finding weak spots resulting from
known effects by identifying safety concerns, hazards, nuisance factors, novel aspects, sensor and
preprocessing artifacts, and sensitivity to environmental and operational conditions that should be
considered in a test set. As a second aspect, documenting and exploiting such knowledge is necessary
in a safety-driven development process for arguing safety of a (perception) function [16, 17, 101].
As already indicated in Fig. 3, the analyses and methods discussed in this section need to be applied
iteratively such that the knowledge about relevant test data is successively extended.

3.3 Synthetic data
Several works discuss synthetic data and in particular simulation as a key enabler for large-scale
testing in the domain of autonomous driving [35, 58]. Borg et al. [13] discuss that a promising
approach to ML safety engineering is to simulate test cases. There are several benefits of synthetic
data including (i) flexibility and control of the visual effects and the scene content, (ii) massive
automatic generation of inputs, (iii) inherent availability of precise and unambiguous ground
truth, and (iv) early availability in the development cycle. In the following, we discuss techniques
for generating sets (and sequences) of images with ground truth labeling corresponding to the
open-loop testing as shown with the braces (1) – (3) in Figure 1 either via image augmentation
and modification approaches (Sec. 3.3.1) or rendering approaches (Sec. 3.3.2). Sec. 3.3.3 discusses
closed-loop simulation corresponding to brace (4) in Figure 1.

3.3.1 Image modification approaches. Image modification approaches leverage existing datasets
and extend the amount of data and possibly the domain. Compared to Sec. 3.1.2 these are more
advanced techniques since these modifications are content-specific. There are several different
approaches as to whether (i) images are created from learned models whether based on GANs,
e.g., DeepRoad [110], or variational autoencoders, e.g., [18], (ii) augmented with sensor effects
such as chromatic aberration and blur [19] and other style transfer approaches, (iii) perturbed for
robustness testing [73, 93], and (iv) augmented with additional relevant agents and objects, e.g., for
urban driving scenes [5]).
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The focus of these methods is typically on training and showing a benefit of leveraging synthetic
data. As an example, Nowruzi et al. [70] evaluate how to combine synthetic and real datasets for car
and person detection. Waymo engineers [21] describe improvements for AD computer vision tasks
by using Randaugment [23]. Considerations for verification may be different: instead of improving
average-case behavior over a realistic distribution, testers may rather be interested in improving
the least worst-case behavior [32]. Additionally, depending on the type of property, tests may be
interested in addressing the content gap and/or the appearance gap of a simulation [53].

3.3.2 3D Rendering approaches. A wide range of computer graphics technologies and ecosystems
exist. This makes a proper use and a corresponding evaluation for a V&V task difficult for non-
experts in computer graphics. The two main rendering approaches are scanline rendering and
raytracing. Traditionally the former is better for performance and the latter for quality, however, the
combination of many other technologies has a bigger impact on quality and performance. These are
technologies for (i) object and scene geometry, (ii) textures and materials, (iii) lighting, in particular
global illumination, camera and color formats (iv) animations and physics, and (i) simulation of
various visual phenomena. Each of these subareas is a research topic on its own and a combination
of these technologies allows achieving photo-realistic results. A concrete example for this is the
Synscapes dataset leveraging advanced 3D rendering techniques where the authors show the
application of synthetic data with a high level of realism for both training and evaluation [104].
Since setting up such an advanced 3D rending pipeline is difficult, many research works rely on
open-source simulators such as CARLA [25] and AirSim [91]. These simulators provide (i) an
easy-to-use programming interface to generate images and control complex 3D graphics engines,
(ii) free content in the form of 3D environments and objects, (iii) a setup suitable for generating
images relevant for vision-based perception for automated vehicles (iv) generate ground truth
which is non-trivial to get when starting with a 3D rendering tool.

Computer graphics are used in several works for training and testing of DNN-based computer
vision functions, such as (i) a 3D World simulation for pedestrian detection [74], (ii) training
and testing object detectors with virtual images [96], (iii) analyzing hazards for stereo vision
algorithms [111], and (iv) using probabilistic scene grammars combined with learning an adaption
of generated scenes for dataset and task-specific synthetic content generation [53]. A higher-level
approach for training and testing of perception systems based on these frameworks and game
engines is a language such as Scenic [33]. It focuses on variations on a domain-level (cf. Sec 3.2.3)
by providing a domain-specific language on the level of scenarios and a probabilistic programming
approach. An overview of specific simulators for automated vehicles can be found in Table 6 in [78].

Research and methods in computer graphics are not only useful for synthetic data generation for
testing computer vision. The computer graphics field has a good understanding of the ingredients
that constitute an image and this knowledge could be a basis for semantic domain models and for
details on the ODD as described above in Sec. 3.2. For instance, the distinction between textures
and geometry yields general concepts, which are useful for describing properties of vision. As an
example, Zoox [114] mentions that it is not necessary to always classify objects correctly but it is
important not to miss any relevant object such. This can be interpreted as not to miss any critical
geometry, e.g., anything “person-like”. In computer graphics more concepts and taxonomies exist
which may be beneficial to derive a taxonomy for the ODD and testing parameters.

3.3.3 Closed-loop dynamic environment simulation. So far we have focused on open-loop simulation
for generating a set of images with ground truth or sequences thereof. For simulation in the AD
domain often the focus is Plan + Act (cf. Figure 1), e.g., for search-based testing [41]. However,
correct functioning of Plan +Act alone does not ensure safety of the system if perfect perception is
assumed as their input. Hence, integration testing is necessary and requires a test setup of Plan+Act
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together with perception (brace (4) in Figure 1) in order to account for uncertainty and statistical
results from perception. For developing and testing Sense + Plan +Act (brace (4) Figure 1) a closed-
loop test setup is required. While testing may be performed in the target system, a simulation-based
environment is important, e.g., for rapid progress in development [14]. CARLA [25] and AirSim [91]
are two simulators used for closed-loop simulation including perception. As an example, in the
CARLA simulation challenge autonomous driving agents are tested in a virtual environment [77].
Closed-loop tests with a perception focus are typically restricted to simulations of (short) scenarios.
An industrial example is the standardization activity on OpenSCENARIO to “describe complex,
synchronized maneuvers that involve multiple entities like vehicles, pedestrians and other traffic
participants” [31]. Thus, agent-based simulations that target the (long-term) interaction of traffic
participants are typically not the focus and very challenging, see e.g., [10]. Nevertheless, variability
in scenarios needs to be considered. For example, when using Scenic [33], a description of a scenario
(class) actually results in several simulations sampled from the distribution of a scenario including
variations of the interactions among agents.

Given such a closed-loop simulation, falsification techniques from the CPS domain such as search-
based testing [41] can be used also for systems that include machine-learning based perception.
Dreossi et al. [26] describe such a compositional approach. They propose a decomposition in order
to be able to analyze the system behavior and the perception performance separately and improve
the falsification process. Cruise describes how they use simulations for developer and integration
testing [14]. While they use different simulation models depending on the software under test, some
simulations of their tool Matrix provide a full set of perception sensor inputs (camera, radar and
lidar). As discussed in [14], there is always a trade-off between fidelity and run-time performance.
As such (i) the level of accuracy will differ and (ii) an analysis of the suitability of the resulting
sensor data needs to be considered as discussed in the following.

3.3.4 Discussion. Synthetic data is an important building block for training and testing DNNs.
Leveraging synthetic data, e.g., via simulation, is a commonly-used technique in testing automotive
embedded systems. A discussion in the context of simulation models for hardware-in-the-loop
systems can be found in [46]. Hutter’s focus is on classical automotive systems such as vehicle
stability control, but the discussion of model affordances (What sort of functionality should the
model provide?) and fidelity (What fidelity does the test required to decide whether a specification
is satisfied in the actual system?) is valuable for any simulation-based approach and needs to be
decided for each verification task [14].

