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Abstract

Machine learning has the potential to overcome challenges in radiology where tradi-
tional diagnostic methods reach their limits. This work addresses two such challeng-
ing clinical problems from two areas of radiology using different machine learning
approaches. First, differentiating premalignant from benign colorectal polyps in
computed tomography (CT) colonography. Second, continuous age predictions for
radiological age assessment based on clavicle ossification in CT.

The first clinical problem regards the differentiation of colorectal polyps to prevent
colorectal cancer, which is among the three leading causes of cancer-related death
in industrialized countries. CT colonography is a non-invasive screening method for
colorectal cancer that can reliably detect polyps. However, it cannot distinctively
differentiate benign polyps from premalignant ones that can turn into cancer. This
work aims to enable this differentiation of colorectal polyps using machine learning.

A training dataset was acquired in a secondary analysis of a previous prospective
trial. First, colorectal polyps of all size categories and morphologies were manu-
ally segmented in CT colonography scans and polyps were classified as benign (hy-
perplastic polyp or regular mucosa) or premalignant (adenoma) according to the
histopathologic reference standard. The assembled training dataset consisted of 107
colorectal polyps in 63 patients and 169 manual polyp segmentation masks in CT
colonography scans. Next, radiomic image features characterizing shape (n = 14),
gray level histogram statistics (n = 18), and image texture (n = 68) were calculated
from the segmented polyps after applying 22 image filters, resulting in 1906 feature-
filter combinations. Based on these features, a random forest classification model was
trained on the training set to predict the polyp character. Model performance was
validated in an external test dataset from a large North American multicenter CT
colonography screening trial that has been made publicly accessible via The Cancer
Imaging Archive. The test dataset consisted of 77 polyps in 59 patients and 118
manual polyp segmentation masks.

Random forest predictions for polyp class in the external test dataset had an area un-
der the receiver operating characteristic curve (ROC-AUC) of 0.91, 82 % sensitivity,
and 85 % specificity. These results demonstrate that machine learning enables the



Abstract xiii

non-invasive differentiation of benign and premalignant colorectal polyps with CT
colonography. Consequently, this allows for individual risk stratification and ther-
apy guidance through a more precise selection of patients who would benefit from
endoscopic polypectomy.

However, the radiomics approach is impracticable for integration into everyday clini-
cal workflows, because the manual polyp segmentation is time-consuming, expensive,
and has high inter-reader variability. Therefore, two convolutional neuronal network
(CNN) ensembles, SEG and noSEG, were trained on 3D CT colonography image
subvolumes from the same training set to predict the polyp class. Model SEG was
additionally trained with polyp segmentation masks. Diagnostic performance was
validated in the same external multicentre test dataset. Additionally, predictions
were analyzed with the gradient-based CNN visualization technique Grad-CAM++.

Model SEG achieved a ROC-AUC of 0.83 and 80 % sensitivity at 69 % specificity for
differentiating premalignant from benign polyps. Model noSEG yielded a ROC-AUC
of 0.75, 80 % sensitivity at 44 % specificity, and an average Grad-CAM++ heatmap
score of ≥ 0.25 in 90 % of polyp tissue. These results show that deep learning
also enables differentiating premalignant from benign colorectal polyps found in CT
colonography scans when no segmentation mask is provided. The deep learning
model noSEG learned to focus on polyp tissue for predictions without the need for
prior polyp segmentation by experts. Thus, deep learning provides the basis for a
fully automated CT colonography evaluation, as CNN polyp classification could be
combined with already established computer-aided detection algorithms for polyp
detection.

The second clinical problem regards radiological age assessment, a method for as-
sessing a person’s chronological age when the age is unknown or in serious doubt.
One particular assessment approach is to examine the ossification status of the me-
dial clavicular epiphyseal cartilages in dedicated CT scans. Next, the ossification
is compared to the skeletal maturation of case groups from a reference study with
known age. The inherent problem with that approach is the limited number of ossi-
fication stages that can be assessed with the human eye, which leads to a small set of
discrete age estimates that can be assigned to a person. Consequently, the accuracy
of these estimates is limited. To address this issue, this work investigates enabling
continuous age prediction through a deep learning model that maps a thoracic CT
scan to chronological age.

Training a deep learning model to solve this task on a full CT scan is challenging and
requires extremely large datasets and computing resources. To lower the complexity
and reduce the required resources, the first goal was to crop thoracic CT scans
around the relevant structure of interest (SOI), the sternoclavicular joints. This SOI
serves as an easy-to-identify proxy for the medial clavicular epiphyseal cartilages.
To this end, an instance of the object detection network RetinaNet was trained to
automatically locate the SOI in CT scans. This is crucial as manual SOI localization
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by experts would pose a bottleneck for creating the necessary large dataset required
to train the deep learning model, even when cropped around the relevant structures.
Therefore, CT slices containing the SOI were manually annotated with bounding
boxes around the SOI. The training dataset contained 29,656 slices from 100 CT
scans of 82 different patients. The test dataset included 30,846 slices from 110 CT
scans of 110 different patients. All slices in the training set were used to train the
RetinaNet. Afterwards, the network was applied individually to all slices of the test
dataset for SOI detection. The bounding box and slice position of the detection with
the highest classification score was used as the location estimate for the SOI inside
the CT scan.

The deep learning-based location estimate for the SOI was in a correct slice in 97/110
(88 %), misplaced by one slice in 5/110 (5 %), and not available in 8/110 (7 %) test
scans. Also, no location estimate was misplaced by more than one slice. These results
demonstrate an automated approach for annotating the medial clavicular epiphyseal
cartilages, which allows creating large training and test datasets for the development
of a deep learning model for radiological age assessment.

Building on the automated detection approach, a deep learning model for radiologi-
cal age assessment was developed. Therefore, thoracic CT scans were retrospectively
collected from the LMU University Hospital’s picture archiving and communication
system. Individuals aged 15.0 to 30.0 years examined in routine clinical practice
were included. All scans were automatically cropped around the medial clavicular
epiphyseal cartilages using the previously trained RetinaNet. The trainig dataset
contained 4,400 scans of 1,935 patients and the test dataset 300 scans of 300 pa-
tients with a balanced age and sex distribution. An adaption of the popular neural
network ResNet was trained to predict a person’s chronological age based on these
scans. In order to evaluate model performance, this work introduces an optimistic
human reader performance estimate for an established reference study method for
radiological age assessment.

The mean absolute error (MAE) of deep learning model predictions for chronological
age was 1.65 years, and the highest observed absolute error was 6.40 years for females
and 7.32 years for males. However, performance in these high-error cases could be
attributed to norm-variants or pathologic disorders. The mean absolute error (MAE)
of the human reader estimate was 1.84 years and the highest calculated absolute error
was 3.40 years for females and 3.78 years for males. These results demonstrate that
the developed deep learning approach for continuous age prediction on CT volumes
showing the clavicles outperforms the human reader estimate on average.

In summary, this work demonstrates proof-of-concept machine learning approaches
that address two clinical problems in radiology: colorectal cancer screening with CT
colonography and radiological age assessment based on clavicle ossification in CT.
The approaches successfully solved challenging problems that are otherwise difficult
to overcome for conventional imaging diagnostics.



Zusammenfassung

Maschinelles Lernen hat das Potenzial Herausforderungen in der Radiologie zu be-
wältigen bei denen herkömmliche Diagnosemethoden an ihre Grenzen stoßen. Diese
Arbeit behandelt zwei anspruchsvolle klinische Probleme aus zwei Bereichen der Ra-
diologie unter Verwendung verschiedener Ansätze des maschinellen Lernens. Erstens,
die Unterscheidung zwischen prämalignen und benignen kolorektalen Polypen in der
Computertomographie (CT) Kolonographie. Zweitens, kontinuierliche Altersvorher-
sagen für die radiologische Altersbestimmung auf Grundlage der Verknöcherung des
Schlüsselbeins in der CT.

Das erste klinische Problem ist die Unterscheidung kolorektaler Polypen im Rahmen
der Darmkrebsvorsorge. Darmkrebs zählt in Industrieländern zu den drei häufigsten
krebsbedingten Todesursachen. Die CT-Kolonographie ist eine nicht-invasive Metho-
de zur Früherkennung von Darmkrebs, mit der Polypen zuverlässig erkannt werden
können. Damit lässt sich jedoch nicht eindeutig zwischen gutartigen Polypen und
prämalignen Polypen, welche sich zu Krebs entwickeln können, unterscheiden. Diese
Arbeit hat das Ziel diese Unterscheidung von kolorektalen Polypen durch maschinel-
les Lernen zu ermöglichen.

Ein Trainingsdatensatz wurde im Rahmen einer Sekundäranalyse einer früheren pro-
spektiven Studie angefertigt. Zunächst wurden kolorektale Polypen aller Größenka-
tegorien und Morphologien in CT-Kolonographie-Scans manuell segmentiert und die
Polypen gemäß dem histopathologischen Referenzstandard als gutartig (hyperplas-
tischer Polyp oder normale Mukosa) oder prämaligne (Adenom) klassifiziert. Der
Trainingsdatensatz bestand aus 107 kolorektalen Polypen von 63 Patienten und
169 manuellen Polypen-Segmentierungsmasken in CT-Kolonographie-Scans. Aus den
segmentierten Polypen wurden nach Anwendung von 22 Bildfiltern radiologische
Bildmerkmale berechnet, die Form (n = 14), Graustufenhistogramm-Statistik (n =
18) und Bildtextur (n = 68) charakterisieren, was insgesamt 1906 Merkmals-Filter-
Kombinationen ergab. Auf Grundlage dieser Merkmale wurde ein Random-Forest-
Klassifizierungsmodell auf dem Trainingssatz trainiert, um den Polypencharakter
vorherzusagen. Die Unterscheidungsfähigkeit des Modells wurde anhand eines ex-
ternen Testdatensatzes aus einer großen nordamerikanischen multizentrischen CT-
Kolonographie-Screeningstudie validiert, die über das Cancer Imaging Archive öf-
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fentlich zugänglich gemacht wurde. Der Testdatensatz bestand aus 77 Polypen von
59 Patienten und 118 manuellen Polypensegmentierungsmasken.

Die Random-Forest-Vorhersagen für die Polypenklasse im externen Testdatensatz
hatten eine Fläche unter der Receiver Operating Characteristic Curve (ROC-AUC)
von 0,91, eine Sensitivität von 82 % und eine Spezifität von 85 %. Diese Ergebnisse
zeigen, dass maschinelles Lernen die nicht-invasive Differenzierung von benignen und
prämalignen kolorektalen Polypen mit der CT-Kolonographie ermöglicht. Eine ge-
nauere Auswahl von Patienten die von einer endoskopischen Polypektomie profitieren
würden, ermöglicht eine individuelle Risikostratifizierung und Therapieführung.

Der Radiomics-Ansatz ist für die Integration in den klinischen Alltag jedoch nicht
praktikabel, da die manuelle Polypensegmentierung zeitaufwändig und teuer ist und
eine hohe Variabilität zwischen den radiologischen Leserinnen und Lesern aufweist.
Daher wurden zwei Ensembles von Convolutional Neural Networks (CNN), SEG
und noSEG, auf 3D-CT-Kolonographie-Subvolumina aus demselben Trainingssatz
trainiert, um die Polypenklasse vorherzusagen. Das Modell SEG wurde zusätzlich
mit Polypen-Segmentierungsmasken trainiert. Die Fähigkeit korrekte Diagnosen zu
erstellen wurde mit demselben externen multizentrischen Testdatensatz validiert. Zu-
sätzlich wurden die Vorhersagen mit der gradientenbasierten CNN-Visualisierungs-
technik Grad-CAM++ analysiert.

Das Modell SEG erreichte eine ROC-AUC von 0,83 und 80 % Sensitivität bei 69 %
Spezifität für die Unterscheidung zwischen prämalignen und benignen Polypen. Das
Modell noSEG lieferte eine ROC-AUC von 0,75, 80 % Sensitivität bei 44 % Spezifität
und einen durchschnittlichen Grad-CAM++ Heatmap-Wert von ≥ 0,25 bei 90 % des
Polypengewebes. Diese Ergebnisse zeigen, dass Deep Learning auch dann eine Un-
terscheidung zwischen prämalignen und benignen kolorektalen Polypen ermöglicht,
wenn keine Segmentierungsmaske vorhanden ist. Das Deep-Learning-Modell noSEG
hat gelernt, sich für Vorhersagen auf Polypengewebe zu konzentrieren, ohne dass eine
vorherige Segmentierung der Polypen durch Experten erforderlich ist. Deep Learning
bietet somit die Grundlage für eine vollautomatische CT-Kolonographie-Auswertung,
da die CNN-Polypenklassifizierung mit bereits etablierten computergestützten Algo-
rithmen zur Polypenerkennung kombiniert werden könnte.

Das zweite klinische Problem betrifft die radiologische Altersbestimmung, eine Me-
thode zur Schätzung des chronologischen Alters einer Person, wenn das Alter un-
bekannt ist oder ernsthaft angezweifelt wird. Eine bestimmte Schätzungsmethode
ist die Untersuchung des Verknöcherungsstatus der Epiphysenknorpel des mittleren
Schlüsselbeins in CT-Scans. Die Verknöcherung wird kategorisiert und anschließend
mit der Skelettreifung von Fallgruppen aus einer Referenzstudie mit bekanntem Al-
ter verglichen. Das inhärente Problem bei diesem Ansatz ist die begrenzte Anzahl
von Verknöcherungsstadien, die mit dem menschlichen Auge beurteilt werden kön-
nen, was zu einer kleinen Anzahl von diskreten Altersschätzungen führt, die einer
Person zugeordnet werden können. Folglich ist die Genauigkeit dieser Schätzungen
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begrenzt. Daher wird in dieser Arbeit die Möglichkeit einer kontinuierlichen Alters-
vorhersage durch ein Deep-Learning-Modell untersucht, das einen Thorax-CT-Scan
auf das chronologische Alter abbildet.

Das Training eines Deep-Learning-Modells zur kontinuierlichen Altersvorhersage auf
einem vollständigen CT-Scan ist eine Herausforderung und erfordert extrem große
Datensätze und Rechenressourcen. Um die Komplexität der Problemstellung zu ver-
ringern und die erforderlichen Ressourcen zu reduzieren, bestand das erste Ziel darin,
Thorax-CT-Scans um die relevante Struktur von Interesse (SOI), die Sternoklavi-
kulargelenke, herum auszuschneiden. Diese SOI dient als einfach zu identifizierende
Stellvertreterregion für die Epiphysenknorpel des medialen Schlüsselbeins. Zu diesem
Zweck wurde eine Instanz des Objekterkennungsnetzes RetinaNet darauf trainiert,
die SOI in CT-Scans automatisch zu lokalisieren. Dieser Schritt ist von entschei-
dender Bedeutung, da die manuelle Lokalisierung der SOI durch Experten einen
Engpass für die Erstellung des erforderlichen großen Datensatzes darstellen würde,
der für das Training eines Deep-Learning-Modells benötigt wird, selbst wenn die re-
levanten Strukturen ausgeschnitten werden. Daher wurden die CT-Schichten, die die
SOI enthielten, manuell mit quadratischen Kästchen um die SOI herum markiert.
Der Trainingsdatensatz enthielt 29.656 Schichten aus 100 CT-Scans von 82 verschie-
denen Patienten. Der Testdatensatz umfasste 30.846 Schichten von 110 CT-Scans
von 110 verschiedenen Patienten. Alle Schichten des Trainingsdatensatzes wurden
für das Training des RetinaNet verwendet. Anschließend wurde das Netzwerk ein-
zeln auf allen Schichten des Testdatensatzes zur SOI-Erkennung angewendet. Das
Kästchen und die Schichtposition der Erkennung mit der höchsten Klassifizierungs-
punktzahl wurden als Schätzung für die Position der SOI innerhalb des CT-Scans
verwendet.

Die auf Deep Learning basierende Positionsschätzung für die SOI befand sich in
97/110 (88 %) in einer korrekten Schicht, war in 5/110 (5 %) eine Schicht daneben und
in 8/110 (7 %) Testscans nicht verfügbar. Außerdem war keine Positionsschätzung
um mehr als eine Schicht verschoben. Diese Ergebnisse zeigen einen automatisierten
Ansatz für die Lokalisierung der medialen klavikulären Epiphysenknorpel, welcher
die Erstellung großer Trainings- und Testdatensätze für die Entwicklung eines Deep-
Learning-Modells zur radiologischen Altersbestimmung ermöglicht.

Aufbauend auf dem automatischen Erkennungsansatz wurde ein Deep-Learning-
Modell für die radiologische Altersbestimmung entwickelt. Dazu wurden Thorax-CT-
Aufnahmen retrospektiv aus dem Bildarchivierungs- und Kommunikationssystem des
Universitätsklinikums der LMU gesammelt. Eingeschlossen wurden Personen im Al-
ter von 15,0 bis 30,0 Jahren, die in der klinischen Routinepraxis untersucht wurden.
Alle Scans wurden mit Hilfe des zuvor trainierten RetinaNet automatisch um die
medialen Epiphysenknorpel des Schlüsselbeins augeschnitten. Der Trainingsdaten-
satz enthielt 4.400 Scans von 1.935 Patienten und der Testdatensatz 300 Scans von
300 Patienten mit einer ausgewogenen Alters- und Geschlechtsverteilung. Eine an-
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gepasste Version des bekannten neuronalen Netzes ResNet wurde trainiert, um das
chronologische Alter einer Person auf der Grundlage dieser Scans vorherzusagen.
Um die Genaugikeit des Modells besser bewerten zu können, wird in dieser Arbeit
eine optimistische Schätzung der Genauigkeit einer etablierte Referenzstudienmetho-
de zur radiologischen Altersbestimmung von menschlichen radiologischen Leserinnen
und Lesern eingeführt.

Der mittlere absolute Fehler (MAE) der Vorhersagen des Deep-Learning-Modells für
das chronologische Alter betrug 1,65 Jahre, und der höchste beobachtete absolute
Fehler lag bei 6,40 Jahren für Frauen und 7,32 Jahren für Männer. Die Ungenauigkeit
in diesen Fällen mit hohem Fehler konnte jedoch auf Norm-Varianten oder patho-
logische Störungen zurückgeführt werden. Der mittlere absolute Fehler (MAE) der
Schätzung der menschlichen Leserinnen und Leser betrug 1,84 Jahre, und der höchs-
te berechnete absolute Fehler lag bei 3,40 Jahren für Frauen und 3,78 Jahren für
Männer. Diese Ergebnisse zeigen, dass der entwickelte Deep-Learning-Ansatz für die
kontinuierliche Altersvorhersage auf CT-Volumina der Klavikula die Genauigkeit der
Altersschätzung der menschlichen Leserinnen und Leser im Durchschnitt übertrifft.

Zusammenfassend zeigt diese Arbeit verschiedene Machbarkeitsnachweise für ma-
schinelles Lernen, die sich mit zwei klinischen Problemen in der Radiologie befassen:
Darmkrebs-Screening mit CT-Kolonographie und radiologische Altersbestimmung
auf der Grundlage der Verknöcherung des Schlüsselbeins in der CT. Die Ansätze
lösten erfolgreich anspruchsvolle Probleme, die bei der konventionellen bildgebenden
Diagnostik sonst nur schwer zu bewältigen sind.
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Machine learning has been part of radiology for decades and already demonstrated
successful applications in the 1990s [1–5]. Research in the radiology domain pro-
gressed alongside machine learning in general, which gained momentum with the
introduction of the backpropagation algorithm for training neural networks in 1986
[6]. However, it was the groundbreaking performance of the convolutional neural
network (CNN) AlexNet [7] in the 2012 ImageNet Challenge [8] that sparked the de-
velopment of the countless machine learning applications existing today [9]. The field
has since witnessed a trend of ever larger models that can solve increasingly complex
tasks [10]. The rise of successful machine learning applications was made possible by
the availability of previously missing key ingredients: large structured datasets with
labeled examples to learn from and powerful computing resources for model training
[5]. Especially deep learning benefitted from evolving multi-core GPUs designed for
parallel matrix multiplications [7]. The exceptional opportunities demonstrated by
radiomics in 2014 [11] additionally increased the interest of radiology departments
worldwide in machine learning and its potential for medical image analysis.

A particular promise of machine learning to radiology is to push the boundaries of
traditional imaging diagnostics and overcome challenges where traditional methods
reach their limits. On that basis, this work investigated two clinical problems from
two different areas of radiology and demonstrates machine learning approaches that
surpass classical methods. First, the differentiation of premalignant from benign
colorectal polyps in computed tomography (CT) colonography with machine learning
[12, 13]. Second, improving the accuracy of radiological age assessment based on
clavicle ossification in CT by enabling continuous age predictions using deep learning
[14, 15].

CT colonography Colorectal cancer is one of the three leading causes of cancer-
related death in industrialized countries [16]. It originates mostly from adenomatous
polyps that slowly develop into cancer over the course of several years [17]. Early
detection and removal of these premalignant adenomatous polyps can significantly
reduce the incidence and mortality of colorectal cancer [18]. CT colonography is a
non-invasive screening method for colorectal cancer and can detect polyps reliably
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[19]. However, there is currently no definite way to differentiate between benign
and precancerous polyp characters [12]. Instead, polyp size is used as a surrogate
indicator and the resection of colorectal polyps larger than 6 mm is suggested [20,
21]. To address the need for polyp differentiation, this work introduces two machine
learning approaches for the classification of colorectal polyps based on CT colonog-
raphy scans [12, 13]. The goal is to enable individual risk stratification and therapy
guidance after CT colonography examinations.

In the first approach, a random forest classification model is trained to predict the
polyp character based on radiomic image features, calculated from CT colonography
scans using manually annotated polyp segmentation masks [12]. The random forest is
an ensemble of decision trees, trained on bootstrap resamples of the training data and
randomly selected feature subsets [22]. The feature-extraction technique radiomics
[23] is used to transform CT colonography scans into a vector of quantitative imaging
biomarkers that can be processed by the random forest. Radiomics is often paired
with random forests because they work well with high-dimensional inputs, provide
error estimates and allow for feature importance analysis [22]. Thereby random
forests give insight into the decision making process, which is particularly valuable in
a sensitive environment like medicine. Additionally, annotated datasets for intricate
medical findings, such as lesion character of small colorectal polyps, are often too
small and inadequate for the development of more complex deep learning models.

In addition to the radiomics approach, this work also investigates a CNN for polyp
classification based on CT colonography images [13]. CNNs are a particular group
of deep learning algorithms that can directly map image inputs to clinical endpoints
without relying on segmentation masks for classification [24]. These networks use
convolutional units with a receptive field of view that are shifted across the input
data to calculate features [25], and have been widely successful in image- and signal-
processing [26]. Additionally, gradient-visualization techniques enable the highlight-
ing of regions in the input image that are potentially important for model predictions,
offering an intuitive form of model interpretability to radiologists [27]. The manual
polyp segmentation in the radiomics approach is time-consuming and expensive and
has high inter-reader variability [28], which makes it impracticable for the integra-
tion into everyday clinical workflows. Deep learning on the other hand provides the
basis for a fully automated CT colonography evaluation, as CNN polyp classification
could be combined with already established computer-aided detection algorithms for
polyp detection [29, 30].

Despite these advantages, deep learning in radiology faces certain challenges. One
major obstacle is the shortage of large, structured datasets with accurate ground-
truth labels for models to learn from. In the medical domain, data annotation
typically relies on human experts, which makes it a time-consuming and expensive
process. Consequently, only a fraction of the vast amount of medical images stored
in hospital databases worldwide is sufficiently labeled to address narrowly focused
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medical research problems. Existing datasets are often too small to even fully exhaust
the capabilities of established methods like CNNs. State-of-the-art deep learning
techniques such as transformers [31] or diffusion models [32] require even more data,
which dramatically limits their applicability in radiology.

Radiological age assessment A specific medical imaging problem where the avail-
ability of labeled data is less of an issue is radiological age assessment, a method at
the intersection of radiology and forensic medicine to estimate the chronological age
in living subjects based on radiographs or CT scans. The ground-truth label age is
a parameter that is recorded for every patient prior to an examination in a hospital
and is easily accessible in the picture archiving and communication system (PACS).

Age is an essential part of a person’s identity, especially for a child, which by defi-
nitions of the United Nations and the European Union is any person below the age
of 18 [33, 34]. Age determines the relationship between the state and the individual,
and changes in age can trigger the acquisition or loss of rights and obligations [35].
When a person’s age is unknown or in serious doubt, a state may need to assess the
age, e.g., to determine whether they are an adult or a child.

One approach to age assessment is the radiological examination of the ossification sta-
tus of the medial clavicular epiphyseal cartilages in CT scans [36]. In these methods,
clinicians assess a clavicle ossification stage using defined criteria for differentiating
between phases of skeletal maturation. The age of the individual in question is then
assumed to be similar to a case group with similar skeletal maturation features. One
inherent problem with that approach is the limited accuracy due to the limited num-
ber of ossification stages that can be assessed with the human eye, leading to a small
available set of discrete age estimates. To address this issue, this work investigates
mapping thoracic CT scans to chronological age using a CNN in order to enable
continuous age prediction [15]. Additionally, we compare the CNN approach to a
favorable estimate of the human-reader performance for the widely acknowledged
reference-study method of Kellinghaus et al. [36–39]. The goal is to improve age
assessment accuracy compared to the reference-study method.

The training process for diagnostic deep learning models benefits from inputs that are
cropped to the region of interest (ROI) containing information relevant to solving the
problem. Therefore, it is advisable to first localize the medial clavicular epiphyseal
cartilages within the thoracic CT scans before training the age assessment CNN [40].
However, localization by human experts would be time-consuming and expensive,
which would obstruct the creation of large datasets [41]. This work demonstrates
an object detection approach for the automated localization of the clavicles in the
thoracic CT scans used for age assessment [14]. The goal is to remove the human
annotation bottleneck and enable large labeled datasets that facilitate the training
of suitable deep learning models to potentially improve radiological age assessment.
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2.1 X-ray Computed Tomography

X-ray imaging is not only the most common form of medical imaging but also the
oldest. After Wilhelm C. Röntgen had discovered X-rays as a “new type of radiation”
in 1895 [42], they were quickly utilized to acquire the first documented radiographic
image, a projection of the hand of his wife Anna B. Röntgen (Figure 2.1) [43]. The
energy of X-ray photons is high enough that they can penetrate human tissue and
enables imaging inner structures of a human.

Figure 2.1: First documented X-ray showing the hand of Anna B. Röntgen. Rights:
Deutsches Röntgen-Museum [43].

A particular medical imaging technique based on X-rays is called X-ray computed
tomography (CT) (from Greek τoµη, tome ‘section’, and γραϕηιν, graphein ‘to
write’) and can create three-dimensional reconstructions of an object and its interior.
Allan M. Cormack first proposed the technique in 1963 as the Representation of a
Function by Its Line Integrals, with Some Radiological Applications [44]. Following
up on his idea, the object is irradiated with a beam of X-rays in order to acquire
line integrals of the imaged quantity, the X-ray attenuation coefficient. In simple
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radiographs or 2D X-ray projection images, the X-ray attenuating effects (e.g. tissue
density) are superimposed and the final image contains no depth information. CT
reconstructs this depth information by acquiring multiple projections from different
angles, which enables the examination of patients in three dimensions. This extra
information can reveal potentially important details in organs, joints, blood vessels,
and more. Because of CT’s impact on the field of medicine, Allan M. Cormack and
Godfrey N. Hounsfield were awarded the 1979 Nobel Price in Physiology or Medicine1

for The development of computer assisted tomography.

This section is a short introduction to the basic principles of X-ray CT. It gives an
overview of X-ray generation (2.1.1), X-ray interaction with matter (2.1.2), X-ray de-
tection (2.1.3) and finally image acquisition (2.1.4), including image reconstruction.
If not stated otherwise, the information in this section is based on the textbooks
Computed Tomography by Buzug [45] and Strahlenschutz für Röntgendiagnostik und
Computertomografie by Grunert [46].

2.1.1 X-ray Generation

X-rays are high-energy electromagnetic waves and can be generated by decelerating
fast electrons in an anode material with positively charged atoms, e.g. tungsten,
molybdenum, or copper. The wavelength of X-rays is roughly between 10−8 m and
10−13 m.

Utube

cathode
filament anode

vacuum chamber

X-ray photon

free electron

Figure 2.2: Schematic illustration of a simple X-ray tube. The cathode filament
is heated until the electrons bound inside become free and are accelerated in the
electromagnetic field controlled by the tube voltage Utube. When the accelerated
electrons rapidly decelerate in the anode, X-rays are generated as Bremsstrahlung.

