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Abstract

Group deliberation is the central topic of this dissertation. Specifically, here we
study the relevance of the order of the speakers to deliberations that happen in
groups.

People deliberate in groups all the time. They deliberate at home, in gov-
ernmental institutions or at their working place for deciding on simple or less
simple matters. Naturally, the outcome of a group deliberation might be influ-
enced by some expected factors: the different options that will be considered,
the rationality of the speakers, and the accepted ways of argumentation. How-
ever, it would be unfortunate if the outcome of a deliberation was influenced by
the order in which the speakers presented their arguments. This idea motivates
the leading question of this dissertation: does a deliberative situation favour the
first speaker of the group?

Our leading question will take slightly different forms through the disserta-
tion, and to be able to answer them we use models as a medium of represen-
tation. That is, we take a deliberative situation, we describe it as its model-
structure, and we answer our original question on that structure. Likewise, in
the case of a similar question, this time regarding a family of deliberative sit-
uations instead of a single one, we turn the question and the scenario into a
question and a scenario about a family of models.

The central result of this dissertation contrasts the opinion-strength of the
first speaker with the opinion-strength of any other individual that takes part
in a deliberation. Broadly said, it claims that if we consider a family of possible
deliberative situations, the “region” in which the first speaker has advantage is
visibly larger than the one in which this does not happen. Moreover, this effect
increases with the number of acceptable opinions in a debate.

The previous result should be uncomfortable to any deliberative account
that intends to fulfill the next two constraints at the same time: the first con-
straint requires that the account follows the generic structure of deliberations
that we present in this work. The second one requires that from a moral, utili-
tarian or epistemic perspective, deliberations take place in a fair environment.
Consequently, in order to be on the safe side, deliberative accounts under this
category should always provide arguments that show them to be immune to this
order dependence concern.
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Zusammenfassung

Gruppenberatung ist das zentrale Thema dieser Dissertation. Insbesondere un-
tersuchen wir hier die Relevanz der Reihenfolge der Redner für Beratungen, die
in Gruppen stattfinden.

Menschen beraten sich ständig in Gruppen. Sie beraten sich zu Hause, in
staatlichen Einrichtungen oder an ihrem Arbeitsplatz, um über einfache oder
schwierigere Angelegenheiten zu entscheiden. Natürlich kann das Ergebnis einer
Gruppenberatung durch einige erwartete Faktoren beeinflusst werden: die ver-
schiedenen Optionen, die in Betracht gezogen werden, die Rationalität der
Sprecher und die akzeptierten Argumentationsweisen. Es wäre jedoch bedauer-
lich, wenn das Ergebnis einer Beratung durch die Reihenfolge, in der die Red-
ner ihre Argumente vortragen, beeinflusst würde. Dieser Gedanke motiviert
die Leitfrage dieser Dissertation: Wird in einer Beratungssituation der erste
Sprecher der Gruppe bevorzugt?

Unsere Leitfrage wird im Laufe der Dissertation leicht unterschiedliche For-
men annehmen, und um sie beantworten zu können, verwenden wir Modelle als
Darstellungsmittel. Das heißt, wir nehmen eine Beratungssituation, beschreiben
sie als ihre Modellstruktur und beantworten unsere ursprüngliche Frage anhand
dieser Struktur. Im Falle einer ähnlichen Frage, die sich auf eine Familie von
Beratungssituationen statt auf eine einzelne bezieht, ändern wir die Frage und
das Szenario in eine Frage und ein Szenario über eine Familie von Modellen.

Das zentrale Ergebnis dieser Arbeit vergleicht die Meinungsstärke des ersten
Sprechers mit der Meinungsstärke jeder anderen Person, die an einer Beratung
teilnimmt. Grob gesagt behauptet es, dass, wenn wir eine Familie möglicher
Beratungssituationen betrachten, die “Region”, in der der erste Sprecher einen
Vorteil hat, deutlich größer ist als diejenige, in der dies nicht der Fall ist. Außer-
dem nimmt dieser Effekt mit der Anzahl der zulässigen Meinungen in einer
Debatte zu.

Das obige Ergebnis stellt ein Problem für jeden Beratungsansatz dar, der
gleichzeitig die zwei folgenden Bedingungen erfüllen will: Dass er erstens der
generischen Struktur von Beratungen folgt, die wir in dieser Arbeit vorstellen
und dass zweitens die Überlegungen aus einer moralischen, utilitaristischen oder
erkenntnistheoretischen Perspektive in einem fairen Umfeld stattfinden. Um
auf der sicheren Seite zu sein, sollten Beratungsansätze dieser Kategorie daher
immer Argumente liefern, die zeigen, dass sie gegen diese ordnungsabhängigen
Bedenken immun sind.
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Introduction

Group deliberation is the central topic of this dissertation. Specifically, here we
study the relevance of the order of the speakers to deliberations that happen in
groups.

People deliberate in groups all the time. They deliberate at home, in gov-
ernmental institutions or at their working place for deciding on simple or less
simple matters. For instance, some colleagues might engage in a quick exchange
at work for picking a place where to eat lunch today. Clearly, each of them
might have a preference for a particular place. After all, the options of cafete-
rias, canteens or coffee shops could be a colorful legion in their neighborhood.
To add some complexity, not only the quality of the meal plays a role in this sit-
uation, but there might be inner fights running inside each person too regarding
diets, lunch budgets, etc. At this point, one could foresee that with little effort
this situation can be further entangled as much as one might require. Luckily
for humanity constraints exist, and the colleagues can not exchange and justify
their opinions forever because the time for lunch-break is bounded, and hungri-
ness around noon speaks for short deliberations too. Moreover, people use to
give a high significance to the time-saving-aspect in their lives, so they might
not want to expand extensively on “mundane” topics. Consequently, one might
expect that after some exchange a plausible scenario emerges, and either the
group goes together to the same place, or alternatively they split in smaller
groups, and each of them goes to a different place.

Naturally, deliberative situations are often more complicated than our pre-
vious example. Everyday, teams of decision makers need to find agreement in
diverse scenarios where “the right decision” is either less than obvious or non-
existing at all. For instance, the c-level of a company might need to take a
strategic decision regarding the size of the organization. Moreover, some mem-
bers of the board might share the opinion that “now” is the right moment for
actively increasing the number of employees. Consequently, they might argue
that the finance of the company looks strong and the sales could escalate by
opening new representations in different regions of the country. A second group
might take a more conservative stance, they prefer to consolidate the current
position for a longer period before making an essentially risky move that might
damage the good reputation and strong finance of the organization in the case
it failed.

In contrast with our first example in which uncertainties were triggered by
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12 Introduction

the existence of preferences corresponding to different options, in the previous
case, uncertainties emerged because of the contingent nature of the situation
in question: even if all members of the board prefer “the best” for the organi-
zation, their different opinions might be caused by their different sensitivities
towards risk, diversity of personalities, different career situations or economic
circumstances.

Naturally, further examples can be enumerated: teams in consulting agencies
need to decide whether a new promising technology is worth the investment.
Juries in court must find that someone is guilty or innocent of an illegal act
according to the rules of their society. The representatives of a municipality need
decide whether pursuing a wind farm is a correct way of employing a portion
of the local territory. Groups of experts are required to agree on thresholds for
pollutants, so that their governments guarantee to the citizens the existence of
a healthy environment.

In these examples of potential deliberative situations, one can already iden-
tify some general ingredients of a deliberation: a group of individuals, some
options that these individuals will consider during their discussion, the actual
deliberative process and its outcome. These are, let’s say, the visible ingredi-
ents. But, there are other more subtle components that play an important role
as well: first, the preferences of each individual regarding the different options
that might have originated a debate. Second, the rationalities of the individuals,
which involves at least two factors: the particular way in which each individ-
ual assesses the arguments given by others and the specific forms in which
they update their own opinions along a debate. Third, the personalities of the
individuals and their particular mental states during a debate.

These basic elements are at the center of the idea of deliberation, and their
mention here is essential because they will be explicitly or implicitly very present
in the rest of the chapters. However, in this introductory part, we need first to
touch three basic factors in order to give some shape to the structure of the
dissertation, and we do it next.

First, “Why/How is the study of deliberations important in philosophy?”.
That is, we have claimed that here we study the relevance of the order of the
speakers to deliberations that happen in groups. Consequently, next we would
like to describe a broad scenario, where the results of this study are important in
philosophy: the term deliberation is deeply connected to that of choice, and from
experience, we all know that usually the end point of a deliberation is a choice.
Naturally, the possibilities involved in the act of choosing might be tangible, like
“a glass of cold water” vs. “a glass warm water”. But, they might be intangible
too, like “believing” vs. “not believing” that a certain rumor is true. More
importantly, the question about the nature of choice is central in philosophy,
and it is inevitable that by extension it touches the notion of deliberation too
(see deliberation and choice in Blackburn 2016). Broadly said, if we pursued
the benefits of “good” group deliberations (either on moral, epistemic or any
other ground) as an instrument for delivering (individual) choice, and we were
not able to generate those deliberations, one might be entitled to challenge our
ability to control the process of (individual) choice. Consequently, this should
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be a clear reason (i.e., the inevitability of bad deliberations might contribute
to the tension between existence vs. non-existence of a controller “self” in the
process of choice) for approaching the study of deliberations with a genuine
philosophical interest.

A second kind of interest in deliberations comes from a slightly different
area of philosophy (and we are more interested in this one). Broadly
said, deliberations are important in philosophy because they are involved in
many democratic processes. That is, in the context of political philosophy, the
subject of deliberation arises as a key element behind the idea of deliberative
democracy (see Bächtiger et al. 2018). For this view of democracy, a low proba-
bility of reaching an unbiased deliberation would be problematic because it uses
an ideal of “good deliberation” as a crucial normative element (often granted
with epistemic properties too). Connected to this idea, there is a result that we
present in Chapter 2: with high probability, a potential deliberative situation
that might occur in a group favours the first speaker. That is, there is a bias
component in a large family of deliberations. Of course, these are not good news
for the deliberative cause. But, given the increasing number of practical appli-
cations (see Bächtiger et al. 2018, p. 19-43 for a broader description) in which a
deliberative approach has been employed to enhance a decision making process
(this includes environments of deliberative negotiation, deliberative assessment
of catastrophic risks, and more importantly, instances of deliberative situ-
ations within frameworks of representative democracies), one might argue that
the interest in the study of deliberations is well founded in a broader sense.

Second, given that later we will present some results on models of delib-
eration, in the second section of this chapter we start preparing for that by
answering some illustrative questions. For instance, there we introduce the
form in which deliberative situations are represented in this work. Likewise, we
describe under which conditions do the results that we present here apply. Nat-
urally, some of the answers are meant to be informal because in their respective
chapters there will be more technical details.

Third, because deliberations are often connected to some degree with vot-
ing systems (e.g., deliberating before voting or deliberating and then voting
upon disagreement), in the third section we present three classic results of So-
cial Choice Theory (see List 2022), and we also explain why is that a voting
component is not playing a role in the work that we present here.

Finally, before closing this introduction, we will summarize the content of
each of the chapters of the dissertation.

Deliberative Situations

In this section, our intention is to present simple answers to the following
eight questions: How do we approach the study of deliberations in this disser-
tation? How do we actually represent a deliberative situation? How could our
main result be summarized? Under which conditions do the results that we
present here apply? Why is a new notion of a model of deliberation needed?
How is the term “anchoring” used here? Is there empirical evidence of the
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existence of the order dependence reported in this work? What is the novelty
value of this dissertation?

First. We study deliberations with the assistance of models. In more detail,
a recurring question in this dissertation is “does a deliberative situation favour
the first speaker of the group?”, and we use models for studying this question.
That is, we take a deliberative situation, we describe it as its model-structure,
and we answer our original question on that structure. Likewise, in the case of a
similar question, this time regarding a family of deliberative situations instead
of a single one, we turn the question and the scenario into a question and a
scenario about a family of models. Naturally, the model-approach that we have
described in this paragraph is standard, and advantages and disadvantages from
a philosophical perspective are known (see Frigg and Hartmann 2020).

Second. As we mentioned before, we study deliberations with the assistance
of models, and each model will be described by using many tree-like structures
called opinion tree (see Figure 1.1 for an early diagram). That is, we will need
many opinion trees for the description of a single model, one per each delib-
erative situation that the model describes. Moreover, in this kind of tree-like
structures, all vertices are labeled, and each label describes the opinion of each
individual of the group at a certain moment of the deliberation. Additionally,
the potential transition between two group-opinions is described by a probability
value, which is placed between them.

Third. Our main result contrasts the opinion-strength of the first speaker
with the opinion-strength of any other individual that takes part in a delib-
eration. Said in terms of Figure 1, if we consider a complete family of possi-
ble deliberative situations, the “region” (of potential deliberative situations) in
which the first speaker has advantage is visible larger than the region in which
it does not happen. Additionally, as we mentioned in an earlier section, this
circumstance should be uncomfortable to any deliberative account that fulfills
at the same time the following two demands: first, it follows the structure of de-
liberations that we present in this work. Second, it requires that from a moral,
utilitarian or epistemic perspective a deliberation takes place in a fair environ-
ment. Naturally, intuitive reactions to this challenge might be: first, in “our”
debates we use different structures of deliberation, and in these structures, the
reported problem does not occur. Second, this result represents an essential
problem, but from a pragmatic perspective the impact is not too significant.

First speaker does not have advantage over speaker i.

First speaker has advantage over speaker i.

Figure 1: Informal description of the space of deliberative situations.
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Fourth. From a formal perspective, the results that we present here are
about models that capture a specific (but very generic) kind of structure of
deliberation. This is an important requirement, and it can not be assumed
that a conclusion that holds on those structures can be extended without proof
to a different one. Also, most of our (key) results were analytically proved
for a setting in which the number of acceptable opinions (in a deliberation)
is large. So, under those conditions our results are (analytically) true. We
also showed (via simulations) that the same results seem to hold true for some
settings with a small number of acceptable opinions. In these cases, we have
simulated evidence about the truth of the general statements, but it might be
that in some non-simulated instances, the general statements failed to be true.
Naturally, from a philosophical perspective, there is also the more general doubt
about the adequacy of using models in science. This is a broad question that we
should not discuss here, but giving our approach, our position on that regard is
completely clear.

Fifth. In this work, the need for a new notion of a model of deliberation has
four major reasons. The first one is that we conduct a study of deliberations in
which the update of the speakers’ opinions is asynchronous (i.e., not all agents
update their opinions simultaneously). In more detail, we needed a description
of deliberation that allowed us to talk about the idea of “the order in which the
speakers present their minds”, which incidentally triggers an asynchronous pat-
tern for the update of opinions. This requirement already ruled out the standard
versions of some prominent instances of models of deliberation (e.g., Lehrer and
Wagner 1981 and Hegselmann and Krause 2002). A second reason is that we
are interested in the analysis of bounded deliberations, which are deliberations
with a plausible finite number of rounds (i.e., we are not curious here about de-
liberations that stop or converge on the limit). A third reason is that here we
confine our attention to debates that allow uncertain transitions between two
groups of opinions, which is nothing else but accepting the existence of uncer-
tainties in deliberative processes. Unfortunately, when together, the second and
the third reasons rule out most common modifications of the Lehrer-Wagner and
Hegselmann-Krause models as well. A fourth reason is the research method
that we have followed in this dissertation. That is, originally we had a strong
model-based evidence of the existence of order dependence in a particular model
of deliberation (see Hartmann and Rafiee Rad 2020). Accordingly, motivated
by this case, we wanted to investigate whether the same remained true for other
alternatives of models of deliberation. And so, we were quickly in a circum-
stance in which there was the need to sample (via simulations or analytically)
deliberative situations and check for the presence of order dependence in each of
them. Of course, the intention behind this strategy was that perhaps we could
(as we did later) report a similar result to the one from Hartmann and Rafiee
Rad. However, this time we were not curious about a single model but about
a large family of deliberative situations. In this approach, the notion of opin-
ion tree, which is embedded in our idea of model of deliberation was a natural
candidate for our sampling-and-check requirement. Naturally, the three models
that we mentioned here (just before) will be properly introduced as prominent
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instances of models of deliberation in Chapter 1.
Sixth. The term “anchoring” is a well known one. For this reason and

because we actively use it in this work, we should be cautious, so that any
potential misunderstanding is prevented. In the literature (see Mussweiler et
al. 2004 and Furnham and Boo 2011), the term “anchoring” is associated with
an extensive family of biases. Also, each of these biases occurs in decision-
making processes, which sometimes take place at individual level but often in
group-scenarios too. The distinctive characteristic of the anchoring-family is
that the judgement of decision makers is affected by an event (or “anchor”)
that is totally irrelevant to the situation in question (this is not good!). In the
context of group deliberations, the identification of the order of the speakers
with a potential anchor-event has been made explicit in Hartmann and Rafiee
Rad 2020. Additionally, the anchoring effect (in non-deliberative situations)
has been studied in both theoretical frameworks and empirical scenarios. This
circumstance is the main reason for us to adopt the following convention here. In
the context of models of deliberation, whenever we need to refer to the potential
impact of the order of speakers on the outcome of deliberations, we have tried
to use the term “order dependence” only. Moreover, we have reserved the term
anchoring for “important names” exclusively (e.g., names of problems, results,
sections, or the title of the dissertation). This distinction seeks to let some
distance between the terminology used in the study of “order dependence”
at a theoretical level on models and the names of scenarios that might be
potentially relevant in an empirical study as well.

Seventh. Unfortunately, in our literature search we have not been able to
pinpoint any standard source of empirical evidence that reported a result on
the existence of order dependence in deliberative situations (as we present them
here). Naturally, it would be great if our work promoted an interest that trans-
lated into new empirical research projects. Our hope for the existence of em-
pirical evidence is easy to understand; it usually challenges theoretical results
and intuitions in a unique way. Here too, we could have profited from some
empirical guidance at the model-design stage (i.e., Chapter 1).

Despite the negative spirit of the previous paragraph, there is some litera-
ture on management science, which partially overlaps with our interests. That
is, Hartmann and Rafiee Rad (see Hartmann and Rafiee Rad 2020, p. 4) have
reported suggestions of a possible occurrence of (deliberative) anchoring in the
particular context of decision-making boards of companies (for original sources,
see Malhotra et al. 2015, Tuschke et al. 2014, Zhu 2013, and Bazerman 2002).
These instances are reported as anecdotal evidence (of anchoring in delibera-
tions), and we include them here for the sake of completeness.

Besides decision-making boards, a second interesting environment in which
there seems to be a potential for anchoring is the one in which each member of
a group of experts is asked to predict/estimate the value of a certain unknown
variable that plays a role in a particular real-life situation. In these circum-
stances, an usual and “innocuous” assumption is that the output-predictions
are formulated based on background information that belongs in the area of
expertise of our specialists. Surprisingly, there is a number of issues that might
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arise in this simple scenario (Burgman 2016 contains a detailed inventory). In
particular, anchoring is described as one among several psychological biases that
might affect this kind of processes, and actual descriptions of experiments are
provided in Burgman 2016, p. 60.

In our (order dependence) deliberative context, these two groups of instances
are of value (even if the described settings are either not conclusive or not di-
rectly related to anchoring in deliberative situations) because they show the
scenarios that one might expect from an empirical study on anchoring in de-
liberations: everyday life situations, like those from company boards and very
specific cases, like the one in which a group of experts decides on the value of a
key parameter.

Eighth. We believe that this dissertation is the first work that reports
the result described in the answer to the third question above. Moreover, our
general notion of model of deliberation and the form of approaching the study of
deliberative situations (via opinion tree sampling) are interesting contributions
to the analysis of group deliberation too.

We also believe that what is exposed here have immediate theoretical and
practical relevance. On the theoretical front, our results call for an update of
the known concerns regarding the limitations of collective deliberation, which
is an essential component of deliberative democracy (see Estlund 2012, p. 397-
406). On the practical front, our results provide enough ground, so that one
could justify the need for an empirical study on anchoring in deliberations. That
is, previously, we have identified the environments of deliberative negotiation,
deliberative assessment of catastrophic risks, and more importantly, instances
of deliberative situations within frameworks of representative democracies as
potential decision-making processes (among others) that benefit from group
deliberations. Naturally, there is a certain tension between this information
and our results. Consequently, we consider that an empirical study that could
bring clarity on this matter is needed, and it could be triggered as a reaction to
the results of these dissertation.

Three pillars of Social Choice Theory

Usually, a link between deliberations and Social Choice Theory comes from
the element of disagreement. What could we do with a deliberation that did
not end in a consensus after a monumental deliberative effort? Naturally, this
situation is particularly pressing when a final decision is imperative. Social
Choice Theory offers a normative answer to this question, and it comes with an
emphasis on the terms “voting system” and “aggregation”. Unsurprisingly, both
terms play a central role in other standard inquiries of the field too (see List
2022): how can a group of individuals pick one among several options? What
are the strengths and weaknesses of an interesting voting system? When is a
voting system fair? How to aggregate preferences of individuals in a coherent
way so that the outcome represents the group?

Consequently, a short answer to the original question would be: if a delib-
eration does not end in consensus, there is always the opportunity to set up a
voting system for making a final decision. But, which one?
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Historically, the domain of research on voting systems has been bounded
and supported by three prominent results (see List 2022): Condorcet’s Paradox,
Condorcet’s jury theorem, and Arrow’s Theorem. Regarding the feasibility of an
aggregation of preferences via voting, these results can be taken as “negative”,
“positive”, and “negative” respectively.

The Condorcet’s Paradox can be best illustrated with an example (the orig-
inal one is in Nisan 2007, p. 211). Because of a certain reason, a society needs
to select one among three options (e.g., a, b, c). This particular society is very
small – just three members, and their preferences for the options are as follows:

a ≻1 b ≻1 c

b ≻2 c ≻2 a

c ≻3 a ≻3 b

In this case, the preference x ≻i y means that the individual/voter i prefers
the option x to the option y. Next, assuming that the individuals did vote ac-
cording to their preferences, a quick check of the results leads us to the following
outcome: two out of three voters (i.e., a majority) would prefer option “a” over
option “b”. Similarly, two out of three voters preferred “b” to “c”, and two
out of three preferred “c” to “a”. Consequently, a natural interpretation of this
result is that whenever a group needs to select one among several options, the
intuitive majority rule should not be assumed to be a sound mechanism.

Even if the Condorcet’s Paradox speaks against the idea of a majority vote
as a general solution for the problem of aggregation of preferences in a group,
it does not speak against the existence of a more “complicated” voting system
that avoided the essence of the problem presented above. This idea could seem
to be further encouraged by the Condorcet’s jury theorem (see Weisstein 2022),
which states that given a group of voters (i.e., a “jury”), independently choosing
by majority vote between a correct outcome with probability 0 ≤ p ≤ 1 and an
incorrect one with probability (1− p) leads to:

1. If p > 1/2 (so that each voter is more likely to vote correctly that
incorrectly), adding more voters increases the probability that the majority
chooses correctly. Also, the probability of a correct decision approaches 1 as the
number of voters increases.

2. If p < 1/2 (so that each voter is more likely to vote incorrectly than cor-
rectly), adding more voters decreases the probability that the majority chooses
correctly. In addition, the probability of a correct decision is maximized for a
jury of size one.

Naturally, an important message in this theorem is that there are some
environments in which the use of the majority rule provides good results indeed.
In this case, we needed a setting where the options are binary (i.e., jury is
“correct” or “incorrect”), and most importantly, a large jury where each member
brings more information than the act of flipping a coin.

The second negative result is Arrow’s theorem (see Nisan 2007, p. 213). In
essence, it extends the “bad news” of the Condorcet’s Paradox beyond the scope
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of the majority rule to a larger class of preference aggregation methods (i.e.,
welfare functions). In this case, the strategy is to show that over a set of more
than two options and two or more voters, a welfare function that satisfies some
seemingly plausible axioms does not exist. In general, obtaining impossibility
results (like the Arrow’s one) is still an active research topic in Social Choice
Theory, and showing that “good” aggregations methods are achievable by giving
up as few as possible of some “plausible axioms” is a popular subject too (see
List 2022).

In our context, voting systems will not play a role in this dissertation, but
its reference is suitable and needed to precisely narrow the scope of our work:
the ideas presented here are only concerned with the deliberative part of a
decision making process, and any further choice that might be taken with the
application of a satisfactory voting procedure falls out of the scope of our results.
Likewise, we do not analyze here the impact of a previous (potentially biased)
deliberative situation on a posterior voting procedure. The main reason to follow
this approach is that deliberation as a subject is a very basic element in standard
decision making processes, and so far it has not kept much exclusive attention
in order to understand the strengths or weakness of its structure. Naturally,
we recognize that the relation between voting systems and (biased) deliberative
situations might be an interesting subject to look at in a future work.

Overview

In Chapter 1, a description of an ideal model of deliberation is presented.
In general terms, here we defend that the dynamics of a model of deliberation
can be represented by a finite set of tree-like structures (opinion trees), each of
them tagged with probabilities on the branches and opinions on the vertices.
Consequently, in the next chapters we use this type of structures for the study
of order dependence in models of deliberation.

In Chapter 2, we present two results. The first, if we inspect a family
of plausible opinion trees, it leads to the belief that the opinion of the first
speaker has an overall better chance of prevailing than any other opinion of the
group. Opinion trees in this family share the same initial conditions: a group
of speakers is about to enter a debate (each speaker with a given presenting
position and an opinion on the topic of debate). We will also present two factors
that have an impact on the previous phenomenon: the number of opinions
(admitted in the deliberation) and the parity of the number of rounds times
the number of speakers. Second, in the same scenario as before, if instead of a
family of opinion trees, a single one was picked (uniformly at random) and then
inspected, the probability that the first speaker had better odds (of winning the
debate) than any other individual speaker converges to one when the number
of acceptable opinions goes to infinity.

We interpret these results to be, first, an informative overview of what hap-
pens in a family of opinion trees with respect to the order of the speakers.
Second, an assurance telling that allowing many opinions will turn that general
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overview into the local standard case. That is, if one allows for many opinions,
with high probability: in a uniformly selected opinion tree, the first speaker will
have advantage.

In Chapter 3, we turn our attention to a more pragmatic scenario. That is,
we (assume that we) are given a specific instance of a model of deliberation, and
we need to answer the question: to which extent does this instance present order
dependence? Naturally, the results in the previous chapter is what motivates
this question. The reason is simple, if we know that when we inspect a family
of opinion trees, we find that the first speaker has advantage, the next interest-
ing question is: how do I know whether a model that I meticulously developed
presents anchoring as well? In contrast to the results of the previous chapter
(which are analytical), this one falls into the category of simulation results. In
more detail, we present a general approach (that uses simulations) for estimat-
ing the degree of order dependence (and anchoring) that a model of deliberation
presents.

