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Introduction

DNA Replication

Initiation sites of DNA replication and their recognition
Chromosomes are duplicated once in each round of the cell cycle. The first es-

sential molecular event of DNA replication is the binding of a protein (initiator) to a
specific site in the genome (replicator) to mark and initiate replication (Jacob et al.,
1963). In bacteria, archaea and some budding yeasts, the replicator corresponds to dA-
dT-rich sequences that vary among different species (Leonard & Méchali, 2013), while
in Saccharomyces cerevisiae (S. cerevisiae) a conserved motif is present (Broach et al.,
1983). In bacteria, the initiator DnaA binds to AT-rich boxes clustered at the replicator
oriC (Mackiewicz et al., 2004). In archaea, the initiator is the monomeric Orc1/Cdc6
(Origin Recognition Complex 1 / Cell Division Cycle 6), which binds to ORB (Origin
Recognition Boxes) or mini-ORB sequences (Robinson et al., 2004). In S. cerevisiae, the
hexameric ORC (Origin Recognition Complex) acts as the initiator, binds to the ACS
(ARS Consensus Sequence) (Bell & Stillman, 1992) and then recruits Cdc6 as a separate
complex (S. Donovan et al., 1997). The sequences found at origins in different Schizosac-
charomyces species are more variable and encompass poly(A) tracks, AT-rich sequences
and poly(G) motifs (J. Xu et al., 2012).

In metazoans, there is no sequence specificity and much less is known about the
recruitment of ORC to origins, but it seems to rely more on DNA shape and the chro-
matin environment (Vashee et al., 2003; Remus et al., 2004). In mouse and humans,
initiation sites and initiation regions have been defined instead of origins of replication.
There, replication initiation seems to be influenced by an open chromatin environment,
enrichment of OGRE (Origin G-rich Repeat Element) that can form G quadruplexes as
well as specific acetylation and methylation histone marks (Cayrou et al., 2015; Ganier
et al., 2019). Recently, cis-acting elements called ERCE (Early Replication Control El-
ements)s that are enriched for large stretches of histone H3K27ac (histone H3 lysine 27
mono-acetylated) and TF (Transcription Factor) binding sites like the Oct4 (Octamer-
binding transcription factor 4), Nanog and Sox2 (SRY (sex determining region Y)-box 2),
have been shown to promote earlier replication in mouse embryonic stem cells (Sima et
al., 2019).

While a single origin is enough to replicate a prokaryotic genome (Cairns, 1963),
larger eukaryotic genomes require multiple origins of replication (Taylor, 1968; Huber-
man & Riggs, 1968). The budding yeast S. cerevisiae uses approximately 400 origins of
replication (Nieduszynski et al., 2006; Eaton et al., 2010; Liachko et al., 2013; Siow et al.,
2012). In human cells, due to the size of their genome, approximately 30,000 origins have
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ORC

ACS B1 B2 B3
ARS

Regular nucleosome arrays Nucleosome Free Region (NFR) Regular nucleosome arrays

Figure 1: Scheme of an origin of replication in S. cerevisiae.

been predicted to be used (Akerman et al., 2020).

S. cerevisiae origins
In contrast to other species, origins of S. cerevisiae are well defined by a consen-

sus sequence. The ARS (Autonomous Replicating Sequence)s (Fig. 1) are the replicators
of S. cerevisiae and were first discovered as sequences that conferred plasmids the ability
to replicate autonomously and showed high frequency transformation (Stinchcomb et al.,
1979). ARSs are circa 200 bp long and contain an 11 bp AT-rich motif, the ACS (Broach
et al., 1983), and a B1 element as the core elements (Rowley et al., 1995). Some origins
contain also a B2 element that can stabilize the binding of the pre-RC (Pre-Replication
Complex) proteins (ORC, Cdc6, and Cdt1 (Cdc10 Dependent Transcription 1)-Mcm2-7
(MiniChromosome Maintenance 2-7)) (Wilmes & Bell, 2002) and/or a B3 element that
may serve as binding site for the Abf1 (ARS-Binding Factor 1) (Diffley & Stillman, 1988).
This TF contributes to positioning nucleosomes next to the ARS1 origin (Lipford & Bell,
2001). ORC binds to the origin DNA at the ACS site as well as the B1 element, which
was suggested to stabilize its binding (Rao & Stillman, 1995; Rowley et al., 1995; Li et al.,
2018). Mutations in these conserved sequences can disrupt or eliminate origin function
(Van Houten & Newlon, 1990; Marahrens & Stillman, 1992; Theis & Newlon, 1994).

It has been estimated that the number of potential ACS sites within the yeast
genome is 6000-40,000 (Eaton et al., 2010), but only a subset of those (∼ 400) function
as real origins of replication (Nieduszynski et al., 2006; Eaton et al., 2010; Liachko et al.,
2013; W. Xu et al., 2006; Siow et al., 2012). This indicates that the ACS is not enough to
define where replication initiates and suggests that there are other components involved
(Berbenetz et al., 2010).