The first step to generate X-rays is creating fast free electrons. This is typically
1https://www.nobelprize.org/prizes/medicine/1979/summary/
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performed with an X-ray tube (Figure 2.2), which consists of a cathode and an
anode inside a vacuum chamber. On the cathode end is a filament, e.g. made of
thoriated tungsten (melting point = 3400 ◦C), that is heated to the point where the
kinetic energy of the electrons in the filament is high enough to overcome the binding
energy. This allows thermal electrons to escape the cathode filament and become
free electrons which can be accelerated by an electromagnetic field. That field is
created by applying a so-called tube voltage Utube between the anode and cathode,
which also determines the kinetic energy of the electron neglecting relativistic effects

eUtube =
1

2
mev

2 . (2.1)

Typical tube voltages found in medical X-ray imaging are between 25 kV and 125 kV.

To generate X-rays, the fast accelerated electrons are slowed down abruptly in the
anode material. This deceleration is a combination of different processes and leads
to the emission of a continuous spectrum of Bremsstrahlung photons that is su-
perimposed by photons from characteristic emission, the Auger process, and direct
electron-nucleus collisions (Figure 2.3).

Figure 2.3: X-ray spectra of a tungsten anode for electrons accelerated in an electric
field with voltages from 80 to 140 keV. The anode was at a 10◦ angle and the spectrum
was filtered by 2 mm of aluminum. The spectra were modeled with the open-source
toolkit SpekPy (version 2.0.8) [47].

Electron interaction with matter During deceleration, almost all of the traveling
electrons’ kinetic energy is turned into heat (roughly 99 %) and taken up by the
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anode. However, while the electrons are stopped by the Coulomb fields of the atoms,
a small part of their energy is lost to Bremsstrahlung and emitted as a continuous
X-ray spectrum (Figure 2.3). The closer the electrons get to the nuclei of the atoms
in the anode material, the more energy they lose during deceleration and the higher
the frequency of the Bremsstrahlung photons get. Typically, a single decelerated
electron causes the emission of multiple photons. Very rarely, an electron can also
convert its entire energy into a single photon in a process called direct electron-
nucleus collision. These photons represent the upper end of the X-ray spectrum and
have the maximum energy

Emax = hνmax = eUtube . (2.2)

Therefore, the tube voltage determines the upper limit of the energy interval of the
generated X-ray spectrum, and the intensity of the X-ray spectrum is controlled by
the total number of electrons, i.e. the anode current.

The continuous Bremsstrahlung spectrum is superimposed by so-called characteristic
emission (Figure 2.3). When an electron ionizes an atom of the anode material by
removing an inner electron, an electron of one of the higher shells fills the vacant
position. Consequently, photons with quantized energy are emitted that can be seen
as distinct intensity lines of high photon intensity in the X-ray spectrum and are
characteristic of each anode material. Another interaction is the Auger process. It
is seen as a non-radiation process and describes a scenario where a photon, that
otherwise would have been characteristic emission, is absorbed by the atom and
another electron is emitted instead.

2.1.2 X-ray Interaction with Matter

X-rays have a good capability to penetrate matter, including human tissue. During
penetration, the intensity of an X-ray beam decreases exponentially due to different
absorption and scattering effects. In CT the goal is to measure this attenuation
of X-ray beam intensity caused by the patient from different angles and use the
information to reconstruct the interior structure of the patient. The most important
photon-matter interaction mechanisms are briefly described in this section: Rayleigh
scattering, photoelectric absorption, Compton scattering, and pair production.

Rayleigh scattering Rayleigh (or Thomson) scattering is an elastic scattering
process. No energy is transferred and only the photon direction is changed. It
requires the diameter of the scattering nucleus to be small compared to the photon
wavelength. In the classical model of Rayleigh scattering, an incoming photon causes
bound electrons of an atom in the penetrated material to oscillate. This oscillation
creates a dipole, which then radiates a photon in an arbitrary direction. The Rayleigh
scattering cross-section is given by

σThomson ∝ ω4

(ω2 − ω2
0)

2
, (2.3)
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Figure 2.4: Attenuation coefficient for photons in water (H20) for incident photon
energies typically found in medical imaging. Major effects contributing to the total
attenuation are Rayleigh scattering, photoelectric absorption, Compton scattering,
and pair production. Photon cross sections were calculated with the XCOM: Photon
Cross Sections Database [48].

where ω0 is the natural frequency of the bound electrons [45]. This scattering pro-
cess plays an important role in photon attenuation at low energies where ω < ω0.
However, at high energies other competing processes become dominant.

Photoelectric absorption Photoelectric absorption is another photon-matter in-
teraction, in which a photon is entirely absorbed by an atom. It can occur when
the binding energy of the electron is less than the photon energy. As a result of
the photon absorption, the atom is ionized. An electron is kicked off the atom and
uses the difference between photon energy and binding energy as kinetic energy to
travel as a photoelectron. This process is known as the photoelectric effect [49]. The
absorption coefficient has been demonstrated to depend on the atomic number Z of
the penetrated material and the frequency of the incident photon ω:

σPhoto ∝ Z4

ω3
. (2.4)

The vacancy left behind by the photoelectron is filled with an electron from a higher
shell or the electron band. During this recombination process, a photon is emitted
and causes characteristic X-ray fluorescence. In case the energy of the emitted photon
is high enough to remove other electrons, the previously described Auger process
(Section 2.1.1) is triggered.
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Compton scattering Compton scattering is an inelastic scattering process in
which an incoming photon collides with a quasi-free electron. The amount of en-
ergy that is transferred from the photon to the electron depends on the scattering
angle θ of the photon. The wavelength shift is given by

∆λ =
h

mec
(1− cos θ) . (2.5)

Significant parts of the scattered photons are scattered at an angle θ > 90 ◦ and
are subsequently traveling backward. Because it is an interaction with quasi-free
electrons, e.g. weakly bound valence electrons in the outer shell, the cross-section
does not depend on the atomic number of the penetrated material.

Pair production The final interaction mechanism to be discussed in this section is
pair production. Photons with an energy above 2× 511 keV have a chance to create
an electron-positron pair inside the Coulomb field of a nucleus or an electron. When
the positron collides with an electron, they annihilate and two photons are emitted
in opposite directions.

𝛼 ∝ 𝜆! 𝛼 ∝ 𝑍" Δ𝐼
𝐼 ∝ Δ𝑙

𝛼 ∝ 𝜌

wavelength atomic number density thickness

𝐼!

𝐼

Figure 2.5: Schematic illustration of the simplified relationship between X-ray at-
tenuation and incident photon properties, as well as material properties. The at-
tenuation is higher for longer wavelengths, higher atomic numbers, higher material
density, and thicker materials. Adapted from [50] and [45].

In summary, the attenuation of X-ray photons in matter depends on the wavelength
of the incident photons, as well as the atomic number, mass density, and thickness
of the penetrated material. This behavior is schematically illustrated in Figure 2.5.

Beer-Lambert Law A common equation used to calculate photon beam attenua-
tion is the Beer-Lambert law (Equation 2.6). It describes the intensity I of a photon
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beam after it has traveled a distance x through an object with the material-dependent
attenuation coefficient µ as:

I(x) = I0e
−µx . (2.6)

The Beer-Lambert law makes several simplification assumptions. First, it is based
on a classical scattering model and no quantum effects are considered. Second, the
penetrated object is assumed to be homogenous and all beam intensity-decreasing
interactions are summarized in a single, constant attenuation coefficient µ. Finally,
the law only holds for a pencil-beam geometry of monochromatic photons, where
each scattered photon is fully removed from the beam.

In reality, the patients radiated in medical examinations are not homogenous, but
are complex compositions of tissues, organs, and blood. Therefore, the attenuation
is spatially dependent, µ(x). Additionally, the photon-matter interactions described
earlier depend on the incident photon energy. Because the energy of the photons de-
creases while traveling through the patient, the attenuation coefficient is also energy
dependent, µ(E). Considering both effects, the Beer-Lambert may be extended to:

I(x) =

∫ E

0
I0(E)e−

∫ l
0 µ(E,x)dxdE . (2.7)

However, the energy dependence is typically neglected in CT image reconstruction,
which leads to so-called beam hardening artifacts in the reconstructed image.

2.1.3 X-ray Detection

X-ray detection in CT scanners is an indirect process and relies on photon-matter
interaction products. The efficiency of detection is determined by two factors: geo-
metric efficiency and quantum efficiency. Geometric efficiency is the relative active
detector area. It is calculated by dividing the active area by the total exposed area,
which includes parts like the antiscatter grid (Figure 2.6) where no photons can
be detected, and that thus lower geometric efficiency. Quantum efficiency refers to
the probability that a photon hitting the detector will be detected and depends on
the incident photon energy, as well as the detector material. There are different
technologies for detecting X-rays in CT scanners, but this brief overview focuses on
energy-integrating detectors (EIDs). For EIDs, there are two basic detector types:
solid-state scintillators and high-pressure gas ionization detectors.

Today, most detectors in CT scanners are scintillator detectors (Figure 2.6), which
consist of a scintillator material and a photon detector. When a high-energy X-ray
photon hits the scintillator material, it is converted into long-wavelength scintillation
light, which is then converted into an electronic signal by a photodiode. This signal
is stored in a capacitor, allowing for the integration of energy from multiple photons.
After a certain time, the energy stored in the capacitor is read out and used as the
intensity signal for the respective detector pixel.
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X-ray beam

scintillator 
material photodiodeantiscatter grid

long wavelength 
photon

Figure 2.6: Schematic illustration of a solid-state scintillator X-ray detector.
Adapted from [45].

Another recently developed type of detector is the photon-counting detector (PCD),
which offers several advantages over EIDs such as lower noise and reduced required
dose. However, the clinical availability of PCDs is still limited [51].

2.1.4 Image Acquisition

This section briefly introduces CT image acquisition and reconstruction. The im-
age acquisition process is described using a parallel pencil beam geometry and 2D
data for simplicity. However, CT scanners in clinical practice today operate slightly
differently and typically use a spiral and 3D cone-beam geometry.

The goal of CT is to determine the object function f(x, y), which in this case is
the spatially dependent attenuation coefficient µ(x, y). It describes how much X-ray
radiation is absorbed by the patient’s body at each point. The coordinate system
(x, y) is the fixed patient coordinate system. The X-ray source emits a single, needle-
like X-ray beam and is moved linearly on the source (or detector) axis ξ in small
steps. The detector is moved along with the source respectively. The X-ray attenu-
ation caused by the patient at each point ξ is measured, yielding a one-dimensional
projection or radiograph for each projection angle γ. The acquisition of a single
projection is illustrated schematically in Figure 2.7.

Mathematically, the attenuation of a single pencil beam is given by the projection
integral p and depends on the material depth ∆η, the position of the X-ray source
(or the detector) ξ, and the projection angle γ:

pγ(ξ) =

∫ s

0
µ(ξ, η)dη (2.8)

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(γ) + y sin(γ)− ξ)(ξ, η)dxdy . (2.9)
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Figure 2.7: Schematic illustration of the acquisition of a single projection in CT. A
number of parallel pencil beams penetrate the object with the spatially dependent
attenuation coefficient µ(ξ, η) at an angle γ. A detector measures the attenuated
beam intensity behind the object at each position ξ, yielding the projection (or one-
dimensional radiograph) pγ(ξ).

The coordinate system (ξ, η) describes the rotating scanning system. Projection data
is acquired by measuring projection integrals from parallel X-ray beams for angles
γ between 0 and 180 ◦. Angles above 180 ◦ project the X-ray path back through the
object and provide no additional information. A full set of projections pγ(ξ) is called
the Radon transform or sinogram of the image.

Fourier slice theorem So far, the process of measuring projections pγ(ξ) has been
described. However, the goal of CT is to determine f(x, y). The so-called Fourier slice
theorem enables a direct method to reconstruct an image of f(x, y) based on pγ(ξ).
The theorem states that the one-dimensional Fourier transform of the projection
pγ(ξ) −→ Pγ(q) can be identified with a radial line in the Cartesian Fourier space
F (u, v) of the object at the projection angle γ of the corresponding measurement:

F (u, v) = Pγ(q) . (2.10)

This enables recovering the object f(x, y) in spatial coordinates by applying an
inverse two-dimensional Fourier transform to F (u, v), which in turn can be derived
from the Radon transform of the object f(x, y), i.e. the measured projections. The
relationship between the object space, projection space (Radon space), and Fourier
space is summarized in Figure 2.8.

The steps to reconstruct a two-dimensional CT image slice using the Fourier slice
theorem are as follows:



2.1 X-ray Computed Tomography 13

object space

Radon space Fourier space

𝒑𝜸(𝝃) 𝑭(𝒖, 𝒗)

𝒇(𝒙, 𝒚)

ℱ"#

ℱ"#
$"

ℛ%# ℱ%#

ℱ%#
$"ℛ%#

$"

Ra
do

n
tra

ns
for

m

Fourier transform

Fourier-slice theorem

Figure 2.8: Illustration of the relationship between object space, Radon space, and
Fourier space. According to the Fourier slice theorem, the Fourier transform of the
object’s Radon transform is equal to the inverse Fourier transform of the object. The
object f(x, y) is the Shepp-Logan phantom [52].

1. Acquire the Radon transform pγ(ξ) of the object f(x, y) through measuring
X-ray projections

2. Calculate the Fourier transform of the Radon transform, pγ(ξ) −→ Pγ(q)

3. Apply the Fourier slice theorem to transform P into the Fourier transform of
f , Pγ(q) −→ F (u, v)

– This step requires a change in coordinates from polar coordinates (q, γ)
to Cartesian coordinates (u, v) through the substitution

u = q cos(γ) (2.11)
v = q sin(γ) . (2.12)
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– In practice, this requires the spectral space (u, v) to be filled densely with
data points by measuring projections at a high number of angles γ with
parallel pencil beams at many positions ξ

4. Calculating the inverse Fourier transform of F , F (u, v) −→ f(x, y)

The direct image reconstruction workflow is illustrated schematically in Figure 2.9.
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Figure 2.9: Schematic illustration of a direct image reconstruction process in CT.
First, the Radon transform pγ(ξ) of the object f(x, y) is acquired through measure-
ment. Second, the Radon transform is transformed into Fourier space to obtain
Pγ(q). Next, the measured data points in the radial (γ, ξ) space are regridded onto
the Cartesian grid (u, v), which transforms Pγ(q) into F (u, v). Finally, the inverse
Fourier transform of F (u, v) yields the object f(x, y).

Unfortunately, this method is not able to accurately recover the object function
f(x, y) in clinical practice. Because of dose considerations and technical limitations,
a CT scanner is limited in the number of projections that can be measured. The
finite number of data points in (q, γ) from the measurements have to be regridded to
fill the Cartesian (u, v) space, which leads to interpolation errors. As illustrated in
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Figure 2.10, the density of measured spectral data in the (u, v) space decreases for
higher frequencies.
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Figure 2.10: Illustration of regridding measured data points from the polar Radon
space (q, γ) to the Cartesian Fourier space (u, v). The measured data points on the
large concentric circles do not always overlap with the points in the (u, v) grid. In
order to fill the (u, v) space, the measured data has to be interpolated. The further
away from the center, the larger the distance between the measured projections in
the (u, v) space and the higher the interpolation error.
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Figure 2.11: Simple backprojection of the (simplified) projection p(ξ) measured at
angle γ.

Filtered backprojection A particular reconstruction technique found in clinical
practice is called filtered backprojection. The idea is that the image can be recon-
structed by projecting the measured projection profiles pγ(ξ) back for each angle γ.
This form of simple (non-filtered) backprojection is illustrated in Figure 2.11 and
can be modeled by

g(x, y) =

∫ π

0
pγ(ξ)dy . (2.13)
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However, the simple backprojection in Equation 2.13 does not result in the object
function f(x, y) and the spatial distribution of the attenuation coefficient µ(x, y),
respectively. The problem is that the projection profile pγ(ξ) is a non-negative func-
tion and the simple backprojection smears back non-negative values over the entire
image, even outside the actual object.

One solution is filtered backprojection, where the projection signal Pγ(q) is high-pass
filtered in Fourier space by multiplying Pγ(q) with |q| to achieve linear weighting of
each frequency. Mathematically, the high-pass filter can be derived as a result of the
coordinate transformation from Cartesian to polar coordinates using the Fourier slice
theorem. Starting from the image f(x, y) expressed as the inverse Fourier transform
of F (u, v)

f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)e2πi(xu+γv)dudv , (2.14)

the Fourier transform F (u, v) has to be expressed in polar coordinates using the
substitution from Equation 2.11. Together with the Fourier slice theorem in Equation
2.10, this ultimately results in the high-pass filtered backprojection:

hγ(ξ) =

∫ ∞

−∞
Pγ(q)|q|e2πiqξdq . (2.15)

Details of the mathematical derivation can be found in [45]. Finally, the attenuation
function can be calculated from a set of filtered backprojections as follows:

µ(x, y) = f(x, y) =

∫ π

0
hγ(ξ)dγ . (2.16)

Besides filtered backprojection, different reconstruction techniques exist, including
algebraic and iterative approaches.

Hounsfield units In CT, the measured X-ray attenuation values µ are usually rep-
resented as gray values and are a representation of the physical material properties.
High values of the attenuation coefficient µ relate to a high density or high atomic
number of the medium. This is a relevant difference compared to magnetic resonance
imaging (MRI), where the relation between gray values and physical properties is
more complex, as it depends on many different parameters and scanning protocols. In
clinical practice, X-ray attenuation values are expressed as dimensionless CT values
in Hounsfield units (HU). To this end, they are transformed as follows:

CT-Value =
µ− µwater

µwater
1000HU . (2.17)

On the Hounsfield scale, the value -1000 HU is assigned to air (-1024 HU =̂ vacuum)
and 0 HU to water. Therefore, CT values can be used to identify organs and tissue
types (see Table 2.1) and diagnose pathologies, e.g., when the intensity distributions
of CT values show abnormalities or saliences.
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tissue attenuation value / (HU)
air -1000
bone >250
fat -200 to 50
lung -900 to -500
parenchyma 0 to 100
tumor 20 to 50
water 0

Table 2.1: Approximate attenuation value windows in Hounsfield units of selected
tissues. Data taken from [45, 53, 54].
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2.2 CT Colonography

CT colonography is a non-invasive X-ray-based screening method for colorectal can-
cer. This section gives a brief overview of colorectal cancer, CT colonography screen-
ings, and the strengths and weaknesses of CT colonography.

2.2.1 Colorectal Cancer

Colorectal cancer is among the three leading causes of cancer-related death in indus-
trialized countries for both men and women [16]. Most colorectal cancers originate
from adenomatous polyps, which develop slowly over several years into colorectal
cancer [17]. Early detection and removal of these premalignant adenomatous polyps
can significantly reduce the incidence and mortality of colorectal cancer [18]. In
the early stages of colorectal cancer, symptoms are often nonspecific or nonexistent,
making screening methods such as optical colonoscopy essential for cancer prevention
[55]. However, the participation rates in colonoscopy screenings are only around 15
to 20 % [56].

a cb

Figure 2.12: (A) CT colonography image of a 2.2 cm sessile polyp in the ascending
colon in a 72-year-old asymptomatic female. (B) CT image of the same polyp. (C)
Optical colonoscopy image of the same polyp. Adapted from [19]. Reuse permitted
by BMJ Publishing Group Ltd. (License Number 5552401418559).

2.2.2 CT Colonography Screening Method

A particular screening method that has emerged over the last two decades is CT
colonography, also known as virtual colonoscopy. A CT colonography screening in-
volves a low-dose abdomen CT to acquire detailed three-dimensional reconstructions
of the colon. Additionally, the colon is cleansed and inflated with CO2 prior to image
acquisition. This removes fecal matter that may obstruct the view, which allows for
clear images of the colon and helps to reveal detailed structures of the intestinal
wall. In addition to regular multi-planar CT image reconstruction, CT colonography
includes a virtual three-dimensional reconstruction of the colon, allowing for polyp
identification similar to optical colonoscopy. Figure 2.12 shows a virtual colon re-
construction, a common CT reconstruction, and an optical colonoscopy image of the
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same polyp. The sensitivity of CT colonography is comparable to optical colonoscopy
for detecting colorectal polyps that are 6 mm or larger in size [19]. CT colonography
has an advantage in cases of complex colon anatomies as it enables visualization of
parts of the colon that may not be examined with optical colonoscopy [57]. Screen-
ing programs using CT colonography show about 10% higher participation rates
compared to optical colonoscopy programs [58, 59].

However, while CT colonography can detect polyps, it cannot distinctively differ-
entiate between benign and precancerous polyps. Currently, size serves as a proxy
indicator for malignancy. Guidelines from the United States Multi-Society Task Force
on Colorectal Cancer, the European Society of Gastrointestinal Endoscopy, and the
European Society of Gastrointestinal and Abdominal Radiology recommend the re-
section of colorectal polyps that are 6 mm or larger in size [20, 21]. Reliable dif-
ferentiation between benign and precancerous polyps is crucial for individual risk
stratification and guidance in determining the appropriate therapy.
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2.3 Radiological Age Assessment

Radiological age assessment is a method in the field of forensic medicine to estimate
the chronological age of a person by analyzing physical development and skeletal
maturation using medical images. This section is an introduction to the role of
age in modern society and age assessment methodology, including its weaknesses.
The information in this section is largely based on the EASO Practical guide on
age assessment by the European Union Agency for Asylum (EUAA) [35] and the
publication Forensic Age Estimation: Methods, certainty, and the law by Schmeling
et al. [36].

2.3.1 Age and Society

Age is an essential part of a person’s identity, as it rules the relationship between
the individual and the state. Changes in age can trigger the acquisition or loss of
rights and obligations concerning emancipation, employment, criminal responsibility,
sexual relation, and consent for marriage or military service [35]. This is particularly
relevant for children. The United Nations Convention on the Rights of the Child
(CRC) (Article 1) and the European Union2 define a child as any person below the
age of 18 [33, 34].

Additionally, the CRC lists certain age-related key obligations for states and author-
ities that include registering the child after birth, respecting the right of the child to
preserve his or her identity, and speedily re-establishing his or her identity in case
some or all elements of the child’s identity have been deprived [35]. Consequently, a
state may need to assess the age in cases where a person’s age is unknown or there
are substantiated doubts concerning the available age information, e.g., to determine
whether they are an adult or a child. Authorities and courts can call every physician
with sufficient expertise as an expert in order to conduct age assessments [36]. How-
ever, age assessments are typically performed by forensic physicians, radiologists,
dentists, primary care physicians, and pediatricians [36].

The EUAA recommends that the least intrusive and most accurate method should be
selected for the age assessment, gradually implementing (Figure 2.13) more invasive
methods if deemed necessary [35]. Additionally, the EUAA suggests documenting
the margin of error of the method applied. Methods involving potentially harmful
radiation should only be applied as a last resort. In the best interest of the child, the
EUAA outlines the following prioritization of age assessment methods [35]. First,
non-medical methods should be applied, including further assessment of evidence
regarding the age, an age assessment interview, and a psychological assessment.
Second, radiation-free medical methods like dental observation, MRI scans, or as-
sessment of physical development may be used. Last, and provided that there is a
legal basis, medical methods involving potentially harmful radiation may be applied.

2EU acquis, Directive 2013/33/EU, Article 2(d)
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These radiation-based methods include carpal (hand) X-ray imaging, collar bone X-
ray imaging, and dental X-ray imaging. In Germany, the health of the individual is
not necessarily the sole requirement for a legal justification for such examinations,
as the anticipated benefit to the public from the applicable laws is also taken into
consideration [36].

Non-medical methods

• Further assessment of evidence
• Age assessment interview
• Psychological assessment

Medical method (radiation free)

• Dental observation
• MRI
• Physical development

Medical method (radiation as
low as reasonably achievable)

• Carpal X-ray
• Dental X-ray
• Collar bone X-ray

Figure 2.13: Gradual implementation of age assessment methods recommended by
the EUAA. Information from [35].

2.3.2 Radiological Age Assessment Methodology

Typically, age assessment starts with an initial medical assessment in order to iden-
tify or rule out growth and developmental disorders. The Study Group on Forensic
Age Diagnostics (AGFAD) (German Arbeitsgemeinschaft für Forensische Altersdi-
agnostik) of the German Society of Legal Medicine recommends beginning with an
interview to take the medical history, followed by a physical examination to record
the height, weight, and other characteristics of the individual [60]. Afterward, the ra-
diological age assessment may be conducted. Age assessment is based on the known
temporal progression of certain human development characteristics shared by every-
one, including physical development, skeletal maturation, and dental development
[36]. Starting from this, reference studies or atlases correlate the development of
these characteristics with the known chronological age and sex of individuals or case
groups. The most famous example is the Greulich and Pyle atlas [61] used for the
determination of bone maturity from hand radiographs, e.g. to diagnose pediatric
disorders.

Examinations for age assessment include hand radiographs, dental orthopantomo-
grams (radiographs of the mandible, maxilla, and teeth), and thoracic CTs (Figure
2.14) [36]. Hands are evaluated with respect to the size, form, and ossification status
of the epiphyseal plates [61]. In dental orthopantomograms, the evaluation focuses
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a b

c

Figure 2.14: Typical X-ray-based examinations for age assessment. (a) Hand X-ray
(8.0 year old male). (b) Dental orthopantomogram (unknown age and sex). (c)
Axial slice from a thoracic CT scan (18.7 year old female).

on the eruption and mineralization of the third molars [62]. Thoracic CTs are used
to assess the ossification status of the medial clavicular epiphyseal cartilages [37, 38].
The clavicular epiphysis is of particular interest. As the last maturing bone structure
in the body, it allows age assessment not only for minors but also for young adults
[63]. During all of these evaluations, the examined body parts are compared against
atlases and reference studies. For instance, the age of the examined person may be
assumed to be similar to a case group from a reference study that shows similar
skeletal maturation.

In practice, the joint information from examinations of different body parts is often
used to set upper and lower limits for the estimated age [36]. For instance, a state
might want to assess whether a person is potentially a child, i.e. younger than 18
years, and requests a radiological age assessment. Next, a team of forensic patholo-
gists, radiologists, and dentists examines the hands, molar teeth, and clavicles of the
person in question. Typically, the estimated minimum age is reported following each
examination, as well as the most likely age and the estimated maximum age, if avail-
able [36]. The results might look like the fictitious assessment shown in Figure 2.15.
Here, the estimated age of the person in question was older than 15.9 years based
on a hand X-ray, older than 17.5 years based on a dental X-ray of the molars, and
between 16.6 and 22.4 years based on a clavicle CT, with the most likely age being
19.7 years. Concluding the three reports, it is possible that the examined individual
is a minor, as no individual assessment indicates a minimum age above 18. Overall,
the expected age of the person is estimated between 17.5 and 22.4 years.



2.3 Radiological Age Assessment 23

15.9

17.5

16.6 22.4

age / (years)

17.5 22.4

single method age assessments min/max estimated age

19.7

Figure 2.15: Schematic illustration of combining age assessment results from different
examinations (hand, teeth, and clavicles) to estimate a minimum and maximum
age. Icons from thenounproject.com, created by Icongeek26 (Hand #5761051), Alina
Oleynik (Tooth #1092367), and Olena Panasovska (Collarbone #3292884).

