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Summary

The rise and success of modern supervised machine and deep learning models, which have become
parts of our everyday lives, are partially fueled by the increasing availability of large datasets with
high-quality annotations. However, the availability of such annotations, also referred to as labels,
remains a critical bottleneck for many machine learning applications as they are a prerequisite
for supervised model training. This is particularly evident in domains where the data annotation
process is ambiguous and cumbersome or where it requires the knowledge of scarce domain experts.
In application domains such as medical imaging or industrial manufacturing, this often leads to
the situation where, despite the availability of a large amount of non-annotated data, only a
fraction of this data is annotated with appropriate labels. This problem of model training with
limited labeled data is the focus of this thesis which covers methods to leverage unlabeled data,
samples without annotation, and weakly labeled data, samples with a low-information annotation,
for model training. Concretely, it includes contributions to the areas of semi-supervised learning,
positive unlabeled learning, constrained clustering, and transfer learning.

First, this thesis introduces the concept of deep semi-supervised learning and provides an overview
of recent research on self-training, entropy regularization, consistency regularization, and hybrid
approaches. The goal of semi-supervised learning is to train machine learning models on a small
dataset of annotated training data while simultaneously using a larger dataset of completely
unlabeled data. Since the main developments in this area are driven by the computer vision
community, many of these methods have been developed mainly for image data. This motivated
one contribution to investigate their application in a time series classification scenario. Another
contribution investigates the applicability of semi-supervised learning in a medical imaging context
to reduce the data annotation effort in this domain.

Positive unlabeled learning is another exciting sub-field of low-supervised learning. Here, the
training data contains only positive or unlabeled samples, while the goal is to learn a binary clas-
sifier that can distinguish unseen positive and negative samples. Despite the absence of negative
samples during model training, recent positive unlabeled learning methods that use weighted loss
functions enable successful model training in this challenging data regime. One contribution to
this topic presents a framework that uses explicit estimates of predictive uncertainty to enable
self-training in such positive unlabeled settings.

The next section introduces the concept of weakly supervised learning with pairwise binary con-
straint annotations for constrained clustering. One contribution in this area proposes a method
that combines it with concepts from semi-supervised learning to train these models in a semi-
constrained manner. This allows the use of large amounts of completely unlabeled data to guide
model training on a smaller dataset with pairwise binary constraint annotations. Another con-
tribution in this area leverages the cluster detection capabilities of these models to recognize
dynamically changing categories.

The final section includes a description of transfer learning approaches as well as an application
of transfer learning with learning tasks of varying granularity in a medical context.





Zusammenfassung

Der Erfolg moderner überwachter Machine- und Deep-Learning-Modelle, die mittlerweile Teil un-
seres Alltags geworden sind, fußt teilweise auf der zunehmenden Verfg̈barkeit großer Datensätze
mit hochwertigen Annotationen. Die Verfg̈barkeit solcher Annotationen, auch als Labels beze-
ichnet, bleibt jedoch ein kritisches Bottleneck für viele Anwendungen, da sie eine Voraussetzung
für das Training von überwachten Modellen darstellen. Dies ist insbesondere in Domänen ein
Problem, in welchen der Prozess der Datenannotation unklar und aufwändig ist oder das Wissen
von Fachexperten erfordert. In Anwendungsbereichen wie der medizinischen Bildgebung oder der
industriellen Fertigung führt dies oft dazu, dass trotz der Verfügbarkeit einer großen Menge nicht
annotierter Daten nur ein Bruchteil dieser Daten mit geeigneten Labels versehen werden kann.
Das Modelltraining mit begrenzt annotierten Daten ist der Fokus dieser Arbeit, welche Methoden
behandelt, um auch nicht annotierte Daten und schwach annotierte Daten, deren Annotationen
geringen Informationsgehalt besitzen, für das Modelltraining zu nutzen. Die vorliegende Arbeit
enthält Beiträge zu Semi-supervised Learning, Positive-unlabeled Learning, Constrained Cluster-
ing und Transfer Learning.

Zu Beginn wird das Konzept des Semi-supervised Learning vorgestellt und es wird ein Überblick
über die aktuelle Forschung zu Self-Training, Entropy-Regularisation, Consistency-Regularisation
und hybriden Ansätzen gegeben. Das Ziel von Semi-supervised Learning besteht darin, Modelle
auf einem kleinen Datensatz mit annotierten Trainingsdaten zu trainieren, wobei zusätzlich ein
größerer Datensatz von nicht annotierten Daten in das Modelltraining mit einbezogen wird. Da
die wichtigsten Entwicklungen in diesem Bereich aus dem Bereich Computer Vision getrieben wer-
den, wurden viele dieser Methoden hauptsächlich für Bilddaten entwickelt. Dies motivierte einen
Beitrag zur Untersuchung ihrer Anwendung in einem Szenario zur Klassifizierung von Zeitrei-
hen. Ein weiterer Beitrag untersucht die Anwendbarkeit von Semi-supervised Learning in einem
medizinischen Bildgebungskontext, um den Aufwand für die Datenannotation zu reduzieren.

Positive Unlabeled Learning ist ein weiteres Teilgebiet von Semi-supervised Learning. Dabei
enthält der Trainingsdatensatz nur positive oder nicht annotierte Datenpunkte, während das Ziel
darin besteht, einen binären Klassifikator zu lernen, der zwischen positiven und negativen Daten-
punkten unterscheiden kann. Trotz des Fehlens annotierter negativer Datenpunkte während des
Modelltrainings ermöglichen Positive Unlabeled Learning Methoden ein erfolgreiches Modelltrain-
ing in dieser schwierigen Datensituation. Ein Beitrag zu diesem Thema stellt ein Framework vor,
welches explizite Schätzungen der Vorhersageunsicherheit verwendet, um Self-Training in solch
einem Kontext zu ermöglichen.

Ein weiterer Abschnitt stellt das Konzept des Weakly-supervised Learning mit paarweisen binären
Constraint Annotationen für Constrained Clustering vor. Ein Beitrag in diesem Bereich schlägt
eine Methode vor, die Constrained Clustering mit Konzepten aus dem Semi-supervised Learning
kombiniert, um auch nicht annotierte Daten für das Training dieser Modelle zu verwenden. Dies
ermöglicht die Verwendung großer Mengen nicht-annotierter Daten, um das Modelltraining auf
einem kleineren Datensatz mit paarweisen binären Constraint Annotationen zu verbessern. Ein
weiterer Beitrag in diesem Bereich nutzt die Fähigkeiten dieser Modelle zur Clustererkennung, um
dynamisch wechselnde Kategorien in den Daten zu erkennen.

Schließlich enthält ein weiterer Abschnitt eine Beschreibung von Transfer Learning-Ansätzen sowie
eine Anwendung von Transfer Learning mit Machine Learning-Problemen unterschiedlicher Gran-
ularität in einem medizinischen Kontext.
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1 Introduction

Data is the new oil. Like oil, data is
valuable, but if unrefined [and
non-annotated] it cannot really be used
[for supervised machine learning].

Extension of the original quote by Clive
Humby & Michael Palmer.

Machine learning (ML) and especially deep learning (DL) have seen a strong rise in the past
decade. This development has recently culminated in the advent of impressive foundation models
such as Chat-GPT (OpenAI, 2023), DALL-E (Ramesh et al., 2022) and Stable Diffusion (Rom-
bach et al., 2022) that have brought DL broad publicity outside academia and earned coverage
in leading news outlets. What these models have in common, among other technological develop-
ments, is that they have been trained on huge amounts of annotated training data. For instance,
Stable Diffusion in its original version has been trained on the LAION-400M dataset (Schuh-
mann et al., 2021) which consists of 400 million images that are annotated with text descriptions.
LAION-400M in turn is a filtered subset of the LAION-5B dataset (Schuhmann et al., 2022) which
contains 2.32 billion English image-text pairs. Next to their architectural and technical advance-
ments, this sheer magnitude of annotated training data is one of the key drivers of the impressive
performance of these models. A dedicated branch of research is directed at the creation of large
high-quality annotated training datasets, partly by the use of a large force of crowd workers for
manual annotation (Deng et al., 2014; Antol et al., 2015; Shao et al., 2019) or by automatically
crawling annotations from the internet and programmatically cleaning those annotations (Gao
et al., 2020a; Srinivasan et al., 2021; Schuhmann et al., 2022; Kreutzer et al., 2022). Collecting
data with high-quality annotations is often a hurdle due to limiting factors such as task complexity
and time and money constraints, yet it is a core requirement for the training of supervised ML
models. As such, it remains a bottleneck for the development of ML applications. In the context
of this thesis, labeled, or annotated data refers to data that has been annotated or marked with
the correct ground truth output or target, while unlabeled or non-annotated data refers to data
that lacks such annotations.

The MS-COCO image benchmark dataset (Lin et al., 2014) is one great example to demonstrate
the sheer effort that is required to create large datasets with high-quality annotations. The dataset
contains samples from a total of 91 different classes of common everyday objects such as animals,
vehicles, or furniture and the authors’ goal was to annotate 2.5 million instances distributed over
a database of 328k images. It contains data annotations with different degrees of informativeness
including instance spotting (where is an instance?), instance-specific class labeling (which classes
are depicted in the image?), and instance segmentation (pixel-wise segmentation of instances in
the image). The authors designed an elaborate hierarchical annotation pipeline (Deng et al., 2014)
to enable efficient annotation by click workers. The annotation of the different informativeness
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1. Introduction

levels took the following toll: 10k worker hours with an average of 14 seconds per instance and 110
seconds per image for instance spotting, 20k worker hours for instance-specific class labeling with
an average of 29 seconds per instance and 220 seconds per image, and 55k worker hours for instance
segmentation with an average of 80 seconds per instance and 604 seconds per image. Assuming an
hourly wage of 15 USD and leaving aside the effort involved in gathering the raw images, designing,
and implementing the annotation pipeline, this results in expenses of roughly 1.28 million USD for
the annotation of the MS-COCO dataset. Another example with more fine-grained annotations is
the CityScapes dataset (Cordts et al., 2016) which contains fine-grained segmentation masks for 5k
images of street scenes and coarsely annotated segmentation masks for 20k street scene images.
Fine-grained segmentation annotation took 5400 seconds per image, i.e. 1.5 hours per image,
resulting in a total of 7.5k worker hours. The coarse annotation took 420 seconds per image, i.e.
7 minutes per image, resulting in a total of 2.3k worker hours. Following these numbers and the
above assumptions, this relatively small segmentation-level dataset incurred costs of roughly 150k
USD for the data annotation only. This issue is even more pressing in situations where scarce
and hence expensive domain experts are required and the annotation can not be done by trained
click workers as in the previous examples. Medical histopathology, the diagnosis and study of
diseases of human tissue, is one prominent example where highly specialized experts are required
for data annotation. For instance, it takes a histopathologist up to 30 minutes, i.e. 900 seconds,
to annotate one malignant lung cancer area in a whole-slide image gathered with high-quality
microscopes (Wang et al., 2019a). These examples illustrate that the effort for the creation of
high-quality annotated training data can be prohibitively high and it hence remains one major
obstacle to developing tailored ML solutions.

In this context, it is interesting to review the infamous quote ”Data is the new oil” by Clive Humby
with the extension of Michael Palmer claiming that ”Data is the new oil. Like oil, data is valuable,
but if unrefined it cannot really be used. It has to be changed into gas, plastic, chemicals, etc. to
create a valuable entity that drives profitable activity. So, must data be broken down, analysed
for it to have value” (Arthur, 2013). With his concretization of the original quote, Palmer pays
tribute to the fact that data is not inherently useful, it has to be refined to deliver real value. In
this thesis’ context of reducing the need for data annotation for ML model training, this quote
could be further extended to ”Data is the new oil. Like oil, data is valuable, but if unrefined [and
non-annotated] it cannot really be used [for supervised machine learning]”. This extension stresses
the need for not only preprocessed and cleaned training data but also for training data that has
been annotated with high-quality labels.

An alternative approach next to careful and scalable data annotation to overcome this hurdle lies in
the development of modeling techniques and training strategies that allow the use of non-annotated
or weakly annotated data in the training process. Such non-annotated or weakly annotated data
comes at no or low annotation cost and can hence often be gathered with substantially less effort
compared to labeled data. These methods lie at the intersection of unsupervised and supervised
learning, as they require some degree of label information as opposed to unsupervised learning
but not to the extent of supervised learning (Chapelle et al., 2009). This is the core topic of this
thesis, which describes different modeling approaches to reduce the need for annotated training
data and highlights the scientific contributions to these areas. Specifically, it covers the areas of
transfer learning, semi-supervised learning, positive unlabeled learning and constrained clustering
as illustrated in Figure 1.1.
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Unsupervised
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Semi-constrainedPositive-unlabeledSupervised Semi-supervisedTransfer Learning

pre-trained
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Figure 1.1: Illustration of the different data scenarios and corresponding learning strategies covered in
this thesis (illustrated in the green area) at the intersection of supervised and unsupervised learning on
a toy dataset. This includes transfer learning, semi-supervised learning, positive unlabeled learning and
(semi-)constrained clustering. These methods are ordered from left to right with a decreasing degree of
supervision.

• Transfer Learning (TL) is a model training strategy that involves using a model that
was pre-trained on a source task as a starting point for another similar target task. This
warm-starting can substantially reduce the amount of required annotated training data and
the training time needed to achieve good performance on the target task.

• Semi-supervised Learning (SSL) aims to improve the model performance by leveraging
a combination of labeled and unlabeled data. The goal of SSL is to make use of the vast
amounts of unlabeled data available in many real-world applications next to a smaller labeled
dataset to improve the performance of ML models, hence reducing the amount of required
annotated training data.

• Positive Unlabeled Learning (PUL) is a subset of SSL that focuses on training binary
classification models when only positive labeled samples and unlabeled samples are available.
The challenge is to model the underlying class distribution from only the labeled positive
and the unlabeled samples, despite the absence of labeled negatives.

• Constrained Clustering (CC) is a subset of weakly supervised learning strategies that
involves training models on data that is weakly labeled, meaning that it does not have the
precise target or output annotations, but rather some form of auxiliary information that
can still provide some degree of supervision. Concretely, annotations are used that contain
information about the relationship of data samples to one another.

These areas, the scope of this thesis, and the contributions therein are introduced in more detail
in the next section followed by a description of the outline of this thesis.

1.1 Scope

The term semi-supervised learning was coined by Merz et al. (1992) according to Chapelle et al.
(2009) and has been an active research area for decades of ML research. It is targeted at a
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1. Introduction

data scenario where a smaller annotated and a larger non-annotated dataset, also referred to
as labeled and unlabeled throughout this thesis, are present. The main motivation behind the
development of those methods is the observation that often access to labeled data is a bottleneck
for ML applications while unlabeled data can be gathered with comparably low effort (Chapelle
et al., 2009). The algorithms developed for this data scenario thus try to use the information
in the unlabeled dataset to guide the training of an ML model along the labeled data, hence
bridging unsupervised and supervised learning which lends the research branch its name. Semi-
supervised approaches include the use of neighborhood information between labeled and unlabeled
samples, unsupervised regularization strategies, self-training, consistency regularization strategies,
and combinations thereof, so-called hybrid methods (Van Engelen and Hoos, 2020). While earlier
methods were developed for structured, tabular data, the advent of DL led to the development
of potent SSL methods for unstructured data such as texts, images, or time series. This thesis
describes two contributions to the field of deep SSL. In Section 4.1 we describe the transfer of
recent SSL methods that were mainly developed for image data towards the use with time series
data (Goschenhofer et al., 2021). In Section 4.6 we investigate the application of deep SSL methods
in the context of histopathology (Dexl et al., 2022).

PUL is directed at similar data scenarios such as SSL with the difference that the labeled dataset
only contains positive labeled samples while the unlabeled data consists of both positive and
negative samples. Despite this lack of labeled negative training data, PUL aims at learning a
binary classifier that can distinguish unseen data into positives and negatives (Bekker and Davis,
2020). Prominent approaches in this area include the use of tailored, weighted loss functions
for model training, two-step strategies to identify negatives in the unlabeled data for subsequent
model training, and generative approaches. PUL has also been combined with the semi-supervised
strategy of self-training (Chen et al., 2020b). In Section 4.3 we propose an approach to improve
and simplify this self-training strategy via the explicit inclusion of prediction uncertainty in the
self-training process (Dorigatti et al., 2022).

CC subsumes a set of methods that integrate the use of constraint annotations in the clustering
process. Contrary to instance-specific class labels, these annotations contain information about
the relationship of the training samples to each other. While there exists a broad variety of
different constraint types, this thesis is mainly focused on binary pairwise constraints that convey
the information on whether two samples are in the same or a different cluster (Zhang et al.,
2021b). Originally designed for the integration of constraint information in unsupervised methods
such as k-means (Wagstaff et al., 2001), recent methods are tailored towards the use of deep
neural networks for CC using specific loss functions and pairwise training strategies (Hsu et al.,
2019). Next to their ability to train potent clustering models using weak data annotations only,
CC models also retain their ability to detect the number of underlying clusters in the data, the
so-called overclustering scenario (Hsu and Kira, 2016). In Section 4.4, we apply this capability for
work with short text samples and describe how CC could be used in a scenario with dynamically
changing topics (Goschenhofer et al., 2022). Further, we propose a strategy that extends deep
CC towards the use of unlabeled data in model training, i.e. a semi-constrained data scenario, in
Section 4.2 (Goschenhofer et al., 2023).

TL, also referred to as model pre-training with subsequent fine-tuning, has become a de facto
standard procedure for DL in different domains including computer vision (CV) (Mahajan et al.,
2018; Dai et al., 2021) or natural language processing (NLP) (Howard and Ruder, 2018; Yamaguchi
et al., 2021). It follows the concept to pre-train a DL model on a source task and then fine-tune it
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on a target task of interest. Initially mostly used with supervised source tasks, TL is being more
and more used with alternative, auxiliary source tasks with the advent of self-supervised learning
in recent years. For supervised source tasks, the model pre-training is conducted on a source
task for which a large annotated training dataset exists that stems from a similar domain as the
target task. Concretely, this could mean that a model is pre-trained on a source task containing
a large training dataset with coarse annotations and then fine-tuned on a target task for which
a smaller training dataset with more granular, fine-grained annotations exists. In Section 4.5
we describe the use of TL in the context of motor state detection of patients with Parkinson’s
Disease using sensor movement data (Goschenhofer et al., 2019). Therein, we show that a source
task with a large coarsely annotated training dataset can be used to warm-start and improve the
final performance of deep time series classification models for the more fine-grained disease status
prediction target task.

1.2 Outline

The remainder of this thesis is structured as follows: Section 2.1 introduces the notation used
throughout this thesis and Section 2.2 provides a short introduction to deep learning. The core
concepts of SSL including its underlying assumptions and an overview of ML developments in
this area are described in Section 2.3. This section further includes an overview of the recent
developments in deep SSL to which the contributions of this thesis relate such as self-training
and consistency regularization. In Section 2.4, PUL as an edge case of semi-supervised binary
classification and its core extensions towards DL are introduced followed by an introduction of CC
as an approach for weakly supervised learning in Section 2.5. Section 2.6 provides an introduction
to TL and describes an application in a medical context. The closing Section 3 concludes this
thesis with a reflection on the contributions made throughout this Ph.D. thesis and an outlook on
further interesting research questions building atop this work. The concrete scientific contributions
of this thesis are listed in Section 4.
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2 Methodological Background

2.1 Notation

We define a sample x = (x1, ..., xp) as a p−dimensional vector of covariates xl ∈ Xl, l = 1, ..., p,
as realization from the joint input space x ∈ X = (X1 × · · · × Xp) ⊆ Rp. Further, y ∈ Y denotes
the corresponding target value in the target space Y. For classification, the target space results
in Y = {1, ..., K} with K = |Y| different classes and for regression in Y = R with K = 1. We
also define a prediction model f : X 7→ RK which maps an input sample x ∈ X to the respective
K prediction scores. The model f is usually parametrized with a parameter vector θ which is
estimated during model training and the estimated parameter vector is denoted as θ̂. Formally,
we define the model as a scoring function f : X 7→ RK that maps an input sample to K scores for
classification and to K = 1 score for regression tasks and the predicted score vector is denoted as
ẑ = f(x|θ̂). In the classification case, the class-specific scores ẑk that correspond to the elements
of this score vector ẑ are then mapped to predicted class probabilities ŷk via e.g. the softmax
function σ such that ŷk = σ(ẑk) = exp(ẑk)/ ∑K

k=1 exp(ẑk) where ŷ = (ŷ1, ..., ŷK) ∈ [0, 1]K and∑K
k=1 ŷk = 1. The final class prediction for class k then results as arg maxkŷk. In the regression

case, ŷ = ẑ = f(x|θ̂) as no further mapping to probability scores is required. For the sake of
readability, we use a simplified notation throughout this thesis and, unless noted otherwise, refer
to the model prediction ŷ = f(x|θ̂) as a vector of predicted class probabilities with ŷk being the
predicted probability for class k, hence implying the softmax transformation. Situations, where
the model f is used as a mere scoring rule are marked and described accordingly throughout the
thesis. Further, we define a labeled dataset Dl = {(x(i), y(i)), ..., (x(nl), y(nl))} consisting of nl

tuples of samples and their respective labels as well as an unlabeled dataset Du which consists of
nu samples Du = {x(nl+1), ..., x(n)} where n = nl + nu. The goal of semi-supervised learning is
to train a prediction model f on a joint dataset D = Dl ∪ Du which consists of a labeled dataset
Dl and an unlabeled dataset Du. Supervised learning instead is directed at training a prediction
model f assuming a fully labeled training dataset D = Dl. A random subsample of the data is
denoted as batch B ⊂ D.
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2. Methodological Background

2.2 A Primer on Deep Learning

This section serves as a primer to neural networks, also referred to as deep neural networks
(DNNs), as the basis for the different algorithms explained in the following sections. Specifically,
it introduces the concepts of feed-forward neural networks, convolutional neural networks (CNNs)
with applications to image and time series data and transformer architectures for NLP applica-
tions. This section closely follows the formulations and explanations in the introduction to deep
learning book by Goodfellow et al. (2016).

In the contributions of this thesis, we have used various CNN and transformer-based model ar-
chitectures, and this section will serve as a basis to make them more approachable. While this
section explains the basic building blocks of DL architectures, it is by no means a comprehensible
introduction to deep learning which would be out of the scope of this thesis. For an in-depth
introduction to DL refer to the comprehensive book by (Goodfellow et al., 2016) or recent surveys
on transformer architectures (Lin et al., 2022; Tay et al., 2022).

2.2.1 Feed-forward Neural Networks

Feed-forward neural networks, also referred to as multilayer perceptrons (MLPs), are the most
basic DL models and aim at learning a parametrized function f with parameters θ that maps an
input data column vector x = (x1, x2, ..., xp)T of dimensionality p onto a target y. One motivation
for MLPs is that through the subsequent coupling of different mathematical transformations of the
input data, also termed features, the model can learn different representations of the data which
are especially well suited to solve the learning task at hand. An MLP consists of multiple single
neurons stacked atop each other, as such they are the most basic unit of a neural network. One
neuron accepts an input column vector x. The single elements of this input vector are multiplied
with a column vector of trainable weight parameters θ = (θ1, θ2, ..., θp)T with θ ∈ Rp and a bias
term b is added to the scalar product θTx. The model weights θ and the bias term b are updated
and optimized during the model training. The resulting scalar r′ = θTx + b is then fed into a
non-linear and non-parametric activation function σ which provides the output of the neuron such
that:

r = σ(r′) = σ(θTx + b) (2.1)

There are different activation functions with the ReLU σ(r′) = max{0, r′} and the sigmoid function
σ(r′) = 1/(1 + exp(r′)) being the most prominent ones for use in simple feed-forward neural
networks. This formulation of a single neuron can be easily extended towards the use of multiple
neurons, also referred to as a layer. Therefore, we extend the weight vector θ to a weight matrix
Θ ∈ Rp×m and the bias term scalar b ∈ R to a vector b ∈ Rm to describe the parameters of a
layer with m neurons such that r′ = ΘTx + b. The i−th row Θi ∈ Rp of the weight matrix Θ
refers to the weight vector of the i − th neuron and the i−th scalar element bi of the bias vector
b to the respective bias term. The final output of this layer is then defined as

r = σ(r′) = σ(ΘTx + b) (2.2)
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2.2 A Primer on Deep Learning

where the activation function σ is now applied element-wise. This definition of one layer of
different neurons allows us to formulate a one-layer feed-forward neural network for a K−class
classification problem. We again assume an input vector x ∈ Rp which is processed by one layer
of m hidden neurons r′ = (r′

1, ..., r′
m) ∈ Rm with weight matrix Θ ∈ Rp×m that are transformed

by the activation function σ1 such that

r′ = σ1(ΘTx + b) (2.3)

The resulting vector r′ ∈ Rm is also termed a feature vector as it contains m differently transformed
versions of the input x. In the final step, we use another weight matrix U ∈ Rm×K to transform
this feature vector r′ to an output vector ŷ ∈ [0, 1]K such that

ŷ = σ2(UTr) (2.4)

using a second activation function σ2. We use a softmax activation function for σ2 to yield
probabilistic prediction scores ŷ as described in the notation Section 2.1.

Consequently, the entire network results as ŷ = σ2(UT(σ1(ΘTx + b))). While different activation
functions can be used within the neural network, e.g. σ1, the final activation function is determined
by the modeling task. The K-class classification in this case requires the use of a softmax as the
final activation function. This very simplistic one-layer neural network can easily be extended
towards the subsequent use of multiple layers with matching weight matrices. For instance, a
two-layer neural network could follow the structure ŷ = σ3(UT (σ2(ΘT

2 (σ1(ΘT
1 + b1)) + b2))) with

two hidden weight matrices Θ1 ∈ Rp×m, Θ2 ∈ Rm×m and bias vectors b1 ∈ Rm, b2 ∈ Rm. Such
stacking of multiple layers increases the depth of the neural network and hence its learning capacity
which is why they are also referred to as DNNs.

The training of neural networks is a process that involves two fundamental steps: the forward
pass and the backward pass (Goodfellow et al., 2016). Before those steps, the model weights are
initialized randomly or using more elaborate procedures such as the Glorot (Glorot and Bengio,
2010) or the He (He et al., 2015) initializations. During the forward pass, the input data is passed
through the neural network layer by layer, with each layer performing a set of above-described
calculations on the data. These calculations involve weighted sums, added biases and activation
functions that transform the input data into a representation that is progressively more suitable
for the task at hand. The output of the final layer represents the trained network’s prediction
or output for the input ŷ = f(x|θ̂). The full network is defined over all parameters in Θ, U , b
and with θ we denote the union of those. The next step is the backward pass, also known
as backpropagation, where the network learns from its prediction errors and adjusts its weights
to improve its performance (Rumelhart et al., 1986). Therefore, a suitable, differentiable loss
function L(ŷ, y) is used that measures the distance between the predicted value ŷ and the true
target value y such that L : RK × Y 7→ R. Examples for this loss function are the squared loss
L2(ŷ, y) = (ŷ − y)2 for regression and the cross entropy loss LCE(ŷ, y) = −

∑K
k=1 1[y=k] log(ŷk) for

classification. Then the partial derivatives, i.e. the gradients, of the loss function with respect to
these parameters are calculated using the chain rule. These derivatives are then used to update
the parameters in the direction of the negative gradient, to minimize the loss function over the
training data (Paszke et al., 2017). The weight updates are performed using iterative optimization
algorithms such as stochastic gradient descent or Adam (Kingma and Ba, 2014). These descending
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2. Methodological Background

methods adjust the weights in the direction of the negative gradient over multiple iterations, or
epochs until the network’s performance reaches a satisfactory level. Overall, the training can be
seen as an optimization problem, in which the network is attempting to find a set of parameters
that minimize the distance between its predictions and the true targets.

2.2.2 Convolutional Neural Networks

CNNs are a specialized type of neural network architecture that are particularly effective at
handling data that follows a grid-like topology such as time series or images (Goodfellow et al.,
2016). CNNs use the convolution operator in place of general matrix multiplication in at least one
of their layers. The convolution allows them to learn to detect features or patterns in the input
data that are relevant to the learning task at hand. The convolution operator is a mathematical
operation that takes two functions, say x and k, as input and produces a third function, denoted
(x ∗ k), as output. In the context of CNNs, the input function is typically the raw input data,
while the kernel function is a set of learnable weights that are applied to the input data.

For example, consider a one-dimensional time series x = (x1, x2, ..., xT ) with measurements at T
time points. The kernel function k of length m can be defined as a vector of learnable weights
θ = (θ1, ..., θm), that is applied to subsets of the input time series via element-wise multiplication
and summed. For instance, imagine a kernel function k(t) that assigns weight factors θt = 0.7 to
the current and θt−1 = 0.3 to the previous measurement and a factor of 0 to all other previous
measurements x1, ..., xt−2. Formally, the output of the convolution operation between x and k at
position t is given by:

x′
t = (x ∗ k)(t) =

t∑
i=1

xikt−i (2.5)

Intuitively, this operation slides the kernel function over the input time series, computing a
weighted sum of the input values at each position. The resulting output x′ is a filtered or con-
volved version of the input time series x. In the case of image data, the convolution operator can
be extended to two dimensions. Here, the kernel function is a matrix of learnable weights that
is applied to subsets of the input image, again via element-wise multiplication and summation.
Assume we have an input image X ∈ RH×W and we apply a convolutional filter kernel matrix
K ∈ Rk×k. The output of the convolutional layer is the feature map X ′ ∈ RHout×Wout×Cout where
Hout and Wout are the height and width of the output feature map and determined by the input
size, the kernel size, padding, and the stride s, and Cout is the number of filters in the layer. The
output feature map X ′ is computed as follows:

x′
i,j,c = σ

 k∑
p=1

k∑
q=1

θp,q,cxi+p×s,j+q×s + bc

 , (2.6)

where θp,q,c is the weight of the c-th filter at position (p, q), xi,j is the input pixel at position
(i, j), bc is the bias of the c-th filter, and s is the stride which determines the number of pixels
by which the kernel is shifted at each step while scanning the input. The activation function σ
is applied element-wise to the output of the convolution operation to finally yield the convolved
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version X ′ of the image X. CNNs use the convolution operator in at least one of their layers,
typically followed by a non-linear activation function. Similar to MLPs, a CNN architecture
usually consists of subsequent blocks of convolutional filters and they include further advances
such as skip-connections (He et al., 2016; Tan and Le, 2019) whose descriptions are beyond the
scope of this thesis. This allows the network to learn to detect patterns or features in the input
data that are relevant to the learning task at hand, with increasing complexity throughout the
network architecture. For example, in an image classification task, the network might learn to
detect edges, corners, or other visual features in the early stages of the architecture. These might
then be combined into more complex features at later stages such as eyes, wheels or noses that
are useful for distinguishing between different image classes.

CNNs are trained using backpropagation and gradient descent optimizers, similar to MLP archi-
tectures. One challenge in training CNNs and neural networks in general is the issue of overfitting,
where the network becomes too specialized to the training data and performs poorly on new, un-
seen data. To address this, several regularization techniques have been developed, such as dropout
(Srivastava et al., 2014), which randomly drops out some of the units in the network during train-
ing, and weight decay, which penalizes large weights by adding a regularization term to the loss
function.

2.2.3 Transformers

The transformer architecture was introduced in the seminal paper by Vaswani et al. (2017). It has
revolutionized the field of (NLP) by achieving state-of-the-art performance on a variety of tasks
such as machine translation, text summarization, and sentiment analysis and is the foundation of
modern NLP architectures such as GPT (Radford et al., 2018), BERT (Devlin et al., 2019) or T5
(Raffel et al., 2020). The transformer architecture is based on the concept of self-attention, which
allows the model to focus on different parts of the input sequence when computing the output.
This is in contrast to previous NLP models that used recurrent neural networks (RNNs) such
as Long-short-term-memory Networks (LSTMs) (Hochreiter and Schmidhuber, 1997) or Gated
Recurrent Networks (GRUs) (Cho et al., 2014) to process the input sequence one token at a time.
Self-attention in turn extends the concept of attention as introduced by Bahdanau et al. (2015)
and Luong et al. (2015).

The core building block of the transformer architecture is the self-attention mechanism. Given
an sequence of T input tokens X = (x1, x2, ..., xT ), the self-attention mechanism computes a set
of output vectors Z = (z1, z2, ..., zT ), where each output vector zi is a weighted sum of all input
vectors:

zi =
T∑

j=1
αijxj , (2.7)

where αij is the attention weight between input vectors xi and xj . The attention weight is
computed using a softmax function αij = exp(eij)/ ∑T

k=1 exp(eik) where eij is the attention score
between input vectors xi and xj . The attention score is computed as a dot product between a
query vector qi and a key vector kj such that eij = qT

i kj , where qi and kj are learned query and
key vectors that are computed from the input vectors using a linear projection. The self-attention
mechanism allows the model to attend to different parts of the input token sequence depending
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on the task at hand. For example, in a machine translation task, the model can attend to the
source language words that are most relevant to the translation of the current target language
word. The Transformer architecture typically also includes an MLP and residual connections
(He et al., 2016) within each layer where the MLP consists of two linear transformations with a
ReLU activation function in between. The residual connections allow the model to learn identity
mappings, which helps with training such deep networks, similar to their functionality in CNNs.
Further, it typically includes layer normalization which normalizes the activations of each layer to
have zero mean and unit variance, which helps with training (Ba et al., 2016) as well as Dropout
used to prevent overfitting (Srivastava et al., 2014).

The transformer architecture has become a standard building block for many state-of-the-art NLP
models and was also shown to be applicable in CV scenarios with the introduction of the vision
transformer (Dosovitskiy et al., 2021). Its success can be attributed to its ability to model long-
range dependencies and its parallelizability, which allows for faster training on modern hardware.
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Figure 2.1: Illustration of the SSL setting for a binary classification scenario on a toy dataset. The goal
is to train a binary classifier that can learn the true decision boundary using both a labeled dataset Dl,
illustrated as colored dots, and an unlabeled dataset Du, illustrated as gray dots.

The goal and promise of SSL, at the intersection of unsupervised and supervised learning, is
to leverage both labeled and unlabeled data for ML tasks as illustrated in Figure 2.1. The
expanding research in this field is mainly driven by the sometimes prohibitively high effort involved
in annotating large labeled datasets on the one side and the abundance of unlabeled data on the
other (Chapelle et al., 2009). Hence, semi-supervised methods mainly focus on settings with few
labeled and many unlabeled training data such that nl ≪ nu. While there exists research on SSL
for a broad variety of learning tasks, this thesis is focused on semi-supervised classification, the
most active area of research. This section introduces the core underlying assumptions of SSL,
then provides a short overview of classical approaches, i.e. non-neural network models, which is
followed by a comprehensive review of the recent advances in deep SSL and the different concepts
applied therein.

SSL relies on three interconnected assumptions (Chapelle et al., 2009; Van Engelen and Hoos,
2020) and many developed approaches rely either on one or a combination of them. While similar
in concept, the definitions of Chapelle et al. (2009) and Van Engelen and Hoos (2020) differ
slightly. The following structure follows that of the more recent work by Van Engelen and Hoos
(2020).

1. Smoothness assumption: Two samples x, x′ that are close to each other in a high-density
region of the input space should have similar labels y, y′. While this assumption is also
heavily used in supervised learning, it has even broader implications in SSL as it implies
transitivity: if x is close to x′ and x′ is close to x∗, then we can assume the labels y, y∗ to
be similar as well.

2. Low-density assumption: The decision boundary of model f should pass through low-
density areas, so-called low-density regions. This adds another perspective to the smoothness
assumption as placing the decision boundary in a high-density region would violate this
smoothness assumption.

3. Manifold assumption: The input space is high-dimensional and consists of multiple lower-
dimensional manifolds. All samples lie on those manifolds and samples x, x′ that lie on the
same manifold have the same labels y, y′.
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Furthermore, semi-supervised algorithms can be distinguished between inductive and transductive
methods. Inductive learning algorithms aim at learning a general mapping from the data to the
target space using the dataset D = Dl ∪ Du. After the learning phase at inference time, inductive
models along with their estimated model parameters can be used to assign predicted labels to new,
unseen data. In that sense, the inductive learning procedure optimizes the model parameters
to yield the best possible predictions for unseen data. Contrary to this, transductive methods
merely aim at predicting labels for the unlabeled dataset Du using the labeled dataset Dl without
the learning of a general decision rule. Transductive methods optimize directly over the model
predictions on the unlabeled data Du only (Van Engelen and Hoos, 2020). In that sense, induction
is more general as it aims at learning general decision rules while transduction tries to reason from
the labeled to the specific unlabeled samples.

SSL research traces back to the beginnings of ML research (Dempster et al., 1977) and hence
many classical approaches, i.e. non-neural network models, have been developed. Following the
taxonomy developed in the standard textbook by Chapelle et al. (2009), these approaches can
be distinguished into four model classes: 1) Generative models such as the EM-algorithm for
incomplete data (Dempster et al., 1977) that aim at learning the class-conditional density and
use the unlabeled data Du to improve its estimation via better estimation of the marginal. 2)
Approaches that follow the low-density separation rationale try to direct the decision boundary
through low-density areas following the low-density assumption using the latent information in
Du to identify these areas. This mainly involves max-margin estimators such as the transductive
Support Vector Machine (SVM) (Collobert et al., 2006). 3) Graph-based methods that exploit
the neighborhood of labeled and unlabeled samples defined via a metric, e.g. defined via a kernel
function following the manifold assumption. These neighborhood relationships are then used to
propagate class labels from the labeled to their neighboring unlabeled samples. Most of these
methods are transductive and Label Propagation (Zhu and Ghahramanih, 2002) is one prominent
method of this model class. 4) Change of Representation: two-step approaches that e.g. use Du in
the first step to learn a meaningful data representation which is then tailored towards the learning
task using Dl in the second step.

Following the advent of DL in the past decade, a large body of research evolved that combines the
SSL paradigm with DL models. In a recent overview, Van Engelen and Hoos (2020) extend the
above-mentioned taxonomy of Chapelle et al. (2009) towards the use of neural networks along the
dimensions of transduction and induction. Under transduction, they collect mainly graph-based
models that leverage joint neighborhood structures in D = Dl ∪ Du. With that, they follow the
structure of Chapelle et al. (2009) but extend it towards deep graph-based methods such as Deep
Label Propagation (Iscen et al., 2019). They further differentiate different learning paradigms
that mainly aim at extending existing supervised inductive methods toward using additional
unlabeled data Du next to the labeled data Dl. 1) Self-training methods, also referred to as
wrapper methods or pseudo-labeling, use a supervised model f trained on Dl to iterative pseudo-
label additional unlabeled samples from Du to augment the training dataset and then re-train on
this expanded labeled dataset. 2) Unsupervised preprocessing methods that use Du to aid the
generation of a meaningful representation of the data in an unsupervised manner. This includes
the extraction of meaningful features from the raw data to find an embedding that is favorable
for the initial learning task. Such approaches contain but are not limited to dimension reduction
techniques such as Principal Component Analysis or autoencoders, again related to the manifold
assumption. Further, cluster-then-label approaches use clustering techniques over D or Du only to
facilitate the initial supervised learning task. The final sub-branch of unsupervised preprocessing
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methods mainly targets neural network-based methods and summarizes pre-training algorithms
that use Du to initialize the model architecture which is then fine-tuned on Dl. 3) Intrinsically
semi-supervised approaches that extend supervised loss functions defined over Dl with tailored
loss functions that allow the inclusion of Du in the training process to enable a semi-supervised
model training.

