
High-Order Discontinuous Galerkin
Hydrodynamics for Supersonic

Astrophysical Turbulence

Miha Cernetic

München 2024

High-Order Discontinuous Galerkin
Hydrodynamics for Supersonic

Astrophysical Turbulence

Miha Cernetic

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Miha Cernetic

aus Postojna, Slovenija

München, den 21.12.2023

Erstgutachter: Prof. Dr. Volker Springel

Zweitgutachter: PD Dr. Klaus Dolag

Tag der mündlichen Prüfung: 23.02.2024

To my dad, in loving memory.

vi

Contents

Zusammenfassung xxv

Abstract xxvii

1 Introduction 1
1.1 Turbulent systems in the Universe . 1

1.1.1 Star formation . 1
1.1.2 Stellar evolution . 2
1.1.3 Intracluster medium . 3
1.1.4 Supernovae . 4
1.1.5 AGN . 7
1.1.6 Cosmic rays . 8
1.1.7 Outlook on turbulence simulations 8

1.2 GPU computing . 8
1.3 Numerical fluid dynamics . 11

1.3.1 Ideal gas . 12
1.3.2 Euler equations . 13
1.3.3 Navier-Stokes equations . 14
1.3.4 Shocks and other discontinuities . 15

1.4 Discontinuous Galerkin Method . 17
1.4.1 Representation of conserved variables 18
1.4.2 Time evolution . 18

1.5 Turbulence . 19
1.5.1 Kolmogorov’s theory of incompressible turbulence 19

1.6 Challenges in modelling turbulence and overview of this thesis 21

2 High-order DG with sub-cell shock capturing on GPUs 23
2.1 Introduction . 24
2.2 Discontinuous Galerkin discretization of the Euler equations 26

2.2.1 Representation of conserved variables in DG 27
2.2.2 Time evolution . 27
2.2.3 Legendre basis function . 30
2.2.4 Gaussian quadrature . 31

viii CONTENTS

2.2.5 Time integration . 32
2.3 Treatment of viscous source terms . 33

2.3.1 The uplifting approach . 33
2.3.2 Surface derivatives . 34
2.3.3 The Navier-Stokes equations . 37
2.3.4 Passive tracer . 38

2.4 Shock capturing and oscillation control . 38
2.4.1 Artificial viscosity . 38
2.4.2 Positivity limiter . 44

2.5 Basic tests . 46
2.5.1 Isentropic vortex . 46
2.5.2 Diffusion of a Gaussian pulse . 47
2.5.3 Double blast wave . 48
2.5.4 Advection of a top-hat pulse . 51

2.6 Kelvin-Helmholtz instabilities . 55
2.6.1 Visual comparison . 57
2.6.2 Dye entropy . 59
2.6.3 Error norm . 59

2.7 Driven sub-sonic turbulence . 62
2.7.1 Driving . 64
2.7.2 Results for subsonic turbulence . 66

2.8 Code details . 68
2.8.1 Parallelization strategy . 68
2.8.2 GPU computing implementation 70
2.8.3 Memory usage . 72

2.9 Code performance . 75
2.9.1 Weak scaling . 75
2.9.2 Strong scaling . 76
2.9.3 CPU vs GPU benchmark . 76

2.10 Summary and Conclusions . 78

3 Supersonic turbulence with high-order DG 81
3.1 Introduction . 82
3.2 Discontinuous Galerkin hydrodynamics . 84

3.2.1 Basis expansion . 85
3.2.2 Time evolution . 85
3.2.3 Diffusion operator across cell boundaries 86
3.2.4 Parallelisation on GPUs . 89

3.3 Viscous shock capturing . 90
3.4 Primitive variables at cell interfaces . 95
3.5 Driving and measuring turbulence . 97

3.5.1 Basic statistics of supersonic and subsonic turbulence 97
3.5.2 Driving isothermal turbulence . 103

Contents ix

3.5.3 Measuring structure functions and power spectra 106
3.6 Turbulence with DG in the supersonic and subsonic regimes 106
3.7 Simulating the super- to subsonic transition 110
3.8 Discussion on computational cost . 113
3.9 Conclusions . 118

4 Discussion and outlook 121
4.1 Summary of this thesis . 121
4.2 Future extension of this thesis . 121

Bibliography 123

Acknowledgements 137

x Contents

List of Figures

1.1 Kippenhahn diagram (adopted from Steindl et al., 2022) showing the evolu-
tion of the internal structure of a 2 M⊙ star. The boundary layer is denoted
as the “overshoot” on the top right legend. 2

1.2 Vorticity magnitude in the convective boundary region of a 3D stellar evo-
lution simulation (adopted from Herwig et al., 2023). 3

1.3 A view of the Hydra cluster in x-ray, optical and radio. Credits: X-ray:
NASA/CXC/SAO; Optical: Instituto de Astrof́ısica de Canarias; Radio:
Greg Taylor (NRAO). 4

1.4 Four snapshots during a simulation of the explosion phase of the deflagration-
to-detonation model of nuclear-powered Type Ia supernovae. The images
show extremely hot matter (ash or unburned fuel) and the surface of the star
(green). Ignition of the nuclear flame was assumed to occur simultaneously
at 63 points randomly distributed inside a 128-km sphere at the center of
the white dwarf star. Image: Argonne National Laboratory. 5

1.5 Crab nebula imaged by the Hubble telescope. The image consists of 24
individual Wide Field and Planetary Camera 2 exposures taken in October
1999, January 2000, and December 2000. The colors in the image indicate
the different elements that were expelled during the explosion. Blue in the
filaments in the outer part of the nebula represents neutral oxygen, green is
singly-ionized sulfur, and red indicates doubly-ionized oxygen. NASA, ESA,
J. Hester and A. Loll (Arizona State University) 6

1.6 This illustration shows the different features of an active galactic nucleus
(AGN). The extreme luminosity of an AGN is powered by accretion onto a
supermassive black hole. Some AGN have jets, while others do not. (Credit:
Aurore Simonnet, Sonoma State University) 7

1.7 Moore’s Law Timeline, including Moore’s Bend with Transistors/CPU In-
flected with Multi-Core CPUs beginning in 2005. The number of transistors
is shown with orange triangles, the single thread performance is shown by
blue circles, the frequency by red upside down triangles and the number of
logical cores per integrated circuit is indicated by black diamonds. 9

1.8 Evolution of the performance share in the TOP500 list from November 2004
until November 2023. 10

xii LIST OF FIGURES

1.9 An illustration of the components of an example CPU on the left and GPU
on the right. The relative allocation of transistors to different functions is
represented by the relative sizes of different shaded areas. Computation is
shown in green, instruction processing in gold, L1 cache in purple, higher
level cache in blue and memory (DRAM) in orange. Figure obtained from
NVIDIACorporation (2021). 10

