
Probing the thermodynamics of
SU(N)-symmetric Fermi gases with

ultracold atoms

Giulio Pasqualetti

München 2023





Probing the thermodynamics of
SU(N)-symmetric Fermi gases with

ultracold atoms

Dissertation an der Fakultät für Physik
Ludwig-Maximilians-Universität München

vorgelegt von

Giulio Pasqualetti

aus Pontedera, Italien

München, den 7. Juni 2023



Tag der mündlichen Prüfung: 21. Juli 2023

Erstgutachter: Prof. Immanuel Bloch

Zweitgutachter: Prof. Jan von Delft



Zusammenfassung

In dieser Arbeit wird die Thermodynamik von SU(𝑁)-Fermi-Gasen in einer Quasi-2D-Geo-
metrie untersucht. Unser System besteht aus Ytterbium-Atomen mit einer abstimmbaren
SU(𝑁 ≤ 6)-Symmetrie in der zentralen Ebene eines vertikalen optischen Gitters. Wir cha-
rakterisieren die Zustandsgleichung (ZG) durch Messung der lokalen Dichteprofile mit
hochauflösender Absorptionsabbildung sowohl in einer harmonischen Falle als auch in ei-
nem quadratischen Gitter. In der harmonischen Falle charakterisieren wir das tief entartete
Regime und den Einfluss schwacherWechselwirkungen auf die Bestimmung der ZG.Mittels
optischer Gitter realisieren wir das 2D-SU(𝑁)-Fermi-Hubbard-Modell und untersuchen den
Übergang von der metallischen zur Mott-isolierenden Phase oberhalb der Superexchange-
Temperatur. Insbesondere untersuchenwir die Dichte, die Kompressibilität, die Besetzungs-
zahlen und die Dichtefluktuationen als Funktionen der Wechselwirkungsstärke, der Dich-
te und der Temperatur für 𝑁 = 3,4 und 6. Mit den Messungen vergleichen wir die Er-
gebnisse aktueller numerischen Methoden, insbesondere Determinant Quantum Monte
Carlo (DQMC) und Numerical Linked-Cluster Expansion (NLCE). Durch Anwendung des
Fluktuations-Dissipations-Theorems bestimmen wir die Temperatur des Systems mit einer
theoriefreien Methode und validieren die Ergebnisse der ZS-Bestimmung.





Abstract

This thesis reports on probing the thermodynamics of SU(𝑁) Fermi gases in a quasi-2D
geometry. Our system consists of degenerate ytterbium atoms with a tunable SU(𝑁 ≤ 6)
symmetry in the central plane of a vertical optical lattice. We characterize the equation of
state (EoS) by measuring the local density profiles with high-resolution absorption imag-
ing both in a harmonic trap and a square lattice. In the harmonic trap, we characterize
the deeply degenerate regime and the effect of the weak interactions on the determina-
tion of the EoS. By loading the gas into a square in-plane optical lattice, we realize the 2D
SU(𝑁) Fermi-Hubbard model and probe the transition from the metallic to the Mott insu-
lating phases above the superexchange temperature. In particular, we probe the density,
the compressibility, the occupation probabilities, and the local density fluctuations as func-
tions of the interaction strength, the filling, and the temperature for 𝑁 = 3,4, and 6. Our
measurements are used as a benchmark for state-of-the-art theoretical methods, includ-
ing determinant quantum Monte Carlo (DQMC) and numerical linked-cluster expansion
(NLCE). By applying the fluctuation-dissipation theorem, we determine the system’s tem-
perature with a theory-free method and validate the results of the numerical fits to the EoS.
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Introduction

A central problem of contemporary physics is understanding the relation between elemen-
tary quantum systems and macroscopic emergent phenomena, which cannot be trivially
explained by the properties of the constituents [1]. In condensed-matter physics, two
paradigmatic examples are the BCS superconductivity [2] and the Kondo effect [3]. These
two phenomena have both been experimentally discovered by investigating the resistivity
of metals as a function of temperature. In the case of superconductivity, the resistivity van-
ishes below a critical temperature [4], while in the case of the Kondo effect, the resistivity
shows a minimum at low temperatures [5]. The two phenomena are quite different, but
they can both be understood as quantum many-body effects due to the strong interaction
between electrons in a metal: with phonons in the former case and with localized magnetic
impurities in the latter case [6]. The development of theories to explain these phenomena
with a microscopic model has required decades of work and can be considered a major
achievement of physics in the second half of the twentieth century [6].

However, many other systems and phenomena in condensed-matter physics still lack
a comparable understanding. Particularly intriguing is the case of some exotic classes of
strongly-correlated materials [7–10] exhibiting a variety of emergent phenomena, such as
high-temperature non-BCS superconductivity [11–13], colossal magnetoresistance [14],
and metal-insulator transitions [15].

From a theoretical point of view, a typical ansatz to investigate the properties of a ma-
terial consists in starting from a microscopic simplified model and trying to reproduce the
key experimental observations. A paradigmatic model in this regard is the so-called Fermi-
Hubbard model, which describes electrons moving in a lattice and interacting with each
other through a local interaction [16]. This model allows for the description of a variety
of phenomena, such as the metal-to-Mott insulator crossover and antiferromagnetic order-
ing [17], and it is believed to capture the essential physics of cuprates and the emergence
of high-temperature non-BCS superconductivity [11, 18, 19].

However, some of the strongly-correlated materials are inherently multi-orbital, and the
Fermi-Hubbard model is not able to capture the full complexity of their electronic struc-
ture. In these cases, a possible approach is to consider a multi-orbital generalization or,
as an additional simplification, a single-orbital model with particles more complex than
electrons, such as fermions with a larger number of spin components 𝑁 >2. In the case of
these particles interacting symmetrically with each other, the model is called SU(𝑁) Fermi-
Hubbard model [20–22], SU(2) being the symmetry group of the usual spin-1/2 electrons.
Large-𝑁 systems are believed to be an effective approximation in describing the physics of
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2 Introduction

transition-metal oxides [7, 14, 23] and heavy-fermion compounds [24], as well as other
interesting phenomena, such as orbitally-selective Mott transitions [25–27], graphene’s
SU(4) spin-valley symmetry [28], twisted bilayer graphene [29–31] and robust itinerant
ferromagnetism [32–34]. In many of these cases, the effective models are characterized
by a 2D geometry. The 2D regime is special because the Mermin-Wagner theorem [35]
forbids the spontaneous breaking of a continuous symmetry at finite temperature, and
thermal fluctuations tend to destroy long-range order. Furthermore, large 𝑁 contributes
to stabilizing quantum fluctuations [36].

Several studies have shown the existence of a rich phase diagramwith exotic phases and
properties for both the SU(𝑁 >2) Fermi-Hubbard model [21, 32, 37–51] and its strongly-
interacting version at integer filling, the SU(𝑁 >2) Heisenberg model [20–23, 36, 52–59].
However, a general understanding of the models for arbitrary interaction strength, filling,
temperature, and number of spin components is still far from being achieved. Numerical
simulations of large-𝑁 systems are indeed particularly challenging due to the exponential
growth of the Hilbert space with 𝑁 and the increased severity of the sign problem [60].

A complementary approach to study these strongly-correlated systems is the use of
quantum simulators. Ultracold atoms in optical lattices, in particular, can be a versa-
tile platform for the simulation of other quantum systems by engineering Hamiltonians
to mimic the target system’s behavior [61–64]. These simulators allow for excellent con-
trol of the state preparation and the parameters of the Hamiltonian, and they can be used
to investigate the properties of a quantum system in a controlled environment.

In the last decade, experiments with alkaline-earth-like atoms such as 173Yb and 87Sr
have proven to be valuable candidates for quantum simulation ofmulti-orbital systems [65].
These atoms feature an almost perfect decoupling of the nuclear spin from the electronic
degree of freedom in the ground state, naturally leading to an SU(𝑁) symmetry up to
𝑁 = 6 and 𝑁 = 10, respectively [66–69]. This has allowed, among others, for the real-
ization of an SU(6) Mott insulator [70], the spectroscopic verification of the existence of
the SU(𝑁) symmetry [71], the observation of SU(𝑁 ≤ 6) quantum magnetism in 1D [72],
the measurement of the equation of state for SU(3) and SU(6) in 3D [73], the observation
of antiferromagnetic correlations in dimerized 3D lattices for SU(4) [74] and in uniform
1D, 2D, and 3D lattice for SU(6) [75], and the observation of flavor-selective symmetry
breaking for SU(3) [76].

These investigations have been performed in a variety of geometries. However, until
now, no quantum simulation has been performed with fermionic alkaline-earth-like atoms
in a single 2D plane geometry, which offers a pristine environment where local properties
of the system can be easily accessed and probed with high accuracy.

The main subject of this thesis is the investigation of SU(𝑁) Fermi gases with 173Yb
atoms in a single 2D plane geometry. In particular, we investigate their thermodynamics
and measure their equation of state (EoS) in a harmonic trap and a square lattice. We
probe the density profiles of the gas, the site occupation probabilities (in the lattice), the
compressibility, and the local density fluctuations. We do so as a function of the tem-
perature, the interaction strength (in the lattice) and the filling for 𝑁 = 3,4 and 6 and
entropy per particle ≳ 1𝑘B.
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In the case of the harmonic trap, we investigate the role of weak interactions in de-
termining the EoS. In the case of the lattice, which corresponds to the probing of the 2D
SU(𝑁) Fermi-Hubbard model, we characterize the EoS by fitting state-of-the-art numerical
methods [50]. By applying the fluctuation-dissipation theorem, we develop a method to
determine the temperature in a theory-independent way, which allows for verifying the EoS
fitted to the data. This method can also be applied to regimes difficult to access with nu-
merical methods, with promising perspectives for additional investigations of SU(𝑁) Fermi
gases in our quantum simulator in the future.

In addition to the SU(𝑁) symmetry, alkaline-earth-like atoms feature other interesting
properties for quantum simulation. In particular, they have a metastable excited state with
a lifetime of the order of seconds [77], which can be used to mimic an additional orbital
degree of freedom [67]. Moreover, the different polarizability between the ground and the
metastable state allows for the implementation of state-dependent lattices [78], which can
be used to engineer Hamiltonians with localized particles in themetastable state interacting
with a spin-exchange interaction [67] with the ground state atoms. The spin-exchange has
already been observed in experiments [78–82] and could soon allow for the probing of
Kondo-type physics, both in the single-impurity form [83, 84], and in the so-called Kondo
lattice model [67–69, 85], which is believed to be relevant for the description of heavy-
fermion compounds [86].

Outline

This thesis is organized as follows.
In Chap. 1, we introduce ytterbium and its relevant properties for quantum simula-

tion. We describe its electronic structure and its naturally featured SU(𝑁) symmetry in the
ground state. We then present the most relevant theoretical models from condensed-matter
physics that we would like to simulate and how their Hamiltonians can be mapped to our
quantum simulator. We also discuss the metastable clock state and its properties, which
can be used to engineer more complex Hamiltonians. Finally, we describe the experimental
techniques for preparing tunable SU(𝑁) degenerate Fermi gases in a 3D geometry.

In Chap. 2, we describe the new optical lattice that we have recently implemented in
our experiment and allows for the realization of a single 2D plane geometry. We present
the technical setup and the experimental procedures for preparing degenerate Fermi gases
in a single plane. Finally, we discuss the detection techniques and the calibration of the
imaging system.

In Chap. 3, we present the measurement of the equation of state of weakly-interacting
SU(𝑁) Fermi gases in a single 2D plane with harmonic confinement. We first review
the physics of quasi-2D SU(𝑁) Fermi gases in the non-interacting and weakly-interacting
regime. We then benchmark the weakly-interacting model with the experimental data.
Finally, we describe the measurement of local density fluctuations both in the thermal and
deeply-degenerate regimes.

In Chap. 4, we describe the SU(𝑁) Fermi-Hubbard model on a square lattice. We review
its symmetries and thermodynamic properties at temperatures above the superexchange
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energy. We introduce the relevant numerical methods to simulate the model which will be
used in the following chapters to benchmark the experimental data.

In Chap. 5, we present the measurement of the equation of state of the SU(𝑁) Fermi-
Hubbard model in a square lattice. We describe the optical lattice setup and the observables
we can access. We then fit the theoretical models described in Chapter 4 to the experimental
data. We develop a theory-free method to measure the system’s temperature based on the
fluctuation-dissipation theorem, which allows us to validate the results of the numerics.
Finally, we offer a detailed discussion the systematic errors that affect the measurement.

In the final chapter, we summarize the results of this thesis and discuss possible fu-
ture directions.

Publications

The central results presented in this thesis have been published in the following reference:

• G. Pasqualetti, O. Bettermann, N. Darkwah Oppong, E. Ibarra-Garcı́a-Padilla, S. Das-
gupta, R. T. Scalettar, K. R. A. Hazzard, I. Bloch, and S. Fölling, Equation of State and
Thermometry of the 2D SU(𝑁) Fermi-Hubbard Model, Phys. Rev. Lett. 132, 083401
(2024).

During the course of this thesis, the following additional research articles have been pub-
lished:

• E. Ibarra-Garcı́a-Padilla, C. Feng, G. Pasqualetti, S. Fölling, R. T. Scalettar, E. Khatami,
and K. R. A. Hazzard, Metal-insulator Transition and Magnetism of SU(3) Fermions in the
Square Lattice, Phys. Rev. A 108, 053312 (2023).

• O. Bettermann, N. Darkwah Oppong*, G. Pasqualetti*, L. Riegger, I. Bloch, and S. Fölling,
Clock-Line Photoassociation of Strongly Bound Dimers in a Magic-Wavelength Lattice, Phys.
Rev. A 108, L041302 (2023) (* equal contribution).

• N. Darkwah Oppong, G. Pasqualetti, O. Bettermann, P. Zechmann, M. Knap, I. Bloch,
and S. Fölling, Probing Transport and Slow Relaxation in the Mass-Imbalanced Fermi-
Hubbard Model, Phys. Rev. X 12, 031026 (2022).



CHAPTER 1

Ultracold ytterbium for quantum simulation of

multiorbital physics

In this chapter, we lay the foundation for the description of our experiment and the physics
we can study with it. The chapter is organized as follows. We start by introducing the
element ytterbium, its isotopes, and its electronic structure. Restricting ourselves to the
ground state, we describe the arising of the SU(𝑁) symmetry between its Zeeman states,
and we discuss the physics that can be probed by exploiting this symmetry. In particular,
we focus on both SU(𝑁) Fermi liquids and the SU(𝑁) Fermi-Hubbard model. Then, we
consider the clock transition, we describe interorbital interactions and how they can be
exploited for quantum simulation of multiorbital physics, particularly the mass-imbalanced
Fermi-Hubbard model and Kondo-type physics. Finally, we present the experimental setup
and techniques to prepare degenerate Fermi gases of ytterbium atoms and obtain SU(𝑁)
mixtures with variable 𝑁.

1.1 Properties of ytterbium relevant for cold atom experiments

1.1.1 Isotopic properties

Ytterbium is an alkaline-earth-like element with the atomic number 𝑍 = 70 and seven sta-
ble isotopes. Five exhibit bosonic statistics (nuclear spin 𝐼 = 0): 168Yb, 170Yb, 172Yb, 174Yb,
176Yb, and two have fermionic statistics: 171Yb (𝐼 = 1/2) and 173Yb (𝐼 = 5/2). The iso-
topes have natural abundances between 0.13% and 32% [90], and they have all been used
and at least partially characterized in experiments with ultracold atoms, either alone or in
mixtures [91–93]. In our experiment, we mainly work with the isotopes 171Yb, 173Yb,
and 174Yb. The content of this thesis, except for this chapter, focuses on experiments
conducted with 173Yb.

1.1.2 Electronic properties

Ytterbium has an electronic configuration [Xe]4f14 6s2. The f-shell is complete, and the
electronic properties are primarily determined by the two outer valence electrons in the
s-shell. In this regard, the electronic structure resembles the one of helium. In first approx-
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Figure 1.1 | Partial electronic structure of ytterbium. The states are labeled according to the Russell-

Saunders (RS) notation when the f-shell is closed and in terms of total angular momentum 𝐽 when the

f-shell is open. The wavelength 𝜆 and the linewidth Γ are specified for each transition. Continuous lines:

transitions driven in our experiment. Dashed lines: other transitions of general interest mentioned in the

main text. References for the values of the linewidths: *[104], †[105], ‡[106], §[107], ¶[108], ‖[109, 110].

imation, it can be described with Russell-Saunders symbols in terms of 𝐿𝑆 coupling eigen-
states of the form 2𝑆+1𝐿𝐽, where 𝐿 is the orbital angular momentum, 𝑆 is the electronic spin
and 𝐽 the total electronic angular momentum [94]. We can therefore define, as in helium, a
singlet (𝑆 = 0) and a triplet (𝑆 = 1) manifold. The ground state lies in the singlet manifold,
and it is denoted as 1S0. The lowest-lying excited state is the triplet state 3P0. In helium,
the transition between these two levels is forbidden, but in ytterbium, the Russell-Saunders
description is imperfect because of the internal-shell structure. Therefore, spin-orbit cou-
pling and electrostatic interactions allow for an ultra-narrow transitions between the two
states [95]. Similar effects also repeat for other transitions, making the electronic structure
of ytterbiummore complex than the one of helium. The additional degrees of freedom, and
in particular the presence of ultranarrow transitions, make ytterbium an exciting candidate
for metrology [96–98], quantum information [99–103], and quantum simulation [65].

In Fig. 1.1, we show ytterbium’s low-lying and relevant electronic states. Here, we will
briefly comment on the most significant levels and transitions for this thesis and future
experiments.

The blue imaging and cooling transition. The 1S0 →
1P1 transition at 𝜆 = 399nm [111]

is a broad transition with a linewidth Γ ≈ 2𝜋 ⋅ 29MHz [104] and a saturation intensity
𝐼sat = 𝜋ℎ𝑐Γ/(3𝜆3) of about 60mW/cm². In our experiment, we use it as a cycling transi-
tion for Zeeman-slowing the atomic beam at the beginning of the experimental sequence.
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Moreover, we use it for imaging the atoms with short pulses with both in-situ and time-
of-flight techniques (see Sec. 2.3).

The green intercombination line. The 1S0 → 3P1 transition at 𝜆 = 556nm [105]
is a narrow transition with a linewidth of 2𝜋 ⋅ 184kHz [105] and a saturation intensity
of about 0.139mW/cm². It is often referred to as the intercombination line in the liter-
ature. This transition is characterized by Δ𝑆 = 1, which should therefore be forbidden
according to the 𝐿𝑆 selection rules. However, because of the complex internal structure of
ytterbium, spin-orbit coupling partially mixes the 1P1 and 3Pj levels [112] and originates
the narrow1S0 →

3P1 transition. In our experiment, we use this transition for cooling the
atoms in the magneto-optical trap (MOT) near the Doppler limit of ℏΓ/(2𝑘B) of ≈ 4.4µK.
Moreover, we use it for manipulating atoms in the different Zeeman levels of the ground
state. In particular, we use it for optical pumping (see Sec. 1.7.1), the optical Stern-Gerlach
technique (see Sec. 1.7.2), and for photoassociation (see Sec. 5.2).

The yellow clock transition. The 1S0 →
3P0 transition at 𝜆 = 578nm is a ultra-narrow

transition with a linewidth of a few mHz [106]. Because of its narrowness and extremely
large quality factor 𝑄 ∼1017, it is used in today’s most precise and accurate optical lattice
clocks [77, 97], and it is therefore usually referred to as the clock transition. Similarly, the
3P0 state is also called the clock state. The transition should be doubly forbidden according
to the 𝐿𝑆 selection rules because Δ𝑆 = 1 and because for both the initial and final states 𝐽 =
0. However, in fermionic ytterbium, a hyperfine interaction generates a small admixture
between the 3Pj states [112]. The clock transition originates from this admixture and
the coupling between the 1P1 and 3P1 states described above. In bosonic ytterbium, the
transition can be induced with an external magnetic field [113].

The clock state has a lifetime ≫10s. For the typical time scales of cold atom experi-
ments, the clock state can, therefore, be considered metastable and an excellent resource
for implementing an additional degree of freedom for quantum simulation of complex
models [65, 67].

The repumping transitions. When working with the clock transition, it is sometimes
helpful to use a repumping scheme to incoherently transfer nearly all the atoms in the clock
state back to the ground state without driving the clock transition again*.

A possible repumping scheme [114] consists in driving simultaneously the two transi-
tions 3P0 →

3S1 and 3P2 →
3S1 at 𝜆 = 649nm and 770nm, respectively [114]. Atoms in

the 3S1 state decay to the 3P0,1,2 state with a branching ratio of 1:3:4 [115]. Atoms in the
3P0 and 3P2 states get repumped back to the 3S1, while atoms in the 3P1 state decay to
the ground state.

An alternative scheme [108, 116] consists in driving the transition 3P1 →
3D1 at 𝜆 =

1388nm [117]. From the 3D1 state, the branching ratio to the 3P0,1,2 states is about
64:35:1 [108]. Similarly to the other scheme, the decay to the ground state happens
mainly through the intermediate 3P1 state [108]. In our experiment, we implement this
method. More technical details about the implementation are reported in Ref. [118].

The other clock transitions. In addition to the 1S0 → 3P0 transition at 𝜆 = 578nm,

*Because the exact frequency for a 𝜋-pulse might not be exactly known, or because the presence of energy
shifts might require complex multipulse sequences.



8 Ultracold ytterbium for quantum simulation of multiorbital physics

the complex internal electronic structure of ytterbium allows for additional ultranarrow
transitions, which can be used for high-precision spectroscopy, metrology, or in complex
quantum simulations.

The 3P2 state has a lifetime of about 15 s and the transition to the ground state (𝜆 =
507nm) has a similar linewidth as the 3P0 [119]. In contrast to the 3P0 state, however,
the 3P2 state shows strong magnetic field sensitivity, making its use as a clock transition
more challenging [97]. Its atomic properties have been largely characterized [119–122]
and used for spectroscopy [123–125].

In addition to the 1S0−
3P2 transition, an ultranarrow transition from the ground state

to the 4f13 5d6s2 (𝐽 = 2) state at 431 nm [109, 110] has been recently measured [126,
127]. This state originates from the excitation of one of the electrons in the 4f shell and
cannot be described by the simple 𝐿𝑆 coupling scheme and RS notation. The transition has
a sub-mHz linewidth with an expected lifetime up to 200 s† [110]. Theory models also pre-
dict ultranarrow clock transitions between the 4f13 5d6s2 state and the 3P0 (𝜆 = 1695nm,
Γ ∼ 2𝜋 ⋅1mHz) [109, 128] and the 3P2 states (𝜆 = 2875nm, Γ ∼ 2𝜋 ⋅10mHz) [128].

We anticipate that the ability to access these states, combining multiple ultranarrow
transitions in the same experiment and comparing their frequencies against external per-
turbation will soon allow for a wide range of applications, including searches for the time
variation of fundamental constants [129], ultralight dark matter [130–134], atomic par-
ity violation [135], and new physics [136–139]. Moreover, it could allow for the imple-
mentation of more complex quantum simulations [140, 141], advanced manipulation and
readout of simulated states [142], and for quantum information processing [99, 143–145].

1.2 Nuclear spin states and SU(N) symmetry

In the ground state, ytterbium is characterized by 𝐽 = 0. This means that the quantum
number 𝐹 = 𝐽 + 𝐼 = 𝐼 and, for fermionic ytterbium (𝐼 ≠ 0), there is a decoupling between
the electronic configuration and the nuclear spin. As a consequence, a single parameter
can parametrize the interaction between the 𝑁 = 2𝐹 +1 Zeeman states, and collisions in
a mixture of different states exhibit an SU(𝑁) symmetry [67], which is SU(6) for 173Yb
(𝐼 = 5/2) and SU(2) for 171Yb (𝐼 = 1/2).

This effect can be better understood by looking at the scattering properties of the sys-
tem. For two spin-1/2 particles colliding elastically with each other, the wavefunction in
the center-of-mass frame after the collision can be described in terms of the relative coor-
dinate r and incident wavevector k as [146]

𝜓(r) ∼ 𝑒𝑖k⋅r+𝑓(k,𝜃)
𝑒𝑖𝑘𝑟

𝑟
, (1.1)

where the incoming plane wave is described by the first term and the scattered wave by

†For even isotopes [110].
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the second one. In the 𝑠-wave regime (𝑘 → 0 and spherical outgoing wave) the scattering
amplitude 𝑓(k,𝜃) becomes [146]‡

𝑓(k,𝜃) ≃−
1

1/𝑎+𝑖𝑘
, (1.2)

where 𝑎 is the 𝑠-wave scattering length associated with the interaction potential. Remark-
ably, it has been shown that the scattering problem can be equivalently solved by replacing
the real interatomic potential with a pseudopotential of the form [146]

𝑉(r) =
4𝜋ℏ2𝑎

𝑚
𝛿(r), (1.3)

where 𝑚 is the mass of the particles and 𝛿(r) is the Dirac delta function. In 𝑠-wave scat-
tering, the orbital angular momentum is zero, the internal angular momentum of the pair
and its projection on the quantized axis are conserved, and an SU(2) symmetry emerges
as a consequence of the rotational invariance of the interatomic potential [94]. In the case
of particles with a larger spin, Eq. (1.3) can be generalized to [147, 148]

𝑉(r) =
4𝜋ℏ2

𝑚

2𝐹+1
∑

even 𝐹pair=0
𝑎𝐹pair𝒫𝐹pair

𝛿(r). (1.4)

Here, 𝒫𝐹pair
is the projection operator of the initial states |𝐹,𝑚𝐹1

⟩ and |𝐹,𝑚𝐹2
⟩ on the

subspace with total spin Fpair = 2F, 𝐹pair = |Fpair| and 𝑎𝐹pair is the scattering length associ-
ated to the pair. The sum runs on even indices because of quantum statistic symmetries§.
Eq. (1.4) implies that starting from |𝐹,𝑚𝐹1

⟩, |𝐹,𝑚𝐹2
⟩, collisions can also lead to spin scram-

bling with final 𝑚𝐹 values different from 𝑚𝐹1
and 𝑚𝐹2

. For 2𝐹 +1 = 𝑁 spin components,
𝑁/2 scattering lengths are, therefore, necessary to describe all the collision channels in the
general case. The symmetry of the interaction is ⊗(2𝐹+1)/2SU(2).

In the case of alkaline-earth-like (AEL) atoms, 𝐽 = 0 and 𝐹 = 𝐼. This means that the
electronic configuration, which is mainly responsible for differences between the different
scattering channels, becomes irrelevant, and the scattering lengths are the same for all the
pairs [66, 91]. The result is an enhanced symmetry, namely, an SU(𝑁) symmetry, which
conserves not only 𝐹pair and its projection but also the projection of each fermion. This
means that no spin scrambling is possible, and the population of each spin component is
conserved during collisions. Moreover, by preparing the system with 𝑁 ′ < 𝑁 spin compo-
nents in the initial state, the system is characterized by an SU(𝑁 ′) symmetry.

For 173Yb, the scattering length is 𝑎 = 199.4(2.1)𝑎0 [91], where 𝑎0 is the Bohr radius,
while for 171Yb, 𝑎 = −2.8(3.6)𝑎0 [91]. Signatures confirming the SU(𝑁) symmetry have
been observed in several experiments with AEL atoms [70–73, 149, 150]. The SU(𝑁)

‡We neglect here the effective range, which might give non-negligible contributions. For more details on
scattering in ultracold atoms and the assumptions that wemake in the derivation of Eqs. (1.1), (1.2), and (1.3),
we refer the reader to Ref. [146].

§Under particle exchange, the total wavefunction should change by a factor (−1)2𝐹. By the same exchange,
the spin and the orbital parts of the wavefunction change by (−1)𝐹pair and (−1)𝐿pair , respectively. To be consis-
tent, (−1)2𝐹 = (−1)𝐹pair+2𝐹(−1)𝐿pair . For 𝑠-wave scattering 𝐿pair = 0, which implies that 𝐹pair must be even [148].
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symmetry has been predicted to be almost exact, with relative differences of 10−9 in the
scattering length between different channels [67].

Finally, we mention here that in AEL atoms, the SU(𝑁) symmetry is not only present in
the ground state but also in the clock state, which is also characterized by 𝐽 = 0 [67]. We
will return to this point in Secs. 1.4 and 1.5, where we consider multiorbital SU(𝑁) systems.

1.3 Probing magnetism with SU(N) Fermi gases

We now turn our attention to the physics that we can probe with an SU(𝑁) gas of ytterbium
atoms in the ground state. Two systems are particularly interesting: the first one are SU(𝑁)
Fermi liquids, which can be studied with atoms trapped in harmonic or homogeneous po-
tentials. The second one is the SU(𝑁) Fermi-Hubbard model (FHM), which can be studied
in an optical lattice. In this section, we review some of the most interesting features which
arise in SU(𝑁) gases, with particular emphasis on quantum magnetism.

1.3.1 SU(N) Fermi liquids and itinerant ferromagnetism

Itinerant ferromagnetism describes the formation of spin-polarized domains in repulsive
Fermi gases [151, 152]. A quantum magnetic phase transition is predicted in the absence
of any crystal pattern and any magnetic field [153], but similar physics is also featured in
Hubbard-type models [154]¶. In the case of spin-1/2 particles, itinerant ferromagnetism
has already been investigated in the context of ultracold atoms [155–157], although its un-
ambiguous observation remains elusive because of competing molecular formation mech-
anisms [158, 159].

In the last few years, the interest for itinerant ferromagnetism in Fermi liquids with
multiple spin components and larger symmetries such as SU(𝑁) has been growing [33,
34, 66, 153, 160–163]. In particular, it has been observed that the formation of spin-
polarized domains requires the spontaneous breaking of the SU(𝑁) symmetry, but the ex-
act breaking mechanism is still under debate [66]. Furthermore, it has been shown that
the transition from the paramagnetic to the ferromagnetic phase is predicted to be of first
order, in contrast with the second order phase transition observed in the spin-1/2 case [66,
153]‖. Alkaline-earth-like atoms might allow in the future the quantum simulation of
these phenomena. In Chap. 3, we will review in detail the properties of non-interacting
and weakly-interacting SU(𝑁) Fermi gases and present a measurement of the equation of
state for 𝑁 = 3,4 and 6 in the 2D weakly-interacting regime. Further studies in the di-
rection of itinerant ferromagnetism would require tuning the interaction strength between
the gas components. This is challenging in alkaline-earth-like atoms because of the lack of
a magnetic Feshbach resonance in the ground state (because 𝐽 = 0). Optical alternatives

¶John Hubbard was two years old when Edmund Stoner published his seminal paper on itinerant ferro-
magnetism, and the Hubbard models as we know them today had not been formalized yet.

‖These results concern the 3D case. In 2D and for spin-1/2 particles, the signatures of ferromagnetic phases
have been predicted to be enhanced, but the phase diagram should also look different [164]. For the SU(𝑁 >2)
case, the phase diagram is, to our knowledge, still largely unknown.
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have been proposed [165, 166] and demonstrated [167, 168], but their implementation
for quantum simulation purposes has been challenging because of the high losses [168].
Nevertheless, the ability to tune the interaction strength might pave the way to probe ad-
ditional properties of SU(𝑁) Fermi liquids and learn more about the interplay between
symmetry breaking and magnetism.

1.3.2 SU(N) Fermi-Hubbard model

The Fermi-Hubbard model (FHM) is a paradigmatic model for strongly-correlated systems.
It describes fermionic particles hopping on a lattice and interacting with each other through
an on-site interaction. The Hamiltonian of the FHM reads

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+h.c.)+
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏, (1.5)

where ̂𝑐†𝑖𝜎 and ̂𝑐𝑖𝜎 represent the fermionic creation and annihilation operators at site 𝑖 with
spin 𝜎 ∈ {1…𝑁}, �̂�𝑖𝜎 = ̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜎 is the number operator, ⟨𝑖, 𝑗⟩ denotes next-neighbor lattice
sites, 𝑡 is the hopping amplitude and 𝑈 is the on-site interaction strength.

The FHM is often studied in the SU(𝑁 = 2) case, where the particles are spin-1/2
fermions and mimic the physics of electrons in a solid. The SU(2) FHM captures many
of the features of strongly-correlated systems, such as the Mott insulator transition and
antiferromagnetic ordering [17] [see Fig. 1.2(a)], and it is believed to describe some form
of high-temperature superconductivity similar to the one observed in cuprates [11, 15, 18,
19]. However, it remains a minimal model and cannot capture the full complexity of real
materials. Among the limitations of the SU(2) FHM, we mention, for example, the absence
of orbital degrees of freedom. A natural extension in this direction can be considered the
SU(𝑁 > 2)-symmetric generalization of the FHM, where the particles have a larger spin
with 𝑁 components. The choice of a larger symmetry can be beneficial for a better de-
scription of real materials [169]. Some materials are characterized by quasi-degenerate
orbitals, which can be approximately described as degenerate orbitals or a single orbital
with a larger spin. For example, the SU(4) FHM can be used to describe a degenerate
two-band Hubbard model for spin-1/2 particles [23]. An intriguing example in this regard
is the case of cerium volume collapse, where there is a long-standing debate whether the
single orbital Hubbard model (𝑁 = 2) or the double-orbital Hubbard model (𝑁 = 4) [170–
173] is the correct description. Moreover, a larger 𝑁 is believed to be relevant to describe
other exotic materials and phenomena, such as transition-metal oxides [7, 23] and colos-
sal magnetoresistance [14], orbitally-selective Mott transitions [25–27, 174], graphene’s
SU(4) spin valley symmetry [28], and twisted-bilayer graphene [29–31, 175]. The SU(𝑁)
symmetry is also relevant in the context of Kondo-type physics, which will be discussed
separately in Sec. 1.5.2.

