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ZUSAMMENFASSUNG

Unser Verständnis der Planetenentstehung in Gas- und Staubscheiben, welche neugeborene
Sterne umgeben, hängt entscheidend von der Genauigkeit und Komplexität numerischer
Modelle ab. Gas und Staub interagieren auf verschiedene Art und Weise, sowohl aero-
dynamisch als auch thermodynamisch. Dieses Zusammenspiel führt zur Entwicklung von
Instabilitäten und zur Bildung von Substrukturen in protoplaneteren Scheiben. Es muss
außerdem verstanden werden, um deren beobachtete Erscheinung zu erklären.

Im ersten Teil dieser Dissertation wird die Signifikanz der thermischen Kopplung von
Staub und Gas für die Entwicklung der vertikalen Scherinstabilität (VSI) demonstriert.
Diese, rein hydrodynamische, Instabilität führt zur Entstehung von Turbulenz und Sub-
strukturen in protoplanetaren Scheiben. Zudem spricht ihr Einfluss auf die vertikale Dis-
persion des Staubes für eine bedeutende Rolle bei der Interpretation von Beobachtungs-
daten. Voraussetzung für die Entstehung der VSI ist eine hinreichend kurze thermische
Ankoppelzeit von Gas und Staub, welche für eine effiziente Kühlung des Gases sorgt. Ob
sich die VSI entwickeln kann, hängt daher von den Details der Staubgrößenverteilung ab.
Die Ergebnisse der hier präsentierten numerischen Simulationen legen nahe, dass die VSI in
den äußeren Bereichen von protoplanetaren Scheiben (jenseits von ∼70 au) unterdrückt sein
kann wenn die Staubpartikel bereits stark angewachsen sind. Der Grund hierfür ist die re-
duzierte Menge kleinen Staubes, welcher maßgeblich an der Kühlung des Gases beteiligt ist.
Im Anschluss an diese Studien wird die entsprechende Methodik verfeinert und die thermis-
che Ankoppelzeit dynamisch, auf Basis der vorhanden Staubverteilung in weiteren Simula-
tionen berechnet. Es zeigt sich, dass eine protoplanetare Scheibe nur VSI entwickeln und
aufrechterhalten kann, wenn ausreichend kleiner Staub (≲ 10 µm) vorhanden ist, welcher
für hinreichend schnelle thermische Relaxation sorgt. Dies verdeutlicht die Notwendigkeit
den Koagulationsprozess in Modellen protoplanetarer Scheiben zu berücksichtigen.

Der Einbindung moderner Staubkoagulationsmodelle in großskaligen hydrodynamischen
Simulation steht jedoch deren enormer Rechenaufwand entgegen. Daher beschäftigt sich
der weitere Teil dieser Arbeit mit der Entwicklung zweier neuer, approximativer und da-
her effizienterer Sub-Grid-Modelle des Staubwachstum. Beide Methoden basieren auf der
Darstellung der Größenverteilung als Potenzgesetz mit nur zwei Populationen und ver-
meiden daher die übliche, numerisch aufwendige, Verwendung hochaufgelöster Massengit-
ter. Das erste Modell ist halb-analytisch. Die Wachstums- und Massenaustauschraten
der Staubpopulationen sind analytisch definiert und werden numerisch integriert. Da es
sich bei den Entwicklungsraten um Approximationen handelt, beinhalten sie diverse freie
Parameter. Das Modell wird daher kalibriert, um eine gute Übereinstimmung mit voll-
wertigen Staubkoagulationsmodellen zu erreichen. Die Genauigkeit dieses Ansatzes zeigt
sich in verschiedenen Testsimulationen. Als mögliches Anwendungsbeispiel wird zudem eine
zweidimensionale Simulation einer protoplanetaren Scheibe demonstriert, welche durch das
Gravitationspotential eines Planeten gestört wird. Zuletzt wird die Verwendung von Tech-
niken des maschinellen Lernens als Alternative zum halb-analytischen Ansatz diskutiert.
Dafür werden die analytischen Entwicklungsraten durch ein künstliches neuronales Netzw-
erk ersetzt, welches mit Hilfe der Daten von vollwertigen Staubkoagulationssimulationen
trainiert wird. Dieses Modell wurde lokal, also unter Vernachlässigung des Staubtrans-
portes, getestet. Es zeigt sich, dass die lokale Staubentwicklung mit hoher Präzision von
künstlichen neuronalen Netzwerken vorhergesagt werden kann.





ABSTRACT

Our understanding of planet formation in the gas and dust disks surrounding newborn stars
is crucially dependent on the accuracy and complexity of numerical models. Gas and dust
interact in different ways, both aerodynamically and thermodynamically. This interaction
leads to the development of structure-forming instabilities and must be understood to
explain the observed appearance of protoplanetary disks.

In the first part of this dissertation, we demonstrate that efficient thermal coupling of
dust and gas is essential for the development of the vertical shear instability (VSI). This
purely hydrodynamic instability leads to the formation of turbulence and substructures in
protoplanetary disks. VSI furthermore contributes to the vertical dispersion of dust and
might thus play an essential role in the interpretation of observational data. A prerequisite
for its development is a sufficiently short thermal coupling time of the gas and dust, which
ensures efficient cooling of the gas. Whether the VSI can develop is therefore influenced
by the subtleties of the dust size distribution. The results of our numerical simulations
suggest that the VSI could be suppressed in the outer regions of protoplanetary disks
(beyond ∼70 au) if the dust particles have undergone significant growth. The reason for
this is the depletion of small grains, which are necessary for the cooling process. Following
these studies, we refine our methodology and conduct simulations in which the thermal
coupling time is calculated dynamically, based on the evolving dust distribution. We show
that a protoplanetary disk can only develop and maintain VSI if sufficient amounts of small
dust (≲ 10 µm) are present to ensure the necessary fast thermal relaxation. This illustrates
the necessity of considering the coagulation process in simulations of protoplanetary disks.

However, the integration of modern dust coagulation models into large-scale hydrody-
namic simulations is hindered by their enormous computational cost. In the remaining
part of this thesis, we therefore develop two new, approximate and, therefore, more effi-
cient sub-grid models of dust growth. Both methods are based on the representation of the
size distribution as a power law with only two populations and thus avoid the usual, time-
consuming use of high-resolution mass grids. The first model is semi-analytic. The growth
and mass exchange rates of the dust populations are analytically defined and numerically
integrated. Since these rates are approximations, they contain various free parameters.
Therefore, the model is calibrated to achieve good agreement with full-fledged dust coagu-
lation models. We demonstrate the accuracy of this approach in various test simulations.
As a possible application example, we present a two-dimensional simulation of a protoplan-
etary disk that is perturbed by the gravitational potential of a planet. Finally, we discuss
the use of a machine-learning-based technique as an alternative to the semi-analytical ap-
proach. For this purpose, we replace the analytical evolution rates with an artificial neural
network, which is trained using data from full dust coagulation simulations. This model has
so far only been tested locally, i.e., without considering the dust transport. We show that
the local dust evolution can be predicted by artificial neural networks with high precision.
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CHAPTER 1
INTRODUCTION

“Kol-Ut-Shan”
“Infinite Diversity in Infinite Combinations.”

— Principle of Vulcan Philosophy
Star Trek

How Can We Explain the Diversity of Exoplanets?
Historical Remarks on Planet Formation Theory

In 1995 Mayor and Queloz reported the first detection of a planetary companion to a
solar-type star, leading to their reception of the Nobel Prize in physics in 2019 (Mayor
& Queloz, 1995). Since then, an astounding multitude of planets has been discovered in
alien star systems1. Even the earliest detections raised new questions about the origins of
these systems. They were incompatible with the classical paradigms in planet formation
theory which were conceptualized with only the Solar system in mind. High-mass planets
in extremely close orbits, such as the one detected in 1995, were simply not known.

The earliest models of planet formation were developed in the 18th century. In Universal
Natural History and Theory of the Heavens, Immanuel Kant—inspired by the coplanar
trajectories of the Solar system planets—hypothesized that the celestial objects in orbit of
the Sun must have formed from a disk-like gas and dust cloud. Kant’s idea, however, was
not further pursued for almost two centuries. Alternative concepts emerged in the early
20th century. Chamberlin & Moulton (1909) investigated the possibility of tidal ejection of
matter from the Sun, which would have then condensed into planetesimals—their term for
an infinitesimal version of a planet. However, no upcoming theory proved to be as plausible
as the almost forgotten Nebular Hypothesis.

In 1943, von Weizsäcker resurrected Kant’s approach and for the first time supported it
with a basic mathematical framework. His formulations became the prototype of modern
planet formation theory (Weizsäcker, 1943). They could explain the coplanar orbits of
the Solar system bodies, the angular momentum distribution in the Solar system, and the
origins of the planets as a natural consequence of star formation. The extreme Reynolds
numbers within the proposed protoplanetary disk are so large (∼ 107), that von Weizsäcker
assumed the disk to be highly turbulent. Turbulence would lead to the formation of vortices,
which collect solid particles which would condense into planets. Driven by turbulent angular
momentum transport, the gaseous disk would accrete onto the central star—a process von
Weizäcker formalized later (Weizsäcker, 1948). His equation was first solved by Lüst (1952)
and became a standard model for the evolution of accretion disks. Further developed by
Lynden-Bell & Pringle (1974), it can be used to predict the evolution and structure of

1see https://exoplanets.nasa.gov/

https://exoplanets.nasa.gov/
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viscously evolving circumstellar disks. The theory of viscous accretion and the respective
disk structure model are still widely used in theoretical studies of planet formation today.

In parallel to the aforementioned advancements in the physical understanding of the
gaseous disk, theories for the evolution of solids and the formation of planets were further
developed. Safronov (1969) and Goldreich & Ward (1973) independently developed a theory
on planetesimal formation in which solids accumulate in the protoplanetary disk’s midplane
to form a dense, gravitationally unstable layer. The local collapse of this dust layer would
then lead to the formation of the planetesimals. Even low levels of turbulence, however,
prevent a thin enough layer from forming in the first place. It became clear that direct
gravitational collapse of the particle layer in turbulent protoplanetary disks is probably not
occurring (Weidenschilling, 1980; Cuzzi et al., 1993).

Nowadays, it is believed that a single physical mechanism for planetesimal formation does
not exist. Instead, a number of physical processes are likely occurring simultaneously or in
sequence, that lead to the emergence of larger bodies (see Drążkowska et al., 2023). Many
details of this picture remain elusive. Micrometer-sized dust grains, as present in interstellar
space, must grow several orders of magnitude in size until they can undergo significant
settling. Even then, further accumulation in large-scale structures—so-called dust traps—
must likely occur to facilitate high-enough concentrations to trigger planetesimal formation.
The origins of such high-pressure regions are ambiguous even in contemporary theories (see
Bae et al., 2023). Modern-day studies of planet-forming disks thus involve hydrodynamic
simulations of the gas and dust flows on large scales (several 1011 m), as well as modeling of
the microphysics of dust (from µm to m). Both aspects are necessary to better understand
the origins of our world and the diversity of exoplanets that we observe today.

1.1 From Clouds to Disks and Stars

The formation of a protostar is the necessary first step toward the formation of a planetary
system. Star formation occurs in the cold phase of the interstellar medium (ISM) within
Giant Molecular Clouds (GMCs). These structures have typical temperatures of ∼10 K
and masses of 104–106 M⊙—about 1 % of which is made up of heavy elements in the form
of solids, referred to as dust (see Chevance et al., 2023). Stellar feedback and supernova
shock fronts create bubbles and filamentary substructures within molecular clouds.

An especially spectacular example of such a substructure is the Local Bubble—an un-
derdense region of space with a size of ∼100 pc (1 pc=3.086 × 1018 cm) our Sun is passing
through (Cox & Reynolds, 1987). Recent studies by Zucker et al. (2022) could for the first
time show that the surface of this bubble is a site of active star formation. Overdense cloud
cores can be formed along the surfaces of these substructures.

If they reach the critical Bonnor-Ebert mass (Ebert, 1955; Bonnor, 1956), exterior pres-
sure perturbations can no longer be counteracted by an internal increase in gas pressure
and the core begins to collapse (see Figure 1.1). At first, this collapse is continuing almost
isothermally, as the gas is optically thin and can cool on a short timescale. But as den-
sities increase in its center, the structure becomes optically thick and thus heats up. The
increasing internal pressure leads to the formation of a first hydrostatic structure in the
center, the so-called first Larson core (Larson, 1969).
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Figure 1.1
Overview of the star and disk formation process. Stellar feedback leads to the formation of substructures
in the cold ISM. Individual molecular cloud cores can undergo gravitational collapse. The infalling material
has non-zero angular momentum and thus forms a disk-shaped structure around the embedded protostar
(class 0/I). After the main accretion phase, the pre-main-sequence star and the protoplanetary disk are
directly observable (class II/III) (figure adapted from Persson (2013), originally licensed under CC BY 4.0).

As material is continuously added from the surrounding layers, the core undergoes an
adiabatic contraction phase, which increases the central temperature (Masunaga et al.,
1998; Bhandare et al., 2018). Cooling remains inefficient until the temperatures surpass
∼2000 K. At this point, the main constituent of the structure, molecular hydrogen, begins
to dissociate. Thermal energy stemming from the continuous compression of the core
is no longer increasing the temperature but is absorbed by the dissociation of the H2
molecules. A second collapse phase sets in, which persists until all molecular hydrogen has
been dissociated and a stable adiabatic core composed of atomic hydrogen is formed. This
second core is what is referred to as a protostar or the second Larson core (Masunaga &
Inutsuka, 2000; Bhandare et al., 2020). It is still deeply embedded in the accreting cloud
envelope and the central object can thus not be observed directly. Such a system is referred
to as a class 0/I young stellar object (YSO).

The accreting material has non-zero angular momentum due to the large-scale motion of
the cloud core. Therefore, gas parcels cannot directly fall onto the emerging protostar but
settle into a disk-shaped structure. Given the typical angular momentum of a molecular
cloud code of size ℓcore, mass 𝑀core, and angular frequency Ωcore, we can estimate the
size of the emerging disk by assuming angular momentum conservation. In the emerging
disk, centrifugal and gravitation forces are balanced, which gives us the Keplerian angular
frequency ΩK =

√︁
𝐺𝑀★/𝑅3, where 𝐺 is the gravitational constant, 𝑀★ is the mass of the

central star and 𝑅 is the distance to the star. From angular momentum conservation
𝑅2

diskΩK,disk = ℓ2
coreΩcore, we then find

𝑅disk =
ℓ4
coreΩ

2
core

𝐺𝑀core
∼ 100 au , (1.1)

(1 au=1.496 × 1013 cm) where 𝑅disk is the radius at which the cloud material ends up in a
centrifugally balanced disk. It is also referred to as the centrifugal radius (e.g., Terebey
et al., 1984). This is of course only an order of magnitude estimate and disk of larger and
smaller sizes have been observed (see Miotello et al., 2023).

https://creativecommons.org/licenses/by/4.0/


4 1. Introduction

1.2 Unresolved Observations of Young Stellar Objects

As even the closest star-forming regions are hundreds of pc away, it was not possible to
even spatially resolve YSO’s until the era of space-borne observatories (O’dell et al., 1993).
A technique that only requires unresolved observations to determine whether an object is a
YSO is the analysis of the object’s spectral energy distribution (SED), i.e., the distribution
of observed flux 𝐹𝜆 across wavelengths 𝜆. The logarithmic slope of the SED in the infrared,
referred to as the spectral index, is a commonly used measure to distinguish between the
different evolutionary stages and is defined as

𝛼IR =
𝜕 log(𝜆𝐹𝜆)
𝜕 log(𝜆) .

For this, the slope is usually measured in the near to mid-infrared from ∼2 µm to ∼10 µm.
In the following, I refer to the standard classification scheme as summarized by Armitage
(2020). A class 0 YSO is still deeply embedded in a cold envelope. No radiation from the
central object is directly visible, which means all detected radiation was processed by the
dusty envelope and the SED peaks in the far-infrared. Since no detectable radiation is
emitted in the near-infrared at this stage, the spectral slope is not defined for such objects.

In these earliest phases of its lifetime, the protoplanetary disk is still embedded in an
optically thick envelope. First signs of disk formation may show up, such as jets which carve
cavities at the poles of the cloud. The SED is typically rising or flat in the region between
near-infrared and mid-infrared and the object is called a class I YSO. A very simple model
of such an object is shown in Figure 1.2, where it is simulated as a spherical envelope with
a parabolic polar cavity surrounding a protostar. The main accretion phase ends after
∼106 yr, and the resulting central body, which has almost reached its final mass, is called a
pre-main-sequence star. It is still surrounded by the geometrically thin circumstellar disk
which has a typical size of 100 au. The system is now referred to as a class II pre-main-
sequence star with the surrounding protoplanetary disk. The SED in the near-infrared is
essentially the SED of the central pre-main-sequence star. The surrounding gas and dust
disk, however, scatters short wavelength radiation from the star or absorbs it and re-emit
in the mid to far-infrared which causes an infrared excess. This sets a class II YSO apart
from the spectrum of a class III object that has accreted almost all mass and is essentially
the spectrum of a pre-main-sequence star.

The identification of class II YSOs from their SEDs makes it possible to determine
how frequent protoplanetary disks are (Haisch et al., 2001). Alternatively, ultraviolet
observations can reveal the signatures of ongoing mass accretion, as they track the hot
shocks of material reaching the central star (Hartmann et al., 1998). Determining the
numbers of class II YSO in star formation regions of different ages with these methods
therefore allows us to deduce the average lifetimes of these objects. In general, one finds
that almost all stars in clusters of ages ≲ 106 yr have protoplanetary disks. Clusters older
than 3 × 106 yr have a disk fraction of ∼ 5 %. Disk lifetimes are thus generally assumed to
be in the range of a few 106 yr (Manara et al., 2023).
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Figure 1.2
Simple radiative transfer modeling of SEDs and infrared pictures of YSO models at 𝜆 = 1 µm and at an
inclination of 70◦. The yellow shaded area marks the wavelength region in which the spectral slope is
typically calculated. All objects have the same stellar model in the center and are only distinguished by
their dusty envelopes. Class 0 has a high-density spherical envelope, which completely obscures the central
object. It cannot be observed in the near IR. Class I is modeled as a spherical envelope with lower density
and a parabolic cavity. Here, some near IR flux can be detected and the spectral slope is increasing or
nearly flat. The class II object is modeled as a much smaller, flaring disk. The stellar spectrum is present
but a strong infrared excess can be seen, stemming from the reprocessed stellar light from the disk. Class
III is a non-obscured pre-main-sequence star with a typical black body spectrum. Spectra and images were
modeled with RADMC-3D (Dullemond et al., 2012).

1.3 Resolved Observations of Protoplanetary Disks
In observations at optical wavelengths, edge-on protoplanetary disks show up as dark shad-
ows, blocking the light from the central pe-main-sequence star, as seen by the Hubble Space
Telescope in the Orion star-forming region (Figure 1.3).

These images also reveal that protoplanetary disks are not isolated structures. They are
subject to radiation from nearby stars, as well as streamers of gas from the surrounding star-
forming region. The spatial resolution necessary for the observation of an object of 100 au
radius in the Orion nebular at a distance of 414 pc is only ∼ 0.48′′. The protoplanetary
disk images in Figure 1.3 combine broadband and narrowband observations with the Wide
Field Channel of the Advanced Camera for Surveys (ACS/WFC), installed on Hubble (Ricci
et al., 2008). This instrument allows for spatial resolutions of ∼0.1′′2. The resolution of
such space-borne observatories is only limited by diffraction at the aperture and can be
calculated via

𝜃lim ≈ 1.22 𝜆

𝐷
, (1.2)

where 𝐷 is the size of the aperture of the telescope (Rayleigh, 1879). Larger telescopes or
2from the ACS user handbook.

https://hst-docs.stsci.edu/acsihb
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Figure 1.3
Protoplanetary disks in the Orion nebular. The base image was taken with the ground-based 2.2 m ESO
telescope at La Silla. The inserted pictures of protoplanetary disks were obtained with the Wide Field
Channel of the Advanced Camera for Surveys (ACS/WFC) of Hubble at various wavelengths (Ricci et al.,
2008). (figure by NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), the Hubble Space
Telescope Orion Treasury Project Team and L. Ricci (ESO), licensed under CC BY 4.0)

observations at shorter wavelength thus allow for higher angular resolution.
Observations targeting the dust or objects that are obscured by it however rely on the

use of longer wavelengths. Radio interferometers, like the Atacama Large Millimeter/Sub-
millimeter Array (ALMA) and adaptive optics systems in combination with coronographs,
like the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at
the Very Large Telescope (VLT) make observations at spatial resolutions possible that were
unheard of only 10 years ago. ALMA’s longest baseline configuration with a maximum sep-
aration of 16 km, for example, can reach spatial resolutions of up to 0.02′′3. Going to longer
wavelengths and utilizing interferometric techniques not only influences the resolution of
the observations but also what is observed. Infrared and millimeter-wavelength observa-
tions allow for an in-depth look at protoplanetary disks, while in the optical wavelength
range light is almost completely blocked or scattered by the dust.

Figure 1.4 depicts a representative example of how the use of different wavelengths
influences what we see. Shown is the protoplanetary disk around the pre-main-sequence
star IM Lup in the Lupus 2 molecular cloud4. In the millimeter-wavelength observation on

3from the ALMA technical handbook.
4https://simbad.cds.unistra.fr/simbad/sim-id?Ident=IM+Lup

https://esahubble.org/images/heic0917ab/
https://esahubble.org/images/heic0917ab/
https://creativecommons.org/licenses/by/4.0/
http://almascience.org/documents-and-tools/cycle10/alma-technical-handbook
https://simbad.cds.unistra.fr/simbad/sim-id?Ident=IM+Lup
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Figure 1.4
Views of the protoplanetary disk around IM Lup at different wavelengths, obtained with different instru-
ments. Millimeter-wavelength observations, obtained by Andrews et al. (2018) with ALMA reveal the
thermal emission of larger dust grains that form a thin layer in the midplane of the disk. In the near-
infrared image, obtained by Avenhaus et al. (2018) with the SPHERE instrument at the VLT, one can see
the surface of the disk, where small dust grains scatter the infrared radiation from the central star. ALMA
can also be used to study molecular line emission, as in the data presented in the right panel obtained by
the MAPS collaboration (Öberg et al., 2021). Here, the 2-1 rotational transition of CO molecules is probed
which can be found in a molecular layer above the disk midplane.

the left, obtained at 𝜆 = 1.25 mm by Andrews et al. (2018), we can see the thermal emission
of mostly larger dust grains. Larger particles appear to exist close to the midplane of the
disk. Substructure is visible in the form of two spiral arms close to the central star. Smaller
particles scatter shorter-wavelength infrared and optical light from the star, which can be
seen in the central panel of Figure 1.4, observed with the SPHERE instrument by Avenhaus
et al. (2018). The disk appears much larger and vertically extended in these observations,
which means that the smaller dust particles do not form a thin structure but are kept at
larger height above the disk’s midplane. With ALMA, molecular line observations offer
another way to study disk structure as done by Öberg et al. (2021), who probe the 2-1
rotational transition of the CO molecule, shown in the right panel of Figure 1.4.

These examples show that there must be processes in protoplanetary disks that separate
dust grains of different sizes and the gas component. To understand how this works, we
need to consider the overall physical structure of the gaseous disk, the gasflows therein,
and the aerodynamic properties of the dust grains. To further explain how substantial
amounts of larger grains can exist in a disk that is formed from material that contains
predominantly micrometer-sized particles, we must also consider the physics of particle
collisions that lead to coagulation and fragmentation. Bringing these aspects together in
hydrodynamic models of protoplanetary disks is the main topic of this thesis.



CHAPTER 2
THEORETICAL BACKGROUND

2.1 Hydrodynamics of Protoplanetary Disks

Protoplanetary disks are predominantly made up of gas in the form of molecular hydrogen.
The large scale of the system (∼ 1013 cm) and the comparably short mean free path of the
gas molecules (∼10 cm)1, make it possible to describe the evolution of the gas with the laws
of hydrodynamics, i.e., through the Navier-Stokes equations (see, e.g., Shu, 1992)

𝜕𝜌g

𝜕𝑡
+ ∇ · (𝜌g𝒗) = 0 (2.1)

𝜕𝜌g𝒗

𝜕𝑡
+ ∇ · (𝜌g 𝒗 ⊗ 𝒗) = −∇𝑃 − 𝜌g∇Φ + ∇ · T + 𝜌g 𝒇 , (2.2)

where 𝜌g refers to the gas density, 𝒗 is the gas velocity vector, 𝑃 is the the pressure, Φ is the
gravitational potential, T is called the viscous stress tensor, and 𝒇 is a vector containing
all other specific external forces. A similar conservation law holds for the total energy per
unit volume of the fluid 𝐸 = 𝜌g

(
1/2 𝒗2 + 𝑒

)
, where the first term is the specific kinetic energy

and the second term is the specific internal energy. The energy equation reads

𝜕𝐸

𝜕𝑡
+ ∇ · [(𝐸 + 𝑃)𝒗] = ∇ · (𝒗 · T) − 𝜌g𝒗 · ∇Φ + ∇ · 𝑭 , (2.3)

where 𝑭 refers to the heat flux. Solving this system of equations analytically is only possible
for a few fringe cases and numerical methods usually have to be applied (see Section 3.1).
In any case, a closure relation is necessary that links pressure and density. Throughout
this thesis, I use the ideal equation of state

𝑃 = 𝜌g
𝑘B𝑇

𝜇𝑚P
= 𝜌g𝑐

2
s , (2.4)

where 𝑘B is the Boltzmann constant, 𝑇 is the gas temperature, and 𝜇𝑚P is the mean
molecular mass. This also defines the isothermal speed of sound 𝑐s. In the following
sections, I give an overview of different applications of the Navier-Stokes equations in the
context of protoplanetary disks, often in a simplified form, or with focus on specific terms
of the equations.

1number density of molecules 𝑛 ∼ 1014 cm−3 (Armitage, 2020), collisional cross-section ∼ 10−15 cm2 (Chap-
man & Cowling, 1991)
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2.1.1 Hydrostatic Disk Structure

Protoplanetary disks are rotationally supported structures. Due to their lifetimes of a few
106 yr and the comparably short dynamical timescales of the gas motion, they can be seen
as quasi-stationary and thus in hydrostatic equilibrium. Deriving their structure in the
gravitational potential of their central star is most convenient in cylindrical coordinates
𝑅 and 𝑧. In this coordinate system, the central star’s gravitational potential is given by
Φ = 𝐺𝑀★/√𝑅2+𝑧2, with 𝐺 referring to the gravitational constant and 𝑀★ being the mass of the
central star. Assuming the disk to be axisymmetric and inviscid, hydrostatic equilibrium
in Equation 2.2 gives

1
𝜌g

𝜕𝑃

𝜕𝑧
= − 𝐺𝑀★𝑧

(𝑅2 + 𝑧2)3/2 for vertical hydrostatic balance and

1
𝜌g

𝜕𝑃

𝜕𝑅
= − 𝐺𝑀★𝑅

(𝑅2 + 𝑧2)3/2 +Ω2𝑅 for radial hydrostatic balance.

Here Ω is the angular frequency with Ω2𝑅 being the centrifugal acceleration of the gas.
The equation for vertical hydrostatic equilibrium can readily be solved for 𝜌g, which results
in the standard form for the vertical stratification of a circumstellar disk

𝜌g (𝑅, 𝑧) = 𝜌g,mid(𝑅) exp
[
𝑅2

𝐻2
g

(
𝑅

√
𝑅2 + 𝑧2

− 1
)]

, (2.5)

where 𝜌g,mid is the density at 𝑧 = 0 (the disk midplane) and 𝐻g is referred to as the pressure
scale height, defined as

𝐻g =
𝑐s𝑅

3/2

√
𝐺𝑀★

=
𝑐s
ΩK

. (2.6)

The pressure scale height is a measure of the thickness of the gaseous disk and a typical
aspect ratio observed in protoplanetary disks is 𝐻g/𝑅 = 0.05. It has essentially the same
meaning as the pressure scale height of a planetary atmosphere (on Earth typically 𝐻g ≈
8 km, Holton & Hakim, 2012), which is why the vertical disk structure is occasionally
referred to as the atmosphere of the protoplanetary disk—an analogy that I will further
use in the overview of turbulence and hydrodynamic instabilities in Section 2.1.4.

The radial hydrostatic balance equation cannot be solved for the density structure so
easily. Nonetheless, we can learn about the dynamics of the disk from it. Rearranging the
equation gives (

Ω

ΩK

)2
=

(
𝐻g

𝑅

)2
𝜕 log(𝑃)
𝜕 log(𝑅) +

𝑅3

(𝑅2 + 𝑧2)3/2
. (2.7)

With the typical value for the aspect ratio of a protoplanetary disk and assuming that
the logarithmic pressure gradient is negative, we can see that the gas will orbit the star at
slightly sub-Keplerian velocity. The reason for this is the inward-pointing pressure gradient.
Above the midplane of the disk, we find that the azimuthal gas velocity has a dependency
on 𝑧. A hydrostatic disk atmosphere will thus be subject to a vertical shear. Deducing the
radial density structure is not possible from just hydrostatic equilibrium. For this, we have
to consider the evolution of the disk as a consequence of viscosity.
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However, it is commonly assumed that the radial structure in density and temperature
follows power laws, i.e., 𝑇 (𝑅) ∝ 𝑅𝛽𝑇 and 𝜌g,mid(𝑅) ∝ 𝑅𝛽𝜌 . The angular frequency thus
follows as (

Ω

ΩK

)2
=

(
𝐻g

𝑅

)2
(𝛽𝑇 + 𝛽𝜌) −

𝛽𝑇𝑅√
𝑅2 + 𝑧2

+ 𝛽𝑇 + 1 . (2.8)

2.1.2 Viscous Evolution

The evolution of a protoplanetary disk requires some sort of dissipation of kinetic energy,
which leads to the evolution of a gas parcel’s orbit. In the Navier-Stokes equations, this
dissipation is described with the viscous stress tensor T and is the consequence of the
stress arising between shearing fluid parcels. If no shear is present, no dissipation is to
be expected, which means that the viscous stress tensor cannot contain terms that are
independent of 𝜕𝑣𝑖/𝜕𝑥𝑘. This must of course also be true for a fluid in solid body rotation.
The most general form that fulfills these conditions is

𝑇𝑖 𝑗 = 𝜌g𝜈

(
𝜕𝑣𝑖

𝜕𝑥 𝑗
+
𝜕𝑣 𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖 𝑗
𝜕𝑣𝑘

𝜕𝑥𝑘

)
+ 𝜉𝛿𝑖 𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
, (2.9)

where 𝜈 is called the kinematic viscosity and 𝜉 is called the bulk viscosity. Both are inherent
properties of a fluid (e.g., Landau & Lifschitz, 1987). The bulk viscosity can usually be
ignored in astrophysical flows as long as they are sub-sonic. We thus set 𝜉 = 0 in the
following considerations (Clarke & Carswell, 2007). With these definitions, we can write
the Navier-Stokes equation as

𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇)𝒗 = − 1

𝜌g
∇𝑃 − ∇Φ + 𝜈𝚫𝒗 + 𝜈

3∇(∇ · 𝒗) , (2.10)

where 𝚫 = ∇ · ∇. Weizsäcker (1943) and Lüst (1952) were the first to analytically study
the evolution of circumstellar disks under the influence of viscosity. Lynden-Bell & Pringle
(1974) presented the derivations in a form that is commonly referred to nowadays. They
assumed the disk to be thin and thus used the Navier-Stokes Equation 2.10 in a vertically
integrated form with the gas column density Σg =

∫ ∞
−∞ 𝜌g d𝑧. Further assuming axisymmetry

(𝜕𝜑 = 0) and 𝑣𝑧 = 0, the only non-zero component of the stress tensor in cylindrical
coordinates is

𝑇𝑅𝜑 = 𝜌g𝜈𝑅
𝜕ΩK
𝜕𝑅

. (2.11)

Using this definition, Lynden-Bell & Pringle (1974) derived the evolution equation of a
Keplerian disk as

𝜕Σg

𝜕𝑡
=

3
𝑅

𝜕

𝜕𝑅

[
𝑅

1/2 𝜕

𝜕𝑅

(
𝜈Σg𝑅

1/2
)]

. (2.12)

This equation has a self-similar solution that illustrates the effect of viscosity on a differ-
entially rotating circumstellar disk if viscosity follows a radial power law 𝜈 ∝ 𝑅−𝛽Σ . For an
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Figure 2.1
Solutions to the disk evo-
lution equation for different
evolution times. As angu-
lar momentum is transported
outwards, the disk is expand-
ing. The bulk of the mass
is moving inwards, as a small
mass fraction takes away the
angular momentum.

initial condition given by

Σg (𝑡 = 0, 𝑅) = 𝐶

3𝜋𝜈c

(
𝑅

𝑅c

)𝛽Σ
exp

[
−

(
𝑅

𝑅c

)𝛽Σ+2
]
, (2.13)

with the characteristic radius 𝑅c, and the viscosity 𝜈c = 𝜈(𝑅c), Lynden-Bell & Pringle
(1974) derived

Σg (𝑡, 𝑅) =
𝐶

3𝜋𝜈c

(
𝑅

𝑅c

)𝛽Σ
T

5/2+𝛽Σ
2+𝛽Σ exp

[
− 1
T

(
𝑅

𝑅c

)𝛽Σ+2
]
, (2.14)

where T is a dimensionless time variable (see also Armitage, 2020).
Figure 2.1 depicts the time evolution of such a truncated power-law disk. As an effect of

viscosity, angular momentum is transported away from the central star by a small fraction
of the disk’s gas mass. In the process, the disk expands with time. Most mass moves
inwards and is accreted onto the central object. Equation 2.12 can be brought into the
form of a classic diffusion equation 𝜕𝑡 𝑓 −𝐷𝜕2

𝑅
𝑓 = 0, which allows us to estimate the timescale

of this process. The related diffusion timescale is simply 𝜏𝜈 ≈ 𝑅2
disk/𝜈, where 𝑅disk is the

size of the disk, which we know is typically 𝑅disk ∼ 100 au. We can estimate the diffusion
coefficient by assuming that diffusivity is given by the random molecular velocity times the
respective mean-free path, which we have already estimated to be ∼ 10 cm. The typical
velocity of gas molecules with a Maxwellian velocity distribution is given by 𝑣g =

√︁
8/𝜋𝑐s.

The speed of sound can be obtained from the typical pressure scale height of a disk by
using 𝐻g/𝑅 = 𝑐s/𝒗K ≈ 0.05, where we set 𝒗K(𝑅disk) = ΩK(𝑅disk)𝑅disk. With these estimates,
we arrive at 𝑣g ≈ 2.4 × 104 cm s−1 and

𝑡𝜈 ≈ 3 × 1017 yr .

This means that an accretion disk under the influence of molecular viscosity would have
an evolutionary timescale longer than the age of the universe and about 1011 times longer
than the observationally estimated lifetime of class II YSOs. Molecular viscosity can thus
not be the driver of accretion in protoplanetary disks. Weizsäcker (1943) and Lüst (1952)
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were already aware of this circumstance and therefore proposed an anomalous source of
viscosity that could drive the evolution of protoplanetary disks: turbulence.

2.1.3 Turbulence

Turbulent flows are characterized by unsteady, irregular, and chaotic motions that transport
and mix the fluid (e.g., Pope, 2000). In particular, turbulence is characterized by an
evolving field of eddy motions of various sizes and velocities. The time evolution of this
vorticity field 𝝎 = ∇ × 𝒗 can be directly deduced from the Navier-Stokes equations. Gas
motions in protoplanetary disks—turbulent or not—are generally sub-sonic and can thus
be treated as incompressible (Lyra & Umurhan, 2019). Under this assumption, the density
of a moving gas parcel is constant, which results in the condition ∇ ·𝒗 = 0 from Equation 2.1
and we get the incompressible Navier-Stokes equation

𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇)𝒗 = − 1

𝜌g
∇𝑃 − ∇Φ + 1

𝜌g
∇ · 𝑻 = − 1

𝜌g
∇𝑃 − ∇Φ + 𝜈𝚫𝒗 . (2.15)

using the vector identity (𝒗 ·∇)𝒗 = ∇(𝑣2/2) − 𝒗×𝝎 and taking the curl leads to the vorticity
equation

𝜕𝝎

𝜕𝑡
+ (𝒗 · ∇)𝝎 = (𝝎 · ∇)𝒗 +

∇𝜌g × ∇𝑃

𝜌2
g

+ 𝜈Δ𝝎 , (2.16)

(e.g., Davidson, 2015) where we have used that for a scalar function 𝑓 , ∇ × (∇ 𝑓 ) = 0. The
first term on the right-hand side is responsible for vortex stretching—if the velocity field
deforms a vortex, it will either spin up or spin down depending on how the moment of
inertia changes as a result of the deformation. The second term is the baroclinic term. It
vanishes if the iso-surfaces of density and pressure are aligned, which is called barotropic
stratification. The last term tells us that vorticity can be diffused through a medium via
viscosity. If we have a look at a two-dimensional, barotropic flow, we find

𝜕𝝎

𝜕𝑡
+ (𝒗 · ∇)𝝎 = 𝜈Δ𝝎 , (2.17)

which means that vorticity, unlike velocity or momentum, can only change under the influ-
ence of viscosity or external body forces (which we have ignored here). While perturbations
in pressure can change the velocity field of an incompressible fluid instantaneously and ev-
erywhere in the disk through sound waves, vorticity can only change incrementally and
localized (Davidson, 2010).

The influence of the randomly fluctuating velocity field can be explored statistically. For
this, we assume that the gas velocity and the other variables are the sum of an average
component ⟨𝒗⟩ and a fluctuating component 𝒗′. This technique is called Reynolds decom-
position (Reynolds, 1895). By applying the chain rule in combination with this condition
to the incompressible Navier-Stokes Equation 2.15 and ignoring the gravitational potential
for the moment, we get

𝜕 (⟨𝑣𝑖⟩ + 𝑣′
𝑖
)

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗
(⟨𝑣 𝑗⟩⟨𝑣𝑖⟩ + ⟨𝑣 𝑗⟩𝑣′𝑖 + 𝑣′𝑗 ⟨𝑣𝑖⟩ + 𝑣′𝑖𝑣

′
𝑗) = − 1

𝜌g

𝜕 (⟨𝑃⟩ + 𝑃′)
𝜕𝑥𝑖

− 1
𝜌g

𝜕 (⟨𝑇𝑖 𝑗⟩ + 𝑇 ′
𝑖 𝑗
)

𝜕𝑥 𝑗
.
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To investigate what effect the fluctuations have in the long run, we apply a time average to
this equation, which eliminates all single fluctuating quantities and multiples of them, to
arrive at the so-called Reynolds-averaged Navier-Stokes equation, also known as the mean
flow equation (Reynolds, 1895)

𝜕⟨𝑣𝑖⟩
𝜕𝑡

+ ⟨𝑣 𝑗⟩
𝜕⟨𝑣𝑖⟩
𝜕𝑥 𝑗

= − 1
𝜌g

𝜕⟨𝑃⟩
𝜕𝑥𝑖

+ 1
𝜌g

𝜕

𝜕𝑥 𝑗

(
⟨𝑇𝑖 𝑗⟩ − 𝜌g⟨𝑣′𝑖𝑣′𝑗⟩

)
. (2.18)

As we can see, this equation contains the new term −𝜌g⟨𝑣′𝑖𝑣′𝑗⟩ B 𝑇RS
𝑖 𝑗

, called the Reynolds
stress. It describes the momentum transport due to random fluctuations in the gas velocity,
i.e., the chaotic mixing that characterizes turbulent flows. This leaves us with a new
problem: an additional variable in the Navier-Stokes equation for which we do not have a
closure relation.

The closure problem is a long-standing issue in science and engineering and no real solu-
tion has been found so far. In the context of accretion disks, an often applied workaround
is the use of the turbulent viscosity hypothesis in combination with mixing length models
to describe the long-term effects of turbulence. Boussinesq (1877) introduced the idea that
the transport of momentum due to turbulent eddies could have the same effect as conven-
tional viscosity. In this model, the action of turbulence would be proportional to the shear
strain. Note, that only the anisotropic components of the Reynolds stresses can transport
momentum, which is why the isotropic components are separated in an extra term (e.g.,
Pope, 2000)

−𝜌g⟨𝑣′𝑖𝑣′𝑗⟩ B 𝜌g𝜈T

(
𝜕⟨𝑣𝑖⟩
𝜕𝑥 𝑗

+
𝜕⟨𝑣 𝑗⟩
𝜕𝑥𝑖

)
−

𝜌g

3 ⟨𝑣′𝑘𝑣
′
𝑘⟩𝛿𝑖 𝑗 , (2.19)

where 𝜈T is called the turbulent viscosity or eddy viscosity. If we assume the thin circum-
stellar disk from Section 2.1.2 we know that the Reynolds stress tensor’s only non-zero
component in cylindrical coordinates is 𝑇RS

𝑅𝜑
(Equation 2.11).

This model leaves us with the question of how to determine the new turbulent viscosity.
Mixing length models are a family of methods in which the turbulent viscosity is assumed
to scale as 𝜈T ∝ 𝜆mix𝑣, where 𝜆mix is the mixing length, along which turbulent momentum
transfer occurs and 𝑣 is the typical velocity of that transport (Prandtl, 1925). Shakura &
Sunyaev (1973) applied this method in the context of accretion disks, assuming that the
turbulent velocities would scale with the speed of sound. Since the corresponding length
scale on which momentum transfer through an eddy occurs cannot be larger than the disk’s
vertical extend given by the pressure scale height 𝐻g, they postulated

𝜈T = 𝛼𝑐s𝐻g (2.20)

with 𝛼 < 1, which is a parameter characterizing the strength of the angular momentum
transport associated with the turbulence. This simple prescription is frequently used in
studies of protoplanetary disks, e.g., in models of radial and vertical disk structure (e.g.,
Meyer & Meyer-Hofmeister, 1982; D’Alessio et al., 1998; Bell & Lin, 1994; Woitke et al.,
2009; Pfeil & Klahr, 2019), disk-population synthesis (e.g., Zormpas et al., 2022; Appelgren
et al., 2023), planet population synthesis (e.g., Mordasini et al., 2009; Emsenhuber et al.,
2021), and in models of dust coagulation (e.g., Birnstiel et al., 2010; Stammler & Birnstiel,
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2022). From the same timescale considerations as in Section 2.1.2, we find that 𝛼 must be
in the order of 10−3–10−2 to explain the observed disk lifetimes of a few 106 yr. By using
Equation 2.11, we can relate this variable to the actual turbulent velocity correlations

𝛼 =
2
3
⟨𝑣′
𝑅
𝑣′𝜑⟩
𝑐2

s
. (2.21)

Again, we have averted the actual problem and arrived at a new question. Is there even
a mechanism that can drive turbulent velocity fluctuations in a protoplanetary disk at the
required level?

2.1.4 Flow Instabilities

The simplest possible model for the hydrodynamics in a protoplanetary disks is a two-
dimensional, unstratified shear flow with Keplerian rotation. A flow is generally considered
stable if an arbitrary infinitesimal disturbance decays in time. If the disturbance grows,
the flow is unstable (Pope, 2000).