2.1 An example of fitting an arbitrary, smooth function y = f(x) with 10 degrees
of freedom, but varying number of cells and polynomial orders used for these
cells, as labelled in the different panels. The L1 error norm for approximating
the function is highest in case piece-wise constant approximations are used,
while it drops when fewer, but piece-wise linear cells are used, and finally
reaches its lowest value when a single cell with a single 10th order polynomial
is used. 29

2.2 Two cells K− and K+ that meet at a joint face. The corresponding poly-
nomial solutions u− and u+ are in general discontinuous at the interface.
To unambiguously define a joint solution and its gradient on the interface,
we construct an interpolant solution on a domain K∗ placed symmetrically
around the interface. In the normal direction, a fraction f of both cells is
covered (we pick either f = 3/4 or f = 1 in practice), in the the transverse
direction(s), the cells are covered in full. 35

2.3 Zoom into a Mach number M = 4 shock that is simulated with order p = 9.
The upstream gas has unit density and unit pressure. Individual mesh cell
boundaries are indicated with dotted lines. The density field obtained with
artificial viscosity included is shown as a solid blue, while the result without
artificial viscosity is shown as a grey line in the background. The artificial
viscosity field itself is shown as orange line (scale on the right). The analytic
shock position at the displayed time is at x = 0.5, in the middle of one of the
mesh cells. The circles mark the locations where the density has reached
20 and 80 percent, respectively, of the shock’s density jump. We use the
distance ∆xshock of the corresponding points as a measure of the shock width. 41

2.4 Shock width in units of the cell size as a function of the order p of our
DG code, for a Mach number M = 4 shock that runs into gas at rest. The
dashed line marks a ∆xshock ∝ 1/p power law, which accurately describes our
measurements, except for the lowest order result with piece-wise constant
states, which is so highly diffusive that it does not require any artificial
viscosity. 42

LIST OF FIGURES xiii

2.5 Convergence of the Yee et al. (1999, 2000) vortex when evolved for t = 10.0
time units. The left panel shows the error norm in the density fields as a
function of spatial grid resolution, for 8 different orders p of our DG scheme.
The measured convergence orders for L1 (colored lines) are close to the
expected L1 ∝ N−p

c power-laws (dashed grey lines). The actually achieved
convergence orders (fitted power-laws, shown as dotted lines) are typically
even slightly better than expected, except for the lowest order p = 1. The
panel on the right-hand side shows the same data, but as a function of DG
order p, using a log-linear plot. For fixed grid resolution, the error declines
exponentially with the order p of the scheme, highlighting the very fast
improvement of accuracy when the DG order is increased. We note that the
imposed periodic boundaries for the chosen box size of 10 lead to an edge
effect which puts the lower boundary of the L1-norm to ∼ 10−11. 44

2.6 Convergence of the diffusion process of a Gaussian profile when started from
a smooth state. The top panel shows results for runs carried out at differ-
ent mesh resolution Nc and DG expansion order p, as labelled. For fixed
expansion order, the L1 error declines as a power law as a function of the
spatial grid resolution, with the slope of the the expected convergence rate.
In the bottom panel, we show the error as a function of order at a fixed
grid resolution of Nc = 8. In this case, the error declines exponentially as a
function of the expansion order. 49

2.7 Double blast wave problem at fixed spatial resolution, but for increasing DG
order. This shows clearly that our new artificial viscosity method can cope
with strong shocks, and that adding higher order information is still worth-
while in treating problems with strongly interacting shocks. For reference,
a high resolution result with Nc = 10000, p = 1 is shown as thin black line. 50

2.8 Double blast wave problem at fixed number of degrees of freedom for two
different combinations of order and spatial resolution. This shows that for
strong shocks the total number of degrees of freedom determines accuracy of
our solution. For reference, a high resolution result with Nc = 10000, p = 1
is shown as thin black line. 51

2.9 Top panel: Square advection problem at t = 1.0 for different expansion
orders p using 64 grid cells in each case. At this time, the top hat profile has
been advected 100 times through the box. The initial profile, which is the
analytic solution in this case, is shown as a solid grey line in the background.
Different numerical results are given for polynomial orders p = 0, 1, 2, and
p = 9, as well as for p = 9 with a higher artificial viscosity setting for
stronger wiggle suppression. Bottom panel: Square advection problem at
t = 0.01 for p = 9 using 10 grid cells. The profile has been advected through
the box once. The dotted vertical lines indicate grid cell borders. Sub-cell
shock capturing can be observed. 52

xiv LIST OF FIGURES

2.10 Time evolution of the L1 error norm for the density in the square advection
problem, calculated for polynomial orders p = 0 to p = 9 (from top to
bottom) using 64 grid cells in each case. The individual measurements for
numerical outputs are shown with filled circles, the lines are power-law fits
L1 ∝ tn. Note that not only the absolute error at any given time declines
with increasing order p, also the slopes n become progressively shallower.
This means that the numerical diffusivity of the code becomes smaller for
higher order, reducing advection errors substantially. The measured slopes
n for the p = 0 to p = 9 cases are in that sequence: 0.427, 0.335, 0.172,
0.056, 0.054, 0.049, 0.048, 0.046, 0.039, and 0.028. In the p = 0 case, only
the first three points were used to measure the slope. 53

2.11 Time evolution of the dye concentration in a Kelvin-Helmholtz simulation
using 64 DG-cells along the x-range [0, 1], at order p = 5, using a viscosity
setting of Re = 105 and ∆ρ/ρ0 = 0. 55

2.12 Dye concentration in Kelvin-Helmholtz simulations, using Re = 105 and
∆ρ/ρ0 = 0, compared at fixed grid resolution but different times t and order
p. Each of the nine panels shows the high-resolution DEDALUS reference
result (Lecoanet et al., 2016) in the left half, and our DG result (at different
order p as labelled) in the right half. All DG simulations were done with
Nc = 64 grid cells. 56

2.13 Volume integrated dye entropy as a function of time. We show our DG
simulation results with 64 cells using orders p = 1 to p = 3, and a calculation
with 128 cells and order p = 7. All simulations were ran with Re = 105 and
a density jump ∆ρ/ρ0 = 0. Already the run with 64 cells and p = 3 shows an
essentially converged result; still better resolutions yield perfect agreement
with the very high resolution results obtained by Lecoanet et al. (2016) with
the DEDALUS and ATHENA codes. 58

2.14 Volume-averaged L2-error norm of the difference in the dye concentration
relative to a high-resolution spectral result as a function of time, for a set of
DG simulations carried out with 64 cells and different expansion order p = 1
to p = 4 (as labelled), for Re = 105 and a density jump ∆ρ/ρ0 = 0. The DG
results are presented with filled circles at the four available output times of
the spectral simulation, the connecting lines are there simply to guide the
eye. Similarly, we include SPH results by Tricco (2019) as triangles at two
different resolutions. Finally, the dashed line refers to the result obtained
by Lecoanet et al. (2016) using the finite-volume code ATHENA with 2048
cells. 60