A specific concern when using synthetic data is the required fidelity such that results transfer to
the real world [58]. The problem is not specific to synthetic images or computer vision but applies
generally to testing based on models and abstractions, e.g., when not using the target system in its
ODD. The problem of false alarms, i.e. a test on synthetic data fails but there is no issue in the real
world, and missed violations, i.e. the test on synthetic data passes but there exists an issue in the real
world, concerns many testing tools and has recently been discussed in the context of static analysis
results by Meyer [68]. Although from a verification perspective false alarms are not harmful, “false
alarms kill an analyzer” [68] w.r.t. user acceptance. Missed violations may be catastrophic and thus
need to be specifically considered in a safety-related process step. The general approach to address
this problem is validation and conformance testing of the synthetic data generator using a real
system in the target environment and corresponding data. Comparison of results based on synthetic
and real images is typically performed in previous works and several authors have reported similar
average performance between their simulations and related datasets [5, 67, 74, 96, 111]. However,
depending on the use case, average performance may not be sufficient.
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A particular concern in validation is that the simulation model accurately reflects the considered
performance of modeled components for the system property to be checked [46, 58]. Real data allows
engineers to check assumptions of simulation models, e.g., on model simplifications. Dedicated
back-to-back comparisons on controlled (closed course) tests and corresponding simulation runs
enables detailed study of simulation inaccuracies and their effect on the properties to be checked.
Waymo describes using data from closed course testing for improving and validating simulation
models [100]. Simulation validation has mostly been discussed in the context of driving dynamics,
e.g., [64], hence are based on different measures of simulation fidelity than required for perception
models.

In summary, synthetic data generators with a sufficient fidelity may have significant cost in cre-
ation, maintenance, validation and execution. However, a benefit of such synthetic data generators
is that testing can be scaled economically and allows to test systematically [105], e.g., based on a
semantic domain model (cf. Sec. 3.2.3).

4 TEST ORACLE GENERATION
Testing machine learning suffers from the oracle problem [11, 109]. For many relevant inputs, it
is impossible to specify the correct prediction [24] in a general form. It is challenging to write
an oracle for all possible samples, as features may be ambiguous and entangled in the input
space. This is why (supervised) machine learning relies on labeled data. Labels for an image are
point-wise specifications, i.e. , a description of the expected results for exactly one data sample.
While it is possible to express (human-readable) requirements for expected outputs (”A person
should be detected”), a test oracle requires to write these requirements concretely in a machine-
readable and machine checkable form. Concretely, we typically cannot describe images in a given
ODD in a machine-readable format as described above in Section 3 and similarly, we also cannot
completely specify the expected output in a general, machine-checkable form (what about partially
occluded persons or persons far away?) When labeling individual images of a dataset, the lack
of a general oracle can be partly resolved. However the issues of dataset-based approach such as
representativeness, coverage, unintended correlations and a loose relation to the ODD remain.
So, how can ML test engineers verify relevant properties of the corresponding DNNs? Obviously,

for single images this can be manually or semi-automatically performed with labeling, but this
necessitates a scalable approach to generate high quality labeling data. We detail on labeling in
Sec. 4.1. As Barr et al. [11] describe, there are several ways to deal with missing oracles. We discuss
evaluation functions such as properties, metrics and derived specifications in Sec. 4.2. Here, we
need to differentiate the general approach of testing guided by a particular test purpose such as
checking for (i) average case behavior, e.g., to determine mean Intersection-over-Union on a test
set [22], (ii) exceptional behavior, e.g., checking uncertainty assessment for image data outside the
training distribution, and (iii) specifications in particular use cases such as detection of relevant, yet
far-away objects. Note that recent academic work has focused on comparing average case behavior
based on cost metrics - mainly to evaluate competing designs, i.e. case (i) above. Verification and
testing are typically concerned with (worst-case) behavior w.r.t. specific properties. As an example
from industry, Karpathy [54] discuss how individual unit tests are grown with a curated set of
dedicated predicates for individual images.

4.1 Oracles from ground truth and meta information
Deep learning in computer vision mostly relies on supervised learning, i.e. ground truth labels are
provided for training. Predictions are compared to ground truth labels based on task-dependent cost
metrics such as intersection-over-union (IoU). One of the main advantages and reasons for using
synthetic data is automatic generation of ground truth along with the generated input (cf. Sec. 3.3).
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The quality of ground truthmay be superior tomanual labeling because of its underlying algorithmic
computation. Therefore ground truth is consistent and precise, i.e. pixel-precise, e.g., when creating
semantic segmentation maps. In contrast, for acquired real data, creation of ground truth is typically
a manual task and often supported by additional measurements, e.g., lidar that help with object
detection and tracking [60].
Getting data with matching ground truth is necessary for training, validation and verification

and often one of the most expensive and time-consuming tasks [32, 53] and a key bottleneck [76].
As an example, fine segmentation maps for Cityscapes required more than 1.5 hours per single
image on average [22]. We refer to literature from computer vision [50, 67, 105] and benchmarks for
automated driving [22, 50] for data collection and labeling. There are similarities between manual
labeling and manual software testing as both rely on a specification subject to interpretation by
humans [32]. One difference is that for V&V we typically want to use high-quality ground truth,
as the quality of labels is a major safety concern for DNNs [101], while training may also rely on
weak signals based on automatic labeling [76].

As in any test setup, if a test execution fails, the error may be due to the implementation or due
to the test. For reference-based tests, the actual reference, i.e. in our case ground truth labels, may
be at fault. There are several sources of errors and label noise [34] including errors of automatic pre-
labeling, errors in the labeling specification given to labelers and human errors in labeling [22, 32].
Concrete challenges in labeling are domain-specific. As an example, in automated driving a fine-
grained classification might not be necessary (cf. 30 classes in Cityscapes [22]), yet there may be
some subtle interpretations, e.g., of drivable space on road boundaries. To ensure the high-quality
labeling required for V&V, quality control of labeling results are necessary and important.

Gauerhof et al. [37] focus on the elicitation of deep learning safety requirements including data
requirements. According to the desired properties, also called desiderata for data management
relevant and complete, data requirements refer to data defined in ODD and variants occurring due
to other components in the system, e.g., sensor properties. To satisfy the desideratum accurate, data
requirements are specified regarding the quality of labeling. To satisfy the desideratum balanced,
the data shall have a comparable representation of samples for each relevant class and feature,
meaning that any class must not be under-represented with respect to the other classes or features.
Especially testing may reveal under-represented data in training, if, for example, robustness against
a special feature (or meta information) is not adequately existent. One consequence could be to
enrich the data, especially training data, so that after retraining the robustness requirement is
satisfied. While data requirements might only partly capture the dependence of a DNN behavior
on the data, testing shall exhibit intended and unintended correlations of both.

Discussion. Labeled data is required for both training and testing. While training may also benefit
from data with noisy labels or even use unsupervised and semi-supervised techniques, testing and
verification depend on the availability of high quality labels from the target system in order to
ensure a realistic performance evaluation. If label quality is not sufficient, the model might suffer
from undetected insufficiencies that will only show later in the field.

Even though synthetic data already comes with automatically generated ground truth and can be
scaled economically (cf. Sec. 3.3), it should only be used for testing after having shown its validity
with respect to real data. Hence, real data from the target domain will always be needed at least for
conformance testing and validation.
For detailed evaluation further task-specific labeling and metadata may be necessary, e.g., for

categorization into a semantic domain model as shown in Fig. 4, and especially considering domain-
specific evaluation metrics that require fine-grained details about the environment, e.g., for deter-
mining relevance of objects as discussed in Sec. 4.2.2.
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4.2 Specification-based oracles
Providing a full set of specifications for a perception function is unrealistic given the open context
of the problem. However, we can formulate (partial) specifications for various properties and
sub-tasks [81]. This is beneficial as such specifications (i) strengthen our safety argumentation
and (ii) make verification more efficient. Although a complete decomposition into subtasks is not
feasible for a perception function, each specified property and sub-task helps to find causes for
failures and unintended behavior. Bottom-up approaches (Sec. 4.2.1) start from the perception
function design and implementation and specify lower-level properties such as invariance under
perturbation. Top-down approaches (Sec. 4.2.2) specify properties derived from the context, ODD,
system design and decomposition, e.g., fine-granular performance specification in partitions of the
input space. Due to the nature of the environmental perception task, deriving specifications is not a
one-time approach, but requires iterations and interaction between these bottom-up and top-down
approaches (cf. Fig. 3).

4.2.1 Bottom-up approach. Ground truth is a reference, a point-wise specification, with predictions
assumed to be (approximately) equivalent. Ground truth in combination with image augmentation
frameworks as described above (cf. Sec. 3.1.2), can also be used to describe local invariance and
equivariance properties:

(i) Local invariance: Small changes on the input do not cause a change on the output. An example
is the setup for minimal adversarial examples in image classification as described above, where
around images the (top-1) classification shall remain the same. We can also relax this property and
for example only check that after input transformation, the labeled class is contained within the
top-5 predictions.