Recent strong-performing SSL methods follow at least one of these paradigms or are combinations
of them. The research contributions covered in this thesis are targeted at 1) self-training and
3) intrinsically semi-supervised approaches, that is entropy and consistency regularization and
hybrid approaches. Therefore, the remainder of this chapter is focused on providing the reader
with an overview of those two areas.

2.3.1 Self-training

Self-training, also referred to as pseudo-labeling or self-learning, is one of the oldest approaches
to SSL (Scudder, 1965; Fralick, 1967; Agrawala, 1970) being used for ML modeling (Yarowsky,
1995; Rosenberg et al., 2005). It follows the idea that the model trains itself by iteratively
annotating parts of the unlabeled data, see Figure 2.2 for an illustration. The procedure usually
alternates between a training and a pseudo-labeling step. After the training step, the model selects
unlabeled samples via a selection criterion such as model confidence. These selected samples are
then assigned the predicted label and added from Du to the now updated labeled dataset. The
model is then trained on this (pseudo-) labeled dataset and this self-training cycle continues until
a stopping criterion, such as the fact that no unlabeled data is left, is reached. Self-training was
translated to DL in the pioneering work of Lee (2013) and since then has sparked the development
of numerous variants. The pseudo-labeling procedure in these approaches can be broken down
into two steps that rely on the predictions from model f to get an overview of recent developments
in that area.

The first step is the selection of some unlabeled sample(s) using a selection criterion. There exist
different criteria for this selection process. The maximum predicted softmax class probability
max(ŷ) for an unlabeled sample x ∈ Du as a measure of model confidence is the de facto standard
selection criterion. This criterion is then often used either with a threshold hyperparameter τ
to decide which of the unlabeled samples are selected or by selecting the top k samples, ranked
by the selection criterion. The naive version of Lee (2013) and succeeding approaches (Arazo
et al., 2020; Laine and Aila, 2017; Tarvainen and Valpola, 2017) select all unlabeled samples for
pseudo-labeling. They use a ramp-up function that assigns a gradually increasing weight to the
unsupervised loss function and hence balances the impact of pseudo-labeling throughout the pro-
cess of model training. In contrast, Rizve et al. (2021) select unlabeled samples for pseudo-labeling
using a confidence and a prediction uncertainty criterion with two threshold hyperparameters τ, k.
More holistic approaches also rely on pseudo-labeling (Sohn et al., 2020; Berthelot et al., 2019b;
Xie et al., 2020b,a) using a confidence metric with thresholding for pseudo-label selection. Zhang
et al. (2021a) explicitly tackle this thresholding issue and propose flexible, class-specific thresholds
that adapt throughout training within their curriculum pseudo-labeling approach. In a similar
vein, Cascante-Bonilla et al. (2021) learn a flexible threshold based on extreme value theory.

The second step is the pseudo-label assignment based on the model predictions ŷ = f(x|θ̂) for
selected unlabeled samples x ∈ Du, i.e. the mapping of the model prediction ŷ to the pseudo-label
ỹ which is ultimately used in the unsupervised loss part. The early approach by Lee (2013) uses
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Figure 2.2: Illustration of the iterative self-training method. After an initial model fit on the labeled data,
marked as blue and orange dots, parts of the unlabeled data, marked as gray dots, are pseudo-labeled,
marked as light blue and orange dots, and additionally used for a model re-fit on this extended (pseudo-)
labeled dataset. This iterative procedure continues until a stopping criterion is met.

hard pseudo-labels such that ỹ = arg maxk ŷk. Following this, Rizve et al. (2021) also rely on
hard pseudo-labels in combination with confidence- and uncertainty-based pseudo-label selection.
In contrast, Arazo et al. (2020) use soft pseudo-labels such that ỹ = ŷ following observations by
Tanaka et al. (2018) on training with noisy labels. They further argue that soft pseudo-labels help
integrate the model’s confidence into training which ultimately benefits performance. With the
noisy-student-framework, Xie et al. (2020b) propose a self-training method that allows using both
hard and soft pseudo-labels. Throughout their experiments, they empirically find that soft pseudo-
labels lead to slightly better generalization performance, especially for out-of-domain unlabeled
data. Parts of the large body of work that combines Self-training with consistency regularization
(namely MixMatch (Berthelot et al., 2019b), ReMixMatch (Berthelot et al., 2019a), UDA (Xie
et al., 2020a)) also use sharpened soft pseudo-labels. Sharpening is also known as temperature
scaling (Guo et al., 2017). It uses a hyperparameter T ∈ [0, 1] to artificially decrease the entropy of
the predicted softmax probability vector ŷ such that ỹk = ŷ

1/T
k /

∑K
k=1 ŷ

1/T
k where ỹ = ŷ for T = 1.

It is noteworthy that hard pseudo-labels ỹ = arg maxk ŷk are used as targets within FixMatch
(Sohn et al., 2020). Within an ablation study, Sohn et al. (2020) investigate the relationship
between sharpening via temperature T and confidence-thresholding in combination with hard
pseudo-labeling. They find that the sharpening procedure for soft pseudo-labels has no advantage
over hard thresholded pseudo-labels, while it comes at the cost of another hyperparameter T .
Hence, they use hard pseudo-labels without sharpening and FlexMatch, developed by Zhang et al.
(2021a) on top of FixMatch (Sohn et al., 2020), also dispenses with pseudo-label sharpening.

As described above, successful self-training hinges on the interplay of selecting reasonable unla-
beled samples via the selection criterion and assigning the correct pseudo-label to them. One
prevalent issue that can occur in context is the confirmation bias (Arazo et al., 2020; Li et al.,
2019), also referred to as the noise accumulation issue (Zhang et al., 2016). This issue occurs
when the model f makes overconfident but wrong predictions on the unlabeled samples. Subse-
quently, this leads to the selection of such overconfident samples followed by the assignment of a
semantically wrong pseudo-label. This in turn creates a wrong training signal and hence confuses
semi-supervised model training ultimately leading to model degradation. To put it in another way,
if the model f was guaranteed to make correct predictions on all unlabeled samples, self-training
could transfer each semi-supervised task into a purely supervised task as all label guesses on Du

would resemble the true underlying but non-observable labels. This confirmation bias is illustrated
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in Figure 2.3 where overconfident but semantically wrong predictions on unlabeled samples from
the ImageNet-10 dataset (Deng et al., 2009) are depicted. A more detailed description of the
confirmation bias along with further illustrations can be found in Section 4.2.

Figure 2.3: Illustration of the confirmation bias. Depicted are example images from the ImageNet-10
dataset (Deng et al., 2009) on which the model makes confident but semantically wrong model predictions.
For instance, the model assigns the left image the wrong class label ’Airliner’ with high confidence of
ŷk=Airliner = 0.975 while the true label y is ’Sports Car’. If these unlabeled samples were selected and
used as pseudo-labels in a self-training scenario, their inclusion would have a detrimental impact on model
training.

There exist different mechanisms to cope with this confirmation bias, mostly targeted at creating
better-calibrated model predictions on the unlabeled samples to mitigate the selection of faulty
pseudo-labeled samples. Li et al. (2019) use MC-Dropout (Gal and Ghahramani, 2016) and
random data augmentations to yield better-calibrated predictions for use in their student-teacher
approach for semi-supervised training. Arazo et al. (2020) propose the use of the mixup data
augmentation (Zhang et al., 2018) and the injection of label noise as regularization methods
to overcome the confirmation bias. In a similar realm, Rizve et al. (2021) successfully use a
combination of prediction confidence and model uncertainty with two distinct thresholds as a
pseudo-label selection criterion to overcome this issue. Cascante-Bonilla et al. (2021) take a
different perspective and combine curriculum learning with pseudo-labeling. This enables the
model to use adaptive thresholds in the selection criterion and leads to on-par performance with
more advanced and more complex SSL techniques. Within FlexMatch, Zhang et al. (2021a) also
make use of flexible, class-specific thresholds in their extension of FixMatch (Sohn et al., 2020).
Next to these extensions, pseudo-labeling remains a crucial component in recent semi-supervised
models.

2.3.2 Entropy Regularization

Alternative inherently semi-supervised methods use additional unsupervised loss functions Lu

defined over Du or D = Dl ∪ Du which are combined with the initial, supervised loss function
Ll to allow joint model training over both datasets via the combined loss L = Ll + λLu, where
hyperparameter λ controls the impact of the unsupervised loss term Lu. This has a regularizing
effect and has the benefit that unlabeled samples from Du can be inherently integrated into model
training. For classification problems, typically the cross-entropy loss is used as a supervised loss
function:
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Ll(ŷ, y) = −
K∑

k=1
1[y=k] log ŷk (2.8)

where ŷ = f(x|θ̂) for x ∈ Dl.

Several versions of the unsupervised loss term Lu have been developed in the literature. These
are subsumed under the term unsupervised regularization as they serve as a model regularization
without the need for label annotations. One early approach in this context is minimum entropy
regularization (MER) introduced for use in SSL by Grandvalet et al. (2005). Thereby, the predic-
tion entropy H(ŷ) over the unlabeled samples x ∈ Du serves as an unsupervised regularization
term:

Lu(ŷ) = −
K∑

k=1
ŷk log ŷk (2.9)

The combination of the supervised and the unsupervised loss terms leads to the formulation of
the semi-supervised empirical risk:

RSSL(f) = 1
|Bl|

∑
(x,y)∈Bl

Ll(ŷ, y) + λ
1

|Bu|
∑

x∈Bu

Lu(ŷ)

= − 1
|Bl|

∑
(x,y)∈Bl

K∑
k=1

1[y=k] log ŷk − λ
1

|Bu|
∑

x∈Bu

K∑
k=1

ŷk log ŷk

(2.10)

where Bl = {(x(1), y(1)), ..., (x(bl), y(bl))} is a batch of labeled data with batch size bl = |Bl| and
Bu = {x(1), ..., x(bu)} is a batch of unlabeled data with batch size bu = |Bu|. This loss combina-
tion forces the model to create sharp, low entropy predictions over the entire dataset and allows
the integration of unlabeled samples x ∈ Du into model training. MER was developed following
the observation that unlabeled data do not contribute to the maximum-likelihood estimation of
discriminative, supervised models. Thus, it introduces the regularization term as a prior adding
an inductive bias to the model driven by the unlabeled data. The penalization of the model for
high-entropy predictions over the unlabeled data potentially pushes the model’s decision boundary
towards low-density and away from high-density regions (Chapelle et al., 2009). This regulariza-
tion strategy makes use of the low-density assumption as it ”encourages the model to output
confident predictions on unlabeled data” (Berthelot et al., 2019b).

Originally developed for logistic regression, MER is also used within neural network-based classi-
fiers due to its generalizable formulation which allows a combination with other SSL approaches.
For instance, Miyato et al. (2018) use MER in combination with their virtual adversarial training
approach to yield stronger model performance. In MixMatch, Berthelot et al. (2019b) implicitly
follow the rationale of MER via the usage of a sharpening function on the model predictions of the
unlabeled samples. This can be seen as an indirect application of MER, as the entropy regular-
ization does not come as a direct regularization as in MER but indirectly via the pseudo-labeling
scheme. This sharpening functionality is similarly used in UDA (Xie et al., 2020a) and ReMix-
Match (Berthelot et al., 2019a). MER is also used as a module in the pseudo-labeling approach
by Arazo et al. (2020) to avoid local minima.
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2.3.3 Consistency Regularization

The rationale of unsupervised regularization was further extended within models that aim at
creating consistent model predictions over the unlabeled samples, also referred to as perturbation-
based methods (Van Engelen and Hoos, 2020). These build up on the smoothness assumption
which states that similar data points x, x′ that are close to one another in the input space should
have similar labels y, y′. Following this assumption, a slightly perturbed version x′ = g(x) of the
input sample x is expected to correspond to the same class as the clean, non-perturbed version x,
assuming x lies in a high-density region. This expected consistency in model predictions lends this
set of methods its name. The perturbation function g can resemble any perturbing process such
as the addition of a gaussian noise vector ϵ = (ϵ1, ..., ϵp) with ϵi ∼ N(0, 1), i = 1, ..., p such that
g(x) = x + ϵ. Consistency regularization is also associated with the manifold assumption (Oliver
et al., 2018; Ghosh and Thiery, 2021). This follows the argument that consistency regularization
methods are designed in a way that the model learns a more robust mapping of the data to class-
specific, low-dimensional manifolds as it has to cope with the induced perturbation. In its most
naive form, this consistency requirement is then integrated into semi-supervised model training
via a regularization term

Lu(ŷ, ŷ′) =
∥∥ŷ − ŷ′∥∥

2 (2.11)

where the model is penalized for quadratic differences in the model predictions over the clean input
sample ŷ = f(x|θ̂) and its perturbed version ŷ′ = f(g(x)|θ̂) using the L2−norm. From Equation
(2.11) it is evident that no label information is required to calculate this loss and to propagate
its gradient back through the model for model training via gradient descent optimization. This
makes consistency regularization especially appealing for use in SSL as it does not need labels to
regularize the model for inconsistency in model predictions for the unlabeled samples Du.

In recent years, different perturbation functions g have been developed from the simple addition
of gaussian noise to the inputs through to the use of more elaborate methods such as temporal
consistency and data augmentation-based consistency (see Table 1 in Sohn et al. (2020) for an
overview). An overview of these various approaches is provided in the following.

Noise Perturbation

With the Ladder-Net, Rasmus et al. (2015) introduced an autoencoder-based approach that injects
additive gaussian noise at different intermediate representations of the input samples and calcu-
lates a regularization term over changes in these representations. This allows them to robustify
the model representations and train the model on the joint dataset D = Dl ∪ Du using both the
reconstruction loss of the autoencoder as well as the noise-regularization term. The encoder part
of the architecture is used at inference time. Instead of random noise, Miyato et al. (2018) propose
to add directed adversarial noise to the unlabeled input samples as a regularization mechanism
which they coined as virtual adversarial training (VAT). In contrast to the addition of noise to
the input sample, the Π-Model adds noise in the form of dropout layers to the model architecture
(Laine and Aila, 2017). The regularization term is then calculated over different model prediction
samples via the MCDropout algorithm (Gal and Ghahramani, 2016) which simulates an ensemble
of models and enforces consistent model predictions across the ensemble members. Park et al.
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(2018) propose a combination of the Π-Model with VAT and show small performance gains via
this combined method over the solitary approaches.

Temporal Consistency

Methods from another branch of research leverage predictions from different training stages of the
model as a perturbation mechanism following the rationale that the model should produce tempo-
rally consistent model predictions during training. Temporal ensembling (Laine and Aila, 2017)
maintains an exponential moving average of model predictions over stochastically augmented,
unlabeled input samples from past training epochs as a consistency target. Thus, the auxiliary
target ỹt for input sample x is calculated for epoch t as:

ỹt = αŷt + (1 − α)ŷt−1
(1 − αt) (2.12)

where α ∈ [0, 1] is a hyperparameter that governs the effect of the past on the present predictions,
and the denominator (1 − αt) is a bias correction term. In the current training epoch t, ỹt

serves as an auxiliary target for an unlabeled sample x ∈ Du. The squared distance between
the past and the current model predictions is used as an unsupervised loss function such that
Lu(ŷt, ỹt) = ∥ŷt − ỹt∥2. Tarvainen and Valpola (2017) follow this rationale as well in their mean
teacher architecture. Instead of storing past model predictions of Du, they maintain a teacher
version of the initial student model. The parameters of this teacher model are updated using an
exponential moving average of the student model’s current and the teacher model’s previous model
parameters. Concretely, the model parameters for the teacher at training step t are calculated
as θ̂′

t = aθ̂′
t−1 + (1 − a)θ̂t where θ̂t are the student’s parameters at step t. The weights of the

student model are directly optimized using a combined loss function: the cross entropy is used as
supervised loss Ll over the labeled samples Dl and a squared loss is used as consistency loss Lu

over samples from the combined dataset D. Concretely, the consistency loss for a (un-)labeled
sample x ∈ D at training step t is Lu(ŷ, ŷ′) = ∥ŷ − ŷ′∥2 where ŷ = f(x|θ̂t) and ŷ′ = f(x|θ̂′

t).
The basic principle remains: the model is trained to make consistent predictions for the unlabeled
samples throughout the training process, and this signal is used to incorporate unlabeled data
into the model training.

This concept of teacher-student models is an important training paradigm for SSL and inspired
a broader body of semi-supervised training approaches. For instance, the iterative noisy student
(Xie et al., 2020b) uses a teacher model that is trained on clean, labeled samples only to pseudo-
label unlabeled samples. These are then used as auxiliary training targets for the student model.
After training the student on this combined (un-)labeled dataset, the current student takes over
the role of the teacher to teach the next, novel student model. Based on this and additional tricks
such as noise injection in both the model and the data, this approach can leverage large amounts
of unlabeled data. Other examples are the unbiased teacher approaches that train a student and
a slowly progressing teacher model for semi-supervised object detection (Liu et al., 2021, 2022).
The teacher model is gradually trained via exponential moving averaging of the student’s model
weights. Along with other tricks including data augmentation and class balancing, the unbiased
teacher yields strong performance with only a fraction of samples being annotated compared to
the supervised baseline. Luo et al. (2018) couple the student-teacher paradigm with a graph-
based approach where the teacher model is used to create clusters of the unlabeled data, leading
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to more expressive features. Ke et al. (2019) identify the close coupling of the teacher and student
models as a bottleneck in the mean teacher and propose the dual student architecture as an
improvement.

Data Augmentation

Data augmentation strategies have become a core component of recent deep-learning approaches
to increase model performance in settings with large and small annotated training datasets (Lem-
ley et al., 2017; Cubuk et al., 2019, 2020) to overcome overfitting and enhance model generalization
(Zhang et al., 2018). In supervised settings, data augmentation serves as a regularization mecha-
nism that prevents the model from overfitting to the training examples and teaches it invariances
in the training data (Cubuk et al., 2019; Ghosh and Thiery, 2021). Next to the application in CV,
data augmentation also plays a crucial component in NLP (Yu et al., 2018), speech recognition
(Park et al., 2019), and time series classification (Iwana and Uchida, 2021) settings. As mentioned
earlier, we can define a data augmentation strategy g that creates an augmented version x′ of
the original sample x in a label-preserving manner. This means that the semantic meaning, as
expressed in the corresponding label, of x and the augmented version x′ is preserved and remains
the same despite the augmentation. Simple augmentations for image data include e.g. cropping,
translations, flipping, warping, and rotation of the original image.

Interpreted as a smart perturbation noise, data augmentation strategies easily fit the rationale of
consistency regularization. Hence, they also play a crucial role in consistency regularization for
SSL, next to supervised learning. For instance, one core component of MixMatch’s pseudo-labeling
strategy is the repeated random augmentation of the unlabeled samples before the label guessing
step (Berthelot et al., 2019b). It furthermore makes use of the data augmentation strategy MixUp
(Zhang et al., 2018) to mix and match the augmented pseudo-labeled unlabeled samples and the
originally labeled samples. With the extension ReMixMatch, Berthelot et al. (2019a) replace
the standard augmentations in MixMatch (Berthelot et al., 2019b) with augmentation anchoring.
Therefore, they use the model prediction for a weakly augmented sample (e.g. simple cropping
or flipping of the images) as targets for predictions over strongly augmented versions of the same
sample. For the strong augmentations, they use a customized version of the AutoAugment strat-
egy (Cubuk et al., 2019) which learns an augmentation policy throughout model training. Within
their work on unsupervised data augmentation (UDA), Xie et al. (2020a) show the potential of
specifically designed data augmentation strategies in both supervised learning and SSL settings
for image and text-based learning tasks. Across a variety of experiments, they show that especially
the RandAugment (Cubuk et al., 2020) strategy leads to model performance on par with fully
supervised learning with a fraction of labeled data. RandAugment is a simplified version of Au-
toAugment which randomly chooses some from a larger set of augmentation functions and hence
alleviates the overhead required to learn the augmentation policy in AutoAugment, facilitating its
use in settings with few data annotations. FixMatch (Sohn et al., 2020), a successor of ReMix-
Match (Berthelot et al., 2019a), further builds on top of the weak- and strong augmentations
paradigm using sets of weak and strong data augmentations. The rationale is to use confident
predictions on weakly augmented unlabeled samples as pseudo-labels which then serve as targets
in an unsupervised cross-entropy loss function. Predictions over strongly augmented versions of
these samples serve as input to this unsupervised loss function. Next to the AutoAugment strategy
(Cubuk et al., 2019), Sohn et al. (2020) find that the simpler RandAugment (Cubuk et al., 2020)
strategy also applies very well to this setting. This relatively straightforward use of the weak- and
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strong augmentations training scheme lead to substantial improvement over its predecessors such
as MixMatch (Sohn et al., 2020), ReMixMatch (Berthelot et al., 2019a), and UDA (Xie et al.,
2020a) despite its simplification. These examples demonstrate the potential and the crucial role
of data augmentation strategies in SSL.

2.3.4 Hybrid Approaches

The careful reader might have noticed that the same approaches have been cited as examples
of the different SSL strategies self-training, entropy regularization, and consistency regularization
described in this chapter. This is due to the recent trend that the best-performing SSL approaches
often combine these different complementary strategies. A prominent example of this development
is the family of ”-Match” papers that have been introduced by various research groups in recent
years. Starting with MixMatch, Berthelot et al. (2019b) combine elaborate data augmentation
with pseudo-labeling, entropy regularization via a sharpening function, and Mixup (Zhang et al.,
2018) as a holistic approach to SSL. Model prediction vectors over differently augmented versions
of an unlabeled sample are averaged, sharpened via a temperature scaling mechanism, and then
used as pseudo-labels. Subsequently, a batch of labeled and pseudo-labeled data are combined
via Mixup to create synthetic training samples with synthetic labels which are then fed into an
unsupervised loss function Lu. This combination of different SSL paradigms allows MixMatch
to achieve impressive predictive performance with a low degree of supervision. In their follow-up
work ReMixMatch, Berthelot et al. (2019a) further improve MixMatch by distribution alignment
to align the distribution of pseudo-labels with the distribution of labeled data, and augmentation
anchoring to stabilize the pseudo-labeling scheme by introducing the weak and strong data aug-
mentation scheme. With FixMatch, Sohn et al. (2020) further improve upon these results using
weak and strong data augmentations: pseudo-labels from weakly augmented unlabeled samples
x ∈ Du are selected based on a prediction confidence criterion and serve as training targets in the
auxiliary classification loss Lu. Model predictions over exaggeratedly strong augmented versions
of these samples are then used as input to this loss function, allowing model training on both
Du and Dl. This idea has sparked a lot of further research such as FeatMatch (Kuo et al., 2020)
which uses data augmentation in the manifold space or FlexMatch (Zhang et al., 2021a) which
combines this concept with curriculum learning.

2.3.5 Contributions

Despite its rise in CV and NLP, the application of deep SSL for time series classification remains
a somewhat under-investigated area. This motivated our work in Section 4.1 which translates
recent SSL approaches from image to time series classification (Goschenhofer et al., 2021). It,
therefore, describes the necessary adaptations for this domain switch, that is the choice of a
suitable backbone architecture and suitable data augmentation techniques. The efficacy of this
translation is then evaluated across a broader set of time series classification benchmark datasets
empirically showing that SSL does well apply in this domain but with smaller relative performance
gains compared to the image classification tasks. A series of additional experiments also sheds
light on the effect of different time series-specific backbone architectures and data augmentation
strategies of varying complexity.
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In Section 4.6, we investigated the suitability of deep SSL in the context of medical imaging on
the task of tissue classification for colon cancer histology in a low-label regime (Dexl et al., 2022).
Especially in medical scenarios the availability of trained professionals for data annotation tasks
often constitutes a bottleneck for the development of DL solutions. To address this, we compared
semi-supervised with supervised models with varying degrees of supervision and amounts of classes
in this scenario. Furthermore, we investigated the robustness of these models towards domain
shifts concerning different scanners used for data collection and demonstrated the effectiveness of
customized data augmentation strategies in medical imaging.
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2.4 Positive Unlabeled LearningPositive Unlabeled

unlabeled 
sample

positive 
sample

true decision 
boundary

Figure 2.4: Illustration of the positive-unlabeled learning (PUL) setting on a toy dataset. The goal of PUL
is to train a positive-negative classifier that can learn the true decision boundary, illustrated as a dashed
gray line, from a dataset that contains only positive, marked as orange dots, or unlabeled data, marked as
gray dots. This is a particularly challenging learning objective as the model does not have access to any
labeled negative samples during training.

Positive-unlabeled learning (PUL) is a binary classification ML scenario where only positive and
unlabeled samples are present for model training resulting in a positive dataset Dp and an un-
labeled dataset Du (Bekker and Davis, 2020) as illustrated in Figure 2.4. The true underlying
labels of the unlabeled samples in Du could be both positive or negative but there exist no labeled
negative samples. This constraint that the only labeled samples are positive separates PUL from
regular SSL where a small fraction of labeled positives and negatives is present as Dl next to
the larger Du. Next to its close relation to SSL, PUL differs from one-class classification (OCC)
where binary training data is given as there is very little data support for the positive class in
OCC which relates it with e.g. anomaly detection (Khan and Madden, 2014).

PUL was getting increasing attention from the research community in recent years, partially
driven by the appearance of many real-world data problems that naturally are PUL problems.
This includes applications in diverse areas such as bioinformatics (Lan et al., 2016), biomedical
imaging (Zhao et al., 2023), fake review detection (Li et al., 2014) and audio processing (Ito
and Sugiyama, 2022). One illustrative example would be medical records. Those records contain
information if patients have been diagnosed with certain diseases (positives). Still, they usually
do not provide a list of diseases that the patient has not been diagnosed with but has been tested
for (negatives). Plainly speaking, the absence of a diagnosis does not imply that the patient does
not suffer from the disease. Following this, a medical record naturally is either positive (disease
diagnosed in the medical record) or unlabeled (the disease is not mentioned in the medical record).
In a scenario where we would now like to train a model that predicts the disease diagnosis from
other features in the medical records, we would be facing a natural PUL problem (Bekker and
Davis, 2020; Chen et al., 2020a). Another example is that of personalized advertisements where
clicks on certain ads are used as positives, signaling the interest of the user in the advertisement.
Though, a non-click on an advertisement does not imply that it is not interesting and hence a
negative. The user could have simply overlooked this respective advertisement and it should thus
be treated as unlabeled (Bekker and Davis, 2020).

Formally, we observe samples from an input space x ∈ X and a binary target space Y = {+1, −1}.
We aim at learning a binary classifier f : X 7→ R parametrized with θ that predicts an input
sample x to be either positive or negative where the final class prediction is obtained using a
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monotonic transformation function such as the signum, tanh or sigmoid functions to map the
predictions to the final target space (Chen et al., 2020b). We have access to one positive dataset
Dp = {x(1), ..., x(np)} of np = |Dp| samples where we know that these samples correspond to a
positive label. Further, a second unlabeled dataset Du = {x(nl), ..., x(n)} of nu = |Du| unlabeled
samples is given with unobserved targets from the binary target space y ∈ Y and n = np + np

describes the overall amount of samples in D = Dp ∪ Du. There exist two scenarios for the data
generating process in PUL (Bekker and Davis, 2020). The single-training-set scenario assumes
that both Dp and Du are subsets of the same dataset D. The case-control scenario in turn
assumes that Dl and Du are from two different datasets. Refer to (Bekker and Davis, 2020)
for a more thorough discussion of both scenarios including illustrative examples. Next to the
single-training-set assumption, most PUL approaches make another assumption about the labeling
mechanism (Bekker and Davis, 2020). The selected completely at random (SCAR) mechanism
assumes that labeled positives are selected completely at random, irrespective of their features,
from the underlying distribution. This means that the probability for a sample x to be labeled
as positive is proportional to its probability of being positive. On the contrary, the selected
at random (SAR) assumption states that the labeling of positive samples is dependent on their
feature values. The majority of research in this area that is relevant to the contribution of this
thesis assumes the single-training-set scenario and the SCAR labeling mechanism, which is where
this section is also focused on. The class prior π : P (y = +1) describes the probability that a
random sample from D is positive such that P (x) = πP (x|y = +1) + (1 − π)P (x|y = −1). It is
often assumed that the true positive class prior π is known a priori or that it can be estimated
from the data (Christoffel et al., 2016; Bekker and Davis, 2020). From these definitions, it is
evident that we do not have access to negatives during model training, making PUL an especially
challenging task not only for model training but also for model evaluation. Most current research
assumes positive-negative labeled validation and test sets to evaluate and tune the model (Kiryo
et al., 2017; Chen et al., 2020b; Acharya et al., 2022). Despite this, Jain et al. (2017) introduced
an approach to estimate the AUC performance of a model on positive unlabeled validation and
test sets.

2.4.1 Methods

Importance reweighting methods that treat unlabeled samples as weighted negative samples have
become the standard methods for modern PUL. The unbiased PU loss (uPU) (Du Plessis et al.,
2014) was the first development in this direction and defines the empirical risk for a classifier f
as follows (Kiryo et al., 2017; Chen et al., 2020b):

RuP U (f) = π

np

∑
x∈Dp

L (ŷ, +1) +

 1
nu

∑
x∈Du

L (ŷ, −1) − π

np

∑
x∈Dp

L (ŷ, −1)

 (2.13)

where f : X 7→ R is the classifier and L : R × {+1, −1} 7→ R a differentiable loss function that
measures the loss resulting from predicting an output ŷ = f(x|θ̂) while the true label is y. A
sigmoid loss function, which is the horizontally mirrored version of the logistic loss, is often chosen
for L(ŷ, y) (Kiryo et al., 2017) such that

Lsig(ŷ, y) = 1
1 + exp(ŷy) (2.14)
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where y ∈ {+1, −1}.

In a follow-up work on the uPU loss, Kiryo et al. (2017) show this risk formulation in Equa-
tion (2.13) could become negative via the second loss term and is prone to overfitting. This is
especially becoming a problem when working with over-parametrized neural network architectures
in the context of DL. They propose a simple yet effective alternative instead, the non-negative
PU loss (nnPU). The resulting empirical risk follows the definition:

RnnP U (f) = π

np

∑
x∈Dp

L (ŷ, +1) + max

0,
1

nu

∑
x∈Du

L (ŷ, −1) − π

np

∑
x∈Dp

L (ŷ, −1)

 (2.15)

The nnPU loss has become the standard loss formulation for PUL and is used as a module in
various follow-up works on PUL using DNNs (Xu et al., 2019; Chen et al., 2020b; Luo et al.,
2021)

It has also sparked further research on the development of reweighting-based loss functions for
different PUL scenarios. Kato et al. (2019) develop a novel loss formulation on top of the nnPU
loss which allows robust PU learning with a selection bias (PUSB) in the presence of a selection
bias in the training data. PUSB addresses a setting where there is a labeling bias in the positives
such that the prior for the training data does not match that of the test data. Hsieh et al. (2019)
introduce a scenario where biased negative (bN) data can be collected alongside the standard PUL
data. They propose the PUbN loss as an extension of the nnPU loss tailored to this special data
setting. Su et al. (2021) propose a version of the nnPU loss that can handle imbalanced data
scenarios with underrepresented positives. This scenario corresponds to a low prior π and hence
a small ratio of positives in the combined dataset D. Su et al. (2021) argue that this setting is
more realistic than general, balanced PUL scenarios as, for instance, disease diagnoses in medical
records or fraud in financial data are usually underrepresented compared to healthy patients or
correct financial transactions.

Next to these reweighting-based loss formulations, earlier two-step approaches focused on the
identification of reliable negatives within Du and the subsequent training of (semi-)supervised
classification models on these reliable negatives along positives and eventually unlabeled samples
(Bekker and Davis, 2020). Initially developed for text classification problems, methods for the
first step often focus on metrics that measure the distance between Du and Dp to identify reliable
negatives within Du. For instance, Li and Liu (2003) learn prototypes of positive and negative
samples and then use the cosine distance to identify reliable negatives. Subsequently, an SVM
classifier is trained on this newly constructed dataset of positives and reliable negatives. They
also show that the first step can be combined with k-means clustering to improve the selection of
reliable negatives. Similarly, Zhang and Zuo (2009) use an approach based on k-means that uses
the distance to the nearest k positives as a metric to select reliable negatives with subsequent SVM
classification and Liu et al. (2002) use a Naive Bayes classifier combined with smart thresholding
to detect reliable negatives. Yu (2005) proposed an iterative approach using SVMs which shares
similarities with the self-training procedure described in Section 2.3.1.

The formulation of the nnPU loss brought a model-agnostic view on PUL and enabled the inte-
gration of PUL training within DNNs (Kiryo et al., 2017). Following this, generative approaches
using GANs for PUL emerged (Hou et al., 2018; Chiaroni et al., 2018; Liu et al., 2019) where
the generator was trained to hallucinate positive and negative samples which would then serve
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as a training dataset for a binary classifier. With VPU, another DL approach was introduced by
Chen et al. (2020a) which replaced the nnPU loss with a variational loss formulation that allows
the implicit estimation of π during model training. Similarly, Yoo et al. (2021) introduced an ap-
proach for graph-based PUL, where the relationships between samples are known and embedded
in a graph structure, which also does not require information about π. Within Split-PU, Xu et al.
(2022) combine best practices from SSL such as teacher-student modeling and the weak-strong
augmentation scheme for consistency regularization for PUL, both of which were introduced in
Section 2.3. Chen et al. (2020b) introduced the SSL concept of self-training to PUL. With Self-
PU, they proposed an approach where self-paced learning, a confidence-weighting scheme based
on the model predictions, and a teacher-student distillation approach are combined.

2.4.2 Contribution

In Section 4.3 we describe one of the few approaches that apply self-training to PUL settings to
further leverage the unlabeled data next to their use in the weighted loss function (Dorigatti et al.,
2022). Thereby, we overcome the problem of overconfident pseudo-labels via explicit modeling of
uncertainty rather than the teacher-student paradigm (Chen et al., 2020b). While overconfident
pseudo-labels in self-training are a general issue, it is getting exacerbated in low-labeled data
scenarios and settings with high class imbalancedness. Hence, we propose an uncertainty-aware
approach that uses model ensembling as a means to yield well-calibrated predictions. This helps
overcome this issue and enables a substantial performance increase over state-of-the-art baselines
in both heavily imbalanced and general PUL scenarios.
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2.5 Constrained ClusteringSemi-constrained
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Figure 2.5: Illustration of the (semi-) constrained clustering scenario for a binary clustering task on a toy
dataset. In CC, the label information is provided as constraints between samples instead of instance-level
class labels, pairwise binary constraints in this setting. The dark gray dots resemble constrained samples
and hence the classic CC setting while the addition of unlabeled samples (light gray dots) extends it to the
semi-constrained setting.

The term constrained clustering refers to a subset of weakly-supervised learning methods in which
the label information is provided in the form of constraints that describe the relationship between
samples, as opposed to instance-level class labels, which are commonly assumed in classification
settings. The constraint annotations, also referred to as weak annotations, typically contain
less information about the respective constrained samples than instance-level class labels (Zhang
et al., 2021b). This is illustrated in Figure 2.5, which depicts pairwise binary constraints, such as
Must-Link and Cannot-Link constraints, that carry the information of whether two constrained
samples belong to the same or different clusters, respectively. As indicated by the method’s name,
constraint annotations are used to guide the clustering of the data. Many standard ML algorithms
have been extended towards the use of constraints such as k-means clustering (Wagstaff et al.,
2001; Davidson and Ravi, 2005b), the EM algorithm (Basu et al., 2004), spectral clustering (Wang
and Davidson, 2010) or hierarchical clustering (Davidson and Ravi, 2005a). Additionally, CC has
been integrated with deep neural networks as introduced by Hsu and Kira (2016). Constraints
can come in different forms, including binary pairwise constraints (Wagstaff and Cardie, 2000),
instance difficulty constraints, triplet constraints, and global size constraints, among others (Zhang
et al., 2021b). This chapter and the related contributions focus on binary pairwise constraints,
referred to as constraints in the following for the sake of readability.

Constraints can be a useful, weaker alternative to instance-specific class labels in certain data
annotation scenarios. Class label annotation requires the classes to be non-ambiguous and clearly
defined with the cardinality of the class label space being fixed. However, this may not always be
feasible, particularly in situations where the exact grouping and number of final classes are not
known or the class cardinality is too large for a human annotator to remember during the data
annotation process. One example of this difficulty is in text settings, such as the Yahoo! example
(Cohn et al., 2003), where the task is to group different texts into reasonable clusters to create a
searchable taxonomy despite neither knowing the exact grouping nor the number of final classes
of the text samples. Another example is when the goal is to build a classifier that detects persons
based on portraits (Georghiades et al., 2001). In this setting, a human annotator would have
to select one out of a multitude of persons for each portrait during the data annotation process,
requiring her to keep all potential persons in mind during this task. Pairwise binary constraint
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annotation can be a remedy to these difficulties as the annotator is tasked with assigning a
binary constraint to pairs of data, rather than selecting a specific class label. This allows for the
annotation of samples despite only having a vague understanding of the different categories and
also alleviates the annotator from keeping all potential classes in mind. Refer to Davidson and
Basu (2007) for a comprehensive collection of use cases for CC from different domains.

2.5.1 Methods

Wagstaff and Cardie (2000) introduced the use of binary pairwise constraints and spurred the
adaptation of many existing algorithms towards the use of constraints including k-means clustering
(Wagstaff et al., 2001; Davidson and Ravi, 2005b), the EM algorithm (Basu et al., 2004), spectral
clustering (Wang and Davidson, 2010) or hierarchical clustering (Davidson and Ravi, 2005a). In
another line of research, constraints are used to learn a pairwise distance metric (Xing et al., 2002;
Davis et al., 2007; Anand et al., 2013) which can subsequently be used in a separate clustering
step. In contrast to this, methods such as MPCK-Means (Bilenko et al., 2004) or CECM (Antoine
et al., 2012) integrate pairwise constraints into both metric learning and clustering. There also
exist several comprehensive overview papers for the algorithmic developments next to this overview
on classical ML methods for CC (Davidson and Basu, 2007; Dinler and Tural, 2016; Zhang et al.,
2021b). Next to pairwise binary constraints, there is also a variety of different constraint types
such as triplet constraints that describe the relationship of a triple of instances where samples are
annotated as an anchor, a positive or a negative (Zhang et al., 2021b). The semantic meaning is
that the anchor is expected to be closer to the positive than the negative sample. Another example
is instance difficulty constraints that indicate whether specific samples are hard or easy to cluster
(Zhang et al., 2021b). The remainder of this section is focused on pairwise binary constraints.