2.3.3 Limitations of Radiological Age Assessment

Age assessment methods based on reference studies and atlases have inherent limita-
tions. The complex relationship between skeletal development and chronological age
poses an insurmountable natural accuracy barrier (bone age ̸= chronological age)
[64]. Skeletal maturation depends on a variety of factors ranging from genetic pre-
disposition to socio-economic status [65], which are difficult to account for during
the evaluation of radiographs or CT scans described in Section 2.3.2. Moreover,
case groups are typically examined at a single institution [36–39, 66], which limits
diversity and introduces biases in the statistical analysis. Therefore, age assessment
suffers from low accuracy, as well as intra- and inter-reader variability [67, 68]. In
particular, the accuracy is limited due to the finite number of subgroups with known
ages typically found in case groups. For instance, the well-established method of
Kellinghaus et al. [37, 38] analyzes the ossification status of the sterno-clavicular
joint. However, the examined case group consists of only 9 subgroups - 5 major
ossification stages and 3 substages for stages 2 and 3, respectively - that a person
in question can be compared against. Because of all these limiting factors, it is im-
portant to highlight that radiological age assessment merely provides an estimate of
a person’s chronological age. In general, there currently exists no age assessment
method that can provide accurate results for the chronological age of a person [35].
In practice, the technique is therefore often used to derive a range of possible ages
rather than a precise age.
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2.4 Machine Learning

Machine learning is a field that focuses on the development of algorithms and models
that can perform tasks “without being explicitly programmed” [69] and instead "learn
from experience" [70]. It is a subfield of artificial intelligence (AI), which is an
umbrella term for everything related to intelligent machines that can perceive their
environment, process information, appropriately respond, and solve problems in a
manner similar to humans. Moreover, machine learning can be broadly divided
into three paradigms: supervised learning, unsupervised learning, and reinforcement
learning. The models used in the publications that form this dissertation fall into
the category of supervised machine learning. They are trained to map the input
data to a known label, i.e., the desired outcome, which is provided during training.
Afterward, a successfully trained model can be applied to make predictions on unseen,
unlabelled data, during the so-called inference. For instance, a model may be trained
to categorize images by mapping an image to a specific class like cat, dog, car, house,
or person.

There are various classical machine learning algorithms and deep learning models
available for solving different problems, such as regression, classification, and com-
plex computer vision tasks. Classical machine learning algorithms comprise a range
of algorithms and techniques that rely on engineered features and statistical meth-
ods to learn patterns from the data. Deep learning models are composed of multiple
processing layers that automatically learn feature representations of the input data.
Deep learning techniques are a subfield inside the broad field of machine learning.
Figure 2.16 illustrates the differences between (non-machine learning) rule-based sys-
tems that have to be explicitly programmed, classical machine learning algorithms,
and deep learning models.

This section briefly introduces the Random Forest machine learning algorithm, the
feature engineering technique Radiomics, and deep learning. Additionally, the role of
machine learning in radiology is discussed. In-depth explanations and mathematical
details of the most important machine learning methods and concepts can be found
in the books Pattern Recognition and Machine Learning by Bishop [71] and An
Introduction to Statistical Learning by James [72]. Deep learning, in particular,
is also described in the books Neural Networks and Deep Learning by Nielsen [25]
and Deep Learning by Goodfellow [73]. General commentary on the past, present,
and future of machine learning and its role in medicine can be found in various
publications, among others in journal articles from LeCun et al. [74], Chartrand et
al. [24] and Haug et al. [5].

2.4.1 Random Forest

A random forest is an ensemble of decision trees built with bootstrap aggregating
[75] and random feature selection [76, 77]. The algorithm was initially proposed by
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Figure 2.16: Schematic illustration of the differences between rule-based systems,
classical machine learning, and deep learning. In rule-based systems, the mapping
from input to output is explicitly programmed. Classical machine learning uses a
set of given features that are related to the input and learns a mapping between
these features and the output. Deep learning directly learns a mapping from input
to output, features are learned implicitly during model training. Adapted from [24].

Breiman in 2001 [22] and remains a popular choice for classical machine learning.
Each decision tree in the random forest is trained using a special random subset
of the entire training data, a so-called bootstrap resample. The nodes inside the
tree which recursively split the data are constructed from randomly chosen feature
subsets. This twofold randomness serves to grow decision trees that are independent
to the largest extent possible. In combination with ensembling, the generalization
error of the random forest converges “almost surely to a limit as the number of trees
becomes large” [22]. Additionally, random forests provide internal error estimates
and allow for feature importance analysis.

Decision trees Decision trees are hierarchical models that make predictions for
feature vectors based on a series of binary decisions (Figure 2.17). They are tree-like
structures consisting of nodes, branches, and leaves. At each node, a specific feature
of the input vector is evaluated. Depending on whether the value of that feature is
higher or lower than a previously set threshold, the model progresses down the right
or left branch, respectively. In each branch, there is either a new node, i.e. a new
binary decision, or a leaf that holds the value of the prediction, i.e. the outcome.

In supervised machine learning, decision trees can be constructed from examples
through recursive partitioning based on features, enabling predictions in classification
and regression tasks. Given a set of inputs X = {x⃗i} with corresponding labels
Y = {yi}, where each input is a vector of features x⃗ = (f1, ..., fn)

T , a decision tree is
built by recursively adding nodes to the tree that split the initial set of examples X
into subsets Xleft and Xright. These splits are based on a decision criterion c = (f, t),
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Figure 2.17: Example decision tree for multi-class classification. The model predicts
four outcomes, A, B, C, or D, for input feature vectors of length 3, x⃗ = (f1, f2, f3)

T ,
by comparing individual features to one of five thresholds (t1 to t5). The red path
illustrates the model’s decision-making process (prediction = class B) for inputs with
f2 < t1, f3 ≥ t3, and f3 < t4.

which consists of a feature f and a threshold t:

Xleft = {X | f ≤ t} (2.18)
Xright = {X | f > t} . (2.19)

The starting node of the decision tree is referred to as the root (or root node), while
the final subsets are known as leaves (or leaf nodes). Each split aims to minimize
the impurity measure H, with the objective of creating subsets that are as pure as
possible, i.e. they share the same label:

H =
nleft

nleft + nright
F (Xleft) +

nright

nleft + nright
F (Xright) . (2.20)

This process is also referred to as information gain. Ideally, the application of more
splits leads to purer subsets.

In classification tasks, the Gini index G is a commonly used impurity measure. It is
calculated as the sum of probabilities p for finding a sample x⃗i with the label yi = j
in the subset X ′:

G =
∑
j

pj(1− pj) with pj =
1

|X ′|
∑
i

I(yi = j) . (2.21)

For regression tasks, the mean squared error can be used to quantify the similarity
of labels within a subset:

MSE =
1

|X ′|
∑
i

(yi − Y
′
)2 . (2.22)
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The recursive splitting process continues until a specific stopping criterion is met or
only one sample remains. A popular stopping criterion is tree depth, i.e. the number
of consecutive nodes in a branch. The resulting subgroups from the recursive splits
form the leaves of the decision tree.

Random forest algorithm A random forest is trained by constructing an ensem-
ble of decision trees using a specific algorithm. An important hyperparameter that
needs to be defined before training is the total number of trees in the random forest,
also known as the number of estimators. Given a set of inputs X = {x⃗i} with corre-
sponding labels Y = {yi}, the construction of each decision tree starts by sampling
with replacement from X to create a bootstrap dataset XBS. Typically, about one-
third of the instances in X are left out in each bootstrap dataset [22]. Each tree is
built using only the samples from its unique bootstrap resample X ′. This concept of
using bootstrap resamples to train models which are later aggregated is called bag-
ging [75]. The tree construction process is the same as described above for ordinary
decision trees, except that the data is recursively split based on a random subset of
features for impurity minimization [22]. The random feature subset is drawn at each
node.

Random forest predictions are based on the individual predictions made by each
decision tree. In classification problems, a majority vote system is applied, where
the class with the most votes becomes the final prediction. For regression problems,
the final prediction is the average of the individual predictions made by the trees.

Out-of-bag error The data left out of a bootstrap resample is called out-of-bag
(OOB) data

XOOB = X \XBS (2.23)

and can be used to acquire accurate estimates of important random forest quantities,
e.g. the prediction performance on unseen data. Because each tree has never seen its
out-of-bag data XOOB during training, it can be evaluated on these left-out samples.
The prediction error of a tree on the corresponding out-of-bag data is called out-of-
bag error. The aggregated out-of-bag errors from all trees provide a nearly optimal
generalization error of the random forest [78].

Feature importance In the context of medical machine learning applications, un-
derstanding the influence of specific features on a model’s decision-making process
and prediction performance is crucial. The random forest algorithm allows estimat-
ing the importance of individual features in multiple ways.

One approach, introduced by Breiman in his original publication [22], is to measure
feature importance through feature permutation and the use of out-of-bag data. The
idea is to randomly permute the values of a particular feature in the out-of-bag data
and to evaluate model performance for these modified subsets of unseen data that
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include the noisy feature. By comparing the performance of the permuted out-of-
bag datasets with the evaluation results of the original unmodified out-of-bag data,
feature importance can be assessed. A larger difference in performance due to feature
value permutation indicates higher importance of that particular feature.

Feature importance can also be analyzed using the mean decrease in impurity (MDI)
[79]. The average MDI of a specific feature is calculated across the decision trees
in the random forest. A higher MDI indicates a greater predictive power of that
feature.

Another common strategy for feature importance estimation is to measure the min-
imal depth [80] at which a particular feature is used to split the data inside the
decision trees, on average. Features that are closer to the initial root node split
larger portions of the initial dataset more effectively and can be considered more
important.

2.4.2 Radiomics

Radiomics refers to the process of extracting and analyzing a large number of quanti-
tative image features (typically exceeding 200) from medical images [23]. This process
transforms the images into mineable high-dimensional data that can be effectively
analyzed using statistical and machine learning methods to build descriptive and
predictive models [28]. The underlying hypothesis of radiomics is, that the advanced
analysis of medical images can reveal additional information that is otherwise not
used [23]. Specifically, radiomics aims to quantify various phenotypic characteristics,
which could potentially provide insights into biological properties such as intra- and
inter-tumor heterogeneities [26].

The radiomics workflow (Figure 2.18) can be divided into four steps: imaging, seg-
mentation, feature extraction, and analysis. In the first step, medical images like
CT scans, MRI scans, positron emission tomography (PET) scans, or radiographs
are acquired. The second step involves identifying regions of interest (ROIs) within
the images, which are then segmented through automated segmentation methods or
by medical experts. Typical ROIs found in radiomics analysis are lesions, tumors,
or abnormalities [81].

In the third step, quantitative imaging features characterizing shape, first-order gray-
level histogram statistics, and texture are extracted from these regions. Shape-based
features describe the geometric properties of the ROI, such as the diameter along a
specific axis, total area, or sphericity. First-order statistics include properties of the
intensity distribution inside the ROI, e.g. minimum, maximum, mean, or standard
deviation of pixel or voxel gray values. Texture features capture patterns and spatial
relationships within the image, such as tissue heterogeneity or coarseness. Often,
texture features are computed from matrices like the gray-level co-occurrence matrix
(GLCM) or gray-level run-length matrix (GLRLM). Additionally, image filters, such
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Figure 2.18: The four steps of a typical radiomics workflow (from left to right):
imaging, segmentation, feature extraction, and analysis. The image used in this
example is a slice from a CT colonography scan and shows a colorectal polyp.

as Laplacian of Gaussian (LoG) filters or wavelet filters, can be applied before feature
extraction to highlight particular image properties and capture as much potentially
valuable information as possible.

In the fourth step, statistical models and machine learning algorithms are applied
to analyze the features or fitted to predict clinical endpoints based on the features.
The goal is to uncover relationships between radiomic features and clinical outcomes,
such as disease diagnosis, tumor staging, treatment response, or patient survival.
Radiomics applications have gained significant interest in recent years in the fields
of radiology and radiation oncology [81] and their potential has been demonstrated
for multiple tumor types and data extracted from different imaging modalities [26].
To enhance standardization and improve reproducibility in these applications, open-
source computation platforms like PyRadiomics [26] and guidelines such as the Image
Biomarker Standardization Initiative (IBSI) [82] have emerged.

2.4.3 Deep Learning

Deep learning is a category of machine learning methods, that use multiple layers of
non-linear transformations to process data. These layers are fitted to encode a rep-
resentation of a given set of data. Starting from the input layer, the representations
gradually become more abstract, allowing the model to learn complex functions.
The core principle of deep learning is that these representations are not designed by
hand using domain knowledge, but instead learned entirely from the data using a
general-purpose learning procedure called backpropagation [25, 74]. This is particu-
larly useful for image analysis, because deep learning models, especially convolutional
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neural networks (CNNs), can directly handle multidimensional pixel arrays [24]. In
contrast, classical techniques like a random forest require transforming image data
into a feature vector, breaking up the spatial relationship between neighboring pixels,
or radiomic features (Figure 2.16).

Deep learning enabled breakthroughs in image, video, text, speech, and audio pro-
cessing [25]. It is a highly active and dynamic research field with both well-established
methods like fully connected networks or CNNs, as well as emerging methods like
transformers [31] or latent diffusion models [32], which excel at various tasks such as
language processing or image synthesis. However, these latest approaches typically
require much larger training datasets and more computing resources compared to
fully connected networks and CNNs.

Neural networks Neural networks are a fundamental method of deep learning.
They consist of interconnected layers of artificial neurons that use nonlinear trans-
formations to map the information from input to output [71]. The transformations
are adaptive, such that they can be learned by the network during training.

Mathematically, neural networks are universal function approximators, and “any con-
tinuous function can be uniformly approximated by a continuous neural network
having only one internal, hidden layer and with an arbitrary continuous sigmoidal
nonlinearity” [83]. Neural networks emerged from attempts to find a mathematical
model for the information processing of the nervous system of biological systems.
The nonlinearity represents the all or none character of biological neurons that “at
any instant have some threshold, which excitation must exceed to initiate an impulse”
[84].
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Figure 2.19: Artificial neuron with inputs xi, weights wi, and bias b

At the heart of neural networks are artificial neurons consisting of inputs x, weights
w, and a bias b (Figure 2.19). The neuron’s output a is the sum of the weighted
inputs and bias:

a =
∑
i

wixi + b . (2.24)



2.4 Machine Learning 31

In a basic neural network, neurons are stacked into layers that take the information
from the previous layer l− 1, transform it, and pass it on to the next layer l (Figure
2.20). Because the information flow is only in one direction, this group of networks
is called feed-forward networks. In a feed-forward network, the value of a neuron xj
in layer l is calculated using a feed-forward function g and depends on all neurons xi
from the previous layer l − 1, the weights wji connecting xi and xj , the bias bj and
the non-linear activation function σ:

x⃗ l = g(x⃗ l−1) = σ(W lx⃗ l−1 + bl) (2.25)

xlj = σ

(∑
i

wl
jix

l−1
i + blj

)
. (2.26)

The network output f(x⃗) = ȳ is calculated by consecutively applying the feed-
forward operation to each layer, using the respective weights and biases:

f(x⃗) = g(x⃗ l) = g(...g(g(x⃗ 0))) = ȳ (2.27)

Because each neuron of the previous layer influences every neuron in the next layer,
these networks are referred to as fully connected feed-forward networks (or short:
fully connected networks).

The non-linear activation function maps the neuron’s output into a specific range,
e.g. [0, 1] or [−1, 1]. This way, some inputs yield a low activation (σ(a) = 0 ∨ −1),
while others cause a high activation (σ(a) = 1), which is similar to a biological
neuron that only fires if the input signal is above a certain threshold. Common
activation functions are the sigmoid function (Equation 2.28) and the rectified linear
unit (ReLU) function (Equation 2.29):

Sigmoid σ(x) =
1

1 + e−x
, (2.28)

ReLU σ(x) = max(0, x) . (2.29)

The input layer typically matches the representation of the input data, while the
output layer contains the processed information in the desired form for the respective
task. Between the input layer and output layer are the so-called hidden layers (Figure
2.20).

Neural network training Neural networks are trained using a general-purpose
learning procedure called error backpropagation, originally proposed by Rumelhart
et al. in 1986 [6]. The training is based on the assumption that a change in any
weight or bias at some layer in the network can cause a change in the output. Given
a set of inputs X = xi with corresponding labels Y = yi, the goal of the training
is to find a set of weights and biases through repeated adjustment such that the
network f approximates f(xi) = yi as good as possible for all inputs. To this end,
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Figure 2.20: Schematic illustration of a fully connected neural network with an
input layer, two hidden layers, and an output layer processing a feature vector x⃗ and
returning an output f(x⃗).

“the procedure repeatedly adjusts the weights of the connections in the network so
as to minimize a measure of the difference between the actual output vector of the
net and the desired output vector” [6]. Mathematically, error backpropagation is a
computationally efficient method to compute the derivative of a cost function with
respect to all weights and biases in a neural network [71]. The adjustment of weights
and biases is performed by an optimization algorithm, based on the cost function
derivative calculated with error backpropagation.

The cost function C, also called loss function, is an important element of the training
process and is selected based on many criteria, including the task that should be
learned. For regression problems, a popular cost function is the mean squared error
of all n predictions f(xi):

C =
1

2n

n∑
i

(f(xi)− yi)
2 . (2.30)

In classification problems, a common cost function is cross-entropy:

C = − 1

n

n∑
i

[yi ln(f(xi)) + (1− yi) ln(1− f(xi))] . (2.31)

Optimization algorithms try to find and apply the optimal change to weights and
biases based on the gradient information provided by error backpropagation [85].
Popular optimization algorithms are stochastic gradient descent (SGD) [86, 87] and
adaptive moment estimation (ADAM) [88]. SGD iteratively updates weights and
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biases by applying a small change in the direction of the negative gradient of the
cost function. ADAM uses adaptive first and second-order moments of the gradient
estimates in order to update weights and biases.

Convolutional neural networks Convolutional neural networks (CNNs) are an-
other central method of deep learning, which has been widely successful in image-
and signal-processing [74]. CNNs address some of the shortcomings of neural net-
works, e.g. that fully connected networks do not take the spatial structure of images
into account. Images have to be transformed into a vector to be used as input in
fully connected networks, which disrupts the spatial relation of neighboring pixels.

CNNs are based on three core concepts: local receptive fields, shared weights, and
pooling [25]. The idea is to use convolutional units with a receptive field of view,
also referred to is kernel or filter, that are shifted across the input data. The first
network of that kind was the Neocognitron developed by Fukushima in 1980 [89] and
has been inspired by the visual nervous system of cats. The method was first applied
to a real-world problem successfully by LeCun et al. in 1989 [90] who developed a
model for handwritten digit recognition. The term convolutional neural network was
shaped later in 1998, also by LeCun et al. [91].

convolution pooling

6 x 6 4 x 4 2 x 2

3 x 3 filter / kernel

Figure 2.21: Schematic illustration of a convolutional layer followed by a pooling
layer typically found in a convolutional neural network. The 3×3 convolution kernel
is shifted across the 6 × 6 input, resulting in a 4 × 4 feature map output. Next,
a pooling operation with a 2 × 2 field of view simplifies the feature map from the
previous layer to a 2× 2 feature map.

Given a single-channel two-dimensional image input, e.g. a grayscale radiograph,
each pixel is represented by a neuron in the two-dimensional input layer of the CNN.
The information from the input layer is mapped to the next hidden layer using the
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following convolutional operation

xlij = σ

(∑
m

∑
n

wl
mnx

l−1
i+m,j+n + b

)
, (2.32)

where xlij is a neuron in layer l, xmn a weight of the kernel with a receptive field of size
m×n, b the bias and σ the activation function. Because the same set of weights wmn

is shifted across the image (Figure 2.21), the neurons in the hidden layer detect the
same feature, extracted from different positions in the image. Therefore, Equation
2.32 is also referred to as a feature map. This complements the translation invariance
of images because a specific object in the image will result in the same features, no
matter where it is located. On a high level, this allows the same kernel of a CNN
to detect a specific structure, e.g. a colorectal polyp, across the entire image, e.g.
on the right or left side of the intestinal wall. Additionally, this weight-sharing
greatly reduces the number of learnable parameters compared to fully connected
networks [25]. This allows either for slimmer and faster networks that offer the same
performance or to build deeper and more complex networks that run at the same
computational cost.

The sets of shared weights and biases in Equation 2.32 are called kernel or filter.
Typically, a CNN has multiple kernels in every layer in order to extract a variety
of features, e.g. one kernel may detect vertical edges, while another kernel might
detect horizontal ones. With multiple kernels present, the feature mapping from
Equation 2.32 becomes more complex (Figure 2.22). First, each kernel calculates its
own feature map in the next hidden layer, called a channel. Second, a kernel also
calculates the feature map based on all feature maps (channels) from the previous
layer.

Convolutional layers are commonly followed by pooling layers, which simplify the
information in each feature map. For instance, a common pooling operation is max
pooling, where only the neuron with the highest activation in a defined field of view,
e.g. 2 x 2 pixels, is carried on to the next layer (Figure 2.22). Intuitively, max-pooling
is a way to check whether a feature has been detected or not, without caring about
where exactly it has been detected [25]. Other pooling functions such as average
pooling are used as well.

Finally, the last layers in CNNs are typically fully connected layers. To this end,
the feature maps are at some point flattened and transformed into a feature vector
(Figure 2.22). The fully connected layers map the abstract image features from the
last layer of feature maps to the output.

Object detection Object detection networks form a particular group of deep learn-
ing models that can detect and draw bounding boxes around objects of a particular
class in an image. Early networks like R-CNN [92], Fast R-CNN [93], and Faster
R-CNN [94] followed a two-stage approach. In the first stage, the network collects
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Figure 2.22: Schematic illustration of the information flow in a small example con-
volutional neural network. First, three convolution kernels are applied to the input,
which results in three feature maps. Next, six convolution kernels process the fea-
tures extracted in the three feature maps from the previous layer, which results in
six feature maps. Afterward, the six feature maps are flattened and processed using
a fully connected (fc) feed-forward layer that yields the output.

so-called region proposals using techniques like selective search or dedicated CNNs.
The second stage is the actual classification step and is performed with classical
machine learning algorithms like support vector machines or CNNs.

Driven by the need for faster object detection for real-time video analysis, single-stage
object detection models like YOLO [95] and RetinaNet [96] emerged. The RetinaNet
was used for the localization of a characteristic anatomical structure in CT scans and
is therefore explained briefly in the followng. It uses a backbone network, e.g. an
off-the-shelf ResNet, to compute a so-called feature pyramid [97] of the input image.
Each level in the feature pyramid is used for detecting objects at a different scale.
Based on these features, two separate subnetworks with a simple design perform the
object classification and bounding box regression, respectively (Figure 2.23).

An important part of the original implementation of the RetinaNet is the FocalLoss
loss function [96], which addresses the problem of heavy class imbalance between
foreground and background objects. For each detection, the RetinaNet returns three
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Figure 2.23: Schematic illustration of the RetinaNet object detection network. It
uses feed-forward backbone CNN to generate a multi-scale convolutional feature
pyramid. The information from the feature pyramid is fed into two subnetworks,
one for predicting the class of the object, and one for predicting the anchors of a
bounding box. Adapted from [97].

outputs. First, a bounding box prediction that locates the detected object. Second,
a class prediction that classifies the detected object. And third, a classification
score, between 0.0 and 1.0, that quantifies the confidence of the network in the
predicted detection. A classification score above a selected threshold, e.g. ≥ 0.05,
is considered a positive detection. The detection is true positive, if the intersection
over union (IoU) (Equation 2.33) for the areas of the predicted bounding box A and
the ground-truth bounding box B is above a second selected threshold, e.g. ≥ 0.5
and the predicted class is the ground-truth class.

IoU =
A ∩B

A ∪B
(2.33)

A popular metric for evaluating object detection performance is average precision
since it was applied for the PASCAL Visual Object Classes (VOC) Challenge in
2007 [98, 99]. AP is calculated as the area under the precision-recall curve from all
positive and negative network detections, ranked according to classification score in
descending order, where the precision p is set to the maximum precision obtained
for any recall r′ ≥ r [98]:

AP =
∑
n

(rn+1 − rn)× pinterp(rn+1) (2.34)

pinterp(rn) = max p(r′), r′ : r′ ≥ rn (2.35)

2.4.4 Machine Learning in Radiology

Machine learning has already demonstrated successful applications in certain repet-
itive medical tasks in the 1990s [5]. For instance, neural networks were used to
automate the reading of electrocardiograms [2], counting and classification of white
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blood cells [4], and analysis of retinal photographs [1] or skin lesions [3]. Even though
early models were simple compared to today’s standards, the model performance was
already sufficient enough to add clinical value, considering the need for rapid inter-
pretation of an increasing volume of patient data being collected [5]. Today, machine
learning is particularly thriving in the fields of radiology and radiation therapy within
the medical domain [10, 24, 100, 101].

Radiology departments operate picture archiving and communication systems (PACS)
and radiology information systems (RIS) that are used hospital-wide and store vast
amounts of image and patient data. These rich databases provide an excellent foun-
dation for the development of machine learning models, as they rely on large datasets
for successful training. Consequently, machine learning with medical images is a
highly active and dynamic research field [100, 102–104]. Additionally, the increasing
number of machine learning-enabled medical devices in radiology approved by the
U.S. Food & Drug Administration [9] shows the transition of more and more machine
learning research into clinical practice (Figure 2.24).

Figure 2.24: FDA-approved artificial intelligence (AI)/machine learning (machine
learning)-enabled medical devices marketed in the United States in radiology (status:
October 5, 2022). The numbers are based on publicly available resources (*) and
other publicly available materials published by specific manufacturers. Data from
[9].

Problem categories Machine learning in radiology commonly addresses the fol-
lowing problem categories: image classification, semantic segmentation, instance seg-
mentation, and object detection [10, 24, 105]. Image classification is the task of
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assigning one or multiple classes (labels) to an image, e.g. a specific lesion category
or medical condition. In semantic segmentation, an image is partitioned into mul-
tiple segments or regions, e.g. into different organs, or tumors and healthy tissue.
Instance segmentation is similar, but the problem is formulated as distinguishing
different instances of a particular class within an image. In object detection, the
task is to detect one or multiple objects of a particular class in an image, e.g. by
drawing bounding boxes around all lung nodules in a thoracic CT scan.

Challenges While machine learning is a powerful tool in radiology today, there are
still a number of challenges that need to be addressed in order to make applications
as safe, fair, and accurate as possible.

One problem is the availability of annotated and structured data. Supervised ma-
chine learning, particularly deep learning, relies on large amounts of data with anno-
tations in a machine-readable format [74]. However, only a small fraction of medical
images stored in hospital archives worldwide are appropriately annotated for most
research purposes. In some cases, the required information for data labeling exists,
but is not available in a machine-readable form, because it may have been recorded
in writing inside a radiology report. Other times the annotations don’t exist at all,
in particular, labels for segmentation and object detection tasks are rare. Data an-
notation for machine learning in radiology typically requires human experts, which
makes it a time-consuming and expensive process that poses an enormous bottleneck
for machine learning development [41, 103]. Classical machine learning methods can
be less data-hungry than deep learning and, when combined with feature extraction
techniques like Radiomics, enable automated image analysis also for smaller datasets.

Another issue concerns data quality. Especially in the sensitive medical environment,
training data for machine learning models should be diverse, unbiased, and accurately
labeled [103]. For instance, images from a single hospital can be insufficient to train
a model, because it may be biased toward the sampled population and acquisition
scheme [10].

Furthermore, there are technical and legal barriers to sharing medical image data
due to privacy concerns. The sensitive nature of medical information requires strict
privacy protocols, which can obstruct the sharing of data and collaboration of re-
searchers across institutions.

Finally, the medical community expects the same level of certainty for a machine
learning tool as for a drug or any other classical type of intervention method [5].
However, the lack of clear standards for describing and evaluating AI and machine-
learning applications makes it difficult to identify reliable tools and establish trust
in machine learning amongst clinicians.

Outlook The current consensus is that machine learning will be a valuable assistant
for clinicians in radiology, and medicine in general [5]. Machine learning will not
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replace doctors, but help them to do their jobs better and hopefully free up valuable
time for human doctor-patient interactions. The patient–doctor relationship will
remain the cornerstone of patient care, and machine learning has the potential to
enrich that relationship [103].

Today’s research is also going to shape the type of machine learning models deployed
in clinical practice in the future. For instance, most available FDA-approved machine
learning tools have approval for very specific and narrow tasks. However, some
experts envision the future of machine learning in the development of general multi-
purpose models, called foundation models [106]. These are large models trained on
vast and diverse datasets with a wide range of input and output formats, typically
in an unsupervised fashion [107]. The idea is to create highly flexible models with
domain knowledge that can be fine-tuned for a wide range of downstream tasks.

Going forward, controlled studies measuring practical clinical endpoints are necessary
to better understand the clinical value and quantify the impact of machine learning
in radiology [10].
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This chapter summarizes my contributions to the three original publications and the
complementing publication upon which this cumulative dissertation is based.

3.1 Contributions to Original Publication I

The first publication (chapter 4) entitled Machine Learning-based Differentiation of
Benign and Premalignant Colorectal Polyps Detected with CT Colonography in an
Asymptomatic Screening Population: A Proof-of-Concept Study was conceptualized
in cooperation with all co-authors.