LIST OF FIGURES xv

2.15 Volume-averaged L2 error norm of the dye concentration field as a function
of DG order p for a set of simulations with Re = 105 and a density jump
∆ρ/ρ0 = 0 at t = 4. The circles show simulations with Nc = 64 cells
with progressively increasing order p (the run with p = 8 is shown with a
cross symbol while still being a member of the sequence of simulations with
circles). The crosses highlight three simulations with the same number of
degrees of freedom, reached with different combinations of Nc and p. The
dotted line is a fit showing the rapid convergence we achieve with increasing
order p at Nc = 64. The dashed line indicates the convergence rate for three
simulations with equal number of degrees of freedom, as we increase the
order. Among the three runs with an equal number of degrees of freedom,
the one with the highest order p achieves the lowest L2-norm. 61

2.16 Cumulative injected and dissipated energy, as well as global Mach number,
as a function of time in one of our driven turbulence simulations. The gas
is initially at rest, and put into motion by the driving. Eventually, energy
injection is balanced by dissipation in a time-averaged fashion, and the dif-
ference between the cumulative injected and dissipated energy is reflected
in the kinetic energy as measured by the Mach number. 63

2.17 Two-dimensional slice through a driven, isothermal, subsonic 3D turbulence
simulation depicting the velocity amplitude |v| = (v2x + v2y + v2z)

1/2 at t =
20.48, for a simulation with Nc = 128, p = 4, and Re = 105. 64

2.18 Compensated velocity power spectra of driven turbulence simulations as a
function of wavenumber for varying numbers of cells, and varying spatial
order. The panels in the top row show simulations where the Euler equa-
tions were solved, whereas the bottom two panels give results where the full
compressible Navier-Stokes equations with a prescribed physical viscosity
were used. The region marked with a red shade is the driving range. 65

2.19 Compensated velocity power spectra as a function of wavenumber for a
similar number of degrees of freedom, but varying the spatial order and the
number of cells. The total wall-clock time for the simulation runs 1283|p = 2,
1282|p = 3, and 643|p = 4 on 16 A100 GPUs were 0.9, 3.9, and 1.8 hours,
respectively. We note that one can keep the converged result obtained with
Nc = 128 and p = 3 by going to fewer cells and higher order (the Nc = 64
and p = 4 run), while still achieving a speed-up. 69

xvi LIST OF FIGURES

2.20 Weak scaling of TENETGPU for a 3D test problem. The y-axis shows
the time taken to compute one timestep averaged over a small number of
timesteps. The left panel shows results for GPU execution when the problem
sizeN3

c , measured in terms of the number of cellsNc per dimension, increases
in several steps by close to a factor of two from Nc = 128 to Nc = 512 cells,
and when between 1 to 64 GPUs are applied to the problem. In contrast,
the right hand panel gives results when the problems are executed on CPUs
instead, using from 4 to 256 cores, again keeping in each case the load per
computational element constant. We carry out the measurements for differ-
ent expansion order, from p = 0 to p = 5. Ideal weak scaling corresponds
to horizontal lines (dashed). The dotted vertical line marks the transition
between using CPU cores or GPUs associated with a single compute node
of our cluster, and the use of multiple nodes in which MPI data exchange
via the Intel Omni-Path takes place. The missing measurement at p = 5
is due to the large memory required to store communication buffers, which
make the Nc = 512 problem not fit onto 64 GPUs. The missing data points
at Nc = 400 are due to 400 not being divisible by 32, as this would lead to
uneven distribution of work across the GPUs we did not consider these runs. 73

2.21 Strong scaling of TENETGPU for a 3D test problem of size 2563 cells. The
y-axis shows the average time taken to carry out one timestep. The left
panel shows timing results when between 1 and 16 Nvidia A100 GPUs are
used, while the right panel gives results when between 1 to 256 ordinary
Intel Xeon-6138 cores are used. Ideal strong scalability corresponds to the
dashed lines indicated in the panels. Missing data points at high orders and
low number of compute devices are due to the fact that such large problems
do not fit on a single GPU / node. 74

2.22 Ratio of time taken to calculate one timestep of test simulations with the
Navier-Stokes solver on GPUs or CPUs, based on our weak scaling test runs.
The left vertical scale shows results when we normalize them to the speed
ratio for using 4 Nvidia A100 GPUs versus 40 Intel Xeon 6138 CPU cores,
while the right scale normalizes the speed results to a comparison of 1 GPU
vs 1 CPU core. 77

LIST OF FIGURES xvii

3.1 Shu-Osher shock interaction test problem at time t = 1.8, for different reso-
lutions and numerical schemes. The initial conditions contain a Mach num-
ber M = 3 shock wave that is incident on a sinusoidal density perturbation.
The top row shows the problem when simulated at different resolutions (as
labelled, where the number following ‘N’ is the number of cells over a do-
main length of 10 units) with a conventional finite volume (FV) method with
piece-wise linear reconstruction. Even with 400 cells, the short-wavelength
wiggles (see the enlarged insets) in the solution (dotted line) are only poorly
resolved. In the middle row, we show equivalent DG computations at order
k = 1, i.e. also with a linear expansion inside cells. The results especially
for the 200 and 400 cell resolutions are drastically improved. In the bottom
row, we extend the results to higher order DG schemes, up to a tenth-order
accurate scheme (k = 9), demonstrating that our implementation can ro-
bustly treat strong shocks at high order thanks to our new artificial viscosity
scheme. 87

3.2 Density field of the Liska & Wendroff (2003) implosion test at time t =
2.5, simulated with 400 × 400 cells either with DG at order k = 1 (right
panel), or with a finite volume scheme (left panel). Both methods describe
the fluid with linear functions inside cells. The initial conditions contain
a region of strongly reduced density and pressure in the lower left corner.
This launches a shock towards the origin which reflects at the reflecting
boundaries of the domain. The interaction of the shocks at the corner and
the diagonal produces a jet of dense gas along the diagonal direction. The
test is very sensitive to numerical diffusion, which tends to limit the length
of the diagonal jet. As our results demonstrate, our DG scheme is not
only capable of capturing the strong shock interactions while accurately
maintaining the symmetry of the system, it also shows clearly less numerical
diffusion than the equivalent finite volume scheme. 88