Formally, we define an sample from the input space x ∈ X and a target space Y = {1, ..., K}
of K = |Y| potential clusters. Analogous to supervised classification introduced in the notation
Section 2.1, we aim at training a clustering model f parametrized with θ such that f : X 7→ RK .
The model predicts a probability distribution over cluster assignments ŷ = f(x|θ̂) for sample
x where ŷk denotes the predicted probability of x belonging to cluster k ∈ 1, ..., K. The final
cluster assignment prediction for cluster k then results as arg maxkŷk. For model training, we
consider an initial dataset of unlabeled samples x ∈ D from which nc pairwise samples are
annotated with a corresponding pairwise binary constraint c ∈ {0, 1}, forming the constrained
dataset Dc = {(x, x′, c)(l)|l = 1, ..., nc, x ∈ D, x′ ∈ D, x ̸= x′}. These constraint annotations,
later referred to as constraints, describe that both samples either correspond to the same cluster
c = 1, termed Must-Link constraint, or to different clusters, c = 0, termed Cannot-Link constraint.
At this point, it is important to mention that CC models aim at predicting K potential cluster
assignments despite being trained with binary pairwise targets c ∈ {0, 1} only. Note that when
K is unknown, the model may have a larger number of outputs m than the ground truth number
of clusters resulting in the mapping f : X 7→ Rm. This is referred to as the overclustering
scenario. In the case of semi-constrained clustering, we use an additional unlabeled dataset Du

that contains the remaining samples x ∈ D, x /∈ Dc which are not part of any constraint pair. For
semi-constrained clustering, we use both the constrained dataset Dc and the unlabeled dataset
Du for model training.

In addition to the previously mentioned approaches, Hsu and Kira (2016) proposed a method
for CC using DNNs. The proposed method utilizes a pairwise training technique with batches
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of pairwise samples and their associated binary constraint in the form of (x, x′, c) as introduced
above. They also introduced the Kullback-Leibler Constrained Loss (KCL) as a loss function for
the pairwise training of CC models. The KCL is a pairwise loss formulation that is built on top
of the Kullback-Leibler distance and is defined as:

LKCL(ŷ, ŷ′, c) = L(ŷ|ŷ′, c, q) + L(ŷ′|ŷ, c, q) (2.16)

where

L(ŷ|ŷ′, c, q) = c KL
(
ŷ|ŷ′) + (1 − c) max

(
0, q − KL(ŷ|ŷ′)

)
(2.17)

with q > 0 being a margin hyperparameter and

KL(ŷ, ŷ′) =
K∑

l=1
ŷk log ŷk

ŷ′
k

(2.18)

being the Kullback-Leibler distance between the predicted cluster assignment vectors ŷ, ŷ′ of the
input pair x, x′. The KCL penalizes the model for differences in cluster assignment predictions for
a pair with a Must-Link constraint c = 1 using the Kullback-Leibler distance as a distance metric
for the predicted cluster assignments. Similarly, a large loss is incurred for a pair with a Cannot-
Link constraint c = 0 if the model predicts similar cluster assignments for both input samples. The
final loss in Equation (2.16) is computed as the sum of the Kullback-Leibler distances, an asym-
metric distance metric, to yield a symmetric loss formulation. This loss formulation alongside the
pairwise training strategy allows the training of a regular multi-class classification network f with
pairwise constraints only. Hsu et al. (2018) further used this loss formulation for unsupervised
domain adaptation and unsupervised clustering with unseen categories, so-called cross-task learn-
ing. In follow-up work, Hsu et al. (2019) introduced the Meta-Classification Likelihood (MCL)
as an improved version of the KCL. Similar to the KCL, it also allows pairwise training of a CC
neural network with binary constraints. The MCL loss is inspired by problem reduction strategies
(Allwein et al., 2000) that reduce the initial multiclass classification problem to a binary meta-
problem. Prominent examples of such problem-reduction strategies are one-vs-all or one-vs-one
settings where the multiclass classification problem is reduced to multiple binary classification
problems. Following this interpretation, the multiclass classification task encapsulates multiple
binary classification problems. Hsu et al. (2019) reverse this order such that the multiclass clas-
sification task of detecting multiple clusters in the data is wrapped by a binary classification
task. This re-formulation allows them to solve this task with pairwise binary constraints while
still yielding a discriminative CC model, similar to the KCL. Motivated by a maximum-likelihood
formulation, the pairwise MCL loss function formulates as:

LMCL(ŷ, ŷ′, c) = −c log ŝ − (1 − c) log(1 − ŝ) (2.19)

where the dot product of the two predicted cluster assignment vectors ŝ = ŷTŷ′ ∈ [0, 1] is the input
and the constraint annotation c the target of the loss function. We can see the correspondence
to the binary cross entropy loss LBCE(ŷ, y) = −y log ŷ − (1 − y) log(1 − ŷ) from this formulation
in Equation (2.19). Hsu et al. (2019) show empirically that the MCL allows more stable model
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training with better model performance across a variety of datasets, making the MCL the successor
of the KCL. They also provide an intuition for this observation by visualizing the loss landscapes
and show that similar to the KCL, the MCL allows the training of CC models in the overclustering
scenario.

2.5.2 Contributions

In Section 4.2, we describe an approach that addresses a core limitation of deep CC models (Hsu
and Kira, 2016; Hsu et al., 2019), which is their strict requirement for constrained data only, and
hence the inability to use unlabeled data for model training (Goschenhofer et al., 2023). To address
this limitation, we propose the ConstraintMatch model architecture that allows for training with
a combined constrained and unlabeled dataset D = Dc ∪ Du in a semi-constrained setting. This
architecture is inspired by recent developments in SSL such as the weak- and strong augmentation
scheme (Sohn et al., 2020) and builds upon unsupervised clustering methods (Van Gansbeke et al.,
2020). We demonstrate how the introduction of a pseudo-constraining mechanism can overcome
the confirmation bias in this scenario which leads to improved performance across a series of CV
benchmarks.

In Section 4.4, we explore the cluster discovery capabilities of CC models for short texts in the
context of NLP (Goschenhofer et al., 2022). Specifically, we first show that deep CC applies well
to topic detection in short texts compared to unsupervised and supervised baselines in both the
regular and the overclustering scenario. Having shown these capabilities, we propose a dynamic
topic discovery scenario where a second dataset with novel topics occurs sometime after the initial
training dataset. We propose the use of deep CC and empirically show its usefulness for such a
dynamic scenario.
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2.6 Transfer Learning
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Figure 2.6: Illustration of the TL setting on two toy datasets. TL is directed at pre-training a model on a
source task (left) and subsequently fine-tuning it on the target task (right), to support model training on
the target task via the transfer of abstract knowledge from the source task, depicted as the source decision
boundary (gray line). Depending on the similarity of the source and target tasks, TL can support the
training of models on target tasks with few annotated samples.

2.6.1 Methods

Pre-training DNNs has become a de facto standard procedure before training on the DL task
of interest across different data modalities such as CV (Sun et al., 2017; Mahajan et al., 2018;
Dai et al., 2021), NLP (Mou et al., 2016; Howard and Ruder, 2018; Yamaguchi et al., 2021) or
multimodal applications (Gan et al., 2022). For instance, using ImageNet pre-trained models in
CV or pre-trained BERT embeddings in NLP has become a widely used practice. This strategy,
termed transfer learning, is motivated by the concept of human learning and the transfer of
knowledge from one task to a similar second task. For example, a musician who can play the violin
may use her knowledge of music, such as a sense of rhythm or the ability to read sheet music, to
master playing the piano more quickly than a person who has never played an instrument before.
TL and SSL both aim to train models for target tasks with a limited amount of labeled data.
While SSL exploits large amounts of unlabeled data from the target task, TL is directed at tasks
where even unlabeled data from the target task is hard to gather and hence it reverts to data
from a similar yet different source task. In that sense, the process of TL is to pre-train a model
on a source task and then fine-tune it on the target task, hoping that abstractions learned in the
source task provide a warm-start for the target task compared to random initialization of the model
parameters (Zhuang et al., 2020). Intuitively, one expects that the similarity of the source and
target tasks determines the benefit of TL suggesting that a similar source task is more beneficial
for a target task than a dissimilar one. While this is often the case, it is not a universal rule (He
et al., 2019) and there exist scenarios where the closeness in both tasks confuses the model fine-
tuning on the target task, also referred to as negative transfer (Wang et al., 2019b). The nature of
the source task in TL can also differ. Supervised source tasks are DL tasks with annotated data as
prediction targets such as the infamous ImageNet pre-training for image classification (Mahajan
et al., 2018; Sun et al., 2017). Other source tasks cover auxiliary problems that should teach the
model an abstract understanding of the feature domain. Examples are word2vec (Mikolov et al.,
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2013) in the NLP space, which has evolved into masked language modeling with the advent of
transformer architectures (Yamaguchi et al., 2021), and the paradigm of self-supervised learning
in CV (Jaiswal et al., 2020; Dai et al., 2021).

TL is also partially described as a form of weakly supervised learning. In that sense, the labels
of the source dataset are usually more coarse (Taherkhani et al., 2019) or cover slightly different
concepts (He et al., 2019) than that of the target task. Hence, they are also referred to as
weak labels to differentiate from the strong, more informative, and specific labels of the target
task. Taherkhani et al. (2019) introduce one illustrative example of such coarse labels using the
ImageNet 2010 dataset to construct a two-level hierarchical dataset. Therein, the first-level source
dataset contains 143 class annotations, also termed super-classes, and the granular second-level
target dataset contains 387 classes. Concretely, two target images with classes ”Cheetah” and
”Leopard” share the same coarse label ”Big Cat” from the source dataset. They then propose a
model architecture tailored towards the use of weak supervision to leverage the learned concepts
of the coarse source task for the more granular target task. With HTrans, Banerjee et al. (2019)
propose a weakly supervised TL strategy for a similar situation in the context of NLP. This
concept of pre-training on a weak and coarsely annotated source task has also been successfully
applied in medical imaging scenarios where the lack of large annotated target datasets is especially
immanent due to the scarcity of medical experts required for data annotation. For instance, (Ke
et al., 2020) and (Ezhov et al., 2019) propose the use of a large set of coarse segmentation masks
as a source task and the subsequent fine-tuning using fine-granular segmentation masks for the
target task in the context of microscopy and teeth segmentation. Furthermore, (Hosseinzadeh
et al., 2021) systematically benchmark pre-training on the ImageNet (Deng et al., 2009) and the
iNat (Van Horn et al., 2021) datasets with both supervised and self-supervised pre-training on
seven subsequent target tasks in the medical domain and find that more fine-grained source tasks
support the fine-tuning on the target task better.

2.6.2 Contribution

In Section 4.5, we describe the application of a supervised TL scheme in the context of motor
state prediction for patients with Parkinson’s Disease using DL models for the classification of
sensor movement data (Goschenhofer et al., 2019). The target task in this setting was the exact
prediction of the disease progression on a clinical scale and, as often in the medical domain, we
had limited access to annotated target data. Hence, we adopted above described TL scheme
and used a larger second dataset with coarse, weak annotations as the source task. This source
dataset contained movement data from persons with and without diagnosed Parkinson’s Disease
which allowed us to create the supervised source task of predicting whether a given movement
data window corresponds to a healthy or a diagnosed person. Using this weakly supervised TL
approach helped increase the performance of the model on the target task, potentially due to the
similar domain of both tasks.
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3.1 Conclusion

The examples cited in the introduction of this thesis stress the need for large annotated training
datasets and the effort involved in creating those, which is one key bottleneck for the development
of tailored DL solutions. Throughout the subsequent chapters, various alternative concepts at
the intersection of unsupervised and supervised learning were introduced, all directed at the same
goal: reducing the need and hence the effort for data annotation. The key conclusion from those
chapters is that recent developments in SSL, PUL, CC, and TL are suitable means to use an
untapped treasure that comes as an abundant resource: unlabeled or weakly labeled data. While
all aimed at the same target, these concepts help reduce the effort for data annotation in different
ways: SSL is directed at including abundant unlabeled data to guide supervised model training
which enables the training of potent models with few labeled data only. PUL allows the training of
binary classification models despite the absence of negative data annotations using unlabeled data.
CC allows the use of pairwise constraint annotations which are weaker and hence less effortful
to gather compared to instance-specific class labels. TL allows the pre-training of DL models on
coarse source tasks which can then be fined tuned on fine-grained target tasks with relatively few
training data annotations.

To summarize the content of this thesis, Section 2.3 presented an overview of SSL with a fo-
cus on recent developments such as self-training and consistency regularization. In this context,
contributions in this thesis expanded modern SSL from the image to the time series modality
(Goschenhofer et al., 2021) and investigated the applicability, the robustness and the crucial role
of data augmentation for SSL in the medical imaging domain (Dexl et al., 2022).
PUL was introduced in Section 2.4 as an edge case of binary semi-supervised classification where
the labeled dataset contains exclusively positive samples while the unlabeled data consists of
both positive and negative samples. Recent DL-based approaches for PUL combine reweighting-
based loss functions with self-training strategies. With the PUUPL architecture, we proposed an
improved version of self-training for PUL via the explicit inclusion of model uncertainty in the
pseudo-labeling process (Dorigatti et al., 2022).
The concept of CC as a weakly supervised learning strategy was introduced in Section 2.5, explain-
ing both the foundations and the use of DL-based approaches for model training with pairwise
binary constraints. With ConstraintMatch, we propose a potent alternative to deep CC that
allows the inclusion of unlabeled samples for model training and uses a pseudo-constraining mech-
anism to overcome the confirmation bias, one main shortcoming in self-training (Goschenhofer
et al., 2023). We further demonstrated and exploited the cluster detection capabilities of CC
models in an NLP context, where we applied CC to detect dynamically changing topics in short
texts (Goschenhofer et al., 2022).
Finally, the concept of TL was introduced in Section 2.6 as an approach to leverage features in-
grained in the model by pre-training on a source task. This pre-trained model is subsequently
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trained on the target task of interest, which helps retain strong model performance despite few
annotated training samples for the target task and speeds up model training. We applied this
powerful paradigm within a time series classification problem in a medical context (Goschenhofer
et al., 2019).

3.2 Outlook

Shaping a weakly supervised future for ML requires further research on the effective use of un-
or weakly annotated data in different contexts. Some potential future ideas that build upon the
contributions of this thesis are outlined in the following.

Pseudo-constraining beyond constrained clustering: The pseudo-constraining mechanism
introduced in the Section 4.2 was primarily designed and investigated in the context of semi-
constrained clustering (Goschenhofer et al., 2023). In this context it proved to be an effective
approach to overcome the confirmation bias, leading to increased performance compared to the
pseudo-labeling approach usually used in semi-supervised classification (Berthelot et al., 2019a;
Sohn et al., 2020; Zhang et al., 2021a). Using the problem reduction concept of pseudo-constraining
on top of pseudo-labels also in semi-supervised classification instead of semi-constrained clustering
would be an interesting avenue. In this setting, the labeled data would contain instance-specific
class labels while the unlabeled data would be fed to the model in a pairwise manner, using pseudo-
constraints as targets for a pairwise loss function such as the MCL (Hsu et al., 2019). One problem
that occurs in practical semi-supervised classification is a potential class distribution mismatch
between the labeled and the unlabeled data that is hard to detect due to the non-annotated
nature of the unlabeled dataset (Chen et al., 2020c). The proposed inclusion of a CC component
into semi-supervised classification models could not only help overcome the confirmation bias but
would also equip such a model with a cluster detection capability. Such an architecture could then
also be trained in the overclustering scenario to detect the underlying clusters in the potentially
different Du. Potentially, this would then allow extending such semi-supervised classification
models also for use in settings with unknown cardinality of the class target space.

Uncertainty quantification for CC: Uncertainty quantification, i.e. the calibration of clas-
sification model predictions, is an active and important research field with major developments
in the past years including the introduction of MCDropout (Gal and Ghahramani, 2016), model
ensembling (Lakshminarayanan et al., 2017) or conformal predictions (Angelopoulos and Bates,
2021) for DNNs. It is driven by the practical need for model prediction scores that can be inter-
preted as valid probability values for decision support systems in safety-critical applications such
as healthcare or autonomous driving. While there exists a plethora of research on uncertainty
quantification for classification tasks, it is yet an underexplored area in the context of weakly su-
pervised learning and CC specifically. Future research on uncertainty quantification for CC could
fill this important gap and facilitate the application of such models in different safety-critical
domains.

Human-in-the-loop weakly supervised learning: Active learning deals with the same data
situation as SSL with the difference that an oracle, most often a human annotator, can be queried
to annotate a select set of unlabeled data. Hence, the focus lies on the development of methods
to optimally select unlabeled samples that improve the model performance the most in a model-
driven way. Active and semi-supervised learning are therefore also described as two sides of the
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same coin where active learning aims at exploring yet unknown spaces in the unlabeled data
while SSL is directed at exploiting what the model already knows about them (Settles, 2009).
This similarity suggests the combination of both concepts. First attempts in that direction have
been made (Mittal et al., 2019; Gao et al., 2020b; Bengar et al., 2021), mostly focused on semi-
supervised classification settings. Following these approaches, it would be exciting to investigate
whether active learning can also be combined with weakly supervised approaches beyond instance-
level class labels as used in CC. Also, using such human-in-the-loop approaches would allow for the
combination of different methods, i.e. mixed supervision. A first step in that direction would be
the design of an active learning strategy that intelligently queries weak constraint annotations or
instance-specific class labels, or both. This could enable a model-driven balancing of the tradeoff
between ease of annotation, i.e. quantity, as constraints are more effortless to annotate than class
labels, and the annotation informativeness, i.e. quality, as instance-specific class labels contain
more information than binary constraints.

To conclude this thesis, I want to return to the introduction, where I expanded on Humby and
Palmer’s famous quote by saying that ”Data is the new oil. Like oil, data is valuable, but if
unrefined and non-annotated it cannot really be used for supervised machine learning”. While
acknowledging the importance of data with high-quality annotations, this extended quote refers
only to the context of supervised ML and limits the training resource to annotated data only.
However, this thesis sheds light on the fact that unlabeled or weakly labeled data is an alternative
and more accessible resource than labeled data, which requires less refinement and can fuel various
applications beyond supervised learning. This is analogous to the current societal transition from
unsustainable, hard-to-obtain natural resources such as oil to sustainable, renewable, and thus
abundant green resources. While this current transition phase requires the use of both resource
sources, I argue that the future of energy is in regenerative, sustainable resources, and the future
of ML is in leveraging un- and weakly annotated data.
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Abstract—While deep semi-supervised learning has gained
much attention in computer vision, limited research exists on its
applicability in the time series domain. In this work, we inves-
tigate the transferability of state-of-the-art deep semi-supervised
models from image to time series classification. We discuss the
necessary model adaptations, in particular an appropriate model
backbone architecture and the use of tailored data augmentation
strategies. Based on these adaptations, we explore the potential
of deep semi-supervised learning in the context of time series
classification by evaluating our methods on large public time
series classification problems with varying amounts of labeled
samples. We perform extensive comparisons under a decidedly
realistic and appropriate evaluation scheme with a unified reim-
plementation of all algorithms considered, which is yet lacking
in the field. We find that these transferred semi-supervised mod-
els show significant performance gains over strong supervised,
semi-supervised and self-supervised alternatives, especially for
scenarios with very few labeled samples.

Index Terms—Semi-supervised Learning, Time Series Classi-
fication, Data Augmentation

I. INTRODUCTION

Time series classification (TSC) spans many real-world
applications in domains from healthcare [1] over cybersecurity
[2] to manufacturing [3]. Several algorithms for TSC have
been proposed over the years [4] [5].

In many real-world scenarios, time series data can be
collected easily, but acquiring labels for this data is costly.
For instance, in disease monitoring, sensor data are collected
with low effort but the labelling of this data requires time-
consuming work by medical experts [6]. Semi-supervised
learning (SSL) addresses this by leveraging large amounts of
unlabeled data in combination with a small amount of labeled
data when training machine learning (ML) models.

Especially in computer vision, the advances in deep neural
networks and the promised label efficiency of SSL have
lead to the introduction of several innovative approaches for
image data [7]. While there is much work on classical semi-
supervised models for TSC, research on the use of neural
network-based SSL algorithms for TSC is still limited.

This motivates our main research question that we approach
holistically in this work: Can we transfer well established
deep semi-supervised models from the image to the time series
domain? More specifically, we answer this question for the
most prominent state-of-the-art SSL approaches, by proposing
adaptions for MixMatch [8], Virtual Adversarial Training [9],
the Mean Teacher [10] and the Ladder Net [11]. These include

the modification of a suitable backbone architecture as well
as adaptions of an appropriate data augmentation strategy to
account for the domain transfer of these models. For demon-
stration of the efficacy of our proposed frameworks we adhere
to best practices for realistic evaluation of semi-supervised
models and provide a fair and reliable model comparison with
a high degree of practicality [12].

A. Related Work

a) Time Series Classification: Over the past years, a
variety of methods has been developed for TSC. A detailed
overview on classical ML methods that were specifically
developed for TSC [13], [14], [15] is provided in [4]. An
alternative approach towards TSC consists in the extraction
of statistical features from the raw time series as the basis for
training any strong classifier for tabular data [16]. Also in deep
learning, specific methods for time series classification have
been developed [17], [18], [19]. A comprehensive overview
on these recent developments can be found in [5].

b) Semi-Supervised Learning: There exists a plethora
of different concepts that extract additional information from
unlabeled data via semi-supervision. These range from the
extension of supervised ML methods such as the semi-
supervised Support Vector Machine [20] or semi-supervised
Boosting [21] to inherently semi-supervised methods such
as Label Propagation [22], Manifold Regularization [23] or
Co-Training [24]. [25] provide a detailed overview on these
semi-supervised approaches. There is also growing research on
deep semi-supervised learning, mainly driven by the computer
vision community. A recent overview and taxonomy on these
developments are provided by [7]. Amongst these are graph-
based methods such as Deep Label Propagation [26], SNTG
[27] or the extension of pseudo-labelling for deep learning
[7]. Further, there is growing research on regularization-based
approaches following the rationale of adding an additional
unsupervised regularization loss term to the initial supervised
loss. The Mean Teacher [10] and its predecessors, Temporal
Ensembling and the Π-Model [28], employ a consistency
loss over the unlabeled samples to reward similar predictions
for differently augmented versions of the same unlabeled
sample. To overcome one drawback of those methods, the need
for domain-dependent data augmentation strategies, Virtual
Adversarial Training (VAT) [9] adds small perturbations to
the input data to create an auxiliary unsupervised training
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target. MixMatch [8] in turn combines different regularization
strategies in one common framework. These regularization-
based approaches yield state-of-the-art performance on image
classification benchmarks.

c) SSL for TSC: Different classical semi-supervised
models have been developed for TSC. In their founda-
tional work, [29] propose an approach that combines pseudo-
labelling with a nearest-neighbor model for imbalanced, binary
TSC tasks. This cluster-then-label [7] rationale for labeled
and unlabeled time series via custom distance metrics is also
employed in approaches such as DTW-D [30], SUCCESS
[31] or LCLC [32]. Graph-based label propagation [22] is
combined with time-series-specific distance metrics by [33]
and [34] introduced the shapelet-based SSSL.

d) Deep SSL for TSC: There has been recent develop-
ments on neural net-based approaches. A customized version
of the LadderNet [11] based on the FCN architecture [17]
was applied by [35] on three multivariate human activity
recognition (HAR) datasets. They report relative gains of the
semi-supervised model over the supervised baselines for small
amounts of labeled samples. To the best of our knowledge, [35]
are the first to evaluate SSL methods on large, multivariate
TSC datasets. A self-supervised approach, where the model
is jointly trained on an auxiliary forecasting task over the
whole dataset next to the initial supervised classification task
on the labeled data only, was introduced by [36]. They build
upon the benchmark of [34] on a subset of smaller, univariate
TSC datasets from the UCR repository [3] and report state-
of-the-art performance compared to the majority of above
methods as well as a customized variant of the Π−Model
[28] that works on time series problems. In alignment with
[35], they report particularly strong model performance for
the deep supervised baseline FCN [17] trained on few labeled
samples only reporting it to outperform all above mentioned
classical semi-supervised models. This deep learning baseline
outperforms all of the classical semi-supervised models and
almost always beats the Π−Model. We include this approach
as a self-supervised baseline in our experiments.

e) Limitations: All existing model comparisons for semi-
supervised TSC, despite the work of [35], are limited to
univariate time series datasets with a maximal size of 1000
training samples. In contrast to computer vision research on
SSL [7], these model comparisons are conducted for one fixed
relative amount of labeled samples in the vast majority of
experiments, making it hard to deduce general information
for different data situations. They also do not align with the
guidelines established by [12] for SSL on image data and do
not include repeated model runs to account for randomness
in the selection of labeled samples. Another issue is the
lack of publicly accessible implementations of the classical
approaches to semi-supervised TSC, making it impossible to
validate against these approaches. This in turn leads to the
problem that model comparisons with existing methods solely
rely on values reported in former work for the same datasets
with partially opaque dataset splits and unlabelling procedures.

Our main contributions can be summarized as follows:

1) We propose four new deep SSL algorithms for TSC and
describe tuning parameters and meaningful data augmentation
strategies. 2) We investigate the applicability of deep SSL in
the domain of TSC and provide insights in which settings
the proposed methods work well and how they compare to
existing approaches. 3) Through these experiments we are able
to identify two out of our four proposed methods that notably
improve over existing approaches.

II. FROM IMAGES TO TIME SERIES

A. Problem Formulation

We define an equidistant time series as x(i) =

{{x(i)
1,1, ..., x

(i)
1,t}, ..., {x

(i)
c,1, ..., x

(i)
c,t}}, where t describes the

length and c the amount of covariates such that x(i) ∈ X ⊆
Rc×t. For c = 1 the time series is called univariate and
for c > 1 multivariate. Next to the input space X , we
use y(i) ∈ Y to denote a categorical variable in the target
space Y . The goal of SSL is to train a prediction model
f : X �→ Y on a dataset D = (Dl,Du) which consists of a
labeled dataset Dl = {(x(i), y(i))}nl

i=1 and an unlabeled dataset
Du = {x(i)}n

i=nl+1 where n = nl +nu. We consider the case
where nl � nu, as usual in SSL. Further, we define one batch
of data as B ⊂ D, where Bl ⊆ Dl contains the labeled samples
and Bu ⊆ Du the unlabeled samples in that batch such that
B = (Bl,Bu).

B. Backbone Architecture

A basic building block in deep learning for images is a
3-dimensional tensor, whereas time series can be represented
as 2-dimensional tensors with channels corresponding to the
number of covariates. The extension of building blocks of
powerful image classification architectures to TSC is thus
straightforward, yet the right choice of a backbone architecture
is crucial. We propose the use of the Fully Convolutional
Network (FCN) [17] as a backbone architecture as it was
shown to outperform a variety of models on 44 different
TSC problems and is used in related work on semi-supervised
TSC [36]. In all regularization-based semi-supervised methods
discussed in Section II-D, except for the Ladder Net [11],
the network architecture can be decoupled from the model
training strategy. This allows us to replace the backbone
architecture of many of the established SSL methods from
image classification with the FCN. In case of the Ladder Net,
we design the decoder as a mirrored version of the FCN
encoder (see Section II-D).

C. Data Augmentation

One crucial component of regularization-based semi-
supervised methods is the injection of random noise into the
model. Data augmentation strategies g(x(i)), g : X �→ X
should be designed such that they perturbate the input x(i)

of a sample while preserving the meaning of its label y(i).
This can be achieved by utilizing inherent invariances in the
data, e.g., rotations of images usually preserve the meaning
of an image. For images, invariances can be easily understood
visually. In the time series domain, such invariances are not
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straightforward to understand, rendering the design of reason-
able data augmentation strategies in this domain challenging.
A set of data augmentation strategies for multivariate time
series classification was introduced by [37] and evaluated on
one HAR task. They show that the majority of strategies are
beneficial, but some can deteriorate the model performance.
To overcome the additional burden of choosing the right
strategy, we propose the use of the RandAugment strategy
[38] which removes the need for a separate search phase. For
each training batch, N augmentation strategies are randomly
chosen out of a set of K possible policies. Next to N , a
magnitude hyperparameter is introduced which controls the
augmentation intensity of the selected policies. We use the
following set of augmentation policies [37]: warping in the
time dimension, warping the magnitude, addition of Gaussian
Noise and random rescaling. We use RandAugment in this
context following the rationale that even if a augmentation
strategy is (not) label preserving, training with RandAugment
with N = 1 will still produce correct model updates in at
least K−1

K of the forward passes. Early experiments in a fully
supervised setting showed that the application of this data
augmentation strategy improves model performance across all
datasets used in our experiments.

D. Methods

The Mean Teacher [10] is the successor of a series of
consistency-regularization-based models such as Temporal En-
sembling or the Π-Model [28] for SSL and was empirically
shown to outperform its predecessors [12]. Thereby, a teacher
model, that is an average of the consecutive student models,
is used to enforce consistency in model predictions over the
course of model training.

Virtual Adversarial Training (VAT) [9] also focuses on con-
sistency regularization. Similar to adversarial examples [39],
a small data perturbation is learned such that its addition to
the initial data point is expected to yield the maximum change
in the model’s prediction. These perturbed model predictions
are used as auxiliary labels for the unlabeled samples within
a regularization term to enable model training on the whole
data set. This approach is particularly interesting for the time
series domain where visual inspection of the appropriateness
of data augmentation policies is difficult, as it does not rely
on data augmentation techniques.

In MixMatch, various semi-supervised techniques such as
data augmentation for consistency regularization, Mixup train-
ing [40] and pseudo-labeling are combined within one holistic
approach [8]. It was empirically shown to perform well on
image data, motivating our use of it in this work [8].

The Ladder Net by [11] is a reconstruction-based SSL
model and is inspired by denoising autoencoders [41]. In its
core, it extends a supervised encoder model with a correspond-
ing decoder network which allows for the calculation of an
unsupervised reconstruction loss over the unlabeled samples
enabling training on the whole dataset. The Ladder Net was
previously extended to TSC problems [35] and is thus also
part of this study.

III. EXPERIMENTAL DESIGN

A. Baseline Models

Next to shapelet- and distance-based methods [4], fitting
standard ML methods on hand-crafted statistical features has
been a widely used approach for TSC before the introduction
of specific deep learning architectures for TSC [17] [18]. We
include a Random Forest and a Logistic Regression trained
on features, extracted via the tsfresh framework [16] from the
time series, as baselines.
In addition, we train the FCN architecture [17] on the labeled
samples Dl based on the cross entropy loss as a supervised
deep learning baseline model for our experiments. To ensure a
fair and reliable model comparison, we explicitly use the same
architecture of this supervised baseline model as the backbone
for all SSL approaches. We also use the performance of a
supervised FCN trained on the fully labeled datasets as an
estimated upper bound for the model performance.
Furthermore, we evaluate the performance of the self-
supervised approach that was recently introduced for TSC
by [36]. Thereby, an auxiliary forecasting task from the
time series data D is created and combined with the initial
classification task as a surrogate supervision signal allowing
the use of unlabeled data in model training. The model is
then jointly trained on both tasks simultaneously. Next to
its re-implementation, we further extend their approach for
multivariate TSC by increasing the amount of neurons in the
surrogate model head accordingly. The direct comparison with
this self-supervised approach is of special interest as it was
shown to outperform classical semi-supervised approaches in
a set of experiments on smaller TSC datasets [36].

B. Data Sets

We evaluate the performance of the above described semi-
supervised models on 6 publicly available datasets. In contrast
to previous work [33], [34], [36], we explicitly focus on
large datasets with at least 1000 observations. Their main
characteristics are described in Table I.

TABLE I: Characteristics of the used data sets where c refers
to the amount of covariates, Size to the size of the whole
training data set and Length to the length of the time series.

Name Classes Size Length c Balanced
Crop 24 7,200 46 1 �
ElectricDevices 7 8,926 96 1 �
FordB 2 3,636 500 1 �
Pamap2 13 11,313 100 6 �
WISDM 6 10,727 80 3 �
Balanced SITS 6 35,064 46 1 �

With Crop, ElectricDevices and FordB we include three of
the largest datasets from the UCR Time Series Classification
Repository [3]. In addition, we use the two multivariate HAR
datasets Pamap2 [42] and WISDM [43]. We also evaluate the
models on a class-balanced version of the Satellite Image Time
Series (SITS) dataset [44].
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Fig. 1: Performance of all models on the 6 different datasets over various nl as presented in Table II in the appendix. The
horizontal line marks the performance of the fully labeled baseline, i.e. the supervised FCN model trained on the fully labeled
dataset. Dots represent the mean wAUC and the vertical lines the standard deviation over 5 repeated unlabeling steps. The
performance of the baseline models are depicted as dotted, those of the semi-supervised models as solid lines. Semi-supervised
models clearly outperform the baseline models in settings with few labeled samples nl ∈ {50, 100} on all but the Electric
Devices dataset.

C. Evaluation, Tuning and Implementation

Due to special factors, such as the selection of the la-
beled data points, an unbiased and fair model comparison
is particularly crucial to get a realistic perspective on the
performance of the semi-supervised models [7]. We adhere
to the guidelines for realistic evaluation of semi-supervised
models by [12] to guarantee reliable and fair experimental
results. For performance evaluation of SSL models, the stan-
dard procedure is to split a fully labeled dataset D into labeled
and unlabeled datasets Dl and Du via artificial unlabeling of
nu randomly drawn samples [7]. This way, semi-supervised
data settings for different amounts of labeled samples l are
simulated. We unlabel in a stratified manner to retain the
datasets’ label distributions. For the following experiments,
we split the evaluation of one model f on one data set D in
two distinct phases.

a) Tuning Phase: In the tuning phase, we tuned the
model f with one fixed amount of labeled samples to yield
an optimal set of hyperparameters θ∗. Thereby, f was trained
on a training dataset Dtrain = (Dl

train,Du
train), where we

fixed |Dl
train| = 500, and validated on a labeled holdout

validation set Dval. The choice of the size of Dval is subject
to recent discussions [11], [12], [45]. Large Dval are expected
to yield stable results for model tuning, which is important
for many hyperparameter-sensitive semi-supervised models,
but stands in contrast to the promised practicality of these
models in settings with few labeled data. First insights on this
trade-off are are given by [12] and [45], which empirically
show in smaller experiments |Dval| = 1000 to be a vali-

dation set size where variance in the performance estimates
is still low enough to allow for reasonable model selection.
Following this, we set the size of the labeled validation set
to |Dval| = 1000 which is rather small compared to recent
literature where |Dval| ≥ 4000 [9], [28], [10]. A separate
labeled test set Dtest with |Dtest| = 2000 is kept aside for
the evaluation phase. Hyperband [46] with random sampling
as implemented in the Optuna framework [47] was used for
tuning, with a fixed budget of 100 GPU hours for each deep
learning model and dataset. We measure model performance
in terms of weighted Area under the Curve (wAUC) to account
for model calibration and class imbalance.

b) Evaluation Phase: In the evaluation phase, we
train f(θ∗) on Dtrain with varying amounts of nl ∈
{50, 100, 250, 500, 1000} for a maximum of 25000 model
update steps, assuming θ∗ is also a suitable hyperparameter
set for amounts of labels nl 	= 500 on which the model
was not specifically tuned. This evaluation scheme is in line
with previous work on SSL for image data [8], [12]. Model
performance is tracked on Dval and the model checkpoint with
the best validation performance is used for inference on the
holdout Dtest. The selection of especially (un-)informative
labeled samples can have a major effect on the model per-
formance, especially for small nl. To account for potentially
(un-)lucky selection of Dl

train in the unlabelling split of
Dtrain = (Dl

train,Du
train), we repeat this unlabelling step 5

times. In case of the ML baseline models, we use a Random
Search with a budget of 100 model evaluations for the tuning
phase and evaluate them on the same set of values for nl
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Fig. 2: Average ranks of all models based on the wAUC
over the 6 datasets for varying nl. Models are sorted by their
strongest performance on nl = 50 and plotted with decreasing
rank as indicated on the right vertical axis.

in the evaluation phase. See Table IV in the appendix for the
specific ranges. All deep learning models were implemented in
a unified codebase1 and trained using the Adam optimizer [48]
with all parameters set to default values except the learning
rate and weight decay. We implemented all deep learning
models from scratch in one unified framework and validated
our implementations based on performance metrics reported
on image classification tasks..

IV. EXPERIMENTAL RESULTS

Experimental findings are visualized in Figure 1 and Table II
in the appendix. The ranking of the various models for
different nl, averaged over the datasets, is shown in Figure 2
and Table III in the appendix.

a) Semi-supervised models outperform supervised base-
lines: Overall, our results show that semi-supervised models
outperform baseline models especially for small amounts of la-
beled data. This relative performance gain of semi-supervised
over supervised models is decreasing with an increase in nl

and we find that all models benefit from more labeled samples
in most cases. This is in line with literature on SSL [7].

b) Deep SSL translates well to TSC: Following our
experimental results in Figure 1, we deduct that transferring
well-established semi-supervised models from the image to the
time series domain is indeed possible. We find that the deep
semi-supervised models, especially the transferred MixMatch
and VAT, show impressive performance gains over the deep
supervised baseline model over all datasets up to nl = 500,
even reaching the performance of the fully labeled baseline in
few cases. For instance, the Mixmatch model exceeds the deep
supervised baseline by 0.16 wAUC on the Pamap2 and by 0.10
wAUC on the Crop dataset for nl = 50. These findings again
encourage our proposed transfer.

c) Strong baselines are crucial: We find the use of strong
baselines crucial for a realistic perspective on semi-supervised
learning performance. For instance, the Mean Teacher shows
weak performance on the majority of datasets, often perform-
ing even worse than the supervised baseline. This is in line

1https://github.com/Goschjann/ssltsc

with results of [36]. The strong performance of the Random
Forest for small nl on the other hand also stresses the need
for realistically strong supervised baselines.

d) Proposed methods outperform existing semi-
supervised approaches: While our results on the Ladder Net
outperforming other supervised methods align with those of
[35], we also observe that the Ladder Net is notably worse
compared to alternative SSL algorithms we propose. This
varying performance might be grounded in the large amount
of hyperparameters of the Ladder Net and its sensitivity to
different settings of those.

e) Proposed methods outperform self-supervised model-
ing: Similar to [36], we find their self-supervised approach to
perform better or at least equally well compared to the deep
supervised baseline model. Additionally, we are able to show
that our extension towards multivariate time series also works
well on the two multivariate datasets, WISDM and Pamap2.
The proposed approaches MixMatch and VAT furthermore
consistently outperform this self-supervised approach across
different amounts of labels on all 6 datasets.

f) Ranking of model performance similar to image do-
main: In terms of model performance ranking, literature
suggests that MixMatch performs better than VAT which again
outperforms the Mean Teacher and the Ladder Net [8], [12].
When ranking the algorithms across the datasets in Figure 2,
we confirm this ranking in the TSC setting.