Chapter 4 is essentially exploratory. That is, after presenting some negative
results in previous chapters, in this one we investigate four natural ideas that
(potentially) might help to decrease the impact of the first speaker’s opinion
on the outcome of a deliberation. As it might be expected, these alternatives
will be described as modifications of the initial notion of model presented in
Chapter 1.

Finally, in the last chapter, we summarize the main ideas of the dissertation.
However, this time we try to highlight the positive side of our results: to gain
knowledge about the impact of the order of speakers on deliberations, which
hopefully allowed us to produce better models and deliberative situations.



Chapter 1

Models of deliberation

In this chapter we introduce a representation of what we understand as a model
of deliberation. The intention is not to present an instance of a model of de-
liberation, but a formalism that captures a large family of interesting models
instead. Consequently, in the first section we propose an intuitive description of
what a model of deliberation is. Based on this, we identify the main individual
components of a model, and present a formal description for each of them, so
that when together, they constitute a description of model.

1.1 Models and representations

A model of deliberation M is a model that represents the situation in which
n speakers deliberate on a topic during K rounds of debate (at most). The
speakers enter the deliberation with an initial opinion each, and what follows
respects this dynamics: the first speaker presents her opinion, then all the others
update theirs. Next, the second speaker presents his opinion, and all the others
update theirs. When the last speaker spoke and all the others updated, the
previous presenting/updating process is repeated as long as no consensus is
reached for a maximum of K − 1 rounds. Consensus can always emerge after a
presentation, and if that was the case, it ends the debate.

What makes a model of deliberation unique is: first, the number of speak-
ers. Second, the set of possible opinions that speakers can produce. Third,
the particular form in which speakers update their opinions. Fourth, the
mechanism for deciding whether or not the opinions are in consensus. Fifth,
the number of rounds of a debate.

Next, we present a formal structure that aims to capture the elements and
dynamics of plausible scenarios of deliberation. Starting with the elements: we
accept any finite representation as a plausible description of an opinion. This
is a gentle constraint; ultimately, we can always “define” names for an infinite
opinion (the word phi is perhaps the best example). Formally:

Definition 1 (Set of opinions). Any set with a finite representation for its

21



22 CHAPTER 1. MODELS OF DELIBERATION

elements can be regarded as a plausible set of opinions. Consequently, each of
its elements will be understood as an individual opinion itself.

The next essential step is to describe the transitions between group of
opinions in a model of deliberation. We take this step by introducing what
an opinion tree is. Graphically, an opinion tree is a structure similar to the
one presented in Figure 1.1. In this particular case we have two opinions only
(represented by “0” and “1”), three speakers (this is the reason why vertices
are labeled with vectors of opinions with 3 components), and the debate has
one single round (each speaker speaks once at most). In the figure, the position
of the speaker is highlighted with a “*”. An important detail is that edges
between configurations of opinions are annotated with probabilities (these are
constant values in [0, 1]); the intuitive meaning is that a transition between
two vertices occurs with the specified probability. Regarding probabilities, there
is a constraint that was not explicitly specified in the example, but it must be
in place: for each vertex, its outgoing probabilities must add up to 1 (this is
the standard “unit measure” requirement). Finally, in our example, the bold
vertex signals the initial opinions of the speakers, which is the label of the root
of the opinion tree. Now, the general notion depicted in the example can be
formalized as follows:

[0*,0,1]

(0,0*,1)

p2

(0,1*,0)
p3

(0,1*,1)

p4

(0,0*,0)
p1

(1,0,0*)

p25

(1,0,1*)

p26

(0,0,0*)
p21

(0,0,1*)

p22

(0,1,0*)

p33

(0,1,1*)
p34

(1,1,0*)

p37

(1,1,1*)

p38

(1,1,1*)

p48

(1,1,0*)

p47

(0,1,1*)

p44

(0,1,0*)
p43

(1*,1,1)

p228

(0*,0,0)

p251

(1*,1,1)

p268

(0*,0,0)

p331

(1*,1,1)
p348

(0*,0,0)

p371

(0*,0,0)

p471

(1*,1,1)

p448

(0*,0,0)
p431

Figure 1.1: Opinion tree with three speakers, one round and two opinions.
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Definition 2 (Opinion tree). Given a set O of opinions and two natural num-
bersK > 0 and n > 1 (K stands for the number of rounds, and n for the number
of speakers), we define an opinion tree as a probabilistic and labeled tree T such
that: (i) On is the set of admissible labels. (ii) internal vertices have exactly
On−1 children, (iii) siblings vertices do not share labels, (iv) each vertex at a
distance d > 0 from the root, has a label that at position (d− 1)( mod n) has
the same opinion that it’s parent’s label at the same position. (v) There is no
leaf with a path to the root that is larger than K · n.

Conditions (i), (ii) and (iii) describe the requirement that vertices are la-
beled with vectors of opinions (and only with them). Condition (iv) encodes an
expected requirement: after a speaker presents, her opinion remains the same.
Finally, condition (v) expresses the constraint on the number of rounds (at most
K).

Two details regarding notation: first, if we had variables instead of
constant values for the edge-probabilities of an opinion tree, we use the name
opinion tree structure to highlight that this is the case. Second, because of
space reasons, (quite often) we use the term O instead of the correct one |O| for
describing the cardinality of a set of opinions O. Naturally, we take care that
there is no ambiguity when we do this.

Back again, in the example described before, one can notice that all leaves
in the tree follow the same pattern: the opinion of all speakers is the same.
The reason for this harmony is that in this particular instance of debate, the
consensus function dictates that consensus means total agreement. In general,
this does not need to be the case. A broader notion of consensus can be stated
as follows:

Definition 3 (Consensus function). Given a set O of opinions and a natural
number n > 1, a consensus function C : On → {0, 1} is a function that maps a
vector of opinions onto a binary value.

Intuitively, the idea behind this definition is that with the assistance of a
consensus function, it is possible to classify any opinion of a group of speakers
into “agreement” or “disagreement”. If needed, we interpret 1 as agreement and
0 as disagreement. Also, note that the term On takes the usual interpretation:
it represents the vectors of n components, where each component takes values
from the elements of the set of opinions O.

Next, we coordinate the previous notions of set of opinions, opinion tree, and
consensus function for describing what a model of deliberation is. This is an
important step because in what follows the promise is: problems concerning the
order of the speakers in a model of deliberation can be studied on the following
kind of structure:

Definition 4 (Model of deliberation). A model of deliberation is a tuple M =
(O,K, n, U,C) that consists of:

• a set of opinions O,

• a definite number of rounds K,
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• a definite number of speakers n,

• a finite set of opinion trees U , with no repeated root-labels.

• a consensus function C : On → {0, 1},
• A constraint: consensus vertices have no children. That is, in an opinion

tree T ∈ U , a vertex with label x is a leaf iff C(x) = 1 or its distance to the
root is equal to K.n.

The new elements are a requirement of a finite set U of opinion trees, and
a constraint. First, that U is a finite set with no repeated root-labels indicates
that any pair of opinion trees in U describes debates that started with different
initial group opinions. Second, the constraint narrows the definition of a leaf
in opinion trees by preventing that consensus vertices had children (i.e., when
consensus is reached the debate stops).

This definition will be used as our ideal of a model of deliberation. Accord-
ingly, we use it for studying the relevance of the order of the speakers to the
final outcome of a debate. However, this subject will not be treated directly;
it will be first unfolded into two kind of questions instead: questions about
individual models (in Chapter 3) and questions about groups of opinion trees
(in Chapter 2). But, before we get into more details on this, we first contrast
our new representation of a model of deliberation with some examples from the
literature.

Example 1. First, we consider any deterministic model Mdet = (O,K, n, U,C).
When we say that Mdet is deterministic, it means that: in every tree of U there
is a unique path where no edge-probability is equal to zero. Additionally, in this
path all edge-probability are equal to one. That is, during deliberations, Mdet

asserts with certainty the transitions between two groups of opinions. Naturally,
particular deterministic models can be obtained by instantiating the parameters
(O,K, n, U,C).

As the previous example suggests, by identifying different mechanisms for
opinion-update, one can produce different models of deliberation (i.e., by pro-
ducing different sets U). Under the deterministic classification, two prominent
instances in the literature are the Lehrer-Wagner (see Lehrer andWagner 1981)
and the Hegselmann-Krause (see Hegselmann and Krause 2002) models. In the
first case, the updating mechanism is linear. That is, updates are done via a
matrix multiplication with the general form V i+1 = WV i = W iV0. This ex-
pression can be read as: after the (i + 1) round of debate, the opinions of the
speakers (V ) are equal to the multiplication of a matrix W by the opinions of
the speakers after the previous round. The matrix W = wmk can be interpreted
as an encoding of opinion significance among speakers. That is, wmk expresses
how significant is the opinion of speaker k for speaker m. An interesting con-
sequence that results from this model is that: for a large family of matrices W
(independently of the initial opinion), the debate converge to lim

i→∞
V i. In the

second case, the mechanism for updating opinions is uncomplicated as well.
In every round, a speaker updates her opinion with the average of all opinions
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that are similar to hers. The notion of “similar” is controlled with a parameter,
usually named ϵ, and interpreted as a confidence threshold (an individual fea-
ture of speakers). Some known implications of this updating style are as follows:
first, a stable pattern of opinions is obtained after a finite time. Second, the
shape of the concluding patterns heavily depends upon the ϵ profile of speakers.
Consequently, by tuning ϵ, different patterns of plurality, polarization or total
agreement can be obtained.

Could we describe these models in a similar way to that of Definition 4?
Well, they are deterministic. Accordingly, what was said in Example 1 applies
to them as well. However, the significance of these models was mainly due to
“on the limit” results (i.e. the length of deliberations was not bounded). That
is, if we would like to describe them in the style of Definition 4, we should allow
(on the definition side) for infinite trees in U (in the sense of an infinite K). A
second difficulty would be that both models describe the update of opinions in
a synchronous way. That is, all opinions are updated at the same time (and
updates are broadcast instantly). In our case, it is expected that each round of
debate contains as many opinion-update possibilities as speakers exist (unless
consensus is reached). This turns out to be a fundamental difference that we
can not overcome without making too many concessions on our (above) ideal of
debate. We come back again to this point in a moment when we explicitly set
the scope of the results presented in the next chapters. Next, a second example,
of a non-deterministic model this time.

Example 2. In the HRR model of deliberation (see Hartmann and Rafiee Rad
2020), the dynamics of a debate is described as follows: deliberations take place
in rounds, and speakers present their opinions sequentially (as required by Def-
inition 4). More important, speakers exhibit and make use of two key features
(unnoticeable for themselves, and treated as parameters in the model): a first
order reliability and a second order reliability. These attributes are used for
explaining how is that speakers update their opinions. Consequently, the first
order reliability is interpreted as the ability to take right decisions (i.e., select
the right among many possible options), and the second order reliability is inter-
preted as the capability to estimate the first order reliability of other speakers.
Both attributes change their values in a precise (algebraic) and justified way
while a debate unfolds. In this environment, some interesting implications are
as follows: first, if the speakers are epistemic peers (this is expressible in
terms of their first order reliability), then the deliberation process converge to
a consensus. Equally important, in the way to this consensus, the opinion of
the ith speaker receives a higher weight than the one of any other subsequent
speaker. This circumstance is interpreted as a new instance of the prominent
anchoring effect. If the speakers are not epistemic peers, it has been
demonstrated (via simulations) that for many plausible scenarios the same an-
choring effect is exhibited.

How can we contrast the HRR model with Definition 4? Regarding the
structure of debates both are alike: debates happen in rounds, speakers present
their mind sequentially, and the numbers of rounds is bounded (i.e., no infinite
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Figure 1.2: Graphic description of a family of models of deliberation.

trees). However, there is an interesting difference regarding consensus: Defini-
tion 4 allows for debates that ended without consensus, and in the HRR model,
an average of opinions is taken in that case (i.e., if a maximum number of rounds
is reached without consensus). Could we have this behavior on the definition
side? Yes, it is possible. In order to do that, one should extend the domain of
the consensus function, so that it took into account not only the plausible labels
(i.e., group-opinions), but the length of deliberations as well. Naturally, labels
in leaves (of opinion trees) should then take the value of the average of labels
in their parent vertex (note, labels’ values needed to be numerical in this case).

So far, we have examined individual instances of models, next we inspect
a group view instead (taking Definition 4 as the notion of singleton). As the
previous examples indicated, the set U of trees can be seen as the main compo-
nent of a model of deliberation. For a typical model, U might be large, but if
(O,K, n,C) are fixed, U must be finite. In this case (i.e., (O,K, n,C) fixed), we
can informally picture a family of models of deliberations to be something close
to what Figure 1.2 shows (triangles stand for opinion trees): each “slice” of the
xy-plane contains a particular U , and in the z-direction each opinion tree struc-
ture takes different probability assignments on the edges. Additionally, we could
also give some organization to each individual U by accommodating under the
same y-coordinate those trees with root-labels that are a permutation of each
other (represented by equal colors in our example). For instance, if we consider
the tuple of opinions [0, 0, 1] as a root-label (see Figure 1.1), the opinion trees
with root-labels [0, 0, 1], [1, 0, 0] and [0, 1, 0] will share the same y-coordinate.
The profit of keeping this view will become apparent in Chapter 3.

As mentioned earlier, in the next chapters there will be two different kind
of problems concerning the order of speakers in models of deliberation. The
first one (discussed in Chapter 2) is a group kind of problem. In this case, the
situation is that a group of speakers is about to enter a debate (each speaker
with a given presenting position and an opinion on the topic of debate), and we
would like to know whether the opinion of the first speaker has an overall better
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chance of prevailing than other opinions of the group. We model this prob-
lematic by investigating (on the corresponding opinion tree structure) whether
the expectation that the opinion of the first speaker prevails is larger than the
expectation that any other individual opinion did it. In terms of Figure 1.2,
this would be: for a particular opinion tree structure (that agrees with the situ-
ation to model), we sample its corresponding opinion trees over the z-direction
(in a uniform and independent way), and keep track of the average of the
difference of probability of success between the opinion of the first speaker
and any other opinion. As revealed before, the answer to this problem is that
the first speaker has advantage (i.e., the average is positive). Moreover, we will
also show that the same holds (with high probability) if the set O of opinions is
large, and we did not sample over the z-direction, but just selected (uniformly)
a single opinion tree instead.

The second kind of problem (discussed in Chapter 3) is about single
models. In this case, we are given a particular model (i.e., a “slice” in the xy-
plane) as a black box: we know (O,K, n,C). Additionally, we have access to
the state of opinions at any moment during a deliberation (but we do not have
access to the probabilities of trees in U), and we would like to know to which
extent there was order dependence in this model. Naturally, in the correspond-
ing chapter we properly explain the motivation to consider this problem, and
describe our approach to it.

Discussion/Conclusion. In order to complete this chapter, in the next
paragraphs we highlight the main ideas that were presented earlier. We also re-
view important points that were briefly mentioned (with the intention of keeping
the description of models as clear as possible), but still might need further clar-
ification. For this we use a simple dialogue style.

Why is the differentiation between opinion trees and opinion tree structures
needed? An opinion tree is used for describing a very particular instance of a
debate. In this case, the probability of transitions (between two group-opinions)
are supposed to exist as constant values. Opinion tree structures highlight the
idea that the parameters (O,K, n,C) have fixed values, and the probability
values of transitions between group-opinions are kept uncertain and described
as random variables.

Is it possible to get access to the edge-probabilities of opinion trees? If we
are given a model of deliberation described in natural language (or even by
mathematical rules), the answer is no (in general): a basic reason is that when
dealing with probabilities we can not guarantee certainty (i.e., via simulations).
However, we can estimate those values, most of the time with some practical
difficulties (i.e., U might be a large set, and the trees in U might be large as
well). Moreover, for simple models this problem can be tractable, and depending
on the regularity of the rules, probability transitions might be easy to derive
(analytically). We will come back to the general question, and discuss it again
in detail in Chapter 3 .

What is a family of models exactly? For our purposes, we will not need to
define this in a formal way. However, (informally) Figure 1.2 captures the idea
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in a genuine way. That is, it is a collection of models that can be obtained by
fixing (O,K, n,C) and allowing all possible scenarios for the edge-probabilities
of opinion tree structures.

Are the results of the next chapters presented in full generality? No. That is,
they are not shown for every tuple (O,K, n,C). We will assume everywhere that
C(x) is a total agreement consensus function. Specifically, C(x) = 1 iff all
the opinions in the label x are the same (we call x a total consensus label).
Also, in the next chapter, Theorem 5 needs a large set O of opinions to be of
a practical use. However, these restrictions should not be understood as strong
constraints: first, in most cases agreement means exactly that all speakers share
the same mind (i.e., C(x) = 1). Second, the assumption of a large O is a natural
one (in particular in debates where diversity of opinions is allowed). Moreover,
we will demonstrate (via simulations) that for cases with small sizes of O, a
similar pattern (to the one with a large O) of order dependence is obtained.



Chapter 2

Order Dependence and
Anchoring

In this chapter we address two core questions of the dissertation: the overall
anchoring problem and the probability of anchoring problem. The solutions of
these problems support the idea that in a situation in which a group of
speakers is about to enter a debate (each speaker with a given presenting
position and an opinion on the topic of debate), the opinion of the first
speaker has an overall better chance of prevailing than other opinions
of the group. Moreover, the same is true (with high probability) if: in
a scenario with many opinions, a single opinion tree was selected
(uniformly).

In more detail, the overall anchoring problem (Section 2.2) asks whether in
an uniform sampling of plausible opinion trees, the opinion of the first speaker
prevails (on average) over any other opinion. Moreover, the probability of an-
choring problem (Section 2.3) asks for the probability that the opinion of the
first speaker prevails over any other in a single opinion-tree-pick that was sam-
pled uniformly. Naturally, before we can turn our attention to these exciting
problems, we need first to formalize the intuitive notion of “probability that a
certain outcome occurs on a single opinion tree” (Section 2.1). The reason to do
so: whenever we said “prevail” before, the probabilistic nature of the statement
was intentionally concealed, and it needs to be made precise.

2.1 Probabilities in opinion trees

In probability theory, the notion of probability space is at the core of nearly
every inquiry: if we need to describe what we mean by “the probability that
an event occurs”, (more often than not) we need to present a probability space
that models our situation (see the Probability Theory section of Basic Notions).
In this section we present a probability space that is associated to a given
opinion tree. By doing so we obtain a safe interpretation for the statement “the
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probability that an outcome A occurs in a given opinion tree is P”. But, let’s
see first an example that motivates the required definitions.

Example 3. We consider the example introduced in Figure 1.1 where the set-
ting was: three speakers, two opinions, a single round of deliberation, and initial
opinions [0*,0,1] . The challenge is to describe the probabilities P(0,0,0) and
P(1,1,1) corresponding to the events: “(0, 0, 0) is the outcome of the delibera-
tion”, and “(1, 1, 1) is the outcome of the deliberation”.

Intuitively, for describing P(0,0,0) and P(1,1,1), the procedure is to take the
ratio of the outcomes we are interested in to all possible consensus outcomes. If
we expand the previous idea, it takes the following form:

P(0,0,0) =
S(0, 0, 0)

S(1, 1, 1) + S(0, 0, 0)

P(1,1,1) =
S(1, 1, 1)

S(1, 1, 1) + S(0, 0, 0)

S(0, 0, 0) = P̂251 + P̂331 + P̂371 + P̂471 + P̂431 + P̂1 + P̂21

S(1, 1, 1) = P̂268 + P̂348 + P̂38 + P̂48 + P̂448 + P̂228

P̂251 = p2 · p25 · p251
P̂331 = p3 · p33 · p331
P̂371 = p3 · p37 · p371
P̂471 = p4 · p47 · p471
P̂431 = p4 · p43 · p431

P̂21 = p2 · p21
P̂1 = p1

P̂268 = p2 · p26 · p268

P̂348 = p3 · p34 · p348

P̂448 = p4 · p44 · p448

P̂228 = p2 · p22 · p228

P̂38 = p3 · p38

P̂48 = p4 · p48

The next definition simply combines the terms S(0, 0, 0) and S(1, 1, 1) under
a single name. Note that in an opinion tree, the weight of a leaf is defined to
be the multiplication of the probabilities on the path from the leaf to the root
of the tree (see the Graph Theory section of Basic Notions).

Definition 5 (Outcome function). The outcome function f : On → R of an
opinion tree T is defined as follows: given a label x, the value f(x) is the sum
of the weights of leaves with label equal to x in T .

Similarly, a single name for P (0, 0, 0) and P (1, 1, 1) is defined as follows.
Note, in our particular example the constant α is simply S(1, 1, 1) + S(0, 0, 0),
and the consensus function requires total agreement.
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Definition 6 (Normalized outcome function). Given an opinion tree T , its
outcome function f : On → R and a consensus function C : On → {0, 1}, the
normalized outcome function g is defined as follows: the domain of g(x) are
the labels x ∈ On such that C(x) = 1. Given a label x, g(x) := 1

αf(x), where
α :=

∑
C(y)=1

f(y) is a normalization constant.

Naturally, in the language of the previous definitions, we can describe what
we mean by “the probability that an outcome occurs in an opinion tree”. More
important, after the next definition we can safely produce statements of the
form: given an opinion tree, the probability that the opinion of the first speaker
prevails is higher than the probability that any other opinion did it. For instance,
in the previous example, that happens whenever S((0, 0, 0)) > S((1, 1, 1)).

Definition 7 (Associated probability space). Given an opinion tree T , a consen-
sus function C, and their normalized outcome function g(x), the triple (Ω,F , P )
is the associated probability space defined as follows:

• Ω = {x ∈ On|C(x) = 1}
• F = 2Ω

• For E ∈ F :

P (E) =


∑
x∈E

g(x) E ̸= ∅

0 E = ∅
.

We can appreciate that the triple (Ω,F , P ) is a probability space: first, F is
a σ-algebra (it is the power set of a finite set). Second, P (Ω) = 1 follows from
the definition of g(x). Third, if Ai ∈ F is a countable sequence of disjoint sets
(because F is finite, this sequence needs to be finite indeed), then (based on the
assumption that A′

is are disjoint) P (∪iAi) =
∑

i P (Ai). Note, for the entire
definition to make sense, there should be at least one leaf x in T with C(x) = 1.
Otherwise, α = 0 and g(x) is not well defined.

Back to opinion trees, we can now continue as planned: so far we have
considered opinion trees with literal probability values assigned to the edges
between vertices (that is, literal numbers—even if in the previous examples
those numbers were represented symbolically by names). In the next section
we introduce the overall anchoring problem; this problem considers the case
in which the edge-probabilities of an opinion tree are random variables (i.e.,
we explore an opinion tree structure). By taking probabilities in this way, we
can sample individual trees (uniformly), and study the difference between
the probability of success of the first speaker and the probability of success of
any other speaker. In terms of our previous example, a first step of this study

would be to inspect the term lim
m→∞

∑
m>0 Sm(0,0,0)−Sm(1,1,1)

m (where Sm(0, 0, 0)

and Sm(1, 1, 1) is the evaluation of S(0, 0, 0) and S(1, 1, 1) for the sample m).
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Naturally, one can notice that this expression is (with probability one) nothing
else but the expectation of the random variable D = S(0, 0, 0)−S(1, 1, 1). That
is, the next section will be dedicated to the problem of calculating E(D) in an
opinion tree structure with arbitrary parameters (O,K, n).

2.2 Overall anchoring

In this section there will be three highlight moments: first, the description
of the random variable that we are going to consider in the Overall anchoring
problem. Second, the definition of the problem itself and the presentation of its
solution. Third, the discussion of the solution together with some interesting
implications.

As a motivation, let us consider the opinion tree structure from Example 3.
An interesting (but still informal) anchoring related question would be: if we
sample (uniformly) the values of the edge-probabilities, and for each sample m
we obtain Dm = Sm(0, 0, 0)− Sm(1, 1, 1), will the average of the Dm values be
positive or negative (for a large enough m)?

From an anchoring point of view, the previous question is attractive because
a correct answer to it would suggest how strong the dominance of the first
speaker position is. That is, we will be considering different opinion trees (in
our particular example, all of them had [0∗, 0, 1] as root label), and for each of
them we would keep track of the difference of “strength” between the opinion
of the first speaker and any other opinion. Note, the introduced requirement
that the sampling needs to be uniform just means that all well formed opinion
trees are equally plausible.

From an operational point of view, the previous question is interesting be-
cause if we secure a probability space that captured the previous scenario (i.e.,
a space where we can sample opinion trees uniformly), the anchoring related
question can easily be translated (via the Strong Law of Large Number) into
a formal probability question. That is, we were just be looking for the expec-
tation E(D) of the random variable D = S(0, 0, 0) − S(1, 1, 1). Further, if we
describe the quantity D precisely as a random variable (so far our scope was the
Example 3 only) the problem of finding E(D) is precisely what we will define
as the Overall anchoring problem.

For the general case, the claim to support is: D is defined as a combination
of additions, multiplications and a single subtraction of the probabilities in an
opinion tree structure, and because these probabilities are random variables so
will be D. Next, let us expand on the idea that the edge-probabilities are
random variables (a confident reader who is sure that D is indeed a random
variable can dodge the next three paragraphs and jump directly to our next
topic).

Over the edge-probabilities there are three simple but important constrains:
first, probabilities under the same parent should add up to one. Second, their
values are sampled uniformly. Third, any two groups of probabilities under
two different parents should be independent. The origin of these constraints
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is the situation that we are modeling. That is, the first one captures the fact
that for each opinion vertex the outgoing branches cover all possible future
opinions. The second expresses that all well formed opinion trees are equally
likely to be considered. The third one describes that when we sample opinion
trees (by sampling their edge-probabilities), the selection of probability values
for edges under different vertices do not affect one each other. But, now the
question is: are those edge-probabilities random variables, and if yes how does
the probability space of these random variables look like?