In addition to these condensed-matter systems, where the SU(𝑁) symmetry is usually
imperfect and only approximately realized, the SU(𝑁) FHM is also interesting to study
as an elegant model with a larger symmetry. The first theoretical studies of the SU(𝑁)
FHM date indeed back to the 1980s as a mathematical technique in the context of the
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large-𝑁 expansion [20, 176–178] Starting from a pioneering intuition by Anderson [179],
it was indeed found that the partition function and the correlation functions computed by
expanding perturbatively in 1/𝑁 better approximate the behavior of magnetic alloys [177].

The physics of the SU(𝑁) FHM is richer than the SU(2) case, and it is still largely
unexplored. Above the magnetic ordering temperature, the repulsive SU(𝑁) FHM shows
a transition between a metallic phase and a Mott insulating phase qualitatively similar to
the SU(2) case**. However, remarkable properties emerge when comparing systems with
different values of𝑁, such as Pomeranchuk cooling [70] and universal scaling laws for some
observables [50]. The details of the system’s behavior in this regime, one of this thesis’s
main topics, will be discussed in greater detail in Chaps. 4 and 5.

At lower temperatures, the SU(𝑁) FHM shows a rich phase diagram. Here, we will dis-
cuss the system’s expected behavior below the magnetic ordering temperature for repulsive
interactions. Moreover, we will mainly focus on the square lattice, the most relevant case
for the experiments discussed in this thesis. In this case, temperatures necessary to ob-
serve some form of magnetic ordering are predicted to be within one order of magnitude
compared to those that we can currently reach [37].

At half filling††, the ground state of the SU(2) FHM is a spin-density wave with long-
range antiferromagnetic (AFM) ordering [17, 182]. It has been proposed that for 𝑁 = 3,
a similar type of ordering appears in the form of a flavor density wave, which breaks the
SU(3) symmetry, causing a redistribution of the particles in two sublattices, such that two
components prefer one sublattice and the third one the other [37]. For 𝑁 = 4, a long-range
AFM order should still survive with a much smaller Neel moment value than SU(2) [39].
For𝑁 = 6, numerical studies report that the residual Neel moments are absent or extremely
small [37, 39]. For 𝑁 > 6, the ground state has been proposed to be a staggered flux
phase, where atom currents circulate in opposite directions in neighboring plaquettes. In
this case, time-reversal and lattice translation symmetries are expected to be broken but
not the SU(𝑁) symmetry. [37, 66].

At finite temperatures and in the intermediate-to-strong interaction regime, the sys-
tem is expected to go from the ground state to the paramagnetic phase through different
phases. In particular, the phase diagram for SU(3) and filling ⟨�̂�⟩ = 1 seems to show 3-
sublattice AFM ordering at low temperatures and 2-sublattice AFM ordering for higher
temperatures [41, 43, 183] [see Fig. 1.2(b-c)]. For 𝑁 = 4 on a square lattice and filling
⟨�̂�⟩ = 1, the system should similarly show a competition between 2-sublattice ordering and
plaquette-ordered AFM [51] [see Fig. 1.2(d-e)]. For 𝑁 = 6 on a square lattice, little is
known about the phase diagram, but it has been proposed that at half-filling, the system
moves from a Mott AFM ordering to a valence bond solid (VBS) ordering as a function
of the interaction [48].

In the strong coupling regime, the SU(𝑁) FHM can be mapped to the Heisenberg model,
which describes a system of localized spins interactingwith each other through an exchange
interaction. The SU(𝑁) Heisenberg model, also far from being completely understood,

**In SU(2) there is a crossover between the two phases. However, this is not the case in SU(𝑁) for arbitrary
filling, where phase transitions have also been predicted [44].

††In the SU(𝑁) generalization, half-filling is defined as ⟨�̂�⟩ = 𝑁/2.
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Figure 1.2 | Phase diagram of the SU(𝑁) FHM. (a) At high temperatures, the system transitions from a

metallic phase to a Mott insulating phase as a function of the interaction strength. At low temperatures,

quantum magnetism emerges. Subfigure adapted from Ref. [180]. (b) For 𝑁 = 3 at ⟨�̂�⟩ = 1 in a cubic lat-

tice, for low temperatures and intermediate-to-strong interactions, the system is believed to show two

different antiferromagnetic (AFM) phases. A similar phase diagram with smaller temperatures for the

phase transitions is expected for the square lattice [43]. Subfigure adapted from Ref. [43]. (c) The two

AFM phases for 𝑁 = 3 are characterized by a 3-sublattice ordering at low temperature and different types

of 2-sublattice ordering at intermediate temperature (color density wave and color selective antiferro-

magnetic state), breaking the SU(3) symmetry. Subfigure adapted from Ref. [43]. (d) For 𝑁 = 4 at ⟨�̂�⟩ = 1
in a square lattice, for low temperatures and intermediate-to-strong interactions, the system is believed

to show two different AFM phases. Subfigure adapted from Ref. [51]. (e) The two AFM phases for 𝑁 = 4
are characterized by plaquette ordering (AFM-I) at low temperatures and 2-sublattice ordering (AFM-II)

at intermediate temperatures. In interpreting the colored symbols, the length of the whole vertical bar

corresponds to 𝑛 = 1. At the same time, its relative filling by different colors indicates the fraction 𝑛𝛼 of
the components on the lattice site. Subfigure adapted from Ref. [51]. (f) For 𝑁 > 6, it has been proposed
that the ground state shows a staggered flux phase containing alternating phase currents. Subfigure

adapted from Ref. [181].

has been the subject of several theoretical studies and shows a rich phase diagram with
additional exotic phases [36, 37, 54, 55, 57, 58].

The SU(N) Fermi-Hubbard model with ultracold atoms

The FHM can be realized experimentally with ultracold atoms in optical lattices [63]. In
an optical lattice, the hopping energy 𝑡 is given by

𝑡 = −∫dr𝑤∗(r)(−
ℏ2

2𝑚
∇2 +𝑉lat(r))𝑤(r), (1.6)
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where 𝑉lat(r) is the periodic lattice potential, 𝑚 is the atomic mass, and 𝑤(r) are the Wan-
nier functions of the lattice [184]. The on-site interaction energy𝑈 describes the interaction
energy of two atoms occupying the same lattice site and is given by

𝑈 =
4𝜋ℏ2𝑎

𝑚
∫dr|𝑤(r)|4, (1.7)

where 𝑎 is the s-wave scattering length. The ratio 𝑈/𝑡 can be tuned with the lattice depth
𝑉lat. We will return to the determination and calibration of the Hubbard parameters in
our experiment in Chap. 5.

In the SU(𝑁 > 2) case, the FHM has already been the object of several experimental
studies. A substantial effort has been placed in probing the thermodynamics and the short-
range correlations of the model for different spin degeneracies and lattice geometries [70,
73–76, 185]. However, the SU(𝑁) generalization remains much less explored and under-
stood compared to the SU(2) case [65]. This is particularly true in two dimensions, where
the thermodynamics of the SU(2) FHM at intermediate temperatures have been studied
extensively [186–202]. The characterization and probing of the SU(𝑁 > 2) FHM in two
dimensions and for intermediate temperatures will be the main focus of Chaps. 4 and 5.

1.4 Interorbital physics

The SU(𝑁) models presented in Sec. 1.3 can be simulated with ultracold ytterbium atoms
in the ground state. In the following chapters, the clock transition will mainly appear as
a diagnostic and calibration tool. However, it can also allow for quantum simulation of
more complex systems, such as the multiorbital Fermi-Hubbard models, as we will see in
Sec. 1.5, or to implement spin shelving techniques and sophisticated readout schemes [99].
Furthermore, the clock transition can be used in principle to probe the occupancies of the
SU(𝑁) FHM in alternative to the photoassociation technique that wewill present in Sec. 5.2.
In this section, we will review some essential properties of the clock transition for the two
fermionic isotopes of ytterbium, 171Yb and 173Yb.

Polarizability and state-(in)dependent lattices. The optical potential seen by an
atom is proportional to the intensity of the lattice beams. The proportionality constant is
given by the polarizability 𝛼, which depends on the electronic state of the atom. This means
that the potential seen by atoms in the ground state 1S0 ≡|𝑔⟩ can be different from that
seen by atoms in the excited state 3P0 ≡|𝑒⟩, and the wavelength of the light can control
their amplitudes. Fig. 1.3 shows the ratio of the polarizability of the clock and ground
states of 173Yb as a function of the wavelength calculated in 𝐿𝑆 coupling [203]. The ratio
between the polarizability of the clock and the ground states is important for quantum
simulation because it defines the mobility of the atoms in the two states. When the ratio of
the polarizability is one, the atoms in the two states see the same potential and are equally
mobile. In this case, the wavelength is calledmagic. Magic lattices are particularly suitable
for metrology and clock-line spectroscopy because the differential spectroscopic shifts due
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Figure adapted from Ref. [203].

to the light intensity are minimized [96, 97]. In our experiment, we use lattices at the
magic wavelength of 𝜆 ≃ 759nm [96]. When the ratio is different from one, the atoms
in the two states see different potentials and are not equally mobile. We talk in this case
of state-dependent lattices (SDL). State-dependent lattices are particularly suitable for the
study of mass-imbalanced mixtures (see Sec. 1.5.1) or Kondo-type physics (see Sec. 1.5.2),
where one of the species is localized, and the other one is mobile. In our experiment, we
have an SDL at the wavelength of 670 nm, where the atoms in the clock state are more
localized than the ones in the ground state with a polarizability ratio of about 3.3 [203].
Another interesting limit is given by the tune-out wavelengths, where the polarizability
for one of the two states is zero. Tune-out wavelengths have been recently demonstrated
for both strontium and ytterbium [205, 206] and could represent in the future a valuable
resource for quantum simulation [67, 99].

Interorbital interactions. Atoms in different electronic states interact with each other
with short-range (in bulk) or on-site (in lattice) interactions. Here, we will focus on the
interorbital interactions in a deep optical lattice between only two spin components, such
as 𝑚𝐹 =±1/2 in 171Yb or 𝑚𝐹 =±5/2 in 173Yb, each of which in different orbitals |𝑔⟩ and
|𝑒⟩. We simplify the notation by indicating the spin with | ↑⟩ and | ↓⟩. In the absence
of a magnetic field, the eigenstates of the system are given by the total antisymmetric
combination of the electronic and spin degrees of freedom:

|𝑒𝑔±⟩ =
1
2
(|𝑔𝑒⟩±|𝑒𝑔⟩)⊗(| ↑↓⟩∓| ↓↑⟩). (1.8)
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Figure 1.4 | Interaction spectrum for 173Yb. (a) Spectrum for 𝑁 = 2 with 𝑚𝐹 = ±5/2. (b) Spectrum for

𝑁 = 6 with all the 𝑚𝐹 components. Continuous lines represent single-particle transitions (the 𝑚𝐹 compo-

nents are indicated on the right). In the case of 𝑁 = 2, they correspond to |𝑒 ↑⟩ and |𝑒 ↓⟩. Interaction
energy shifts are indicated by continuous-dashed lines with the color mixture corresponding to the 𝑚𝐹
components. For 𝑁 = 2, the two interaction branches are given by |𝑒𝑔±⟩ at zero magnetic field, split by

an energy 2𝑉
ex
. As a function of the magnetic field, they continuously evolve to |𝑐⟩ and |𝑜⟩. For 𝑁 = 6,

the spectrum is more complex, making clock-line spectroscopy more challenging. The strength of the

transition, which varies among the branches, is not indicated. The spectrum has been calculated for a

quasi-2D configuration corresponding to the vertical lattice presented in Chap. 2 and a square lattice

with in-plane lattice depth of 𝑉
lat
= 30𝐸

rec
(𝜆 = 760nm) per axis. Inset of (a): Illustration of the interatomic

potentials and how the differential Zeeman shift induces a detuning between |𝑜⟩ and |𝑐⟩ and originates

the orbital Feshbach resonance.

Similar to the intraorbital case of Eq. (1.7), each interorbital state is characterized
by an interaction energy

𝑈±
𝑒𝑔 =

4𝜋ℏ2𝑎±
𝑒𝑔

𝑚
∫dr|𝑤𝑒(r)|

2|𝑤𝑔(r)|
2, (1.9)

where 𝑎±
𝑒𝑔 are the associated interorbital scattering lengths and 𝑤𝑒,𝑔(r) are the Wannier

functions of the two orbitals.
At finite magnetic field, the differential Zeeman shift Δ𝐵

‡‡ mixes the two eigenstates
|𝑒𝑔±⟩ according to the Hamiltonian§§ [209]

�̂� =(
𝑈+
𝑒𝑔 Δ𝐵
Δ𝐵 𝑈−

𝑒𝑔
), (1.10)

which results in two eigenenergy branches

𝐸± =𝑉dir±√𝑉2
ex+Δ2

𝐵, (1.11)

‡‡In both the ground and clock states, the Zeeman shift should be the same because 𝐽 = 0 and therefore
proportional to the nuclear magnetic moment. However, because of a spin-induced mixing with the 3P1 state,
there is a differential Zeeman shift Δ𝐵 = 𝛿𝑔Δ𝑚𝐹𝜇B, where 𝜇B is the Bohr magneton and 𝛿𝑔 ≃ 111Hz/G for
173Yb [207] and ≃ −399Hz/G for 171Yb [82]. Furthermore, for more precise studies, an 𝑚𝐹-independent
quadratic Zeeman shift originating from the Zeeman coupling of the 3P0 and 3P1 states should also be taken
into account [203, 208].

§§In the {|𝑒𝑔+⟩,|𝑒𝑔−⟩} basis.
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with 𝑉dir =
1
2 (𝑈

+
𝑒𝑔+𝑈−

eg) and 𝑉ex = 1
2 (𝑈

+
𝑒𝑔−𝑈−

eg). These two terms are also known as
direct and exchange interaction, respectively. In Fig. 1.4(a), we show the spectrum for a
two-component mixture of 173Yb. The characterization of the interorbital interactions for
173Yb (171Yb) has been reported in Refs. [210, 211] (Refs. [82, 212]) and is described in
more detail in Ref. [213] (Ref. [208]). Remarkably, it has been found that the two isotopes
show a different sign of the spin-exchange interaction 𝑉ex, which is positive (negative)
for 173Yb (171Yb). A negative (positive) sign means that the formation of the spin-singlet
(triplet) state is energetically favored. This is particularly relevant for the probing of Kondo-
type physics, as we will see in Sec. 1.5.2, because it allows the probing of different regimes
with the same experimental setup by simply changing the isotope.

Orbital Feshbach resonance. At large magnetic field, the two eigenstates of Eq. (1.8)
become

|𝑜⟩ =
1

√2
(|𝑔 ↑⟩⊗|𝑒 ↓⟩−|𝑒 ↓⟩⊗|𝑔 ↑⟩) =

1

√2
(|𝑒𝑔+⟩+|𝑒𝑔−⟩) (1.12)

|𝑐⟩ =
1

√2
(|𝑒 ↑⟩⊗|𝑔 ↓⟩−|𝑔 ↓⟩⊗|𝑒 ↑⟩) =

1

√2
(|𝑒𝑔+⟩−|𝑒𝑔−⟩). (1.13)

If we focus on the scattering properties of the system, as the magnetic field increases, the
molecular potentials associated with the two states |𝑜⟩ and |𝑐⟩ detune from each other, as
shown in the inset of Fig. 1.4(a). At a particular magnetic field, the potential associated
with the state |𝑜⟩ is brought into resonance with the first bound state, giving rise to an
orbital Feshbach resonance (OFR) [214]. As the resonance is approached, the scattering
properties of the system change, and the scattering length can be freely tuned by varying
the magnetic field as in a magnetic Feshbach resonance [214]. In 173Yb, the OFR is lo-
cated at about 40G [210, 211], while in 171Yb the OFR is located at about 1300G [82].
The difference between the two isotopes is exciting from a quantum simulation point of
view, as it makes the properties of the two isotopes to some extent complementary and
facilitates the study of different interaction regimes. More details about the physics of the
OFR and their characterization in the cases of 173Yb and 171Yb can be found in Ref. [211]
and Ref. [208], respectively.

Addressing the clock transition. From a technical point of view, selectively addressing
the clock transition and performing coherent manipulations of the system requires a narrow
laser. This is particularly critical for clock-line spectroscopy of mixtures with more than two
components, where the spectrum can be particularly complex [see Fig. 1.4(b)]. Moreover,
both short and long-term stability are necessary for coherent addressing and reproducibil-
ity of initial conditions for measurements requiring many repetitions. In our experiment,
we use a fully commercial laser system¶¶ combined with an external, home-build cavity for
frequency-doubling, locked to a commercial ultra-low-expansion (ULE) cavity through a
Pound-Drever-Hall lock. This allows for Fourier-limited pulses with full-width at half max-
imum of approximately 200Hz, day-to-day drifts of about 100Hz***, and Rabi oscillations

¶¶Toptica TA Pro.
***After compensating for the linear drift of the cavity using feed forward.
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with frequencies up to 2𝜋⋅10kHz. More details about the technical implementation of the
clock laser system can be found in Refs. [208, 209, 215].

1.5 Multiorbital Fermi-Hubbard model

The clock state can be used as an additional degree of freedom to realize a multiorbital
Fermi-Hubbard model [67–69]. In this case, the Hamiltonian contains a single-band de-
scription for each orbital and additional interorbital terms. More concretely [67],

�̂� = −𝑡𝑔 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝑔𝜎 ̂𝑐𝑗𝑔𝜎+h.c.)+
𝑈𝑔𝑔

2
∑
𝑖,𝜎≠𝜏

�̂�𝑖𝑔𝜎�̂�𝑖𝑔𝜏−∑
𝑖,𝜎

𝜇𝑖𝑔�̂�𝑖𝑔𝜎

−𝑡𝑒 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝑒𝜎 ̂𝑐𝑗𝑒𝜎+h.c.)+
𝑈𝑒𝑒

2
∑
𝑖,𝜎≠𝜏

�̂�𝑖𝑒𝜎�̂�𝑖𝑒𝜏−∑
𝑖,𝜎

𝜇𝑖𝑒�̂�𝑖𝑒𝜎

+𝑉ex ∑
𝑖,𝜎≠𝜏

̂𝑐†𝑖𝑔𝜏 ̂𝑐†𝑖𝑒𝜎 ̂𝑐𝑖𝑔𝜎 ̂𝑐𝑖𝑒𝜏+𝑉dir ∑
𝑖,𝜎,𝜏

�̂�𝑖𝑔𝜎�̂�𝑖𝑒𝜏, (1.14)

where ̂𝑐†𝑖𝛼𝜎, ̂𝑐𝑖𝛼𝜎, �̂�𝑖𝛼𝜎, 𝑡𝛼, 𝑈𝛼𝛼 and 𝜇𝑖𝛼 represent the fermionic creation and annihilation
operators, the number operator, the hopping amplitude, the on-site interaction strength
and the chemical potential for the ground state (𝛼 = 𝑔) and the clock state (𝛼 = 𝑒), respec-
tively. 𝜎 and 𝜏 are the spin indices. In addition to the couple of intraorbital terms (𝑡𝛼,𝑈𝛼𝛼)
analogous to the single-orbital case, the Hamiltonian contains the on-site interorbital spin-
exchange interaction 𝑉ex and the on-site direct interorbital interaction 𝑉dir which we have
derived at the beginning of this section. The Hamiltonian allows for the realization of more
complex models to the single-orbital case, in principle, closer to the real behavior of con-
densed matter systems. The atoms in one of the orbitals can indeed be mapped to the
conduction electrons, while the atoms in the other orbital can be mapped to other types
of particles, such as electrons in internal shells (f-shell or d-shell), or impurities [67]. Fur-
thermore, each orbital is characterized by an SU(𝑁) symmetry, and the coupling between
the two orbitals can be tuned by exploiting the orbital Feshbach resonance [but the SU(𝑁)
degeneracy is lifted by the magnetic field].

In the following two subsections, we will briefly describe two of the most interesting
systems that can be realized with the multiorbital FHM, namely the mass-imbalanced FHM
and Kondo-type models.

1.5.1 Mass-imbalanced Fermi-Hubbard model

Starting from Eq. (1.14), by choosing the right initial state and tuning the interaction pa-
rameters in a controlled way, it is possible to realize a mass-imbalanced Fermi-Hubbard
model:

�̂� = − ∑
⟨𝑖,𝑗⟩,𝛼∈{𝑔,𝑒}

𝑡𝛼 [ ̂𝑐†𝑖𝛼 ̂𝑐𝑗𝛼+h.c.]+𝑈𝑒𝑔(𝐵)∑
𝑖
�̂�𝑖𝑔�̂�𝑖𝑒. (1.15)
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This limit can be achieved by initializing the system in two |𝑔,𝜎⟩ and |𝑒,𝜏⟩ states (spin
𝜎 ≠ 𝜏) in the open channel of the Feshbach resonance described in Sec. 1.4 and tuning the
magnetic field to a high value. As a function of the magnetic field, the spin exchange is
suppressed, and 𝑈𝑒𝑔 becomes the dominant interorbital interaction. With only one state
per orbital, the intraorbital interactions 𝑈𝑔𝑔 and 𝑈𝑒𝑒 can be neglected and the Hamiltonian
reduces to Eq. (1.15). By operating in a state-dependent lattice potential, the deep poten-
tial seen by the |𝑒⟩ atoms compared to the |𝑔⟩ atoms translates to a larger effective mass,
and we can designate the |𝑒⟩ atoms as heavy and the |𝑔⟩ atoms as light.

Heavy-light mixtures such as the one described in the mass-imbalanced Fermi-Hubbard
model are appealing to study in the context of thermalization and ergodicity of non-integrable
quantum systems. Some special closed quantum systems experience a failure of thermaliza-
tion and show non-ergodic behavior. Non-ergodicity arises, for example, due to many-body
localization (MBL) in the presence of disorder [216–219]. In recent years, particular atten-
tion has been put into trying to understand if other mechanisms can lead to non-ergodicity
in closed quantum systems [219–223]. In particular, the question of whether thermaliza-
tion can be evaded in heavy-light mixtures where the light particles get localized through
the interaction with the heavy particles has been the object of several theoretical studies.
This situation has been first studied in the context of helium mixtures. In particular, it
has been observed that in a mixture where few 3He particles diffuse in a crystalline struc-
ture of 4He, the 3He particles can form local immobile clusters through interactions [220].
In this context, the mass-imbalanced Fermi-Hubbard model can be used as a toy model
to study how the interplay between interactions and mass imbalance affects thermaliza-
tion [220–223]. Several studies have shown how a dynamical type of MBL is possible in
these systems, although other studies suggest that a very slow relaxation at late times is ac-
tually expected [221, 222, 224–226]. Numerical simulations are particularly challenging
because of the unfavorable scaling of the Hilbert space and finite-size effects. Therefore,
experimental realizations with cold atoms are extremely valuable to study this model. In
particular, transport properties can be probed with the help of an optical gradient dis-
placing the equilibrium position and by observing the system’s relaxation as a function of
time, the interaction strength, and the mass imbalance ratio. This model has been recently
probed in our experiment [89], and the interested reader can find more information about
the implementation and results in Ref. [227].

1.5.2 Kondo-type physics

The existence of a spin-exchange mechanism between the two orbitals makes alkaline-
earth-like atoms a promising platform to study Kondo-type physics. Kondo physics is a
paradigmatic model for strongly correlated systems, and its demonstration with ultracold
atoms would be of great interest and an important step toward extending the toolbox
of quantum simulators beyond Hubbard-like models. Although there have been attempts
at realizing Kondo-type systems with ultracold alkali atoms [36, 37, 228], the lack of a
suitable spin-exchangemechanism has so far prevented the observation of the Kondo effect.
On the other hand, the spin-exchange mechanism described in Sec. 1.4 makes alkaline-
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earth-like atoms promising candidates [67–69]. Several theoretical works have already
studied the possibility of probing Kondo-type physics in these systems, both in its single-
impurity and Kondo lattice models [67–69, 84, 141, 229–232].

From an experimental point of view, the spin exchange mechanism has been demon-
strated and characterized for both fermionic isotopes [79, 80, 82, 212]. Moreover, a
confinement-basedmechanism for tuning the spin exchange has also been demonstrated [78].

Single-impurity Kondo model

The Kondo effect is a many-body phenomenon arising from a spin-exchange interaction
between a localized spin (the impurity) and the conduction electrons [3, 24, 233]. Orig-
inally, the Kondo effect was first observed in metals containing magnetic impurities, such
as Cu or Au doped with Mn or Fe. In these materials, it was observed that below a crit-
ical temperature, the resistivity of the material increases logarithmically with decreasing
temperature [5], which is in contrast with the otherwise expected monotonic power-law
behavior [184]. The mechanism at the origin of this behavior was explained first by Jun
Kondo in 1964 [3]. The localized spin is screened by the conduction electrons, which form
a singlet state with the localized spin. The corresponding Hamiltonian is [24]

�̂� =∑
k,𝜏

𝜖k ̂𝑐†k𝜏 ̂𝑐k𝜏+𝐽S ⋅∑
k,k’

̂𝑐†k𝜏𝜎𝜏𝜏′ ̂𝑐k’𝜏′ , (1.16)

where ̂𝑐†k𝜏 ( ̂𝑐k𝜏) creates (annihilates) a conduction electron with momentum k and spin 𝜏,
𝜖k is the energy of the conduction electrons, S is the localized spin, 𝜎 the Pauli matrices
and 𝐽 is the spin-exchange coupling constant.

The multiorbital FHM Hamiltonian of Eq. (1.14) can be mapped to the single-impurity
Kondo model of Eq. (1.16) [83, 84, 89]. This can be done by identifying the localized
spin with a particle in the clock state and the conduction electrons with particles in the
ground state in a state-dependent lattice suppressing themobility of the clock state (𝑡𝑒 ≈0).
Furthermore, 𝐽 maps to 𝑉ex and, in 171Yb, 𝑈𝑔𝑔 can be considered negligible. However,
in addition to the terms in Eq. (1.16), the cold atoms Hamiltonian also contains a term
∝ (𝑉dir−𝑉ex)∑𝜎 �̂�𝑔𝜎 [89]. This term makes quantum simulation more difficult because it
suppresses the coupling between the impurity and the conduction electrons and makes de-
tecting the Kondo effect more challenging [89]. Potential-shaping manipulation around
the impurity site might nevertheless allow the suppression of this term in our experi-
ment [84, 89].

Kondo Lattice Model

The single-impurity Kondo model can be extended to a lattice of localized spins, which
interact with a bath of conduction electrons with a spin-exchange mechanism. This model
is known as the Kondo Lattice Model (KLM) [85]. This model is believed to describe the
physics of heavy fermions, a special class of materials, some of which present unconven-
tional superconductivity and non-Fermi liquid behavior at low temperatures [8, 24, 86].
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In these materials, the conduction electrons are strongly coupled to a lattice of localized d-
or f-shell electrons. The Hamiltonian of the KLM reads [85]

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+𝐽 ∑
𝑖,𝜎,𝜏

̂𝑐†𝑖𝜎 ̂𝑓†𝑖𝜏 ̂𝑐𝑖𝜏 ̂𝑓𝑖𝜎, (1.17)

where ̂𝑐†𝑖𝜎 ( ̂𝑐𝑖𝜎) creates (annihilates) a conduction electron with spin 𝜎 at site 𝑖, ̂𝑓†𝑖𝜎 ( ̂𝑓𝑖𝜎)
creates (annihilates) a localized electron with spin 𝜎 at site 𝑖, 𝑡 is the hopping amplitude
between nearest-neighbor sites and 𝐽 is the spin-exchange coupling constant.

In the KLM, the Kondo effect competes with the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [234–236], which is a long-range interaction between the localized spins medi-
ated by the conduction electrons. The phase diagram of the KLM is very rich and presents
a variety of phases [8, 24, 86]. The RKKY interaction scales as 𝐸RKKY ∼ 𝐽2𝜌, while the
Kondo-screening scales as 𝐸K ∼ exp[−1/(𝐽𝜌)], where 𝜌 the density of states of the conduc-
tion electrons at the Fermi energy [85, 237]. The RKKY interaction is therefore dominant
at small couplings, where magnetic order is favored, while the Kondo effect dominates at
large couplings, where a Fermi liquid phase is stabilized [238]. At low temperatures and
near the quantum critical point at 𝐸RKKY ∼ 𝐸K, the competition between the Kondo effect
and the RKKY interaction is believed to give rise to the unconventional superconductivity
observed in heavy fermions such as CeCu2Si2 (critical temperature 𝑇𝑐 ≃ 0.7K [239]) and
CeCoIn5 (𝑇𝑐 ≃ 2.3K [240]) [12].

The KLM can explain many of the properties of heavy fermions, but the model is not
yet fully understood [86]. It is, therefore, desirable to implement the KLM in a quantum
simulator and study its properties in a controlled environment [65]. As in the case of
single-impurity Kondo models, the KLM could be simulated with ultracold atoms starting
from the Hamiltonian of Eq. (1.14) by mapping the conduction electrons to atoms in the
ground state, d- or f-shell electrons to the clock state, 𝐽 to 𝑉ex and setting 𝑡𝑒 =𝑈𝑔𝑔 = 0 with
an opportune choice of the lattice and the isotope [67–69]. Furthermore, in the KLM, the
term proportional to 𝑉dir becomes a global energy shift and can be neglected.

The KLM can also be generalized to the SU(𝑁) case. This extension has been originally
treated in the context of the 1/𝑁 expansion [241] to describe systems with rare earth
impurities, particularly cerium and ytterbium [24]. In the SU(𝑁)-symmetric extension,
it has been pointed out that the RKKY interaction scales as 1/𝑁, while the Kondo effect
is largely 𝑁-independent [231]. Pioneering proposals of simulating the SU(𝑁) KLM with
ultracold alkaline-earth-like atoms [67, 68] have recently been complemented by more
detailed analysis [231, 232].

1.6 Preparation of 3D SU(N) degenerate Fermi gases

This section briefly summarizes the first part of the experimental sequence, which is com-
mon to all the experiments presented in the following, and which consists of capturing and
cooling 173Yb atoms to quantum degeneracy in a 3D optical, far-detuned dipole trap. In
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Figure 1.5 | Schematic of the experiment setup, including relevant laser beams. ZS is the Zeeman

slower beam at 399 nm. The MOT beams are at 556 nm and are six (four horizontal and two vertical). PA

and OSG are the photoassociation and optical Stern-Gerlach beams at 556 nm, respectively. L1, L2 and

L3 are retro-reflected lattices at 𝜆 = 760nm. SDL1 and SDL2 are retro-reflected lattices at 𝜆 = 670nm.

vLAT is the new vertical lattice with a shallow angle at 𝜆 = 760nm and spacing 3.9µm. The crossed

dipole trap is composed of hDT and mDT. hDT is the horizontal dipole trap at 1064 nm. mDT is the

vertical dipole trap at 760 nm. vDT is the vertical dipole trap at 1064 nm used for tilted evaporation (see

Chap. 2). The clock excitation can be performed on all three principal optical axes given by L1, L2, and

L3. The repumper beam is at 1389 nm. In-situ absorption imaging is performed along the vertical axis

through a multiplet objective to an EMCCD camera at 399 nm. Time-of-flight (tof) absorption imaging is

performed with a horizontal beam at 399 nm. Sketches adapted and updated from Ref. [203].

Fig. 1.5, we show a schematic of our experimental setup with the geometry of the most rele-
vant laser beams. The laser system and this part of the experimental sequence are very sim-
ilar to what has already been described in the theses of other Ph.D. students (see Refs. [180,
203, 208, 209, 211, 227]) and it has not been significantly changed from a technical point
of view. Therefore, we refer the reader to these works for a more detailed description of the
experimental setup and sequence. In Chap. 2, we will describe the most important techni-
cal updates made to the experimental setup, namely a vertical lattice with large spacing,
which allows the loading of the atoms into a single layer. In the same chapter, we will also
describe the second part of the experimental sequence, which consists of preparing a 2D
degenerate Fermi gas as in the new single-plane geometry and the readout techniques.