Our results show that the promised label efficiency of
modern, deep semi-supervised model approaches translates
well to TSC problems. Furthermore, these findings suggest the
use of strong semi-supervised models from the image domain
as these transferred models show stronger performance than
the currently existing semi- and self-supervised approaches
tailored towards TSC. We believe that this work, also thanks
to a strong focus on a fair and reliable model comparison,
can serve as the basis for future research advances in semi-
supervised learning for time series classification.
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APPENDIX

A. Model Performance

TABLE II: Results for models over datasets with varying numbers of labels nl. Performance is measured as weighted AUC. The
best results for each nl-dataset-combination are emphasized in bold with standard deviations over 5 replications in brackets.

Number of labels 50 100
Dataset Crop Electric Devices FordB Pamap2 SITS WISDM Crop Electric Devices FordB Pamap2 SITS WISDM
Model

Ladder 0.797 (0.019) 0.815 (0.013) 0.775 (0.016) 0.816 (0.033) 0.897 (0.017) 0.95 (0.007) 0.801 (0.042) 0.821 (0.013) 0.784 (0.024) 0.869 (0.014) 0.908 (0.017) 0.976 (0.004)
Logistic Regression 0.846 (0.014) 0.771 (0.037) 0.496 (0.029) 0.815 (0.013) 0.84 (0.037) 0.829 (0.034) 0.877 (0.008) 0.817 (0.043) 0.507 (0.012) 0.848 (0.016) 0.876 (0.03) 0.869 (0.041)
Mean Teacher 0.853 (0.013) 0.692 (0.039) 0.745 (0.036) 0.737 (0.058) 0.862 (0.026) 0.838 (0.057) 0.899 (0.009) 0.799 (0.018) 0.797 (0.023) 0.795 (0.023) 0.915 (0.012) 0.871 (0.052)
MixMatch 0.910 (0.007) 0.862 (0.016) 0.775 (0.012) 0.866 (0.013) 0.922 (0.014) 0.948 (0.009) 0.938 (0.003) 0.884 (0.012) 0.809 (0.022) 0.897 (0.011) 0.932 (0.011) 0.963 (0.003)
Random Forest 0.881 (0.011) 0.878 (0.022) 0.585 (0.045) 0.855 (0.011) 0.902 (0.009) 0.932 (0.01) 0.911 (0.004) 0.893 (0.022) 0.601 (0.04) 0.891 (0.006) 0.918 (0.012) 0.95 (0.007)
Self-Supervised 0.868 (0.012) 0.832 (0.023) 0.772 (0.007) 0.84 (0.007) 0.895 (0.02) 0.904 (0.016) 0.904 (0.009) 0.854 (0.024) 0.79 (0.022) 0.882 (0.014) 0.916 (0.003) 0.959 (0.009)
Supervised 0.811 (0.03) 0.779 (0.045) 0.745 (0.009) 0.719 (0.031) 0.883 (0.025) 0.89 (0.016) 0.911 (0.01) 0.841 (0.023) 0.788 (0.025) 0.85 (0.021) 0.921 (0.009) 0.957 (0.004)
VAT 0.88 (0.005) 0.832 (0.009) 0.783 (0.016) 0.82 (0.022) 0.921 (0.007) 0.941 (0.012) 0.919 (0.009) 0.871 (0.012) 0.789 (0.011) 0.865 (0.01) 0.933 (0.012) 0.965 (0.006)

Number of labels 250 500
Dataset Crop Electric Devices FordB Pamap2 SITS WISDM Crop Electric Devices FordB Pamap2 SITS WISDM
Model

Ladder 0.793 (0.017) 0.851 (0.019) 0.808 (0.028) 0.908 (0.017) 0.92 (0.014) 0.988 (0.001) 0.786 (0.02) 0.852 (0.033) 0.809 (0.007) 0.901 (0.009) 0.927 (0.007) 0.993 (0.001)
Logistic Regression 0.911 (0.005) 0.887 (0.019) 0.489 (0.025) 0.888 (0.006) 0.916 (0.005) 0.93 (0.006) 0.927 (0.002) 0.898 (0.021) 0.48 (0.019) 0.913 (0.006) 0.927 (0.009) 0.944 (0.004)
Mean Teacher 0.94 (0.004) 0.798 (0.045) 0.817 (0.011) 0.888 (0.017) 0.943 (0.007) 0.936 (0.019) 0.958 (0.004) 0.864 (0.022) 0.823 (0.007) 0.927 (0.014) 0.953 (0.003) 0.977 (0.008)
MixMatch 0.957 (0.003) 0.910 (0.019) 0.831 (0.023) 0.934 (0.007) 0.948 (0.004) 0.980 (0.005) 0.964 (0.003) 0.917 (0.013) 0.854 (0.016) 0.953 (0.006) 0.956 (0.002) 0.990 (0.003)
Random Forest 0.939 (0.004) 0.918 (0.011) 0.638 (0.018) 0.918 (0.005) 0.934 (0.007) 0.963 (0.005) 0.950 (0.003) 0.928 (0.007) 0.653 (0.022) 0.934 (0.004) 0.942 (0.007) 0.974 (0.001)
Self-Supervised 0.928 (0.007) 0.891 (0.007) 0.814 (0.01) 0.930 (0.001) 0.938 (0.007) 0.984 (0.001) 0.943 (0.003) 0.907 (0.006) 0.829 (0.01) 0.947 (0.004) 0.945 (0.002) 0.990 (0.002)
Supervised 0.939 (0.004) 0.864 (0.019) 0.812 (0.015) 0.905 (0.013) 0.943 (0.004) 0.977 (0.005) 0.960 (0.002) 0.904 (0.019) 0.832 (0.008) 0.943 (0.004) 0.955 (0.001) 0.993 (0.004)
VAT 0.949 (0.002) 0.898 (0.011) 0.827 (0.017) 0.929 (0.006) 0.954 (0.004) 0.98 (0.006) 0.960 (0.003) 0.907 (0.022) 0.833 (0.005) 0.952 (0.012) 0.961 (0.001) 0.989 (0.002)

Number of labels 1000
Dataset Crop Electric Devices FordB Pamap2 SITS WISDM
Model

Ladder 0.78 (0.011) 0.858 (0.009) 0.814 (0.008) 0.899 (0.017) 0.932 (0.001) 0.996 (0.001)
Logistic Regression 0.937 (0.001) 0.91 (0.003) 0.474 (0.011) 0.926 (0.004) 0.934 (0.009) 0.950 (0.003)
Mean Teacher 0.966 (0.001) 0.887 (0.013) 0.82 (0.006) 0.96 (0.002) 0.96 (0.002) 0.989 (0.005)
MixMatch 0.970 (0.001) 0.933 (0.003) 0.859 (0.010) 0.967 (0.004) 0.961 (0.002) 0.994 (0.001)
Random Forest 0.959 (0.001) 0.932 (0.004) 0.663 (0.021) 0.948 (0.003) 0.949 (0.006) 0.981 (0.001)
Self-Supervised 0.945 (0.001) 0.919 (0.007) 0.828 (0.010) 0.963 (0.004) 0.952 (0.006) 0.994 (0.001)
Supervised 0.968 (0.001) 0.910 (0.011) 0.828 (0.010) 0.960 (0.003) 0.960 (0.002) 0.997 (0.001)
VAT 0.964 (0.001) 0.920 (0.008) 0.828 (0.006) 0.967 (0.004) 0.965 (0.002) 0.995 (0.001)

B. Model Ranking

TABLE III: The average rank of all models based on the wAUC over the 6 different datasets for various amounts of labels
nl. Lower rank indicates stronger model performance. Ranks are shown with decimals due to averaging over datasets.

Number of labels
50 100 250 500 1000

MixMatch 1.7 1.7 1.7 1.7 1.7
VAT 2.7 2.8 2.5 2.7 2.5
MeanTeacher 6.7 6.2 5.5 5.3 4.8
Self-supervised 4.2 4.0 3.8 4.3 4.5
Ladder 4.2 5.3 5.7 6.5 6.7
Supervised 6.3 4.7 4.8 3.7 3.2
Random Forest 3.2 3.8 4.8 4.7 5.5
Logistic Regression 7.2 7.5 7.2 7.2 7.2

C. Hyperparameters

TABLE IV: Hyperparameter ranges used for tuning of the different models. Deep Learning models were tuned via Hyperband
as described in Section 3 while the Random Forest and the Logistic Regression were tuned via Random Search with a bugdet
of 100 model evaluations each.

Parameter Range Scale
Shared

Weight decay [1e−6; 1e−2] log
Learning rate [1e−5; 1e−2] log
Rampup length [5000; 25000] linear
Magnitude (RandAug) [1; 10] linear
N (RandAug) [1; 6] linear

VAT
ε [0.1; 10.0] linear
α [0.1; 5.0] linear

MixMatch
α [0.5; 1.0] linear
λu [0.0; 150.0] linear

Parameter Range Scale
Self-Supervised Learning

λ [0.1; 10] log
horizon h [0.1, 0.2, 0.3] discrete
stride s [0.05, 0.1, 0.2, 0.3] discrete

Ladder Net
Noise ratio [0.1, 0.3, 0.45, 0.6] discrete
Loss weights [0.1; 10.0] log

Mean Teacher
αema [0.9; 1.0] log
wmax [0; 10] linear

Random Forest
Number of trees [100; 1000] linear
Max. tree depth [3; 25] linear

Logistic Regression
Regularization term [None, L1, L2] discrete
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Deep Semi-supervised Learning 
for Time-Series Classification 

Jann Goschenhofer 

Abstract While deep semi-supervised learning has gained much attention in com-
puter vision, limited research exists on its applicability in the time-series domain. In 
this work, we investigate the transferability of state-of-the-art deep semi-supervised 
models from image to time-series classification. We discuss the necessary model 
adaptations, in particular, an appropriate model backbone architecture and the use 
of tailored data augmentation strategies. Based on these adaptations, we explore the 
potential of deep semi-supervised learning in the context of time-series classification 
by evaluating our methods on large public time-series classification problems with 
varying amounts of labeled samples. We perform extensive comparisons under a 
decidedly realistic and appropriate evaluation scheme with a unified reimplementa-
tion of all algorithms considered, which is yet lacking in the field. Further, we shed 
light on the effect of different data augmentation strategies and model architecture 
backbones in this context within a series of experiments. We find that these transferred 
semi-supervised models show substantial performance gains over strong supervised, 
semi-supervised and self-supervised alternatives, especially for scenarios with very 
few labeled samples. 

1 Introduction 

Time-series classification (TSC) spans many real-world applications in domains from 
healthcare [34] over cybersecurity [38] to manufacturing (Dau et al. [12]). Several 
algorithms for TSC have been proposed over the years (Bagnall et al. [2]; Fawaz et 
al. [13]). 

In many real-world scenarios, time-series data can be collected easily, but acquir-
ing labels for this data is costly. For instance, in disease monitoring, sensor data 
are collected with low effort but the labeling of this data requires time-consuming 
work by medical experts (Goschenhofer et al. [16]). Semi-supervised learning (SSL) 
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addresses this by leveraging large amounts of unlabeled data in combination with a 
small amount of labeled data when training machine learning (ML) models. 

Especially in computer vision, the advances in deep neural networks and the 
promised label efficiency of SSL have led to the introduction of several innovative 
approaches for image data (Van Engelen and Hoos [42]). While there is much work 
on classical semi-supervised models for TSC, research on the use of neural network-
based SSL algorithms for TSC is still limited. 

This motivates our main research question that we approach holistically in this 
work: Can we transfer well-established deep semi-supervised models from the image 
to the time-series domain? More specifically, we answer this question for the most 
prominent state-of-the-art SSL approaches, by proposing adaptions for FixMatch 
(Sohn et al. [37]), MixMatch (Berthelot et al. [6]), Virtual Adversarial Training 
(Miyato et al. [29]), the Mean Teacher (Tarvainen and Valpola [40]) and the Ladder 
Net (Rasmus et al. [35]). These include the modification of a suitable backbone 
architecture as well as the adaptions of an appropriate data augmentation strategy to 
account for the domain transfer of these models. For demonstration of the efficacy 
of our proposed frameworks, we adhere to best practices for realistic evaluation of 
semi-supervised models and provide a fair and reliable model comparison with a 
high degree of practicality (Oliver et al. [31]). 

1.1 Related Work 

1.1.1 Time-Series Classification 

Over the past years, a variety of methods have been developed for TSC. A detailed 
overview on classical ML methods that were specifically developed for TSC 
(Grabocka et al. [17]; Bagnall et al. [3]; Kate [21] is provided in [2]. An alter-
native approach towards TSC consists in the extraction of statistical features from 
the raw time series as the basis for training any strong classifier for tabular data 
(Christ et al. [10]). Also in deep learning, specific methods for time-series classifi-
cation have been developed (Wang [4, 14, 46]). A comprehensive overview on these 
recent developments can be found in [13]. 

1.1.2 Semi-supervised Learning 

There exists a plethora of different concepts that extract additional information from 
unlabeled data via semi-supervision. These range from the extension of supervised 
ML methods such as the semi-supervised Support Vector Machine (Vapnik [43]) or 
semi-supervised Boosting (Mallapragada et al. [27]) to inherently semi-supervised 
methods such as Label Propagation (Zhu and Ghahramani [53]), Manifold Regu-
larization (Belkin et al. [5]) or Co-Training (Blum and Mitchell [7]). [8] provide 
a detailed overview on these semi-supervised approaches. There is also growing
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research on deep semi-supervised learning, mainly driven by the computer vision 
community. A recent overview and taxonomy on these developments are provided 
by (Van Engelen and Hoos [42]). Amongst these are graph-based methods such as 
Deep Label Propagation (Iscen et al. [18]), SNTG (Luo et al. [26]) or the extension 
of pseudo-labelling for deep learning (Van Engelen and Hoos [42]). Further, there 
is growing research on regularization-based approaches following the rationale of 
adding an additional unsupervised regularization loss term to the initial supervised 
loss. The Mean Teacher (Tarvainen and Valpola [40]) and its predecessors, Temporal 
Ensembling and the !-Model (Laine and Aila [24]), employ a consistency loss over 
the unlabeled samples to reward similar predictions for differently augmented ver-
sions of the same unlabeled sample. To overcome one drawback of those methods, 
the need for domain-dependent data augmentation strategies, Virtual Adversarial 
Training (VAT) (Miyato et al. [29]) adds small perturbations to the input data to 
create an auxiliary unsupervised training target. MixMatch (Berthelot et al. [6]) in 
turn combines different regularization strategies in one common framework. These 
regularization-based approaches yield state-of-the-art performance on image classi-
fication benchmarks. 

1.1.3 Semi-supervised Time Series Classification 

Different classical semi-supervised models have been developed for TSC. In their 
foundational work, [47] propose an approach that combines pseudo-labeling with a 
nearest-neighbor model for imbalanced, binary TSC tasks. This cluster-then-label 
(Van Engelen and Hoos [42]) rationale for labeled and unlabeled time series via 
custom distance metrics is also employed in approaches such as DTW-D (Chen et 
al. [9]), SUCCESS (Chen et al. [28]) or LCLC (Nguyen et al. [30]). Graph-based 
label propagation (Zhu and Ghahramani [53]) is combined with time-series-specific 
distance metrics by (Xu and Funaya [49]) and (Wang et al. [45]) introduced the 
shapelet-based SSSL. Furthermore, there has been a surge of research on neural-net-
based approaches for TSC. A customized version of the LadderNet (Rasmus et al. 
[35]) based on the FCN architecture (Rasmus et al. [46]) was applied by [50] on  
three multivariate human activity recognition (HAR) datasets. They report relative 
gains of the semi-supervised model over the supervised baselines for small amounts 
of labeled samples. In this context [50] are the first to evaluate SSL methods on 
large, multivariate TSC datasets. A self-supervised approach, where the model is 
jointly trained on an auxiliary forecasting task over the whole dataset next to the 
initial supervised classification task on the labeled data only, was introduced by 
[20]. They build upon the benchmark of [45] on a subset of smaller, univariate 
TSC datasets from the UCR repository (Dau et al. [12]) and report state-of-the-art 
performance compared to the majority of above methods as well as a customized 
variant of the!−Model (Laine and Aila [24]) that works on time-series problems. In 
alignment with [50], they report particularly strong model performance for the deep 
supervised baseline FCN (Wang et al. [46]) trained on few labeled samples only 
reporting it to outperform all above-mentioned classical semi-supervised models.
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This deep learning baseline outperforms all of the classical semi-supervised models 
and almost always beats the!−Model. We include this approach as a self-supervised 
baseline in our experiments. 

1.1.4 Limitations 

All existing model comparisons for semi-supervised TSC, despite the work of [50], 
are limited to univariate time-series datasets with a maximal size of 1000 train-
ing samples. In contrast to computer vision research on SSL (Van Engelen and 
Hoos [42]), these model comparisons are conducted for one fixed relative amount 
of labeled samples in the vast majority of experiments, making it hard to deduce 
general information for different data situations. They also do not align with the 
guidelines established by [31] for SSL on image data and do not include repeated 
model runs to account for randomness in the selection of labeled samples. Another 
issue is the lack of publicly accessible implementations of the classical approaches 
to semi-supervised TSC, making it impossible to validate against these approaches. 
This in turn leads to the problem that model comparisons with existing methods 
solely rely on values reported in former work for the same datasets with partially 
opaque dataset splits and unlabeling procedures. 

1.1.5 Contributions 

Our main contributions can be summarized as follows: (1) We propose five new 
deep SSL algorithms for TSC and describe tuning parameters and meaningful data 
augmentation strategies. Further, we (2) investigate the applicability of deep SSL in 
the domain of TSC and provide insights into which settings the proposed methods 
work well and how they compare to existing approaches. Through these experiments 
we are (3) able to identify three out of our five proposed methods that notably 
improve over existing approaches and in a series of additional experiments, we (4) 
provide insights on the role of different data augmentation strategies and architecture 
backbones in this context. 

2 From Images to Time Series 

2.1 Problem Formulation 

We define an equidistant time series as x (i ) = {{x (i) 1,1, ..., x
(i ) 
1,t }, ..., {x (i) c,1, ..., x

(i) 
c,t }}, 

where t describes the length and c the amount of covariates such that x (i) ∈ X ⊆ Rc×t . 
For c = 1 the time series is called univariate and for c > 1 multivariate. Next to the 
input space X, we use  y(i ) ∈ Y to denote a categorical variable in the target space Y.
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The goal of SSL is to train a prediction model f : X %→ Y on a datasetD = (Dl , Du) 

which consists of a labeled dataset Dl = {(x (i) , y(i) )}nl i=1 and an unlabeled dataset 
Du = {x (i )}n i=nl+1 where n = nl + nu . We consider the case where nl ' nu , as usual 
in SSL. Further, we define one batch of data as B ⊂ D, where Bl ⊆ Dl contains 
the labeled samples and Bu ⊆ Du the unlabeled samples in that batch such that 
B = (Bl , Bu). 

2.2 Backbone Architecture 

A basic building block in deep learning for images is a three-dimensional tensor, 
whereas time series can be represented as two-dimensional tensors with channels 
corresponding to the number of covariates. The extension of building blocks of 
powerful image classification architectures to TSC is thus straightforward, yet the 
right choice of a backbone architecture is crucial. We propose the use of the Fully 
Convolutional Network (FCN) (Wang et al. [46]) as a backbone architecture as it was 
shown to outperform a variety of models on 44 different TSC problems and is used in 
related work on semi-supervised TSC (Jawed et al. [20]). In all regularization-based 
semi-supervised methods discussed in Sect. 2.4, except for the Ladder Net (Rasmus et 
al. [35]), the network architecture can be decoupled from the model training strategy. 
This allows us to replace the backbone architecture of many of the established SSL 
methods from image classification with the FCN. In case of the Ladder Net, we 
design the decoder as a mirrored version of the FCN encoder (see Sect. 2.4). 

Within a larger benchmark for different handwriting-recognition tasks [32] pro-
posed the CNN-LSTM: an architecture for multivariate TSC consisting of CNN lay-
ers similar to the FCN followed by an LSTM head to capture temporal structure 
in the CNN features. Through an extensive benchmark, the CNN-LSTM showed 
consistently strong model performance. Next to the CNN-LSTM [14] successfully 
introduced the inception modules (Szegedy et al. [39]) from image to time-series 
classification, which has become another strong performing TSC architectures over 
time. 

While we rely on the FCN as backbone for our main experiments in Sect. 1, we  
provide additional experimental results with the CNN-LSTM and the InceptionTime 
in Sect. 5. Therein, we use the same hyperparameters for the CNN-LSTM as [32] 
and set n f  = 64 and depth  = 12 for InceptionTime. 

2.3 Data Augmentation 

One crucial component of regularization-based semi-supervised methods is the injec-
tion of random noise into the model. Data augmentation strategies g(x (i) ), g : X %→ 

X should be designed such that they perturbate the input x (i) of a sample while
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preserving the meaning of its label y(i ). This can be achieved by utilizing inherent 
invariances in the data, e.g., rotations of images usually preserve the meaning of an 
image. For images, invariances can be easily understood visually. In the time-series 
domain, such invariances are not straightforward to understand, rendering the design 
of reasonable data augmentation strategies in this domain challenging. A set of data 
augmentation strategies for multivariate time-series classification was introduced 
by [41] and evaluated on one human-activity-recognition task. They show that the 
majority of strategies are beneficial, but some can deteriorate the model performance. 
Iwana and Uchida [19] include these strategies in their review and introduce a taxon-
omy for different augmentation strategies for TSC and provide an empirical overview 
on the 128 datasets from the UCR repository (Dau et al. [12]). The results from their 
large empirical study show that while some augmentation strategies improve model 
performance and others are detrimental, the final impact of the data augmentation 
strategies heavily depends on and varies over the respective domain and applica-
tion. Refer to [48] for similar yet less comprehensive overview which also includes 
forecasting next to classification tasks. 

To overcome the additional burden of choosing the right strategy, we propose 
the use of the RandAugment strategy (Cubuk et al. [11]) which removes the need 
for a separate search phase. For each training batch, N augmentation strategies are 
randomly chosen out of a set of K possible policies. Next to N , a  magnitude hyper-
parameter is introduced which controls the augmentation intensity of the selected 
policies. We use the following set of augmentation policies following [41]: warping in 
the time dimension, warping the magnitude, addition of Gaussian Noise and random 
rescaling. We use RandAugment in this context following the rationale that even if 
one augmentation strategy is not label preserving, training with RandAugment with 
N = 1 will still produce correct model updates in at least K −1 

K of the forward passes. 
Early experiments in a fully supervised setting showed that the application of this 
data augmentation strategy improves model performance across all datasets used in 
our experiments. 

In a series of additional experiments in Sect. 5, we further investigate the role of 
the size of the pool for RandAugment on the model performance on both supervised 
and semi-supervised models on a subset of datasets. 

2.4 Methods 

The Mean Teacher (Tarvainen and Valpola [40]) is the successor of a series of 
consistency-regularization-based models such as Temporal Ensembling or the !-
Model (Laine and Aila [24]) for SSL and was empirically shown to outperform its 
predecessors (Oliver et al. [31]). Thereby, a teacher model, that is an average of the 
consecutive student models, is used to enforce consistency in model predictions over 
the course of model training. 

Virtual Adversarial Training (VAT) also focuses on consistency regularization 
(Miyato et al. [29]). Similar to adversarial examples (Goodfellow et al. [15]), a
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small data perturbation is learned such that its addition to the initial data point is 
expected to yield the maximum change in the model’s prediction. These perturbed 
model predictions are used as auxiliary labels for the unlabeled samples within a 
regularization term to enable model training on the whole data set. This approach 
is particularly interesting for the time-series domain where visual inspection of the 
appropriateness of data augmentation policies is difficult, as it does not rely on data 
augmentation techniques. 

The Ladder Net by [35] is a reconstruction-based SSL model and is inspired 
by denoising autoencoders (Vincent et al. [44]). In its core, it extends a supervised 
encoder model with a corresponding decoder network which allows for the calcu-
lation of an unsupervised reconstruction loss over the unlabeled samples enabling 
training on the whole dataset. The Ladder Net was previously extended to TSC 
problems (Zeng et al. [50]) and is thus also part of this study. 

In MixMatch, various semi-supervised techniques such as data augmentation for 
consistency regularization, Mixup training (Zhang et al. [52]) and pseudo-labeling 
are combined within one holistic approach (Berthelot et al. [6]). It was empirically 
shown to perform well on image data, motivating our use of it in this work (Berthelot 
et al. [6]). 

FixMatch further builds upon this consistency regularization rationale via a com-
bination with pseudo-labeling, alleviating the need for Mixup regularization over 
labeled and unlabeled samples (Sohn et al. [37]). Therefore, it uses confident pre-
dictions of weakly augmented versions of the unlabelled samples as pseudo-labels 
and combines them with model predictions over strongly augmented versions of the 
same samples within an unsupervised loss function. Hence, it alleviates the need for 
Mixup training at the cost of having to create a set of weak and strong data augmen-
tation strategies. We include FixMatch as well in this work as it can be seen as the 
successor of MixMatch. 

3 Experimental Design 

3.1 Baseline Models 

Next to shapelet- and distance-based methods (Bagnall et al. [2]), fitting standard 
ML methods on hand-crafted statistical features has been a widely used approach for 
TSC before the introduction of specific deep learning architectures for TSC (Wang 
et al. [46]) (Wang et al. [14]). We include a Random Forest and a Logistic Regression 
trained on features, extracted via the tsfresh framework (Christ et al. [10]) from the 
time series, as baselines. 

In addition, we train the FCN architecture (Wang et al. [46]) on the labeled samples 
Dl based on the cross entropy loss as a supervised deep learning baseline model for 
our experiments. To ensure a fair and reliable model comparison, we explicitly use 
the same architecture of this supervised baseline model as the backbone for all SSL
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approaches. We also use the performance of a supervised FCN trained on the fully 
labeled datasets as an estimated upper bound for the model performance. 

Furthermore, we evaluate the performance of the self-supervised approach that 
was introduced for TSC by [20]. Thereby, an auxiliary forecasting task from the time-
series data D is created and combined with the initial classification task as a surrogate 
supervision signal allowing the use of unlabeled data in model training. The model 
is then jointly trained on both tasks simultaneously. Next to its re-implementation, 
we further extend their approach for multivariate TSC by increasing the amount of 
neurons in the surrogate model head accordingly. The direct comparison with this 
self-supervised approach is of special interest as it was shown to outperform classical 
semi-supervised approaches in a set of experiments on smaller TSC datasets (Jawed 
et al. [20]). 

3.2 Data Sets 

We evaluate the performance of the above-described semi-supervised models on six 
publicly available datasets. In contrast to previous work (Jawed et al. [20, 45, 49]), 
we explicitly focus on large datasets with at least 1000 observations. Their main 
characteristics are described in Table 1. 

With Crop, ElectricDevices and FordB, we include three of the largest datasets 
from the UCR Time Series Classification Repository (Dau et al. [12]). In addition, 
we use the two multivariate HAR datasets Pamap2 (Reiss and Stricker [36]) and 
WISDM (Kwapisz et al. [23]). We also evaluate the models on a class-balanced 
version of the Satellite Image Time Series (SITS) dataset (Petitjean et al. [33]). 

Table 1 Characteristics of the used data sets where c refers to the amount of covariates, Size to the 
size of the whole training data set and Length to the length of the time series 
Name Classes Size Length c Balanced 

Crop 24 7,200 46 1 ! 

ElectricDevices 7 8,926 96 1 " 

FordB 2 3,636 500 1 ! 

Pamap2 13 11,313 100 6 " 

WISDM 6 10,727 80 3 " 

Balanced SITS 6 35,064 46 1 !
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3.3 Evaluation, Tuning and Implementation 

Due to special factors, such as the selection of the labeled data points, an unbiased 
and fair model comparison is particularly crucial to get a realistic perspective on 
the performance of the semi-supervised models (Van Engelen and Hoos [42]). We 
adhere to the guidelines for realistic evaluation of semi-supervised models by [31] to  
guarantee reliable and fair experimental results. For performance evaluation of SSL 
models, the standard procedure is to split a fully labeled dataset D into labeled and 
unlabeled datasets Dl and Du via artificial unlabeling of nu randomly drawn samples 
(Van Engelen and Hoos [42]). This way, semi-supervised data settings for different 
amounts of labeled samples l are simulated. We unlabel in a stratified manner to 
retain the datasets’ label distributions. For the following experiments, we split the 
evaluation of one model f on one data set D in two distinct phases. 

3.3.1 Tuning Phase 

In the tuning phase, we tuned the model f with one fixed amount of labeled samples 
to yield an optimal set of hyperparameters θ 

∗. Thereby, f was trained on a training 
dataset Dtrain  = (Dl 

train, Du 
train), where we fixed  |Dl 

train| =  500, and validated on 
a labeled holdout validation set Dval . The choice of the size of Dval is subject to 
recent discussions (Rasmus et al. [35]; Oliver et al. [31]; Zhai et al. [51]. Large 
Dval are expected to yield stable results for model tuning, which is important for 
many hyperparameter-sensitive semi-supervised models, but stands in contrast to the 
promised practicality of these models in settings with few labeled data. First insights 
on this trade-off are given by [31, 51], which empirically show in smaller experiments 
|Dval | =  1000 to be a validation set size where variance in the performance estimates 
is still low enough to allow for reasonable model selection. Following this, we set the 
size of the labeled validation set to |Dval | =  1000 which is rather small compared 
to recent literature where |Dval | ≥  4000 (Miyato et al. [29]; Laine and Aila [24]; 
Tarvainen and Valpola [40]). A separate labeled test set Dtest  with |Dtest | =  2000 is 
kept aside for the evaluation phase. Hyperband (Li et al. [25]) with random sampling 
as implemented in the Optuna framework (Akiba et al. [1]) was used for tuning, 
with a fixed budget of 100 GPU hours for each deep learning model and dataset. We 
measure model performance in terms of weighted Area under the Curve (wAUC) to 
account for model calibration and class imbalance. 

3.3.2 Evaluation Phase 

In the evaluation phase, we train f (θ 
∗) on Dtrain  with varying amounts of nl ∈ 

{50, 100, 250, 500, 1000} for a maximum of 25000 model update steps, assuming 
θ 

∗ is also a suitable hyperparameter set for amounts of labels nl += 500 on which the 
model was not specifically tuned. This evaluation scheme is in line with previous work
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on SSL for image data (Berthelot et al. [6]; Oliver et al. [31]). Model performance 
is tracked on Dval and the model checkpoint with the best validation performance is 
used for inference on the holdout Dtest . The selection of especially (un-)informative 
labeled samples can have a major effect on the model performance, especially for 
small nl . To account for potentially (un-)lucky selection of Dl 

train  in the unlabelling 
split of Dtrain  = (Dl 

train, Du 
train), we repeat this unlabelling step 5 times. In case 

of the ML baseline models, we use a Random Search with a budget of 100 model 
evaluations for the tuning phase and evaluate them on the same set of values for 
nl in the evaluation phase. See Table 6 in the appendix for the specific ranges. All 
deep learning models were implemented in a unified codebase1 and trained using 
the Adam optimizer (Kingma and Ba [22]) with all parameters set to default values 
except the learning rate and weight decay. We implemented all deep learning models 
from scratch in one unified framework and validated our implementations based on 
performance metrics reported on image classification tasks. 

4 Experimental Results 

Experimental findings are visualized in Fig. 1 and Table 4 in the appendix. The 
ranking of the various models for different nl , averaged over the six datasets is 
shown in Fig. 2 and in Table 5 in the appendix. 

4.1 Main Results 

4.1.1 Semi-supervised Models Outperform Supervised Baselines 

Overall, our results show that semi-supervised models outperform baseline models 
especially for small amounts of labeled data. This relative performance gain of semi-
supervised over supervised models is decreasing with an increase in nl and we find 
that all models benefit from more labeled samples in most cases, a finding that is 
also line with literature on SSL [42]. 

4.1.2 Deep SSL Translates well to TSC 

Following our experimental results in Fig. 1, we deduct that transferring well-
established semi-supervised models from the image to the time-series domain is 
indeed possible. We find that the deep semi-supervised models, especially the trans-
ferred MixMatch, FixMatch and VAT, show substantial performance gains over the 
deep supervised baseline model over all six datasets up to nl = 500, even reaching 

1 https://github.com/Goschjann/ssltsc.
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Fig. 1 Performance of all models on the six different datasets over various nl as presented in Table 4 
in the appendix. The horizontal line marks the performance of the fully labeled baseline, i.e. the 
supervised FCN model trained on the fully labeled dataset. Dots represent the mean wAUC and 
the vertical lines the standard deviation over five repeated unlabeling steps. The performance of 
the baseline models is depicted as dotted, those of the semi-supervised models as solid lines. Semi-
supervised models clearly outperform the baseline models in settings with few labeled samples 
nl ∈ {50, 100} on all but the Electric Devices dataset 

Fig. 2 Average ranks of all models based on the wAUC over the six datasets for varying nl . Models 
are sorted by their strongest performance on nl = 50 and plotted with decreasing rank as indicated 
on the right vertical axis
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the performance of the fully labeled baseline in few cases. For instance, the Mixmatch 
model exceeds the deep supervised baseline by 0.16 wAUC on the Pamap2 and by 
0.10 wAUC on the Crop dataset for nl = 50. Overall, these findings encourage the 
usage of semi-supervised learning paradigms in the context of TSC, and we hope 
that this motivates further research on this exciting area. 

4.1.3 Strong Baselines Are Crucial 

The use of strong baselines crucial to gain a realistic perspective on the performance 
of semi-supervised learning approaches (Oliver et al. [31]) and our experimental 
results support this need for strong baselines further. For instance, the Mean Teacher 
shows weak performance on the majority of datasets, often performing even worse 
than the supervised baseline. These experimental results are in line with those of 
[20] who also include the !-Model, next to deep supervised baselines, in their 
model comparison which is very similar to the Mean-Teacher in design. The strong 
performance of the Random Forest for small nl on the other hand also stresses the 
need for realistically strong supervised baselines. 

4.1.4 Proposed Methods Outperform Existing Semi-supervised 
Approaches 

In alignment with [50], we also find the Ladder Net outperforms other supervised 
methods. Despite this performance gain over the supervised baselines, we observe 
that the Ladder Net performs notably worse compared then alternative proposed 
semi-supervised algorithms such as FixMatch, MixMatch and VAT. This varying 
performance might be grounded in the large amount of hyperparameters of the Ladder 
Net and its sensitivity to different settings of those. We further interpret this somehwat 
expected result as an expression of a general shift away from purely reconstruction-
based approaches over to the development of more sophisticated self-supervised 
approaches that include complex pretext tasks. 

4.1.5 Proposed Methods Outperform Self-supervised Modeling 

Similar to [20], we find their self-supervised approach to perform better or at least 
equally well compared to the deep supervised baseline model. Additionally, we are 
able to show that our naive extension of their approach towards multivariate time 
series also works well on the two multivariate datasets, WISDM and Pamap2. Despite 
this performance gain over the supervised baslines, the proposed approaches Mix-
Match, FixMatch and VAT furthermore consistently outperform this self-supervised 
approach across different amounts of labels on all six datasets. We hypothesize 
that this further demonstrates the capabilities of consistency regularization. Despite 
this, we also want to stress that consistency regularization as used within FixMatch

4.1 Deep Semi-supervised Learning for Time Series Classification

71



Deep Semi-supervised Learning for Time-Series Classification 373

Table 2 Augmentation Procedures within RandAugment assigned to augmentation pools of 
varying size 
Augmentation Pool size 

Procedure Small Medium Large 

Time noise ! ! ! 

Magnitude noise ! ! ! 

Magnitude scaling ! ! ! 

Time warping ! ! 

Magnitude warping ! ! 

Time cutout ! 

Random crop ! 

and MixMatch and self-supervised learning as introduced by [20] are orthogonal 
approaches in this context and the combination of both could potentially enable 
further performance increases. 

4.1.6 Ranking of Model Performance Similar to Image Domain 

In terms of model performance ranking, literature suggests that MixMatch and Fix-
Match perform better than VAT which again outperforms the Mean Teacher and the 
Ladder Net [6, 31]. When ranking the algorithms across the datasets in Fig. 2, we  
confirm this ranking in the TSC setting in our experimental setup. One exception 
in this context is the FixMatch architecture which does unexpectedly not manage to 
outperform MixMatch as suggested in literature (Sohn et al. [37]) and ranks second. 
This further stresses the need to compare and evaluate modeling approaches across 
different domains and data modalities. 

4.2 Additional Experiments 

In addition to the main results in Sect. 4, we want to provide more insights on the use of 
(a) different data augmentation procedures and (b) different model architectures with 
more complexity than the FCN by [46]. For these additional experiments, we use the 
Electric Devices, Pamap2 and SITS datasets. We decidedly chose these three datasets 
as they offer relatively large training datasets, do not contain too many classes and 
span uni- and multivariate time series across the different domains remote sensing, 
production and human activitiy recognition. Further, we hold the amount of labeled 
samples fix to nl = 500.
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4.2.1 Data Augmentation 

As motivated in Sect. 2, we use RandAugment as a wrapper over various data aug-
mentation strategies tailored towards TSC. The choice of the most suitable data 
augmentation procedure for TSC remains an open research question with recent 
benchmarks providing unclear recommendations due to the heavy dependence of 
the domain of the respective TSC task (Iwana and Uchida [19]) (Wen et al. [48]). 
Still, we want to shed light on the size and hence the complexity of the pool of single 
data augmentation procedures across datasets from different domains. Therefore, we 
created a small, a medium and a large pool of procedures with increasing complexity 
as summarized in Table 2, refer to [19] for a detailed description of the single pro-
cedures. We fixed the RandAugment hyperparameters N = 2, magnitude = 3 as 
these were revealed as reasonable default values via our extensive tuning phase and 
evaluated all models on the test set following the procedure described in Sect. 3.3. 
The FCN architecture is used as backbone across all three models. 

In Fig. 3, we illustrate the performance of two semi-supervised models, FixMatch 
and VAT, and the supervised model over varying RandAugment pool sizes across the 
Electric Devices, Pamap2 and SITS datasets for a fixed amount of nl = 500 labels. 
Especially on the Electric Devices and the Pamap2 datasets, we find Fixmatch to 
benefit from an increase in pool size and thus data augmentation complexity the 
most. We hypothesize that this is due to the heavy use of consistency regulariza-
tion which relies on heavy data augmentation within FixMatch, as it was shown to 
benefit from heavy data augmentation on image data as well [37]. Also, Pamap2 
and ElectricDevices contain rather long and in the case of Pamap2 even multivariate 
time series as opposed to SITS. Hence, these two datasets might benefit more from 
stronger data augmentation as they are inherently more complex, it is important 
to note that the efficacy of data augmentation methods in TSC is highly domain-
dependent (Iwana and Uchida [19]). Further, we observe that increasing the pool 
size from medium to large has a slightly detrimental effect on the supervised model 
while VAT does not benefit from a more complex set of procedures nor is it detrimen-
tal to its performance. Across all three datasets, we observe that the medium pool 
size leads to stronger model performance compared to the small pool. From a prac-
titionerÃ¢â‚¬â„¢s view, this smaller series of experiments suggests that one should 

Fig. 3 Effect of different sizes of the data augmentation pool for the RandAugment strategy. We 
compare a small, medium and large pool over the Supervised FCN, VAT and FixMatch on three 
datasets with standard deviations reported over three repetitions each
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invest in the creation of a data augmentation pool with some degree of complexity 
as this favors model performance across training paradigms. Further, the creation of 
overly complex augmentation pools is one of the key drivers of FixMatch’s success 
on both, image and time-series classification tasks. 