(ii) Equivariance: A change on the input causes an equivalent change on the output. An example
in the context of image augmentation for semantic segmentation is the translation and rotation of
a segmentation mask alongside its input image. Leveraging equivariance and invariance as test
oracles can help us to reveal which patterns a DNN might learn based on the given data and their
corresponding artifacts. Thereby, spurious correlations may be revealed.
(iii) Spatio-temporal: When considering sequences of images, spatio-temporal properties of de-

tected objects can be checked for consistency. In order to achieve this, object behavior must be
translated to image space, e.g., to determine bounding box translations across frames. Balakrish-
nan et al. [9] describe a formal language called Timed Quality Temporal Logic (TQTL) to describe
such spatio-temporal properties. While they only approximate translations in image space, this can
already identify relevant misclassification for popular convolutional neural network architectures
used for real-time object detection. Such properties are closely related to using consistency proper-
ties in machine learning. A recent approach by Varghese et al. [99] describes temporal consistency
across frames and improves the approximation of changes in image space by leveraging optical flow.
On this example, we can see the relation between consistency metrics used in (unsupervised) learn-
ing and property specifications used in verification. Properties determined from bottom-up analysis
should be included into requirements and thus, enrich the top-down determined specification with
machine learning specific, safety relevant properties.

4.2.2 Top-down approach. After structuring the ODD (cf. Sec. 3.2.1), analyzing hazards (cf. Sec.
3.2.2) and describing the ODD in a more detailed way, such as in a semantic domain model
(cf. Sec. 3.2.3), the requirements elicitation is conducted. Thereby, it is challenging to provide a
traceable link between system safety requirements and deep learning safety requirements, while
providing verifiable deep learning safety requirements. Gauerhof et al. [37] focus on this issue.
To support a safety case, they define a set of desired properties (desiderata) for data management
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Fig. 5. Relevance of a moving pedestrian (movement prediction in blue) for the vehicle moving from left to
right (movement predictions in red).

(cf. Sec. 4.1) and model learning (performant, robust). To ensure the desiderata are satisfied, safety
requirements are defined for data management and model learning. By doing so, a traceable link
between system safety requirements and deep learning safety requirements is established.

Frtunikj et al. [35] discuss a refinement of performance metrics to application-specific quantities
depending on safety requirements: This may include the consideration of the environment such as
weather and the context of the ego vehicle, e.g., in the form of distance-based mAP (mean average
precision). Metrics with more structure are intuitively appealing, since speed and distance are
relevant parameters in following stages of the AD functional chain, e.g., for computing threat
metrics of a planner. The context-dependent performance metrics discussed in [35] are obviously
linked to a domain analysis (cf. Sec. 3.2). Additionally, within requirements each metric needs a
corresponding acceptance threshold or area. Detailed metrics also necessitate availability of the
corresponding meta-information relating to the ODD or requirement elements, e.g., object distances
for the metric discussed above.

Seshia et al. [89] survey the landscape of formal specifications for DNNs. The paper mentions that
a complete end-to-end perspective may be appealing, since system level constraints, requirements
and rules are more intuitive and easier to specify on a system level. Moreover, breaking down
constraints and requirements across the functional chain is a challenging task [98]. However, (i)
for practical formal verification a decomposition is necessary and (ii) end-to-end test setups such
as (4) in Figure 1 are expensive and require a check for validity, e.g., for a simulation environment
as described in Sec. 3.3.3.
As part of the requirements for a driving task, the relevance of individual objects may be

considered to assure safety-relevant properties. As an example, Bolte et al. define corner cases
in terms of relevance as follows [12]: “A corner case is given, if there is a non-predictable (i)
relevant object class in (ii) a relevant location.” Non-predictable refers to a “misprediction” of the
DNN. Relevance in the context of the driving task could be either a static element such as a traffic
sign relevant for the determination of the scene and relevant traffic rules or a (dynamic) traffic
participant such as a pedestrian. In the latter case, a relevant pedestrian could potentially have
some impact on the movement of the AV depending on both locations.

The intuition is that a faraway pedestrian that cannot be reached within a specific time frame that
depends on the ego vehicle’s speed has less immediate impact on planning and most likely no impact
on immediate safety of the system [101]. Some works consider this as individual requirements in
particular situations [37], while other works integrate a relevancemetric for that purpose [12]. Often,
relevance is used synonymously with distance [35] derived via measurement using a reference
sensor, e.g., using a lidar as in [39], or approximated by proxy metrics on the image space, e.g., an
object’s distance from the bottom of the image. A further refinement of relevance is to consider the
actual movement of traffic participants for relevance propagations as shown in Fig. 5. As shown
for the ego vehicle, relevance is not purely derived on distance, but may additionally consider the
actual movement possibilities of traffic participants over time. This results in a refined evaluation
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metric that specifically defines relevant locations for each relevant object class type individually.
This in turn allows a focus on corner cases as defined above, which may help to mitigate the safety
concern of “Unknown behavior in rare critical situations” [101].
Instead of a complete specification that is challenging, a partial specification might strengthen

safety assurance [81] and thus, testing. One approach is contract-based design (CBD), e.g., [83],
that enables refinement checks, enhances the validity of requirements and can be included in test
derivation. CBD requires to define what each component guarantees, provided its environment
satisfies the given assumptions [17, 83]. Contracts are gained by formalizing informal requirements
of components. Contracts are used for refinement checks, e.g., to check properties of the overall
system based on components[52]. Additionally, contracts can be used for (automatic) test genera-
tion [61]. In contrast to CBD for cyber-physical systems [83], contracts for perception and machine
learning need to deal with ML idiosyncrasies such as inherent uncertainty. This may necessitate
new approaches in formalizing and analyzing contracts, such as the Chance Constraint Temporal
Logic to include chance constraints as predicates [51] or TQTL for spatio-temporal properties [9]
mentioned above. Guarantees may be formulated based on the DNN performance and conditional
on partitions of the input space [17], e.g., by considering a semantic domain model as described in
Sec. 3.2.3. Contracts may also include derived properties such as equivariance (cf. Sec. 4.3).

4.2.3 Discussion. Specifications of perception functions are tightly coupled to an input. On the
one hand, we condition on partitions of the input space to characterize the functions behavior
in detail (cf. Sec. 3.2.3). On the other hand, within each partition we need to provide diversity in
order to allow for robust evaluation within the partition. These input partitions are typically based
on human intuitions, while a DNN learns its partitioning from the input data and thus may be
different. Of importance is to find systematic and reproducible errors by testing and to find reliable,
effective metrics for testing. Requirements shall utilize these metrics such that test goals and setups
are unambiguous Moreover, metrics that are automatically analyzable and approaches that do not
require ground truth reduce the effort for testing. Requirements including relevance of objects
refine metrics so that test results are more meaningful for the application domain, e.g., to relate
which objects in the environment of a vehicle are of high importance for a planned driving task
and which are not important. To take system-specific as well deep learning-specific properties into
account for requirements, top-down as well as bottom-up approaches are needed.

4.3 Derived oracles
There has been work on differential and metamorphic testing of machine learning functions, both
so-called derived specifications [11]. First, differential testing or the more general variant of n-
version testing is a derived test oracle [11] where the results of n versions of the same function are
compared with each other. Here we rely on a comparison of functions that observably differ in their
implementations. This can be either based on different implementation approaches or on evolutions
of a single implementation, e.g., for regression testing. DeepXplore [72] uses differential testing
for different applications including a simple example from the automated driving domain. The use
of redundant paths in safety-critical applications, whether through different sensing modalities
or redundant implementations, supports a use of differential testing and can help to identify
inconsistencies, but not common weak spots. As an example, Karpathy [54] describes differential
testing of traffic sign recognition based on images compared to traffic signs annotated in a map.
There are several limitations to consider:

• Multiple implementations are needed that feature some sort of diversity in order to have
variance in predictions.
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• In order to receive meaningful results, all implementations should have strong performance
to avoid finding easy cases only.