The answer can be explained as follows: from the theory of probabilities
we know that given a multivariate distribution function F (with arity k), there
exists a random vector (with the same arity) that distributes according to F
(see Billingsley 2012, p. 276-277 and p. 199). But, do we have a multivariate
distribution function for the edge-probabilities? The answer is yes. From the
first two constraints above, we know that probability values under the same
parent follow a Dirichlet distribution (with the parameter α equal to the k-ary
unit vector). Thus, probability values under a parent v form a random vector
Xv with (Rk−1,Rk−1, µ)v as its sample space; µ can defined in terms of F (see
Billingsley 2012, p. 187), and Xv(w) ≡ w.

Now, we just need to combine the previous Dirichlet distributions (we have
one per internal vertex v) in a way that satisfies the third constraint (the one
about independence). The strategy to follow is standard for producing a finite
number of independent random vectors when each of them must follow a par-
ticular distribution (Durrett 2019, p. 45). This strategy has three key ideas:
first, there will be a new measurable space, and it is large (will be the product
of (Rk−1,Rk−1)v). Second, the measure of the new probability space is defined
as the product of the old measures (each one expressed in terms of its given dis-
tribution function). Third, the actual independent random vectors are defined
as Xi(ω1, ω2, · · · , ωv) = ωi (note, wi is a vector). Finally, we can express D in
terms of the components of the w′

is.
Assuming that we are confident that D is a random variable (with the above

mentioned requirements), next we can proceed with the second important mo-
ment of this section: the problem of calculating the expectation E(D) of D.

Definition 8 (Overall anchoring problem). Given an opinion tree structure
with parameters (O,K, n), the overall anchoring problem asks for the expecta-
tion of the random variableD defined as: the difference between the outcome
function evaluated on a total consensus label of the opinion of the first speaker
and the outcome function evaluated on a total consensus label of any other
opinion.

Before we present the solution to this problem, let us notice that if we were
not looking for E(D) but for an estimation of it instead (for a particular in-
stance of (O,K, n)), we could proceed as follows: we create the opinion tree
structure corresponding to the parameters (O,K, n), and generate a uniform
Dirichlet vector of probabilities for each internal vertex (i.e., for its outgoing
edge-probabilities). Then we calculate the value of D, and repeat the same ex-
periment several times. The average of all Ds will be our estimator of E(D) for
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this particular instance of (O,K, n). This is precisely what Table 2.1 shows, es-
timators of E(D) for different instances of the parameters (O,K, n) (particulars
about the generation of the data can be found in Appendix D.1 (Experiment1)).
Considering these data, there are two aspects that we can expect from a general
solution of the overall anchoring problem. First, E(D) seems to be positive.
Second, with K,n fixed, E(D) appears to be strictly decreasing on O.

Theorem 1. Given an opinion tree structure with parameters (O,K, n) and a
total agreement consensus function, if we take p := 1

|O|(n−1) and ℓ := K · n, the
solution of the Overall anchoring problem is:

E(D) =


p+pℓ+1

p+1 ℓ is odd

p−pℓ+1

p+1 ℓ is even

(2.1)

From this characterization of E(D), there are two further aspects that we
could add to those already expected (from the information in Table 2.1). First,
the parity of ℓ plays a role in the value of E(D). Second (we will use this detail
later), for large values of O, the value of E(D) is very small, and it behaves like
p. That is (see Appendix C.1 for the details),

lim
O→∞

E(D)

p
= 1 (2.2)

Back to our result, the central idea for proving Theorem 1 is that: in an
opinion tree structure, the expected values of the edge-probabilities are all equal
to p. This is a direct consequence of the uniform Dirichlet distribution that was
assumed for the edge-probabilities under each internal vertex (for details on the
expectation in this distribution, see the Dirichlet distribution section of Basic
Notions) and the independence constraints mentioned above too. Next, for
making a precise use of this idea, we state three utility lemmas, and after that
we are ready to prove the theorem.

Roughly speaking, the first lemma reduces the problem of calculating E(D)
in an opinion tree structure to the problem of calculating D in an opinion
tree. More precisely, it states that in a given opinion tree structure, the value
E(D) is identical to the value D in the corresponding opinion tree with all
edge-probabilities equal to p. As an example, let us re-visit the opinion tree in
Figure 1.1. But, this time with all its edge-probabilities taking the value p as in
Figure 2.1. Now, if we evaluate S((0, 0, 0) − S(1, 1, 1)) using their expressions
from Example 3, the result is p3 + p− p2. This is indeed the same result as the
one that can be obtained via Theorem 1:

E(D) =
p+ p4

p+ 1

=
p+ p4 + (p3 − p3) + (p2 − p2)

p+ 1
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[O,K,n] Estimates of E(D)

[2,1,2] 0.2477
[3,1,2] 0.2220
[4,1,2] 0.1904
[5,1,2] 0.1612
[6,1,2] 0.1397
[7,1,2] 0.1225
[8,1,2] 0.1088
[9,1,2] 0.0985
[10,1,2] 0.0899
[11,1,2] 0.0826
[2,2,2] 0.3111
[3,2,2] 0.2414
[4,2,2] 0.1990
[5,2,2] 0.1646
[6,2,2] 0.1438
[7,2,2] 0.1242
[8,2,2] 0.1110
[9,2,2] 0.0996
[10,2,2] 0.0909
[11,2,2] 0.0835
[2,3,2] 0.3250
[3,3,2] 0.2489
[4,3,2] 0.1994
[5,3,2] 0.1655
[6,3,2] 0.1411
[7,3,2] 0.1255
[8,3,2] 0.1116
[9,3,2] 0.0999
[2,1,3] 0.2029
[3,1,3] 0.0992
[4,1,3] 0.0584
[5,1,3] 0.0387
[6,1,3] 0.0271
[7,1,3] 0.0198
[8,1,3] 0.0153
[2,2,3] 0.1989
[3,2,3] 0.1004
[2,3,3] 0.1996
[2,4,3] 0.1978

Table 2.1: Estimates of E(D). The computation involved 20000 experiments for
each profile.
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Figure 2.1: Opinion tree with three speakers, one round and two opinions. Edge
probabilities are all equal to p.

=
(p3 + p− p2)(p+ 1)

p+ 1

= p3 + p− p2

Note, it is clearly required that the sum of the values p of the edge-probabilities
under the same parent add up to the unit. In this case, 4p = 1 leads to p = 1

4 ,
which is the same value 1

|O|(n−1) = 1
22 introduced for p in Theorem 1. The

previous example can be generalized as follows:

Lemma 2. Given an opinion tree structure with parameters (O,K, n) and
an opinion tree with the same parameters and edge-probabilities p, the following
holds: the expectation of D in the opinion tree structure is equal to the evaluation
of D in the opinion tree. That is E(D) = D.

See Appendix B for a proof of Lemma 2.
With this lemma, we have reduced the problem of calculating E(D) to the

one of calculating D. Now, if we need to calculate D, it will be useful to know
the number of consensus vertices (for a given opinion) that exists (with that
opinion) at a distance i from the root. But, given that a consensus vertex can
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only be generated from an active vertex (i.e., not in consensus), we will consider

the calculation of vertices LA,a
i that are as follows: Active, at a distance (i− 1)

from the root, and the current speaker has the specific opinion “a”. That is,
we are interested in the value of LA,a

i because it tells how many “a” labeled
consensus vertices exist at a distance i from the root. The next two lemmas will
take a closer look at the properties of LA,a

i .
Without loss of generality, let “0” be the opinion of the first speaker and “a”

the opinion of any other speaker (“a”̸= “0”). Further, let
−→
0 and −→a be tuples of

opinions with all the values equal to “0” and “a” respectively (naturally, their
length is equal to the number of speakers). Next, following its definition, D can
be calculated as:

D = S(
−→
0 )− S(−→a )

Moreover, these terms can be unfolded as follows:

S(
−→
0 ) = p · LA,0

1 + p2 · LA,0
2 + p3 · LA,0

3 + · · ·+ pℓ · LA,0
ℓ

S(−→a ) = p · LA,a
1 + p2 · LA,a

2 + p3 · LA,a
3 + · · ·+ pℓ · LA,a

ℓ

Which results in the following characterization of D:

D = p·(LA,0
1 −LA,a

1 )+p2 ·(LA,0
2 −LA,a

2 )+p3 ·(LA,0
3 −LA,a

3 )+· · ·+pℓ ·(LA,0
ℓ −LA,a

ℓ )
(2.3)

Then, our second lemma provides us with a simple characterization for the
differences LA,∆

i := LA,0
i − LA,a

i .

Lemma 3. LA,∆
i = (−1)i+1

See Appendix B for a proof of Lemma 3. A detail regarding notation:
whenever needed in the rest of the text, we use H and Q as abbreviations of
the expressions |O|n−2 and |O|n−1 − 1 respectively.

Naturally, we can see that Lemma 3 and Eq. 2.3 are in agreement with what
we know from Example 3:

D = S((0, 0, 0)− S(1, 1, 1))

= p3 + p− p2

= p− p2 + p3

= p(−1)1+1 + p2(−1)2+1 + p3(−1)3+1

.
Because we know that D =

∑ℓ
i=1(−1)i+1pi, the last lemma simply provides

us with two succinct expressions for this sum (depending on the parity of ℓ).

Lemma 4. The closed form of
∑ℓ

i=1(−1)i+1pi is p+pℓ+1

p+1 when ℓ is odd, and
p−pℓ+1

p+1 otherwise.
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See Appendix B for a proof of Lemma 4. Naturally, after this we can proceed
and see Appendix B for a proof of Theorem 1 too.

With the proof of Theorem 1 completed, there are still three points that
we need to revisit before we close the section. First, Table 2.2 complements
the information presented in Table 2.1. That is, in addition to the estimates of
E(D) for different (O,K, n) profiles, now we know the actual values of E(D).
As one might have anticipated, pairs of values with the same profile seems to
be in agreement. Second, an example of the use of Eq. B.5 and Eq. B.6 will
be shown next (on the opinion tree structure in Figure 2.2); these equations
had an important role in this section, and will still be present in the next one.
Figure 2.2 shows an opinion tree structure for the case in which (O,K, n) =
(3, 1, 3). Because of the size of the tree, the following renaming of the vertices
was needed (superscripts in the vertices of the tree indicate the position of the
speaker).

g1 = [0, 0, 0] g2 = [0, 0, 1] g3 = [0, 0, 2]

g4 = [0, 1, 0] g5 = [0, 1, 1] g6 = [0, 1, 2]

g7 = [0, 2, 0] g8 = [0, 2, 1] g9 = [0, 2, 2]

g10 = [1, 0, 0] g11 = [1, 0, 1] g12 = [1, 0, 2]

g13 = [1, 1, 0] g14 = [1, 1, 1] g15 = [1, 1, 2]

g16 = [1, 2, 0] g17 = [1, 2, 1] g18 = [1, 2, 2]

g19 = [2, 0, 0] g20 = [2, 0, 1] g21 = [2, 0, 2]

g22 = [2, 1, 0] g23 = [2, 1, 1] g24 = [2, 1, 2]

g25 = [2, 2, 0] g26 = [2, 2, 1] g27 = [2, 2, 2]

In this case, the consensus states are {g1, g14, g27}. Also, H = |O|n−2 =
3(3−2) = 3 and Q = |O|n−1 − 1 = 3(3−1) − 1 = 8. As expected, the evaluations

of different LA,x
i are in agreement with what we can see in the tree. Further,

the differences LA,∆
i are in harmony with Lemma 3.

LA,0
1 =

(−1)1(3.81(−1)1 + 8(−8 + 3− 1))

8(8 + 1)
=

72

72
= 1

LA,0
2 =

(−1)2(3.82(−1)2 + 8(−8 + 3− 1))

8(8 + 1)
=

144

72
= 2

LA,0
3 =

(−1)3(3.83(−1)3 + 8(−8 + 3− 1))

8(8 + 1)
=

1584

72
= 22

LA,1
1 = LA,2

1 =
3(−1)1((−1)181 + 8)

8(8 + 1)
=

0

72
= 0

LA,1
2 = LA,2

2 =
3(−1)2((−1)282 + 8)

8(8 + 1)
=

216

72
= 3
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LA,1
3 = LA,2

3 =
3(−1)3((−1)383 + 8)

8(8 + 1)
=

1512

72
= 21

The last point to revisit is something that we mentioned before presenting
Theorem 1: we observed that according to Table 2.1 “with K,n fixed, E(D)
appears to be strictly decreasing on O”. Next, we will see that because the
derivative of E(D) wrt. to O is negative (with the exception of a single point
where it is zero), this idea was indeed correct (see Appendix C.4 for details on
the derivative).

∂E(D)

∂O
=

(n− 1)(−1 + (−( 1
O
)(n−1))K.n +K.n(1 + ( 1

O
)(n−1))(−( 1

O
)(n−1))K.n)( 1

O
)n

(1 + ( 1
O
)n−1)2

In more detail, in the case that K.n is odd (and taking K and n as con-

stants), the middle factor in the numerator of ∂E(D)
∂O makes the entire fraction

to be negative. Additionally, if K.n is even, we can still see that the central
factor in the numerator is negative as well (with the exception of a single point
where it is zero):

−1 + (−(
1

O
)(n−1))K.n +K.n(1 + (

1

O
)(n−1))(−(

1

O
)(n−1))K.n

= −1+((
1

O
)(n−1))K.n+K.n(1+(

1

O
)(n−1))((

1

O
)(n−1))K.n , because K.n is even.

= −1 + ((
1

O
)(n−1))K.n(1 +K.n(1 + (

1

O
)(n−1))) , after factoring.

≤ −1 + ((
1

O
)(n−1))K.n(1 +

3

2
.K.n), because (

1

O
)(n−1) ≤ 1

2
.

≤ 0, because 1 +
3

2
.K.n ≤ ((O)(n−1))K.n.

Note, for O = 2, K = 1 and n = 2 the equality holds. Naturally, for any
other combination where O > 2 or K > 1 or n > 2 the inequality is strict.

Finally, let us motivate the next section by commenting on some expected
limitations of Theorem 1: because of the nature of the expectation of a random
variable, the information provided by Theorem 1 is not guarded against a large
variance of the random variable D. Also, because of the definition of D, its
values are not normalized across different opinion trees. This means that (in
principle) when sampling opinion trees, we could face a hypothetical situation
like the one represented in Figure 2.3. That is, if we take the average (or cal-
culate the expectation) of D, it might result in a positive value, even if most
sampled points are negative. In cases like this, it was incorrect to directly imply
that the opinion of the first speaker had advantage over other opinions. Natu-
rally, in absence of any other extra information (additionally to the expectation
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of D), it would be rational to prefer thinking that the first speaker had advan-
tage. In the next section we show that when the set O of opinions is large,
the (uniform) selection of a single opinion tree leads (with high probability) to
a D with a positive value. Clearly, this statement serves as a complement of
Theorem 1.
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[O,K,n] Estimates of E(D) E(D)

[2,1,2] 0.2477 0.25
[3,1,2] 0.2220 0.2222
[4,1,2] 0.1904 0.1875
[5,1,2] 0.1612 0.16
[6,1,2] 0.1397 0.1388
[7,1,2] 0.1225 0.1224
[8,1,2] 0.1088 0.1093
[9,1,2] 0.0985 0.0987
[10,1,2] 0.0899 0.09
[11,1,2] 0.0826 0.0826
[2,2,2] 0.3111 0.3125
[3,2,2] 0.2414 0.2469
[4,2,2] 0.1990 0.1992
[5,2,2] 0.1646 0.1664
[6,2,2] 0.1438 0.1427
[7,2,2] 0.1242 0.1249
[8,2,2] 0.1110 0.1110
[9,2,2] 0.0996 0.0999
[10,2,2] 0.0909 0.0909
[11,2,2] 0.0835 0.0833
[2,3,2] 0.3250 0.3281
[3,3,2] 0.2489 0.2496
[4,3,2] 0.1994 0.1999
[5,3,2] 0.1655 0.1666
[6,3,2] 0.1411 0.1428
[7,3,2] 0.1255 0.1249
[8,3,2] 0.1116 0.1111
[9,3,2] 0.0999 0.0999
[2,1,3] 0.2029 0.2031
[3,1,3] 0.0992 0.1001
[4,1,3] 0.0584 0.0588
[5,1,3] 0.0387 0.0384
[6,1,3] 0.0271 0.0270
[7,1,3] 0.0198 0.0200
[8,1,3] 0.0153 0.0153
[2,2,3] 0.1989 0.1999
[3,2,3] 0.1004 0.0999
[2,3,3] 0.1996 0.2000
[2,4,3] 0.1978 0.1999

Table 2.2: Theoretical E(D) and its estimates per profile.
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Figure 2.2: Opinion tree with three speakers, one round and three opinions
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D

m−Sample
(0, 0)

Figure 2.3: Hypothetical sampling of D.

2.3 Probability of anchoring

In this section we consider the scenario in which: (O,K, n) are the parameters
of an opinion tree structure and the cardinality of the set O is large (i.e., we will
need to take limits when O → ∞). Additionally, the edge-probabilities for this
structure will be selected in a single pick as described in the previous section
(i.e., uniformity and independence assumptions are in place). Then, we would
like to understand what occurs with the probability of the event D > 0 under
the given circumstances. In other words, we would like to estimate P (D > 0)
in a setting where a single opinion tree is selected uniformly and O is large.
Naturally, an answer to this problem (we call it the Probability of Anchoring
Problem) allowed us to compare the probability of success of the first speaker
with the probability of success of any other individual speaker in the selected
opinion tree (because of the way in which D is defined and Definition 7).

The intention in this section is to show that under the previous condi-

tions, the value P (D > 0) is very close to one. Given that D = S(
−→
0 )− S(−→a ),

S(
−→
0 ) ≥ 0 and S(−→a ) ≥ 0, our basic strategy will be to show that:

there exists a boundary value B such that P (S(−→a ) ≥ B) is very small and

P (S(
−→
0 ) ≤ B) is very small as well (see Figure 2.4). Naturally, the existence of

B provided us with a “separation point” between S(−→a ) and S(
−→
0 ) that assured

our previous claim about P (D > 0).

B

S(−→a ) S(
−→
0 )

E(S(−→a )) E(S(−→0 ))0

Figure 2.4: A diagram of the boundary of probabilities.

Consequently, we have two statements to show, and we proceed slightly
different for each of them. In the first case, for showing that P (S(−→a ) > B) is
very small we prove the following inequality:
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P (|S(−→a )− E(S(−→a ))| ≥ E(D)

N
) ≤

N ·
√

2 · (3 + 2
√
2) · (2 l+1

2 − 2)2

O
(2.4)

This inequality is just an upper bound on the probability of finding S(−→a ) at

a distance farther than E(D)
N from E(S(−→a )). Bear in mind that because of the

definition of D and the linearity of the expectation E(D) = E(S(−→0 ))−E(S(−→a )).
The parameter N is just a positive integer that indicates the portion of E(D)

that will be considered in the inequality (note, we are using E(S(−→a )) + E(D)
N as

our B value). As for the bounding term in the right-hand side of the inequality,
the most significant fact is that O appears in the denominator. This means that
when O is considered arbitrary large and both N and l = K.n are constants,
the bounding term is arbitrary small (but positive).

In the second case, for showing that P (S(
−→
0 ) ≤ B) is very small, we use

the fact that the marginal distributions of a Dirichlet vector X = Xi are Beta
distributions. That is, each component Xi of X follows a Beta distribution
(see the Dirichlet distribution section of Basic Notions). Because of this, we
then know the cumulative distribution function (CDF ) of the simplest term

in S(
−→
0 ), which is the one corresponding to the edge that goes from the root

of the opinion tree structure to the vertex with label
−→
0 in the first level of the

tree. For instance, the simplest term in Figure 1.1 is p1; and in Figure 2.2, it is
the one corresponding to the edge that goes from g06 to g11 . But, how do we
use this fact for our cause (i.e., that we know the CDF of this term)? Well,

we will show that when O is arbitrary large, x = E(S(−→a )) + E(D)
N , αi = 1 and

ᾱi = O(n−1) − 1:

CDFXi
(x, αi, ᾱi) = 1− (

1

e
)

1
N (2.5)

Naturally, this cumulative distribution function gives us the probability
that the random variable Xi takes on a value that is lower than or equal to

E(S(−→a ))+ E(D)
N (bear in mind that we are using this value as our B point). Also,

the values αi and ᾱi are the usual parameters corresponding to a uniform Dirich-
let distribution. More important, as we mentioned before N is a constant, but

when it takes a fixed large value, the probability value P (Xi ≤ E(S(−→a ))+ E(D)
N )

is very close to zero (as Eq. 2.5 describes). Further, because of the nature of
exponentiation, the same is true without N being particularly large. Conse-
quently, if we secure the previous probability bound for the simplest term of

S(
−→
0 ), the same must hold for S(

−→
0 ) itself (recall, there are no negative terms

in S(
−→
0 )).

Next, we reformulate the former paragraphs in a theorem, it essentially says
that Eq. 2.4 and Eq. 2.5 hold and that the right-hand side of Eq. 2.4 can be
made arbitrary small:
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Theorem 5. Provided that the premises of Eq. 2.4 and Eq. 2.5 hold: for all

ϵ > 0 there exists a real number B = E(S(−→a )) + E(D)
N such that P (S(

−→
0 ) ≤

B) ≤ 1− ( 1e )
1
N and P (S(−→a ) ≥ B) ≤ ϵ.

Before we proceed with the proof of the theorem (which heavily relies on
Eq. 2.4 and Eq. 2.5), let us first observe how to use it. That is, we are given
(O,K, n), a positive ϵ, and we know that O can be arbitrary large (in particular,
larger compared with any other parameter involved in this result). Next, we

need to produce a separation point B that makes P (S(−→a ) ≥ B) and P (S(
−→
0 ) ≤

B) very small. Accordingly, we select a convenient large enough value for N ,

and define B as in the theorem. This assures that P (S(
−→
0 ) ≤ B) is very small

(because N is large). Moreover, given that we can make ϵ be arbitrary small,
so will P (S(−→a ) ≥ B) be.

As it was mentioned before, the proof of this theorem relies on Eq. 2.4
and Eq. 2.5, and these have been encoded as Lemma 10 and Lemma 11
respectively. So, we will have a tidy short proof of the theorem now (see
Appendix B for a proof of Theorem 5) and two longer ones for the lemmas
later.

As it was the case in the previous section, before we proceed with the proof
of the key results (i.e., Lemma 10 and Lemma 11), we need four utility lem-
mas. They are mostly properties about the first and second moments of S(−→a ).
Accordingly, we start with a lemma that states an asymptotic expression for
E(S(−→a )).

Lemma 6. Given an opinion tree structure with parameters (O,K, n), and
assuming that the edge-probabilities for (O,K, n) are selected under the usual
uniformity and independence constraints:

lim
O→∞

E(S(−→a ))
ℓ−1
On

= 1

See Appendix B for a proof of Lemma 6.
The second utility result concerns the variance V(S(−→a )) of S(−→a ). It asserts

the existence of an upper bound F (O) of V(S(−→a )), and states the asymptotic
behavior of F (O) when O is large.

Lemma 7. Given an opinion tree structure with parameters (O,K, n), and
assuming that the edge-probabilities for (O,K, n) are selected under the usual
uniformity and independence constraints, there exist a function F (O) such that
the following holds:

V(S(−→a )) ≤ F (O)

lim
O→∞

F (O)

(3+2
√
2)·(2

l+1
2 −2)2

O2n

= 1
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See Appendix B for a proof of Lemma 7.
In the proof of the previous lemma we use the following upper-bound result:

Lemma 8. Given an opinion tree structure with parameters (O,K, n), and
assuming that the edge-probabilities for (O,K, n) are selected under the usual
uniformity and independence constraints, and that Ei and Ek are defined as in
the proof of Lemma 7, the following holds:

E(Ei · Ek) ≤ LA,a
i · LA,a

k · ( 2

(On−1 + 1) · (On−1)
)

i+k
2

See Appendix B for a proof of Lemma 8.
Our last utility lemma is derived from the mixed moments of a random

vector that follows a uniform Dirichlet distribution(see the Dirichlet distribution
section of Basic Notions).

Lemma 9. Given an opinion tree structure with parameters (O,K, n) and as-
suming that the edge-probabilities for (O,K, n) are selected under the usual uni-
formity and independence constraints and that pi and pj are edge-probabilities
that share the same parent vertex (but, i ̸= j), it holds that E(p2i ) > (E(pi))2
and E(p2i ) > E(pi · pj). In more detail:

E(pi) =
1

On−1

E(p2i ) =
2

(On−1 + 1)(On−1)

E(pi · pj) =
1

(On−1 + 1)(On−1)

See Appendix B for a proof of Lemma 9.
Now, we are ready to proceed with the two important lemmas.

Lemma 10. Given an opinion tree structure with parameters (O,K, n), and
assuming that: O is arbitrary large and the edge-probabilities for (O,K, n) are
selected under the usual uniformity and independence constraints, the following
holds:

P (|S(−→a )− E(S(−→a ))| ≥ E(D)

N
) ≤

N ·
√

2 · ((3 + 2
√
2) · (2 l+1

2 − 2)2)

O

See Appendix B for a proof of Lemma 10.
Broadly said, the next (and last) lemma of this section evaluates the cumula-

tive distribution function CDFXi
(x, αi, ᾱi) of a random variable Xi on particu-

lar values of its parameters (x, αi, ᾱi). Moreover, it also presents the expression
of this evaluation for the particular case in which O is large. Naturally, as we
mentioned before, the random variable Xi is a component of a uniform Dirichlet
random vector, which entails that Xi follows a Beta distribution. Because of
this, we know its cumulative distribution function.
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Lemma 11. Given an opinion tree structure with parameters (O,K, n), and
assuming that the edge-probabilities for (O,K, n) are selected under the usual
uniformity and independence constraints, it holds that when O is arbitrary large,

x = E(S(−→a )) + E(D)
N , αi = 1 and ᾱi = O(n−1) − 1:

CDFXi
(x, αi, ᾱi) = 1− (

1

e
)

1
N

See Appendix B for a proof of Lemma 11.
As we did in the previous section, here we present some simulations too.

This time, our motivation comes from the requirement of an arbitrary large
O in Lemma 10 and Lemma 11. As we saw, the use of this assumption had
two different intentions: first, it allowed us to work (in the proofs of the lem-
mas) with asymptotic expressions that were obtained from limit results (i.e.,

Lemma 6). Second, it guaranteed that N ·
√

2 · ((3 + 2
√
2) · (2

l+1
2 − 2)2) << O

holds, and because of this, the bound provided by Eq. 2.4 became more interesting.
More important, from Eq. 2.4 we know that the bound (on the right-hand side) is
strictly decreasing when O increases. Naturally, in this scenario the previous ideas
trigger the following question: is it the case that for small sizes of O the proba-
bility P (D > 0) increases when O increases? In other words, could we get a similar
behavior to the one presented in Theorem 5 even if we did not ask that O was arbitrary
large?