Rayleigh (1917) found that a rotating flow is linearly stable if the condition

1
𝑅3

d(𝑅2Ω)2

d𝑅 ≥ 0 (2.22)

is met. For a disk with Keplerian rotation Ω = ΩK, this condition is fulfilled, which
means Keplerian shear flows are linearly stable. Thus, many other potential sources of
instability and turbulence have been researched since the 1970s (Lyra & Umurhan, 2019).
The introduction of a weak magnetic field to the ionized shear flow was deemed a possible
solution. Interplay of magnetic tension and shear motion results in the Magnetorotational
Instability (e.g., Balbus & Hawley, 1991) which creates Reynolds and Maxwell stresses
strong enough to explain the evolutionary timescale of a perfectly ionized circumstellar
disk. It was however soon realized that the low degree of ionization in a protoplanetary
disk is a substantial hurdle for the MRI (Blaes & Balbus, 1994). Non-ideal magneto-
hydrodynamic effects like Ohmic resistivity (Sano & Miyama, 1999) and ambipolar diffusion
(Desch, 2004) quench the MRI in most regions of protoplanetary disks except for the very
hot inner regions and the outer regions, far away from the star (e.g., Jankovic et al., 2021;
Lesur et al., 2023). The resulting MRI-inactive region is referred to as the dead zone.
Its extend is still the subject of current research, but recent studies that combined gas
and dust evolution hint towards an outer limit between 10 au and 50 au, depending on the
evolutionary stage (Delage et al., 2023).

Instabilities that are independent of the magnetic field and ionization degree have thus
come into focus in recent years. They originate from the radial and vertical stratification
of the disk itself, often in combination with a certain mode of thermal relaxation. This in
combination with the strong impact of rotation makes many of them conceptually similar
to instabilities in planetary or stellar atmospheres (Lyra & Umurhan, 2019; Lesur et al.,
2023). If an arbitrary stratification is considered (but no thermal relaxation), the linear
stability condition is given by the Solberg-Høiland criteria (e.g., Tassoul, 1978; Drazin &
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Reid, 2004). Using the definitions of the buoyancy frequencies

𝑁2
𝑅 = − 1

𝜌g𝐶𝑃

𝜕𝑃

𝜕𝑅

𝜕𝑆

𝜕𝑅
(2.23)

𝑁2
𝑧 = − 1

𝜌g𝐶𝑃

𝜕𝑃

𝜕𝑧

𝜕𝑆

𝜕𝑧
, (2.24)

where 𝑆 = 𝐶𝑉 log
(
𝑃/𝜌𝛾g

)
is the specific entropy of the gas with the ratio of specific heats at

constant pressure 𝐶𝑃 and at constant volume 𝐶𝑉 , 𝛾 = 𝐶𝑃/𝐶𝑉 , these conditions are

1
𝐶𝑉

𝜕𝑃

𝜕𝑧

(
1
𝑅3

𝜕 (𝑅2Ω)2

𝜕𝑅

𝜕𝑆

𝜕𝑧
− 𝑅

𝜕Ω2

𝜕𝑧

𝜕𝑆

𝜕𝑅

)
< 0 (2.25)

1
𝑅3

𝜕 (𝑅2Ω)2

𝜕𝑅
+ 𝑁2

𝑅 + 𝑁2
𝑧 > 0 (2.26)

(Rüdiger et al., 2002). Both conditions have to be fulfilled for the flow to be stable. The
interpretation of Equation 2.25 is a modified version of the classical Schwarzschild criterion
and defines the onset of convection. Vertical convection (𝑁2

𝑧 < 0) was discussed as a source
of turbulent viscosity in the 1970s and 1980s (Cameron, 1978; Lin & Papaloizou, 1980).
Fulfilling this condition in protoplanetary disks is however difficult as it requires a strong
enough source of heat in the disk’s midplane (Held & Latter, 2018; Pavlyuchenkov et al.,
2020). Convection in the radial direction of a shear flow with Keplerian rotation is only
possible if the radial temperature gradient overcomes the stabilizing effect of rotation. Also
this condition is hardly fulfilled in protoplanetary disks, which have radial temperature
gradients that are mostly determined by stellar irradiation and are thus not steep enough.
The second criterion also takes the vertical shear and the effect of the vertical buoyancy
into account. If a vertical shear is present, instability can be hindered by a stable vertical
stratification.

Both criteria suggest stability for most protoplanetary disks, as the stratification is usu-
ally not strong enough to overcome the stabilizing effects of rotation or buoyancy. This,
however, changes if cooling or energy transport are taken into account. I will introduce
the radiative processes which make cooling in protoplanetary disks possible in the next
sections. For now, we simply assume that temperature perturbations with respect to some
equilibrium state can be thermally relaxed on a timescale 𝑡cool.

GSF Instability and Vertical Shear Instability

The vertical shear in a protoplanetary disks is maintained by the spherical gravitational
potential and the radial pressure gradient of the disk (Equation 2.8). This makes it possible
for mostly vertical perturbations with wavenumbers 𝑘𝑧 ≪ 𝑘𝑅 to circumvent the Solberg-
Høiland stability criterion (Equation 2.25). Gas parcels can move up-outwards under con-
servation of their angular momentum, into regions where a stable orbit would have lower
kinetic energy than their own, which is illustrated in Figure 2.2. The gas parcel is thus
further accelerating up-outwards. This mechanism was first studied in the context of ro-
tating stars by Goldreich & Schubert (1967), and Fricke (1968) (GSF instability) as part
of a class of thermal instabilities. Its possible application to circumstellar accretion disks
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Figure 2.2
Contours of specific angular
momentum (red) and specific
kinetic energy (blue) in a cir-
cumstellar disk model with
𝛽𝑇 = −1, 𝛽𝜌 = −2.1 and
𝐻g/𝑅 = 0.05. Gas parcels can
be perturbed along the red
contours, thus entering areas
where a stable orbit has lower
kinetic energy. This causes
them to accelerate and create
turbulence through the VSI
if the cooling time is suffi-
ciently short to diminish the
effect of buoyancy.
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was recognized by Urpin & Brandenburg (1998), who conducted a local stability analysis
for a thin disk and rediscovered the original instability. Urpin (2003) discussed the strong
dependency of the instability’s growth rate on the cooling timescale. Many following works
investigated the vertically global modes of this instability and coined the term vertical
shear instability (VSI) (Klahr et al., 2023). The cooling time restriction for both versions
are nonetheless similar and arise from the vertical stratification of the disk. A vertically
moving gas parcel is subject to the vertical component of gravity and can only become
buoyant if its entropy adjusts to the background entropy on a sufficiently short timescale.
Otherwise, it would undergo a stable oscillation around its equilibrium position. Thermal
relaxation is thus ideally instantaneous, which is the regime studied in the first simulations
of VSI in protoplanetary disk models with radial and vertical stratification by Nelson et al.
(2013). For vertically global VSI modes, Lin & Youdin (2015) found a critical cooling time
at which the growth rates begin to decline

𝑡VSI, crit =
𝐻g

𝑅

|𝛽𝑇 |
𝛾 − 1Ω

−1
K , (2.27)

which was recovered in recent numerical studies by Klahr et al. (2023). At lower numerical
resolution, VSI can even be completely absent at cooling times exceeding Equation 2.27,
as shown by Manger et al. (2021). Studies of the VSI in three-dimensional hydrodynamic
simulations have also shown its ability to form large and long-lived vortices (Richard et al.,
2016; Manger & Klahr, 2018). Figure 2.3 shows the three-dimensional protoplanetary disk
simulation from Pfeil & Klahr (2021) in which large-scale vortices have formed. These
structures emerge as a result of secondary instability in the non-linear velocity field of
a VSI-active disk which was found to be the Kelvin-Helmholtz instability by Latter &
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Figure 2.3
Three-dimensional hydrodynamic simulation of a VSI-active protoplanetary disk from Pfeil & Klahr (2021)
with the PLUTO code (Mignone et al., 2007). The up and down moving VSI flow structures are initially
axisymmetric, then experience a secondary instability, break up and form long-lived anticyclonic vortices.

Papaloizou (2018). Another possible mechanism of vortex formation from VSI turbulence
is the Rossby-Wave instability, which was suggested by Richard et al. (2016) and Manger
& Klahr (2018).

Convective Overstability and Subcritical Baroclinic Instability

From the Solberg-Høiland criteria, we know that convection in the radial direction of a pro-
toplanetary disk (usually characterized by 𝑁2

𝑅
< 0) is stabilized by the angular momentum

stratification of the disk. Radial perturbations in an adiabatic gas thus result in stable oscil-
lations called epicycles, which are only slightly modified by a super-adiabatic stratification.
Introducing a finite cooling time or some mean of energy transfer, however, changes this
situation. Petersen et al. (2007a,b), first explained the resulting baroclinic amplification of
vortices, known as the Subcritical Baroclinic Instability (SBI). Through vortical motion, a
gas parcel is transported outwards in a protoplanetary disk. If the disk’s stratification is
superadiabatic, the moving gas parcel cannot expand fast enough to adjust to the lower
surrounding entropy (see Figure 2.4). Buoyancy accelerates the warm gas parcel outwards.
On its way, it thermally relaxes towards the entropy of its new surroundings—in the pro-
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Figure 2.4
Baroclinic amplification of a vortex
in the plane of a protoplanetary disk
through the SBI mechanism. The gen-
eral principle is identical for the COS,
although the vortex must be exchanged
for an epicycle that is not restricted to
the disks 𝑅-𝜑 plane, but can also contain
a vertical perturbation. (used with per-
mission of Annual Reviews, Inc., from
Armitage, 2011, Annu. Rev. Astron. As-
trophys., 49, 195; permission conveyed
through Copyright Clearance Center,
Inc.)

cess reducing its own entropy and establishing an entropy gradient in the surrounding gas.
Once the gas parcel arrives back at the original distance to the star, it has a lower entropy
than in the beginning. Having a lower entropy than the surrounding on its way through
the inner disk regions, buoyancy now acts in the different direction, pushing the gas parcel
further inside. On its way, it heats up and gains entropy. In that way the vortex creates
an azimuthal gradient in temperature around itself, which drives the baroclinic term in the
vorticity Equation 2.16 and amplifies the vortex motion. As buoyancy amplifies the cyclic
vortex motion in the direction of the oscillation’s restoring force, this mechanism can be
describes as an overstability. A very similar, but linear, mechanism was discovered by Klahr
& Hubbard (2014). The vortex is exchanged by an infinitesimal epicycle, which can also
move in the vertical direction instead of the azimuthal direction. The same buoyancy gain
and loss which is achieved by thermal relaxation amplifies the epicyclic motion and leads to
a linear overstability that drives turbulence, called the convective overstability (COS). The
ideal cooling timescale for this instability in a Keplerian disk is given for radially elongated
modes as

𝑡COS,max =
1

𝛾ΩK
, (2.28)

which means that VSI and COS reach their maximum growth rates in completely different
cooling time regimes. Three-dimensional hydrodynamic simulations have shown that the
SBI is in fact the saturated state of COS, where the small scale turbulence develops into
large vortices (Lyra, 2014).

Zombie Vortex Instability

Marcus et al. (2013, 2015, 2016) first studied the non-linear instability of baroclinic layers
in protoplanetary disks, called the zombie vortex instability (ZVI). ZVI, in contrast to
VSI and COS, requires a finite amplitude perturbation. Given an already existing vortex
filament, Rossby waves are launched, which are in resonance with buoyant oscillations in
the direct vicinity. This critical layer surrounding the filament is made possible by the
Doppler shift of the launched Rossby waves due to the Keplerian shear of the disk. The
enhanced buoyant oscillations create a new vortex filament and the process is propagating
through the disk, leading to turbulence. Since the mechanism relies on the existence of
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buoyant oscillations, a buoyantly stable stratification and long cooling times are requires,
which have to be longer than ten orbital timescales (see Lyra & Umurhan, 2019).

2.1.5 The Effect of Hydrodynamic Turbulence in Protoplanetary Disks

Advancements in numerical modeling and observational techniques have shed new light
on the question whether protoplanetary disks are actually turbulent and what the effect
of turbulence really is. For once, simulations suggest that the stress exerted by purely
hydrodynamic turbulence is likely not the driving force of accretion in the disk that was
discussed in Section 2.1.3 (Lyra & Umurhan, 2019; Lesur et al., 2023). Instead, focus
has shifted towards photoevaporation and magnetic disk winds as causes for the dispersal
of protoplanetary disks (see Pascucci et al., 2023). Planet and disk population synthesis
models also show that very high levels of turbulence are probably not in agreement with
our current understanding of the planet formation process and observations (Chambers,
2018; Zormpas et al., 2022). Gas kinematics also hint towards weak turbulence in some
protoplanetary disks (e.g., Flaherty et al., 2018), but stronger turbulence in others (e.g.,
Paneque-Carreño et al., 2023). Another method to determine the level of turbulence mea-
suring of the thickness of the dust layer (see Rosotti, 2023, for an overview of possible
oservational techniques to constrain turbulence). These observations show different levels
of turbulence in different disks (Villenave et al., 2020; Pizzati et al., 2023) and even within
single disks (Doi & Kataoka, 2021). It seems to become clear that the strength in turbu-
lence in protoplanetary disks has no universal value. Instead, the individual environmental
conditions might determine whether a disk becomes turbulent, where it becomes turbulent,
and at what level. Furthermore, not every form of turbulence leads to strong radial angu-
lar momentum transport (Lesur et al., 2023). The VSI for instance is highly anisotriopic
(Stoll et al., 2017) and mostly transports angular momentum vertically. It therefore also
contributes to the vertical dispersal of dust particles and thus influences the observational
appearance of protoplanetary disks (see Chapters 4 and 5, Pfeil et al., 2023).

The influence of hydrodynamic instabilities on the evolution of dust particles (Section 2.2)
and the formation of substructures (Section 2.3) should not be underestimated. Weak
turbulence still contributes to the coagulation and fragmentation of dust particles and
may create the necessary substructures for planet formation, such as vortices (Barge &
Sommeria, 1995; Manger & Klahr, 2018; Raettig et al., 2021).

2.2 Dust Evolution
Dust grains are present throughout the ISM and comprise ≈ 1 % of its mass budget (Wein-
gartner & Draine, 2001). Since protoplanetary disks form out of interstellar molecular gas
clouds, they also contain these grains, which, in the ISM, are typically micrometer-sized.
The higher densities and temperatures, and the strong rotation of the disk influence the
dust evolution—leading to aerodynamic drag and a strongly enhanced grain-grain collision
frequency. The higher dust densities mean that in most parts of protoplanetary disks, dust
can be considered a fluid, similar to the gas. Dust fluids are however treated as pressure-
less since changes in the grain’s internal energy mostly influence their surface temperatures,
but not their movement (Garaud et al., 2004). The classic definition of pressure as a result
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of elastic collisions, derived from a Boltzmann distribution, does also not hold for the dust
fluid, as collisions under astrophysical conditions are oftentimes inelastic (for an overview
of experimental results, see Blum, 2018). In the following section, I give an overview of
some aspects of dust dynamics and evolution in protoplanetary disks.

2.2.1 Dust Dynamics

Relative velocities between dust and gas cause friction forces, which lead to a relative drag
between both fluids. The respective force, coupling the fluid equations of dust and gas is

𝒇 fric = −
𝐶drag𝜋𝑎

2𝜌g |𝒗d − 𝒗g |
2 (𝒗d − 𝒗g) , (2.29)

with the particle size 𝑎 and the dimensionless drag coefficient 𝐶drag (e.g., Weidenschilling,
1977). The value of 𝐶drag depends on the aerodynamics of the problem. If the mean free
path between dust particles and and gas molecules is larger than the grain’s radius, which
is the case in most parts of protoplanetary disks, we can apply the so-called Epstein regime
(Epstein, 1924), in which the drag coefficient is given by

𝐶drag =
8𝑣mol

3|𝒗d − 𝒗g |
, (2.30)

where 𝑣mol is the average gas molecule velocity. The strength of the coupling is characterized
by the friction time 𝑡fric = 𝑚d |𝒗d−𝒗g |/| 𝒇 fric |, where 𝑚d = 4/3 𝜋𝜌m𝑎3 is the mass of an individual
spherical particle with material density 𝜌m. Expressing the friction time in terms of the
local dynamical timescale of the disk gives us a useful measure for the effectiveness of the
dust-gas coupling. The resulting quantity is called the Stokes number St = 𝑡fricΩK. If we
consider the vertically integrated disk structure, we can express it as

St = 𝜋

2
𝑎𝜌m
Σg

. (2.31)

Stokes numbers larger than one correspond to a dust fluid that is mostly decoupled from
the gas. Dust particles and gas molecules couple quickly if the Stokes number is much
smaller than one. Using this definition, the coupled inviscid Navier-Stokes equations in
terms of the friction time follow as

𝜕𝒗d
𝜕𝑡

+ (∇ · 𝒗d)𝒗d = −∇Φ −
𝒗d − 𝒗g

𝑡fric
(2.32)

𝜕𝒗g

𝜕𝑡
+ (∇ · 𝒗g)𝒗g = −∇Φ + 𝜀

𝒗d − 𝒗g

𝑡fric
− 1

𝜌g
∇𝑃 , (2.33)

where we have introduced the dust-to-gas density ratio 𝜀. If the friction time is short, gas
and dust will be in an approximate force equilibrium at all times, where the drag force
is balanced by gravity and pressure forces. Ignoring the advective terms in the coupled
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dust-gas equations and setting 𝜕𝑡 = 0 results in

𝒗d − 𝒗g =
𝑡fric

𝜌g (1 + 𝜀)∇𝑃 , (2.34)

which is referred to as the terminal velocity approximation (Youdin & Goodman, 2005).
Thus, dust particles drift along the pressure gradient of the gas. In a protoplanetary disk,
pressure is decreasing with distance to the central star, which means that particles drift
towards the central star. Nakagawa et al. (1986) derived the steady state of the coupled
equations under consideration of the advective terms for an axisymmetric disk in cylindrical
coordinates and found for the radial and azimuthal components of the equilibrium velocity
vector

(𝒗d − 𝒗g) |𝑅 =
St(1 + 𝜀)

St2 + (1 + 𝜀)2
1

ΩK𝜌g

𝜕𝑃

𝜕𝑅
(2.35)

(𝒗d − 𝒗g) |𝜑 = −1
2

St2

St2 + (1 + 𝜀)2
1

ΩK𝜌g

𝜕𝑃

𝜕𝑅
. (2.36)

For small Stokes numbers, the radial component can be expanded in a Taylor series to
second order which is identical to the terminal velocity Equation 2.34. Drag forces also act
on dust particles on inclined orbits, which perform one vertical oscillation per orbit and
thus experience the effect of the vertical pressure gradient. Particles thus undergo vertical
settling, where the terminal velocity is exactly given by Equation 2.34

(𝒗d − 𝒗g) |𝑧 =
St

𝜌gΩK(1 + 𝜀)
𝜕𝑃

𝜕𝑧
. (2.37)

In a hydrostatic disk, this also allows for a different interpretation. Since 𝜕𝑧𝑃/𝜌g ≈ −Ω2
K𝑧,

we could argue that a particle at height 𝑧 feels the vertical component of the gravitational
force, pulling it towards the midplane of the disk. Drag counteracts the free fall and limits
it to the terminal velocity

(𝒗d − 𝒗g) |𝑧 ≈ −StΩK𝑧 = 𝑡fric𝑔𝑧 , (2.38)

where 𝜀 ≪ 1 was assumed and 𝑔𝑧 is the gravitational acceleration in 𝑧 direction. This is
identical to the terminal velocity of a falling particle in a planetary atmosphere.

Turbulent Diffusion

In the previous section, we have discussed the effect of turbulence on the gas flow and that
it is oftentimes approximated as an additional viscosity 𝜈T = 𝛼𝑐s𝐻g. Similar to the diffusive
effect on the gas, turbulence can also mix the dust particles. To describe this process, it is
often assumed that gradients in the dust density are flattened by turbulence, which means
the diffusive flux takes the form

𝑭diff = −𝐷d𝜌g∇𝜀 , (2.39)
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(Dubrulle et al., 1995), where 𝐷d is the dust diffusivity. Following the same considerations
as for the gas viscosity, we set 𝐷d = 𝛿𝑐s𝐻g, where 𝛿 < 0 is a parameter determining the
strength of the diffusion. Adding this flux-component to the dust’s continuity equation
gives

𝜕𝜌d
𝜕𝑡

+ ∇ · (𝜌d𝒗) = ∇ ·
(
𝐷d𝜌g∇𝜀

)
. (2.40)

Different prescription for gradient dust diffusion exist. Some take the gradient of the
dust density into account, others the gradient in 𝜀, which is the mostly used variant in the
protoplanetary disk community (see Binkert, 2023, for a comprehensive introduction to the
treatment of dust diffusion in protoplanetary disks). Assuming that terminal velocity is
reached, we can set 𝜕𝑡 = 0 and 𝑣𝑧 = −St(𝑧)ΩK𝑧 for the vertical component of Equation 2.40.
Integrating the resulting equation in 𝑧 gives a steady-state dust distribution, where vertical
settling is exactly balanced by turbulent mixing

𝜌d(𝑅, 𝑧) = 𝜌d,mid(𝑅) exp
[
−Stmid

𝛿

(
exp

(
𝑧2

2𝐻2
g

)
− 1

)
− 𝑧2

2𝐻2
g

]
, (2.41)

where Stmid is the Stokes number in the disk midplane (𝑧 = 0) (Takeuchi & Lin, 2002).
If it is assumed that the stopping time of the particles is constant with distance to the
midplane, we can also find a much simpler vertical profile

𝜌d(𝑅, 𝑧) ≈ 𝜌d,mid(𝑅) exp
(
− 𝑧2

2𝐻2
d

)
, (2.42)

where we have introduced the dust scale height

𝐻d = 𝐻g

√︂
𝛿

𝛿 + St . (2.43)

For large 𝛿 or small St, we see that the dust scale height approaches the gas scale height.
From these considerations, we now have a possible explanation for why the geometrical
appearance of the dust structure of a protoplanetary disks is so different in different wave-
length regions. Infrared observations trace the light scattered by tiny dust particles (central
panel of Figure 1.4), which, according to to Equation 2.43 have a much wider vertical dis-
tribution than larger particles, which we mostly see in the thermal millimeter radiation
(left panel of Figure 1.4). These results have, however various limitations stemming from
the underlying assumption. For once, turbulence was assumed to be isotropic throughout
the disk, which is not given in protoplanetary disks, as will also be shown in the coming
chapters. Furthermore, the terminal velocity approximation might not hold in the upper
atmosphere of the disk, where the Strokes numbers can become much larger than one due
to the low gas densities.

Streaming Instability

If enough dust is present, friction forces can also have a significant effect on the gas veloci-
ties. A radially drifting dust clump then drags the gas radially with it. The gas experiences
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Figure 2.5
Local shearing box simulation of a protoplanetary disk with streaming instability by Nesvorný et al. (2019).
The last snapshot shows that gravitationally bound planetesimals have formed, marked by the white circles
(used with permission of Springer Nature BV, from Nesvorný et al., 2019, Nat. Astron. 3, 808–812 (2019);
permission conveyed through Copyright Clearance Center, Inc.).

Coriolis forces that let it undergo an epicyclic motion. This azimuthal deflection again drags
dust particles in the azimuthal direction causing them to accelerate to super-Keplerian ve-
locities and move outwards into the original inwards drifting clump. This self enhancing
cycle was first studied as a linear instability by Youdin & Goodman (2005) and named
streaming instability (SI). Squire & Hopkins (2018a,b) later classified it as a resonant drag
instability since the radial dust drift is in resonance with the epicylcic frequency of the gas.

SI is a particularly interesting mechanism in the context of planetesimal formation, as it
leads to the formation of dense clumps that can undergo gravitational collapse if the right
conditions are met (Schreiber & Klahr, 2018; Klahr & Schreiber, 2020; Gerbig et al., 2020).
Nesvorný et al. (2019) showed that planetesimals formed out of these clumps reproduce the
binary fraction of trans-Neptunian objects in our own Solar system (see Figure 2.5), which
is seen as a strong indicator for the importance of SI in planet formation. However, SI
requires enhanced dust densities to start in the first place. Some other mechanism thus has
to concentrate the dust before SI can kick in and form planetesimals. Since dust trapping
and concentration is more effective for larger particles, coagulation has to proceed before
the onset of SI.

2.2.2 Dust Coagulation

The constituent particles of interstellar dust grains are called monomers and have typical
sizes of 0.1 µm (Tazaki & Dominik, 2022). In order to form an Earth-sized planetary
body out of these particles, 16 order of magnitude in radius and 42 order of magnitude
in mass have to be bridged. The first step in this evolution is characterized by hit and
stick collisions between the smallest constituents, i.e., coagulation. Sticking is facilitated
by surface forces. At this lowest end of the mass scale of planet formation, Brownian
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motion causes the relative particle velocities that lead to collisions. Particle encounters
can, however, also lead to the break-up of larger aggregates, referred to as fragmentation,
which produces a size spectrum of smaller grains. Coagulation and fragmentation therefore
create a continuum number density distribution 𝑛(𝑚), whose time evolution is described by
the integro-differential Smoluchowski equation (Smoluchowski, 1916)—in its most general
form given as

𝜕𝑛(𝑚)
𝜕𝑡

=

∫ ∞

0

∫ ∞

0
M(𝑚, 𝑚1, 𝑚2)𝑛(𝑚1)𝑛(𝑚2) d𝑚1 d𝑚2 , (2.44)

where 𝑚 is the particle mass (see Birnstiel et al., 2010). The quantity M is called the kernel
and contains all information about the possible collision outcomes. If particle collisions only
lead to perfect sticking, Equation 2.44 takes the form of the coagulation equation

M(𝑚, 𝑚1, 𝑚2) =
1
2C(𝑚1, 𝑚2) · 𝛿(𝑚1 + 𝑚2 − 𝑚) − C(𝑚1, 𝑚2) · 𝛿(𝑚2 − 𝑚) (2.45)

𝜕𝑛(𝑚)
𝜕𝑡

=
1
2

∫ ∞

0
C(𝑚1, 𝑚 − 𝑚1)𝑛(𝑚1)𝑛(𝑚 − 𝑚1) d𝑚1 − 𝑛(𝑚)

∫ ∞

0
C(𝑚1, 𝑚)𝑛(𝑚1) d𝑚1 ,

where C is called the coagulation kernel. It can be written in terms of the collision frequency
function R(𝑚1, 𝑚2) = Δ𝑣(𝑚1, 𝑚2)𝜎(𝑚1, 𝑚2), and the coagulation probability Pc.

C(𝑚1, 𝑚2) = Pc(𝑚1, 𝑚2)R(𝑚1, 𝑚2) . (2.46)

Here, we have the relative velocity Δ𝑣 and the collision cross section 𝜎. The equation’s
first right-hand side term accounts for the effect of coagulation on the particle number
density of mass 𝑚, where the factor 1/2 removes double counted collisions. The second term
corresponds to the particles of mass 𝑚 which are lost due to continued growth. Analytic
solutions of this equation exist for some simple forms of the kernel, e.g., a constant or
linear form (e.g., Silk & Takahashi, 1979; Wetherill, 1990). In most cases, however, the
kernel is non-linear and the fragmentation process has to be considered. This makes the
use of numerical methods necessary. Kornet et al. (2001) gave an estimate for the growth
rate of dust particles in a monodisperse distribution. If every collision leads to growth, the
particle mass should approximately change as

d𝑚d
d𝑡 ≈ 𝑚d

𝑡coll
= 𝜎 Δ𝑣 𝑛d 𝑚d , (2.47)

where 𝑛d is the the total number density of particles. For spherical particles, this can be
expressed in terms of the particle radius as

d𝑎
d𝑡 =

𝜌d
𝜌m

Δ𝑣 . (2.48)

This very simple estimation holds surprisingly well when compared to simulations of grain
growth (see Section 3.2).

Laboratory experiments and molecular dynamics simulations have shown that collisions
between similarly sized particles with velocity larger than a few m s−1 lead to the fragmen-
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Figure 2.6
The different outcomes of grain collisions, sorted by relative grain velocities (figure by Windmark et al.
(2012), licensed under CC BY 4.0).

tation of the colliders (Güttler et al., 2010). Furthermore, bouncing of particles, fragmen-
tation with mass transfer, and erosion can play a role (see Blum, 2018; Birnstiel, 2023, for
overviews). Figure 2.6 depicts the different possible outcomes of particles collisions sorted
by impact speed. The collision speed’s dependency on particle size is controlling many
details of the resulting size distribution’s shape (Birnstiel et al., 2011).

Particle Collision Velocities

The aerodynamic coupling of dust and gas depends on the size of the particles, expressed
through the Stokes number. Differently-sized particles with Stokes numbers St𝑖 and St 𝑗
(assuming St𝑖 > St 𝑗) thus have different terminal velocity which can be calculated with
Equation 2.35 and Equation 2.36, where we assume a small dust-to-gas ratio

Δ𝑣
drift,R
𝑖 𝑗

=

����� St𝑖
St2
𝑖 + 1

−
St 𝑗

St2
𝑗 + 1

����� 1
ΩK𝜌g

𝜕𝑃

𝜕𝑅
, (2.49)

Δ𝑣
drift,𝜑
𝑖 𝑗

=

����� St2
𝑖

St2
𝑖 + 1

−
St2
𝑗

St2
𝑗 + 1

����� 1
2ΩK𝜌g

𝜕𝑃

𝜕𝑅
. (2.50)

Similarly, a differential settling velocity can be calculated. Assuming the dust to be in
settling-mixing equilibrium, we set 𝑧 = 𝐻d in Equation 2.38 and obtain

Δ𝑣set
𝑖 𝑗 =

��St𝑖𝐻d,𝑖 − St 𝑗𝐻d, 𝑗
��ΩK . (2.51)

It can be seen that these systemic contributions to the collision speeds vanish for equally-
sized particles. Relative radial drift velocities become largest for St = 1 and increase with
the size difference between the colliders. Brownian motion is another size-dependent source
of relative velocities between particles. For two particles with masses 𝑚𝑖 and 𝑚 𝑗 , Brownian

https://creativecommons.org/licenses/by/4.0/


26 2. Theoretical Background

motion leads to a relative velocity

Δ𝑣Brown
𝑖 𝑗 =

√︄
8𝑘B𝑇 (𝑚𝑖 + 𝑚 𝑗)

𝜋𝑚𝑖𝑚 𝑗

, (2.52)

(Einstein, 1905; Otto & Fissan, 1999). In addition, turbulent eddies of different size and ve-
locity preferentially couple to differently-sized particles. These effects lead to collisions be-
tween the particles of equal and different sizes. Ormel & Cuzzi (2007) assumed isotropic tur-
bulence and derived closed-form expressions for the relative velocities in different regimes.
They depend on the flow’s Reynolds number

ℜ𝔢 =
𝜈T
𝜈mol

=
2𝛼𝐻g

𝜆mfp
, (2.53)

where 𝜆mfp is the mean free path of the gas molecules, and the turnover time of the largest
and smallest eddies are defined by

𝑡S = ℜ𝔢−
1/2𝑡L 𝑡L = Ω−1

K . (2.54)

The largest eddies thus have a similar turnover time as the disk itself. The turbulent
relative velocities then follow as

Δ𝑣turb
𝑖 𝑗

𝑣turb
=



ℜ𝔢
1/4(St𝑖 − St 𝑗) for St𝑖/ΩK < 𝑡𝑠√︁

St𝑖
[
2𝑦∗𝑎 − (1 + 𝜖) + 2

1 + 𝜖

(
1

1 + 𝑦∗𝑎
+ 𝜖3

𝑦∗𝑎 + 𝜖

)]1/2

for 5𝑡S ≃ St𝑖/ΩK ≲ 𝑡L(
1

1 + St𝑖
+ 1

1 + St 𝑗

)1/2

for St𝑖/ΩK ≥ 𝑡L ,

(2.55)

(2.56)

(2.57)

(Ormel et al., 2008), where 𝑣turb = 𝑐s
√︁

3/2𝛼, 𝜖 = St𝑖/St 𝑗, and 𝑦∗𝑎 ≈ 1.6 is a numerical constant
determined by Ormel & Cuzzi (2007).
The total collision velocity of the grains is then given by

Δ𝑣rms
𝑖 𝑗 =

√︂(
Δ𝑣turb
𝑖 𝑗

)2
+

(
Δ𝑣set
𝑖 𝑗

)2
+

(
Δ𝑣

drift,𝑅
𝑖 𝑗

)2
+

(
Δ𝑣

drift,𝜑
𝑖 𝑗

)2
+

(
Δ𝑣Brown
𝑖 𝑗

)2
. (2.58)

All sources of relative grain velocities increase with the particles’ size, except for Brownian
motion which is only relevant for small particles. Figure 2.7 shows the relative velocity
contributions of the different processes as a function of the particle sizes. For larger parti-
cles, turbulence dominates much of the size spectrum. The fact that all relative velocities
(except Brownian motion) increase with the size of the colliding particles means that colli-
sions will naturally limit particles growth when a critical collision speed is reached at which
sticking is no longer effective and erosive or destructive outcomes become likely. At what
point the transition between positive and negative collision outcomes occurs is subject to
ongoing numerical and experimental research. However, most studies point towards critical
velocities in the range of a few m s−1 (e.g., Güttler et al., 2010; Wada et al., 2013). In the
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Figure 2.7
Relative particle velocity as a function of the colliding particles’ sizes. Turbulent relative velocities are the
largest component for most sizes. For very small particles, Brownian motion is a significant contribution
and causes most collisions between monomers.

following, I will refer to the critical velocity specifically as the velocity corresponding to
the onset of fragmentation.

Growth Limits

Birnstiel et al. (2012) derived the most important limits to particle growth. For particles
≳ 1 µm, turbulence is the dominating source of grain collision velocities. If the particles
are in the so-called fully-intermediate regime, collision speeds between equally-sized grains
can be approximated as

Δ𝑣turb ≈
√

3𝛼St𝑐s (2.59)

𝑎frag =
2

3𝜋
Σg

𝜌m𝛼

(
𝑣frag

𝑐s

)2
, (2.60)

which is called the fragmentation limit. For large particles, or at low gas densities, differen-
tial drift can become a significant source of grain collision velocities too. Relative velocities
between particles of Stokes numbers St and 𝑁 · St, with 𝑁 < 1, are defined via

Δ𝑣drift =
𝑐2

s
𝑣K

St(1 − 𝑁)
����𝜕 log(𝑃)
𝜕 log(𝑅)

���� . (2.61)
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Figure 2.8
Global picture of dust growth and transport in a protoplanetary disk model. Black lines show the trajectories
of particles with initial sizes of 0.1 µm. Colored contours indicate the particle locations at different evolution
times. Each trajectory is evolved over 500 local dynamical timescales, meaning that the particles in the outer
disk evolve over several 106 yr. In the inner disk regions, particles grow until they reach the fragmentation
barrier. Radial drift limits the growth in the outer regions.

Setting this expression equal to the fragmentation velocity and using the definition of the
Stokes number, we obtain the drift-fragmentation limit, which describes the particle size
at which collisions due to differential drift lead to fragmentation

𝑎drift−frag =
2
𝜋

Σg

𝜌m

����𝜕 log(𝑃)
𝜕 log(𝑅)

����−1 𝑣frag𝑣K

(1 − 𝑁)𝑐2
s
. (2.62)

Finally, large grains are also effectively removed from the local size distribution by radial
drift if they cannot be replenished quickly enough by growth of smaller particles. By
comparing the respective timescales of growth and drift, we can get an estimate for the
so-called drift limit. For the timescale of drift we can estimate 𝑣dr ≈ (𝒗d − 𝒗g) |𝑅 and get

𝑡drift =
𝑅

|𝑣dr |
≈ 𝑅𝑣K

St𝑐2
s

����𝜕 log(𝑃)
𝜕 log(𝑅)

����−1
. (2.63)

Brauer et al. (2008) took the Kornet et al. (2001) estimate of the particle growth rate
(Equation 2.48) to derive the particle growth timescale in the fully-intermediate regime of
turbulence (Equation 2.59) and found

𝑡growth =
𝑎

¤𝑎 ≈ 1
ΩK𝜀

. (2.64)
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Equating both expressions gives the drift limit

𝑎drift =
2
𝜋

𝜀Σg

𝜌m

(
𝑣K
𝑐s

)2 ����𝜕 log(𝑃)
𝜕 log(𝑅)

����−1
. (2.65)

Numerical simulations have shown that these growth barriers are good estimates for the
maximum particle size in protoplanetary disks. They are used to get quick estimates for
the particle sizes in hydrodynamic simulations (e.g., Tamfal et al., 2018) and disk models
(e.g., Emsenhuber et al., 2021; Zormpas et al., 2022), and estimates for the interpretation of
observations (e.g., Leiendecker et al., 2022; Bergez-Casalou et al., 2022; Antonellini et al.,
2023). Figure 2.8 shows the trajectories of initially sub-micron-sized particles in the size-
distance plane and for a steady gas disk, based on the radial drift velocity (Equation 2.35)
and the monodisperse particle growth rate (Equation 2.48), which is limited by fragmen-
tation. In the inner disk, particles grow to the fragmentation limit, whereas grains in the
outer disk are drift-limited. Each location evolves on its local growth timescale, meaning
that the growth and drift process in the very outer regions takes millions of years, while
the particles in the inner disk reach their maximum size in a few thousand years. Based
on our current knowledge of protoplanetary disk structure, reasonable estimates of the size
limits show that particles can coagulate to maximum sizes of ∼ 1 m.

Equilibrium Size Distributions

The outcome of a destructive collisional cascade was first studies by Dohnanyi (1969) for
collisions between asteroids. If collisions exceed the critical break-up velocity, a number of
smaller fragments is created that again collide and fragment. The result is a size distri-
bution which can be approximated by a power law 𝑛(𝑚) ∝ 𝑚−𝜉 = 𝑚−11/6 ⇔ 𝑛(𝑎) ∝ 𝑎−3.5.
The same size distribution is also encountered for interstellar dust grains (Mathis et al.,
1977). We have, however, seen that the conditions in protoplanetary disks are much dif-
ferent from the dilute interstellar medium. The high gas densities mean that dust and gas
are aerodynamically coupled and collisions for small particles are slow enough to allow for
sticking. Only once the particles coagulate towards the growth barriers, relative veloci-
ties can become high enough to cause fragmentation or erosion (Windmark et al., 2012).
The smaller grains which are produced in catastrophic collisions are again better coupled
to the gas and will not undergo a continuous collision cascade. Instead, small fragments
can coagulate again, which leads to a steady state in which coagulation and fragmenta-
tion are balanced. Such a distribution will thus be cut off at the fragmentation barrier,
as can be seen in the examples in Figure 2.9. These size distributions are based on the
model by Birnstiel et al. (2011). They analytically derived the typical size distributions in
coagulation-fragmentation equilibrium in different regimes under the assumption of mass
conservation, i.e., ignoring any loss due to dust transport. They used these analytic pre-
scriptions to interpret the results of numerical dust coagulation simulations and derived
the model shown in Figure 2.9, which depends on the local environmental conditions.

From the various regimes investigated by Birnstiel et al. (2011), I will only introduce
the case in which the fragmenting particles are more or less equally distributed across all
sizes. The distribution of fragments is then usually assumed to be the collisional cascade
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Figure 2.9
Size distribution fits in fragmentation-coagulation equilibrium, calculated with the model by Birnstiel et al.
(2011). The only parameters varied between the different curved are the strength of the turbulence (𝛼 =

3×10−4, 10−3, left and right panel) and the fragmentation velocity (𝑣fr = 100 cm s−1 and 500 cm s−1, within
each panel). Smaller 𝑣fr and 𝛼 lead to larger maximum particle sizes. The slopes of the distributions depend
on the physical mechanism that dominates the collision velocities (colors).

𝜉 = 11/6. Fragmentation is generally only occurring in collisions between particles of simi-
lar size, while collisions between a large and a small particles lead to erosion of the large
grain but not to a complete break-up. As eroding collisions slow down growth, this effect
causes the formation of a bump at the upper end of the size distribution, as can be seen
in the examples in Figure 2.9. Since the flux of particles along the size spectrum must be
constant in an equilibrium distribution, slower growth results in an increased density. It
turns out that the dominating physical mechanism behind the grain collision velocities is
the most important factor for the shape of the resulting size distribution. In general we
can distinguish between three characteristic outcomes:

Δ𝑣 ∝ 𝑎−
3/2, which is the case for Brownian motion (Equation 2.52). The size distribu-

tion is much steeper than the MRN distribution, with 𝑛(𝑎) ∝ 𝑎−2.5.
Δ𝑣 ∝ 𝑎, as in the case of the first regime of turbulence (Equation 2.55), or drift at

small Stokes numbers (Equation 2.49). In this case, the equilibrium size
distribution scales as 𝑛(𝑎) ∝ 𝑎−3.75.

Δ𝑣 ∝ 𝑎
1/2, which is the case in the intermediate, second regime of turbulence (Equa-

tion 2.56). The MRN size distribution 𝑛(𝑎) ∝ 𝑎−3.5 is recovered if this is
the dominant source of grain collision velocities.

If settling plays a role, the number densities change according to the settling-mixing equi-
librium and the slope is slightly altered. The resulting size distribution depends on the
local physical conditions in the protoplanetary disk. If turbulence is weak, as in the left
panel of Figure 2.9, other effects, like settling, will become more dominant and cause the
distribution to deviate from the MRN distribution. Different fragmentation velocities result
in different size limits and thus also determine what effects are dominant under the given
conditions. Note that these models do not consider the relative drift velocities, which, if
dominant, further push the size distribution towards 𝑛(𝑎) ∝ 𝑎−3.75. In general, the more
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collisions are dominated by the second regime of turbulence, the closer is the distribution
to 𝑛(𝑎) ∝ 𝑎−3.5. If drift or the first regime dominate, most of the mass will follow a shal-
lower size distribution with 𝑛(𝑎) ∝ 𝑎−3.75. These considerations only hold if the local dust
density is constant and not if material is removed by drift. Size distributions in the outer
disk are drift-limited and thus not in fragmentation-coagulation equilibrium. The exact
size distribution is then dependent on the radial dust fluxes.

2.3 Large-Scale Structure and Planet Formation

The growth barriers for dust particles pose significant obstacles for the formation of plan-
etesimals and planets (Morbidelli & Raymond, 2016). Large aggregates are either destroyed
in collisions (Brauer et al., 2008) or lost due to radial drift in just a few hundred years
(Weidenschilling, 1977). Other mechanisms have to be in place to enable the formation
of larger bodies. Early theories on the formation of planetesimals mostly focused on pro-
cesses to enhance the dust-to-gas ratio in smooth protoplanetary disks, i.e., without any
substructure. Goldreich & Ward (1973) proposed that settling of dust particles could form
a midplane layer dense enough to trigger gravitational collapse. We have however seen
before that turbulent diffusion prevents dust particles from settling completely (Dubrulle
et al., 1995). Furthermore, a dense dust layer causes feedback on the gas and thus induces
a vertical shear that can trigger Kelvin-Helmholtz instability around the disk’s midplane.
The settling process is thus self-regulatory and the Goldreich-Ward mechanism likely not
feasible. In the outer regions of protoplanetary disks, gravitational instability could trig-
ger clumping and turbulence (Boss, 1997). This is however only feasible in massive disks
or in the very early stages and generally produces massive planets (Forgan et al., 2018;
Wagner et al., 2019). Other sources of turbulence are also able to clump dust particles, as
shown by Johansen et al. (2007), where dust accumulated in filamentary structures due to
MRI-induced turbulence.