In our experiment, we first capture oven-heated 173Yb atoms with a Zeeman slower
on the broad blue 1S0 → 1P1 transition and cool them down with a 3D magneto-optical
trap (MOT) on the narrow intercombination 1S0 →

1P3 transition. This sequence part lasts
about 8.5 s. We then load about 1.6 × 10⁶ atoms into a far-off-resonant crossed dipole trap
consisting of a 1064nm horizontal beam (hDT) and a 760nm vertical beam (mDT). With
forced evaporation, we cool down the cloud to the deep quantum degenerate regime in
about 16 s. At the end of this stage of the evaporation, we obtain a spin-unpolarizedmixture
of about 20 × 10³ atoms at 𝑇/𝑇F ≈ 0.10 in a 3D harmonic trap with typical frequencies
(𝜔𝑥,𝜔𝑦,𝜔𝑧) ≃ 2𝜋 ⋅(22,33,191)Hz. In Fig. 1.6, we show the measurement of the equation
of state (EoS) of the gas in this configuration for𝑁 = 3,4 and 6. The𝑁 = 6 case corresponds
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image is the average of two realizations postselected according to similar parameters after c.o.m. align-

ment. (d) Radial profiles of the data in (a)-(c) and fit of a non-interacting Fermi model. (e) Simulation

of the radial profile of non-interacting Fermi gases with the same 𝑁𝑝 and 𝑇/𝑇
F
(among each other) in

a harmonic trap with (𝜔𝑥,𝜔𝑦,𝜔𝑧) = 2𝜋 ⋅ (22,33,191)Hz. More details on the fit model can be found in

Appendix B.2.

to the spin-unpolarized case. The other two cases have been obtained by applying optical
pumping in the early evaporation stage, as described in Sec. 1.7.1.

We emphasize that the cooling scheme we described is for 173Yb. The presence of six
Zeeman levels in the ground state interacting with each other with a large scattering length
makes the evaporative cooling of 173Yb efficient. On the other hand, 171Yb is characterized
by an almost vanishing scattering length in the ground state, which makes evaporative
cooling much more inefficient. Consequently, we sympathetically cool 171Yb with 174Yb,
which has a larger scattering length (both intraspecies and interspecies with 171Yb). The
scheme for preparing a degenerate 171Yb gas is described in detail in Refs. [208, 242].

The end of the forced evaporation in the crossed dipole trap constitutes the usual start-
ing point for all our experiments. Afterward, we typically load the atoms to different lat-
tice geometries depending on the specific project. In addition to the new vertical lattice
with large spacing that we will describe in Chap. 2, we also dispose of three orthogonal
retro-reflected lattices at 𝜆 = 760nm (L1, L2 and L3 in Fig. 1.5) and two retro-reflected
state-dependent optical lattices at 𝜆 = 670nm (SDL1 and SDL2 in Fig. 1.5). Combining
these lattices allows us to prepare various lattice geometries, including 3D cubic lattices,
stacks of 2D planes, and ensembles of 1D tubes. L1 and L2 will be used in Chap. 5 to
generate the in-plane lattices to probe the 2D SU(𝑁) Fermi-Hubbard model.

1.7 Preparing SU(N) mixtures

The cooling scheme described in the previous section allows us to prepare a degenerate
Fermi gas of 173Yb atoms in the spin-unpolarized (𝑁 = 6) case. In order to prepare different
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Figure 1.7 | Optical pumping scheme for preparing SU(3) and SU(4) mixtures in 173Yb. (a) Optical

pumping is done by driving the 1S
0
(𝐹 = 5/2) → 3P

1
(𝐹 = 7/2) transition with circularly polarized light. 𝜎+

light comes from the top, 𝜎− light from the bottom. A magnetic field of 50G lifts the degeneracy of

the 𝑚𝐹 states. (b) Scheme for the preparation of the 𝑁 = 3, 𝑚𝐹 = {−5/2,+3/2,+5/2} state. We drive five

transitions in the order indicated by the number on each arrow. (c) Scheme for the preparation of the

𝑁 = 4, 𝑚𝐹 = {−5/2,−3/2,+3/2,+5/2} state. We drive four transitions (straight arrows) in the order indicated

by the number on each arrow. Atoms decay back to the ground state through different channels (curved

arrows). The duration of each pulse is finely tuned to achieve a final balanced mixture. The width of each

transition indicates a qualitative measure of the pulse duration. Green arrows correspond to 𝜎− pulses,
blue arrows to 𝜎+ pulses.

spin mixtures, we need to apply a spin-selective optical pumping scheme. The preparation
of 𝑁 < 6 mixtures is done in the first part of the sequence before the evaporation. In this
section, we describe the optical pumping scheme we use to prepare mixtures of atoms in
the 𝑁 = 3 and 𝑁 = 4 cases. Moreover, we describe the detection scheme to measure the
number of atoms in each spin state and calibrate their population imbalance.

1.7.1 Optical pumping

In the case of fermionic isotopes, the gas in the crossed dipole trap is a spin-unpolarized
mixture. The balancing is expected as a consequence of the quench of the magnetic field
when transferring the atoms from the MOT. The diabatic switching of the field projects
the original spin mixture into superpositions of spin states, which then dephase during
the evaporation [209].

Other spin mixtures can be prepared with an optical pumping scheme. In our experi-
ment, the optical pumping is performed with circularly polarized beams on the intercom-
bination line in the presence of a magnetic field which lifts the degeneracy of the𝑚𝐹 states
and allows for 𝑚𝐹-selective transitions [see Fig. 1.7(a)]. Here, we will describe the optical
pumping scheme for 173Yb, which is most relevant for the experiments described in the
following chapters. The optical pumping scheme for 171Yb is qualitatively similar, and the
technical details are described in Ref. [208].

In 173Yb, we drive 𝜎± pulses on the 1S0(𝐹 = 5/2)→ 3P1(𝐹 = 7/2) manifold. The Zee-
man splitting in the 3P1 state is of about 600kHz/G/𝑚𝐹 [203] and a magnetic field of 50G
in the vertical direction ensures a lift of the degeneracy of the 𝑚𝐹 states large enough to
enable selective transitions𝑚𝐹 →𝑚𝐹±1with the narrow intercombination line. The pump-
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Figure 1.8 | Optical Stern-Gerlach (OSG) technique for the detection of the population of the different

spin components. (a) Detection of different spin-balanced mixtures. From left to right: 𝑁 = 6, 𝑁 = 4 for

𝑚𝐹 = {−5/2,−1/2,+1/2,+3/2}, 𝑁 = 3 for 𝑚𝐹 = {−5/2,−1/2,+3/2}, 𝑁 = 2 for 𝑚𝐹 = {−5/2,+5/2}, 𝑁 = 1 for 𝑚𝐹 =
{−5/2}. The time of flight is 10ms. The color scale is the same for all images and has been normalized to

the total atom number. (b) Measurement of the spin population for a 𝑁 = 3,𝑚𝐹 = {−5/2,+3/2,+5/2}mixture

(normalized fraction). (b) Measurement of the spin population for a 𝑁 = 4, 𝑚𝐹 = {−5/2,−3/2,+3/2,+5/2}
mixture (normalized fraction). The measurements of (b) and (c) have been performed directly before (light

grey) and after (dark grey) the measurements shown in Fig. 5.4.

ing scheme is based on the fact that, after the excitation, the decay channels from the 3P1
states favor the preservation of the 𝑚𝐹 number [243]†††. In our sequence, we implement
the optical pumping in the crossed dipole trap before the beginning of the 3D evaporation
(see Sec. 1.6). The sequence consists of multiple intensity-stabilized pulses in a specific
order and with different durations (between few µs and 100ms), which are finely tuned
to achieve a final balanced mixture. In Fig. 1.7(b-c), we show the optical pumping scheme
for preparing the 𝑁 = 3 and 𝑁 = 4 mixtures. The balancing of the mixture is controlled
by measuring the population of each spin component with an optical Stern-Gerlach tech-
nique, which is the topic of the next section.

1.7.2 Optical Stern-Gerlach

The distribution of the ground state population in the different spin components can be
measured using an optical Stern-Gerlach (OSG) technique [149, 244]. This technique con-
sists in shining an intense 𝑚𝐹-dependent beam on the atoms, which transfers different
amounts of momentum to the different spin components. After a time-of-flight (tof), the
momentum distribution maps to a spatial distribution, and the population of each spin
component can be measured by absorption imaging. In our case, the spin-dependent force
is provided by a horizontal beam on the green intercombination line. The beam is cir-
cularly (𝜎+) polarized, and it is closely detuned with respect to the transition‡‡‡. In this
regime, the light shift is dominated by the vector light shift, which depends on 𝑚𝐹

§§§. For
173Yb, we typically use a pulse of 1ms in the presence of a transverse magnetic field of

†††The Clebsch-Gordan coefficients and branching ratio for this transition can be found in Ref. [203].
‡‡‡ 1S0(𝐹 = 5/2)→ 3P1(𝐹 = 7/2) for 173Yb and 1S0(𝐹 = 1/2)→ 3P1(𝐹 = 3/2) for 171Yb.
§§§See Ref. [203] for the 𝑚𝐹-dependency of the polarizability for the 3P1 state of 173Yb estimated in 𝐿𝑆

coupling.
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20G and a bias vertical field of 1G. We detune the beam by 100MHz and choose a large
beam size so that inhomogeneities in the beam profile do not significantly affect the force
applied throughout the cloud.

In Fig. 1.8(a), we show the OSG detection images for different spin mixtures after a
time of flight. The OSG detection is usually done in the 3D dipole trap, where the atom
number and the signal-to-noise ratio are higher. By counting the number of atoms in the
ROI corresponding to each spin component, we can optimize the optical pumping (see
Sec. 1.7.1) to obtain spin-balanced mixtures. Fig. 1.8(b-c) shows the fraction of total atoms
per spin component for calibrated SU(3) and SU(4) mixtures, respectively. We find that
after calibration, the standard deviation of the population of the selected spin components
is typically below 5% per component for 𝑁 = 6 and 𝑁 = 3 and below 8% for 𝑁 = 4. The
residual fraction of unwanted spin components is below 5% per component. Moreover, the
calibration is stable over time, as shown in Fig. 1.8(b-c) where we show the results of two
OSG measurements performed on consecutive days with unchanged calibration.

In principle, we can also tune the ratio between the spin components to arbitrary val-
ues. This might allow future studies of the SU(𝑁) symmetry breaking in the models of
interest, including orbital-selective Mott transitions [76, 245–247] and itinerant ferromag-
netism [153].



CHAPTER 2

Preparation and detection techniques of

quasi-2D SU(N) Fermi gases

This chapter discusses the experimental methods for preparing and detecting SU(𝑁) Fermi
gases in a single layer. We begin by describing the new vertical lattice setup and the techni-
cal upgrades enabling its implementation in Sec. 2.1. Next, in Sec. 2.2, we cover the loading
of atoms into a single plane, the calibration of the vertical lattice properties based on atomic
responses, and the optimization of the loading procedure to obtain a cold sample. Finally,
in Sec. 2.3, we review the techniques to detect atoms in the single plane and calibrate the
imaging system. The techniques described in this chapter serve as the foundation for the
state preparation and detection of the results presented in Chap. 3 and 5.

2.1 The new vertical lattice

In previous projects, our experiment investigated physics in different geometries, including
a 3D cubic lattice [73, 78, 80, 82, 211], stacks of 2D planes [80, 82, 207] and ensembles
of 1D tubes [78, 89]. In most cases, we used a retro-reflected vertical lattice at 𝜆 = 760nm
with a spacing of 𝜆/2. Retro-reflected lattices are convenient to set up and stabilize, but the
small spacing makes it difficult to load atoms into a single plane and probe gases in a pure
2D geometry. In particular, we could typically load 7-10 planes depending on temperature,
total atom number, and loading scheme [209].

Several techniques have been proposed and implemented to study atomic gases in a
single 2D plane in the ultracold quantum gases community. These include the increase
of the confinement of the gas before loading into the central plane of a vertical lattice,
either magnetically [248] or optically [249, 250], the removal of atoms from undesired
planes by exploiting or inducing some form of local addressability [123, 251–253], the use
of evanescent wave surface traps [254–256], the loading into a lattice with large spacing,
either retro-reflected [257] or generated by two beams interfering with a small angle [258]
(also with a tunable spacing [259, 260]) and the preparation of a minimum of a potential
along the vertical direction by using non-Gaussian beam profiles [249].

In our case, implementing compression-based techniques in the old retro-reflected lat-
tice is particularly challenging because of the Fermi pressure. Consequently, we have opted

27
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Parameter Value

Wavelength 𝜆 760nm
Half-angle 𝜃 5.6(4)°
Lattice spacing 𝑑lat 3.9(3) µm
Beam waists (𝑤ℎ,𝑤𝑣) [248(13),32(2)]µm
Maximal power 𝑃max 1.8W
Maximal depth 𝑈0 ≃103𝐸rec
Vertical bandgap Δ𝑧 2𝜋 ⋅3.95(1)kHz
In-plane confinement (𝜔𝑥,𝜔𝑦) 2𝜋 ⋅ [23.5(9),30(1)]Hz
Maximal atom number in single plane 𝑁max

𝑝 ≲11×103

Table 2.1 | Summary of the most relevant calibrated parameters for the new vertical lattice. The

depth, bandgap, and confinement are calculated for the maximal power 𝑃max. The recoil energy is

𝐸
rec
= ℏ2/(2𝑚𝜆2).

for a new lattice with larger spacing generated from two beams intersecting at a small half-
angle 𝜃 and producing a standing wave with 𝜆eff = 𝜆/sin𝜃. In this way, we can maintain
the wavelength 𝜆 = 760nm, which is magic for the 1S0 → 3P0 transition and, therefore,
suitable for clock-line spectroscopy. At the same time, the larger spacing enables the load-
ing of all the atoms to the central plane without any additional “slicing” process selectively
removing atoms from undesired planes. In order to generate the lattice with this approach,
a single light source is split into two outgoing beams, which are later recombined to in-
terfere at the atoms’ position. Particular attention must be paid to stabilizing the relative
phase between the two paths, which might otherwise cause instability in the interference
pattern and heat the atoms. The splitting is usually done with a combination of mirrors
and beamsplitters. In our case, we have decided to adopt a novel and original approach by
utilizing a Kösters prism, which we will describe in the next section.

Kösters prisms are rarely used in the context of ultracold atoms experiments [261].
However, they enjoy a long history of applications in precision interferometry, metrology,
and testing of optical components [262–270].

Many results presented in this section have also been reported in Ref. [271], which
contains additional technical details and numerical simulations.

2.1.1 Kösters prism

In our new shallow-angle vertical lattice, the source beam is split in two with a Kösters
prism [272, 273], a beam splitter consisting of two identical and specially designed prisms
optically contacted or cemented together (see Fig. 2.1). The incoming beam enters the
prism perpendicular to one of its faces and splits in two at the interface between the halves.
After a total reflection, it results in two parallel outgoing beams with symmetric properties
with respect to each other. These two beams are then focused and recombined with a single
lens at the atoms’ position to generate the vertical lattice. With this scheme, we reduce the
number of optical components necessary for the lattice to two, which is beneficial for the
overall stability of the setup. The distance between the two parallel beams (and, therefore,
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Figure 2.1 | Generation of a vertical lattice with a Kösters prism (not to scale). The source beam (A)

splits into two paths at the interface between the two halves of the prism. The two beams exit parallel

to each other and are focused at the atoms’ position (B) to create a standing wave potential. By moving

the source beam perpendicular to the entry point (purple arrows), the spacing of the lattice can be tuned.

Sketch adapted from Ref. [271].

the angle and the lattice spacing) can be tuned by changing the entry point of the source
beam in the prism (see Fig. 2.1). In principle, this tuning can also be done dynamically
during the experiment. In this first iteration of the setup, we found it unnecessary to im-
plement such a feature and, therefore, we have opted for a fixed configuration. However,
an upgrade toward an accordion-type lattice should also be possible.

2.1.2 Lattice setup

The Kösters prism that we use has a length of 40mm and an height of 20mm*. We position
the prism near the chamber (see Fig. 2.2) to minimize the beam path and improve the
overall stability of the lattice. We use a lens with 𝑓 = 150mm (two-inch diameter) to focus
the outgoing beams at the atoms’ position. The lens is half-cut to avoid overlap with the
MOT beams, and it is shared with the horizontal dipole trap (hDT) beam and the in-plane
retro-reflected L2 lattice.

To add the Kösters prism, we modify and adapt the hDT and L2 setups (see Fig. 2.2).
In particular, we now overlap the hDT with the new vertical lattice with a dichroic mirror
before the focusing lens. The hDT setup has been modified to recover similar beam waists
(𝑤𝑣,𝑤ℎ) ≃ (13,88)µm and shape ratio at the atoms’ position as before the upgrade. On
the backside of the chamber, we have added a symmetrically positioned defocusing lens,
identical to the focusing one, to recover the two parallel beams. After this lens, most of
the power is reflected through a beam splitter to a beam dump. On the other port of the
beam splitter, we collect a small fraction of the power to observe and debug the interference
pattern with a camera after an additional refocusing step. We initially envisioned a possible
mechanism to actively stabilize the lattice based on the camera’s signal. However, we have
observed a very stable interference pattern without active stabilization and we currently
rely solely on the passive stability.

*B. Halle Nachfl. GmbH, model IKP 040. We use the cemented version: although offering better absorption
properties, the optically contacted version offered by the company specifies larger tolerances for rotational
misalignments, which would result in a much worse overlap for the lattice potential. See also Ref. [271] for
additional considerations on this choice.
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New vertical lattice

Vertical lattice

RB

Figure 2.2 | Modifications to the experimental setup (see also Fig. 1.5) to implement the vertical lattice

(not to scale). Part of the setup has been rebuilt for the horizontal dipole trap and the in-plane lattice

L2 to accommodate the new vertical lattice. Abbreviations: FC - Fiber coupler, M –Mirror, BD – Beam
dump, PBC – polarizing beamsplitter cube, PD – Photodiode, BS –Beam sampler, DM –Dichroic mirror,

PM – Piezo-actuated mirror, RB - Razor blades. Sketch adapted from Ref. [271].

The focusing and defocusing lenses are also shared with the in-plane lattices L2 and
SDL-2 and with the clock excitation’s beam along this axis. The corresponding setups have
been partially rebuilt to fit the new geometry. In particular, the beam-shaping telescope of
L2 has been modified, and the new beam waists at the atoms are (𝑤𝑣,𝑤ℎ) ≃ (30,160)µm
[they were (𝑤𝑣,𝑤ℎ) ≃ (40,160)µm before the upgrade].

Multi-axis stage and control of the degrees of freedom

The Kösters prism is mounted on a custom multi-axis stage made out of aluminum (see
Fig. 2.3), which shields the prism from dust and air currents as well as possible. The mount
is equipped with goniometers and translation stages, which allow us to tune all its four de-
grees of freedom: roll, yaw, pitch, and vertical displacement [see Fig. 2.3(b,c)]. While
designing this mount, particular care has been put into disentangling each degree of free-
dom from other movements and facilitating their mapping to the lattice’s relevant degrees
of freedom. In this regard, we took care of positioning the point where the incoming beam
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Figure 2.3 | Kösters prism’s multi-axis mount and its degrees of freedom. (a) Sketch (rotated inset of

Fig. 2.2) showing the beam path from the top. After beam shaping, the beam pointing is optimized by a
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position. (b) Degrees of freedom of the Kösters prism. (c) Kösters prism mounted on the custom-made

multi-axis stage. After polarization cleaning, the beam from (D) is reflected to the mirror (E) and enters
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R, H) corresponding to pitch, yaw, roll, and height. (d) Periscope before the Kösters prism. The lattice

spacing can be changed by tuning the position of the mirror (D) with a translation stage. Photos and

sketches adapted from Ref. [271].

splits in the Fourier plane and in trying to overlap it with the geometric center of the prism
and the rotation center of the goniometers. Pitch and roll can be tuned with piezoelectric
actuators, while the other two degrees of freedom are controlled by manual translation
stages. The lattice spacing can be tuned by displacing a mirror in the periscope before the
prism [see Fig. 2.3(d)]. Once the lattice spacing has been fixed, optimizing the degrees
of freedom of the multi-axis stage and the pointing of the beam before the periscope does
not induce any appreciable change in the lattice spacing. Additional technical information
on the multi-axis stage can be found in Ref. [271].

Stability of the setup

A measurement of the phase fluctuations in a test setup in a closed box where a camera
was positioned at the atoms’ position returned a standard deviation around 0.004𝜋 for a
measurement time window of 90 minutes [271]. In the final setup, the lattice setup and
the single plane loading scheme have proven stable and require some minor alignment
roughly once per day. For this purpose, we usually tune the piezoelectric actuators of
the mirror before the periscope [(A) in Fig. 2.3(a)]. The pitch and the roll of the multi-
axis stage are tuned more rarely, e.g., once a few weeks, while we hardly need to tune
the yaw and the height.
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2.2 Loading into a single plane

The loading into the vertical lattice follows the 3D evaporation in the crossed dipole trap
described in Sec. 1.6. During the loading, we rely on the large lattice spacing to prevent
the atoms from populating multiple planes.

In the experiment, we see that the population fraction of the central plane is higher than
90% for less than 3 × 10⁵ atoms [271]. Moreover, numerical simulations [271] confirm
that we are loading up to about 105 atoms into the central plane with negligible spillover
into the neighboring planes. However, they also indicate that the phase between the vertical
lattice and the hDT (the shift between the trap centers along the propagation direction)
might affect the loading.

By displacing the hDT with respect to the lattice in the vertical direction, we can change
the loading plane and move from a singly populated plane to a 50:50 mixture between
neighboring planes. We control this displacement by optimizing the vertical position of the
hDT with the help of a piezoelectric actuator.

The method we use to detect the population in each plane is a momentum refocusing
technique, which we describe in Sec. 2.2.1. In Sec. 2.2.2, we discuss the calibration of
the lattice depth and the in-plane confinement by looking at the response of the atoms. In
Sec. 2.2.3, we treat the problem of undesired optical reflexes, which initially induced anhar-
monic corrections to the potential, and how we solved it. Finally, in Sec. 2.2.4, we discuss
the cooling scheme that allows us to reach a deep degenerate regime in the single plane.

2.2.1 Momentum refocusing

The population of each vertical plane cannot be easily distinguished by imaging the cloud
in situ on a vertical plane because our camera does not have a good enough resolution†. As
a consequence, we measure the population of each plane with a so-called momentum refo-
cusing (or kick and probe) technique [274]. A sketch of the scheme is shown in Fig. 2.4(a-c).
The idea is to give a different momentum “kick” to the atoms in each plane so that they
will distribute in different spatial regions after time of flight (tof). This kick is given, in our
case, by a quarter-of-period oscillation of the atoms in the hDT after switching off the ver-
tical lattice. During this oscillation, the potential energy is transformed into kinetic energy.
After tof, the resulting spatial spread allows us to resolve the population of each plane. In
Fig. 2.4(d), we show the momentum refocusing technique as we displace the hDT along
the vertical axis. The images show a cloud of spin-unpolarized 173Yb atoms after a tof of
10ms. On the left, we show a cloud in the central plane of the vertical lattice. As we shift
the hDT, a neighboring plane gets populated. As we continue, the population of the cen-
tral plane decreases until only the neighboring plane is populated. From the distance Δ𝑧
between the two planes in tof, we can determine the lattice spacing

Δ𝑧 =𝜔𝑣,hDT𝑑lat𝑡tof, (2.1)

where 𝜔𝑣,hDT is the angular frequency of the hDT, 𝑑lat is the lattice spacing, and 𝑡tof is
†We have an AVT Manta camera with resolution 3.9 µm.
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Figure 2.4 | Momentum refocusing technique. (a) We start with two planes populated in the vertical

lattice (vLAT). In phase space (center of mass frame), the two clouds have well-defined positions (vertical

axis) and a small momentum spread (horizontal axis). (b) We switch off the vertical lattice and switch

on the horizontal dipole trap (hDT) centered in between the two clouds. After a quarter of the oscillation

period, the clouds have maximized their momentum. (c) We switch off the hDT and let the system evolve

in time of flight. The distance between the two clouds increases and becomes larger than the camera’s

resolution. The insets in (a-c) represent the potential along the vertical axis in real space. (d) Density

measured with the momentum refocusing technique after a time of flight of 10ms for a spin-unpolarized
173Yb cloud. From left to right, we scan the relative phase between the vertical lattice and the hDT by

changing the vertical position of the hDT with a pico-actuator. The distance from the first to the last

image corresponds to about 3.6 µm. On the left, we populate the central plane. As we increase the

phase, the neighboring plane is populated. The color bar is in units of counts/µm2, and it is the same

for all images.

the time of flight. For 𝜔𝑣,hDT = 2𝜋 ⋅1.16(2)kHz and 𝑡tof = 10ms, we find a lattice spacing
of 3.9(3) µm, which implies a half-angle of 𝜃 = 5.6(4)°. The large error bar on the lattice
spacing is due to the skewed distribution of the atoms after tof in the vertical direction.
The origin of this skewness is not entirely understood, but it is likely due to a lensing effect
induced by inhomogeneities in the ”kick“ given by the hDT. We observe a similar effect also
with spin-polarized clouds, which suggests that this is not an interaction-driven effect.

2.2.2 Lattice depth and in-plane confinement

A precise calibration of the lattice depth and the bandgap of the vertical lattice is important
for the measurements presented in the following chapters. Even in the deep lattice regime
these values can still have relevant consequences for the determination of the quasi-2D
properties of the gas, both in the bulk (see Sec. 3.2) and in the square lattice (see Sec. 5.1).
The lattice depth can be calibrated with a parametric heating technique [275], which con-
sists in modulating the lattice at the resonance frequency between the lowest and the sec-
ond excited band and observing the heating (and therefore the change in size) of the cloud
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Figure 2.5 | Depth of the vertical lattice (vLAT). (a) Calibration of the depth in units of 𝐸𝜆
rec

for different

values of the total power for 173Yb (blue) and 174Yb (orange) in the central plane. The error bars (s.e.m.)

are smaller than the symbols. Inset: We calibrate the lattice depth with parametric modulation by mea-

suring the change in the width of the cloud in time of flight when approaching the resonance between

the lowest and the second band. With a band-structure calculation, we extract the lattice depth from

the resonance position. (b) Parametric modulation for 173Yb with a vLAT power of 1.5W when loading

into single different planes. Neighboring planes have a smaller resonance frequency than the central

one (labeled with zero). Vertical lines: resonance positions returned by the fit of a Gaussian to the data.

Errorbars are the s.e.m.

in time of flight [see inset of Fig. 2.5(a)]. For a lattice total power 𝑃 = 1.8W‡, we obtain a
parametric heating resonance of 7.88(2) kHz, which corresponds to about 103𝐸rec accord-
ing to a band structure calculation. This corresponds to a bandgap of 2𝜋 ⋅3.95(1)kHz.

Parametric heating is also useful to determine the loaded plane. Indeed, the depth of
each plane is not exactly the same because of the Gaussian shape of the interfering beams,
leading to the central one being deeper than the neighbors. This difference in depth can
be detected with parametric heating [see Fig. 2.5(b)] and used to optimize the loading
into the central plane.

The in-plane confinement in the region sampled by the atomic clouds is in first ap-
proximation harmonic (see Appendix A). Its trapping frequencies can be determined from
themeasurement of the center-of-mass oscillation of a spin-polarized cloud after a displace-
ment from the rest position. With thismethod, we obtain (𝜔𝑥,𝜔𝑦) = 2𝜋⋅[23.5(9),30(1)]Hz
for the maximal depth.

From the measurement of the confinement for different depths and the knowledge of
the total power and half-angle, we can calculate the beam waists. By assuming the same
beam waists 𝑤0,{ℎ,𝑣} and Rayleigh ranges 𝑧R,{ℎ,𝑣} for the two beams and expanding the
Gaussian beam profile to second order (see Appendix A) we can calculate the harmonic
trapping frequencies

𝜔2
𝑥 =

2𝛼′

𝑚
[

2
𝑤2

0,𝑣
sin2 𝜃+

1
2
(

1
𝑧2R,ℎ

+
1

𝑧2R,𝑣
)cos2 𝜃](√𝐼0,𝑎 +√𝐼0,𝑏)

2
, (2.2)

‡The total power does not split with a 1:1 ratio between the two beams due to coating imperfections. The
upper beam has a power about 5% smaller than the lower beam, and we take this difference into account for
our calculations.
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sinusoidal potential with a Gaussian envelope after integrating the data of (a) along the 𝑥-axis, we obtain
a period of the pattern of 22.1(1)GHz. (d) We individuate the origin of the pattern in a reflex generated

by the dichroic element (D) between the Kösters prism and the focusing lens (C). We block the reflexes

with two razor blades (A) and (B) after the dichroic. (e) After blocking the reflex, the periodic pattern

disappears. Images of (a) and (e) are single realizations without averaging. The detunings of (a,c,e)
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𝜔2
𝑦 =

4𝛼′

𝑚𝑤2
0,ℎ

(√𝐼0,𝑎 +√𝐼0,𝑏)
2
, (2.3)

where 𝐼0,{𝑎,𝑏} is the intensity of the beams 𝑎 and 𝑏 and 𝛼′ is the polarizability. It can be
easily verified that the ratio of the in-plane frequencies is intensity-independent.

By fitting the confinement for different depths, we obtain (𝑤ℎ,𝑤𝑣) = [248(13),32(2)]µm,
to be compared with a preliminary measurement of (𝑤ℎ,𝑤𝑣) ≃ (270,25)µm which might
have changed during the alignment and optimization.

2.2.3 Undesired reflexes

During the optimization of the cooling scheme, we noticed that the cloud shape was chang-
ing depending on the wavelength of the lattice laser. In particular, we observed a peri-
odic change in the cloud shape perpendicular to the beams’ propagation direction [see
Fig. 2.6(a), beams propagate along the 𝑥-axis]. This pattern is in qualitative agreement
with the shape of a cloud in an (unexpected) sinusoidal potential on top of the Gaussian
envelope [see Fig. 2.6(b)]. A fit of the phase of the sinusoidal modulation [see Fig. 2.6(c)]
returned a period of 22.1(1)GHz. This suggested that an etalon effect at the interfaces
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Figure 2.7 | Tilted evaporation and loading into a single plane. (a) Normalized power of the dipole traps

and lattices as a function of the loading sequence time. The initial point in time at ≃ 25.2s corresponds
to the end of the 3D evaporation in the crossed dipole trap. From the darkest to the lightest shade of

green: vertical lattice vLAT (max. power: 1.8W), horizontal dipole trap hDT (0.3W), vertical dipole trap

vDT, displaced by about 194 µm along the 𝑥-axis (5.4W), magic dipole trap mDT (0.3W). (b) Numerical

simulation of the trap depth along the main axes [see Fig. 2.1 or 2.3(a)] for the points indicated by the

vertical lines in (a).

of the dichroic element combining the lattice with the hDT could originate reflexes pro-
ducing an interference pattern with the main beams at the atoms’ position§. We could not
see the reflexes directly after the dichroic element neither by eye nor by using a camera.
However, we blocked the optical access next to the main beams where the reflexes were
to be expected with two razor blades (A) and (B) [see Fig. 2.6(d)]. After their alignment,
the pattern disappeared [see Fig. 2.6(e)].

2.2.4 Cooling scheme

The measurements presented in Chap. 3 and 5 require an initial SU(𝑁) Fermi cloud in
the deep degenerate regime. Particular effort has been therefore put into optimizing the
loading scheme in the vertical lattice to achieve a cold quasi-2D sample. We initially tried
to load the gas directly and adiabatically from the crossed dipole trap to the vertical lattice.
However, we could not achieve temperatures below 𝑇/𝑇2D

F ≈ 0.3 for a spin-unpolarized
sample starting from 𝑇/𝑇3D

F ≈0.1 in the crossed dipole trap. The reason for this heating is
probably a lack of adiabaticity during the loading process due to the change in the density
of states between the two configurations and an inefficient entropy redistribution across
the cloud. To overcome this issue, we tried to increase the final confinement along the
vertical direction with another vertical dipole trap centered with the cloud in the 𝑥 −𝑦
plane, but we could only partially mitigate the heating.

§The dichroic is a Thorlabs DMSP900L, with a thickness of 5mm, which would make it responsible for a
pattern with a frequency of about 19GHz, the same order of magnitude of the observed modulation.
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The approach which proved to be the most effective was the so-called “tilted” evapora-
tion scheme, as presented in Fig. 2.7. In this scheme, we add an in-plane optical gradient
generated by a vertical dipole trap (vDT) displaced along the 𝑥-axis by about 194 µm with
respect to the center of the cloud. The sequence works as follows. Starting from the end of
the 3D evaporation, we first switch on the vertical lattice at low power to hold the atoms
against gravity. At this point, we ramp down the hDT. We then ramp up the vDT and
allow a “spillover” to the new lateral minimum, which results in the loss of the most ener-
getic atoms. During the evaporation, the mDT (centered on the vertical lattice on the 𝑥−𝑦
plane) stays constant and provides additional in-plane confinement. After the evaporation,
we switch off the vDT and increase the depth of the vertical lattice. The corresponding in-
crease of the in-plane confinement is compensated by reducing the mDT confinement. With
this scheme, we could achieve a temperature of 𝑇/𝑇2D

F ≳ 0.15 for 3 ≤ 𝑁 ≤ 6.

2.3 Imaging techniques and calibration

In this section, we focus on the techniques used in our experiment for imaging the atoms
and their calibration. In order to measure the equation of state (EoS) of a gas, it is im-
portant to have a reliable and calibrated detection mechanism that allows the extraction of
the atomic density without systematic errors and with a good signal-to-noise ratio. Most
measurements in the following chapters rely on in-situ, high-intensity absorption imaging.
This technique measures the transmission of a probe beam through the cloud and allows
the reconstruction of the atomic density with a Beer-Lambert law. In our experiment, the
probe is a circularly polarized beam along the stretched 1S0 → 1P1 transition operating
above the saturation intensity and with a small bias magnetic field of ≃ 1G. The pulse
duration, when it is not differently specified, is 5 µs. This value has been chosen to maxi-
mize the absorption signal and simultaneously avoid excessive blurring due to the motion
of the atoms during the process [180].