S. cerevisiae origins are also classified as early- or late-firing, depending on when
they are activated during the S phase (Fangman & Brewer, 1992). However, it is not
clear whether there is an evolutionary advantage to replicate some genomic regions earlier,
and/or if this is just a consequence of the nature of the sequences surrounding the origins.
Related to that, it was suggested that rate-limiting firing factors could be involved in
determining which origins fire first and that this might be due to differences in binding
affinities among origins (Bell & Labib, 2016). What is clear, however, is that a malfunction
of this replication program can lead to under-replicated DNA or stalled replication forks,
resulting in DNA damage and replication stress, which are features observed in many
cancer cells (Gaillard et al., 2015).
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91411Orc1 BAH IDR WHDAAA+

Walke
r A
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ch 4

Walke
r B

6201Orc2 IDR AAA+ like WHD

6161Orc3 AAA+ like WHD

5291Orc4 AAA+AAA+ WHD

4791Orc5 AAA+ WHD

4351Orc6 IDR CTDTFIIB-BTFIIB-A

Figure 2: ORC subunits with annotated domains. The numbers indicate the amount
of amino acid residues in each subunit. BAH (Bromo-Adjacent Homology), IDR (In-
trinsically Disordered Region), AAA+ (ATPases Associated with diverse cellular Activi-
ties)-ATPase domain, WHD (Winged-Helix Domain), TFIIB-A (Transcription Factor IIB
domain A), TFIIB-B (Transcription Factor IIB domain B), CTD (Carboxy-Terminal Do-
main).

The Origin Recognition Complex

The canonical role of ORC is to function as the initiator of DNA replication
in eukaryotes, specifically, as the loading factor of the replicative helicase, the MCM
(MiniChromosome Maintenance complex). Moreover, ORC is also involved in the silenc-
ing of mating type genes and heterochromatin maintenance in yeast (Foss et al., 1993;
Bell et al., 1993) but this thesis will focus on ORC’s role in replication.

ORC (Fig. 2) is a hexamer composed of the subunits Orc1-6, from which all but
Orc6 contain an AAA+ (ATPases Associated with diverse cellular Activities)-ATPase do-
main (Li et al., 2018; Schmidt & Bleichert, 2020; Jaremko et al., 2020). This is a conserved
feature of initiators across species that is also present in other replication-associated pro-
teins like the loading factor Cdc6 and all subunits from the MCM complex (Mcm2-7).
Interestingly, Yta7 (Tat-binding homolog 7), the chromatin segregase, which stimulates
chromatin replication (see above) belongs to the family of AAA+-ATPase-containing pro-
teins. Proteins bearing AAA+-ATPases tend to oligomerize into a ring-shaped confor-
mation and require ATP binding and hydrolysis to exert their functions by sustaining
conformational changes (Giraldo, 2003). A typical AAA+-ATPase domain contains four
conserved elements: a Walker A motif that is essential for binding the ATP molecule; a
Walker B motif essential for ATP hydrolysis; as well as sensor-I and sensor-II elements
required for ATP hydrolysis (Duderstadt & Berger, 2008).

The metazoan ORC subunits Orc1, Orc4 and Orc5 are capable of binding ATP
while in yeast, Orc4 does not (Bleichert et al., 2015; Tocilj et al., 2017). Only ATP bind-
ing by ORC and not ATP hydrolysis, is essential for specific binding to the ACS and
loading of the the MCM complex as a head-to-head double hexamer (Bell & Stillman,
1992; Klemm & Bell, 2001; Coster et al., 2014). ORC binding to DNA relies mainly on
Orc1’s basic patch, which is conserved among eukaryotes, but in yeast it also relies on
interactions between Orc2 and Orc4 with the ACS sequence (Kawakami et al., 2015; Li
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et al., 2018; Schmidt & Bleichert, 2020; Costa & Diffley, 2022). This basic patch in yeast
is located close to the IDR, which is between the BAH domain and the AAA+-ATPase
domain (Li et al., 2018). Drosophila and human Orc1 also contain an IDR region but
unlike yeast, they phase separate to generate condensates in the presence of DNA which
may help clustering loading factors (Parker et al., 2019). IDRs have been described as
flexible regions important for protein-protein interactions and in human cells, Orc1 and
Cdc6 interact via their IDRs (Feng et al., 2021).

ATP hydrolysis by ORC takes place in a single catalytic bipartite site via the
interaction of Orc1’s ATP binding site with Orc4’s arginine finger (Bowers et al., 2004).
Only upon ATP binding, Orc1’s AAA+-ATPase module gets closer to Orc4, and then
after ATP hydrolysis, both subunits get further apart again – a process called ATPase
autoinhibition. This has been observed only in metazoans (Jaremko et al., 2020; Schmidt
& Bleichert, 2020). Orc1’s Walker A/B motifs and Orc4’s arginine finger motif impair
ORC’s function and/or are lethal (Klemm et al., 1997; Bowers et al., 2004). The DELD
motif present in Orc1’s Walker B motif is conserved in yeast and humans (Jaremko et al.,
2020) and mutations in the motif also disrupt ATP hydrolysis in human ORC (Tocilj et
al., 2017).

The structure of ORC resembles a crescent shape composed of Orc1-5 with Orc6
bound distal to the central channel, with ATP bound at the center of this cavity as ob-
served in the structures of yeast, fruit fly and human ORC (Li et al., 2018; Schmidt &
Bleichert, 2020; Jaremko et al., 2020). Interestingly, the active or open conformation of
human ORC bound to origin DNA is similar to the yeast ORC conformation when part of
the OCCM (ORC-Cdc6-Cdt1-MCM) complex, a loading intermediate (Sun et al., 2013;
Li et al., 2018; Jaremko et al., 2020).