Observational advances in the last 10 years (e.g., ALMA-Partnership et al., 2015) have
revealed that protoplanetary disks are generally not smooth, but highly structured (see
Bae et al., 2023). The DSHARP program (Figure 2.10, Andrews et al., 2018) in particular
showed that rings, spirals, and vortices are almost ubiquitous substructures in disks around
young stars, which has been confirmed by other programs (e.g., Öberg et al., 2021).

Substructures offer a path towards planetesimal formation, as they are often associated
with pressure perturbation that can accumulate dust particles (Whipple, 1972). If suf-
ficiently high amounts of dust collect in a substructure, secondary mechanisms like the
streaming instability (Zagaria et al., 2023) and gravitational collapse (Gerbig et al., 2020)
can kick in and cause planetesimal formation. We are however confronted with a “chicken
and egg” problem. Are the observed substructures a consequence of planet formation,
i.e., the tidal effects of the emerging planets, or is planet formation a consequence of the
presence of substructures? This question cannot be answered yet. Arguments for both
possibilities exist. The detection of planets inside of gaps (Keppler et al., 2018) seems to
hint towards a connection between substructures and planets. Bae et al. (2023) compiled
the recent observational and theoretical concepts regarding substructures. Several known
mechanisms could account for their formation, as shown in Figure 2.11.
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Figure 2.10
Protoplanetary disks observed during the Disk Substructures at High Angular Resolution Project (DSHARP)
with ALMA in various star-forming regions show a variety of substructures (figure by Andrews et al. (2018),
licensed under CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
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Figure 2.11
Overview of several substructure-forming processes in protoplanetary disks. Hydrodynamic and gravita-
tional instabilities can cause turbulence in protoplanetary disks that can lead to the formation of vortices
and rings. Forming planets and stellar flybys induce gaps and spirals via gravitational interaction and angu-
lar momentum exchange. The solids themselves can also contribute to structure formation. Sublimation of
volatiles at the so-called icelines causes “traffic jams” of inwards drifting particles. At high concentrations,
dust particles can also trigger feedback instabilities like the streaming instability (SI). (figure by Bae et al.
(2023), licensed under CC BY 4.0)

Purely Hydrodynamic Processes like flow instabilities, photoevaporation and infall
can modify the velocities and densities in the disk. VSI was shown by various authors to
induce the formation of large-scale anticyclonic vortices (Richard et al., 2016; Manger &
Klahr, 2018; Pfeil & Klahr, 2021). The resulting structures are long-lived and associated
with pressure perturbation that can potentially cause dust trapping (Barge & Sommeria,
1995). What mechanism causes the vortex to form out of the VSI-active state of the
disk is not finally clarified yet. Richard et al. (2016) and Manger & Klahr (2018) suggest
the Rossby wave instability (RWI, see Lovelace et al., 1999) could be triggered by the
VSI-induced perturbation of the potential vorticity; but also parasitic Kelvin-Helmholtz
instability could be responsible (Latter & Papaloizou, 2018). Also COS can lead to vortex
formation in its saturated state, as shown by Lyra (2014) and Raettig et al. (2021). These
vortices are, however, often much smaller than their planet-induced counterparts and it
is questionable if they are associated with the observed vortices. They could nonetheless
facilitate planetesimal formation and thus trigger further substructure formation. Photoe-
vaporation under the influence of high-energy stellar photons (Bally, 1982) can form inner

https://creativecommons.org/licenses/by/4.0/
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cavities that could potentially trap dust particles (Gárate et al., 2021). The respective
pressure bump can also trigger RWI. Gravitational instability (Toomre, 1964) can cause
the formation of spiral density waves and clumps at large distances to the central star
(Vorobyov & Basu, 2005).

Magneto-hydrodynamic Processes like the MRI (Balbus & Hawley, 1991) were shown
to contribute to structure formation. In ideal MHD, ring structures in the form of zonal
flows can form out of MRI turbulence (Hawley et al., 2001). MRI-dead zones exist in the
dense regions when Ohmic resistivity is considered and create radial gradients in turbulent
viscosity (Lyra & Mac Low, 2012). The resulting pressure bumps can trigger RWI and
trap dust particles in substructures that could be observable (Flock et al., 2015). If a
vertical magnetic field is present in the disk, a magneto-centrifugal wind can be launched
(Blandford & Payne, 1982). The associated angular momentum transport and accretion
can lead to the formation of gaps and rings as shown by Moll (2012).

Dust processes like the streaming instability (Youdin & Goodman, 2005) as a dust-
feedback-induced mechanism can drive structure formation. If a sufficiently high dust-
to-gas ratio exists, SI can form small filamentary structures that facilitate gravitational
collapse and planetesimal formation. These structures have typical sizes of ∼ 0.1𝐻d (Yang
& Johansen, 2014). Nesvorný et al. (2019) have shown that the binary fraction of the
planetesimals formed via gravitational collapse in streaming instability filaments matches
the binary fraction in the Solar system’s Kuiper belt. SI is therefore believed to be an
important mechanism in the formation of planetesimals. Unfortunately, it requires already
enhanced dust-to-gas ratios which have to be created by some other mechanism.

The evaporation of ices contained in dust aggregates or on their surfaces occurs when dust
drifts towards the central star and thus reaches warmer regions. The respective locations
at which the evaporation occurs are called icelines. Particles entering these region can
completely break up when their ice content is removed. The smaller fragments drift slower
and thus pile up (Saito & Sirono, 2011). The resulting vapors can be diffused outwards and
recondense on the incoming dust particles, thus increasing the local solid content. This is
called the cold finger effect (Ros & Johansen, 2013; Drążkowska et al., 2021). It is not yet
clear whether the ice content of the dust grains also has a positive effect on the sticking
probability, as indicated by some studies (Dominik & Tielens, 1997). This would mean
that the particle size varies across the ice lines, which would cause a pile up. However more
recent studies seem to find no significant effect of the ice content on the stickiness (Kimura
et al., 2015).

Tidal processes are the last class of possible causes for substructure formation. The
presence of a planet in the disk perturbs the gravitational field and thus launches spiral
density waves through resonance with the local epicyclic frequency, called Lindblad reso-
nances (Goldreich & Tremaine, 1978). The waves can constructively interfere and create
coherent spiral structures (Ogilvie & Lubow, 2002; Bae & Zhu, 2018). Only small dust par-
ticles can effectively be trapped in these structures as they orbit the star at the Keplerian
frequency of the planet (Bae et al., 2023).
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The spiral density waves launched by a planet with mass smaller than the thermal mass
𝑀th = (𝐻g/𝑅)3

Planet 𝑀★ steepen into shocks and thus transfer angular momentum to the
gas in the disk. Gas at some distance to the planet is therefore moving away from the
planet’s co-orbital region, thus opening a gap. For planets more massive than the thermal
mass, spiral density waves are already steepened at launch and thus remove the gas at the
co-orbital region of the planet itself (Rafikov, 2002; Dong & Fung, 2017). The mass of
the planet in combination with the viscosity of the gas therefore determine the width and
depth of the resulting gap. A pressure maximum forms outside of the gap which collects
inwards drifting dust particles. RWI can also be triggered due to the pressure perturbation
and cause the formation of large-scale vortices (Zhu et al., 2014).

Studying these large-scale structure forming processes, which are needed to explain the
formation of planetesimals and planets requires numerical simulations of gas and dust in
protoplanetary disks. The dust dynamic’s sensitivity to the grain sizes and the dust size
distribution makes numerical models of dust coagulation and fragmentation necessary.

2.4 Radiative Transfer

In Section 2.1.4, it was already highlighted that for hydrodynamic turbulence to emerge in
protoplanetary disks, thermal relaxation is required, i.e., the decay of temperature pertur-
bations with respect to some equilibrium state. Since thermal conductivity is extremely
low in the dilute gas of the circumstellar environment, thermal relaxation is only achievable
via the emission or absorption of electromagnetic radiation. The consideration of radiative
transfer is thus necessary to describe how the gas and dust in protoplanetary disks can be
heated or cooled.

Irradiation from the central star furthermore determines most of the disk’s temperature
structure (Armitage, 2020). Heating of the upper layers of protoplanetary disks can cause
photoevaporation, where heated material achieves thermal velocities higher than the escape
velocity from the star’s gravitational field (Bally, 1982).

Another important field of applications is the radiative transfer modeling of theoretical
models. By calculating how radiation traverses a model of a protoplanetary disk, we can
obtain artificial observables. This allows us to directly compare the results of numerical
simulations or analytic models with real astronomical data. In the following, I will give a
brief overview of radiative transfer, where I follow the book by Rybicki & Lightman (1985).

The basic quantity in radiative transfer is the intensity 𝐼𝜈—that is the energy passing
through a defined area with normal vector 𝒏, per time interval, per frequency interval,
coming from a defined solid angle along a beam 𝒔. For a steady radiation field it can be
described by the radiative transfer equation

𝒏 · ∇𝐼𝜈 = 𝑗𝜈 − 𝛼𝜈 𝐼𝜈 ⇔ d𝐼𝜈
d𝑠 = 𝑗𝜈 − 𝛼𝜈 𝐼𝜈 , (2.66)

where 𝑠 is the distance along the ray of radiation. The quantity 𝛼𝜈 is known as the
absorption coefficient. It describes how much intensity is lost along the path of the ray
due to interactions with matter. In astrophysics, it is often described through the density
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weighted absorption opacity 𝜅abs
𝜈 = 𝛼𝜈/𝜌. Emission of radiation into the ray is characterized

by the emissivity 𝑗𝜈. The radiative transfer equation is often written in terms of the optical
depth 𝜏𝜈 as

d𝜏𝜈 = 𝜌𝜅abs
𝜈 d𝑠 (2.67)

d𝐼𝜈
d𝜏𝜈

= 𝑆𝜈 − 𝐼𝜈 , (2.68)

where we have introduced the definition of the source function 𝑆𝜈 = 𝑗𝜈/𝛼𝜈. With these
definitions, the transfer equation has the formal solution

𝐼𝜈 (𝜏𝜈) = 𝐼𝜈 (0)𝑒−𝜏𝜈 +
∫ 𝜏𝜈

0
𝑒−(𝜏𝜈−𝜏′𝜈 )𝑆𝜈 (𝜏′𝜈) d𝜏′𝜈 . (2.69)

A medium with integrated optical depth 𝜏𝜈 ≫ 1 is called optically thick. It absorbs most of
the incident photons. If 𝜏 ≪ 1, the medium is referred to as optically thin. If the medium
is homogenious, isothermal, and isotropic, it can be assumed to be in local thermodynamic
equilibrium. In this case, the intensity should be equal to the Planck function and constant
in space. From the transfer equation we thus get Kirchhoff’s law

𝑗LTE
𝜈 = 𝛼LTE

𝜈 𝐵𝜈 (𝑇) . (2.70)

Oftentimes we are interested in the amount of energy arriving per unit area, time, and
frequency interval. For that we have to integrate the intensity over all solid angles 𝜔,
taking the incident angle of the rays 𝜗 with respect to the normal direction of the surface
into account. This gives us

𝐹𝜈 =

∮
𝐼𝜈 cos(𝜗)d𝜔 . (2.71)

If the intensity is isotropic, the net flux is zero. An example of flux in a non-isotropic
radiation field is the observed flux coming from a star. We assume the star to radiate as
a sphere with radius 𝑅★ and constant intensity 𝐼★𝜈 , called the brightness. The amount of
energy received per unit area at distance 𝑅 is then the intensity integrated over the solid
angle (d𝜔 = sin(𝜗) d𝜗 d𝜑)

𝐹★𝜈 =

∫ 2𝜋

0

∫ 𝜋

0
𝐼★𝜈Θ(𝜗 − 𝜗★) sin(𝜗) cos(𝜗) d𝜗d𝜑 =

∫ 2𝜋

0

∫ 𝜗★

0
𝐼★𝜈 sin(𝜗) cos(𝜗) d𝜗d𝜑 , (2.72)

where we have inserted 𝐼𝜈 = 𝐼★𝜈Θ(𝜗★ − 𝜗) with the Heaviside step function Θ(𝜗 − 𝜗★) that
limits the constant intensity 𝐼★𝜈 to the observed surface area of the star. Integration yields
the inverse square law

𝐹★𝜈 = 𝐼★𝜈 𝜋

(
𝑅★

𝑅

)2
. (2.73)

If we assume the star to be a black body, we can substitute 𝐼★𝜈 = 𝐵𝜈 (𝑇★). This result makes
it possible to calculate the temperature of a dust particle orbiting the star. Given the
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absorption opacity of the dust, the total amount of energy received is then

𝑄+ =

∫ ∞

0
𝜅abs
𝜈 𝐹★𝜈 d𝜈 = 𝜋

(
𝑅★

𝑅

)2 ∫ ∞

0
𝜅abs
𝜈 𝐵𝜈 (𝑇★) d𝜈 .

Assuming the grain to be spherical and in thermodynamic equilibrium, we can calculate
the outgoing flux—which has no angular dependency—and get

𝑄− = 4𝜋
∫ ∞

0
𝜅abs
𝜈 𝐵𝜈 (𝑇d) d𝜈 ,

where we have introduced the particle’s temperature 𝑇d. Equating these expressions gives
us a way to determine the temperature through 𝐵𝜈 (𝑇d). We use

∫ ∞
0 𝐵𝜈 (𝑇) d𝜈 = 𝜎SB𝑇

4/𝜋
with the Stefan-Boltzmann constant 𝜎SB, and define the Planck-mean opacity

𝜅P(𝑇) =
∫ ∞
0 𝜅abs

𝜈 𝐵𝜈 (𝑇) d𝜈∫ ∞
0 𝐵𝜈 (𝑇) d𝜈

=
𝜋

𝜎SB𝑇4

∫ ∞

0
𝜅abs
𝜈 𝐵𝜈 (𝑇) d𝜈 (2.74)

to arrive at

𝑇d =

(
𝑅★

2𝑅

)1/2 (
𝜅P(𝑇★)
𝜅P(𝑇d)

)1/4

𝑇★ , (2.75)

(see Armitage, 2020). The temperature of the dust particle (or any other passively irradi-
ated, spherical astronomical body) is thus dependent on the ratio of its Planck opacity at
the temperature of the stellar radiation, and the efficiency of emission given by its opacity
at its own temperature. Note that these calculation ignored scattering and assume either
perfect vacuum, or an optically thin medium between the body and the star.

2.4.1 Scattering

Solving the transfer equation in three dimensions and for spatially varying opacities is
usually not analytically possible—especially if the effects of scattering are considered.
Scattering is described via the scattering coefficient or the scattering opacity, related via
𝜅sca
𝜈 = 𝛼sca

𝜈 /𝜌. The total absorption coefficient is then given as the sum 𝛼𝜈 = 𝛼sca
𝜈 + 𝛼abs

𝜈 .
Similarly, the emissivity has two contributions, one from direct emission into the ray and
one from scattering of photons into the ray 𝑗𝜈 = 𝑗emis

𝜈 + 𝑗 sca
𝜈 . The source function is thus

defined as
𝑆𝜈 =

𝑗emis
𝜈 + 𝑗 sca

𝜈

𝛼sca
𝜈 + 𝛼abs

𝜈

B 𝜖𝜈𝑆
abs
𝜈 + 𝜂𝜈𝑆

sca
𝜈 , (2.76)

where we have used the definition of the albedo 𝜂𝜈 = 𝛼sca
𝜈 /𝛼sca

𝜈 +𝛼abs
𝜈 and the absorption

probability 𝜖𝜈 = 1 − 𝜂𝜈. If the scattering is isotropic, the total scattering emissivity can be
written as

𝑗 sca
𝜈 = 𝛼sca

𝜈

∮
𝐼𝜈 d𝜔 B 𝛼sca

𝜈 𝐽𝜈 . (2.77)

𝐽𝜈 is called the mean intensity. For thermal emission, we find the complete source function
to be

𝑆𝜈 = (1 − 𝜖𝜈)𝐽𝜈 + 𝜖𝜈𝐵𝜈 (𝑇) . (2.78)
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If the absorption probability is unity, we retrieve the usual transfer equation with Kirch-
hoff’s law. If on the other hand 𝜖𝜈 is close to zero, scattering will commence many times for
a photon. The intensity of a ray is thus dependent on the intensity in any other direction,
which makes the equation of radiative transfer impossible to solve analytically without
further assumptions.

The problem becomes much more complicated if scattering is anisotropic, i.e., if radia-
tion is preferentially scattered in specific directions. In such a case, we have to consider the
scattering phase function 𝜙, which describes the angular dependency of the scattering prob-
lem. For the direction of the incoming ray 𝒏 and the outgoing direction 𝒏′, Equation 2.77
takes the form

𝑗 sca
𝜈 (𝒏′) = 𝛼sca

𝜈

1
4𝜋

∮
𝐼𝜈 (𝒏)𝜙(𝒏, 𝒏′) d𝜔 . (2.79)

The phase function describes the probability at which a ray is scattered into a specific
direction and is thus normalized to one. If the photons are scattered off particles with
complex shape and composition, 𝜙 can become extremely difficult to compute. Simplified
models are thus often used.

2.4.2 Optically Thick Radiative Transfer

In the optically thick regime (𝜏𝜈 ≫ 1) it is reasonable to assume that the radiation field
is mostly isotropic due to continuous scattering and absorption and re-emission events.
Eddington (1926) used this assumption to first order accuracy (allowing for linear deviations
from isotropy) and derived expressions for the radiative quantities in the optically thick
regime. For this, he expressed the radiative transfer equation in terms of its angular
moments in a power-law series. I will only show the main result, which is that photons in
the optically thick limit diffusive through the medium following

1
3
𝜕2𝐽𝜈

𝜕𝜏2
𝜈

= 𝐽𝜈 − 𝑆𝜈 . (2.80)

If the material only emits thermal radiation, we can further substitute Equation 2.78 and
we get

1
3
𝜕2𝐽𝜈

𝜕𝜏2
𝜈

= 𝜖𝜈 (𝐽𝜈 − 𝐵𝜈 (𝑇)) , (2.81)

known as the radiative diffusion equation. Given the temperature of the medium, we can
thus solve for 𝐽𝜈 and determine 𝑆𝜈 through Equation 2.78. Knowing the source function
then allows us to use the formal solution to the transfer equation and calculate the entire
radiation field. An even more severe assumption than the Eddington approximation is to
demand that the radiation field is not only isotropic to first order, but also that it only
deviates from the local Planck function to first order. This leads to the Rosseland approxi-
mation. Because the intensity of thermal radiation only depends on the local temperature,
only temperature variations in the medium can cause radiative flux. Locally, the flux is
then given by

𝐹𝜈 = − 4𝜋
3𝜌(𝜅sca

𝜈 + 𝜅abs
𝜈 )

𝜕𝐵𝜈 (𝑇)
𝜕𝑇

𝜕𝑇

𝜕𝑠
. (2.82)
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Figure 2.12
Geometry of the irradiation flux calculation
for a flaring protoplanetary disk. The grazing
angle 𝛼g, which gives the normal component
of the flux 𝐹irr = sin

(
𝛼g

)
𝐹★, can be calculated

through 𝜃 + 𝛼g + 𝛾 = 180◦, and 𝛾 + 𝜙 = 180◦.
With 𝜃 ≈ 𝐻P/𝑅 and 𝜙 ≈ 𝜕𝐻p/𝜕𝑅, we have 𝛼g ≈
𝜕𝐻p/𝜕𝑅 − 𝐻P/𝑅.

The total energy flux related with this diffusive process can be calculated by integrating
over all frequencies. Using the frequency integrated Planck function, the total diffusion
flux follows as

𝐹 = −16
3
𝜎SB𝑇

3

𝜌𝜅R

𝜕𝑇

𝜕𝑠
, (2.83)

where the Rosseland mean opacity 𝜅R was introduced, which is given by

1
𝜅R

=

∫ ∞

0

1
𝜅abs
𝜈 + 𝜅sca

𝜈

𝜕𝐵𝜈 (𝑇)
𝜕𝑇

d𝜈∫ ∞

0

𝜕𝐵𝜈 (𝑇)
𝜕𝑇

d𝜈
. (2.84)

This process is therefore mathematically identical to heat conduction with a conductivity
𝐷rad = 16𝜎SB𝑇

3/3𝜌𝜅R. Radiative diffusion is applicable in dense astrophysical environments
like stellar interiors or the midplane of the inner regions of protoplanetary disks.

Given the inverse square law, we can also calculate the equilibrium temperature of an
irradiated, flaring disk, i.e., a disk in which the scale height varies with radius. The
distance from the midplane at which the stellar photons are absorbed is referred to as the
photospheric scale height 𝐻P. The disk is thus assumed to be optically thick to stellar
photons below the photosphere. In contrast to the single dust grain considered before,
we now have to take the grazing angle of the radiation at the photospheric surface into
account, denoted by 𝛼g. It can be calculated from the line-of-sight angle 𝜃 ≈ 𝐻P/𝑅 and the
surface tangent 𝜙 ≈ 𝜕𝐻p/𝜕𝑅 (see Figure 2.12 and Armitage, 2020). For the energy budget
of the disk, we are interested in the normal flux component, which is then given by

𝐹 irr = sin
(
𝛼g

)
𝐹★ .

We assume the disk to be a black body which gives

𝑇disk =

(
𝑅★

𝑅

)1/2

sin
(
𝛼g

)
𝑇★ . (2.85)

If we assume the flaring angle to be constant, we can thus directly calculate the disk
temperature and see that 𝑇disk ∝ 𝑅−1/2.
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2.4.3 Dust Opacities

Dust particles in protoplanetary disks are predominantly composed of amorphous silicates
and carbon, which make it possible for the grains to absorb a broad range of wavelengths.
Radiation in protoplanetary disks is thus mostly scattered and absorbed by dust grains
instead of gas molecules which emit and absorbs radiation at specific frequencies.

Dust opacities are however highly dependent on the composition, size, and shape of
the grains. In general, Maxwell’s equations have to be solved to derive the details of the
scattering and absorption processes (Min, 2015).

If the particles are much larger than the wavelength of the radiation, i.e. 𝜆 ≪ 2𝜋𝑎, we
can ignore the wavelike character of the radiation in the near-field and treat the grains in
the limit of geometric optics. In this case, we can define the opacity per gram of dust as

𝜅𝜈 =
𝜎geo

𝑚d
=

𝜋𝑎2

𝑚d
. (2.86)

Absorption and scattering opacity then follow through the albedo of the material as 𝜅sca
𝜈 =

𝜂𝜈𝜅𝜈 and 𝜅abs
𝜈 = (1 − 𝜂𝜈)𝜅𝜈.

At longer wavelengths, this assumption is no longer valid. Particles fulfilling 𝜆 ≫ 2𝜋𝑎,
instead behave like a single oscillating dipole under the influence of an external electro-
magnetic field. Thus, radiation is Rayleigh scattered and the respective opacities are

𝜅sca
𝜈 ∝ 𝑎3

𝜆4 𝜅abs
𝜈 ∝ 1

𝜆
. (2.87)

In the intermediate wavelength regime, where 𝜆 ∼ 2𝜋𝑎, Mie theory (Mie, 1908) is often
applied to avoid the full treatment of Maxwell’s equations (Bohren & Huffman, 1998).
Incoming and outgoing electromagnetic waves are decomposed into vector spherical har-
monics. The dust particles are assumed to be spheres with a complex refractive index that
depends on the composition. Various numerical codes exist that can compute scattering
and absorption opacities via Mie theory. The determination of the complex refractive in-
dices of the material however remains challenging. Seminal works like Pollack et al. (1994)
and Jaeger et al. (1994) assume mixtures of water ice, troilite (FeS),astronomical silicates,
and refractory organics. Astronomical silicates refer to Si-O groups in combination with
positively charged metal ions. The most common silicates in astronomical environments are
Olivine ((Mg,Fe)2SiO4) and Pyroxene ((Mg,Fe)SiO3). Their presence in protoplanetary
disks is indicated by spectral features specific to the Si-O bonds vibrational harmonics at
∼10 µm and ∼20 µm (Aitken et al., 1988). Birnstiel et al. (2018) compiled much of the fre-
quently used optical data and combined them with standard assumptions of composition
in Mie opacity calculations. Their opacity model also allows for the treatment of arbi-
trary particle size distributions. Figure 2.13 shows their model of the absorption opacities
computed for a realistic grain size distribution in comparison with other commonly used
opacity prescriptions, which often only assume micrometer-sized grains. We see the 10 µm
silicate feature in all models. Beckwith et al. (1990) assumed the simple scaling relation
for Rayleigh scattering with 𝜅abs

𝜈 ∝ 𝜆−1. In the model by D’Alessio et al. (2001) and in the
Birnstiel et al. (2018) opacities we also find the water feature at 3 µm. However, as particle
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Figure 2.13
Comparison of different dust opacity models by Weingartner & Draine (2001), Beckwith et al. (1990),
Andrews et al. (2009), D’Alessio et al. (2001), and the DSHARP opacity model (Birnstiel et al., 2018).
The DSHARP model takes an evolved dust size distribution in fragmentation-coagulation equilibrium into
account (Birnstiel et al., 2011), which is shown in the inlay plot. (figure adapted from (Birnstiel et al.,
2018), originally licensed under CC BY 4.0)

growth is considered, the opacity slope in the millimeter-range changes—it is sensitive to
the maximum particle size of the distribution (Miyake & Nakagawa, 1993).

https://creativecommons.org/licenses/by/4.0/


CHAPTER 3

ESTABLISHED METHODS

3.1 Grid-Based Hydrodynamics

Godunov’s Methods and the Riemann Problem

In order to solve the Navier-Stokes equations with the initial and boundary conditions
appropriate for protoplanetary disks, we have to make use of numerical methods. One
family of methods is grid-based hydrodynamics. Space and time are divided into discrete
steps giving each cell initial and boundary conditions defined by the neighboring cells. The
goal is to evolve the conserved fluid quantities on this grid in time. In general, a hyperbolic
conservation law can be written

𝜕𝑼

𝜕𝑡
+ ∇ · 𝑭 = 0 . (3.1)

For this short overview I follow Toro (1999). We will have a look at the inviscid Navier-
Stokes equations, i.e., the Euler equations, for which the vector of conserved variables 𝑼
and flux 𝑭 are

𝑼 =


𝜌

𝜌𝒗
𝐸

 𝑭 =


𝜌𝒗

𝜌𝒗 ⊗ 𝒗 + 𝑃I3
𝒗(𝐸 + 𝑃)

 , (3.2)

where I3 is the 3 × 3 identity matrix. Writing the conservation laws in their integral form
gives us a helpful interpretation for the hydrodynamics on our grid. Using Gauss’ theorem
and integrating over a volume 𝑉 , we can write the integral form of the conservation law as

𝜕

𝜕𝑡

∭
𝑉

𝑼 d𝑉 = −
∯
𝑆

𝑭 · 𝒏 d𝑆 , (3.3)

This means the time evolution of our conserved quantities (mass, momentum, energy) in
the cell depends on the net flux through the surface of our grid cells. Given the discrete
grid where 𝒙𝑖 denotes center of the grid cell number 𝑖, Godunov (1959) introduced the cell
averaged quantity at time 𝑡

𝑼̄𝑖 =
1
Δ𝑉𝑖

∭
Δ𝑉𝑖

𝑼(𝒙, 𝑡) d𝑉 , (3.4)

where Δ𝑉𝑖 is the cell’s volume. We want to advance Equation 3.3 over a time step Δ𝑡 =

𝑡 (𝑛+1) − 𝑡 (𝑛) (where 𝑛 denotes the current time in terms of our discrete time grid). For this,
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Figure 3.1
Wave pattern for an exact solution of the Rie-
mann problem. The initial discontinuity at 0
evolves into a shock wave (traveling to the right),
a contact discontinuity (traveling to the right),
and a rarefaction fan with a smooth transition
from 𝑼L to 𝑼∗L. Depending on the initial con-
ditions, ten different of such wave patterns have
to be distinguished to derive the exact solution
(see Fig. 3.2 and 6.5 in Toro, 1999).

a time-averaged flux can be defined as

𝑭̄ =
1
Δ𝑡

∫ 𝑡 (𝑛+1)

𝑡 (𝑛)
𝑭(𝑼(𝒙), 𝑡) d𝑡 . (3.5)

With these definitions, we can apply a time integration from 𝑡 (𝑛) to 𝑡 (𝑛+1) to Equation 3.3,
which gives us the exact formal solution for the cell-averaged quantities

𝑼̄
(𝑛+1)
𝑖 = 𝑼̄

(𝑛)
𝑖 − Δ𝑡

Δ𝑉𝑖

∯
𝑆

𝑭̄ · 𝒏 d𝑆 . (3.6)

If we define a Cartesian grid in one dimension, with cell interfaces at 𝑖 − 1/2 and 𝑖 + 1/2,
we can write the solution as

𝑼̄
(𝑛+1)
𝑖 = 𝑼̄

(𝑛)
𝑖 − Δ𝑡

Δ𝑥𝑖
(𝑭̄𝑖+1/2 − 𝑭̄𝑖−1/2) . (3.7)

As we want the solution to only depend on the fluxes at the boundaries to the directly ad-
jacent cells, we have to demand that the time step is short enough to prevent overshooting,
i.e.,

Δ𝑡 ≤ Δ𝑥

𝑣max
, (3.8)

where 𝑣max is the maximum wave speed of the fluxes. This is known as the Courant,
Friedrichs, & Lewy (1928) (CFL) condition. At the cell boundaries we are now confronted
with the task to determine the fluxes 𝑭̄𝑖+1/2 and 𝑭̄𝑖−1/2. If we assume the conserved quantities
to be constant in each cell, we introduce flow discontinuities at the two interfaces. The
resulting initial conditions define a so-called Riemann problem at the inner and outer cell
boundary (here set to 𝑥 = 0),

𝑼(𝒙, 0) =
{
𝑼L if 𝑥 < 0
𝑼R if 𝑥 > 0 .

(3.9)

The Riemann problem for the Euler equations has an exact solution that determines the
flux, based on the Rankine-Hugoniot shock conditions. Its calculation is however lengthy
and computationally expensive. It consists of a number of waves whose characteristic speeds
depend on the initial conditions of the flow. One schematic example for a subsonic flow is
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Figure 3.2
Wave pattern for the HLL approximate Riemann
solver. The initial discontinuity at 0 evolves into
a shock wave and a rarefaction wave, traveling at
wave speeds 𝑆R and 𝑆L, depending on the initial
conditions. Outside of the area crossed by the
waves, the original states 𝑼L and 𝑼R remain. In
between the two waves, the state is changes into
𝑼HLL (based on Fig. 10.3 from Toro, 1999).

𝑡

𝑥

𝑆R𝑆L
𝑼HLL

0

𝑼L 𝑼R

shown in Figure 3.1. A rarefaction wave, associated with smoothly changing flow quantities
from 𝑼L to 𝑼∗L, indicated by the dashed lines, is propagating to the left. A contact
discontinuity, separating the states 𝑼∗L and 𝑼∗R originating from the initial discontinuity
in density, and a discontinuous shock wave propagates to the right. However, this is only
one realization of the three waves that depends on the initial condition of the problem. Ten
possible wave patterns have to be distinguished, depending on the initial conditions (see
Toro, 1999, for the comprehensive calculations). The iterative procedure to exactly solve
the Riemann problem is numerically costly. In practice, approximate Riemann solvers are
thus oftentimes applied. Harten, Lax, & van Leer (1983) (HLL) introduced an approximate
Riemann solver that assumes the propagation of only two waves from the discontinuity,
as shown in Figure 3.2. Given the left and right maximum wave speeds 𝑆L and 𝑆R, the
corresponding flux at the interface is then given by

𝑭HLL =


𝑭L if 0 ≤ 𝑆L
𝑆R𝑭L − 𝑆L𝑭R + 𝑆L𝑆R (𝑼̄R − 𝑼̄L)

𝑆R − 𝑆L
if 𝑆L ≤ 0 ≤ 𝑆R

𝑭R if 0 ≥ 𝑆R .

The wave speeds can be estimated in different ways. The simplest possibility is to assume
they propagate with the speed of sound relative to the gas velocities

𝑆L = 𝑣L − 𝑐s,L 𝑆R = 𝑣R + 𝑐s,R .

With the given flux, the Godunov scheme can be readily solved. The HLL solver however
has some vital flaws. The biggest one is the disregard of the contact discontinuity that
originates at the cell boundary in the exact solution to the Riemann problem. This leads
to strong numerical diffusivity and means that sharp flow features can not be sustained.

Toro et al. (1994) therefore introduced a modification to the HLL Riemann solver, called
the HLLC Riemann solver (C for contact discontinuity). In this scheme (shown in Fig-
ure 3.3), the contact discontinuity from the exact solution is reintroduced. This means,
new estimates for the wave speed of the contact discontinuity 𝑆∗ and the in-between states
𝑼∗L and 𝑼∗R are necessary to calculate the flux across the boundary. The result of these
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Figure 3.3
Wave pattern for the HLLC approximate Rie-
mann solver. The initial discontinuity at 0
evolves into a shock wave, a contact disconti-
nuity, and a rarefaction wave, traveling at wave
speeds 𝑆R, 𝑆∗, and 𝑆L, depending on the initial
conditions. Outside of the area crossed by the
waves, the original states 𝑼L and 𝑼R remain. In
between the waves, the state is changes into 𝑼∗R
and 𝑼∗L (based on Fig. 10.4 from Toro, 1999).

considerations is

𝑭HLLC =


𝑭L if 0 ≤ 𝑆L

𝑭L + 𝑆L(𝑼∗L −𝑼L) if 𝑆L ≤ 0 ≤ 𝑆∗

𝑭R + 𝑆R (𝑼∗R −𝑼R) if 𝑆∗ ≤ 0 ≤ 𝑆R

𝑭R if 0 ≥ 𝑆R .

To calculate the flux, we require the new wave speed 𝑆∗. Batten et al. (1997) derived an
equation for 𝑆∗ that only depends on the wave speeds 𝑆L and 𝑆R

𝑆∗ =
𝑃R − 𝑃L + 𝜌L𝑣L(𝑆L − 𝑣L) − 𝜌R𝑣R (𝑆R − 𝑣R)

𝜌L(𝑆L − 𝑣L) − 𝜌R (𝑆R − 𝑣R)
.

The HLLC Riemann solver generally yields much better results than the HLL solver in
terms of numerical diffusivity, especially of course for the contact discontinuity. However,
all Godunov type methods that assume constant fluid states in each grid cell are only
accurate to first order and thus generally diffusive.

The PLUTO Code

Modern hydrodynamics codes employ high-order, total-variation-diminishing (TVD) schemes
to solve the Euler (Equations 3.1 and 3.2) or the Navier-Stokes equations. Here, I give
a brief introduction to the publicly available astrophysical hydrodynamics code PLUTO1

(Mignone et al., 2007) which is used throughout the next chapters of this thesis. Instead
of solving the first order accurate Godunov scheme with piecewise-constant fluid quan-
tities, PLUTO utilizes a reconstruct-solve-average strategy. At first, the code produces a
piecewise-polynomial reconstruction of the primitive flow variables (e.g., 𝜌, 𝒗, 𝑃) in each
grid-cell. These interpolation routines provide boundary values for the primitive variables
at each side of the cell interfaces (second step in Figure 3.4). For this, monotonicity con-
ditions are imposed to avoid the occurence of too steep gradients or spurious oscillations
in the solutions. The code provides various methods to construct these interface values,
from piecewise-linear (second order accurate) to more sophisticated methods like piecewise-
parabolic reconstruction (Mignone et al., 2005), or the WENO scheme (fifth order accurate

1http://plutocode.ph.unito.it/

http://plutocode.ph.unito.it/
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Figure 3.4
Reconstruct-solve average scheme as utilized by the PLUTO code (Mignone et al., 2007). Primitive variables
𝑽 are interpolated to the cell boundaries (denoted as ±) and used to construct a Riemann problem. The
Riemann problem is solved and the cell-averaged conserved quantities 𝑼 are evolved in time using Godunov’s
method and a timestep determined by the CFL condition.

Liu, 1994). As these reconstructions are carried our for each cell individually, discontinu-
ities remain at the cell interfaces. The next step is to apply Riemann solvers to calculate the
inter-cell flux for the Gudunov scheme from the interpolated primitive variables (third step
in Figure 3.4). PLUTO provides several approximate Riemann solvers like HLL (applicable
to isothermal setups), HLLC, or the Roe solver (Roe, 1981).

Given these fluxes, the conserved quantities (e.g., 𝜌, 𝜌𝒗, 𝐸) can be updated via Godunov’s
scheme and various different time-stepping methods (fourth step in Figure 3.4). Commonly
used are Runge-Kutta time integration schemes to second or third order. These multi-step
algorithms require multiple applications of the Riemann solver for a single complete time-
step. To ensure numerical stability, the time step has to fulfill the CFL condition

Δ𝑡 = 𝐶d min
d

(
Δ𝑙dmin
|𝜆d

max |

)
, (3.10)

where 𝑙dmin is the smallest grid cell length in dimension d, and |𝜆d
max | is the fastest signal

speed. The value of the CFL number 𝐶d ≤ 1 depends on the chosen configuration of solver
and reconstruction method. Once the time integration is completed, the cycle begins again
until the desired simulation time is reached.
PLUTO also allows for the treatment of parabolic terms in the conservation equation,

which I have not discussed here. The treatment of thermal conduction or viscosity imposes
stricter constraints on the timestep, which can become an issue when solving the equations
explicitly. Algorithms like super-time-stepping (Alexiades et al., 1996) are available in
PLUTO, which are much faster than then the standard explicit integration schemes.

It is also possible to add 𝑘 passive scalars 𝑄 to a simulation that are advected with the
gas flow velocities 𝒗 according to the standard conservation law

𝜕 (𝜌𝑄𝑘)
𝜕𝑡

+ ∇ · (𝜌𝒗𝑄𝑘) = 0 . (3.11)

We will use this feature to construct a simple dust advection method in the PLUTO code
in the next chapters.



3.2 Numerical Methods for Dust Coagulation 47

3.2 Numerical Methods for Dust Coagulation

The shear number of particles and collision outcomes in protoplanetary disks prohibits us
from calculating the evolution of every individual grain. Two established methods exist
to circumvent this problem. Firstly, dust grains can be clustered together and treated
as representative particles whose properties are evolved via Monte Carlo methods. This
allows for the uncomplicated incorporation of additional particle properties (see, e.g., Zsom
et al., 2011; Drazkowska et al., 2013). However, being a particle based method, it might
suffer from mass resolution issues and it is computationally expensive. Secondly, the entire
dust size distribution can be evolved in time and particles can be treated in terms of size-
dependent mass densities (e.g., Weidenschilling, 1980; Brauer et al., 2008; Birnstiel et al.,
2010). In this thesis we make use of the latter method, and develop approximate methods
based on it. I give a short introduction to the state-of-the art dust coagulation software
DustPy (Stammler & Birnstiel, 2022). DustPy also simulates the dust advection and
diffusion in the radial direction of protoplanetary disk, which I will omit in the following.
The continuous size distribution, whose evolution is given by Smoluchowski’s equation, is
represented by a discrete grid of 𝑁𝑚 particle masses. The equation can then be written

𝜕𝑛𝑘

𝜕𝑡
=

𝑁𝑚∑︁
𝑖=1

𝑖∑︁
𝑗=1

K𝑖 𝑗𝑘R𝑖 𝑗𝑛𝑖𝑛 𝑗 − 𝑛𝑘

𝑁𝑚∑︁
𝑗=1

𝑛 𝑗R 𝑗𝑘 (1 + 𝛿 𝑗𝑘) , (3.12)

where the second sum in the first term only goes up to 𝑖 to avoid double counting iden-
tical collisions 𝑚𝑖 ↔ 𝑚 𝑗 and 𝑚 𝑗 ↔ 𝑚𝑖. The collision rate R 𝑗𝑘 and the coagulation and
fragmentation kernel K𝑖 𝑗𝑘 are now matrices that describe the outcomes of every possible
collision. Whether a collision leads to fragmentation or coagulation is determined via the
fragmentation probability. For this, DustPy assumes particle collision velocities follow a
Maxwell-Boltzmann distribution

P𝑖 𝑗 (Δ𝑣𝑖 𝑗 ,Δ𝑣rms
𝑖 𝑗 ) =

√︂
54
𝜋

Δ𝑣2
𝑖 𝑗(

Δ𝑣rms
𝑖 𝑗

)3 exp
−

3
2

(
Δ𝑣𝑖 𝑗

Δ𝑣rms
𝑖 𝑗

)2 , (3.13)

where Δ𝑣𝑖 𝑗 is the actual collision velocity and the rms velocity of the distribution is given
by Δ𝑣rms

𝑖 𝑗
, which is the total collision velocity from Equation 2.58. With this definition, the

rate at which particles fragment is depending on the frequency of particle collisions with
relative particle velocities larger than 𝑣frag, i.e.,

Rfrag
𝑖 𝑗

= 𝜎

∫ ∞

𝑣frag

Δ𝑣𝑖 𝑗 P(Δ𝑣𝑖 𝑗 ,Δ𝑣rms
𝑖 𝑗 ) dΔ𝑣𝑖 𝑗 = 𝜎⟨Δ𝑣𝑖 𝑗⟩Πfrag

𝑖 𝑗
, (3.14)

where ⟨Δ𝑣𝑖 𝑗⟩ =
∫ ∞
𝑣frag

Δ𝑣𝑖 𝑗 P(Δ𝑣𝑖 𝑗 ,Δ𝑣rms
𝑖 𝑗

) dΔ𝑣𝑖 𝑗 =
√︁

8𝜋/3Δ𝑣rms
𝑖 𝑗

is the mean velocity of the
Maxwell-Boltzmann distribution. The integral has an analytic solution from which the
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Figure 3.5
Fragmentation and sticking probabilities (right panel), and Maxwell-Boltzmann distributions as imple-
mented in the DustPy code (Stammler & Birnstiel, 2022) for three different rms collision velocities. Colored
areas in the left panel indicate the fragmentation regime for a fragmentation velocity of 100 cm s−1.

fragmentation and sticking probabilities follows as

Π
frag
𝑖 𝑗

=


3
2

(
𝑣frag

Δ𝑣rms
𝑖 𝑗

)2

+ 1
 exp

−
3
2

(
𝑣frag

Δ𝑣rms
𝑖 𝑗

)2 (3.15)

Πstick
𝑖 𝑗 = 1 − Π

frag
𝑖 𝑗

, (3.16)

which are shown in Figure 3.5. If fragmentation occurs, DustPy distinguishes between
collisions with full fragmentation and erosive collisions, depending on the particles’ mass
ratio. For similarly sized particles, complete fragmentation occurs and the mass of the
colliders is distributed over the size distribution following the fragmentation power law by
Dohnanyi (1969). If one of the particles (the projectile) is much smaller than the other
(the target), erosion occurs. The projectile fully fragments, while the target loses only a
small amount of mass.