• The source of a difference in observable behavior is unknown and could be that (i) one
implementation is wrong, (ii) both implementations are wrong (although unlikely), (iii) the
input for differential testing was outside the specified input domain and (iv) there is inherent
uncertainty in the prediction.

Second, metamorphic testing [87] uses metamorphic relations (MRs) that check the relative
change between different executions of the same SW under test. A simple example of a MR is a
difficult-to-specify function with periodicity (in the literature a simple sine function is used for
illustration purposes). While an absolute specification of an output may be difficult to formulate
for a concrete input x , we know that if we have given the function evaluation f (x), we can directly
determine the outputs at periodic inputs f (x +n ∗period) = f (x),∀n ∈ N. MRs may describe a local
(epsilon) invariance property and as such currently formulated adversarial robustness properties as
well as augmentation invariance are using metamorphic relations. Local invariance is also mainly
used in previous work on metamorphic testing, e.g., in DeepTest [97] and DeepRoad [110] where it
is checked whether a projected driving vector remains invariant within some ϵ bound.

Metamorphic relations can however be used for more general specifications such as equivariance
properties. As an example for equivariance, a translational change on the input should result in
an equivalent translation of bounding boxes of an object detector. As such, the combination of
concrete tests, i.e. data points labeled with ground truth, and relations that capture relevant oracles
around the concrete tests seems suitable for testing machine learning classifiers. Some metamorphic
properties are described by Dwarakanath et al. [28] in the context of testing for implementation
bugs. As such, the focus is not specified behavior, but common properties that may help to detect
generic implementation bugs, in this case exemplified via mutation testing of the underlying source
code.1 Note that any derived specification that only approximates a real requirement is susceptible
to false alarms and missed violations as described for synthetic data (cf. Sec. 3.3).

Discussion. Any machine learning application inherently suffers from the “oracle problem”. This
is exacerbated in deep learning where additionally features are learned creating large black boxes
that are hard to understand and therefore test. Besides top-down determined specification, we can
derive oracles, e.g., for robustness, invariance or equivariance properties. As brittleness of DNNs is
a prime safety concern [101], oracles for robustness is an important research topic.
Given the discussion, it is evident that derived specifications have a relation to making DNNs

understandable as both have the goal of opening up the black box. As an example, the context
removal technique by Shetty et al. [93] to quantify and control the effects of context is a method
for determining robustness that can be leveraged for verification. As we can see on the example,
derived specifications are often tied to input generation techniques, e.g., as discussed in Sec. 3.1 and
Sec. 3.3.1. As an example, Dreossi et al. [27] present an overview of different robustness formulation
including an interesting comparison between different adversary input generation techniques under
the same general notion of robustness by considering the formulation of the input perturbation
(cf. Sec. 3.1) and the corresponding derived oracle on the output.

5 TEST ADEQUACY EVALUATION
In this section, we answer the final question how can ML test engineers show test adequacy of
the available test data? To this end, we discuss test adequacy and in particular different forms
of coverage, since coverage is widely-used in industry as a quantitative measurement of test

1Machine learning specific mutants were created, e.g., changing the loss function.
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adequacy [109]. Well-known are structural coverage metrics based on code such as branch coverage.
Such structural metrics are used when testing small software units. ISO 26262 [47] discusses the
above mentioned coverage metrics for software unit verification of safety-critical code. However,
coverage criteria are not restricted to code and are selected based on the corresponding test level.
ISO 26262 discusses function and call coverage as structural coverage criteria at the software
architectural level and similarly coverage of requirements and respective equivalence classes on an
embedded software level. Hence, on a lower level, white-box, structural coverage metrics are used
that consider the implementation and design, while on a high functional level black-box coverage
criteria are used that provide information on what the software is supposed to do. In summary,
a coverage metric supports the testing process by providing a quantitative measure that must be
adequate for the test level and purpose.
In the following, we discuss coverage metrics bottom-up and start with structural coverage

metrics in Sec. 5.1. Then we look at mutation coverage in Sec. 5.2. We finally present coverage from
the input domain perspective (Sec. 5.3).

5.1 Structural coverage for neural networks
There have been several works on coverage for neural networks. Most coverage metrics are
fundamentally based on structural coverage and formulate metrics based on neuron activations [62,
65, 72, 95]. As described in previous work [1], it is imperative to have a clear definition of (i) the
definition of an individual coverage element (“neuron”), (ii) how the corresponding activation is
split into equivalence classes and (iii) the aggregation into an overall metric. There is a large number
of different approaches that can be and have been defined. An overview is provided in [1] and [95].
Abrecht et al. [1] compare differences in neuron and activation definition and report the resulting
differences in coverage elements that can be several orders of magnitude depending on DNN
architecture. Sun et al. [95] discuss the relation of structural coverage criteria to code coverage and
formally study the subsumption relationship between several structural coverage criteria for DNNs.
There is some criticism towards such structural coverage metrics. As [1] points out, test generation
based on structural coverage may not perform better than standard augmentation techniques for
test generation. Li et al. [62] discuss that many structural coverage metrics have been only used to
evaluate effectiveness in directing the generation of adversarial inputs. As the paper notes, there is
no evidence that the metrics achieve better efficiency and efficacy than existing adversarial example
generationmethods. Additionally, further experiments in [62] suggest that existing coveragemetrics
might be ineffective for fault detection of DNNs with natural, non-adversarial inputs. This seems
intuitive: minimal adversarial robustness is concerned with robustness on individual paths on a
low level correlating well with structural coverage on neurons, while classifying “natural images”
is concerned with global, functional behavior on a higher level, necessitating a different kind of
coverage.
Instead of posing coverage on the original model, we can also consider coverage on a “proxy

model” such as a variational autoencoder (VAE) that learns the input domain from data [18]. Such a
proxy model may be useful due do the manifold hypothesis: relevant images do not fill the complete
input space of possible images, but that natural images lie on an low-dimensional manifold. A
proxy model tries to capture this manifold. Byun et al. [18] describe the idea of k-section manifold
combination coverage. They use a VAE that is constructed to have a smaller latent space that still
allows to capture the complete manifold in the input space. This latent space layer in the proxy
model allows to formulate a structural coverage metric known from white-box coverage to the
latent space of the VAE and thus the manifold in the input space. First results indicate that this
may provide better feedback than structural coverage metrics such as neuron coverage [72].
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Discussion. It is clear that on a low-level, data-flow oriented DNNs cannot be evaluated using
traditional source code metrics [72]. First approaches to a neuron coverage showed that using a
neuron definitionmay help in identifying fault revealing tests [72] and helpmeasure the contribution
of adversarial examples to a test set [65]. Although, the overall effectiveness of these metrics still
needs to be shown, such metrics may help to identify issues with the network or the test set,
e.g., identifying that the test set may not completely activate the input layer [1]. The selection of a
relevant structural coverage model is related to the kind of errors can and should be detected on a
structural level. We discuss this further in the context of mutation testing below. While it is still
unclear if structural coverage on a proxy model is a good metric for test adequacy, proxy model-
based approaches are interesting for verification and validation as they have further applications,
e.g., for input generation [112], anomaly detection [36] and identifying missing data [101]. Another
research direction is to shift from a structural level to a semantic level and extract semantic concepts
from activations [55] and use those concepts for coverage, e.g., with references to a semantic domain
model (cf. Sec. 3.2.3).

5.2 Mutation Coverage
Mutation testing [6] uses the concept of a mutant, i.e. a SuT with a defined change (mutation), in
order to evaluate the effectiveness of a test set. Mutation testing rests on the assumptions that
(i) (small) mutations should correspond to actual mistakes programmers introduce and (ii) these
small mistakes actually results in observable misbehavior. If a test can observe this misbehavior
and identify a mutation, the test “kills” the mutant. The corresponding mutation coverage (score)
computes how many of the generated mutants, can be killed by a test suite. While mutation
testing faces several challenges such as the equivalent mutant problem and computational costs,
it can be highly effective [6]. For DNNs different concepts of mutations are needed and several
works have proposed different mutation operations for deep learning [28, 66, 92]. In contrast to
program mutation, the described mutation operators perform changes on different parts of a deep
learning and in different granularity: Mutation is applied to data, network architecture, as well as
learned weights and biases. Jahangirova et al. [49] categorize proposed mutation operators and
experimentally identify interesting mutation operators as well propose a new definition of “killing
a mutant” that takes the stochastic nature of DNNs into account.