The imaging apparatus consists of a high-resolution custom objective¶ with NA= 0.27
and a theoretical diffraction limit of about 1.2 µm at the imaging wavelength of 399 nm.
After the objective, a system of lenses and mirrors guides the light to an EMCCD camera‖

with a total magnification of about 28.
In Sec. 2.3.1, we discuss the non-linear correction that needs to be applied to the Beer-

Lambert law in the high-intensity regime and its calibration. In Sec. 2.3.2, we discuss the
calibration of the cross section for different spin mixtures and trap geometries by looking
at the density fluctuations of a thermal gas. The method we use for this purpose can also
be used to optimize the alignment of the imaging system. Moreover, the method allows
the reconstruction of the system’s point spread function (PSF), which is crucial for EoS and
thermometry measurements.

Some of themethods presented in this section have already been used in our experiment
in a 3D geometry [82, 180, 207]. However, the new 2D geometry allows for an improved

¶Designed by LensOptics
‖Andor iXon
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Figure 2.8 | High-intensity calibration for an SU(4) cloud in a 2D

harmonic confinement. (a) Radial density evaluated with the un-

corrected Beer Lamber law for different 𝐼
in
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tensity [see Eq. (2.4)]. Inset: Relative standard deviation of the

atom number measured with various imaging light intensities as a
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calibration.

Dim 𝑁 𝐼effsat/𝐼sat
2D 6 2.9(2)
2D 4 3.0(1)
2D 3 3.0(2)

2D† 6 3.0(2)

3D 6 2.8(2)
3D 4 2.80(8)

Table 2.2 | Calibrated effective

saturation intensity for different

SU(𝑁) mixtures in 2D and 3D

harmonic confinements. † Data

taken in a Mott insulating con-

figuration (see Chap. 5).

signal-to-noise and calibration resolution. Moreover, other experiments have shown that
high-density monolayers can show significantly different imaging parameters and calibra-
tion [276, 277]. It is, therefore, important to re-evaluate the calibration and compare
it with the old results.

2.3.1 High-intensity imaging calibration

We determine the density with the modified Beer-Lambert law [278], which accounts for
the saturation effects of the imaging light:

𝑛(𝑥,𝑦) =
1
𝜎
[log(

𝐼in
𝐼out

)+
𝐼in−𝐼out

𝐼effsat
], (2.4)

where 𝑛(𝑥,𝑦) is the density at pixel position (𝑥,𝑦), 𝜎 is the cross section, and 𝐼in = 𝐼in(𝑥,𝑦)
and 𝐼out = 𝐼out(𝑥,𝑦) are the incident light and the light after absorption, respectively. We
calibrate the effective saturation intensity 𝐼effsat by varying 𝐼in/𝐼sat between 2 and 8 and min-
imizing the variation of the density profile as described in Ref. [278] with a least-squares
method [see Fig. 2.8(a)]. The results for different spin mixtures and geometries are re-
ported in Tab. 2.2. The effective saturation intensity 𝐼effsat is about three times larger than
the bare 𝐼sat =𝜋ℎ𝑐Γ/(3𝜆3) ≃ 60mW/cm2 (𝜆 and Γ are the wavelength and linewidth of the
probe beam, respectively), an effect which has been observed in previous experiments and
might be due to a breakdown of the two-level system approximation, imperfections in the
control of the polarization or the presence of a residual magnetic field [278]. We find that
the effective saturation intensity is independent of the spin mixture and overall compatible
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Figure 2.9 | Image response function for an SU(3) cloud in a 2D

harmonic confinement. Left: Experimental data. Right: Fit of

the data according to the model described in the text. The black

dashed line represents the maximum k-vector according to the

theoretical NA of the objective. The central white region has been

masked out in the fit.

Dim 𝑁 𝜎eff/𝜎0

2D 6 0.383(7)
2D 4 0.38(1)
2D 3 0.35(1)

3D 6 0.389(2)
3D 4 0.395(2)
3D 3 0.393(2)

Table 2.3 | Calibrated effective

cross section for different SU(𝑁)
mixtures in 2D and 3D harmonic

confinements.

with the 3D values within 5%. Moreover, we find a similar agreement for a cloud in the
2D harmonic trap and the deep 2D Mott insulating regime.

2.3.2 Point spread function and absolute atom number calibration

In Sec. 2.3.1, we have calibrated the imaging system such that our measurement of the
optical density is independent of the intensity of the imaging light. However, we have
not discussed the calibration of the cross section 𝜎, which is the subject of this section,
together with the reconstruction of the point spread function (PSF) and the pixel cali-
bration of our camera.

Determination of the cross section

With an independent measurement, we extract the effective cross section from the den-
sity shot noise of a thermal sample in the 2D bulk according to the method described in
Ref. [279]. In particular, we make use of the relation of the local density fluctuations
⟨|𝛿𝑛|2⟩ to the cross section 𝜎, the total atom number 𝑁𝑝 and the modulation transfer func-
tion (MTF) ℳ of the imaging system in momentum space [279]

⟨|𝛿𝑛(k)|2⟩ = 𝜎𝑁𝑝ℳ
2(k). (2.5)

The functional form of the MTF can be modeled with a few assumptions on the set of
most relevant aberrations of the imaging system. In particular, in the low imaging intensity
regime, according to the derivation presented in Ref. [280],

ℳ2(k) = |ℱ−1{ℜ{𝑒𝑖𝛿𝑠ℱ[𝑝(𝑘𝑟0𝑑,𝜃)]}}|
2
, (2.6)

where 𝑝(𝑟,𝜃) is the exit pupil function:

𝑝(𝑟,𝜃) =H(1−𝑟/𝑟0)𝑒
−(𝑟/𝑟0)

2/𝜏2𝑒𝑖𝜓(𝑟/𝑟0,𝜃), (2.7)
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Figure 2.10 | Reconstruction and optimization of the point spread function (PSF). (a) Reconstructed

PSF in the single 2D plane before the optimization. The PSF is strongly affected by astigmatism. (b)

Sketch (not to scale and without mirrors) of the imaging system adapted from Ref. [180]. In order to

compensate for the astigmatism, we add a cylindrical lens with a long focal length (red). The numbers in

the sketch indicate the focal lengths of the lenses. Abbreviations: Obj - Objective, DM - Dichroic mirror,

VS - Adjustable variable mechanical slit. (c) PSF after the optimization of the objective alignment and

the compensation of the astigmatism, corresponding to the MTF shown in Fig. 2.9. (d) Cuts along the

main axes (dashed and dotted lines) of the PSF in (c). The colormap of (a) and (c) is in arbitrary units.

𝜓(𝑟,𝜃) = 𝑆0𝑟
4 +𝛼𝑟2 cos(2𝜃−2𝜙)+𝛽𝑟2. (2.8)

In the previous equations, ℱ is the Fourier transform, 𝑑 = 𝜆/(2𝜋NA), 𝛿𝑠 represents the
phase shift due to the detuning of the imaging light with respect to the atomic resonance,
H(𝑥) the Heaviside step function, 𝑟0 is the radius of the finite aperture, and 𝜏 the acceptance
angle. 𝜓(𝑟,𝜃) is the wavefront aberration function, which in our approximation is com-
posed of contributions from spherical aberration 𝑆0, astigmatism (𝛼,𝜙) and defocussing 𝛽.

In Fig. 2.9(a) we show the measured ⟨|𝛿𝑛(k)|2⟩ for an 𝑁 = 3 sample in a 2D harmonic
confinement. The best fit of the data with the model described above and free parameters
𝜎,𝜏,𝑆0,𝛼,𝜙,𝛽,𝛿𝑠 is shown in Fig. 2.9(b). The fit returns correlated values for the aberration
parameters but allows us to obtain a well-defined value for the cross section 𝜎. In Tab. 2.3,
we compare the values of 𝜎 obtained with this method for 𝑁 = 3,4, and 6 in the 2D and 3D
cases. We observe a good agreement between most of the values. For 𝑁 = 4 and 6, the 2D
and 3D values agree within the uncertainties. For 𝑁 = 3 the 2D value is about 11% smaller
than the 3D case. A possible explanation for this discrepancy might be a cooperative optical
response similarly observed in other monolayer systems [276].

Reconstruction of the PSF

The MTF is related to the PSF according to the relation ℳ(k) = |𝒫(k)|, which allows
us to reconstruct the even components of the PSF, which we assume to be the predom-
inant ones [280]:

𝒫(k) ∝ℜ[𝑒𝑖𝛿𝑠𝑝(k)]|
k=r/(𝑟0𝑑)

. (2.9)

In Fig. 2.10, we show the reconstructed PSF. Thanks to this method, we could note that our
imaging systemwas not diffraction limited andwas affected by astigmatism [see Fig. 2.10(a)].
Since a re-alignment of the objective could only partially mitigate the problem, we decided
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Figure 2.11 | Density modulation pattern generated by the combination of two retro-reflected lattices

at 760 nm and 670nm propagating in the same direction 𝑦. The density has been integrated along the

in-plane direction perpendicular to the lattice propagation. Solid line: best fit of the data. Inset: In-situ

image of the density-modulated atomic cloud. The ROI inside the red rectangle corresponds to the data

shown in the main panel. The color bar is in units of atoms/µm2.

to add a cylindrical lens with a long focal length to the imaging system to correct it [see
Fig. 2.10(b)]. After this modification of the imaging system, we could obtain a smaller and
more symmetric PSF with a resolution of about 2.5 µm** [see Fig. 2.10(c-d)].

Pixel size calibration

The absolute atom number calibration presented in Sec. 2.3.2 relies on an accurate cal-
ibration of the pixel size to the real size of the cloud. We determine this calibration by
looking, in the single plane, at the density modulation pattern generated by the combina-
tion of two in-plane and co-propagating lattices with different lattice spacing. In particular,
for the measurement shown in Fig. 2.11, we use the lattices L1 (𝜆 = 760nm) and SDL-1
(𝜆 = 670nm). From the fit of the modulation frequency, we obtain the camera magnifi-
cation 𝑀 = 0.482(2)µm/pixel. This value is in good agreement with the one previously
reported for our experiment in Ref. [180] with a difference between the two calibrations
smaller than 1%.

**The HWHM of the main axes is of approx. 0.85 µm and 1.6 µm, respectively. The location of the first
minimum from the center is at approx. 1.9 µm and 3.2 µm, respectively.



CHAPTER 3

SU(N) Fermi gases in a quasi-2D harmonic trap

Starting from the state preparation of degenerate SU(𝑁) gases in a single plane described
in Chap. 2, we present in this chapter the results of our measurements of the EoS of a
quasi-2D, weakly-interacting SU(𝑁) Fermi gas in a harmonic trap.

From a theoretical point of view, the behavior of interacting SU(𝑁) Fermi gases in free
space is particularly intriguing and far from being fully understood. The interplay between
superfluidity and magnetism is qualitatively different for 𝑁 ≥ 3 with respect to 𝑁 = 2
because of the different pairing symmetries [66, 281]. Prethermal states similar to those
observed in quark-gluon physics have been predicted [282]. The physics of the BEC-BCS
crossover is richer than in the SU(2) case [283]. The probing of systems with large 𝑁
might provide a better understanding of the non-analytical deviations from the Sommerfeld
expansion in interacting Fermi gases [161, 284]. Moreover, the study of SU(𝑁) gases is
particularly relevant in the context of itinerant ferromagnetism (see Sec. 1.3.1).

From an experimental point of view, many of the interesting regimes considered in these
theoretical studies currently cannot be easily probed. 173Yb and 87Sr naturally feature an
SU(𝑁) symmetry in the ground state. However, they lack a magnetic Feshbach resonance
and a mechanism for tuning the interactions. Nevertheless, alternative mechanisms such as
optical Feshbach resonances [165, 166] have been proposed in the past and might enable
the probing of these regimes.

Some pioneering measurements of the SU(𝑁) EoS with degenerate quantum gases have
been presented, for the 3D harmonic case, in Refs. [72, 149, 180, 285, 286], usually ne-
glecting the effect of weak interactions. More recently, the experiment of Ref. [287] has
looked systematically at the EoS in the 3D case (with 87Sr) and successfully developed a
reliable thermometry which also accounts for weak interaction effects.

Other significant milestones for a better understanding of the SU(𝑁) Fermi liquids in
3D (with 173Yb) encompass the study of bosonization (the resemblance of Fermi gases with
large 𝑁 to bosonic systems) [288] and the development of machine learning techniques to
distinguish between different spin multiplicities [289].

It is worth emphasizing that most of the experimental and theoretical works in the liter-
ature focus on the 3D case. In 2D, 𝑁-dependent collective excitations have been predicted
and observed in stacks of layers formed by a one-dimensional optical lattice [290, 291].
However, a comprehensive theoretical treatment of the 2D weakly interacting SU(𝑁) Fermi
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liquid at finite temperature is still lacking. Therefore, the measurement of this SU(𝑁 > 2)
EoS, which, to our knowledge, is reported here for the first time for a single-layer 2D en-
semble, is an important milestone in the exploration of the properties of these systems.

This chapter develops as follows. In Sec. 3.1, we briefly consider the non-interacting
Fermi gas. In Sec. 3.3, we consider the weakly interacting case and discuss the effect of
interactions on the density profile, temperature, and entropy. In Sec. 3.2, we define the
quasi-2D regime and discuss the role of the third dimension in our experiment. In Sec. 3.4,
we present the experimental determination of the EoS for𝑁 = 3,4 and 6 and benchmark the
theory presented in the previous sections. Finally, in Sec. 3.5, we present the measurement
of the local density fluctuations and their relation to the other EoS quantities through the
fluctuation-dissipation theorem.

The results of this chapter, particularly the development of a reliable method for mea-
suring the entropy per particle, will be used in Chap. 5 to cross-benchmark the in-lattice
fit results. Moreover, the fluctuation-dissipation theorem and the calibration of the local
density fluctuations will be used again in Chap. 5 to develop and test a theory-free ther-
mometry for the SU(𝑁) Fermi-Hubbard model.

3.1 The non-interacting case

In the non-interacting limit, the components of an SU(𝑁) Fermi gas are decoupled from
each other. In the grand canonical ensemble, the 𝑁-dependency factorizes in the most
relevant thermodynamic quantities.

The thermodynamics of the system can be either derived by assuming a harmonic po-
tential and using the corresponding density of states, or by assuming a homogeneous po-
tential and using the local density approximation (LDA) to account for the effect of the
trapping potential.

The density of states of a 2D harmonic oscillator 𝑉(𝑥,𝑦) = 1
2𝑚(𝜔2

𝑥𝑥
2+𝜔2

𝑦𝑦
2) is

𝜌(𝜖) =𝑁
𝜖

ℏ2�̄�2 , (3.1)

where �̄� = √𝜔𝑥𝜔𝑦 and 𝜖 is the energy.
The density of states for a 𝑁-components homogeneous system is instead

𝜌 =𝑁
𝑚

2𝜋ℏ2 . (3.2)

In LDA, the harmonic confinement is absorbed in the chemical potential:

𝜇(𝑥,𝑦) = 𝜇0−𝑉(𝑥,𝑦) = 𝜇0−
1
2
𝑚(𝜔2

𝑥𝑥
2+𝜔2

𝑦𝑦
2), (3.3)

where 𝜇0 is the chemical potential at the trap’s center.
The LDA has been verified several times in experiments with ultracold atoms [73, 186–

188, 292, 293], although its use requires some additional care in the case of strongly an-
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Figure 3.1 | Quasi-2D effects for the typical parameters of our experiment (𝜔𝑥,𝜔𝑦,𝜔𝑧) = 2𝜋 ⋅ (23.5,30,4×
103)Hz. (a) Fraction of atoms in the lowest level of the harmonic oscillator along the 𝑧-axis as a function
of the total atom number and the entropy per particle. We perform the calculation from the discrete

spectrum of the 3D anisotropic harmonic oscillator. (b) Ratio between the entropy of the quasi-2D system

and the entropy of the pure 2D system as a function of the total atom number and temperature. The

pure 2D (quasi-2D) entropy is calculated from the discrete spectrum of the 2D (3D anisotropic) harmonic

oscillator.

harmonic potentials [294, 295], near unitarity [293, 294] or when looking extremely close
to the interface between the metallic and the insulating phases [296, 297]. It is accurate
when the energy spacing of the potential is much smaller than the other characteristic en-
ergies of the system. This is the case in the experiments that we present in the following,
where we can, therefore, safely use the LDA.

From the density of states, one can calculate the grand potentialΩ of the system and all
the thermodynamic quantities of interest. In Appendix B, we report the derivation of the
most relevant thermodynamic quantities in both the harmonic and the homogeneous cases.

3.2 Quasi-2D approximations

The system we probe in our experiment is not a pure 2D system but a 3D system where
we freeze the motion along the 𝑧-axis. In this case, we talk about a quasi-2D system*. It is
important to understand the role of the third dimension and estimate the corrections that
we need to take into account when we describe our system as 2D. The most relevant effects
concern the density of states (Sec. 3.2.1) and the scattering properties (Sec. 3.2.2).

3.2.1 Density of states

A possibly fragile assumption wemake when we describe our system as purely 2D is that the
density of states of Eq. (3.1) is correct. Our system is better described as a 3D anisotropic
harmonic oscillator with𝜔𝑧 ≫𝜔𝑥,𝜔𝑦, where we assume that all the atoms are in the lowest

*In the case of an interacting system, a quasi-2D system is characterized by a 2D dynamics of the atoms
and a 3D character of the interactions. This means that 𝑙𝑧 ≫𝑎3D, with 𝑙𝑧 the size of the harmonic oscillator in
the 𝑧 direction and 𝑎3D the 𝑠-wave scattering length. In this framework, the dynamics in the 2D plane can be
described with an effective scattering length 𝑎2D which come from the 3D collisions, as we do in Sec. 3.2.2.
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energy level along the 𝑧 direction. This assumption requires 𝜇,𝑘B𝑇 llℏ𝜔𝑧. By comparing
ℏ𝜔𝑧 with the Fermi energy, we infer a higher boundary on the total atom number that
we can safely probe in our experiment without having to consider the complications of
higher bands:

ℏ𝜔𝑧 ≫𝐸F = ℏ√2𝜔𝑥𝜔𝑦𝑁𝑝/𝑁 ⇒ 𝑁𝑝/𝑁 ll
1
2
(

𝜔2
𝑧

𝜔𝑥𝜔𝑦
), (3.4)

which in our case corresponds to𝑁𝑝/𝑁 ≲ 11×103. This value reduces at finite temperature.
In general, we can estimate the error that we commit by treating our system as purely 2D by
calculating the discrete spectrum and the distribution of the atoms in the different energy
levels of the 3D anisotropic harmonic oscillator and comparing it with the 2D value. In
particular, we can compare the entropy by using the identity [298]

𝑆/𝑘B =𝛽(𝐸 −𝜇𝑁𝑝)+∑
𝑛
log[1+𝑒𝛽(𝜇−𝜖𝑛)], (3.5)

where 𝐸 =∑𝑛 𝜖𝑛𝐹(𝜖𝑛) is the total energy, 𝐹(𝜖𝑛) the Fermi-Dirac distribution and 𝑛 the label
of the energy eigenstates. The simulation of Fig. 3.1(a) shows that, assuming a vertical
bandgap of about 4 kHz, more than 99.9% of the atoms are in the ground state along the
𝑧-direction for the experiments we present in the following.

In Fig. 3.1(b), we compare different ways of calculating the entropy of the system.
In particular, we compare the entropy of the quasi-2D system 𝑠q2D calculated from the
discrete spectrum of the 3D anisotropic harmonic oscillator with the entropy of the pure
2D system 𝑠2D

†. The two values can be significantly different for large atom numbers and
high temperatures. However, for the typical parameters of our experiment, the two values
are in agreement within 1%.

3.2.2 Scattering properties

In addition to the density of states, another crucial difference between a pure 2D and
a quasi-2D system concerns the scattering properties. So far, we have considered non-
interacting ensembles, but in Sec. 3.3, we will consider the effect of weak interactions and
therefore need a model.

In a pure 2D system, particle scattering happens in the 2D plane. At the lowest order,
the scattering amplitude can be described as [299]

𝑓2D(𝑘) ≃
4𝜋

𝑖𝜋−2 log(𝑘𝑎2D)
. (3.6)

In contrast to the 3D case, where the 𝑠-wave interactions are in first approximation parametrized

†The entropy per particle in a pure 2D system 𝑠2D can be calculated from the discrete spectrum of the 2D
harmonic oscillator or from the continuous density of states of Eq. (3.1). For small atom numbers, we expect
a discrepancy between the two values because of the coarseness of the discrete spectrum. For the simulation
of Fig. 3.1(b), we use the discrete spectrum. The discrepancy between the two values can be as large as 2%
to 4% for our typical atom numbers.
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Figure 3.2 | Simulation of SU(𝑁) Fermi gases in a 2D harmonic potential. (a) Density profile for 𝑁 = 3,4
and 6, 𝑁𝑝 = 2×10

3 and 𝑇 = 0.15𝑇
F
in a harmonic confinement with 𝜔𝑥 = 𝜔𝑦 = 2𝜋 ⋅40Hz. Dotted lines: non-

interacting profiles. Continuous lines: interacting profiles according to the model presented in Sec. 3.3

and with 𝑎
2D
= 0.0025𝑎0. (b) Entropy per particle vs 𝑇/𝑇

F
for 𝑁𝑝/𝑁 = 500. In the non-interacting limit

(dotted lines), the relation is independent of 𝑁. When we consider interactions, we observe a small 𝑁-
dependency.

by the 3D scattering length only (see Sec. 1.2), the interaction parameter in 2D depends
on both the scattering length 𝑎2D and the momentum 𝑘. For a degenerate Fermi gas, it
is natural to define the interaction parameter as the scattering amplitude at the Fermi
momentum 𝑘F [300].

The scattering amplitude in a 3D anisotropic harmonic potential is generally different
from the one of Eq. (3.6). However, for a weakly interacting system, it is possible to define
a 2D scattering length 𝑎2D(𝜔𝑧,𝑎3D) that describes the scattering behavior at low energy.
Remarkably, the scattering amplitude assumes the same functional form as Eq. (3.6) if
we define [300]

𝑎2D = 𝑙𝑧√
𝜋

0.905
exp(−√

𝜋
2

𝑙𝑧
𝑎3D

), (3.7)

where 𝑙𝑧 =√ℏ/𝑚𝜔𝑧 is the characteristic length of the harmonic oscillator along the vertical
direction. For 173Yb and 𝜔𝑧 ≃ 2𝜋 ⋅ 4kHz, we obtain 𝑎2D ≃ 0.0025a0.

3.3 The effect of interactions

A rigorous treatment of the interactions for SU(𝑁) Fermi liquids at finite temperature is
beyond the scope of this work. Nevertheless, we can obtain a satisfactory correction to the
non-interacting limit with a small set of approximations. The following derivation follows
the lines of the treatment presented for the 3D case in Ref. [287].

The idea is to parametrize interactions with a density-dependent coupling constant
𝑔(𝑛,𝑁) [301]:

𝑔(𝑛,𝑁) =
1

log2−2 log(𝑘F𝑎2D)
, (3.8)
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where 𝑘F =√4𝜋𝑛/𝑁 is the local, density-dependent Fermi vector and 𝑎2D is the 2D scatter-
ing length (see Sec. 3.2.2). At zero temperature, we can perturbatively include the inter-
action’s contribution to the Fermi energy by extending a result presented for the SU(2)
case in Ref. [301]‡:

𝐸 int
F =𝐸F [1+2𝑔(𝑁 −1)+4𝑔2(𝑁 −1)(1− log2)]+𝑂(𝑔3). (3.9)

In the following, when we write 𝐸F and 𝑇F, we will still refer to the non-interacting Fermi
energy and temperature, respectively, even when considering the interacting case.

At finite temperature, we can make use of the expression for the chemical potential in
the non-interacting case (see Appendix B):

𝜇 =
1
𝛽
log(𝑒𝛽𝐸F −1). (3.10)

In this way, we can approximate the chemical potential in the interacting case as

𝜇int(𝑇,𝑁)≈
1
𝛽
[1+2𝑔(𝑁 −1)+4𝑔2(𝑁 −1)(1− log2)] log(𝑒𝛽𝐸F −1). (3.11)

In a canonical ensemble and LDA, we can therefore calculate the density profile 𝑛(𝑥,𝑦)
and the density-dependent coupling constant 𝑔(𝑛,𝑁) by self-consistently solving the fol-
lowing equations:

{
𝜇int[𝑛(𝑥,𝑦)] = 𝜇0(𝑁𝑝)−𝑉(𝑥,𝑦)
𝑁𝑝 =∫d𝑥d𝑦𝑛[𝑥,𝑦,𝜇0(𝑁𝑝)].

(3.12)

Once we have solved Eqs. (3.12), we can use the determined 𝜇int to calculate the en-
tropy. As a first approximation, we use the non-interacting expression.

In Fig. 3.2(a), we show a simulation of how interactions lower the density in the center
of the trap and reduce the differences in the density profiles between systems with different
values of𝑁. Moreover, as we see in Fig. 3.2(b), interactions increase the entropy per particle
for systems with the same 𝑇/𝑇F, and this effect is more pronounced for larger 𝑁.

We expect the correction developed in this section to be a good approximation for
𝑇 ll 𝑇F and small interactions. At higher temperatures, additional corrections might be
necessary. In the “thermal gas” limit (𝑇 ≫ 𝑇F), however, we expect the non-interacting
expression to be again a good approximation for the entropy per particle.

3.4 Measurement of the EoS

In Fig. 3.3, we show the results of the measurement of the quasi-2D EoS for SU(𝑁) Fermi
gases with𝑁 = 3,4, and 6. We prepare the ensembles with different𝑁 by optically pumping
the unwanted spin components before the 3D forced evaporation (see Sec. 1.6). After the

‡We extend the SU(2) results on the same lines as in Ref. [287] for the 3D case.



48 SU(N) Fermi gases in a quasi-2D harmonic trap

Figure 3.3 | Measurement of the EoS of an SU(𝑁) Fermi gas in the 2D single plane without in-plane

lattices. (a-c) 2D density profiles for 𝑁 = 3,4 and 6. Each profile is obtained by averaging over 3-5

experimental realizations after a postselection based on the total atom number and the value of 𝑇/𝑇
F

returned by the fit. The averaging was done after the alignment of the center of mass of the clouds. The

color scale is the same for all the frames and it is in units of µm−2. (d) EoS for the data shown in (a-c)

against the chemical potential. (e) EoS as a function of the radius of the cloud. The measurement has

been performed in the combined potential of the vertical lattice and the mDT. The trap frequencies are

(𝜔𝑥,𝜔𝑦) ≃ 2𝜋 ⋅ (28.2,36.2)Hz. The total atom number 𝑁𝑝 and values of 𝑇/𝑇
F
and 𝑠/𝑘

B
returned by the fit

are [1920(4), 0.19(1), 1.13(4)], [1923(7), 0.19(1), 1.16(3)] and [1927(12), 0.20(1), 1.20(4)] for 𝑁 = 3,4 and 6

respectively. Error bars are the standard error of the mean.

tilted evaporation and the loading in the 2D single plane, we perform a fit of the density
profile based on the interacting model presented in Sec. 3.3 to determine the temperature.
The results shown in Fig. 3.3 are obtained after a postselection of the data based on the
total atom number and the value of 𝑇/𝑇F returned by the fit. We observe a good agreement
between the data and the model. In Sec. 3.4.1, we discuss the fit model’s choice and the
residuals in more detail.

In Fig. 3.4, we show how the temperature of the gas changes as a function of the hold
time. With this measurement, we can determine the heating rate in the 2D plane, which is
important for verifying the adiabaticity condition when loading into the lattice discussed
in Chap. 5. From the measurement, we can see that the heating rate has a minor effect
on the entropy (increase ≲ 6%) for the lattice timescales (≲ 250ms). For long holding
times, the heating rate can be substantially larger. Nevertheless, we observe that it is
largely independent of 𝑁.
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Figure 3.4 | Entropy per particle for 𝑁 = 4 and 6 as a function of the hold time in the 2D plane before

imaging. The trap configuration and frequencies are the same as those in Fig. 3.3. The entropy is

calculated from the fit of the data to the weakly-interacting Fermi gas model. The average total atom

number is 𝑁𝑝 = 2385(18). The error bars are the standard error of the mean.

3.4.1 Considerations on the fit method

In Sec. 3.3, we have seen that the weak interactions in our system add a non-negligible
correction to the temperature and the entropy compared to the non-interacting case. In
this section, we address the systematic errors we make when we fit a weakly-interacting
Fermi gas with a non-interacting model.

Fitting experimental data with different models

In Fig. 3.5(a), we show the residuals of the weakly-interacting fit to the data shown in
Fig. 3.3. The residuals look homogeneous for all values of 𝑁, indicating a good agreement
between the data and the model.

In Fig. 3.5(b), we show the residuals of the fit of the same data with a non-interacting
model. For 𝑁 = 3, the residuals look homogeneous, but for 𝑁 = 4 and 6, we observe the
emergence of a spurious structure. Compared to the weakly-interacting fit, the results are
also different: the temperature and entropy per particle returned by the fit of the non-
interacting model are larger than the one returned by the weakly-interacting model. In
particular, for 𝑁 = 3, the difference is about 30% for both the temperature and the entropy
per particle. For 𝑁 = 6, the discrepancy increases to about 75% for the temperature and
about 50% for the entropy per particle.

Simulating the fit of a weakly-interacting Fermi gas with non-interacting models

In order to better characterize the discrepancies between the models presented in the pre-
vious section, we replicate the fits on synthetic data. We numerically generate a weakly-
interacting cloud with 𝑎2D = 0.0025𝑎0 and temperature 𝑇set and fit it with non-interacting
models. In Fig. 3.5(c), we show the ratio between the fitted temperature 𝑇fit and 𝑇set for
three different implementations of a non-interacting model.

The first model (blue line) is the same as the one used in Fig. 3.5(b): we fit the tem-
perature and the chemical potential at the center of the trap and assume the knowledge
of the trap frequencies. In this case, we see a large discrepancy, which is also strongly
dependent (and increases) with 𝑁.
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Figure 3.5 | Fitting a weakling-interacting SU(𝑁) Fermi gas with different models. (a) Residuals in real

space for the fit of the clouds shown in Fig. 3.3(a-c) with a weakly interacting model, corresponding to

the continuous lines in Fig. 3.3(d-e). (b) Residuals of the fit of the clouds in Fig. 3.5(a-c) with a non-

interacting model. For all fits of (a) and (b), the fit parameters are the temperature and the center of

the cloud. (c) Fit of numerically-simulated weakly-interacting SU(𝑁) clouds with different models. We

generate clouds with different 𝑇
set

and 𝑎
2D
= 0.0025𝑎0 and fit them with three different implementations

of a non-interacting model. We show the ratio between the fitted temperature 𝑇
fit
and 𝑇

set
for each fit.

Blue: we fit the temperature and assume the knowledge of the trap frequencies. Orange: we fit both

the temperature and the trap frequencies. Green: Fermi fit according to Eq. (3.13). We compare the

simulations for 𝑁 = 3 (continuous line), 𝑁 = 4 (dashed line) and 𝑁 = 6 (dotted line).

The secondmodel (orange line) is similar to the first one, but we also fit the trap frequen-
cies. In this case, we see that the fitted temperature is much closer to the set temperature,
although the fitted frequencies are about 7% to 10% smaller than the set frequencies.

Finally, the third model (green line) is a Fermi fit according to the expression

𝑛(𝑥,𝑦) = 𝐴
log[1+𝑧gsn(𝑥,𝑦)]

log(1+𝑧)
+𝑏, (3.13)

where gsn(𝑥,𝑦) is a Gaussian function with free parameters center, width, and angle. 𝐴
and 𝑏 are also free parameters and 𝑧 is the fugacity. From the fugacity, we directly obtain
𝑇/𝑇F [see Eq. (B.7)]. The trap frequencies relate to the cloud width and the normalization
factor 𝐴. In this case, the fitted temperatures are close to the set temperature (about 5%
higher). However, the fitted trap frequencies are unmatched as in the previous case.

For the first two methods, we verify that fitting the chemical potential at the trap’s
center 𝜇0 or calculating it self-consistently from the fixed total atom number 𝑁𝑝 does not
significantly alter the results.

Systematic errors due to imaging imperfections

For the fit of the experimental data, we take into account the effect of the imaging imper-
fections of our system. In particular, we correct the theoretical model by convolving the
2D density profiles with the PSF (see Sec. 2.3.2). The systematic errors that we commit
by not taking into account the PSF are small but not negligible in the deep degenerate
limit. In Fig. 3.6, we show a simulation where we fit a weakly-interacting cloud after the
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Figure 3.6 | Simulating the effect of the PSF on a weakly-interacting SU(𝑁) Fermi gas. (a) Simulated

density profiles with 𝑁 = 6 and 𝑇/𝑇
F
= 0.10 (blue) and 0.21 (orange). Continuous lines: bare density

profiles. Dashed lines (overlapping with continuous lines with the same color): convolution of the bare

density profiles with the PSF. (b) residuals between the profiles shown in (a). (c) We generate weakly-

interacting clouds with different 𝑇
set
, convolve them with the PSF, and fit them with a weakly-interacting

model to obtain 𝑇
fit
. We show the ratio between 𝑇

fit
and 𝑇

set
for each fit.

convolution with the PSF. The temperature that we obtain can be up to 10% higher than
the initial temperature depending on the temperature itself and 𝑁. By taking the PSF into
account for our modeling, we estimate the systematic errors on the temperature due to
imaging imperfections to be less than 2%.