ORC exists as a stable hexameric complex in yeast that remains bound to origins
throughout the cell cycle (Aparicio et al., 1997; Diffley et al., 1994; T. Tanaka et al.,
1997). However, in mammalians, only ORC2-5 remains bound to DNA, whereas ORC1
binds during the G1 phase and is ubiquitylated for degradation during the S phase (Mén-
dez et al., 2002; Ohta et al., 2003; Tocilj et al., 2017). Also, ORC6 is not essential in
human cells for ORC1-5 assembly (Vashee et al., 2001; Siddiqui & Stillman, 2007). ORC
is of clinical interest, as mutations in ORC1, ORC4 and ORC6 genes have been linked
to the Meier-Gorlin syndrome, a form of primordial dwarfism (Bicknell, Bongers, et al.,
2011). ORC1 mutations cause the most extreme growth defects, both in humans and
zebrafish, which, respectively, includes microcephalic dwarfism and a size decrease in all
tissues. These malfunctions have been linked to problems in origin licensing and S-phase
progression (Bicknell, Walker, et al., 2011; Bicknell, Bongers, et al., 2011).

Starting the process - the replication machinery
In eukaryotes, DNA replication is a two-step process. In the first step, origin

licensing (Blow & Laskey, 1988), the MCM complex is loaded as a head-to-head double
hexamer by ORC, Cdc6 and Cdt1 (Remus et al., 2009; Evrin et al., 2009), forming the
loading intermediate OCCM complex (Sun et al., 2013). This happens during the G1
phase of the cell cycle and the MCM complexes are inactive at this stage. Then, in a sec-
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ond step during S phase, the inactive MCM complexes are converted into active helicases
to initiate replication (Bell & Labib, 2016).

As discussed above, it is imperative that DNA replication occurs only in S phase
and only once per cell cycle to prevent events like re-replication. For example, re-
replication might take place when licensing factors like Cdc6 and Cdt1 allow multiple
licensing events at the same origin (Vaziri et al., 2003; Melixetian et al., 2004). Thus,
is crucial for the cell to have different overlapping inhibitory mechanisms to ensure the
genome is fully replicated at the right time (Nguyen et al., 2001).

To ensure this tight regulation, DNA replication is controlled by the cell cycle
kinases S phase forms of CDK (Cyclin-Dependent Kinase) and DDK (Dbf4-Dependent
Kinase) to trigger the cascade of molecular events leading to the initiation of DNA repli-
cation (Kelly & Brown, 2000). During most of G1, the activity of these kinases is very
low, so that the loading factors can recruit the MCM complex. The kinases’ activity-
levels increase at the end of G1 phase, causing CDK to phosphorylate ORC and Cdc6,
which prevents additional loading events outside G1 phase (Nguyen et al., 2001). This is
followed by the formation of the pre-IC (Pre-Initiation Complex), formed by the pre-RC
complex, Sld3/Sld7 (Synthetically Lethal with Dpb11-1 3/7), Cdc45 (Cell Division Cy-
cle 45), Sld2, Dpb11 (DNA Polymerase B (II)), GINS (Go, Ichi, Ni and San complex),
and Mcm10 (MiniChromosome Maintenance 10). In S phase, DDK phosphorylates the
MCM-DH (MCM double hexamers), which then stabilizes the interactions of the firing
factors Sld3/Sld7 and Cdc45 (Sheu & Stillman, 2010; S. Tanaka et al., 2011). In addition,
S-CDK phosphorylates Sld3 and Sld2, which is essential for firing (Zegerman & Diffley,
2007; Masumoto et al., 2002).

Phospho-Sld2 and Phospho-Sld3 are recognized by another firing factor, Dpb11,
which then recruits Sld2 to the MCM-DH, where Sld2 serves as a platform for the lead-
ing strand polymerase Polϵ and the replication factor GINS (Zegerman & Diffley, 2007;
Masumoto et al., 2002; Muramatsu et al., 2010). Conformational changes take place
here in which ADP is released and the MCM complex binds ATP resulting in two CMG
(Cdc45-MCM2-7-GINS) complexes with processive helicase activity (Gambus et al., 2006;
Moyer et al., 2006). Then, a stable CMGE (Cdc45-MCM2-7-GINS-Polymerase ϵ) complex
(Langston et al., 2014) nucleates the double stranded DNA inside the MCM complex ring
and Mcm10 was suggested to trigger the ejection of the lagging strand by ATP hydrolysis.
This results in origin firing and escape of both CMGEs in a bidirectional manner to start
replicating DNA (Douglas et al., 2018; Lewis et al., 2022).

Finally, the full replisome is composed of three DNA polymerases (α (primase),
δ (lagging strand) and ϵ (leading strand), TopoI (TOPOisomerase I) and TopoII, the
fork protection complex (Csm3/Tof1 (Chromosome Segregation in Meiosis 3 / TOpoi-
somerase I-interacting Factor) and Mrc1 (Mediator of the Replication Checkpoint 1)),
the histone chaperone FACT (FAcilitates Chromatin Transcription/transactions)/Nhp6a
(Non-Histone Protein 6a), Ctf4 (Chromosome Transmission Fidelity 4), the single-strand
binding proteins RPA (Replication Protein A), RFC (Replication Factor C) and PCNA
(Proliferating Cell Nuclear Antigen) (Gambus et al., 2006; Yeeles et al., 2015, 2017; Kurat
et al., 2017; Devbhandari et al., 2017).
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Chromatin
Not naked DNA but chromatin is the natural substrate of DNA replication and

the replisome has to deal with chromatin as discussed later. Chromatin is composed of
negatively charged DNA wrapped around positively charged histone proteins, to generate
a denser compacted structure inside the cell nucleus. Nucleosomes are the basic units
of chromatin and are composed of 147 bp of DNA wrapped around a histone octamer
(Kornberg & Lorch, 1999). The histone octamer contains two H2A-H2B dimers and one
H3-H4 tetramer (Luger et al., 1997). Chromatin is further compacted into higher order
structures via the linker histone H1 and cohesin, and the distance between nucleosomes,
the NRL (Nucleosome Repeat Length), seems to influence how the 30 nm chromatin fibers
are formed (Chen et al., 2021). Recently, the existence of these fibers has been debated
and new models have been proposed. Instead, higher order structures may be composed
of tetranucleosome units (Schalch et al., 2005; Hsieh et al., 2015; Risca et al., 2017) or
groups of 2 to 12 nucleosomes that phase-separate, and organized as shorter fibers (Kri-
etenstein & Rando, 2020; Chen et al., 2021).