3.3 Illustration of the occurrence of problematic, extrapolated primitive vari-
able values at cell boundaries when derived naively from the conservative
variables. All panels show a skewer through a 3D, driven-turbulence simula-
tion of high Mach number with vertical lines delineating different cells. The
upper left panel shows density, the lower left panel shows the momentum
px along the x-direction. The right panel displays the velocity (blue lines)
calculated by taking the ratio of the left panels. This is compared to the
velocity calculated with our new method (described in Sec. 3.4), shown in
orange. The latter approach projects the velocity itself on the polynomial
basis, based on the values attained at the internal Gauss points within a cell. 89

xviii LIST OF FIGURES

3.4 Cumulative injected and dissipated energy, as well as global volume aver-
aged Mach number, as a function of time in one of our driven turbulence
simulations. The vertical dashed line indicates the time at which we start
our power spectra measurements. The gas is initially at rest, and put into
motion by the driving. Eventually, energy injection is balanced by dissipa-
tion in a time-averaged fashion, and the difference between the cumulative
injected and dissipated energy is reflected in the kinetic energy as measured
by the Mach number. 97

3.5 Slices through the turbulent velocity field of simulations with different Mach
number, here M = 0.1, M = 0.4, M = 1.6, and M = 6.4, as labelled. In
each case, the color map shows the velocity amplitude |v| = (v2x + v2y + v2z)

1/2

in units of the corresponding characteristic velocity, here taken as the Mach
number times the sound speed. For definiteness, the DG calculations have
used 2563 cells and k = 2, and each panel shows the state after the same
number of eddy turn-over times after the start of the simulations. The
subsonic simulations show a nearly self-similar behaviour, as expected for
this setup. However, as we transition into the supersonic regime, it is evident
that the character of the turbulence qualitatively changes. 98

3.6 Velocity power spectra for different turbulent Mach numbers, from the sub-
sonic to the highly supersonic regime, as labelled. For each driving strength,
we compare DG simulations with order p = 2 (dashed) and p = 3 (dot-
ted) with corresponding finite volume simulation (solid). The black dashed
line indicates the Kolmogorov E(k) ∝ k−5/3 power-law slope, indicative
of the subsonic cascade, whereas the dotted black line shows the Burgers
E(k) ∝ k−2 scaling indicative of supersonic turbulence where dissipation is
part of the self-similar cascade. The simulations here use only 2563 cells
and thus have a fairly limited dynamic range that can only resolve a very
small part of the turbulent cascade before entering the dissipative regime.
Nevertheless, the sequence clearly shows a steeping of the slope towards
the supersonic regime, marking the transition from Kolmogorov to Burgers
turbulence. Also, the second-order DG runs can resolve the turbulence to
higher wave number than the second-order accurate finite volume scheme,
reflecting DG’s higher accuracy and reduced numerical dissipation. Inter-
estingly, while third-order DG likewise does better than second-order DG in
the subsonic regime, this advantage nearly vanishes in the supersonic regime. 99

LIST OF FIGURES xix

3.7 Velocity structure function for different turbulent Mach numbers, from the
subsonic to the highly supersonic regime, as labelled. For each driving
strength, we show DG simulations with order p = 2. The black dashed
lines indicate fits done between 0.1 < l < 0.25 for the most subsonic and the
most highly supersonic runs. The vertical and horizontal dotted grey lines
indicate the super- to subsonic transitions for simulations where it happens.
The simulations here use only 2563 cells and thus have a fairly limited dy-
namic range that can only resolve a very small part of the turbulent cascade
before entering the dissipative regime. Nevertheless, the sequence clearly
shows a steeping of the slope towards the supersonic regime, marking the
transition from Kolmogorov to Burgers turbulence. In particular, we mea-
sure slopes of 0.35 and 0.49 for our two fits, quite close to the expected
scalings of 1/3 and 1/2 for subsonic and supersonic turbulence, respectively. 100

3.8 Density probability distribution functions (PDFs) in different turbulence
simulations, carried out for a variety of Mach numbers and different nu-
merical schemes. In the top two and the bottom left panel, we compare
FV, DG at order k = 1, and DG at order k = 2, as labelled, for a suite
of 2563 simulations at Mach numbers from 0.8 to 12.8. All three numerical
schemes show a qualitatively very similar behaviour in which the shape of
the density PDF transitions from an approximately normal form in density
in the subsonic regime to a log-normal shape in the supersonic regime (note
that we use log10 in the PDF’s vertical normalization), with a width that
grows with Mach number. The bottom right panel compares PDFs at a
fixed Mach number of M = 3.2 for higher resolution runs of 10243 cells
carried out with FV and DG-1. Here we see that the PDFs are not identical
after all, but that the DG scheme is able to resolve slightly higher densities
than the corresponding FV scheme. 101

xx LIST OF FIGURES

3.9 Velocity structure function (top panel) for a high-resolution DG run with
10243 cells and k = 1, for driven turbulence with Mach number M = 3.2.
For pair distances equal to half the box size (right-most dashed vertical line),
the structure function starts out at values close to the box-averaged Mach
number. From this driving scale, it takes until at least three times smaller
scales (marked by the middle dashed vertical line) before a self-similar tur-
bulent cascade develops. The structure function then first drops relatively
steeply towards smaller scales, close to the expected M(l) ∝ l1/2 scaling
for Burgers turbulence. Around the sonic point at ls, where M(ls) = 1,
the scaling flattens as the turbulence transitions into the subsonic regime.
Here a scaling M(l) ∝ l1/3 would be expected if an extended inertial range
is present, until a strong steeping sets in when the dissipation regime is
entered. The bottom panel shows the velocity structure function in a com-
pensated form, where it is multiplied by the factor (l/ls)

−0.5 which brings out
subtle shape difference more clearly. Right when the supersonic turbulence
cascade sets in, we measure a slope of 0.49 for M(l), close to the expecta-
tion. Furthermore, there is a clear break around the sonic scale where the
structure function flattens. Out fit in this region returns a slope of ≃ 0.42,
somewhat steeper than expected. However, this is not really surprising as
the still fairly limited dynamic range of this calculation and the influence of
the bottleneck effect are likely causes for this small difference. 102

3.10 Velocity power spectrum of the turbulence simulation shown in Fig. 3.9,
i.e. for a DG run with k = 1 and 10243 cells. The top panel shows E(k)
directly, whereas the bottom panel displays the same data again, but this
time compensated by a factor k2 to compress the vertical dynamic range
and highlight subtle changes in shape. The dashed vertical line marks the
end of our driving range, which can be discerned as a region of elevated
power. At slightly larger k than this injection scale, a region with a fully
developed supersonic turbulent cascade develops. This is indicated by the
dashed horizontal line in the bottom panel, which has the E(k) ∝ k−2 slope
of Burgers turbulence. At still smaller scales, the spectrum becomes flatter
again, close to the E(k) ∝ k−5/3 expected for Kolmogorov turbulence. We
have indicated this slope as an inclinded dashed line in the bottom panel,
with the dotted line marking the scale where extrapolations of the two power
laws intersect. This intersection is reasonably close to the sonic scale inferred
from the velocity structure function. We also note that there is a prominent
bottleneck effect (as expected) with a small shoulder in the power spectrum
before E(k) drops rapidly in the dissipative regime. 108