Discussion. Mutation testing is a useful concept for adequacy of a given test set w.r.t. the consid-
ered errors. However, it is important to define relevant errors. Previous work [49, 109] discusses
that more research is needed to better design mutation operators. In particular, it is not clear
whether currently defined mutation operators such as Activation Function Removal or Layer Re-
moval relate to actual errors. Therefore further research is need to (i) evaluate already available
mutation operators w.r.t. adequacy and (ii) use available sources of errors such as the taxonomy by
Humbatova et al. [45]. An argumentation of the relevance of generated mutants strengthens the
argumentation of mutation coverage of a test set.

5.3 Model-based input coverage
Input domain models, e.g., based on semantic domain models as discussed in Sec. 3.2.3, help to
structure the input space based on expert knowledge and intuition. They are intended to build
equivalence classes for defining adequate test sets and to pave the way for a test end criterion. The
high dimensionality of input domain models, however, still prohibits a full exploration in terms of
test data. To this end, more sparse sampling techniques like combinatorial testing [59, 69] can be
used to reduce the sampling space.
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Gladisch et al. [42] describe a (partial) domain model for automated driving with 15 dimensions
that specify a road network with road properties (such as road-type), and lane properties (such as
lane-type). Each dimension can have two or more possible values resulting in a state space of 1.8·1012
combinations. Pair-wise combinatorial test generation reduces the 1.8 · 1012 combinations for the
road network to 420 test cases. In another model for pedestrian appearance the full combinatorial
test space (4.2 · 1022) can be reduced to 189 test cases satisfying pair-wise combinatorial coverage.
How much the combinatorial space can be reduced significantly depends on the number of visual
parameters and the number of different choices for each visual parameter. Gladisch et al. [42] use
existing combinatorial coverage metrics and corresponding tools with a focus on collaborative
and iterative domain model development and its management. Furthermore, existing datasets are
analyzed and missing tests are generated using an iterative workflow.

Cheng et al. [20] focus on affordances provided by a simulator to generate synthetic data. They
propose a new quantitative combinatorial testing metric which allows to define the minimum
amount of samples per dimension, hence giving importance to dimensions. The paper focuses
mainly on algorithms for satisfying the metric and discusses their computational complexity. On
the use-case side they discuss how to cover a specified domain based on so-called scenarios using
their metric and show its application in synthetic data generation using CARLA [25].

Discussion. Model-based input coverage based on semantic domain models (cf. Sec. 3.2.3) aims at
structured testing and tries to connect to expert knowledge and experience in testing (non-ML)
perception functions. Testing the function under controlled influence factor variations can help to
avoid hidden stratification [71] as stratification is performed as a dedicated and reviewable task.
A problem that remains w.r.t. model-based input coverage is the mapping between the (abstract)
semantic domain model and concrete images.
In either direction the mapping is not unique: (i) Mapping abstract dimensions to concrete

images is an open problem, because the visual appearance of phenomenological entities can be very
different and, thus, many different realizations of a semantic concept exist and (ii) mapping concrete
images to the semantic domain requires data annotations that are typically not available in public
datasets and that, in some cases, require additional measurements during data collection. If the
semantic domain models are very large, automating the labeling process is crucial. Combinatorial
testing may help in dealing with the exponential growth in input interactions for such large models.
While the effectiveness of combinatorial testing is established for domains such as application and
embedded software [59, 69], its effectiveness for testing a computer vision task is yet to be shown.
Therefore, it seems promising to combine input domain models to systematically generate images
with specific contents with validated synthetic data generation as discussed above in Sec. 3.3.

6 COMBINING APPROACHES INTO TEST SET STRATEGIES
In this paper we posed the question how to test a machine learning-based perception function given
incomplete specification and data. As the function is defined as an input-output relation, examples
of which are given by the data and corresponding labels, standard software testing techniques
need to be extended. Such perception functions are embedded into an overall automated system as
shown in Fig. 1. For the different test scopes shown by the braces in the figure, techniques from
different fields are relevant. While a smaller scope (1) leverages techniques from computer vision
and machine learning, such as invariance under image augmentation (cf. Sec. 3.1), a larger scope
(4) considers a closed-loop, cyber-physical system test scope, e.g., using simulation (cf. Sec. 3.3.3)
and deriving specifications from a system view as presented in Sec. 4.2.2.
We have separated the content into three parts guided by the following questions: How can

ML test engineers create relevant and meaningful test data efficiently for deep learning-based visual
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perception tasks? How can ML test engineers verify relevant properties of the corresponding DNNs?
And how can ML test engineers show test adequacy of the available test data?
As we can see from the corresponding discussions, test inputs and test oracles are highly

dependent and cannot be separated. This is not surprising due to the data-driven nature of machine
learning and the perception task. This leads to the necessity of various collections of test sets (not
to be dismissed with a test dataset) where each test set has a specific test purpose. Each test set is
based on a combination of input and oracle. Below, we describe several such purposes and how the
corresponding test set is constructed based on a combination of the methods discussed above. Note
that this notion of curating test sets with specific images and corresponding properties has been
discussed before by practitioners in the field [54].
(TS0) Standard ML test set: The basic test set for evaluating performance as typically used

in machine learning is a minimal requirement, since without performance evaluation, even the
satisfaction of average case performance cannot be determined. There may even be several versions
of such sets, e.g., for development and later release stages.

(TS1) Invariance in domain: A second test set could show that DNN performance is invariant
under relevant input variations. This approach leverages a semantic domain model (cf. Sec. 3.2.3) and
uses a validated synthetic data generation (cf. Sec. 3.3) to provide data that covers the input domain.
Here, we can check corresponding performance metrics (cf. Sec. 4.2.2) and verify performance
invariance and check that there are no hidden stratifications (as discussed in Sec. 5.3.). A similar
approach can also be used to derive a more accurate performance evaluation of the function by
preventing averaging out worst cases.
(TS2) DNN corner cases: There will always be a need for a strong test set based on real data

whether for safety argumentation or validation of a synthetic data pipeline. Here, we may use
more fine-grained metrics for evaluation, e.g., by considering relevance of pedestrians in pedestrian
detection (cf. Fig. 5). For such real data, ground truth annotations are a bottleneck. Here active
learning [90], supported by a semantic domain model (cf. Sec. 3.2.3) as well as coverage metrics
(cf. Sec. 5.1), may help to select relevant new data for labeling.

(TS3) System corner cases:A particular concern for safety is the performance in rare cases [101],
which could be approached with the following test set. Here, we leverage knowledge of behavioral
corner cases in the ODD (cf. Sec. 3.2.1), simulate them in a closed-loop simulator and evaluate
behavior of the DNN, e.g., leveraging this setup for CPS-based falsification (cf. Sec. 3.3.3).

(TS4) Vision hazards: A similar test set could be based on known CV hazards annotated on real
images, e.g., based on CV HAZOP , and check for robustness to computer vision-specific corner
cases. The WildDash [107] dataset is an example for such a test set. We detail on such hazard-based
approaches in Sec. 3.2.2.
(TS5) Input perturbations: A further test set should consider robustness of the perception

function w.r.t. input perturbations, e.g., derived from the ODD (cf. Sec. 3.1.2), applied to real images.
Corresponding properties are derived for each perturbation such as equivariance under translation
and invariance under (partial) occlusion (cf. Sec. 4.3).
(TS6) Controlled distributional shift: TS5 uses modification of individual images for robust-

ness testing. Another notion of robustness is to evaluate the effect of (small) data shifts without
modification. This test set would use a related dataset with a data shift, e.g., from a different camera,
and check its effect on performance.
(TS7 ) Spatio-temporal consistency: A CPS such as an automated vehicle performs actions

over time and space. Hence a test set based on sequences of real images, e.g., from test drives, allows
us to check spatio-temporal properties (cf. Sec. 4.2.1).
These test sets are complementary, yet not completely orthogonal and often offer synergies

w.r.t. test input generation and test oracles. Test set purposes are closely aligned to the safety
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Id Test set strategy Test set purpose SC-3 SC-4 SC-5 SC-6
TS0 Standard ML test set Performance evaluation
TS1 Invariance in domain Robustnessw.r.t. known domain

variations
X X X

TS2 DNN corner cases DNN behavior in rare cases X X X
TS3 System corner cases Contribution of DNN to system

behavior in rare cases
X

TS4 Vision hazards (Worst-case) DNN behavior on
vision hazards

X X

TS5 Input perturbations Robust DNN representations X X
TS6 Controlled distribu-

tional shift
Robustness to small distribu-
tional shift

X X

TS7 Spatio-temporal con-
sistency

Robustness measured by spatio-
temporal consistency

X

Table 1. Overview of described test sets, their purpose and which safety concerns fromWillers et al. [101] they
can address. (SC-3: Incomprehensible behavior, SC-4: Unknown behavior in critical cases, SC-5: Unreliable
confidence estimation, SC-6: Brittleness of DNNs)

argumentation [17, 101] and therefore dependent on the concrete task of the DNN and the overall
system, system architecture and the contribution of the DNN to safety. In Table 1, we show an
exemplary mapping of the test sets to safety concerns from Willers et al. [101]. Here, we focus on a
subset of safety concerns that are most suitable for testing. In contrast, distributional shift over time
(SC-2) may be better addressed with an operational concept. Obviously, this is not an exhaustive
list. There are many options for curating test sets based on the methods described above.