Histone variants, like H2A.Z, can replace canonical histones in the nucleosome and
can be important for recruitment of specific factors, in particular in the context of DNA
repair (Y. Xu et al., 2012). Histone tails can also contain specific chemical modifications,
like acyl or methyl groups, which are deposited and removed by enzymes known as writers
and erasers. These modifications are known as PTMs (Post-Translational Modifications)
and to this date, more than twenty eight have been described (Millán-Zambrano et al.,
2022). This has led to the hypothesis of a histone code, especially because some chromatin-
associated proteins contain a reader domain that is able to recognize especific histone
PTMs. For example, bromo- and chromo-domains can read acetylation and methylation
marks, respectively (Allis & Jenuwein, 2016).

Nucleosome dynamics
The nucleosome structure is very stable and a hindrance for DNA template pro-

cesses like replication or transcription (Kurat et al., 2017; Devbhandari et al., 2017; Lorch
et al., 1987) and it is imperative for cells to overcome this nucleosomal barrier. Over
the years, extensive research was carried out to define determinants and to characterize
mechanisms that influence nucleosome dynamics. One invaluable tool on this endeavor
was the endonuclease activity of an enzyme from Staphylococcus aureus, MNase (Micro-
coccal Nuclease). When compared to nucleosome-free DNA, the DNA wrapped around
the nucleosome is better protected against MNase activity, which cleaves linker DNA with
preference for AT-rich sequences (Noll, 1974; Cockell et al., 1983). The extent of the di-
gest can be titrated to obtain different DNA fragments corresponding to mononucleosomes
or polynucleosomes, and this has been exploited to study nucleosome positioning in the
genome coupled with high-throughput sequencing for MNase-seq (Micrococcal Nuclease
digestion with deep Sequencing) (Kent et al., 2011; Wal & Pugh, 2012; Chereji et al.,
2019). Another endonuclease, DNaseI (Deoxyribonuclease I), can also be used to study
nucleosome positioning and has been particularly useful for finding TF binding sites in the
context of chromatin, defining them as DNAseI-hypersensitive sites (Noll, 1974; Gross &
Garrard, 1988), rather than defining nucleosome positioning. Both approaches, however,
revealed that the genome is vastly covered by nucleosomes and, depending on where they
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are located, that they can facilitate or prevent the binding of TF to their binding sites,
thus impacting gene transcription and/or chromatin organization (Gross & Garrard, 1988;
Jiang & Pugh, 2009; Hesselberth et al., 2009).

Nucleosome positioning is mainly determined by the action of chromatin remod-
eling enzymes (discussed below) rather than the underlying DNA sequence. However,
certain sequences are intrinsically rigid, like poly(dA:dT) sequences (Kaplan et al., 2009;
Zhang et al., 2011) or poly(G) motifs (Tsankov et al., 2011; Fenouil et al., 2012). These
sequences can affect the bendability of DNA required for nucleosome wrapping and can
thus cause nucleosome depletion as observed in in vitro reconstituted chromatin by salt
gradient dialysis (Krietenstein et al., 2016). However, the generation of an NFR (Nu-
cleosome Free Region) in vivo is an active process regulated by chromatin remodelers
like RSC (Remodels the Structure of Chromatin), which preferentially evicts nucleosomes
from poly(dA:dT) tracts (Barnes & Korber, 2021).

Chromatin remodelers are molecular motors that use the energy of ATP hydrol-
ysis to assemble, evict, slide, or modify nucleosomes (by exchanging histone variants or
evicting dimers). They are part of the helicase SF2 (Super-Family 2) superfamily and
further classified into four sub-families based on the sequence similarity of their main AT-
Pase motor subunit: (1) SWI/SNF (SWItch/Sucrose-Non-Fermenting), (2) ISWI (Imita-
tion SWItch), (3) INO80 (INOsitol requiring 80) and (4) CHD (Chromodomain, Helicase
and DNA binding). At least one remodeler from each family is present in most eukary-
otes (Flaus et al., 2006; Clapier & Cairns, 2009; Narlikar et al., 2013). SWI/SNF-type
remodelers can evict nucleosomes, while ISWI-, CHD- and INO80- type remodelers are
the only known spacers. INO80 remodelers can also exchange histone variants. Chro-
matin remodelers have greater affinity for nucleosomes than naked DNA, because they
recognize specific features in histones and PTMs as well as multiple domains that allow
for interaction with histone chaperones, transcription factors and extranucleosomal DNA
(Clapier, 2021). The ATPase active site of all chromatin remodelers resides between two
RecA-like lobes, that function as a DNA translocase. In our current understanding, the
cycling between ATP binding and ATP hydrolysis, causes the catalytic subunit to open
and close, allowing the remodeler to progress along the DNA tracking strand following
an inchworming mechanism. Each ATP cycle allows for movement at a 1 bp rate. In-
terestingly, the way the ATP molecule is processed by the RecA-like lobes resembles the
Orc1-Orc4 ATP hydrolysis interaction, characteristic of AAA+-ATPase containing pro-
teins (Bowers et al., 2004): the Lobe1 from the RecA-like module harbors Walker A and
B motifs while Lobe2 contains an arginine finger (Clapier, 2021).