4.2.2 Backbone Architectures 

We used the FCN [45] as backbone architecture in our main results in Sect. 4 as 
its strong baseline performance across different benchmarks next to its simplicity 
in design makes it a reasonable default backbone for TSC [13]. In addition to the 
FCN, we investigate the suitability of more complex backbone architectures for 
both supervised and semi-supervised learning, i.e. MixMatch and VAT. Therefore, 
we experiment with the CNN-LSTM [32] as a more advanced version of the FCN 
and the InceptionTime backbone [14] which introduces the inception module from 
computer vision based architectures [39] to TSC. All models were tuned with the 
same time budget on nl = 500 following the evaluation strategy outlined in Sect. 3.3 
and we present results for the nl = 500 scenario across the three datasets. 

From Table 3, we first observe that while the choice of the backbone architecture 
has an effect on the respective model performances, this effect is not substantial. 
For instance, we find the largest absolute performance gap of 0.016 wAUC with the 
supervised model on the Electric Devices dataset. We further confirm the role of the 
FCN architecture as a strong baseline following [46] and backing our choice of it as 
the backbone for our main experiments. Across all three models, the use of elaborate 
backbone architectures can still yield notable performance gains. For instance, this 
can be observed for MixMatch on the Pamap2 dataset where the InceptionTime 
backbone leads to an absolute performance increase of 0.011 wAUC over the CNN-
LSTM backbine. From a practitionerÃ¢â‚¬â„¢s perspective, these results suggest 
that while the optimal backbone architecture can boost performance to some extent, 
the FCN backbone is a reasonable architecture choice for both supervised as well as 
semi-supervised time-series classification.
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Table 3 Effect of the backbone architectures FCN (Wang et al. [46]), CNN-LSTM (Ott et al. 
[32]) and InceptionTime (Fawaz et al. [14]) on the performance of the Supervised Model, VAT and 
MixMatch across three datasets for fixed nl = 500 

Electric devices 

Supervised VAT MixMatch 

FCN 0.904 (0.019) 0.907 (0.022) 0.917 (0.013) 

CNN-LSTM 0.920 (0.004) 0.918 (0.004) 0.905 (0.004) 

InceptionTime 0.920 (0.009) 0.913 (0.012) 0.916 (0.003) 

Pamap2 

Supervised VAT MixMatch 

FCN 0.943 (0.004) 0.952 (0.012) 0.934 (0.007) 

CNN-LSTM 0.959 (0.002) 0.929 (0.005) 0.915 (0.005) 

InceptionTime 0.958 (0.004) 0.955 (0.005) 0.946 (0.001) 

SITS 

Supervised VAT MixMatch 

FCN 0.955 (0.001) 0.961 (0.001) 0.956 (0.006) 

CNN-LSTM 0.964 (0.001) 0.960 (0.003) 0.959 (0.001) 

InceptionTime 0.962 (0.001) 0.959 (0.001) 0.956 (0.001) 

5 Conclusion 

In this work, we investigated the transferability of modern semi-supervised learn-
ing approaches from their initial domain of computer vision towards the classifica-
tion of time-series data. We explored this potential within a series of experiments 
across six challenging benchmark datasets and describe the necessary changes that 
enable this transfer. Thereby, we further shed light on the role of data augmentation 
strategies and backbone model architectures in this context. Our results show that 
the promised label efficiency of modern, deep semi-supervised model approaches 
translates well to TSC problems. Furthermore, these findings suggest the use of 
strong semi-supervised models from the image domain as these transferred mod-
els show stronger performance than the currently existing semi- and self-supervised 
approaches tailored towards TSC. We believe that this work, also thanks to a strong 
focus on a fair and reliable model comparison, can serve as the basis for future 
research advances in semi-supervised learning for time-series classification. 

Appendix 

5.1 Model Performance 

See Table 4.
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5.2 Model Ranking 

See Table 5. 

Table 5 The average rank of all models based on the wAUC over the six different datasets for 
various amounts of labels nl . Lower rank indicates stronger model performance. Ranks are shown 
with decimals due to averaging over datasets 

Number of labels 

50 100 250 500 1000 

MixMatch 1.8 2.0 2.0 2.2 2.2 

FixMatch 3.8 2.8 2.5 3.3 2.2 

VAT 3.2 3.7 2.8 3.0 3.2 

MeanTeacher 7.5 7.2 6.2 6.3 5.8 

Self-
supervised 

4.7 4.7 4.5 4.7 4.8 

Ladder 4.7 6.2 6.5 7.2 7.5 

Supervised 7.2 5.3 5.8 3.3 3.5 

Random 
forest 

3.8 4.5 5.5 6.0 6.3 

Logistic 
regression 

7.8 8.5 8.0 8.2 8.0 

5.3 Hyperparameters 

See Table 6.
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Table 6 Hyperparameter ranges are used for tuning of the different models. Deep Learning mod-
els were tuned via Hyperband as described in Sect. 3 while the Random Forest and the Logistic 
Regression were tuned via Random Search with a bugdet of 100 model evaluations each 

Parameter Range Scale 

Shared 

Weight decay [1e−6; 1e−2] log 

Learning rate [1e−5; 1e−2] log 

Rampup length [5000; 25000] linear 

Magnitude (RandAug) [1; 10] linear 

N (RandAug) [1; 6] linear 

VAT

ε [0.1; 10.0] linear 

α [0.1; 5.0] linear 

MixMatch 

α [0.5; 1.0] linear 

λu [0.0; 150.0] linear 

FixMatch 

τ [0.75; 0.99] linear 

λu [0.0; 10.0] linear 

Self-Supervised Learning 

λ [0.1; 10] log 

horizon h [0.1, 0.2, 0.3] discrete 

stride s [0.05, 0.1, 0.2, 0.3] discrete 

Ladder Net 

Noise ratio [0.1, 0.3, 0.45, 0.6] discrete 

Loss weights [0.1; 10.0] log 

Mean Teacher 

αema [0.9; 1.0] log 

wmax [0; 10] linear 

Random Forest 

Number of trees [100; 1000] linear 

Max. tree depth [3; 25] linear 

Logistic Regression 

Regularization term [None, L1, L2] discrete
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Abstract—Constrained clustering allows the training of classi-
fication models using pairwise constraints only, which are weak
and relatively easy to mine, while still yielding full-supervision-
level model performance. While they perform well even in
the absence of the true underlying class labels, constrained
clustering models still require large amounts of binary constraint
annotations for training. In this paper, we propose a semi-
supervised context whereby a large amount of unconstrained data
is available alongside a smaller set of constraints, and propose
ConstraintMatch to leverage such unconstrained data. While a
great deal of progress has been made in semi-supervised learning
using full labels, there are a number of challenges that prevent
a naive application of the resulting methods in the constraint-
based label setting. Therefore, we reason about and analyze these
challenges, specifically 1) proposing a pseudo-constraining mech-
anism to overcome the confirmation bias, a major weakness of
pseudo-labeling, 2) developing new methods for pseudo-labeling
towards the selection of informative unconstrained samples, 3)
showing that this also allows the use of pairwise loss functions for
the initial and auxiliary losses which facilitates semi-constrained
model training. In extensive experiments, we demonstrate the ef-
fectiveness of ConstraintMatch over relevant baselines in both the
regular clustering and overclustering scenarios on five challeng-
ing benchmarks and provide analyses of its several components.

I. INTRODUCTION

Manual annotation of class labels is a tedious and labor-
intensive task that can constitute a significant obstacle in
applications, particularly in situations where the annotator has
to select from a large number of potential class labels or
where the annotation is ambiguous due to the task complexity.
Additionally, supervised classification models require knowl-
edge of the total number of classes present in the respective
application, i.e. the cardinality of the label space. Constrained
clustering offers a remedy for this as model training in
this weakly supervised regime requires only weak, pairwise
constraint relations (i.e. similar/dissimilar) which incur less an-
notation effort compared to instance-specific class labels [47].
These models can also learn meaningful cluster representations
even in the overclustering scenario without knowledge of the
underlying amount of clusters [14]. The majority of research
on constrained clustering focuses on the constrained scenario,
where each data point is associated with at least one constraint
pair. As this setting still requires large sets of given constraints
and hence incurs high annotation effort, we focus on the semi-
constrained setting where a clustering model is trained on both
a small dataset of pairwise constraints and a large dataset of
unconstrained samples.

Fig. 1: Illustration of pseudo-constraining. While the model
creates overconfident, wrong pseudo-labels for both unlabeled
samples, it still yields a semantically correct pseudo-constraint.

While a great deal of progress has been made in semi-
supervised learning when class labels are provided, we identify
through analysis a number of challenges when applying such
methods to the constrained clustering setting. One of the
most effective methods in semi-supervised learning, pseudo-
labeling, utilizes confident predictions on unlabeled data in
training and is therefore prone to confirmation bias. Specif-
ically, unlabeled samples that were confidently assigned the
wrong class label by the model are selected as pseudo-labels,
which leads to subsequent model degradation [1]. We analyze
this issue in the context of constraint labels and propose a
pseudo-constraining mechanism that we show can mitigate it,
by generating pseudo-constraints from the pseudo-labels (see
Fig. 1). Further, we argue that a confidence-based pseudo-
label selection criterion is inappropriate in this setting as it
leads to the unnecessary de-selection of unconstrained sam-
ples that contain valuable information for subsequent pseudo-
constraining. We, therefore, propose an entropy-based criterion
to select informative unconstrained samples and show its
superiority. The combination of these two methods, Con-
straintMatch, facilitates effective pseudo-labeling and unifies
the initial and auxiliary learning task. We show that Constraint-
Match is able to outperform several state-of-the-art baselines
using only a few constraint annotations by substantial margins,
even in the more challenging overclustering scenario.

Contributions We 1) propose ConstraintMatch as a method
for semi-constrained training of clustering models leveraging
a large set of unconstrained samples next to a small set of
pairwise constraints. Within a series of experiments, we 2)
specifically make the case for pseudo-constraints over naive
pseudo-labels and provide a detailed analysis of Constraint-
Match’s several components. Furthermore, we 3) empirically

4.2 ConstraintMatch for Semi-constrained Clustering
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Fig. 2: ConstraintMatch combines pairwise training on batches of constrained (gray) and unconstrained (yellow) samples
leveraging weak and strong data augmentations a(), A(). The criterion Isel is used to select informative pseudo-labels from
unconstrained samples which are then mapped to pairwise pseudo-constraints via Imap to overcome the confirmation bias.
Predictions from model f() over strongly augmented versions of these samples serve as inputs to the auxiliary loss Lpseudo to
enforce consistency in predicted cluster assignments. ConstraintMatch is trained on a combination of the pseudo-constrained
and the constrained loss Lcons.

prove the strong performance of ConstraintMatch of up to
16.75% NMI over the constrained baseline on a series of
five challenging benchmark datasets in both the regular and
the overclustering scenario. Thereby, we evaluate models in
different settings to unify the evaluation of modern deep
clustering approaches and 4) release our source code1 for
future research on semi-constrained clustering.

II. RELATED WORK

We provide an overview of the context of ConstraintMatch
at the intersection of deep clustering, constrained clustering,
and semi-supervised learning in the following.

Deep Clustering Early methods for deep clustering com-
bine a reconstruction target with a clustering loss to learn
expressive clustering features via reconstruction [10], [23],
[37]. Subsequent approaches shift this focus toward low-
level features via alternating cluster assignments with those
provided by traditional clustering algorithms [3], [45]. More
recent research is directed at mapping the data onto low-
dimensional representations which serve as a training target for
similarity-based losses and as cluster predictions during model
inference [4], [18], [24], [29], [44]. Van Gansbeke et al. [40]
found these approaches are prone to learning low-level features
which lack meaning for semantic clustering next to heavy
dependence on network initialization. Therefore, they propose
SCAN as a two-step approach where feature representations
learned via contrastive pretext tasks [5], [11] are used to mine
nearest neighbors of the unlabeled samples. The model is then
trained via a clustering loss which maximizes the alignment
of their joint feature representations and enables clustering in
the absence of the true underlying amount of clusters. SCAN
was decidedly evaluated on test datasets only to prove its
efficacy on new, unseen data. While this is appealing from a
modeling perspective, it prevents direct comparison with prior
work where clustering models are evaluated on the union of
training and test datasets. We unify this model comparison

1https://anonymous.4open.science/r/constraintmatch

in our experiments and find SCAN to perform on par with
subsequent approaches TCC [30], CC [24], and MICE [38].
Hence, we use SCAN as a starting point for ConstraintMatch.

Constrained Clustering The introduction of binary
instance-level constraints for clustering [41] led to the adap-
tation of existing clustering methods towards the use of
constraints [42], see [9] for an overview. With the proposal of
the KCL loss, Hsu et al. [14] introduced constrained clustering
and overclustering to deep learning. They further showed its
applicability to transfer learning [15] and introduced the Meta-
classification-likelihood (MCL) for improved model training
with pairwise constraints [16] and both loss formulations can
not be used with unconstrained data. Zhang et al. [47] provide
a framework to work with various types of constraints.

Semi-supervised Learning In semi-supervised classifica-
tion, the rationale of consistency regularization lead to sub-
stantial improvements over supervised baselines [2], [21],
[33], [46]. Among these, FixMatch [33] yields state-of-the-
art model performance even in settings with very low su-
pervision. It combines confidence-based pseudo-labeling [22]
with consistency regularization using the weak-and strong
augmentation scheme over unlabeled samples.

Semi-constrained Clustering With S3C2, a two-stage ap-
proach was proposed that leverages pseudo-constraints mined
from a siamese network trained on few constraints [32].
While this approach was shown to perform well on simple
benchmarks, it lacks end-to-end training and requires the true
amount of clusters as input. Similarly, the approach by Fogel
et al. [8] requires said amount of true clusters as input next to
being a transductive method prohibiting inference on unseen
data without access to the training data after training. PCOG
[28] is another transductive method that also requires the true
amount of cluster while its spectral decomposition component
hinders it from scaling to large datasets. The approach of
Shukla et al. [31] relies on a few class labels, rendering it non-
applicable for scenarios where only constraints are present. In
contrast to these approaches, we introduce a semi-constrained
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clustering method that only relies on constraint annotations,
leverages unconstrained data, is inductive, and works well
without knowledge w.r.t the true amount of clusters.

III. METHOD

A. Notation

We consider a dataset D which consists of constrained and
unconstrained datasets Dc and Du. Dc contains nc constrained
pairs of the form xc

ij = (xc
i , x

c
j , cij) ∈ Dc where xc

i , x
c
j refer

to two input samples and cij ∈ {0, 1} to the associated binary
constraint. These constraints describe that both samples either
correspond to the same cluster cij = 1, Must-Link constraints
(ML), or to different clusters cij = 0, Cannot-Link con-
straints (CL). Du consists of nu unconstrained input samples
xu
i ∈ Du. Further, we denote B ⊂ D,Bc ⊂ Dc,Bu ⊂ Du as

batches of input samples xi of the respective datasets. We refer
to true class labels as yi ∈ Y where K = |Y| describes the
amount of true classes, i.e. the amount of underlying clusters
K, in the dataset. Note that when K is not known, the model
may have a different number of outputs nout than the ground
truth number of clusters. We aim at training a clustering
model f in the form of a neural network with its final head
consisting of nout output neurons followed by a softmax
layer, i.e. the model predicts a probability distribution over
cluster assignments ŷi = f(xi) where ŷil denotes the predicted
probability of xi belonging to cluster l ∈ 1, ..., nout. Similarly,
we refer to pseudo-labels as ỹi and to pseudo-constraints as
c̃ij ∈ [0, 1]. Further, we introduce the criterion Isel which
selects a subset of informative pseudo-labels ỹi based on their
predicted cluster assignments ŷi from B. From pairs of these
selected pseudo-labels ỹi, ỹj we construct pseudo-constraints
c̃ij using a second criterion Imap.

B. Algorithm

ConstraintMatch is an annotation-efficient method that can
leverage large unconstrained (i.e. unlabeled) data Du next to
few constraint pairs Dc to train a clustering model f . It uses
unsupervised clustering in a pretraining step and combines
training strategies from constrained clustering [14], [16] with
the state-of-the-art semi-supervised learning method Fixmatch
[33], refer to Fig. 2 for illustration. We use SCAN [40]
for the pretraining step but other pretraining methods would
also be applicable. Specifically, pseudo-labeling (i.e. self-
training) has proven itself an effective method for leveraging
unlabeled data and is a key component of recent semi-
supervised classification models [21], [33]. In naive pseudo-
labeling, confident model predictions over unlabeled samples
are used as pseudo-targets in an auxiliary classification loss
to guide model training next to the initial supervised loss,
assuming that model confidence is associated with model
correctness [22], [39]. Adapting this concept to constrained
clustering, we identified three main weaknesses which we
overcome: 1) Pseudo-constraining: Prediction errors in the
selected pseudo-labels can amplify during training, potentially
leading to model degradation, also known as confirmation

bias [1]. We, therefore, propose the generation of pseudo-
constraints, relying on the fact that pairwise constraints result
in a simpler problem reduction [16]. 2) Informativeness
criterion to carry information of whether two samples xi

and xj are predicted to be in the same or a different cluster,
which cannot be done via maximal prediction probability [33]
or alternative uncertainty metrics [1], and 3) Unification of
losses by utilizing a constraint-based loss for the unlabeled
set.

Our overall algorithm processes unconstrained batches Bu

via an unconstrained branch and constrained batches Bc within
a constrained branch to enable training of clustering model f
in this semi-constrained data scenario. The constrained branch
is trained via a pairwise objective Lcons which allows the
training of the model f on binary pairwise constraints xc

ij =
(xc

i , x
c
j , cij) ∈ Dc. Therefore, we combine the predictions

from model f over weakly augmented constrained samples
a(xc

i ), a(x
c
j) along the associated constraint cij within the

pairwise loss function Lcons. For the unconstrained branch,
we build upon the intuition of consistency regularization via
weak and strong data augmentation strategies a() and A() [33]
as follows. Given a pair of unconstrained samples xu

i , x
u
j , we

use the selection criterion Isel to select informative model
predictions over weakly augmented versions of those samples
(f(a(xu

i )), f(a(x
u
j ))) as pseudo-labels (ỹi, ỹj). These are then

combined into pseudo-constraints c̃ij via Imap and used as
targets within the auxiliary loss function Lpseudo. Model
predictions over strongly augmented versions of the uncon-
strained pair (ŷi, ŷj) = (f(A(xu

i )), f(A(xu
j ))) serve as inputs

for Lpseudo. ConstraintMatch is trained using the combined
loss function L = Lcons + λLpseudo. The components of
ConstraintMatch are explained in the following.

1) Pseudo-Label Selection Semi-supervised approaches use
model confidence as measured via the maximal prediction
probability [33] or alternative uncertainty metrics [1] as se-
lection criteria. Model confidence assumes uni-modal model
predictions, i.e. the model is confident that sample xi belongs
to class ŷi = l. In contrast to pseudo-labeling, we do not
need the information of whether one sample xi is confidently
predicted to be in class ŷi = l but the information of whether
samples xi and xj are predicted to be in the same or a different
cluster. Filtering for model confidence de-selects multi-modal
model predictions that would, for instance, be assigned to
two clusters with high probability each - pseudo-constraining
allows us to use such multi-modal predictions.

Given a batch of model predictions over weakly-augmented,
unconstrained samples, we aim to select those that are impor-
tant for the subsequent pseudo-constraint generation. We pro-
pose measuring such informativeness of a probability vector
ŷi using the normalized entropy:

Hn(ŷi) = − 1

log(nout)

nout∑

l=1

p(ŷil)log(p(ŷil)) (1)

with Hn(ŷi) ∈ [0; 1] where Hn(ŷi) = 1 describes the mini-
mum level of information and maximal entropy and Hn(ŷi) =
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0 the maximum level of potential informativeness and minimal
entropy where the model places the entire probability mass
in one cluster. Hence, we use the normalized entropy in
combination with a threshold hyperparameter τ ∈ [0; 1] as
criterion to select pseudo-labels:

Isel
τ (ŷi) = 1(Hn(ŷi) < τ) (2)

where 1 is an indicator function. In the experiment section,
we provide an empirical analysis of the suitability of this
criterion next to a sensitivity analysis of τ .

2) Pseudo-Constraining Confirmation bias is a critical
problem in pseudo-labeling methods [1], and in constraint-
based clustering, there is an opportunity to alleviate this.
As an illustration, refer to the two unconstrained samples
xu
i , x

u
j from Fig. 1: the true label yi of xu

i would be ”sports
car” while the model wrongly but confidently assigns it to
the ”airliner” cluster and similarly xu

j is assigned the wrong
cluster ”soccer ball” instead of the true yj ”maltese dog”
(see Fig. 6 in the Appendix for more examples). While this
prediction error would lead to a wrong prediction target in
naive pseudo-labeling and hence confuse model training,
the resulting pseudo-constraint c̃ij = 0.008 would still be
correctly assigned as Cannot-Link, as ỹj ̸= ỹi in both
situations. Therefore, we create pseudo-constraints from the
pseudo-labels to drive the loss function Lpseudo. Given a
batch of informative pseudo-labels, we next combine pseudo-
label pairs ỹi, ỹj into pseudo-constraints c̃ij , expressing the
(dis)-similarity of those samples. As ỹi, ỹj are probability
vectors, we propose to use a divergence measure to quantify
this distance and derive a meaningful pseudo-constraint. The
Jensen-Shannon-Distance [25] allows the symmetric mapping
of two probability vectors onto a similarity score:

JSD(ỹi, ỹj) =
√
((KL(ỹi|m) +KL(ỹj |m))/2 (3)

where m = (ỹi + ỹj)/2 and KL(yi|m) refers to
the Kullback-Leibler Distance between ŷi and m and
JSD(ỹi, ỹj) ∈ [0, 1]. We exploit this property and use the
inverse Jensen-Shannon-Distance to calculate soft pseudo-
constraints c̃ij = 1 − JSD(ỹi, ỹj) ∈ [0; 1] where c̃ij = 0.0
resembles a Cannot-Link and c̃ij = 1.0 a Must-Link pseudo-
constraint over all pairwise combinations of the informa-
tive pseudo-labels. We refer to this inverse Jensen-Shannon-
Distance as Imap(ỹi, ỹj) in Fig. 2. Pseudo-constraints are
generated over the combined batch B = Bc ∪ Bu, treating
the samples in Bc as unconstrained.

3) Pairwise Loss Function There exists a variety of loss
functions that can deal with pairwise constraints [47] with
the KCL [14] and the MCL [16] being the most prominent
ones. Following the findings of Hsu et al. [16] and guided by
preliminary experimental results, we propose the use of the
MCL as a pairwise loss function, as it was shown to result in
higher model performance, and smoother model training, and
is hyperparameter-free. The MCL is aligned on the binary
cross-entropy loss and follows the definition:

L(cij , ĉij) = −
∑

ij

cij log(ĉij) + (1− cij)log(1− ĉij) (4)

where ĉij = ⟨ŷi, ŷj⟩ combines the individual predicted clus-
ter assignment vectors into an alignment score and cij ∈ {0, 1}
refers to the pairwise constraint cij = 0 for Cannot-Link
and cij = 1 for Must-Link constraints. The MCL allows
training with soft constraints cij ∈ [0, 1], similar to the use
of soft labels in the cross-entropy loss [27]. We use this
property for the processing of soft pseudo-constraints c̃ij
as explained above and analyzed further in the experiments
section. ConstraintMatch is trained on the combined loss:

L =
∑

xi,xj∈Bc

Lcons (cij , ⟨f(a(xi)), f(a(xj))⟩)+

λ
∑

xi,xj∈B
Lpseudo (c̃ij , ⟨f(A(xk)), f(A(xl))⟩)

(5)

where hyperparameter λ ≥ 0 controls the impact of the
pseudo-constraint loss and is tuned on the validation set.

IV. EXPERIMENTS

In this section, we compare the performance of Constraint-
Match with prior work on five challenging benchmark datasets
and provide empirical evidence for the effectiveness of pseudo-
constraining. This includes i) the relative improvement of Con-
straintMatch across various baselines, ii) an empirical analysis
of the benefit of pseudo-constraining and iii) its robustness
w.r.t annotation noise, iv) analyses of the algorithmic choices
made for its several components, and v) an evaluation of
ConstraintMatch in the overclustering scenario.

A. Experimental Setup

Datasets and Constraint Mining We use the Cifar10 [19],
Cifar100 [19], STL10 [6], ImageNet-10 [4] and ImageNet-
Dogs [4] datasets to demonstrate the effectiveness of the
proposed method. We use the 20 superclasses in Cifar100 as
ground truth labels for constraint mining following prior work
[24], [40], declaring it as Cifar100-20 in the following. We
adhere to the provided train/test splits to enable comparison
with prior work evaluated on separate test datasets [16], [40].
Recent deep clustering approaches instead are evaluated on
the training set or the union of training and test datasets [24],
[30], [38]. To be comparable with both bodies of literature, we
provide benchmark results in both settings marked as ”Test”
and ”Train(+Test)” in Table I following [24]. An overview
of the used datasets, the amount of sampled constraints as
well as the training and validation splits for hyperparameter
tuning is provided in Table V in the Appendix. For constraint-
sampling, we randomly sample nc constraints from each
dataset via the following procedure: nc samples are randomly
sampled without replacement as constraint members (xc

i , yi)
and for each of those samples, a second pair member (xc

j , yj)
is randomly chosen with replacement from the remaining
training samples to create the constraint pair (xc

i , x
c
j , cij),
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TABLE I: Comparison of ConstraintMatch with relevant baselines (B), competitors (C), and upper bound models (U) across
datasets and varying amounts of constraints nc. Performance metrics were averaged over five folds and calculated on separate
test splits in the upper part and in the Train(+Test) setting in the lower part. Best results comparing ConstraintMatch with the
baseline and competitor models are shown in bold and † denotes values reported in the literature. Statistical significance for
differences in model performance between ConstraintMatch and the constrained competitor for nc ∈ {5k, 10k} respectively
established using the Wilcoxon signed-rank test [7], [43] (significance code ∗ : p < 0.05).

Cifar 10 Cifar 100-20 STL 10 ImageNet 10 ImageNet Dogs

Split Model nc ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Test Supervised† U 93.80 86.20 87.00 80.00 68.00 63.20 80.60 65.90 63.10 - - - - - -
Fully Constrained U 94.86 88.39 89.11 77.99 68.37 61.94 90.49 80.94 80.47 96.64 93.45 92.60 67.10 73.52 58.13

SCAN† [40] B 0 87.60 78.70 75.80 45.90 46.80 30.10 76.70 68.00 61.60 86.20 81.57 75.71 47.20 55.42 35.87

Constrained C 5k 90.12 80.52 80.02 50.99 46.23 32.63 85.90 74.62 72.51 93.12 87.43 85.49 44.08 43.27 28.92
ConstraintMatch 5k 92.23∗ 84.64∗ 84.27∗ 54.19∗ 52.74∗ 37.84∗ 88.20∗ 78.20∗ 76.68∗ 94.68∗ 90.43∗ 88.61∗ 49.43∗ 55.23∗ 38.12∗
Constrained C 10k 90.89 81.73 81.47 52.45 46.57 33.79 88.21 77.63 76.38 94.90 90.42 89.04 45.52 44.44 30.10
ConstraintMatch 10k 93.17∗ 85.88∗ 85.92∗ 57.15∗ 54.37∗ 40.59∗ 90.08∗ 80.57∗ 79.81∗ 95.68 92.09 90.70 50.73∗ 54.92∗ 38.34∗

Train PICA† [17] B 0 69.60 59.10 51.20 33.70 31.00 17.10 71.30 61.10 53.10 87.00 80.20 76.10 35.20 35.20 20.10
(+Test) MICE† [38] B 0 83.50 73.70 69.80 44.00 43.60 28.00 75.20 63.50 57.50 - - - 43.90 42.30 28.60

CC† [24] B 0 79.00 70.50 63.70 42.90 43.10 26.60 85.00 76.40 72.60 89.30 85.90 82.20 42.90 44.50 27.40
TCC† [30] B 0 90.60 79.00 73.30 49.10 47.90 31.20 81.40 73.20 68.90 89.70 84.80 82.50 59.50 55.40 41.70
SCAN [40] B 0 88.53 80.09 77.72 50.67 47.72 33.07 81.28 70.15 65.22 91.63 84.00 82.93 44.06 45.09 30.75

Constrained C 5k 91.14 82.30 82.05 51.63 46.58 33.37 80.51 68.38 63.68 95.09 88.42 89.49 43.25 38.82 28.93
ConstraintMatch 5k 92.67∗ 85.12∗ 84.98∗ 54.16∗ 52.68∗ 37.79∗ 82.97∗ 71.13∗ 67.80∗ 95.61∗ 89.64∗ 90.59∗ 47.63∗ 47.82∗ 35.95∗
Constrained C 10k 92.21 83.07 84.08 53.13 47.20 34.86 89.90 80.12 79.49 96.47 91.18 92.36 44.17 40.07 30.13
ConstraintMatch 10k 93.61∗ 86.55∗ 86.80∗ 57.18∗ 53.37∗ 40.30∗ 91.30∗ 82.42∗ 82.13∗ 96.68∗ 91.59∗ 92.80∗ 49.34∗ 49.16∗ 37.37∗

where cij = 1, if yi = yj and cij = 0, if yi ̸= yj . This
results in a dataset Dc of nc constrained samples (xc

i , x
c
j , cij).

To account for randomness in the constraint sampling process,
we report performance averaged over five random sampling
repetitions.

Implementation Details In accordance with prior work
[40], we used a ResNet-18 backbone architecture [12] for
the experiments with the Cifar10, Cifar100-20, and STL10
datasets and a ResNet-34 backbone [12] following [24] for
the ImageNet datasets. We used model weights that were pre-
trained via SCAN [40] for the initialization of the model
backbone as ConstraintMatch benefits from expressive feature
representations as a warm start. Next to the model weights
released by [40] for Cifar10, Cifar100-20, and STL10 we used
the authors’ codebase2 to pretrain the ResNet-34 backbone
via SCAN and then used these resulting model weights for
model initialization. For model training, we used a standard
SGD optimizer with momentum set to 0.9 and weight decay
regularization [36] and all models were trained for a total of
20000 optimization steps unless noted otherwise. We used a
cosine learning rate scheduler [26] which updates the learning
rate at each update step to η cos

(
7πt
16T

)
with η being the initial

learning rate, t the current training step and T = 20000 the
total amount of training steps following [33]. Hyperparameters
were tuned via a grid search on constraints mined from the val-
idation datasets with hyperparameter ranges shown in Table IV
and more details on the validation splits are given in Table V in
the Appendix. The size of constrained/unconstrained batches
was set to 200/600 respectively for Cifar10 and Cifar100-20

2https://github.com/wvangansbeke/Unsupervised-Classification

and to 100/300 for the other datasets.
Model Comparison We compare ConstraintMatch with

different baselines (B), competitors (C), and upper bound
models (U). This includes deep clustering models SCAN [40],
TCC [30], CC [24], MICE [38] and PICA [17] as baselines
and a constrained clustering model that was trained on Dc

using the MCL [16] as competitor. As upper bounds, we
compare with a fully constrained clustering model trained on a
fully constraint version of training dataset D and a supervised
baseline where the backbone was trained on the fully labeled
training set D as reported by [40]. The authors of MICE [17],
PICA [38], CC [24] and TCC [30] used a ResNet-34 backbone
for the Cifar10, Cifar100-20 and STL10 datasets. We used
a ResNet-18 backbone for these three datasets in adherence
with SCAN [40]. A comparison with the semi-constrained
approaches was not possible due to a lack of open-source code
and performance metrics on established benchmarks.

B. Results

We summarize our main results in Table I measuring model
performance in Accuracy (ACC), Normalized Mutual Informa-
tion (NMI) [35] and the Adjusted Rand Index (ARI) [34], as
standard in (constrained) clustering [47]. As established in the
literature [14], [30], [40], we use the Hungarian Assignment
method to optimally map the resulting cluster predictions to
the true cluster labels [20]. As expected and shown in previous
work [14], [16], we find training with pairwise constraints to
be a valid option to train strong-performing clustering models.
This benchmark is the first attempt to compare SCAN with
subsequent deep clustering methods on the union of train and
test datasets showing that SCAN is competitive with those
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Fig. 3: Robustness of the pseudo-labeling baseline and Con-
straintMatch towards pseudo-label noise.

methods (lower part of Table I). Further, fine-tuning SCAN via
a subset of constraints improves model performance across all
datasets but the fine-grained ImageNet-Dogs dataset. Overall,
ConstraintMatch outperforms the (un-)constrained baselines
and competitors across all datasets in both evaluation settings
except ImageNet-Dogs, a task with semantically very similar
classes, where it falls behind TCC in the Train(+Test) evalua-
tion. This fine-grainedness makes training of constrained clus-
tering models challenging, as the distinction between Must-
and Cannot-link loses expressiveness which also explains the
worse performance of the constrained competitor compared
to SCAN. We interpret the finding that ConstraintMatch, in
turn, outperforms both models by substantial margins in ACC
and ARI as further proof of the effectiveness of pseudo-
constraining. Relative (absolute) performance gains are the
largest for Cifar100-20 with ConstraintMatch increasing model
performance over the constrained baseline with 10k constraints
by 8.96% (4.70 percentage points) Accuracy, 16.75% (7.80pp)
NMI and 20.12% (6.80pp) ARI on the test dataset. We
attribute these large performance gains to the complexity of the
task and the efficient use of pseudo-constraints in this complex
20-cluster setting. Further, both the constrained competitor
and ConstraintMatch benefit from more constraints nc, with a
larger relative performance increase for ConstraintMatch. We
yield a statistically significant difference in model performance
for ConstraintMatch and the constrained competitor across
all datasets for all performance metrics using a Wilcoxon
signed-rank test [7], [43] (p < 0.05) for nc ∈ {5k, 10k}.
Those empirical results confirm ConstraintMatch as a suitable
method for semi-constrained clustering.

C. The Empirical Case for Pseudo-Constraints

We propose pseudo-constraining to overcome confirma-
tion bias. To support this claim, we conducted a simula-
tion experiment to evaluate the robustness of naive pseudo-
labeling against confirmation bias in comparison to subse-
quent pseudo-constraining within ConstraintMatch. This naive
pseudo-labeling baseline differs from ConstraintMatch in the
handling of unconstrained samples, similar to the processing
of unlabeled data in FixMatch [33]: weakly augmented, un-
constrained samples are selected via a confidence threshold
over their predicted cluster assignment and the major predicted
cluster is chosen as pseudo-label. Predictions over strong

TABLE II: Ablation study on ConstraintMatch, results aver-
aged over 5 folds with nc = 10000.

Model Test Performance
ACC NMI ARI

SCAN 45.90 46.80 30.10
+ Constrained 52.45 46.57 33.79
+ Pseudo-Labeling 55.38 53.49 39.98
+ Pseudo-Constraining 57.15 54.37 40.59

augmented versions of these samples then serve as input for
an auxiliary cross-entropy loss function (see Fig. 7 in the
Appendix). We introduce a mode-flip function m(ŷi) that
swaps the position of the two largest predicted probabilities
within the model prediction ŷi. This simulates a prediction
error where the model ”confuses” two cluster assignments
within the pseudo-labeling of xi. We randomly apply m() to
a noise fraction ρ of the unconstrained samples xi ∈ Bu and
train both models in this setting. The results in Fig. 3 confirm
our intuition as naive pseudo-labeling already degrades at
ρ ≥ 0.1 while ConstraintMatch can cope with ρ ≤ 0.5.

Pseudo-constraining further allows to use the same pairwise
loss function as both the auxiliary and the initial objec-
tive for model training. We provide an ablation study on
Cifar100-20 to quantify this benefit where we subsequently
add constrained training, naive pseudo-labeling, and finally
pseudo-constraining to the SCAN model, each with fine-tuned
hyperparameters. The results in Table II show that while the
use of naive pseudo-labeling leads to a substantial performance
gain over the constrained baseline, the subsequent applica-
tion of pseudo-constraining within ConstraintMatch enables
further model improvements. We conclude its effectiveness is
grounded in both the robustness w.r.t. the confirmation bias
and the similarity in training objectives.

D. Additional Analyses

In this section, we analyze the several components of
ConstraintMatch. Unless noted otherwise, these analyses and
experiments were run on the Cifar100-20 dataset with nc =
10000 using the optimal hyperparameters obtained for the
main experiments and we report results on the test splits.

Pseudo-Constraining We use soft pseudo-constraints
c̃ij ∈ [0, 1] in ConstraintMatch. One alternative would be the
separation into hard pseudo-constraints c̃hij ∈ {0, 1} using a
threshold µ such that ĉhij = 1 if cij ≥ µ and ĉhij = 0 if cij < µ.
We find that while ConstraintMatch is still outperforming the
constrained baseline using hard pseudo-constraints, it benefits
further from the use of soft pseudo constraints as shown in
Fig. 4a over different values of µ. Using soft constraints also
eliminates the need to tune µ. We hypothesize that the model
can effectively use the continuous information provided via
the soft pseudo-constraints within the MCL loss, similar to
the use of soft labels in supervised classification [27].

Pseudo-Label Selection We argue for the selection of
informative samples as pseudo-labels over that of confident
samples. Fig. 4b contrasts the use of both with a fixed
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(a) Imap: soft vs. hard pseudo-
constraints.

(b) Isel: informativeness vs.
confidence.

(c) Isel: impact of τ (d) Effect of the amount of constraints
nc.

Fig. 4: Further analyses of ConstraintMatch.

value τ = 0.2 for the informativeness criterion and with
varying thresholds for confidence-based selection showing
that informative samples enable ConstraintMatch to leverage
unconstrained samples more effectively. Further, we provide
a sensitivity analysis of the threshold τ within Isel

τ in
Fig. 4c. This reveals that the sensitivity of ConstraintMatch
towards τ lies within a reasonable margin and we recommend
τ ∈ [0.025, 0.2] as a range for tuning.

Amount of Constraints Fig. 4d shows the effect of
the amount of constraints nc on the model performance as
measured in NMI over five folds. The constrained clustering
competitor model performs worse than the SCAN baseline for
nc ≤ 10000 which might be due to the fact that nc = 10000
results in 500 Must-Link constraints only in the Cifar100-20
scenario, allowing the MCL loss to overfit those few pairs
quickly. In contrast to that, ConstraintMatch successfully
overcomes this issue via its pseudo-constraining mechanism
for nc ≥ 5000 with relative gains increasing for increasing
nc. The comparably low performance of ConstraintMatch for
nc = 2000 indicates that it still requires a certain degree of
supervision to produce reliable pseudo-constraints.