The contributions of coagulation and fragmentation are added up and the equation can
be brought into the general form

𝜕𝒏

𝜕𝑡
= ¤𝒏frag + ¤𝒏coag = (Jfrag + Jcoag)𝒏 , (3.17)

where Jfrag and Jcoag are the fragmentation and coagulation Jacobians. The discretized
version of the coagulation equation can then be implicitly written in terms of the dust
column density vector 𝚺d as

𝚺 (𝑛+1)
d − 𝚺 (𝑛)

d
Δ𝑡

= (Jfrag + Jcoag)𝚺 (𝑛+1)
d , (3.18)

which has the solution

𝚺 (𝑛+1)
d =

[
I − Δ𝑡 (Jfrag + Jcoag)

]−1
𝚺 (𝑛)

d . (3.19)
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Calculating the Jacobians to construct a reliable numerical scheme is a highly non-trivial
task and I refer to Brauer et al. (2008) and Stammler & Birnstiel (2022) for the details
and explanations of the involved numerical difficulties. One of the general problems of this
family of methods is the required resolution. A logarithmic size grid must be employed
to resolve the ∼ 21 orders of magnitude in particle mass that have to be bridged during
the dust coagulation process. Thus, the outcomes of sticking collisions will generally not
directly produce results that correspond to the centers of another mass grid cell. The
associated density shift is therefore distributed across the neighboring cells depending on
the relative position of the produced particles on the mass grid. This means that some
mass will inevitably be shifted into a mass bin that is larger than the combined mass of the
colliders, giving rise to artificial growth. The numerical method is furthermore diffusive,
which means that a mass grid with high enough resolution is required. In general, at
least 7 mass bins per decade are require to keep the result reasonably accurate, i.e., a
minimum of ∼ 147 bins to resolve the evolution from 0.1 µm-sized monomers to 1 m-sized
boulders (Ohtsuki et al., 1990; Stammler & Birnstiel, 2022). Furthermore, the commonly
used algorithms have time complexity scaling as O(𝑁2

𝑚), which means an increase in grid
size or resolution comes with large additional computation time.

Nonetheless, DustPy allows for accurate studies of dust evolution in axisymmetric,
vertically-integrated disk models. The code is easily modifiable and allows for the in-
clusion of new source terms and protoplanetary disk processes. Two-dimensional or three-
dimensional phenomena, like turbulence, can however not be investigated with this method.

In recent years, effords have been made to develop faster alternative methods to allow
for the inclusion of dust coagulation in large-scale hydrodynamic simulations.

3.3 Monte-Carlo Radiative Transfer with RADMC-3D

Radiative transfer is an essential part of astrophysics. Many properties and processes of
protoplanetary disks are driven or influenced by the interactions of matter and radiation,
such as photoevaporation, the degree of ionization, the thermal relaxation times, and many
more. However, solving the radiative transfer equation is not directly possible in most cases,
which makes numerical methods indispensable for modeling the interaction of radiation and
matter in protoplanetary disks. Even more importantly, astronomy and astrophysics, in
general, rely on the observation of radiation coming from distant objects. The interactions
of radiation with dust particles and gas molecules determine the properties of the radiation
emitted or scattered off, e.g., protoplanetary disks. Especially the advances in radio inter-
ferometry have made highly-resolved observations of protoplanetary disks possible. These
images offer new benchmarks for numerical models that can now be compared to real data
in unprecedented detail.

Multiple scattering and the related angular dependency of the radiation field are the
main issue when solving the radiative transfer equation. Monte Carlo methods offer an
alternative to the solution of the discretized radiative transfer equation (see Noebauer
& Sim, 2019, for a comprehensive overview). The interactions of a photon with matter
are treated stochastically. Each interaction is randomly sampled from a corresponding
probability distribution that reflects the underlying physics. Random numbers have to
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be drawn to determine whether scattering, absorption or emission occur. Similar to the
dust coagulation problem, we are confronted with a huge number of particles, in this case
photons, to simulate. Large numbers of photons are thus assembled into representative
photon packages. A large enough ensemble of photon packages is then necessary to reach
a good statistical sample for the path of the radiation. The simplicity of the Monte Carlo
procedure thus comes at high computational cost. These computations however scale
extremely well because the photon packages are independent of each other.

In the coming chapter, we will use the publicly available Monte Carlo radiative transfer
code RADMC-3D (Dullemond et al., 2012)2 to derive radiation intensities from protoplane-
tary disk models. The code is based on the method by Bjorkman & Wood (2001). It allows
for the input of custom opacity models and simulation data defined on cartesian, cylindri-
cal, or spherical grids. Given a spatial distribution of dust and/or gas, RADMC-3D can be
used to calculate the local temperatures based on stellar irradiation and other customizable
heat sources. Once the temperature structure of the models is calculated (or pre-defined
by the user), RADMC-3D can calculate the radiation intensities seen by an observer at ar-
bitrary orientation relative to the data. These calculations can produce multi-wavelength,
two-dimensional images of the simulation or entire spectra. The images or spectra can be
further processed by the user and compared to actual observations to test the validity of
theoretical models.

2https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/index.php

https://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/index.php


ABOUT THE STRUCTURE OF THIS THESIS

The question of how the evolution of the dust influences the evolution of hydrodynamic
turbulence is the main topic of the first half of this thesis. Through collisional cooling,
dust particles greatly contribute to the thermal balance of the gas and thus enable flow
instabilities in protoplanetary disks that are not unlike atmospheric phenomena on Earth.
The first study presented in this thesis, Chapter 4, deals with the implications of the dust
evolution process on the VSI. We present a model that uses results of dust coagulation sim-
ulations of protoplanetary disks to predict the cooling rates and thus the initial conditions
for hydrodynamic simulations that result in disks with varying VSI activity depending on
the parameters of the dust coagulation model. Although these models give insights into
the impact of dust coagulation on the VSI, they can not account for the underlying cooling
times as a result of the moving dust fluids. The advection of gas and dust and the growth
of the particles would continuously alter the cooling times. In Chapter 5, we present a new
approach to the cooling time calculation that makes it possible to dynamically evolve them
throughout a hydrodynamic simulation, taking into account the evolving dust densities.

One of the biggest computational hurdles, however, remains in these studies: modeling
the dust coagulation process itself. Starting from microscopic scales, dust particles grow
up to centimeter sizes, where they reach an equilibrium of coagulation and fragmentation.
Classical numerical approaches to solve the underlying evolution equations are computa-
tionally costly and are thus infeasible for large-scale studies of protoplanetary disks. As
a possible solution to this problem, we have developed two new, simplified approaches to
model dust evolution in hydrodynamic simulations of protoplanetary disks, which are pre-
sented in the second half of this thesis. In Chapter 6, we present a semi-analytic approach
to dust coagulation, called TriPoD. With this method, we are now able to co-evolve the
gas and dust size distribution in a vertically integrated disk model, taking into account the
coagulation and fragmentation process. An alternative methodology is laid out in Chap-
ter 7. Modern machine learning techniques are used to solve a simplified version of dust
coagulation accurately and efficiently in the TriPoD-ML model. I give a summary and an
outlook to future projects in Chapter 8.



CHAPTER 4
DUST COAGULATION RECONCILES

PROTOPLANETARY DISK OBSERVATIONS WITH THE
VERTICAL SHEAR INSTABILITY

DUST COAGULATION AND THE VSI DEAD ZONE
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Abstract: Protoplanetary disks exhibit a vertical gradient in angular momen-
tum, rendering them susceptible to the Vertical Shear Instability (VSI). The most
important condition for the onset of this mechanism is a short timescale of thermal
relaxation (≲ 0.1 orbital timescales). Simulations of fully VSI-active disks are char-
acterized by turbulent, vertically extended dust layers. This is in contradiction with
recent observations of the outer regions of some protoplanetary disks, which appear
highly settled. In this work, we demonstrate that the process of dust coagulation
can diminish the cooling rate of the gas in the outer disk and extinct the VSI ac-
tivity. Our findings indicate that the turbulence strength is especially susceptible
to variations in the fragmentation velocity of the grains. A small fragmentation
velocity of ≈100 cm s−1 results in a fully turbulent simulation, whereas a value of
≈400 cm s−1 results in a laminar outer disk, being consistent with observations. We
show that VSI turbulence remains relatively unaffected by variations in the maxi-
mum particle size in the inner disk regions. However, we find that dust coagulation
can significantly suppress the occurrence of VSI turbulence at larger distances from
the central star.
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4.1 Introduction

Around 1 % of the mass of protoplanetary disks is initially composed of solids (Lodders,
2003; Magg et al., 2022). Despite its small contribution to the overall mass budget, this
dust is the building material for planetesimals and planets and an essential observable for
infrared and radio observations. It can have a considerable influence on the gas dynamics
within the disk via drag forces (Weidenschilling, 1980; Youdin & Goodman, 2005) and is the
main source of opacity. Therefore, cooling and heating are mostly determined by the solids
for the bulk of the disk (Semenov et al., 2003; Woitke, 2015; Malygin et al., 2017). Many
linear instabilities of the gas flow depend on the local rate of thermal relaxation (Klahr &
Bodenheimer, 2003; Petersen et al., 2007a,b; Klahr & Hubbard, 2014; Lin & Youdin, 2015;
Marcus et al., 2015; Lyra & Umurhan, 2019) or the ionization state of the gas (Balbus &
Hawley, 1991; Blaes & Balbus, 1994), and are therefore sensitive to the assumed dust size
distribution (Barranco et al., 2018; Fukuhara et al., 2021; Kawasaki & Machida, 2023).

In this work, we are specifically interested in the evolution of the vertical shear instability
(VSI, Urpin & Brandenburg, 1998), which requires a short thermal relaxation time of the
gas (Lin & Youdin, 2015; Manger et al., 2021; Fukuhara et al., 2021). VSI was studied
in much detail in isothermal and adiabatic disk models at various rates of 𝛽 cooling (e.g.,
Nelson et al., 2013) and in models with radiative transfer (e.g., Stoll & Kley, 2016; Stoll
et al., 2017; Flores-Rivera et al., 2020). Due to the numerical obstacles of incorporating
dust evolution models in hydrodynamic simulations (Drążkowska et al., 2014; Gonzalez
et al., 2017; Drążkowska et al., 2019; Lombart et al., 2022), most previous studies consider
a static dust population, perfectly coupled to the gas. These studies often aim for a detailed
analysis of the instability mechanism itself (e.g., Nelson et al., 2013; Manger et al., 2021;
Svanberg et al., 2022). They showed the VSI’s ability to cause large-scale vortex formation
(Richard et al., 2016; Manger & Klahr, 2018; Pfeil & Klahr, 2021) and strong corrugations
in the dust layer (Stoll & Kley, 2016; Flores-Rivera et al., 2020). Simulations assuming
perfectly coupled dust or isothermal conditions cannot, however, model the conditions in
real protoplanetary disks, for which observations show an evolved dust population (Pérez
et al., 2012; Tazzari et al., 2016; Huang et al., 2018; Ohashi & Kataoka, 2019; Sierra et al.,
2021), substructures (ALMA-Partnership et al., 2015; Andrews et al., 2018; Dong et al.,
2018), and planets (Keppler et al., 2018). In this work, we intend to go one step further
by considering an evolved—yet static—dust population in two-dimensional simulations of
smooth protoplanetary disks.

Our work is motivated by the results of Dullemond et al. (2022), which show that VSI
turbulence in an isothermal disk model is not consistent with observations of thin dust
layers in protoplanetary disks. In Pfeil & Klahr (2021), we have explored the impact of
a more realistic cooling time prescription on the strength of VSI turbulence. For this,
we assumed the presence of a static, µm-sized dust population in the inner parts of a
protoplanetary disk (at ∼ 5 au). For these setups, we found that the collisional decoupling
of the gas and dust particles inhibits thermal relaxation in the disk atmosphere and thus
reduces VSI turbulence. The respective collisional coupling time scale depends on the size
distribution and is, thus, sensitive to the fragmentation velocity and other dust properties.
Fukuhara et al. (2021) further studied this effect in models with a more detailed prescription
of the dust size distribution. They found that coagulation can indeed inhibit the VSI by
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depleting the number of small grains that provide radiative cooling. In their most recent
study, Fukuhara et al. (2023) attempted to simulate this in a more self-consistent way, by
taking into account the effect of the VSI on the diffusivity and the cooling times. Since
they could not afford to dynamically evolve the dust population within their hydrodynamic
simulations, they relied on analytic prescriptions for the cooling time for a static dust size
distribution.

In this work, we study the effect of a more realistic steady-state dust distribution for
varying coagulation parameters using DustPy (Stammler & Birnstiel, 2022) and PLUTO
(Mignone et al., 2007). We deduce thermal relaxation times from dust coagulation models
in Section 4.3 which are then implemented in hydrodynamic simulations, from which we
study the VSI activity in Section 4.4. This makes it possible to study the influence of
dust coagulation and the coagulation parameters on VSI turbulence. These steps are
schematically displayed in Figure 4.1. In the next step, we introduce passive dust fluids
to our simulations in Section 4.4 to study the effect of the emerging VSI turbulence on
the thickness of the dust layer. To make our results comparable to observations, we create
synthetic intensity maps with RADMC-3D (Dullemond et al., 2012) in Section 4.5.

4.2 Theory

Cooling Requirements for the Vertical Shear Instability

Vertical shear, in the geophysical context also known as thermal wind (Holton & Hakim,
2012), is a consequence of the radial temperature gradient in the vertically stratified pro-
toplanetary disks. The temperature gradient itself is maintained by stellar irradiation.
Consequently, fluid parcels can be displaced upward into a region of lower specific kinetic
energy and thus experience an outward acceleration. A perturbation along such a trajec-
tory violates Rayleigh’s stability criterion and leads to a continued acceleration of the fluid
parcel. This mechanism is called the Vertical Shear Instability (Urpin & Brandenburg,
1998) and results in vertically elongated and radially narrow flow patterns. However, as
the gas parcels enter the lower-density regions of the disk atmosphere, they are subjected
to buoyancy forces, which, in a stably stratified atmosphere, would lead to an oscillation
around their equilibrium position. The characteristic frequency of this oscillation is the
Brunt-Väisälä frequency

𝑁2
𝑧 = − 1

𝜌g𝐶𝑃

𝜕𝑃

𝜕𝑧

𝜕𝑆

𝜕𝑧
, (4.1)

where 𝑧 is the distance from the disk midplane, 𝜌g is the gas density, 𝑃 is the pressure 𝑆

is the gas entropy, and 𝐶𝑃 is the gas’ specific heat capacity at constant pressure. Thermal
relaxation counteracts the restoring force of this oscillation by adjusting a gas parcel’s
specific entropy to the background. In order for the vertical shear to overcome buoyancy
and trigger the VSI, thermal relaxation must be fast. Lin & Youdin (2015) have shown
that vertically global VSI grows the fastest if the cooling timescale fulfills

𝑡c <
𝐻g

𝑅

|𝛽𝑇 |
𝛾 − 1Ω

−1
K , (4.2)
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where 𝑅 is the distance to the central star, 𝛽𝑇 is the power-law exponent of the temperature
profile, 𝐻g is the pressure scale height, ΩK is the local Keplerian frequency, and 𝛾 = 𝐶𝑃/𝐶𝑉 is
the gas’ heat capacity ratio. Equation 4.2 was derived under the assumption of a vertically
constant thermal relaxation time. As we specifically consider the height dependence of
thermal relaxation, we will use the local definition of a critical cooling time (Urpin, 2003;
Klahr et al., 2023) for local VSI modes

𝑡c ≲
|𝑟𝜕𝑧Ω|
𝑁2
𝑧

≈
𝐻g

𝑅

|𝛽𝑇 |𝛾
2(𝛾 − 1)

(
𝑧

𝐻g

)−1
Ω−1

K . (4.3)

In fact, numerical studies like Manger et al. (2021) investigated the dependency of the
VSI turbulence on a vertically constant thermal relaxation time and found VSI not to
develop for cooling times beyond the critical value for global modes. This may be due to
numerical resolution, as Lin & Youdin (2015) show that VSI exists for all cooling times,
yet at reduced efficiency. Urpin (2003) derived growth rates in this regime, which show
a decay proportional to 𝑡−1

c . This behavior was recently confirmed in high-resolution1

studies of the VSI and other thermal instabilities in disks by Klahr et al. (2023). It is still
subject to investigation how longer growth times will translate into turbulence levels for the
non-linear regime, especially in terms of angular momentum transport, diffusion, and gas
rms velocities. The saturation behavior of VSI and other thermal baroclinic instabilities
especially for longer cooling times at sufficient resolution is still being investigated (Latter
& Papaloizou, 2018; Cui & Latter, 2022; Klahr et al., 2023).

Optically Thin Thermal Relaxation

Thermal relaxation of the gas in a protoplanetary disk is mostly achieved via thermal cou-
pling with the dust in a two-stage process. At low temperatures, the emission timescale of
the gas molecules is long, which means that cooling is only possible via thermal accommo-
dation with the strongly emitting dust particles through collisions. Barranco et al. (2018),
derived the thermal relaxation times for the non-LTE case between dust grains and the gas
based on the calculation of cooling rates (see Section 4.A for a recap of the derivations).
For a given dust size distribution 𝑛(𝑎), the Sauter mean radius is an instructive parameter
in this context, defined as (Sauter, 1926)

𝑎S =

∫
𝑛(𝑎)𝑎3 d𝑎∫
𝑛(𝑎)𝑎2 d𝑎

, (4.4)

where the size integral is executed over the entire size distribution. Corresponding to the
Sauter mean, we define a respective number density 𝑛S = 𝜌d/

(
4/3 𝜋𝜌m𝑎3

S
)

and a collisional
cross-section 𝜎S = 𝜋𝑎2

S, where 𝜌m = 1.67 g cm−3 is the interior density of the dust grains.
With these definitions, we write the thermal accommodation timescale for the gas molecules

1PLUTO-4.2 simulation with 256 cells per gas scale height, WENO reconstruction, and RK3 time inte-
gration (Klahr et al., 2023).
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and the dust grains (Probstein, 1969; Burke & Hollenbach, 1983) as

𝑡coll
g =

𝛾

𝛾 − 1
1

𝑛S𝜎S𝑣̄g
, (4.5)

where 𝑣̄g = 𝑐s
√︁

8/𝜋 is the average gas molecule velocity of a Maxwell-Boltzmann distribution
with the isothermal speed of sound 𝑐s. Similarly, a timescale for the thermal relaxation of
the dust component can be derived, which reads

𝑡coll
d =

(
𝜌d
𝜌g

) (
𝐶d
CP

)
𝑡coll
g , (4.6)

with the dust-to-gas density ratio 𝜌d/𝜌g = 𝜀 and the specific heat capacity of the dust
particles 𝐶d. As a typical value we pick 𝐶d = 800 J kg−1 K−1, as used by Barranco et al.
(2018) (see Wasson, 1974; Piqueux et al., 2021; Biele et al., 2022). If the collisional coupling
is efficient, i.e., temperature perturbations in the gas are transferred to the dust, the thermal
equilibrium of the grains will be restored by the emission of radiation. This happens on the
black body timescale, depending on the dust density distribution 𝜌d(𝑎) in units of [g/cm4]
and the respective Planck mean opacity distribution 𝜅P(𝑎, 𝑇), in units of [cm2/g]

𝑡rad
d =

𝜌d𝐶d

16𝜎SB 𝑇3
eq

(∫
𝜌d(𝑎)𝜅P(𝑎, 𝑇eq) d𝑎

)−1
, (4.7)

with the Stefan-Boltzmann constant 𝜎SB. The total thermal relaxation time of the dust
gas mixture can then be calculated following Equation (19) from Barranco et al. (2018)

𝑡NLTE
thin = 2𝑡 | |

1 −

√√
1 −

4𝑡2| |
𝑡coll
g 𝑡rad

d


−1

(4.8)

with 1/𝑡| | = 1/𝑡rad
d +1/𝑡coll

d +1/𝑡coll
g . In practice, this means the slowest channel of energy transfer

acts as a bottleneck and the longest timescale of thermal relaxation determines the cooling
time scale of the gas. If the dust’s emissivity is low, energy cannot be emitted effectively by
the grains, and temperature perturbations cannot decay, no matter how well the grains and
molecules are coupled (𝑡NLTE

thin ≈ 𝑡rad
d ). This situation is unlikely to occur in protoplanetary

disks because of the large dust opacities. Another case is the collisional decoupling of
dust grains and gas molecules. At low densities and in regions where small grains are
depleted, heat cannot be transferred between the main carriers of thermal energy (the gas
molecules) and the emitters (the dust grains). The high emissivity of the grains does not
matter in such a case, since temperature perturbations stay locked in the poorly emitting
gas (𝑡NLTE

thin ≈ 𝑡coll
g ).

Muley et al. (2023) introduced a three-temperature radiation transport scheme, which
treats dust and gas temperatures separately, yet coupled via collisions. They also find that
in most cases the collisional time scale is the most relevant to determine thermal relaxation.

In this case, the cooling time is proportional to the square root of the maximum particle
size. This can be shown by assuming the size distribution to be a truncated power law



58 4. Impact of Dust Coagulation on the Vertical Shear Instability

with maximum particle size 𝑎max, minimum size 𝑎min, and power-law exponent 𝑝 = −3.5.
Then 𝑎s =

√
𝑎max𝑎min and thus 𝑡coll

g ∝ (𝑛S𝜎S)−1 ∝ √
𝑎max. Sticking collisions between grains

typically increase the maximum particle size until a fragmentation-coagulation equilibrium
is reached. In this case, 𝑎max ≈ 𝑎frac ∝ 𝑣2

frag holds (Birnstiel et al., 2012), and we deduce
that the collisional timescale is directly proportional to the fragmentation velocity in this
case. Laboratory experiments aim to determine the actual value of 𝑣frag which is dependent
on the composition and porosity of grains (Blum, 2000; Wurm et al., 2001; Blum et al.,
2006; Musiolik & Wurm, 2019). Typical values lie within a range of 100–1000 cm s−1.

An additional uncertainty arises from the unknown relative grain velocities, which de-
pend on the strength of turbulence, differential drift, and settling. Especially the strength
of turbulence in protoplanetary disks is highly uncertain and also a subject of this article.
The simplest assumption for the turbulent transfer of energy across length scales is the
Kolmogorov cascade. For the resulting energy spectrum, relative grain velocities can be
approximated as Δ𝑣 ≈

√
3𝛼St𝑐s (Ormel & Cuzzi, 2007), with the Stokes number St (see

Equation 4.14). This is the underlying assumption for the derivation of 𝑎frag. In this tur-
bulence prescription, which is Based on the assumption of a mixing length model (Prandtl,
1925), turbulent stresses result in an effective viscosity

𝜈T = 𝛼𝑐s𝐻g , (4.9)

where 𝑐s is the local sound speed (Shakura & Sunyaev, 1973). From this, turbulent rms
velocities can be related to 𝛼 by assuming a turbulent correlation time of Ω−1

K via

𝛼 =
⟨𝑣2

turb⟩
𝑐2

s
. (4.10)

With this, 𝑎frag ∝ 𝛼−1, implying 𝑡coll
g ∝ 𝛼−1/2. Low 𝛼 therefore corresponds to longer

cooling times, as a consequence of the presence of larger particles. Additionally, lower
levels of turbulence correspond to smaller dust scale heights, leading to a depletion of the
upper layers and an additional dampening of the VSI in these regions.

Fukuhara et al. (2021) investigated the effect of varying maximum particle sizes through-
out a protoplanetary disk and found that the presence of VSI depends on particle sizes via
the cooling time dependency.

In the following sections, we investigate this effect through the use of more realistic dust
coagulation models and subsequent hydrodynamic simulations. We aim to determine the
implications for the interpretation of observational data and the respective feedback onto
the dust layer by turbulent mixing through the VSI.

4.3 DustPy Coagulation Models

In the previous sections, we discussed the importance of thermal relaxation for the VSI.
We have also highlighted that the cooling times are highly sensitive to the present dust
population, most importantly, the maximum particle size.

In this section, we present a series of dust coagulation simulations, conducted with
DustPy, that further illustrate the impact of dust coagulation on the cooling times. We
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use the output of these simulations to calculate cooling time distributions for our subsequent
hydrodynamic simulations with the PLUTO code.

For our disk model we employ the standard Lynden-Bell & Pringle (1974) profile for
a solar-mass star and a 0.05 M⊙ disk with dust-to-gas ratio (metallicity) Z = 0.01 (see
Table 4.1)

Σg =
𝑀d(1 + 𝛽Σ)

2𝜋𝑅2
c

(
𝑅

𝑅c

)𝛽Σ
exp

[
−

(
𝑅

𝑅c

)2+𝛽Σ
]
. (4.11)

We set the radial column density gradient to 𝛽Σ = −0.85, and the characteristic radius to
𝑅c = 100 au. Our radial temperature profile is determined by passive stellar irradiation and
assumed to be constant in the vertical direction (see Chiang & Goldreich, 1997; D’Alessio
et al., 1998; Dullemond et al., 2018)

𝑇 =

(
𝜑𝐿∗

4𝜋𝑅2𝜎SB

)1/4

, (4.12)

where 𝐿∗ is stellar luminosity, and 𝜑 = 0.02 is the flaring angle. Gas evolution and dust
drift alter the dust size distribution in protoplanetary disks. The overall effect of these
transport phenomena on the shape of the distribution is, however, most relevant in the
final stages of disk evolution, when the growth front has reached the outer disk edge and
the mass budget is quickly decreasing (i.e., when the dust accretion rate is no longer radi-
ally constant, Birnstiel & Andrews, 2014). At what point in time after disk formation this
becomes relevant is dependent on the disk’s size, its radial structure, the dust-to-gas ratio,
the strength of turbulence, the fragmentation velocity, etc. In this study, we are interested
in the effect of dust coagulation on the cooling times and, through the cooling times, on
the VSI. In the inner parts of the disk, a steady-state distribution, determined by fragmen-
tation and coagulation, will be reached and approximately maintained as long as the outer
disk edge is not yet moving inward. We have therefore decided to completely disregard any
transport effects (except the vertical settling-mixing equilibrium). We are thus calculating
a steady-state dust distribution for each parameter set that is only determined by frag-
mentation and coagulation. The output of our models is, therefore, time-independent once
the equilibrium size distribution is reached at each radius. In that way, we avoid selecting
an arbitrary simulation snapshot.

Note that this is still an idealized assumption. In reality, radial drift and gas evolution
could slightly alter the radial structure and the size distributions at similar timescales.
Typically, drift-limited size distributions are slightly steeper than in the fragmentation
limit (Birnstiel et al., 2011). In recent studies, the VSI itself was also shown to alter the
radial disk structure (Manger et al., 2021). Our DustPy models are run for 105 yr, after
which coagulation-fragmentation equilibrium is reached at every radial grid cell.

We conduct simulations for three different fragmentation velocities 𝑣frag = 100, 200, and
400 cm s−1 and for a turbulence parameter 𝛼 = 10−3. Additionally we probe two different
turbulent diffusivities with 𝛼 =10−4 and 10−2, at 𝑣frag = 100 cm s−1. At this point we
do not further specify the origin of the diffusivity 𝛼, making it a free parameter for the
coagulation models. We show the resulting dust size distribution at 50 au and 100 au on
the left-hand side of Figure 4.2 and some key particle properties are shown in Table 4.1.
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We can see that the particles grow to larger sizes at smaller distances to the central star,
in accordance with analytic estimates of the fragmentation-limited particle size (Birnstiel
et al., 2012). The respective size distributions can be approximated with power laws with
exponents −𝑝 ≈3.6–3.7. These values lie within the typical range for fragmentation-limited
size distributions derived by Birnstiel et al. (2011).

Thermal Relaxation Times Derived from Dust Coagulation Simulations

We derive the vertical structure from these, vertically integrated, DustPy models by as-
suming vertical hydrostatic equilibrium for the gas and vertical settling-mixing equilibrium
for the dust. Gas densities thus follow as

𝜌g = 𝜌g,mid exp
[(
𝐻g

𝑅

)−2 (
𝑅

√
𝑅2 + 𝑧2

− 1
)]

, (4.13)

with the midplane gas density 𝜌g,mid = Σg (𝑅)/√2𝜋𝐻2
g . We assume an ideal equation of state

𝑃 = 𝜌g𝑐
2
s . The vertical dust distribution is determined by the diffusion parameter 𝛿 and

the Stokes number of the individual size bins on the size distribution, which is defined as

St = 𝜋

2
𝑎𝜌m
Σg

. (4.14)

Volume dust densities for each size are then derived by calculating the dust scale height

𝐻d = 𝐻g

√︂
𝛿

𝛿 + St (4.15)

𝜌d = 𝜌d,mid exp
[(
𝐻d
𝑅

)−2 (
𝑅

√
𝑅2 + 𝑧2

− 1
)]

, (4.16)

with 𝜌d,mid = Σd (𝑅)/√2𝜋𝐻2
d.

The resulting temperature and density structure is used to calculate the Planck mean
opacities of the dust. We use the DSHARP opacity model by Birnstiel et al. (2018) as
implemented in the dsharp_opac python package with the standard DSHARP particle
properties. Thermal relaxation times of the gas can then be calculated from the disk struc-
ture and opacities via Equations 4.5 to 4.8. For the given parameters in our simulations,
we find that the thermal relaxation time is limited by the collision timescale outside of
∼ 10 au. At smaller radii, the disk might become optically thick, meaning the relaxation
time of temperature perturbations depends on the respective length scale. We are therefore
only modeling the parts of the disk around 50 au, where thermal relaxation operates in the
optically thin regime. Figure 4.2 shows the size distributions and the vertical profile of
the thermal relaxation times for the respective coagulation and turbulence parameters at
50 au and 100 au. We find that the cooling times increase with height above the midplane.
The reason for this is that cooling is achieved via collisions between dust particles and gas
molecules, which become rarer at lower densities. This also means that models with larger
particles have longer thermal relaxation times because of the reduced number densities of
dust particles and the stronger settling. Higher fragmentation velocities are counteracting
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Table 4.1: Dust coagulation parameters of our five DustPy simulations and the respective maximum
particle size measured at 50 au in the DustPy simulation.

𝑀∗ 𝑅∗ 𝑇∗ 𝑀disk,g Z 𝑣fr 𝛼turb 𝜌m 𝑎min 𝑎max (50 au) Stmax (50 au) 𝑎s (50 au) Sts (50 au)
[𝑀⊙] [𝑅⊙] [K] [𝑀∗] [cm s−1] [g cm−3] [cm] [cm] [cm]

1 2 5772 0.05 0.01 100 10−3 1.67 10−5 1.1 × 10−2 2.5 × 10−3 2.0 × 10−4 4.6 × 10−5

" " " " " 200 10−3 " " 4.0 × 10−2 9.3 × 10−3 4.3 × 10−4 1.0 × 10−4

" " " " " 400 10−3 " " 1.5 × 10−1 3.4 × 10−2 1.3 × 10−3 2.9 × 10−4

" " " " " 100 10−4 " " 6.3 × 10−2 1.5 × 10−2 9.7 × 10−4 2.3 × 10−4

" " " " " 100 10−2 " " 1.6 × 10−3 3.7 × 10−4 8.5 × 10−5 2.0 × 10−5
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Figure 4.2
Dust size distributions at 50 au (solid lines) and 100 au (dashed lines) of our DustPy models (left side). On
the right-hand side, we show the respective vertical cooling time profiles, assuming vertical settling-mixing
equilibrium for the given 𝛼 and the critical VSI cooling time. Models with larger particles also exhibit longer
cooling times due to collisional decoupling between dust and gas. We also show the height-dependent cooling
time for local VSI modes as purple lines (see Equation 4.3).

the VSI. Likewise, models with weaker turbulence parameter 𝛼 can also be expected to
have less VSI activity, as demonstrated by our numerical simulations.

4.4 PLUTO Simulations based on Coagulation Models

We set up axisymmetric PLUTO simulations with the same radial structure as our DustPy
models to study the evolution of VSI with the respective model’s cooling times. Pressure
forces act in the outward direction of the disk and therefore decrease the equilibrium
rotation frequency of the gas, especially at the steep outer edge of the disk. We define our
hydrostatic initial rotation profile accordingly as

Ω2(𝑅, 𝑧)
Ω2

K
=

(
𝐻g

𝑅

)2
(
𝛽𝑇 + 𝛽𝜌 − (𝛽Σ + 2)

(
𝑅

𝑅c

)𝛽Σ+2
)

− 𝛽𝑇𝑅√
𝑅2 + 𝑧2

+ 𝛽𝑇 + 1 , (4.17)
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where 𝛽𝜌 is the power-law exponent of the midplane gas density 𝜌mid ∝ 𝑅𝛽𝜌 and 𝛽𝑇 is
the power-law exponent of the radial temperature profile 𝑇 ∝ 𝑅𝛽𝑇 . Thermal relaxation is
realized as in Pfeil & Klahr (2021), by analytically relaxing the gas pressure toward the
equilibrium profile (determined by stellar irradiation). Density is kept constant in this
cooling step, which makes a relaxation in pressure equal to a relaxation in temperature for
an ideal equation of state.

𝑃 (𝑛+1) = 𝑃eq + (𝑃 (𝑛) − 𝑃eq) exp
(
− Δ𝑡

𝑡NLTE
thin

)
const.
𝜌

⇐⇒ 𝑇 (𝑛+1) = 𝑇eq + (𝑇 (𝑛) − 𝑇eq) exp
(
− Δ𝑡

𝑡NLTE
thin

)
, (4.18)

where (𝑛) denotes the number of the current simulation timestep of length Δ𝑡. The equi-
librium temperature 𝑇eq is defined by stellar irradiation (Equation 4.12). Cooling times,
presented in the previous section, are derived from DustPy simulations (see Figure 4.2) and
subsequently fitted as a function of local gas density and temperature for each simulation
(for a detailed description of the fits, see Section 4.B).

Fitting the spatial distributions of the thermal relaxation times as functions of density
and temperature also introduces uncertainties in the cooling times for PLUTO. For all
models except one, these errors lie within 25 % with respect to the real distribution of
cooling times. For the case of the most settled particles (𝑣frag = 100 cm s−1, 𝛼 = 10−4),
however, the fitting function seems to diverge further from the real distribution and the
fit deviates up to 58 % from the cooling times close to the midplane. This is likely due to
the difference between this particular highly settled model and the other less settled cases.
Since the cooling times vary over several orders of magnitude throughout the simulation
domain and between the models, we deem this uncertainty acceptable—also because the
overall distribution of cooling times is still well reproduced (this can be seen in the matching
contours in Figure 4.12). It is worth noting, however, that in this work, we only study the
overall trends of VSI turbulence with the coagulation parameters and do not aim to exactly
reproduce specific systems or observations.

The resulting analytic cooling time prescriptions are used within our PLUTO simulations
to calculate 𝑡NLTE

thin from the local disk structure. Since cooling is dominated by the small
grains, which predominantly move along with the gas, minor disturbances in the gas densi-
ties, as caused by the VSI, can also influence the cooling times in this model. We emphasize
that this is a minor effect in our simulation, and does not have an impact on the resulting
turbulence. It should be noted, that our cooling time prescription, which is derived from
dust coagulation models, is static throughout the simulation.

Although our coagulation models assumed a certain turbulent diffusivity 𝛿 to calculate
relative particle velocities, we set up our hydrodynamic simulations to be inviscid. This
is because we want to study the onset of the VSI and the resulting turbulence strength.
Applying the same diffusivities as for the coagulation models (𝛿 =10−4–10−2) as viscosity
in PLUTO would likely stop the VSI from emerging in the first place (Barker & Latter,
2015). Note that setting up viscous simulations would also not be fully self-consistent since
relative particle velocities in DustPy are inferred from perfectly isotropic turbulence and
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Figure 4.3
Vertical velocities in units of the local speed of sound in our six PLUTO runs after 500 orbital time scales
at 50 au. The isothermal run shows a snapshot after only 200 orbits. White contours mark the position
at which the critical cooling time for the VSI is reached (Equation 4.3), i.e., VSI is theoretically possible
within the white lobes.

the resulting Kolmogorov cascade, which would not be the case for the developing VSI
turbulence in our simulations.

We carry out the calculations for 500 orbital periods at 50 au (= 176 777 yr). Simula-
tion domains are set up in spherical coordinates and extend from 25–150 au in the radial
direction, and over ±3 pressure scale heights from the midplane of the disk in the polar
direction. We resolve one scale height at 50 au with 85 cells and employ logarithmic griding
in the radial direction to preserve the cells’ aspect ratios, resulting in a 2011𝑟 × 513𝜗 grid.
Periodic boundary conditions are set up in the azimuthal direction with only one grid cell,
making our simulations axisymmetric. Radial and polar boundaries are set up as reflective
for the orthogonal velocity components and as zero-gradient for the respective tangential
velocity components. Pressure and density in the boundary cells are kept at the initial
condition.

In Figure 4.3, we show the vertical velocities in our simulations at the end of the simula-
tion time. It is evident, that the spatially varying cooling times set constraints on where the
VSI can be active and where vertical motions are suppressed by buoyancy. As a comparison,
we also show an isothermal simulation (i.e., ideal VSI), in which the resulting turbulence
is present in the entire simulation domain and at higher turbulent Mach numbers. For the
case of 𝑣fr = 400 cm s−1 and 𝛼 = 10−3, we find the disk to be completely quiescent outside
of ∼ 80 au, due to the long cooling times. In this case, dust would settle into a very thin
layer in the outer disk, which we will further investigate in the next sections. Similarly,
the disk regions outside of ∼ 100 au show only very little VSI activity for the coagulation
model with 𝑣fr = 100 cm s−1 and 𝛼 = 10−4.

To characterize the development and strength of the VSI turbulence, we measure the
Favre-averaged (i.e. density-weighted) turbulent Mach numbers over the whole simulation
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Figure 4.4
Time evolution of vertical shear instability simulations based on the different dust models. Turbulent Mach
numbers are shown as a function of time (radially and vertically Favre-averaged) and as a function of height
above the midplane (time-averaged and radially Favre-averaged). In models with larger particles, cooling
times are generally longer, which results in lower growth rates and lower Mach number turbulence. The
vertical profiles on the right-hand side change accordingly. Cooling times in models with larger maximum
particle size increase more rapidly with height above the midplane, which also cuts off the VSI turbulence.
Isothermal models typically have vertically increasing turbulent velocities. The three dashed horizontal
lines show the Mach numbers corresponding to the three 𝛼 values that we assumed for our coagulation
models (see Equation 4.10). Note that the conversion between turbulent Mach numbers and diffusivities
assumes a perfect Kolmogorov turbulence spectrum (see discussion in Section 4.6), which is likely not given
for the anisotropic VSI turbulence.

domains, where the average in a direction 𝑥 (polar, radial, or both) is defined as

⟨M⟩𝑥 =

∫ √
𝑣2𝑟 +𝑣2𝜗
𝑐s

𝜌 d𝑥∫
𝜌 d𝑥

, (4.19)

where 𝑣𝑟 and 𝑣𝜗 represent the radial and polar velocity components. Since our simulations
are set up hydrostatically, these components measure turbulent fluctuations caused by
the VSI. While velocities in our isothermal simulation saturate after ∼ 100 orbits at
⟨M⟩ ≈ 4 × 10−2, all other, non-ideal simulations, reach lower Mach numbers and have
longer growth time scales (see Figure 4.4). The vertical profile of the Mach numbers
shows the typical vertical increase and a sharp upper cutoff, similar to the results in Pfeil
& Klahr (2021). The collisional decoupling of dust particles and gas molecules is the
reason for this behavior. Figure 4.4 also shows the three Mach numbers corresponding
to the diffusivities chosen to calculate turbulent relative velocities between particles in our
coagulation model (𝛼= 10−4, 10−3 and 10−2). As can be seen, the three lines do not exactly
correspond to the measured Mach numbers of our simulations. This is, however, also not to
be expected, since the direct conversion between Mach numbers and particle collision speed
(see Equation 4.10) assumes a perfect Kolmogorov spectrum and, thus, isotropic turbulence
which is not given for the VSI. The calculation of collision speeds would furthermore depend
on the correlation time spectrum which was not taken into account here.
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Radial dependency of the turbulent Mach num-
bers in a polar and time Favre average over 200
orbits in our VSI simulations. VSI simulations
based on DustPy models with larger particles have
lower levels of turbulence. For our model with the
largest particles 𝑣fr = 400 cm s−1 and 𝛼 = 10−3, the
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we assumed for our coagulation models (see Equa-
tion 4.10). Note that such a conversion assumes a
perfect Kolmogorov turbulence spectrum (see dis-
cussion in Section 4.6).

Figure 4.5 depicts the radial dependence of the Mach numbers in our simulations. The
lowest turbulence levels of ⟨M⟩ ≈ 8 × 10−3 are reached in our simulations based on the
DustPy model with 𝛼 = 10−3 and 𝑣fr = 400 cm s−1, i.e., in the model with the largest
particles (𝑎max (50 au) ≈ 0.14 cm). For this simulation, we observe a decrease in turbulence
outside of 40 au. At 60 au, turbulent Mach numbers have already decreased by a factor 10
compared to the inner regions. Also our models with 𝑣fr = 200 cm s−1 and 𝛼 = 10−3 and the
model with 𝑣fr = 100 cm s−1 and 𝛼 = 10−4 show a radially decreasing level of turbulence in
the outer disk.

We conclude that the level of VSI turbulence is highly dependent on the physical details
of the dust coagulation process. If dust grains can grow up to the fragmentation limit—
which is to be expected in most parts of protoplanetary disks in the early evolutionary
stages—we can expect weak collisional coupling between dust grains and gas molecules in
the optically thin, outer regions, leading to inefficient cooling and only weak VSI turbulence.
The magnitude of the impact of dust coagulation on the hydrodynamic turbulence depends
mostly on the maximum size of the grains, where larger grains correspond to less cooling
and, thus, stronger damping of VSI.

Dust Dynamics in the PLUTO Simulations

In the previous section, we have shown that the VSI activity in protoplanetary disks is
highly sensitive to the properties of the present dust grain population, especially the largest
grain size. However, we cannot directly infer the VSI’s feedback on the dust population.
Dullemond et al. (2022) have clearly shown that the ideal VSI is inconsistent with the
observed thickness of protoplanetary disks in millimeter-wave observations with ALMA
(Villenave et al., 2020, 2022). Our simulations show that the level of turbulent vertical
velocities can vary by orders of magnitude across the disk, depending on the details of the
dust size distribution.