In addition to chromatin remodelers, another class of proteins without catalytic
activity known as histone chaperones, are involved in the removal, deposition and recy-
cling of histones. Different histone chaperones can select for specific histone dimers and
histone variants, making them an important component of different processes in the cell
such as gene transcription, DNA replication and DNA repair (Hammond et al., 2017).
Histone chaperones are classified into two groups based on their preference to interact
with either H2A-H2B or H3-H4 dimers. However, some chaperones like Nap1 (Nucle-
osome Assembly Protein 1) and FACT/Nhp6a can bind with similar affinities to both
(A. Bowman et al., 2011; McCullough et al., 2015; Chen et al., 2018). Some histone
chaperones also function as histone donors for other chaperones, like Asf1 (Anti-Silencing
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Function 1) does with the CAF-1 (Chromatin Assembly Factor 1) and HIR (HIstone
Regulatory) complexes. Others may assist chromatin remodelers, like the histone chap-
erone DAXX (Death domain-Associated protein) that interacts with the SWI/SNF-type
remodeler ATRX (α-Thalassemia/mental Retardation X-linked) at telomeres in mam-
malian cells (Gurard-Levin et al., 2014).

In vivo, some TFs can displace nucleosomes by binding to specific motifs with
different affinities, in a manner that is probably facilitated by the activity of chromatin
remodelers. In yeast, there are six strong NDF (Nucleosome-Displacing Factors) that
have been shown to be able to decrease nucleosome occupancy by binding with high
affinity at specific sites: Abf1, Reb1 (RNA polymerase I Enhancer Binding protein 1),
Rap1 (Repressor/Activator site binding Protein 1), Cbf1 (Centromere Binding Factor 1),
Mcm1 (MiniChromosome Maintenance 1) and Orc1 (Yan et al., 2018). All but Cbf1 are
essential for cell viability in S. cerevisiae and have roles in either DNA transcription and
Orc1 in DNA replication (Fourel et al., 2002, 1999). These factors are more likely to bind
at the entry/exit site of nucleosomes by taking advantage of nucleosome dynamics in a
similar manner as human pioneer factors. For Reb1 and Cbf1, this mechanism has been
referred as dissociation rate compensation and is characterized by a long residence time at
the binding sites once a binding event occurs (B. T. Donovan et al., 2019). Abf1, Reb1 and
Rap1 are also known as GRFs (General Regulatory Factor) with an insulator function that
may contribute to higher-order chromatin organization (Fourel et al., 2002). Furthermore,
the association and dissociation events take place in seconds and may contribute to the
binding of chromatin remodelers or histone chaperones, which in turn can also affect
the binding rates of these TFs (G. D. Bowman & McKnight, 2017; Yan et al., 2018;
B. T. Donovan et al., 2019; Ahmad et al., 2022). Similar TFs are also present in other
organisms, like GAF (GAGA Factor) and Phaser in Drosophila and CTCF (CCCTC-
binding Factor) in vertebrates (Tsukiyama et al., 1994; Fu et al., 2008; Baldi, Jain, et al.,
2018).

Nucleosome phasing
The molecular mechanisms that regulate nucleosome positioning have been stud-

ied extensively at gene promoters (Krietenstein et al., 2016; Kubik et al., 2018, 2019;
Oberbeckmann, Niebauer, et al., 2021). Active transcribed genes are characterized by an
NFR and a well-positioned +1 nucleosome in the downstream region of the gene. Nucle-
osomes upstream and downstream of the NFR are regularly spaced as arrays with similar
or equal linker lengths. Moreover, nucleosomes are phased with respect to the +1 nucle-
osome or a barrier-like factor. Active promoters have binding sites for GRFs like Abf1,
Reb1 and Rap1 that can be used as a reference point by chromatin remodelers to space
nucleosomes and generate a chromatin organization permissive for transcription. On top,
the SWI/SNF-family remodeler RSC can work together with GRFs to generate an NFR
(Hartley & Madhani, 2009; Krietenstein et al., 2016; Kubik et al., 2018).

RSC and SWI/SNF function as pushers by evicting and sliding nucleosomes and
expanding the NFR at promoters; while spacing remodelers like ISW1a (Imitation SWItch
1a), ISW2 (Imitation SWItch 2), INO80 and Chd1 (Chromodomain, Helicase and DNA
binding 1) act as pullers by sliding nucleosomes towards the NFR, counteracting the ac-
tions of the pushers (Krietenstein et al., 2016; Kubik et al., 2019). Spacing remodelers con-
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tain a protein ruler to stablish the linker DNA length by measuring the distance between
two nucleosomes (Yamada et al., 2011; Oberbeckmann, Niebauer, et al., 2021). These re-
modelers can generate different spacing by a mechanism that may involve the remodeler
adopting specific conformations depending on the surrounding nucleosome density, DNA
shape mechanics and via alignment to GRFs or double-strand breaks (Oberbeckmann,
Niebauer, et al., 2021; Oberbeckmann, Krietenstein, et al., 2021).

The cooperation between TF and chromatin remodelers to generate phased nu-
cleosomal arrays, is conserved in human cells. In mammalian cells the most predominant
GRF-equivalent is CTCF and it has been reported to interact with chromatin remodelers
like SNF2H (SMARCA5), SNF2L (SMARCA1) and Chd4, and its binding may be mod-
ulated by the remodeler activity (Wiechens et al., 2016; Clarkson et al., 2019; Bomber et
al., 2023). High affinity binding sites of CTCF are enriched in promoters regions and cor-
related to shorter linker lengths, which seems to be a key feature of open/active chromatin
regions in different organisms (Valouev et al., 2011; Baldi, Krebs, et al., 2018; Chereji et
al., 2018). Moreover, CTCF and cohesin are involved in the organization of chromatin
loops, that also seem to depend on nucleosome positioning and NRL, and symmetrical
regular nucleosomal arrays have been observed around CTCF-cohesin interaction sites
(Clarkson et al., 2019; Alpsoy et al., 2021). In particular, early replication initiation
zones show an enrichment in CTCF-cohesin sites (Emerson et al., 2022).