For answering the previous question (for some instances of (O,K, n) only), we
present simulations of models with profiles that involve small values of O, and we then
observe whether in these cases the estimation of P (D > 0) increases when O does
it. Consequently, we can see three columns in Table 2.3: the profiles of models,

the estimates of P (D > 0) and the evaluation of

√
2 · (3 + 2

√
2) · (2

l+1
2 − 2)2 for each

particular profile. Regarding the experiments (particulars about the generation of
the data can be found in Appendix D.1 (Experiment2)), they were conducted in a
similar way to the one explained in the previous section (for estimating E(D)). That
is, we create the opinion tree structure corresponding to the parameters (O,K, n), and
generate a uniform Dirichlet vector of probabilities for each internal vertex. Then, we
calculate the value of D, and repeat the same experiment several times. The ratio of
the number of experiments that resulted in D > 0 to all outcomes is our estimator
of P (D > 0). Note, this is a safe way to proceed because we are considering the event
D > 0. Accordingly, the expectation of the indicator function of this event is equal
to the probability of this event (expectation and probability of an indicator function
are always equal). Then, the strong law of larger number provides us with a good
estimator for P (D > 0) (i.e., the average of the results of the experiments). More
important, regarding the answer to our original question: the statement “the
estimation of P (D > 0) increases when O increases” holds indeed.

Discussion/Conclusion. Next, we revisit the central ideas of the chapter. We
also discuss some important points that were left out before (with the intention of
keeping the main arguments as clear as possible), but they still need to be considered.
As we did in the previous chapter, we use a simple dialogue style here too.

Which one was the leading idea of the chapter? In a situation in which a group of
speakers is about to enter a debate (each speaker with a given presenting position and
with an opinion on the topic of debate), the opinion of the first speaker has an overall
better chance of prevailing than any other opinion of the group. Moreover, the same
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is true with high probability if: in a scenario with many opinions, a single opinion
tree was selected (uniformly).

Which arguments were presented to justify the previous idea? First, in Definition 7
we saw that a particular opinion tree can be translated into a probability space (so
that questions about the outcomes of a debate can be made precise in the safe ground
of a probability space). Second, Theorem 1 showed (because E(D) is positive) that
for any opinion tree structure, if we sampled its edge-probabilities in a uniform and
independent form, the opinion of the first speaker has an overall better chance of
prevailing than any other opinion of the group. Third, in Theorem 5 we presented
that: when O is arbitrary large, the larger the set O of opinions is, the surer we are
that when we pick a single opinion tree uniformly, the opinion of the first speaker is
the outcome with better prevailing chances. Fourth, we demonstrated that not only
in the previous case, but also in cases with small sizes of O, the idea “increasing the
size of O favours the first speaker” seems to be true. Evidence of this was shown in
terms of simulations.

Are the uniformity and independence requirements true to life? Independence and
uniformity are assumptions that we kept using through the entire chapter, and from
them we profited in key moments (e.g., Lemma 2, Lemma 10, and Lemma 11). Broadly
speaking, with these premises we intend to model that: first, when we sample opin-
ion trees (by sampling their edge-probabilities), the selection of probability values for
edges under different vertices does not affect one each other. Second, when we sample
opinion trees, all of them are equally probable to occur. Consequently, when together,
these constraints provide us with a “fair” overview of the family of opinion trees that
we are dealing with. That is, we wanted to survey the space of opinion trees. But,
is that what happens in our everyday life when a group of individuals is
about to engage in a debate (i.e., does the opinion tree structure that describes
the debate that is about to start follow the previous two requirements)? From our
perspective, the answer depends on the information that we have or as-
sume about the group in question (i.e., the principle of indifference is not
an option here). In general, if we consider a known group, we are more sympathetic
to a view in which some sub regions of a family of opinion trees occur more probably
than others (in this case, our current uniformity assumption failed). Which regions
exactly, and how their probability assignments might look like? This might be con-
tingent on various circumstances, some more stable than others. For instance: the
rationality of the speakers, their beliefs, psychological strength, or even their moods
might influence a debate. Naturally, in this case (where background knowledge about
a group existed), one could attempt to incorporate this knowledge in the distribution
function that is used for the sampling of opinion trees. Clearly, for presenting equiv-
alent results to those shown in this chapter, this potentially new setup might require
more sophisticated calculations than what was needed in here. However, the results
presented in this chapter are (primarily) about families of opinion trees,
and not (directly) about a particular real-life situation that we needed to
model. That is, the ideas presented here are essentially intended to highlight the
strong presence of the opinion of the first speaker in the spectrum of opinion trees
that one might consider.

Regarding debates, is the idea “the first speaker should have a less strong presence”
feasible? If the intention is to reduce E(D) (because of Theorem 1), we can see that
increasing the number of acceptable opinions might be a plausible option. However,
this comes at a price: because of Theorem 5, we know that allowing a larger O
increases the chance that we get an opinion tree where the opinion of the first speaker
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was the strongest as well (if the opinion tree was selected uniformly). Another option
for reducing E(D) might be (this one with less impact): if O and n are fixed, we could
select K in a way such that it is as small as possible and makes ℓ = K · n to be an
even number.

What is needed for closing the gap between the simulation and the analytical re-
sults presented in this chapter? On the one hand, the analytical results (based on
Lemma 10 and Lemma 11) assure that: assuming an arbitrary large O and under
the usual uniformity and independence constraints in the pick of an opinion tree, the
opinion of the first speaker has a better chance (in that opinion tree) of prevailing than
any other opinion of the group. Moreover, this probability increases when O did it.
On the other hand, the simulation results showed the same pattern of probability
increasing (in favor of the first speaker) in particular profiles of (O,K, n) with small
values of O. Consequently, an ideal way to close this gap would be: first, one should
obtain the cumulative distribution function of D. Second, one should verify that it is
a monotonically non-increasing function in O (with K,n fixed).
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[O,K,n] Estimates of P (D > 0)

√
2 · (3 + 2

√
2) · (2 l+1

2 − 2)2

[2,1,2] 0.6958 2.8284
[3,1,2] 0.7678 2.8284
[4,1,2] 0.8205 2.8284
[5,1,2] 0.8483 2.8284
[6,1,2] 0.8709 2.8284
[7,1,2] 0.8874 2.8284
[8,1,2] 0.8952 2.8284
[9,1,2] 0.9087 2.8284
[10,1,2] 0.9120 2.8284
[11,1,2] 0.9232 2.8284
[2,2,2] 0.738 12.4853
[3,2,2] 0.7799 12.4853
[4,2,2] 0.8184 12.4853
[5,2,2] 0.84 12.4853
[6,2,2] 0.8623 12.4853
[7,2,2] 0.8753 12.4853
[8,2,2] 0.8873 12.4853
[9,2,2] 0.8982 12.4853
[10,2,2] 0.9068 12.4853
[11,2,2] 0.9132 12.4853
[2,3,2] 0.7414 31.799
[3,3,2] 0.7821 31.799
[4,3,2] 0.8170 31.799
[5,3,2] 0.8403 31.799
[6,3,2] 0.8612 31.799
[7,3,2] 0.8766 31.799
[8,3,2] 0.8842 31.799
[9,3,2] 0.8952 31.799
[2,1,3] 0.7821 6.8284
[3,1,3] 0.8503 6.8284
[4,1,3] 0.89 6.8284
[5,1,3] 0.9149 6.8284
[6,1,3] 0.9351 6.8284
[7,1,3] 0.9467 6.8284
[8,1,3] 0.9553 6.8284
[2,2,3] 0.7728 31.799
[3,2,3] 0.8421 31.799
[2,3,3] 0.7728 102.426
[2,4,3] 0.7744 302.191

Table 2.3: Estimates of P (D > 0). The computation involved 20000 experi-
ments for each profile.



Chapter 3

Models: particular cases

The ideas presented in the previous chapter have a central role in this dissertation,
they concern the impact of the order of speakers on opinion tree structures. In this
chapter we address a slightly more practical problem, and the intention is that its so-
lution complements what we just learnt about opinion tree structures. The problem
itself can be described as follows: a single model of deliberation is given (as a black
box ), and we need to answer the question—To which extent does this instance present
order dependence? Naturally, addressing this question would help us to better under-
stand the significance of the order of speakers in individual models of deliberation. A
motivation for studying models in this individual way can be found in the results of
the preceding chapter. That is, because we know that when a family of opinion
trees is uniformly inspected, the opinion of the first speaker is overall stronger than
others, we would probably like/need to know whether in a carefully designed
model, the opinion of the first speaker was the strongest as well.

Given that models can be produced with the intention of capturing diverse contin-
gent events, we should not expect that a general result on particular properties of
each individual model could have an analytical nature. Accordingly, the ideas that
we present here for studying the order dependence in individual models of
deliberation are based on simulations.

Broadly speaking, there will be two important moments in this chapter:
first, assuming that a model is not given as a black box but in its explicit form instead
(i.e., we have a scenario with perfect information, like the one expressed in
Definition 4), we define precisely the problems that we would like to solve here. Then,
in a second moment, the previous perfect information assumption is turned
off (i.e., the black box assumption is in place), and we describe the same problems
from a parameter estimation perspective. The reason behind this approach is that we
would like to keep our main questions (on order dependence) separated from others
that arise from technical difficulties related to the estimation of parameters in the
black box case. Naturally, a more detailed motivation for the parameter estimation
approach will be provided in the corresponding section.

51
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3.1 The significance of the order of speakers

In an ideal scenario, a model of deliberation is given by a tuple (O,K, n, U,C) as it
was described in Definition 4. For instance, in the particular case in which (O,K, n) =
(3, 1, 3), we could picture the labels in Figure 3.1 as the roots of all opinion trees in
U . Note, here the arrangement of labels follows the same order that was suggested in
the comments on Figure 1.2. That is, root labels that are permutations of each other
share the same row in this description.

[0, 1, 0] [1, 0, 0] [0, 0, 1]

[0, 2, 0] [2, 0, 0] [0, 0, 2]

[1, 1, 0] [0, 1, 1] [1, 0, 1]

[2, 2, 0] [0, 2, 2] [2, 0, 2]

[1, 2, 1] [2, 1, 1] [1, 1, 2]

[2, 2, 1] [1, 2, 2] [2, 1, 2]

[1, 2, 0] [2, 1, 0] [0, 2, 1] [2, 0, 1] [0,1, 2] [1, 0, 2]

Figure 3.1: Roots of opinion trees in a model with parameters (O,K, n) = (3, 1, 3).

Also, under the assumption that we have access to the edge-probabilities of each
opinion tree in U , we could (for each opinion tree) obtain the probability of success
of each consensus outcome. The exact procedure for this calculation was described in
the context of Definition 7.

In our particular example, the consensus outcomes are [0, 0, 0], [1, 1, 1], and
[2, 2, 2]. For them, we specified (in Figure 3.2 and Figure 3.3) the toy probabilities
for two different scenarios (denoted A, B and described below). These toy proba-
bilities are just the probabilities of each consensus case in opinion trees with root
labels in Figure 3.1. In both cases (A and B) each tuple of probabilities has the form
[p[0,0,0], p[1,1,1], p[2,2,2]]. For instance, in the opinion tree with root [0, 1, 0], the prob-
ability of the consensus state [0, 0, 0] is 0.6 (in the scenario A, which corresponds to
Figure 3.2). Consequently, for the same opinion tree and scenario, the probabilities of
the consensus states [1, 1, 1] and [2, 2, 2] are 0.3 and 0.1 respectively.

Now, an interesting question is: what could we say about the significance of the
order of the speakers in A and B? A first noticeable aspect about A is that for each
row, the probability vectors are exactly the same. Naturally, the same property does
not hold for B. Note, the previous circumstance in A is an intentional ideal situation:
it means that according to this model, if the speakers were about to start a debate
(each speaker has an opinion on a topic), the order in which they presented does not
change the odds of the outcome of the debate. Next, we express the difference between
the previous scenarios in a more general problem-like form.

Definition 9 (Order Dependence Problem). Given a model of deliberation M =
(O,K, n, U,C), the Order Dependence Problem asks whether any two opinion trees
in U with root labels that are permutation of each other have the same probability
with respect to each consensus opinion x (x ∈ On and C(x) = 1). If the answer to the
problem is “no”, we say that the model presents order dependence.
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[0.6, 0.3, 0.1] [0.6, 0.3, 0.1] [0.6, 0.3, 0.1]

[0.6, 0.1, 0.3] [0.6, 0.1, 0.3] [0.6, 0.1, 0.3]

[0.3, 0.6, 0.1] [0.3, 0.6, 0.1] [0.3, 0.6, 0.1]

[0.3, 0.1, 0.6] [0.3, 0.1, 0.6] [0.3, 0.1, 0.6]

[0.1, 0.6, 0.3] [0.1, 0.6, 0.3] [0.1, 0.6, 0.3]

[0.1, 0.3, 0.6] [0.1, 0.3, 0.6] [0.1, 0.3, 0.6]

[
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Figure 3.2: Scenario A shows the probability of consensus for each plausible
outcome. This is a model with parameters (O,K, n) = (3, 1, 3). For each
tuple, the format is [p[0,0,0], p[1,1,1], p[2,2,2]], and subscripts indicate the consensus
opinions.

[0.6, 0.3, 0.1] [0.6, 0.3, 0.1] [0.6, 0.3, 0.1]

[0.6, 0.1, 0.3] [0.6, 0.1, 0.3] [0.6, 0.1, 0.3]

[0.3, 0.6, 0.1] [0.3, 0.6, 0.1] [0.3, 0.6, 0.1]

[0.3, 0.1, 0.6] [0.3, 0.1, 0.6] [0.3, 0.1, 0.6]

[0.1, 0.6, 0.3] [0.1, 0.6, 0.3] [0.1, 0.6, 0.3]

[0.1, 0.3, 0.6] [0.1, 0.3, 0.6] [0.1, 0.3, 0.6]
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Figure 3.3: Scenario B shows the probability of consensus for each plausible
outcome. This is a model with parameters (O,K, n) = (3, 1, 3). For each
tuple, the format is [p[0,0,0], p[1,1,1], p[2,2,2]], and subscripts indicate the consensus
opinions. Also, the last row was modified with respect to the one in the previous
figure, the changes reflect a little advantage for the first speaker.

A second noticeable aspect about scenario A is that: if any debate is equally
likely to occur, the probability of consensus is the same for each of the three positions
in which a speaker could present. Below, we can see the expressions for these probabil-
ities. The subscript ci in pci stands as a short-name for the event: the initial opinion
of speaker i was the consensus of the debate. Again, the same property does not hold
for B (see the expressions for p⋆ci). Naturally, a model corresponding to scenario A
captures a situation in which a speaker would not have a pragmatic reason to prefer a
particular position over another for presenting her opinion (even if she had access to
the probability values).

pc0 =
0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+ 6

3
24

= 11
24
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pc1 =
0.3+0.6+0.6+0.3+0.6+0.6+0.6+0.6+0.3+0.6+0.6+0.3+0.3+0.6+0.6+0.6+0.6+0.3+ 6

3
24

= 11
24

pc2 =
0.6+0.6+0.3+0.6+0.6+0.3+0.3+0.6+0.6+0.3+0.6+0.6+0.6+0.6+0.3+0.3+0.6+0.6+ 6

3
24

= 11
24

p⋆c0 =
0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+0.6+0.3+0.6+ 25

12
24

= 133
12·24

p⋆c1 =
0.3+0.6+0.6+0.3+0.6+0.6+0.6+0.6+0.3+0.6+0.6+0.3+0.3+0.6+0.6+0.6+0.6+0.3+ 6

3
24

= 11
24

p⋆c2 =
0.6+0.6+0.3+0.6+0.6+0.3+0.3+0.6+0.6+0.3+0.6+0.6+0.6+0.6+0.3+0.3+0.6+0.6+ 23

12
24

= 131
12·24

As it might be expected, these probabilities do not meet the usual unit measure
requirement. That is, pc0 + pc1 + pc2 > 1 and p⋆c0 + p⋆c1 + p⋆c2 > 1. The reason for
this circumstance is that in most cases (see the roots of opinion trees in Figure 3.1),
an initial opinion is shared by more than one speaker. In what follows, we use the
probabilities pci as another indicator of the significance of the position of speakers in
a model. Note, we could see this as a less strict indicator than the one described just
before in Definition 9. Next, we express the difference between the previous scenarios
(same pci vs. different pci) in a problem-like form.

Definition 10 (Anchoring Problem). Given a model of deliberation expressed as
M = (O,K, n, U,C), the Anchoring Problem asks for the probabilities of consensus
per position (i.e., each pci). Moreover, if the value pc0 is greater than pct for each
t > 0, we say that the model M presents anchoring.

Related to the previous problems, there are four important details that we should
keep in mind: first, both problems can be solved in an effective way. That is, for a
given model M = (O,K, n, U,C), there is a constructive procedure that solves each
of these problems. Second, in both cases one could extend the problems so that
more detailed information is asked. For instance, in the case of the Order Depen-
dence Problem, we could instead of asking a “Yes”/“No” question, ask for the ratio
number of rows with order dependence

total number of rows
. Naturally, this might be more explanatory than the

original binary problem. Third, for the investigation of the significance of the order
of speakers in a model, the use of one problem or the other depends on how strict
do we want to be with respect to the model in question (i.e., the Order Dependence
Problem is a more strict test). Fourth, in the case of the Anchoring Problem, the
existence of two positions s and t such that pcs > pct holds implies the existence
of an opinion op such that: the probability of the event ‘the initial opinion of the
speaker with position s is op and op is the consensus of the debate’ is greater than
the probability of the event ‘the initial opinion of the speaker with position t is
op, and op is the consensus of the debate’. Clearly, this is an unwelcome property
(i.e., that the probability of consensus of an opinion changes with the change of the
speaking position), and it serves as a motivation for making an active use of the An-
choring Problem as a test for models. As an instance of this situation, we could take
from scenario B the case of p⋆c0 > p⋆c2. In this example, for s = 0, t = 2 and op = 1,
we obtain the following probabilities for the mentioned events:

p1c0 =
0.3 + 0.6 + 0.6 + 0.6 + 0.6 + 0.3 + 5

12
+ 0.3

24

p1c2 =
0.3 + 0.6 + 0.6 + 0.6 + 0.6 + 0.3 + 0.3 + 0.3

24

So far, given a model M , we have assumed a scenario with perfect information in
which (for each opinion tree of M) there is access to the probability of each consensus
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opinion. In the next section, we turn that assumption off, and discuss how could
we continue profiting from the solutions of the problems that we just presented in
order to investigate the significance of the order of speakers in an individual model of
deliberation.

3.2 Estimation of the order dependence

In this brief section we discuss how to approach the Order Dependence Problem and
the Anchoring Problem from a more pragmatic perspective (i.e., one in which we
do not have direct access to the probabilities of consensus that resulted from the
individual opinion trees of a model). The motivation to do this is that when a
model is generated, it is usually described using a mixture of natural language and
mathematical rules/statements. Consequently, under these circumstances it is often
complex to have the required regularity for the derivation of literal probability values
corresponding to individual consensus opinions. However, even if this was the case
(i.e., we have a black box environment), we were still interested in having information
about the significance of the order of the speakers in a given model.

In the rest of the section, we regard each opinion tree of a model as a black-
box that produces consensus opinions (i.e., a model is a black box itself). Moreover,
each consensus opinion is produced with a certain probability that is unknown to us,
but it is assumed to be consistent with Definition 7. For instance, if we consider
the opinion trees with root labels in Figure 3.1, we could picture their probabilities
of consensus opinions as in Figure 3.4(again, their values are unknown to us). Next,
we can notice that these premises allow for simulations. That is, we are able to
simulate any opinion tree of a model by (repeatedly) asking for a consensus opinion
from the black box that mimics the mentioned opinion tree.

[p11, p12, p13] [p14, p15, p16] [p17, p18, p19]

[p21, p22, p23] [p24, p25, p26] [p27, p28, p29]

[p31, p32, p33] [p34, p35, p36] [p37, p38, p39]

[p41, p42, p43] [p44, p45, p46] [p47, p48, p49]

[p51, p52, p53] [p54, p55, p56] [p57, p58, p59]

[p61, p62, p63] [p64, p65, p66] [p67, p68, p69]

[p71, p72, p73][p74, p75, p76][p77, p79, p79][p7 10, p7 11, p7 12][p7 13, p7 14, p7 15][p7 16, p7 17, p7 18]

Figure 3.4: Model with parameters (O,K, n) = (3, 1, 3). For each opinion
tree, the probabilities of consensus are unknown. Each tuple has the format
[p[0,0,0], p[1,1,1], p[2,2,2]], and subscripts indicate the consensus opinions.

Besides our particular example, the general challenge in this kind of situa-
tions will be: how could we estimate the probabilities of consensus pij , so that we can
estimate the answers of both the Order Dependence Problem and the Anchoring Prob-
lem. Fortunately, this type of problem has been extensively studied under the subject
of statistical analysis of the output data from a simulation model (see Rubinstein and
Kroese 2016, Ch. 3, 4).

A standard approach to our previous challenge would be as follows: given
an opinion tree T in the row i of a model, let us consider the drawing of a random
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sample of consensus opinions X1, X2, · · · , XN (obtained via simulations of T ). Then,
an estimation of a pij for T can be obtained as p̂ij := 1

N
·
∑N

l=1 I
i,j
Xl=Cij

. In this

expression, the term Ii,jXl=Cij
is an indicator function that tells whether the sample Xl

is equal to the consensus opinion Cij , which is the consensus opinion corresponding
to the probability value pij . For instance, if we consider the opinion tree with root
label [0, 1, 0] (see Figure 3.1 and Figure 3.4). The estimators corresponding to the
probabilities p11, p12, p13 are as follows:

p̂11 =
1

N
·

N∑
l=1

Ii,jXl=[0,0,0]

p̂12 =
1

N
·

N∑
l=1

Ii,jXl=[1,1,1]

p̂13 =
1

N
·

N∑
l=1

Ii,jXl=[2,2,2]

A justification of the previous procedure can be described in two parts: first,
the nature of the indicator functions assures that the probabilities pij of the event
{Xl = Cij} and the expectations E(Ii,jXl=Cij

) are identical. Second, the strong law

of large numbers assures that p̂ij converges to E(Ii,jXl=Cij
) –therefore, to pij as well–

with probability 1 as N → ∞.
Naturally, after obtaining the estimates of the consensus probabilities for each

opinion tree of a model, the initial task is not yet completed. We still needed
to produce estimates for the solutions of the Order Dependence Problem and the
Anchoring Problem. This is a processes that will highly depend on the particular
model in question (e.g., on the number of opinions and speakers). But, as we saw
in the previous section (where the problems were defined), it basically involves
additions and comparisons of the estimates p̂ij . Therefore, instead of describing
particular cases of individual models, here we highlight two general aspects that are
relevant to most cases: first, the previous proposal for estimating the probabilities
pij falls in the category of the “crude” Monte Carlo method (see the Monte Carlo
section of Basic Notions for a more extensive example on its use for the calculation
of integrals). Weak points of this method are well known, so the approach presented
above should be taken as a simple description of a general solution. Consequently,
in the analysis of particular models more challenging situations might arise (e.g, the
values pij might be very small), and specific Monte-Carlo-solutions might be needed.
Second, once we enter the realm of estimators, it is important to keep in mind that
certainty is lost, and whenever we needed to state how close a pij is to an estimate
p̂ij , the appropriate uncertainty and confidence values should be part of the answer
too. Moreover, given that for estimating the solution of the Order Dependence Problem
and the Anchoring Problem some operations (mainly additions and comparisons) are
going to take place among estimated quantities, it is important to be aware about
how the propagation of uncertainties takes place in individual cases (Taylor 1997 and
Hughes and Hase 2010 provide a pleasant introduction to the topic of error analysis
and uncertainties).

Discussion/Conclusion. This chapter was not dedicated to the presentation of
analytical or experimental results on deliberative situations. Instead, we have defined
and discussed two generic problems, which can be instantiated and solved in the con-
text of individual models of deliberation. More importantly, in the circumstances of
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each model, the solutions of these problems provide information regarding the impact
of the order of speakers on the outcome of deliberations. Naturally, it is crucial to
keep always in mind that the nature of this information is probabilistic.
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Chapter 4

Alternative models

This chapter can be seen as a reaction chapter. That is, in previous sections we learnt
that some unwelcome properties hold true in the world of models of deliberation.
Consequently, we react to these circumstances next: we will explore some natural
ideas that might help to find better structures of models of deliberation.

In more detail, in the following sections we explore four alternatives, and they
all share the same basic idea: they are modifications of the initial notion of what we
understood as a model of deliberation (see Chapter 1). A detail regarding notation,
in the rest of the current chapter, instead of the long term “modification of the initial
notion of model of deliberation” we often use the abbreviation model modification. In
the first case, the modification is easy to describe; during a deliberation, the order
in which the speakers present their opinions is not going to be fixed anymore. That
is, after a speaker spoke, the next one will be always selected at random (uniformly).
A second modification explores the idea of agreement by opinion reduction. In
this scenario, a group only decides between two different opinions at a time, and the
“winner opinion” will be kept alive (for future rounds) while the “loser” is disregarded
at once. In a third modification, we carefully restrict the chance of agreements that
might arise immediately after the first speaker presented her opinion. Our justification
for testing this strategy is purely intuitive: super quick agreements are unlikely in real-
life. The fourth and last modification explores the option of generating cliques of
opinions before the actual deliberation starts. Broadly speaking, this strategy is a
form of opinion reduction too, and it might happen prior to the beginning of a debate.
That is, instead of having complex deliberative situations with a potentially large
number of initial opinions, deliberations will take place in a simplified scenario with
a smaller number of opinions to defend. Clearly, each of these opinions might be seen
as a representative of its clique.

Regarding the analysis of our exploration, in the first and the third modifications,
we directly evaluate (via simulations) the impact of the first speaker’s opinion on the
outcome of deliberations. Here, we will follow the same strategy as in Chapter 2. That
is, we will sample opinion trees and produce an estimate of P (D > 0). Moreover, we
will contrast these results with those presented in Table 2.3. Because of the nature
of the second and the forth modifications, their analysis will be slightly different
(descriptions will take place in their respective sections).