Table 1 details how test sets contribute to individual safety concerns. The standard test set does not
address safety concerns. Nevertheless, performance on a test set and corresponding generalization
is the fundamental basis for any further analysis. The test sets addressing SC-3 (Incomprehensible
behavior) allow ML test engineers to study the behavior of a DNN under controlled and relevant
input modification. Hence, in these sets we can analyze the behavior over groups of related points
instead of only seeing DNN predictions on individual (isolated) data points. For SC-4 (Unknown
behavior in critical cases), we create test sets addressing different aspects of critical behavior,
whether it originates from the system (TS2), the domain (TS3) or the DNN (implementation) itself
(TS4). Unreliable confidence estimation (SC-5) necessitates test sets, where we can either (i) know
that confidences should be lower by construction (TS3,TS5,TS6) or can check for invariance of
confidences under transformation (TS1). As brittleness (SC-6) of DNNs can be due to various sources,
various test sets can support a robustness argument, e.g., w.r.t. domain invariance (TS1) or focusing
on known corner cases of DNNs (TS6).
While test sets enable comparative evaluation of DNNs, ultimately a DNN must satisfy the

acceptance criteria on each test set individually. These acceptance criteria need to be deter-
mined in an application and task-specific manner. Intuitively, brittleness or unreliable confidence
estimation cannot be accepted for the sake of performance. Rather each safety concern needs to be
adequately addressed with the considered test sets and corresponding acceptance criteria.
For each test set, we would like to measure its contribution with a corresponding adequacy

metric. However, it is evident from the discussion that in comparison to test input generation and
test oracle generation, test adequacy metrics are still in their infancy. First approaches have been
discussed, but there is no evidence yet of their effectiveness. One reason is the fact that there is no
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commonly agreed evaluation approach yet. Additionally, further studies are needed how coverage
can be leveraged to argue test set completeness, e.g., by using a form of input domain coverage and
complementing it with an error analysis.

7 CONCLUSION
This work reviews and discusses existing work on testing DNNs for visual perception in the context
of automated driving. We separate the presentation into three parts for (i) test input generation, (ii)
test oracle generation and (iii) test adequacy. We finally show how to combine the approaches into
test set strategies. As pointed out by [62, 109], there is a need for more detailed and comparable
evaluation of test methods in order to actually determine efficiency and effectiveness of individual
methods. We see the need for considering a more diverse discussion of testing, e.g., different notions
of robustness testing, task-specific error models, test-specific metrics and different notions of neural
network coverage, similar to the research opportunities in ML testing discussed in [109]. This work
tries to show that interaction is needed between different fields such as cyber-physical systems,
computer vision, machine learning and software testing such that individual methods from different
domains can be joined into efficient and effective verification approaches.
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Abstract—The perception in autonomous systems is essential
for safe behavior. Machine learning (ML)-based functions play
an increasingly important role in this context. The development
and safety assurance of such functions is different from the devel-
opment of non-ML-based functions. Traceability of the various
artifacts generated for safety argumentation is challenging, as
there is i.e. no longer a direct mapping from requirements to code
and data cannot be directly mapped to a semantic domain model.
In this work, we show that and how the links between artifacts,
which are created in different stages of the development, must be
established explicitly. These links enable us to build confidence
in our safety argumentation. We concretize these explicit links in
two examples, namely pedestrian detection and vehicle detection.

Index Terms—Machine Learning, safety, traceability.

I. INTRODUCTION

The failure of autonomous safety-critical systems, such as
self-driving vehicles, can result in fatalities [1]. As perception
is essential for further system decisions regarding behavior
and trajectory planning, it is necessary to perform a rigorous
safety analysis for perception components, which are often
implemented based on Machine Learning (ML), to establish a
systematically justified safety assurance case (SAC) [2].

As most safety standards focus on a general and not ML-
specific safety aspect, such as SOTIF [3] or ISO26262 [4], the
regulatory structure that utilizes the artifacts created during
the development for SACs for ML-based components is not
distinctive. Furthermore, it is noticeable that in particular
the artifacts from the system engineering and from different
phases of the ML lifecycle, requirements elicitation, data
management, design/training, testing, and deployment, shown
in Figure 1, are often created and maintained by different
teams. The teams working on the different phases have differ-
ent expert knowledge and split responsibilities. For example,
safety experts elaborate the component specification while ML
experts elaborate the DNN component. While some exchange
of artifacts takes place in the collaboration, for example, the
requirements created by the safety experts are passed on to
the ML experts or test experts, a consistent exchange and
alignment of knowledge might not take place in such an extent
that traceability can be guaranteed.

The research leading to the results presented above are funded by the
German Federal Ministry for Economic Affairs and Energy within the project
KI Absicherung – Safe AI for automated driving.

Fig. 1. We focus on the artifacts generated iterative and in parallel by system
engineering and the phases of the ML-lifecycle [5], [6] requirement elicitation,
data management, design&training, V&V. Deployment is out of scope.

For a ’traditional’ SAC, it is necessary to trace requirements
down to the code. However, a machine learning component
is not explicitly programmed, but trained using data, and
consequently there are no lines of code that can be traced back
to a specific requirement. Adding to the black-box nature of
the ML component, the open context in automated driving is
complex and the potential input space represented by the data
is very large. At the same time, data should be proven to be
suitable for learning the intended functionality. Therefore, we
must strengthen the links of artifacts from different phases of
the development to enable a valid decomposition of the safety
arguments and evidences to justify a high level of confidence
in the safety of an ML component.

In this paper, we identify essential artifacts created in the
different phases of the ML-lifecycle. Furthermore, we explain
how they interdepent on each other and how traceability might
be facilitated. We provide approaches how to realize and
strengthen the concrete links between the artifacts. Our leading
examples are two perception functions, DNN based pedestrian
and vehicle detection functions, in an automated vehicle. The
first case study deals with evaluating pedestrian detection with
task-oriented metrics [7]. The second case study addresses the
systematic modeling for environmental perception limitations
in automated driving assessment [8]. We show how the links
between artifacts manifest based on these two perception
functions from the automated driving domain. We demonstrate
which processes and methods are used to realize the linkage of
particular aspects of the artifacts. In this way, we make aware
how certain methods contribute to increase the confidence in
the SAC of an ML component and which weaknesses remain.
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II. RELATED WORK

A SAC contains goal-based safety arguments [9], which
in turn are decomposed into further arguments by a strategy.
Evidence such as test results, development processes, or sim-
ulations support these arguments [10]. Established graphical
representation of SACs are the Goal Structuring Notation
(GSN) [11] and the Claims-Arguments-Evidence (CAE) No-
tation [12]. Although various SAC approaches for ML com-
ponents are proposed [13]–[15], issues related to the artifact
links are not yet sufficiently discussed.

Graphical notations, such as GSN and CAE, focus on
the structuring of safety arguments, but they do not provide
an approach to resolve the deeper technical challenges. In
the development of safety-critical systems, a number of ap-
proaches are already used to closely interlink the individual
development steps and to track the consequences of changes.
However, there is no established approach to trace data and
how to compensate the missing traces to the lines of code.