In this section, we explore how these different levels of turbulence impact the thickness
of the dust layer. For this, we restart the simulations after the VSI has reached a saturated



66 4. Impact of Dust Coagulation on the Vertical Shear Instability

−25

0

25

H
ei

g
h
t

[a
u
]

vfrag = 100 cm
s
, α = 10−3 vfrag = 200 cm

s
, α = 10−3 vfrag = 400 cm

s
, α = 10−3

40 60 80 100 120 140

Radius [au]

−25

0

25

H
ei

g
h
t

[a
u
]

vfrag = 100 cm
s
, α = 10−2

40 60 80 100 120 140

Radius [au]

vfrag = 100 cm
s
, α = 10−4

40 60 80 100 120 140

Radius [au]

Isothermal

10−3

10−2

10−1

to
ta

l
d
u
st

-t
o
-g

a
s

ra
ti

o

Figure 4.6
Total dust to gas ratios in VSI simulations restarted after 425 orbits with four passive dust fluids. Each
simulation is started with a dust distribution similar to the one derived from the respective DustPy sim-
ulations. Snapshots are taken after 150 orbits of evolution. White contours mark the position at which
the critical cooling time for the VSI is reached (Equation 4.3), i.e., VSI is theoretically possible within the
white lobes.

level of turbulence. We add four dust fluids, resembling a power-law size distribution
𝑛(𝑎) ∝ 𝑎𝑝, and thus Σd(𝑎) ∝ 𝑛(𝑎)𝑚(𝑎) ∝ 𝑎𝑝+3. Normalizing to the total dust column
density (column dust-to-gas ratio Z = 0.01) and integrating the distribution over the size
bin 𝑖 with boundaries 𝑎𝑖 and 𝑎𝑖+1, we get

Σd,𝑖 =


Σd,tot

𝑎
𝑝+4
𝑖+1 −𝑎𝑝+4

𝑖

𝑎
𝑝+4
max−𝑎𝑝+4

min
for 𝑝 ≠ −4

Σd,tot
log(𝑎𝑖+1 )−log(𝑎𝑖 )

log(𝑎max )−log(𝑎min ) for 𝑝 = −4 .
(4.20)

The maximum grain sizes 𝑎max and exponents 𝑝 are derived from the underlying DustPy
models (measured at a distance of 50 au as the size including 99.9 % of the dust mass, see
Table 4.1). Similar to the DustPy simulations, the minimum grain size is set to 0.1 µm,
which is a typical size assumed for monomers in protoplanetary disks (Tazaki & Dominik,
2022) and which is constant throughout the simulations. We divide the power-law size
distribution into four sections, equally spaced in logarithmic size space between 𝑎min and
𝑎max. The initial vertical dust distribution is determined by the midplane Stokes numbers
and the level of turbulence assumed in the respective DustPy runs, follwing Equation 4.16.
Dust is allowed to flow in from the outer boundary of the simulation domain with the initial
vertical distribution. As to the time of this work, the PLUTO code has no built-in dust
fluids. Therefore, we make use of the available gas tracer fluids. To model radial dust drift
and vertical settling we modify the tracer fluxes according to the respective grain sizes’
relative velocity to the gas, which is given by the prescriptions of Nakagawa et al. (1986)
(terminal velocity approximation). Each dust fluid is advected with the gas velocity plus
the drift correction of the mass-averaged size of the respective size bin. In Section 4.C we
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Radially and time-averaged dust-to-gas ratios in the inner and outer parts of our simulations. The inner
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and 𝑣fr = 400 cm s−1, in which the outer regions are quiescent.

present tests of this method that verify its accuracy.
We continue the previous, gas-only, VSI simulations with dust for another 150 orbits

(measured at 50 au). Figure 4.6 depicts the distribution of dust-to-gas ratios in our simula-
tions after 150 orbits. In our model with 𝛼 = 10−3 and 𝑣fr = 400 cm s−1, we have the largest
particles of ≈ 0.14 cm radius, while the smallest particles are present in the model with
𝛼 = 10−2 and 𝑣fr = 100 cm s−1, with a maximum size of ≈ 15 µm (see Table 4.1). As a com-
parison, we initialize the isothermal simulation with the largest grains, to get an estimate
of the effect of ideal VSI on a grown dust population (as in Dullemond et al., 2022). The
effect of the different levels of VSI turbulence, depending on the coagulation parameters
and the respective thermal relaxation times becomes visible in the dust-to-gas ratios, where
the simulations with larger particles, longer cooling times, and less VSI turbulence have
more settled dust layers. Especially the outer disk regions are affected by this, as can be
seen in the cases with 𝑣fr > 100 cm s−1 and 𝛼 < 10−2.

We can furthermore see, that the isothermal simulation provides a good approximation
for the models with the smallest particles. This is to be expected because the models with
the smallest particles also have the shortest cooling times, making the VSI modes almost
isothermal. To visualize the clear distinction between the inner VSI-active region and the
outer VSI inactive regions, we plot the time and radially averaged total dust-to-gas ratios
in Figure 4.7. For the models with fully VSI-active disks, we find flat top, or double-peaked
dust distributions throughout the entire disks. In contrast, models with larger grains and
inactive outer disks, show flat-topped, or double-peaked profiles in the inner disk regions
and highly settled outer regions.

A perfect flat-top distribution would indicate spatially homogeneous diffusion and could
easily be fitted by an analytic expression (see Equation 4.21, Fromang & Nelson, 2009).
The double hump, on the other hand, cannot be a feature of isotropic turbulence and
reflects the action of the quasi-periodic VSI motions.
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At this point, we can only speculate what the feedback of these dust distributions onto
the VSI would be. Lin & Youdin (2017) and Lin (2019) studied the influence that dust
back-reaction could have on the VSI and found that this process generally damps the VSI
turbulence. For the highly settled cases, with midplane dust-to-gas ratios near unity, one
would have to include hydrodynamic back-reaction, as in the work by Schäfer et al. (2020);
Schäfer & Johansen (2022). In these scenarios, the presence of VSI would probably be
further inhibited by the hydrodynamic feedback of the dust onto the gas. Cooling times
would also increase significantly in these regions. The areas above the midplane would
be in the collision-limited regime, whereas the midplane could become optically thick (see
Section 4.5).

4.5 Radiative Transfer Post Processing

We have shown the impact of the dust grain sizes on the strength of the VSI and the
morphology of the dust layer in the previous section. Now, we want to determine the
visual appearance of the simulated disks in synthetic millimeter-wavelength observations.
Our goal is a qualitative comparison of our results with ALMA observations of edge-on or
almost edge-on protoplanetary disks. Specifically, the works of Villenave et al. (2020, 2022,
2023) have shown that many protoplanetary disks appear settled in 𝜆 = 1.25 mm images
obtained with ALMA. Oph 163131 is the most prominent example with a very thin dust
disk of height 𝐻d,100 au ≈ 0.5 au. Villenave et al. (2022) obtained this result by modeling
the appearance of one of the disk’s gaps.

For our approach, we create radiation intensity maps of edge-on disks (𝑖 = 90◦) from the
dust distributions of the last snapshot of our hydrodynamic simulations with RADMC-3D.
For comparison, we also simulate the intensities arising from steady-state dust distributions
under the assumption of a fixed diffusivity. In this settling-mixing equilibrium, the vertical
dust distribution can be written

𝜀 = 𝜀mid exp
[
−Stmid

𝛿

(
exp

(
𝑧2

2𝐻2
g

)
− 1

)]
, (4.21)

(Fromang & Nelson, 2009). Opacities are calculated for each of the four populations us-
ing the standard DSHARP particle properties with the dsharp_opac python package
(Birnstiel et al., 2018). We consider a photon package to be fully extinct after being scat-
tered over a length of five optical depths. Our models are axisymmetric and we treat the
anisotropic scattering angle for 60 angular sample points. Before running the ray tracing
algorithm, we use the mctherm task to calculate the dust temperatures from a thermal
Monte Carlo simulation. For this, we use 107 photon packages.

To mimic the effect of a finite beam size in ALMA observations, we convolve our images
with a circular Gaussian beam, which for DSHARP observations had a typical FWHM of
35 mas. We place our disk at a distance of 100 pc to the observer.

We show the resulting images for the VSI simulation with 𝑣fr = 100 cm s−1 in Figure 4.8,
𝑣fr = 200 cm s−1 in Figure 4.9, and for 𝑣fr = 400 cm s−1 in Figure 4.10. The right-hand side of
each figure depicts three minor axis cuts through the intensity map at the locations of the
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Upper row a: RADMC-3D intensity maps of our VSI simulation with 𝑣fr = 100 cm s−1 and 𝛼 = 10−3, seen
edge-on. Rows b, c, and d show intensity maps calculated from analytic dust distribution that assume
different diffusivities 𝛿. The grain sizes are identical in all simulations. We convolve the images with a
typical ALMA beam with FWHM of 35 mas for a distance of 100 pc shown as a grey circle. Hatched areas
mark regions that have optical depth 𝜏 ≥ 1. Horizontal hatches correspond to areas for which the 𝜏 = 1
surface lies on the far side of the disk. Diagonally hatched regions mark 𝜏 = 1 surfaces that lie on the
observer’s side of the disk. The panels on the right-hand side show minor axis cuts through the images
along the vertical lines in the intensity maps. Purple lines in all plots are the minor axis cuts from the VSI
simulation (panel a).

vertical lines in the images. The images within each figure are created from disk models with
identical particle sizes. As a result of optical depth effects, we find that the models with
𝑣fr = 200 cm s−1 (Figure 4.9) 𝑣fr = 400 cm s−1 (Figure 4.10), have a double-peaked intensity
profile in the optically thick regions, marked by the hatched areas in each image. Above
the midplane, these models have optical surfaces closer to the central star. Therefore, we
observe the hotter inner regions above the midplane and the cooler outer regions in the disk
midplane, as illustrated in Figure 4.11. Double-peaked profiles have already been observed
in synthetic images of a VSI-active disk in Blanco et al. (2021). Their work is based on
the simulation presented in Flock et al. (2020) and also treats radiative transfer through
radiative diffusion in combination with ray-tracing from the central star for up to 10 µm
dust particles.
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Figure 4.9
Upper row a: RADMC-3D intensity maps of our VSI simulation with 𝑣fr = 200 cm s−1 and 𝛼 = 10−3, seen
edge-on. Rows b, c, and d show intensity maps calculated from analytic dust distribution that assume
different diffusivities 𝛿. The grain sizes are identical in all simulations. We convolve the images with a
typical ALMA beam with FWHM of 35 mas for a distance of 100 pc shown as a grey circle. Hatched areas
mark regions that have optical depth 𝜏 ≥ 1. Horizontal hatches correspond to areas for which the 𝜏 = 1
surface lies on the far side of the disk. Diagonally hatched regions mark 𝜏 = 1 surfaces that lie on the
observer’s side of the disk. The panels on the right-hand side show minor axis cuts through the images
along the vertical lines in the intensity maps. Purple lines in all plots are the minor axis cuts from the VSI
simulation (panel a).

The disk model with the smaller particles (𝑣fr = 100 cm s−1), is subject to the strongest
VSI and the strongest vertical mixing (row a of Figure 4.8). Therefore, the disk midplane
is not as strongly enriched and remains optically thin outside of ∼ 45 au. We are therefore
not observing any double-peaked minor axis intensity profiles in these cases. The minor
cut intensity profiles in the inner disk match best with the analytic profile with 𝛿 = 10−4 or
𝛿 = 10−3 (rows b and c in Figure 4.8). In the outer disk, they show almost no settling, since
the VSI is still active under the given conditions (more comparable with large diffusivities
as in row c in Figure 4.8). Similar to the conclusions of Dullemond et al. (2022), we confirm
that such a disk structure is not consistent with observations of highly settled edge-on disks
like Oph 163131.

In our disk model with 𝑣fr = 200 cm s−1, we find a vertically extended and optically thick
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Figure 4.10
Upper row a: RADMC-3D intensity maps of our VSI simulation with 𝑣fr = 400 cm s−1 and 𝛼 = 10−3, seen
edge-on. Rows b, c, and d show intensity maps calculated from analytic dust distribution that assume
different diffusivities 𝛿. The grain sizes are identical in all simulations. We convolve the images with a
typical ALMA beam with FWHM of 35 mas for a distance of 100 pc shown as a grey circle. Hatched areas
mark regions that have optical depth 𝜏 ≥ 1. Horizontal hatches correspond to areas for which the 𝜏 = 1
surface lies on the far side of the disk. Diagonally hatched regions mark 𝜏 = 1 surfaces that lie on the
observer’s side of the disk. The panels on the right-hand side show minor axis cuts through the images
along the vertical lines in the intensity maps. Purple lines in all plots are the minor axis cuts from the VSI
simulation (panel a).

inner disk with the typical two intensity peaks. However, we can already see the effect of the
radially increasing cooling times in the regions beyond 100 au. While the inner, VSI-active
regions appear the be more consistent with the analytic models of high diffusivity (row d
in Figure 4.9), we can see that the outer regions are most consistent with a low diffusivity
of ∼ 10−4 (row b in Figure 4.9). This would still not be in agreement with observations of
Oph 163131, which find the disk to be highly settled at 𝑟 ≈ 80 au.

Ramping up the fragmentation threshold further, as in our model with 𝑣fr = 400 cm s−1,
results in a highly settled outer dust layer outside of ∼ 60 au, as can be seen in Figure 4.10.
The minor axis cuts illustrate the transition from an optically thick vertical structure in
the inner regions to a mostly optically thin profile in the outer regions, which occurs at
the outer edge of the VSI-active region. For the inner regions, we find a good agreement
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Figure 4.11
Origin of the double-peaked intensity
profiles in Figure 4.9 and Figure 4.10.
The 𝜏 = 1 surfaces for the layers above
the midplane lie closer to the central
star due to the lower densities. The re-
spectively higher temperatures lead to
higher intensities above the midplane.
Here shown are the 𝜏 = 1 surfaces for
row c in Figure 4.9.

between the VSI simulation and the analytic model with 𝛿 = 10−3 (row c in Figure 4.10).
Similar to Dullemond et al. (2022), we find that the VSI can still lift up large particles in
these inner regions. In contrast, the outer regions are strongly settled, and more consistent
with the analytic profile with 𝛿 = 10−4 (row b in Figure 4.10). At this level of settling, it
is unlikely that the outer regions of the VSI simulation could still be distinguished from a
fully-settled disk (𝛿 = 0), due to the applied beam smearing. Note that in this simulation,
we allow dust to flow into the simulation domain with a vertical distribution equal to the
initial condition (which assumes 𝛿 = 10−3). Any remaining vertical extent of the dust layer
in the outer disk therefore likely exists as a result of the boundary condition.

4.6 Discussion

Other Modes of Thermal Relaxation

We assumed the dust to be the only source of cooling in the outer regions of protoplanetary
disks. However, molecules like CO, H2O, CO2, etc, with electromagnetic dipole moments,
might also contribute to the cooling of the gas through line emission when gas and dust
are thermally decoupled (Woitke et al., 2009; Malygin et al., 2014). In this case, thermal
energy must also be transferred from the bulk constituent of the disk, H2, to the emitting
species via collisions. Cooling the VSI modes could, thus, again become a matter of collision
timescales at the very low densities of the outer disk. At low temperatures, emission lines
may also become extremely inefficient at cooling the gas at the required rate. Freeze-out of
emitting molecules might also reduce the rate of thermal relaxation that can be achieved
by emission line cooling. How much material can freeze out and thus be stopped from
cooling the H2, depends also on the availability of small grains. Cooling of the disk via gas
emission lines is, thus, also dependent on the details of the dust population. Future studies
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should aim to incorporate some treatment of gas cooling via emission lines. Models for this
exist (Woitke, 2015), but are very complex and currently not feasible for implementation
in a hydrodynamic simulation.

Furthermore, we have omitted the optically thick regions of protoplanetary disks (𝑅 <

10 au) in our simulations. Optically thick in this context does not refer to the bulk optical
depth of the disk (𝜏 ∼ Σ𝜅), as discussed in the previous section, but to the optical depth
of individual VSI flow structures, which in the inner disk measure only a fraction of the
disk scale height in the radial direction (denoted as 𝑙 in the following). We attempted to
simulate these regions in Pfeil & Klahr (2021) by assuming a characteristic diffusion length
scale. However, self-consistent modeling requires some treatment of radiative transfer, as
in Stoll & Kley (2016) or Flores-Rivera et al. (2020). Our findings nonetheless allow us to
make predictions about the effect of dust coagulation on the cooling times in these regions,
based on the results obtained here. If radiative diffusion becomes the dominant channel
for thermal relaxation, we can write the respective cooling time as

𝑡diff
LTE =

3
16

𝐶𝑉 𝜌small𝜌g𝜅R𝑙
2

𝜎SB𝑇3 , (4.22)

where 𝜅R is the Rosseland mean opacity, which is mostly determined by the small grains of
density 𝜌small (Lin & Youdin, 2015; Dullemond et al., 2022). If coagulation is increasing the
maximum particle size, the density of small particles will be reduced, therefore reducing
the diffusion timescale. At the same time, the size-distribution-averaged opacity will also
be reduced. Therefore, dust coagulation would effectively reduce the diffusion time scale
and thus be beneficial for the VSI in the inner disk regions.

Implication for the Vertical Shear Instability

We have shown that the vertical shear instability is highly sensitive to the underlying
dust size distribution, which determines the timescale of thermal relaxation. Manger et al.
(2021) and Klahr et al. (2023) have shown that the VSI growth rate almost instantaneously
drops to almost zero once the critical cooling time threshold is reached. This is also what
we observe as a sudden cutoff in the VSI activity at large disk radii. Therefore, the VSI-
active zones in protoplanetary disks are not extending throughout the entire outer disk.
Our simulations predict a VSI dead zone at large radii, which is caused by the reduced
efficiency of cooling.

Our simulations omit a treatment of dust back-reaction onto the gas. Schäfer et al.
(2020) have shown, that if the dust can settle into a thin layer in the disk midplane before
the VSI starts to grow, dust feedback can counteract the VSI. Since dust coagulation,
settling, and the onset of the VSI, occur on comparable timescales, it is not trivial to
predict the outcome of such a situation without a realistic disk simulation that treats all
of the aforementioned effects simultaneously. Our results show that if some dust settling
and coagulation can occur before the onset of the VSI, the effect of the reduced cooling
time would reduce the VSI activity and therefore probably enhance the dampening effect
of the dust’s dynamic back-reaction onto the gas.
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The Need for a Self-consistent Three-dimensional Model and the
Limitations of Our Approach

Simulations that aim to study the VSI under realistic conditions cannot ignore the implica-
tions of an evolved dust population, as presented in our and previous studies (see Fukuhara
et al., 2021, 2023). Measurements of the spectral index in protoplanetary disks (Tazzari
et al., 2016; Pérez et al., 2012; Huang et al., 2018; Sierra et al., 2021) and polarization
observations (Ohashi & Kataoka, 2019) imply that dust coagulation is occurring and that
grains in the outer disk can reach sizes of 0.1–1 mm, similar to the outcome of the DustPy
models that our VSI simulations are based on. Note, however, that our studies are no
self-consistent representations of protoplanetary disks. The dust size distributions used to
calculate the cooling time in our setups are static. In a real disk, they would evolve together
with the VSI. Settling and stirring of the dust layer would impact the cooling times. It is
unclear if this would lead to some sort of equilibrium situation in which the dust stirring
by the VSI can maintain a thick enough dust layer to support the necessary cooling times.
Continuous coagulation of grains would counteract the turbulent mixing further.

Fukuhara et al. (2023) presented an approach to study this equilibrium by using analytic,
yet physically motivated, cooling time profiles. They iterated between VSI simulations and
calculations of the resulting steady-state dust distribution from the measured turbulent
diffusivity. In that way, they were able to reach a convergent state in which the VSI
turbulence creates the necessary diffusivity to maintain the underlying cooling times. Their
studies did, however, not consider the effect of the changing diffusivity on the grain size
itself through coagulation and fragmentation. This poses an additional uncertainty in their
and our studies. We can already see that the measured Mach numbers in our simulations
do not always correspond to the 𝛼 values used in the underlying coagulation models (see
Figure 4.4). Note that M is only part of the generation of turbulent collision speeds
(Ormel & Cuzzi, 2007). The turbulent spectrum in correlation time space is also required
to calculate the acceleration that can be imposed on various particle sizes. Collision speeds
can only be obtained from the large scale rms velocity 𝑈 (𝐿) and the associated length scale
𝐿 =

√
𝛼𝐻, for an ideal Kolmogorov turbulence cascade which causes isotropic turbulent

diffusivities (Youdin & Lithwick, 2007; Binkert, 2023).
If any source of additional turbulence would be present that causes the turbulent diffu-

sivities used in our coagulation models, this would also have an effect on the developing
VSI. Even small viscosities of 𝛼 =10−4–10−3 are enough to hinder the evolution of the VSI
(Barker & Latter, 2015). Future studies should try to apply a more realistic, self-consistent
prescription of diffusivities in the coagulation model.

In our cooling time calculations, we have also neglected the effects of radial drift. Drift-
limited size distributions are characterized by smaller maximum particle sizes and are
more top-heavy than fragmentation-limited distributions. This results in longer thermal
accommodation timescales and would further inhibit the VSI turbulence.

The effect of the drag force onto the gas was also not considered in our simulations.
Schäfer et al. (2020) and Schäfer & Johansen (2022) have shown that back-reaction can
indeed inhibit the VSI turbulence close to the disk midplane if the dust has time to sediment
before the VSI is saturated. Future studies should therefore aim to incorporate more
realistic dust dynamics.
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In our two-dimensional simulations with dust, we have observed flat top or double-peaked
dust-to-gas ratio distributions. This reflects the periodic and non-isotropic nature of the
VSI-driven turbulence, which is not accounted for in the coagulation simulations. However,
as our simulations are two-dimensional, the prominence of these features might be artifi-
cially enhanced, as the 𝜑−dimension is missing as a degree of freedom. Three-dimensional
simulations (Manger & Klahr, 2018; Flock et al., 2020; Manger et al., 2021; Pfeil & Klahr,
2021) are needed for the study of the non-linear saturation and fully developed turbulent
state of VSI-driven turbulence, before deriving the turbulence properties as diffusivity,
correlation times, and energy spectra.

The main conclusions of our study and Fukuhara et al. (2021), however, remain un-
changed by all these considerations. Dust coagulation and dynamics are essential compo-
nents in studies of cooling-time-sensitive instabilities like the VSI.

This highlights the need for a more-self consistent numerical approach. Cooling times
have to be constantly recalculated throughout a simulation from the present dust size
distributions in order to study such systems. In the inner, optically thick parts of the disk,
radiative transfer models have to be employed to study the effect of coagulation on diffusive
radiative cooling.

4.7 Summary and Conclusions

In this work, we studied the effect of evolved dust size distributions on the VSI activity in
protoplanetary disks. We conducted hydrodynamic simulations based on five different dust
coagulation models for different fragmentation velocities and assumed turbulence strengths,
which resulted in maximum particle sizes between ∼ 10 µm and ∼ 0.1 cm. Based on these
dust size distributions, we calculated the cooling times for our subsequent hydrodynamic
simulations. Our results show a strong dampening effect of dust coagulation on the VSI,
as predicted by previous studies (Lin & Youdin, 2015; Fukuhara et al., 2021; Pfeil &
Klahr, 2021; Dullemond et al., 2022; Fukuhara et al., 2023). The reason for this is the
collisional decoupling between dust particles and gas molecules that is enhanced if dust
coagulation is increasing the maximum particle size. Reduced collision rates inhibit the
thermal accommodation of dust and gas and therefore reduce the cooling rate of the gas.

The effect can be strong enough to hinder the development of the VSI, leading to a
highly settled dust layer even for moderate fragmentation velocities of 𝑣fr ≳ 200 cm s−1.
At the same time, the inner regions—in which the gas and dust components remain well
coupled—can maintain some level of VSI turbulence. This finding is consistent with re-
cent observations of highly settled dust layers in protoplanetary disks (Villenave et al.,
2020, 2022). Our simulations also show that even a low level of VSI can still significantly
alter the vertical distribution of dust, which we can observe in the inner disk regions of
our simulations with the largest particles. Synthetic images of these VSI-active regions at
millimeter-wavelength are mostly consistent with analytic models that assume large dif-
fusivities of 𝛿 ∼10−3–10−2. At the same time, outer disk regions can appear completely
settled in our simulations. We thus report the existence of a VSI dead zone in the outer
regions of protoplanetary disks. The existence of the VSI dead zone in the outer regions of
protoplanetary disks reconciles recent millimeter-wavelength observations with models of
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hydrodynamic turbulence.
Future studies of VSI-active disks should aim to incorporate a more self-consistent treat-

ment of dust coagulation and dynamics. Additionally, cooling via gas emission lines has
to be considered to gain a better understanding of the impact of thermal relaxation on
the VSI in protoplanetary disks. For this, thermochemical modeling is required to track
the amounts and the evolution of relevant species, which in fact also depends on the dust
coagulation process. Modeling the optically thick parts of protoplanetary disks and the
impact of stellar irradiation furthermore requires radiative transfer modeling.

After applying our methodology to smooth disks in this article, we will extend our studies
to disks with substructure in Part II. Specifically, Oph 163131 (Villenave et al., 2020; Wolff
et al., 2021; Villenave et al., 2022) and HD 163296 (Dullemond et al., 2018; Rosotti et al.,
2020; Doi & Kataoka, 2021) have been extensively surveyed with a focus on the dust
diffusivities and provide good conditions for comparison with simulations.
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• PLUTO-4.4 (Mignone et al., 2007)
• RADMC-3D (Dullemond et al., 2012)
• Python with the packages:

– NumPy (Harris et al., 2020)
– SciPy (Virtanen et al., 2020)
– matplotlib (Hunter, 2007)
– DustPy (Stammler & Birnstiel, 2022)
– DustPyLib
– dsharp_opac (Birnstiel, 2018)
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4.A Cooling Time Derivations by Barranco et al. (2018)

To calculate the cooling times, we follow the derivations by Barranco et al. (2018). We
assume that the emission of dust grains determines the thermal relaxation of the gas in a
two-stage process. Thermal energy is transferred between gas and dust molecules through
collisions. The dust, which at low temperatures typically has much higher emissivity, can
radiate an excess of thermal energy and thus effectively cool the gas.

Dust Emission Timescale This is the timescale on which the dust grains of temperature
𝑇d reach thermal equilibrium with their surroundings (of temperature 𝑇eq, set by stellar
irradiation in our model) via emission or absorption of electromagnetic radiation. We
assume the dust grains to radiate as black bodies, meaning the cooling rate per unit volume
of material can be derived by integrating the cooling rate per gram of dust of size 𝑎, over
the size distribution

Λd
rad =

∫ 𝑎max

𝑎min

𝜌(𝑎)Λrad(𝑎) d𝑎 (4.23)

= 4𝜎SB(𝑇4
d − 𝑇4

eq)
∫ 𝑎max

𝑎min

𝜌(𝑎)𝜅P(𝑎, 𝑇eq) d𝑎 . (4.24)

The respective cooling timescale follows from

𝑡rad
d =

𝜌d𝐶d

Λd
rad

|𝑇d − 𝑇eq | (4.25)

=
𝜌d𝐶d
4𝜎SB

(
𝑇d − 𝑇eq

𝑇4
d − 𝑇4

eq

) (∫ 𝑎max

𝑎min

𝜌d(𝑎)𝜅P(𝑎, 𝑇eq) d𝑎
)−1

. (4.26)

Expanding this expression in a Taylor series for small 𝛿𝑇 = 𝑇d − 𝑇eq, results in

𝑡rad
d ≈ 𝜌d𝐶d

16𝜎SB 𝑇3
eq

(∫ 𝑎max

𝑎min

𝜌d(𝑎)𝜅P(𝑎, 𝑇eq) d𝑎
)−1

, (4.27)

Thermal Accommodation of the Gas via Collisions with the Dust The emission
or absorption of radiation by the dust grains can relax temperature perturbations in the
gas only if dust and gas are thermally coupled via collisions. We calculate this collisional
accommodation timescale by integrating the collision rate per unit volume over the entire
size distribution, assuming a thermal accommodation coefficient A = 0.5, as in Barranco
et al. (2018). In this case, the thermal energy transferred between gas and dust can be
written as

Λcoll =

∫ 𝑎max

𝑎min

𝑛d(𝑎)𝜎coll𝑣̄g𝑛g 2A𝑘B(𝑇g − 𝑇d) d𝑎 (4.28)

= 𝜋𝑣̄g𝑛g 𝑘B(𝑇g − 𝑇d)
∫ 𝑎max

𝑎min

𝑛(𝑎)𝑎2 d𝑎 , (4.29)
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where 𝑛g is the number density of gas molecules and 𝑇g is the gas temperature (Probstein,
1969; Burke & Hollenbach, 1983). Now we multiply by 𝜌d/𝜌d where the total dust density
can be written 𝜌d =

∫
𝑛(𝑎)𝑚(𝑎) d𝑎, with the particle mass 𝑚(𝑎) = 4/3 𝜋𝑎3𝜌m. Thus, we

obtain

Λcoll = 𝑣̄g𝑛g 𝑘B(𝑇g − 𝑇d)
3𝜌d
4𝜌𝑠

∫ 𝑎max
𝑎min

𝑛(𝑎)𝑎2 d𝑎∫ 𝑎max
𝑎min

𝑛(𝑎)𝑎3 d𝑎
. (4.30)

Here, we can insert the definition of the Sauter mean radius 𝑎s = ⟨𝑎3 ⟩/⟨𝑎2 ⟩, where 𝑛d⟨𝑎2⟩ B∫ 𝑎max
𝑎min

𝑛(𝑎)𝑎2 d𝑎 is the second moment of the size distribution and 𝑛d⟨𝑎3⟩ B
∫ 𝑎max
𝑎min

𝑛(𝑎)𝑎3d𝑎
is the third moment of the size distribution. With this, we arrive at Equation 12 from
Barranco et al. (2018)

Λcoll =

(
3

4𝜌m

) (
1
𝑎s

) (
𝜌d
𝜌g

) (
𝜌2

g 𝑣̄g

𝑚̄g

)
𝑘B(𝑇g − 𝑇d) . (4.31)

The collisional cooling time of the gas via collisions with the dust follows from

𝑡coll
g =

𝜌g𝐶𝑃

Λcoll
|𝑇g − 𝑇d | . (4.32)

We insert Equation 4.31 and multiply by 𝜋𝑎3
S/𝜋𝑎3

S. For particles of size 𝑎S, we define a
hypothetical number density of 𝑛S = 𝜌d/𝑚S and a collisional cross-section 𝜎S = 𝜋𝑎2

S. We
apply Meyer’s relation 𝑘B/𝑚̄ = 𝐶𝑃−𝐶𝑉 and the definition of the heat capacity ratio 𝛾 = 𝐶𝑃/𝐶𝑉

and arrive at Equation 4.5
𝑡coll
g =

𝛾

𝛾 − 1
1

𝑛S𝜎S𝑣̄g
.

Likewise, the dust grains adjust their temperature on a timescale

𝑡coll
d =

𝜌d𝐶d
Λcoll

(𝑇g − 𝑇d). (4.33)

=

(
𝜌d
𝜌g

) (
𝐶d
𝐶𝑃

)
𝑡coll
g , (4.34)

where 𝐶d is the specific heat capacity of the dust grains, which we take to be 800 J K−1 kg−1

(see Barranco et al., 2018). We note that for a truncated power-law size distribution
𝑛(𝑎) ∝ 𝑎𝑝, the Sauter mean radius can be written

𝑎S =


𝑎max−𝑎min

log(𝑎max )−log(𝑎min ) for 𝑝 = −3
𝑎max𝑎min
𝑎max−𝑎min

log
(
𝑎max
𝑎min

)
for 𝑝 = −4(

𝑝+3
𝑝+4

)
𝑎
𝑝+4
max−𝑎𝑝+4

min
𝑎
𝑝+3
max−𝑎𝑝+3

min
for 𝑝 ≠ −4,−3 ,

(4.35)

which, for a typical size distribution with 𝑝 = −3.5, leads to to 𝑎S =
√
𝑎max𝑎min. The

collisional cooling time of the gas (Equation 4.5), therefore scales as 𝑡coll
g ∝ √

𝑎max. If the
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size distribution is fragmentation limited, which is to expected for most parts of the disk,
this translates to

𝑡coll
g ∝ 𝑣fr√

𝛼
. (4.36)

Total Thermal Relaxation Time of the Gas In order to derive the total thermal
relaxation time of the gas, Barranco et al. (2018) write the equations of thermal relaxation
as

d(𝛿𝑇g)
d𝑡 = −

𝛿𝑇g − 𝛿𝑇d

𝑡coll
g

(4.37)

d(𝛿𝑇d)
d𝑡 =

𝛿𝑇g − 𝛿𝑇d

𝑡coll
d

− 𝛿𝑇d

𝑡rad
d

. (4.38)

For this coupled system, one can look for solution of the form 𝛿𝑇g = 𝑇g exp
(
−𝑡/𝑡NLTE

thin
)
,

𝛿𝑇d = 𝑇d exp
(
−𝑡/𝑡NLTE

thin
)
. The resulting equation system can be solved for 𝑡NLTE

thin , which
results in Equation 4.8.

4.B Cooling Time Maps

To make our cooling time maps, derived from DustPy models, usable for our PLUTO
simulation, we fitted the data as a function of gas density and temperature. In this way,
we can easily calculate the cooling time for each grid cell in PLUTO from the local disk
structure.

We found that for a given temperature, the cooling time can be fitted by a power law in
density,

𝑡NLTE,Fit = 𝑡10−15 (𝑇)
(

𝜌g

10−15 g cm−3

) 𝑝 (𝑇 )
. (4.39)

The power law’s parameters themselves can be fitted as broken broken power laws of
temperature:

𝑡10−15 (𝑇) =
(
𝑇

𝑇𝑡 ,c

)𝑞𝑡+𝑠𝑡 𝑇
𝑠𝑡
𝑡 ,c

(𝑇 𝑠𝑡𝑡 ,c + 𝑇 𝑠𝑡 )
+ 𝑝𝑡 (4.40)

𝑝(𝑇) =
(
𝑇

𝑇𝑝,c

)𝑞𝑝+𝑠𝑝 𝑇
𝑠𝑝
𝑝,c

(𝑇 𝑠𝑝𝑝,c + 𝑇 𝑠𝑝 )
+ 𝑝𝑝 . (4.41)

This means that our two-dimensional cooling time distribution can be described as a
function of 𝜌g and 𝑇 with a total of eight parameters. For the actual fitting procedure, we
use the scipy routine curve_fit. Residuals between the actual cooling time maps and
our fitting functions are displayed in Figure 4.12. With the exception of our model with
𝑣fr = 100 cm s−1 and 𝛼 = 10−4, all fits have maximum deviations from the data of < 30 %
in the entirety of the simulation domain. The respective model with higher deviations
corresponds to a highly settled particle layer with 𝛼 = 10−4, making it distinct from the
other models with 𝛼 = 10−3. Thus, some deviation had to be expected for this case. Note



80 4. Impact of Dust Coagulation on the Vertical Shear Instability

Figure 4.12
Cooling time maps in our 5 VSI PLUTO simulations on the left-hand side, and the residuals between the fit
used in our simulations, and the actual cooling time distributions derived from DustPy simulations.
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that we are generally interested in trends of the VSI activity with the given coagulation
parameters, which are well captured by our fits. Uncertainties of 10–60 % in the cooling
times thus do not influence the conclusions of our work.

4.C Dust Advection and Diffusion in PLUTO

As a consequence of the sub-Keplerian azimuthal gas velocity, particles in aerodynamic
force equilibrium with the gas also have sub-Keplerian terminal velocities. Radial pressure
forces, which contribute the to gas’ radial force balance, do not significantly act on the
dust grains. Therefore, the grains embedded in the gas cannot stay on circular orbital
trajectories and spiral inward at a given terminal drift speed. Nakagawa et al. (1986)
derived this radial drift velocity as

𝑣d−g,r = 𝑣d,𝑟 − 𝑣g,𝑟 =
St(1 + 𝜀)

St2 + (1 + 𝜀)2
1

𝜌gΩK

𝜕𝑃

𝜕𝑅
≈ St

St2 + 1
1

𝜌gΩK

𝜕𝑃

𝜕𝑅
, (4.42)

where in our simulations 𝑃 is the gas pressure, and therefore subject to fluctuations arising
from the VSI. We use the zeroth order approximation for small dust-to-gas ratios on the
right-hand side. This approximation is robust in the VSI-active regions, where the dust-to-
gas ratios are generally smaller than 0.05 in our simulations. A similar derivation can be
made for the vertical velocity component. Pressure forces keep the gas on elevated trajec-
tories around the central star (acting against the vertical component of the gravitational
force). Again, these forces have a negligible effect on the grains. An expression, equal to
Equation 4.42, can be found for the settling velocity of the grains

𝑣d−g,z = 𝑣d,𝑧 − 𝑣g,𝑧 =
St

St2 + 1
1

𝜌gΩK

𝜕𝑃

𝜕𝑧
. (4.43)

The PLUTO code already allows for the treatment of passive tracer fluids, which are
simply advected with the gas following

𝜕 (𝜌g𝜀)
𝜕𝑡

+ ∇ · (𝜀 𝜌g 𝒗g) = 0 . (4.44)

In our case, the advected quantity 𝜀 represents a local dust-to-gas ratio 𝜀 = 𝜌d/𝜌g. In the
short friction time, terminal velocity approximation, the respective dust flow is modified to
simulate a dust fluid that is aerodynamically coupled to the gas, i.e., undergoes radial and
azimuthal drift, and vertical sedimentation, with terminal velocities given by Equation 4.42
and Equation 4.43. to the tracer flux, which is valid for small dust-to-gas ratios (Youdin &
Goodman, 2005). The tracer flux is then calculated with the upstream dust density based
on the above velocity at the respective cell interface

𝑭drift,interface = 𝜌d,upstream𝒗d−g,interface . (4.45)

Test Case for Dust Drift

Youdin & Shu (2002), presented an analytic description for the time evolution of a dust
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Figure 4.13
Radial dust advection tests based on
Youdin & Shu (2002).
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fluid with a fixed grain size in a protoplanetary disk due to radial drift. Their prescription
was further developed in Birnstiel & Andrews (2014), and their general solution to the
advection equation is given by

Σ(𝑟, 𝑡) = Σ(𝑟0, 𝑡)
𝑣(𝑟0)𝑟0
𝑣(𝑟)𝑟 , (4.46)

with the velocity 𝑣(𝑟) and the original location of the characteristic 𝑟0, defined via

𝑡

𝑟c
=

∫ 𝑟

𝑟0

1
𝑢(𝑟 ′) d𝑟 ′ . (4.47)

Based on the assumption that the transport velocity scales as a radial power law 𝑣dr ∝ 𝑅𝑑,
one can solve the above integral and, thus, write a complete solution for the transport
equation as

Σ(𝑟, 𝑡) = Σ0𝑟
−𝑑−1𝑟

𝑑+1−𝛽Σ
0 , (4.48)

with the time dependence entering through the initial radius of the characteristic

𝑟0 = 𝑟

[
1 − (𝑑 − 1) 𝑣dr𝑡

𝑟

]− 1
𝑑−1

. (4.49)

We are using this analytic solution of the advection equation to verify our transport scheme
for the PLUTO code with a passive dust fluid. We present two cases for different drift param-
eters 𝑑 in Figure 4.13 for a particle size of 0.1 cm. As can be seen, our transport scheme
provides good agreement with the analytic transport solutions even for long integration
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times. However, we can also see that our simple donor-cell flux prescription is associated
with a certain numerical diffusivity which is especially evident over very long integration
times, as in the lower panel of Figure 4.13.

Tests for Dust Diffusion (not used in VSI simulations)

For completeness, we also introduce a diffusion velocity to our dust advection model, de-
termined by the gradient in dust-to-gas ratio 𝜀 and the diffusion coefficient 𝐷

𝒗diff = −𝐷∇ ln (𝜀) , (4.50)

which we add to the advection velocity before the calculation of the complete upstream
transport flux. We do not employ any additional diffusivity in our VSI simulations, meaning
𝒗diff = 0 in all presented simulation. To test this very simple approach to dust diffusion
in the PLUTO code, we run two simulations with dust species of fixed Stokes numbers
that reach a steady state that can be compared to steady-state solutions of the diffusion
equation. Our first test case considers dust trapping in a radial pressure bump and a fixed
diffusivity parameter 𝛿. Dullemond et al. (2018), considered this scenario and derived an
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approximate analytic solution for a Gaussian pressure bump of amplitude 𝑃0 and width 𝑤,

𝑃(𝑟) = 𝑃0 exp
(
− (𝑟 − 𝑟0)2

2𝑤2

)
. (4.51)

This results in a steady-state dust distribution, given by

Σd = Σd,0 exp
(
− (𝑟 − 𝑟0)2

2𝑤2
d

)
, (4.52)

where the width of the dust density distribution is related to the pressure bump’s width
via

𝑤d = 𝑤

√︂
𝛿

𝛿 + St . (4.53)

We conducted a simulation of this setup embedded in a protoplanetary disk with a power-
law background gas density and four dust fluids with Stokes numbers 10−3, 5 × 10−3, 10−2

and 5 × 10−2. The test domain spans from 10 au to 30 au with 200 grid cells, and contains
a pressure bump of 2 au width at 20 au distance to a solar mass star. Within the pressure
bump, where the analytical solution applies, the resulting dust profiles are in excellent
agreement with the analytic solutions. As a second test, we set up a two-dimensional,
axisymmetric simulation in spherical coordinates. We set up a vertically isothermal disk
in hydrostatic equilibrium. Similar to the radial pressure bump, an analytic solution for
the settling-mixing equilibrium can be derived which reads

𝜀(𝑧) = 𝜀0 exp
(
− 𝑧2

2𝐻2
g

St
𝛿

)
𝑧≪𝑅≈ 𝜀0 exp

(
− 𝜗2

2(𝐻g/𝑅)2
St
𝛿

)
, (4.54)

where 𝜗 = tan(𝑧/𝑅). We find a good agreement between the steady-state profiles and the
theoretically predicted steady state, as can be seen in Figure 4.15.



CHAPTER 5
VERTICAL SHEAR INSTABILITY WITH DUST

EVOLUTION AND CONSISTENT COOLING TIMES
SETTLING AND MIXING OF DUST DO NOT ERASE THE INITIAL CONDITION

Thomas Pfeil, Tilman Birnstiel, and Hubert Klahr

the following chapter was submitted as a letter to the editor of Astronomy & Astrophysics

Context: Gas in protoplanetary disks mostly cools via thermal accommodation
with dust particles. Thermal relaxation is thus highly sensitive to the local dust
size distribution and the spatial distribution of the grains. So far, the interplay
between thermal relaxation and gas turbulence has not been dynamically modeled
in hydrodynamic simulations of protoplanetary disks with dust.

Aims: We aim to study the effects of the vertical shear instability (VSI) on the
thermal relaxation times and vice-versa. We are particularly interested in the influ-
ence of the initial dust grain size on the VSI and whether the emerging turbulence
is sustained over long timescales.

Methods: We run three axisymmetric hydrodynamic simulations of a protoplane-
tary disk including four dust fluids that initially resemble MRN size distributions of
different initial grain sizes. From the local dust densities, we calculate the thermal
accommodation timescale of dust and gas during the hydrodynamic simulations and
use the result as the thermal relaxation time of the gas. We include the effect of
dust growth by applying the monodisperse dust growth rate and the typical growth
limits.

Results: We find that the emergence of the VSI is strongly dependent on the
initial dust grain size. Coagulation also counteracts the emergence of hydrodynamic
turbulence in our simulations. Starting a simulation with larger grains (100 µm)
generally leads to a less turbulent outcome. While the inner disk regions (within
∼ 70 au) develop turbulence in all three simulations, we find that the simulations
with larger particles do not develop VSI in the outer disk.

Conclusions: Our simulations with dynamically calculated thermal accommoda-
tion times based on the drifting and settling dust distribution show that the VSI,
once developed in a disk, can be sustained over long timescales, even if grain growth
is occurring. The VSI corrugates the dust layer and even diffuses the smaller grains
into the upper atmosphere, where they can cool the gas. Whether the instability
can emerge for a specific stratification depends on the initial dust grain sizes and
the initial dust scale height. If the grains are initially ≳ 100 µm and if the level of
turbulence is initially assumed to be low, we find no VSI in the outer disk regions.
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5.1 Introduction

Thermal relaxation of temperature perturbations in protoplanetary disks occurs in a two-
step process, where collisions thermally couple the slowly cooling gas with the quickly cool-
ing dust grains which then emit or absorb electromagnetic radiation (Malygin et al., 2014;
Woitke, 2015; Malygin et al., 2017; Barranco et al., 2018). The local dust size distribution
thus plays a crucial role when it comes to the determination of the thermal relaxation time
of the gas. Many thermal and hydrodynamic instabilities depend on this timescale (e.g.,
Convective Overstability, Klahr & Hubbard (2014); Vertical Shear Instability, Urpin &
Brandenburg (1998); Nelson et al. (2013); Zombie Vortex Instability, Marcus et al. (2015);
etc.). Turbulence resulting from these instabilities can redistribute the dust grains due
to aerodynamic drag, altering the cooling timescale itself. Continuous remodeling of the
cooling times in hydrodynamic simulation of protoplanetary disks is thus desirable.