59
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4.1 Volatile speaking positions

In this section, we modify the basic notion of model introduced in Chapter 1. In
particular, we remove the idea that promises a fixed speaking position, which was
encoded as follows:

“. . . The speakers enter the deliberation with an initial opinion each, and what
follows respects this dynamics: the first speaker presents her opinion, then all the
others update theirs. Next, the second speaker presents his opinion, and all the others
update theirs. When the last speaker spoke and all the others updated, the previous
presenting/updating process is repeated . . . .”

The intention behind this modification is that perhaps (without a fixed order in
place) it could provide us with an alternative notion of deliberation in which the opin-
ion of the first speaker did not play the disproportionate role that was recognized in
previous sections. Naturally, if we eliminate the idea of a fixed speaking position, we
still need to find a way for deciding the next speaker in a debate. Under these circum-
stances, a random selection (from a uniform distribution) appears to be a plausible
contender because it seems to avoid any commitment to the position of the speakers.
Broadly said, what we are suggesting is that after a speaker spoke, we should roll
a (large enough) dice for deciding the next speaker of a deliberation. Of course, an
important detail in this approach is that we must disallow the situation in which a
speaker that just presented could speak immediately again. This technicality regard-
ing representation means that if an individual repeated her argument twice, it will be
represented only once in the opinion tree of a deliberative situation.

As we did in Chapter 1 (with Figure 1.1), here we can use Figure 4.1 to describe the
intended behavior of our new model modification. Because most of the features of the
original notion of model remain intact and only the form of selection of the next speaker
changed, the key element in our description is the position of the “*” symbol. As usual,
it will occurs in the labels of internal vertices of the opinion tree. The contrast between
the two mentioned opinion trees is illustrative: first, in Figure 1.1, the root vertex
[0∗, 0, 1] (which describes the speakers’ initial opinions) allows for four transitions
after the first speaker spoke. These transitions are (0, 0∗, 0), (0, 0∗, 1), (0, 1∗, 0), and
(0, 1∗, 1). In Figure 4.1, starting with the same opinions leads to four transitions as
well, and they are (0, 0, 0∗), (0, 0, 1∗), (0, 1, 0∗), and (0, 1, 1∗). Unsurprisingly, here the
symbol “*” appears in the third position because in the random choice, the third
position was the one selected (in this example). Second, in Figure 1.1, we could find
the path [0∗, 0, 1] → (0, 1∗, 1) → (0, 1, 1∗) → (1∗, 1, 1) in which the positions of “*”
indicate that a linear order of the speakers was respected. However, in Figure 4.1, the
labels in the same path are [0∗, 0, 1] → (0, 1, 1∗) → (0, 1∗, 1) → (1∗, 1, 1). Clearly, the
difference between these paths reflects that in the second example, the selection of the
next speaker was performed randomly as described above. A visible third difference
between Figure 1.1 and Figure 4.1 is that not every path that appears in the first tree
appears in the second one too (the other way around is true as well). However, this
situation was expected because it would have been a surprise that a strategy with a
“random selection of the next speaker” could easily mimic a sequentially generated
opinion tree.

Next, one might expect that in the following lines we could continue with a posi-
tive narrative in which we reported that the current model modification has a positive
impact on deliberations. However, in Table 4.1 we can verify that this is (unfortu-
nately) not the case (particulars about the generation of the data can be found in
Appendix D.1 (Experiment3)). That is, when we sample opinion trees like the new
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modification dictates, we obtain nearly the same results that were obtained in Chap-
ter 2 (Table 2.3). Naturally, this outcome is counter-intuitive, and it is a difficult
one to anticipate too. So far, we have obtained results that support the idea that the
order of the speakers is important for the conclusion of a deliberative situation, and
yet, after taking random picks explicitly, the results are roughly the same as they were
before.

Fortunately, as it happens in other cases of counter-intuitive scenarios, there is a
satisfactory explanation for this one too. This explanation will be provided/discussed
later in this chapter in the context of another model modification. But, broadly said,
what occurred here was that even if we took random picks whenever possible (after a
debate started), the chance of agreement immediately after the very first speaker spoke
is still in place (and it has a strong impact too). Note that a solution is not as simple
as “picking the first speaker randomly as well”. If we did so, an uncertainty about
“who is the favored speaker?” was introduced, but the essential problem persisted:
the existence of a speaker with a disproportionate impact on a deliberative process
(and only because he was the first to talk . . . ).

[0*,0,1]

(0,0,1*)

p2

(0,1,0*)
p3

(0,1,1*)

p4

(0,0,0*)
p1

(0,1*,1)

p25

(1,0*,1)

p26

(1,1*,1)
p21

(0,0*,1)

p22

(0,1*,0)

p33

(1,0*,0)
p34

(1,1*,0)

p37

(0,0*,0)

p38

(1,1*,1)

p48

(0,0*,1)

p47

(0,1*,1)

p44

(1,0*,1)
p43

(0,0,0*)

p228

(1,1,1*)

p251

(0*,0,0)

p268

(1,1,1*)

p331

(0*,0,0)
p348

(1*,1,1)

p371

(0*,0,0)

p471

(1*,1,1)

p448

(0*,0,0)
p431

Figure 4.1: Opinion tree with three speakers, one round and two opinions. The
selection of the next speaker is random (uniform).
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[O,K,n] Estimates of P (D > 0)

[2,1,2] 0.6947
[3,1,2] 0.7748
[4,1,2] 0.8179
[5,1,2] 0.8441
[6,1,2] 0.8724
[7,1,2] 0.8870
[8,1,2] 0.8979
[9,1,2] 0.9071
[10,1,2] 0.9137
[11,1,2] 0.9221
[2,2,2] 0.7359
[3,2,2] 0.7823
[4,2,2] 0.8171
[5,2,2] 0.8430
[6,2,2] 0.8657
[7,2,2] 0.8738
[8,2,2] 0.8881
[9,2,2] 0.8972
[10,2,2] 0.9058
[11,2,2] 0.9134
[2,3,2] 0.7452
[3,3,2] 0.7861
[4,3,2] 0.8149
[5,3,2] 0.8385
[6,3,2] 0.8626
[7,3,2] 0.8749
[8,3,2] 0.8874
[9,3,2] 0.9038
[2,1,3] 0.7767
[3,1,3] 0.8424
[4,1,3] 0.8892
[5,1,3] 0.9172
[6,1,3] 0.9365

Table 4.1: Estimates of P (D > 0). The computation involved 20000 experi-
ments for each profile.

4.2 Agreement by opinion reduction

In this section, we present a second model modification. The intention behind this
modification is clear: we would like to avoid debates about many opinions at the same
time. Instead, we focus in deliberations that must decide (perhaps multiple times)
between two opinions only. Naturally, behind this intention, there is still the hope
that by modifying the original structure of deliberations, one might be able to reduce
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the impact of the first speaker’s opinion on the outcome of debates.
Next, we illustrate the previous intention with an example: let us assume that

Figure 4.2 represents a scenario in which a group of individuals would like to deliberate
about the opinions A,B,C andD (different one another). For now, the size of the group
is still irrelevant. Interestingly, instead of deliberating under the standard dynamics
described in Chapter 1, the group focuses on a debate around the two opinions A and
B exclusively. Now, following the description in Figure 4.2, let us assume that the
consensus of this partial debate was B. Consequently, the group decides to deliberate
about the opinions C and D in the next step, and let us assume that here the consensus
was C. Finally, our group reached a situation in which they can deliberate about the
opinions B and C, and one might argue that if a consensus was reached (in this case
was B), it would be a plausible solution to the original group problem: organize a
deliberation about A,B,C and D in order to pick one of them as a consensual opinion.

Naturally, the previous example can be generalized to an arbitrary number of
opinions. However, there are still three details that needed further clarification before
we are ready to show some (simulated) tabular results for different deliberative profiles.
First, even if the previous structure of deliberations is “new”, all particular debates
about two opinions will still be conducted under the standard dynamics introduced in
Chapter 1 (in our example, they were (A vs. B), (C vs. D), and (B vs. C)). Moreover,
in every deliberation about two opinions (e.g., (C vs. D)), we will assume that the
opinion of the first speaker is the leftmost one (in this case was C). This requirement
allows that nearly any contender opinion might enjoy the potential opportunity of
being the opinion of the first speaker at some point during a deliberation. In terms
of our example, with the exception of A (which will always be the opinion of the first
speaker as long as it prevailed) and D (which will never be the opinion of the first
speaker), any other opinion had the chance of being the first speaker’s opinion. Of
course, a similar idea holds for more than four opinions too.

Second, one might notice that (compared to the original notion of model) in
our current model modification, it is less simple to directly quantify the impact of
the opinion of the first speaker. The reason for this circumstance is that several
deliberations are in place here (e.g., (A vs. B), (C vs. D), and (B vs. C)) and
not just a single one as before. A first potential option for a measure could be to
simply aggregate the impact on each “small deliberation” that takes place. But, this
idea can be quickly ruled out because from previous sections (see Table 2.3), we
know that the opinion of the first speaker is still too strong in two-opinions debates as
well. Consequently, the results of this form of aggregation were both easy to predict
and misleading. Accordingly, we take a second alternative here, which is to track
the victories of opinions by their initial position. Naturally, this approach includes
interesting information about both the strength of the first speaker’s opinion and the
strength of the last speaker’s opinion (via the victory record of the first and the last
opinions of the list; A and D in our example). Moreover, statistical information about
the victory record of other opinions is intriguing as well because it will show the actual
impact of taking turns on the role of being the first speaker’s opinion on the outcome
of a debate.

Third, in a scenario in which the initial number of opinions is not a power of two,
some extra rules are still needed for making sure that the illustrated process works
fine. But, because our primary interest in this chapter is exploratory, we will assume
that the number of initial opinions is of the form 2k for some natural number k, so
that we can continue with our investigation.

The next natural step in our exploration is to simulate the previous dynamics



64 CHAPTER 4. ALTERNATIVE MODELS

on different deliberative profiles and examine the collected statistics regarding the
strength of the first speaker’s opinion (particulars about the generation of the data
can be found in Appendix D.1 (Experiment4)). The simulation results are presented
in Table 4.2. They are organized in two columns, and as usual, the first one contains
the profiles that were inspected. The second column shows the number of “deliberative
victories” per initial position of opinions. For instance, if with the profile [O,K, n] =
[4, 1, 2], the opinions to discuss were A,B,C,D, the results show that out of 20000
experiments, the debates ended 9691 times with an A consensus, 4316 times with
a B consensus, 4140 times with a C consensus, and 1853 times with a D consensus.

Unfortunately, the Table 4.2 does not show encouraging results. That is, we have
examined eight profiles with two different numbers of opinions, three different
numbers of rounds, and two different numbers of individuals. In these profiles, the
following ideas seem to hold: first, for each profile, the impact of the first speaker’s
opinion is still too strong. Second, with the values of K and n fixed, the strength of
the first speaker’s opinion decreases when O increases. Third, with O and K fixed, the
impact of the first speaker’s opinion increases when n increases. Fourth, with O and
n fixed, the impact of the first speaker’s opinion increases when k does it. Moreover,
simulations on the extra profile [O,K, n] = [128, 1, 3] suggest that a violent increase
of the number of opinion does not look like a positive alternative either:

[3573, 982, 989, 279, 1025, 306, 273, 80, 935, 291, 276, 80, 271, 81, 84, 17, 992, 259, 283,

83, 270, 79, 63, 29, 285, 79, 85, 21, 67, 17, 22, 8, 974, 259, 264, 88, 282, 81, 83, 33, 269,

71, 75, 17, 60, 17, 23, 5, 309, 87, 86, 18, 72, 21, 24, 8, 72, 19, 22, 6, 24, 4, 7, 4, 1021, 292,

293, 76, 289, 81, 88, 23, 288, 73, 88, 18, 85, 32, 16, 7, 265, 84, 84, 21, 77, 17, 23, 6, 72,

14, 20, 4, 22, 5, 7, 3, 260, 87, 83, 12, 101, 18, 30, 7, 84, 13, 21, 7, 11, 4, 6, 2, 66, 22, 19, 12,

16, 5, 8, 2, 21, 9, 4, 2, 2, 3, 1, 0]

Naturally, it is unfortunate that the current modification did not show positive
results either. But, in the next section we present a third modification, and the new
report will look better.

A B C D

B C

B

Figure 4.2: Diagram of an opinion tree structure with sequential opinion reduc-
tion.

4.3 Limitation on early agreements

In this section, we present a third model modification. That is, here we restrict the
chance of (emergence of) those agreements that might arise immediately after the first
speaker presented her opinion for the first time in a debate. Naturally, this modification
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[O,K,n] Debate victories per initial position of opinions

[4,1,2] [9691, 4316, 4140, 1853]
[8,1,2] [6697, 2944, 2943, 1360, 2880, 1295, 1292, 589]
[4,2,2] [10793, 3971, 3870, 1366]
[8,2,2] [7858, 2970, 2801, 1018, 2862, 1027, 1082, 382]
[4,3,2] [11141, 3835, 3765, 1259]
[8,3,2] [8396, 2836, 2787, 959, 2759, 966, 980, 317]
[4,1,3] [12269, 3452, 3342, 937]
[8,1,3] [9489, 2703, 2696, 742, 2658, 746, 740, 226]

Table 4.2: For each profile, the table shows a record of debate victories per
initial position of opinions. The computation involved 20000 experiments for
each profile.

can be justified without effort. One might argue that in real-life deliberative scenarios,
humans are not particularly complaisant.

On the model side, opinion trees always follow a precise structure, which is easy to
describe as a two-element object: the first one is an edge that starts at the root of the
tree and ends in a consensus vertex. The second one is the rest of the opinion tree.
In other words, Figure 4.3 can be seen as a template for opinion trees. Consequently,
(said again in terms of Figure 4.3), in this section we would like to explore the impact
of Pbound on the strength of the first speaker’s opinion. That is, here we present
simulation results for different deliberation-profiles and values of Pbound (particulars
about the generation of the data can be found in Appendix D.1 (Experiment5)). As
usual, next we will draw some conclusions based on this information too.

The outcomes of simulated experiments are presented in Table 4.3. The style of this
table is very similar to the one of Table 2.3. That is, because we have sampled opinion
trees for different deliberative profiles, we can present estimates of P (D > 0) for each of
these profiles. Also, we have experimented with multiple values of Pbound, and they are
included in the table too (per profile). Moreover, these Pbound values were intentionally
taken “around” the expected value of the edge in question, so that it provides us
with a natural reference point (from Chapter 2 we have an analytic expression for
this expectation). Consequently, the expectation values of the edge-probabilities are
included in the table too. For instance, in the case of profile [O,K, n] = [2, 1, 2]
with expected value E(pe) = 0.5 for the edge-probability, we have experimented with
Pbound values equal to 0.25, 0.375, 0.625, and 0.75 respectively.

Naturally, the next interesting question is “How do the P (D > 0) values from
Table 4.3 compare to the P (D > 0) values from Table 2.3?”. For answering this
question, there are two key observations that we would like to highlight. First, in
Table 4.3, there are profiles in which for some values of Pbound, the estimate of P (D >
0) is greater than the corresponding ones (i.e., same profile) from Table 2.3. For
instance, for [O,K, n] = [3, 1, 2] with Pbound = 0.4167, we obtained the estimate of
P (D > 0) = 0.7712, which is greater than the estimate of P (D > 0) = 0.7678
that was obtained for the same profile in Table 2.3. Clearly, there are other profiles
with the same behavior. Second, (in Table 4.3) if we only concentrate in rows with
smaller Pbound values than their corresponding expectation values, then in these rows
we obtain smaller estimate of P (D > 0) fields than in the same profiles from Table 2.3.
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For instance, for [O,K, n] = [3, 1, 2] and Pbound = 0.25 (which is smaller than E(pe) =
0.3333), we obtained the estimate of P (D > 0) = 0.7102, which is smaller than the
estimate of P (D > 0) = 0.7678 from Table 2.3. As expected, the same behavior could
be observed if Pbound is further decreased (e.g., the same profile [O,K, n] = [3, 1, 2]
and Pbound = 0.1667).

The previous analysis suggests that (on the model side) we do have something
positive to report. That is, by setting Pbound to a smaller value than E(pe) (for
each particular profile), one could indeed decrease the impact of the first speaker’s
opinion. Also, let us recall that this idea is relevant to two other interesting moments
in this dissertation. The first one happened at the conclusion of Chapter 2. Back
then, we discussed the style in which opinion trees were sampled (i.e., the adequacy of
independence and uniformity was challenged). In this regard, a highlighted alternative
(to our sampling method) was that if we had more information about a specific family
of deliberative situations, then we could sample in a different way for that particular
case. Well, what we presented just before can be seen as form of sampling in which
some extra information was assumed (i.e., that deliberations do not end quickly in
consensus). The second moment occurred in an early section of the current chapter
in which a specific model modification was explored. The key idea of this modification
is that in a deliberative situation, the “next speaker” is always selected at random.
In that context, it was unexpected that the opinion of the first speaker was still too
strong. But, we just learnt about a factor (i.e., Pbound) that was still playing a strong
role during a random selection of the next speaker, and this clarifies the previous
unexpected circumstances.

Now, even if it seems like the current model modification meets our requirements,
this is not quite true. Consequently, before ending this section, we would like to
signal two details that we should keep in mind regarding this modification. The
first is that before applying this notion of model to a real-life scenario, one needs
to make sure that it represents/describes the target circumstances properly. In this
case, the most important “reality” constraint is that deliberations do not end quickly.
The second detail is more technical. That is, one might think that by decreasing
Pbound, our original problem (i.e., the excessive strength of the first speaker’s opinion)
was totally tuned. But, this is not the case. In other words, one could set Pbound

to be equal to a very small value, and it would still be possible that P (D > 0)
increases for different profiles. This phenomenon is an echo of Theorem 5, and it
can be perceived it in Table 4.3 too. For instance, if we consider Pbound = 0.25 and
the profiles [2, 1, 2], [3, 1, 2], we obtain 0.2885 and 0.7102 as estimates of P (D > 0).
Additionally, even for the profile [4, 1, 2] and a more restricted Pbound = 0.125, we
obtain P (D > 0) = 0.7244 (which is greater than 0.7102). The key idea here is that
a decreasing of Pbound is not a universal solution, but it depends on the profile in
question.

4.4 Cliques of opinions

In this brief section, we discuss a fourth model modification. The hope (here too) is
that some changes in the structure of our original notion of model might decrease the
impact of the opinion of the first speaker on the outcome of deliberations. This is the
lastmodel modification that we analyze in this chapter, and there will be no simulations
here. Instead, we rely on analytical results that were presented in Chapter 2.

Broadly said, the deliberative situations that we confront in this section are those
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Pbound
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Rtree

Figure 4.3: The diagram of an opinion tree structure shows a bounded proba-
bility of early agreements.

associated to scenarios in which the individuals of a group ruled out some of the
initial opinions before the deliberation even started (here, “deliberation” refers to
our standard notion from Chapter 1). However, we are not going to be specific about
the reasons that the individuals might have had to proceed in this way (e.g., simplicity,
pragmatism, epistemic, etc.). Likewise, we do not name any particular process that
a group might have followed to eliminate initial opinions (natural candidates for this
role might be voting systems or clustering techniques). That is, our exploration starts
once the opinions have been already removed.

Accordingly, in order to analyze thismodel modification (from our order dependence
perspective), it is quite natural to select the following as our leading question: Is it
“better” to deliberate about many opinions or about few of them instead? This question
is closely related to another one that was briefly discussed at the end of Chapter 2.
Next, we will try to reduce the new one to the old one: Regarding debates, is the
idea “the first speaker should have a less strong presence” feasible? Back then, the
argumentation was conducted in terms of O and D (see Definition 8), which are the
number of opinions in a debate and the difference of strength between the opinion of
the first speaker and the opinion of any other speaker respectively. Also, let us recall
that our reaction to that question included two ideas: first, if O increases then E(D)
decreases. Second, in deliberative situations with a large O, the value P (D > 0) is
close to the unit.

Clearly, with the previous information at hand, it becomes uncomplicated to an-
swer the first question. That is, in an scenario in which a single deliberation is about
to start, it would be ideal to avoid that P (D > 0) is near to the unit. Consequently,
whenever possible, it would be recommended to decrease the number of opinions be-
fore a deliberation starts. Moreover, Table 2.3 suggests that this advice might be valid
not only for large values of O but for smaller instances too.

This is an interesting moment because it seems that for the current model modifica-
tion there will be good news only, but there is more to it. First, even if decreasing the
number of opinions seems to be a plausible option, we should remember that Table 2.3
shows that for profiles with small instances of O, the opinion of the first speaker is
too strong anyway. Second, even if reducing the number of opinions is a reasonable
approach, we should keep in mind that this process/problem might be as complicated
as the original one. That is, in this section we have simply believed that there exists
a black box method for reducing the initial number of opinions, and this method (for
some reason) can not be used to reduce the initial number of opinions to a single one
(otherwise we had solved our initial problem already). Consequently, the potential
good news that we have presented in this section should be taken with some caution.

Discussion/Conclusion. In this chapter, we have analyzed four modifications
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[O,K,n] Pbound E(pe) = 1
On−1 Estimates of P (D > 0)

[2,1,2] 0.25 0.5 0.2885
[2,1,2] 0.375 0.5 0.4692
[2,1,2] 0.625 0.5 0.6944
[2,1,2] 0.75 0.5 0.6884
[3,1,2] 0.1667 0.3333 0.5941
[3,1,2] 0.25 0.3333 0.7102
[3,1,2] 0.4167 0.3333 0.7712
[3,1,2] 0.5 0.3333 0.7718
[4,1,2] 0.125 0.25 0.7244
[4,1,2] 0.1875 0.25 0.787
[4,1,2] 0.3125 0.25 0.8183
[4,1,2] 0.375 0.25 0.8163
[2,2,2] 0.25 0.5 0.3817
[2,2,2] 0.375 0.5 0.5276
[2,2,2] 0.625 0.5 0.7336
[2,2,2] 0.75 0.5 0.7347
[3,2,2] 0.1667 0.3333 0.596
[3,2,2] 0.25 0.3333 0.7177
[3,2,2] 0.4167 0.3333 0.783
[3,2,2] 0.5 0.3333 0.7867
[4,2,2] 0.125 0.25 0.6990
[4,2,2] 0.1875 0.25 0.7869
[4,2,2] 0.3125 0.25 0.8158
[4,2,2] 0.375 0.25 0.8177
[2,3,2] 0.25 0.5 0.4081
[2,3,2] 0.375 0.5 0.5364
[2,3,2] 0.625 0.5 0.7505
[2,3,2] 0.75 0.5 0.7464
[3,3,2] 0.1667 0.3333 0.5979
[3,3,2] 0.25 0.3333 0.7129
[3,3,2] 0.4167 0.3333 0.7857
[3,3,2] 0.5 0.3333 0.7874
[4,3,2] 0.125 0.25 0.6987
[4,3,2] 0.1875 0.25 0.7833
[4,3,2] 0.3125 0.25 0.817
[4,3,2] 0.375 0.25 0.8147

Table 4.3: Estimates of P (D > 0) in which a bound on the probability of early
agreements was set. The computation involved 20000 experiments for each
profile.

of our original notion of model of deliberation (presented in Chapter 1). That is, we
allowed for a random selection of the next speaker in debates. We experimented
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with a sequential opinion reduction too. We limited the emergence of early
agreements in deliberations as well. Finally, we also tested the idea of reducing
the number of initial opinions (or generating cliques of them instead) before
a deliberation starts. The intention behind these modifications was always the same:
to obtain a plausible alternative (to the original notion of model of deliberation) in
which the opinion of the first speaker was not too strong. Among these alternatives,
the limitation on early agreements seems to be the most promising one.
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Chapter 5

Conclusion

In this dissertation there are four essential moments, and our intention is that each
of them contributed to the same cause: the study of the significance of the order of
speakers in models of deliberation. In a first moment (Chapter 1), we presented a
mathematical structure that allows us to represent the dynamics of models of delibera-
tion in a proper way. In that chapter, we also identified opinion trees and opinion tree
structures as important notions for our project. With this description of a model of
deliberation in place, in a second moment (Chapter 2), we defined and solved two
key problems on opinion tree structures: the overall anchoring problem and the prob-
ability of anchoring problem. From the former we learnt about the influence of some
parameters (e.g., the number of speakers, the number of opinions and the number of
rounds) on the expected final outcome of a debate. From the latter we learnt that this
influence might be notably beneficial for the first speaker. Naturally, with these results
at hand, a justified reaction is to believe that opinion trees in which the opinion of
the first speaker is not the most influential one are (sadly) rare mathematical objects
(in the world of opinion trees). In a third moment (Chapter 3), we focused on the
following situation: a single model of deliberation is given (as a black box ), and we
need to answer the question– To which extent does this instance present order depen-
dence/anchoring? In this case, we did not approach this general question expecting to
provide analytical results. Instead, the intention was to describe a general procedure
(via simulations) for obtaining an estimation of the answer to our triggering ques-
tion. The motivation behind this approach is that even after the negative results of
Chapter 2, we could still have models of deliberation that do not give a clear advantage
to the first speaker, and in these particular cases, we would like to have some test(s)
that supported/rejected the claim “my model is not biased”. A fourth moment
(Chapter 4) was the stage for a refreshing model-exploration, and we investigated four
natural modifications of our original notion of model of deliberation. Right from the
beginning, in this investigation there was a declared hope: that perhaps at least one
of these modifications could decrease the impact of the first speaker’s opinion on the
outcome of deliberations. Looking back, this exploration was both a pleasant exercise
of trust (in our original notion of model) and a bittersweet experience (regarding the
outcome of our exploration).

What could we do next? That is, assuming that our previous results are cor-
rect, how could we react to that information? By itself, this an interesting academic
question, and if one is positive about the idea “having good deliberations is possi-
ble/needed”, this question should be a pragmatic one as well. Next, we sketch some
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steps in which we appreciate a potential answer to the previous natural query.

State the results in their minimal alarming form. That is, the main results of this
dissertation are negative. However, it would be great to keep two circumstances in
mind. First, these results intend to say nothing (at least directly) regarding real-life
scenarios. Instead, they speak about deliberative situations in the context of models
(and these are theoretical objects). Second, (with the exception of four model modifi-
cations analyzed in Chapter 4) our results do not cover subfamilies (or alternatives)
of diverse forms of deliberative situations. So, ours are global results, which were not
proved true in restricted scenarios.