3.5 Local density fluctuations and fluctuation-dissipation theorem

The ability to access the density in a 2D single atomic layer allows us to measure the local
density fluctuations, which in the 3D case are not directly accessible§.

For a Fermi gas, we expect the anti-bunching effect due to the Pauli exclusion principle to
suppress the density fluctuations compared to a classical gas which obeys Poissonian statis-
tics. This can be seen as a consequence of the fluctuation-dissipation theorem (FDT) [302],
which relates the fluctuations of a system to its response to an external perturbation.

The FDT can be derived in the grand canonical ensemble in local density approximation
starting from the definition of the density operator in the second quantization formalism:

𝑛(r,𝑇,𝜇) =
Tr[�̂�(r)𝑒−𝛽(�̂�−𝜇�̂�𝑝)]

Tr[𝑒−𝛽(�̂�−𝜇�̂�𝑝)]
≡ ⟨�̂�(r)⟩, (3.14)

which implies [302]

𝑘B𝑇
𝜕⟨�̂�(r)⟩

𝜕𝜇
=∫dr′ [⟨�̂�(r)�̂�(r′)⟩− ⟨�̂�(r)⟩⟨�̂�(r′)⟩] . (3.15)

The FDT can be applied to single-layer cold atoms experiments by measuring the av-
erage density �̃� and the density variance 𝛿�̃�2 in a probe region of the cloud across several

§Although a kinetic approach can be used [287].
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Figure 3.7 | Density fluctuations for a high-temperature Fermi gas (𝑁 = 6). Left: Density variance calcu-
lated for a probe area of 8×8px2 against the average density in the same area. Blue points: measured

density variance after the subtraction of the photon shot noise. Grey line: classical limit 𝛿�̃�2/�̃� = 1.
Purple line: theoretical prediction estimated from the temperature returned by a non-interacting fit

[𝑇/𝑇
F
= 1.37(1)]. Green line: theoretical prediction according to a weakly-interacting fit [𝑇/𝑇

F
= 1.02(1)].

Orange line: linear fit of the blue points. Right: Slope 𝛿�̃�2/�̃� = 𝜉𝑖 returned by the fit as a function of the

probe area. 𝑖 is the size length in pixels of the square probe area. Star (𝑖 = 4): probe size used in Chap. 5.

identical experimental realizations. When the size of the probe region is large enough
(thermodynamic limit), we recover the FDT in the form [303]

𝛿�̃�2

�̃�
=

𝑘B𝑇𝜅
⟨�̂�⟩

, (3.16)

where 𝜅 = 𝜕⟨�̂�⟩/𝜕𝜇 is the isothermal compressibility.
For an ideal classical gas, 𝜅 = 𝑛/(𝑘B𝑇) [304]. Hence, the FDT predicts that the density

fluctuations in the thermodynamic limit are given by

𝛿�̃�2

�̃�
=

𝑘B𝑇𝜅
𝑛

= 1, (3.17)

indicating Poissonian statistics.
This is not the case for a Fermi gas, which is characterized by sub-Poissonian statistics.

The compressibility and the density fluctuations are given by [see Eq. (B.16)]

(𝛿�̃�)2

�̃�
=

𝑘B𝑇𝜅
𝑛

=
𝑘B𝑇
𝑛

𝜌[1−𝑒−𝛽𝑛/𝜌] . (3.18)

For (𝛽𝑛) → 0 the expression on the right becomes 1+𝑂(𝛽𝑛/𝑁), which gives back the
classical limit of Eq. (3.17). The correction to the unitary slope is negative for a Fermi gas.
This anti-bunching, sub-Poissionian effect has been measured with ultracold atoms [305,
306], also in the SU(𝑁) case in a 3D trap geometry [287].

From an experimental point of view, it is important to choose a probe region that is
large enough to include the most important contributions to the correlations of Eq. (3.15).
However, the probe region should also be small enough to sample the total density profile
with enough points, ensure that the average density across it has a small standard deviation,
and provide a good signal-to-noise ratio. The choice of a small probe region effectively
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Figure 3.8 | Density fluctuations for a degenerate SU(6) Fermi gas in a 2D harmonic confinement. (a)

Average density profile of the 10 frames used for the measurement after c.o.m. alignment. 𝑁𝑝 = 1523(37)
and 𝑇/𝑇

F
= 0.21(1). (b) Average density [same as in (a)] binned in probe areaswith size 3×3px2. (c) Density

variance calculated for each probe area. The photon shot noise has been corrected and the value linearly

scaled according to the method discussed in the text. (d) Density fluctuations plotted against average

density values [same binning size of (b) and (c)]. Blue points: corrected experimental data. Black line:

theoretical prediction from the EoS fit of the mean density profile. Dashed line: classical limit. The color

bar is the same for (a)-(c) and it indicates the density in units of px2.

decreases the measured variance with respect to the thermodynamic limit, but this effect
can be characterized and corrected.

In our case, we calibrate this correction by measuring the density fluctuations of a cloud
with 𝑇/𝑇F ≳1. In this case, the density fluctuations are expected to be close to the classical
temperature-independent limit of Eq. (3.17). We can calibrate the correction for different
probe sizes by enforcing this equation. However, we also consider corrections due to the
finite temperature and the weak interactions. In this case, for low densities, we still expect
a linear relation between the variance and the average density but with a slope smaller
than one. In particular, we fit a temperature 𝑇/𝑇F = 1.02(1) for the sample we use for the
calibration. For this temperature and a weakly-interacting model, a numerical simulation
of the FDT returns a slope 𝛿�̃�2/�̃� ≡ 𝜉∞ = 0.69(1) for small densities. The binning to small
probe areas introduces an additional correction 𝜉∞ →𝜉𝑖. In the following, we will consider
only square probe areas, and 𝑖 indicates the side of the square in units of pixels. In Fig. 3.7,
we show the measured slopes 𝜉𝑖 for different probe sizes. Remarkably, we observe that the
slope converges to 𝜉∞ for 𝑖 ≳ 7, which consistently confirms that the weakly-interacting
theory we use to fit the data is valid in this regime. This calibration is also used for the
measurements of the density fluctuations in the lattice described in Sec. 5.4.

Once we have calibrated the correction for the finite probe size, we can use the FDT
to measure the density fluctuations of the degenerate Fermi gas. In Fig. 3.8, we show the
measured density fluctuations for an SU(6) Fermi gas. We consider 10 post-selected frames
with similar atom number and temperature. To obtain the blue data points in Fig. 3.8(c),
we align their center of mass, bin the cloud with a probe size of 3×3px2, subtract the
photon shot noise and correct for the finite probe size. If the FDT holds, the fluctuations
should equal 𝜅𝑘B𝑇 (black curve), as in Eq. (3.18). We obtain 𝑇 from the fit of the EoS of the
mean density profile and 𝜅 from a three-point numerical differentiation of the density with
respect to the chemical potential. In Fig. 3.8, we can see a good agreement between the two
sides of the FDT for low densities. At high densities, the small number of pixels sampling
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the cloud results in a much larger uncertainty on the density fluctuations. Nevertheless,
we observe, as expected, a substantial deviation from the classical Poissonian statistics of
Eq. (3.17) (dashed line).



CHAPTER 4

Thermodynamics of the 2D SU(N)

Fermi-Hubbard model

In this chapter, we present a theoretical description of the thermodynamic properties of the
SU(𝑁) Fermi-Hubbard model. We introduce the model, its symmetries, and the observables
of interest in Sec. 4.1. In Sec. 4.2, we review some simple limits of the model, namely the
non-interacting and the atomic limits, which give us a first intuitive understanding of some
of its properties. Away from these two limits, no analytical solution is known, and we
resort to numerical methods such as high-temperature series expansion (HTSE), numerical
linked-cluster expansion (NLCE), and determinant quantum Monte Carlo (DQMC). These
methods are described in Sec. 4.3. The properties of the model according to the numerical
simulations are discussed in Sec. 4.4, where we focus in particular on the observables and
the cases that are relevant for the experiments presented in Chap. 5.

4.1 The SU(N) Fermi-Hubbard model

The SU(𝑁) Fermi-Hubbard Hamiltonian is defined as

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+h.c.)+
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏−∑
𝑖,𝜎

𝜇𝑖�̂�𝑖𝜎, (4.1)

where ̂𝑐†𝑖𝜎 and ̂𝑐𝑖𝜎 represent the fermionic creation and annihilation operators at site 𝑖 with
spin 𝜎 ∈ {1…𝑁}, �̂�𝑖𝜎 = ̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜎 is the number operator, ⟨𝑖, 𝑗⟩ denotes next-neighbor lat-
tice sites, 𝑡 is the hopping amplitude, 𝑈 is the on-site interaction strength and 𝜇 denotes
the chemical potential.

Here, we restrict ourselves to the two-dimensional case of a square (bipartite) lattice,
which is the system that we probe in our experiments in Chap. 5. For the same reason,
we focus on the thermodynamic properties of the model and the observables that we can
measure in our experiments. In particular, these include:

• The local density

𝑛 ≡ ⟨�̂�⟩ =
1
𝑁𝑠

∑
𝑖,𝜎

⟨�̂�𝑖𝜎⟩, (4.2)

55
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where 𝑁𝑠 is the number of lattice sites.

• The components of the site-occupation distribution

𝑝𝛼 ≡ ⟨ ̂𝑝𝛼⟩ = ⟨𝑛 = 𝛼⟩, ∀𝛼 ∈ {0…𝑁}, (4.3)

which give the probability of finding a site with 𝛼 particles and satisfy the normal-
ization condition 𝑛 =∑𝛼𝛼𝑝𝛼.

• The isothermal compressibility

𝜅 =
𝜕⟨�̂�⟩
𝜕𝜇

|
𝑇
. (4.4)

• The local density fluctuations*

var(�̂�) = ⟨�̂�2⟩− ⟨�̂�⟩2, (4.5)

and in particular, their value in a probe area 𝐴, which can be related to the compress-
ibility 𝜅 and temperature 𝑇 of the system through the fluctuation-dissipation theorem
(FDT, see Sec. 3.5):

var(∫
𝐴
𝑛𝑑𝐴)= 𝑘B𝑇𝐴𝜅 = 𝑘B𝑇𝐴

𝜕𝑛
𝜕𝜇

|
𝑇
. (4.6)

• The entropy per site and the entropy per particle, respectively

𝑠0 = 𝑆/𝑁𝑠, 𝑠 = 𝑆/𝑁𝑝, (4.7)

where 𝑆 is the system’s entropy, 𝑁𝑠 is the number of lattice sites, and 𝑁𝑝 is the total
number of particles.

The components of the site-occupation distribution 𝑝𝛼 for 𝛼 = 1 and 2 contain the
information on the singlons and doublons in the system, respectively. Here, it is worth
emphasizing that the extension of the definition of doublons from the SU(2) to the SU(𝑁)
case is not straightforward and might be ambiguous. In the SU(2) case, where the spin
can be up or down, doublons are often defined as

𝒟 =
1
𝑁𝑠

∑
𝑖
⟨�̂�𝑖↑�̂�𝑖↓⟩. (4.8)

This definition can be generalized to the SU(𝑁) case as

𝒟 =
1
𝑁𝑠

∑
𝑖
[
1
2
∑
𝜎≠𝜏

⟨�̂�𝑖𝜎�̂�𝑖𝜏⟩] , (4.9)

*This observable is not treated directly in this chapter, but in Chap. 5 together with the discussion of the
experimental results.
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indicating the number of on-site pairs per site. However, this expression differs from the
number of doubly-occupied sites 𝑝2

†. From an experimental point of view, 2𝑝2 is the most
easily accessible quantity, and we will use it as the definition of the doublon density in
the following.

4.1.1 Symmetries of the SU(N) FHM

The SU(𝑁) FHM possesses some symmetries that allow us to focus on a smaller part of the
parameter space and obtain the results for the whole model by simple transformations. In
particular, we focus here on the SU(𝑁) spin symmetry and the particle-hole symmetry.

The SU(N) symmetry refers to the fact that the spin permutation operators

̂𝑆𝜎
𝜏 =∑

𝑖

̂𝑆𝜎
𝜏 (𝑖) =∑

𝑖
̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜏 (4.10)

satisfy the SU(𝑁) algebra

[ ̂𝑆𝜎
𝜏 , ̂𝑆𝜉

𝜌] = 𝛿𝜎𝜌 ̂𝑆𝜉
𝜏 −𝛿𝜏𝜉 ̂𝑆𝜎

𝜌 , (4.11)

and are the generators of the respective group (𝛿𝛼𝛽 is the Kronecker delta). These operators
commute with the Hamiltonian:

[ ̂𝑆𝜎
𝜏 , �̂�] = 0 ∀𝜏,𝜎 ∈ {1…𝑁}, (4.12)

and the spin isotropy of the system is, therefore, preserved. From Eq. (4.12) it follows that
also ̂𝑆𝜎

𝜎 =∑𝑖 ̂𝑐†𝑖𝜎 ̂𝑐𝑖𝜎 = �̂�𝜎 commutes with the Hamiltonian. This means that if we prepare the
system with a fixed number of particles per spin state, the number of particles per spin state
will remain constant. Moreover, if we prepare a state populating 𝑁 ′ <𝑁 spin components,
the system will remain in this subspace and obey an SU(𝑁 ′) symmetry.

The particle-hole symmetry relates the properties of the system below half-filling to
the ones above half-filling. It can be seen by the particle-hole transformation (PHT), which
exchanges the creation and annihilation operators:

̂𝑑†
ℓ𝜎 = (−1)ℓ ̂𝑐ℓ𝜎. (4.13)

It follows that for the new fermionic operators ̂𝑑†
ℓ𝜎 and ̂𝑑ℓ𝜎 holds

̂𝑑†
ℓ𝜎

̂𝑑ℓ𝜎 = 1− ̂𝑐†ℓ𝜎 ̂𝑐ℓ𝜎, (4.14)

and, therefore, the corresponding density operator is

�̂�′
ℓ ≡∑

𝜎

̂𝑑†
ℓ𝜎

̂𝑑ℓ𝜎 =𝑁 −∑
𝜎

̂𝑐†ℓ𝜎 ̂𝑐ℓ𝜎 =𝑁 −�̂�ℓ. (4.15)

†For 𝑁 > 2, ⟨�̂�𝑖𝜎�̂�𝑖𝜏⟩, which is naturally related to the total potential energy, is not enough to discriminate
between the presence of doublons, triplons, etc. For example, an energy increase of 3𝑈 could be due to a
triplon or to the existence of three doublons in the system. 𝒟 indicates the number of on-site pairs (e.g. a
triplon forms 3 pairs).
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On the other hand, the hopping term in Eq. (4.1) remains unchanged:

̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 = (−1)𝑖+𝑗 ̂𝑑†
𝑖𝜎

̂𝑑𝑗𝜎 = ̂𝑑†
𝑖𝜎

̂𝑑𝑗𝜎, (4.16)

In the SU(𝑁) case, we define half-filling as where the number of particles per site is 𝑁/2.
The particle-hole symmetry becomes more evident if we write Eq. (4.1) as

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+h.c.)+∑
𝑖
[
𝑈
2
(�̂�𝑖−

𝑁
2
)
2
−𝜇𝑖�̂�𝑖], (4.17)

This is often referred to as the particle-hole symmetric (PHS) form of the Hamiltonian, and
it is equivalent to Eq. (4.1) up to a shift in the chemical potential. As a consequence of
the particle-hole symmetry, we can calculate the properties for 𝜇 < 0 and obtain those for
𝜇 > 0 with a simple transformation. In particular, we find that

𝑛(𝜇) =𝑁 −𝑛(−𝜇), (4.18)
𝜅(𝜇) = 𝜅(−𝜇), (4.19)
𝑠(𝜇) = 𝑠(−𝜇), (4.20)

𝑝𝛼(𝜇) = 𝑝𝑁−𝛼(−𝜇). (4.21)

The particle-hole symmetry breaks down for non-bipartite lattices or if we include next-
nearest neighbor hopping terms [307].

4.2 Limits of the SU(N) Fermi-Hubbard model

This section reviews some fundamental limits of the SU(𝑁) FHM. In Sec. 4.2.1, we consider
the atomic limit, where 𝑡 = 0. In Sec. 4.2.2, we consider the non-interacting limit with 𝑈 =
0, which captures themetallic behavior of themodel. These limits can be exactly solved and
provide a useful starting point for discussing the numerical results in the following sections.

4.2.1 Atomic limit

In the case of strong interactions (𝑈 ≫ 𝑡), the kinetic term can be, in first approximation,
neglected (𝑡 = 0). This is the so-called atomic limit (AL). The Hamiltonian becomes

�̂�al =
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏−𝜇∑
𝑖𝜎

�̂�𝑖𝜎. (4.22)

In this case, the system can be described as a set of independent (uncoupled) sites, and
the grand canonical partition function becomes 𝒵 = 𝑧𝑁𝑠

0 , where 𝑁𝑠 is the number of the
lattice sites and 𝑧0 the single-site partition function

𝑧0(𝜇,𝑇,𝑈,𝑁) =
𝑁
∑
𝑛=0

(
𝑁
𝑛
)𝑒−𝛽[𝑈2 𝑛(𝑛−1)−𝜇𝑛], (4.23)
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Figure 4.1 | Equation of state for the strongly-interacting SU(𝑁) FHM. (a) Density per lattice site. (b)

Compressibility per lattice site. (c) Entropy per lattice site. Continuous lines: atomic limit for 𝑇/𝑈 = 0.05
and 𝑁 = 3 (red), 4 (purple), and 6 (blue). Dashed line: HTSE-2 correction for 𝑇/𝑡 = 3 (the same color

corresponds to the same 𝑁). We define 𝜇 = 0 at half filling (𝑛𝑑2 = 𝑁/2). Positive chemical potentials can

be obtained with a particle-hole transformation (see Sec. 4.1).

where we are considering all the permutations of 0 ≤ 𝑛 ≤ 𝑁 particles on the site. The
grand potential is

Ω0(𝜇,𝑇,𝑈,𝑁) =−
1
𝛽
log[𝑧0(𝜇,𝑇,𝑈,𝑁)]. (4.24)

From the partition function or the grand potential, it is possible to derive the most
relevant thermodynamic quantities similarly to what we presented in Sec. 3.1 for the
bulk. Their calculation and exact dependency on the natural variables are reported in
Appendix C.1. Here, we will focus on a qualitative description of the most relevant ones.

The density 𝑛 = −𝜕Ω0/𝜕𝜇 [see Fig. 4.1(a)] distributes as a function of the chemical
potential in insulating plateaus at integer values up to 𝑁 (the so-called Mott shells [292,
308]). At zero temperature, the spectrum is gapped, and the density “jumps” between inte-
ger values when the chemical potential 𝜇 changes by 𝑈. Increasing the temperature, metal-
lic phases emerge around the jump positions, and the density profile gets “smoother”. The
isothermal compressibility 𝜅 = 𝜕𝑛/𝜕𝜇 shows local minima at the plateaus [see Fig. 4.1(b)].
At zero temperature, these minima are zero. The entropy per site 𝑠0 = −𝜕Ω0/𝜕𝑇 also
shows local minima at the plateaus, [see Fig. 4.1(c)]. In Fig. 4.1 we show the observ-
ables for 𝑁 = 3,4 and 6.

In addition to density, compressibility, and entropy, other important observables we can
probe in our experiment are the components of the site-occupation distribution 𝑝𝛼 (see
Sec. 4.1.1). ⟨ ̂𝑝1⟩, ⟨ ̂𝑝2⟩ and ⟨ ̂𝑝3⟩ represent the amount of singly, doubly, and triply occupied
sites of the system, respectively. These observables represent additional coordinates of the
equation of state and contain information on the number squeezing to a high atom density
which is not directly accessible from the sole measurement of ⟨�̂�⟩. In Fig. 4.2, we show an
example of their scaling as a function of the chemical potential and the temperature (see
Appendix C.1 for the analytical expressions).
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Figure 4.2 | Site-occupation distributions ⟨�̂�𝛼⟩ for 𝑁 = 6 and 𝛼 = 1,2,3. Continuous lines represent atomic

limit; dashed lines are HTSE-2 corrections for 𝑈/𝑡 = 30. In (a) and (b) 𝛼⟨�̂�𝛼⟩ are plotted as a function of

the chemical potential for two temperatures, respectively. The black lines represent the total density

⟨�̂�⟩ = ∑𝑁𝛼=1 𝛼⟨�̂�𝛼⟩. In (c), the curves of (a) and (b) are plotted against the total density. The color code is

the same as in (a) and (b).

4.2.2 Non-interacting limit

In the non-interacting limit 𝑈 = 0, the SU(𝑁) FHM Hamiltonian becomes diagonal in mo-
mentum space:

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 +h.c.)−𝜇∑
𝑖𝜎

�̂�𝑖𝜎 =∑
k,𝜎

(𝜖k−𝜇)�̂�k𝜎, (4.25)

with �̂�k,𝜎 = ̂𝑐†k,𝜎 ̂𝑐k,𝜎 and ̂𝑐r,𝜎 = (1/𝑁𝑠)∑k 𝑒
−𝑖k⋅ r

|r| 𝑑 ̂𝑐k𝜎. k = (𝑘𝑥,𝑘𝑦) is the wave vector, 𝑁𝑠 is
the number of lattice sites, 𝑑 is the lattice spacing and 𝜖k is the dispersion relation

𝜖k =−2𝑡[cos(𝑘𝑥𝑑)+ cos(𝑘𝑦𝑑)] . (4.26)

The analytical expression for some of the most relevant thermodynamic quantities in
this limit is reported in Appendix C.4. In Fig. 4.3, we show the density as a function of
the chemical potential and the compressibility and the entropy as a function of the density
(continuous lines). In the same figure, we show the comparison with a non-interacting cal-
culation in bulk (dotted lines). The parameters of this simulation match the same absolute
temperature and volume of the in-lattice calculation for our specific lattice spacing and an
arbitrary value of 𝑡/ℎ, allowing for a qualitative comparison of the two models. In partic-
ular, we observe that the compressibility and the entropy per volume do not saturate at
high density but show a maximum at half-filling, a consequence of the Pauli blocking and
the particle-hole symmetry. The figure also shows a determinant Quantum Monte Carlo
simulation for small 𝑈/𝑡 (dashed lines). Here we observe that the interactions strongly
suppress the compressibility while the entropy per lattice site is only slightly affected.
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Figure 4.3 | Equation of state of the SU(𝑁) FHM in the non-interacting limit for 𝑁 = 3 (red), 𝑁 = 4 (purple),
and 𝑁 = 6 (blue). (a) Density as a function of the chemical potential. The zero of the chemical potential

is defined as half-filling. (b) Compressibility as a function of the density. (c) Entropy per lattice site as

a function of the density. Continuous lines: non-interacting model for 𝑇/𝑡 = 0.5. Dashed lines: DQMC

simulations (see Sec. 4.3.3) for 𝑈/𝑡 = 2.34 and 𝑇/𝑡 = 0.5. Dotted lines: non-interacting model in bulk (see

Sec. 3.1) matching the same absolute temperature and volume for our specific lattice spacing 𝑑 ≃ 380nm
and for 𝑡/ℎ = 170Hz. DQMC curves are reworkings of simulations courtesy of the Hazzard group at Rice

University.

4.3 Methods to simulate the SU(N) FHM at intermediate interactions

Ideally, the complete description of the equation of state could be obtained straightfor-
wardly with the exact diagonalization (ED) of the Hamiltonian of Eq. (4.1). This is, how-
ever, very difficult because of the exponential scaling of the size of the Hilbert space with
the number of lattice sites 𝑁𝑠 and the number of spin components 𝑁. A smart use of the
symmetries of the system described in Sec. 4.1.1 and a truncation of the Hilbert space
to the most relevant states helps to reduce the computational complexity, but only to a
limited extent [309]. State-of-the-art ED algorithms can treat only few sites and spin com-
ponents [309], which quickly reduce with 𝑁 [50].

Alternative methods have been developed to study the properties of the model in spe-
cific regimes and under a certain set of assumptions and approximations. In this section,
we focus on the methods we use in Chap. 5 to fit the experimentally measured equation
of state. At the same time, we restrict our attention to the observables which we probe
in our experiment.

In Sec. 4.3.1, we present the high-temperature series expansion (HTSE), which treats
the kinetic energy as a perturbation to the atomic limit. In Sec. 4.3.2 and 4.3.3, we briefly
describe numerical linked-cluster expansion (NLCE) and determinant quantumMonte Carlo
(DQMC), respectively. Our theory collaborators use these methods to simulate the ther-
modynamic properties of the model for 𝑁 ≥ 2 and a wide range of interaction strengths
and temperatures.

In addition to ED, HTSE, NLCE, and DQMC, several other numerical techniques can
be used to probe the equation of state of the SU(2) FHM. A review and comparison of
the results obtained with different methods can be found in Ref. [309]. Among these
methods, dynamical mean field theory (DMFT) [310, 311] has been successfully applied
to study the SU(𝑁)-symmetric and the degenerate multiorbital extensions of the FHM in
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several regimes [41, 43–45, 47, 51, 312–316]. Furthermore, the density-matrix renor-
malization group (DMRG) [317, 318] has also been successfully extended to the SU(𝑁)
case [57, 319, 320].

4.3.1 High-temperature series expansion

In the strongly-interacting limit, instead of completely neglecting the kinetic energy as dis-
cussed in Sec. 4.2.1, we can treat it as a perturbation and perform a series expansion in
powers of (𝛽𝑡). In particular, it is possible to calculate a leading correction to the grand
potential [70, 321]:

Ω=Ω0+ΔΩ{𝑂[𝑁,(𝛽𝑡)2]}+𝑂(𝛽𝑡)4. (4.27)

The truncation at the second order is often called HTSE-2‡. The analytical expressions
for ΔΩ and the most relevant observables are reported in Appendix C.3. In Fig. 4.1 and 4.2,
we show an example of how the kinetic term in HTSE-2 modifies the atomic limit. The main
corrections affect the metallic regions, where the compressibility and the entropy per site
decrease [see Fig. 4.1(b,c)]. At the plateaus, instead, the compressibility slightly increases
[see inset of Fig. 4.1(b)].

HTSE-2 is very easy to compute and implement, but being a perturbative correction, it
has a limited range of validity 𝑇/𝑡 ≳ 1. At lower temperatures, HTSE-2 is inaccurate and
eventually diverges (see Fig. 4.5). In order to describe lower temperatures, the calculation
of higher orders is required. This has been done for the 𝑁 = 2 case up to 𝑂[(𝛽𝑡)10] [322–
324]. An expansion up to the 4th order has been calculated for 𝑁 = 4 on a honeycomb
lattice [325]. For the generic 𝑁 case, high-order terms have been calculated only near
𝑛𝑑2 = 1 and for the strongly-interacting limit 𝑤 = 𝑒−𝛽𝑈 →∞ [326, 327]. These calcula-
tions evaluate the perturbation on small clusters of 𝑛 sites and calculate the result in the
thermodynamic limit by weighting the contribution of each cluster in a similar way to what
NLCE does (see Sec. 4.3.2). Calculating high orders is rather cumbersome, and alterna-
tive numerical methods such as NLCE and DQMC, which we will describe in the following
sections, are considered more convenient.

4.3.2 Numerical linked-cluster expansion

Numerical linked-cluster expansion (NLCE) [328, 329] works similarly to high-order HTSE.
The general idea is to consider clusters of 𝑘 sites, group them according to point-group or
topological equivalence, evaluate the thermodynamic property of interest in the represen-
tative clusters, and take a weighted sum to describe the property in the full-size lattice.

More in detail, if 𝒫 is the property that we want to evaluate on the lattice ℒ with
𝑁𝑠 lattice sites,

𝒫(ℒ)/𝑁𝑠 =∑
𝑐
𝐿(𝑐)×𝒲𝑃(𝑐), (4.28)

‡The atomic limit is sometimes referred to as HTSE-0. Odd terms of the expansion do not contribute on
bipartite lattices [322].
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Figure 4.4 | Comparison of different NLCE orders for 𝑁 = 4, 𝑈/𝑡 = 10.38 and 𝑇/𝑡 = 1.0. (a) Density as a
function of the chemical potential. (b) Normalized residuals for the density between orders 𝑘 and 𝑘 − 1.
Orange line: normalized residuals between NLCE-2 and HTSE-2, showing that the two methods at this

order are in good agreement. NLCE curves are reworkings of simulations courtesy of the Hazzard group

at Rice University.

with

𝒲𝑃(𝑐) =𝒫(𝑐)−∑
𝑠⊂𝑐

𝒲𝑃(𝑐), (4.29)

𝒫(𝑐) =
Tr[�̂�(𝑐)𝑒−𝛽�̂�𝑐]

Tr[𝑒−𝛽�̂�𝑐]
. (4.30)

𝒫(𝑐) is the property evaluated in the cluster 𝑐, 𝑠 is the sum running on all the sub-
clusters of 𝑐 and �̂�𝑐 is the Hamiltonian of 𝑐. The second term of Eq. (4.29) is necessary
to ensure that 𝒫(𝑐) is given by the sum of the weights of 𝑐 and the weights of its sub-
clusters. 𝑘 (the number of sites) is also the NLCE order: if 𝑘 = 4, for example, we talk
about 4th order NLCE or NLCE-4.

The key feature distinguishing NLCE from high-order HTSE is the use of exact diag-
onalization instead of thermodynamic perturbation theory to evaluate Eq. (4.30). This
means that the property of interest is calculated to all orders in (𝛽𝑡) and can be described
at arbitrary small temperatures. The convergence temperature of NLCE is limited by the
size of the longest cluster that can be probed, which determines the cut to the correlation
range captured by the model. A nice feature of NLCE is the presence of a convergence
control parameter: the simulation has converged if order 𝑘 and order 𝑘 − 1 return the
same result. This convergence criterion depends on the observable and the chemical po-
tential. Empirically, we see that the density converges faster than the entropy and the
site-occupation probabilities and that lower chemical potentials generally converge faster
than higher ones. Furthermore, insulating phases converge faster than metallic ones be-
cause their wavefunctions are more localized.

In Fig. 4.4(a) we show a comparison of different NLCE orders for 𝑁 = 4, 𝑈/𝑡 = 10.38
and 𝑇/𝑡 = 1. In Fig. 4.4(b), we show the normalized residuals between neighboring orders
and a comparison with the HTSE-2 calculation with the same parameters. We point out
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that NLCE-1 is exactly equal to AL by definition. On the other hand, NLCE-2 usually agrees
well with HTSE-2 but converges to lower 𝑇/𝑡 values [50].

The NLCE calculations presented in this chapter and the next one have been performed
for fixed 𝑈/𝑡 and 𝑁 on a dense (𝜇/𝑡,𝑇/𝑡)-grid by our theory collaborators in Kaden Haz-
zard’s group at Rice University, in particular by Sohail Dasgupta and Eduardo Ibarra García
Padilla. A detailed discussion of their implementation, which allowed the application of
NLCE to 𝑁 >2 systems for the first time, can be found in Refs. [50, 87]. In order to fit the
experimental data of Ref. [87] and Chap. 5, they calculated NLCE up to order 7 for 𝑁 = 3,
order 5 for 𝑁 = 4 and order 4 for 𝑁 = 6 for arbitrary chemical potentials, temperatures
𝑇/𝑡 ≳ 0.5 and a selected choice of 𝑈/𝑡 values.

4.3.3 Determinant quantum Monte Carlo

Determinant quantum Monte Carlo (DQMC) [330, 331] is one of the numerical techniques
which have been most successful in the exploration of the EoS for the SU(2) FHM [17, 332,
333]. In this section, we will briefly summarize its working principle for the SU(2) case by
taking inspiration from Ref. [334] and then hint at the generalization to the SU(𝑁) case.
A detailed discussion of the method and its limits, such as the famous sign-problem [60,
335, 336], falls outside the scope of this thesis.

The idea behind DQMC is to approximate the partition function with a Trotter-Suzuki
decomposition by splitting the imaginary time [0,𝛽] into 𝐿 subintervals of width Δ𝜏 = 𝛽/𝐿,
such that

𝒵= Tr(𝑒−𝛽�̂�) = Tr
𝐿
∏
𝑙=1

𝑒−Δ𝜏�̂� ≃ Tr(
𝐿
∏
𝑙=1

𝑒−Δ𝜏�̂�𝑘𝑒−Δ𝜏�̂�𝑈), (4.31)

where �̂�𝑘 and �̂�𝑈 represent the kinetic and interaction terms of the SU(2) FHM, and the
chemical potential has been set to zero for simplicity. The kinetic term �̂�𝑘 can be easily
diagonalized (see Sec. 4.2.2). Instead, the interaction term �̂�𝑈 cannot be easily diago-
nalized in a single-particle eigenbasis. The approach used in DQMC is then to apply a
discrete Hubbard-Stratonovich transformation [17] which replaces the quartic term in the
creation/annihilation operators with a quadratic one. This is possible by adding auxiliary
variables {ℎ} and increasing the dimensionality of the problem. After the transformation,
the partition function assumes a computable form

𝒵ℎ ∝ Trℎ{det[𝑀↑(ℎ)]det[𝑀↓(ℎ)]}. (4.32)

By writing Eq. (4.32), we want to emphasize how the partition function can now be
computed as a product of two determinants (we will not further discuss the exact form of
the two fermionic matrices 𝑀↑,↓). ℎ is a matrix of entries ±1 and size 2𝑁𝑠𝐿 and its con-
figurations are sampled according to a classical Monte Carlo method (using a Metropolis-
Hastings model [337] for example). The resulting probability distribution can be used as
a Boltzmann weight to compute observables.