LIST OF FIGURES xxi

3.11 Convergence of the velocity structure function (shown in compensated form
as in the bottom panel of Fig. 3.9) between calculations that use 5123 or
10243 cells, and either finite volume (FV) or DG with order k = 1, respec-
tively, as labelled. The sonic scale used for rescaling the plots is the same
for all lines and corresponds to the value measured for the DG run at the
10243 resolution. Interestingly, the 5123 simulation with DG does nearly as
well as the 10243 run with FV, but both show at most a very feeble hint
for a transition between the supersonic and subsonic regimes of turbulence.
This is because of the closeness of the dissipation regime at this resolution,
which already affects the region around the sonic scale strongly. For the
5123 run with FV, the dynamic range is clearly insufficient to resolve the
region around the sonic point properly. In contrast, the high-resolution DG
run is already able to distinguish different slopes of the cascade in the super-
sonic and supersonic regimes, although it is clear that also this calculation
can still be expected to be influenced by resolution effects in the transition
region. 109

3.12 Visualization of the turbulence for FV (top panel) and DG (bottom panel)
simulations at Mach numberM = 3.2. We use a two-dimensional color map,
where the logarithm of density is mapped to brightness while the logarithm
of the gas velocity is mapped to color hue, as indicated. The fields are
shown at the same time, using 10243 cells. Superficially the images look
quite similar, but closer inspection reveals a richer and more pronounced
small-scale structure in the DG simulation. 111

3.13 Expected scaling of the total numerical error as a function of the invested
computational effort for a smooth hydrodynamical problem simulated with
DG at different order k (coloured solid lines) in a three-dimensional box
with N3 cells, based on Eqn. (3.33). A few illustrative problem sizes are
marked with symbols, as labelled. High-order methods incur a substantially
higher computational cost for a given number of cells, but they are also
able to approximate a smooth solution more accurately. The error drops
progressively faster as a function of resolution for higher order methods,
in fact so fast that they become the method of choice – in the sense of
requiring the lowest computational cost – for large enough problem sizes
and sufficiently small target error. 115

xxii List of Figures

3.14 Expected scaling of the computational cost and total numerical error for
a planar shock problem simulated with DG at different order k (coloured
solid lines) in a three-dimensional box with N3 cells that otherwise ex-
hibits a homogeneous fluid state everywhere outside the shock. In this
situation, only the numerically broadened shock itself is contributing to
the error budget, which thus declines only with the linear spatial resolution
as L1 ∝ N−1(k + 1)−1. As a result, higher-order methods do not provide
a scaling advantage of their numerical error, i.e. the relative accuracy of
low and high order methods stays invariant as a function of resolution, and
their higher baseline computational cost per cell (compare the illustrative
problem sizes marked with symbols) is not worthwhile. Note, however, that
problems of practical interest do not consist of shocks only, rather they also
have non-trivial smooth regions in between shocks, where the considera-
tions of Fig. 3.13 apply. In general, which order is computationally most
cost efficient is therefore problem-dependent. 116

List of Tables

2.1 Minimum memory need for our DG code when a 3D simulation is assumed
with (Nc)

3 cells and expansion order p, including allowing for an artificial
viscosity field. Here double precision with 8 bytes per floating point number
has been assumed. 72

xxiv List of Tables

Zusammenfassung

Im gesamten Universum ist Turbulenz einer der wichtigsten Prozesse, um kinetische Ener-
gie von großen Skalen auf die viskose Skala zu übertragen, wo sie Gas erhitzen, chemische
Elemente durchmischen, oder die Sternbildung regulieren kann. Turbulenz ist in allen astro-
physikalischen Systemen allgegenwärtig und spielt eine vielfältige Rolle, von der Regulie-
rung der Stern- und Planetenbildung über die Flammenausbreitung in Typ Ia Supernovae
bis hin zur Ausbreitung der kosmischen Strahlung und dem Auftreten von großräumigen
galaktischen Winden. Die numerische Simulation von Turbulenz ist jedoch schwierig, da
man einen großen dynamischen Bereich auflösen muss, von der Erzeugung auf großen Skalen
bis hin zu viskosen Skalen, um den Einfluss, den Turbulenz auf das betreffende astrophy-
sikalische System hat, richtig zu beschreiben.

Um solche Systeme zu simulieren und gleichzeitig turbulente Bewegungen ausreichend
aufzulösen, werden neue Algorithmen und größere Computer benötigt. Seit den 1970er Jah-
ren hat sich die Anzahl der Transistoren in einem integrierten Schaltkreis etwa alle zwei Jah-
re verdoppelt – allgemein bekannt als Moore’sches Gesetz – und dies hat lange Zeit zu einer
ähnlichen Steigerung der Rechenleistung geführt. Seit Mitte der 2010er Jahre hat sich dieser
Fortschritt jedoch verlangsamt, und die Computerindustrie hat eine Reihe von Ansätzen
entwickelt, um die Anzahl der Gleitkommaoperationen pro Sekunde, die ihre Chips leisten
können, dennoch weiter zu erhöhen. Ein wichtiger aktueller Trend in dieser Hinsicht ist
die Verwendung von Grafikprozessoren (GPUs) und deren Umwidmung für den Einsatz im
Hochleistungsrechnen. Dieser Ansatz wird in den ersten Exascale-Supercomputer verwen-
det, die in letzter Zeit auf den Markt gekommen sind. Das einfachere Chipdesign von GPUs
stellt jedoch grundlegende Herausforderungen für (astrophysikalische) Codes dar, da man
sie nicht einfach für diese Systeme neu kompilieren kann. Stattdessen ist eine grundlegende
Neuschreibung erforderlich, die eine Änderung der Datenstrukturen, der Speicherzugriffe,
der Codelogik und der Kommunikationsstrategie beinhaltet.

Motiviert sowohl durch diese Hardware-Trends als auch durch den Bedarf an effiziente-
ren numerischen Algorithmen untersucht diese Arbeit die Verwendung von diskontinuierli-
chen Galerkin (dG)-Methoden für Simulationen astrophysikalischer Turbulenz auf GPUs.
Die numerische Technik von dG verspricht Konvergenz hoher Ordnung bei vergleichsweise
geringem Kommunikationsbedarf, was ihr möglicherweise eine überlegene Rechenleistung
und Genauigkeit verleiht, insbesondere wenn sie auf moderner, mit GPUs beschleunigter
Computerhardware realisiert wird.