More exploration of individual models of deliberation. Regarding deliberative situa-
tions, our results have a global-scale nature. So, it might be perfectly plausible that the
unwelcome order-dependence phenomenon behaved differently in local-scale scenarios
(this is the idea to investigate). Consequently, an additional exploration of individual
models of deliberation could be a constructive next step (this is how we investigate
it). Basically, this step would require more experimenting with brand new dynamics of
models of deliberation (close to what we did in Section 4.1 and Section 4.2). Alterna-
tively, instead of searching for new dynamics, one could fix a single one and explore
the impact of including extra information regarding the rationality of the individuals
that deliberate (as in Hartmann and Rafiee Rad 2020). The intention behind these
ideas is clear, we would like to find particular instances of models of deliberation in
which the order dependence problematic was not present. Naturally, the outcome of
this search might have different degrees of success.

Case 1: The results hold stable. Next, let us imagine for a moment that we con-
ducted the steps described in the previous paragraph, and in most scenarios our results
were stable (i.e., the first speaker had some advantage). Naturally, this would be unfor-
tunate, and probably “now” would be the right moment for starting to consider more
pragmatic questions. Accordingly, we describe two instances of such a questions here,
and our hope is that they might still offer a real-life approach to the order dependence
situation. First, how strong is the impact of the order dependence? Sadly, in this
question we have already accepted that there might exist an unavoidable order depen-
dence. However, there is a positive side as well; in cases in which the first speaker had
only a negligible advantage, one could just disregard it (as we do “disregard” other
minor events in critical decisions of our everyday life). It is worth noting that the
previous question should be answered for each particular model that one considered
as a “realistic one”. Also, the precise meaning of the word impact is obviously the
key to the question. In our view, this meaning should be related to a magnitude close
to the expectation E(D) of D described in the overall anchoring problem (see Defini-
tion 8). That is, we would prefer to take the word impact as a term that is related
to a sequence of experiments and not to a single one. However, this is a personal
preference, and other interpretations for the same term might be more suitable in dif-
ferent circumstances. A second pragmatic question: assuming that order dependence
is unavoidable, what are the potential real-life implications? Naturally, this question
complements the previous one. We would like to know not only whether the order
dependence issue is significant, but we want to know the precise real-life scenarios
that might be affected by this problematic too. Clearly, “a jump” from model results
to real-life implications requires empirical evidence as well (next paragraph addresses
this point). However, assuming that neither new models nor empirical evidence pro-
vided us with good news, there are two principal kind of scenarios that might be
negatively influenced by the order dependence matter (and both were disclosed in our
introductory section). The first one consists of those deliberative situations that take
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place within frameworks of representative democracies. The second one comes from
the private sector, and it includes decision-making situations related to corporations’
boards, consulting agencies, etc. In both cases, a new challenge might be to cre-
ate, justify and keep trust in alternative mechanisms for reaching consensus/
agreement in generic instances of group decision-making (in the unfortunate case in
which deliberations were intrinsically biased). Besides these two pragmatic questions,
it is important to note that the more abstract one “what are the implications of our
results for deliberative democracy?” would need to be addressed as well. That is, the
term deliberation is at the core of this form of democracy, and this is problematic
because the assumption “deliberative situations are unbiased” can not be taken for
granted anymore.

Empirical evidence. Eventually, after properly squeezing our theoretical tools, we
will need empirical evidence of the reported order dependence. A this stage, one could
expect that a primary focus of an empirical study on deliberative situations would be
to produce estimates of the expectation E(D) of D (related to the overall anchoring
problem). A second focus of attention might be the estimation of P (D > 0) (related
to the probability of anchoring problem). In our view, the former aim could have
a plausible/doable research path, while the second one might be quite challenging.
Behind this conjecture, there are two credible reasons. First, the overall anchoring
problem requires a succession of independent deliberative situations (which can be
mimicked by a sequence of real-life experiments). Second, the probability of anchoring
problem requires a one-shoot deliberative situation. In this case, a direct inference of
estimates of probabilities based on a single deliberative experiment might be a difficult
task. Besides these challenging ideas, there is an aspect regarding the context of
experiments that is worth noting as well. It would be quite interesting to obtain (and
contrast) empirical evidence of both kind of scenarios, those in which some experts
deliberate and those in which non-experts need to decide on a given subject.

Case 2: The results do not hold stable. Next, let us imagine we are in the other
branch of the stability-fork. That is, after some additional research (either model-
based or empirical), we have established that in more realistic/particular deliberative
situations, our general results do not hold anymore. Even in this convenient scenario,
there were still two interesting questions that need to be answered. First, would it be
possible to identify/characterize the exact families of deliberative situations in which
the general results did not hold. Second, in the context of deliberative situations,
is there any undesired by-product of the eradication of order dependence? Naturally,
Section 4.3 offers a clear example of the kind of scenarios related to the first question.
In that section, we realized that a limitation on early agreements (in deliberative
situations) tends to decrease the strength of the first speaker’s opinion. Moreover, in
the same section, we also acquired a precise impression of how much do we need to
limit those early agreements in order to see a positive impact on deliberative scenarios.
Clearly, this “precise impression” was interesting because it provided us with a (non-
formal) characterization of that class of deliberative situations.

As we have seen, there are many “ifs” in our idea of potential reactions to the
results described in this dissertation. However, all those “ifs” are reasonably well
founded and triggered by the existence of possible scenarios that might arise.

To conclude, in this dissertation we defend the idea that the structure of debates
(as it was described here) does promote that the opinion of the first speaker is the
(potentially) most influential one in a debate. Additionally, we understand that this
phenomenon can be amplified by increasing the number of allowed opinions. Naturally,
we believe that this information could be used to challenge the fairness of certain forms
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of debate. But, we also believe that this challenge is a positive one because it might
encourage us all in the search for better models of deliberation.



Appendix A

Basic notions

This appendix contains basic notions that were required in this dissertation. Most of
the definitions are direct extracts from the original sources, and they can be found in
Durrett 2019 (for Measure and Probability Theory), Ng et al. 2011 or Kadane 2011
(for the notions on the Dirichlet distribution), Leobacher and Pillichshammer 2014
(for topics related to the Monte Carlo method), and West 2020 (for Graph Theory).
Occasionally, a change of notation was needed (for the sake of uniformity); naturally,
the meaning behind the notions remains untouched.

Notions of Measure and Probability Theory

σ-algebra. Given a set Ω, a σ-algebra F is a nonempty collection of subsets of Ω
that satisfy: (i) if A ∈ F , then Ac ∈ F and (ii) if Ai ∈ F is a countable sequence of
sets, then ∪iAi ∈ F . Here and in what follows, countable means finite or countable
finite.

Measurable Space. A measurable space is a pair (Ω,F) consisting of a set Ω
and a σ-algebra F of subsets of Ω.

Measure. Given a measurable space (Ω,F), a measure is a non negative function
µ : F → R such that: (i) µ(A) ≥ µ(∅) = 0 for all A ∈ F and (ii) if Ai ∈ F is a
countable sequence of disjoint sets, then µ(∪iAi) =

∑
i µ(Ai).

Probability Space. A probability space is a triple (Ω,F , P ), where Ω is a set
of “outcomes”, F is a set of “events” and P : F → [0, 1] is a function that assigns
probabilities to events. Formally, F is a σ-algebra, P is a measure on (Ω,F) and
P (Ω) = 1.

Borel sets. Given a set Ω and a collection A of subsets of Ω, there is a smallest
σ-algebra containing A. We call this, the σ-algebra generated by A. Let Rd be the
set of vectors (x1, x2, . . . , xd) of real numbers, the Borel sets on Rd is the smallest
σ-algebra containing the open sets. We denote it by Rd, and when d = 1 we drop the
superscript.

Random Variable. Given two measurable spaces (Ω,F) and (S,S), a function
X : Ω → S is said to be a measurable map if the following condition holds: X−1(B) ≡
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{ω : X(w) ∈ B} ∈ F for all B ∈ S. If (S,S) = (Rd,Rd) and d > 1, then X is called a
random vector. In the particular case that d = 1, we say that X is a random variable.
A simple, but useful, example of a random variable is the indicator function of a set
A ∈ F :

1A(w) =


1 w ∈ A

0 w ̸∈ A

Expectation. Given a probability space (Ω,F , P ) and a random variable X ≥ 0,
then we define the expected value of X to be E(X) =

∫
XdP . This expression is well

defined, but it may be ∞. To reduce the general case (X ≥ 0 or X < 0) to the non-
negative case, let x+ = max{x, 0} be the positive part and let x− = max{−x, 0} be
the negative part of x. We declare that E(X) exists and set E(X) = E(X+)− E(X−)
whenever the subtraction makes sense (i.e., E(X+) < ∞ or E(X−) < ∞). Often,
E(X) is called the mean of X and denoted by µ. Note, the integral symbol used above
in the definition of expectation refers to the Lebesgue integral.

Variance.Given a probability space (Ω,F , P ) and a random variableX, if E(X2) <
∞, the variance V(X) of X is defined to be E((X − µ)2). To compute the variance
the following formula is useful V(X) = E(X2)− µ2.

Distribution. Given a probability space (Ω,F , P ), a random variable X induces
a probability measure on R (called its distribution) by setting µ(A) = P (X ∈ A) for
Borel sets A. The right-hand side can be written as P (X−1(A)).

Chebyshev’s Inequality. Suppose φ : R → R has φ ≥ 0, let A ∈ R and let
iA = inf{φ(y) : y ∈ A}. Then, (with the notation E(X;A) =

∫
A
XdP ) the following

holds: iAP (X ∈ A) ≤ E(φ(X);X ∈ A) ≤ E(φ(X)). In the particular case in which
φ(x) = x2 and A = {x : |x| ≥ a} we get a2P (|X| ≥ a) ≤ E(X2). Some authors call
the general case Markov’s inequality, and use the name Chebyshev’s inequality for the
particular case.

Independence(Random variables). We say that the sequence of random vari-
ables X1, X2, . . . , Xn are independent if whenever Bi ∈ R for i = 1, 2, . . . , n, we have
P (∩n

i=1{Xi ∈ Bi}) =
∏n

i=1 P (Xi ∈ Bi).

Law of Large Numbers(Strong). Let X1, X2, . . . , Xn be pairwise independent
identically distributed random variables with E(|Xi|) < ∞. Let E(Xi) = µ and
Sn = X1 +X2, · · ·+Xn. Then Sn/n → µ almost surely as n → ∞.

Dirichlet distribution

Dirichlet distribution. The Dirichlet distribution is a family of continuous
multivariate probability distributions parameterized by a vector α = (α1, α2, . . . , αk)
of positive reals. Next, we describe the probability density function (denoted as pdf ),
and the moments of the Dirichlet distribution.

Let Sk be the k-dimensional simplex, so

Sk = {(x1, x2, · · · , xk−1)|xi ≥ 0;

k−1∑
i=1

xi ≤ 1}
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pdf := f(x1, x2, . . . , xk−1;α) =


1

B(α)

∏k
i=1 x

αi−1
i (x1, x2, · · · , xk−1) ∈ Sk

0 otherwise
Note, in the previous expression the term xk is a just an abbreviation for 1− x1 −

x2 − · · · − xk−1. In addition, the multivariate beta function B(α) is defined as:

B(α) =

∏k
i=1 Γ(αi)

Γ(
∑k

i=1 αi)

Γ(z) =

∫ ∞

0

e−xxz−1dx, R(z) > 0 (so that the integral converges absolutely).

Here, R(z) stands for the real part of z.

Particular case: Γ(z) = (z − 1)! , z ∈ Z+

Further, the marginal distributions of the x′
is are Beta distributions. That is,

xi ∼ Beta(αi, ᾱi) with ᾱi = (
∑k

m=1 αm)− αi. This leads to the following cumulative
distribution function, where BI is the incomplete beta function :

CDFxi(x, αi, ᾱi) =
BI(x;αi, ᾱi)

B(αi, ᾱi)

=

∫ x

0
t(αi−1)(1− t)(ᾱi−1)dt

B(αi, ᾱi)

Regarding expectations, the general expression for the mixed moments is as follows:

E(
k∏

t=1

xrt
t ) =

B(α1 + r1, α2 + r2, . . . , αk + rk)

B(α1, α2, . . . , αk)

In the particular case in which ri = ℓ is the only term different from zero:

E(xℓ
i) =

(αi + ℓ− 1)(αi + ℓ− 2) . . . (αi)

(
∑k

j=1 αj + ℓ− 1) . . . (
∑k

j=1 αj)

Consequently, if ℓ = 1 or ℓ = 2 :

E(xi) =
αi∑k
j=1 αj

E(x2
i ) =

(αi + 1)(αi)

(
∑k

j=1 αj + 1)(
∑k

j=1 αj)

Notions of Monte Carlo Integration

Intention.We aim at approximating the integral of a function f : [0, 1]s → R
by an equal weight quadrature rule of the form 1

N

∑N−1
n=0 f(xn) where the quadrature

points P = {x0, . . . , xN−1} are of the form [0, 1)s.
We are interested in the integration error:

e(f,P) :=

∫
[0,1]s

f(x)dx− 1

N

N−1∑
n=0

f(xn).
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But, how should we choose the quadrature points? One idea is to choose realisa-
tions of N independent and uniformly distributed random variables X0, . . . , XN−1 in
[0, 1]s and to check what we can expect for the resulting error. This means that we
use

QN,s(f) :=
1

N

N−1∑
n=0

f(Xn)

as an estimator for the integral. Note that a measurable function f : [0, 1]s → R can be
considered as a random variable on the probability space ([0, 1]s,B, λs) where B is the
Borel σ-algebra on [0, 1]s and λs the Lebesgue measure. Then the expectation of this
random variable equals the integral we want to compute, i.e., E(f) =

∫
[0,1]s

f(x)dx.

Using the linearity of the expected value we have

E(QN,s(f)) =
1

N

N−1∑
n=0

E(f) = E(f) =
∫
[0,1]s

f(x)dx,

and hence QN,s(f) is an unbiased estimator for the integral
∫
[0,1]s

f(x)dx. The strong

law of large numbers guarantees that

P( lim
N→∞

QN,s(f) =

∫
[0,1]s

f(x)dx) = 1,

where P is the probability on an arbitrary probability space supporting an independent
sequence (Xn)n∈N0 of random variables uniformly distributed on [0, 1]s.

The variance of f is given by V(f) :=
∫
[0,1]s

(f(x) −
∫
[0,1]s

f(y)dy)2dx. Since

X0, . . . , XN−1 are independent, we obtain from the Bienaymé formula the following
result for the variance of the estimator QN,s(f).

Variance of the estimator. Let f ∈ L2([0, 1]
s). Then for any N ∈ N we have

V(QN,s(f)) =
V(f)
N

.

Note that

V(QN,s(f)) = E((QN,s(f)− E(f))2) = E(e2(f, ·)),

where e2(f, ·) is the error estimator

e(f, ·) :=
∫
[0,1]s

f(x)dx− 1

N

N−1∑
n=0

f(Xn).

Hence it follows from the variance of the estimator that

E(|e(f, ·)|) ≤
√

E(e2(f, ·)) = σ(f)√
N

,

where σ(f) =
√

V(f) denotes the standard deviation of f . This means that the

absolute value of the integration error is, on average, bounded by σ(f)/
√
N . It is

remarkable that the convergence rate of the expected integration error does not depend
on the dimension s.

Advantages of the Monte Carlo method. First, it suffices that the integrands
are quadratic integrable. Second, the convergence rate O(

√
N) is independent of the
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dimension s. This is a surprising fact, although it does not mean that the Monte Carlo
method breaks the curse of dimensionality, because the standard deviation σ(f) is in
general not independent of s.

Disadvantages of the Monte Carlo method. First, the error bound is only
“probabilistic”, that is, in any one instance one cannot be sure of the integration error.
However, further probabilistic information (bounds for N so that a certain confidence
interval for the error bound is assured) is obtained from the central limit theorem. A
second problem is that the generation of random samples is difficult. Third, for some
applications the convergence rate of O(

√
N) is too slow. Fourth, the convergence rate

O(
√
N) does not reflect some possible regularity of the integrand.

Notions of Graph Theory

Graph. A graph G is an ordered pair consisting of a vertex set V (G) and an
edge set E(G), where each edge (element of E(G)) is a set of two vertices (elements
of V (G)). The vertices of an edge are its endpoints. We write xy for an edge with
endpoints x and y, and we say that x and y are neighbors. The order of a graph G is
|V (G)|. A graph with order n is an n-vertex graph.

Path. A path with n vertices is a graph whose vertices can be named v1, v2, . . . , vn
so that the edges are {vivi+1 : 1 ≤ i ≤ n − 1}. We write ⟨v1, v2, . . . , vn⟩ to specify a
path having vertices v1, v2, . . . , vn in order.

Cycle. A cycle with n vertices is a graph whose vertices can be named v1, v2, . . . , vn
so that the edge set is {vivi+1 : 1 ≤ i ≤ n− 1}∪ {vnv1}. The length of a path or cycle
is the number of edges.

Connected graph. A u, v-path is a path with first and last vertices u and v, called
its endpoints. A graph G is connected if it contains a u, v-path for all u, v ∈ V (G). If
u and v are vertices in a connected graph G, their distance d(u, v) is the length of the
shortest u, v-path.

Tree. An acyclic graph is a graph with no cycles. A tree is a connected acyclic
graph.

Rooted tree. A rooted tree has one vertex distinguished as a root. In a tree with
root r, the neighbor of a vertex v on the path from v to r is the parent of v (i.e., the
root has no parent), and the other neighbors of v are its children. A leaf in a rooted
tree is a vertex with no children. If a vertex is not a leaf then it is internal. (Whenever
the term “tree” appears in the content of this dissertation, it means rooted tree.)

Probabilistic tree. A weighted tree (T, f) consist of two elements, T is a tree
and f : E(T ) → R is a mapping from the sets of edges of T onto the set of reals
numbers. A probabilistic tree is a weighted tree in which: the weights of edges from
every parent to its children add up to exactly one. This kind of trees is also known as
tree diagrams.

Labeled tree. A triple (T,L, g) is a labeled tree if T is a tree, L is a finite set
and g : V (T ) → L is a mapping that labels each vertex of T with an element of L.

Weight of a leaf Given a probabilistic tree (T, f) with root r, the weight a leaf
v in T is the multiplication of the weights of edges in the r, v-path.
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Appendix B

Proofs of Statements

This appendix contains the proofs of theorems or lemmas that were presented in this
dissertation.

Proof. (Theorem 1)

E(D) = D by Lemma 2.

D =
∑ℓ

i=1 L
A,∆
i pi by definition of D and LA,∆

i .

D =
∑ℓ

i=1(−1)i+1pi by Lemma 3.

D = p+(−p)ℓ+1

p+1
by Lemma 4

■

Proof. (Lemma 2) We need to show that E(D) = D. Because of the linearity of
the expectation, the expression E(D) expands as the additions/subtractions of the
expectation of terms in D. Now, if we assume that E(D) ̸= D, there should exist at
least a term T in D, such that E(T ) ̸= T . But, that can not occur: any such a term T
is just the product of independent edge-probabilities (each of them with expectation
equal to p). This means that E(T ) is multiplicative, and it can be expanded as the
multiplication of the expectation of the edge-probabilities in T . This led to E(T ) = T ,
which was in contradiction with our assumption. ■

Proof. (Lemma 3) Next, we will need to count consensus vertices of an opinion tree,
and that means we can ignore edge-probabilities for now. In a first step (the proof
has two in total), we are interested in counting vertices LA

i that: are at a distance
(i − 1) from the root, and are still active (i.e., they are not consensus vertices). In
this case, the idea to follow is: active vertices at the distance (i− 1) from the root are
exactly the result of the branching of active vertices at a distance (i − 2) minus
those vertices that resulted from the branching and became consensus vertices. That
is, each of the LA

i−1 vertices produces |O|n−1 vertices on the branching, and each time
(exactly) one of them becomes a consensus vertex (see Example 3). This idea can be
described as:

LA
i = LA

i−1|O|n−1 − LA
i−1 i > 1

LA
i = 1 i = 1

(B.1)
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Consequently, the closed-form of the previous expression (see Appendix C.2 for
details) is:

LA
i = (|O|n−1 − 1)i−1 i ≥ 1 (B.2)

Using this result, in the second step we would need to count vertices LA,x
i that

are active, at a distance (i − 1) from the root, and the current speaker has a specific
opinion “x”. In this case, the recursive idea is: the vertices that we want to count
are the result of branching LA

i−1 − LA,x
i−1 vertices (i.e., active with current opinion

different from “x”) plus the result of branching LA,x
i−1 vertices (active with current

opinion equal to “x”). Note, the reason for this distinction is that the number of
vertices that results from the branching is different in each case. In the first one, a
new opinion vertex will have two opinions already set (the opinion different from
“x” required from the previous vertex and the opinion equal to “x” required in the
new vertex). In the second case, each branching will result in (exactly) one new vertex
less than in the first case (the one that will not be active because is a consensus vertex
with all opinions equal to “x”). The previous idea can be described as:

LA,x
i = (LA

i−1 − LA,x
i−1).|O|n−2 + LA,x

i−1.(|O|n−2 − 1) i > 1

LA,x
i = 1 x = 0 (case of the first speaker) i = 1

LA,x
i = 0 x = a (any opinion different from “0”) i = 1

(B.3)

Before we present the close-form expressions for the above recurrence relations
(note, there are two of them because of the two different initial conditions), let us
adopt the following notation:

H = |O|n−2

Q = |O|n−1 − 1
(B.4)

Now, the close-form solutions: the first equation corresponds to the count of con-
sensus vertices with opinions equal to the one of the first speaker and distance i to
the root of the opinion tree. Consequently, the second one corresponds to the count of
consensus vertices with opinion different to the one of the first speaker and distance
i to the root (see Appendix C.3 for details).

LA,0
i =

(−1)i(HQi(−1)i +Q(−Q+H − 1))

Q(Q+ 1)
i ≥ 1 (B.5)

LA,a
i =

H(−1)i((−1)iQi +Q)

Q(Q+ 1)
i ≥ 1 (B.6)

From these equations, we can immediately get that LA,0
i − LA,a

i = LA,∆
i = (−1)i+1.

■

Proof. (Lemma 4) We start with the second expression (in which ℓ is even). Then,
the other case (in which ℓ is odd) is obtained by adding pℓ+1 to the result of the ℓ+1
even case.

p− p2 + p3 − p4 + · · · − pℓ

= p(1− p) + p3(1− p) + p5(1− p) + · · ·+ pℓ−1(1− p)
= (1− p)(p+ p3 + p5 + · · ·+ pℓ−1)

= (1− p) · pℓ+1−p
p2−1
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For the derivation of the last step we took Sℓ = p + p3 + p5 + · · · + pℓ−1 and
Sℓ+2 = p+p3+p5+ · · ·+pℓ+1. From here, the closed form of Sℓ is obtained by solving
the two equation system Sℓ+2 = Sℓ + pℓ+1 and Sℓ+2 = p2 · Sℓ + p. Then, the proof
continue as:

= (1− p) · pℓ+1−p
(p+1)(p−1)

· −1
−1

= p−pℓ+1

p+1

Next, the case in which ℓ is odd follows from the previous expression as follows:

we take the sum until an even ℓ̂ = ℓ+1. Then, if we add to that sum a pℓ̂ term, what

remains corresponds to the sum of the odd case: p−pℓ̂+1

p+1
+pℓ̂ = p+pℓ̂

p+1
. Then, we obtain

p+pℓ+1

p+1
.

■

Proof. (Theorem 5) Let us assume that the preconditions of Eq. 2.4 and Eq. 2.5 hold.
That is: (O,K, n) is given, O can be arbitrary large, and the edge-probabilities for
(O,K, n) will be selected in a single pick (keep in mind that uniformity and indepen-
dence constraints are in place). Then, Lemma 10 and Lemma 11 can be applied. From

the second one we get immediately that P (S(
−→
0 ) ≤ B) ≤ 1 − ( 1

e
)

1
N . From the first

one, if we take into account that O can be arbitrary large, P (S(−→a ) ≥ B) ≤ ϵ follows
immediately as well.

■

Proof. (Lemma 6) Roughly speaking, the scheme of the proof is: first, we express
E(S(−→a )) in a pleasant form. Then, we take the limit of the above expression, and
show that it is equal to one. That is, S(−→a ) =

∑ℓ
i=1 Ei, where Ei corresponds to

the contribution of those “a-consensus” leaves that are at a distance i from the root
(the number of these leaves was already denoted by LA,a

i , see Eq. B.6). Moreover,

because of the definition of S(−→a ), we have that Ei =
∑L

A,a
i

j=1 pij,1 · pij,2 . . . pij,i. In this
summation (because an edge can participate in many paths to different consensus
vertices) the subscripts and superscripts of edge-probabilities keep track of helpful
descriptive information. Subscripts hold two indexes: the first is a reference to the
particular consensus node; the second is the distance to the root of each particular
edge-probability. Superscripts hold a single index, and it keeps track of the distance
to the root at which the corresponding consensus node stands.

With S(−→a ) properly represented, the next step is to take its expectation:

E(S(−→a )) =
∑ℓ

i=1

∑L
A,a
i

j=1 E(pij,1 ·pij,2 . . . pij,i) due to the linearity of the expectation.

=
∑ℓ

i=1

∑L
A,a
i

j=1 E(pij,1) · E(pij,2) . . .E(pij,i) because the edge-probabilities under dif-
ferent parents are independent.

=
∑ℓ

i=1

∑L
A,a
i

j=1 pi by definition of expectation under an uniform Dirichlet distri-
bution (see the Dirichlet distribution section of Basic Notions for more details).

=
∑ℓ

i=1 p
i · LA,a

i .

=
∑ℓ

i=1 p
i · (HQi+(−1)iHQ

Q(Q+1)
) by characterization of LA,a

i (see Eq. B.6).