Requirement management tools, e.g. IBM Rational Doors,
provide the functionality to trace requirements in order to
be able to perform an impact assessment of changes to
requirements. However, traceability of requirements for an ML
is a challenge in itself. This is addressed in [5] by providing
an approach that breaks down the requirements for an ML
component from the system level via ML-specific desired
properties, so-called desiderata. But requirements traceability
alone is not sufficient as it might be the case, e.g., that the
links to artifacts from data management are missing.

In software development, repositories are used for change
management to make changes to code traceable and to facil-
itate merging of individual code fragments. However, change
management does not solve the question of the integrity of the
various artifacts in the SAC.

SafetyOps [16] is a concept to enable an efficient, con-
tinuous and traceable system safety life cycle. For this pur-
pose, different automation frameworks (e.g., DevOps, TestOps,
DataOps) are combined. However, the links of the individual
frameworks are not explicitly elaborated.

The Guidance on the Assurance of Machine Learning in Au-
tonomous Systems (AMLAS)” [15] fosters the links between
artifacts for each stage through so-called Argument Patterns.
These patterns provide an explanation on how the generated
evidence supports the relevant safety claims of each stage.
Although linking artifacts of different stages is seen as part of
the iterations, it is not further discussed.

III. ARTIFACTS

Before discussing the necessary explicit links, we describe
the artifacts generated during development. We cluster them
according to the lifecycle: system engineering, requirements,
data management, design & training and V & V (see figure 1).

A. System engineering

• Artifact for Operational Design Domain (ODD): Accord-
ing to the standard ISO 34503 [17] on ODD Taxonomy, the
ODD comprises the static and dynamic attributes within which

an automated driving systems is designed to operate safely.
Further, it excludes explicit conditions to restrict the open-
world context [17].
• Artifact for System Architecture: The system architec-

ture specifies the components that shall fulfill the intended
functionality [3] and satisfy the safety goals within the
ODD. The architecture of the perception subsystem where ML
components are most relevant might be used, if the overall
system architecture is not known. This contains, besides the
ML component, sensors, preprocessing and components for
fusing multiple perception channels.

B. Requirements
• Artifact for Requirements: In general, functional require-

ments and functional safety requirements are derived. Due to
our focus, we refer here to functional safety requirements.
• Artifact for Data Requirements: The data requirements

specify the data and define the required data properties.
• Artifact for Data Acquisition Specification: For data ac-

quisition from the real world, it defines the spatial, geographic,
and environmental factors (e.g. country, time of day, weather
conditions), their frequency, their annotation to data and the
configuration (e.g. camera model, installation location). For
synthetically generated data, it defines in addition how the
data shall be generated.
• Artifact for labeling specification: The labeling specifi-

cation includes examples and determines the labeling qual-
ity [18].
• Artifact for Semantic Domain Model (SDM): The model

of the input space, also called semantic domain model, is
an extension of the ODD including the perception-specific
properties [19]. In particular, the properties of sensors [20]
and perception algorithms are taken into account due to their
influence on data. The data features are disentagled from these
and included seperately in the semantic domain model.

C. Data management
• Artifact for Processed Data: The data used for imple-

mentation of a ML component has to reflect the intended
functionality that is expressed by the requirements. It is split
into the development datasets and the V & V datasets based
on the data split log. The development datasets consists of
the training and validation dataset and the V & V datasets
consists of the test dataset and supplemental data (e.g. out-
of-distribution data). ML components often require multiple
development iterations, and as consequence the used data
is evolving. The data split log is essential to preserve the
statistical inference validity [21].
• Artifact for Labeling: The label semantics and the labeling

process are documented in this artifact.
• Artifact for Annotations & Extracted Information: Anno-

tations of meta-information, such as weather conditions are
contained in a separate artifact. It may also contain further
extracted information which is e.g. obtained by transfering the
data into a low-dimensional, latent space.
• Data Analysis: Extracted and annotated information are

analyzed, w.r.t. distributions and correlations [22], [23].
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Fig. 2. Overview of artificats and links in a typical ML development process. The links are unidirectional to indicate the order of artifact creation. During
development these links are instantiated bidirectional to obtain traceability. They should be made explicit, to avoid becoming contradictory or not sufficiently
established. Consequently, the links allow the traceability of artifacts within an iterative development to gain confidence in the SAC and demonstrate validity.

D. Design & Training

• Artifact for Design & Training Documentation: For the
design/training phase the algorithm, its specific architecture
and the training parameters are chosen and documented in
this artifact.
• Artifact for Component: For a DNN, the component

includes the architecture and the trained weights.

E. Verification & Validation

For safety-critical functions, a statistical evaluation of aver-
age performance based on a data split is not sufficient, since
testing must serve several purposes. In particular the evaluation
of worst-case behavior and the search for critical errors and
failures [19].
• Artifact for Evaluation: This artifact contains test setups,

test results and the corresponding evaluations. During testing,
it is important to analyze possible correlations and causes
for errors and functional insufficiencies. Therefore, not only
the requirements are verified here, but also more extensive
tests are performed and documented. In addition, reasons
for decisions made about further steps are documented here.
Possible changes can be localized to all artifacts, such as
changes in design/training and data curation. No best practices
have been established until now on how to proceed these
iterations.

Regarding the practical realization, we assume that all
modifications can be traced into corresponding versions of the
artifacts in a configuration management system. This config-
uration management defines which artifact versions belong to
a particular configuration. The change request that leads to
the modifications of the artifacts is documented in the change
management including the corresponding artifact versions.

IV. NECESSARY EXPLICIT LINKS

We explain the artifact links from Figure 2 and how they
relate to each other.

1 Link between System Engineering and Requirement
Elicitation: A complete and detailed ODD definition for
automated driving is challenging due to an open-world context
evolving over time. Despite this challenge, a definition of
the environment of the system is essential. For example, it
is a necessary input for a hazard analysis and risk assessment
(HARA) which, in turn, is the basis for determining the safety
goals. Based on the safety goals, the architecture and the
ODD, the functional safety requirements are allocated to the
system components and the data requirements are derived.
This is usually referred to as a Top-Down Approach which
is followed by most safety standards [4]. The data acquisition
specification and the specification of the SDM shall be driven
by the ODD as well. Without such an alignment, there is a
risk of unexpected ML behavior in unknown situations.

2 Link between Requirement Elicitation and Data Man-
agement: Especially the adequacy of the data acquisition
specification is crucial in order to achieve sufficient coverage
of the semantic domain model by the data. Moreover, the
labeling specification defines the required labeling quality and
consequently has an impact on the performance of the com-
ponent [24]. Insight from the data analysis shall be reflected
in the SDM.

3 Link between Requirements Elicitation and
Design/Training: ML requirements shall steer the
Design/Training phase. If the ML model cannot satisfy
certain properties on its own, a corresponding monitor
may be needed, e.g., for anomaly detection. Dropout
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and regularization approaches during the training may be
necessary due to ML robustness requirements.

4 Link between Requirement Elicitation and Validation &
Verification: For testing, the requirements are further specified
in terms of the test setup and the test oracles. As a bottom-
up approach, key findings about faults, errors, and failures
might be included in the requirements and SDM, if they have
a significant impact on safe operation of the component. The
iterations of top-down and bottom-up approaches can help to
enrich requirements derived from safety goals, with DNN-
specific properties. It might also happen that in the beginning
of the development there are vague or hardly verifiable require-
ments. In this case, the evaluation shall be used to exhibit the
achievable behavior which in turn can be settled iteratively as
new requirements and aligned with the other components.

5 Link between Data Management and Design & Training:
During Design & Training, we use the development dataset to
create the model(s), e.g., to tune hyperparameters. Note that
supervised learning approaches require labels that represent
sample-wise ground truth. Missing or unbalanced development
data might lead to unexpected behavior of the ML component.

6 Link between Data Management and V & V: We use
the selected V & V data to evaluate the model using various
metrics. To be able to test robustness against ODD-specific
and data/sensor-specific variants, out-of-distribution data is
needed, e.g., via data augmentation. Such demands may be
updated during development iterations.

7 Link between Design & Training and V & V: After
Design & Training, we use a resulting trained model for
extensive testing. While the training optimizes the DNN to a
(local) optimum of a single (possibly aggregated) loss, testing
analyzes different properties of the component individually,
e.g. via metrics in different subsets of the input space.