In this letter, we present axisymmetric simulations of protoplanetary disks that, for the
first time, combine the effects of dust grain growth and the emergence of hydrodynamic
turbulence on the cooling times. We are specifically interested in the effect on the vertical
shear instability (VSI). Various studies have shown its strong dependence on the thermal
relaxation time (e.g., Urpin, 2003; Lin & Youdin, 2015; Manger et al., 2021; Pfeil & Klahr,
2021). VSI requires rapid cooling on a timescale ideally shorter than

𝑡c ≲
𝐻g

𝑅

|𝛽𝑇 |𝛾
2(𝛾 − 1)

���� 𝑧

𝐻g

����−1
Ω−1

K , (5.1)

where 𝐻g is the disk’s gas pressure scale height, 𝑅 is the distance from the central star, 𝛽𝑇
is the exponent of the radial temperature structure 𝑇 ∝ 𝑅𝛽𝑇 , 𝛾 is the heat capacity ratio, 𝑧
is the distance from the disk midplane, and ΩK is the Keplerian angular frequency. Urpin
(2003) already showed that the VSI’s growth rate decreases at thermal relaxation times
beyond this limit, which was recently demonstrated in numerical simulations by Klahr et al.
(2023).

At the same time, VSI creates mostly meridional gas flows and its ability to vertically
corrugate the dust layer has been demonstrated in various simulations (Stoll & Kley, 2016;
Lin, 2019; Flock et al., 2020; Schäfer et al., 2020; Schäfer & Johansen, 2022; Fukuhara
et al., 2023; Pfeil et al., 2023).

It is however unclear whether the VSI evolves fast enough to avoid the effects of dust
settling and maintain a dust layer that is thick enough to provide the necessary fast thermal
relaxation times. If the grains are large and the cooling times are long, it would be possible
that the VSI is not able to develop in the first place or is not able to counteract the settling
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of the grains. Work by Fukuhara et al. (2023) has demonstrated that an equilibrium
state might be possible in which the turbulent mixing of the VSI exactly counteracts
sedimentation. Their studies are however not self-consistently modeling the dust dynamics
and do not take the effect of dust growth into account. As radiative cooling, dust dynamics,
and dust coagulation are interdependent processes, they would have to be accounted for in a
single simulation. Such a fully self-consistent numerical model of the VSI in protoplanetary
disks is currently out of scope. If however, reasonable approximations are made, aspects of
this interplay can be studied with much simpler techniques. Here we present hydrodynamic
simulations of protoplanetary disks including four dust fluids of evolving grain sizes, to
investigate the impact of the VSI-induced turbulence on the cooling times. We omit a full
treatment of dust coagulation and only evolve the grain size based on an analytic dust
growth model (similar to Birnstiel et al., 2012). Instead of including radiative transfer
calculations to model the impact of the evolving dust distribution on the radiative cooling,
we relax temperature perturbations on a timescale which is calculated from the local dust
size distribution. Although these methods are only approximations, they enable the first
simulations of protoplanetary disks in which the time scale for the thermal accommodation
of gas and dust is directly linked to the dynamics of the simulated dust fluids.

5.2 Methods

Thermal Relaxation Times

Since thermal relaxation is achieved via thermal accommodation with the dust, we approx-
imate

𝑡NLTE
thin ≈ 𝑡

gas
coll =

𝛾

𝛾 − 1
1

𝑛s𝑣̄gas𝜎s
, (5.2)

where 𝑡
gas
coll is the thermal accommodation time scale of the gas with the dust due to col-

lisions (Probstein, 1969; Burke & Hollenbach, 1983; Barranco et al., 2018). The thermal
accommodation timescale therefore depends on the mean molecular gas velocity 𝑣̄gas and
the Sauter mean radius of the dust size distribution (Sauter, 1926)

𝑎s =

∫
𝑛(𝑎)𝑎3 d𝑎∫
𝑛(𝑎)𝑎2 d𝑎

, (5.3)

from which the number density 𝑛s = 𝜌d/(4/3𝜋𝜌m𝑎3
s ) and the collisional cross-section 𝜎s = 𝜋𝑎2

s
follow. Here, 𝜌m is the material density of the dust and 𝜌d is the dust volume density. In
most cases, the size distribution of dust in a protoplanetary disk can be approximated as
a truncated power law, following

𝑛(𝑎) = 𝑛tot(𝑝 + 1)
𝑎
𝑝+1
max − 𝑎

𝑝+1
min

𝑎𝑝 , (5.4)

where 𝑛tot is the total dust number density and 𝑎min and 𝑎max are the minimum and
maximum grain sizes that truncate the distribution. Typical values of 𝑝 are in the range
of −4 to −2, depending on the physical details of the grain collisions.
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Considering a discretized version of the size distribution with bins of size Δ𝑎 = 𝑎𝑖+1/2 −
𝑎𝑖−1/2, we can write the same size distribution as

𝑛(𝑎) =
𝑁∑︁
𝑖=1

𝑛𝑖 (𝑝 + 1)
𝑎
𝑝+1
𝑖+1/2

− 𝑎
𝑝+1
𝑖−1/2

𝑎
𝑝

𝑖
Θ(𝑎𝑖+1/2 − 𝑎)Θ(𝑎 − 𝑎𝑖−1/2) , (5.5)

where each bin 𝑖 contains a total number density of 𝑛𝑖, and the size-grid cell interfaces
are 𝑎𝑖−1/2 > 𝑎min and 𝑎𝑖+1/2 < 𝑎max. Θ denotes the Heaviside step function and truncates
every bin at 𝑎𝑖+1/2 and 𝑎𝑖−1/2. This assumes that the size distribution is a continuous power
law with exponent 𝑝 in each bin. With these definitions, we can rewrite the numerator of
Equation 5.3 as ∫

𝑛(𝑎)𝑎3 d𝑎 =
𝑝 + 1
𝑝 + 4

𝑁∑︁
𝑖=1

𝑛𝑖

𝑎
𝑝+4
𝑖+1/2

− 𝑎
𝑝+4
𝑖−1/2

𝑎
𝑝+1
𝑖+1/2

− 𝑎
𝑝+1
𝑖−1/2

B
𝑁∑︁
𝑖=1

𝑛𝑖𝜒𝑖 .

Likewise, we can write the denominator of Equation 5.3∫
𝑛(𝑎)𝑎2 d𝑎 =

𝑝 + 1
𝑝 + 3

𝑁∑︁
𝑖=1

𝑛𝑖

𝑎
𝑝+3
𝑖+1/2

− 𝑎
𝑝+3
𝑖−1/2

𝑎
𝑝+1
𝑖+1/2

− 𝑎
𝑝+1
𝑖−1/2

B
𝑁∑︁
𝑖=1

𝑛𝑖𝜉𝑖 .

If the bin interfaces are fixed in time and if we assume constant 𝑝 in every bin at all
times, 𝜉𝑖 and 𝜒𝑖 are constants. With these definitions, the Sauter mean of the entire size
distribution can be written

𝑎s =
𝑁∑︁
𝑖=1

𝑛𝑖𝜒𝑖

/
𝑁∑︁
𝑖=1

𝑛𝑖𝜉𝑖 . (5.6)

The calculation of the Sauter mean radius in hydrodynamic simulation of dust and gas
is therefore reduced to the calculation of the dust number density 𝑛𝑖 for the given dust size
bins. Knowledge of the Sauter mean allows us to calculate 𝑡NLTE

thin from Equation 5.2. If gas
and dust are treated through radiative transfer, as in Muley et al. (2023), 𝑡NLTE

thin can be
used to dynamically relax the gas and dust temperatures with respect to each other. In a
simpler use case, 𝑡NLTE

thin can be used as a dynamically evolving cooling timescale of the gas
via

𝑇 (𝑛+1) = 𝑇eq + (𝑇 (𝑛) − 𝑇eq) exp
(
− Δ𝑡

𝑡NLTE
thin

)
, (5.7)

where 𝑇eq is the equilibrium temperature (set by stellar irradiation) and Δ𝑡 is the current
simulation time step. We demonstrate the latter case in hydrodynamic simulations of
protoplanetary disks with a focus on the VSI activity in the next section.

Hydrodynamic Simulations

We set up axisymmetric simulations in the 𝑟-𝜗 plane of a protoplanetary disk in spherical
coordinates. Our disk’s initial, hydrostatic structure follows the standard accretion disk
with mass 𝑀disk by Lynden-Bell & Pringle (1974) with a truncated power law in column
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Table 5.1: Simulation parameters of the three presented runs. The only difference between the simulations
is the initial particle size.

Simulation Parameter Value

Inner boundary 𝑅in 25 au
Outer boundary 𝑅out 150 au
Vertical extend Δ𝜗 ±3𝐻/𝑅(50 au)
Resolution 𝑁𝑟 × 𝑁𝜗 2011×512
Stellar mass 𝑀∗ 1 M⊙
Disk gas mass 𝑀disk 0.05 M⊙
Temperature power law 𝛽𝑇 -0.5
Column density power law 𝛽Σ -0.85
Heat capacity ratio 𝛾 1.4
Disk aspect ratio H/R(50 au) 0.07957
Disk characteristic radius 𝑅c 60 au
Minimum particle size 𝑎min 0.1 µm
Initial particle sizes 𝑎ini 1 µm, 10 µm and 100 µm
Fragmentation velocity 𝑣frag 500 cm s−1

Initial dust-to-gas ratio 𝜀0 = Σd,0/Σg,0 0.01
Size distribution power law 𝑝 -3.5
Initial dust diffusivity 𝛿ini 10−5

Dust material density 𝜌m 1.67 g cm−3

density with exponent 𝛽Σ and characteristic radius 𝑅c

Σg (𝑅) = (2 + 𝛽Σ)
𝑀disk

2𝜋𝑅2
c

(
𝑅

𝑅c

)𝛽Σ
exp

[
−

(
𝑅

𝑅c

)2+𝛽Σ
]
. (5.8)

From this, the vertical disk structure in 𝑧 follows via

𝜌g = 𝜌g,mid exp
[(
𝐻g

𝑅

)−2 (
𝑅

√
𝑅2 + 𝑧2

− 1
)]

, (5.9)

where we approximate the midplane dust density as 𝜌g,mid ≈ Σg (𝑟 )/√2𝜋𝐻g. The angular
frequency in hydrostatic equilibrium follows accordingly as

Ω2(𝑅, 𝑧)
Ω2

K
=

(
𝐻g

𝑅

)2
(
𝛽𝑇 + 𝛽𝜌 − (𝛽Σ + 2)

(
𝑅

𝑅c

)𝛽Σ+2
)

− 𝛽𝑇𝑅√
𝑅2 + 𝑧2

+ 𝛽𝑇 + 1 , (5.10)

where 𝛽𝜌 is the power-law exponent of the radial midplane density profile
𝜌g,mid ∝ 𝑅𝛽𝜌 exp

[
− (𝑅/𝑅c)𝛽Σ+2] .

For the dust, we initialize the simulation with a Mathis, Rumpl, & Nordsieck (1977)
(MRN) distribution with 𝑁 = 4 dust fluids according to Equation 5.5. We conduct simu-
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lations with three different initial dust grain sizes 𝑎ini =1 µm, 10 µm and 100 µm. As the
grains should undergo coagulation, we let the maximum grain size evolve in time following

𝑎max (𝑡) =
𝑎lim𝑎ini𝑒

𝑡 𝜀0 ΩK

𝑎lim + 𝑎ini
(
𝑒𝑡 𝜀0 ΩK − 1

) , (5.11)

where the limiting particle size 𝑎lim = min(𝑎frag, 𝑎frag-drift) is determined by the fragmen-
tation velocity 𝑣frag = 500 cm s−1, the radial pressure gradient, and the level of turbulence,
characterized by the 𝛼 parameter (see Birnstiel et al., 2012, and Section 2.2.2 for defini-
tions). As our simulations are initialized without turbulence, we set this parameter to a
very low value of 10−5. The particle growth is thus limited by the drift-fragmentation limit
(∼ 1 cm) instead of the turbulent fragmentation limit. The growth rate of the particles
depends on the initial dust-to-gas ratio 𝜀0 = Σd,0/Σg,0 via ¤𝑎max = 𝑎max𝜀0ΩK(1 − 𝑎max/𝑎lim).
We do not change the mass content of the four dust-size bins during the growth. Only
the bin interfaces and the respective mass-averaged particle size of each bin change due
to growth. Growth therefore also influences the thermal accommodation times. As mass
is shifted to larger sizes, fewer small grains are present and thus dust-gas collision rates
decrease with time.

The four passive dust fluids are advected using the same technique as in Pfeil et al.
(2023) and thus evolve under the influence of settling and radial drift in the terminal
velocity approximation. The respective velocity components are calculated from the dust
populations’ mass-averaged particle size, where an MRN size distribution is assumed within
each bin at all times. The bin boundaries are defined to be equidistant in log-space. The
size grid is then defined between 𝑎min as the lower boundary of the first cell and 𝑎max as
the upper boundary of the last cell.

The initial dust distribution of each population follows the same vertical structure as the
gas but instead of the gas scale height with the dust scale height

𝐻d = 𝐻g

√︂
𝛿ini

𝛿ini + St𝑖
, (5.12)

where St𝑖 = 𝜋𝑎𝑖𝜌m/2Σg is the Stokes number of the respective dust fluid and 𝛿ini = 𝛼 is
the initially assumed dust diffusivity. Simulations initialized with different particle sizes
also have dust layers of different initial heights and cooling times. This can be seen in
Figure 5.1, where the top panels show the initial distribution of dust in the inner and outer
disk regions as dashed lines. Cooling times increase with height since the dust density
decreases with distance from the midplane. We show the cooling times in units of the
local, critical cooling time of the VSI. Values above 1 correspond to regions that are not
susceptible to linear instability due to the vertical shear.

We run the simulations for 1000 orbital timescales at 50 au, i.e., 353 553 yr and present
the simulation parameters in Table 5.1.
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5.3 Results

We present the radially-averaged vertical dust distributions and the respective cooling
times at the beginning and at the end of the simulation in Figure 5.1, where we distinguish
between an inner disk region (30–55 au) and an outer disk region (115–150 au). In Pfeil et al.
(2023) (Chapter 4), we conducted simulations with static cooling times and showed that
the VSI preferentially develops in the inner disks if the dust is already grown. We observe a
qualitatively similar result here. The ongoing dust growth in the new simulations, however,
modifies the results and imposes stricter conditions on whether the VSI can emerge. The
turbulence is in every case stronger in the inner disk regions, where it maintains a relatively
thick dust layer with an almost vertically constant dust-to-gas ratio 𝜀 and a stable vertical
distribution of cooling times. The outer regions show more settling due to the longer
growth timescale of the VSI. Continued settling during the simulation is however of minor
importance for the cooling times compared to the coagulation process because thermal
relaxation is mostly done by small particles that have very long settling times.

Whether the VSI develops at all, strongly depends on the initial maximum particle size
and thus the initial vertical distribution of small dust grains. If the particles are small at
the beginning of the simulation, as in the case with 𝑎ini = 1 µm, thermal accommodation
times are short almost everywhere in the disk and the VSI develops quickly. The resulting
turbulence keeps the dust layer vertically extended and thus maintains the necessary cooling
times self-sufficiently. This can also be seen in the first row of Figure 5.2, which shows the
dust distribution and the respective cooling times at the end of the simulation. Regions
inside of ∼ 100 au show the typical filamentary VSI pattern in the dust densities and thus
also in the cooling times. The outer regions develop slower and no VSI is present after
350 000 yr of evolution.

The situation is different in the simulation with initially large particles with 𝑎ini = 100 µm.
The dust grains are strongly settled at the beginning of the simulation, meaning that the
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Figure 5.1
Dust-to-gas ratios and thermal relaxation times,
radially-averaged over in the 30–55 au inner region
and the 115–150 au outer region of our simulations.
As the VSI develops, it keeps the dust particle at
high altitudes and thus retains the necessary cool-
ing times in the inner disk. The outer regions,
however, are mostly sedimenting, as the VSI is not
active there, except for the case with the smallest
initial particle size.
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Figure 5.2
Snapshots of our protoplanetary disk simulations with thermal accommodation times calculated from the
dust distribution for three different initial particle sizes after ∼350 000 yr of evolution. Simulations initialized
with larger particles and thus more settled dust layers, are mostly not VSI-active in the outer disk regions.
If the VSI can develop in the first place, it can stabilize the dust layer and sustain itself even if grain growth
is considered.

cooling times in the upper disk atmosphere are accordingly long. VSI begins to develop in
the inner disk at a lower intensity than in the small-particle case. Nonetheless, a sufficiently
thick layer of small dust is maintained, thus keeping the cooling times low enough in the
inner regions.

The inner disk regions become VSI turbulent in all three cases, however on different
timescales and at different intensities. The outer areas evolve differently. For small initial
particle sizes, we see that the VSI begins to develop at the end of the simulation. For larger
particles, however, the outer disk areas are completely VSI-inactive due to the already long
cooling times at the beginning of the simulation. Regions beyond 70 au are not VSI-active
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Evolution of the vertical extend of the VSI-susceptible region as a function of time and radius. In the inner
disk, VSI quickly develops and stabilizes the settling dust layer in less than 50 000 yr. In the outer disk,
VSI has not yet developed in our simulations. The thin lines show comparison simulations in which the
VSI is artificially suppressed.
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for the largest initial particle size of 𝑎ini = 100 µm. For ten times smaller particles, VSI is
active up to 90 au at the end of the simulation.

To visualize the impact of the VSI on the cooling times, we plot the height at which the
critical cooling time for the VSI is reached (Equation 5.1) as a function of time and radius
in Figure 5.3. The beginning of all three simulations is characterized by the growth of the
particles and the subsequent settling of the larger grains in the first ∼ 40 000 yr. During
this time, the surfaces of the VSI-susceptible zone move toward the midplane of the disk.
This is mostly due to the coagulation process, which transforms small, not sedimented
grains into larger and quickly sedimenting ones. Cooling times are mostly determined by
the small grains that remain in the atmosphere and only sediment slowly. The critical
surface is thus only moving toward the midplane because mass is transferred from small
grains to big grains. During this initial particle growth, the first VSI modes develop in the
inner regions of the disk and soon begin to corrugate the dust layer. The emerging VSI
turbulence stabilizes the extent of the VSI-susceptible zone and even moves small grains
up into the disk atmosphere, thus extending the susceptible region with time in the inner
disk. In the simulation with the smallest initial particle size, the critical height reaches a
stable value of ∼ 1.5𝐻 in the regions close to the star. If the simulations are initialized
with larger, and thus strongly sedimented particles, we see that the initial vertical extent
of the susceptible zone is already small. For 𝑎ini = 10 µm, the critical height is stabilized
at ∼ 1.2𝐻; for 𝑎ini = 100 µm at ∼ 0.8𝐻.

In the outer regions, VSI either develops very slowly (in the case of the smallest initial
particle size of 1 µm) or not at all during the runtime of our simulations. This is a result
of the limited simulation time and could also be a resolution issue, as the fastest growing
modes become smaller with longer cooling times. The trend is nonetheless clear: If a
hydrodynamic simulation is initialized with large (100 µm), settled particles (here for 𝛿ini =
10−5), VSI only develops slowly, or possibly not at all during the lifetime of a protoplanetary
disk.

If the particles are initially small, or vertically dispersed, VSI can develop quickly and
even extend the susceptible region by diffusing small particles to the upper disk layers.

5.4 Discussion

Our studies allow for a first insight into the interplay of VSI and its influence on the cooling
times and vice-versa. There are nonetheless various limitations to the presented approach.
We only model the size distribution with four dust fluids and assume each size bin to have
an MRN particle size distribution. At the beginning of the simulation, the size distribution
is continuous. When the dust fluids begin to drift and sediment this changes and the
complete size distribution is no longer an MRN distribution. In the future, the coagulation
and fragmentation process should be considered when the dust populations evolve. In that
way, a meaningful size distribution could be maintained during the simulations. We also
set up the initial dust structure in settling-mixing equilibrium at all heights. This is strictly
speaking only valid for Stokes numbers ≪ 1 because the terminal velocity approximation
is used in the derivations (Dubrulle et al., 1995). At large distances from the midplane,
our initial conditions might thus not be realistic. We model the dust as a passive fluid.
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Therefore, back-reaction, which was shown to be able to quench the VSI-activity in the disk
midplane, especially if the dust settles, could not be accounted for (Schäfer et al., 2020).
The settling however occurs mostly once the dust has grown. We thus do not expect it to
be able to hinder the VSI growth in the inner disk.

We have not tested other initial size distribution power laws than the MRN distribution.
If initially more small dust were present, the conditions could be more favorable for the VSI.
The same is true if the fragmentation velocity is smaller, which counteracts the production
of large grains.

Furthermore, we have modeled the dust size as a vertically global quantity. Simulations of
coagulation that consider a vertically varying dust size and coagulation at all heights have
shown that dust growth can start in the upper layers, where the relative sedimentation
velocities are high. This sedimentation-driven coagulation depletes the upper layers of
grains, which coagulate, fragment, and sediment continuously (Zsom et al., 2011). A full
radial-vertical treatment of coagulation must thus be applied in future studies.

Other sources of cooling have also not been accounted for in our study. Especially in
the upper disk atmosphere, cooling through molecular line emission could be the domi-
nant channel of thermal relaxation (Woitke, 2015). These considerations however require
thermo-chemical modeling of the different molecular species, which is currently out of scope
for the presented work. A future self-consistent study of VSI with realistic thermal relax-
ation also has to involve the treatment of radiative transfer, ideally in a three-temperature
framework as recently presented by Muley et al. (2023). This is especially important when
the effects of stellar irradiation and thermal relaxation in the optically thick regime should
be included.

One of the caveats in the study of the VSI in protoplanetary disks remains the poorly
constrained initial conditions of the simulations. Specifically, the state of the dust size
distribution and the initial vertical extent of the dust layer are important for the onset of
the VSI because they determine the cooling times. If the dust at the beginning of the disk’s
lifetime is very small (∼1 µm) we would expect the VSI to develop within the first 350 000 yr
of disk evolution even in the outer regions. Small dust would be expected if the grains
resemble interstellar dust or if an intense source of turbulence during the disk formation
process has caused strong fragmentation. The initial phases might be gravitoturbulent
which could cause such high initial levels of turbulence (Gammie, 2001; Johnson & Gammie,
2003; Hirose & Shi, 2017; Zier & Springel, 2023). Some observations and studies however
hint towards early grain growth, which would cause less favorable conditions for the VSI
(Galametz et al., 2019; Bate, 2022)

5.5 Conclusions

We have for the first time conducted hydrodynamic simulations of protoplanetary disks
with thermal accommodation times that are consistent with the simulated dust densities
and the present grain size. This made it possible to assess the influence of different initial
conditions and dust grain growth on the developing VSI. The initial dust distribution is
found to have the biggest influence on the resulting spatial distribution of the turbulent
gas flows. Coagulation also increases the cooling times and thus counteracts the VSI. This
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effect is however not a significant hurdle for the development of hydrodynamic turbulence
in the inner regions of protoplanetary disks (inside of 70 au), even if the dust is already
large (100 µm) and vertically settled at the beginning of the simulation. VSI can develop
during the initial growth phase and even extend the susceptible region by diffusing small
grains vertically. In the outer regions of protoplanetary disks (beyond 70 au), the situation
is more difficult for the VSI. If the dust is assumed to be big at the beginning of the
simulation (100 µm) and is assumed to be in settling-mixing equilibrium (with a low initial
diffusivity of 𝛿 = 10−5), we find that the potentially VSI-susceptible region is constraint to
a small area around the midplane and will probably not develop VSI-induced turbulence
during the disk’s lifetime.

Note, that although our three simulations only differ in their initial dust grain size and
reach identical maximum particle sizes, the resulting spatial distribution of dust and the
level of VSI turbulence are vastly different between the three runs. Whether a specific disk
stratification will develop VSI turbulence is thus highly dependent on the initial dust size
distribution and the initial dust scale height.
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CHAPTER 6
TRIPOD: TRI-POPULATION SIZE DISTRIBUTIONS FOR

DUST EVOLUTION
COAGULATION IN VERTICALLY INTEGRATED HYDRODYNAMIC

SIMULATIONS OF PROTOPLANETARY DISKS WITH PLUTO

Thomas Pfeil, Tilman Birnstiel, and Hubert Klahr,

the following chapter was submitted to Astronomy & Astrophysics

Context: Dust coagulation and fragmentation impact the structure and evolution
of protoplanetary disks and set the initial conditions for planet formation. Dust
grains dominate the opacities, they determine the cooling times of the gas via ther-
mal accommodation in collisions, they influence the ionization state of the gas, and
the available grain surface area is an important parameter for the chemistry in pro-
toplanetary disks. Therefore, dust evolution is an effect that should not be ignored
in numerical studies of protoplanetary disks. Available dust coagulation models are,
however, too computationally expensive to be implemented in large-scale hydrody-
namic simulations. This limits detailed numerical studies of protoplanetary disks,
including these effects, mostly to one-dimensional models.

Aims: We aim to develop a simple—yet accurate—dust coagulation model that
can be easily implemented in hydrodynamic simulations of protoplanetary disks.
Our model shall not significantly increase the computational cost of simulations and
provide information about the local grain size distribution.

Methods: The local dust size distributions are assumed to be truncated power
laws. Such distributions can be fully characterized by only two dust fluids (large and
small grains) and a maximum particle size, truncating the power law. We compare
our model to state-of-the-art dust coagulation simulations and calibrate it to achieve
a good fit with these sophisticated numerical methods.

Results: Running various parameter studies, we achieved a good fit between our
simplified three-parameter model and DustPy, a state-of-the-art dust coagulation
software.

Conclusions: We present TriPoD, a sub-grid dust coagulation model for the
PLUTO code. With TriPoD, we can perform two-dimensional, vertically integrated
dust coagulation simulations on top of the hydrodynamics code. Studying the dust
distributions in two-dimensional vortices and in planet-disk systems is thus made
possible.
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6.1 Introduction

Models of dust coagulation in protoplanetary disks are required to understand the formation
of cm-sized pebbles (Brauer et al., 2008; Birnstiel et al., 2009) and km-sized planetesimals
(Wetherill & Stewart, 1989; Schlichting & Sari, 2011; Kobayashi et al., 2016; Lau et al.,
2022; Drążkowska et al., 2023); they are indispensable for the interpretation of observa-
tional data (Birnstiel et al., 2018; Dullemond et al., 2018) and necessary to simulate the
assembly of whole planetary systems (Lichtenberg et al., 2021; Emsenhuber et al., 2021).
The size of the dust grains also determines their aerodynamic properties and thus sets the
timescale at which grains drift towards the central star and collect in local pressure max-
ima (Whipple, 1972; Weidenschilling, 1977). Furthermore, dust is the dominating source
of opacity in circumstellar disks, which means the size distribution of the dust grains has
a strong influence on the disks’ thermal structure (Muley et al., 2023) and hydrodynamics
(Lesur et al., 2023), as well as on the interpretation of observations (Birnstiel et al., 2018;
Leiendecker et al., 2022; Bergez-Casalou et al., 2022; Antonellini et al., 2023). In addition,
the presence of small grains sets limits to the disks’ ionization and is thus also important
for studies of magnetohydrodynamic mechanisms like the MRI (Balbus & Hawley, 1991)
and magnetized disk winds (Blandford & Payne, 1982) with non-ideal MHD effects (Guillet
et al., 2020; Pascucci et al., 2023; Tsukamoto & Okuzumi, 2022). In 2018, observation with
the Atacama Large Millimeter/submillimeter Array (ALMA) revealed that a broad variety
of substructures exist in the spatial distribution of dust in protoplanetary disks (Andrews
et al., 2018). Numerous gaps, spirals, and vortices have since been observed in the dust
continuum emission (e.g., Pérez et al., 2018; Baruteau et al., 2019; Tsukagoshi et al., 2022)
and also in molecular line observations (see Öberg et al., 2021). The existence of these
structures raises questions regarding their origins and how they impact the formation and
composition of planetesimals and planets within the disks—which makes hydrodynamic
simulations of protoplanetary disks, including dust coagulation models, necessary (Birn-
stiel et al., 2018; Drążkowska et al., 2019).

Modeling the evolution of the solid content of protoplanetary disks has proven to be an
expensive task in computational astrophysics. Many dust evolution models (e.g. Nakagawa
et al., 1981; Weidenschilling, 1980; Brauer et al., 2008; Birnstiel et al., 2010; Charnoz
& Taillifet, 2012; Drążkowska et al., 2019), numerically solve a discretized form of the
Smoluchowski coagulation equation (Smoluchowski, 1916). The coagulation equation’s
integro-differential nature makes solving it, however, numerically costly. This procedure
utilizes a grid of grain sizes, meaning that dozens or hundreds of dust fluids have to be
modeled in a single simulation, each representing grains of a different size that interact
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Figure 6.1
Comparison between the full coagulation model DustPy (upper row, 171 dust fluids) and our new three-
parameter power-law prescription TriPoD, which we implemented in the PLUTO code (two dust fluids). We
show two snapshots of the one-dimensional disk models in the first two panels in each row. The third panel
in each row shows the local dust size distribution of the respective model at 10 au for both snapshots. The
light grid in the background represents size distribution power laws with 𝑛(𝑎) ∝ 𝑎−3.5 and 𝑛(𝑎) ∝ 𝑎−2.5.

with every other grain size via collisions. Studies of dust coagulation are often carried
out in one-dimensional disk models in either the radial direction (e.g., Lenz et al., 2020;
Drążkowska et al., 2021; Pinilla et al., 2021; Gárate et al., 2021; Burn et al., 2022), the
vertical direction (e.g, Zsom et al., 2011; Krijt & Ciesla, 2016), or limited two-dimensional
studies (Drążkowska et al., 2019).

Therefore, efforts are pursued to solve the coagulation equations more efficiently, e.g.,
by use of new numerical methods (Lombart et al., 2022), or by applying far-reaching
simplifications to the physics of dust coagulation (Birnstiel et al., 2012) that make it possible
to implement dust coagulation as a subgrid model in hydrodynamic simulations (Tamfal
et al., 2018; Vorobyov et al., 2020). Machine-learning-aided techniques also promise a fast,
yet simplified approach to model dust coagulation on top of a hydrodynamic simulation
(Pfeil et al., 2022).

Here, we present a semi-analytic model of dust coagulation, which is based on a two-
population approach, originally developed by (Birnstiel et al., 2012) and employed in vari-
ous forms by others (Tamfal et al., 2018; Vorobyov et al., 2018; Vorobyov & Elbakyan, 2019;
Vorobyov et al., 2019). This model, however, has the critical disadvantage of not evolving
the full dust size distribution but only the maximum particle size. With our new model, we
are now able to conduct two-dimensional, vertically integrated hydrodynamics simulations
of protoplanetary disks with an evolving dust size distribution at low computational cost.
Figure 6.1 shows an example comparison between a full coagulation simulation, conducted
with DustPy (Stammler & Birnstiel, 2022)—a full-fledged dust coagulation software—and
a one-dimensional hydrodynamic simulation with the PLUTO code equipped with our new
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method. While one-dimensional hydrodynamics simulations do not allow for a direct com-
parison of performance, due to the different methods to handle the transport (DustPy
utilizes an implicit integration scheme and does not solve the equations of hydrodynamics,
but an advection-diffusion equation for a Keplerian disk), they allow for detailed tests of
the accuracy of our new model.

This article is structured as follows: In Section 6.2, we briefly review the physics of dust
dynamics and coagulation. We also give a short description of two-pop-py (Birnstiel
et al., 2012), the progenitor of our new model. Section 6.3 introduces our new three-
parameter dust coagulation model TriPoD and how it is integrated in the PLUTO hydro-
dynamics code (Mignone et al., 2007). As TriPoD is a highly simplified prescription of
dust coagulation, we have to calibrate it to achieve a good fit with full coagulation models.
The respective calibration runs are presented in Section 6.4. In Section 6.5, we present test
simulations that demonstrate the accuracy of TriPoD in comparison with DustPy simu-
lations. We also give an example of a two-dimensional simulation of a planet-disk system
in which we compare the outcome of our new model to the old two-pop-py model. We
discuss the limitations of our approach in Section 6.6 and summarize in Section 6.7.

6.2 Theory

List of General Symbols
Symbol Description

𝑎 particle size
¤𝑎 dust growth rate
𝑎drift drift-limited particle size
𝑎drift-frag drift-fragmentation-limited particle size
𝑎frag total fragmentation-limited particle size
𝑎mon, 𝑎gr monomer and grown dust size (two-pop-py)
𝑎turb-frag turbulent-fragmentation-limited particle size
𝑐s soundspeed
𝐷 dust diffusivity
𝑓fric aerodynamic friction force
𝑓m fudge factor (two-pop-py)
𝐺 gravitational constant
𝐻g gas scale height
𝐻d dust scale height
𝑘B Boltzmann constant
𝐿∗ stellar luminosity
𝑚 particle mass
𝑚p proton mass
𝑀∗ stellar mass
𝑀disk disk mass
𝑀⊙ solar mass
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𝑛(𝑎), 𝑛(𝑚) number density size/mass disribution
N size ratio for drift-induced collisions
𝑅 stellocentric cylindrical radius
𝑅c characteristic disk radius
ℜ𝔢 Reynolds number
𝑝 dust size distribution power-law exponent
𝑝m dust mass distribution power-law exponent
𝑃 gas pressure
St Stokes number
𝑡fric stopping time
𝑡grow dust growth time scale
𝑇 gas temperature
T viscous stress tensor
𝑣 average dust velocity (two-pop-py)
𝑣d-g,𝑅 radial relative velocity of dust and gas
𝑣frag dust fragmentation velocity
𝑣g, 𝑣d gas and dust velocity
𝑣K Keplerian velocity
𝑣mon, 𝑣gr monomer and grown dust vel. (two-pop-py)
Δ𝑣 relative particle velocity (source in subscript)
𝑧 cylindrical distance from the disk midplane

𝛼 turbulence parameter
𝛽Σ double-log. column density gradient
𝛽𝑇 double-log. temperature gradient
𝛾 abs. value of the double-log. pressure gradient
𝛿 dust diffusion parameter (here 𝛿=𝛼)
𝜀 dust-to-gas ratio
𝜆mfp gas molecule mean free path
𝜇 mean molecular weight
𝜈 coagulation kernel index
𝜈T, 𝜈mol turbulent and molecular viscosity
𝜉 fragment size distribution power-law exponent
𝜌g, 𝜌d gas and dust volume density
𝜌g,mid, 𝜌d,mid gas and dust midplane volume density
𝜌m material density of dust
𝜎H2 hydrogen molecule collision cross section
𝜎SB Stefan-Boltzmann constant
Ω,ΩK angular frequency, Keplerian frequency

Dust-Gas Relative Motion

Dust particles moving in gaseous protoplanetary disks experience drag forces due to dif-
ferences between the equilibrium velocities of dust and gas particles. The gas in a PPD is
radially stratified, i.e., the disk has a radial pressure gradient. Consequently, gas moves on
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a slightly sub-Keplerian orbit, where hydrostatic equilibrium is given by

Ω2 =
1

𝑅𝜌g

𝜕𝑃

𝜕𝑅
+Ω2

K , (6.1)

where 𝑃 and 𝜌g are the gas pressure and density respectively, 𝑅 is the cylindrical, stel-
locentric radius, and Ω2

K = 𝐺𝑀∗/𝑅3 is the Keplerian angular frequency. Conversely, radial
pressure forces are negligible for the solid particles, which means their equilibrium orbits
would be Keplerian (ignoring the gas drag and additional effects like radiation pressure,
etc.). Gas, at velocity 𝒗g and dust particles, at velocity 𝒗d are aerodynamically coupled via
a friction force density

𝒇 fric = 𝜌d
𝒗d − 𝒗g

𝑡fric
, (6.2)

where the strength of the coupling can be characterized by the stopping timescale 𝑡fric. In
the Epstein regime, the friction time can be written

𝑡fric =

√︂
𝜋

8
𝜌m𝑎

𝜌g𝑐s
, (6.3)

where 𝜌m is the particles’ material density, 𝑎 denotes the particle radius, and 𝑐s is the
sound speed. A useful dimensionless measure of the strength of the coupling between gas
and dust particles is the Stokes number St B 𝑡fricΩK. For St ≪ 1, gas and dust particles
are well-coupled and the particles quickly adjust to changes in the gas velocity. For St ≫ 1
however, particles are decoupled from the gas and the friction force is no longer significant
for the trajectories of the dust grains.

The stopping time is the timescale on which the particles and the gas approach a steady
state, i.e., force balance. The respective terminal velocities of the grains, i.e., their velocities
in force equilibrium, were derived by Nakagawa et al. (1986). Ignoring additional velocity
components of the gas, e.g., due to viscous evolution, the respective relative radial velocity
between the grains and the gas then follows as

𝑣d-g,𝑅 =
St(1 + 𝜀)

St2 + (1 + 𝜀)2
1

ΩK𝜌g

𝜕𝑃

𝜕𝑅
(6.4)

≈ St
St2 + 1

1
ΩK𝜌g

𝜕𝑃

𝜕𝑅
for 𝜀 ≪ 1 , (6.5)

where 𝜀 is the dust-to-gas density ratio. Thus particles drift towards pressure maxima and
reach their maximum terminal velocity at a Stokes number of one.

Dust-Dust Relative Motion

Relative velocities between the gas and dust depend on the aerodynamic properties of the
dust. Differently-sized grains therefore experience relative velocities due to gas drag. For
small grains, Brownian motion is of importance. Additionally, turbulence causes random
variations in the gas velocities that act on the dust particles according to their aerodynamic
coupling to differently-sized eddies in the gas.
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Brownian Motion Random molecular motion of particles leads to relative velocities
that depend on the respective particles’ masses (Brauer et al., 2008)

Δ𝑣01 brown =

√︄
8𝑘B𝑇 (𝑚0 + 𝑚1)

𝜋𝑚0𝑚1
, (6.6)

where 𝑚0 and 𝑚1 denote the particles’ masses, 𝑇 is the gas temperature, and 𝑘B is the
Boltzmann constant. This effect is only relevant for the smallest particles on micrometer
scales.

Relative Drift Velocities For two particles with Stokes numbers St0 and St1, the rel-
ative drift velocities in the case of low dust-to-gas ratio, are given by Equation 6.5

Δ𝑣01 drift =

�����
(

St0

St2
0 + 1

− St1

St2
1 + 1

)
1

𝜌gΩK

𝜕𝑃

𝜕𝑅

����� . (6.7)

Relative Settling Velocities Dubrulle et al. (1995) derived the vertical dust distribu-
tion in a disk with turbulent diffusion as

𝜌d(𝑧) = 𝜌d,mid exp
(
− 𝑧2

2𝐻d

)
, (6.8)

where 𝐻d is the scale height of the dust, given by

𝐻d =
𝐻g√︃
1 + St

𝛿

, (6.9)

(see also Fromang & Nelson, 2009; Binkert, 2023). Here, 𝐻g refers to the gas scale height,
and 𝛿 denotes the turbulent diffusivity parameter, which for now is assumed to be equal to
the turbulent gas viscosity parameter 𝛼. Thus, particles of different sizes are, on average,
also found at different heights, and thus have different terminal velocities. The average
relative velocities between the two particle populations can then be approximated as

Δ𝑣01 set = |𝐻d1St1 − 𝐻d0St0 |ΩK . (6.10)

Relative Velocities due to Turbulence Ormel & Cuzzi (2007) derived closed-form
expressions for the relative particle velocities in different turbulence regimes, which depend
on the Stokes numbers, the turbulent gas velocity, and the local Reynolds number

ℜ𝔢 =
𝜈T
𝜈mol

≈
𝛼𝑐s𝐻g

𝑐s𝜆mfp
=
𝛼𝐻g𝜌g𝜎H2

𝜇𝑚p
, (6.11)

where 𝜆mfp is the mean free path of the gas molecules, 𝜇𝑚p is the mean molecular mass
of the gas, and 𝜎H2 is the collisional cross section of two gas molecules (here H2). The
respective derivations assume a Kolmogorov turbulent energy cascade (Kolmogorov, 1941).
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We use an implementation of these velocities identical to the one utilized in the full dust
coagulation code DustPy.

Dust Coagulation

Dust particles in protoplanetary disks undergo collision since they experience differential
velocities due to their interaction with the gas. Surface forces can lead to sticking in such
collisions and thus facilitate the growth of dust particles. If collision velocities are too high,
they can lead to fragmentation. The Smoluchowski equation describes the evolution of
continuous mass (or size) distributions of grains 𝑛(𝑚), as a consequence of these processes.
In this work, however, we are not rigorously solving the coagulation equation as in full-
fledged coagulation models like DustPy (Stammler & Birnstiel, 2022). Instead, we use
the results gained with such elaborate numerical methods to construct a simplified, semi-
analytic prescription for dust coagulation. For this, it is instructive to have a look at some
main results obtained by full coagulation models and simple analytic derivations. One of
these simplifying assumptions is a monodisperse size distribution. Kornet et al. (2001)
have shown that for such a case, the particle growth rate can be written as

¤𝑎 =
𝜌d
𝜌m

Δ𝑣, (6.12)

where Δ𝑣 denotes the relative velocity between the grains. If the relative velocities are
assumed to be caused by gas turbulence in the fully-intermediate regime, one finds that
the growth of the particles is occurring on a timescale

𝑡grow =
1

𝜀ΩK
. (6.13)

However, dust grains can only grow in size as long as their relative velocities due to different
aerodynamic properties are not above a critical fragmentation velocity 𝑣frag, i.e., until col-
lisions between grains do not result in destruction instead of coagulation. Another possible
outcome of grain collisions is bouncing, as shown by laboratory experiments (Güttler et al.,
2010) and studied in numerical models (Zsom et al., 2010; Dominik & Dullemond, 2023).
It is possible to derive analytic estimates for the maximum reachable particle size, given
a certain fragmentation velocity. Birnstiel et al. (2012) derived the respective maximum
particle size in the turbulent fragmentation limit as

𝑎turb-frag =

√︂
8
𝜋

𝜌g

3𝜌m

𝑣2
frag

𝛼𝑐sΩK
. (6.14)

Furthermore, dust grains undergo radial drift, which results in relative velocities between
grains of different sizes (see Equation 6.5). The resulting collisions can also lead to a
drift-fragmentation limit, which is given by

𝑎drift-frag =

√︂
8
𝜋

𝜌g

𝜌m

𝑣frag

𝑐s

𝑃

1 − N

����𝜕𝑃𝜕𝑟 ����−1
, (6.15)
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where the constant N is approximately 0.5 (Birnstiel et al., 2012). Dust particles can thus
not reach sizes larger than

𝑎frag = min(𝑎drift-frag, 𝑎turb-frag) . (6.16)

In these cases, the typically reached size distributions are approximately power laws with
characteristic exponents. Birnstiel et al. (2011) used coagulation simulations and analytical
calculations to find these fragmentation-limited size distributions. They derived analytic
expressions for the resulting power-law exponent of a mass distribution 𝑛(𝑚) ∝ 𝑚−𝑝m

in three different regimes, translating to the size distribution 𝑛(𝑎) ∝ 𝑎𝑝 = 𝑎−3𝑝m+2. If
coagulation and fragmentation happen simultaneously, the power-law exponent can be
written as

𝑝 = 2 − 3
2 (𝜈 + 𝜉 + 1) , (6.17)

where 𝜈 is a kernel index that depends on the functional form of the relative velocities,
i.e., the velocities’ dependency on the particle sizes. The parameter 𝜉 determines the
typical distribution of fragments in a destructive collision. It is usually set to the canonical
value of 11/6. Birnstiel et al. (2011) determined that in the first regime of turbulence, as
derived by Ormel & Cuzzi (2007), where the relative velocities scale linearly with particle
size, 𝜈 = 1 and thus 𝑝 = −3.75. The same is true for relative drift velocities, which also
linearly depend on the difference in Stokes numbers between the colliding particles (as
long as St ≪ 1). This means that typical size distributions in coagulation-fragmentation
equilibrium, with collisions driven by differential drift or the first regime of turbulence, can
be approximated as power laws 𝑛(𝑎) ∝ 𝑎−3.75, as illustrated in Figure 6.2. This case is thus
relevant whenever the particle fragmentation velocity is low and only small particles exist,
or if the drift velocities dominate over the turbulent velocities, as in the outer regions of
protoplanetary disks.