The influence of chromatin on replication
As mentioned above, chromatin is a natural barrier for DNA template processes

like transcription and replication. The replisome travels through nucleosomes with the
assistance of chromatin remodelers, like INO80 or ISW1a, and histone chaperones like
FACT/Nhp6a (Kurat et al., 2017; Devbhandari et al., 2017). The histone chaperone
FACT/Nhp6a travels together with the replisome and does so without requiring direct
contact with histones like other chaperones do. FACT/Nhp6a seems to work together
with Mcm2, a subunit of the MCM complex, for the retention of the parental histones, by
transferring them from the parental strand to the daughter strand (Foltman et al., 2013).
FACT/Nhp6a also has been shown to greatly enhance replication rates in vitro (Kurat
et al., 2017). Chromatin might influence when in the S phase an origin is fired, e.g.,
euchromatic regions tend to replicate earlier compared to heterochromatin (Fangman &
Brewer, 1992). Histone acetylation has been shown to influence origin timing in vivo by
stimulating origins to fire earlier (Vogelauer et al., 2002; Goren et al., 2008). In support
of this, histone acetylation in vitro, catalyzed by NuA4 (Nucleosome Acetyltransferase
of H4) and SAGA (Spt-Ada-Gcn5-Acetyltransferase), can enhance replication efficiency
(Kurat et al., 2017).

Interestingly and similar to gene promoters, yeast origins show a stereotypical
chromatin landscape characterized by an asymmetric NFR flanked by phased nucleosome
arrays that is maintained throughout the cell cycle (Eaton et al., 2010; Berbenetz et al.,
2010; Lai & Pugh, 2017). Both origins and promoters show a modular organization in
which the origin’s ACS motif could be compared to the TATA box required for gene tran-
scription. The replication and transcription activity is also influenced by other elements
that are proximal or distal to the ACS/TATA box, that through binding of specific pro-
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teins (ORC, Cdc6 / TFIID) activate their function (Marahrens & Stillman, 1992; Lewin,
1990; Ptashne & Gann, 1990).

Both, active promoters and origins, contain very well positioned -1 and +1 nu-
cleosomes around the NFR, that are followed by phased nucleosomal arrays (Berbenetz
et al., 2010; Eaton et al., 2010; Lai & Pugh, 2017) (Fig. 3). The phased array in the
downstream direction of promoters seems to display a higher nucleosome occupancy than
in the upstream direction, however, this is an effect of the alignment procedure and not
a true asymmetry in occupancy as it has been previously shown (Oberbeckmann et al.,
2019). Further, origins show an asymmetrical pattern from the alignment point at the
ACS, in which the downstream NFR is larger than the upstream. This asymmetry may be
explained by a high composition of A-rich islands downstream the ACS. Moreover, both
origins and active promoters show an A-rich/T-rich polarity that may promote DNA un-
winding (Maicas & Friesen, 1990; Eaton et al., 2010).

Studies on single origins have shown that the flanking nucleosomes are important
for origin function. If the nucleosome is positioned closer or further to the ACS, plasmid
stability upon transformation decreases and affects replication initiation (Simpson, 1990;
Lipford & Bell, 2001). Thus, precise nucleosome positioning at origins was suggested to
be important.

ORC and chromatin
Remarkably, ORC influences nucleosome positioning at origins. In vivo studies

have shown that after preventing ORC interaction with DNA by the use of two differ-
ent temperature-sensitive alleles, orc2-1 and orc1-161, nucleosome occupancy increases at
the ACS (Berbenetz et al., 2010) and nucleosome phasing is disrupted (Eaton et al., 2010).

The Orc1 subunit or ORC in particular is associated with chromatin: Orc1 har-
bors a BAH domain, a non-essential chromatin binding module, that enhances ORC’s
association to a subset of origins in yeast and that promotes ORC binding to chromatin
in human cells (Müller et al., 2010; Noguchi et al., 2006; De Ioannes et al., 2019). Human
ORC1-BAH shows high affinity to histone H4K20me2 (histone H4 lysine 20 di-methylated)
and mutations in this domain have been reported in patients with Meier-Gorlin Syndrome
and other growth-related diseases (Bicknell, Walker, et al., 2011; Kuo et al., 2012). The
depletion of ORC1-BAH’s ability to recognize H4K20me2 causes reduced body size in
mice (Kuo et al., 2012). Orc1 may also have pioneer factor functions as reported in yeast
and human cells (Yan et al., 2018; Kara et al., 2015).

Orc1 interacts with proteins that can alter chromatin like Sir1 (Silent Information
Regulator 1), which recruits the SIR complex to promote chromatin silencing at mating-
type loci in yeast (Foss et al., 1993; Gardner et al., 1999). Yeast Orc1 and Sir3, another
component of the SIR complex, are close homologs. However, while Sir3 can recognize
and bind to deacetylated H4 tails, Orc1 has been suggested to interact with H4 tails
regardless of their acetylation status (De Ioannes et al., 2019). In human cells, ORC1
interacts with the acetyltransferase HBO1 (Human acetylase Binding to ORC1) (Iizuka
& Stillman, 1999) and is recruited to heterochromatic H3K9me3 and H3K27me3 (histone
H3 lysine 9/27 tri-methylated)-containing regions by ORCA (ORC-Associated) (Shen et
al., 2010; Bartke et al., 2010).
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However, although all this knowledge was accumulated over the last decades,
ORC´s precise function as a chromatin modulator, especially at origins, remained un-
known.
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Figure 3: Representative comparison of the chromatin landscape between origins of repli-
cation and active gene promoters in asynchronous yeast cells.