For the SU(𝑁) case, the algorithm can be generalized by independently treating the
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Figure 4.5 | Equation of state for 𝑁 = 4 and 𝑈/𝑡 = 7.43 as a function of the temperature 𝑇/𝑈 (shades of

red). (a) Density per site vs. chemical potential. (b) Compressibility vs. density. (c) Entropy per site vs.

density. (d) Density of doubly-occupied sites vs. total density. The continuous line is an NLCE calcula-

tion; the dashed line, which most of the time overlaps with the continuous line, is a DQMC simulation,

and the dotted line is the HTSE-2 approximation. NLCE and DQMC curves are reworkings of simulations

courtesy of the Hazzard group at Rice University.

interaction terms for each pair of spin components and introducing 𝑁(𝑁 −1)/2 auxiliary
fields§. Additional details about the method can be found in Refs. [50, 75, 87, 340].

The DQMC simulations shown in this chapter and the next one have been performed by
our theory collaborators in Kaden Hazzard’s group at Rice University and Richard Scalet-
tar’s group at UC Davis, and in particular by Eduardo Ibarra García Padilla. Their imple-
mentation allows for simulation on a dense (𝜇,𝑇)-grid, arbitrary 𝑈/𝑡, 𝑁 ≥ 2, and temper-
atures a fraction of the hopping energy.

4.4 Thermodynamics of the SU(N) FHM at intermediate tempera-

tures and interactions

In Sec. 4.2.1 and 4.2.2, we have discussed the EoS in the limits 𝑡 = 0 and 𝑈 = 0, respec-
tively. In this section, we focus on the intermediate regime, where no analytical model is
available, and we resort to the HTSE, NLCE, and DQMC methods and calculations pre-
sented in Sec. 4.3.

In Fig. 4.5, we show some of the most experimentally relevant observables for𝑁 = 4 and
𝑈/𝑡 = 7.43 as a function of the temperature. This interaction strength is near the critical
point for the phase transition between metal and Mott insulator [44]. The Mott plateaus in
the density cannot be clearly identified at these temperatures. The compressibility shows
minima at integer densities less pronounced than in the strongly-interacting case. The
contrast with the metallic regions decreases as a function of the temperature. Compared
to the strongly-interacting case, the local minima of the entropy can hardly be seen. In

§For 𝑁 >2, the choice of decoupling is not unique. One possibility consists in introducing 𝑁(𝑁−1)/2 real
auxiliary Hubbard Stratonovich fields; another one is using one complex auxiliary field. Although the latter
one is free of the sign problem at half-filling for even 𝑁 [40, 42, 53, 338], it hasn’t been explored for odd values
of 𝑁 [339].
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Figure 4.6 | Spatial radial profiles for (a) the density, (b) the compressibility, (c) the entropy per lattice

site and (d) the occupation probabilities (continuous line: ⟨�̂�1⟩, dashed line: ⟨�̂�2⟩, dotted line: ⟨�̂�3⟩). The
profiles have been calculated for a cloud of fixed atom number 𝑁𝑝 = 2 × 10

3 in a harmonic trap with

𝜅𝑥𝑑
2/𝑈 = 𝜅𝑦𝑑

2/𝑈 = 0.0045 in local density approximation for 𝑁 = 4 and fixed temperature 𝑇/𝑈 = 0.15.
The dotted lines in (c) represent the average entropy per particle 𝑠 = (∑𝑖 𝑠0,𝑖)/ (∑𝑖 𝑛𝑖), with 𝑖 running on

the lattice sites. Curves are reworkings of DQMC (𝑈/𝑡 = 2.34) and NLCE (other 𝑈/𝑡 values) simulations

courtesy of the Hazzard group at Rice University.

this regime, the EoS has been calculated with NLCE (continuous line) and DQMC (dashed
line), showing excellent agreement. The only visible discrepancy is in the compressibility
for 𝑇/𝑈 = 0.15 and 𝑛𝑑2 ≃ 1.5, where NLCE has not fully converged. HTSE-2 instead (dot-
ted line) shows some discrepancy at low temperatures in the density, presents unphysical
wiggles in the compressibility at half-integer densities, and diverges in the entropy. Some
deviations from NLCE can also be seen in the doubly-occupied fraction.

The convergence range of each method varies as a function of 𝑁,𝜇/𝑡,𝑈/𝑡, and 𝑇/𝑈 and
needs to be estimated case by case. In general, we observe that NLCE and DQMC are rather
complementary techniques. We expect DQMC to perform better for smaller 𝑈/𝑡 and NLCE
for larger 𝑈/𝑡, with a good overlap between 𝑈/𝑡 ∼ 7 and 12¶.

4.4.1 Local density approximation

Up to now, we have considered the equation of state in a grand canonical ensemble with
natural variables (𝑇,𝜇,𝑈,𝑁). The EoS-dependence on the chemical potential is significant
for the experimental realization described in Chap. 5. There, we implement the SU(𝑁)
FHM with an additional harmonic confinement 𝑉, such that

𝐻 =−𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎 +h.c.)+
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏 +∑
𝑖,𝜎

𝑉𝑖�̂�𝑖𝜎. (4.33)

In local density approximation (LDA), the harmonic confinement term can be reab-
sorbed in the chemical potential term, which becomes spatially dependent:

𝜇(𝑥,𝑦) = 𝜇0 −𝑉(𝑥,𝑦) = 𝜇0 −
1
2
(𝜅𝑥𝑥

2 +𝜅𝑦𝑦
2), (4.34)

where 𝜇0 is the chemical potential at the center of the trap, 𝜅𝑥 and 𝜅𝑦 are the parame-

¶On the one hand, DQMC is less prone to Trotter errors (proportional to 𝑈Δ𝜏2) and non-ergodicity issues
at small 𝑈/𝑡. On the other hand, NLCE is more performant at large 𝑈/𝑡 because the system is more localized
and the finite-size errors are smaller [339].
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Figure 4.7 | 𝑁-dependency of the equation of state for fixed 𝑈/𝑡 = 7.43, 𝑇/𝑡 = 1.5, and 𝑁 = 3 (red), 4

(purple), and 6 (blue). (a) Density after a shift of the chemical potential of 𝑈 ⋅𝑁/2. (b) Density after setting
the zero of the chemical potential at the plateau 𝑛𝑑2 = 1. (c) Density profiles in local density approximation

for 𝑁𝑝 = 2×10
3 and 𝜅𝑥𝑑

2/𝑡 = 𝜅𝑦𝑑
2/𝑡 = 0.03. (d) Compressibility. (e) Entropy per lattice site. (f) Occupation

probabilities (continuous line: ⟨�̂�1⟩, dashed line: ⟨�̂�2⟩, dotted line: ⟨�̂�3⟩). Curves are reworkings of NLCE
simulations courtesy of the Hazzard group at Rice University.

ters of the harmonic trap, and we have moved from the discrete set of indices {𝑖} to the
continuous variables (𝑥,𝑦).

The trap shape plays an important role in the experiment. From the knowledge of the
trap and the total atom number 𝑁𝑝, we can calculate the chemical potential at the trap’s
center 𝜇0 and simulate the cloud’s shape in the experiment. In Fig. 4.6, we simulate a cloud
with fixed atom number and temperature in a harmonic trap similar to the one used for
the experiments described in Chap. 5. As the chemical potential varies as a function of the
radius, we probe the entire equation of state for 𝜇 < 𝜇0. We can clearly identify the Mott
plateaus and the (in)compressible regimes in real space for strong interactions.

The LDA is a powerful tool to probe the EoS across different phases. It is accurate when
the energy spacing of 𝑉 is much smaller than the other characteristic energies of the system.
In the case of the experiments presented in Chap. 5, 𝜅𝑥𝑑

2,𝜅𝑦𝑑
2 ≤ 0.15𝑡, 0.006𝑈, 0.07𝑇

and we can therefore safely apply LDA.

4.4.2 The dependence on N and the Pomeranchuk effect

The study of the 𝑁-dependency of the EoS shines some light on Pauli blocking and how
the thermodynamic properties of the system are affected by it. If we consider intermediate
temperatures and fixed (𝑇,𝑈,𝑁𝑝), a shift of𝑁/2 in the chemical potential causes a collapse
of the density profiles 𝑛(𝜇,𝑁) on top of each other, with only minor discrepancies [see
Fig. 4.7(a)]. In particular, the Mott region becomes less sharp with increasing 𝑁. These
discrepancies come from the fact that the particle-hole symmetry holds with respect to
half-filling (𝑁/2). In real space [see Fig. 4.7(c)], we observe a similar situation, and the
shape of the clouds shows minimal deviations as a function of 𝑁 to each other. These
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Figure 4.8 | Pomeranchuk effect for the SU(𝑁) FHM. Relation between the average entropy per particle

𝑠 and the temperature 𝑇 in the lattice for different 𝑁 and 𝑈/𝑡 ratios. Continuous line: NLCE. Dashed

line: DQMC. Dotted line: HTSE. Shadowed area: estimated DQMC uncertainty. The relation has been

calculated for a cloud with 𝑁𝑝 = 2 × 10
3 in a harmonic potential with the 𝜅𝑥,𝑦 coefficients reported in

Tab. 5.1. NLCE and DQMC curves are derived from simulations courtesy of the Hazzard group at Rice

University.

discrepancies are nevertheless intriguing because they allow, in principle, to access the
system’s statistics from a macroscopic observable such as the density. The differences are
more pronounced in the compressibility [see Fig. 4.7(d)]. Although it is comparable for
all values of 𝑁 in the metallic phase, it significantly increases with 𝑁 in the Mott regions.
This is expected since the density fluctuations also increase with 𝑁. The entropy per lattice
site [see Fig. 4.7(e)] encodes the information of the internal degree of freedom and shows,
therefore, a significant 𝑁-dependency. Finally, we also observe that the lower occupation
probabilities ⟨ ̂𝑝𝛼⟩ become smaller for larger𝑁 because of the increasing suppression of Pauli
blocking and the possibility of having more atoms per lattice site [see Fig. 4.7(f)].

More dramatic is the contrast between systems with different 𝑁 and fixed (𝑠,𝑈,𝑁𝑝).
This comparison can be experimentally probed by preparing SU(𝑁) mixtures with the
same 𝑇/𝑇F (equivalent to the same entropy per particle 𝑠 in the non-interacting regime,
see Sec. 3.1) in the dipole trap. This scheme will be used and discussed in more detail
in Chap. 5.

For fixed temperature, we have just seen that the entropy per particle is higher for
larger 𝑁 because additional entropy is stored in the spin degree of freedom. Conversely,
this implies that the temperature must be lower for larger 𝑁 at fixed entropy. This phe-
nomenon is called Pomeranchuk effect because it presents analogies with the pioneering
proposal of similar behavior in 3He presented by Isaak Pomeranchuk in 1950 [341] and
later demonstrated by Anufriev in 1965 [342, 343]. In 3He, it is, in fact, possible to cool
down a sample in the liquid phase to the solid phase with an adiabatic transformation [343–
345]. Similarly, in our experiment, we “cool” down a cloud of ultracold atoms with large
𝑁 when we adiabatically load it into the lattice and compare the result with a system with
a smaller 𝑁 [70, 73, 346].

In Fig. 4.8, we show a numerical simulation emphasizing the Pomeranchuk effect for
our typical experimental parameters. For a fixed average entropy per particle, there is a
clear hierarchy of temperatures as a function of 𝑁. However, we also observe a reduction
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of the “cooling” effect for low entropies. This reduction happens when approaching the
superexchange energy 𝐽 ≃ 4𝑡2/𝑈 and it has been reported first in Ref. [50] (looking at
this relation for a fixed chemical potential instead of total atom number). At lower tem-
peratures, it seems possible that the curves for different 𝑁 and the same entropy collapse
on top of each other [50].



CHAPTER 5

Measurement of the Equation of State of the

2D SU(N) Fermi-Hubbard model

This chapter presents the experimental measurements of the equation of state (EoS) of the
two-dimensional SU(𝑁) Fermi-Hubbard model (FHM) in a square lattice. We realize this
system starting from an SU(𝑁) mixture of 173Yb atoms in a single 2D plane as described
in Chaps. 2 and 3 and ramping up two orthogonal in-plane lattices. First, we describe in
Sec. 5.1 the optical lattice setup and the loading scheme. In Sec. 5.2, we illustrate the
photoassociation scheme that allows us to probe the components of the site-occupation
distribution. Then, in Sec. 5.3, we present our measurement of the EoS and discuss its
agreement with the numerical simulations presented in Chap. 4. We characterize the EoS as
functions of the chemical potential, the interaction strength, the temperature, the entropy,
and the number of spin components. In Sec. 5.4, we show our measurement of the density
fluctuations and use the fluctuation-dissipation theorem to determine the temperature with
a theory-free model and verify its consistency with the temperature obtained from the fit of
the EoS. Finally, in Sec. 5.5, we present some more technical details about the calibration
and characterization of the systematic effects in our measurements.

The central results of this chapter have been submitted for publication and can be found
in Ref. [87].

5.1 Lattice loading and Hubbard parameters

In our experiment, we perform a quantum simulation of the SU(𝑁) FHM (see Chap. 4)
by mapping the atoms in the Zeeman states of the ground state manifold of 173Yb to the
spin states of the Hubbard model. The Hamiltonian of the system, already introduced
in Eq. (4.1), is given by

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+h.c.)+
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏−∑
𝑖,𝜎

𝜇𝑖�̂�𝑖𝜎. (5.1)

The atoms are all contained in the central plane of a deep vertical lattice (vLAT, see Chap. 2),
which provides the confinement along the 𝑧-direction and ensures a quasi-2D geometry (see

70
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Figure 5.1 | Hubbard parameters for a homogeneous lattice potential as a function of the lattice depth

𝑉. (a) On-site interaction 𝑈 calculated from the Wannier overlap. We also consider the contribution of a

vertical lattice with a bandgap of 3.95 kHz. (b) Hopping energy 𝑡. The black line indicates the tunneling
between nearest-neighboring sites, and the grey line indicates the next-nearest-neighbor hopping. (c)

On-site interaction ratio 𝑈/𝑡. (d) Bandgap between the first excited and the lowest bands. The dashed

line corresponds to the bandgap of the vertical lattice. (e) and (f) Wannier overlap |𝑤(𝑥)|2 for the first

excited and the lowest bands, respectively, for 𝑉 = 12𝐸
rec

(continuous line) and 𝑉 = 4𝐸
rec

(dotted line).

Chap. 3). Two orthogonal lattices along the 𝑥- and 𝑦-axes generate the in-plane lattice
potential. These lattices originate from retro-reflected Gaussian beams, and the potential
in the (𝑥, 𝑦) plane is given by

𝑉(𝑥,𝑦) ≃ 𝑉𝑥 cos
2 (𝑘𝑥)+𝑉𝑦 cos

2 (𝑘𝑦)+
1
2
(𝜅𝑥,lat𝑥

2 +𝜅𝑦,lat𝑦
2)+𝑂(𝑥4,𝑦4), (5.2)

where 𝑉𝑥,𝑦 are proportional to the intensity of the beams, 𝑘 = 2𝜋/𝜆 is the wavevector
of the lattice light with magic wavelength 𝜆 ≃ 760nm and 𝜅𝑥,𝑦,lat are the coefficients of
the harmonic confinement. They are related to the trap frequencies 𝜔𝑥,𝑦,lat by 𝜅𝑥,𝑦,lat =
𝑚𝜔2

𝑥,𝑦,lat𝑑
2, where 𝑚 is the atomic mass and 𝑑 = 𝜆/2 is the lattice spacing. In addition to

the in-plane lattices, the vertical lattice vLAT, and the magic dipole trap mDT (see Chap. 2)
provide additional in-plane confinement, such that the coefficients of the combined har-
monic confinement are given by

𝜅𝑖 = 𝜅𝑖,lat+𝜅𝑖,vLAT+𝜅𝑖,mDT, 𝑖 ∈ {𝑥,𝑦}. (5.3)

The Hubbard parameters 𝑡 and𝑈 can be calculated according to Eqs. (1.6) and (1.7), re-
spectively. In practice, this is done by numerically solving the band structure. In Fig. 5.1(a-
c), we show the numerically calculated values of 𝑡 and 𝑈 and their ratio as a function of the
lattice depth. The chemical potential of Eq. (5.1) absorbs instead the in-plane harmonic
confinement in local density approximation (LDA) as described in Sec. 4.4.1.

The ratio 𝑈/𝑡, which is a measure of the interaction strength, can be therefore tuned
by changing the intensity of the beams that generate the in-plane lattices. By doing so,
the system can be driven from the weakly interacting regime to the strongly interacting
regime through the metal-insulator transition. Furthermore, because of the harmonic con-
finement, points at a different distance from the center of the cloud correspond to different
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Figure 5.2 | Loading sequence from the 2D bulk to the square lattice with 𝑈/𝑡 = 33(2). (a) Power (in

arbitrary units) of the most relevant beams: vertical lattice (vLAT), dipole trap (mDT), in-plane lattices

(L1/L2), photoassociation beam (PA). Dashed lines: values toggled for photoassociation measurements

(see Sec. 5.2). (b), (c), (d) Time dependency of the lattice depth 𝑉 and the Hubbard parameters 𝑈 and 𝑡
during the loading to 𝑈/𝑡 = 33(2). (e), (f) Time dependency of the harmonic confinement parameters and

the cloud aspect ratio.

chemical potentials, allowing us to explore a vast portion of the EoS of the system in a
single realization.

When loading the atoms into the lattice, the tuning of 𝑈/𝑡 should be adiabatic, such
that the system remains in the ground state of the Hamiltonian. This means the ramp speed
must be slow enough to avoid heating. In Fig. 5.1(d), we show the bandgap between the
first excited band and the lowest band as a function of the lattice depth, which sets the
timescale for avoiding excitations to higher bands. Furthermore, the in-plane confinement
and aspect ratio of the cloud should also stay as constant as possible during the tuning of
𝑈/𝑡 to avoid a nonadiabatic suppression of the mass flow [73].

In Fig. 5.2, we show the time evolution of the Hubbard parameters in our experiment
over time as we switch on the lattices and tune the interaction strength to the strongly
interacting regime 𝑈/𝑡 = 33(2). We start in the 2D bulk in the central plane generated by
the vertical lattice (vLAT) with additional confinement provided by the magic dipole trap
(mDT). Then, we ramp up the two orthogonal in-plane lattices simultaneously and to the
same depth. We implement three linear ramps with different slopes, such that the slope
near the metal-insulator transition is smaller. During the ramps, we lower the mDT power
to zero to balance the lattice-induced increase in the harmonic confinement and keep the
aspect ratio as constant as possible. After we reach the desired depth, we switch off all the
lattices to avoid light-assisted collisions and to perform in-situ imaging. In Tab. 5.1, we
report the relevant Hubbard and confinement parameters for the other 𝑈/𝑡 ratios we will
consider in the following. When ramping to a different 𝑈/𝑡 ratio, we tune the lattice depth
by following the same curves of Fig. 5.2 up to the desired point. The mDT power, instead,
is always ramped down to zero (with a different speed).
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𝑈/𝑡 𝑉 (𝐸rec) 𝑈/ℎ (Hz) 𝑡/ℎ (Hz) 𝜅𝑥𝑑
2/𝑡(10−3) 𝜅𝑦𝑑

2/𝑡(10−3)

2.3(1) 4.0(1) 398(6) 170(4) 10(1) 13(1)
7.5(4) 7.1(1) 582(9) 78(3) 26(1) 35(1)

10.4(6) 8.0(2) 634(9) 61(2) 38(1) 50(1)
33(2) 12.0(2) 816(11) 25(1) 135(1) 174(1)

Table 5.1 | Hubbard and confinement parameters for our system after loading the atoms into the square

lattice. 𝑉 is the lattice depth along one direction (both lattices have the same depth). For 𝑈/𝑡 = 2.3(1),
the next-nearest-neighbor hopping is 12Hz.

5.2 Parity-projected density

The typical observable that we can access in our experiment is the total density 𝑛 = ⟨�̂�⟩.
Another observable that we can measure is the parity-projected density, which we define
in this section. The parity-projected density is an observable related to the components of
the site-occupation distribution described in Chap. 4. In particular, it is defined as

⟨�̂�PR⟩ =
𝑁
∑
𝛼=1

(𝛼 mod 2)⟨ ̂𝑝𝛼⟩, (5.4)

where 𝑝𝛼 is the probability of having 𝛼 particles on a given site*. At low density, the parity-
projected density consists of the removal of doublons, and it is, therefore, a measurement
of the number of singlons in the system. At higher density, it also contains the contribution
of triplons and higher-order site-occupation components.

This observable is measured after the application of a photoassociation technique. We
use a photoassociation beam working on the 1S0 →

3P1 transition, resonant with a molec-
ular transition detuned by −599.28(8)MHz with respect to the single-particle transition
with a bias magnetic field of 1G. The beam is coplanar with the lattices (see Fig. 1.5) and
has a power of 30mW. The sequences for measuring the pair-removal and the total density
are very similar. The sequences are the same up to the point where we ramp the lattice
to the desired 𝑈/𝑡 value. Then, before switching off the lattices and performing in-situ
imaging, we quench the lattice to 30𝐸rec to suppress the motion of the atoms and apply
the photoassociation pulse (see dashed lines in Fig. 5.2).

The typical duration of the photoassociation pulse is 10ms. In this way, we remove
most of the doublons in the system. However, some doublons remain after the finite du-
ration of the photoassociation pulse, and some singlons are removed due to experimental
imperfections. Eq. (5.4) needs, therefore, to be corrected to

⟨�̂�eff
PR⟩ ≃ 𝑒−𝛾𝑠𝑡 [∑

𝛼
(𝛼 mod 2)⟨ ̂𝑝𝛼⟩+𝑒−𝛾𝑑𝑡(∑

𝛼
2⌊𝛼/2⌋⟨ ̂𝑝𝛼⟩)], (5.5)

where ⌊⋅⌋ represents the floor function and 𝛾𝑠 and 𝛾𝑠 +𝛾𝑑 represent the decay rate of the
singlons and the doublons, respectively. Here, we neglect the fast decay of the states with
more than two particles per site. For 𝛾𝑠,𝛾𝑑 →0 we recover ⟨�̂�eff

PR⟩→ ⟨�̂�PR⟩. In the following,

*𝛼⟨ ̂𝑝𝛼⟩ is the number of particles and ⟨�̂�⟩ =∑𝑁
𝛼=0𝛼⟨ ̂𝑝𝛼⟩, see also Sec. 4.1.
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Figure 5.3 | Probing the EoS of the FHM for 𝑁 = 6. (a) In-situ absorption images of the density ⟨�̂�(𝑥,𝑦)⟩
in a single layer 2D square lattice with harmonic confinement. Each horizontal frame has been prepared

with the same initial entropy in the 2D bulk and loaded into the lattice to a different 𝑈/𝑡 ratio. (b) Singly-
occupied sites ⟨�̂�effPR(𝑥,𝑦)⟩ measured with the parity-projection method (see Sec. 5.2). Each horizontal

frame corresponds to the same state shown in the same column of (a). (c) Density profiles for the data

shown in (a) and (b) along the dashed lines in the first column. Each image is averaging eight realizations

after total atom number postselection and c.o.m. alignment.

whenever it is not specified, we plot the experimental data and use the calibration of 𝛾𝑠
and 𝛾𝑑 to adapt the theoretical prediction for ⟨�̂�eff

PR⟩ to the experimental values.
When comparing the measurement of the total density with the pair removal taken

under the same conditions, we assume that we can neglect the tunneling during the quench
of the lattice depth. The calibration of 𝛾𝑠 and 𝛾𝑑 is discussed in Sec. 5.5.5.

5.3 Measurement and fit of the SU(N) equation of state

In Fig. 5.3(a), we show a spatially resolved measurement of the density for 𝑁 = 6 and dif-
ferent 𝑈/𝑡 ratios. Each frame is characterized by the same total atom number and entropy
per particle before switching on the in-plane lattices. For increasing interaction strengths,
we can clearly identify the formation of a plateau at density 𝑛𝑑2 ≃ 1, which signals the
emergence of an insulating phase between two metallic phases. In Fig. 5.3(b), we show
the corresponding measurement of the parity-projected density. Here, we see a depletion
of atoms in the center associated with the removal of doublons. As a function of the inter-
action strength, we observe an increase in the contrast between the center and the edge of
the cloud. This indicates a higher localization of doubly-occupied sites in the center and
an increase in the number squeezing at higher densities.

In local density approximation (see Sec. 4.4.1), the knowledge of the shape of the trap
allows us to map the real-space coordinates to the chemical potential. In Fig. 5.4(a), we
show the measured density (circles) and the singly-occupied sites (diamonds) as a function
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Figure 5.4 | Measuring the EoS of the SU(𝑁) FHM. (a) Density ⟨�̂�⟩ (circles) and singly-occupied sites ⟨�̂�eff
PR
⟩

(diamonds) as a function of the chemical potential 𝜇 for 𝑁 = 3,4 and 6. The continuous lines correspond

to a fit of the data for the density [DQMC for 𝑈/𝑡 = 2.3(1) and NLCE for the other cases] and a prediction

(NLCE) from the fit results of the density for the singly-occupied sites. The curves for 𝑁 = 4 and 𝑁 = 6
are vertically shifted for clarity. The chemical potential is computed with respect to the reference half-

filling [𝑛𝑑2(𝜇 = 0) = 𝑁/2]. For each 𝑈/𝑡 and 𝑁, we fit the average of 15 frames with similar atom number

after c.o.m. alignment. Error bars are the standard error of the mean (s.e.m.). (b) Temperature returned

from the fits shown in (a). (c) Entropy per particle. Triangles, squares, and hexagons correspond to the

in-lattice values determined by the fits of (a) for 𝑁 = 3,4 and 6, respectively. The horizontal lines indicate

the entropy in the 2D bulk before ramping up the in-plane lattices. The small circles indicate the entropy

after a round-trip experiment (the connecting lines are a guide to the eye). The bulk entropy takes into

account the effect of interactions (see Chap 3). Error bars correspond to the s.e.m. of the fit results.

DQMC and NLCE theory for the fit courtesy of the Hazzard group at Rice University.

of the chemical potential. Here, we also compare realizations for 𝑁 = 3,4 and 6 with
similar initial entropy and total atom number.

The data of 5.4(a) can be compared with the DQMC and NLCE simulations presented
in Chap. 4. In particular, we can use these theoretical models to fit the data and determine
the system’s temperature and entropy. The continuous lines in Fig. 5.4(a) associated with
the density data points correspond to the fit of the density with DQMC for𝑈/𝑡 = 2.3(1) and
NLCE for the other cases. The theory curves agree well with the data. From these fit results,
we predict the theoretical curves for the singly-occupied sites. These curves, computed
with NLCE without any degree of freedom and shown in Fig. 5.4(a) as continuous lines
associated with the singlons, are also in reasonable agreement with the data. A comparison
of the data and the fit results in real space can be found in Appendix E.

In Fig. 5.4, the three datasets for 𝑁 = 3,4 and 6 have been prepared with the same
entropy per particle 𝑠/𝑘B ≃ 1.2(1) in the 2D bulk before ramping up the in-plane lattices
(see Chap. 2 for the entropy measurement method). This allows us to directly compare
them and verify the presence of a Pomeranchuk effect (see Sec. 4.4.2). In Fig. 5.4(b), we
compare the in-lattice temperatures returned by the fit for different values of 𝑁. Here, we
observe a decrease in the temperature for increasing 𝑁 compatible with the Pomeranchuk
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effect. The “cooling” effect is apparent when we compare𝑁 = 3with𝑁 = 4 or the strongest
interaction strength for all values of 𝑁. However, we observe that the temperatures for
𝑁 = 4 and 𝑁 = 6 and intermediate 𝑈/𝑡 values are similar within 10% and their difference
is smaller than what we would have expected (see, for example, Fig. 4.8). This weakening
of the Pomeranchuk effect can be partially explained by looking at the entropy per particle
in the lattice, as shown in Fig. 5.4(c). We observe that the entropy in the lattice (large
data points) is larger than the one measured in the 2D bulk (horizontal line) and that
this increase is more significant for larger 𝑁. This phenomenon is corroborated by the
entropy measurement after a round-trip experiment (small circles). For this experiment,
after loading into the lattice to the desired 𝑈/𝑡 value, we add a symmetric and inverted
ramp back to the 2D bulk system and measure the entropy again. We observe that the
entropy after the round-trip experiment is always larger than the initial one and shows
a 𝑁-dependency similar to the one measured in the lattice. The round-trip and in-lattice
values are in good agreement for 𝑁 = 3 and 4 and show some deviations for 𝑁 = 6.

In determining the exact shape, slope, and duration of the lattice ramps, we put particu-
lar care into minimizing the round-trip entropy. However, the lack of complete adiabaticity
when loading into the lattice is not a complete surprise since it has been reported sev-
eral times in the literature for different systems and geometries [73, 186, 217, 292, 347].
Moreover, the 𝑁-dependency of the heating is not an entirely new phenomenon since sim-
ilar discrepancies for 𝑁 = 6 have been observed in the measurement of the EoS in a 3D
cubic lattice [73]. We will return to this point in Sec. 5.5.3.

5.3.1 Equation of state for higher temperatures

In addition to comparing the EoS for fixed entropy per particle 𝑠/𝑘B and different 𝑁 as
described in Sec. 5.3, we also explore the EoS for other combinations of parameters. In
this section, we focus on the EoS as a function of the entropy per particle, which we tune
by adding a hold time in the 2D bulk before ramping up the lattices (see Sec. 3.4). In
Fig. 5.5(a), we show the measured density profiles as a function of the hold time for dif-
ferent values of 𝑈/𝑡 and 𝑁 = 6. In the strongly interacting regime, we observe the fading
of the Mott plateau at density 𝑛𝑑2 ≃ 1. By fitting the density profiles with DQMC [for
𝑈/𝑡 = 2.2(1)] and NLCE (for the other cases), we see that the theory curves agree well
with the data.

In Fig. 5.5(b), we show the temperatures returned by the fits. They are, as expected,
monotonic and increase gradually with the hold time. In Fig. 5.5(c), we show the entropy
per particle returned by the fit, and we compare it with the bulk entropy measured before
the lattice loading and after a round trip experiment. For finite hold time and when appli-
cable†, we observe some agreement between the in-lattice entropy and the bulk entropy
after the round-trip experiment. This is especially true for longer hold times, where the
discrepancy between the two values becomes comparable with the error bars. However,
for 𝑈/𝑡 = 10.0(5), we observe that the in-lattice entropy is systematically larger than the

†For 𝑈/𝑡 = 2.2(1) and low temperatures, the range of convergence of the entropy curves with DQMC is
limited, and we cannot reliably compute the in-lattice entropy for all the hold times.
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Figure 5.5 | Temperature dependence of the equation of state for 𝑁 = 6. (a) Density profiles as a function
of the hold time in the 2D bulk before ramping up the lattices for different values of 𝑈/𝑡. The data

correspond to the average of 15 frames with 𝑁𝑝 ≈ 2.2 ×10
3 and a s.e.m. of 15 to 35 for each combination

of 𝑈/𝑡 and hold time, after total atom number postselection and c.o.m. alignment. The continuous lines

are the results of the fit with NLCE [for 𝑈/𝑡 = 33(2)] and DQMC (for the other cases). (b) Temperature

returned by the fit as a function of the hold time. We compare the results of the fits with different

methods: DQMC (circles), NLCE (diamonds), and HTSE (triangles). The lines are a guide to the eye.

(c) Entropy per particle in the lattice as a function of the hold time. We compare the results of the fits

with different methods [same markers and colors as in (b)]. The in-lattice results are compared with the

entropy measured in the 2D bulk before loading to the lattice (squares) and after a round-trip experiment

(crosses). The lines and the shaded areas are a guide to the eye. The error bars in (b) and (c) are the

s.e.m. of the fit. DQMC and NLCE theory for the fit courtesy of the Hazzard group at Rice University.

bulk entropy. This discrepancy is not fully understood, and it might relate to the rela-
tively strongly interacting regime at temperatures approaching the superexchange energy
𝐽 ∼ 4𝑡2/𝑈‡.