Um diese Möglichkeit zu untersuchen, habe ich eine dG-Methode hoher Ordnung in der

xxvi Zusammenfassung

GPU-nativen “Compute Unified Device Architecture” (CUDA) implementiert, kombiniert
mit einer Parallelisierung über mehrere verteilte Rechnerknoten mit dem “Message Passing
Interface” (MPI). Zunächst habe ich die Methode für subsonische Strömungen realisiert, wo
sie eine vielversprechende exponentielle Konvergenz mit zunehmender räumlicher Ordnung
aufweist. Dies ermöglicht die Simulation von subsonischen Strömungen mit sehr hoher
Auflösung bei geringem Rechenaufwand. Außerdem habe ich die klassische dG-Methode
mit einem rekonstruktionsbasierten Navier-Stokes-Löser kombiniert, was sich in früheren
Arbeiten als schwierig erwiesen hatte. Zusätzlich habe ich eine neue Methode zur Auflösung
von Schocks innerhalb von Zellen vorgeschlagen, die auf einer geeigneten Injektion von
künstlicher Viskosität basiert.

Aufbauend auf diesen Schritten habe ich mich dann mit dem Fall der supersonischen
Turbulenz befasst. Das Netzwerk von stark interagierenden Schocks, das in solchen Simu-
lationen auftritt, erforderte weitere Verbesserungen des Algorithmus und des Codes. Ich
habe eine vereinfachte Implementierung der künstlichen Viskosität auf der Grundlage der
klassischen von Neumann-Richtmeyer-Formulierung eingeführt und das Stabilitätsproblem
von dG für supersonische Strömungen gelöst, indem ich einen neuartigen Projektionsansatz
für die primitiven Variablen vorschlug, so dass sie stabil auf Zelloberflächen extrapoliert
werden können.

Die Entwicklungen dieser Arbeit machen somit zum ersten Mal GPU-beschleunigte
diskontinuierliche Galerkin-Methoden hoher Ordnung für eine breite und im Wesentlichen
uneingeschränkte Palette von Forschungsanwendungen in der Astrophysik anwendbar. Da-
zu gehören zum Beispiel Untersuchungen der subsonischen Turbulenz in Galaxienhaufen,
die mit dG-Methoden hoher Ordnung viel präziser und kostengünstiger dargestellt wer-
den kann als mit traditionellen Finite-Volumen-Verfahren. Wichtig ist, dass dies nun auch
Systeme einschließt, die starke Schocks enthalten oder sogar von Netzwerken von Schocks
beherrscht werden, wie z.B. Regionen mit supersonischer Turbulenz, ein Regime, das bisher
nicht effektiv mit dG-Hydrodynamik hoher Ordnung behandelt werden konnte.

Abstract

Throughout the universe a primary way of transferring large scale kinetic energy down
to viscous scales where it can heat gas, mix chemical elemental abundances, regulate star
formation, etc., is turbulence. Turbulence is ubiquitous across astrophysical objects, from
regulating star and planet formation, to being the main driver of flame propagation in
Type Ia supernovae, to controlling the propagation of cosmic rays and launching outflows
and winds in galaxies. However, turbulence is difficult to simulate as one needs to resolve
a wide dynamic range, from the stirring at large scales down to viscous scales, to properly
account for the influence it has on the astrophysical system in question.

To be able to simulate such systems while sufficiently resolving turbulent motions new
algorithms and bigger computers are needed. Since the 1970s the number of transistors
in an integrated circuit has doubled about every two years – commonly known as Moore’s
law – and this has given rise to a similar expansion of their computational performance.
Since the mid 2010s, however, this progress has slowed down, and the computer industry
has turned to a variety of approaches for still increasing the number of floating point
operations per second their chips can deliver. One important current trend along this line is
to use graphical processing units (GPUs) and re-purpose them for use in high performance
computing. In fact, this approach is powering the first exascale supercomputers that have
emerged recently. The simpler chip design of GPUs poses however fundamental challenges
to (astrophysical) codes as one cannot simply recompile them for these systems. Instead, a
fundamental rewrite is necessary, including a change of data structures, memory accesses,
code logic and communication strategy.

Motivated both by these hardware trends and by the need for more efficient numerical
algorithms, this thesis investigates the use of Discontinuous Galerkin (DG) methods for
simulations of astrophysical turbulence on GPUs. The numerical technique of DG promises
high-order convergence with comparatively small communication needs, potentially giving
it superior computational performance and accuracy, particularly when realized on modern
computer hardware accelerated with GPUs.

To investigate this prospect, I have implemented a high-order DG method in the GPU-
native Compute Unified Device Architecture (CUDA), combined with a parallelization
across multiple distributed memory nodes with the Message Passing Interface (MPI). First,
I realized the method for subsonic flows where it exhibits a very promising exponential
convergence with increasing spatial order. This allows for subsonic flows to be simulated
at very high resolution at a low computational cost. I furthermore improved the classic

xxviii Abstract

DG method with a reconstruction-based Navier-Stokes solver, something that had proven
difficult in previous work. I also proposed a new sub-cell shock resolving method based on
an appropriate injection of artificial viscosity.

Building on these steps, I have then addressed the case of supersonic turbulence. The
network of strong interacting shocks appearing in such simulations required further algo-
rithm and code improvements. I introduced a simplified artificial viscosity implementation
based on the classic von Neumann-Richtmeyer formulation and solved the stability prob-
lem of DG for supersonic flows by proposing a novel projection approach for the primitive
variables so that they can be stably extrapolated to cell surfaces.

The developments of this thesis thus make high-order, GPU-accelerated Discontinuous
Galerkin methods for the first time applicable to a wide und essentially unrestricted range
of research applications in astrophysics. This includes, for example, studies of the subsonic
turbulence in galaxy clusters which can be represented much more precisely and in a
more cost effective way with high-order DG methods than with traditional finite volume
techniques. Importantly, this now also includes systems that contain strong shocks, or are
even governed by networks of shocks such as regions filled with supersonic turbulence, a
regime that could previously not be treated effectively with high-order DG hydrodynamics.

Chapter 1

Introduction

On all scales, the dynamics of astrophysical fluid flows is shaped by turbulent motions.
These complex and chaotic motions arise due to the nonlinear nature of the gas flow, de-
scribed by the Navier-Stokes equations, which capture the interplay of momenta, pressure,
and viscosity. Turbulence is known for its ability to transfer large scale energy down to
small scales through the energy cascade. Big whirls akin to Kelvin-Helmholtz instabilities
give rise to ever smaller whirls until the viscous scale is reached. There these whirls get
converted into heat. This energy transfer is crucial for understanding many astrophysical
processes. It also makes such an understanding difficult from the computational point of
view as it is necessary to resolve an immense range of scales for proper treatment of turbu-
lence. Whether it be in the context of star formation, the interstellar-, circumgalactic- or
intracluster-medium, planet formation, supernovae, atmospheric turbulence, river currents,
or the tumultuous flows within stars, turbulent motions and their resulting gas dynamics
govern these systems. Understanding turbulence is essential for comprehending the be-
havior of astrophysical systems on scales ranging from the microscopic to the cosmic. It
is crucial for the shaping of structures throughout the universe and our understanding of
them.