Aims of the Thesis
In this thesis I mainly studied how chromatin architecture around origins of repli-

cation is established and whether this is important for the cell, which has been a long
standing question in the field. In addition, I investigated how the chromatin factors Yta7
and FACT are recruited to active sites of replication and, in the case of Yta7, are regu-
lated to assist the replisome go through the nucleosome barrier.

To uncover which factors are involved in generating nucleosomal arrays at ori-
gins, I used an in vitro reconstitution assay developed in the Korber lab that involves
the use of chromatin generated by SGD, purified factors and high-throughput sequencing
(Krietenstein et al., 2016; Oberbeckmann, Niebauer, et al., 2021) to screen several protein
candidates. ORC was of especial interest since its binding site is present in all origins
and was implicated to influence nucleosome positioning (Eaton et al., 2010; Berbenetz et
al., 2010). To further determine whether nucleosome arrays were required for chromatin
replication, we used the in vitro replication assay developed in the Diffley lab (Yeeles et
al., 2015, 2017; Kurat et al., 2017) coupled with the in vitro reconstitution assay described
above. This allowed us to perform for the first time, the in vitro replication of ∼300 ori-
gins through a chromatinized template. Previous in vitro studies in the replication field
have used just one or a couple of origins.

Yta7 is a AAA+-ATPase-containing hexamer involved in genomic silencing by
functioning as a barrier protein against heterochromatin spreading that also modulates
histone gene transcription by binding all histone loci (Kurat et al., 2011). Because AAA+-
ATPase-containing complexes generally have catalytic functions related to the disassembly
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and unfolding of proteins (Hanson & Whiteheart, 2005), we hypothesized that Yta7 might
have a similar function. To dissect Yta7’s function, we generated different mutants; and
determined whether there was an effect related to chromatin or DNA replication by using
a combination of in vivo and in vitro approaches.

In a collaborative paper with the Duderstadt lab, we aimed to find out how the
histone chaperone FACT, a component of the replisome (Foltman et al., 2013), is able
to enhance replication rates as previously reported in vitro (Kurat et al., 2017). We
aimed to determine how FACT is able to interact with the replisome and nucleosomes by
testing different FACT mutants using diverse biochemical approaches, including the in
vitro replication assay through chromatin.



Summary

The whole genome has to be replicated only once per cell cycle and only during
S phase. DNA replication initiates at specific sequences within the genome referred as
origins of replication, and the number of origins correlates with the size of the genome.
Problems with replication are associated with genomic instability and replication stress,
both hallmarks of cancer and/or growth defects.

The budding yeast S. cerevisiae has been the preferred model organism to study
DNA replication in detail because (a) its origins are well defined, (b) decades of genetics
have painted a pretty clear picture of the process, and importantly, (c) replication has
been reconstituted with purified components.

Replication origins contain an ARS that harbors an AT-rich conserved motif,
known as the ACS, which is only present in yeast. ORC binds specifically to this motif
and, together with other loading factors, recruits and loads the replication helicase, the
MCM or Mcm2-7/Cdt1, as a double-hexamer. The chromatin structure at yeast origins
is characterized by an NFR with flanking nucleosomal arrays of regular spacing. ORC
has been shown to influence nucleosome positioning at origins of replication. However,
prior to our work, the precise mechanism was unknown. Further, it was unclear if this
stereotypical chromatin structure is functionally important for replication.

By screening ORC and seventeen purified chromatin factors via genome-scale in
vitro reconstitution, we were able to determine the factors that establish this chromatin
structure at origins. We found that ORC works together with the spacing remodelers
INO80, ISW1a, ISW2 and Chd1 to generate nucleosome arrays at origins. Moreover, by
testing different mutations of the Orc1 subunit of ORC, we were able to dissect ORC’s
chromatin function at origins of replication by uncoupling it from its canonical function as
the MCM loader. We found that nucleosome array generation depends on Orc1’s ability
to hydrolyze ATP and on the BAH and IDR domains. These mutations were lethal in
vivo and lost their arrays in vitro. Most importantly, this hindered DNA replication in in
vivo and in vitro.

To replicate chromatinized DNA, the replisome requires the assistance of chro-
matin factors. It is known that some chromatin remodelers and histone chaperones en-
hance replication rates. In this context, we characterized Yta7 as a new type of chromatin
remodeler namely chromatin segregase, that is different from the classical SF2 chromatin
remodelers. One major difference is that its motor subunit belongs to the AAA+-ATPase
superfamily. We found that Yta7 is activated during the S phase by S-CDK, which phos-
phorylates it in close proximity of the ATPase domain. Interestingly, phosphorylation
causes stimulation of the ATPase activity, activation of its chromatin segregase function
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and strongly facilitated chromatin replication in vitro.

Finally, we collaborated with the Duderstadt lab at the MPI Biochemistry, to
study how FACT, a two-subunit complex composed of Spt16 (SuPpressor of Ty’s 16) and
Pob3 (Pol1 Binding 3), engages with the replisome to enhance replication as previously
reported. We found that Spt16’s N-terminus is required for FACT’s direct interaction
with the replication machinery while the C-terminus of both Spt16 and Pob3 is required
for nucleosome interaction ahead of the replication fork.