My contributions to this publication involved data curation, radiomic feature extrac-
tion, machine learning model training, validation and testing, general result analysis,
radiomic feature importance analysis, result visualization, and writing parts of the
original manuscript draft. First, I created a data set for machine learning from com-
puted tomography (CT) colonography scans and tables of clinical parameters. This
required carefully matching the CT colonography scans to the histopathologically
confirmed colorectal polyp character (benign vs. premalignant) of the respective pa-
tient. Next, I calculated radiomic features from the CT colonography scans and the
provided manual polyp segmentation masks using the Python package PyRadiomics.
Afterward, I trained, validated, and tested a random forest machine learning model
for predicting polyp character based on the previously calculated radiomic features.
The random forest model was implemented using the Python package scikit-learn.
I tested the random forest prediction performance on an external test set. Addi-
tionally, I performed a radiomic feature importance analysis to gain insight into the
random forest prediction process. Also, I created plots of the methodological work-
flow and the results. The results were critically discussed with PD Dr. med. Sergio
Grosu, Prof. Dr. rer. nat. Michael Ingrisch and PD Dr. med. Philipp Kazmier-
czak. Together with PD Dr. med. Sergio Grosu., I wrote parts of the original
manuscript draft. Finally, I reviewed and edited the manuscript in cooperation with
all co-authors.



3.2 Contributions to Original Publication II 41

3.2 Contributions to Original Publication II

The second publication (chapter 5) entitled Deep learning in CT colonography: dif-
ferentiating premalignant from benign colorectal polyps was conceptualized in collab-
oration with all co-authors.

My contributions to this publication involved data curation, deep learning model
training, validation and testing, general result analysis, model interpretation, result
visualization, and writing parts of the original manuscript draft. First, I preprocessed
the dataset from publication I (chapter 4), such that it could be used for developing
a deep learning model. This included cropping the CT colonography scans around
the manually segmented colorectal polyps. Cropping was necessary because training
a deep learning model on the full CT scans in native resolution was computationally
not feasible. Also, a deep learning model for full-size CT scans would have had to be
large and complex, which would have made it difficult to train with the few available
examples to learn from. Next, I trained, validated, and tested a convolutional neural
network (CNN) for predicting polyp character based on the cropped CT colonography
scans with and without the manual polyp segmentation masks. The random forest
model was implemented using the Python package Keras and the Python machine
learning library TensorFlow as a backend. Again, I tested the CNN performance
on an external test set. To enable model interpretability, I used the gradient-based
visualization technique GradCAM++ to highlight image regions that are potentially
important for CNN predictions. Additionally, I created plots of the data, methods,
and results. The results were critically discussed with PD Dr. med. Sergio Grosu
and Prof. Dr. rer. nat. Michael Ingrisch. I wrote the original manuscript draft
with assistance from PD Dr. med. Sergio Grosu. Finally, I reviewed and edited the
manuscript in cooperation with all co-authors.

This interdisciplinary study required expertise in the fields of radiology as well as
machine learning and data science. Therefore, the first authorship is shared with
PD Dr. med. Sergio Grosu, who was a resident in diagnostic radiology at the time
of publication.

3.3 Contributions to Original Publication III

The third publication (chapter 6) entitled Automated localization of the medial clav-
icular epiphyseal cartilages using an object detection network: a step towards deep
learning-based forensic age assessment was conceptualized in collaboration with all
co-authors.

My contributions to this publication involved data curation, deep learning model
training, validation and testing, general result analysis, result visualization, and
writing the original manuscript draft. First, I defined inclusion and exclusion criteria
for the study collective together with PD Dr. med. Bastian Sabel and Dr. rer.
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nat. Balthasar Schachtner. Next, I assissted Dr. rer. nat. Balthasar Schachtner in
acquiring thoracic CT scans from the hospital’s picture archiving and communication
system (PACS). I manually drew bounding boxes around a proxy structure for the
medial clavicular epiphyseal cartilages in two-dimensional axial slices of thoracic CT
scans. Afterward, I trained an instance of the deep learning object detection network
RetinaNet to detect this proxy structure where the bounding boxes served as a
position label. I validated the model using a dedicated test set. Based on the trained
RetinaNet, I developed an algorithm for the automated and unique localization of the
medial clavicular epiphyseal proxy structure in full-size thoracic CT scan volumes.
The results were critically discussed with PD Dr. med. Bastian Sabel, Prof. Dr. rer.
nat. Michael Ingrisch and Dr. rer. nat. Balthasar Schachtner. I wrote the original
manuscript draft and created plots of the data, methods, and results. Finally, I
reviewed and edited the manuscript in cooperation with all co-authors.

3.4 Contributions to Complementing Publication I
(Appendix)

The complementing publication (section A.1) entitled Radiological age assessment
based on clavicle ossification in CT: Enhanced accuracy through deep learning was
conceptualized in collaboration with all co-authors.

My contributions to this publication involved data curation, deep learning model
training, validation and testing, general result analysis, result visualization, and
writing the original manuscript draft. First, I assissted Dr. rer. nat. Balthasar
Schachtner in acquiring additional thoracic CT scans from the hospital’s PACS to
enrich the dataset of publication III (chapter 6) with additional images. Next, I pre-
processed all CT scans using the localization algorithm developed in publication III
(chapter 6) and cropped the scans around the medial clavicular epiphyseal cartilages.
Afterward, I trained, validated, and tested an ensemble of 20 CNNs for predicting
chronological age based on the previously cropped thoracic CT scans. The CNNs
were based on the popular ResNet18 architecture for two-dimensional images and
adjusted by me to enable the processing of three-dimensional inputs. Additionally, I
developed an optimistic human reader performance estimate for classical radiological
age assessment by human experts together with Dr. rer. nat. Balthasar Schachtner.
Afterward, I compared the age prediction accuracy of the deep learning ensemble
with the human reader performance estimate. The results were critically discussed
with Dr. rer. nat. Balthasar Schachtner, Prof. Dr. rer. nat. Michael Ingrisch and
PD Dr. med. Bastian Sabel. I wrote the original manuscript draft and created plots
of the data, methods, and results. Finally, I reviewed and edited the manuscript in
cooperation with all co-authors.
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In industrialized countries, colorectal cancer is among the 
three most common causes of cancer-related death (1,2). 

It is assumed that most types of colorectal cancer originate 
from adenomatous polyps developing over several years 
(3). Thus, the incidence and mortality of colorectal cancer 
can be reduced by early detection of precancerous polyps 
with consecutive resection (4–6). As clinical symptoms are 
unspecific and often absent, particularly in the early stages, 
screening procedures such as immunochemical fecal occult 
blood test and optical colonoscopy (OC) play a major role 
in colorectal cancer prevention (7,8).

During the past 2 decades, CT colonography 
emerged as a noninvasive screening method for colorec-
tal cancer. The sensitivity of CT colonography and 
OC for the detection of colon polyps that are 6 mm 
or larger (and hence advanced adenoma detection rate) 

are comparable in asymptomatic screening populations 
and in patients with symptoms suggestive of colorec-
tal cancer (9–11). Also, CT colonography is effective 
in visualizing portions of the colon not evaluated by 
OC in cases of complex anatomic conditions causing 
failed or incomplete OC and therefore permits robust 
polyp detection also in the right colon (12). But CT 
colonography does not enable a definite differentiation 
between benign and premalignant polyps, crucial for in-
dividual risk stratification and therapy guidance. There-
fore, polyp size measured in CT colonography data sets 
is currently used as surrogate indicator of the likelihood 
of malignancy. Current guidelines recommend OC-
guided resection for colorectal polyps that are 6 mm 
or larger (United States Multi-Society Task Force on 
Colorectal Cancer, European Society of Gastrointestinal 
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Background: CT colonography does not enable definite differentiation between benign and premalignant colorectal polyps.

Purpose: To perform machine learning–based differentiation of benign and premalignant colorectal polyps detected with CT colo-
nography in an average-risk asymptomatic colorectal cancer screening sample with external validation using radiomics.

Materials and Methods: In this secondary analysis of a prospective trial, colorectal polyps of all size categories and morphologies were 
manually segmented on CT colonographic images and were classified as benign (hyperplastic polyp or regular mucosa) or premalig-
nant (adenoma) according to the histopathologic reference standard. Quantitative image features characterizing shape (n = 14), gray 
level histogram statistics (n = 18), and image texture (n = 68) were extracted from segmentations after applying 22 image filters, 
resulting in 1906 feature-filter combinations. Based on these features, a random forest classification algorithm was trained to predict 
the individual polyp character. Diagnostic performance was validated in an external test set.

Results: The random forest model was fitted using a training set consisting of 107 colorectal polyps in 63 patients (mean age, 63 
years 6 8 [standard deviation]; 40 men) comprising 169 segmentations on CT colonographic images. The external test set included 
77 polyps in 59 patients comprising 118 segmentations. Random forest analysis yielded an area under the receiver operating char-
acteristic curve of 0.91 (95% CI: 0.85, 0.96), a sensitivity of 82% (65 of 79) (95% CI: 74%, 91%), and a specificity of 85% (33 of 
39) (95% CI: 72%, 95%) in the external test set. In two subgroup analyses of the external test set, the area under the receiver oper-
ating characteristic curve was 0.87 in the size category of 6–9 mm and 0.90 in the size category of 10 mm or larger. The most im-
portant image feature for decision making (relative importance of 3.7%) was quantifying first-order gray level histogram statistics.

Conclusion: In this proof-of-concept study, machine learning–based image analysis enabled noninvasive differentiation of benign and 
premalignant colorectal polyps with CT colonography.
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cer syndromes, positive family history for colorectal cancer (ie, 
one first-degree relative with colorectal cancer diagnosis before 
60 years of age or two first-degree relatives with colorectal cancer 
diagnosis at any age), prior OC within the past 5 years, body 
weight greater than 150 kg, and severe cardiovascular or pulmo-
nary disease (9). In the present study, a polyp-enriched data set 
was created, including only participants with histopathologically 
characterized polyps (Fig 1).

CT Colonography in the Training Set
Bowel preparation included 4 L of polyethylene glycol solu-
tion (KleanPrep; Norgine Pharmaceuticals) and a combina-
tion of 20 mg bisacodyl with 30 mL of sodium phosphate 
(Prepacol; Guerbet Pharma). A volume of 50 mL of the 
iodinated contrast agent iopamidol (Solutrast 300; Brac-
coAltana Pharma) was added to the last liter of polyethylene 
glycol electrolyte solution to tag residual fluid in the colon. 
Image data sets were acquired with a 64-channel multidetec-
tor row scanner (Somatom Sensation 64; Siemens Health-
ineers) at 0.6-mm collimation. Images were reconstructed at 
a section thickness of 0.75 mm and a 0.5-mm reconstruction 
increment using a standard soft-tissue kernel. CT scans in 
the supine position were acquired at a tube voltage of 120 
kVp and tube current–time product reference values of 70 
mAs. CT scans in the prone position were acquired at a tube 
voltage of 120 kVp and tube current–time product reference 
values of 30 mAs using an online dose modulation tech-
nique for automatic tube current adaption (Care Dose 4D; 
Siemens Healthineers). Dose-length products were recorded 
as estimates of radiation exposure. Mean radiation dose for 
CT colonography was 4.5 mSv (0.6). Bowel distention was 
achieved via manual air or automated carbon dioxide insuf-
flation via a rectal tube and evaluated by a radiologist on the 
CT scout film of the abdomen. The first set of images was 
obtained in a 7–9-second breath hold in the supine position, 
and the second set was obtained after repositioning of the 
study participant in the prone position. Bowel preparation 
and the CT colonography protocol were previously described 
in detail (9). All bowels were adequately distended, cleansed, 
and tagged to ensure high diagnostic performance of CT 
colonography.

External Test Set
To estimate generalization performance of our machine learn-
ing model, we used external CT colonography data sets from a 
large North American multicenter CT colonography screening 
trial made publicly accessible via The Cancer Imaging Archive 
(19–21). The Cancer Imaging Archive is a large multicenter 
open-source open-access collection of anonymized medical 
images of cancer, including radiologic data sets. The CT colo-
nography data sets of the aforementioned multicenter screen-
ing trial were acquired with multiple CT scanners from sev-
eral vendors (Siemens Healthineers, GE Healthcare Systems, 
Philips Healthcare, Canon Medical Systems) with varying 
scanning protocols. Only polyps with available histopathologic 
reports were included. Polyps that could not be unequivocally 
identified because of poor bowel distension or insufficient 

Abbreviations
AUC = area under the receiver operating characteristic curve, OC = op-
tical colonoscopy

Summary
In this proof-of-concept study, machine learning–assisted CT colo-
nography analysis allowed for differentiation of benign and premalig-
nant colorectal polyps at high diagnostic performance associated with 
the histopathologic reference standard.

Key Results
 n Radiomics-based image analysis enables noninvasive differentia-

tion of benign and premalignant CT colonography–detected 
colorectal polyps, with an area under the receiver operating char-
acteristic curve of 0.91, a sensitivity of 82%, and a specificity of 
85%.

 n The area under the receiver operating characteristic curve for the 
machine learning–based differentiation of benign versus premalig-
nant polyps was 0.87 in the 6–9-mm size category and 0.90 in the 
10-mm or larger size category.

Endoscopy, and European Society of Gastrointestinal and 
Abdominal Radiology) (13,14).

Radiomics describes the process of converting medical im-
age data sets into mineable high-dimensional data by extract-
ing quantitative image features based on intensity, shape, size or 
volume, and texture. Using machine learning approaches, such 
as random forests, support vector machines, or neural networks, 
tumor-specific radiomics features enable comprehensive tumor 
characterization beyond the visible morphology in radiologic 
images (15–17). For instance, CT texture features predicted 
KRAS (Kirsten rat sarcoma viral oncogene homolog) mutation 
status of manifest colorectal cancer with an area under the re-
ceiver operating characteristic curve (AUC) of 0.83 (18).

The aim of this proof-of-concept study was to establish a 
noninvasive, radiomics-based machine-learning differentiation 
of benign (ie, hyperplastic polyp or regular mucosa) and pre-
malignant (ie, adenoma) polyps in CT colonography data sets 
from an asymptomatic, average-risk colorectal cancer screening 
cohort.

Materials and Methods

Training Set
The present study was approved by the institutional review board, 
and the requirement for written informed consent was waived. 
The random forest machine learning model in this retrospective 
analysis was trained using CT colonography scans from a previ-
ously published prospective colorectal cancer screening cohort 
of an average-risk asymptomatic population older than 50 years 
undergoing fecal occult blood test, fecal immunochemical stool 
test, and same-day OC and CT colonography to compare the 
performance of these screening tests in the detection of advanced 
colonic neoplasia (9). Participants were enrolled in the previously 
published colorectal cancer screening cohort only if they had no 
symptoms of colonic diseases, such as melaenic stools, hema-
tochezia, abdominal pain, relevant changes in stool frequency, 
diarrhea, inflammatory bowel disease, hereditary colorectal can-
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reader (intrareader variability) and a second reader (interreader 
variability). These second polyp segmentations were performed 
5 months after the first segmentations. Combined reading of 
two-dimensional CT colonography images and virtual fly-
through three-dimensional reconstructions was used for exact 
polyp detection. Manual polyp segmentation was performed 
with multiplanar two-dimensional CT colonography images. 
Each colorectal polyp was segmented on supine and prone po-
sition scans if clearly identifiable in both positions. If a polyp 
could be located in only the supine or prone position, it was 
segmented in that position only. Polyps that could not be se-
curely identified or unequivocally assigned to the correspond-
ing histopathologic report were excluded from analysis. Polyp 
size categories were 5 mm or smaller, 6–9 mm, and 10 mm 
or larger. In addition, polyps were morphologically classified 
as pedunculated, sessile, or flat. The CT colonography work-
flow of the commercially available dedicated postprocessing 
software syngo.via version VA30B (Siemens Healthineers) was 
used for exact polyp detection and localization. The free open-
source software Medical Imaging Interaction Toolkit, version 
2018.04 (German Cancer Research Center) was used for man-
ual segmentation (22).

cleansing or tagging were excluded from the analysis. Polyps 
with retrospectively equivocal or uncertain correlation to the 
histopathologic reference standard were also excluded.

Image Segmentation
Colorectal polyps in both data sets were manually segmented 
for radiomics feature extraction by a board-certified radiolo-
gist (P.M.K., 8 years of experience in oncologic whole-body 
imaging) and two radiology residents (S.G., S.M.; 3 years of 
experience in oncologic whole-body imaging) in multiplanar 
two-dimensional CT colonography images (Fig 2). Informa-
tion on polyp size and colon segment in which polypectomy 
was performed was provided to all readers. All readers were 
blinded to the histopathologic polyp class. Polyp segmenta-
tions were performed by each reader in equal amounts. Each 
polyp segmentation was confirmed by the other two readers 
who did not perform the segmentation. In case of divergent 
reading results, a consensus reading was performed. To as-
sess intrareader, interreader, and radiomics feature variability, 
25% of polyp segmentations from the test set were randomly 
selected with stratification by class label (benign or premalig-
nant) and were again segmented independently by the same 

Figure 1: Flow diagram of the training set and external test set.
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ity. For this purpose, we calculated a Pearson correlation matrix 
for all features extracted from the training set and excluded one 
feature of any feature pair (1906 3 1905/2 = 1.8 million pairs) 
with a Pearson correlation coefficient greater than 0.8. The ex-
clusion of features that were too highly correlated reduced the 
number of features used for the final analysis to 10% (198 of 
1906).

Random Forest Training
All 169 polyp segmentations in the training set were class-
divided according to the histopathologic reference standard 
into benign or premalignant. The random forest classifier 
sklearn.ensemble.RandomForestClassifier (Python Scikit-
learn machine learning library, version 0.22 [24]) with 1000 
trees (n_estimators = 1000) and otherwise default parameters 
was trained on the 169 polyp segmentations of the training 
set using the previously identified set of 198 features to pre-
dict polyp class (ie, to differentiate between benign and pre-
malignant colorectal polyps). Each decision tree in the ran-
dom forest was trained on bootstrap resamples of the entire 
training data. Inside the random forest tree, binary decisions 

Histopathologic Reference 
Standard
Colorectal polyps were in-
cluded only if they were un-
equivocally assignable to the 
corresponding histopatho-
logic report (Fig 3). A polyp 
was considered benign if it 
was diagnosed as a hyperplas-
tic polyp or regular mucosa 
in the corresponding histo-
pathologic report. A polyp 
was considered premalignant 
if it was diagnosed as tubular 
adenoma, tubulovillous ad-
enoma, or villous adenoma in 
the corresponding histopath-
ologic report. For study pur-
poses only, a small number of 
lesions with the histopatho-
logic classification serrated 
adenoma (four polyp segmen-
tations) or adenocarcinoma 
(five segmentations) were in-
cluded in the premalignant 
group. Correspondingly, two 
polyp segmentations with the 
histopathologic classification 
lipomatous polyp were cat-
egorized in the benign group.

Feature Extraction
Quantitative image features 
were extracted from segmented 
voxels in CT colonography 
scans using the open-source 
Python package Pyradiomics (version 2.2.0; Harvard Medical 
School) (23). Quantitative image features, including gray level 
histogram statistics (n = 18) and image texture (n = 68), were 
extracted after applying 22 image filters for each, and 14 char-
acterizing shapes (including size) also were extracted, resulting 
in 1906 (ie, [18 + 68] ꞏ 22 + 14) feature-filter combinations, 
which will be referred to simply as features. Feature extraction is 
illustrated in Figure 4 as part of the entire radiomics workflow. 
Lists of all image filters and extracted features are provided in 
Tables E3 and E4 (online). To facilitate feature reproducibil-
ity and comparability of polyps scanned at different centers, 
all CT colonography scans were preprocessed prior to feature 
extraction, including a resampling of CT pixel spacing to 0.72 
mm along the x-axis and y-axis and 0.5 mm along the z-axis.

Feature Selection
Among the 1906 features previously extracted, features highly 
correlated with another feature were identified and excluded 
from the analysis. This feature selection based on pairwise fea-
ture correlation was applied to improve the machine learning 
training process and to enable optimized feature interpretabil-

Figure 2: A, Optical colonoscopy and, B–D, CT colonography of a 9-mm polyp (arrow) in the descending colon of 
a 78-year-old woman. B, Virtual fly-through three-dimensional reconstructions were used for exact polyp localization. C, 
Manual polyp segmentation was performed in multiplanar two-dimensional CT colonography images. D, CT colonography 
images were preprocessed for image feature extraction by application of a dedicated filter.
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tion threshold, a parameter that was used to turn predicted 
class probabilities, the output of the random forest model 
for a given input sample, into class predictions (benign vs 
premalignant). Sensitivity and specificity were evaluated for 
a default threshold value of 0.5 (model A), a threshold value 
that maximized the Youden index (J = sensitivity + specific-
ity 2 1) (27) (model B), and a threshold that resulted in the 
highest possible specificity while achieving a sensitivity of at 
least 85% (model C). For the AUC, sensitivity, and specific-
ity, 95% CIs were calculated from 2000 bootstrap samples of 
the external test set (28). The random forest analysis is shown 
in Figure 5.

Statistical Analysis of the Training Set and Model 
Introspection
Training set samples left out for training a tree, so-called out-
of-bag samples, were used to self-evaluate the respective tree 
and ultimately to form an internal prediction error estimate for 
the random forest, which is called the out-of-bag error (29). In 
addition, the Scikit-learn random forest implementation pro-
vided an internal estimate of feature importance, namely how 
much the class prediction (benign vs premalignant) of a trained 
model depended on a specific feature relative to all other fea-
tures. We exploited this by evaluating the relative importance 

at individual nodes were learned on randomly chosen fea-
ture subsets. This twofold randomness served to grow deci-
sion trees that are independent to the largest extent possible, 
such that “the generalization error converges almost surely to 
a limit as the number of trees becomes large” (25). The Scikit-
learn random forest implementation followed Breiman et al 
(25) with one minor exception: It combined classifiers by av-
eraging their probabilistic prediction instead of letting each 
classifier vote for a single class. Compared with other popular 
machine learning algorithms (eg, AdaBoost), random forests 
are robust to outliers and noise (25,26). Additionally, random 
forests provide internal error estimates that can also be used 
for estimating feature importance.

Statistical Analysis of the Test Set
Diagnostic performance of our machine learning–based 
polyp classification approach was assessed by evaluating the 
previously trained random forest on the external test set. 
Therefore, the 118 polyp segmentations in the external test 
set were class-divided into benign and premalignant in the 
same manner as the training set, and the same set of 198 fea-
tures used for training was extracted per image. Performance 
was quantified with three metrics: AUC, sensitivity, and spec-
ificity. Sensitivity and specificity depended on the classifica-

Figure 3: Top: Axial CT colonography images show representative colorectal polyps (arrow) in the training set. Bottom: Corresponding histopathologic work-up. 
(Hematoxylin-eosin staining; original magnification 320.) A, An 8-mm hyperplastic polyp in the ascending colon of a 54-year-old woman with hyperplastic epithelia. B, An 
8-mm tubular adenoma in the sigmoid colon of a 68-year-old man with tubular growth pattern and elongated nuclei. C, An 11-mm tubulovillous adenoma in the rectum of 
a 73-year-old man with tubulovillous growth pattern and elongated nuclei.
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Figure 4: The radiomics workflow comprised three steps: manual segmentation of colorectal polyps in multiplanar two-dimensional CT colonography images; image 
filtering and feature extraction characterizing shape, histogram statistics, or texture; and feature-based training of a random forest classification algorithm to differentiate be-
tween benign and premalignant colorectal polyps according to the histopathologic reference standard.

Figure 5: External validation of the trained random forest model. A total 198 
of 1906 (10%) feature filter combinations were extracted from original CT colonog-
raphy images of the test set using different image filters (n = 22) and image features 
characterizing shape (n = 14), histogram statistics (n = 18), or texture (n = 68). On 
the basis of these filter feature combinations, the trained random forest classifier was 
used to predict the colorectal polyp class label (benign vs premalignant). Prediction 
performance was quantified using area under the receiver operating characteristic 
curve (AUC).

of the 198 features used for training and testing the random 
forest. A detailed explanation of feature importance assessment 
is described in Appendix E1 (online).

During all stages of the analysis, the training and external test 
data sets were kept separate. The machine learning models were 
trained on the training set and evaluated on the test set. The sta-
tistical analysis was implemented in Python, and the entire code 
was made publicly available on the development platform Github 
(https://github.com/pwesp/random-forest-polyp-classification).

Results

Training Set
Of 311 consecutively enrolled asymptomatic adults who un-
derwent same-day CT colonography and OC, two (1%) had 
to be excluded because of withdrawal from the trial after CT 
colonography and two (1%) had to be excluded because of 
incomplete OC, as reported previously (9). In this retrospec-
tive analysis, 201 of 307 (65%) screening participants without 
histopathologically confirmed colorectal polyps were excluded. 
Of the resulting 106 colorectal cancer screening participants 
with histopathologically confirmed polyps, 43 (41%) were ex-
cluded because of incomplete or missing CT colonography im-
aging data. Of 164 colorectal polyps detected in OC, 57 (35%) 
were excluded because of retrospectively uncertain localization 
in CT colonography, retrospectively equivocal correlation to 
the histopathologic reference standard, or both. Thirty-five of 
the 57 (61%) excluded polyps were benign, 22 of 57 (39%) 
were premalignant, and further details are presented in Table 
E1 (online). Consensus reading due to divergent reading re-
sults was performed in five of 107 (5%) polyps. A total of 107 
colorectal polyps were analyzed in 63 patients (mean age, 63 
years 6 8; 40 men) comprising 169 segmentations of polyps 

(91 of 169 [54%] in the supine position, 78 of 169 [46%] in the 
prone position), as presented in Figure 1 and Table E2 (online).  
Of 169 polyp segmentations, 24 (14%) were 5 mm or smaller, 
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(47%) were between 6 and 9 mm, and 53 of 118 (45%) were 
10 mm or larger, measuring the maximum three-dimensional 
diameter through polyp segmentation. Of 118, 39 (33%) 
polyp segmentations were classified as benign (ie, hyperplastic 
polyp or regular mucosa), of which eight (21%) were 5 mm or 
smaller, 26 (67%) were between 6 and 9 mm, and five (13%) 
were 10 mm or larger. Of the 118 polyp segmentations, 79 
(67%) were classified as premalignant (ie, adenoma), of which 
one (1%) was 5 mm or smaller, 30 (38%) were between 6 and 
9 mm, and 48 (61%) were 10 mm or larger, as shown in Table 
1. Polyp segmentation morphologies according to the size cat-
egories 5 mm or smaller, 6–9 mm, and 10 mm or larger are 
presented in Table 2.

Statistical Analysis of the Test Set
Machine learning predictions of polyp class (benign vs pre-
malignant) for all polyps in the external test set were derived 
from a random forest model fitted to the training set, yield-
ing an overall AUC of 0.91 (95% CI: 0.85, 0.96). Sensitivity 
and specificity for a default threshold value of 0.5 (model A) 
were 82% (95% CI: 74, 91) (65 of 79) and 85% (95% CI: 
72, 95) (33 of 39), respectively. Sensitivity and specificity 
for a threshold value of 0.53, which maximized the Youden 
index (model B), were 76% (95% CI: 64, 94) (60 of 79) 
and 92% (95% CI: 76, 100) (36 of 39), respectively. Sen-
sitivity and specificity for a threshold value of 0.48, which 
resulted in the highest possible specificity while achieving a 
sensitivity of at least 85% (model C), were 85% (95% CI: 
85, 89) (67 of 79) and 82% (95% CI: 61, 95) (32 of 39), 
respectively (Fig 6).

In subgroup analyses of the external test, which only con-
tained polyps of a certain size category, machine learning pre-
dictions of polyp class (benign vs premalignant) yielded an 
AUC of 0.87 in the size category 6–9 mm and 0.90 in the 
size category 10 mm or larger. Because current guidelines rec-
ommend OC-guided resection for colorectal polyps 6 mm or 
larger (United States Multi-Society Task Force on Colorectal 
Cancer, European Society of Gastrointestinal Endoscopy, and 
European Society of Gastrointestinal and Abdominal Radi-
ology) the number of polyps 5 mm or smaller with available 
histopathologic reports in the external test set (nine polyp seg-
mentations) was not sufficient to provide a reliable AUC for 
this size category (13,14).

In a subgroup analysis of the external test set, in which 
only a single segmentation of each colorectal polyp was in-
cluded, machine learning predictions of polyp class (benign 
vs premalignant) yielded an AUC of 0.90 for supine seg-
mentations only and of 0.90 for prone segmentations only, 
respectively.