Robustness w.r.t Noisy Constraints Next to the robustness
of ConstraintMatch over noisy pseudo-labels, we further
investigate its robustness towards noise in the annotation
of the known ground truth constraints. This simulates the
situation where the annotators might erroneously flip the
constraint annotation, similar to the concept of label noise in
supervised classification [13]. Therefore, we randomly flipped
a varying percentage of the known constraint annotations
and compared the effect of this annotation noise on model
training. The results in Fig. 5 show that ConstraintMatch is
more robust towards higher levels of annotation noise than the
constrained competitor. We attribute this increased robustness
to the stabilizing effect of the pseudo-constraining mechanism.

E. Overclustering

We further evaluate ConstraintMatch for overclustering,
where the true amount of clusters K is unknown and the
model can assign more clusters than inherently present in the
data, nout ≫ K [14]. Therefore, we compare ConstraintMatch
with the constrained competitor and the SCAN baseline with
nout = 5K resulting in 100 potential clusters for Cifar100-
20 and 50 for Cifar10. Models were again evaluated using
the Hungarian Assignment [20] with cluster predictions that

TABLE III: Overclustering results averaged over five folds.

Dataset Cifar-10 Cifar 100-20
nout 50 100

Metric (Test) ACC NMI ARI ACC NMI ARI

SCAN 34.68 61.56 34.52 29.88 47.35 23.23
Constrained 82.24 75.40 73.80 39.41 44.34 27.86
ConstraintMatch 88.89 83.04 82.06 43.65 52.37 34.88

do not match a corresponding ground truth cluster counting
as an error. As shown in Table III, we find that the con-
strained competitor achieves strong performance gains over the
unsupervised baseline despite the challenging learning task.
Further, we find that the performance gains of ConstraintMatch
translate well to this overclustering scenario yielding a relative
(absolute) performance gain over the constrained competitor
of 18.11% (8.03pp) NMI and 10.75% (4.24pp) Accuracy on
Cifar100-20.

Fig. 5: Impact of ground truth constraint annotation noise.

V. CONCLUSION

ConstraintMatch is a novel method for training clustering
models in a semi-constrained setting, using a combination of
large amounts of unconstrained data and a limited number of
constraint pairs. Therefore, it selects informative pseudo-labels
processed within a pseudo-constraining mechanism that allows
training the model on a unified loss function to overcome
the limitations of naive pseudo-labeling in this setting. With
empirical results across five benchmarks, we demonstrate Con-
straintMatch’s strong performance, outperforming baselines
and competitors by substantial margins, even in challenging
overclustering scenarios. We furthermore analyzed its several
components, supporting our algorithmic choices with empiri-
cal evidence, and empirically showed that pseudo-constraining
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leads to increased model robustness towards different sources
of annotation noise.

While initially designed and evaluated on top of SCAN [40],
ConstraintMatch is pre-training-agnostic, and hence alternative
unsupervised pre-training methods would also be applicable.
Further combining the pseudo-constraining mechanism with
semi-supervised classification or object detection approaches
would be an interesting avenue for future research.
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APPENDIX

A. Hyperparameter Tuning

We conducted a grid search over the validation splits
detailed in Table V for one fold of sampled training constraints
for hyperparameter tuning. We used the validation loss on
the constraints from the validation splits to select the optimal
hyperparameters for each dataset and model combination with
the lowest final validation loss as performance criterion. Final
models were then trained on these optimal hyperparameters
on five repeated folds of the respective constrained and uncon-
strained training samples and final performance metrics were
reported for both the ”Test” and the ”Train(+Test)” settings.
The shared parameters were used in and tuned for all trained
models and the specific hyperparameters for ConstraintMatch
and the naive pseudo-labeling baseline were tuned over a grid
of different values, see Table IV.

TABLE IV: Hyperparameters and their respective values con-
sidered in the grid search for the different models.

Parameter Search Values

Shared

Weight decay 0.001, 0.0001, 0.00001
Learning rate 0.03, 0.01, 0.003, 0.001, 0.0001

naive Pseudo-labeling

λ 1.0, 0.5, 0.1, 0.05
τ 0.7, 0.8, 0.9, 0.95, 0.99

ConstraintMatch

λ 1.0, 0.5, 0.1, 0.05
τ 0.05, 0.1, 0.2, 0.3

B. Data Augmentation

ConstraintMatch follows the rationale of consistency regu-
larization via weak and strong augmentations a() and A(). As
weak augmentations a(), we used random cropping and hor-
izontal flipping. For strong augmentations, A(), we used the
RandAugment strategy with the data augmentation procedures
used in FixMatch and described in Appendix D of [33].

C. Datasets

Table V provides an overview of the datasets used in the
experimental section IV-A alongside their splits and sizes. The
final column describes the exact dataset splits that were used
in the Train(+Test) evaluation setting following [24].

D. Visualization of the Confirmation Bias

In Fig. 6, we visualized four samples from the uncon-
strained part of the ImageNet-10 dataset which suffer from
the confirmation bias similar to Fig. 1, i.e. samples for which
the model confidently predicted the wrong cluster assignment.
These unconstrained samples were selected as high-confidence
(max. predicted probability > 0.98) but wrongly predicted
examples. We can observe that pseudo-labeling would lead
to wrong prediction targets (e.g. cluster ’Airship’ instead of
the true cluster ’Soccer Ball’ in the bottom left example) and

TABLE V: Datasets used in the experiments including the
respective training, validation, and test splits. We also mention
the evaluation dataset for the Train(+Test) setting in the last
column following [24].

Dataset K Samples Constraints Train(+Test)
Train Val Test Train Val

Cifar10 10 45k 5k 10k 5/10k 10k Train + Test
Cifar100-20 20 45k 5k 10k 5/10k 10k Train + Test
STL10 10 4k 1k 8k 5/10k 5k Train + Test
ImageNet-10 10 12k 1k 500 5/10k 1k Train
ImageNet-Dogs 15 18.5k 1k 750 5/10k 1k Train

Fig. 6: Illustration of pseudo-labeling failure cases due to
confirmation bias. Pseudo-constraints generated on top of these
wrong pseudo-labels are still semantically correct.

hence confuse model training. On the other hand, pseudo-
constraints generated on top of pairs of these wrongly assigned
pseudo-labels still are semantically correct and can support
model training on these unconstrained samples. This does not
only hold for Cannot-Link (bottom) but also for Must-Link
(top) pseudo-constraints where both samples with the same
true cluster affiliation are assigned the same wrong cluster by
the model. These samples were selected from a random batch
of unconstrained samples Bu from the ImageNet-10 dataset
from ConstraintMatch trained for 500 training steps with a
ResNet-34 backbone.

E. Naive Pseudo-Labeling Baseline

In Fig. 7, we visualize the naive pseudo-labeling base-
line, a simplified version of ConstraintMatch, with which we
compared ConstraintMatch in the results Section IV-B. This
baseline follows the use of unlabeled samples in FixMatch
[33] and similarly leverages the weak-strong augmentation
scheme for consistency regularization. Concretely, weakly
augmented, unconstrained samples are selected via a confi-
dence threshold over their predicted cluster assignments, and
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(a) The naive pseudo-labeling baseline combines training on batches of pairwise constrained (gray) and individual unconstrained (green)
samples leveraging weak and strong data augmentations a,A following the FixMatch approach [33].

(b) ConstraintMatch combines pairwise training on batches of constrained (gray) and unconstrained (yellow) samples leveraging weak and
strong data augmentations a,A. It extends the naive pseudo-labeling baseline by the generation of pseudo-constraints from informative
pseudo-labels to overcome the confirmation bias as detailed in the methods section of the paper.

Fig. 7: Illustration of a) the naive pseudo-labeling baseline and b) ConstraintMatch.

the predicted clusters with the highest assigned probability
are subsequently chosen as pseudo-labels. This confidence-
based selection criterion is depicted as Iconf in Fig. 7a and
the associated threshold τ ∈ [0, 1] is a hyperparameter that
we tuned on the validation set as described above and listed
in Table IV. Predictions over strong augmented versions of
these samples then serve as input for an auxiliary cross-
entropy loss function, referred to as LCE in Fig. 7a. Similar to
ConstraintMatch, the constrained loss Lcons is calculated over
model predictions on pairwise samples and their corresponding
constraint annotations. The naive pseudo-labeling baseline is
then trained via the final loss L = Lcons+λLCE as a weighted
linear combination of both losses where hyperparameter λ
controls the impact of the unconstrained samples.

4.2 ConstraintMatch for Semi-constrained Clustering

95



4. Contributions

4.3 Positive-unlabeled Learning with Uncertainty-aware Pseudo-Label
Selection

Contributing article:

Emilio Dorigatti, Jann Goschenhofer, Benjamin Schubert, Mina Rezaei, and Bernd Bischl.
2022. Positive-unlabeled learning with uncertainty-aware pseudo-label selection. arXiv preprint
arXiv:2201.13192

Author contributions:

Emilio Dorigatti was responsible for the conceptualization of the paper (i.e. idea, goal, and scope),
supported by Jann Goschenhofer. The software accompanying this work was mainly developed
and implemented by Emilio Dorigatti with support from Jann Goschenhofer who contributed to
the general setup of the codebase, and the implementation of features as well as baseline models.
The experimental design for the benchmark of the developed method (incl. hyperparameter
tuning, data splits, choice of data sets) as well as the ablation studies was established with equal
contributions from Emilio Dorigatti, Jann Goschenhofer, Benjamin Schubert, Mina Rezaei, and
Bernd Bischl. The main experiments for the introduced method were run by Emilio Dorigatti while
Jann Goschenhofer was responsible for the baseline experiments. Jann Goschenhofer and Emilio
Dorigatti contributed equally to the analysis of the results and the story of the paper. Emilio
led the writing of the manuscript with support from Jann Goschenhofer (i.e. editing, reviewing,
and drafting). Emilio Dorigatti contributed the application example, with reviews and editing
provided by Benjamin Schubert. Benjamin Schubert, Mina Rezaei, and Bernd Bischl contributed
via proofreading and supervision and Bernd Bischl provided the computational resources for the
experiments.

Copyright information:

© This article is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International (CC BY-NC-SA 4.0) license.

96

https://arxiv.org/abs/2201.13192
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Springer Nature 2021 LATEX template

Uncertainty-aware Pseudo-label Selection for

Positive-Unlabeled Learning

Emilio Dorigatti1,2,3*, Jann Goschenhofer1,3,4, Benjamin
Schubert2,5, Mina Rezaei1 and Bernd Bischl1,3,4

1Department of Statistics, Ludwig-Maximilians-Universität
München, München, 80539, Germany.

2Institute of Computational Biology, Helmholtz Zentrum
München—German Research Center for Environmental Health,

Neuherberg, 85764, Germany.
3Munich Center for Machine Learning, München, Germany.
4Fraunhofer Institute for Integrated Circuits IIS, Erlangen,

91058, Germany.
5Department of Mathematics, Technical University of Munich,

Garching bei München, 85748, Germany.

*Corresponding author(s). E-mail(s): edo@stat.uni-muenchen.de;
Contributing authors: jann.goschenhofer@stat.uni-muenchen.de;

benjamin.schubert@helmholtz-muenchen.de;
mina.rezaei@stat.uni-muenchen.de;
bernd.bischl@stat.uni-muenchen.de;

Abstract

Positive-unlabeled learning (PUL) aims at learning a binary classifier
from only positive and unlabeled training data. Even though real-
world applications often involve imbalanced datasets where the majority
of examples belong to one class, most contemporary approaches to
PUL do not investigate performance in this setting, thus severely lim-
iting their applicability in practice. In this work, we thus propose
to tackle the issues of imbalanced datasets and model calibration
in a PUL setting through an uncertainty-aware pseudo-labeling pro-
cedure (PUUPL): by boosting the signal from the minority class,
pseudo-labeling expands the labeled dataset with new samples from
the unlabeled set, while explicit uncertainty quantification prevents

1
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the emergence of harmful confirmation bias leading to increased pre-
dictive performance. Within a series of experiments, PUUPL yields
substantial performance gains in highly imbalanced settings while also
showing strong performance in balanced PU scenarios across recent base-
lines. We furthermore provide ablations and sensitivity analyses to shed
light on PUUPL’s several ingredients. Finally, a real-world application
with an imbalanced dataset confirms the advantage of our approach.

Keywords: Uncertainty Quantification, Self-supervised Learning,
Positive Unlabeled Learning, Imbalanced Data

1 Introduction

Many real-world applications involve positive-unlabeled (PU) datasets [1–3] in
which only a few samples are labeled positive while the majority is unlabeled.
PU learning (PUL) aims to learn a binary classifier in this challenging setting
without any labeled negative examples, thus reducing the need for manual
annotation and enabling entirely new applications where negative examples
are costly or impossible to obtain [4]. Learning from PU data can reduce
development costs in many deep learning applications that otherwise require
costly annotations from experts or expensive experimental procedures such as
medical image diagnosis [1] and protein function prediction [2]. PUL can even
enable applications in settings where the measurement technology itself can
not detect negative examples [3].

Many PUL applications share another intrinsic difficulty: class imbalance.
Imbalanced settings arise when most samples in a dataset belong to the same
class, and frequently the most interesting class happens to be the minority.
In PUL, class imbalance refers specifically to a low class prior π := p(y =
1) implying that the majority of the unlabeled samples are negatives. While
this problem can be tackled in traditional (semi-)supervised learning by re-
weighting the loss to increase the penalty of mis-classification of the minority
class, a similar approach was introduced in PUL with some additional care in
handling the unlabeled data points [5]. However, the issue remains in general
under-studied in the literature and recent developments such as Self-PU [6]
are solely targeted at balanced scenarios.

Motivated by this, we propose to tackle imbalancedness in PUL via pseudo-
labeling [7], an iterative procedure that augments the labeled dataset with
new samples from the unlabeled set, thus boosting the weak signal from the
minority class. To prevent the emergence of harmful confirmation bias in this
procedure, we propose to assign pseudo-labels based on likelihood-free uncer-
tainty quantification via model ensembling [8]. By using soft targets we avoid
artificially inflating the confidence of pseudo-labels and preserve the calibration
signal for the ensemble in later training iterations, thus eventually obtaining
a predictor that is both calibrated and well-performing. Another advantage
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Fig. 1 PUUPL is a pseudo-labeling framework for PU learning that uses the epis-
temic uncertainty of an ensemble to select confident examples to pseudo-label. The
ensemble can be trained with any PU loss for PU data while minimizing the cross-
entropy loss on the previously assigned pseudo-labels. In a toy example, a single
network is not very confident on most of the unlabeled data (a), resulting in many
high-confidence incorrect predictions and many low-confidence correct ones (c). The
epistemic uncertainty of an ensemble is, on the other hand, very low on most of
the unlabeled data (b), resulting in most correct predictions having low uncertainty
and most incorrect predictions having high uncertainty (d). Thus, the estimated
uncertainty by ensemble can be used more reliably to rank predictions and select
correct ones (e). Re-training the model with an increased number of labeled sam-
ples will result in a slightly more accurate model, than can be used to predict new
pseudo-labels, which will further improve the model’s performance, etc.

of pseudo-labeling is that it allows the model to harness the power of self-
training without requiring modality-specific augmentations such as MixUp [9]
that restrict most contemporary PUL methods [6, 10–13] to image data only.

To summarize, our contributions are:

1. We introduce PUUPL (Positive Unlabeled, Uncertainty aware Pseudo-
Labeling), a novel framework that successfully overcomes the issue of imbal-
anced data distribution in PUL in a data-modality-agnostic framework
while retaining competitive performance on balanced datasets.

2. We evaluate our methods on a wide range of benchmarks and PU datasets,
achieving state-of-the-art results in self-training for PUL both with and
without knowing the positive class prior π. Our results show that PUUPL
is applicable to different data modalities such as images and text, can use
any risk estimator for PUL and improve thereupon, and is robust to prior
misspecification and class imbalance.

3. A real-world healthcare application confirms the advantage of PUUPL
compared to other PUL methods as well as previous domain-specific
state-of-the-art approaches.

These results demonstrate that our framework is highly reliable, extensible,
and applicable in a variety of real-world scenarios.
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2 Related work

Positive-unlabeled learning

PUL was introduced as a variant of binary classification [14] and is related to
one-class learning [15, 16], multi-positive learning [17], multi-task learning [18],
and semi-supervised learning [19]. Current existing methods for PUL can be
divided into three branches: two-step techniques, class prior incorporation, and
biased PUL [20]. In this work, we apply pseudo-labeling with biased PUL –
also coined as reweighting methods – and refer to [20] for a comprehensive
overview of the field. In this context, [21] introduced the unbiased risk esti-
mator uPU. [4] showed that this loss function is prone to overfitting in deep
learning contexts, as it lacks a lower bound, and proposed the non-negative
risk estimator nnPU [4] as a remedy. Follow-up work on loss functions for
PUL has focused on robustness w.r.t. biases in the sampling process [22–24]
and handling of imbalanced datasets [5]. Further research in PUL focuses on
estimating the class prior directly during training [10, 25, 26] or exploiting its
knowledge to further improve the training process [6, 11–13].

Pseudo-labeling

Pseudo-labeling follows the rationale that the model leverages its own pre-
dictions on unlabeled data as pseudo-training targets to enable iterative
semi-supervised model training. The major weakness of pseudo-labeling is
that erroneously selected pseudo-labels can amplify errors during training,
potentially leading to model degradation over time. This confirmation bias
is grounded in poor model calibration which distorts the signal for the
pseudo label selection [27]. Model calibration issues often occur in deep learn-
ing settings as deep neural networks are prone to over-confident predictions
unless trained appropriately [28]. A variety of approaches were proposed for
semi-supervised classification settings to mitigate this problem [29–34]. The
commonality of these works is the explicit consideration of model uncertainty
to improve pseudo-label selection, which motivates its application in the con-
text of PUL. A first attempt to combine pseudo-labeling with PUL was made
with Self-PU [6], where self-paced learning, a confidence-weighting scheme
based on the model predictions, and a teacher-student distillation approach
are combined. With PUUPL, we propose an alternative pseudo-labeling strat-
egy for PUL that performs better in a simpler and more principled way using
implicitly well-calibrated models to improve the pseudo-label selection. More-
over, uncertainty awareness allows PUUPL to work well in unbalanced data
environments where Self-PU breaks down. To the best of our knowledge, we
are the first to introduce an uncertainty-aware pseudo-labeling paradigm to
PUL. Although our method shares the same motivation as that from [33] for
semi-supervised classification with both positive and negative training sam-
ples, we differ in several important aspects dictated by the PUL setting: (1) we
specifically target PU data with a PU loss, (2) we quantify uncertainty with
an ensemble instead of Monte Carlo dropout, (3) we use epistemic uncertainty
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instead of the predicted class probabilities for the selection, (4) we do not use
temperature scaling and (5) use soft labels.

3 Method

PUUPL (Algorithm 1) separates the training set Xtr into the sets P , U , and
L, which contain the initial positives, the currently unlabeled, and the pseudo-
labeled samples, respectively. The set L is initially empty. At each pseudo-
labeling iteration, we first train our model using all samples in P , U , and L
until some convergence condition is met (Section 3). Then, model predictions
over the samples in U are ranked w.r.t. their predictive uncertainty (Section
3), and samples with the most confident score are assigned the predicted label
and moved into the set L (Section 3). Similarly, model predictions are derived
for the samples in L, and the most uncertain samples are moved back to the
unlabeled set U (Section 3). Next, the model is re-initialized to the same initial
weights, and the next pseudo-labeling iteration starts.

Notation

Consider input samples X with label y and superscripts ·tr, ·va and ·te for
training, validation, and test data, respectively. The initial training labels ytr

are set to one for all samples in P and zero for all others in U . We group
the indices of original positives, unlabeled, and pseudo-labeled samples in Xtr

into the sets P , U , and L, respectively, where yi = 1 for i ∈ P , yi = 0 for
i ∈ U , and yi is the assigned pseudo-label for i ∈ U . Our proposed model
is an ensemble of K deep neural networks whose random initial weights are
collectively denoted as θ0. The predictions of the k-th network for sample i are
indicated with p̂ik = σ(f̂ik), with σ(·) as the logistic function and f̂ik as the
predicted logits. The logits and predictions for a sample averaged across the
networks in the ensemble are denoted by f̂i and p̂i, respectively. We subscript
data and predictions with i to index individual samples, and use an index
set in the subscript to index all samples in the set (e.g., Xtr

U = {Xtr
i |i ∈ U}

denotes the features of all unlabeled samples). We denote the total, epistemic,
and aleatoric uncertainty of sample i as ûti, û

e
i , and ûai , respectively.

Loss function

We train our proposed model with a loss function L that is a convex combi-
nation of a loss LPU for the samples in the positive and unlabeled set (P ∪U)
and a loss LL for the samples in the pseudo-labeled set (L):

L = λ · LL + (1− λ) · LPU (1)

with λ ∈ (0, 1). The loss LL is the binary cross-entropy computed w.r.t. the
assigned pseudo-labels y. Our method is agnostic to the specific PU loss LPU

used, allowing PUUPL to be easily adapted to provide further performance
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Algorithm 1 The PUUPL Training Procedure

Hyperparameters:

• Loss mixing coefficient λ
• Number K of networks in the ensemble
• Maximum number T of pseudo-labels to assign at each round
• Maximum uncertainty threshold tl to assign pseudo-labels
• Minimum uncertainty threshold tu to remove pseudo-labels

Input: Train and validation Xtr, ytr, Xva, yva

1: P ← indices of positive samples in Xtr

2: U ← indices of unlabeled samples in Xtr

3: L← ∅
4: θ0 ← Random weight initialization
5: while not converged do
6: Initialize model weights to θ0

7: Train an ensemble of K networks on Xtr, ytr

8: Update θ∗ if performance on Xva, yva improved
9: f̂ ← ensemble predictions for Xtr

10: Compute epistemic uncertainty via Eq. 7
11: Lnew ← Examples to pseudo-label via Eq. 8
12: Unew ← Examples to pseudo-unlabel
13: L← L ∪ Lnew

b \ Unew

14: U ← U \ Lnew
b ∪ Unew

15: yLnew ← p̂Lnew

16: yUnew ← 0
17: end while

increase in other scenarios for which a different PU loss might be more appro-
priate, e.g., when a set of biased negative samples is available [23], when coping
with a selection bias in the positive examples [22] or an imbalanced class dis-
tribution [5] (see experiments). For the standard setting of imbalanced PUL,
we use the imbnnPU loss [5]:

LPU = π′`(P, 1) + max

{
0,

1− π′
1− π `(U,−1)− (1− π′)π

1− π `(P,−1)

}
(2)

where π = p(y = 1) is the prior probability that a sample is positive, π′ the
desired oversampled probability that we fix to 1/2, and `(S, y) the expected
sigmoid loss of samples in the set S with label y:

`(S, y) =
1

S

∑

i∈S

1

1 + exp(y · p̂i)
(3)

Similarly, we use use the non-negative correction nnPU of the PU loss [4]
for the standard, balanced PU setting:

LPU = π · `(P, 1) + max {0, `(U,−1)− π · `(P,−1)} (4)
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where π = p(y = 1) is the prior probability that a sample is positive and
`(S, y) follows equation 3.

While π can be estimated from PU data [35], in our experimental results
we treat π as a hyperparameter and optimize it without requiring negatively
labeled samples via a PU validation set [36].

Model uncertainty

We utilize a deep ensemble with K networks with the same architecture, each
trained on the full training dataset [8], to quantify the predictive uncertainty.
Given the predictions p̂i1, . . . , p̂iK for a sample xi, we associate three types of
uncertainties to xi’s predictions [37]: the aleatoric uncertainty as the mean of
the entropy of the predictions (Eq. 5), the total uncertainty as the entropy of
the mean prediction (Eq. 6), and the epistemic uncertainty formulated as the
difference between the two (Eq. 7).

ûai = − 1

K

K∑

k=1

[p̂ik log p̂ik + (1− p̂ik) log(1− p̂ik)] (5)

ûti = −p̂i log p̂i − (1− p̂i) log(1− p̂i) (6)

ûei = ûti − ûai (7)

where p̂i =
∑K

k=1 p̂ik/K. Epistemic uncertainty corresponds to the mutual
information between the parameters of the model and the true label of the sam-
ple. Low epistemic uncertainty thus means that the model parameters would
not change significantly if trained on the true label, suggesting that the pre-
diction is indeed correct. The cumulative effect of many correct pseudo-labels
added over time, however, provides a strong enough training signal to push the
model towards better-performing parameters, as we show in the experimental
results.

Pseudo-labeling

The estimated epistemic uncertainty (Eq. 7) is used to rank and select unla-
beled examples for pseudo-labeling. Let ρ(i) denote the rank of sample i. Then,
the set Lnew of newly pseudo-labeled samples is formed by taking the T sam-
ples with lowest uncertainty from U , ensuring that it is lower than a threshold
tl:

Lnew = {i ∈ U |ρ(i) ≤ T ∧ uei ≤ tl} (8)

Previous works on semi-supervised classification have shown that balancing
the pseudo-label selection between the two classes – i.e., ensuring that the
ratio of newly labeled positives and negatives is close to a given target ratio
r – is beneficial [33]. In this case, the set Lnew is partitioned according to the
model’s predictions into a set Lnew

+ of predicted positives and Lnew
− of predicted

negatives, and the most uncertain samples in the larger set are discarded to
reach the desired ratio r, which we fix to 1. We then assign soft pseudo-labels,
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i.e., the average prediction in the open interval (0, 1), to these samples:

yi = p̂i ∀i ∈ Lnew
− ∪ Lnew

+ (9)

As discussed previously, low epistemic uncertainty signals likely correct pre-
dictions. Using such predictions as a target in the loss LL provides a stronger,
more explicit learning signal to the model, resulting in a larger decrease in
risk compared to using the same example as unlabeled in LPU . At the same
time, soft pseudo-labels provide an additional signal regarding the estimated
aleatoric uncertainty of samples. Furthermore, they help reduce overfitting and
the emergence of confirmation bias in case the assigned pseudo-label is wrong
by acting as dynamically-smoothed labels [31, 38].

Pseudo-unlabeling

Similar to the way that low uncertainty on an unlabeled example indicates that
the prediction can be trusted, high uncertainty on a pseudo-labeled example
indicates that the assigned pseudo-label might not be correct after all. To avoid
training on such possibly incorrect pseudo-labels, we move the pseudo-labeled
examples with uncertainty above a threshold tu back into the unlabeled set:

Unew = {i ∈ L|ûei ≥ tu} (10)

yi = 0 ∀i ∈ Unew (11)

4 Experiments

To empirically compare our proposed framework to existing state-of-the-art
losses and models, we followed standard protocols for PUL [4, 6, 10, 22] as
described in Section 4.1. In Section 4.2, after presenting the main results,
we empirically show the advantage of our framework in improving perfor-
mance for both imbalanced and standard PU scenarios, being applicable to
different data modalities, and using various losses for PU learning. Finally,
in Section 4.3 we provide further analyses of PUUPL including an inves-
tigation of its sensitivity with respect to pseudo-labeling hyperparameters.
The source code of the method and all the experiments are available at
https://anonymous.4open.science/r/PUUPL-BE6E.

4.1 Experimental protocol

Datasets

We evaluated our method in the standard setting of MNIST [39] and CIFAR-
10 [40] datasets, as well as Fashion MNIST (F-MNIST) [41], CIFAR-100-20 [40]
and IMDb [42] to show the applicability to different data modalities. Similar
to previous studies [4, 6, 10, 22], positives were defined as odd digits in MNIST
and vehicles in CIFAR-10. For F-MNIST we used trousers, coats, and sneakers
as positives, and for the experiments on CIFAR-100-20, we defined those 10
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out of the 20 superclasses as Positives that correspond to living creatures
(i.e., ‘aquatic mammal‘, ‘fish‘, ‘insects‘, ‘large carnivores‘, ‘large omnivores‘,
‘medium-sized mammals‘, ‘non-insect invertebrates‘, ‘people‘, ‘reptiles‘, ‘small
mammals‘). The number of training samples is reported in Supplementary
Table A1.

For all datasets, we reserved a validation set of 5,000 samples and used all
other samples for training, evaluating on the canonical test set. To simulate
an imbalanced setting, we downsampled the positives in the training and val-
idation sets to obtain π = 0.1 and labeled only 600 of them. We also report
results with 1,000 and 3,000 randomly chosen labeled positives in the training
set as is common in the literature. For the image datasets, we subtracted the
mean pixel intensity in the training set and divided it by the standard devia-
tion, while for IMDb we used pre-trained GloVe embeddings of size 200 on a
corpus of six billion tokens.

Network architectures

To ensure a fair comparison with other works in PUL [4, 6, 10], we used
the same architectures on the same datasets, namely a 13-layer convolutional
neural network (CNN) for the experiments on CIFAR-10 and CIFAR-100-
20 (Table A2) and a multi-layer perceptron (MLP) with four fully-connected
hidden layers of 300 neurons each and ReLU activation for MNIST and F-
MNIST. For IMDb, we used a bidirectional LSTM network with a MLP head
whose number of units was optimized as part of the hyperparameter search
(Table A3).

Training

We trained all models with the Adam optimizer [43] with β1 = 0.9 and β2 =
0.999 and an exponential learning rate decay with γ = 0.99, while learning
rate, batch size, and weight decay were tuned together with the other pseudo-
labeling hyperparameters using the ranges in Table A4 in the Supplements.
We provide experimental results using both a PU validation set, to provide
a real-world performance estimate, as well as a fully-labeled (PN) validation
set to compare against state-of-the-art PUL methods that used such a labeled
validation set [6, 26] and to showcase the potential of our method. When using
a PU validation set, we used the AUROC between positive and unlabeled
samples as tuning criterion, as previous work [36, 44] has shown that higher
AUROC on PU data directly translates to higher AUROC on fully labeled
data.

Evaluation

We obtain the final results by training the model five times with random
initialization and training/validation split while using the same canonical test
set, reporting both the highest test accuracy obtained and the test accuracy
when a PU validation set was used.
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We compare PUUPL against VPU [10] and Self-PU [6] using the same
network architecture and data splits. We consider the former as it does not
require a known prior π and can use a PU validation set, and the latter as
the state-of-the-art self-training method for PUL even though it requires a
positive-negative (PN) labeled validation set. We additionally compare against
a naive, uncertainty-unaware, pseudo-labeling baseline “+PL” that used the
sigmoid outputs directly as a ranking measure for pseudo-labeling instead of
the epistemic uncertainty, while still assigning soft pseudo-labels.

4.2 Main Results

Table 1 shows the performance of PUUPL and the other baselines in an imbal-
anced scenario with only 600 labeled positives and a true prior π = 0.1. PUUPL
was the overall best performer in all comparisons except on the MNIST dataset
with PU validation, where its performance was 0.31 percentage points (p.p.)
lower than the imbnnPU baseline. PUUPL improved performance the most in
the IMDb dataset, where accuracy was 2.2 and 3.5 p.p. higher with PN and
PU validation sets, and the improvement in CIFAR-100-20 was similarly high
with 2.0 and 2.8 p.p. respectively. Self-PU struggled in this setting, collapsing
to negative predictions on CIFAR-100-20 and demonstrating unstable behavior
on CIFAR-10, where the collapse only occurred in certain training/validation
splits but not others. The naive pseudo-labeling baseline that did not use
uncertainty worsened performance, compared to imbnnPU, in three datasets
out of five, regardless of the method used for validation, hypothetically due to
the emergence of the confirmation bias.

We performed the same comparison using 3,000 labeled training positives
and the natural prior of each dataset, while using the nnPU loss as LPU

(Table 2). The results were qualitatively similar, with PUUPL providing the
highest test accuracy except for Fashion-MNIST, and sometimes considerable
performance increase, for example almost 5 p.p. more in the case of CIFAR-
100-20 with 3,000 positives.

These findings substantiate the advantages of pseudo-labeling in PUL as
well as the necessity of uncertainty quantification in this procedure and in
particular the benefit that this brings in more imbalanced scenarios with few
labeled positives or low prior.

4.3 Further analyses

In this section, we investigate the inner workings of PUUPL as well as the
sensitivity of PUUPL with respect to pseudo-labeling hyperparameters. These
are the class prior π, loss weighting parameter λ, and the number of training
positives and we alter each of these parameters and compare the resulting
test performance on CIFAR-10 in the general PUL setting. Further results
regarding pseudo-labeling hyperparameters can be found in Supplementary
Section B.
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Dataset

Valid. Method MNIST F-MN C-100-20 CIF-10 IMDb

PN

Self-PU [6] 94.44±0.12 90.99±0.47 50.00±0.0 63.97±3.97 -

imbnnPU [5] 95.65±0.11 91.54±0.18 71.61±0.73 87.59±0.26 74.44±0.61
+ PL 95.19±0.20 91.26±0.22 71.80±0.93 85.82±0.50 75.94±0.61
+ PUUPL 96.09±0.10 91.93±0.12 73.79±0.33 88.93±0.31 78.16±0.78

PU

VPU [10] 80.87±3.24 89.30±0.98 70.01±0.96 86.41±0.78 -

imbnnPU [5] 95.61±0.05 89.88±0.51 67.13±1.26 87.61±0.25 74.32±0.58
+PL 94.65±0.48 89.55±0.57 68.42±1.18 84.57±1.32 75.88±0.68
+PUUPL 95.30±0.50 91.86±0.09 72.80±0.38 87.97±0.38 77.78±0.86

Table 1 Average test accuracy and its standard error over five repetitions where
model training was performed with an imbalanced dataset with π = 0.1 and 600
labeled positives. The row “+PL“ refers to an uncertainty-unaware pseudo-labeling
baseline, while “+PUUPL“ refers to our uncertainty-aware solution. The validation
column refers to the use of a fully-labeled (PN) or PU validation set.

Dataset

Method MNIST F-MN C-100-20 CIF-10 IMDb Valid.

Self-PU [6] 95.64 ±0.13 91.55 ±0.18 75.41 ±0.44 90.56 ±0.09 - PN

VPU [10] 93.84 ±0.88 91.90 ±0.22 72.12 ±1.05 87.50 ±1.05 - PU

nnPU [4] 96.36±0.06 91.70±0.12 72.46±0.83 90.49±0.13 79.62±0.67
PN+PL 96.22±0.13 92.09±0.12 74.07±0.71 90.56±0.11 79.04±0.39

+ PUUPL 97.02±0.08 92.13±0.09 77.39±0.31 91.12±0.04 80.43±0.40

nnPU [4] 95.70±0.11 90.93±0.26 72.48±0.83 90.49±0.15 79.62±0.65
PU+PL 95.91±0.23 91.36±0.13 74.30±0.68 90.23±0.07 79.04±0.39

+ PUUPL 97.12±0.07 91.26±0.26 77.49±0.33 90.74±0.15 80.26±0.51

Table 2 Average test accuracy and its standard error over five repetitions on
various datasets with 3,000 labeled training positives. The row “+PL“ refers to an
uncertainty-unaware pseudo-labeling baseline, while “+PUUPL“ refers to our
uncertainty-aware solution. The validation column refers to the use of a
fully-labeled (PN) or PU validation set.

PUUPL is loss-agnostic

Our framework is uniquely positioned to take advantage of newly developed
risk estimators for PU learning: as we showed above, PUUPL could make use
of the imbnnPU loss [5] and the nnPU loss [4] to substantially improve on the
state-of-the-art in the imbalanced and the general setting. Next to imbnnPU,
there exists a variety of alternative PU losses exist for different scenarios. The
nnPUSB loss [22] was developed to address the issue of labeling bias in the
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Fig. 2 Validation accuracy (left, blue) and expected calibration error (ECE, right,
green) for a run on CIFAR-10 with 1,000 positives. Note the substantial reduction
in ECE in the second and third pseudo-labeling iterations, when the ensemble is
trained on soft labels. The orange line indicates the best validation accuracy at each
epoch, with the new highest accuracy marked by orange dots. The overall highest
was 90.76% at epoch 1092, corresponding to a test accuracy of 90.35%.

PU loss

nnPU [4] nnPUSB [22]

Only PU loss 87.05 ±0.14 87.31 ±0.12
PU loss+PUUPL 87.70 ±0.14 87.91 ±0.14

Table 3 Test accuracy of PUUPL on the CIFAR-10 dataset with a selection bias
on the positive labels when using the nnPU and nnPUSB losses. Our framework
improved over the base PU loss in both cases, and, in particular, PUUPL with
nnPU loss achieved better performance than the nnPUSB loss alone.

training positives, a more general setting compared to the i.i.d. assumption of
traditional PUL methods [20]. We tested PUUPL in such a biased setting where
positives in the CIFAR-10 training and validation sets were with 50% chance
an airplane, 30% chance an automobile, 15% chance a ship, and 5% chance a
truck. The test distribution was instead balanced, meaning for instance that
test samples were half as likely to be airplanes compared to the training set, and
five times more likely to be truck images. We used the same hyperparameters
as for the i.i.d. CIFAR-10 experiments except for the loss LPU where we used
the nnPUSB loss [22] to handle the positive bias. The baseline with nnPUSB
loss performed better than the nnPU loss but worse than PUUPL with the
nnPU loss, and the best performance was achieved with PUUPL on top of the
nnPUSB loss (Table 3).

These results demonstrate that PUUPL can be applied even when a sam-
pling bias is suspected by a practitioner and no ad hoc risk estimator is
available, as our uncertainty-aware pseudo-labeling framework with the bias-
oblivious nnPU loss obtained better results compared to a bias-aware risk
estimator without pseudo-labeling.
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nnPU +PL +PUUPL

Test Expected Calibration Error (%)

IMDb 25.94±0.78 25.23±0.11 6.33±0.17
CIFAR-10 10.89±0.10 9.24±0.15 5.70±0.72

CIFAR-100-20 31.62±0.29 27.51±0.59 22.12±0.39

Pseudo-labels Negative Log-Likelihood

IMDb - 2.74±0.19 0.61±0.02
CIFAR-10 - 0.66±0.05 0.29±0.03

CIFAR-100-20 - 3.76±0.29 0.94±0.05

Table 4 Expected calibration error (ECE) on the test set using 1,000 labeled
positives for training (average and standard error over five runs), as well as
negative log-likelihood of the assigned pseudo-labels against the true labels.

Uncertainty quantification improves pseudo-labels

According to the results in Table 1 and 2, naive pseudo-labeling frequently
reduces performance, rather than improving it; it then follows that the per-
formance improvement of PUUPL stems from the uncertainty ranking used to
select and assign pseudo-labels (Eq. 8). We investigated this in a series of exper-
iments with PUUPL, nnPU, and the naive pseudo-labeling baseline with 1,000
labeled positives, and we found that the improvement in expected calibration
error (ECE) on the test set and negative log-likelihood (NLL) of the pseudo-
labels assigned by PUUPL was at least 40% and often much larger (Table 4).
As shown in Figure 2, the ECE decreased during the first few pseudo-labeling
rounds, after which it stabilized while the accuracy continued improving. We
also observed that a larger improvement in pseudo-label quality corresponds
to a larger improvement in predictive performance.

Robustness of PUUPL

Towards prior misspecification: An important concern for practitioners is
how to determine the prior π of a PU dataset, as in the case of sub-optimal
estimation the performance of the PU classifier can be harmed considerably.
Prior estimation constitutes a whole research branch in PUL [10, 25] and is a
significant challenge in any practical PU application [20]. Some contemporary
methods for PUL [6, 11–13] assume a known prior and do not discuss the
practical consequences of not knowing such parameter, while other methods
incorporate prior estimation directly into the training procedure [10, 25, 26].
We treated π as a hyperparameter optimized using the AUROC on a PU
validation set as a criterion [36, 44], thus bridging the gap between estimating
the prior during training and assuming it is known a priori.