1.1 Turbulent systems in the Universe

1.1.1 Star formation

Star formation is a complex process occurring across multiple scales of the interstellar
medium. The final stages take place in the densest clouds consisting of dense n > 102 cm−3

and cold T ∼ 10− 30K gas (Larson, 1981). The complex and nonlinear interplay between
turbulence, gravity, pressure and magnetic fields takes place at scales from thousands of
astronomical units to tens of parsecs within these cold clouds in star-forming regions and
plays a crucial role in determining the distribution of masses of the pre-stellar cores (e.g.
Chabrier, 2003; Mac Low & Klessen, 2004; McKee & Ostriker, 2007).

2 1. Introduction

1.1.2 Stellar evolution

Resolving the temporal evolution of a single star entails taking into account three very
different timescales, a dynamical timescale — from seconds to days, in extreme cases years,
the thermal timescale — 107 years, and the nuclear timescale — 1010 for the Sun. These
processes are strongly coupled and all need to be resolved in tandem. Computationally
this is only possible in 1D. For many applications in stellar evolution studies 1D models
are sufficient and the cheap computational cost is also attractive because it allows for easy
parameter space exploration of many key processes of interest. Such processes include
but are not limited to fusion in the core, the formation of heavier elements, the intricate
balance between gravity and pressure, stellar wind ejection and the study of both radiative
transport in the radiative zone and convection in the star’s convective zones (e.g. Paxton
et al., 2011; Jermyn et al., 2023). And it is the transition between the two zones that
has proven very challenging for 1D models to describe (e.g. Paxton et al., 2019). The so
called boundary layer can be clearly seen on the Kippenhahn diagram of a 1D simulation by
Steindl et al. (2022) shown in Fig. 1.1 and as a slice through a full 3D box in a simulation by
Herwig et al. (2023) in Fig. 1.2 as the red circle segment. The advection layer is turbulent
by nature and therefore requires a proper 3D treatment. While models calibrated with
observations exist to sufficiently describe the convection zone itself the boundary layer
between it and the radiative zone cannot be described with a simple empirically calibrated
model. Full 3D simulations of stellar evolution exist but are currently limited to simulating
the star for a few days which is far from the lifespan of even the shortest living stars (e.g.
Rizzuti et al., 2023; Herwig et al., 2023). Further large scale 3D studies of turbulence are
therefore crucial for advancing our understanding of stellar evolution.

Figure 1.1: Kippenhahn diagram (adopted from Steindl et al., 2022) showing the evolution of
the internal structure of a 2 M⊙ star. The boundary layer is denoted as the “overshoot” on the
top right legend.

1.1 Turbulent systems in the Universe 3

Figure 1.2: Vorticity magnitude in the convective boundary region of a 3D stellar evolution
simulation (adopted from Herwig et al., 2023).

1.1.3 Intracluster medium

Galaxy clusters are the largest gravitationally bound objects with virial masses and radii

Mvir ∼ 1014−15M⊙

Rvir ∼ 1− 3Mpc.

They host the most massive galaxies and black holes, making them of utmost importance
in studying galaxy formation and hierarchical clustering on the largest of scales. They are
composed mainly of Dark Matter which makes up about 84% of their mass, followed by hot
plasma at 14% and stars at about 2% (see a review by Kravtsov & Borgani, 2012). The
three components of the Hydra cluster are shown in Fig. 1.3. The relatively high fraction
of gas in these systems is curious and has been studied extensively. Piffaretti et al. (2005)
found that galaxy clusters have densities n ∼ 10−4 cm−3 with temperatures T ∼ 108 K.
This conditions result in a large electron mean free path, which makes thermal conduction
an important contributor to gas dynamics in these systems

ℓe ≃ 2

(
T

3 keV

)2 (n

0.01 cm−3

)−1

kpc.

About half of galaxy clusters have cooling times below 1 Gyr, while exhibiting lower than
expected star formation and cooling rates (Rawle et al., 2012). Such clusters should be ac-
tively forming stars but something is suppressing star formation. One possible explanation

4 1. Introduction

is the presence of constant subsonic turbulence in the galaxy cluster plasmas, which pro-
vides pressure support go the intracluster gas, preventing its collapse (Dennis & Chandran,
2005). To study this turbulent heating heating it is necessary to resolve all processes that
determine the physical viscous scale in galaxy cluster atmospheres. The dilute, weakly
magnetized plasmas of the ICM are buoyantly unstable and very susceptible to insta-
bilities caused by large temperature gradients, like heat-flux-driven buoyancy instability
(HBI; Quataert, 2008) and magnetothermal instability (MTI; Balbus, 2000, 2001). Per-
rone & Latter (2022) have show the potential of HBI and MTI in driving turbulence in
galaxy clusters but future higher resolution numerical studies with physical viscosity and
conduction are needed to determine the viscous scale in galaxy clusters and unravel all
sources of heating.

(a) (b) (c)

Figure 1.3: A view of the Hydra cluster in x-ray, optical and radio. Credits: X-ray:
NASA/CXC/SAO; Optical: Instituto de Astrof́ısica de Canarias; Radio: Greg Taylor (NRAO).

1.1.4 Supernovae

Turbulence not only plays a crucial role in triggering Type Ia supernova (e.g. Reinecke et al.,
2002; Pan et al., 2008; Schmidt et al., 2010), the largest explosions in the universe also
drive turbulence on galactic scales and with sufficient ferocity to change the host galaxies’
star formation rate within a matter of Myrs (e.g. Herbst & Assousa, 1979; Nagakura et al.,
2009; Bluck et al., 2019).

Triggering Type Ia

Binary systems consisting of a white dwarf and a companion star can result in type Ia
supernovae, which are famous standard candles in our Universe, crucial for accurately
determining distances (Riess et al., 1998; Perlmutter et al., 1999). They are reliable indi-
cators at large distances, even exceeding 1000Mpc. They happen when a slowly rotating
carbon-oxygen white dwarf accretes mass from the companion star. As it gains mass the
growing gravitational force is countered by the increase of temperature and pressure in

1.1 Turbulent systems in the Universe 5

the dwarf’s core. At some point during this process carbon fusion generates a deflagration
flame front which is dramatically accelerated by its interaction in turbulence. In a matter
of seconds a substantial fraction of C and O undergoes fusion to heavier elements and in
the process enough energy is generated to gravitationally unbound the star. The mech-
anisms of turbulent propagation of the deflagration flame front are not fully understood
and are crucial for improving our understanding of Type Ia supernova (e.g. Hillebrandt &
Niemeyer, 2000; Schmidt et al., 2010). A deflagration driven explosion is shown in Fig. 1.4.

Figure 1.4: Four snapshots during a simulation of the explosion phase of the deflagration-
to-detonation model of nuclear-powered Type Ia supernovae. The images show extremely hot
matter (ash or unburned fuel) and the surface of the star (green). Ignition of the nuclear flame
was assumed to occur simultaneously at 63 points randomly distributed inside a 128-km sphere
at the center of the white dwarf star. Image: Argonne National Laboratory.