In an intrareader variability analysis, for which 29 of 118 
(25%) polyp segmentations from the test set were segmented 
again by the same reader (Dice score, 0.80), random forest 
model predictions (benign vs premalignant) yielded an AUC of 
0.87. In an interreader variability analysis, for which 29 of 118 
(25%) polyp segmentations from the test set were segmented 
again by a second reader (Dice score, 0.77), random forest model 
predictions yielded an AUC of 0.91.

67 (40%) measured between 6 and 9 mm, and 78 of 169 
(46%) were 10 mm or larger (maximum three-dimensional 
diameter measured through polyp segmentation). Eighty-three 
of 169 (49%) polyp segmentations were classified as benign 
(ie, hyperplastic polyp or regular mucosa), of which 16 of 83 
(19%) were 5 mm or smaller, 49 of 83 (59%) were between 6 
and 9 mm, and 18 of 83 (22%) were 10 mm or larger. Eighty-
six of 169 (51%) polyp segmentations were classified as prema-
lignant (ie, adenoma), of which eight of 86 (9%) were 5 mm 
or smaller, 18 of 86 (21%) were between 6 and 9 mm, and 60 
of 86 (70%) were 10 mm or larger, as shown in Table 1. Polyp 
segmentation morphologies according to the size categories 5 
mm or smaller, 6–9 mm, and 10 mm or larger are presented 
in Table 2.

External Test Set
A total of 53 of 194 (27%) colorectal polyps detected in OC 
were not clearly identifiable at CT colonography because of 
poor bowel distention or insufficient cleansing or tagging and 
were consequently excluded. Sixty-four of 194 (33%) polyps 
detected in OC were excluded because of retrospectively uncer-
tain identification at CT colonography, equivocal correlation 
to the histopathologic reference standard, or both. A total of 
58 of 117 (50%) excluded polyps were benign, whereas 59 of 
117 (50%) were premalignant; further details are presented in 
Table E1 (online). Consensus reading due to divergent reading 
results was performed in five of 77 (7%) polyps. A total of 77 
colorectal polyps was analyzed in 59 patients comprising 118  
segmentations of polyps (56 of 118 [47%] in the supine posi-
tion, 62 of 118 [53%] in the prone position). Nine of 118 
(8%) polyp segmentations were 5 mm or smaller, 56 of 118 

Figure 6: Receiver operating characteristic (ROC) curve for random forest 
predictions of colorectal polyp class (benign vs premalignant) for the polyps in the 
external test set. Sensitivity and specificity were evaluated for a default threshold 
value of 0.5 (model A), a threshold value that maximized the Youden index (model 
B), and a threshold resulting in the highest possible specificity while achieving a 
sensitivity of at least 85% (model C).
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of benign and prema-
lignant polyps in CT 
colonography data sets 
of an asymptomatic 
average-risk colorectal 
cancer screening cohort 
over 50 years of age. 
In correlation to the 
histopathologic refer-
ence standard, machine 
learning–based image 
analysis enabled robust 
differentiation of be-
nign and premalignant 
CT colonography–de-
tected colorectal pol-
yps with an area under 
the receiver operating 
characteristic curve 
(AUC) of 0.91, even 
for small polyps in the 
size category of 6–9 
mm with an AUC of 
0.87. External valida-
tion of the technique 
in a large North Ameri-
can multicenter trial 
patient cohort demon-
strated robustness and 
reproducibility of our 
method, despite data 
sets acquired by vari-

ous scanner types and heterogeneous CT colonography imaging 
protocols (19–21). The feature importance analysis showed that 
a size-measuring image feature was in fourth place, but interest-
ingly it was the only feature assessing size among the 10 most 
important image features for decision making in correlation to 
the histopathologic reference standard. The other nine image 
features characterized the distribution and texture of gray levels.

Our results are in line with pioneering studies by Aman et al  
and Song et al (30,31). Aman et al showed, in a data set of 97 
polyps, that the differentiation of benign from premalignant pol-
yps in machine learning–assisted CT colonography analysis using 
content-based image retrieval achieved a significantly higher (P = 
.048) AUC of 0.76 as opposed to the polyp size–only approach, 
with an AUC of 0.66 (30). Song et al reached an AUC of 0.85 
for the machine learning–assisted differentiation of benign from 
premalignant colorectal polyps in a data set of 148 colorectal pol-
yps, of which 35 were benign and 113 were premalignant (31). 
However, no external validation was performed to ensure the reli-
ability in different scanner and protocol settings in these studies. 
In addition, Aman et al did not provide details on polyp size, and 
Song et al only included polyps 8 mm or larger (30,31). Our study 
adds to the field, as polyps smaller than 8 mm were analyzed, the 
machine learning algorithm was trained on a balanced training 
set, a standardized set of Pyradiomics image features was used, and 
validation on an external multicenter test set was performed.

Statistical Analysis of the Training Set and Model Introspection
Polyp class predictions (benign vs premalignant) for out-of-bag 
training set samples yielded an AUC of 0.88. The 10 (of 198 
[5%]) most important image features responsible for random 
forest classifications in this study were deduced from the trained 
random forest model and are shown in Table 3. Their relative 
feature importance added up to 23.8%. Seven features charac-
terized texture (ranks 2, 3, 6–10), two features quantified first-
order gray level histogram statistics (ranks 1 and 5), and one 
feature assessed size (rank 4). The remaining 188 (95%) features 
had a combined relative feature importance of 76.2%.

In detail, among the image features used for training the ran-
dom forest model and making predictions, the size-measuring fea-
ture “original_shape_LeastAxisLength” was ranked as the fourth 
most important feature, with a relative feature importance of 
2.6%, as shown in Table 3. It measured the smallest axis lengths 
of polyp segmentation–enclosing ellipsoids based on a principal 
component analysis.

Discussion
CT colonography does not enable a definite differentiation be-
tween benign and premalignant colorectal polyps, which would 
be crucial for individual risk stratification and therapy guid-
ance. Consequently, in this proof-of-concept study, we inves-
tigated the noninvasive machine learning–based differentiation 

Table 1: Colorectal Polyp Segmentation Characteristics according to the Histopathologic Report of the 
Training Set and External Test Set

Histopathologic Category

No. of Polyp Segmentations

ClassificationTraining Set (n = 169) External Test Set (n = 118)
Regular mucosa 3 (2) 9 (8) Benign
Hyperplastic polyp 78 (46) 30 (25) Benign
Lipomatous polyp 2 (1) 0 (0) Benign
Tubular adenoma 57 (34) 49 (42) Premalignant
Tubulovillous adenoma 16 (9) 26 (22) Premalignant
Villous adenoma 8 (5) 0 (0) Premalignant
Serrated adenoma 4 (2) 0 (0) Premalignant
Adenocarcinoma 1 (1) 4 (3) Premalignant

Note.—Data in parentheses are percentages. For study purposes only, a small number of adenocarcinoma 
segmentations were included in the premalignant group.

Table 2: Colorectal Polyp Segmentation Morphology in Three Size Categories of Both the Training Set 
and External Test Set

Morphologic Category

No. of Polyp Segmentations

Training Set External Test Set

5 mm 6–9 mm 10 mm 5 mm 6–9 mm 10 mm
Pedunculated 0/169 (0) 5/169 (3) 32/169 (19) 0/118 (0) 1/118 (1) 17/118 (14)
Sessile 23/169 (14) 57/169 (34) 43/169 (25) 9/118 (8) 52/118 (44) 31/118 (26)
Flat 1/169 (1) 5/169 (3) 2/169 (1) 0/118 (0) 3/118 (3) 1/118 (1)
Carcinomatous 0/169 (0) 0/169 (0) 1/169 (1) 0/118 (0) 0/118 (0) 4/118 (3)

Note.—Data are proportions, and data in parentheses are percentages. Th e three size categories include the 
maximum three-dimensional diameter measured through polyp segmentation.
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with a high burden of 
colorectal polyps, such 
as in familial adeno-
matous polyposis.

Our study had limi-
tations. The sample size 
was small, with 107 
histopathological ly 
confirmed colorectal 
polyps in the training 
set and 77 histopatho-
logically confirmed 
colorectal polyps in the 
external test set. Every 
polyp securely identifi-
able in CT colonogra-
phy data sets and un-
equivocally assignable 
to the corresponding 
histopathologic report 

was segmented. In the retrospective setting, however, a substan-
tial number of polyps detected with OC did not meet these crite-
ria and had to be excluded. Consequently, a selection bias could 
not be completely ruled out, and our results are only applicable 
to polyps clearly detectable with CT colonography. To ensure 
reproducibility of our machine learning model, only the stan-
dardized radiomics features available in the open-source Python 
package Pyradiomics were used (23). A dedicated feature mea-
suring polyp height was not included, which might have been 
important for classification decisions, as hyperplastic polyps are 
known to be flatter than adenomatous polyps in CT colonogra-
phy (39). Each patient, including all corresponding polyps and 
segmentations, was part of either the training set or the exter-
nal test set. No patient who was presented to the random forest 
model during training was presented to the model again during 
testing. In a subgroup analysis of the external test set, in which 
only a single segmentation of each colorectal polyp was included, 
machine learning predictions of polyp class (benign vs premalig-
nant) yielded an AUC of 0.90 for supine segmentations only and 
0.90 for prone segmentations only. However, correlations within 
multiple polyps of one patient or within multiple segmentations 
of one polyp cannot be ruled out.

In this proof-of-concept study with validation in an external 
multicenter test set, machine learning–assisted CT colonography 
analysis enabled the differentiation of benign and premalignant 
colorectal polyps. The present study provides a potential basis 
for future prospective studies with a larger number of patients to 
further examine the diagnostic performance of machine learning 
algorithms for the noninvasive analysis of CT colonography–de-
tected polyps.

Author contributions: Guarantors of integrity of entire study, S.G., P.W., M.I., 
P.M.K.; study concepts/study design or data acquisition or data analysis/interpreta-
tion, all authors; manuscript drafting or manuscript revision for important intellec-
tual content, all authors; approval of final version of submitted manuscript, all au-
thors; agrees to ensure any questions related to the work are appropriately resolved, 
all authors; literature research, S.G., P.W., C.S., T.K., C.C.C., J.R., M.I., P.M.K.; 
clinical studies, S.G., A.G., S.M., C.S., T.K., P.M.K.; statistical analysis, P.W., M.I.; 
and manuscript editing, S.G., P.W., A.G., C.S., C.C.C., J.R., M.I., P.M.K.

Reproducibility between research groups and between 
image data sets acquired with different scanners using vary-
ing acquisition protocols pose a great challenge for machine 
learning–assisted image analysis (32,33). To address this is-
sue and to ensure reproducibility of our machine learning 
model, only the standardized radiomics features available in 
the open-source Python package Pyradiomics were used (23), 
which is compliant with the Image Biomarker Standardiza-
tion Initiative (34). The effect of intra- and interreader vari-
ability on our machine learning algorithm was investigated. 
To reduce the effect of varying CT colonography protocols, 
all CT colonography scans were resampled prior to feature 
extraction. Importantly, an external multicenter test set com-
prising CT colonography images acquired with multiple CT 
scanners from several vendors using varying CT colonog-
raphy protocols was used to assess the performance of our 
radiomics-based machine learning differentiation of benign 
and premalignant colorectal polyps (19–21).

Brenner et al showed that OC cancer screening reduces 
the risk of colorectal cancer (7,35). However, these very 
successful OC screening programs had a low participation 
rate, at approximately 15%–20% (36–38). Colorectal can-
cer screening programs using noncathartic CT colonogra-
phy and full cathartic preparation CT colonography show a 
higher participation rate compared with OC: 982 of 2920 
(34%) for noncathartic CT colonography versus 1276 of 
5924 (22%) for OC and 612 of 2430 (25%) for full cathartic 
preparation CT colonography versus 153 of 1036 (15%) for 
OC, respectively (37,38). Adding machine learning–assisted  
image analysis to conventional radiologic image reading 
could further improve the clinical importance of CT colo-
nography–based colorectal cancer screening by allowing for 
a more precise selection of patients eligible for subsequent 
OC-guided polypectomy. Furthermore, machine learning–
assisted CT colonography image analysis potentially provides 
the gastroenterologist with a road map of premalignant pol-
yps eligible for OC-guided resection, particularly in patients 

Table 3: Ten Most Important Pyradiomics Image Features Responsible for Random Forest Model Clas-
sifications

Rank Feature Relative Importance (%)
1 log-sigma-2–0-mm-3D_firstorder_10Percentile 3.7
2 wavelet-LLH_glcm_Idmn 3.3
3 square_gldm_SmallDependenceLowGrayLevelEmphasis 3.2
4 original_shape_LeastAxisLength 2.6
5 original_firstorder_90Percentile 2.4
6 original_glcm_Imc2 2.2
7 wavelet-HLH_gldm_LargeDependenceHighGrayLevelEmphasis 1.9
8 wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasis 1.5
9 exponential_glszm_SmallAreaLowGrayLevelEmphasis 1.5
10 gradient_glcm_Contrast 1.5

Note.—The relative feature importance added up to 23.8%. Seven features characterized texture (ranks 2, 3, 
6–10), two features quantified first-order gray level histogram statistics (ranks 1 and 5), and one feature assessed 
size (rank 4). The remaining 188 (of 198 total) (95%) features had a combined relative feature importance of 
76.2%. Filter abbreviations, feature category abbreviations, and feature abbreviations are presented in Tables 
E5–E7 (online).

52 4. Publication I



Grosu et al

Radiology: Volume 299: Number 2—May 2021  n  radiology.rsna.org 335

Disclosures of Conflicts of Interest: S.G. disclosed no relevant relationships. P.W. 
disclosed no relevant relationships. A.G. disclosed no relevant relationships. S.M. dis-
closed no relevant relationships. C.S. disclosed no relevant relationships. T.K. disclosed 
no relevant relationships. C.C.C. disclosed no relevant relationships. J.R. disclosed no 
relevant relationships. M.I. disclosed no relevant relationships. P.M.K. disclosed no rel-
evant relationships.

References
 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 

2020;70(1):7–30.
 2. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer incidence and mortal-

ity patterns in Europe: Estimates for 40 countries and 25 major cancers in 
2018. Eur J Cancer 2018;103:356–387.

 3. Kumar V, Abbas AK, Aster JC, Robbins SL. Robbins basic pathology. 
Philadelphia, Pa: Elsevier/Saunders, 2013.

 4. Mandel JS, Bond JH, Church TR, et al. Reducing mortality from colorectal 
cancer by screening for fecal occult blood. Minnesota Colon Cancer Control 
Study. N Engl J Med 1993;328(19):1365–1371.

 5. Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by 
colonoscopic polypectomy. N Engl J Med 1993;329(27):1977–1981.

 6. Zauber AG, Winawer SJ, O’Brien MJ, et al. Colonoscopic polypectomy 
and long-term prevention of colorectal-cancer deaths. N Engl J Med 
2012;366(8):687–696.

 7. Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and 
screening colonoscopy on colorectal cancer incidence and mortality: systematic 
review and meta-analysis of randomised controlled trials and observational 
studies. BMJ 2014;348:g2467.

 8. Brenner H, Altenhofen L, Kretschmann J, et al. Trends in adenoma detec-
tion rates during the first 10 years of the German Screening Colonoscopy 
Program. Gastroenterology 2015;149(2):356–66.e1.

 9. Graser A, Stieber P, Nagel D, et al. Comparison of CT colonography, colo-
noscopy, sigmoidoscopy and faecal occult blood tests for the detection of 
advanced adenoma in an average risk population. Gut 2009;58(2):241–248.

 10. Kim DH, Pickhardt PJ, Taylor AJ, et al. CT colonography versus colonoscopy 
for the detection of advanced neoplasia. N Engl J Med 2007;357(14):1403–
1412.

 11. Atkin W, Dadswell E, Wooldrage K, et al. Computed tomographic colo-
nography versus colonoscopy for investigation of patients with symptoms 
suggestive of colorectal cancer (SIGGAR): a multicentre randomised trial. 
Lancet 2013;381(9873):1194–1202.

 12. Pooler BD, Kim DH, Weiss JM, Matkowskyj KA, Pickhardt PJ. Colorectal 
polyps missed with optical colonoscopy despite previous detection and 
localization with CT colonography. Radiology 2016;278(2):422–429.

 13. Rex DK, Boland CR, Dominitz JA, et al. Colorectal cancer screening: recom-
mendations for physicians and patients from the U.S. Multi-Society Task 
Force on Colorectal Cancer. Gastroenterology 2017;153(1):307–323.

 14. Laghi A, Neri E, Regge D. Editorial on the European Society of Gastro-
intestinal Endoscopy (ESGE) and European Society of Gastrointestinal 
and Abdominal Radiology (ESGAR) guideline on clinical indications for 
CT colonography in the colorectal cancer diagnosis. Radiol Med (Torino) 
2015;120(11):1021–1023.

 15. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are data. Radiology 2016;278(2):563–577.

 16. Parekh V, Jacobs MA. Radiomics: a new application from established tech-
niques. Expert Rev Precis Med Drug Dev 2016;1(2):207–226.

 17. Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision 
diagnosis and treatment of oncology: opportunities and challenges. Ther-
anostics 2019;9(5):1303–1322.

 18. Yang L, Dong D, Fang M, et al. Can CT-based radiomics signature 
predict KRAS/NRAS/BRAF mutations in colorectal cancer? Eur Radiol 
2018;28(5):2058–2067.

 19. CT Colonography. The Cancer Imaging Archive. https://doi.org/10.7937/
K9/TCIA.2015.NWTESAY1. Last modified June 3, 2020. Accessed  
November 17, 2019.

 20. Johnson CD, Chen MH, Toledano AY, et al. Accuracy of CT colonography for 
detection of large adenomas and cancers. N Engl J Med 2008;359(12):1207–
1217.

 21. Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): 
maintaining and operating a public information repository. J Digit Imaging 
2013;26(6):1045–1057.

 22. Nolden M, Zelzer S, Seitel A, et al. The Medical Imaging Interaction Toolkit: 
challenges and advances: 10 years of open-source development. Int J CARS 
2013;8(4):607–620.

 23. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics 
system to decode the radiographic phenotype. Cancer Res 2017;77(21):e104–
e107.

 24. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning 
in Python. J Mach Learn Res 2011;12(85):2825–2830. https://www.jmlr.
org/papers/v12/pedregosa11a.html.

 25. Breiman L. Random forests. Mach Learn 2001;45(1):5–32.
 26. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: 

data mining, inference, and prediction. 2nd ed. New York, NY: Springer, 
2009.

 27. Youden WJ. Index for rating diagnostic tests. Cancer 1950;3(1):32–35.
 28. Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A 

practical guide for medical statisticians. Stat Med 2000;19(9):1141–1164.
 29. Breiman L. Bagging predictors. Mach Learn 1996;24(2):123–140.
 30. Aman JM, Yao J, Summers RM. Prediction of polyp histology on CT colo-

nography using content-based image retrieval. In: Karssemeijer N, Summer 
RM, eds. Proceedings of SPIE: medical imaging 2010—computer-aided 
diagnosis. Vol 7624. Bellingham, Wash: International Society for Optics 
and Photonics, 2010; 76240D.

 31. Song B, Zhang G, Lu H, et al. Volumetric texture features from higher-order 
images for diagnosis of colon lesions via CT colonography. Int J CARS 
2014;9(6):1021–1031.

 32. Baeßler B, Weiss K, Pinto Dos Santos D. Robustness and reproducibility of 
radiomics in magnetic resonance imaging: a phantom study. Invest Radiol 
2019;54(4):221–228.

 33. Meyer M, Ronald J, Vernuccio F, et al. Reproducibility of CT radiomic 
features within the same patient: influence of radiation dose and CT recon-
struction settings. Radiology 2019;293(3):583–591.

 34. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker 
Standardization Initiative: standardized quantitative radiomics for high-
throughput image-based phenotyping. Radiology 2020;295(2):328–338.

 35. Brenner H, Chang-Claude J, Jansen L, Knebel P, Stock C, Hoffmeister 
M. Reduced risk of colorectal cancer up to 10 years after screening, sur-
veillance, or diagnostic colonoscopy. Gastroenterology 2014;146(3):709– 
717.

 36. van der Meulen MP, Lansdorp-Vogelaar I, Goede SL, et al. Colorectal cancer: 
cost-effectiveness of colonoscopy versus CT colonography screening with 
participation rates and costs. Radiology 2018;287(3):901–911.

 37. Stoop EM, de Haan MC, de Wijkerslooth TR, et al. Participation and yield 
of colonoscopy versus non-cathartic CT colonography in population-based 
screening for colorectal cancer: a randomised controlled trial. Lancet Oncol 
2012;13(1):55–64.

 38. Sali L, Mascalchi M, Falchini M, et al. Reduced and full-preparation CT 
colonography, fecal immunochemical test, and colonoscopy for popula-
tion screening of colorectal cancer: a randomized trial. J Natl Cancer Inst 
2015;108(2):djv319.

 39. Summers RM, Liu J, Yao J, Brown L, Choi JR, Pickhardt PJ. Automated 
measurement of colorectal polyp height at CT colonography: hyperplas-
tic polyps are flatter than adenomatous polyps. AJR Am J Roentgenol 
2009;193(5):1305–1310.

53



5 | Publication II



Vol.:(0123456789)1 3

https://doi.org/10.1007/s00330-021-08532-2

IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

Deep learning in CT colonography: differentiating premalignant 
from benign colorectal polyps

Philipp Wesp1  · Sergio Grosu1 · Anno Graser2 · Stefan Maurus1 · Christian Schulz3 · Thomas Knösel4 · 
Matthias P. Fabritius1 · Balthasar Schachtner1,5 · Benjamin M. Yeh6 · Clemens C. Cyran1 · Jens Ricke1 · 
Philipp M. Kazmierczak1 · Michael Ingrisch1

Received: 18 August 2021 / Revised: 6 December 2021 / Accepted: 20 December 2021 
© The Author(s) 2022

Abstract
Objectives To investigate the differentiation of premalignant from benign colorectal polyps detected by CT colonography 
using deep learning.
Methods In this retrospective analysis of an average risk colorectal cancer screening sample, polyps of all size categories 
and morphologies were manually segmented on supine and prone CT colonography images and classified as premalignant 
(adenoma) or benign (hyperplastic polyp or regular mucosa) according to histopathology. Two deep learning models SEG 
and noSEG were trained on 3D CT colonography image subvolumes to predict polyp class, and model SEG was additionally 
trained with polyp segmentation masks. Diagnostic performance was validated in an independent external multicentre test 
sample. Predictions were analysed with the visualisation technique Grad-CAM++.
Results The training set consisted of 107 colorectal polyps in 63 patients (mean age: 63 ± 8 years, 40 men) comprising 169 polyp 
segmentations. The external test set included 77 polyps in 59 patients comprising 118 polyp segmentations. Model SEG achieved a 
ROC-AUC of 0.83 and 80% sensitivity at 69% specificity for differentiating premalignant from benign polyps. Model noSEG yielded 
a ROC-AUC of 0.75, 80% sensitivity at 44% specificity, and an average Grad-CAM++ heatmap score of ≥ 0.25 in 90% of polyp tissue.
Conclusions In this proof-of-concept study, deep learning enabled the differentiation of premalignant from benign colorectal 
polyps detected with CT colonography and the visualisation of image regions important for predictions. The approach did 
not require polyp segmentation and thus has the potential to facilitate the identification of high-risk polyps as an automated 
second reader.
Key Points  
• Non-invasive deep learning image analysis may differentiate premalignant from benign colorectal polyps found in CT  
   colonography scans.
• Deep learning autonomously learned to focus on polyp tissue for predictions without the need for prior polyp segmentation  
   by experts.
• Deep learning potentially improves the diagnostic accuracy of CT colonography in colorectal cancer screening by allowing  
   for a more precise selection of patients who would benefit from endoscopic polypectomy, especially for patients with polyps  
  of 6–9 mm size.

Keywords Colonography · Computed tomographic · Colonic polyp · Deep learning · Early detection of cancer
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Abbreviations
AUC   Area under the curve
CNN  Convolutional neural network
MITK  Medical Imaging Interaction Toolkit
OC  Optical colonoscopy
PEG  Polyethylene glycol solution
ROC  Receiver operating characteristics
TCIA  The Cancer Imaging Archive

Introduction

Colorectal cancer is one of the three most frequent can-
cer-related causes of death among men and women [1]. 
However, its mortality and incidence can be significantly 
decreased by early detection of precancerous adenomatous 
polyps which grow over several years [2–5]. Screening 
methods such as immunochemical faecal occult blood test 
and optical colonoscopy (OC) are proven to reduce mortality 
from colorectal cancer, particularly since clinical symptoms 
are often non-specific or absent [6, 7].

A non-invasive screening method for colorectal cancer is 
computed tomography (CT) colonography. For the detection 
of colorectal polyps ≥ 6 mm, the sensitivity of CT colonog-
raphy is comparable to OC [8–10]. Computer-aided detec-
tion (CAD) algorithms can reduce the number of missed 
colorectal polyps at CT colonography when used as a second 
reader [11, 12].

However, conventional CT colonography does not allow a 
clear distinction between benign and premalignant colorectal 
polyps, which would be essential for individual risk stratifi-
cation and therapy management. Premalignant adenomatous 
polyps require endoscopic resection, whereas benign find-
ings of hyperplastic polyps avoid unnecessary interventions. 
As polyp size is the only surrogate indicator of the likelihood 
of malignancy at CT colonography, current guidelines rec-
ommend the resection of colorectal polyps ≥ 6 mm detected 
in CT colonography (European Society of Gastrointestinal 
and Abdominal Radiology, United States Multi-Society Task 
Force on Colorectal Cancer) [13, 14].

First studies have shown that machine learning–based CT 
colonography using radiomics may allow non-invasive dif-
ferentiation of benign and premalignant colorectal polyps 
[15, 16]. These radiomics approaches consist of three steps. 
First, segmentation of the region-of-interest in the medical 
image, i.e. the polyp in the CT colonography scan. Second, 
extraction of radiomics features for the segmented regions. 
Third, machine learning analysis of the extracted features to 
predict polyp character. Especially the first step of polyp seg-
mentation, which has been performed manually by experts, 
is a large barrier for the potential integration of these 
approaches into the clinical routine and prevents fully auto-
mated polyp classification. In addition, the interpretability 

of these approaches is limited to the importance of indi-
vidual radiomics features. Deep learning could potentially 
overcome these challenges and thereby substantially reduce 
the gap to clinical applicability for machine learning–based 
polyp classification in CT colonography.

Deep learning–based image classification using con-
volutional neural networks (CNNs) does not require prior 
segmentation of the region-of-interest and has proven to be 
an efficient method in automated image analysis, providing 
a powerful tool for tumour detection and classification in 
oncologic imaging [17]. In the first step of a deep learn-
ing approach, a localisation of the polyp is sufficient. In 
the second step, a deep learning model can directly predict 
polyp character using a small subvolume of the CT colonog-
raphy image around the localisation. Additionally, CNNs 
can be exploited to visualise regions in the input image that 
are potentially important for model predictions to achieve 
improved model interpretability [18].

Therefore, the aim of this study was to establish the dif-
ferentiation of premalignant (i.e. adenoma) and benign (i.e. 
hyperplastic polyp or regular mucosa) colorectal polyps in 
CT colonography using deep learning.

Materials and methods

Training set

This study was approved by the institutional review board 
and the requirement for written informed consent was 
waived. It is a retrospective analysis of CT colonography 
images from a previously published prospective colorectal 
cancer screening cohort of an asymptomatic, average risk 
population over 50 years of age who underwent same-day 
OC and CT colonography [8]. Exclusion criteria of the pre-
viously published colorectal cancer screening cohort were 
signs of colonic illnesses such as abdominal pain, relevant 
changes in stool frequency, diarrhoea, melaenic stools, and 
haematochezia as well as positive family history for colorec-
tal cancer, hereditary colorectal cancer syndromes, inflam-
matory bowel disease, severe cardiovascular or pulmonary 
disease, body weight > 150 kg, and prior OC within the last 
5 years. Only participants with histopathologically con-
firmed findings corresponding to CT colonography findings 
were included in the present study (Fig. 1).