Our experimental results show that optimizing the prior in such a way
resulted in a consistent reduction in test accuracy between 0.8 and 1.2 per-
centage points for our framework, the PU loss, and the naive pseudo-labeling
baseline (PU sections in Tables 1 and ??). In a similar vein, methods such as
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Fig. 3 Mean and standard deviation of the CIFAR-10 test accuracy obtained over
five runs when training with wrong prior (a), number of training labeled positives (b)
and different loss combination parameter λ (c). PUUPL proved to be more robust to
prior misspecification (true π = 0.4), as the performance degradation was consider-
ably reduced over a wide range of values. It was also more robust to the lower number
of labeled samples, as the gap between our framework and nnPU widened when fewer
labeled positives were available for training (note the different y-axes scales).

VPU that optimize the prior as part of the training procedure show a similar
or larger difference compared to methods that use a PN labeled validation set
such as Self-PU. However, in most cases, PUUPL remained the top performer
in both settings.

Moreover, training using a wrong value for π was less harmful to PUUPL
compared to nnPU only (Fig. 3a). For example, on CIFAR-10 the test accuracy
showed a wide plateau around the true prior of 0.4 with a performance reduc-
tion of less than 2.5% in the range [0.3, 0.6]. With smaller priors, the nnPU loss
collapsed to constantly predicting the majority class, and specialized oversam-
pled risk estimators [5] were needed to cope with such a setting (we showed
the effectiveness of PUUPL in imbalanced settings in the previous section).
Furthermore, the performance gap between PUUPL and nnPU widened as π
was more severely misspecified, indicating a higher degree of robustness.

Number of labeled training positives The performance of PUUPL
steadily increased and seemed to plateau at 91.4% at 3,000 labeled positives
(Fig. 3b). The gap between nnPU and PUUPL was largest in the low labeled
data region with a 1.44% gap at 250 labels, where PUUPL achieved 87.59%
accuracy, shrinking to a gap of 0.52% with 3,000 labels, where PUUPL’s per-
formance was 91.44%. This supports our intuition about the importance of
accounting for prediction uncertainty because, as the amount of labeled data
decreases, uncertainty becomes more important to detect overfitting and to
prevent the model from assigning incorrect pseudo-labels.

Loss mixing parameter: As a loss, PUUPL uses a convex combination of
a loss for the assigned pseudo-labels and the remaining PU data using a mixing
coefficient λ (Eq. ). The best performing combination used λ = 0.1, with
modest performance reduction until λ = 0.5 (Fig. 3c), with too small values
nullifying the effect of pseudo-labeling, and larger values harming performance.
In general, when too few samples are pseudo-labeled, the loss LL is a high
variance estimator of the classification risk, and thus should not be weighted
excessively. This effect may be reduced as more pseudo-labels are added, and
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dynamic adaptation of λ over training could provide an additional performance
improvement.

4.4 Real-world application

In this section we show the applicability and benefits of PUUPL to a real-world
imbalanced dataset with applications related to healthcare, improving the pre-
dictive performance of previous methods developed ad hoc. Cancer is the result
of malignant mutations that were not wiped out in time by the immune sys-
tem. It is however possible to instruct the immune system to fight the tumor
through specific vaccines that contain neo-epitopes that arose as a result of
those mutations, i.e., short genomic regions surrounding the mutated sites that
can trigger an immune response [45]. Such vaccines can be designed computa-
tionally by solving an optimization problem that chooses the most promising
mutations to target while ensuring that the vaccine can be processed appro-
priately by the body [46–48]. One of the main steps of such processing [49] is
the digestion of the vaccine by the proteasome, a tubular protein complex that
degrades old or misfolded proteins into shorter fragments (Fig. 4). In order
for the vaccine to be effective these pieces must correspond to the neoantigens
originally contained in the vaccine. Therefore, accurately predicting proteaso-
mal cleavage, i.e., the position where a sequence is cut, is very important to
design more effective vaccines. Modern high-throughput pipelines [3] are able
to detect MHC-presented epitopes on the cell surface (Fig. 44) which must
have originated from proteasomal cleavage. While missed cleavage sites are
never measured, not all presented epitopes are detected, and not all peptides
resulting from proteasomal cleavage are presented. Thus, PUL is a natural
abstraction of proteasomal cleavage prediction.

Dataset

We collected a dataset of 294,615 MHC-I epitopes from the IEDB [50] database
and 89,853 from the Human MHC Ligand Atlas [51]. To identify the poten-
tial progenitor protein of each epitope, we used BLAST [52] and filtered for
epitopes with a unique progenitor protein resulting in a total of 258,424 data
points. Through the progenitor protein, we recovered the residues preceding
the N-terminus and following the C-terminus of the epitope, thus providing
context for the cleavage predictor. We generated two separate datasets based
exclusively on N- or C-termini cleavage sites, as it is known that the biological
signal differs in these two situations [53]. We generated “decoy“ samples by
considering cleavage sites located within three residues of the experimentally-
determined terminus; as discussed previously, it is unknown whether cleavage
could or could not have happened at those positions, hence we treat such decoys
as unlabeled in our PUL training procedure. The final datasets were then com-
posed of 1,285,659 samples with 229,163 positives for the N-terminus datasets
and 1,277,344 samples with 222,181 positives for the C-terminus datasets.
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Fig. 4 Predicting the outcome of each event in the antigen processing pathway [49]
is crucial to enable the design of epitope vaccines. Vaccines ingested by antigen
presenting cells (1a) as well as mutated proteins produced by cancerous cells (1b)
are cleaved in short fragments by the proteasome (2). Some of these fragments, or
peptides, are then transported into the endoplasmic reticulum (ER) through the
Transporter associated with Antigen Processing (TAP). A fraction of these peptides
bind to the Major Histocompatibility Complex (MHC, 3) and the resulting construct
is then expressed on the cell surface (4), where they can be inspected by passerby
T-cells and possibly trigger an appropriate immune response (5).

Modeling, Training, and Evaluation

Each sequence contains ten amino acids, each of which was one-hot encoded
and processed by a MLP. We used imbnnPU [5] as LPU . For imbnnPU and
PUUPL we report the cross-validation scores and use the statistical test pro-
posed by [54] to estimate the AUROC, its standard error, and confidence
intervals. Note that, as we do not know the true negatives, traditional metrics
to evaluate classification performance such as accuracy, F1, precision, recall,
etc. are not applicable. As external baselines we consider NetChop [55] and
NetCleave [56], evaluating their predictions on ten random bootstraps of our
dataset. These baselines are based on MLPs and convolutional neural networks
respectively and, importantly, they approach the problem as a supervised
binary classification task, treating decoy samples as negatives rather than unla-
beled. We also present evaluation scores for the imbnnPU loss [5], commonly
used for PUL on imbalanced datasets.

Results

Both PUUPL and the imbnnPU loss achieved lower performance on the N-
terminals dataset, confirming previous observations that this predictive task
is harder due to the biological processes involved [53]. On the C-terminal
dataset, the imbnnPU loss improved performance by 2.5 and 4.4 points com-
pared to NetChop and NetCleave respectively, and PUUPL added a further
3.2 points reaching 87.2% AUROC (Table 5). In both datasets the difference
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AUROC

N-terminal C-terminal

NetChop 20S 52.72 ±0.02 66.07 ±0.02
NetChop C term 50.99 ±0.02 81.53 ±0.01

NetCleave 49.27 ±0.02 79.61 ±0.01

imbnnPU 75.15 ±0.06 83.99 ±0.06
PUUPL 78.00 ±0.06 87.20 ±0.04

Table 5 Average and standard error of area under the ROC curve (AUROC) on
both datasets for NetChop, NetCleave, the imbnnPU loss and PUUPL.

in AUROC between imbnnPU and PUUPL was statistically significant at a
significance of 1%: the confidence intervals are [74.99, 75.32] and [77.85, 78.15]
for N-terminals, and [83.85, 84.14] and [87.08, 87.32] for C-terminals. Note that
both NetChop and NetCleave were only trained on C-terminals cleavage sites
in the original publication, thus explaining their random predictions on the
N-terminals dataset.

5 Discussion and conclusions

We introduced PUUPL, an uncertainty-aware pseudo-labeling framework for
PUL that uses the epistemic uncertainty of an ensemble of networks to
select which examples to pseudo-label. We conducted extensive experiments
to demonstrate the benefits of our approach and show its reliability in settings
that are likely to be encountered in the real world such as heavily imbalanced
settings with small π and few labeled positives, a bias in the positive training
data, the unavailability of labeled negatives for validation, and the misspecifi-
cation of the class prior π. Unlike many alternative methods, PUUPL can be
applied to learning problems in any domain out of the box as it does not rely
on regularization methods that are restricted to a specific data modality, most
frequently images, such as mixup [9] (used by [10, 13]) or contrastive represen-
tations (used by [12]). Furthermore, it is easy to adapt as it builds on standard
methods (unlike [6]), and does not require pretrained representations to work
(as [11] does). We further used our framework to advance the state-of-the-art
on a real-world healthcare dataset with potential repercussions on efficacy and
deployment cost of personalized epitope vaccines for cancer treatment.

Our choice of deep ensembles was rooted in their competitiveness in
empirical benchmarks [57], however, PUUPL can easily be extended to take
advantage of more accurate uncertainty quantification methods as they become
available [58]. In fact, as the matter of uncertainty quantification in deep learn-
ing is far from settled, the performance and efficiency of our framework could
be further improved by employing more accurate uncertainty quantification
methods [58].
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Limitations

We demonstrated robustness against biased positive labels and imbalanced
datasets, however, it is the practitioners’ responsibility to ensure that the
obtained predictions are ”fair”, with ”fairness” defined appropriately with
respect to the target application, and do not systematically affect particular
subsets of the population of interest. Ultimately, we can only leave it to practi-
tioners to use their moral and ethical judgment as to whether all stakeholders
and their interests are fairly represented in their application. While we have
shown that PUUPL works across different modalities such as image, text, and
epitope data it would be interesting to apply PUUPL on further modalities.
Furthermore, we used deep ensembles as a strategy to obtain uncertainty which
enables PUUPL’s strong performance. Combining PUUPL with different alter-
native uncertainty quantification techniques would be an exciting avenue for
further research.
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Dataset Train Pos. Train Neg. Test Size

MNIST 30,508 29,492 10,000

F-MNIST 30,000 30,000 10,000

CIFAR-10 20,000 30,000 10,000

CIFAR-100-20 25,000 25,000 10,000

IMDb 12,500 12,500 25,000

20 News 6,216 4,798 7,317

Table A1 Size of test set and number of positives and negatives in the training set for
each dataset.
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Fig. B1 Mean and standard deviation of the test accuracy obtained over five runs
by different variations of our PUUPL algorithm: (a) different weight initialization at
each iteration, (b) balanced or imbalanced PL selection, (c) type of uncertainty, (d)
whether to use PN or PU validation set. Note the different scales on the y-axes.

Appendix A Network architecture,
hyperparameters and datasets

Table A1 reports the number of samples in each dataset. Table A2 reports the
network architecture used in the CIFAR-10 and CIFAR-100-20 experiments,
while Table A3 reports the network used with IMDb. Table A4 reports the
hyperparameters related to pseudo-labeling and their ranges.

Appendix B Further sensitivity analyses

We performed ablation studies on the CIFAR-10 dataset by changing one
parameter at a time of the best configuration found by Hyperband, training
and evaluating with five different splits, and reporting the test accuracy corre-
sponding to the best validation score for each run. To limit the computational
resources needed, we used at most 15 pseudo-labeling iterations.

Weight initialization: We confirmed the observation that it is beneficial
to re-initialize the weights after each pseudo-labeling step [31], with slightly
better performance (+0.052%) achieved when the weights are re-initialized to
the same values before every pseudo-labeling iteration (Fig. B1a). We believe
this encourages the model to be consistent across pseudo-labeling rounds.

Uncertainty: Ranking predictions by aleatoric performance was almost
as good as ranking by epistemic uncertainty (−0.08%), while total uncertainty
produced moderately worse rankings (−0.37%, Fig. B1c). An ensemble with
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Layer type Layer parameters

Conv. 2D InC=3, OutC=96, k=3, s=1, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=96, OutC=96, k=3, s=1, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=96, OutC=96, k=3, s=2, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=96, OutC=192, k=3, s=1, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=192, OutC=192, k=3, s=1, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=192, OutC=192, k=3, s=2, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=192, OutC=192, k=3, s=1, p=1

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=192, OutC=192, k=1, s=1, p=0

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Conv. 2D InC=192, OutC=10, k=1, s=1, p=0

Dropout p=0.15

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Flatten

Linear in features=640, out features=1000, bias=yes

ReLU

Linear in features=1000, out features=1000, bias=yes

ReLU

Linear in features=1000, out features=1, bias=yes
Table A2 Network architecture used for the CIFAR-10 experiments. InC: input
channels, OutC: output channels, k: kernel size, s: stride, p: padding
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Layer type Layer parameters

LSTM inpus size=200, hidden size=128,

num layers=2, dropout=0.25,

bidirectional=True

Dropout p=0.2

Linear in features=256, out features=196,

bias=True

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Dropout p=0.2

Linear in features=196, out features=196,

bias=True

Batch Norm. eps=1e-05, momentum=0.1

ReLU

Linear in features=196, out features=1,

bias=True
Table A3 Network architecture used for the IMDb experiments

Hyper-parameter Value range

Estimator Ensemble or MC Dropout

Number of samples [2, 25]

Uncertainty type Aleatoric, epistemic, total

Max. new labels T [100, 5000]

Max. new label uncertainty tl [0,− log 2]

Min. unlabel uncertainty tu [0,− log 2]

Reassign all pseudo-labels Yes or no

Re-initialize to same weights Yes or no

Cross-entropy weight λ [0, 1]
Table A4 Pseudo-labeling hyperparameters

only two networks achieved the best performance, while larger ensembles per-
formed worse, and Monte Carlo dropout (−0.85%) was better than ensembles
of five (−1.00%) and ten networks (−1.58%).

Early stopping: Finally, performing early stopping on the validation PU
loss resulted in worse accuracy (−1.12%) compared to using the accuracy on
PN labels (Fig. B1d). Although considerable when compared to the impact of
other algorithmic choices, such a performance drop indicates that PUUPL can
be used effectively in real-world scenarios when no labeled validation data are
available.

Pseudo-labeling hyperparameters: Our method was fairly robust to
the maximum number T of assigned pseudo-labels and the maximum uncer-
tainty threshold tl for the pseudo-labels, with almost constant performance up
to T = 1000 and tl = 0.1. The best performance was achieved by the com-
bination having T = 1000 and tl = 0.05, but both of these experiments were
performed while disabling the other constraint (i.e., setting T = inf when test-
ing tl and vice-versa). Using only a constraint on T resulted in a reduction of
−0.11%, while constraining tl alone resulted in a reduction of −1.04%. The
results for tu were less conclusive than for the general trend, possibly because
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values lower than 0.35 require more than the 15 pseudo-labeling iterations
we used for the experiment, and values above 0.4 did not show significant
differences.

Moreover, soft pseudo-labels were preferred over hard ones (+0.75%). Con-
trary to expectation, however, re-assigning all pseudo-labels at every iteration
slighly harmed performance (−0.12%); instead, pseudo-labels should be kept
fixed after being assigned for the first time. A possible explanation is that
fixed pseudo-labels prevent the model’s predictions from drifting too far away
from the initial pseudo-labeling towards an incorrect assignment, and thus
contribute in mitigating the sort of confirmation bias that frequently plagues
pseudo-labeling-based methods. It was also beneficial to assign the same num-
ber of positive and negative pseudo-labels compared to keeping the same ratio
π of positives and negatives found in the whole dataset (−0.20%) or not bal-
ancing the selection at all (−0.55%). This prevents the pseudo-labeled set from
becoming too imbalanced over time, a natural tendency deriving from the
inherent imbalance between positive and unlabeled samples in the training set.

Appendix C Ethics statement and broader
impact

Improving performance of PUL methods will catalyze research in areas where
PU datasets are endemic and manual annotation is expensive or negative
samples are impossible to obtain – for example, in bioinformatics and med-
ical applications – which ultimately benefits human welfare and well-being.
The explicit incorporation of uncertainty quantification further increases
the trustworthiness and reliability of PUUPL’s predictions. However, such
advances in PUL could also reduce the resources required to create unwanted
mass-surveillance systems by governments and/or private companies.
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Abstract
Research on multi-class text classification of
short texts mainly focuses on supervised (trans-
fer) learning approaches, requiring a finite set
of pre-defined classes which is constant over
time. This work explores deep constrained clus-
tering (CC) as an alternative to supervised learn-
ing approaches in a setting with a dynamically
changing number of classes, a task we intro-
duce as dynamic topic discovery (DTD). We
do so by using pairwise similarity constraints
instead of instance-level class labels which al-
low for a flexible number of classes while ex-
hibiting a competitive performance compared
to supervised approaches. First, we substan-
tiate this through a series of experiments and
show that CC algorithms exhibit a predictive
performance similar to state-of-the-art super-
vised learning algorithms while requiring less
annotation effort. Second, we demonstrate the
overclustering capabilities of deep CC for de-
tecting topics in short text data sets in the ab-
sence of the ground truth class cardinality dur-
ing model training. Third, we showcase how
these capabilities can be leveraged for the DTD
setting as a step towards dynamic learning over
time. Finally, we release our codebase to nur-
ture further research in this area.

1 Introduction

There has been substantial research on methods
for the classification of short user-generated texts
such as customer reviews, search queries, tweets,
or articles (Mohammad et al., 2016; Sun et al.,
2019; Barbieri et al., 2020). Often, despite be-
ing handled differently in supervised frameworks,
one does not know a-priori what these classes are,
how many there are at time point t, or how many
there will be at a future time point t+ 1. In exist-
ing benchmark data sets from the natural language
processing (NLP) research community (e.g. Lang,
1995; Lehmann et al., 2015), this potential issue
is largely ignored, since only one training set is
provided alongside one test set. Performance can

Figure 1: Illustration of CC-Top and the training
paradigms 1) constrained clustering (CC), 2) overclus-
tering (OC) and 3) dynamic topic discovery (DTD).
Crosses and lines represent Cannot- and Must-Link pair-
wise relations, respectively.

thus only be measured in a static fashion, i.e. for
one fixed time point. While this problem of an
unknown number of classes is often tackled us-
ing unsupervised learning techniques (Deerwester
et al., 1990; Blei et al., 2003), these algorithms
come with an array of limitations and are not able
to (automatically) adapt to a changing number of
classes. We formally introduce this novel problem
setting with dynamically changing topics as DTD
and explore the potential of deep constrained clus-
tering (CC; Hsu et al., 2019) algorithms coupled
with pre-trained language models (BERT; Devlin
et al., 2019) for text classification in this setting.

Various approaches have been developed to com-
bine CC (Wagstaff and Cardie, 2000) with neural
networks, mainly for image datasets (Hsu and Kira,
2015; Hsu et al., 2019). In addition to strong pre-
dictive clustering performance, these methods are
able to recover the number of distinct clusters in
the data without access to instance-level class la-
bels during training. Hence, they can be used for
category detection, a capability that we leverage
for the detection of dynamically changing topics.
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Moreover, they address and alleviate the problem
of label annotation: Human annotators only need to
annotate pairs of samples indicating whether they
belong to a similar topic or not instead of annotat-
ing one distinct class label per sample. We argue
that for short texts this is easier and more efficient
than annotating individual samples.

We propose the use of Constrained Clustering
for Topic classification (CC-Top, cf. Fig. 1): We 1)
leverage pairwise constraint annotations for topic
classification of short texts in a weakly supervised
manner, we 2) demonstrate its topic discovery ca-
pabilities and 3) introduce a new problem setting
with dynamically changing topics. In a series of
experiments, we substantiate these findings and
publish our codebase1 to nurture further research
on constrained clustering in the NLP community.

2 Related Work

With the advent of supervised fine-tuning of pre-
trained models, text clustering performance further
increased (Huang et al., 2020; Schopf et al., 2021).
One main limitation of these models is their de-
pendence on a given amount of clusters as input
for model training, which limits their use for the
detection of clusters, i.e., topics/classes. Unsuper-
vised topic modeling algorithms (e.g. Blei et al.,
2003; Grootendorst, 2022) are no real alternative
here, since we focus on topic classification and not
on topic modeling. Note, that we make a clear dis-
tinction between these two approaches here: Topic
modeling aims at uncovering latent structures in
the data and puts a large emphasis on explaining
and interpreting the detected clusters. Further, as
opposed to Topic classification, it does not assume
the cluster assignment to be mutually exclusive,
i.e. a document is regarded as a (potential) mixture
of multiple topics. Since this is in sharp contrast
to the setting we are investigating, we do not con-
sider such approaches as potential unsupervised
baselines.

In turn, CC allows this detection of the number
of clusters using binary pairwise constraint anno-
tations. The introduction of pairwise constraints
for clustering (Wagstaff and Cardie, 2000) led to
the adaptation of existing clustering methods to-
wards the use of constraints (Basu et al., 2004) (see
Gançarski et al. (2020) for an overview). With the
proposal of the KCL loss based on the Kullback-
Leibler divergence, Hsu and Kira (2016) intro-

1https://github.com/rpranav22/cc-top

duced CC to deep learning settings. They further
showed its applicability to transfer learning (Hsu
et al., 2018), introduced the MCL as an alternative
loss (Hsu et al., 2019), and showed its applicability
for cluster detection, i.e., overclustering. We use
these two pairwise loss functions.

3 Materials and Methods

3.1 Method

We consider a dataset D that contains nc constraint
pairs of the form xij = (xi, xj , cij) ∈ Dc, where
xi, xj are two input samples and cij ∈ {0, 1} is
the associated binary constraint describing whether
the samples are in the same (cij = 1, Must-Link)
or different clusters (cij = 0, Cannot-Link). We
refer to true class labels as yi ∈ Y , where K = |Y|
describes the number of true underlying classes K
in the data set. When K is not known, the model’s
number of output neurons nout may differ from K.
We train a deep CC model f with its final head con-
sisting of a softmax layer i.e., the model predicts
a probability distribution over cluster assignments
ŷi = f(xi), where ŷil denotes the predicted proba-
bility of xi belonging to cluster l ∈ 1, ..., nout.

We follow Hsu and Kira (2016); Hsu et al. (2019)
for the training of the CC model: the model pre-
dictions ŷi, ŷj for text samples xi, xj are fed into
a pairwise loss function with their associated con-
straint cij . There exists a variety of loss functions
that can deal with pairwise constraints (Zhang et al.,
2021b), with the KCL (Hsu and Kira, 2016) and
the MCL (Hsu et al., 2019) being the most promi-
nent ones. The KCL is a pairwise loss function
based on the Kullback-Leibler divergence between
the pairwise model assignments ŷi, ŷj . Similarly,
the MCL loss is aligned on the binary cross en-
tropy loss and reportedly enables smoother model
training. Following prior work (Lin et al., 2020;
Zhang et al., 2021a), we use BERT (Devlin et al.,
2019) as a language model backbone for f .2 Note
that throughout our experiments we randomly sub-
sample a training dataset of 20, 000 pairwise con-
straints from the original fully labeled dataset.

Next to the application in settings where the true
number of clusters K is known a-priori, CC mod-
els can also be used when this information is ab-
sent during model training. This is also referred
to as overclustering (OC) where the model can

2Note that any (pre-trained) architecture can be used as
a backbone in conjunction with these loss functions. All
configurations can be found in Table 5 in Appendix A.
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assign more clusters than present in the data, i.e.
nout > K. This capability to learn the number
of clusters in the data from constraint annotations
differentiates CC from clustering methods such as
k-means, where K needs to be provided as a hyper-
parameter to the model, or supervised approaches.

3.2 Baselines
As a lower, unsupervised baseline, we use BERT
embeddings combined with K-MEANS++ (Arthur
and Vassilvitskii, 2006). For the fully supervised
upper bound trained via instance-level class labels,
we finetune the BERT-BASE-UNCASED architecture
from huggingface (Wolf et al., 2020), following
the standard pretrain-finetune paradigm. Both base-
lines are trained on the entire training dataset.

3.3 Dynamic Topic Discovery (DTD)
We now consider the scenario, where the set of
classes is not fixed and known a-priori at time point
t but is dynamically changing over time (t+ 1, t+
2, . . . ): First, at t, we have pairwise annotations for
samples that belong to Kt distinct classes. Second,
we train a CC model ft to assign any new data point
to one of the discovered clusters. Third, at t+1, we
obtain new samples that could either belong to one
of the initial Kt classes or to new, unseen classes
and the model fails to classify the new samples
accurately.

If our model was fully supervised (i.e., trained
on instance-level class labels), we would have to
reconsider the entire labeling scheme (i.e., produce
the new classes and revisit all existing labeled sam-
ples from t) and re-train the entire model. However,
in the case of CC, we can continue annotating the
data using pairwise constraints and continue to train
the existing model (i.e., let the model determine
(i) if there are new classes and (ii) how many of
them). We construct the following scenario to in-
vestigate the model’s capability to adapt to a chang-
ing number of classes over time: First, we fix the
architectural setup to CC-KCL on DBpedia and use
nout = 30 to provide the model with enough over-
clustering flexibility. Second, for t = 1, we take
a subset of the training set, consisting of samples
from 10 classes only, and sample nc = 20, 000
constraints from this subset, resulting in 38, 056
samples from 10 classes for training (Dtrain,t=1).
Third, for t = 2, we select 18, 000 samples from
the remainder of the training set (Dtrain,t=2) con-
trolling for the ratio of the classes that the samples
belong to x% from the ’old’ 10 classes at t = 1

and (100− x)% from the ’new’ 4 classes at t = 2,
which were withheld from Dtrain,t=1. The DB-
pedia test set is also split into two distinct parts:
Dtest,1 contains only samples from the 10 ’old’
classes, and Dtest,2 contains only samples from the
4 ’new’ ones. During the DTD experiments, we
denote the entire test set as Dtest,combined.

3.4 Datasets
We run experiments on three English datasets of
short texts with associated instance-level class la-
bels. An overview of the analyzed data sets AG
News (Zhang et al., 2015), TREC coarse (Li and
Roth, 2002), and DBpedia (Lehmann et al., 2015)
is provided in Table 1. We did not perform any fur-
ther special preprocessing. We used only DBPedia
for further experiments with respect to DTD, since
the number of classes in the other two data sets was
too small to construct a meaningful DTD scenario.

Name K #Train #V al #Test Avg. Length

AG News 4 120,000 8,000 7,600 40
TREC coarse 6 4,952 500 500 10

DBpedia 14 560,000 35,000 35,000 50

Table 1: Overview of the data sets used for evaluation.

3.5 Performance Metrics
Following prior work (Hsu et al., 2019; Lin et al.,
2020), we report model performance as measured
in Accuracy (ACC), Normalized Mutual Informa-
tion (NMI; Strehl and Ghosh, 2002) and the Ad-
justed Rand Index (ARI; Steinley, 2004). For more
in-depth explanations and for the formulas of all
three metrics, please refer to Appendix C. All three
metrics are normalized to [0, 1], where higher val-
ues indicate better performance. Similarly, we use
the Hungarian algorithm (Kuhn, 1955) to optimally
map predicted labels to the true cluster assignments
before calculating the performance metrics.

4 Experiments

In Table 2, we compare the CC models trained via
both the MCL and the KCL loss with the lower and
upper baselines. These results confirm that CC is a
suitable method to train weakly supervised models
for the detection of topics in short texts, reaching
almost full supervision performance.

Furthermore, we investigated the capabilities of
these models in the OC scenario, where the ground
truth number of classes is unknown during training
and the model can potentially assign nout = 30 >
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Lower Baseline CC-KCL CC-MCL Upper Baseline

Data set K ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AG News 4 0.830 0.577 0.605 0.870 0.714 0.739 0.917 0.755 0.795 0.919 0.759 0.800
TREC-coarse 6 0.542 0.299 0.302 0.953 0.890 0.900 0.967 0.908 0.923 0.962 0.897 0.917
DBPedia 14 0.631 0.726 0.494 0.982 0.963 0.967 0.661 0.805 0.653 0.989 0.974 0.977

Table 2: Averaged results for the baselines on all available training samples as well as for CC-MCL and CC-KCL
trained with 20, 000 constraints each. The better CC model (between KCL and MCL) is marked in bold and CC
models almost reach full supervision level performance (upper baseline). Refer to a larger version of this table
including standard deviations across runs in Appendix B, Table 6.

Dataset ACC NMI ARI

AG News 0.821± 0.068 0.670± 0.033 0.677± 0.067
TREC coarse 0.912± 0.070 0.892± 0.057 0.882± 0.075
DBpedia 0.986± 0.002 0.966± 0.003 0.969± 0.003

Table 3: Mean results ± std. deviations over 5 repe-
titions for overclustering with nout = 30. The model
performs well despite the absence of the true K.

K potential clusters. From the results in Table
3, we observe that CC copes very well with this
challenging scenario. This motivates the extension
towards DTD.

Following Section 3.3, we train five Phase 1
models fi,t=1 on Dtrain,t=1 and evaluate their per-
formance on the three different test sets using the
DBPedia data set. We use the KCL loss due to its
superior performance in the previous experiments.
We observe a decent performance on Dtest,1 along
with a correctly detected number of classes in Table
4. Note, that we consider a class as ’detected’ if the
model assigns at least one percent of the respective
test set to the specific cluster. We acknowledge that
this is a rather heuristic choice. For Dtest,2 and
Dtest,combined, the models perform substantially
worse and are not able to detect the correct number
of classes. Still, it is noteworthy, that the model is
able to detect that the four novel classes in Dtest,2

are distinct as it assigns them different clusters and
does not simply assign them one ’outlier’ cluster.
From the observation that the model detects a total
of ten clusters, as opposed to the correct K = 14
for Dtest,combined, we infer that while it realizes
these four new clusters are distinct, it assigns them
to the clusters present in Dtrain,t=1. However, the
Phase 2 model ft=2 obtained by fine-tuning the
best performing Phase 1 for 200 epochs on 10, 000
constraints sampled from Dtrain,t=2 (50% new vs.
50% old) performs very well on all three test sets
and is able to detect the correct overall number of
classes. Refer to the confusion matrices in Figure
2 for further illustration of these results. When

Dtrain,t=2 contains more samples from the ’old’
classes (25% new vs. 75% old), overall model
performance still improves compared to Phase 1,
but substantially less compared to when there is
more information about the ’new’ classes. These
results imply that the algorithm shows consider-
able sensitivity to the degree of novelty present in
the new training data, which has to be investigated
further in future research. This experiment shows
how an OC-KCL model can easily be adapted to a
dynamically changing number of clusters via con-
tinued training on pairwise annotations from newly
incoming training data.

5 Discussion and Conclusion

In this work, we connected two branches of re-
search: contemporary NLP research and weakly
supervised learning approaches. While the use-
fulness of CC-KCL (and MCL) had already been
shown for computer vision settings (Hsu and Kira,
2016; Hsu et al., 2019), we extended it towards
NLP. Based on this, we showcased how existing
shortcomings of ordinary supervised approaches –
the requirement of fixed, static label sets – could
be regarded as a new type of learning task which
we introduced as dynamic topic discovery. Within
DTD, we subsume a dynamic setting where an
initial, weakly annotated training data set at time
t = 1 is accompanied by a second data set at time
t = 2 which contains novel classes unseen at t = 1.
We proposed a potential solution for such DTD set-
tings via an alternative training scheme leveraging
the overclustering and category detection capabil-
ities of CC models. We acknowledge that there
are still numerous unsolved problems such as the
application on very short texts, very large label sets
with large class cardinality, or multi-label scenarios.
Nevertheless, we hope that our experimental results
can serve as a foundation for further research to-
ward tackling these increasingly complex problems
to ultimately reduce manual labeling efforts in NLP.
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Test set ACC NMI Predicted K

Phase 1 Dtest,1 0.988 / 0.982± 0.009 0.969 / 0.964± 0.005 10 (Range: [10− 10])
(Best / Mean ± Std. Dev) Dtest,2 0.616 / 0.570± 0.043 0.409 / 0.410± 0.048 4 (Range: [4− 5])

Dtest,combined 0.717 / 0.710± 0.011 0.809 / 0.808± 0.015 10 (Range: [10− 11])

50% new – 50% old 25% new – 75% old

ACC NMI Predicted K ACC NMI Predicted K

Phase 2 Dtest,1 0.980 0.951 10 0.880 0.895 9
Dtest,2 0.971 0.929 4 0.951 0.866 4
Dtest,combined 0.978 0.953 14 0.832 0.887 12

Table 4: DTD (with KCL) on DBpedia for different ratios of new versus old classes in Dtrain,t=2, from which
we sample the 10,000 constraints for Phase 2, controlling the degree of novelty. Phase 1 is based on five different
models on Dtrain,t=1. For Phase 2, we pick the best Phase 1 model and continue training on the constraints from
Dtrain,t=2 (no standard deviations, since no random initialization of any model weights for Phase 2).

Figure 2: Confusion matrices for the two DTD phases on the Dtest,combined. Phase 2 results (right) from the
50% new - 50% old setting illustrate a clear improvement over the results from Phase 1 (left). This shows that the
Phase 2 model is able to cluster both the new and old data correctly.

Further, we believe that there is a high necessity
for investigating DTD more in-depth. We believe
it is important to design appropriate benchmarks
and to investigate their relations to other dynamic
paradigms, such as e.g. online learning or novel cat-
egory discovery, and we hope this work can serve
as a step in that direction.

Limitations

While we hope that this work provides valuable
insights, there are still a couple of issues we did
not yet address. First, we observed considerable
instability during model training, especially for a
lower number of constraints. Second, we found
KCL to work better for DBpedia than MCL, which
is surprising given the findings of Hsu et al. (2019).
Finally, we (i) only evaluated DTD for one fixed set
of constraints, (ii) only used the DBPedia dataset
(due to the low number of classes in the other two
datasets), and (iii) used a rather heuristic rule for
determining the number of detected classes.
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Appendix

A Training Model Configurations

In Table 5 we list the specifications of the BERT-
based language model that we use as architec-
tural backbone which we obtained via huggingface
(Wolf et al., 2020). We implemented our models
and data loading logic in PyTorch (Paszke et al.,
2017). Model training for the constrained cluster-
ing and the overclustering experiments was done
on an NVIDIA A100-SXM4-40GB GPU with a
batch size of 256 for 200 epochs. The models for
the DTD part were trained on an NVIDIA Tesla-
V100-16GB GPU with a batch size of 196 for 100
training epochs for phase 1 and for 200 training
epochs for phase 2.

Parameter Value

Base model BERT-BASE-UNCASED

Learning rate 1× 10−5

Optimizer AdamW
(Loshchilov and Hutter, 2019)

Adam Epsilon 1× 10−8

Table 5: BERT configurations for all experiments.

B Detailed Results

In Table 6, we show results for the constrained clus-
tering experiments with nout = K and a total of
20.000 constraint annotations for model training
for the three datasets. This table includes mean
± standard deviations for the performance met-
rics across 5 repeated training runs to account for
randomness in the training process. The results
show that constrained clustering offers a viable
alternative to supervised learning, almost reach-
ing the upper baseline performance for the three
datasets. Further, the MCL loss works best for the
AGNews and the TREC-coarse datasets whereas
the KCL loss is more suitable for the DBPedia
dataset. Hence, we used the KCL loss in the experi-
ments on DBPedia for the dynamic topic discovery
experiments in Section 3.3.

C Performance metrics

Normalized Mutual Information (NMI) NMI
is generally used to measure the tightness of the
cluster formations. In other words, it quantifies
if all the clusters are mutually exclusive without
outliers (Strehl and Ghosh, 2002). Mathematically,

Lower Baseline

Data set K ACC NMI ARI

AG News 4 0.830 0.577 0.605
TREC-coarse 6 0.542 0.299 0.302
DBPedia 14 0.631 0.726 0.494

CC-KCL

AG News 4 0.870± 0.088 0.714± 0.059 0.739± 0.087
TREC-coarse 6 0.953± 0.007 0.890± 0.010 0.900± 0.012
DBPedia 14 0.982 ± 0.005 0.963 ± 0.005 0.967 ± 0.009

CC-MCL

AG News 4 0.917 ± 0.003 0.755 ± 0.004 0.795 ± 0.006
TREC-coarse 6 0.967 ± 0.004 0.908 ± 0.009 0.923 ± 0.009
DBPedia 14 0.661± 0.057 0.805± 0.038 0.653± 0.055

Upper Baseline

AG News 4 0.919± 0.001 0.759± 0.005 0.800± 0.003
TREC-coarse 6 0.962± 0.002 0.897± 0.006 0.917± 0.005
DBPedia 14 0.989± 0.001 0.974± 0.001 0.977± 0.001

Table 6: Results for the baselines on all available train-
ing samples for all of the analyzed data sets as well
as for CC-MCL and CC-KCL on 20,000 constraints
each. The better CC model (between KCL and MCL)
is marked in bold. Mean and standard deviations of the
metrics over five runs.

NMI describes the change in entropy of class labels
given the true cluster labels:

NMI =
2 · I(Y, Ŷ )

H(Y ) +H(Ŷ )

where I(Y, Ŷ ) = H(Y ) −H(Y |Ŷ ) is the mu-
tual information. H(Y ) and H(Ŷ ) are the entropy
of the ground truth class label Y distribution and
the entropy of the predicted cluster label distribu-
tion Ŷ , respectively. The NMI is bound to [0, 1]
where a higher score implies better clustering per-
formance.

Accuracy (ACC) Accuracy measures the similar-
ity of predicted results with the respective ground
truth. For clustering accuracy, we use the Hun-
garian algorithm (Kuhn, 1955) to assign predicted
clusters with associated class labels. Given ground
truth classes Y and predicted clusters Ŷ we calcu-
late accuracy as:

ACC =
TP + TN

TP + TN + FP + FN

where TP is the number of true positives, TN
is the number of true negatives, FP is the number
of false positives, and FN is the number of false
negatives.

Adjusted Rand Index (ARI) The ARI is used to
measure the similarity between two clustering out-
puts (Steinley, 2004). Here, the actual class labels
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are compared to predicted cluster labels to measure
the clustering performance. When comparing Y
and Ŷ , the ARI is calculated as follows:

R =
a+ b(

n
2

)

where a is the number of times, pairs of elements
are in the same cluster for Y and Ŷ , b is the number
of times a pair of elements is not in the same cluster
for Y and Ŷ and n is the total number of samples
in the batch.
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Abstract. One major challenge in the medication of Parkinson’s disease
is that the severity of the disease, reflected in the patients’ motor state,
cannot be measured using accessible biomarkers. Therefore, we develop
and examine a variety of statistical models to detect the motor state
of such patients based on sensor data from a wearable device. We find
that deep learning models consistently outperform a classical machine
learning model applied on hand-crafted features in this time series clas-
sification task. Furthermore, our results suggest that treating this prob-
lem as a regression instead of an ordinal regression or a classification
task is most appropriate. For consistent model evaluation and training,
we adopt the leave-one-subject-out validation scheme to the training
of deep learning models. We also employ a class-weighting scheme to
successfully mitigate the problem of high multi-class imbalances in this
domain. In addition, we propose a customized performance measure that
reflects the requirements of the involved medical staff on the model. To
solve the problem of limited availability of high quality training data, we
propose a transfer learning technique which helps to improve model per-
formance substantially. Our results suggest that deep learning techniques
offer a high potential to autonomously detect motor states of patients
with Parkinson’s disease.