Zusammenfassung

Das gesamte Genom darf nur einmal pro Zellzyklus während der S-Phase repliziert
werden. Die DNA-Replikation beginnt an bestimmten Sequenzen innerhalb des Genoms,
den so genannten Replikationsursprüngen, wobei die Anzahl der Replikationsursprünge
mit der Größe des Genoms korreliert. Probleme mit der Replikation werden mit genomi-
scher Instabilität und Replikationsstress in Verbindung gebracht, beides Kennzeichen von
Krebs und/oder Wachstumsstörungen.

Die Hefe S. cerevisiae (Saccharomyces cerevisiae) ist der bevorzugte Modellorga-
nismus, um die DNA-Replikation im Detail zu studieren, weil (a) ihre Ursprünge gut defi-
niert sind, (b) jahrzehntelange genetische und molekularbiologische Forschung ein ziemlich
klares Bild des Prozesses gezeichnet hat und, was besonders wichtig ist, (c) die Replika-
tion mit gereinigten Komponenten rekonstruiert werden konnte.

Replikationsursprünge enthalten eine ARS (Autonom Replizierende Sequenz), die
ein Hefe-spezifisches AT-reiches konserviertes Motiv, die sogenannte ACS (ARS Konsensus-
Sequenz), enthält. ORC (Origin-Erkennungskomplex) bindet spezifisch an dieses Motiv
und lädt zusammen mit anderen Ladefaktoren die Replikations-Helikase Mcm2-7/Cdt1
oder MCM (Minichromosomen-Erhaltungsprotein) als Doppelhexamer. Die Chromatin-
struktur an Replikationsursprüngen in Hefe ist durch eine NFR (Nukleosomenfreie Re-
gion) mit flankierenden Anordnung von Nukleosomen mit regelmäßigen Abständen ge-
kennzeichnet. Es hat sich gezeigt, dass ORC die Positionierung der Nukleosomen an den
Replikationsursprüngen beeinflusst. Vor unserer Arbeit war der genaue Mechanismus je-
doch unbekannt. Außerdem war unklar, ob diese stereotype Chromatinstruktur für die
Replikation funktionell wichtig ist.

Durch das Screening von ORC und siebzehn gereinigten Chromatinfaktoren mit-
tels biochemischer in vitro-Rekonstitution im Genommaßstab konnten wir die Faktoren
bestimmen, die die Chromatinstruktur an den Ursprüngen aufbauen. Wir fanden heraus,
dass ORC mit den Spacing-Remodelern INO80 (Inositolbedarf 80), ISW1a (SWItch-Imitat
1a), ISW2 (SWItch-Imitat 2) und Chd1 (Chromodomäne, Helikase und DNA-Bindung
1) zusammenarbeitet, um Nukleosomen-Arrays an den Ursprüngen aufzubauen. Darüber
hinaus konnten wir durch das Testen verschiedener Mutationen der Orc1-Untereinheit
von ORC die Chromatinfunktion von ORC an den Replikationsursprüngen aufschlüsseln,
indem wir sie von seiner kanonischen Funktion als MCM-Ladungsfaktor abkoppelten.
Wir fanden heraus, dass ORC´s Chromatin-Funktion von der Fähigkeit von Orc1 ATP
zu hydrolysieren abhängt. Weiteres sind die BAH (Bromo-Adjacent-Homologie) Domäne,
sowie eine IDR (intrinsisch ungeordnetes Region) beteiligt. Diese Mutationen waren letal
in vivo und einen konnten in vitro keine Arrays mehr aufbauen, welches auch die DNA-
Replikation negativ beeinflusste.
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Damit das Replisom chromatinisierte DNA replizieren kann, benötigt es die Un-
terstützung von Chromatinfaktoren, Chromatin Remodeler und Histone Chaperone. Es
ist bekannt, dass einige dieser Faktoren die Replikationsraten erhöhen, aber die genaue
Wechselwirkung zwischen diesen Proteinen ist noch nicht klar. In diesem Zusammenhang
haben wir Yta7 (Tat-bindungshomolog 7) als einen neuen Typ von Chromatinremodelern
charakterisiert, nämlich als „Chromatin-Segregase“, die sich von den klassischen SF2 (Su-
per Familie)-Chromatin-Remodelern unterscheidet. Ein wesentlicher Unterschied besteht
darin, dass seine motorische Untereinheit zur AAA+-ATPase (Assoziiert ATPasen mit
verschiedenen zellulären Aktivitäten)-Superfamilie gehört. Wir fanden heraus, dass Yta7
während der S-Phase durch S- Phase CDK (Cyclin-abhängige Kinase) aktiviert wird, wel-
ches Yta7 in unmittelbarer Nähe der ATPase-Domäne phosphoryliert. Interessanterweise
bewirkt diese Phosphorylierung eine Stimulierung der ATPase-Aktivität, welche zur Folge
hat, dass Yta7´s Chromatin-Segregase Funktion stimuliert wird. Dies stimuliert dann die
Replikation durch Chromatin.

Schließlich untersuchten wir in Zusammenarbeit mit dem Duderstadt-Labor am
MPI für Biochemie, wie FACT (FAcilitates Chromatin Transcription/transactions), ein
Proteinkomplex bestehend aus den Untereinheiten Spt16 (SuPpressor of Ty’s) und Pob3
(POl1 Binding), mit dem Replisom interagiert. Wir fanden heraus, dass der N-Terminus
von Spt16 für die direkte Interaktion von FACT mit der Replikationsmaschinerie, während
der C-Terminus sowohl von Spt16 als auch von Pob3 für die Nukleosomeninteraktion vor
der Replikationsgabel erforderlich sind.
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