5.3.2 Compressibility

From the density and the knowledge of the chemical potential, we can compute the isother-
mal compressibility 𝜅 = 𝜕𝑛/𝜕𝜇. The compressibility contains information about the insu-
lating properties of the system (see Chap. 4). In Fig. 5.6, we show the measured com-

‡In this regime, it has been reported that, at ⟨�̂�⟩ = 1, the entropy measures ≈ log𝑁 and shows only a weak
dependency on the temperature [50].
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Figure 5.6 | Compressibility as a function of the density for the same datasets shown in Fig. 5.4. Points:

data numerically derived from the experimental density profiles with three-point differentiation. Lines:

compressibility computed from the numerical differentiation of the theoretical curves shown in Fig. 5.4.

The values are normalized to the compressibility �̃�0 of a non-interacting Fermi gas with 𝑁 = 6.

pressibility as a function of the density for the same datasets of Fig. 5.4. As 𝑈/𝑡 increases,
we can clearly see a suppression of the compressibility at densities 𝑛𝑑2 ≃ 1, a clear signa-
ture of the insulating behavior. When we compare the curves with the same 𝑈/𝑡 ratio and
different 𝑁, we observe that they almost collapse on each other. The same temperature
would result in higher compressibility at 𝑛𝑑2 ≃ 1 for larger 𝑁 [see Fig. 4.7(d)]. The fact
that the compressibility looks almost independent of 𝑁 indicates, therefore, that a lower
temperature compensates for the statistics-induced additional stiffness of the system, a
consequence of the Pomeranchuk effect.

5.3.3 Gap estimation

In Fig. 5.7(a), we show the compressibility for different values of 𝑈/𝑡 and 𝑁 = 6 as a func-
tion of the temperature. Qualitatively, it can be seen that the compressibility has a stronger
dependence on the temperature for larger 𝑈/𝑡. This behavior is associated with the open-
ing of a charge gap Δ in the excitation spectrum of the system. More quantitatively, we
can estimate the gap by fitting the minimum of the compressibility at the plateau with
the expression 𝜅min(𝑇) ∝ exp(−Δ/𝑇) [348] [see Fig. 5.7(b)]. In Fig. 5.7(c), we show the
gap as a function of 𝑈/𝑡. We observe that the gap becomes very small around 𝑈/𝑡 ∼ 7.
A linear fit to the data returns a zero crossing of (7.8±1.2)𝑡. However, we should point
out that it is not clear whether a linear scaling is the correct functional form for the gap.
In particular, 𝑂(𝑡) terms might play an important role near the closure of the gap [349].
Further studies are, therefore, needed to determine the point where the gap opens and its
functional dependency with respect to the interaction strength. With an accurate model-
ing, this technique might nevertheless provide valuable insights on the transition from the
metallic to the insulating regime for 𝑁 > 2§.

§For 𝑁 =2 the existence of a perfect nesting causes a smooth crossover [17].
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Figure 5.7 | Estimating the charge gap Δ emerging in the Mott insulating regime around 𝑛𝑑2 ≃ 1. (a)

Compressibility as a function of the chemical potential and the temperature (color scale) for different

values of 𝑈/𝑡 and 𝑁 = 6. (b) Minimum of the compressibility around 𝑛𝑑2 ≃ 1 as a function of the tempera-

ture. Continuous line: fit of the data with the expression log(𝜅
min
) = const −Δ/𝑇. (c) Gap Δ obtained from

the fits of (b) as a function of 𝑈/𝑡. Continuous line: linear fit to the data.

5.4 Density fluctuations and model-free thermometry

Complementary to the density profiles, the 2D single-plane geometry allows us to access
the local density fluctuations¶ without the need for complex reconstruction techniques.
Similarly to what we have discussed in Sec. 3.5, we compute the density variance in
spatially-binned probe areas. There, we illustrated a method to correct the raw data for
the PSF and the photon shot noise. Here, we apply the same method and calibration
parameters. A measurement of the local density fluctuations is shown in Fig. 5.8(a-c)
for 𝑁 = 3, 4 and 6, respectively (data points). It corresponds to the variance of several
frames measured under the same conditions computed in spatially-binned probe areas of
size 4×4px2 ≈ 5.1×5.1𝑑2. The local density fluctuations are compared to the numerically-
differentiated compressibility 𝜅 times the temperature 𝑇EoS obtained from the EoS-fit of the
averaged data (green lines). We observe that the two quantities are in good agreement with
each other. This comparison is enabled by the fluctuation-dissipation theorem (FDT) [302],
which, in the form derived in Eq. (3.15), states that the density fluctuations are propor-
tional to the compressibility times the temperature. In Eq. (3.15), the fluctuations are

¶The use of the word local requires some care and explanation. Unfortunately, it is used in the literature
with different meanings even in the same context of EoS and FDT in cold atoms experiments with optical
lattices [186, 188, 189]. Here, we use local to indicate the fluctuations measured on a finite probe area 𝐴.
They converge to the thermodynamic fluctuations if the correlation lengths are much smaller than√𝐴 (as in our
case). We distinguish between local and on-site density fluctuations, which are computed on an area 𝐴 ≫𝑑2

and corresponding to a single lattice site, respectively. Furthermore, to avoid other ambiguities, we prefer
to write about off-site fluctuations instead of nonlocal fluctuations to indicate the terms at the origin of the
differences between the local and the on-site fluctuations.
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Figure 5.8 | Density fluctuations as a function of the chemical potential for (a) 𝑁 = 3, (b) 𝑁 = 4 and (c)

𝑁 = 6. For 𝑁 = 3 and 6, data points correspond to the variance of the same dataset of Fig. 5.4 and are

computed in spatially-binned probe areas of size 4×4px2 ≈ 5.1 × 5.1𝑑2. For 𝑁 = 4, 35 frames have been

used instead of 15 to improve the statistics. The photon shot noise has been subtracted, and a PSF

correction has been applied as described in Sec. 3.5. The green lines correspond to the numerically-

differentiated compressibility 𝜅 times the temperature 𝑇
EoS

obtained from the EoS-fit of the averaged

data. The grey dashed lines correspond to the on-site density fluctuations 𝛿𝑛20 = ⟨�̂�
2⟩ − ⟨�̂�⟩2 calculated

with NLCE for 𝑇
EoS

. The vertical lines correspond to 𝑛𝑑2 ≃ 1. (d) Comparison of the temperatures 𝑇
FDT

(diamonds) and 𝑇
EoS

(circles). Error bars are the s.e.m.

calculated from the density-density correlation function on all length scales. This is equiv-
alent in our case to the measurement of the fluctuations in a finite-size probe area 𝐴 ≫𝑑2:

var(∫
𝐴
𝑛𝑑𝐴)= 𝑘B𝑇𝜅𝐴. (5.6)

The effect of the large probe area is better understood when comparing the local density
fluctuations with the on-site density fluctuations

𝛿𝑛2
0 = ⟨�̂�2⟩− ⟨�̂�⟩2. (5.7)
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Figure 5.9 | Local temperature for the 𝑁 = 6 dataset of Figs. 5.4 and 5.8. Data points: local temper-

ature obtained as a ratio between the local density fluctuations and the compressibility as a function

of the chemical potential. Blue line: temperature according to the fit of the EoS. Red line: temperature

according to the fit of the FDT. Vertical line: chemical potential corresponding to 𝑛𝑑2 ≃ 1.

By transcribing the integral in Eq. (3.15) to a sum over lattice sites, we rewrite the FDT
as [189]

𝜅𝑑2𝑘B𝑇 = 𝛿𝑛2
0 +∑

𝑖≠𝑗
(⟨�̂�𝑖�̂�𝑗⟩− ⟨�̂�𝑖⟩⟨�̂�𝑗⟩) . (5.8)

The on-site density fluctuations are generally higher than the local ones, as shown in
Fig. 5.8(a-c) (grey dashed lines). The difference between the two is given by the off-site
density fluctuations [second term on the right side of Eq. (5.8)], which give a negative
contribution.

The relationship between the local density fluctuations and the compressibility in the
FDT can be used to measure the system’s temperature without relying on a theoretical
model for the EoS. In particular, we compute the temperature 𝑇FDT as the (weighted) mean
of the ratio between the local density fluctuations and the compressibility as a function of
the chemical potential for 𝑛𝑑2 > 0.05. In Fig. 5.8(d), we compare 𝑇FDT with the temper-
ature 𝑇EoS obtained from the EoS-fit of the averaged data. We observe a good agreement
between the two temperatures for all interaction strengths and values of 𝑁.

The FDT can also be used to measure the local temperature of the system and verify the
global equilibrium hypothesis that we implicitly make when we fit the EoS. This is done
by calculating the ratio between the local density fluctuations and the compressibility in
different regions of the trap or as a function of the chemical potential. In Fig. 5.9, we show
the local temperature as a function of the chemical potential for𝑁 = 6. We observe that the
local temperature is overall constant across the trap. In the strongly-interacting regime near
the plateau, we measure local temperatures slightly higher than the global one. However,
measuring the local temperature in this region is particularly challenging because of the
low compressibility and the small signal-to-noise ratio in the density fluctuations. We see
instead an excellent agreement between the values at small and large densities, a strong
hint suggesting global thermal equilibrium across the cloud.
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5.5 Calibration and systematic errors

The determination of the EoS from experimental data is a sensitive procedure. Small cal-
ibration errors or incorrect handling of systematic effects might result in imprecise or in-
accurate temperatures and other thermodynamic quantities. It is therefore important to
characterize the experimental setup, document the fit procedures and individuate possi-
ble causes of systematics errors. This is the goal of this section. In Sec. 5.5.1, we first
document the fit procedure used to determine the EoS from the measured density pro-
files. In Sec. 5.5.2, we discuss the determination of the trap potential and the harmonic
assumption. In Sec. 5.5.3, we discuss the adiabaticity of the lattice loading and the global
thermal equilibrium hypothesis. In Sec. 5.5.4, we return to the Hubbard parameters’ cali-
bration and the systematic errors we commit when we fit a theoretical model to the data
with a fixed 𝑈/𝑡 ratio without considering its uncertainty. In Sec. 5.5.5, we discuss the
calibration of the photoassociation technique associated with the parity-projection oper-
ation. Finally, in Sec. 5.5.6, we discuss the role of the point spread function (PSF) and
other imaging imperfections.

Additional information is reported in Appendix E, where we compare different fitting
models and discuss the systematic errors due to the numerics.

5.5.1 Fit method

This section illustrates the fit procedure used in Sec. 5.3 to determine the EoS from themea-
sured density profiles. This is a multi-step procedure, described in detail in the following.

The fit is done starting from the density profile 𝑛(𝑥,𝑦), which is obtained by averaging
the density profiles of several frames after total atom number postselection and center of
mass alignment‖. Afterward, the procedure is the following:

1. Determination of the cross section.

• Consider the 𝑈/𝑡 = 33(2) dataset only.

• For each 𝑁, fit separately {𝑇,𝜇0,𝜅𝑥,𝜅𝑦,𝜎
(𝑁)
corr}.

• This fit is used to determine 𝜎(𝑁)
corr, the correction of the cross section compared

to the calibration in the 2D bulk described in Sec. 2.3.2, for 𝑁 = 3,4 and 6.

• We use 𝜎(𝑁)
corr to update the cross section of all the lattice datasets before fitting

the EoS in the following steps.

This first step is necessary becausewe observe a substantial change in the cross section
between the bulk and the lattice. Without a correction, the Mott plateau at 𝑛𝑑2 ≃ 1
would appear at a higher density value, incorrectly determining the temperature and
the chemical potential. To determine the correction, we fit the density profiles for

‖The center of mass alignment is done by fitting the density profiles with an EoS model and shifting the
images to align their centers with linear interpolation. We use the same model used to determine the tem-
perature (step 3 of the following). We have observed this to lead to substantially more accurate results than
calculating the weighted average of the density across the cloud or using a Gaussian fit function.
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𝑈/𝑡 = 33(2) because the larger Mott plateau makes this dataset particularly sensitive
to a cross section mismatch. Furthermore, we fit the density profiles for each 𝑁
separately because the cross section correction might depend on the statistics. This
discrepancy is presented and further discussed in Sec. 5.5.6.

2. Determination of the trap frequencies.

• Consider the datasets for each 𝑈/𝑡 separately.

• Perform a combined fit for all 𝑁s, and simultaneously determine {𝑇(𝑁),𝜇(𝑁)
0 }

for 𝑁 = 3,4 and 6 and values of {𝜅𝑥,𝜅𝑦} independent of 𝑁.

• This fit is used to determine the values of {𝜅𝑥,𝜅𝑦} defining the harmonic con-
finement for each 𝑈/𝑡 ratio.

Here, we assume the trap is harmonic (see Sec. 5.5.2 for the discussion of this hy-
pothesis). We perform a combined fit because the harmonic coefficients depend on
the lattice depth, which is a trap property, but not on 𝑁. The combined fit is more
robust and reduces their uncertainty. As a sanity check, we verify that separate fits
for each 𝑁 give compatible results.

3. Determination of the EoS.

• Consider the datasets for each 𝑁 and 𝑈/𝑡 separately.

• Fit {𝑇,𝜇0} and determine the best matching of the theoretical model to the
data.

This third step returns the temperature and chemical potential values and determines
the EoS. Given these two values, we can calculate the entropy per particle and the
parity-projected profiles shown in Fig. 5.4.

Each fit is done with the implementation of the trust region reflective algorithm of the
scipy library**. The fit function minimizes the distance between the data and the theoret-
ical curve calculated in a two-dimensional grid and convolved with the PSF (see Sec. 5.5.6).

5.5.2 Trap frequencies and anharmonicities

In Eq. (5.2), we have modeled the lattice envelope with a harmonic potential with coef-
ficients 𝜅𝑥 and 𝜅𝑦. In Sec. 5.5.1, we have described how we determine these coefficients
by fitting the EoS. We verify that adding third and fourth order anharmonic terms to the
potential as free fit parameters does not significantly affect the results.

**We found out that, for our specific implementation, the trust region reflective algorithm (trf) is slightly
faster and more robust than the Levenberg-Marquardt (lm) algorithm. This is particularly true for 𝑈/𝑡 ∼ 2.3
and 𝑈/𝑡 ∼ 33, where the lm algorithm sometimes converges to local optima. When we use trf, we specify
boundaries to the temperature 𝑇/𝑡 ≳ 0.167 for 𝑈/𝑡 ∼ 2.3 and 𝑇/𝑡 ≳ 0.5 for the other 𝑈/𝑡 values. We use
scipy 1.9.3.
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Figure 5.10 | Coefficients of the harmonic confinement along the main axes (𝑥,𝑦). Circles correspond
to the harmonic confinement determined from the fit of the EoS described in Sec. 5.5.1. Diamonds

correspond to an independent calibration measuring the frequencies of the center of mass (c.o.m.) os-

cillations around the trap’s center. Inset: example of c.o.m. oscillations for 𝑈/𝑡 = 33(2).

However, the values obtained for 𝜅𝑥 and 𝜅𝑦 do not fully agree with the independent
measurement of the frequency of the oscillatory motion of the atoms in the combined po-
tential. More specifically, we measure the trap frequencies in the following way. We load a
spin-polarized cloud in the combined potential of the vertical lattice and one in-plane lattice
at the time. We measure the c.o.m. oscillation after an initial displacement of ∼5𝑑 along
the lattice direction. We then calculate the trap frequencies in the combined potential from
the individual contribution of each lattice in the perpendicular direction of propagation. Be-
fore doing so, we verify that the Rayleigh range contribution to the combined potential is
negligible††. A comparison between the two sets of values can be found in Fig. 5.10. The
origin of this discrepancy, which is about 13% for 𝑈/𝑡 ∼ 7 and 40% for 𝑈/𝑡 ∼ 33, is not
completely clear. In Sec. 5.5.3, we discuss the possibility that the discrepancy is due to
non-adiabaticities of the loading process and present arguments against this hypothesis.

In order to verify that the harmonic approximation is valid, we try to characterize the
anharmonicities of the potential. We do so by loading a hot cloud (𝑇/𝑡 ≫1) in the lattice.
In this regime, the cloud can be fitted with an atomic limit model (see Sec. 4.2.1). This way,
we can generate a spatial map of the chemical potential and observe that the functional
modeling as a harmonic trap is a good approximation‡‡. In particular, we estimate the
anharmonic corrections being less than 0.03𝜇0 over the whole region of interest in the
deep Mott insulating regime.

5.5.3 Considerations on adiabaticity

A possible explanation for the discrepancy in the shape of the inferred potential described in
Sec. 5.5.2 might be a lack of adiabaticity and equilibration during the tuning of 𝑈/𝑡 [350].
However, the temperatures measured with the FDT (see Sec. 5.4) match those obtained
from the fit of the EoS. In particular, we verify that for 𝑁 = 6 and 𝑈/𝑡 = 33(2), if we
use the chemical potential coming from the oscillatory-motion calibration to calculate the

††About 1% in the trap frequencies.
‡‡We do so by describing the potential with Hermite functions up to the 8th order instead of polynomial

powers and fitting their parameters. We verify that the potential sampled by the cloud is not significantly
different from the one obtained from the harmonic approximation.
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Figure 5.11 | Dependency of the harmonic coefficients 𝜅𝑥 and 𝜅𝑦 with the total atom number 𝑁𝑝. Each
point corresponds to a single realization with 𝑁 = 6 and 𝑈/𝑡 = 33(2). For each realization we fit (𝑇, 𝜅𝑥,
𝜅𝑦, 𝜇0) with NLCE. Blue lines: values determined from the EoS fit as described in Sec. 5.5.1 for this 𝑈/𝑡
ratio. Orange lines: values determined with the independent “oscillatory motion” calibration.

compressibility and the FDT relation to fit the temperature, we get a temperature inside
the regime of convergence of our theoretical models but mismatching the temperature
returned by the fit of the EoS with the same potential.

Moreover, we verify that the values of 𝜅𝑥 and 𝜅𝑦 determined by the EoS fit are robust
against atom number variation (see Fig. 5.11).

Finally, we observe that 𝜅𝑥 and 𝜅𝑦 are also insensitive to the lattice ramp time du-
ration. In Fig. 5.12, we show an experiment that consists of tuning the lattice depth to
13𝐸rec (𝑈/𝑡 ≈ 44) with a linear ramp of different duration Δ𝑡 between 300ms and 1 s
[see Fig. 5.12(a)]. For each Δ𝑡, we fit the EoS with HTSE and leave (𝑇, 𝜅𝑥, 𝜅𝑦, 𝜇0) as
free fit parameters. As shown in Fig. 5.12(b), we observe that the values of 𝜅𝑥 and 𝜅𝑦
returned by the fit for different Δ𝑡 are compatible among each other [𝜅𝑥𝑑

2/𝑡 = 0.151(2),
𝜅𝑦𝑑

2/𝑡 = 0.204(3)]. However, they are incompatible with the ones predicted by the in-
dependent “oscillatory-motion” calibration described in Sec. 5.5.2 (𝜅osc

𝑥 /𝑡 ≃ 0.109, 𝜅osc
𝑦 ≃

0.131). If we assume these values and fit the EoS with free parameters {𝑇,𝜇0}, the fit fails
for Δ𝑡 = 0.3s and returns high residuals for Δ𝑡 = 0.5s and 1 s, failing to reproduce the cloud
shape, especially in the center [see Fig. 5.12(c)]. We conclude that if the mismatch between
the two different harmonic potential parameters comes from a lack of equilibration dur-
ing the tuning of the lattice depth, the time scale to achieve this equilibration significantly
exceeds the experimentally accessible timescales.

5.5.4 Calibration of the Hubbard parameters and uncertainties

As we have seen in Sec. 5.1, the ratio 𝑈/𝑡 is determined by the lattice depth 𝑉. We calibrate
the lattice depth by measuring the resonance between the lowest band and the second
excited band with parametric modulation [275]. The uncertainty on 𝑈/𝑡 is given by the
error propagation on this measurement.

As a cross-check for the calibration with parametric modulation, we use clock-line spec-
troscopy along the 1S0 →

3P0 transition to measure the bandgap between the lowest and
the first band, which is consistent with the value obtained from the parametric modulation.

In addition to calibrating 𝑈/𝑡, we directly measure 𝑈 for deep lattice depths. This
measurement consists in modulating the lattice depth with an amplitude of 2% to 6%
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Figure 5.12 | Robustness of the EoS fit as a function of the ramp duration. (a) We tune the interaction

strength of a sample with 𝑁 = 6 to 𝑈/𝑡 ≈ 44 with a linear ramp of duration Δ𝑡 = 0.3s (green), 0.5 s (red),

1 s (purple). (b) For each ramp duration Δ𝑡, we fit the density profile with HTSE assuming a harmonic

potential with coefficients determined by the “oscillatory-motion” calibration (orange) and by leaving the

coefficients free in the EoS fit (blue). Here, we plot the fit results as a function of the spacial radial profile.

For the first frame, the “oscillatory-motion” fit fails. (c) Comparison of the harmonic potential coefficients

returned by the fits [same color code as (b)]. Error bars are s.e.m. from the fit (smaller than markers).

and, at the same time, applying a pair removal pulse (see Sec. 5.2). When the modulation
frequency is resonant with 𝑈, atom losses are enhanced. The measurement results can be
seen in Fig. 5.13, and they agree with the values expected from a band structure calculation.
In particular, for 𝑉 = 13𝐸rec (𝑈/𝑡 ≈ 43) we measure 𝑈 = ℎ ⋅ 886(8)Hz for an expected
value of ℎ ⋅ 856(8)Hz and for 𝑉 = 19𝐸rec (𝑈/𝑡 ≈ 178) we measure 𝑈 = ℎ ⋅ 1065(8)Hz for
an expected value of ℎ ⋅ 1069(9)Hz.

We now consider the systematic errors associated to 𝑈 in the fit of the EoS. When we
perform the fit, we use the fixed value of 𝑈/𝑡 obtained from the band structure calculation.
However, the fit does not consider the uncertainty on 𝑈/𝑡. We can estimate the systematic
error in the temperature and the entropy per particle due to the uncertainty on 𝑈/𝑡 by
repeating the fit for different values of 𝑈/𝑡. In Fig. 5.14, we show the results of this test for
the dataset of Fig. 5.5. We estimate that the systematic error on the entropy is about 1%,
and it is comparable with the statistical error. The systematic error on the temperature is
instead of the order of 0.015𝑈, making it one of the dominant ones.

5.5.5 PA efficiency calibration

In Sec. 5.2, we have introduced the parity projection technique. In Eq. (5.5), we have seen
that the photoassociation beam that we use to remove pairs of atoms from the lattice is not
perfect and requires an efficiency correction parametrized by the factors 𝛾𝑠 and 𝛾𝑑. We cal-
ibrate the efficiency by looking at the atom losses as a function of the pulse duration in the
deepMott insulating regime [𝑈/𝑡 = 33(2)]. Themeasurement is shown in Fig. 5.15(a). Ne-
glecting the sites occupied by more than two particles, we fit a double-exponential model:

𝑁𝑝 = 𝑒−𝛾𝑠𝑡 (𝑁𝑠 +𝑁𝑑𝑒
−𝛾𝑑𝑡) , (5.9)
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Figure 5.13 | Direct measurement of 𝑈 with modulation spectroscopy for 𝑈/𝑡 ≈ 178. Data points: nor-

malized atom number after a pair removal pulse as a function of the modulation frequency. Red line:

expected value of 𝑈 according to the Wannier overlap. Black line: fit of a Lorentzian function. The ver-

tical black line and the shaded area indicate the position of the resonance according to this fit and its

uncertainty, respectively. Inset: To enhance the signal-to-noise ratio, the data have been evaluated in

an elliptical shell where the cloud is mainly in the insulating phase.

where 𝑁𝑝 = 𝑁𝑠 +𝑁𝑑 is the total atom number, 𝑁𝑠 the number of singlons, 𝑁𝑑 the number
of doublons. We obtain 1/𝛾𝑑 = 1.2(2)ms and 1/𝛾𝑠 = 200(11)ms, which we find to be
independent of 𝑁 inside the uncertainties. We cross-check the value of 𝛾𝑠 by repeating the
same experiment in a small Mott insulator with ≈1×103 atoms where negligible doublon
decay is expected. For the typical pulse duration of 10ms, we remove all the doublons
within our detection sensitivity and about 5% of the singlons. This factor is taken into
account when we calculate the theoretical curves in Fig. 5.4. In Fig. 5.15(b), we compare
the ideal and corrected parity-projected density for some reference configurations.

5.5.6 Imaging effects

Calibration of the cross section

In the lattice, we calibrate the effective cross section 𝜎 for each spin mixture by the fit
of the EoS as described in Sec. 5.5.1. We obtain 𝜎/𝜎0 = {0.310(3),0.320(3),0.321(3)}
respectively for 𝑁 = {3,4,6}, where 𝜎0 = 3𝜆2/(2𝜋) is the photon resonant cross section.
The result is in agreement within the uncertainties with the determination of minimum
of the compressibility 𝜅 = 𝜕𝑛/𝜕𝜇 near the insulating regime at 𝑛𝑑2 ≃ 1 (see Fig. 5.6).
However, there is a discrepancy of 10% to 20% with the values obtained for the quasi-2D
bulk in Sec. 2.3.2. The origin of this discrepancy is not clear. We attribute the differ-
ences between the values to cooperative optical response effects at high densities [276,
277] and use the values obtained from the fit to analyze the in-lattice data. We take into
account this difference in the cross section when calculating the PSF correction to the den-
sity fluctuations in Sec. 5.4.

PSF effect on the EoS

In Fig. 5.16, we show the effect of the PSF on a simulated density profile. The PSF blurs the
density profile and significantly affects the fit of the EoS. A simulation shows that without
taking into account the PSF, the fit of the EoS overestimates the temperature by 10% to
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Figure 5.14 | Estimate of the systematic error on (a) the temperature and (b) the entropy per particle due

to the uncertainty on 𝑈/𝑡. We repeat the fit of the EoS for the dataset of Fig. 5.5 with NLCE for different

values of 𝑈 and compare the results. The error bars are the statistical error on the fit (smaller than the

markers). Grey points and lines correspond to the bulk entropy as in Fig. 5.5. NLCE theory courtesy of

the Hazzard group at Rice University.

20% for 𝑇/𝑈 between 0.15 and 0.3 (larger overestimation for colder samples). We also
estimate that the fit of a cloud in atomic limit with 𝑇set/𝑈 →0 would return a temperature
𝑇fit/𝑈 ≈ 0.07. In order to correct these effects, we convolve the simulated density with
the PSF inside the EoS fitting routine.

Since the PSF has been determined experimentally, we need to estimate the systematic
error due to its uncertainty when determining the EoS. We do so by varying the HWHM of
the reconstructed PSF. Testing the sensitivity of the fit parameter results, we find that, in the
deep Mott insulating regime§§, where the effects of the PSF are most relevant, a variation
of 50% in the size of the HWHM causes a change of ≈ 10% to 15% in the temperature
and ≈ 4% in the entropy per particle.

§§for 𝑈/𝑡 ∼ 33 and 𝑁 =6.
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Figure 5.15 | (a) Calibration of the photoassociation efficiency. We first tune the lattice depth to 12𝐸
rec

[𝑈/𝑡 = 33(2)] and then quench it to 30𝐸
rec
. We then apply the photoassociation beam for different du-

rations and measure the atom number loss for 𝑁 = 3 (red), 𝑁 = 4 (purple), and 𝑁 = 6 (blue). The losses

are fitted with a double-exponential model (solid lines), corresponding to the doublons and singlons de-

cay. Inset: Same experiment repeated for a smaller atom number, such that 𝑛𝑑2 ≃ 1 in the center. (b)

Comparison of the ideal [dotted line, Eq. (5.4)] and corrected [continuous line, Eq. (5.5)] parity-projected

density as a function of the total density for 𝑁 = 6, 𝑇/𝑈 = 0.18 and different 𝑈/𝑡 ratios. Curves are rework-
ings of NLCE simulations courtesy of the Hazzard group at Rice University.

Figure 5.16 | Effect of the PSF on the measurement of the EoS. (a) HTSE simulation of the density for

𝑁 = 6, 𝑈/𝑡 = 33.34 and 𝑇/𝑈 = 0.12 in a harmonic trap. (b) Simulation of (a) convolved with the PSF. (c)

Cuts along the main axes [along the lines with the same color in (b)] for the density in (a) (solid lines) and

in (b) (dashed lines).



Conclusions and outlook

In this thesis, we have reported the first experimental studies of SU(𝑁) Fermi gases in a
2D single-layer system. This has been made possible by the SU(𝑁 ≤6) symmetry of 173Yb
in the ground state and by the implementation of a novel shallow-angle optical lattice
enabling the loading of the atoms into a single plane.

We have first characterized the equation of state (EoS) of the system in a quasi-2D har-
monic oscillator as a function of the number of spin components𝑁, and modeled and inves-
tigated the interaction effects to obtain a reliable thermometry and entropy measurement.

We have then studied the SU(𝑁) Fermi gases in a square lattice, probing the 2D SU(𝑁)
Fermi-Hubbard model (FHM). Our work constitutes the first experimental measurement of
the SU(4) FHM in a non-dimerized geometry and the first measurement of the SU(3) and
SU(6) FHM in a single-layer geometry. With high-resolution absorption imaging, we have
locally probed the density, the compressibility, the components of the site-occupation distri-
bution, and the local density fluctuations across the metal-to-Mott-insulator transition. By
taking advantage of the local density approximation, it was possible to determine the EoS of
the system for a large range of fillings in the same realization. In particular, we have char-
acterized the formation of an incompressible Mott-insulating phase around unitary density
surrounded by compressible metallic phases as a function of the interaction strength.

Thesemeasurements have been harnessed to benchmark state-of-the-art numerical meth-
ods, including determinant quantum Monte Carlo (DQMC), numerical linked-cluster ex-
pansion (NLCE), and high-temperature series expansion (HTSE). We have observed an
excellent agreement between our measurements and fits to the data, allowing the deter-
mination of the system’s temperature and entropy with high precision, and the observation
of the Pomeranchuk effect.

Finally, we have used the fluctuation-dissipation theorem (FDT) to determine the sys-
tem’s temperature from the density fluctuations and the compressibility with a theory-free
method. The results are in excellent agreement with the EoS-fit results, confirming the fit
models’ validity and the thermometry’s reliability. The FDT also allows for determining the
local temperature, which has been found reasonably uniform across the system, strongly
hinting at global equilibration.

We believe that our results are an important milestone in exploring the properties of
SU(𝑁) Fermi gases and validating theoretical models. In the future, we believe that quan-
tum simulation with alkaline-earth-like atoms such as 173Yb or 87Sr will allow for the ex-
ploration of SU(𝑁)-symmetric models beyond the limits of state-of-the-art numerical meth-
ods [65]. In this regard, the determination of theory-free thermometry techniques and

90
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cross-check methods for verifying the reliability of numerical simulations presented in this
thesis constitute a promising step towards self-validating quantum simulations [64].

Many exciting directions for future studies are open. In the 2D bulk system, the possi-
bility of tuning the interaction strength between the spin components would pave the way
to the study of SU(𝑁) itinerant ferromagnetism [33, 34, 66, 153] and help to understand
the non-analytic behavior of thermodynamic quantities in interacting Fermi gases [284].

In the square lattice, there are numerous intriguing properties that await exploration
across all temperature ranges. At temperatures already accessible in the type of experi-
ments presented in this thesis, it would be interesting to verify the universal scaling with
𝑁 of certain observables, such as the energy and the number of on-site pairs [50]. Fur-
thermore, the transition from the metallic phase to the Mott insulator phase is yet to be
fully comprehended. For 𝑁 = 2, the perfect nesting of the Fermi surface at half-filling
leads to a crossover between the two phases [15, 17]. However, for larger 𝑁, the Fermi
surface is not perfectly nested, and phase transitions have been predicted [44]. By ana-
lyzing the system’s compressibility as a function of temperature and interaction strength,
as outlined in Sec. 5.3.3, we might gain further insights into the opening of the gap in
the Mott-insulating phase.

For temperatures below the superexchange energy, there are additional aspects to in-
vestigate. The Pomeranchuk effect in the Mott-insulating phase is expected to break [50].
Moreover, the phase diagram for 𝑁 > 2 is still largely under debate, and quantum simula-
tions could serve as a valuable instrument for its exploration. This applies to both the SU(𝑁)
Fermi-Hubbard model and the SU(𝑁) Heisenberg model, its strong-coupling limit. Specif-
ically, the magnetic ordering predicted for some phases could be examined by measuring
the spin-spin correlations in the system. To achieve this, enhancements in imaging resolu-
tion and the implementation of spin-resolved imaging techniques are essential. Quantum
gas microscopes with alkaline-earth-like atoms have already been demonstrated for bosonic
species [252, 351–353], and fermionic microscopes are under development.

Beyond thermodynamics, the application of more sophisticated potential shaping tech-
niques, as demonstrated in other cold atom experiments [354, 355], could facilitate the
study of the dynamics of SU(𝑁) Fermi gases. Specifically, our understanding of the trans-
port properties of the SU(𝑁 > 2) FHM is currently limited, and it remains uncertain how
the diffusive behavior observed in SU(2) cases [356] alters for larger 𝑁.

Another promising avenue for future research involves investigating the breaking of
the SU(𝑁) symmetry in the models of interest, both in bulk and in the lattice. The SU(𝑁)
symmetry can be broken in our experiment by opportune optical state manipulation or by
using state-dependent potentials [67, 76, 357]. The controlled breaking of the symmetry
would allow for verifying the validity of the SU(𝑁) models to represent real materials,
where the SU(𝑁) symmetry is usually only approximate.