CT colonography in the training set

CT colonography bowel preparation is described in the 
Supplemental Material. CT colonography images were 
acquired on a 64-channel multidetector row scanner (Sie-
mens Somatom Sensation 64, Siemens Healthineers) at 
0.6 mm collimation and reconstructed using a standard soft 
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tissue kernel at a slice thickness of 0.75 mm and 0.5 mm 
reconstruction increment. Tube voltage was 120 kVp at tube 
current–time product reference values of 70 mAs in supine 
and 30 mAs in prone position using automatic tube current 
adaption. Mean radiation dose for CT colonography was 
4.5 (0.6) mSv. For bowel distension, room air or  CO2 was 
insufflated through a rectal tube. No intravenous contrast 
agent was administered. The CT colonography protocol was 
described in detail before [8].

External test set

CT colonography datasets from a North American multicen-
tre CT colonography screening trial, publicly available via 
The Cancer Imaging Archive (TCIA), served as an external 
test set [19–21]. The external test set comprised multicen-
tre CT colonography images acquired on various CT scan-
ners from different vendors (Siemens Healthineers; Philips 
Healthcare; GE Healthcare Systems; Canon Medical Sys-
tems) with varying scanning protocols. Polyps were only 
included if histopathologic reports were available.

Polyp segmentation

Prospective polyp detection and polyp matching are 
described in the Supplemental Material. All readers were 
informed about polyp size and colon segment in which pol-
ypectomy was performed. Histopathological polyp class 
was blinded for all readers. Colorectal polyps were manu-
ally segmented in multiplanar 2D CT colonography images 
by a board-certified radiologist (8 years of experience in CT 
colonography imaging; completed a specialised hands-on 

workshop on CT colonography) and two radiology residents 
(3 years of experience in CT colonography imaging; one 
completed a specialised hands-on workshop on CT colo-
nography) in equal amounts, as described in detail before-
hand [16]. For exact retrospective polyp re-detection, 2D 
and virtual fly-through 3D CT colonography reconstruc-
tions were used (Fig. 2). Colorectal polyps that could not be 
clearly identified in CT colonography and/or unequivocally 
assigned to the corresponding histopathological report were 
excluded. A consensus reading was performed in case of 
divergent reading results. Consensus was reached when all 
three readers agreed on polyp localisation and segmenta-
tion. Each colorectal polyp was segmented in supine and 
prone position images, if confidently detectable in both 
positions. The CT colonography workflow of the dedicated 
post-processing software syngo.via versionVA30B (Siemens 
Healthineers) was used for polyp detection. The Medical 
Imaging Interaction Toolkit (MITK) Version 2018.04 (Ger-
man Cancer Research Center — Division of Medical Image 
Computing) was used for polyp segmentation [22].

Histopathological reference standard

A colorectal polyp was considered benign if the correspond-
ing histopathological report classified it as “regular mucosa” 
or “hyperplastic polyp”, premalignant if the corresponding 
histopathological report classified it as “tubular adenoma”, 
“tubulovillous adenoma”, or “villous adenoma”.

Solely for study purposes, 2 lesions with the histopatho-
logical classification “serrated adenoma” and 3 lesions 
with the histopathological classification “adenocarcinoma” 
(39 mm, 44 mm, and 75 mm) were included in the group 

Fig. 1  Flow diagram of the 
training set and the external 
test set
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premalignant. One polyp with the histopathological clas-
sification “lipomatous” was included in the group benign 
(Table 1).

Deep learning–based ensemble models

This study investigated two deep learning–based models, 
SEG and noSEG. Both models were ensembles, each con-
sisting of 50 three-dimensional convolutional neural net-
works [23]. In each ensemble, the mean output of the 50 
respective CNNs was used as model output. Ensembling 
was implemented to address the variance observed while 
training single CNNs. This variance was believed to be 
an effect of training set size — deep learning is typically 

applied on large datasets — and could not be eliminated 
with data augmentation. The CNNs used in both ensemble 
models were, apart from the input layer, identical (Fig. 3). 
CNNs in SEG expected inputs of size 50 × 50 × 50 × 2 
(image + segmentation), CNNs in noSEG expected inputs 
of size 50 × 50 × 50 × 1 (image). A CNN from model noSEG 
is shown schematically in Fig. 4 and a detailed layer-by-
layer description for CNNs from both models is provided 
in Table 2. Both models were implemented with Keras 
(version 2.4.3) [24], an open-source Python interface for 
neural networks. The open-source machine learning library 
TensorFlow (Google Brain, version 2.4.1) [25] was used as 
backend.

CNN training

Every CNN in each of the models was trained individually 
to predict the histopathological polyp class label (benign vs. 
premalignant). CNNs in SEG were trained with images and 
segmentations; CNNs in noSEG were trained with images 
exclusively (Fig. 3). Every CNN was trained with a different 
80–20 train-validation split. In these splits, 80% of the data 
were randomly selected as training data to train the network, 
and the other 20% were used as validation data to monitor 
the training process. Training parameters included a sto-
chastic gradient descent (SGD) optimiser, a learning rate of 
0.01, a binary cross-entropy loss function, and a batch size 
of 8. Data augmentation, including random cropping, was 
used in the training data. The validation data was not aug-
mented, but cropped to size 50 × 50 × 50 around the polyp 
centre to match the input size. Early stopping was applied 
to automatically end the training process: If the AUC in the 

Fig. 2  a-c Colorectal polyps 
of the training set (indicated 
by arrows) in axial 2D CT 
colonography images (top row) 
and in the corresponding virtual 
fly-through 3D reconstruc-
tions (bottom row). a 7-mm 
hyperplastic polyp in the 
rectum of a 58-year-old woman. 
b 8-mm tubular adenoma in the 
transverse colon of a 74-year-
old woman. c 9-mm tubulovil-
lous adenoma in the rectum of a 
67-year-old man

Table 1  Colorectal polyp segmentations in the training set and exter-
nal test set class-divided according to the histopathological report

The adenocarcinoma segmentations were included in the premalig-
nant group for study purposes only

Histopathologic 
category

Number of polyp segmenta-
tions

Classification

Training set External test set

Regular mucosa 3/169 (2%) 9/118 (8%) Benign
Hyperplastic polyp 78/169 (46%) 30/118 (25%)
Lipomatous polyp 2/169 (1%) 0/118 (0%)
Tubular adenoma 57/169 (34%) 49/118 (42%) Premalignant
Tubulovillous 

adenoma
16/169 (9%) 26/118 (22%)

Villous adenoma 8/169 (5%) 0/118 (0%)
Serrated adenoma 4/169 (2%) 0/118 (0%)
Adenocarcinoma 1/169 (1%) 4/118 (3%)
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20%-validation set did not increase for 64 epochs, training 
was stopped and the weights from the epoch with the highest 
validation AUC were restored.

Statistical analysis of the external test set

The classification performance of the trained models SEG 
and noSEG was evaluated on the independent, external test 
set (Fig. 3). Model output scores were calculated as the 
arithmetic mean of the 50 individual output scores of the 
CNNs in each ensemble for each input image. The model 
output score was turned into a prediction using a classifica-
tion threshold. The threshold was selected to yield a sen-
sitivity of 80%. Classification performance was quantified 
using AUC, sensitivity, and specificity. For polyp size–based 
subgroup analyses, the maximum polyp diameter in three 
dimensions was calculated based on the polyp segmenta-
tion masks.

Visual explanation of model predictions

The gradient-based CNN visualisation technique Grad-
CAM++ [18] provided visual explanations of predictions 
made for the test set by model noSEG (predictions based on 
input images exclusively). For each voxel in an input image, 
GradCAM++ calculated a class activation, ranging from 0.0 
to 1.0, to visualise the correspondence with the model out-
put score. GradCAM++ images for three selected polyps are 
shown in Fig. 5. In addition, we quantified how much atten-
tion the model noSEG paid to voxels labelled as “polyp”, 
according to the manual polyp segmentation masks, during 
decision-making and calculated the percentage of voxels 
inside the manual polyp segmentation mask which had a Grad-
CAM++ class activation of 0.25 or higher (Fig. 5).

The code for the statistical analysis was made publicly 
available on the development platform GitHub at https:// 
github. com/ pwesp/ deep- learn ing- in- ct- colon ograp hy.

Fig. 3  Schematic illustration of model training (left) and test-
ing (right). Training: Model noSEG was trained on augmented CT 
images of the training set, model SEG was trained on augmented 
CT images and manual polyp segmentation masks. Testing: Model 

noSEG predicted polyp class (benign vs. premalignant) on CT images 
of the independent external test set, and model SEG made predictions 
based on CT images and manual polyp segmentation masks
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Fig. 4  Schematic illustration 
of the CNN architecture used 
in the ensemble models SEG 
and noSEG. First, the input 
(CT image for model noSEG, 
CT image and manual polyp 
segmentation mask for model 
SEG) propagates through three 
convolution blocks (blocks 1, 2, 
and 3), each consisting of two 
consecutive three-dimensional 
convolutions with an increasing 
number of filter kernels (block 
1: 16 kernels, block 2: 32 ker-
nels, block 3: 64 kernels) and 
skip connections. Afterwards, 
a fully connected layer mapped 
the information to the output 
neuron which holds the output 
score (0.0 = benign, 1.0 = pre-
malignant)

Table 2  Layer-by-layer 
description of the CNNs used in 
the two ensemble models SEG 
and noSEG

The convolutional part of each network (up to layer “add3”) consisted of a main branch, containing three-
dimensional convolutions, and a shortcut branch, containing either a single convolution kernel for downs-
caling or an identity mapping (“id”). At each add layer (“add1”, “add2”, “add3”), the main branch and the 
shortcut branch were added. After add1 and add2, the images were split up again into main and shortcut 
branches

Name Layer Filter kernel (shape, count) Output size

Main branch Shortcut noSEG SEG

in Input - 50 × 50 × 50 × 1 50 × 50 × 50 × 2
res1a 3D convolution 3 × 3 × 3, 16 3 × 3 × 3, 1 25 × 25 × 25 × 16
res1b 3D convolution 3 × 3 × 3, 16 id 25 × 25 × 25 × 16
add1 Add - 25 × 25 × 25 × 16
res2a 3D convolution 3 × 3 × 3, 32 3 × 3 × 3, 1 13 × 13 × 13 × 32
res2b 3D convolution 3 × 3 × 3, 32 id 13 × 13 × 13 × 32
add2 Add - 13 × 13 × 13 × 32
res3a 3D convolution 3 × 3 × 3, 64 3 × 3 × 3, 1 7 × 7 × 7 × 64
res3b 3D convolution 3 × 3 × 3, 64 id 7 × 7 × 7 × 64
add3 Add - 7 × 7 × 7 × 64
pool Global average pooling - 64
drop Dropout - 64
out Fully connected layer - 1
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Results

Training set

Of 311 consecutively enrolled adults undergoing same-
day CT colonography and OC, 2 had to be excluded due 
to withdrawal from the trial after CT colonography and 2 
because of incomplete OC, as reported previously [8]. Of 
307 colorectal cancer screening participants of an average 
risk asymptomatic screening population, 201 participants 
without findings of histopathologically confirmed polyps 
were excluded. Of 106 participants with histopathologi-
cally confirmed polyps, 43 were excluded due missing or 
incomplete CT colonography datasets. Of 164 colorectal 
polyps detected in OC, 57 were excluded due to retrospec-
tively equivocal assignment to the histopathological refer-
ence standard and/or retrospectively uncertain localisation 
in CT colonography, as described in detail previously [16]. 
Thirty-five of 57 excluded polyps were benign, and 22 of 
57 were premalignant. Consensus reading was performed 
in 5 of 107 polyps. In total, 107 colorectal polyps with his-
topathological reference were evaluated in 63 patients (23 
female; mean age: 63 ± 8 years) comprising 169 polyp seg-
mentations in CT colonography images (91 in supine posi-
tion and 78 in prone position). Eighty-six polyp segmenta-
tions were categorised as premalignant (adenoma), of which 
8 were ≤ 5 mm, 18 between 6 and 9 mm, and 60 ≥ 10 mm, 
measuring the maximum 3D diameter of polyp segmenta-
tions. Eighty-three polyp segmentations were categorised 
as benign (hyperplastic polyp or regular mucosa), of which 
16 were ≤ 5 mm, 49 between 6 and 9 mm, and 18 ≥ 10 mm.

External test set

Due to insufficient cleansing/tagging or poor bowel disten-
sion, 53 of 194 colorectal polyps detected in OC were not 
clearly identifiable in CT colonography. Sixty-four polyps 
were excluded due to retrospectively equivocal assignment 
to the histopathological reference standard and/or retro-
spectively uncertain localisation in CT colonography, as 
described in detail before [16]. Fifty-eight of 117 excluded 
polyps were benign, and 59 of 117 were premalignant. Con-
sensus reading was performed in 5 of 77 polyps. In total, 
77 colorectal polyps were analysed in 59 patients compris-
ing 118 polyp segmentations (56 in supine position and 
62 in prone position). Seventy-nine polyp segmentations 
were categorised as premalignant (adenoma), of which 1 
was ≤ 5 mm, 30 between 6 and 9 mm, and 48 ≥ 10 mm. 
Thirty-nine polyp segmentations were categorised as 
benign (hyperplastic polyp or regular mucosa), of which 8 
were ≤ 5 mm, 26 between 6 and 9 mm, and 5 ≥ 10 mm.

Statistical analysis of the external test set

On the independent, external test set, output scores from 
model SEG yielded an AUC of 0.83, and output scores from 
model noSEG yielded an AUC of 0.75. Model predictions 
for polyp class from model SEG yielded a sensitivity and 
specificity of 80% (63 of 79) and 69% (27 of 39) for a classi-
fication threshold of 0.27. noSEG predictions for polyp class 
yielded a sensitivity and specificity of 80% (63 of 79) and 
44% (17 of 39) for a classification threshold of 0.36 (Fig. 6).

Fig. 5  GradCAM++ images of model noSEG for the inputs (a) 7-mm 
hyperplastic polyp, (b) 7-mm tubular adenoma, and (c) 9-mm tubu-
lovillous adenoma from the test set superimposed with the respec-
tive 2D CT colonography images. Grad-CAM+ + is a gradient-based 

explanation method for CNNs and was used to visualise the corre-
spondence (0.0 = no correspondence, 1.0 = highest correspondence) 
of each image voxel with the prediction of the model noSEG (benign 
vs. premalignant polyp) [18]
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Visual explanations of deep learning predictions were 
provided using the gradient-based CNN visualisation tech-
nique GradCAM++. The fraction of manual polyp seg-
mentation mask voxels which had a GradCAM++ class 
activation of 0.25 or higher from model noSEG was 90% 
on average.

In size-based subgroup analyses of the external test set, 
model SEG yielded an AUC of 0.74 for polyps with a size 
between 6 and 9 mm and 0.72 for polyps ≥ 10 mm. Model 
noSEG yielded an AUC of 0.72 for polyps with a size 

between 6 and 9 mm and 0.74 for polyps ≥ 10 mm. As cur-
rent guidelines recommend endoscopic resection for colo-
rectal polyps ≥ 6 mm, the number of polyps ≤ 5 mm with 
available histopathologic classification in the external test 
set (9 polyp segmentations) was not sufficient to provide 
reliable results for this size category [13, 14].

In a further subgroup analysis of the external test set 
based on the histopathologic report (see Table 3), tubu-
lovillous adenoma had the highest percentage of correctly 
classified cases (SEG: 23/26 (88%); noSEG: 23/26 (88%)), 
followed by tubular adenoma (SEG: 36/49 (73%); noSEG: 
37/49 (76%)) and hyperplastic polyp (SEG: 21/30 (70%); 
noSEG: 15/30 (50%)).

Discussion

In this proof-of-concept study, we investigated the deep 
learning–based differentiation of premalignant and benign 
colorectal polyps in CT colonography datasets of an aver-
age-risk, asymptomatic colorectal cancer screening cohort 
of over 50 years of age. Deep learning–based image analy-
sis allowed for the differentiation of benign and premalig-
nant colorectal polyps with CT colonography with an AUC 
of 0.83. Even when manual polyp segmentations were not 
used for decision-making, deep learning reached an AUC 
of 0.75. External validation demonstrated robustness of 
the deep learning models, despite images acquired with 
heterogeneous CT colonography imaging protocols on 
various CT scanners [19–21]. Tubulovillous adenomas 
were classified with higher accuracy (88% each model) 
compared to less premalignant tubular adenoma (73% and 
76%). This might indicate that, for premalignant polyps, 
the differentiation performance is increased with higher 
malignant potential of polyps.

The use of deep learning for the classification of 
colorectal polyps in CT colonography is not yet well 
established. In a pioneering study, Tan et  al. investi-
gated a deep learning–based classification of colorectal 
lesions > 30 mm detected in CT colonography in correla-
tion to the histopathological reference standard [26]. Tubu-
lar adenoma, tubulovillous adenoma, and villous adenoma 
were labelled as benign (N = 31); adenocarcinomas were 
labelled as malignant (N = 32). In two-fold cross valida-
tion, a deep learning model trained on CT colonography 
images reached an AUC of 0.84 [26].

Our study adds to the literature, as we showed the abil-
ity of deep learning–based image classification at CT 
colonography to differentiate between adenomas (pre-
malignant) and hyperplastic polyps (benign), consider-
ing that most colorectal cancers develop from adenomas 
and the incidence of colorectal cancer can be significantly 
decreased by early detection with subsequent resection 

Fig. 6  Receiver operating characteristic (ROC) curve for deep learn-
ing predictions of polyp class (benign vs. premalignant) in the exter-
nal test set from model SEG and model noSEG

Table 3  Class prediction accuracy of the two models SEG and 
noSEG on the external test set polyp segmentations for each histo-
pathologic category

The four adenocarcinoma segmentations were included in the prema-
lignant group for study purposes only

Histopathologic category Model accuracy Ground 
truth classifi-
cationSEG noSEG

Regular mucosa 3/9 (33%) 7/9 (78%) Benign
Hyperplastic polyp 21/30 (70%) 15/30 (50%)
Lipomatous polyp 0/0 0/0
Tubular adenoma 36/49 (73%) 37/49 (76%) Premalignant
Tubulovillous adenoma 23/26 (88%) 23/26 (88%)
Villous adenoma 0/0 0/0
Serrated adenoma 0/0 0/0
Adenocarcinoma 4/4 (100%) 3/4 (75%)
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[2–4]. As we included polyps ≤ 9  mm (N = 91 images 
in the training set, N = 65 images in the external valida-
tion), our results show that small colorectal polyps can be 
classified as benign or premalignant using deep learning. 
Furthermore, we evaluated the performance of our deep 
learning–based models in an independent, external, mul-
ticentre test set.

Besides deep learning, classical machine learning meth-
ods have been used for colorectal polyp classification in 
CT colonography as part of a radiomics approach [15, 16]. 
Radiomics approaches typically consist of three steps: 
region-of-interest segmentation, radiomics feature extrac-
tion, machine learning prediction. In a previous analysis 
of this training and external test dataset using such a radi-
omics approach, a random forest machine learning model 
enabled the robust differentiation of benign and prema-
lignant CT-colonography-detected colorectal polyps with 
an AUC of 0.91 [16]. The higher performance compared 
to deep learning (AUC of 0.84 and 0.75) can be attributed 
to the relatively small size of the training dataset. Deep 
learning typically requires larger amounts of data for suc-
cessful training than classical machine learning methods 
like random forests [17, 27].

The present study provides additional value as, contrary 
to a radiomics approach, deep learning–based CT colo-
nography image analysis did not require polyp segmenta-
tion. Merely a localisation of the polyp had to be provided. 
Additionally, deep learning models extract image features 
and make predictions at the same time, which leads to an 
approach with just two steps: localisation and deep learn-
ing prediction. This promises application in clinical routine, 
since polyp localisation would be more feasible compared 
to a thorough segmentation. Furthermore, it provides the 
basis for a fully automated CT colonography evaluation as 
the deep learning–based polyp classification could be com-
bined with already established CAD algorithms for polyp 
detection [11, 12]. Additionally, the CNNs which made up 
the deep learning models enabled the visual interpretation 
of predictions. We used the gradient-based CNN visualisa-
tion technique GradCAM++ [18] to highlight regions in the 
input CT colonography image that were potentially relevant 
for decision-making. High activation in image regions that 
were manually labelled by radiologists to create polyp seg-
mentation masks confirmed that model noSEG was capa-
ble of recognising autonomously which image voxels were 
important for decision-making, without the need for pre-
identification via polyp segmentation. In contrast, radiom-
ics approaches typically allow to rank features according to 
their importance during training a classical machine learn-
ing model. However, the majority of radiomics features are 
second-order texture features which are difficult to interpret 
in a medical context.

Used as a second reader, deep learning–based CT colo-
nography analysis could further increase the clinical impact 
of CT colonography–based colorectal cancer screening by 
enabling a more precise selection of patients who would 
profit from subsequent endoscopic polypectomy. Particu-
larly considering that colorectal cancer screening programs 
using CT colonography showed higher participation rates 
compared to OC [28, 29]. Current guidelines recommend 
the resection of colorectal polyps ≥ 6 mm detected in CT 
colonography [13, 14]. One reason for this recommendation 
is that colonoscopic referral for polyps with a size of ≤ 5 mm 
at screening CT colonography has been shown to have very 
poor cost-effectiveness with $464,407 per life-year gained 
[30]. Furthermore, Pickhardt et al. demonstrated that the 
incremental cost-effectiveness ratio of colonoscopic referral 
for polyps with a size between 6 and 9 mm at CT colonog-
raphy was $59,015 per life-year gained, compared to − $151 
(cost savings per person) for polyps with a size of ≥ 10 mm 
[30]. By allowing the differentiation of premalignant from 
benign colorectal polyps, especially in the size category 
between 6 and 9 mm, deep learning–based CT colonogra-
phy analysis could potentially increase the cost-effectiveness 
ratio of colonoscopic referral after CT colonography.

This study has limitations. The sample size was small. 
Every polyp securely identifiable in CT colonography and 
unequivocally assignable to the corresponding histopatho-
logical report was segmented. A substantial number of pol-
yps detected in OC, however, had to be excluded. Therefore, 
the results of this study are only applicable to polyps clearly 
detectable in CT colonography and a selection bias cannot 
be fully ruled out. No polyp that was presented to a deep 
learning model during training was presented to the model 
again during testing. However, correlations within multiple 
segmentations of one polyp or within multiple polyps of 
one patient in model SEG cannot be ruled out. The preva-
lence of serrated adenomas in this study (1.6%) (2 out of 
122 patients) was in agreement with the prevalence of ser-
rated adenomas in a large-scale CT colonography screening 
study (1.4%) [31]. However, the number of serrated adeno-
mas (N = 2) was not sufficient to provide reliable results for 
deep learning–based analysis of this category.

Conclusions

In this proof-of-concept study, deep learning–based analy-
sis of CT colonography allowed differentiating premalig-
nant from benign colorectal polyps in an external validation 
cohort corresponding to histopathology. Differentiation was 
possible, even when the model was provided only CT images 
and did not utilise expert polyp segmentation masks. Deep 
learning allowed for visual interpretability of the results 
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so that image regions potentially important for predictions 
could be analysed. Although the findings need to be vali-
dated in prospective studies, the presented method promises 
to facilitate the identification of high-risk polyps as an auto-
mated second reader.
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Abstract
Background Deep learning is a promising technique to improve radiological age assessment. However, expensive manual 
annotation by experts poses a bottleneck for creating large datasets to appropriately train deep neural networks. We propose 
an object detection approach to automatically annotate the medial clavicular epiphyseal cartilages in computed tomography 
(CT) scans.
Methods The sternoclavicular joints were selected as structure-of-interest (SOI) in chest CT scans and served as an easy-to-
identify proxy for the actual medial clavicular epiphyseal cartilages. CT slices containing the SOI were manually annotated 
with bounding boxes around the SOI. All slices in the training set were used to train the object detection network RetinaNet. 
Afterwards, the network was applied individually to all slices of the test scans for SOI detection. Bounding box and slice 
position of the detection with the highest classification score were used as the location estimate for the medial clavicular 
epiphyseal cartilages inside the CT scan.
Results From 100 CT scans of 82 patients, 29,656 slices were used for training and 30,846 slices from 110 CT scans of 110 
different patients for testing the object detection network. The location estimate from the deep learning approach for the 
SOI was in a correct slice in 97/110 (88%), misplaced by one slice in 5/110 (5%), and missing in 8/110 (7%) test scans. No 
estimate was misplaced by more than one slice.
Conclusions We demonstrated a robust automated approach for annotating the medial clavicular epiphyseal cartilages. This 
enables training and testing of deep neural networks for age assessment.

Keywords Anatomic landmark detection · Deep learning · Object detection · Medial clavicular epiphyseal cartilages · Age 
assessment

Background

Age is an essential part of a person’s identity, especially 
for children. By definition of the UN Convention on the 
Rights of the Child (CRC, Article 1) [1] and the EU acquis 
(Directive 2013/33/EU, Article 2(d)) [2], a child is any per-
son below the age of 18. When the age is known, it rules 
the relationship between a person and the state. Changes in 
age can trigger the acquisition of rights and obligations in 
different aspects such as emancipation, employment, crimi-
nal responsibility, sexual relation, and consent for marriage 
or military service [3]. Because of the importance of age, 
the CRC lists certain key obligations for states and authori-
ties regarding age that include registration of the child after 
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birth, respecting the right of the child to preserve his or her 
identity, and speedily re-establish his or her identity in case 
that some or all elements of the child’s identity have been 
deprived [3]. Following these obligations, a state may need 
to assess the age of the person to determine whether the 
person is an adult or a child when the age is unknown. In 
that case, the European Union Agency for Asylum (EUAA) 
recommends that the least intrusive method is selected fol-
lowing a gradual implementation and that the most accurate 
method is selected and margin of error is documented [3].

Radiological examinations of the carpal bones, the molars 
or the clavicles play an important role in assessing the chron-
ological age of living individuals [4]. For the clavicles, the 
ossification status of the medial clavicular epiphyseal car-
tilages is of particular interest. As the last maturing bone 
structure in the body, it allows age assessment not only for 
minors, but also for young adults [5]. However, current 
standard methods for age assessment suffer from low accu-
racy, intra- and inter-reader variability, and low diversity 
within the study populations [4, 6, 7].

A promising approach for accurate and automated age 
assessment is deep learning. Deep learning has been applied 
successfully to a wide range of computer vision tasks in 
medical imaging in the past [8–10]. A deep neural network 
trained to map an image of the medial clavicular epiphyseal 
cartilages to an individual’s age may yield more accurate age 
assessment results compared to current approaches [8, 11, 
12]. The data required to train a deep network for age assess-
ment, i.e., medical images including clavicles and sternum, 
as well as information about the age of the corresponding 
individuals, is abundant in many hospitals and also easily 
accessible. However, for efficient and successful training, it 
is advisable to first localize the medial clavicular epiphyseal 
cartilages within the medical images. The training process 
for diagnostic computer vision networks benefits from inputs 
that are cropped to the image region containing information 
relevant for solving the problem [13]. This cropping step 
usually requires manual expert annotations, which are time-
consuming and expensive [14].

Therefore, the aim of this study was to develop and to 
evaluate an automated approach to localize the medial cla-
vicular epiphyseal cartilages in CT scans, using deep learn-
ing–based object detection. This automated localization 
can be used to create large datasets, which are necessary to 
appropriately train and evaluate a deep neural network for 
age assessment [15].

Methods

We propose to use the state-of-the-art object detection net-
work RetinaNet [16] for the automated localization of the 
medial clavicular epiphyseal cartilages in CT scans. First, 

a trained instance of the two-dimensional RetinaNet was 
applied to each axial slice in a scan in order to detect a proxy 
structure for the medial clavicular epiphyseal cartilages 
(Fig. 1). In case of a detection, the RetinaNet predicted a 
bounding box, as well as a class, and provided a classifica-
tion score. Multiple detections in different slices or within 
the same slice were possible. The center of the bounding 
box associated with the highest of all classification scores 
was entitled as the location estimate of the medial clavicular 
epiphyseal cartilages in the CT scan. The entire workflow is 
illustrated in Fig. 2.

In the following, this section will describe (a) the retro-
spective collection of the data; (b) the manual data annota-
tion; (c) the splitting of the data into training, validation, 
and test set; (d) the object detection network RetinaNet; (e) 
the training and evaluation of the RetinaNet; and (f) how we 
used the RetinaNet to estimate the location of the medial 
clavicular epiphyseal cartilages in a scan.