The other prominent case is relevant whenever turbulence is causing relative velocities
between particles in the so-called fully-intermediate regime. Then, 𝜈 = 5/6, and one finds
that 𝑝 = −3.5, which is equal to the Mathis, Rumpl, & Nordsieck (MRN) distribution. This
particular case is relevant in the inner parts of protoplanetary disks, where the particles
grow to the largest sizes and where radial drift is less relevant.

Finally, we have the stages of dust growth in which the fragmentation barrier is not yet
reached and the largest particles are undergoing a sweep-up growth. In this case, typical
size distributions are steeper and we assume 𝑝 = −2.5 in this case (Simon et al., 2022;
Birnstiel, 2023).

Radial drift itself also sets a limit to the maximum particle size, which is reached when
the radial drift time scale becomes equal to the local growth time scale, i.e.,

𝑎dr
¤𝑎

!
=

𝑅

| ¤𝑅 |

𝑎dr =

√︂
8
𝜋

𝜌d
𝜌m

𝑣K
𝑐s𝛾

, (6.18)

where 𝑣K is the Keplerian velocity and 𝛾 =

���d log 𝑃
d log 𝑅

��� denotes the absolute value of the radial



106 6. TriPoD: Tri-population Size Distributions for Dust Evolution

Figure 6.2
Typical Size distributions in regions of a
protoplanetary disk model that are either
turbulence-dominated (dark red lines) or
drift-dominated (blue lines). Both regimes
result in distinct power-law exponents of the
distribution that we overplot as dashed lines.
Assuming a power law as the overall shape of
the distribution makes it possible to approx-
imately describe it with only three parame-
ters: The cutoff particle size 𝑎max and the
two densities Σ0 (contained in the size inter-
val [𝑎min,

√
𝑎max𝑎min) and Σ1 (contained in

the size interval [√𝑎max𝑎min, 𝑎max]). This
approximation is the basis of our new dust
coagulation model.
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double-logarithmic pressure gradient. The drift limit is relevant in the outer regions of
protoplanetary disks, where drift can become rapid for large particles. In the drift limit,
grains do not undergo fragmentation. Therefore, typical size distributions are sweep-up
dominated and accordingly steep. We assume 𝑝 = −2.5, which is a typical value seen in
full coagulation simulations.

The two-pop-py Model by (Birnstiel et al., 2012)

With two-pop-py, Birnstiel et al. (2012) introduced a strongly simplified and very fast
method to model the effects of dust coagulation in protoplanetary disks. In this method,
dust is realized as a single fluid that drifts relative to the gas. The flux calculation,
however, considers two dust species. The small population represents the monomers with
fixed size 𝑎mon and is assumed to move along with the gas. Larger, grown grains make up
the population of size 𝑎gr(𝑡), which is evolving in time, following the monodisperse dust
growth rate, which is limited by the above discussed growth barriers

𝑎gr(𝑡) = min
[
min(𝑎drift, 𝑎turb-frag, 𝑎drift-frag), 𝑎mon exp

(
𝑡 − 𝑡0
𝑡grow

)]
, (6.19)

to simulate the initial phase of coagulation and the growth limits. Both species are asso-
ciated with a drift velocity according to their Stokes numbers St0/1 = 𝑎mon/gr𝜌m𝜋/2Σg, as

𝑣mon/gr =
𝑣gas

1 + St2
mon/gr

+
Stmon/gr

1 + St2
mon/gr

1
𝜌gΩ𝐾

𝜕𝑃

𝜕𝑟
, (6.20)

where the first term takes into account gas velocities arising from viscous disk evolution
and the second term is the radial drift velocity derived by Nakagawa et al. (1986) in the
limit of small dust-to-gas ratios. The total dust flux velocity follows as a mass average of
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both populations, via
𝑣̄ = (1 − 𝑓m)𝑣mon + 𝑓m𝑣gr . (6.21)

The ratio 𝑓m is dependent on the limiting factor of grain growth: fragmentation-limited,
drift-fragmentation-limited, drift-limited, or neither, when the dust is still in the growth
phase

𝑓m =

{
0.97 if 𝑎drift < 𝑎frag, 𝑎drift-frag

0.75 otherwise.
(6.22)

Given the resulting velocity, a flux can be calculated that is used to evolve the dust surface
density in time. This method is fast and can be easily implemented in a hydrodynamic
simulation. It has however some serious drawbacks:

• Dust growth is always assumed to be limited by an equilibrium of either transport
and coagulation, or drift and coagulation. This is mostly true if no substructure is
present. In some situations like planetary gaps, however, fluxes and grain sizes are no
longer determined by coagulation in the gap but by the supply of small grains that
diffuse into the gap and the efficient removal of larger grains. In such cases, grain
sizes can be underestimated by two-pop-py, which would assume the drift limit.

• Although the maximum grain size is known, no information on the actual size distri-
bution is provided beyond the knowledge whether the distribution is drift-limited or
fragmentation-limited.

• The differences between the size distribution in the fragmentation limit and the drift-
fragmentation limit are not taken into account. The mass fraction 𝑓m only considers
whether the maximum particle size is drift-limited.

• As growth is always assumed to be driven by collisions in the fully-intermediate
regime of turbulence, the actual growth timescale can be underestimated (Powell
et al., 2019).

• The fragmentation limit is reached instantaneously and not gradually. This is espe-
cially problematic if the timescale for dust advection is short.

• The model is only calibrated to reproduce the dust size evolution in protoplanetary
disks around 1 M⊙ stars.

• The model overestimated the concentration of dust in pressure bumps due to the
treatment of dust being transported as one fluid. Although the flux is calculated in
a mass-averaged way that has been determined experimentally, intermediately-sized
grains are neglected, which would lead to a wider dust distribution in pressure bumps.

With our new model, TriPoD, we aim to mitigate these problems.
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6.3 The TriPoD Model

List of Symbols Specific to TriPoD

Symbol Description

¤𝑎max growth rate of max. size
𝑎0, 𝑎1 mass-averaged particle sizes of populations
𝑎min, 𝑎max minimum and maximum size of distribution
𝑎int geometric mean of 𝑎min and 𝑎max
𝑎lim lower limit for size reduction in gaps
𝑓crit critical mass depletion coefficient for shrinking
𝑓drift drift velocity calibration factor
𝑓Δ𝑣 collision speed parameter
𝑓Δ𝑣, turb collision speed parameter in turbulence-dominated regime
𝑓Δ𝑣, drift collision speed parameter in drift-dominated regime
𝐹drift
Σ0 , 𝑖+1/2 dust flux due to radial drift (small population)

𝐹drift
Σ1 , 𝑖+1/2 dust flux due to radial drift (large population)

𝐹drift
𝑎maxΣ1 , 𝑖+1/2 flux of the density-weighted maximum particle size due to radial drift

𝐹diff
Σ0 , 𝑖+1/2 dust flux due to radial diffusion (small population)

𝐹diff
Σ1 , 𝑖+1/2 dust flux due to radial diffusion (large population)

𝐹diff
𝑎maxΣ1 , 𝑖+1/2 flux of the density-weighted maximum particle size due to radial diffusion

𝐹Σ0/1 , 𝑖±1/2 total flux of the dust fluids
𝐹𝑎maxΣ1 ,𝑖±1/2 total flux of the density-weighted maximum particle size
F size distribution calibration function
F̃ vertically integrated size distribution calibration function
𝐻0, 𝐻1 dust scale height of populations
𝑚0, 𝑚1 particle masses corresponding to 𝑎0 and 𝑎1
𝑁 number of bins of the reconstructed size distribution
𝑝frag general fragmentation power-law exponent
𝑝turb.1 fragmentation power-law exponent in turbulence 1 regime
𝑝turb.2 fragmentation power-law exponent in turbulence 2 regime
𝑝drift-frag drift-fragmentation power-law exponent
𝑝sweep non-equilibrium power-law exponent
𝑝turb-frag turbulent-fragmentation power-law exponent
𝑠 steepness parameter of the transition from growth to fragmentation
𝑣Σ0/1 drift flux velocity for populations
Δ𝑣01 relative velocity between grains of sizes 𝑎0 and 𝑎1
Δ𝑣11 relative velocity between grains of sizes 𝑎1 and 𝑓Δ𝑣𝑎1
Δ𝑣max relative velocity between grains of sizes 𝑎max and 0.5𝑎max

𝜀0, 𝜀1 vertically integrated dust-to-gas ratios of population
𝜀tot total dust-to-gas ratio
𝜆lim flux limiter
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Πfrag fragmentation/growth transition function
Πsweep 1 − Πfrag
Πturb turbulence-dominated/drift-dominated transition function
Πdrift 1 − Πturb
Πturb.1 turbulence 1/turbulence 2 transition function
Πturb.2 1 − Πturb.1
¤𝜌0→1 “sweep-up” rate
¤𝜌1→0 “fragmentation” rate
𝜎01 collision cross section of grains of size 𝑎0 and 𝑎1
𝜎11 collision cross section of grains of size 𝑎1 and 𝑓Δ𝑣𝑎1
Σ0, Σ1 dust column densities of populations
¤Σ0→1 vertically integrated “sweep-up” rate
¤Σ1→0 vertically integrated “fragmentation” rate
𝜏depletion dust depletion timescale

Our new three-parameter dust evolution model TriPoD makes use of the knowledge
gained from full-fledged coagulation models that are discussed in the previous section. In
particular, the power-law prescriptions of the dust size distribution are the basis on which
we build our method. TriPoD, describes the power-law size distribution with only three
parameters: the dust column densities of a small population Σ0 and the large population
Σ1, as well as a maximum particle size 𝑎max at which the distribution is truncated. The
populations are separated at the size 𝑎int =

√
𝑎min𝑎max, which then defines the power-law

exponent of a full size distribution via

𝑝 =
log(Σ1/Σ0)

log(𝑎max/𝑎int)
− 4 . (6.23)

Note, that this formula is in general independent of whether we describe a size distribution
in the sense of column densities or volume densities. Although we develop the TriPoD
method in this paper for use with vertically integrated size distributions, we could also
do so for volume densities. In the following, we will thus oftentimes use the dust-to-gas
ratio 𝜀, which can be interpreted as either the vertically integrated, or the local version.
Assuming the dust size distribution to follow a truncated power law 𝑛(𝑎) ∝ 𝑎𝑝, we can
write the dust-to-gas ratio size distribution as 𝜀(𝑎) ∝ 𝑎𝑝𝑚 ∝ 𝑎𝑝𝑎3. Normalizing this to the
total dust-to-gas ratio 𝜀tot, we get

𝜀(𝑎) =


𝜀tot(𝑝 + 4)
𝑎
𝑝+4
max − 𝑎

𝑝+4
min

𝑎𝑝+3 for 𝑝 ≠ −4

𝜀tot
log(𝑎max) − log(𝑎min)

1
𝑎

for 𝑝 = −4 ,
(6.24)

where 𝑎min is the minimum particle size and 𝑎max is the maximum particle size of the
truncated distribution. From this, the dust-to-gas ratio within a given size interval [𝑎I, 𝑎II]
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with 𝑎min ≤ 𝑎I < 𝑎II ≤ 𝑎max, can be calculated as

𝜀
𝑎II
𝑎I B

∫ 𝑎II

𝑎I

𝜀(𝑎) d𝑎

=


𝜀tot

𝑎
𝑝+4
II − 𝑎

𝑝+4
I

𝑎
𝑝+4
max − 𝑎

𝑝+4
min

for 𝑝 ≠ −4

𝜀tot
log(𝑎II) − log(𝑎I)

log(𝑎max) − log(𝑎min)
for 𝑝 = −4 .

(6.25)

Similarly, the mass-averaged particle size of this distribution in the size interval from 𝑎I to
𝑎II is defined as

⟨𝑎⟩𝑎II
𝑎I B

∫ 𝑎II
𝑎I

𝜀(𝑎) 𝑎 d𝑎∫ 𝑎II
𝑎I

𝜀(𝑎) d𝑎

=



𝑎II𝑎I
𝑎II − 𝑎I

log
(
𝑎II
𝑎I

)
for 𝑝 = −5

𝑝 + 4
𝑝 + 5

𝑎
𝑝+5
II − 𝑎

𝑝+5
I

𝑎
𝑝+4
II − 𝑎

𝑝+4
I

for 𝑝 ≠ −5,−4

𝑎II − 𝑎I
log(𝑎II) − log(𝑎I)

for 𝑝 = −4 .

(6.26)

In the TriPoD model, we define two particle populations that together contain the entire
dust density of the distribution

𝜀0 =

∫ 𝑎int

𝑎min

𝜀(𝑎) d𝑎

𝜀1 =

∫ 𝑎max

𝑎int

𝜀(𝑎) d𝑎 .
(6.27)

The mass-averaged particle sizes of both populations are then given by 𝑎0 B ⟨𝑎⟩𝑎int
𝑎min and

𝑎1 B ⟨𝑎⟩𝑎max
𝑎int (see Equation 6.26). It can be shown that the two populations 𝜀0 and 𝜀1

exactly represent the power-law distribution if 𝑎int is defined as the geometric mean of the
maximum and minimum size, i.e., 𝑎int =

√
𝑎max𝑎min. The power-law exponent 𝑝 is then

given by Equation 6.23. Knowing only 𝜀0 and 𝜀1 and the maximum size 𝑎max thus allows
us to reconstruct the entire size distribution.

On a size grid with 𝑁 cells 𝑎𝑖, spanning from 𝑎min to 𝑎𝑁 ≥ 𝑎max, we can write the mass
in a single size bin, and likewise the entire size distribution as

𝜀𝑖 =


𝜀tot

𝑎
𝑝+4
𝑖−1/2

− 𝑎
𝑝+4
𝑖+1/2

𝑎
𝑝+4
max − 𝑎

𝑝+4
min

𝜃 (𝑎) for 𝑝 ≠ −4

𝜀tot
log

(
𝑎𝑖−1/2

)
− log

(
𝑎𝑖+1/2

)
log(𝑎max) − log(𝑎min)

𝜃 (𝑎) for 𝑝 = −4 ,

(6.28)
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where 𝑎𝑖−1/2 and 𝑎𝑖+1/2 denote the cell interfaces on the size grid, 𝜀tot =
∑𝑁
𝑖=0 𝜀𝑖 is the total

dust-to-gas density ratio and 𝜃 (𝑎) = Θ(𝑎𝑖 −𝑎min)Θ(𝑎𝑖 −𝑎max) represents two Heaviside step
functions that cut off the distribution at the minimum and maximum particle sizes. This
means we can directly compare our model results with full dust coagulation models like
DustPy, which evolve a large grid of sizes instead of just two fluids in our case. We illustrate
this in Figure 6.2, where we overplot the detailed size distributions, obtained with a full
coagulation model, with their respective three-parameter size distribution representation.
The respective dust column densities Σ0 and Σ1 of the two populations are shown as the
horizontal bars spanning the respective size ranges.

In the following, we describe how we evolve the three-parameter size distribution (i.e.,
𝜀0, 𝜀1 and 𝑎max) in time, using a semi-analytic description of dust coagulation. The pre-
scriptions given in this paper represent the first iteration of our new TriPoD model that
is derived and calibrated for vertically integrated disk models. Therefore, all calculations
include gas and dust column densities instead of volume densities.

Particle Growth (evolution of 𝑎max)

We model particle growth within the monodisperse approximation (Equation 6.12). The
growth limits are realized by comparing a given fragmentation velocity 𝑣frag with the ve-
locities between large grains Δ𝑣11, given by turbulence, differential settling and drift, and
Brownian motion. For this, we modify our growth rate by a sigmoid-like function, which
leads to growth for Δ𝑣max < 𝑣frag, and decay for Δ𝑣max > 𝑣frag, resulting in

¤𝑎max =
Σ1Δ𝑣11

𝜌m
√

2𝜋𝐻1

©­­«
1 −

(
𝑣frag
Δ𝑣max

)𝑠
1 +

(
𝑣frag
Δ𝑣max

)𝑠 ª®®¬ , (6.29)

with 𝑠 being a parameter controlling the steepness of the transition from growth to frag-
mentation and 𝐻1 being the scale height of large dust grains, and Δ𝑣max being the relative
velocity between grains of size 𝑎max and 0.5𝑎max. Determining Δ𝑣11 and 𝑠 is the main task
during the calibration of our model with respect to the full coagulation code DustPy (see
Section 6.4 and the red numbers in Table 6.5).

Fragmentation and Sweep-Up (evolution of Σ0 and Σ1)

In our model, two effects account for the evolution of the three-parameter size distribution
and the interaction between the populations; fragmentation transfers mass from the large
population to the small population, while collisions between larger and smaller particles
lead to sweep-up, and thus transfer mass from the small bin to the large bin. Erosion of
large particles due to collisions with small grains is not accounted for in our model. We
describe the sweep-up process via the collision rates between large and small particles

¤𝜌d,0→1 =
𝜌2

g𝜀0𝜀1

𝑚0𝑚1
𝜎01Δ𝑣01𝑚0 , (6.30)
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where 𝑚0 and 𝑚1 are the representative particle masses, Δ𝑣01 is the representative rela-
tive velocity between the large and small particles, and 𝜎01 is the representative collision
cross section. These quantities are derived from the respective population’s mass-averaged
particle sizes (see Equation 6.26).

Fragmentation predominantly occurs in collisions between two large grains. The corre-
sponding transfer rate is thus determined by the collision rates between large grains

¤𝜌d,1→0 =
𝜌2

g𝜀
2
1

𝑚2
1
𝜎11Δ𝑣11𝑚1F . (6.31)

Here F represents a function that regulates the relative effectiveness of sweep-up and
fragmentation. It is a function of the grain size, the desired power-law exponent of the
size distribution, and the relative velocities Δ𝑣11. As we can not model the microphysics
of collisions between grains in our simplified framework for dust evolution, we base the
functional form of F on the well-understood results of full coagulation models, which treat
the evolution of the size distribution as the result of collisions between grains of all present
sizes.

For this first version of our three-parameter model, we are only considering vertically
integrated disk models, which means our mass transfer rates are given by

¤Σ0→1 =
Σ0Σ1𝜎01Δ𝑣01

𝑚1

√︃
2𝜋(𝐻2

0 + 𝐻2
1)

(6.32)

¤Σ1→0 =
Σ2

1𝜎11Δ𝑣11

𝑚1

√︃
4𝜋𝐻2

1

F̃ , (6.33)

(see Section 6.B). In order to determine the vertically integrated version of F , named F̃ ,
we consider the steady state between fragmentation and sweep-up. In this equilibrium, a
steady size distribution would be reached. Given ¤Σd,0→1 = ¤Σd,1→0, we arrive at

F̃ =

√︄
2𝐻2

1
𝐻2

0 + 𝐻2
1

𝜎01
𝜎11

Δ𝑣01
Δ𝑣11

(
𝑎max
𝑎int

)−(𝑝+4)
, (6.34)

where 𝑝 is the desired power-law exponent of the distribution which will be reached on the
dominating collisional timescale.

Mass redistribution due to sweep-up and fragmentation is realized by defining the source
terms of both populations in a total-mass-conserving manner as

¤Σ0 = ¤Σ1→0 − ¤Σ0→1
¤Σ1 = −¤Σ0 .

(6.35)

Determining the Size Distribution Power Law

We have summed up the the typical particle size distribution exponents in Section 6.2,
which were determined by Birnstiel et al. (2011) for distributions in coagulation-fragmentation
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equilibrium. These are given by

𝑝frag =


𝑝turb.1 = −3.75 small particle turb. regime
𝑝turb.2 = −3.5 fully-intermediate turb. regime
𝑝drift-frag = −3.75 drift-dominated regime

𝑝sweep = −2.5 not in equilibrium (see Birnstiel, 2023)

Our task is now to find a way to smoothly switch between these regimes in our three-
parameter coagulation model depending on which regime is prevailing under the given
conditions.

Firstly, we can determine whether to apply the equilibrium size distributions 𝑝frag or
whether the dust has not yet reached coagulation-fragmentation equilibrium and collisions
lead predominantly to sticking which results in 𝑝sweep. For this, we define a transition
function

Πfrag B

{
→ 1 for Δ𝑣tot ≳ 𝑣frag

→ 0 for Δ𝑣tot < 𝑣frag

Πsweep = 1 − Πfrag

⇒ 𝑝 = Πfrag · 𝑝frag + Πsweep · 𝑝sweep .

(6.36)

We now have to determine the equilibrium size distribution exponent 𝑝frag. For this, we
can again define transition functions. We determine whether the small particle turbulence
regime (turb.1) or the fully-intermediate regime (turb.2) dominates the relative turbulent
velocities

Πturb.1 B

{
→ 1 for Δ𝑣turb.1 > Δ𝑣turb.2

→ 0 for Δ𝑣turb.1 < Δ𝑣turb.2

Πturb,2 = 1 − Πturb.1

⇒ 𝑝turb-frag = Πturb,1 · 𝑝turb,1 + Πturb,2 · 𝑝turb,2 .

(6.37)

Lastly, we must determine whether we are in the turbulence-dominated regime or in the
drift-dominated regime. Similar to before, we define

Πdrift B

{
→ 1 for Δ𝑣drift > Δ𝑣turb

→ 0 for Δ𝑣drift < Δ𝑣turb

Πturb = 1 − Πdrift

⇒ 𝑝frag = Πdrift · 𝑝drift-frag + Πturb · 𝑝turb-frag ,

(6.38)

where 𝑝turb-frag comes from Equation 6.37. With this, we have have everything we need
to calculate 𝑝 from Equation 6.36 and we can determine the mass exchange rates from
Equation 6.35. The exact form of the transition functions is not of great importance as
long as the transition is sufficiently fast, but still smooth enough to not cause issues during
numerical integration. The choices that worked best in our tests are listed in Section 6.A.
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Passive Dust Fluids (in the PLUTO code)

We use the PLUTO1 code to solve the equations of hydrodynamics in our calibration and
test simulations with TriPoD. The Euler equations, solved by PLUTO, read

𝜕𝜌g

𝜕𝑡
+ ∇ · (𝜌g𝒗) = 0 (6.39)

𝜕𝜌g𝒗

𝜕𝑡
+ ∇ · (𝜌g 𝒗 ⊗ 𝒗) = −∇𝑃 − 𝜌g∇Φ+∇ · T , (6.40)

where 𝒗 is the gas velocity vector, Φ is the gravitational potential, and T is the viscous
stress tensor. The ideal equation of state is used as a closure relation, i.e.

𝑃 =
𝑘B𝑇

𝜇𝑚p
𝜌g . (6.41)

The PLUTO code allows for the treatment of passive tracer fluids, which are simply
advected with the gas following

𝜕 (𝜌g𝜀)
𝜕𝑡

+ ∇ · (𝜀 𝜌g 𝒗g) = 0 . (6.42)

In this work, we consider vertically integrated protoplanetary disks and the advected quan-
tities in our TriPoD model are thus the local dust-to-gas ratios of our two dust populations
𝜀0 = Σ0/Σg and 𝜀1 = Σ1/Σg. The maximum particle size is defined as a tracer of the large
dust population, meaning our third tracer fluid is 𝑎max𝜀1.

The respective tracer fluxes are modified to simulate a dust fluid that is aerodynamically
coupled to the gas, i.e., undergoes radial and azimuthal drift in the terminal velocity ap-
proximation. To achieve this within PLUTO’s tracer prescription, we add a flux component
corresponding to the relative velocity between dust and gas

𝒗Σ0/1 =
StΣ0/1

St2
Σ0/1

+ 1
1

ΩK𝜌g
∇𝑃 , (6.43)

where StΣ0/1 is the mass-averaged Stokes number of the respective population. The drift
velocities are limited to a fraction of the soundspeed. The third tracer (𝑎max𝜀1) is given
the same drift velocity as the large dust population (𝜀1). The tracer fluxes are calculated
with the upstream dust density and density-weighted maximum particle size based on the
drift velocities at the respective cell interface as

𝑭drift
Σ0, 𝑖+1/2 =Σ0, 𝑖 max(0, 𝑣Σ0, 𝑖+1/2) + Σ0, 𝑖+1 min(𝑣Σ0, 𝑖+1/2, 0) (6.44)

𝑭drift
Σ1, 𝑖+1/2 =Σ1, 𝑖 max(0, 𝑣Σ1, 𝑖+1/2) + Σ1, 𝑖+1 min(𝑣Σ1, 𝑖+1/2, 0) (6.45)

𝑭drift
𝑎maxΣ1, 𝑖+1/2 = 𝑎max, 𝑖Σ1, 𝑖 max(0, 𝑣Σ1, 𝑖+1/2)

+ 𝑎max, 𝑖+1Σ1, 𝑖+1 min(𝑣Σ1, 𝑖+1/2, 0) . (6.46)

1http://plutocode.ph.unito.it/

http://plutocode.ph.unito.it/
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Dust diffusion is implemented in a flux-limited manner, where the transport velocity is
limited to the turbulent gas velocity 𝑣max =

√
𝛿𝑐s

1+St2 . The diffusion flux of the small dust
population is given by

𝑭diff
Σ0,𝑖+1/2 = −𝜆lim𝐷𝑖+1/2Σg,𝑖+1/2∇𝜀0 , (6.47)

where 𝜆lim is the flux limiter (see Section 6.C) and 𝐷 =
𝛿𝑐s𝐻
1+St is the dust diffusion coefficient

that should not be larger than the gas viscosity. In order to account for spatial variation in
the maximum particle size, we calculate the diffusion flux of the density-weighted maximum
particle size as

𝑭diff
𝑎maxΣ1,𝑖+1/2 = −𝜆lim𝐷𝑖+1/2Σg,𝑖+1/2∇(𝑎max𝜀1) (6.48)

In order to keep the particle size a tracer of the large particles, we calculate the diffusion
flux of the large population accordingly as

𝑭diff
Σ1,𝑖+1/2 =

𝑭diff
𝑎maxΣ1,𝑖+1/2

𝑎max, 𝑖+1/2
, (6.49)

to achieve the same diffusion speed. The drift and diffusion fluxes are added to the advective
flux of the dust fluids stemming from the gas motion. We have used this approach in Pfeil
et al. (2023), where we also presented some simple test cases of the method. Note that this
approach makes use of the terminal velocity approximation and is thus strictly speaking
only valid for St ≪ 1. The TriPoD model itself, being a local model, is not bound to
this form of dust advection scheme and could be implemented in any multi-fluid-capable
hydrodynamics code.

Complete Right Hand Side of the Conservation Equations (in the PLUTO
code)

All modifications made for our three-parameter dust evolution model can be applied within
the framework of PLUTO and without changing the underlying reconstruct-solve-average
scheme of the code.

Source terms are added to the right-hand side of the conservative hydrodynamics equa-
tions describing the evolution of the three-parameter dust size distribution in the framework
of PLUTO. For each dimension and evolving variable, we have the right-hand side of the
conservation equation

R𝑖 = − Δ𝑡

ΔV𝑖
[
(A𝐹)𝑖+1/2 − (A𝐹)𝑖−1/2

]
+ Δ𝑡S𝑖 , (6.50)

where Δ𝑡 is the timestep, ΔV, is the cell volume, A the respective cell surface, 𝐹 is the
flux through the interfaces, determined from advection with the gas plus relative terminal
velocity and diffusion fluxes, and S𝑖 is the source term, given by fragmentation, sweep-up,
and growth.

For the two dust fluids, the fluxes are calculated via Equations 6.44 to 6.49, and the
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source term of the respective dust fluid is calculated from Equation 6.35

𝐹Σ0/1, 𝑖±1/2 = 𝐹diff
Σ0/1,𝑖±1/2 + 𝐹drift

Σ0/1,𝑖±1/2 + 𝐹adv
Σ0/1,𝑖±1/2 (6.51)

SΣ0/1, 𝑖 =
¤Σ0/1, 𝑖 , (6.52)

where 𝐹adv
Σ0/1,𝑖±1/2 is the flux component that is calculated by PLUTO for the passive advection

of the tracers. The maximum particle size is advected together with a large population as
a tracer. The fluxes and growth rate are

𝐹𝑎maxΣ1,𝑖±1/2 = 𝐹diff
𝑎maxΣ0/1,𝑖±1/2 + 𝐹drift

𝑎maxΣ0/1,𝑖±1/2 + 𝐹adv
𝑎maxΣ0/1,𝑖±1/2 (6.53)

S𝑎maxΣ1, 𝑖 = 𝑎max, 𝑖 ¤Σ1, 𝑖 + Σ1, 𝑖 ¤𝑎max, 𝑖 , (6.54)

where 𝐹adv
𝑎maxΣ0/1,𝑖±1/2 is the flux component that is calculated by PLUTO for the passive

advection of the tracer. The evolution equations are evolved in time with PLUTO’s standard
third-order Runge-Kutta routine. The timestep is limited by the CFL condition, which we
don’t have to adjust since the dust drift velocities are limited to a fraction of the speed of
sound and the typical growth timescale is much longer than an orbital timescale.

6.4 Calibration

Our model has several free parameters, which have to be calibrated in comparison to full
dust coagulation simulations. For the growth rate of the dust (Equation 6.29), the main
parameters are 𝑠 (determining the steepness of the transition from growth to fragmenta-
tion), and the parameter 𝑓Δ𝑣, which determines the relative velocities Δ𝑣11 through the size
ratio between the grains.

We run a series of one-dimensional simulations for calibration of the model against the
full coagulation code DustPy. We set up a 1D disk model similar to the standard DustPy
model. We exclude viscous evolution since we are only interested in comparing the dust
evolution in both models for the time being. The radial disk structure follows

Σg (𝑅) = (2 + 𝛽Σ)
𝑀disk

2𝜋𝑅2
c

(
𝑅

𝑅c

)𝛽Σ
exp

[
−

(
𝑅

𝑅c

)2+𝛽Σ
]

B Σg,0

(
𝑅

𝑅0

)𝛽Σ
exp

[
−

(
𝑅

𝑅c

)2+𝛽Σ
]
, (6.55)

where we employ the code units Σg,0 = 733.28 g cm−2 (derived from a DustPy setup with
𝑀disk = 0.05 M⊙), 𝛽Σ = −0.85, 𝛽𝑇 = −0.5, and 𝑅0 = 1 au. In PLUTO, the radial temperature
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Table 6.3: Stellar parameter and disk parameter for the simulations presented in this work. Calibration
runs are performed for the one-solar-mass case.

𝑀∗ 𝑅∗ 𝑇∗ 𝑀disk 𝑅c 𝛽Σ 𝛽𝑇
[𝑀⊙] [au] [K] [𝑀∗] [au]

1.0 3.096 4397 0.05 60.0 -0.85 -0.5
0.9 2.906 4315 " " " "
0.7 2.678 4111 " " " "
0.5 2.458 3849 " " " "
0.3 2.215 3460 " " " "
0.1 1.013 2925 " " " "

Table 6.4: Dust properties for the calibration runs (Section 6.4) and the test simulations with different
stellar masses Section 6.5.

Dust Property Value

Dust-to-gas ratio 0.01
Initial maximum dust size 10−4 cm
Minimum dust size 10−5 cm
Dust material density 1.67 g cm−3

Dust fragmentation velocity 100 cm s−1

structure is expressed in terms of the speed of sound, which is given by

𝑐2
s = 𝑇0

𝑘B
𝜇𝑚p

=

(
0.05𝐿∗

4𝜋𝑅2𝜎sb

) 1
4 𝑘B
𝜇𝑚p

B 𝑣2
0

(
𝐻0
𝑅0

)2 (
𝑅

𝑅0

)𝛽𝑇
, (6.56)

with 𝑣0 =
√︁
𝐺𝑀∗/𝑅0 . In our simulations, this is parameterized by the disk aspect ratio

𝐻0/𝑅0 at reference radius 𝑅0.
The simulations are initialized with a total dust-to-gas ratio of 1%, and an initial maxi-

mum particle size of 1 µm. Particles larger than the initial drift limit are excluded from the
initial dust profile in order to avoid an inwards drifting wave of large dust at the beginning
of the simulation. The initial dust size distribution in both DustPy and TriPoD follows a
power law with 𝑝 = −3.5 . The stellar and disk structure parameters are shown in Table 6.3,
the dust properties are shown in Table 6.4, and the parameters for the different calibration
runs are shown in Table 6.5.

Calibrating the Growth Rate

Determining the appropriate relative grain velocities to reproduce the full coagulation
model with our simplified prescription is the topic of this section.

The particle growth rate in our model can be adjusted by varying the relative velocity
Δ𝑣 prescription in Equation 6.29. This is controlled over the parameter 0 < 𝑓Δ𝑣 < 1, which
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Table 6.5: Parameters of the one-dimensional simulations performed to calibrate the three-parameter
model to the DustPy simulations. Each simulation in one block is compared to the same DustPy simulation
with identical 𝛼 and 𝛿. The bold red numbers are our final calibrated values used in the following test
simulations.

Model Parameters Physical Parameters
𝑓Δ𝑣, turb 𝑓Δ𝑣, drift s 𝑓drift 𝛼coag 𝛿diff

Upper row of Figure 6.3
0.1 0.1 3 - 10−3 no transport
0.2 0.2 " - " "
0.3 0.3 " - " "
0.4 0.4 " - " "
0.5 0.5 " - " "

Lower row of Figure 6.3
0.1 0.2 3 - 10−3 no transport
0.1 0.3 " - " "
0.1 0.4 " - " "
0.1 0.5 " - " "

Figure 6.4
0.1 0.2 2 - 10−3 no transport
" " 3 - " "
" " 4 - " "
" " 5 - " "
" " 6 - " "

Figure 6.5
0.1 0.2 3 0.5 10−3 10−3

" " " 0.6 " "
" " " 0.7 " "
" " " 0.8 " "
" " " 0.9 " "

Figure 6.11
0.1 0.2 3 0.5 10−3 0.0
" " " 0.6 " "
" " " 0.7 " "
" " " 0.8 " "
" " " 0.9 " "

sets the size ratio between the colliding particles 𝑎1 and 𝑓Δ𝑣𝑎1, i.e., by choosing which
particle collision is best reproducing the overall growth rate. Furthermore, the parameter
𝑠 in Equation 6.29 can be used to adjust the growth rate around the transition from
growth to fragmentation, where a small 𝑠 corresponds to a reduced growth rate close to the
fragmentation limit, and a large 𝑠 corresponds to a steep transition from particle growth
to fragmentation-coagulation equilibrium.

In order to characterize the effects in comparison with the full coagulation model DustPy,
we measure the rate of change of the mass-averaged particle size in TriPoD and DustPy
and determine the respective deviations for the given parameters. We use the mass-
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Figure 6.3
Parameter study for the factor 𝑓Δ𝑣, which is the most important parameter for the growth rate calibration
of our model. For this we calculate the deviation between the mass-averaged particle size’s growth rate in
DustPy and TriPoD. In the top row, we show models for different global values of 𝑓Δ𝑣. It can be seen that
𝑓Δ𝑣 = 0.1 seems to fit the dust growth rate best. However, deviations are stronger in the drift-dominated
outer disk regions. Therefore, we introduce a transition in 𝑓Δ𝑣 from the turbulence-dominated to the drift-
dominated regime in the second row, which reduces the error in the outer disk region. We find that a value
of 𝑓Δ𝑣 = 0.2 fits the full coagulation model the best in the drift-dominated regime.

averaged size and not the maximum particle size because it is also a measure of the shape
size distribution itself and not just the upper cutoff. To calibrate the growth rate we run
DustPy and TriPoD models without transport (all fluxes are zero). We are, however, still
considering the relative drift and sedimentation velocities in the calculation of Δ𝑣11. We
set up the disk models for a solar-mass pre-main-sequence star with a 0.05 M⊙ gas disk and
a dust-to-gas ratio of 1 % (see Table 6.3 and Table 6.4 for details).

First, we run a parameter study for the factor 𝑓Δ𝑣, which we vary from 0.1 to 0.5. As
can be seen in Figure 6.3, a factor of 𝑓Δ𝑣 = 0.1 leads to the overall best agreement between
the particle growth rate in TriPoD and DustPy. However, looking at the lower row of the
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Parameter study for the factor 𝑠, which determines the steepness of the transition from coagulation to
coagulation-fragmentation equilibrium or fragmentation in Equation 6.29. Heat maps show the deviation
of the growth rate in TriPoD from the growth rate in DustPy. The lower row shows the average over
the size dimension. The influence of a variation in 𝑠 can be seen around the fragmentation limit, where a
larger 𝑠 corresponds to a steeper transition (fast growth close to the fragmentation limit), while a small 𝑠
corresponds to a slower transition where growth rates decrease earlier and more slowly. The case of 𝑠 = 3
has the overall best fit with the DustPy model.

upper panel, which shows the averaged deviation, we find that the growth rates disagree
in the outer parts of the disk. In these regions, relative drift becomes the more dominant
source of relative velocities between the grains. This means the size distribution becomes
shallower. In order to bring the growth rates in these regions of the disk into agreement with
DustPy, we introduce the transition function from Equation 6.38 to 𝑓Δ𝑣, which switches
between the drift-dominated and turbulence-dominated regimes. The result for different
𝑓Δ𝑣 in the drift-dominated regime can be seen in the lower panel of Figure 6.3. We show
that a factor of 𝑓Δ𝑣 = 0.2 reproduces the growth rate in this case best. Therefore we define

𝑓Δ𝑣 = 0.2 · Πdrift + 0.1 · Πturb . (6.57)

The second parameter setting the growth rate is 𝑠 , which determines the steepness of the
transition from growth to fragmentation in Equation 6.29. We run models with values from
2 to 8, which we compare in Figure 6.4. As can be seen, a value of 𝑠 = 3 leads to the best
fit between the growth rates close to the fragmentation limit.

Calibrating the Dust Transport

Dust transport is realized by modifying the dust tracer flux (see Section 6.3). For this,
the mass-averaged particle size of each dust population is calculated to determine the
upstream flux through the respective cell interface. In comparison with a more realistic
size distribution, however, the power-law prescription lacks the gradual decrease in mass,
shortly before the maximum particle size (visible in the right panels of Figure 6.1). This
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Comparison between DustPy and our model in a setup with dust diffusion (𝛿 = 10−3) and with different
drift calibration factors 𝑓drift. The upper row shows a timeseries of the dust column density evolution in
three snapshots. In the lower row, we show the mass evolution and the errors with respect to the full
coagulation model DustPy. For a factor of 𝑓drift = 0.7, the mass evolution of the full coagulation model is
well reproduced by our three-parameter model.

means that, even if our power-law size distribution reproduces the real size distribution very
well, the mass-averaged sizes of both models will not be exactly identical. For this reason,
also our dust fluxes will be slightly different from the total flux in DustPy. This is generally
not a significant effect. We nonetheless try to correct it by using a calibration factor 𝑓drift
that is multiplied to the calculated mass-averaged particle sizes before the calculation of the
dust flux, similar to the fudge factor in the two-pop-py model (Birnstiel et al., 2012). For
this, we run models for different values of this calibration factor, including dust transport.
We neglect any gas transport in these simulations and focus on the dust fluxes, where we
conduct one set of simulations with a dust diffusivity of 𝛿 = 10−3 (the diffusive runs) and
one with 𝛿 = 0 (the non-diffusive runs). Except for the inclusion of dust transport, the
simulations are identical to the setups used in the growth rate calibration. We apply the
best-fitting parameters from the growth rate calibration. We use 150 log-spaced radial grid
cells to resolve our simulation domain, which is defined between 2 au and 250 au. This is
the same resolution as used in the DustPy runs.

For comparison, we plot a time series of the dust column densities in these simulations
runs for 𝑓drift =0.5, 0.6, 0.7, 0.8 and 0.9 in the upper row of Figure 6.5 (Figure 6.11 depicts
the case without diffusion). The lower two panels depict the dust mass evolution (lower
left) and the respective deviations from the full coagulation model DustPy (lower right).
As can be seen, the choice of 𝑓drift determines the mass flux throughout the disk’s dust
evolution. Smaller values of 𝑓drift correspond to slower dust velocities and lower fluxes. All
values result in deviations of ≲40 % from the full coagulation model at all times. The value
of 𝑓drift = 0.7, however, shows the smallest mass error. For this value, the disk’s dust mass
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only deviates by 10 % from DustPy during most of the mass evolution. The absolute error
only increases to ≲ 30 % after 90 % of the mass has already drifted out of the simulation
domain. The overall trend in the mass evolution with 𝑓drift seems to be independent of the
diffusion parameter, as can seen by comparison of Figure 6.5 and Figure 6.11. We therefore
chose a value of 𝑓drift = 0.7 for all following simulations.

Treatment of Planetary Gaps

Since the particle size in TriPoD can only change due to coagulation/fragmentation, we
have to introduce an additional source term that takes into account the reduction of the size
distribution’s maximum particle size due to the depletion of large particles via transport.
The classic example for such a case is a gap carved by a planet. In this case, dust diffusion
into the gap from the outer disk, removal of large grains within the gap, and coagulation
determine the maximum size of the distribution. As the largest particles are removed from
the gap, we reduce the maximum particle size on the respective dust depletion timescale in
TriPoD. For this, we set a lower limit for the fraction of large particles at which we begin
the size reduction process. We define a hypothetical source term for 𝜀1, which would set a
lower limit to 𝜀1 in terms of a critical fraction of the total dust density d𝜀1

d𝑡 =
𝑓crit (𝜀0+𝜀1 )−𝜀1

Δ𝑡

where Δ𝑡 is the current simulation timestep. Since our goal is to reduce the maximum
particle size on the depletion timescale, we set 𝜏depletion =

d𝜀1
d𝑡 /𝜀1 and define the respective

size reduction rate
d𝑎max

d𝑡 =
𝑎max

𝜏depletion

(
1 − 𝑎max

𝑎lim

)
, (6.58)

where 𝑎lim = 1 µm is a minimum size that we define to limit the shrinking to a reasonable
value. In order to retain a meaningful power-law exponent for the size distribution during
the shrinking process, we set the mass change rate of the large population to

d𝜀1
d𝑡 =

𝜕𝜀1
𝜕𝑎max

d𝑎max
d𝑡 . (6.59)

Here, 𝜕𝜀1/𝜕𝑎max follows analytically from Equation 6.25. Equation 6.58 and Equation 6.59
are added as source terms to the respective right-hand side of the conservation equations
if the condition for size reduction is fulfilled (𝜀1 < 𝑓crit𝜀tot). In that way we achieve the
following:

• Whenever transport is largely dominating over coagulation, thus removing the large
particles, we reduce the maximum particle size on the depletion timescale of the large
grain population.