Finally, the clock state allows the study of more complex interorbital models [67]. By
populating the clock state in a controlled manner in state-dependent lattices, we can study
systems with two species of fermions with different masses and tunable interactions. In
particular, adequate state preparation, e.g., by using optical tweezers [358–360] to trap
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and localize single atoms in the clock state, would allow for the probing of Kondo-type
physics [67–69, 83, 84].

In summary, the exploration of the physics of SU(𝑁) Fermi gases presents a promising
trajectory for the future of quantum simulation with alkaline-earth(-like) atoms. The ex-
ponential scaling of the Hilbert space with 𝑁 makes these systems particularly challenging
for numerical methods. Consequently, quantum simulation is anticipated to offer a valu-
able tool for investigating their properties and demonstrating significant advantages over
classical simulations in the near future.
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Appendix A Potential of the vertical lattice

In this appendix, we derive the approximate harmonic potential given by the shallow-angle
vertical lattice described in Chap. 2.

The electric field of a single beam with wavelength 𝜆 propagating along the 𝑥-axis
is given by

𝐸(𝑥,𝑦,𝑧) =√
2𝑃

𝜋𝑤𝑦(𝑥)𝑤𝑧(𝑦)
𝑒
− 𝑦2

𝑤2
𝑦(𝑥)

− 𝑧2

𝑤2
𝑧(𝑥) 𝑒

−𝑖[𝑘𝑥+𝑘( 𝑦2
2𝑅𝑦(𝑥)

+ 𝑧2
2𝑅𝑧(𝑥)

)−arctan( 𝑧
𝑧𝑅(𝑥)

)]
, (A.1)

where 𝑃 is the beam’s power, 𝑤𝑦,𝑧(𝑥) are the beam’s waists, 𝑅𝑦,𝑧(𝑥) are the beam’s radii
of curvature and 𝑧𝑅(𝑥) is the beam’s Rayleigh range. They are defined with respect of the
1/𝑒2 beam’s waists 𝑤0,𝑦,𝑧 at the focus point 𝑥 = 0 as

𝑤𝑦,𝑧(𝑥) =𝑤0,𝑦,𝑧

√√√
⎷1+(

𝑥
𝑧𝑅,𝑦,𝑧

)
2

, (A.2)

𝑧𝑅,𝑦,𝑧 =
𝜋𝑤2

0,𝑦,𝑧

𝜆
, (A.3)

𝑅𝑦,𝑧(𝑥) = 𝑥[1+(
𝑧𝑅,𝑦,𝑧
𝑥

)
2
]. (A.4)

At the interference point, the electric fields E𝑎,𝑏 of the two beams forming the vertical
lattice sum and the total intensity 𝐼 and trap depth 𝑈0 are

𝐼(𝑥,𝑦,𝑧) =
1
2
𝑐𝜖0|𝐸𝑎(𝑥𝑎,𝑦𝑎,𝑧𝑎)+𝐸𝑏(𝑥𝑏,𝑦𝑏,𝑧𝑏)|

2, (A.5)

𝑈0 =−𝛼′𝐼(𝑥,𝑦,𝑧), 𝛼′ =
𝛼

2𝜖0𝑐
, (A.6)

where 𝛼 is the polarizability.
If the two beams are propagating along 𝑥 with a small angle with respect to the 𝑧-axis,

we transform the coordinate system of the two beams:

⎧⎪

⎨⎪
⎩

𝑥𝑎 =𝑥cos𝜃+𝑧sin𝜃,
𝑦𝑎 =𝑦,
𝑧𝑎 =−𝑥sin𝜃+𝑧cos𝜃,

⎧⎪

⎨⎪
⎩

𝑥𝑏 =𝑥cos𝜃−𝑧sin𝜃,
𝑦𝑏 =𝑦,
𝑧𝑏 =𝑥sin𝜃+𝑧cos𝜃.

(A.7)

93



94 Appendices

By assuming the same beam waists 𝑤0,{ℎ,𝑣} and Rayleigh ranges 𝑧R,{ℎ,𝑣} for the two
beams and expanding the electric fields to second order we can calculate the harmonic
trapping frequencies:

𝜔2
𝑥 =

2𝛼′

𝑚
[

2
𝑤2

0,𝑣
sin2 𝜃+

1
2
(

1
𝑧2R,ℎ

+
1

𝑧2R,𝑣
)cos2 𝜃](√𝐼0,𝑎+√𝐼0,𝑏)

2
, (A.8)

𝜔2
𝑦 =

4𝛼′

𝑚𝑤2
0,ℎ

(√𝐼0,𝑎+√𝐼0,𝑏)
2
, (A.9)

𝜔2
𝑧 =

2𝛼′

𝑚
[

2
𝑤2

0,𝑣
cos2 𝜃+

1
2
(

1
𝑧2R,ℎ

+
1

𝑧2R,𝑣
)sin2 𝜃](√𝐼0,𝑎+√𝐼0,𝑏)

2
, (A.10)

where 𝐼0,{𝑎,𝑏} is the intensity of the beams 𝑎 and 𝑏:

𝐼0,{𝑎,𝑏} =
2𝑃{𝑎,𝑏}

𝜋𝑤0,ℎ𝑤0,𝑣
. (A.11)

Appendix B Analytical models in the bulk

In this appendix, we derive the thermodynamics of non-interacting Fermi gases in free
space. In Sec. B.1, we focus on the description of 2D Fermi gases in homogeneous and
harmonic potentials. These models are relevant for the determination of the EoS described
in Chap. 3. In Sec. B.2, we present a similar derivation for the 3D case, which is relevant
for the description of the 3D Fermi gases described in Chap. 1, Fig. 1.6.

B.1 Non-interacting 2D Fermi gas

Harmonic potential

In this section, we consider the case of an SU(𝑁) non-interacting gas in a harmonic potential
𝑉 = 1

2𝑚(𝜔2
𝑥𝑥

2+𝜔2
𝑦𝑦

2), where 𝑚 is the mass of the atoms and (𝜔𝑥,𝜔𝑦) are the trapping
frequencies. In this case, the density of states for a 𝑁-components gas is

𝜌(𝜖) =𝑁
𝜖

ℏ2�̄�2 , (B.1)

where �̄� =√𝜔𝑥𝜔𝑦 and 𝜖 is the energy. The total number of particles is obtained by inte-
grating the density of states up to the Fermi energy 𝐸F

𝑁𝑝 =∫
∞

0
𝜌(𝜖)Pr(𝜖)d𝜖 =∫

∞

0
𝜌(𝜖)H(𝐸F−𝜖)d𝜖 =𝑁

1
2

𝐸2
F

ℏ2�̄�2 , (B.2)

where H(𝑥) is the Heaviside function. From Eq. (B.2), we see that the Fermi energy is:

𝐸F = ℏ�̄�√2𝑁𝑝/𝑁. (B.3)
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In the grand canonical ensemble, the grand potential Ω can be calculated as

Ω(𝜇,𝑇) =𝑁𝑘B𝑇∫
∞

0
d𝜖𝜌(𝜖) log[1−𝐹(𝜖)], with 𝐹(𝜖) =

1
1
𝑧𝑒𝛽𝜖+1

. (B.4)

After integrating by parts, we get

Ω(𝜇,𝑇) =
𝑁

ℏ2�̄�2𝛽3 Li3(−𝑧), (B.5)

where 𝑧 = 𝑒𝛽𝜇 is the fugacity, 𝛽 = 1/(𝑘B𝑇) and Li𝑠(𝑧) is the polylogarithm of order 𝑠 and
argument 𝑧 (see Appendix D for some properties of the polylogarithm). The most rel-
evant thermodynamic quantities can be derived from the grand potential. The number
of particles is

𝑁𝑝(𝜇,𝑇) =−
𝜕Ω
𝜕𝜇

=−
𝑁

ℏ2�̄�2𝛽2 Li2(−𝑧). (B.6)

Combining Eqs. (B.3) and (B.6), we get an analytical expression which relates 𝑇F =𝐸F/𝑘B
to the fugacity 𝑧:

𝑇
𝑇F

=
1

√−2Li2(−𝑧)
. (B.7)

The entropy is

𝑆(𝜇,𝑇) =−
𝜕Ω
𝜕𝑇

=−
𝑁𝑘B

ℏ2�̄�2𝛽
[
3
𝛽
Li3(−𝑧)−𝜇Li2(−𝑧)]. (B.8)

Expanding the polylogarithms for low temperatures (𝑇 ll𝑇F) and using Eq. (B.3), we get
the approximate relation for the entropy per particle:

𝑠 ≡ 𝑆/𝑁𝑝 ≈𝑘B
2
3
𝜋2(

𝑇
𝑇F

). (B.9)

Homogeneous potential

In this section, we consider the case of a gas in a homogeneous potential. The density of
states for a 𝑁-components homogeneous system is

𝜌 =𝑁
𝑚

2𝜋ℏ2 . (B.10)

The derivation of the grand potential Ω and the thermodynamic quantities is similar to the
one in the previous section, and we report here the main results:

Ω(𝜇,𝑇) = 𝑁
𝑚

2𝜋ℏ2𝛽2 Li2(−𝑧), (B.11)
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𝑛(𝜇,𝑇) = −
𝜕Ω
𝜕𝜇

=−𝑁
𝑚

2𝜋ℏ2𝛽
Li1(−𝑧), (B.12)

𝜅(𝜇,𝑇) =
𝜕𝑛
𝜕𝜇

=𝑁
𝑚

2𝜋ℏ2

𝑧
𝑧+1

, (B.13)

𝑆(𝜇,𝑇) = −
𝜕Ω
𝜕𝑇

=−𝑁
𝑚𝑘B
2𝜋ℏ2 [

2
𝛽
Li2(−𝑧)−𝜇Li1(−𝑧)]. (B.14)

By relating the density of Eq. (B.12) with the Fermi energy calculated similarly to what
has been done in Eq. (B.2), we get an analytical result that relates the chemical potential
at finite temperature to the Fermi energy:

𝜇 =
1
𝛽
log(𝑒𝛽𝐸F −1). (B.15)

Concerning the compressibility, we note that, by combining Eq. (B.12) with Eq. (B.13), it
can also be expressed as a function of the density as

𝜅(𝑛,𝑇) = 𝜌[1−𝑒−𝛽𝑛/𝜌] . (B.16)

B.2 Non-interacting 3D Fermi gas

Harmonic potential

In the 3D harmonic trap, the density of state is

𝜌(𝜖) =
𝜖2

2ℏ3�̄�3 , (B.17)

where we define �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)
1/3 Following the same procedure of the 2D case, we

get that

Ω=𝑁
1

ℏ3�̄�3𝛽4 Li4(−𝑧), (B.18)

𝑁𝑝 =−𝑁
1

ℏ3�̄�3𝛽3 Li3(−𝑧), (B.19)

𝑆 =𝑁
𝑘B

ℏ3�̄�3𝛽2 [𝜇Li3(−𝑧)−
4
𝛽
Li4(−𝑧)]. (B.20)

(B.21)

The Fermi temperature is related to the total atom number and the fugacity by the fol-
lowing equations:

𝑇F = ℏ�̄� (6𝑁𝑝/𝑁)1/3, (B.22)

𝑇/𝑇F = [−
1

6Li3(−𝑧)
]
1/3

. (B.23)
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Homogeneous potential

In the 3D case, for a homogeneous potential, the density of state is

𝜌(𝜖) =
2𝜋(2𝑚)3/2𝑉

ℎ3 √𝜖, (B.24)

where 𝜖 is the energy, 𝑉 is the volume, 𝑚 the mass. Following the same procedure of
the 2D case, we get that

Ω=𝑁
𝑉

𝜆3
𝑇𝛽

Li5/2(−𝑧), (B.25)

𝑛=−𝑁
1
𝜆3
𝑇
Li3/2 (−𝑧), (B.26)

𝜅 =−𝑁
𝛽
𝜆3
𝑇
Li1/2(−𝑧), (B.27)

𝑆 =
𝑁𝑉𝑘2

B𝛽
2

𝜆3
𝑇

[2𝜇Li3/2(−𝑧)−
5
𝛽
Li5/2(−𝑧)], (B.28)

where 𝜆𝑇 = ℎ/√2𝜋𝑚𝑘B𝑇 is the thermal de Broglie wavelength.
In LDA, for a harmonic oscillator, 𝜇 = 𝜇0−

1
2𝑚(𝜔2

𝑥𝑥
2+𝜔2

𝑦𝑦
2+𝜔2

𝑧𝑧
2). We can integrate

along the 𝑧 direction by using Eq. (D.7) to get the density in the 𝑥−𝑦 plane:

𝑛(𝑥,𝑦) =−𝑁
2𝜋ℏ

𝜔𝑧𝑚𝜆4
𝑇
Li2{−𝑒

−𝛽[𝜇0−
1
2𝑚(𝜔2

𝑥𝑥
2+𝜔2

𝑦𝑦
2)]}. (B.29)

Interactions

Interactions can be included in the 3D case in a similar way of what we have done in the
2D case in Sec. 3.3. Ref. [287] gives the following expression for the chemical potential of
an SU(𝑁) weakly-interacting Fermi gas in 3D in the homogeneous case:

𝜇(𝑛,𝑇,𝑎) ≃ 𝐸F [1−
𝜋2

12
(

𝑇
𝑇F

)
2

+
4
3𝜋

(𝑁 −1)𝑘F𝑎+
4(11−2 log2)

15𝜋2 (𝑘F𝑎)
2(𝑁 −1)]+𝐶𝑇2𝑎2,

(B.30)
where 𝐶 is a constant independent of the density 𝑛, 𝑎 is the 3D scattering length and the
Fermi parameters depend on 𝑛.

Furthermore, Refs. [161, 284, 361] contain analytical corrections to some relevant
thermodynamic quantities.

Appendix C Analytical models in the lattice

In this appendix, we present the derivation of some analytical models describing the ther-
modynamics of the SU(𝑁) FHM.
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C.1 Atomic limit

By setting 𝑡 = 0, the SU(𝑁) FHM Hamiltonian (Eq. 4.1) becomes

�̂� =
𝑈
2

∑
𝑖,𝜎≠𝜏

�̂�𝑖𝜎�̂�𝑖𝜏−𝜇∑
𝑖,𝜎

�̂�𝑖𝜎. (C.1)

Its eigenenergies are

𝜖(𝑛) =
𝑈
2
𝑛(𝑛−1)−𝜇𝑛. (C.2)

The total partition function 𝒵 = Tr[𝑒−𝛽�̂�] can be expressed as product of the single-site
partition function 𝑧0 such that 𝒵 = 𝑧𝑁𝑠

0 (𝑁𝑠 is the number of lattice sites). The single-
site partition function is

𝑧0(𝜇,𝑇,𝑈,𝑁) =
𝑁
∑
𝑚=0

(
𝑁
𝑚
)𝑒−𝛽𝜖(𝑚). (C.3)

The grand potential is

Ω(𝜇,𝑇,𝑈,𝑁) =−
1
𝛽
log[𝑧0(𝜇,𝑇,𝑈,𝑁)]. (C.4)

The expectation value of observable ⟨ ̂𝐴⟩ can be calculated as

⟨ ̂𝐴⟩ = Tr[𝑒−𝛽�̂� ̂𝐴]/𝑧0. (C.5)

The internal energy per lattice site is

= ⟨ ̂𝜖 +𝜇�̂�⟩ =
1
𝑧0

𝑁
∑
𝑚=0

𝑈
2
𝑚(𝑚−1)(

𝑁
𝑚
)𝑒−𝛽𝜖(𝑚). (C.6)

The entropy per lattice site is

𝑠0 =−
𝜕Ω
𝜕𝑇

= 𝑘B log𝑧0+
1
𝑇
⟨ ̂𝜖⟩. (C.7)

The density per lattice site is

𝑛 = ⟨�̂�⟩ = −
𝜕Ω
𝜕𝜇

=
1
𝑧0

𝑁
∑
𝑚=0

𝑚(
𝑁
𝑚
)𝑒−𝛽𝜖(𝑚). (C.8)

The compressibility is

𝜅 =
𝜕𝑛
𝜕𝜇

= 𝛽[
1
𝑧0

𝑁
∑
𝑚=0

𝑚2(
𝑁
𝑚
)𝑒−𝛽𝜖(𝑚)−(

1
𝑧0

𝑁
∑
𝑚=0

𝑚(
𝑁
𝑚
)𝑒−𝛽𝜖(𝑚))

2

] (C.9)

= 𝛽[⟨�̂�2⟩− ⟨�̂�⟩2] = 𝛽var(�̂�). (C.10)
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FigureC.1 | Two-bands atomic limit for𝑁 = 6. a Total density per lattice site as a function of the chemical

potential (the zero of the chemical potential has been set at 𝑛𝑑2 = 1). b Radial profiles for 𝑁𝑝 = 2 × 10
3

atoms in a harmonic potential with 𝜅𝑥,𝑦 = 0.005𝑈. The continuous line corresponds to the atomic limit

model assuming all the atoms in the lowest band. The dashed line corresponds to the correction to the

atomic limit including the first excited band in the vertical direction (𝑛 = 𝑛0 +𝑛1). Inset: relative residuals
at the center of the cloud between the two-bands and the single-band atomic limit models as a function

of the total atom number. The vertical bandgap is Δ = 3.95kHz.

The components of the site-occupation distribution 𝑝𝛼 are

⟨ ̂𝑝𝛼⟩ =
1
𝑧0

(
𝑁
𝛼
)𝑒−𝛽𝜖(𝛼), (C.11)

and they fulfill the normalization condition ⟨�̂�⟩ = ∑𝛼𝛼⟨ ̂𝑝𝛼⟩.

C.2 Two-bands atomic limit

In this section, we consider the extension of the atomic limit model to higher bands. In our
experiment, we operate in the central plane of a vertical lattice with a typical bandgap of
ca. 4 kHz. At low temperatures, we are reasonably sure to operate in the lowest band (see
Sec. 3.2), but at high enough temperatures the first excited band may be populated. We
therefore expand the atomic limit to consider two bands and we verify that the contribution
of the excited one is negligible for our experimental parameters.

In this case, the eigenenergies are

𝜖(𝑛0,𝑛1) =
𝑈00

2
𝑛0(𝑛0 −1)+

𝑈01

2
𝑛0𝑛1 +

𝑈11

2
𝑛1(𝑛1 −1)+Δ𝑛1 −𝜇(𝑛0 +𝑛1) (C.12)

where 𝑛0 and 𝑛1 represent the density in the lowest and the first vertical band, respectively.
Δ is the bandgap between the two bands and

𝑈𝑖𝑗 =
4𝜋ℏ2

𝑚
𝑎∫|𝑤00(𝑥)|

2|𝑤00(𝑦)|
2|𝑤𝑖𝑗(𝑧)|

2 dx (C.13)

is the on-site interaction considering the lowest in-plane bands and vertical bands 𝑖 and
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𝑗 (𝑤𝑖𝑗 is the corresponding Wannier overlap, 𝑎 is the scattering length, 𝑚 is the mass).
The partition function is

𝑧′0 =
𝑁
∑
𝑛0=0

𝑁
∑
𝑛1=0

(
𝑁
𝑛0

)(
𝑁
𝑛1

)𝑒−𝛽𝜖(𝑛0,𝑛1) (C.14)

And the total density per lattice site is

⟨�̂�⟩ =
1
𝑧′0

∑
𝑛0,𝑛1

[(𝑛0+𝑛1)(
𝑁
𝑛0

)(
𝑁
𝑛1

)𝑒−𝛽𝜖(𝑛0,𝑛1)]. (C.15)

In Fig. C.1 we compare the equation of state with all the atoms in the lowest band with
its two-band extension for the values of 𝑈𝑖𝑗 and Δ calculated for our experimental parame-
ters. The correction becomes first relevant at high temperatures (𝑇 ≳𝑈) and high densities
(𝑛𝑑2 ≳2). For the experiments presented in Chap. 5 the correction is therefore negligible.

C.3 High-temperature series expansion

In high-temperature series expansion (HTSE), we start from the atomic limit Hamiltonian
of Eq. (C.1) and we add the kinetic energy 𝐾 as a perturbation:

𝐾 =−𝑡 ∑
⟨𝑖𝑗⟩,𝜎

( ̂𝑐†𝑖,𝜎 ̂𝑐𝑗,𝜎+h.c.). (C.16)

By performing a second order expansion in 𝛽𝑡 and using the formalism of thermody-
namic perturbation theory [322, 324], the total partition function 𝒵 becomes

𝒵≃𝑧𝑁𝑠
0 [1+∫

𝛽

0
d𝜏1∫

𝜏2

0
d𝜏2⟨�̃�(𝜏1)�̃�(𝜏2)⟩], (C.17)

with �̃�(𝜏) = 𝑒𝜏𝐻0𝐾𝑒−𝜏𝐻0 . By taking the logarithm, the grand potential can therefore be
written as Ω≃Ω0+ΔΩ. Ω0 is the grand potential in the atomic limit and

−𝛽ΔΩ= 𝑧𝑁(
𝛽𝑡
𝑧0

)
2

[
1
2

𝑁
∑
𝑛=1

(
𝑁−1
𝑛−1

)
2

𝑥2𝑛−1𝑦(𝑛−1)2

−
1
𝛽𝑈

∑
𝑛≠𝑚

(
𝑁−1
𝑛−1

)(
𝑁 −1
𝑚−1

)
𝑥𝑛+𝑚−1𝑦

1
2 [𝑛(𝑛−1)+(𝑚−1)(𝑚−2)]

𝑛−𝑚
⎤
⎦
, (C.18)

where 𝑧 is the number of next neighbors in the lattice, 𝑥 = 𝑒𝛽𝜇 and 𝑦 = 𝑒−𝛽𝑈. This equation
can be rewritten in a more convenient form as

−𝛽ΔΩ= 𝑧𝑁(
𝛽𝑡
𝑧0

)(𝐹[1]+𝐺[1]) , (C.19)



Appendix C Analytical models in the lattice 101

with

𝐹[𝑓(𝑛,𝑚)] =
1
2

𝑁
∑
𝑛=1

(
𝑁−1
𝑛−1

)𝑥2𝑛−1𝑦(𝑛−1)2𝑓(𝑛,𝑚), (C.20)

𝐺[𝑓(𝑛,𝑚)] =−
1
𝛽𝑈

∑
𝑛≠𝑚

(
𝑁−1
𝑛−1

)(
𝑁 −1
𝑚−1

)
𝑥𝑛+𝑚−1𝑦

1
2 [𝑛(𝑛−1)+(𝑚−1)(𝑚−2)]

𝑛−𝑚
𝑓(𝑛,𝑚). (C.21)

We then get the correction to the density

⟨Δ�̂�⟩ = 𝑧𝑁(
𝛽𝑡
𝑧0

)[−2⟨𝑛⟩0 (𝐹[1]+𝐺[1])+𝐹[2𝑛−1]+𝐺[𝑛+𝑚−1]], (C.22)

where ⟨⋅⟩0 is the expectation value in the atomic limit. To calculate the correction to the
site-occupation distribution Δ𝑝𝛼, we consider a small coupling in the eigenenergies as a
perturbation:

𝜖(𝑛,𝛼) =
𝑈
2
𝑛(𝑛−1)−𝜇𝑛+𝑔𝛿𝑛,𝛼. (C.23)

We can now calculate

⟨Δ ̂𝑝𝛼⟩ = lim
𝑔→0

𝜕ΔΩ
𝜕𝑔

, (C.24)

and we get

⟨Δ ̂𝑝𝛼⟩ = 𝑧𝑁(
𝛽𝑡
𝑧0

)
2

[−2⟨ ̂𝑝𝛼⟩0 (𝐹[1]+𝐺[1])+𝐹[𝛿𝛼,𝑛+𝛿𝛼,𝑛−1]+𝐺[𝛿𝛼,𝑛+𝛿𝛼,𝑚−1]] ,

(C.25)
where ⟨𝑝𝛼⟩0 is the unperturbed value from Eq. (C.11). The full derivation can be found
in Refs. [87, 340].

C.4 Non-interacting limit

In the non-interacting limit 𝑈 = 0 the SU(𝑁) FHM becomes

�̂� = −𝑡 ∑
⟨𝑖,𝑗⟩,𝜎

( ̂𝑐†𝑖𝜎 ̂𝑐𝑗𝜎+h.c.)−𝜇∑
𝑖,𝜎

�̂�𝑖𝜎. (C.26)

By applying the transformation ̂𝑐r,𝜎 = 1/𝑁𝑠∑k 𝑒
−𝑖k⋅r ̂𝑐k𝜎 with k= (𝑘𝑥,𝑘𝑦)we diagonalize

the Hamiltonian, which becomes

�̂� =∑
k,𝜎

(𝜖k−𝜇)�̂�k𝜎, (C.27)

with the dispersion relation

𝜖k =−2𝑡[cos(𝑘𝑥𝑑)+ cos(𝑘𝑦𝑑)], (C.28)
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where 𝑑 is the lattice spacing. The partition function is

𝒵= Tr[𝑒−𝛽�̂�] =∑
k
[1+𝑒−𝛽(𝜖k−𝜇)]

𝑁
. (C.29)

The grand potential is

Ω=−
1
𝛽
log𝑍 =−

𝑁
𝛽
∑
k
log[1+𝑒−𝛽(𝜖k−𝜇)] (C.30)

=−
𝑁

𝛽(2𝜋)2
∫

𝜋

−𝜋
d2k log[1+𝑒−𝛽(𝜖k−𝜇)]. (C.31)

The density per lattice site is

𝑛= ⟨�̂�⟩ =
1
𝒵

Tr[�̂�𝑒−𝛽�̂�] (C.32)

=
𝑁

(2𝜋)2
∫

𝜋

−𝜋
d2k

1
1+𝑒𝛽(𝜖k−𝜇) . (C.33)

The compressibility is

𝜅 =
𝜕𝑛
𝜕𝜇

=
𝑁𝛽

(2𝜋)2
∫

𝜋

−𝜋
d2k

𝑒𝛽(𝜖k−𝜇)

1+𝑒𝛽(𝜖k−𝜇) . (C.34)

The entropy per lattice site is

𝑠0 =−
𝜕Ω
𝜕𝑇

=
𝑁

(2𝜋)2
∫

𝜋

−𝜋
d2k{log[1+𝑒−𝛽(𝜖k−𝜇)]+𝛽

𝜖k−𝜇
1+𝑒𝛽(𝜖k−𝜇)}. (C.35)

Appendix D Thermodynamic integrals and polylogarithm identities

In this appendix, we report some identities and series expansions useful when calculating
thermodynamic properties of degenerate gases. In particular, these expressions have been
used to derive some results presented in Chap. 3 and Appendix B.

Integrals of the Fermi-Dirac (or Bose-Dirac) distribution function across a density of
states function of the energy 𝜖 can be solved analytically:

∫
𝜖𝑠

1
𝑧𝑒𝛽𝜖∓1

d𝜖 =±(
1
𝛽
)
𝑠+1

Γ(𝑠 +1)Li𝑠+1(±𝑧), (D.1)

where Γ(𝑥) is the gamma function and Li𝑠(𝑧) is the polylogarithm function of order 𝑠 and
argument 𝑧. The polylogarithm is defined by a power series:

Li𝑠(𝑧) =
∞
∑
𝑘=1

𝑧𝑘

𝑘𝑠 . (D.2)
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Polylogarithms of low order can be expressed in a simple form:

Li0(𝑧) =
𝑧

1−𝑧
, (D.3)

Li1(𝑧) = − log(1−𝑧). (D.4)

When integrating and deriving the polylogarithm, the following identities hold:

𝑧
𝜕Li𝑠(𝑧)
𝜕𝑧

= Li𝑠−1(𝑧), (D.5)

𝜕Li𝑠(𝑒
𝜇)

𝜕𝜇
= Li𝑠−1(𝑒

𝜇). (D.6)

Another useful identity is the following:

∫
∞

−∞
d𝑧Li𝑛(−𝑒

𝛽𝜇𝑒−𝑧2)=√𝜋Li𝑛+1/2(−𝑒
𝛽𝜇). (D.7)

Finally, when calculating thermodynamic properties at low temperatures, the following
series expansions can be useful:

lim
𝑥→∞

𝑥Li2(−𝑒
𝑥) = −

𝑥3

2
−
𝜋2

6
𝑥+𝑂(

1
𝑥
)
7
, (D.8)

lim
𝑥→∞

Li3(−𝑒
𝑥) = −

𝑥3

6
−
𝜋2

6
𝑥+𝑂(

1
𝑥
)
7
. (D.9)

Appendix E Benchmarking numerical methods

E.1 Comparison of fit results with different numerical methods

In Tab. E.1, we compare the results of fits performed on the data of Fig. 5.4 with different
numerical methods. For NLCE, the agreement between two consecutive orders indicates
that the method has converged. In Fig. E.1, we compare the fits of the density profiles for
𝑁 = 6 in real space coordinates.

E.2 Systematic errors from the numerics

In this section, we estimate the systematic errors in the determination of the EoS due to
the numerics. A more detailed discussion of the technical implementation of the DQMC
and NLCE methods and their systematic errors can be found in Refs. [50, 87]. Here, we
only summarize the main points.

For DQMC simulations, we estimate the systematic error due to the Trotter approxi-
mation of about 0.03𝑡 in the temperature and 0.06𝑘B in the entropy per particle. The
error made by the finite-size extrapolation is estimated to be 0.07𝑡 in the temperature and
0.13𝑘B in the entropy per particle for 𝑈/𝑡 = 2.34. For other values of 𝑈/𝑡, the error is 0.04𝑡
in the temperature and 0.03𝑘B in the entropy. The error due to the grid size and interpo-
lation is estimated to be 0.007𝑡 in the temperature and 0.05𝑘B in the entropy per particle.
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Figure E.1 | Radial density profiles for 𝑁 = 6 (same dataset of Fig. 5.4) and comparison of the fit with dif-

ferent methods. First row Black circles: radially averaged measured density profiles. Black diamonds:

radially averaged parity-projected density profiles. Continuous lines: fit of the density profiles with dif-

ferent methods. Dashed lines: plot of the expected parity-projected density profiles according to the

fit of the density (same color code). Second row Residuals of the fit of the density profiles. Third row

Residuals of the parity-projected density profiles. The second and third rows have the same color code

as the first one.

For NLCE simulations, the computation of the observables is performed on a dense grid
of chemical potential values and temperatures and we estimate the relative error to be
negligible. For HTSE and AL simulations, the chemical potential is also computed on a
dense grid and the error is estimated to be negligible.
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𝑁 𝑈/𝑡 𝑁𝑝 (×103) Method 𝑇/𝑡 𝑇/𝑈 𝑠/𝑘B
3 2.3(1) 1.98(2) DQMC 0.40(4) 0.17(2)

7.5(4) 1.96(2) NLCE-6 1.24(3) 0.167(4) 1.50(6)
NLCE-7 1.24(3) 0.167(4) 1.50(6)

10.4(6) 1.94(3) NLCE-6 1.69(4) 0.163(4) 1.55(6)
NLCE-7 1.69(4) 0.163(4) 1.55(6)
HTSE-2 1.69(4) 0.163(4) 1.56(6)

33(2) 1.99(2) NLCE-6 5.0(1) 0.149(3) 1.51(4)
NLCE-7 5.0(1) 0.149(3) 1.51(4)
HTSE-2 5.0(1) 0.149(3) 1.51(4)

4 2.3(1) 1.99(1) DQMC 0.32(3) 0.13(1)
7.5(4) 1.99(1) DQMC 0.97(3) 0.130(4) 1.61(7)

NLCE-4 0.98(3) 0.131(3) 1.59(6)
NLCE-5 0.94(3) 0.126(4) 1.57(7)

10.4(6) 1.99(1) DQMC 1.36(4) 0.131(4) 1.73(6)
NLCE-4 1.42(4) 0.137(4) 1.73(6)
NLCE-5 1.41(4) 0.136(4) 1.72(6)
HTSE-2 1.43(4) 0.138(3) 1.76(7)

33(2) 1.99(1) NLCE-4 4.62(9) 0.139(3) 1.78(5)
NLCE-5 4.62(9) 0.139(3) 1.78(5)
HTSE-2 4.63(9) 0.139(3) 1.78(5)

6 2.3(1) 1.99(1) DQMC 0.30(1) 0.127(1)
7.5(4) 1.99(1) DQMC 0.91(3) 0.122(4) 1.95(9)

NLCE-3 0.94(3) 0.126(4) 1.97(8)
NLCE-4 0.91(2) 0.122(3) 1.90(7)

10.4(6) 2.05(1) DQMC 1.35(4) 0.131(4) 2.11(8)
NLCE-3 1.40(4) 0.135(3) 2.10(8)
NLCE-4 1.38(4) 0.133(4) 2.08(8)
HTSE-2 1.48(3) 0.142(3) 2.15(9)

33(2) 2.00(1) NLCE-3 3.99(8) 0.120(2) 2.12(6)
NLCE-4 3.99(8) 0.120(2) 2.12(6)
HTSE-2 4.06(8) 0.122(2) 2.13(6)

Table E.1 | Comparison of the parameters returned by the fit of the data in Fig. 5.4. For HTSE and

NLCE methods, the number indicates the order. The uncertainties correspond to the values returned by

the fit and do not take into account additional systematic errors.
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