Retrospective data collection

This study was approved by the institutional review 
board, and the requirement for written informed consent 
was waived. CT scans of the upper body were identified 
retrospectively in the picture archiving and communica-
tion system (PACS). The scans were originally acquired 
during the clinical routine for all purposes in the period 
2017–2020. The patients’ age at examination was in the 
range of 15 to 25 years; age was measured as the time 

Fig. 1  The structure-of-interest (SOI), defined as the sternoclavicular 
joints, together with their contributing portions of the sternum and 
the medial clavicles
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difference in days between documented date of birth 
and date of CT examination. On the one hand, this range 
covers a broad spectrum of developmental stages of the 
medial clavicular epiphyseal cartilages [17]; on the other 
hand, it includes ages which have high legal relevance 
in most countries, e.g., R18 and 21 [4]. Detailed inclu-
sion and exclusion criteria for CT scans are listed in the 
“Appendix.”

Three preprocessing steps were applied to the col-
lected scans. First, image voxel values were limited to 
the range of − 200 to 600 Hounsfield units (HUs). This 
value range was derived heuristically, with the intent to 
remove information from the image that we considered 
less relevant for the detection of the proxy structure for 
the medial clavicular epiphyseal cartilages. This signal 
intensity restriction was supposed to guide the network to 
focus on a balanced mix of bone and clavicles surround-
ing soft tissue. Second, axial slices have been resized to 
512 × 512 pixels to match the input size that is expected 
by the RetinaNet. Finally, pixel values in each axial slice 
were linearly scaled into the value range 0.0 to 1.0 for 
network training.

Manual data annotation

The structure-of-interest (SOI) in this study was defined as 
the sternoclavicular joints, together with their contributing 
portions of the sternum and the medial clavicles (Fig. 1). 
The SOI served as an easy-to-identify proxy for the actual 
medial clavicular epiphyseal cartilages and was to be the 
structure detected by the RetinaNet.

All axial slices from the collected CT scans were manu-
ally annotated with ground-truth target labels for the Reti-
naNet. These target labels have two components: first, a 
bounding box which located the object, represented by 4 
parameters—(a) x position, (b) y position, (c) width, and 
(d) height—and second, a class label which classified the 
object. If a slice included the SOI, a target label was created 
by manually drawing a bounding box around all visible por-
tions of the sternum and the medial clavicles contributing to 
the sternoclavicular joints and setting the class label of the 
object to “sternum” (Fig. 3). Depending on the patient and 
scanning protocol, in particular the slice thickness, multiple 
consecutive axial slices contained the SOI and were anno-
tated with bounding boxes and class labels accordingly.

Fig. 2  Schematic workflow diagram of the proposed medial clavicu-
lar epiphyseal cartilage localization. 1. Annotation: CT images are 
manually annotated with two-dimensional ground-truth bounding 
boxes in axial slices around the structure-of-interest (SOI). The SOI 
is an easy-to-identify proxy structure for the actual medial clavicular 
epiphyseal cartilage. 2. RetinaNet Training: A RetinaNet is trained to 
detect the SOI in axial slices and predict bounding boxes. 3: Localiza-

tion in CT scan: The SOI can be localized in an unknown CT scan 
of the upper body. For this purpose, the trained RetinaNet is applied 
to each slice in a CT scan and all positive detections are collected. 
Afterwards, the center of the bounding box which corresponds to the 
best detection (highest classification score) is used as the predicted 
location for the SOI
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Training, validation and test set

The network was evaluated using the three-way holdout 
method. To this end, the n = 222 collected and annotated 
CT scans were split into three sets: (a) training, (b) vali-
dation, and (c) testing. First, a test set consisting of 110 
scans from 110 patients was randomly selected from the 
whole study dataset, so that it contained n = 10 patients and 
scans per age in years (ages = 15, 16, …, 25). All remain-
ing n = 112 scans that have not been selected for the test 
set were split according to a 90/10 ratio into a training set 
of n = 100 (= Floor[0.9 × 112]) scans and a validation set 
of n = 12 (= 112—100) scans. The test set was used only 
for the evaluation of the RetinaNet, once the training was 
completed. The training set was used to train the RetinaNet, 
while the validation set was used to monitor the training 
process. No resampling strategy, such as cross-validation, 
was applied.

Object detection network

The automated localization of the SOI proposed in this study 
was based on a PyTorch implementation [18, 19] of the 

object detection network RetinaNet [16]. This RetinaNet had 
a ResNet18 [20] backbone, which was provided by PyTorch 
as an off-the-shelf network and had been pre-trained on the 
public dataset ImageNet [21]. An important component 
of the RetinaNet implementation was the Focal Loss [16], 
which addressed heavy class imbalance for one-stage object 
detectors like the RetinaNet. This was useful, as the majority 
of an upper body CT scan does not cover the SOI.

As input, the network expects an image size of 512 × 512 
pixels, being a two-dimensional axial slice from a preproc-
essed CT scan. In case of a detection, the network returns 
three outputs: (a) a bounding box prediction which locates 
the detected object, (b) a class prediction which classifies 
the detected object, and (c) a classification score between 
0.0 and 1.0 quantifying the confidence of the network in the 
predicted detection. The class prediction is trivial, as “ster-
num” is the only class. Higher classification scores imply 
increased confidence in the detection.

Object detection training and evaluation

The RetinaNet was trained for 20 epochs with examples from 
the training set using the Adam optimization algorithm [22] 

Fig. 3  (A–F) Bounding boxes around the SOI in different CT scans 
after preprocessing. The SOI is defined as the sternoclavicular joints, 
together with their contributing portions of the sternum and the 

medial clavicles. In addition, (A) illustrates the 4 bounding box loca-
tion parameters x, y, width (w), and height (h)
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and a base learning rate of  10–5 to minimize the focal loss. A 
learning-rate scheduler decreased the learning rate by a fac-
tor of 10 whenever the loss did not improve for 3 consecu-
tive epochs. Data augmentation was applied: during training, 
we randomly flipped the image input and the bounding box 
along the same randomly chosen axis. Training progress was 
monitored by evaluating the loss of the validation set.

After training, the RetinaNet was applied to and evalu-
ated on the test set. The predicted bounding boxes and class 
labels were compared to the manually annotated ground-
truth targets to identify positive and negative detections—the 
term negative detection can be used interchangeably with no 
detection. A classification score ≥ 0.05 is considered a posi-
tive detection. The detection is true positive, if the intersec-
tion over union (IoU) for the areas of the predicted bounding 
box Apred and the ground-truth bounding box Atrue is > 0.5 
and the predicted class is the ground-truth class. Otherwise, 
the detection is considered false positive.

A classification score < 0.05 (value adapted from [16]) 
is a true-negative detection, if the image does not contain a 
bounding box labeled as “sternum.” Otherwise, it is a false-
negative detection.

Network performance was evaluated using average preci-
sion (AP) [23], a popular metric for object detection since it 
was applied for the PASCAL Visual Object Classes (VOC) 
Challenge in 2007 [24, 25]. AP is calculated as the area 
under the precision-recall curve from all positive and nega-
tive network detections for the test set, ranked according to 
classification score in descending order, where the precision 
p is set to the maximum precision obtained for any recall 
r
′

≥ r [25]:

Estimating the location of the SOI

The RetinaNet was trained to detect the presence of the SOI 
in axial CT slices. Because the SOI is a structure which 
typically stretches across multiple axial slices in a CT, the 
network may return positive detections for multiple slices. 
However, for data annotation purposes, we wanted the local-
ization approach to yield a unique location estimate of the 
SOI for a given CT scan.

IoU
(
Apred,Atrue

)
=
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|||
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|||
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∑
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r
�)
, r

�
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Estimating the location of the SOI included the following 
steps (see Fig. 2): (a) apply the RetinaNet to each slice in a 
given CT scan, (b) collect all positive detections, (c) select 
the best detection based on the classification score, and (d) 
select the center of the bounding box of the best detection 
to be the unique estimated location of the SOI. For exam-
ple, when given a CT scan consisting of 300 axial slices, 
the RetinaNet may detect the SOI in slices 240 and 241. 
The detection in slice 241 may have a classification score 
of 0.96, while slice 240 may only have a score of 0.92. In 
that case, the bounding box center of the detection in slice 
241 would be the unique estimated location of the SOI. In 
this context, a location encoded the position in three dimen-
sions (x, y, slice): the position in the axial plane (x, y) and 
the number of the slice of the respective detection counting 
in axial direction (slice).

Location estimates were evaluated per scan. Location 
estimates based on true-positive detections were also true 
positives. Location estimates based on false-positive detec-
tions were also false positives. Location estimates for scans 
with no positive detection were automatically false nega-
tives, because each scan contained the SOI. There were no 
true-negative location estimates. We also evaluated the 
Euclidean distance between the estimated location and the 
center of the (nearest) ground-truth bounding box in the 
axial plane. Additionally, we evaluated the number of slices 
between the estimated location and the center of the (near-
est) ground-truth bounding box.

Results

Data

The retrospectively collected image data (training set, vali-
dation set, and test set) in this study comprised 63,999 two-
dimensional axial slices from 222 CT scans and 202 patients 
(86 female (42.6%)) from age 15 to 25. In total, 872/63,999 
(1.4%) slices include the SOI and were annotated with the 
class label “sternum” and with a ground-truth bounding box.

The total image data was divided into three sets: train-
ing set, validation set, and test set (Table 1). The test set 
consisted of 30,846 slices from 110 scans and 110 patients 
(50 female (45.5%)); 379/30,846 (1.2%) slices included the 

Table 1  Training, validation, and test set composition with respect to 
the number of patients, CT scans, axial slices, and annotated slices

Dataset Patients Scans Slices Annotated slices

Training 82 100 29,656 434 (1.5%)
Validation 10 12 3,497 41 (1.2%)
Test 110 110 30,846 379 (1.2%)
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SOI, were labeled as class “sternum,” and had a ground-
truth bounding box. The training set consisted of 29,656 
slices from 100 scans and 82 patients (35 female (42.7%)); 
434/29,656 (1.5%) slices included the SOI, were labeled as 
class “sternum,” and had a ground-truth bounding box. The 
validation set consisted of 3497 slices from 12 scans and 10 
patients (1 female (10.0%)); 41/3,497 (1.2%) slices included 
the SOI, were labeled as class “sternum,” and had a ground-
truth bounding box.

Object detection network

The trained RetinaNet achieved an AP of 0.82 (1.0 = perfect 
score) for the detection, i.e., simultaneous localization and 
classification, of the SOI in the two-dimensional axial CT 
scan slices of the test set. The average IoU of the bound-
ing boxes predicted by the RetinaNet and the ground-truth 
bounding boxes was 0.74 (1.0 = identical boxes; 0.0 = no 
overlap between boxes).

For the 379 slices in the test set which included the 
SOI, the network yielded 338/379 (89.2%) true-positive 
detections, and 41/379 (10.8%) false-negative detections 
(Table  2). Examples of a true-positive detection and a 
false-negative detection are shown in Fig. 4. The median 
classification score for the 379 test slices that include the 
SOI was 1.00 [lower quartile (LQ) = 0.98; upper quartile 
(UQ) = 1.00] (1.0 = perfect score). The median IoU of the 
predicted bounding boxes and ground-truth bounding boxes 
in these slices was 0.83 [LQ = 0.76; UQ = 0.88].

For the 30,467 (= 30,846—379) slices in the test set that 
did not include the SOI, the network yielded 51/30,467 
(0.2%) false-positive detections and 30,416/30,467 (99.8%) 
true-negative detections (Table 2). The median classifi-
cation score for the 51 false-positive detections was 0.88 
[LQ = 0.17; UQ = 1.00]. The median classification score for 
the 30,416 true-negative detections was 0.00 [LQ = 0.00; 
UQ = 0.00].

Estimating the location of the SOI

The center of the bounding box from the RetinaNet detec-
tion with the highest classification score of all detections in 
a given CT scan was the estimated location of the SOI for 

that scan. Estimated locations were compared to ground-
truth locations.

In 97/110 (88%) scans of the test set, the estimated loca-
tion was true positive, i.e., in a slice with a ground-truth 
location. In 5/110 (5%) scans of the test set, the estimated 
location was false positive, but in slices directly next to a 
slice with a ground-truth location. In 8/110 (7%) scans of the 
test set the location estimate was false negative, because the 
RetinaNet did not return a positive detection, despite the SOI 
being present in the scan. The classification score distribu-
tion returned by the RetinaNet for a scan of the test set and 
the slice of the estimated SOI location is included in Fig. 4.

For the 97 true-positive location estimates, the mean 
(standard deviation (SD)) distance in the axial plane between 
the estimated location and the true location was 6.0 (3.8) 
pixels. For the 5 false-positive location estimates, the mean 
(SD) distance in the axial plane between the estimated loca-
tion and the closest true location was 7.6 (3.7) pixel. The 
average number of slices between a false-positive location 
estimate and the closest true location was 1 slice.

Discussion

We investigated a deep learning approach based on the 
state-of-the-art object detection network RetinaNet in order 
to locate the medial clavicular epiphyseal cartilages through 
an easy-to-identify proxy structure: the SOI. The dedicated 
RetinaNet trained in this study achieved an AP of 0.82 for 
detecting the SOI in all axial CT slices of the test set. Based 
on the RetinaNet detections, the location of the SOI was esti-
mated correctly in 88% of the CT scans in the test set, the 
false-positive localizations (5%) being close misses and the 
false negatives (7%) not being harmful. These results show 
that the presented localization approach can be used to reli-
ably generate large amounts of annotated data for training 
and evaluating a dedicated deep neural network for age-
assessment, without being limited by expensive and time-
consuming manual annotations through medical experts. 
A large dataset is necessary to train high-performing deep 
neural networks for any given task [15]. Using the locali-
zation approach as a foundation, deep learning–based age 
estimation has the potential to be more accurate than today’s 
standard approaches [8, 11, 12]. In addition, the localiza-
tion approach enables automated end-to-end age assessment 
without human interaction that only requires a CT scan which 
includes the medial clavicular epiphyseal cartilages as input.

The presented localization approach enables large anno-
tated datasets for deep learning–based age assessment for 
multiple reasons. First, in the majority of the test scans 
(97/110 (88%)), the predicted location of the SOI was in a 
correct axial slice and only 6.0 pixels away from the ground-
truth location on average. Even in the small number of test 

Table 2  Confusion matrix of RetinaNet detections in the test set. 
Detections in CT slices which include the SOI and have an IoU > 0.5 
with the ground-truth bounding box are true positives. A CT slice 
which does not include the SOI and for which the RetinaNet did not 
yield a detection is a true negative

Detection in slice No detection in slice

SOI in slice 338 / 379 (89.2%) 41 / 379 (10.8%)
SOI not in slice 51 / 30,467 (0.2%) 30,416 / 30,467 (99.8%)
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scans with false-positive detections (5/110 (5%)), the SOI 
was misplaced by only one slice. The three-dimensional field 
of view of a deep neural network for age assessment could 
most likely be chosen large enough, so that the localization in 

these five respective scans would still be sufficient. Moreover, 
in all remaining test scans (8/110 (7%)) the RetinaNet did 
not yield a detection. Although the number of false negatives 
should be reduced in the future, they are unproblematic for 

Fig. 4  The left panels show axial CT slices with ground-truth bound-
ing boxes around the SOI (yellow boxes) and detections (if predicted 
by network) (red boxes). The right panels show the central sagittal 
slice of the respective CT. The position of the axial slice in the left 
panel is indicated by the dashed blue line in the right panel. The red 
area in the right panel indicates the positions of all axial slices which 
contain the SOI and have ground-truth bounding boxes annotated. 
The heatmaps next to the right panels show the classification score 
returned by the RetinaNet for each axial slice (light orange = 1.0; 

black = 0.0). Detections made by the RetinaNet are true positive, if 
the axial slice has a ground-truth bounding box (red area) and the 
classification score is > 0.05 (e.g., light orange). A Shows an example 
of a true-positive localization of the SOI; i.e., the highest classifica-
tion score was returned for a slice which indeed contains the SOI. B 
shows an example of a false-negative localization; i.e., the RetinaNet 
returned only classification scores < 0.05 even though the SOI is pre-
sent in one or more slices
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the generation of a dataset for deep learning–based age assess-
ment. False negatives only reduce the number of annotated 
scans that can be generated from a given amount of unlabeled 
CT scans. As long as the required number of cases remains 
feasible, negative detections could also trigger the need for 
manual annotation of the medial clavicular epiphyseal carti-
lages through medical experts. This way, every available CT 
scan including the medial clavicular epiphyseal cartilages may 
be used as training data for a deep age-assessment network.

To the best of our knowledge, there exists no comparable 
anatomical landmarking approach for the purpose of locating 
the medial clavicular epiphyseal cartilages, the sternum, or the 
clavicles in CT scans. However, anatomic landmarking in medi-
cal images is an active research field, and there are a variety of 
studies which apply deep learning to locate different anatomical 
structures for distinct purposes [26, 27]. A particular applica-
tion for anatomic landmarking in medical images, which also 
shares some conceptual overlap with our study, is the detec-
tion of bone fractures. In these studies, deep object detection 
networks could successfully be trained to detect cracks in bone 
tissue and to locate fractures in hand and chest radiographs or 
chest CT scans [27]. Among other areas, one particular network 
was able to draw a bounding box around the clavicles in radio-
graphic images in case of a present fracture [26].

There are limitations within this study. First, the num-
ber of patients (n = 202) and CT scans (n = 222) was small, 
because manual ground-truth annotations (n = 872 bounding 
boxes) were time-consuming and data acquisition through 
the PACS laborious. However, the dataset was deemed large 
enough to perform this first study. Second, the training set 
included 100 CT scans from 82 patients; the validation set 
included 12 CT scans from 10 patients, which means that 
patient doublets were presented to the RetinaNet in each 
training epoch. The prevention of doublets is generally con-
sidered a quality standard regarding the reference popula-
tion. The test set used for evaluation did not contain dou-
blets. Third, the dataset is limited to CT images, and no 
statement about the performance of the automated localiza-
tion approach for MRI images can be made. CT images were 
used because CT is the state-of-the-art for forensic questions 
as it is widely available, quick, cheap, and robust. However, 
MRI is more desirable for acquiring images in healthy indi-
viduals compared to CT, because it spares the individuals 
from harmful ionizing radiation. But, we believe that the 
approach can be translated to MRI images in the future. 
Next, the approach does not differentiate between the left 
and right sternoclavicular joint and instead locates a proxy 
structure which includes both joints. As the differentiation 
of left and right clavicles is crucial in forensic age estima-
tion, expanding the capabilities of the localization in that 
regard would be an interesting future step. Additionally, the 
CT scans in this study were originally acquired during the 
clinical routine for all purposes. Because we were not able 

to analyze these purposes, there could be a bias in our data-
set. Also, the observed false-negative detections may occur 
systematically and excluding them from a dataset for deep 
learning–based age assessment could introduce a bias. Fur-
thermore, the thresholds for limiting HU values were derived 
heuristically and the potential effect of different thresholds 
on localization performance was not measured. Finally, we 
did not investigate three-dimensional object detection, even 
though it would have been natural to the problem of locat-
ing the medial clavicular epiphyseal cartilages in a CT scan. 
However, compared to 3D object detection, 2D object detec-
tion is much more common [28] and has a lot of benefits: (a) 
for the same amount of CT scans, more 2D slices than 3D 
scans that can be used as training examples, (b) 2D inputs 
are smaller and allow using smaller networks with fewer 
parameters, and (c) a wide range of high-performing pre-
trained models is available for 2D inputs.

Conclusions

In summary, we demonstrated a robust deep learning–based 
localization of an anatomical proxy structure to automate the 
localization of the medial clavicular epiphyseal cartilages. 
This enables deep learning–based age estimation based on 
the ossification of the medial clavicular epiphyseal cartilages 
which might outperform today’s standard methods. The pre-
sented localization approach addresses a specific case of a 
much wider problem concerning machine learning in medi-
cine: human annotations are costly and difficult to acquire, 
while the lack of annotations poses an enormous bottleneck 
for machine learning performance [14, 29].

Appendix

CT inclusion and exclusion criteria

The first two inclusion criteria were applied to identify 
clinical studies in the PACS. Inclusion criteria (PACS):

• Study includes chest CT
• Patient was between 15 and 25 years of age at the time 

of chest CT acquisition

The remaining 9 inclusion and exclusion criteria are listed 
below and were applied by inspecting the respective DICOM 
tags of the chest CT scans. The criteria were applied to each 
chest CT scan of the identified studies. The list of accepted 
reconstruction kernels was handcrafted based on all hard 
kernels we encountered during the retrospective data col-
lection. We did not explicitly filter CT scans based on slice 
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thickness. However, we used slice thickness to include only 
one chest CT scan per study and thereby keep the number of 
patients’ duplicates small. Specifically, we selected the chest 
CT scan with the thinnest slice thickness and discarded all 
other scans, in case the PACS query yielded multiple eligi-
ble chest CT scans for the same study. Nevertheless, patient 
duplicates exist in the dataset, because some patients were 
subject to multiple studies. Inclusion criteria (DICOM):

• Modality is “CT”
• ImageOrientationPatient is [1,0,0,0,1,0]
• ContrastBolusAgent is None or “”
• ConvolutionKernel is “LUNG,” “BL57f/3,” “BL57d/3,” 

“I70f/3,” “I70f\3,” [“I70f,” “3”], “I70f/2,” “I70f\2” or 
[“I70f”, “2”]

Exclusion criteria:

• “patient protocol” in SeriesDescription.lower()
• “topogram” in SeriesDescription.lower()
• “mpr” in SeriesDescription.lower()
• “SPO” in SeriesDescription
• “mip” in SeriesDescription.lower()

Slice thickness

The median slice thickness of the 222 CT scans in this 
study was 2.0 mm, the minimum 0.625 mm, the maximum 
3.0 mm, the lower quartile 1.0 mm, and the upper quartile 
2.5 mm. The distribution of the 222 slice thickness values 
is shown in Fig. 5.
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7 | Conclusion

This work demonstrates proof-of-concept machine learning approaches in two areas
of radiology: colorectal cancer screening with computed tomography (CT) colonog-
raphy and radiological age assessment based on clavicle ossification in CT. Machine
learning allowed to overcome challenges where the capabilities of conventional imag-
ing diagnostics reach their limits.

CT colonography This work shows that classical machine learning and deep learn-
ing enable the non-invasive classification of CT colonography–detected colorectal
polyps. The random forest model can differentiate premalignant and benign col-
orectal polyps using radiomic features extracted from CT colonography scans [12].
These features are calculated based on polyp segmentation masks that were manu-
ally annotated by experienced radiologists. The model performance was validated in
an external multicenter test set with a histopathologic reference standard. A feature
importance analysis revealed that only one of the 10 most relevant radiomic features
for decision-making is a size-measuring feature, while the other nine features char-
acterize texture or first-order histogram statistics. This is particularly interesting
because current guidelines suggest using size as a surrogate indicator for malignancy
[20, 21].

Proceeding from these results, this work also explored a convolutional neural network
(CNN) for solving the same task. The model was trained on the same training data
and evaluated with the same external multicenter test set as the random forest. The
results show that the CNN enables polyp differentiation even when the model is not
provided with polyp segmentation masks [13]. This is a valuable advantage compared
to the random forest approach because manual segmentation by experts is a barrier
to the potential integration of machine learning based CT colonography analysis into
the clinical routine and prevents fully automated polyp classification. Furthermore,
deep learning enables visual interpretability by highlighting image regions that were
potentially important for the model’s predictions of lesion character.

However, CNN performance was worse compared to the random forest, mainly when
no segmentation masks were provided. This is likely to be caused by the size of the
training dataset. Although the dataset is of high quality and has ground truth la-



78 7. Conclusion

bels according to a histopathological reference standard, the number of examples to
learn from is small for deep learning. Expanding the training dataset in the future is
difficult because CT colonography is not yet a frequent routine examination at LMU
University Hospital and not every polypectomy with subsequent histopathological
analysis is performed in-house. One approach for a larger dataset that might lead
to increased deep learning performance would be a retrospective national or inter-
national, multicentric study that combines the CT colonography data from different
sites. An expensive alternative would be a large, prospective study over to course of
several years at LMU University Hospital, similar to the study performed by Graser
et al. [19] that gathered the current dataset, but with more participants.

Overall, the identification of high-risk colorectal polyps using machine learning en-
ables individual risk stratification and therapy guidance for CT colonography ex-
aminations. Additionally, the CNN results are an encouraging step towards using
machine learning as an automated second reader.

Radiological age assessment This work displays continuous predictions of chrono-
logical age based on clavicle ossification in CT using a combination of a deep learn-
ing object detection model and a CNN that outperforms an established standard
method on average. The object detection model reliably locates an anatomical proxy
structure for the medial clavicular epiphyseal cartilages in thoracic CT scans, which
eliminates the need for expensive manual clavicle localization by human experts
[14]. Thereby, the object detection model enabled the automated creation of a large
dataset of CT images cropped to the anatomical region containing the ossification
status of the clavicles. In deep learning, it is advisable to use training examples that
contain relevant information and are tailored to the problem that should be solved
[40]. This large dataset was the foundation for developing a deep learning model
for radiological age assessment based on clavicle ossification. Thus, object detection
solves a specific instance of a much broader problem of machine learning in radiol-
ogy: the acquisition of human annotations is costly and challenging, and the lack of
annotations is a big bottleneck for machine learning performance.

Using the large dataset, a CNN was successfully trained in this work to map thoracic
CT scans cropped around the medial clavicular epiphyseal cartilages to chronological
age [15]. The automated and continuous age predictions with deep learning are more
accurate on average compared to an optimistic performance estimate for the well-
recognized classical age assessment method of Kellinghaus et al. [37, 38]. However,
deep learning predictions also show a higher variance, and the highest absolute errors
were observed for deep learning when comparing both methods. In cases where the
deep learning prediction was less accurate than the human reader performance esti-
mate, poor deep learning performance could partially be attributed to norm-variants
or pathologic disorders of the clavicles. Typically, such physiological abnormalities
would be exclusion criteria for radiological age assessment with reference study meth-
ods [108, 109]. Also, the highest deep learning prediction errors can be avoided by
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abstaining from predictions when the model shows high predictive uncertainty.

These issues could potentially be addressed in the future by expanding the training
dataset and implementing additional exclusion criteria to avoid physiological abnor-
malities in the training examples. Larger datasets might also facilitate the successful
training of more complex deep learning approaches, e.g. vision transformers, that
potentially yield higher accuracy while minimizing extreme errors. Also, it is worth
noting, that the human reader performance estimate assumes a best-case scenario
that favors human performance. It is reasonable to assume, that actual human reader
performance is worse. In order to have a fair and realistic comparison between deep
learning and human experts applying the Kellinghaus method a dedicated reading
study needs to be conducted.

Thus, deep learning enables continuous and accurate predictions of chronological age.
It provides an automated and thus scalable solution for radiological age assessment
that might be improved with larger and optimized training datasets in the future.

In summary, this work includes four proof-of-concept studies that successfully ad-
dressed two clinical problems in radiology with machine learning. Hopefully, the now-
proven ability of machine learning to differentiate colorectal polyps sparks further
research to help advance therapy guidance in CT colonography cancer screenings.
Also, the demonstrated continuous predictions of chronological age based on tho-
racic CT scans may inspire future radiological age assessment methods and improve
the accuracy of age estimates.
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Abstract
Background Radiological age assessment using reference studies is inherently limited in accuracy due to a finite number of 
assignable skeletal maturation stages. To overcome this limitation, we present a deep learning approach for continuous age 
assessment based on clavicle ossification in computed tomography (CT).
Methods Thoracic CT scans were retrospectively collected from the picture archiving and communication system. 
Individuals aged 15.0 to 30.0 years examined in routine clinical practice were included. All scans were automatically 
cropped around the medial clavicular epiphyseal cartilages. A deep learning model was trained to predict a person’s 
chronological age based on these scans. Performance was evaluated using mean absolute error (MAE). Model performance 
was compared to an optimistic human reader performance estimate for an established reference study method.
Results The deep learning model was trained on 4,400 scans of 1,935 patients (training set: mean age = 24.2 years ± 4.0, 
1132 female) and evaluated on 300 scans of 300 patients with a balanced age and sex distribution (test set: mean 
age = 22.5 years ± 4.4, 150 female). Model MAE was 1.65 years, and the highest absolute error was 6.40 years for 
females and 7.32 years for males. However, performance could be attributed to norm-variants or pathologic disorders. 
Human reader estimate MAE was 1.84 years and the highest absolute error was 3.40 years for females and 3.78 years 
for males.
Conclusions We present a deep learning approach for continuous age predictions using CT volumes highlighting the medial 
clavicular epiphyseal cartilage with performance comparable to the human reader estimate.