• We thus set a lower limit for the power-law exponent and therefore retain a physically
meaningful size distribution, even in planetary gaps.

Determining the critical value of 𝜀1 at which we begin the size reduction process is an
experimental task. The size distribution within a planetary gap is typically not top-heavy
due to the efficient removal of the largest grains (e.g., Drążkowska et al., 2019). The large
mass bin should thus contain ≲ 50 % of the total dust density in the gap.



6.5 Test Simulations 123

3 4 5 6 7

Distance to star [au]

10−7

10−5

10−3

10−1

101

Σ
d

[g
cm
−

2
]

10−5

10−3

10−1

M
a
x
.

g
ra

in
si

ze
[c

m
]

0.400 0.425 0.450 0.475

fcrit

alim = 10−3alim = 10−4

Σd, DustPy

amax, DustPy

Figure 6.6
Test for the size reduction in planetary gaps. The
particle size is reduced on the dust depletion timescale
when the large dust population makes up less than the
critical fraction 𝑓crit of the total dust mass. We run
these simulations to determine which value leads to
the best agreement with the DustPy simulation.

We set up one-dimensional simulation with a gap corresponding to a one Jupiter-mass
planet, following the description of Duffell (2020) in TriPoD and DustPy. The gap is
not evolving in time, but pre-defined in the disk’s gas structure and the initial dust den-
sity structure. We run simulations for several values of the critical mass fraction 𝑓crit to
determine which values give us the best fit between TriPoD and DustPy in a planetary
gap. For the limiting particle size, we set either 1 µm or 10 µm. The resulting dust column
density profiles are shown in Figure 6.6. As can be seen, we reach a reasonably good fit
for a value of 𝑓crit = 0.475 and a limiting particle size of 𝑎lim = 1 µm. We are therefore
choosing these values for all following simulations.

6.5 Test Simulations

Here, we present a series of test cases of our TriPoD model for comparison with DustPy.
Our fiducial model is depicted in Figure 6.1. We set up a smooth protoplanetary disk
around a solar-mass star for this. The disk structure is identical to the simulations in the
calibration runs. The first two panels in each row show the snapshots of the dust size
distributions in DustPy (top row) and TriPoD after 20 500 yr and 3 × 106 yr of evolution.
For this run, gas evolution has been turned off to get a more direct comparison between the
dust evolution and transport models. The shape of the size distribution is well reproduced
in the drift-limited and fragmentation-limited cases.

Different Stellar Masses

We test the accuracy of our model in simulations of systems with different stellar masses
and disk masses. For this, we take the stellar properties of stars with 𝑀∗ = 0.1 M⊙, 0.3 M⊙,
0.5 M⊙, 0.7 M⊙ and 0.9 M⊙ from the pre-main-sequence evolution tracks of Baraffe et al.
(2015) at ∼105 yr of evolution (their first recorded snapshot). We keep the overall disk
structure constant for all setups with the values from Table 6.3 and set the disk mass
to 0.05 𝑀∗. We run the simulations for all stellar masses once with dust diffusion and a
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Figure 6.7
Comparison of the dust size distributions in three simulations with different stellar masses and different
disk masses. The first row in each group depicts a DustPy simulation (full treatment of coagulation). The
lower rows show the respective TriPoD simulations with the PLUTO code. Panels on the right depict the
local dust size distributions at 10 au at both snapshots.
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Figure 6.8
Comparison between DustPy and our model in setups with different stellar masses. The upper row shows
a time series of the dust column density evolution in three snapshots. In the lower row, we show the mass
evolution and the errors with respect to the full coagulation model DustPy.

diffusion parameter of 𝛿 = 10−3 and once without dust diffusion. Gas evolution is turned
off in these simulations, as we are for the moment only interested in the accuracy of our
dust evolution model. We present three of the simulations with diffusion in Figure 6.7,
where the first two panels in each row show snapshots of the simulations. The respective
DustPy model is shown on top and the TriPoD results below. We find that the overall size
distribution evolution is well reproduced for most of the simulation domain and runtime.
Our model is also able to capture the shape of the size distributions, as can be seen in the
right panels. In the early stages of dust evolution (left panel of each row in Figure 6.7),
the dust size distribution is in coagulation-fragmentation equilibrium, which results in a
typical power-law shape of the distribution with exponent 𝑝 = −3.5. In the case of the
0.1 M⊙ star system, the dust is still in its initial growth phase at the time of the earlier
snapshot. Therefore, the distribution has not yet fully reached the equilibrium state and is
still more top-heavy—which is typical for the growth phase in which smaller particles are
swept-up by bigger particles. In this phase, the distribution is not so well reproduced by a
power law. Our three-parameter model nonetheless captures the steeper slope well around
the size distribution peak, which contains most of the mass.

We present a more detailed look at the column density and mass evolution in Figure 6.8
(simulations without diffusion can be found in the appendix Figure 6.12). The relative
mass error with respect to the full coagulation model is always <10 % until ∼90 % of the
mass has been accreted. The small errors at the beginning of the simulations are seen
to add up in the late stages of disk evolution, where the absolute relative mass error in
simulations is ≲35 % at the end of the simulation when more than 99 % of the mass has
drifted out of the simulation domain after 3 × 106 yr. For stellar masses above 0.1 M⊙, the
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errors are even smaller. Here, we determine a deviation of less than 10 % until 90 % of
the dust mass has drifted out of the simulation domain. Afterward, in the final stages of
dust mass evolution, absolute errors increase again and are generally <20 %. Only for the
system with the least massive star, we measure of maximum deviation of ∼35 % at the very
end of the dust mass evolution. One reason for this could be the smaller disk size, which
means the dust growth front reaches the outer edge of the disk earlier. This area of strong
radial dust-to-gas ratio gradients seems to be the origin of most of the deviations, as can
be seen in the upper right panel of Figure 6.8. Overall, the mass evolution in disks around
stars of various masses is very well reproduced.

Planetary Gap

As a next test case, we conduct a simulation with a planet-induced gap. For the gap in
our one-dimensional DustPy and TriPoD simulations we use the same gap profile as in
Section 6.4. Instead of letting the disk viscously evolve, we again turn off gas evolution
for these simulations and impose the gap profile immediately on the disk’s column density
structure. We compare the resulting size distributions in Figure 6.9 with a similar DustPy
model in the top row. As can be seen, dust particles collect in the pressure maximum
outside of the planetary gap. The gap itself becomes depleted of dust, as the particles
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drift out and can not be replenished due to the effect of the pressure bump. As a result,
the maximum particle size in the full coagulation model is reduced within the gap. As
large grains are removed, the maximum particle size is also reduced in TriPoD, and thus a
reasonable size distribution is retained. In that way, a good fit with the particle size in the
gap of the full coagulation model is achieved. The size distribution in the full coagulation
model is no longer top-heavy inside the gap but declines toward smaller sizes. The same
is achieved in TriPoD due to our method of size reduction, as can be seen in the right
panels of Figure 6.9. Particles collecting in the pressure bump outside of the gap are
fragmentation-limited and can thus grow to larger sizes than in the outer regions, which
are drift-limited. Most mass from the outer disk collects around the pressure maximum
and does not reach the inner disk.

The size distribution in the regions inside of the gap becomes drift-limited and dust
densities decrease significantly due to the decreased inflow from the outer regions. Only
diffusion of small particles through the gap maintains some particle flow in the inner disk.
For comparison we also show the dust column densities and maximum particle sizes calcu-
lated with the old two-pop-py method in Figure 6.9. As can be seen, the new method
agrees much better with DustPy. In the two-pop-py simulation, we find a much nar-
rower peak in the dust densities around the pressure maximum due to the lack of a small
particle population. Grain sizes are also underestimated in the gap, as two-pop-py sets
the maximum particle size to the drift limit. This assumes an equilibrium between trans-
port and coagulation which is not given in the gap, where the present particles are diffusing
in from the outer edge and large particles are quickly removed by drift.

Two-Dimensional Planet-Disk Simulation

As a last test case, we run a two-dimensional simulation of a protoplanetary disk with a
Jupiter-mass planet. We set up a simulation in polar coordinates. The domain is spanning
4–34 au radially and full 2𝜋 azimuthally at a resolution of 1024 cells in radial and azimuthal
direction. The planet is represented by an additional gravitational potential following

Φp = −
𝐺𝑀p√︁
𝑑2 + 𝑟2

sm
, (6.60)

where 𝑀p is the planets mass, 𝑑 is the distance to the planet, and 𝑟sm = 0.7𝐻g is the the
gravitational smoothing length. The full gravitational potential in our simulation domain
is then given as

Φtot = Φ∗ +Φp , (6.61)

where Φ∗ is the gravitational potential of a Solar-mass star. The disk is set up as a
radial power law in column density and temperature with an isothermal equation of state.
Details on the disk structure and simulation setup can be found in Table 6.6. We employ
a viscosity 𝜈T = 𝛼𝑐s𝐻g, with 𝛼 = 10−3. The hydrodynamic equations are solved with
the HLL Riemann solver, using the third-order accurate Runge-Kutta scheme for the time
integration and piece-wise-polynomial spatial reconstruction scheme to the fifth-order.

For the gas velocities, we use a zero-gradient boundary condition at the inner boundary,
where we keep the gas density and the azimuthal velocity fixed to the initial values in the
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Figure 6.10
Comparison between two-dimensional PLUTO simulations with the TriPoD coagulation model and with
the two-pop-py model. The lower panels show the azimuthally-averaged quantities. For the azimuthal
averages, we have masked the region around the planet that has been marked with the white circle.

ghost cells. Similar boundary conditions are applied at the outer domain edge, with the
difference that we allow for outgoing velocities but not for inflow. The dust densities at the
outer boundary are also kept at the initial value for 1000 orbital time scales after which we
begin to decrease them exponentially on a timescale of 1000 orbits in order to simulate a
reduced dust inflow.

We compare the results to a simulation with the two-pop-py model, which only has
one dust fluid. The comparison is presented in Figure 6.10, where the top row shows the
TriPoD simulation, and the middle row shows two-pop-py after 2000 planetary orbits
of evolution. In the lower panels, we present the respective quantities’ azimuthal averages,
for which we have masked-out the region around the planet that has been marked with a
white circle.
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The different grain sizes and the redistribution of mass because of fragmentation and
coagulation between the two populations lead to vastly different dust density distributions
in the simulation with TriPoD compared to the simulation with two-pop-py. The grains
in the two-pop-py simulation collect in two narrowly-peaked overdensities at the pressure
maximum outside of the planetary gap and a weak second pressure perturbation. The gap is
almost an order of magnitude more depleted than in the simulation with he TriPoD model.
Furthermore, dust densities in two-pop-py are strongly enhanced in the weak second
pressure perturbation that has almost no visible effect in the simulation with TriPoD.
The reason for this is the absence of a small, separately advected grain population in
two-pop-py for which the effect of trapping would be much weaker. This is accounted
for in the TriPoD simulation, where the smaller dust population broadens the dust peaks
significantly due to the weaker trapping of small grains. This also has the effect that more
dust can diffuse through the gap, which means that the densities inside and in the gap
itself are higher in TriPoD than in two-pop-py.

Inside the gap, TriPoD limits the size distribution exponent to a minimum value of 𝑝 ≈ 4
due to the applied size reduction rates, i.e., the distribution is no longer fragmentation-
limited but dominated by transport effects. The particles remaining in the gap are ac-
cordingly small and the size distributions are no longer top-heavy, as seen in the work by
Drążkowska et al. (2019). The two-pop-py model instead simply assumes the drift limit
in the gap and inside of it.

Our results are thus qualitatively similar to the conclusions by Drążkowska et al. (2019).
Coagulation makes it possible for small grains to pass through the gap via diffusion and
coagulate again inside of the planet’s orbit. The dust accumulates in the pressure bump,
but the peak in the dust density is broader than in a simulation without coagulation due
to the presence of small grains, which are constantly produced in our simulation as a result
of fragmentation.

6.6 Discussion

Limitations

In its current form in the PLUTO code, our model operates in the terminal velocity approx-
imation. The dust fluids are implemented as passive tracers with modified fluxes. Thus,
feedback from the dust on the gas is not included in our two-dimensional test simulation.
However, as shown by Drążkowska et al. (2019), the dust feedback in their two-dimensional
planet-disk simulation only had a minor effect on the simulation outcome. Effects like the
streaming instability (Youdin & Goodman, 2005), can not be simulated with our current
version of TriPoD due to this limitation of our very simple dust fluid implementation.
Unfortunately, PLUTO does currently not have a multi-fluid feature. A future iteration
of the model could be combined with a code that supports dust fluids that are treated
more self-consistently, like FARGO3D (Benítez-Llambay & Masset, 2016; Benítez-Llambay
et al., 2019) or Athena++ (Stone et al., 2020; Huang & Bai, 2022). The terminal velocity
approach also means that effects occurring on timescales shorter than the friction timescale
of the particles can not be modeled in the current form of TriPoD. Possible cases could
be the effects of shock waves, or spiral density waves.
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Table 6.6: Initial conditions for our two-dimensional PLUTO simulation with TriPoD (identical to the
initial conditions in Drążkowska et al., 2019).

Simulation Parameter Value

Gas viscosity parameter (𝛼) 10−3

Gas column density at 1 au 1700 g cm−2

Gas column density exponent (𝛽Σ) -1.5
Temperature at 1 au 195 K ⇔ 𝐻/𝑅

��
10 au = 0.05

Temperature exponent (𝛽𝑇) -0.5
Planet mass 1 𝑀Jupiter
Planet-star distance (circular orbit) 10 au
Dust-to-gas ratio (𝜀tot) 0.01
Initial dust size (𝑎ini) 10−4 cm
Minimum dust size (𝑎min) 10−5 cm
Dust material density (𝜌m) 1.2 g cm−3

Dust fragmentation velocity (𝑣frag) 1000 cm s−1

Dust diffusion parameter (𝛿) 10−3

Another shortcoming arises from the way we calculate the dust fluxes. As the maximum
particle size changes throughout a simulation domain, neighboring cells usually do not
have the same particle sizes. Therefore, the bin interfaces separating Σ0 and Σ1 are also
different between neighboring cells. Our advection scheme does not take this into account
in its current form, where transport is only occurring between the same size bin and not
across bins. Due to the smooth variation of 𝑎max throughout simulations of protoplanetary
disks, neighboring cells will typically still have very similar maximum particle sizes. The
effect of this inaccuracy in the advection scheme is therefore likely small. However, one
could construct extreme cases in which the error would be large, e.g., if two neighboring
cells had vastly different maximum particle sizes. We will have to address this issue in a
future version of the model.

Details of the grain size distribution that are modeled in full-fledged coagulation models
like DustPy can not be reproduced in our simplified prescription. To still achieve a good
fit with such models, our model has several calibration factors that have been adjusted
to reach a good fit with DustPy. However, this treatment of dust coagulation can not
reproduce the finer details of the coagulation process.

Our model omits particle collisions without mass transfer (bouncing, see, e.g., Dominik
& Dullemond, 2023). This effect can lead to a steep, top-heavy size distribution and smaller
maximum particle sizes. Bouncing could be implemented in a future version of TriPoD.
TriPoD, as well as DustPy are designed to simulate the dust evolution in vertically in-

tegrated models of protoplanetary disks, assuming settling-mixing equilibrium at all times.
Effects like sedimentation-driven coagulation (Zsom et al., 2011; Krijt & Ciesla, 2016) can
thus not be modeled by DustPy or TriPoD in its current form. This is however not a fun-
damental limitation of TriPoD, which could easily be adapted to work in three-dimensional
setups in a future version.
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6.7 Summary and Conclusion
We present TriPoD, an accurate and computationally inexpensive sub-grid model for
dust coagulation in vertically integrated hydrodynamic simulations of protoplanetary disks.
TriPoD only requires two dust fluids and a tracer for the maximum particle size to model
the evolution of a polydisperse dust size distribution. This makes it possible to run in-
expensive simulations of planet-disk systems, protoplanetary disks with vortices, etc., and
deduce the particle properties and dust densities.

We have implemented our model in the PLUTO code. The workflow of the model during
one timestep of a hydrodynamic simulation is as follows:

1. PLUTO calculates the gas fluxes across the cell interfaces with one of the standard
Riemann solvers and reconstruction methods that are provided with the code.

2. The dust fluxes and the particle size flux are calculated (Equations 6.44 to 6.46).
Flux velocities are calculated from interpolated interface values. The drift flux is
then taken upstream depending on the limited dust drift velocity. For dust diffusion,
we calculate the limited diffusion flux in a manner identical to the DustPy model
(Equations 6.47 to 6.49). The diffusion flux is then added to the total dust flux.
(modifications in the PLUTO code made in file adv_flux.c)

3. From the mass-averaged particle sizes (Equation 6.26), the relative velocities between
grains of sizes 𝑎1 and 𝑓Δ𝑣𝑎1 are calculated. These are used to calculate the particle
growth rate (Equation 6.29). The collision speed between particles of sizes 𝑎max and
0.5𝑎max determines whether the particles are growing or fragmenting.

4. The mass redistribution rates, i.e., the source terms for the large and the small
dust fluid, are calculated. These fragmentation and sweep-up rates (Equations 6.32
and 6.33) are then added to the source terms.
If the large dust population is depleted to less than 𝑓crit𝜀tot, we calculate the respective
dust depletion time and add the size reduction terms to the source terms in a way
that conserves the current power law (Equation 6.58). Mass is shifted accordingly
from the small to the large population (Equation 6.59). The source terms of the
two dust populations are calculated according to (Equation 6.35) and added to the
equations’ right-hand side (modification in PLUTO made in file rhs_source.c ).

5. The array of conserved quantities is advanced by one timestep by PLUTO using a
standard time integration scheme provided with the code.

Although TriPoD is a highly simplified model, it can predict the dust mass evolution
accurately for millions of years of evolution and simulate the effects of disk sub-structures on
the dust size distribution, as demonstrated in our tests and calibration runs. Applications
of this first version of TriPoD could include:

• More accurate studies of chemical networks in protoplanetary disks, which are highly
dependent on the available grain surface area.

• Better radiative transfer post-processing of simulations, given the knowledge of the
grain size distribution.
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• Parameter studies of planet-disk systems with dust coagulation, that were so far
infeasible due to the high computational cost of full coagulation models.

• Simulations with self-consistently calculated thermal relaxation times.

In the future, we will extend this first version of the model to three-dimensional simulations
of protoplanetary disks.
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6.A Transition Functions

In order to determine the transition functions, we have taken into account the results of
local dust coagulation simulations and theoretical models. The transitions should not be
too rapid to not cause issues during the numerical integration.

For the transition between the small regime of turbulence and the fully-intermediate
regime of turbulence we take the approximate transition criterion from Ormel et al. (2008)

𝑓 turb.2
turb.1 =

5 𝑡s
𝜏max

{
> 1 small particle regime (turb.1)
< 1 fully-intermediate regime (turb.2),

(6.62)

where 𝜏max is the friction time of the largest particles, and 𝑡s = ℜ𝔢−
1/2Ω−1

K is the small eddy
turnover time. Using the same functional form as for the growth rate Equation 6.29, but
now from 0 to 1 instead of -1 to 1, we define

Πturb.1 B
1
2

©­­«1 −

(
𝑓 turb.2
turb.1

)4
− 1(

𝑓 turb.2
turb.1

)4
+ 1

ª®®¬ . (6.63)

This expression is approaching 0 if 𝜏max < 5𝑡s and 1 if 𝜏max > 5𝑡s. We apply a very similar
function to the transition from the drift-dominated regime to the turbulence-dominated
regime. We define

𝑓 turb
drift =

Δ𝑣turb
Δ𝑣drift

{
> 1 turbulence dominated
< 1 drift dominated,

(6.64)
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where Δ𝑣turb is the turbulent collision velocity and use

Πdrift B
1
2

©­­«1 −
(
𝑓 turb
drift

)6 − 1(
𝑓 turb
drift

)6
+ 1

ª®®¬ , (6.65)

where we found that a slightly steeper transition fits better with the results of local coagula-
tion simulations. Finally, we have to introduce the transition from growth to fragmentation.
For this, we chose a steeper transition, following

Πfrag = exp
[
−

(
5
(
min

(
Δ𝑣tot
𝑣frag

, 1.0
)
− 1.0

))2
]
, (6.66)

which ensures that the equilibrium size distribution is reached on a fast enough timescale.

6.B Column Density Formulation

Assuming 𝜎01,11, Δ𝑣01,11, 𝑚0,1, and F to be vertically constant we deduce the vertically
integrated mass exchange rates (Equation 6.32 and Equation 6.33)

¤Σd,0→1 =
Σ0Σ1𝜎01Δ𝑣01
𝑚12𝜋𝐻0𝐻1

∫ ∞

−∞
exp

[
− 𝑧2

2

(
𝐻2

0 + 𝐻2
1

𝐻2
0𝐻

2
1

)]
d𝑧 (6.67)

=
Σ0Σ1𝜎01Δ𝑣01

𝑚1

√︃
2𝜋(𝐻2

0 + 𝐻2
1)

(6.68)

¤Σd,1→0 =
Σ2

1𝜎11Δ𝑣11

𝑚12𝜋𝐻2
1

F̃
∫ ∞

−∞
exp

[
− 𝑧2

𝐻2
1

]
d𝑧 (6.69)

=
Σ2

1𝜎11Δ𝑣11

𝑚1

√︃
4𝜋𝐻2

1

F̃ (6.70)

Thus, also F has a modified form in the vertically integrated setup

F̃ =

√︄
2𝐻2

1
𝐻2

0 + 𝐻2
1

𝜎01
𝜎11

Δ𝑣01
Δ𝑣11

(
𝑎max
𝑎int

)−(𝑝+4)
. (6.71)

6.C Flux-limited Dust Diffusion

In order to avoid unrealistically large diffusion fluxes in the presence of strong gradients
in the dust-to-gas ratio, we introduce a flux limiter that is conceptually identical to the
one by Levermore & Pomraning (1981), which was used by Stammler & Birnstiel (2022).
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Without the flux limiter, the diffusion flux is given by

𝑭diff = −𝐷diffΣg∇𝜀 . (6.72)

The transport velocity shall however not be larger than the turbulent velocities that drive
the diffusion, i.e., the maximum allowed flux is

𝑭diff ,max B 𝑣turb𝜀Σg =

√
𝛿𝑐s

1 + St2 𝜀Σg . (6.73)

The flux limiter is now defined via

𝜆lim =
1 + 𝜒

1 + 𝜒 + 𝜒2 , (6.74)

where
𝜒 =

𝑭diff
𝑭diff ,max

, (6.75)

is the ratio of the diffusion flux and the maximum flux. The limited flux is then given by

𝑭diff ,lim = 𝜆lim𝑭diff . (6.76)

Note that although the flux is a vector (with components for each direction), all operations
here are component-wise. In PLUTO, we define all quantities in the above equations at the
cell interfaces.

6.D Calibrations and Test Simulations without Diffusion
Here, we present the same calibration and test simulations shown in the main part of this
article, but now without dust diffusion (𝛿 = 0).
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Figure 6.11
Comparison between DustPy and our model in a setup without dust diffusion and with different drift
calibration factors 𝑓drift. The upper row shows a timeseries of the dust column density evolution in three
snapshots. In the lower row, we show the mass evolution and the errors with respect to the full coagulation
model DustPy. For a factor of 𝑓drift = 0.7, the mass evolution of the full coagulation model is well
reproduced by our three-parameter model.
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Figure 6.12
Comparison between DustPy and our model in setups with different stellar masses without dust diffusion.
The upper row shows a time series of the dust column density evolution in three snapshots. In the lower
row, we show the mass evolution and the errors with respect to the full coagulation model DustPy.
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7.1 Introduction

After the formation of a protostar, remaining material of its parent molecular cloud core
forms a so-called protoplanetary disk around it. About 1 % of the mass of this disk consists
of solids in the form of initially µm-sized carbonaceous silicate grains and ices. All solid
objects, including the rocky planets, the rocky cores of gas giant planets, comets, and
asteroids form out of this material. Subsequent collisions between the grains are caused
by gas turbulence and differential aerodynamic drag and lead to the formation of larger
aggregates via sticking due to van der Waals forces. Since relative velocities between the
grains increase with their sizes, growth is halted at some point, when collisions become
too violent for sticking and instead lead to fragmentation (break-up). At this so-called
fragmentation barrier, an equilibrium size distribution is reached. Its form is determined
by the interior composition of the grains and their size-dependent relative velocities.

Theoretically, these processes are described by the Smoluchowski equation (Smoluchowski,
1916)—an integro-differential equation that gives the mass exchange rates between grains
on a continuous spectrum of sizes. Only a few analytically solvable cases exist, which is why
most numerical models of dust coagulation rely on solution techniques for the discretized
Smoluchowski equation, which is derived by exchanging the continuum of grain sizes by
a discreet grid of sizes. Solving the resulting system of ODEs is an elaborate numerically
task that requires the size grid to have >100 bins to lead to meaningful results (Brauer
et al., 2008; Birnstiel et al., 2009).

An example simulation is shown in the left hand side of Figure 7.1. The model is initial-
ized with a distribution of µm-sized grains. Collisions first lead to an almost exponential
growth phase, which, in this case is halted by fragmentation after ∼ 104 yr . The result is
a top-heavy equilibrium distribution of up to 2 mm-sized grains.

These multi-bin models are applicable to 0D (local; see Brauer et al., 2008) or 1D (ver-
tically and azimuthally averaged; see Stammler & Birnstiel, 2022) disk models, but due to
their high numerical cost, can not be applied in 3D models of protoplanetary disks.

A Power-Law Prescription for Dust Coagulation and the Need for a
Machine Learning Approach

We aim to develop an approach in which the dust size distribution is described by a trun-
cated power law, instead of a discretized distribution with hundreds of size bins. Our goal is
to make the modeling of dust coagulation on top of large-scale hydrodynamic simulations
more feasible. For a given total dust column density Σtot, and a minimum particle size
𝑎min = 10−5 cm, this simplified distribution can be described by only two parameters:

𝑎max : The size of the largest particles (truncation size of the power law)
Σ1 : The column density of particles larger than 𝑎int =

√
𝑎max𝑎min.

It can be shown that the exponent of the power-law size distribution Σ(𝑎) ∝ 𝑎𝑝+4 is then
given by 𝑝 =

log (Σ1/Σ0 )
log (𝑎max/𝑎int ) −4, where Σ0 = Σtot−Σ1 is the column density of particles smaller

than 𝑎int. In contrast to other approximate models like two-pop-py (Birnstiel et al.,
2012), this approach makes it possible to retain information about the overall shape of the
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Figure 7.1
Output of a numerical simulation of dust coagulation in a protoplanetary disk (left side). Initially µm-sized
grains grow until they reach the fragmentation barrier. On the right-hand side we show the equivalent
power-law size distributions derived from the actual simulation results on the left. The simplified time
series data is the training data for our machine learning model.

size distribution. It is, however, not trivial to find a mathematical description for the time
evolution of the power-law distribution without making strongly simplifying assumptions.
We therefore propose a machine-learning-aided power-law model, which predicts the time
evolution of the simplified distribution.

7.2 Method

For our method, we trained a Multilayer Perceptron (MLP) on the evolution of power-law
grain size distributions derived from detailed multi-bin simulations of dust coagulation.
The general workflow of our model is laid out in Figure 7.2. The inputs of our neural
network are the size distribution parameters, and the parameters of the protoplanetary
disk environment, like gas temperature, gas density, etc. The model’s output are the
respective time derivatives 𝜕𝑡𝑎max and 𝜕𝑡Σ1, which are then used as source terms in a
numerical integration scheme.
Our simple neural network model therefore makes it possible to simulate the temporal
evolution of the physical system, similar to other machine learning approaches explored in
recent years Sanchez-Gonzalez et al. (2020); Kidger (2022).
Our MLP consists of 3 hidden layers, each with 100 nodes, 14 nodes in the input layer,
and two nodes in the output layer. The layers are fully connected with ReLU activation
functions.

Training Data Generation

We create our training data using the COALA dust coagulation routine, which was provided
by Til Birnstiel and Sebastian Stammler, and which was already used in a hydrodynamic
simulation (Drążkowska et al., 2019). COALA is a local dust coagulation code, written in
FORTRAN that numerically solves the Smoluchowski equation on a mass grid (in our case
with 171 bins). 10000 dust coagulation simulations have been created, each with 150 time
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Figure 7.2
General outline of the trained machine learning subgrid model of dust coagulation. An artificial neural
network is trained to predict the time derivatives of the size distribution’s power-law representation. The
resulting source term is used to evolve the distribution in time.

outputs. The dust distributions are evolved over a time corresponding to 50 dust growth
time scales, or maximally 106 yr to ensure that an equilibrium is reached at the end of
each simulation. The initial conditions are chosen randomly from a parameter space that
represents the known typical conditions within protoplanetary disks from simulations and
observations.

Training Data Pre-Processing

As a first step, we derive the two parameters of the power-law size distributions from
the full size distributions with 171 size bins. We define 𝑎max as the particle size for which∫ 𝑎max
𝑎min

Σ(𝑎) d𝑎/Σtot = 0.99 holds, i.e. 99 % of the total mass of the particles has sizes smaller
than 𝑎max. Σ1 is then derived by summing up the mass of all bins with sizes larger than
𝑎int =

√
𝑎max𝑎min. This results in 10000×150 time series data points for both quantities,

from which we derive the respective time derivatives. For training, we scale the data to
a range from 0 to 1 and divide the dataset into 8000 training data simulations and 2000
test data simulation. We found that even small deviations from the actual equilibrium
states can lead to large errors after time integration with the predicted gradients. Our
experiments have shown that the best training results are achieved if we use the tenth root
of the time derivatives, multiplied by their sign as the training data. In that way, also
small-scale features around the equilibrium states (𝜕𝑡 = 0) can be learned, leading to the
best results during numerical integration and to the correct equilibrium distribution.
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Figure 7.3
Result of a numerical integration with the neural network predictions for the respective time derivatives.

Training Procedure

We train our neural network model within the Pytorch Lightning framework (Paszke et al.,
2019; Falcon, 2020), using the Adam optimization algorithm (Kingma & Ba, 2015). The
batch size is set to 1000, we apply a learning rate of 3× 10−4, and train the model for 1000
epochs. We employ the Mean Absolute Percentage Error (MAPE, de Myttenaere et al.,
2016) as a loss function, which also penalized deviations of small absolute value. To avoid
division by zero when applying the loss function, we offset the normalized training data by
+0.1. Training was conducted on a single Nvidia A100-40GB GPU.

7.3 Results

After training we evaluate the resulting model by using the predicted time derivatives for
numerical time integration of the setups from the training data set (see our method in Fig-
ure 7.2 and https://github.com/ThomasPfeil/2popML). For the tests performed
in this work, we utilize an explicit Euler scheme, as shown in Figure 7.2. We limit the time
step to ensure numerical stability for the given source terms as

Δ𝑡 = 𝐶 · min
(���� 𝑎max
𝜕𝑡𝑎max

���� , ���� Σ1
𝜕𝑡Σ1

����) , (7.1)

with 𝐶 = 0.1. In Figure 7.3, we present an example simulation from the test dataset. The
average deviation from the actual time series is about ∼ 4 %. We have conducted this
procedure with all 2000 parameter combinations from the test data set. On average, one
full integration run takes ≈ 73 ms wall clock time, compared to 791 ms for the full numerical
model on the same machine. 11 integrations failed, reaching either negative dust densities
or errors larger than 1000 %, resulting in a 99.45 % success rate.

For the 1989 successfully finished test simulations, we plot the distribution of the mean

https://github.com/ThomasPfeil/2popML
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Figure 7.4
Distribution of deviations from the actual simulation time series for the modeled parameters 𝑎max and Σ1.

relative deviation of each time series to the respective actual time series in Figure 7.4. On
average, the deviation between the integration series conducted with the model prediction
and the actual data is ∼ 4 % for the maximum particle size, and ∼ 0.5 % for the column
density of large particles.

7.4 Conclusions and Outlook
Our results strongly suggest that numerical efforts to study the early phases of planet
formation can benefit from the use of machine learning techniques. Our neural network
model was capable of predicting gradients with high enough precision to allow for time
integration of the vast majority of the test data set (99.45 % of the simulations). Our
model could therefore be used as a fast and accurate alternative to commonly used full
coagulation simulations. Due to its much shorter runtime, it could, for the first time,
make large-scale hydrodynamic simulations of protoplanetary disks with dust coagulation
feasible.

Since our model is trained on simulation data with various parameter combinations, we
expect it to produce accurate results as long as the applied model parameters lie within
the ranges used for training. This means, the most important limitation of our model lies
in the range of applicable stellar parameters and disk parameters, e.g., stellar mass (varies
from 0.01 to 1.4 M⊙), distances to the central star (varied from 0.1 to 100 au), etc.

Further testing is needed for the use of our model in disks with substructure, e.g., disks
with planetary gaps and pressure bumps. It is not clear if our model will produce reliable
outputs in these environments, since it was trained on parameter combinations derived
from simple power-law disks (without substructure).

Testing this requires an implementation of our neural network model as a subgrid model
into a hydrodynamics code to simulate gas and dust dynamics in protoplanetary disks. We
therefore aim to couple our model to the PLUTO code (Mignone et al., 2007). Once a stable
run is achieved, we can test our subgrid model in an evolving environment and under the
conditions in substructures.

The structural similarity of our approach (Figure 7.2) to semi-analytic physical models
could also make it possible to interpret the trained neural network in the future and derive
insights into the underlying physics, which could make our results interpretable Cranmer
et al. (2020); Kochkov et al. (2021); Stachenfeld et al. (2022).
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CHAPTER 8
SUMMARY AND OUTLOOK

Hydrodynamic Simulations with Realistic Thermal
Relaxation Times from Dust Coagulation Simulations

In Chapter 4 of this thesis, we demonstrated the significance of the dust coagulation process
for the vertical shear instability (VSI). VSI drives turbulent gas motions and causes the
formation of substructures in protoplanetary disks if the gas is cooled sufficiently fast. Its
dependency on thermal relaxation makes it highly sensitive to the dust size distribution
because cooling of the gas is achieved via thermal accommodation with the grains. The
size distribution is, vice-versa, influenced by the hydrodynamic turbulence created by the
VSI. Our axisymmetric hydrodynamic simulations show that the dust coagulation process
determines whether and where in protoplanetary disks the VSI can emerge. If small dust
grains are depleted because of the coagulation process, thermal accommodation will be
inefficient and the VSI will be suppressed. As we show, this effect is mostly important in
the outer regions beyond ∼ 70 au. The resulting dichotomy between the turbulent state of
the inner regions, and the VSI-inactive state of the outer regions could explain why some
protoplanetary disks appear razor-thin in millimeter-wavelength observations (Villenave
et al., 2020). These studies, however, have some limitations. The cooling time of the gas,
for instance, was calculated from a stationary dust distribution and the redistribution of
the dust by the VSI turbulence was thus not taken into account in the simulations.

We therefore conducted hydrodynamic simulations with consistently calculated cooling
times, presented in Chapter 5, to assess the influence of the dust dynamics on the cooling
times and thus the feedback on the VSI. For this, we took the local dust density distribu-
tion into account and calculated the respective dust-gas thermal accommodation timescale
in run-time. We found that the initial presence of small grains is one of the important
requirements for the growth of VSI. Not only do the small grains provide the fast cooling
needed by the VSI, they also settle on very long timescales. This means that, if initially
small dust grains are present and if they are vertically dispersed, they can enable cooling
over long timescales and thus sustain the emerging VSI turbulence. If however the dust
is already grown or strongly settled in the beginning of the simulation, the conditions are
hostile to the VSI and the disk remains VSI-inactive. This means that protoplanetary
disks with identical gas structure and dust mass can develop vastly different levels of VSI
turbulence depending on the initial dust distribution and grain sizes. Note, that after just
a few hundred dynamical timescales, when the dust has reached coagulation-fragmentation
equilibrium, even the particle sizes in both disks would be similar, yet the level of tur-
bulence would differ. This could be a possible reason for the diverse levels of turbulence
observed in protoplanetary disks (Flaherty et al., 2018; Pizzati et al., 2023).
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Outlook

Observations show that most protoplanetary disks are not smooth but highly structured
(e.g., ALMA-Partnership et al., 2015; Andrews et al., 2018). We are therefore planning to
extend our studies from Chapter 4 and Chapter 5 to disks with gaps and pressure bumps.
A prominent example of a disk with substructure is HD163296 (see panel 1a in Figure 8.1),
which has for instance been studied by Rosotti et al. (2020) and Doi & Kataoka (2021) with
focus on the level of turbulence in its rings. Doi & Kataoka (2021) deduced 𝛼/St > 2.4 for the
inner ring and 𝛼/St > 0.011 for the outer ring, hinting towards different levels of turbulence
and/or different particle sizes in each ring. In a future study we will fit a combination of
dust coagulation and radiative transfer models to the ALMA observations of HD163296
(see panels 1b and 1c of Figure 8.1) to deduce the dust structure of the rings. Given the
resulting dust and gas parameters, we want to calculate thermal relaxation times (panel 2
of Figure 8.1) for this disk and run hydrodynamic simulations to investigate whether VSI
could be responsible for the turbulence in HD163296’s rings.

Furthermore, future studies could continue the development of our method for dynam-
ically evolving thermal relaxation times from Chapter 5. In particular, a combination of
this method with the approximate dust coagulation models developed in this thesis would
be desirable.
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Figure 8.1
Overview of our planned numerical study of turbulence in the protoplanetary disk around HD163296 (see
panel 1a, data obtained by Andrews et al., 2018). Dust coagulation models will be directly compared to the
ALMA observations of HD163296 via radiative transfer modeling (panels 1b). Once a good fit is achieved
between the model and the observations (panel 1c), thermal relaxation times can be calculated from the
resulting dust size distributions (panel 2). This will make hydrodynamic simulations of HD163296 possible
that could help us to determine whether the VSI plays a role in the generation of turbulence in the rings of
this disk (panel 3).
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New Methods for Dust Coagulation in Hydrodynamic
Simulations of Protoplanetary Disks

Although our studies in Chapter 4 and Chapter 5 allowed us to gain some insight into
the effects of dust growth and dynamics on the generation of hydrodynamic turbulence
in protoplanetary disks, they omitted the simulation of the dust coagulation process. Im-
plementing full-fledged dust coagulation models in hydrodynamic simulations comes at
enormous computational cost (see Drążkowska et al., 2019). The second half of this thesis
therefore dealt with the development of fast, approximate methods for dust coagulation. In
Chapter 6, we introduced our new three-parameter dust coagulation model TriPoD. This
model relies on the treatment of the dust size distribution as a truncated power law and
thus only requires the time evolution of three parameters—the density of small particles Σ0,
the density of large particles Σ1 and the maximum particle size 𝑎max. By calibrating our
model to the full coagulation code DustPy, we achieved very good agreement of our fast
approximate model with full-fledged dust coagulation simulations. The simplicity of the
model allowed us to implement it into the PLUTO code for use in vertically integrated hydro-
dynamic simulations of protoplanetary disks. We demonstrated the accuracy of our model
in comparison with full coagulation models in one-dimensional hydrodynamic simulations.
We have shown that TriPoD produces much better results than the old two-pop-py
model in a two-dimensional simulation of a protoplanetary disks that is perturbed by the
gravitational potential of a Jupiter-mass planet.

A potential alternative to the semi-analytic TriPoD model was investigated in Chap-
ter 7. Instead of calibrating the method to full coagulation models by hand, an artificial
neural network was trained on local dust coagulation simulations. The result was a fast and
accurate local dust coagulation model based on the same power-law size distribution pre-
scription as TriPoD. The machine learning model is so far not tested in combination with
transport and thus not as readily applicable to studies of protoplanetary disks as the semi-
analytic TriPoD. Our work nonetheless demonstrates the potential of machine-learning
techniques for future numerical studies of planet-forming disks.

Outlook

The TriPoD model will be applied to a number of topics in future studies. One possible
application will be larger parameter studies of planet-disk systems with dust coagulation
that were so far not feasible with full coagulation models. In particular it will be interesting
to investigate the filtering efficiency of a planetary gap for various planetary masses and
possibly also including the effect of planet migration.

As TriPoD is computationally relatively inexpensive, it could be tried to couple it with
a simple chemical network, e.g., to track the evolution of ices on grain surfaces throughout
the disk’s evolution.

In its current form, TriPoD is developed for the use in vertically integrated simulations
of protoplanetary disks. However, as discussed in the first half of this thesis, many processes
in protoplanetary disks are inherently three-dimensional, such as turbulence, planet-disk
interactions, etc. The next step in the development of the TriPoD model will thus be
a version of the model that is applicable to three-dimensional setups. TriPoD’s local



146 8. Summary and Outlook

(a) Sedimentation-driven coagulation.
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(b) Turbulence-driven coagulation.
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Figure 8.2
A first version of a three-dimensional TriPoD model. Shown here is a vertical slice through an axisymmetric,
radial-vertical simulation with PLUTO.

character should make this transition relatively simple and some first test runs have already
been conducted, as shown in Figure 8.2. These simulations depict a radial-vertical slice of a
protoplanetary disk with an initially constant dust-to-gas ratio of 1 %. The initial particle
size was set to 1 µm and then evolved in time under the three-parameter prescription.
Figure 8.2a depicts two snapshots of a simulation without any assumed turbulence, i.e.,
particle collisions are only driven by sedimentation and drift. Particles from the upper
layers settle towards the disk midplane and coagulate with other particles on their way. A
wave of large particles rains out into the disk midplane and forms a thin layer. Figure 8.2b
shows the same simulation setup but with an assumed turbulence of 𝛼 = 10−3. In this
setup dust grows fastest in the disk’s midplane, where the highest densities are present.
Although TriPoD is easily extendable to a three-dimensional version, the lack of full dust
coagulation models in three dimensions to calibrate the model to will make testing its
accuracy difficult.

The machine-learning-aided three-parameter model TriPoD-ML requires further testing
and especially implementation into a one-dimensional dust transport scheme to allow for
benchmarking against DustPy. Furthermore, different neural network architectures could
be tested in the future and a more adequate hyperparameter search must be conducted
to find the ideal setup. As a next step, a neural network model for the entire dust size
distribution could be conceived, which models a size distribution at high resolution instead
of the three-parameter approach.
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Final Remarks
The unprecedented advancements in radio astronomy of the past decade have shed new
light and raised more questions about the dust and gas evolution in protoplanetary disks
and its role in the formation of large-scale substructures and, ultimately, planets. We are
challenged by a large amount of observational data, whose interpretation requires more and
more complexity from our theoretical models. Novel techniques to simulate the interplay
of gas and dust must go beyond the aerodynamic coupling of gas and dust and include
the effects on coagulation, thermal relaxation and turbulence arising from it. The required
methods must not only be reasonably accurate, but also computationally feasible.

In this thesis, we have discussed two possible paths towards the development of such
methods. Although our models are approximate and still in development, we hope that
they will become valuable tools for the theoretical study of protoplanetary disks and planet
formation. The study of flow instabilities and turbulence that depend on the interplay
of dust coagulation, hydrodynamics, and thermal relaxation could be a possible field of
application, as laid out in the first half of this thesis. If we learn how instabilities like
the VSI drive large-scale structure formation and interact with the dust in protoplanetary
disks, we can advance our interpretations of observations and better understand the initial
conditions for planet formation.
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