Keywords: Motor state detection · Sensor data · Time series
classification · Deep learning · Personalized medicine · Transfer learning

1 Introduction

Parkinson’s disease (PD) is one of the most common diseases of the elderly and
the second most common neurodegenerative disease in general after Alzheimer’s
[38]. Two million Europeans are affected and 1% of the population over the
age of 60 in industrial nations are estimated to suffer from PD [1,36]. Fortu-
nately, the disease can be managed by applying the correct personalized dosage

c© Springer Nature Switzerland AG 2020
U. Brefeld et al. (Eds.): ECML PKDD 2019, LNAI 11908, pp. 400–415, 2020.
https://doi.org/10.1007/978-3-030-46133-1_24
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and schedule of medication, which has to be continuously adapted regarding the
progress of this neurodegenerative disease. Crucial for the optimal medication
is knowledge about the current latent motor state of the patients, which can
not yet be measured effortlessly, autonomously and continuously. The motoric
capabilities of the patients are distinguishable into three different motor states
which can vary substantially over the course of a day within hours. The most
prominent symptom is the tremor but the disease defining symptom is the loss
of amplitude and slowness of movement, also referred as bradykinesia [35]. In
contrast to bradykinesia, an overpresence of dopaminergic medication can make
affected patients execute involuntary excessive movement patterns which may
remind an untrained observer of a bizarre dance. This hyperkinetic motor state
is termed dyskinesia [40]. In a very basic approximation, people with Parkinson’s
disease (PwP) can be in three motor states: (1) the bradykinetic state (OFF),
(2) a state without appearant symptoms (ON), and (3) the dyskinetic state
(DYS) [31]. If the true motor state of PwP was known at all times, the medi-
cation dose could be optimized in such a way, that the patient has an improved
chance to spend the entirety of his waking day in the ON state. An example
for such a closed-loop approach can be found in Diabetes therapy, where the
blood sugar level serves as a biomarker for the disease severity. Patients suffer-
ing from Diabetes can continuously measure their blood sugar level and apply
the individual, correct medication dose of insulin in order to balance the dis-
ease. Analogously, an inexpensive, autonomous and precise method to assess
the motor state might allow for major improvements in personalized, individual
medication of PwP.

Advancements in both wearable devices equipped with motion sensors and
statistical modeling tools accelerated the scientific community in researching
solutions for motor state detection of PwP since the early 2000s. In 1993, Ghika
et al. did pioneering work in this field by proposing a first computer-based system
for tremor measurement [14]. A comprehensive overview on the use of machine
learning and wearable devices in a variety of PD related problems was recently
provided by Ahlrichs et al. [1]. A variety of studies compare machine learn-
ing approaches applied on hand-crafted features with deep learning techniques
where the latter show the strongest performance [9,20,24–27,38,40,41]. In the
present setting, a leave-one-subject-out (LOSO) validation is necessary to yield
unbiased performance estimates of the models [37]. Thus, it is surprising that
only a subset of the reviewed literature deploys a valid LOSO validation scheme
[9,24,25,40,41]. It is noteworthy that one work proposes modeling approaches
with a continuous response [26], while the rest of the literature tackles this prob-
lem as a classification task to distinguish between the different motor states.
Amongst the deep learning approaches, it is surprising that none of the related
investigations describe their method to tune the optimal amount of training
epochs for the model, which is not a trivial problem as discussed in Sect. 3.3. A
strutured overview on the related literature is given in Table 1.

Contributions. This paper closes the main literature gaps in machine learning
based monitoring of PD: the optimal problem setting for this task is discussed,
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a customized performance measure is introduced and a valid LOSO validation
strategy is applied to compare time series classification (TSC) deep learning and
classical machine learning approaches. Furthermore, the application of a transfer
learning strategy in this domain is investigated.

This paper is structured as follows: The used data sets are described in Sect. 2.
In Sect. 3, peculiarities of the problem as well as the transfer learning strategy
are discussed. Furthermore, in Sect. 4 model architectures and problem settings
are proposed and their results are discussed in Sect. 5.

2 Data

Data was collected from PwP to model the relation between raw movement
sensor data and motor states. The acceleration and rotation of patient’s wrists
was measured via inertial measurement units (IMUs) integrated in the Microsoft
band 2 fitness tracker [32] with a standard frequency of 62.5 Hz. The wrist was
chosen as sensor location as it is the most comfortable location for a wearable
device to be used in the patients’ daily lifes and was shown to be sufficient for
the detection of Parkinson-related symptoms [7,30]. The raw sensor data was
downsampled to a frequency of 20 Hz as PD related patterns do not exceed this
frequency [20]. A standard procedure in human activity recognition is the seg-
mentation of continuous sensor data streams into smaller windows. As the data
in this study was annotated by a medical doctor on a minute-level, the win-
dow length was set to one minute. To increase the amount of training data, the
windows were segmented with an overlap of 80% which is in line with related lit-
erature [9,19,44]. To neutralize any direction-specific information, the L2-norms
of the accelerometer and gyroscope measurements are used as model input, lead-
ing to two time series per window. Finally, the data was normalized to a [0, 1]
range via quantile transformation.

We consider the machine learning problem of the feature space X ⊂ Rp, with
p = 1200 · 2, a target space Y described below and a performance measure P :
Y × f(X ) → R measuring the prediction quality of a model f : X → Y, trained
on the data set D =

{
(x(1), y(1)), ..., (x(n), y(n))

}
where a tuple

(
x(i), y(i)

)
∈

X ×Y, i = 1, ..., n refers to a single labeled one minute window with a frequency
of 20 Hz.

The disease severity Y is measured on a combined version of the UPDRS
[16] and the mAIMS scale [29]. The UPDRS scale is based on a diagnostic ques-
tionnaire for physicians to rate the severity of the bradykinesia of PwP on a
scale with 0 representing the ON state to 4, the severly bradykinetic state. The
mAIMS scale is analogue to the UPDRS, but in contrast used for the clinical
evaluation of dyskinetic symptoms. Both scales were combined and the UPDRS
scale was flipped to cover the whole disease spectrum. The resulting label scale
takes values in Y = {−4, ..., 4} where y(i) = −4 means a patient is in a severely
bradykinetic state, y(i) = 0 is assigned to a patient in the ON state and y(i) = 4
resembles a severely dyskinetic motor state. The sensor data was labeled by
a medical doctor who shadowed the PwP during one day in a free living set-
ting. Thus, the rater monitored each patient, equipped with an IMU, while they
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performed regular daily activities and the rater clinically evaluated the patients’
motor state at each minute. In total, 9356 windows were extracted from the data
of 28 PwP. By applying the above described preprocessing steps, the amount of
windows was increased to 45944.

3 Challenges

3.1 Class Imbalance

The labeled data set suffers from high label imbalance towards the center of the
scale as shown in Fig. 1. Thus, machine learning models will be biased towards
predicting the majority classes [21].

Fig. 1. Label distribution of the data
which is highly centered around y = 0.

A straightforward way of dealing
with this problem is to reweight the
loss contribution of different training
data samples. This way, the algorithm
incurs heavier loss for errors on sam-
ples from minority classes than for those
of majority classes, putting more focus
on the minority classes during training.
The weights for the classes j ∈ Y =
{−4, ..., 4} are calculated as follows:

cj =
n

nj
; c̃j = |Y| · cj∑

j∈Y cj
(1)

where |Y| describes the amount of
classes, n is the total amount of sam-
ples, nj the amount of samples for class j and thus cj is the inverse relative
frequency of class j in the data. Further, the weights cj , j ∈ Y are normalized
such that the sum of the weights is equal to the amount of classes. The individ-
ual weight of one sample is referred to as ω(i) which is the normalized weight c̃j

associated with the label y(i) of this sample i such that y(i) = j.

3.2 Custom Performance Measure

It is crucial for the practical application of the final model to select an adequate
performance measure which reflects the practical requirements on the model.
Based on discussions with involved medical doctors, we found that larger errors
should be penalized heavier which implies a quadratic error. Additionally, errors
in the wrong direction of the scale, e.g. ŷ(i) = −1, y(i) = 1, should have a
higher negative impact than errors with the same absolute distance in the correct
direction, e.g. ŷ(i) = 3, y(i) = 1. The rationale behind this is that an exaggerated
diagnostic evaluation which follows the true pathological scenario harms the
patient less than an opposing one. Furthermore, the cost of predicting the wrong
pathological direction increases with the severity of the disease: diagnostic errors
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weigh heavier on patients with strong symptoms compared to patients that are
only mildly affected by the disease. In summary, three main requirements on the
custom performance measure were identified: non-linearity, asymmetry and not
being translation invariant.

Inspired by econometric forecasting [8], the following asymmetric perfor-
mance measure, which satisfies the first two previous requirements, is introduced:

Pα(D, f) =
1

|D|
∑

x(i),y(i)∈D

[
α + sign

(
y(i) − f(x(i))

)]2 (
f(x(i)) − y(i)

)2

(2)

where α ∈ [−1, 1] controls the asymmetry such that:

α





∈ [−1, 0[, penalization of underestimation,

= 0, symmetric loss,

∈]0, 1], penalization of overestimation.

(3)

This performance measure is the squared error multiplied by a factor that
depends on the parameter α and on the over- or underestimation of the true label
via the sign function. As motivated in the third requirement, the asymmetry
should depend on the true label values. Therefore, y is connected with α by

introducing α∗ such that α = y(i)

4 α∗ where y(i) ∈ Y = {−4, ..., 4}, hence α∗ ∈
[0, 1]. The constant denominator 4 is used to link α and α∗ in such a way that the
sign of α that governs the direction of the asymmetric penalization is controlled
by the true labels y. This leads to the formalization:

Pα∗(D, f̂) =
1

|D|
∑

x(i),y(i)∈D

[
y(i)

4
α∗ + sign

(
y(i) − f̂(x(i))

)]2 (
f̂(x(i)) − y(i)

)2

(4)
The parameter α∗ = 0.25 was set based on the feedback of the involved

medical experts1. The model will be heavily penalized for the overestimation of
negative labels and for the underestimation of positive labels. For instance, the
performance measure for y(i) = 2 and prediction ŷ(i) = 1 is higher (1.265) than
for ŷ(i) = 3 (0.765). The asymmetry of the measure is reciprocally connected
to the magnitude of the label y in both, the negative as well as the positive
direction, e.g. for y(i) = 1 it is more symmetric than for y(i) = 3. Furthermore,
Pα∗ collapses to a regular quadratic error for y(i) = 0. The behavior of the
measure is further illustrated in Fig. 2.

3.3 Leave-One-Subject-Out Validation

Proposed models are expected to perform well on data from patients not seen
before. Using regular cross validation (CV) strategies, subject-specific informa-
tion could be exploited resulting in an overly optimistic estimate of the general-
ization performance [37]. Consequently, a leave-one-subject-out (LOSO) valida-
tion scheme is often applied in settings where much data are gathered from few

1 Feedback was collected by comparing multiple cost matrices as shown in Fig. 3.
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Fig. 2. Behavior of the performance
measure Pα∗=0.25 on the y-axis for dif-
ferent labels y and the corresponding
predictions ŷ on the x-axis.

Fig. 3. Cost factors resulting from
Pα∗=0.25 that are associated with each
combination of actual and predicted
values.

subjects [2,9,12]. Thereby, a model is trained on all except one subject and then
tested on the left out subject, yielding an unbiased performance estimate. This
is repeated for each individual subject and all resulting estimates are averaged.

The usage of early stopping [17] requires the introduction of a tuning step to
determine the optimal amount of training epochs e∗ in each of the LOSO folds,
which in turn requires a second inner split of the data set. In a setting with
unlimited computational resources, one would run a proper LOSO validation
in the inner folds, determine e∗, train the model on the whole data except the
left out subject and evaluate the trained model on that subject. With a total
amount of 28 patients, this would result in the training of 28 · 27 = 756 models
for the validation of one specific architecture. As a cheaper solution, the first
80% one minute windows per patient are used for training and the last 20% for
early stopping.

3.4 Transfer Learning

One of the most important requirements for the successful training of deep neu-
ral networks with strong generalization performance is the availability of a large
amount of train data. Next to strong regularization and data set augmentation,
one prominent method to fight overfitting and improve the model’s generaliza-
tion performance is transfer learning [43]. A model architecture is first trained
on source task DA. The learned knowledge, manifested in the model’s weights,
is used to initialize a model that should be trained on the target task DB . The
model is then fine-tuned on DB which often leads to faster model convergence
and, dependent on the similarity of the tasks, to an improvement in model per-
formance. Though TSC is still an emerging topic in the deep learning community,
first investigations into the adoption of transfer learning to time series data have
been made [11].
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As a source task for the motor state detection, we train the model to clas-
sify between one-minute windows that were either gathered from PwP or from
healthy patients. Therefore, we use a weakly labeled data set that contains 70175
one-minute windows of sensor data along with the binary target if the corre-
sponding patient suffers from Parkinson’s disease or not. Among those patients,
50% were healthy and 50% suffered from PD. The proposed deep learning mod-
els were trained on this task and their weights were used for initialization of the
models which were then fine-tuned on the actual data as described in Sect. 5.

4 Problem Setting and Models

4.1 Problem Setting

As explained in Sect. 2, the target was measured on a discrete scale y ∈ Y =
{−4, ..., 4} where y = −4 represents severe bradykinesia, y = 0 the ON state
and y = 4 severe dyskinesia. This gives rise to the question whether the problem
should be modeled as a classification, an ordinal regression or a regression task.
The majority of previous research in this domain treats the problem as binary
sub-problems with the goal to just detect whether the PwP experience symp-
toms, regardless of their severity. The granular labeling scheme used here follows
an ordinal structure. For instance, a patient with y = −4 suffers from more severe
bradykinesia than one with y = −3. In contrast, simple multi-class classification
treats all class labels as if they were unordered. A simple way of including this
ordinal information is to treat the labels as if they were on a metric scale and
apply standard regression methods. However, this implies a linear relationship
between the levels of the labels. For example, a change in the motor state from
y = −4 to y = −3, δ−4,−3, could have a different meaning than δ−2,−1, though
they would be equivalent on a metric scale. The formally correct framing of such
problems is ordinal regression which takes into account the ordered structure of
the target but does not make the strong linearity assumption [18]. This model
class is methodologically located at the intersection of classification and metric
regression. All three problem settings are compared in Sect. 5.

4.2 Models

Random Forest. A Random Forest [3] was trained on manually extracted
features from the raw sensor data, similar to related literature [9,20,24,38]. From
each sample window of both signal norms, a total of 34 features such as mean,
variance and energy were extracted (a complete list can be found in the digital
Appendix). This is a standard procedure in TSC [4,6]. The Random Forest was
specifically chosen as a machine learning baseline due to its low dependency on
hyperparameter settings and its strong performance in general.
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FCN. The Fully Convolutional Net (FCN) was introduced as a strong baseline
deep learning architecture for TSC [42]. The implementation resembles that of
Wang et al. except that the final layer consists of |Y| = 9 or 1 neuron(s) for
classification and regression, respectively.

FCN Inception. Inception modules led to substantial performance increases
in computer vision and are motivated by the observation that the kernel size of
the convolutional layers are often chosen rather arbitrarily by the deep learning
practitioner [39]. The rationale is to give the model the opportunity to choose
from different kernel sizes for each convolutional block and distribute the amount
of propagated information amongst the different kernels. One inception module
consists of branches with with kernel sizes 1, 5, 7 and 13 respectively and a depth
of 64 each, plus one additional max-pooling branch with a kernel size of 3,
followed by a convolution block with depth 64 and a kernel size 1. The final
FCN Inception architecture essentially follows the original FCN with simple
convolutional layers being replaced by 1D inception modules.

FCN ResNet. Similar to the inception modules, the introduction of residual
learning has met with great enthusiasm in the deep learning community [22]. The
main advantage of such Residual Networks (ResNet) over regular CNNs is the
usage of skip-connections between subsequent layers. These allow the information
to flow around layers and skip them in case they do not contribute to the model
performance, which makes it possible to train much deeper networks. Unlike
inception modules, this model class was already adapted for TSC and proven to
be a strong competitor for the original FCN [42]. The FCN ResNet was shown
to outperform the standard FCN especially in multivariate TSC problems [10].
Others argue that the ResNet is prone to overfitting and thus found it to perform
worse than the FCN [42]. For the comparison in Sect. 5, three residual modules
are stacked where each of the modules is identical to the standard FCN in order
to provide comparability among architectures. The module depths were chosen
as proposed by Wang et al. [42].

FCN Broad. Pathologically, the disease severity changes rather slowly over
time. Thus, it can be hypothesized that additional input information and a
broader view on the data could be beneficial for the model. This model is referred
to as FCN Broad and includes the following extension: the raw input data from
the previous sample window xt−1 and the following sample window xt+1 are
padded to the initial sample window xt, which results in a channel depth of 6
for the input layer.

FCN Multioutput. A broad variety of techniques for ordered regression exist
[5,13,23,33]. As a neural network based approach for ordered regression is
required, a simple architecture is to create a single CNN, which is trained jointly
on a variety of binary ranking-based sub-tasks [33]. A key element to allow the
network to exploit the ordinal structure in the data is a rank-based transforma-
tion of labels. The categorical labels y ∈ Y are transformed into K = |Y| − 1
rank-based labels by:
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y
(i)
k =

{
1, if y(i) > rk

0, otherwise,
(5)

where rk is the rank for the k-th sub-problem for k ∈ {1, ...,K}. Following this
label transformation, a multi-output CNN architecture is proposed where each of
the K outputs refers to one binary ranking-based sub-task. These are optimized
jointly on a single CNN corpus. Thus, the sub-task k is trained on a binary
classification problem minimizing the binary cross entropy loss. The total model
output consists of K probability outputs for each input sample. In order to train
the CNN jointly on those sub-tasks, the individual losses are combined to one
cumulative loss:

Lranks(y(i), f(x(i))) =

K∑

k=1

Lb
k(y

(i)
k , ŷ

(i)
k ) (6)

where Lb
k is the binary cross-entropy loss for sub-task output ŷ

(i)
k . For inference,

the K outputs are summed up such that ŷ(i) =
∑K

k=1 ŷ
(i)
k − 4, where the scalar

4 is subtracted from the sum over all probability outputs to map the predictions
back to the initial label scale, yielding a continuous output.

FCN Ordinal. A second ordinal regression model was created by training a
regular FCN with an additional distance-based weighting factor in the multi-
class cross entropy loss Lm:

Lordinal(y(i), f(x(i))) =
∣∣∣y(i) − ŷ(i)

∣∣∣ · Lm(y(i), ŷ(i)) (7)

This way, the model is forced to learn the inherent ordinal structure of the
data as it is penalized higher for predictions that are very distant to the true
labels.

5 Results

The models described in Sect. 4 were implemented in pytorch [34]. Model weights
were initialized by Xavier-uniform initialization [15] and ADAM [28] (learning
rate = 0.00005, β1 = 0.9, β2 = 0.99) was used for training with a weight decay
of 10−6. The performances of the models were compared in a LOSO evaluation
as discussed in Sect. 3.3, using the performance measure Pα∗=0.25 as introduced
in Sect. 3.2. Finally, the sequence of motor state predictions is smoothed via a
Gaussian filter whose µ and σ parameters were optimized using the same LOSO
scheme that was used for model training. The results are summarized in Table 2.
An additional majority voting model which constantly predicts ŷ = 0 is added
as a naive baseline.

The FCN was applied in all three problem settings. From Table 2, one can
observe that regression performs better than ordered regression and classifica-
tion. Similar results were obtained for the Random Forest baseline, where regres-
sion is superior to classification. It seems that the simple assumption of linearity
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Table 2. Results for different models in multiple problem settings, measured using the
performance measure introduced in Sect. 3.2 evaluated by LOSO validation. Additional
commonly used performance measures are shown for completeness where the MAE is
reported in a class-weighted (MAE w.) and a regular version and Acc. ±1 refers to
accuracy relaxed by one class level.

Frame Model Pα∗ = 0.25 F1 Acc. Acc. ±1 MAE w. MAE

Baseline Majority vote 2.900 0.293 0.702 0.463 0.661 0.960

Classification FCN 0.800 0.366 0.809 0.340 0.312 0.890

Random Forest 1.542 0.394 0.802 0.459 0.465 0.802

Ordinal FCN 0.752 0.321 0.767 0.302 0.311 0.985

Multioutput FCN 0.922 0.361 0.820 0.352 0.344 0.873

Regression FCN 0.635 0.346 0.843 0.338 0.293 0.836

FCN Inception 0.726 0.380 0.841 0.370 0.304 0.842

FCN ResNet 0.841 0.334 0.809 0.309 0.336 0.924

FCN Broad 0.673 0.347 0.835 0.339 0.294 0.852

Random Forest 1.310 0.411 0.848 0.436 0.423 0.760

between labels does not have a derogatory effect and a simpler model architec-
ture as well as training process is of larger importance.

The comparison of the deep learning models with the Random Forest offers
another interesting finding. For both, regression and classification, all deep learn-
ing models outperform the classic machine learning models. This finding justifies
the focus on deep learning approaches and is in line with previous research dis-
cussed in the Introduction.

Niu et al. [33] claim that the Multioutput CNN architecture outperforms
regular regression models in ordinal regression tasks. This can not be supported
by the current results as the Multioutput FCN shows weaker performance than
each of the deep learning architectures in the regression frame.

Looking at the results from the regression setting, one can observe that the
simple FCN manages to outperform all more complex architectures as well as the
Random Forest baseline. This could be explained by the increased complexity
of these models: the FCN consists of 283, 145 weights, while the FCN Incep-
tion contains 514, 809 and the FCN ResNet 512, 385 weights. This problem is
aggravated by the limited amount of training data.

As shown in Table 3, the transfer learning approach consistently improved
the performance of all tested FCN architectures. This strategy also helped to
further push the best achieved performance by the regression FCN, making it
the overall best performing model. Transfer learning has the biggest effect on the
performance of the Multioutput FCN, which indicates that this model requires
a higher amount of training data. This is reasonable as it is arguably the most
complex model considered. Further increasing the amount of training data might
improve these complex models even more.
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Table 3. Performance of the transfer learning approaches compared to their non-
pretrained counterparts. Transfer learning consistently improves model performances.
Additional commonly used measures are shown for the pretrained models only where
the MAE is reported in a class-weighted (MAE w.) and a regular version and ±1 Acc.
refers to accuracy relaxed by one class level.

Frame Model Pα∗=0.25 Gain F1 Acc. Acc. ±1 MAE w. MAE

Regular Transfer

Classification FCN 0.800 0.771 0.029 0.375 0.361 0.813 0.318 0.897

Ordinal FCN 0.752 0.616 0.136 0.350 0.326 0.802 0.295 0.921

Multioutput FCN 0.922 0.657 0.265 0.367 0.360 0.829 0.301 0.857

Regression FCN 0.635 0.600 0.035 0.407 0.388 0.870 0.273 0.772

Some resulting predictions2 from the best performing model are illustrated
in Fig. 5 and a confusion matrix of the model predictions is shown in Fig. 4. It
is noteworthy that despite the class weighting scheme and the transfer learning
efforts, the final model fails in correctly predicting the most extreme class labels.

Fig. 4. Row-normalized confusion matrix for predictions from the pretrained regression
FCN. Predicted continuous scores were rounded to integers. Allowing for deviations of
±1 (framed diagonal region) yields a relaxed accuracy of 86.96%.

2 Results on all patients can be found here: https://doi.org/10.6084/m9.figshare.
8313149.v1.
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Fig. 5. Comparison of true (blue) and predicted (orange) motor state sequences of four
exemplary patients. The label scores are depicted on the y-axis and the minutes on the
x-axis. The final model is able to capture the intra-day motor state regime changes of
the PwP as shown on the top right plot. Still, the model fails to correctly detect the
motor states in some patients e.g. the bottom right one. (Color figure online)

6 Conclusion

Different machine learning and deep learning approaches were evaluated on the
task to detect motor states of PwP based on wearable sensor data. While the
majority of related literature handles the problem as a classification task, the
high quality and resolution of the provided data allows evaluation in different
problem settings. Framing the problem as a regression task was shown to result
in better performance than ordered regression and classification. Evaluation was
done using a leave-one-patient-out validation strategy on 28 PwP using a cus-
tomized performance measure, developed in cooperation with medical experts in
the PD domain. The deep learning approaches outperformed the classic machine
learning approach. Furthermore, the comparatively simple FCN offered the most
promising results. A possible explanation would be that these intricate models
call for more available data for successful training. Since high quality labeled
data are scarce and costly in the medical domain, this is not easily achievable.
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First investigations into transfer learning approaches were successfully employed
and showed model improvements for the deep learning approaches.

There exists a plethora of future work to investigate. Computational limita-
tions made it impossible to evaluate all possible models in all problem settings
as well as investigate recurrent neural network approaches. The successful usage
of a weakly labeled data set for transfer learning suggests further research on
the application of semi-supervised learning strategies. This work clearly shows
the difficulty in fairly and accurately comparing existing approaches, as available
data, problem setting and evaluation criteria differ widely between publications.
The introduced performance measure could be a step into the right direction and
can hopefully become a reasonable standard for the comparison of such mod-
els. In future work, one could directly use this performance measure as a loss
function to train deep neural networks instead of using it for evaluation only.
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Abstract: We explore the task of tissue classification for
colon cancer histology in a low label regime comparing a
semi-supervised and a supervised learning strategy in a se-
ries of experiments. Further, we investigate the model robust-
ness w.r.t. distribution shifts in the unlabeled data and domain
shifts across different scanners to prove their practicality in a
histology context. By utilizing unlabeled data in addition to
nl = 1000 labeled tiles per class, we yield a substantial in-
crease in accuracy from 89.9% to 91.4%.

Keywords: Computational Pathology, Semi-Supervised
Learning, Colon Cancer, Model Robustness

1 Introduction

Deep learning based approaches have been successfully ap-
plied in computational histology. In this context, supervised
training is the most common learning paradigm [1]. While
large amounts of data are often available and easy to gather,
the lack of experienced experts for data annotation is often a
bottleneck for successful model training in this context. There-
fore, learning approaches that enable robust model training
even with a small amount of annotated data are desirable.
Semi-supervised learning has shown promising results in other
image-based domains to improve predictive algorithms with
few labeled data incorporating large amounts of unlabeled data
[2]. In this work, we investigate the applicability of this learn-
ing paradigm in histopathological tissue cartography in a re-
alistic setting. To this end, we compare supervised and semi-
supervised models trained in the low-data regime with colon
tissue images. In addition, we explore the robustness of these
models with respect to distribution shifts in the unlabeled data
and to scanner domain shifts, i.e. the generalization perfor-
mance across different scanners.
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2 Related Work

The goal of semi-supervised learning (SSL) is to increase the
performance of prediction algorithms in settings where only a
few samples can be annotated by utilizing vast amounts of un-
labeled data. Data annotation is especially tedious and expen-
sive in medical imaging, rendering semi-supervised learning
an interesting modeling approach in this setting. Methods such
as entropy minimization, pseudo-labeling or consistency reg-
ularization are commonly referred to in the literature. Modern
SSL approaches, such as MixMatch [3] or FixMatch [4], make
use of a combination of these methods. In the field of compu-
tational pathology, SSL approaches have recently gained at-
tention. For example, Jaiswal et. al [5] use an iterative pro-
cess to pseudo-label data and retrain models using additional
unlabeled data reporting significant performance gains in the
classification of lymph node sections. Other approaches make
use of Mean-Teacher [6] or Student-Teacher [7] approaches
to detect colorectal cancer. Some works explicitly investigated
the use of FixMatch in histopathology. For instance, Pulido
et al. [8] compare the performance of MixMatch and Fix-
Match trained on histology data with three classes (Squamous,
Barrett’s, Dysplasia). They further investigate the influence of
strong noise and class imbalance and found MixMatch to be
superior. Unfortunately, they do not provide the baseline per-
formance of a purely supervised model, making model com-
parison hard. Schmidt et al. [9] combine multiple instance
learning (MIL) with FixMatch [4] in order to mitigate the lack
of labeled data and propose an efficient labeling strategy. Both
works showed that strong performing models could be trained
with only a few labels.

3 Materials and Methods

We use multiple subsets of colon cancer histopathology data to
train a realistic supervised baseline model and compare its per-
formance with a FixMatch-based semi-supervised approach,
which leverages a larger unlabeled dataset.
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3.1 Data

The used database consists of 152 annotated hematoxylin
and eosin (H&E) stained colon tissue sections acquired with
a 3DHISTECH MIDI scanner and approved by an experi-
enced pathologist. The dataset contains seven tissue classes,
namely tumor, necrosis, inflammation, connective tissue com-
bined with adipose tissue, muscle tissue, mucosa, and mu-
cus. The data was tiled into patches of 224 x 224 pixels, and
background images were detected and removed. We uniformly
sampled a fixed set of 100k patches, or the maximum number
of patches per class, from 92 whole slide images (WSIs) to
construct the training dataset Dtrain. From this set, we then
randomly sampled labeled subsets Dtrain

l of 100, 500, 1k,
and 10k patches per class, with each larger set containing the
patches from the smaller sets. This procedure was repeated
three times to account for sampling-dependent variances of
the small sets during different training runs. The set Dtrain

is treated as unlabeled dataset Dtrain
u and used within semi-

supervised model training, ignoring the labels in this dataset.
For experimentation, we explore two data settings. The first
uses the four classes tumor, connective tissue, muscle, and mu-
cosa only, where at least 100k samples are available, resulting
in a balanced Dtrain of 400k training patches, which we refer
to as the balanced "controlled setting". This is a rather unre-
alistic setting as it assumes an equally balanced class distribu-
tion. Naturally, the classes occur imbalanced in this domain.
For the labeled sets, we argue that it is realistic to annotate
up to 10k tiles per class with considerable effort, and hence
assume it is possible to balance small sets of Dtrain

l . In the
second setting, we add the three underrepresented classes in-
flammation, necrosis and mucus. Since these classes occur less
frequently in our data, the resulting unlabeled set Dtrain

u with
a total of 510k patches is imbalanced. Hence, we face a class
distribution shift between Dtrain

l and Dtrain
u in this scenario,

which we refer to as the "realistic setting". For the validation
set Dval, we sampled 10k patches per class from 30 WSIs. Our
test set Dtest consists of approximately 1.4 million patches
from 30 additional WSIs. This set is highly imbalanced since
entire WSIs were used. The class distributions of Dtrain

u and
Dtest are shown in Table 1.

3.2 Method

We use an EfficientNetB0 [10] as backbone architecture due
to its good trade-off between model performance and required
inference runtime as demonstrated by [11]. We initialized it
with weights trained on ImageNet and employ simple flips of
the patches as an augmentation strategy. Similar to Pulido et al.
[8] and Schmidt et al. [9] we use FixMatch as semi-supervised

Tab. 1: Support in Dtrain and Dtest and averaged F1 scores
per class for the supervised (Sup) and semi-supervised (SSL)
approach with 1000 labeled samples per class.

Sup SSL ΔSSL - Sup |Dtrain
u | |Dtest|

Tumor 0.9072 0.9302 0.0230 100,000 287,750
Conn. 0.8954 0.8998 0.0044 100,000 440,142
Muscle 0.8841 0.8959 0.0118 100,000 381,209
Mucosa 0.8863 0.9181 0.0319 100,000 217,236
Infl. 0.5042 0.5428 0.0386 38,115 9,427
Mucus 0.7777 0.7366 -0.0412 38,218 16,441
Necrosis 0.7698 0.7097 -0.0602 30,376 29,111

Macro avg. 0.8035 0.8047 0.0012

learning approach. In contrast to Pulido et al. [8], which show
MixMatch to outperform FixMatch in their application, the
initial tests with our database were in favor of FixMatch. Fix-
Match is an SSL approach based on consistency regulariza-
tion via strong data augmentation and pseudo-labeling. There-
fore, a batch of images from an unlabeled data pool Dtrain

u is
transformed into a weakly augmented batch and into a strongly
augmented batch. In our specific approach, we use flips as soft
augmentation and a cascade of flips, hue, saturation, Gaussian
blur, a H&E stain augmentation [14], occlusion and Gaussian
noise as strong augmentation. During training, a supervised
batch and the two augmented unlabeled batches are fed into
the model. If the softmax scores of the weakly augmented
data lie above a certain threshold τ , the samples are consid-
ered to be a pseudo-label. The error between the prediction of
a strongly augmented counterpart and the pseudo-label is then
used as a regularization term. The influence of this unsuper-
vised loss is weighted by a factor λ. Following [4], we use
weight exponential moving averaging (EMA) with α = 0.999

and α = 0.995 for the supervised and SSL model, respectively.
Models were trained via stochastic gradient descent (SGD)
with momentum and weight decay. Further, we use the one
cycle learning rate scheme [12] with a cosine functional term
and a maximal learning rate after 10% of the cycle. For com-
parability, we fix the optimization steps to 8000 for both mod-
eling paradigms and increase the batch size for larger Dtrain

l

while ensuring that the unsupervised batch size is five times
larger than the supervised one in FixMatch. Hyperparameters
were optimized via a grid search over learning rates lr = {0.01,
0.001, 0.0001}, λ = {1, 2, 5} and τ = {0.85, 0.9, 0.95} for mod-
els trained on data with 1k samples per class. We use minority
oversampling in the labeled batches while unlabeled data is
shuffled randomly. The models were implemented using Ten-
sorflow 2.6 and trained on either an Nvidia P100 or an Nvidia
RTX 3080 GPU with the Tensorflow mixed-precision 16-bit
float option.
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4 Experiments and Results

We split our experiments into the balanced controlled setting
and a seven class problem with a distribution shift in the un-
supervised dataset Du as explained above. Accuracy is used
as the main performance criterion, while we also report the F1

score for the second experiment to account for the class imbal-
ances. Metrics are averaged over three different folds.

4.1 Controlled Setting

With the supervised model trained on all 400k samples, we
reach an upper bound of 93.6% accuracy. As shown in Fig-
ure 1, the FixMatch approach consistently outperforms the
supervised baseline over different amounts of labels by a
small margin. The biggest gain is yielded with 1k samples per
class, where the hyperparameters have been optimized on. At
10k samples per class, both methods closely reach the upper
bound. Furthermore, variance over folds decreases in the lower
data regime, which is opposite to the supervised baseline.

Fig. 1: Model comparison in the controlled setting. The upper
bound reflects a supervised model trained on the whole Dtrain.
Visible is a small improvement provided by the semi-supervised
model. The black square indicates that the FixMatch models
needed 16k optimization steps to converge.

4.2 Realistic Setting: Distribution Shift

The introduction of the three minor classes leads to a distribu-
tion shift between Dtrain

l and Dtrain
u as these minor classes

are underrepresented in Dtrain
u . As shown in Figure 2, the be-

havior is similar to the balanced case with a small increase in
accuracy of FixMatch over the supervised baseline. Inspect-
ing the class-specific scores for nl = 1000 in Table 1, we find
this is mainly driven by a performance boost in the majority

classes in the semi-supervised case. We hypothesize that this
is due to the fact that the semi-supervised model is able to
use a large number of unlabelled samples referring to the four
majority classes to learn sharper decision boundaries around
these classes at the cost of performance loss in the minor-
ity classes that are substantially less present in Dtrain

u . The
intra-fold variance increases towards nl = {100, 10000} indi-
cating a stronger dependence on the hyperparameters, which
were tuned on the nl = 1000 dataset.

Fig. 2: Comparison of test accuracy for the seven class problem
with a distribution shift in Dtrain

u . We observe an improvement
provided by the semi-supervised model and the black square
indicates that the FixMatch models trained on more data required
more optimizer steps to converge.

4.3 Realistic Setting: Domain Shift

One important property of classification algorithms is their
ability to generalize to unseen domains. In computational
pathology, a key challenge is to overcome domain shifts intro-
duced by unstandardized staining protocols and the use of dif-
ferent scanners. Since consistency-regularization-based SSL
algorithms are known to improve model robustness, we inves-
tigate their generalization performance on data from a multi-
scanner database. Therefore, we evaluate the models trained
on nl = 1000 samples per class on data obtained from five ad-
ditional scanners. In addition, we add an augmentation strat-
egy to the supervised batch of the two approaches in order to
increase domain generalization across multiple scanners [13].
It consists of hue, saturation, Gaussian blur and HE [14] and
we refer to these results as "aug" in Figure 3. The consistency
regularization within FixMatch is partly based on the same
augmentation functions and we refer to [13] for a detailed de-
scription. From Figure 3, we observe that the standard super-
vised baseline has a minimal generalization capability. In con-
trast to that, semi-supervised model training greatly improves
the model robustness but also struggles with the different scan-
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ner data and has a high variance between different runs and
folds. This performance loss over the alternative scanners van-
ishes for both model paradigms when using the tailored data
augmentation strategy. Still, we find the semi-supervised mod-
eling approach to yield a small but substantial performance
gain over the supervised model across scanners using this ad-
vanced data augmentation scheme.

Fig. 3: Performance of the (semi-)supervised models on test data
collected from different scanners, introducing a domain shift. Mod-
els are trained on data from the MIDI scanner using a simple and
a more robust data augmentation strategy ("aug").

5 Discussion and Conclusion

Overall, we are able to yield strong model performance with
relatively few annotated samples across both semi- and su-
pervised model training. For instance, the SSL (supervised)
model trained on nl = 1000 samples per class yields a test
accuracy of 91.37% (89.89%) closing in on the fully super-
vised baseline trained on a total of 400k labeled patches which
yields a test accuracy of 93.76%. Still, one should keep in
mind that these relatively few annotated tiles were sampled
from 92 different slides, covering a relatively broad part of the
overall data distribution. Comparing both learning paradigms,
for this application we are able to yield a considerable per-
formance gain using semi-supervision, though this is smaller
than suggested by results from other domains [4]. In terms
of model robustness w.r.t distribution shifts in the unlabeled
data, we find the semi-supervised model to be prone to over-
fit on the unlabeled data distribution. This stresses the need
to develop semi-supervised learning models that are able to
cope with such more realistic scenarios. Further, we confirm
that semi-supervision can lead to increased model robustness
w.r.t. to domain shifts across different scanners in our specific
application. Though it is important to mention that similar
robustness can be achieved using a well-tailored data augmen-

tation strategy. In conclusion, we were able to successfully
employ SSL algorithms in the field of histopathology. Per-
formance improvements provided by the unlabeled data were
limited and simple supervised models with tailored augmen-
tations were competitive in terms of performance and domain
robustness. Further research is needed to leverage unlabeled
data more effectively in the described setting.
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