= H·p(−(−p)l+(p·Q)l+p(−1+(−1+(−p)l)Q+(p·Q)l))
(1+p)(1+Q)(−1+p·Q)

(see Appendix C.5 for details of the

calculation)

Now, after replacing p, H, Q (see Theorem 1 and Eq. B.4 for details about their
values), and taking the corresponding limit, we get the desired result (see Appendix C.6
for details of the calculation). ■
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Proof. (Lemma 7) We start with V(S(−→a )) = E(S(−→a )2) − (E(S(−→a )))2, which is the
usual characterization of variance. Next, as we did in the previous lemma, we can
unfold S(−→a ) as S(−→a ) =

∑ℓ
i=1 Ei, where Ei corresponds to the contribution of those

“a-consensus” leaves that are at a distance i of the root (the number of these leaves
was already denoted by LA,a

i , see Eq. B.6). Then we obtain:
V(S(−→a )) = E((

∑ℓ
i=1 Ei)

2)− (E(S(−→a )))2

V(S(−→a )) = E(
∑ℓ

i=1

∑ℓ
k=1 Ei · Ek)− (E(S(−→a )))2 carrying out the multiplication.

V(S(−→a )) =
∑ℓ

i=1

∑ℓ
k=1 E(Ei ·Ek)−(E(S(−→a )))2 by the linearity of the expectation.

V(S(−→a )) ≤
∑ℓ

i=1

∑ℓ
k=1 L

A,a
i ·LA,a

k ·( 2
(On−1+1)·(On−1)

)
i+k
2 −(E(S(−→a )))2 by Lemma 8.

V(S(−→a )) ≤
∑ℓ

i=1

∑ℓ
k=1 L

A,a
i · LA,a

k · ( 2
(On−1+1)·(On−1)

)
i+k
2 because (E(S(−→a )))2 is

positive. Now, this leads us to the definition of F (O):

F (O) :=
ℓ∑

i=1

ℓ∑
k=1

LA,a
i · LA,a

k · ( 2

(On−1 + 1) · (On−1)
)
i+k
2

Moreover, this expression fulfill the limit requirement of the lemma as well (see
Appendix C.7 for the close-form of F (O), and Appendix C.8 for the details of the
limit). ■

Proof. (Lemma 8) Before starting, let us recall that the probability contribution of
“a-consensus” leaves (at distances i and k from the root of the opinion tree) can be

expressed as Ei =
∑L

A,a
i

j=1 pij,1 · pij,2 . . . pij,i and Ek =
∑L

A,a
k

m=1 pkm,1 · pkm,2 . . . p
k
m,k. Now,

in the multiplication Ei · Ek there are exactly LA,a
i · LA,a

k terms. That is, if the

expectation of each term was bounded by ( 2
(On−1+1)·(On−1)

)
i+k
2 we had the

desired result (the linearity of the expectation is needed here as well).
To see that this is indeed the case, let us consider the expression that results from
the multiplication of the j term in Ei and the m term in Ek . The result of this
multiplication has the form pij,1 · pij,2 . . . pij,i · pkm,1 · pkm,2 . . . p

k
m,k, which contains i+ k

factors. Also, in the context of the previous term, the following holds: for each of
the involved random variables, there can be at most one other random variable with
the same parent node(i.e., we are working with root-to-leaf paths). Taken together,
this fact and the independence assumption allow us to transform E(pij,1 · pij,2 . . . pij,i ·
pkm,1 ·pkm,2 . . . p

k
m,k) into the product of the expectations of at least ⌈ (i+k)

2
⌉ independent

factors(each of them involving two random variables at most). For instance, if i =
k and j = m, the mentioned term looked as follows (note, this is just a punctual
example):

E(pij,1 · pij,2 . . . pij,i · pkm,1 · pkm,2 . . . p
k
m,k) = E(pj,1.pm,1).E(pj,2.pm,2) . . .E(pj,i.pm,k)

Naturally, in a different example (where the variables in some duos were indepen-
dent) the expectation of a duo can be further split. Now, given that we are trying
to obtain an upper-bound on the product of expectations, we need to find the best
possible arrangement for this product. As we will see, Lemma 9 offers that exactly;
it tells that keeping as many duos as possible (and assuming that both elements of
the duos are identical to each other) is the best way to proceed. For the last step, we
just need to appreciate that in the original term pij,1 · pij,2 . . . pij,i · pkm,1 · pkm,2 . . . p

k
m,k

there can be at most ⌊ (i+k)
2

⌋ duos of random variables. Taken together, this fact, the
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linearity of expectation, and the monotonicity of the square root function for the case
in which i+ k is odd, give us the required bound. ■

Proof. (Lemma 9) We start with E(
µ∏

t=1

prtt ) =
B(α1+r1,α2+r2,...,αµ+rµ)

B(α1,α2,...,αµ)
, which is the

general expression for the mixed moments of a random vector (p1, p2, · · · , pµ) that
follows a Dirichlet distribution (see the Dirichlet distribution section of Basic Notions).
Here we use µ as a short name of On−1, which is the number of outgoing edge-
probabilities in any internal vertex of an opinion tree structure. Next, we use this
expression to derive the expectations terms that we are interested in (let us keep in
mind that because of the uniformity assumption, the alphas are all equal to one).

E(pi) = B(α1+0,...,αi+1,...,αµ+0)

B(α1,α2,...,αµ)
= B(1,...,2,...,1)

B(1,...,1,...,1)
=

Γ(1)...Γ(2)...Γ(1)
Γ(µ+1)

Γ(1)...Γ(1)...Γ(1)
Γ(µ)

= 1
µ
= 1

On−1

E(p2i ) =
B(α1+0,...,αi+2,...,αµ+0)

B(α1,α2,...,αµ)
= B(1,...,3,...,1)

B(1,...,1,...,1)
=

Γ(1)...Γ(3)...Γ(1)
Γ(µ+2)

Γ(1)...Γ(1)...Γ(1)
Γ(µ)

= 2
(On−1+1)(On−1)

E(pi · pj) = B(α1+0,...,αi+1,...,αj+1,...,αµ+0)

B(α1,α2,...,αµ)
= B(1,...,2,...,2,...,1)

B(1,...,1,...,1)
= 1

(On−1+1)(On−1)

From these we can immediately see that E(p2i ) > E(pi · pj), which is the second
inequality that we wanted to show. In the case of the inequality E(p2i ) > (E(pi))2,
first we can prove that for any natural y ≥ 2, it holds that 2

(y+1)y
> 1

y2 . Which is

equivalent to show that 2
(y+1)

> 1
y
. Naturally, if that was so, we could then make

y = On−1 and obtain the desired result. The proof of the intermediate step can be
done as follows:

2y > y + 1

2y

(y + 1)y
>

y + 1

(y + 1)y

2

(y + 1)
>

1

y

■

Proof. (Lemma 10) In this proof we use a simple form of the Chebyshev’s Inequality
(see the Probability Theory section of Basic Notions). Broadly said, for a random
variable X, this inequality bounds by 1

k2 the portion of distribution that can be k or
more standard deviations away from the mean of X. That is,

P (|X − µ| ≥ k · σ) ≤ 1

k2

Next, we can apply this inequality to our problem by taking X = S(−→a ) and

k · σ = E(D)
N

. Consequently, what we need to show is:

1

k2
≤

N ·
√

2 · ((3 + 2
√
2) · (2

l+1
2 − 2)2)

O

In order to do this, we aim to prove that k > 1 and:

1

k
≤

N ·
√

2 · (3 + 2
√
2) · (2

l+1
2 − 2)2

O

So, we begin with our above assumption: k = E(D)
N·σ .
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Consequently, from this assumption and Eq. 2.2, we get that k = p(1+o(1))
N·σ . Here

we used that E(D) and p are asymptotically equal as O → ∞, which was expressed in
the standard Little-o notation (for a description of the asymptotic equality relation,
see Shabunin 2022, and for a definition and examples of the Little-o notation, see
Cormen et al. 2022, p. 60). In the scope of this proof, from all the elements of o(1),
which help to approximate E(D) as p(1 + o(1)), we will work with those that take
positive values only. That is, strictly speaking we will be working with a subset of
o(1) (i.e., we follow the definition of Little-o provided in Cormen et al. 2022, p. 60).
For instance, our restriction allows 1

O
in o(1) as O → ∞, but forbids − 1

O
. Naturally,

the reason for this restriction will soon become apparent. Next, we obtain:

k ≥ p(1 + o(1))

N ·

√
(3+2

√
2)·(2

l+1
2 −2)2

O2n (1 + o(1))

In this inequality we do not have σ anymore. Instead, we have an upper bound on
it. Let us recall that by definition σ =

√
V(S(−→a )). Then, from Lemma 7 we know

that V(S(−→a )) ≤ F (O) and that F (O) is asymptotically equal to (3+2
√
2)·(2

l+1
2 −2)2

O2n as

O → ∞ . That is, F (O) = (3+2
√
2)·(2

l+1
2 −2)2

O2n (1+o(1)). Together, these properties and
the monotonicity of the square root function justify the inequality. Next, by decreasing
the numerator we keep the inequality.

k ≥ p

N ·

√
(3+2

√
2)·(2

l+1
2 −2)2

O2n (1 + o(1))

Next, we increase the denominator and keep the inequality:

k ≥ p

N ·

√
2 · (3+2

√
2)·(2

l+1
2 −2)2

O2n

Note, the bound that we just used is 1 ≥ o(1). This is a valid bound because we
know that (by definition of the Little-o relation) for a function f(O) ∈ o(1), it holds
that: for any positive constant ϵ there exist a constant Oϵ such that |f(O)| ≤ ϵ for
all O ≥ Oϵ. Then, if we take ϵ = 1, we can be sure that there exist an O1 such that
|f(O)| ≤ 1 for all O ≥ O1. Consequently, the previous bound is correct as long as
we mention that it holds “for a sufficiently large O”, which is something that we have
already assumed.

Next, we take the term O2n out of the square root:

k ≥ p

N
On ·

√
2 · (3 + 2

√
2) · (2

l+1
2 − 2)2

Now, after substituting p by its value (i.e., p = 1
On−1 ):

k ≥
1

On−1

N
On ·

√
2 · (3 + 2

√
2) · (2

l+1
2 − 2)2

After reducing the On−1 similar terms:
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k ≥ O

N ·
√

2 · (3 + 2
√
2) · (2

l+1
2 − 2)2

Which, under the large O assumption leads us to k > 1 and:

1

k
≤

N ·
√

2 · (3 + 2
√
2) · (2

l+1
2 − 2)2

O
■

Proof. (Lemma 11) We start with the marginal distribution of Xi (see the Dirichlet
distribution section of Basic Notions).

CDFXi(x, αi, ᾱi) =
BI (x;αi,ᾱi)
B(αi,ᾱi)

, where BI is the incomplete beta function, and B

is the beta function(used as a normalizing factor).

=
∫ x
0 t(αi−1)(1−t)(ᾱi−1)dt

B(αi,ᾱi)
, replacing BI by its definition.

=
∫ x
0 (1−t)(ᾱi−1)dt

B(1,ᾱi)
, because (αi − 1) is zero.

=
∫ x
0 (1−t)(ᾱi−1)dt

Γ(1)·Γ(ᾱi)

Γ(1+ᾱi)

, after replacing B by its definition.

= ᾱi ·
∫ x

0
(1− t)(ᾱi−1)dt , after simplifying the denominator.

= ᾱi ·
∣∣∣∣x
0

− (1−t)ᾱi

ᾱi
, after calculating the integral.

=

∣∣∣∣x
0

− (1− t)ᾱi , after simplifying the ᾱi terms.

= −(1− x)ᾱi − (−(1− 0)ᾱi) , after evaluating the previous expression.
= −(1− x)ᾱi + 1

= 1 − (1 − (E(S(−→a )) + E(D)
N

))(O
(n−1)−1) , after substituting x and ᾱi with their

respective values.
Next, we can take the limit of the previous expression when O → ∞. Note, from

Eq. 2.2 and Lemma 6, we know that lim
O→∞

E(D)
1

O(n−1)

= 1 and lim
O→∞

E(S(−→a ))
ℓ−1
On

= 1. That is,

we know that E(S(−→a )) = o(E(D)), and this allows us to let the term E(S(−→a ) out of
the above expression in the calculation of the limit. Then, we can proceed as follows
(see Appendix C.9 for the details of the calculation of the limit):

lim
O→∞

1− (1− (E(S(−→a )) +
E(D)

N
))(O

(n−1)−1)

= lim
O→∞

1− (1− E(D)

N
)(O

(n−1)−1)

= 1− (
1

e
)

1
N

■
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Appendix C

Source Code: Mathematica

This appendix contains code snippets in the Wolfram Language. The intention is that
they serve as witnesses for minor analytical statements (limits, sums, etc.) that were
used (without a proof) in the dissertation.

1 (*E(D)*)

2 (p+Power[-p,l+1])/(p+1)

3

4 (* Previous expression expanded: taking p== 1/ Power[O,n-1]*)

5 (* Additionally , we take its division by 1/Power[O,n-1]*)

6

7 (((1/ Power[O,n-1])+Power [-(1/ Power[O,n-1]),l+1]) /((1/ Power[O,n-1])

+1)) / (1/ Power[O,n-1])

8

9 (*Limit E(D)/p*)

10 Limit [(((1/ Power[O,n-1])+Power [-(1/ Power[O,n-1]),l+1]) /((1/ Power[O,

n-1]) +1)) / (1/ Power[O,n-1]),O->Infinity , Assumptions -> l >=n

&& n>=2 && l \[ Element] Integers]

Listing C.1: lim
O→∞

E(D)
p = 1

1 (* Solves the recurrence that counts the number of actives vertices

at a distance i-1 of the root*)

2 RSolve [{a[i]==(a[i-1]* Power[O,n-1])-a[i-1],a[1]==1} ,a[i],i]

Listing C.2: Closed-Form Solution of LA
i .

1 (* Solves the recurrence that counts the number of actives vertices

that are: at a distance i-1 of the root , and with an opinion

that is equal to the one of the first speaker *)

2

3 RSolve [{a[i]==( Power[Q,i-2]-a[i-1])*H+a[i-1]*(H-1),a[1]==1} ,a[i],i]

4

5 (* Solves the recurrence that counts the number of actives vertices

that are: at a distance i-1 of the root , and with an opinion

that is different from that of the first speaker *)

6

7 RSolve [{a[i]==( Power[Q,i-2]-a[i-1])*H+a[i-1]*(H-1),a[1]==0} ,a[i],i]

Listing C.3: Close-Form Solution of LA,x
i .

89
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1 (* Expectation expression *)

2 f[O_] :=( Power [1/O,n-1]+ Power[-1* Power [1/O,n-1],(n*K)+1])/(Power [1/

O,n -1]+1)

3

4 (* Derivative of the Expectation *)

5 f’[O]

6

7 (* Simplify the previous result *)

8 Simplify [%]

Listing C.4: Derivative of E(D) wrt. O

1 (* Expectation of S(a)*)

2 Sum[(p^i*(H*Q^i + (-1)^i*H*Q))/(Q*(Q + 1)), {i, 1, l}]

3

4 (*Close form: this is the result of executing the previous line*)

5 (H p (-(-p)^l+(p Q)^l+p (-1+(-1+(-p)^l) Q+(p Q)^l)))/((1+p) (1+Q)

(-1+p Q))

6

7

8 (* Previous expression expanded: that is, taking p== 1/Power[O,n-1],

H==Power[O,n-2] and Q == Power[O,n-1]-1*)

9 (Power[O,n-2] (1/ Power[O,n-1]) (-(-(1/ Power[O,n-1]))^l+((1/ Power[O,

n-1]) (Power[O,n-1] -1))^l+(1/ Power[O,n-1]) ( -1+( -1+( -(1/ Power[O

,n-1]))^l) (Power[O,n-1]-1) +((1/ Power[O,n-1]) (Power[O,n-1]-1))

^l)))/((1+(1/ Power[O,n-1])) (1+( Power[O,n-1]-1)) ( -1+(1/ Power[O

,n-1]) (Power[O,n-1]-1)))

Listing C.5: Expectation of S(a) and its close-form.

1 (*Limit of E(S(a))/((l-1)/Power[O,n-1]) when O goes to infinity *)

2 Limit [(( Power[O,n-2] (1/ Power[O,n-1]) (-(-(1/ Power[O,n-1]))^l+((1/

Power[O,n-1]) (Power[O,n-1]-1))^l+(1/ Power[O,n-1])

( -1+( -1+( -(1/ Power[O,n-1]))^l) (Power[O,n-1]-1) +((1/ Power[O,n

-1]) (Power[O,n-1]-1))^l)))/((1+(1/ Power[O,n-1])) (1+( Power[O,n

-1] -1)) ( -1+(1/ Power[O,n-1]) (Power[O,n-1] -1))))/((l-1)/Power[O

,n]) ,O->Infinity , Assumptions -> l >=n&& n >=2 && l \[ Element]

Integers]

3

4 (* Taking the limit after the change of variable: x== Power[O,n-1]*)

5 Limit [(-(-(1/x))^l+((1/x) (-1+(x)))^l+(1/x) ( -1+((1/x) (-1+(x)))^l

+(-1+(x)) ( -1+(-(1/x))^l)))/((l-1) (1+(1/x)) ( -1+(1/x) (-1+(x))

)),x->\[ Infinity],Assumptions ->l>=2&&l \[ Element] Integers]

Listing C.6: Expectation of S(a) and its asymptotic behavior when O → ∞.

1 (*Upper bound of V(S(a)): term with double sum)*)

2 Sum [((H*Q^i + (-1)^i*H*Q)/(Q*(Q + 1)))*

3 ((H*Q^k + (-1)^k*H*Q)/(Q*(Q + 1)))*

4 (2/((Q + 2)*(Q + 1)))^((i + k)/2), {i, 1, l}, {k, 1, l}]

5

6

7 (*Close form: this is the result of executing the previous line*)

8 (H^2 (2 + (-1)^l 2^((3 + l)/2) (1/(2 + 3 Q + Q^2))^((1 + l)/2) +

(-1)^

9 l 2^((1 + l)/2) Q^2 (1/(2 + 3 Q + Q^2))^((1 + l)/2) -

10 3 2^((1 + l)/2) Q^(1 + l) (1/(2 + 3 Q + Q^2))^((1 + l)/2) -
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11 2^((1 + l)/2) Q^(2 + l) (1/(2 + 3 Q + Q^2))^((1 + l)/2) -

12 2^(1 + l/2) Q^l (1/(2 + 3 Q + Q^2))^(

13 l/2) (1 + Sqrt [2] Sqrt [1/(2 + 3 Q + Q^2)]) +

14 Q (2 + (-1)^(1 + l) 2^(1 + l/2) (1/(2 + 3 Q + Q^2))^(l/2) +

15 3 (-1)^l 2^((1 + l)/2) (1/(2 + 3 Q + Q^2))^((1 + l)/

16 2)))^2) /((1 + Q)^4 (2 + Q)^2 (1 +

17 Sqrt [2] Sqrt [1/(2 + 3 Q + Q^2)])^2 (-1 +

18 Sqrt [2] Q Sqrt [1/(2 + 3 Q + Q^2)])^2)

19

20

21

22 (* Previous expression expanded: that is , taking H==( Power[O,n-2])

and Q == (Power[O,n-1] -1) *)

23 ((Power[O,n-2])^2 (2 + (-1)^l 2^((3 + l)/2) (1/(2 + 3 (Power[O,n

-1] -1) + (Power[O,n-1]-1)^2))^((1 + l)/2) + (-1)^

24 l 2^((1 + l)/2) (Power[O,n-1]-1)^2 (1/(2 + 3 (Power[O,n-1]-1)

+ (Power[O,n-1]-1) ^2))^((1 + l)/2) -

25 3 2^((1 + l)/2) (Power[O,n-1]-1) ^(1 + l) (1/(2 + 3 (Power[O,n

-1] -1) + (Power[O,n-1]-1)^2))^((1 + l)/2) -

26 2^((1 + l)/2) (Power[O,n-1]-1) ^(2 + l) (1/(2 + 3 (Power[O,n

-1] -1) + (Power[O,n-1]-1)^2))^((1 + l)/2) -

27 2^(1 + l/2) (Power[O,n-1]-1)^l (1/(2 + 3 (Power[O,n-1]-1) + (

Power[O,n-1] -1)^2))^(

28 l/2) (1 + Sqrt [2] Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (Power[O,n

-1] -1)^2)]) +

29 (Power[O,n-1]-1) (2 + (-1)^(1 + l) 2^(1 + l/2) (1/(2 + 3 (

Power[O,n-1] -1) + (Power[O,n-1]-1)^2))^(l/2) +

30 3 (-1)^l 2^((1 + l)/2) (1/(2 + 3 (Power[O,n-1]-1) + (Power[

O,n-1] -1)^2))^((1 + l)/

31 2)))^2) /((1 + (Power[O,n-1]-1))^4 (2 + (Power[O,n-1] -1))^2

(1 +

32 Sqrt [2] Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (Power[O,n-1]-1) ^2)])

^2 (-1 +

33 Sqrt [2] (Power[O,n-1] -1) Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (

Power[O,n-1] -1)^2)])^2)

Listing C.7: Upper bound on the variance of S(a) and its close-form.

1 (* Asymptotic behavior: F(O) when O goes to infinity *)

2 Limit [((( Power[O,n-2])^2 (2 + (-1)^l 2^((3 + l)/2) (1/(2 + 3 (Power

[O,n-1]-1) + (Power[O,n-1] -1)^2))^((1 + l)/2) + (-1)^

3 l 2^((1 + l)/2) (Power[O,n-1]-1)^2 (1/(2 + 3 (Power[O,n-1]-1)

+ (Power[O,n-1]-1) ^2))^((1 + l)/2) -

4 3 2^((1 + l)/2) (Power[O,n-1]-1) ^(1 + l) (1/(2 + 3 (Power[O,n

-1] -1) + (Power[O,n-1]-1)^2))^((1 + l)/2) -

5 2^((1 + l)/2) (Power[O,n-1]-1) ^(2 + l) (1/(2 + 3 (Power[O,n

-1] -1) + (Power[O,n-1]-1)^2))^((1 + l)/2) -

6 2^(1 + l/2) (Power[O,n-1]-1)^l (1/(2 + 3 (Power[O,n-1]-1) + (

Power[O,n-1] -1)^2))^(

7 l/2) (1 + Sqrt [2] Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (Power[O,n

-1] -1)^2)]) +

8 (Power[O,n-1]-1) (2 + (-1)^(1 + l) 2^(1 + l/2) (1/(2 + 3 (

Power[O,n-1] -1) + (Power[O,n-1]-1)^2))^(l/2) +

9 3 (-1)^l 2^((1 + l)/2) (1/(2 + 3 (Power[O,n-1]-1) + (Power[

O,n-1] -1)^2))^((1 + l)/

10 2)))^2) /((1 + (Power[O,n-1]-1))^4 (2 + (Power[O,n-1] -1))^2

(1 +
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11 Sqrt [2] Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (Power[O,n-1]-1) ^2)])

^2 (-1 +

12 Sqrt [2] (Power[O,n-1] -1) Sqrt [1/(2 + 3 (Power[O,n-1]-1) + (

Power[O,n-1] -1)^2)])^2))/(((3 + 2 Sqrt [2]) (-2 + 2^((1 + l)/2))

^2 )/Power[O,2*n]),O->Infinity , Assumptions -> l >=n&& n>=2 &&

l \[ Element] Integers]

Listing C.8: Asymptotic behavior of F (O) when O → ∞.

1 (*CDF of X_i when O is large and x=E(D)/N*)

2 Limit[1-Power [(1 -((((1/ Power[O,n-1])+Power [-(1/ Power[O,n-1]),l+1])

/((1/ Power[O,n-1]) +1))/N)),(Power[O,(n-1)]-1)], O->Infinity ,

Assumptions -> l >=n&& n>=2 && l \[ Element] Integers]

Listing C.9: Dirichlet marginal distribution: O → ∞ and x = E(D).



Appendix D

Source Code: Simulations

This appendix contains the python code that was used for the experiments with opinion
trees structures.

1 import numpy as np

2 from decimal import *

3

4 ### Calculate Probabilities in tree structure(given tree structure and Opinions)###

5 def evalProbabilities(treeStructure , opinion):

6 sumProbabilities= 0

7

8 if(isLeaf(treeStructure)):

9 if(filterAllAreOne(treeStructure [0],[ opinion ])):

10 return treeStructure [2]

11 else:

12 return 0

13

14 else:

15

16 for tree in treeStructure [1]:

17

18 sumProbabilities = sumProbabilities + evalProbabilities(tree ,opinion)

19

20 #The term (treeStructure [2])* is the reason why the probability on the root

is

21 #set to one in the function generateTreeStructure.

22 return (treeStructure [2])*sumProbabilities

23 ############ Generate a tree structure #####################

24 #This function creates the root of the tree (i.e., the opinionSpeaker

25 #variable describes the important information of the inital

26 #debate conditions).Also , treeStructure contains subtrees , their

27 #roots describe possible group opinions after the first speaker spoke.

28 def generateTreeStructure(O,n,K,opinionSpeaker ,typeOfStructure):

29 treeStructure =[]

30

31 #Creates all possible permutations.

32 allPermutations = fullPermutation(n,O)

33

34 #The variable typeOfStructure allows to call the particular function that will

35 #build the structure.Naturally , it will be

93
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36 #different depending on the type of experiment.

37 treeStructure= typeOfStructure(O,n,K,opinionSpeaker ,0,0, allPermutations ,K*n-1)

38

39

40 #The symbol * does not play any particular role. It is just a mark to know that

41 #this is the first speaker ’s initial opinion.

42 toReturn= [str(opinionSpeaker)+’*’,treeStructure ,1]

43 assignProbabilitiesToTreeStructure(toReturn ,O,n)

44 #check that the given structure is correct.

45 #print(checkAgreement(toReturn ,O,n,opinionSpeaker ,K*n), checkSumProbabilities(

toReturn ,O))

46 #print (toReturn)

47 return toReturn

48

49 #This is the actual recursive function that generates the tree.

50 #Note: distanceToComplete is an edge based distance that starts in the vertex

51 #that is to be built.

52 def generateTreeStructure1(O,n,K,opinionSpeaker ,distanceToRoot ,positionSpeaker ,

allPermutations , distanceToComplete):

53

54 treeStructure =[]

55 if(distanceToComplete ==0):

56

57 #This filter gets all permutations of possible group opinions that

58 # agree with the opinion of the previous speaker at her position.

59 filteredPermutations = filterAll(allPermutations ,[ filterAtPosition ],[[

positionSpeaker ,opinionSpeaker ]])

60 for permutation in filteredPermutations:

61

62 #The ’d’ just means that the node was bounded by the distance.