V. CONCRETE APPLICATION EXAMPLES WITH EXPLICIT
LINKS BETWEEN ARTIFACTS

In this section, we discuss links between the artifacts
introduced in the previous section. In particular, we leverage
concrete examples from previously published works to illus-
trate how the links manifest themselves.

A. Example I: Evaluating Pedestrian Detection with Task-
oriented Metrics

As a first example, we consider the evaluation of a pedes-
trian detection function for urban automated driving based
on task-oriented metrics incorporating domain knowledge as
presented by Lyssenko et al. [7]. The paper discusses the
notion of testing leveraging a pedestrian detection function
based on information about the distance of a pedestrian to the
AV. The key idea is that pedestrians closer to the vehicle are
more safety relevant and, thus, a misdetection becomes more
critical the closer the pedestrian is. The paper demonstrates
this based on an experimental setup for generating a dataset
for training and test that includes pedestrians in a broad
range of distances. Intuitively, the distance-based metric allows
us to formulate a new ML requirement for the component

Fig. 3. Refinement of Artifact Links for Example 1

under test. To evaluate the ML requirement, a specific kind
of V&V dataset is necessary: Additional information in the
form of distance information per pedestrian is required. This
necessitates new data requirements which are addressed in this
particular example by the experimental setup in a simulator.

Let us concretize the relationships based on Fig. 2. A
corresponding refinement of the artifacts used and their links
is shown in Figure 3. Lyssenko et al. focus on automated
driving functions operating in an urban environment. They
use knowledge about their ODD to derive a ML requirement
that states that (a) pedestrians are an important class for
detection and (b) that a correct detection is more critical
the closer the pedestrian is. This, in turn, leads to the data
requirement of having images with pedestrians in urban road
scenes in different distances in the dataset. In addition, in order
to evaluate the performance over distance leads to the data
requirement that all pedestrians need to be distinguishable in
the ground truth labels and that their distance needs to be
annotated. Lyssenko et al. use the CARLA simulator in their
approach for systematically constructing datasets 2 . The data
acquisition is performed such that the resulting data set pro-
vides a meaningful distribution of pedestrians over the range
of considered distances. Here, data requirements are necessary
explicitly stating, e.g., what distributions and possibly what
poses, appearances, etc. should be contained in the data set. In
addition, the data requirements imply the required ground truth
labels. Technically, these data requirements also necessitate to
postprocess the semantic segmentation ground truth and depth
map provided by CARLA for identifying single pedestrians
in the ground truth and to associate the distance to each of
them as an instance segmentation was not available. This
information is available in data management as additional
annotations and should be part of a labeling specification.
Thus, it is important to be able to trace the data generated
for evaluating a particular ML requirement back to the ML
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requirement, as a change of the ML requirement may imply
that the data can no longer be used.

As mentioned above, the ML requirement leads to a data
requirement that, in turn, influences all datasets for training
and V&V. Datasets are split randomly, however a check of
distance distribution has been performed to validate a balanced
distribution similar across all datasets, which is essential for
this evaluation. Lyssenko et al. explicitly document the split
and corresponding distributions in pedestrian distances for
train/validation 5 and the corresponding V&V dataset 6 .
This is just one particular example showing that care is needed
in balancing datasets w.r.t. important influencing factors [25].
As the available data set is comparably small, image augmen-
tation based on choosing random image crops was used in
training to increase diversity. The use of such techniques needs
to be documented for interpreting the train and validation
performance.

The aforementioned data requirement implies that (1) per-
formance of the component under test needs to be evaluated for
pedestrians with different distances and (2) that traditionally
used metrics like mean average performance are not suitable
for the evaluation. The first point is addressed by the path
from the data requirements to the data 2 and from the data
to the evaluation 6 . As described by Lyssenko et al. [7], the
second point requires specific task-oriented metrics that are
tied to the ML requirements for evaluating the performance
of the component under test. This is shown by 4 . The
dashed green arrow indicates a possible development iteration.
If the evaluation shows that the performance is not sufficient
for certain distances, additional data for the corresponding
distance range might be necessary.

This example shows that explicitly tracking links allow
us to trace the effects of a change, in this case in the ML
requirements. As we can see, such a change may affect
various other artifacts, whether concerning the evaluation
and corresponding evaluation protocol, or corresponding data
requirements, which has an impact on the required V&V
dataset. As a consequence, explicit documentation and suitable
tracing among all artifacts is required to deal with the impact
of a requirements or ODD change during development is a
systematic manner.

B. Example II: Evaluating Systematic Performance Limita-
tions of Perception Functions

As second example, we elaborate on an analysis method to
assess the performance limitation of perception functions due
to triggering conditions as described in [8]. The performance
limitation maps (PLM) proposed in the paper are based on the
concept of triggering conditions and performance limitations
of the SOTIF standard [3]. They allow the identification as well
as assessment of triggering conditions that lead to functional
insufficiencies of the system. The impact and relation of
triggering conditions (e.g. weather, reflections, etc.) on the
perception metrics (false negative rate) are visualized to aid
the engineers in an informed decision about the relevance for
functional insufficiences.

Fig. 4. Refinement of Artifact Links for Example II

The perception function discussed in [8] is a Lidar based
object classification. The performance of the perception func-
tion is characterized by the false negative metric in spatial
bins around the vehicle. The possible systematic factors are
supplied by the perception experts in the form of a Bayesian
net structure to model the casual influence of these factors
on the false negative metric for each spatial grid cell. The
parameters for the Bayesian net are learned from acquired
data of the implemented perception function.

The method relies on collecting data for the triggering
conditions and perception metrics. While the perception met-
rics can be directly obtained from recording system internal
information, the triggering conditions have to be obtained by
a labeling process. This means that these factors have to be
included in the requirements by the semantic domain model
(figure 4). Further, these have to be passed to the labeling
specification as well as the data acquisition specification. From
there the link 2 to data management becomes important as
the specified triggering conditions then have to be included
in the acquired data to be available for analysis in the V&V
process. The traceability of the link 6 and 7 can then be
established by including a reference to the used datasets and
implementation version.

The result of the PLMs is used to decide whether the
implemented perception function is sufficiently robust against
triggering conditions. For this the conditional PLMs are
evaluated and an expert judgment is done. In the case the
experts agree that sufficient robustness is achieved, no further
development is necessary. More likely in early development
phases the experts will identify an insufficient performance
or insufficient causal structure of the Bayesian net used in
the PLM due to missing or wrong triggering conditions. In
that case a development iteration cycle is necessary and the
importance of the links between the artifacts becomes evident

As a new triggering condition is identified or need to collect
more data is identified by the experts, the links 4 to the
semantic domain model and data acquisition specification have
to be established (dashed lines in figure 4). From the expert
assessment in the evaluation protocol the link to the modified
artifacts allows for traceability in future iteration steps. Going
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downstream through the development process again, a new
dataset with these labels included in the next iteration is
supplied for reassessment.

By applying these incremental development steps with
traceability between the artifacts, a strong argument for a
SOTIF release can be built. The systematic identification of
triggering conditions of an implemented perception system
with traceability between artifacts and inclusion of expert
assessment demonstrates the necessary rigor to argue about
sufficient reduction of the residual risk.

VI. CONCLUSION AND SUMMARY

We provide an overview of the relevant links between
the artifacts from different phases of the ML-lifecycle. We
document what artifacts are relevant in the given phases and
provide a detailed described how these artifacts should be
connected by explicit links. We illustrate the necessity of
such links based on two case studies from the domain of
perception in automated driving applications. Although they
involve similar artifact linkages, there are major differences
in the transmission of information and in the information
transmitted, since this needs to be task specific.

In example I, we emphasize the importance of the data
management artifacts, which contain extracted information,
data analysis, labeling, and annotations. The close linkage
of the artifacts from data management and the requirement
elicitation is enabled mainly between the extracted informa-
tion, the data analysis and the semantic domain model and
between the label annotations and the labeling specification.
Based on this close linkage, the changes in the requirements
are directly impacting the data. Furthermore, we show in
example II the importance of a semantic domain model to
document identified performance limitations and tracing them
to data, requirements, and evaluation. It is crucial to establish
the proposed explicit linkage starting from early development
stages to ensure traceability in the lifecycle of ML based
component. This supports the validity of the safety assurance
case, enables adaptions of autonomous systems in an evolving
open context and lays the foundation for an impact analysis.
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