Keywords X-Ray computed tomography · Age determination by skeleton · Deep learning · Sternoclavicular joint · Forensic 
medicine

Background

Radiological age assessment is a method that examines cer-
tain physiological properties in radiographic or computed 
tomography (CT) images to estimate a person’s chronologi-
cal age [1, 2]. In this study, we explore a potential approach 
to enhance radiological age assessment based on clavicle 
bone ossification through deep learning.

Importance of age

In many countries, age governs the relationship between 
individuals and the state. Changes in age can lead to the 
acquisition of rights and obligations, such as emancipation, 
employment, criminal responsibility, sexual relation, 
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consent for marriage, or military service [3]. Thus, age is 
a critical component of a person’s identity, particularly for 
children. The United Nations Convention on the Rights of 
the Child (CRC, Article 1) [4] and the EU acquis (Directive 
2013/33/EU, Article 2(d)) [5] define a child as any person 
below the age of 18. States and authorities have specific 
age-related obligations under the CRC that include: 
registration of the child after birth, respecting the right 
of the child to preserve his or her identity, and speedily 
re-establish his or her identity in the case that some or all 
elements of the child’s identity have been deprived [3]. 
In cases where a person’s age is unknown or in serious 
doubt, a state may need to assess the age, e.g., to determine 
whether they are an adult or a child. The European Union 
Agency for Asylum (EUAA) recommends using the least 
intrusive age assessment method possible, gradually 
implementing more invasive methods if necessary, and 
selecting the most accurate method while documenting 
the margin of error [3]. Radiological age assessment is 
one such method and its accuracy may be improved using 
deep learning. Other non-binding recommendations from 
local expert panels exist, e.g., from the Working Group 
for Forensic Age Diagnostics of the German Society for 
Forensic Medicine (AGFAD).1

Reference study‑based radiological age assessment

Radiological age assessment is based on examinations of 
body parts that capture the skeletal development of the per-
son whose age is unknown, such as the carpal bones, the 
molars, or the clavicles [1]. In this study, we focus on the 
ossification status of the medial clavicular epiphyseal car-
tilages, as they are the last maturing bone structures in the 
human body, and enable the estimation of a wide range of 
ages, from teenagers to young adolescents and adults [6]. 
Typically, atlas methods [2] or reference study methods 
[7–9] are applied for age assessment, where the age of the 
examined person is assumed to be similar to the reference 
person or case group with similar skeletal maturation.

However, these methods have several limitations. First, 
the number of case groups is finite, e.g. n = 9 in [7–9], which 
limits the accuracy of age estimates. Second, age differences 
between members of the same case group can be large, 
e.g., up to 14.2 years [7], leading to high uncertainties. 
Third, expanding control groups is challenging because 
the assessment of the ossification stage by experts is time-
consuming. Finally, these methods are subject to intra- and 
inter-reader variability [10, 11].

Deep learning‑based radiological age assessment

A promising tool for more accurate radiological age assess-
ment via the clavicle bones is deep learning. It has been 
successfully applied in a variety of computer vision tasks 
in medical imaging [12] including radiological age assess-
ment through dental radiographs [13], knee MRIs [14], and 
more [15]. The large amounts of data required to train a deep 
network for age assessment [16]—medical images includ-
ing clavicles and sternum, along with the corresponding age 
information—are abundant in many hospitals and can be 
accessed retrospectively through their picture archiving and 
communication systems (PACS). Furthermore, data from 
institutions in different locations can be combined to form a 
dataset that is representative of the global population as well 
as possible. Finally, feed-forward deep learning models are 
deterministic as the same input image always results in the 
same output and age predictions do not suffer from intra- 
or inter-rater variability. This might be an advantage when 
considering which method should be deployed in potential 
legal scenarios.

Therefore, we (a) propose a deep learning approach to 
predict the chronological age based on CT image volumes 
of the medial clavicular epiphyseal cartilage and (b) com-
pare it to a favorable human reader performance estimate 
for the reference study method of Kellinghaus et al. [7, 8]. 
It is widely acknowledged in conventional practice that the 
classification of stage 3b in males and stage 3c in females 
following the Kellinghaus method suggests a minimum age 
of 18 years or above.

Methods

Retrospective data collection

This retrospective study was approved by the institutional 
review board (Ethics Committee, Medical Faculty, LMU 
Munich) and the requirement for written informed consent 
was waived. CT scans were collected retrospectively from 
the PACS of LMU Munich’s University Hospital. We spe-
cifically searched for chest CT scans of persons between the 
ages of 15.0 and 30.0 years, with documented sex, reim-
bursed by a recognized health-insurance provider (state-
mandated or private), acquired during the clinical routine 
for all purposes between 2017 to 2020. To ensure truthful 
age information we excluded scans issued and paid for by 
state agencies, which among other things excludes requests 
for forensic age assessments. Age was calculated as the num-
ber of days between the date of birth and the date of exami-
nation. The selected age range covers a broad spectrum 
of skeletal developmental stages of the medial clavicular 

1 https:// www. dgrm. de/ foren sische- alter sdiag nostik/ empfe hlung en 
(2023/11/28).
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epiphyseal cartilages [17]. One scan per study was selected 
based on multiple criteria specified in the flow diagram in 
Fig. 1, which summarizes the entire data collection process.

Deep learning model

A schematic overview of the deep learning approach for 
radiological age assessment is shown in Fig. 2. We express 
age assessment as a regression analysis where the depend-
ent variable (age) is a scalar, which is estimated based on 
a feature (CT scan), by a deep learning model. The model 
in this study was an ensemble [18] of 20 deep neural net-
works (deep ensemble) that share the same architecture and 
training process. The mean of the predictions from the 20 
ensemble members was used as the ensemble prediction. 

The architecture was adapted from the popular ResNet-18 
[19], where we replaced the two-dimensional convolutions 
with three-dimensional convolutions to enable processing 
CT volume inputs, and added a second input to process sex 
information.

Prior to model training, the collected CT scans were pre-
processed (described in detail in the supplement) including 
an automated localization of the clavicles [20]. This locali-
zation also served as a filter for chest CT scans that do not 
include the clavicles or scans wrongly labelled as chest CT. 
Next, the dataset was split into a training, a validation, and a 
test set. Validation and test set were sampled to include not 
more than one CT scan of the same person and to have the 
same equal number of samples per age (bin size = 1 year) 
and sex. All remaining samples from persons not in the 

Fig. 1  CT scan inclusion 
diagram. Flow diagram of the 
selection process from study 
identification in the picture 
archiving and communication 
system (PACS) to the chest CT 
scans in the dataset
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validation or test set were used as the training set. No person 
is part of more than one set. The deep ensemble was trained 
on the training set, and training progress was monitored 
using the validation set. Model performance was evaluated 
by measuring the absolute error of model predictions for 
the test set. Details regarding the dataset split, model, and 
training are provided in the supplement.

Abstention‑performance trade‑off

We applied the estimated predictive uncertainty of the deep 
ensemble to identify samples with a potentially high predic-
tion error. The standard deviation (SD) of the predictions 
made by the ensemble members for a given input served as 
the respective uncertainty estimate [21]. In an abstention-
performance trade-off, we abstain from predictions for the 
fraction of samples with the highest measured uncertain-
ties (abstention rate) to improve average performance for 
the remaining samples. For example, in a trade-off with an 
abstention rate of 20%, we rank all predictions by predic-
tive uncertainty and analyze only the top 80% of samples 
with the lowest uncertainty. This allows the machine learn-
ing model to say “I don’t know” [22] in cases where it is 
unsure, instead of forcing an answer at all costs.

Optimistic human reader performance estimate

To classify the performance of our deep learning 
model, we calculated an optimistic human reader 
performance estimate for the radiological age assessment 

of Kellinghaus et al. [7, 8]. This method is based on 9 
clavicle ossification stages, with three major stages (1, 4, 
and 5) and 6 substages (2a—2c and 3a—3c). They range 
from no ossification of the ossification center (stage 1) 
to complete fusion of the epiphyseal cartilage (stage 5). 
An individual’s age is estimated by first determining the 
ossification stage in a radiological examination [7, 8]. 
Next, the age is derived from the age distribution of a 
case group of known age and with the same ossification 
stage and sex.

The human reader estimate assumes a best-case 
scenario in which (a) the descriptive ossification stage 
statistics described in [7, 8] are derived from a cohort that 
is representative of all individuals, in particular, our test 
set, (b) age in each stage follows a normal distribution and 
(c) trained reviewers always assess the correct ossification 
stage. Under these conditions the HRE provides the lower 
limit for the absolute error that can be achieved with the 
reference study method when applied to a person with a 
certain true age x (Fig. 3).

For a given age x we first calculated the absolute differ-
ence to the mean age M of each ossification stage s:

For example, for a 21.00  year old male, these dif-
ferences are 7.72 years for stage 1 (M = 13.28 years), 
3.60  years for stage 2a (M = 17.40  years), 2.80  years 
for stage 2b (M = 18.20 years), 2.40 years for stage 2c 
(M = 18.60 years), 2.00 years for stage 3a (M = 19.00 years), 
0.10  years for stage 3b (M = 21.10  years), 1.90  years 
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Fig. 2  Deep learning-based radiological age assessment. Schematic 
visualization of the proposed approach for deep learning-based radio-
logical age assessment. First, the CT scan is cropped around the auto-
matically localized structures of interest (SOIs), which are the medial 
clavicular epiphyseal cartilages. Second, the scan undergoes several 
preprocessing steps which include resampling, intensity rescaling, 

and resizing. Finally, the adapted three-dimensional ResNet-18 pre-
dicts chronological age based on the preprocessed scan. Additionally, 
sex information is incorporated into the approach by fusing it with 
the image embedding before the last fully connected layer. While the 
figure only depicts a single network, the deep learning approach uses 
a deep ensemble consisting of 20 uniquely trained networks
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for stage 3c  (M = 22.90  years), 8.63  years for 
stage 4 (M = 29.63  years), 10.77  years for stage 5 
(M = 31.77 years).

Next, we calculated the probability density ps(x) (Fig. 3) 
for a person with the true chronological age x to be in ossi-
fication stage s based on normal distributions calculated 
from the provided mean and SD values. The probabilities 
were normalized such that

It is important to note, that two persons of the same 
chronological age can be in two different ossification 
stages. In the example of a 21.00 year old male, these 
probabilities are p

1
= 2.45 × 10

−5 , p2a = 2.10 × 10−2 , 
p
2b = 2.86 × 10

−2 , p
2c = 1.32 × 10

−1 , p
3a = 1.40 × 10

−1 , 
p
3b = 4.01 × 10

−1 , p
3c = 2.55 × 10

−1 , p
4
= 2.24 × 10

−2 , 
and p

5
= 1.29 × 10

−4.
The probability densities ps(x) were multiplied by the 

absolute difference to the mean age.

The sum of these products for all ossification stages 
yielded the absolute error of the reference study method 
for a person with the true age x:

In the example of the 21.00 year old male, the AE is 
1.64 years. The MAE of the reference study method for all 
individuals in the test set was then given by:

∑

s=1

p
s
(x) = 1.

ps(x) ⋅ |x −M(s)|

AE(x) =
∑

s=1

|M(s) − x|ps(x)

Classical expert reader age assessment

A senior radiologist and expert in the field conducted a 
manual reading of a small subset of the test set, comprising 
50 randomly sampled test set scans. The reading followed 
the Kellinghaus method [7, 8] and assessed the ossification 
stages 1, 2a, 2b, 2c, 3a, 3b, 3c, 4, and 5. The mean age value 
of each stage of the respective sex was used as age prediction 
for the manual reading.

Results

Dataset

A retrospective search in our hospital’s PACS identified 
7,791 studies conducted between 2017 and 2020 on 3,241 
patients that involved at least one chest CT scan with a 
recorded age at acquisition between 15 and 30 years, 
documented sex, and recognized health insurance 
provider (state-mandated or private). The 7,791 studies 
included 22,256 images or image volumes. Some studies 
included more than one chest CT scan that would have 
been suitable for analysis. After scan selection (Fig. 1), 
the final dataset consisted of 5,000 chest CT scans from 
2,535 patients (mean age = 24.2 ± 4.0 years), with 44% 
(1,103/2,535) females. The training set consisted of 

MAE =
1

||XTest
||

∑
x∈XTest

AE(x).

Fig. 3  Optimistic human reader performance estimate. The left and 
center panels display the probability density of a person being in a 
certain ossification stage, based on normal distributions described 
in [7, 8], for (a) females and (b) males between the ages of 10 and 

35 years. The right panel (c) shows the best-case mean absolute error 
estimate of predicted ages for true ages between 10 and 35  years 
when applying the radiological reference study method for age 
assessment of Kellinghaus et al. [7, 8]
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4,400 scans from 1,935 patients, with 41% (803/1,935) 
female. The validation and test set were independent 
and both included 300 scans from 300 patients (both: 
mean age = 22.5 ± 4.4  years), 10 scans per age (bin 
size = 1 year), and sex, with 50% (150/300) being female. 
All datasets are summarized in Table 1 and their age 
distribution is shown in supplementary Figure S3.

Deep learning‑based radiological age assessment

The deep ensemble model (Fig. 2) was trained using the 
training data and training was monitored using the valida-
tion data. The model's performance was evaluated on the test 
data. The results showed a mean absolute error (MAE) of 
1.65 years (standard deviation (SD) = 0.53) for all patients, 
1.69 years (SD = 0.53) for female patients, and 1.62 years 
(SD = 0.54) for male patients. The best prediction for a 
female individual had an absolute error of 0.003 years (true 
age = 18.604 years), while the best prediction for a male had 
an absolute error of 0.005 years (true age = 25.142 years). 
The corresponding input CT scans are displayed in Fig. 4 
and show no medical abnormalities. The worst predic-
tion for a female had an absolute error of 6.40 years (true 
age = 15.29 years). The corresponding CT showed a fish 
mouth shape variant with concavely configured clavicle 
ends in the left clavicle (Fig. 4). Shape variants near the 
sternal ends of the clavicle occur frequently and severely 
limit assessability [23, 24]. The worst prediction for a male 
had an absolute error of 7.32 years (true age = 19.20 years). 
A CT examination revealed that the individual had osteolysis 

Table 1  Documentation of the number of patients and CT scans in 
the total dataset, as well as in the training, validation, and test set

Set Total Training

Patients f m f m
1103 (44%) 1432 (56%) 803 (41%) 1132 (59%)
2535 1935

CT scans 5000 4400
Set Validation Test
Patients f m f m

150 (50%) 150 (50%) 150 (50%) 150 (50%)
300 300

CT scans 300 300

Fig. 4  Test set input examples. Selected axial slices of the preproc-
essed CT scans of (a) the best female, (b) best male, (c) worst female, 
and (d) worst male deep learning prediction for age. The worst pre-

dictions show (c) a “fish mouth configuration of the left clavicle” and 
a (d) osteolytic lesion of the right clavicle
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in the right clavicle, presumably as a manifestation of an 
underlying malignant disease (Fig. 4). The distribution of 
absolute errors by age (bin width = 2.5 years) is shown sepa-
rately for male and female patients in Fig. 5. The MAE, 

maximum absolute error (max error), and the 90th percentile 
absolute error (p90 error) for each age (bin width = 1 year) 
are reported in Table 2 for female individuals and Table 3 
for male individuals.

Table 2  Radiological age 
assessment results for female 
persons in the test set using 
deep learning (DL) and 
optimistic human reader 
performance estimate (HRE). 
The table displays the mean 
absolute error (MAE), 
maximum absolute error (max 
error), and 90th percentile 
absolute error (p90 error) 
in years. The number of 
individuals in each age group 
was n = 10

Results for female subjects

Age Deep learning Human reader estimate

MAE Max err p90 err MAE Max err p90 err

15.0- < 16.0 2.85 6.40 4.82 1.41 1.55 1.51
16.0- < 17.0 1.68 2.90 2.78 1.02 1.15 1.14
17.0- < 18.0 1.16 3.84 1.80 0.90 1.23 1.13
18.0- < 19.0 0.94 1.88 1.76 1.57 1.66 1.66
19.0- < 20.0 1.70 5.44 2.55 1.45 1.55 1.55
20.0- < 21.0 1.61 2.48 2.44 1.33 1.38 1.38
21.0- < 22.0 1.18 3.56 2.42 1.34 1.39 1.39
22.0- < 23.0 2.01 3.52 3.14 1.49 1.73 1.70
23.0- < 24.0 1.52 3.30 2.92 2.24 2.56 2.52
24.0- < 25.0 1.72 2.61 2.43 3.02 3.26 3.25
25.0- < 26.0 1.24 2.64 2.36 3.34 3.40 3.39
26.0- < 27.0 1.15 2.03 1.94 2.88 3.20 3.06
27.0- < 28.0 1.45 3.05 2.98 1.85 2.35 2.06
28.0- < 29.0 2.55 5.45 4.21 1.37 1.39 1.38
29.0- < 30.0 2.53 4.24 3.78 1.34 1.37 1.37

Fig. 5  Radiological age assessment results. Absolute prediction error 
of the (green) deep learning approach and the (yellow) optimistic 
human reader performance estimate for radiological age assess-
ment of (left panel) females and (right panel) males between 15 and 

30 years. The boxes extend from the lower to the upper quartile age 
values of each bin, with a line at the median. The whiskers extend 
from the boxes to 1.5 × interquartile range (IQR) (Q3—Q1) in each 
direction. Flier points are age values past the end of the whiskers
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Optimistic human reader radiological age 
assessment

The human reader estimate for the radiological age assess-
ment method of Kellinghaus et  al. [7, 8] was applied 
to the test set. The results showed a MAE of 1.84 years 
(SD = 0.84 years) overall, 1.77 years (SD = 0.74 years) for 
female individuals, and 1.91 years (SD = 0.92 years) for 
male individuals. The distribution of absolute errors by age 
(bin width = 2.5 years) is shown separately for male and 
female individuals in Fig. 5. The MAE, max error, and p90 
error for each age (bin width = 1 year) are reported in Table 2 
for female patients and Table 3 for male patients.

Classical expert reader age assessment

The manual age assessment of 50 randomly sampled test 
set scans by an expert in the field following the method 
of Kellinghaus et al. [7, 8] yielded a MAE of 1.97 years 
(SD = 1.48 years). For comparison, the deep learning model 
achieved a MAE of 1.44 years (SD = 0.95 years) on the same 
subset.

Abstention‑performance trade‑off

In a separate analysis, we applied an abstention-performance 
trade-off to the deep learning model predictions, i.e. we did 
not take results from samples with the highest predictive 
uncertainties into account. MAE, max error, and p90 error 
for abstention rates ranging from 0% (all samples evaluated, 
no abstention) to 100% (no samples evaluated) are shown in 

Table 3  Radiological age 
assessment results for male 
persons in the test set using 
deep learning (DL) and 
optimistic human reader 
performance estimate (HRE). 
The table displays the mean 
absolute error (MAE), 
maximum absolute error (max 
error), and 90th percentile 
absolute error (p90 error) 
in years. The number of 
individuals in each age group 
was n = 10

Results for male subjects

Age Deep learning Human reader estimate

MAE Max err p90 err MAE Max err p90 err

15.0- < 16.0 1.29 2.35 1.85 2.18 2.27 2.27
16.0- < 17.0 1.74 5.43 3.65 1.7 2.06 2.04
17.0- < 18.0 1.1 5.19 2.08 0.9 1.21 0.99
18.0- < 19.0 1.26 5.11 2.53 0.7 0.77 0.75
19.0- < 20.0 2.18 7.32 4.32 1.12 1.42 1.36
20.0- < 21.0 1.44 3.04 2.42 1.6 1.65 1.65
21.0- < 22.0 1.86 3.35 3.34 1.42 1.47 1.45
22.0- < 23.0 1.72 5.32 3.77 1.25 1.32 1.31
23.0- < 24.0 1.34 3.92 2.76 1.66 2.14 1.99
24.0- < 25.0 1.48 2.94 2.82 2.69 3.1 3.01
25.0- < 26.0 0.96 2.26 1.91 3.54 3.76 3.7
26.0- < 27.0 1.11 2.43 1.91 3.68 3.78 3.78
27.0- < 28.0 1.57 3.37 2.57 2.97 3.33 3.32
28.0- < 29.0 2.57 4.75 3.97 2.01 2.39 2.28
29.0- < 30.0 2.67 5.36 4.48 1.19 1.51 1.24

Fig. 6  Abstention-performance trade-off. The abstention-performance 
trade-off for deep learning-based radiological age assessment, where 
we abstain from analysis for predictions with the highest predictive 
uncertainties. Optimistic human reader performance estimate (HRE) 
results are included for reference. Increasing abstention rates lead to 
an improved deep learning mean absolute error (MAE), maximum 
absolute error (max error), and 90th percentile absolute error (p90 
error). For abstention rates > 14.7% the p90 error of the deep learning 
model is below 3.22 years and better compared to the human reader 
estimate (p90 error = 3.29  years). For abstention rates > 82.9% the 
max error of the deep learning model is below 3.49 years and better 
compared to the human reader estimate (max error = 3.78 years)
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Fig. 6. All metrics decreased for increasing abstention rates, 
i.e. the greater the fraction of the most uncertain predictions 
that were not considered for analysis, the better the remain-
ing predictions on average. For abstention rates > 14.7% the 
p90 error of the deep learning model was below 3.22 years 
and outperformed the human reader estimate which had a 
p90 error of 3.29 years. For abstention rates > 82.9% the max 
error of the deep learning model was below 3.49 years and 
thus better compared to the human reader estimate which 
had a max error of 3.78 years. Table 4 reports the deep learn-
ing model’s and human reader estimate’s MAE, max error, 
and p90 error separately for female and male individuals, 
and for abstention rates of 20% and 50%.

Discussion

Radiological age assessment methods based on reference 
studies analyzing the ossification of the sterno-clavicular 
joint are inherently limited in accuracy due to their design. 
The clavicles specifically enable age assessment for older 
minors (15–18 years), adolescents (18–21 years), and young 
adults (21–30 years). In an optimistic human reader per-
formance estimate, we calculated that the well-established 
method of Kellinghaus et al. [7–9] cannot predict chrono-
logical age more accurately than 1.84 years on average and 
no better than 0.66 years at best for individuals whose true 
age is between 15.0 and 30.0 years.

Deep learning model

In an effort to overcome this inherent limitation, we devel-
oped a deep learning approach for radiological age assess-
ment based on clavicle ossification (Fig. 2). The deep learn-
ing model outperformed the human reader estimate of the 
Kellinghaus et al. method on average and achieved a MAE 

of 1.65 years on a balanced test dataset containing 300 chest 
CT volumes that have been cropped around the sterno-cla-
vicular joints.

While the superior average performance highlights the 
potential of deep learning, ensuring the algorithm’s safety 
for all individuals is crucial. Consequently, the model’s high-
est error should be low and high errors should be infrequent 
during testing. Deep learning returned absolute errors up to 
7.32 years and fell short of the human reader estimate which 
only had absolute errors up to 3.78 years (Table 4). However, 
the samples that returned the worst deep learning predictions 
showed norm-variants or pathologic disorders, which would 
be exclusion criteria for radiological age assessment with 
reference study methods [23, 24].

Additionally, rare high error predictions can be avoided 
for deep learning with an abstention-performance trade-
off (Fig. 6): we leveraged predictive uncertainty to iden-
tify potential high error predictions, excluded them from 
analysis, and improved performance for the remaining 
predictions. For abstention rates > 14.7% the deep learning 
model surpassed the human reader estimate’s p90 error of 
3.29 years, indicating the potential for reducing high errors 
during application.

Another benefit of automated deep learning age assess-
ment is the significantly reduced analysis time for scans. 
This advantage may valuable in post-mortem CT examina-
tions for identification purposes, e.g. following mass casu-
alty incidents.

Positioning within the literature

To the best of our knowledge, no deep learning-based age 
assessment using chest CT volumes of the clavicles has been 
reported yet. However, several pioneering studies leverage 
other imaging modalities to predict age based on differ-
ent skeleton areas. Auf der Mauer et al. [14] analyzed 185 

Table 4  Summary of radiological age assessment results for the test 
set using deep learning (DL) and optimistic human reader perfor-
mance estimate (HRE). The table displays the mean absolute error 
(MAE), absolute error standard deviation (SD), maximum absolute 
error (max error), and 90th percentile absolute error (p90 error) for 

female and male persons. Additionally, the table shows the deep 
learning results with an abstention-performance trade-off for absten-
tion rates of 20% and 50%, where predictions with the highest predic-
tive uncertainty (20 or 50% of predictions) are not taken into account 
for analysis

MAE (SD) max error p90 error

f m f m f m

HRE 1.84 (0.84) 3.40 3.78 3.29
1.77 (0.74) 1.91 (0.92) 3.08 3.42

DL 1.65 (1.27) 6.40 7.32 3.38
1.69 (1.18) 1.62 (1.34) 3.10 3.45

DL (20% AR) 1.57 (1.14) 5.44 5.32 3.12
1.61 (1.09) 1.52 (1.18) 3.06 3.36

DL (50% AR) 1.35 (1.00) 4.24 5.32 2.67
1.44 (0.99) 1.26 (1.00) 2.91 2.54
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coronal and 404 sagittal 3D knee MRI volumes of Caucasian 
male subjects between the age of 13.0 and 21.8 years and 
middle to high socio-economic status. Using a combination 
of a deep learning model and a classical decision tree-based 
machine learning algorithm, they could improve the MAE 
from 1.63 (SD = 0.99) years achieved by a naive baseline 
model, which always predicts the mean age of the training 
set, to 0.69 (SD = 0.49) years. Vila-Blanco et al. [13] studied 
2,289 2D dental panoramic radiograph images of Spanish 
Caucasian subjects in the age range of 4.5 to 89.2 years. 
Their deep learning model achieved an MAE of ~ 2.5 years 
for the subgroup of 798 subjects between the ages of 15.0 
and 30.0 years. In the 2017 RSNA Pediatric Bone Age 
Machine Learning Challenge [25], participants trained deep 
learning models to predict expert-assigned bone age.

Limitations

This study has limitations. First, the complex relationship 
between skeletal development and chronological age 
poses an insurmountable natural accuracy barrier [26] 
for age assessment and depends on a variety of factors 
ranging from genetic predisposition to socio-economic 
status [27]. Second, the data used to train, validate, and 
test the deep learning model was collected retrospectively 
and acquired during the clinical routine for all purposes. 
Therefore, it was inhomogeneous, acquired with different 
scanners using different protocols, and includes samples 
that would have been ruled out for radiological age 
estimation by experts based on the health condition of 
the individual. Third, all CT scans in our dataset were 
acquired at the same hospital, which likely introduced a 
bias that prevents the data from being representative of the 
global population. Fourth, the training dataset included 
multiple CT scans per individual (4400 CT scans vs. 1935 
individuals), while only one unique scan per individual 
was used in the validation and test dataset (300 CT scans 
and 300 individuals, respectively). Additionally, the 
dataset included only CT scans for which the automated 
localization of the medial clavicular epiphyseal cartilages 
returned a positive detection. Finally, the human reader 
estimate is based on the statistics reported by Kellinghaus 
et al. [7, 8], but other studies applying the same method 
exist, e.g. from Wittschieber et al. [9].

Ethics disclaimer

We do not endorse the actual or exploratory application of 
the approach presented in this study for radiological age 
assessment. Instead, we suggest further research into deep 
learning approaches for radiological age assessment under 
controlled settings, following the promising results in this 

and similar studies. Specifically, we recommend transfer-
ring the presented approach from CT to magnetic reso-
nance imagining (MRI) data to avoid exposing individuals 
to potentially harmful ionizing radiation. The MRI dataset 
should be extensive and inclusive to ensure its representation 
of all individuals. The research should also focus on reduc-
ing deep learning prediction variance and extreme errors.

Conclusion

In summary, our study demonstrates a deep learning 
approach for radiological age assessment using CT vol-
umes that highlight the medial clavicular epiphyseal car-
tilages. Deep learning surpassed the human reader perfor-
mance estimate in terms of mean accuracy (MAE = 1.65 
vs. 1.84 years). Errors could partially be attributed to 
physiological abnormalities. Also, high errors may be 
avoided by abstaining from predictions with high uncer-
tainty. Looking ahead, deep learning offers an accurate, 
objective, and scalable solution that eliminates intra- and 
inter-reader variability and could be further improved with 
larger and standardized datasets.
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