63 #Note , agreement nodes can be marked with ’d ’(e.g., whenever it

64 #happens that the node is bounded by distance and it is

65 #and agreement node too). Also , that can be checked by

66 #searching the ’d’ term in this script.

67 treeStructure.append ([ permutation ,’d’,None])

68

69 else:

70

71 #Note: this line is in the other part of the condition too.

72 #It is not outside of the condition for the sake of clearity.

73 filteredPermutations = filterAll(allPermutations ,[ filterAtPosition ],[[

positionSpeaker ,opinionSpeaker ]])

74 #print(filteredPermutations)

75 #exit()

76 for permutation in filteredPermutations:

77

78 #currentTreeTemp will remain ’a’ if the permutation

79 #was a consensus node.

80 currentTreeTemp=’a’

81

82 #Note: in the next line one could probably use

83 #the driver as well -->

84 #filterAll(allPermutations ,[ filterNotAllAreOne ],[[ opinionSpeaker ]])

85 #instead of using a direct call.

86 if(filterNotAllAreOne(permutation ,[ opinionSpeaker ])):

87

88 #Note: permutation [( distanceToRoot)%n] should be the same
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89 #as opinionSpeaker because permutation is obtained after

90 #filtering with filterAtPosition

91 currentTreeTemp = generateTreeStructure1(O,n,K,permutation [(

distanceToRoot +1)%n],distanceToRoot +1,( distanceToRoot +1)%n,allPermutations ,

distanceToComplete -1)

92 #currentTreeTemp ==’a’ if this was an agreemment node with

93 #the opinionSpeaker opinion.

94 treeStructure.append ([ permutation ,currentTreeTemp ,None])

95

96 return treeStructure

97 #######

98 #The following two functions will be used for the experiment in which the

99 #position of the next speaker is selected at random(uniformaly).

100

101 #This is the actual recursive function that generates the tree.

102 #Note: distanceToComplete is an edge based distance that starts

103 #in the vertex that is to be built.

104 #Note: This function describes the scenario where the position of

105 #the next speaker is selected at random.

106 def generateTreeStructure1_random(O,n,K,opinionSpeaker ,distanceToRoot ,

positionSpeaker ,allPermutations , distanceToComplete):

107

108 treeStructure =[]

109 if(distanceToComplete ==0):

110

111 #This filter gets all permutations of possible group opinions that agree

112 #with the opinion of the previous speaker at her position.

113 filteredPermutations = filterAll(allPermutations ,[ filterAtPosition ],[[

positionSpeaker ,opinionSpeaker ]])

114 for permutation in filteredPermutations:

115

116 #The ’d’ just means that the node was bounded by the distance.

117 #Note , agreement nodes can be marked with ’d ’(e.g., whenever

118 #it happens that the node is bounded by distance and it is an

119 #agreement node too). Also , that can be checked by searching

120 #the ’d’ term in this script.

121 treeStructure.append ([ permutation ,’d’,None])

122

123 else:

124

125 #Note: this line is in the other part of the condition too. It is not

126 #outside of the condition for the sake of clearity.

127 filteredPermutations = filterAll(allPermutations ,[ filterAtPosition ],[[

positionSpeaker ,opinionSpeaker ]])

128 #print(filteredPermutations)

129 #exit()

130

131 #Note: This line should not be set inside the loop on permutations.

132 #Reason: It would (wrongly) model the situation that the next speaker is

133 #selected depending on the group opinion.

134 nextSpeakerPosition = nextSpeakerPoistionAtRandom(positionSpeaker , n)

135 for permutation in filteredPermutations:

136

137 #currentTreeTemp will remain ’a’ if the permutation was a

138 #consensus node.

139 currentTreeTemp=’a’

140
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141 #Note: in the next line one could probably use

142 #the driver as well ->

143 #filterAll(allPermutations ,[ filterNotAllAreOne ],[[ opinionSpeaker ]])

144 #instead of using a direct call.

145 if(filterNotAllAreOne(permutation ,[ opinionSpeaker ])):

146

147 #Note: this line contains the position nextSpeakerPosition.

148 currentTreeTemp = generateTreeStructure1_random(O,n,K,

permutation[nextSpeakerPosition],distanceToRoot +1,nextSpeakerPosition ,

allPermutations , distanceToComplete -1)

149 #currentTreeTemp ==’a’ if this was an agreemment node with

150 #the opinionSpeaker opinion.

151 treeStructure.append ([ permutation ,currentTreeTemp ,None])

152

153 return treeStructure

154

155

156 #This function returns a random position(uniformly selected) that

157 #indicates the next speaker. Naturally , a speaker that just spoke can not

158 #speak again.

159 def nextSpeakerPoistionAtRandom(positionSpeakerJustSpoke , n):

160

161 nextPositionOfSpeaker = positionSpeakerJustSpoke

162 while nextPositionOfSpeaker == positionSpeakerJustSpoke:

163

164 nextPositionOfSpeaker = np.random.randint(0,n)

165

166 return nextPositionOfSpeaker

167

168 #######

169 def isLeaf(treeStructure):

170

171 return (treeStructure [1]== ’a’ or treeStructure [1]== ’d’)

172

173 #Generates all the opinions at a distance.

174 #Distance is not meant to be larger than K*n

175 def getOpinionsAtDistance(treeStructure ,distance):

176 opinions =[]

177 if(distance == 0):

178 return [treeStructure [0]]

179

180 else:

181

182 if(isLeaf(treeStructure)): return []

183 for tree in treeStructure [1]:

184

185 opinionsTemp= getOpinionsAtDistance(tree ,distance -1)

186 opinions= opinions + opinionsTemp

187

188 return opinions

189

190 ###Check for consensus numbers ###################

191 ###For every simulation , the following check will take place:

192 ###The agreement -nodes per level that was generated as part of the tree structure ,

193 ###needs to be equal to the theoretical one that is known from equations.

194 ###Background , prevent us from having bugs in the generation of the tree structure.

195 ### maxDistance is meant to be K*n at most.
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196 def checkAgreement(treeStructure ,O,n,opinion ,maxDistance):

197 existAgreement = True

198 for distance in range(1, maxDistance +1):

199 for o in range(O):

200 if o== opinion:

201 existAgreement= (existAgreement and checkAgreementAtDistance(

treeStructure ,O,n,o, True ,distance))

202 else:

203 existAgreement= (existAgreement and checkAgreementAtDistance(

treeStructure ,O,n,o, False ,distance))

204

205

206 if(not existAgreement):

207 print("no agreement between the theorethical consensus node -count and

the empirical consensus node -count " )

208 print("opinion: "+ str(o))

209 print("distance: "+ str(distance))

210 exit()

211 return existAgreement

212

213 ######## This function check the same property as the previous function , but

214 #at a particular distance from the root.

215 #minimum possible distance is 1.

216 def checkAgreementAtDistance(treeStructure ,O,n,opinion , wasInitial ,distance):

217

218 #gets all the empirical opinions at a certain distance from the root

219 opinionsAtdistance= getOpinionsAtDistance(treeStructure ,distance)

220

221 #calculates the theoretical amount of consensus -nodes at a certain distance

222 #from the root , and specifying if the node

223 #has the same opinion that the initial speaker had.

224 theoreticalConsensusAtDistance= calculateNumberOfConsensusAtDistance(O,n,distance

,wasInitial)

225

226 #filter from all the empirical opinions at a distance those

227 #that has a given opinion.

228 empiricalConsensusAtDistance= filterAll(opinionsAtdistance ,[ filterAllAreOne ],[[

opinion ]])

229

230 #check that the theoretical and empirical amount of consensus at

231 #the given distance are the same.

232 return (theoreticalConsensusAtDistance == len(empiricalConsensusAtDistance))

233

234 ###This function return the total probability of all agreement -nodes.

235 ###it uses the function evalProbabilities , which does the same(for a given opinion)

236 def sumProbabilitites(treeStructure ,O):

237 probSumTotal =0

238 for o in range(0, O):

239 probSumTotal += evalProbabilities(treeStructure , o)

240

241 return probSumTotal

242

243 ###this functions return a list with the probabilites of consensus of each opinion

244 def probabilityNumeratorPerSpeaker(treeStructure ,O):

245 probPerSpeaker =[]

246 for o in range(0, O):

247 probPerSpeaker.append( evalProbabilities(treeStructure , o))
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248

249 return probPerSpeaker

250

251 ### Returns the total probability(should be 1.0)..this is just a way to check

252 #that the probability assigments are correct.

253 def checkSumProbabilities(treeStructure ,O):

254

255 totalProbability =0

256 probabilititesDenominator= sumProbabilitites(treeStructure ,O)

257 probabilitiesNumerator= probabilityNumeratorPerSpeaker(treeStructure ,O)

258

259 for p_i in probabilitiesNumerator:

260

261 totalProbability +=( p_i/probabilititesDenominator)

262

263 return totalProbability

264

265 #this function calculates the number of consensus -nodes at a distance i.

266 #The boolean isFirstSpeaker controls both cases: the consensus was the

267 #opinion of the first speaker or otherwise.

268 def calculateNumberOfConsensusAtDistance(O,n,i,isFirstSpeaker):

269 H= pow(O,n-2)

270 Q= pow(O,n-1) -1

271 if isFirstSpeaker:

272 numerator= pow(-1,i)*((H*pow(Q,i)*pow(-1,i))+(Q*(-Q+H-1)))

273

274

275 else:

276 numerator=H*pow(-1,i)*(pow(-1,i)*pow(Q,i) + Q)

277

278 return numerator /(Q*(Q+1))

279 ############ Assign probabilities to a tree structure #######

280 ############ The probability assigment add up to the unit for each branching

281 ############ probabilitites on different branchings are independent.

282 def assignProbabilitiesToTreeStructure(ts ,O,n):

283 probabilityAssigment=None

284 if(isLeaf(ts)):

285 #Note: this "doing nothing" means that the assgiment of

286 #probabilitites is made in the moment of visiting a node with offspring.

287 return

288

289 else:

290 probabilityAssigment=generateDirichletProbabilities(pow(O,n-1))

291 indexBranch =0

292 for child in ts[1]:

293 child [2]= probabilityAssigment[indexBranch]

294 indexBranch +=1

295

296 for child in ts[1]:

297 assignProbabilitiesToTreeStructure(child ,O,n)

298 ### Generate probabilities for a uniform Dirichlet distribution(given size of array)

299 def generateDirichletProbabilities(branchingSize):

300 alpha= tuple(1 for _ in range(branchingSize))

301 sample=np.random.dirichlet(alpha)

302

303 return sample

304
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305 ######################### Expectation ############

306 def theoreticalExpectation(n,O,K):

307

308 p=1.0/ pow(O,n-1)

309 l=K*n

310 if(l%2==1):

311 expectation =(p+pow(p,l+1))/(p+1)

312 else:

313 expectation =(p-pow(p,l+1))/(p+1)

314

315 return expectation

316

317 ### Generate a full permutation(given number of players + number of opinions)###

318 ###This is just the driver

319 ###Range of Opinions will be taken from zero to O-1

320 def fullPermutation(n,O):

321 #Initialization

322 fullPermutationList =[]

323 #Call to the efactual recursive function

324 fullPermutation1(O,[],n,fullPermutationList)

325 return fullPermutationList

326

327 #O:opinions. Range of Opinions will be taken from zero to O-1

328 #tempPermutation: will keep the permutation that is under_construction.

329 #lengthPermutation: keeps the length of the permutation that is still to be built.

330 #fullPermutationList: keep all the permutation that are built.

331 def fullPermutation1(O,tempPermutation ,lengthPermutation ,fullPermutationList):

332

333 if(lengthPermutation ==0):

334 #print(tempPermutation)

335 # the copy function ensure that there are not problems with the

336 #references during the backtracking.

337 fullPermutationList.append(tempPermutation.copy())

338

339 else:

340

341 for i in range(O):

342 tempPermutation.append(i)

343 fullPermutation1(O,tempPermutation ,lengthPermutation -1,

fullPermutationList)

344 tempPermutation.pop()

345

346 return

347

348 ### Generate a filtered permutation(from a full permutation + a list of filters)##

349 def filterAll(permutations ,filters ,arguments):

350 filteredPermutations =[]

351

352 for permutation in permutations:

353 fTest=True

354 for filterIndex in range(len(filters)):

355 fTest = fTest and filters[filterIndex ]( permutation ,arguments[

filterIndex ])

356

357 if(fTest):

358 filteredPermutations.append(permutation)

359 #print(filteredPermutations)
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360 return filteredPermutations

361

362 ########### Filter1(given a permutation and a particular opinion)#########

363 ########### returns true if not all the speakers have the given opinion ###

364 #Note: the == operators requires types are the same.

365 #The previous requires to keep an eye on the type of the elements when

366 #permutations are generated.

367 def filterNotAllAreOne(permutation ,params):

368 opinion=params [0]

369 for op in permutation:

370 if not op== opinion:

371 return True

372

373 return False

374

375 ########### Filter that is the negation of the previous one###

376 def filterAllAreOne(permutation ,params):

377 opinion=params [0]

378 for op in permutation:

379 if not op== opinion:

380 return False

381

382 return True

383

384 ### Filter2(given a permutation , a particular opinion , and a position)

385 ### returns true if the particular permutation has the opinion at the given position

386 def filterAtPosition(permutation ,params):

387 position=params [0]

388 opinion=params [1]

389

390 return permutation[position ]== opinion

391

392

393

394 #n,O,K

395 #Note: In the text of the disertation , profiles are

396 #described with a [O,K,n] structure(and not n,O,K as here).

397 profiles =[[2,2,1],[2,3,1],[2,4,1],[2,5,1],[2,6,1],[2,7,1],

398 [2,8,1],[2,9,1],[2,10,1],[2,11,1],

399 [2,2,2],[2,3,2],[2,4,2],[2,5,2],[2,6,2],[2,7,2],

400 [2,8,2],[2,9,2],[2,10,2],[2,11,2],

401 [2,2,3],[2,3,3],[2,4,3],[2,5,3],[2,6,3],[2,7,3],[2,8,3],[2,9,3],

402 [3,2,1],[3,3,1],[3,4,1],[3,5,1],[3,6,1],[3,7,1],[3,8,1],

403 [3,2,2],[3,3,2],

404 [3,2,3],

405 [3,2,4]]

406 numberOfExperiments =20000

407 #### Experiment1

408 def experiment1(profiles ,numberOfExperiments):

409 for profile_index in range(0,len(profiles)) :

410

411 sumAllExperiments =0

412

413 n=profiles[profile_index ][0]

414 O=profiles[profile_index ][1]

415 K=profiles[profile_index ][2]

416 for experiment_i in range(0, numberOfExperiments):
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417

418 st_i = generateTreeStructure(O,n,K,0, generateTreeStructure1)

419

420 #Note: we work with 0 as the opinion of the first speaker and with 1

421 #as the opinion of any other speaker. The use of the particular value 1

422 #does not affect the generality of this results because any other

423 #opinion will appear on a tree with the same regularity that 1 does.

424 S_0=evalProbabilities(st_i , 0)

425 S_1=evalProbabilities(st_i , 1)

426 sumAllExperiments += (S_0 -S_1)

427

428

429 print([O,K,n],sumAllExperiments/numberOfExperiments , theoreticalExpectation(n,O

,K))

430

431 #experiment1(profiles ,numberOfExperiments)

432 #### Experiment2 ##################################################################

433 def experiment2(profiles ,numberOfExperiments):

434 for profile_index in range(0,len(profiles)) :

435

436 s_0StrictlyLargerThanS_1 =0

437

438 n=profiles[profile_index ][0]

439 O=profiles[profile_index ][1]

440 K=profiles[profile_index ][2]

441 for experiment_i in range(0, numberOfExperiments):

442

443 st_i = generateTreeStructure(O,n,K,0, generateTreeStructure1)

444

445 S_0=evalProbabilities(st_i , 0)

446 S_1=evalProbabilities(st_i , 1)

447

448 if(S_0 >S_1):

449 s_0StrictlyLargerThanS_1 +=1

450

451

452 print([O,K,n],s_0StrictlyLargerThanS_1 ,numberOfExperiments -

s_0StrictlyLargerThanS_1 ,s_0StrictlyLargerThanS_1/numberOfExperiments)

453

454 #experiment2(profiles ,numberOfExperiments)

455 #### Experiment3 ##################################################################

456 def experiment3(profiles ,numberOfExperiments):

457 for profile_index in range(0,len(profiles)) :

458

459 s_0StrictlyLargerThanS_1 =0

460

461 n=profiles[profile_index ][0]

462 O=profiles[profile_index ][1]

463 K=profiles[profile_index ][2]

464 for experiment_i in range(0, numberOfExperiments):

465

466 st_i = generateTreeStructure(O,n,K,0, generateTreeStructure1_random)

467

468 S_0=evalProbabilities(st_i , 0)

469 S_1=evalProbabilities(st_i , 1)

470

471 if(S_0 >S_1):
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472 s_0StrictlyLargerThanS_1 +=1

473

474

475 print([O,K,n],s_0StrictlyLargerThanS_1 ,numberOfExperiments -

s_0StrictlyLargerThanS_1 ,s_0StrictlyLargerThanS_1/numberOfExperiments)

476

477 #experiment3(profiles ,numberOfExperiments)

478 #### Experiment4 ##################################################################

479 #n,O,K

480 #This experiment requires that for each profile ,

481 #the number of allowed opinions is a power of two.

482 """

483 profiles =[[2,4,1],[2,8,1],[2,4,2],[2,8,2],

484 [2,4,3],[2,8,3],

485 [3,4,1],[3,8,1],

486 [3,2,4]]

487 """

488 numberOfExperiments =20000

489

490 def experiment4(profiles ,numberOfExperiments):

491

492 for profile_index in range(0,len(profiles)):

493

494 #This variable keeps the scores per profile.

495 #and it is printed after the cyle of experiments

496 #corresponding to each profile.

497 record_deliberation_profile = [0] * profiles[profile_index ][1]

498

499

500

501 n=profiles[profile_index ][0]

502 #This expresses that opinions will be debated in duos.

503 O=2

504 K=profiles[profile_index ][2]

505 for experiment_i in range(0, numberOfExperiments):

506

507 #In a scenario with A allowed opinions , the variable

508 #current_profile_index_status will keep (initially) indexes

509 #from 0 to (A-1)

510 #Next , the intention is to reduce the length of

511 #current_profile_index_status to

512 #its half on each iteration of the following loop.

513 #At the end of each experiment , the variable

514 #current_profile_index_status will

515 #contain the index of the opinion that prevailed.

516 #Note: because of the position of the indexes in

517 #current_profile_index_status ,

518 #the opinion with index zero will enjoy of more debates in

519 #the first position of the presentation.

520 current_profile_index_status = list(range(0,profiles[profile_index ][1]))

521

522 debate_index =0

523 #This condition expresses the intention:

524 #at the end , we should have a single winner opinion.

525 while ((len(current_profile_index_status) != 1)) :

526

527 st_i = generateTreeStructure(O,n,K,0, generateTreeStructure1)
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528 S_0=evalProbabilities(st_i , 0)

529 S_1=evalProbabilities(st_i , 1)

530

531 if(S_0 >S_1):

532 #If the first position won ,

533 #the other one is removed.

534 current_profile_index_status.pop(debate_index +1)

535

536 if(S_1 >S_0):

537 #If the second position won ,

538 #the first one is removed.

539 current_profile_index_status.pop(debate_index)

540

541 if(S_1==S_0):

542 #If none won , one of them is selected(randomly)

543 #and removed.

544 index_to_remove= np.random.randint (0,2)

545 current_profile_index_status.pop(debate_index+index_to_remove)

546

547 debate_index = debate_index +1

548

549 #This condition allows to reset the variable debate_index

550 #after each loop of opinion reduction. This is important ,

551 #otherwise debate_index will be larger than the number of

552 #remining opinions.

553 if(debate_index +1 > (len(current_profile_index_status) -1)):

554 debate_index =0

555

556 #Once the "while" loop ends , the variable

557 #current_profile_index_status will contain a

558 #single element(it is in the 0-position).

559 #A "victory" will be recorded in the position

560 #of that element.

561 record_deliberation_profile[current_profile_index_status [0]] +=1

562

563 print([ profiles[profile_index ][1],K,n],record_deliberation_profile)

564

565

566 #experiment4(profiles ,numberOfExperiments)

567 #################################################################################

568 #This functions returns a list of probability values.

569 #Each value is meant to be used as a probability bound

570 #for the deliberation to end in the first round with a consensus

571 #equal to the opinion of the first speaker.

572 #For generating the probability values , the strategy is

573 #to move around the expectation of that value(in both directions).

574 #The returned list is ordered.

575 def getProbabilityBounds(O,n,boundProfileSize):

576

577 #This is the expectation of the probability in a branch(due to the uniform

Dirichlet distribuition).

578 theoretical_exp = 1.0/ pow(O,n-1)

579

580 boundValueProfile =[]

581

582 #We return as many values as the dopple

583 #as the value of boundProfileSize



104 APPENDIX D. SOURCE CODE: SIMULATIONS

584 #Reason: one value to the left and one value

585 #to the right.

586 for value_profile_size in range(0, boundProfileSize):

587

588 boundValueProfile.insert(value_profile_size ,theoretical_exp +(

theoretical_exp/pow(2, value_profile_size +1)))

589 boundValueProfile.insert(value_profile_size ,theoretical_exp -(

theoretical_exp/pow(2, value_profile_size +1)))

590

591 return boundValueProfile

592

593 #This function produces a dirichlet probability value(uniform)

594 #for each branch , with the additional constraint that the

595 #probability of the first speaker should be bounded above by

596 #the value contained in the bound parameter.

597 def getDirichletWithBound(O,n,bound):

598

599 #This generates a dirichlet probability value(uniform) for each branch.

600 probabilityAssigment = generateDirichletProbabilities(pow(O,n-1))

601

602 #Without loss of generality , we assume that the first value of the vector

603 #will be the value of the first speaker.

604 #This condition and the consequent actions enforce the bound.

605 #Basically , the remaining probability beyond the bound , is shared

606 #among the other edges.

607 if(probabilityAssigment [0] > bound):

608

609 #This difference will be equally divided among all the other edges.

610 diff_prob = probabilityAssigment [0]- bound

611 share_of_diff_prob = diff_prob /(pow(O,n-1) -1)

612

613 #The probability of the first speaker branch will be set to the

614 #max value defined by the bound.

615 probabilityAssigment [0] = bound

616

617 loop_index =1

618 while(loop_index < len(probabilityAssigment)):

619 probabilityAssigment[loop_index] = probabilityAssigment[loop_index]

+ share_of_diff_prob

620 loop_index = loop_index +1

621

622 #If the bound condition does not hold , the initial list of probabilities

623 #will be returned.

624 return probabilityAssigment

625

626 #This function takes two arguments:

627 #a tree and a new probability assigment

628 #for the first -level edges of the tree.

629 #It returns the same tree with the new probabilitites

630 #in place.

631 def reAssignProbabilititesFirstLevel(ts,newProbabilityAssigment):

632

633 #This is a loop index variable.

634 while_index_reassign_probabilitites = 0

635

636 #There will be a cycle for each subtree.

637 while(while_index_reassign_probabilitites < len(ts[1])):
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638

639 #The original values of the first level edges

640 #will be set to the values in newProbabilityAssigment

641 #Important: The probability value of the edge that goes

642 # to the vertex (0,0,0,...,0) is in the first position of

643 #newProbabilityAssigment. This only happens because of the

644 #order in which permutations are generated in fullPermutation1.

645 #If the agrement vertex was (1,1,1,...,1) the probability

646 #will not be at the first position of the

647 #newProbabilityAssigment list.

648 ts[1][ while_index_reassign_probabilitites ][2] = newProbabilityAssigment[

while_index_reassign_probabilitites]

649 while_index_reassign_probabilitites = while_index_reassign_probabilitites

+ 1

650

651 return ts

652

653 def experiment5(profiles ,numberOfExperiments):

654

655 for profile_index in range(0,len(profiles)):

656

657 n=profiles[profile_index ][0]

658 O=profiles[profile_index ][1]

659 K=profiles[profile_index ][2]

660

661 #This line produces a list with four elements

662 #because for getProbabilityBounds(O,n,boundProfileSize)

663 #the given value of boundProfileSize here is 2.

664 probBounds = getProbabilityBounds(O,n,2)

665

666 #This means that we not only iterate by profile ,

667 #but by probability bound too.

668 for probValBound in probBounds:

669

670 #This variable will keep track of the

671 #results of the experiment.

672 s_0StrictlyLargerThanS_1 = 0

673

674 #This ensures that we perform a number

675 #of experiments equal to numberOfExperiments.

676 for experiment_i in range(0, numberOfExperiments):

677

678 #This line generates the usual opinion tree.

679 st_i = generateTreeStructure(O,n,K,0, generateTreeStructure1)

680

681 #This line gets the new probability values for

682 #the first level of edges. The new values ensure

683 #that the probability of consensus is bounded

684 #(at the first round).

685 dirichlet_with_bound = getDirichletWithBound(O,n,probValBound)

686

687 #Next , we set the new probability values

688 #in place.

689 st_i = reAssignProbabilititesFirstLevel(st_i ,dirichlet_with_bound)

690

691 S_0=evalProbabilities(st_i , 0)

692 S_1=evalProbabilities(st_i , 1)
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693

694 if(S_0 >S_1):

695 s_0StrictlyLargerThanS_1 +=1

696

697

698 print([O,K,n,probValBound ,1.0/ pow(O,n-1)],s_0StrictlyLargerThanS_1 ,

numberOfExperiments -s_0StrictlyLargerThanS_1 ,s_0StrictlyLargerThanS_1/

numberOfExperiments)

699

700 #experiment5(profiles ,numberOfExperiments)

701 #################################################################################

702 #Note: The following functions are testing functions.

703 #They can be used to test the correctness of the generated structures:

704 #getOpinionsAtDistance(treeStructure ,distance)

705 #checkAgreement(treeStructure ,O,n,opinion ,maxDistance)

706 #checkAgreementAtDistance(treeStructure ,O,n,opinion , wasInitial ,distance)

707 #sumProbabilitites(treeStructure ,O)

708 #probabilityNumeratorPerSpeaker(treeStructure ,O)

709 #checkSumProbabilities(treeStructure ,O)

710 #calculateNumberOfConsensusAtDistance(O,n,i,isFirstSpeaker)

Listing D.1: Experiments
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