6 1. Introduction

Stirring supernovae

When a star explodes as a supernova, it deposits a tremendous amount of energy into its
surroundings. This energy can disperse the dense molecular clouds of gas within the galaxy,
which are the primary sites for star formation. By dispersing these clouds, the supernova
can effectively reduce the amount of available material for new star formation, thereby
influencing the overall SFR of the host galaxy. Despite this, supernovae can also act as
catalysts for new star formation. The large scale shock waves quickly break down into a
network of smaller shocks as shown in Fig. 1.5. They will further decay down to smaller
and smaller eddies and eventually turbulently still a large volume around the supernova.
The density of this volume will adopt a lognormal distribution where the densest tail of
the distribution can end up forming stars by triggering cold dense clouds to collapse under
their own gravity and form new stars. This process is known as “triggered” or “induced”
star formation.

All types of supernovae, not just the Type Ia described above, have a profound effect
on the interstellar medium of the host galaxy and can change the galaxy’s star formation
in the long run. The sudden release of energy during a supernova creates powerful shock
waves that propagate through the surrounding interstellar medium. These shock waves
violently stir the surrounding gas giving rise to turbulent motions. This turbulence in turn
determines the future evolution of the interstellar medium, influencing star formation in
the galaxy, affecting the recycling of baryons, etc. In this way, supernovas act as cosmic
drivers of turbulence, influencing the nature of the interstellar medium on both local and
galactic scales (e.g. Herbst & Assousa, 1979; Nagakura et al., 2009; Bluck et al., 2019).

Figure 1.5: Crab nebula imaged by the Hubble telescope. The image consists of 24 individual
Wide Field and Planetary Camera 2 exposures taken in October 1999, January 2000, and De-
cember 2000. The colors in the image indicate the different elements that were expelled during
the explosion. Blue in the filaments in the outer part of the nebula represents neutral oxygen,
green is singly-ionized sulfur, and red indicates doubly-ionized oxygen. NASA, ESA, J. Hester
and A. Loll (Arizona State University)

1.1 Turbulent systems in the Universe 7

1.1.5 AGN

Active galactic nuclei are compact galaxy centers emitting a large amount of energy across
the electromagnetic spectrum, from radio and microwave through optical all the way to
gamma ray frequencies. In the past we had to rely on spectral analysis which indicated the
source of this energy emission does not come from stars but rather from matter infalling
on a supermassive black hole (SMBH) at the center of the host galaxy (Gebhardt et al.,
2000; Häring & Rix, 2004; McConnell & Ma, 2013; Kormendy & Ho, 2013). But recently
we got the first visual proof of the existence of a black hole at the centre of the M87 galaxy
(Event Horizon Telescope Collaboration et al., 2019). During a typical lifetime a SMBH
will release an amount of energy on the order of hundreds of binding energies of its host
galaxy (e.g. Fabian, 2012; King & Pounds, 2015). It has been shown that super-Eddington
accretion onto the central black hole is crucial for sustaining large luminosities observed
from AGNs. To drive accretion one needs some kind of viscosity to efficiently transfer
angular momentum from the inner part of the accretion disk outwards (Armitage, 1998).
In highly ionized AGN disks the source of viscosity is the magnetorotational instability
(MRI) driven turbulence. In this case turbulence mixes material locally at different radii
and as such acts as an effective source of viscosity. In this way a sustained high rate
of accretion on the central black hole can be achieved. AGNs accelerate ejecta in two
colimated jets emanating along the normal of the galactic disk (see Fig. 1.6). Recently
Medina-Torrejón et al. (2023) have demonstrated that magnetic reconnection, driven by
turbulence, can accelerate particles to extreme energies in magnetically dominated flows,
reaching significant fractions of the speed of light. This kind of jets deposits a large amount
of kinetic energy at large scales, which significantly influences the future evolution of the
host galaxy (e.g. Costa et al., 2020, 2022). Here again the large scale energy is transferred
down the energy cascade with the help of turbulence.

Figure 1.6: This illustration shows the different features of an active galactic nucleus (AGN).
The extreme luminosity of an AGN is powered by accretion onto a supermassive black hole. Some
AGN have jets, while others do not. (Credit: Aurore Simonnet, Sonoma State University)

8 1. Introduction

1.1.6 Cosmic rays

Cosmic rays propagate through the interstellar medium by scattering off Alfvén waves
(MHD waves). This scattering process can isotropize the cosmic rays and reduce their
streaming velocity to the Alfvén wave velocity. However, the presence of turbulence can
damp these Alfvén waves which in turn suppresses the propagation of cosmic rays (e.g.
Lazarian, 2016; Lazarian & Xu, 2022).

1.1.7 Outlook on turbulence simulations

Many of the astrophysical systems described above cannot be understood properly without
better resolving and understanding the turbulence present within them. Doing so requires
larger simulations with more degrees of freedom, and ideally also with more accurate
numerical techniques. Why the usual approach of just buying a larger supercomputer
broke down in just the last few years will be discussed in the next section. Later, we
will also address how new numerical techniques can improve the faithfulness with which
simulations track turbulence for a given number of computational cells.

1.2 GPU computing

Moore’s Law states that the number of transistors on an integrated circuit doubles ap-
proximately every two years. A recent history of the law is shown in Fig. 1.7. Until about
the mid-2010s, astrophysics codes could reliably double their simulation sizes in step with
improving hardware. It might be necessary to use a hardware-specific compiler, but the
overall logic of the code would remain the same. The last decade has seen a market shift
in hardware. Instead of few ten very high performance cores modern supercomputers use
GPUs which can run thousands of concurrent threads, albeit at lower frequency. This
trend is clearly shown by the green and black symbols in Fig. 1.7. The same trend can
be seen in the TOP500 list published twice a year by the TOP500 project. It ranks and
details the 500 most powerful non-distributed computer systems in the world. The evo-
lution of the performance share of pure CPU machines compared to supercomputers with
accelerators is shown in Fig. 1.8. By November 2023, only 30% of the total performance
of the world’s 500 fastest supercomputers will come from CPU-only machines. In addition,
all current and future exascale supercomputers use accelerators. It is clear that in order
to harness current and especially future supercomputers astrophysical codes must support
GPUs. Unfortunately, a simple change of compiler is not feasible in this case. The archi-
tectural differences between CPUs and GPUs require a thorough code rewrite to change
not only the execution logic but also the memory layout of the code, and sometimes even
the underlying core algorithm.

The fundamental differences between CPUs and GPUs stem from their origins. GPUs
were originally developed for rendering graphics, and as such they excel in tasks such as
shading, texturing, and rendering independent polygons that make up 3D objects. On
the other hand, CPUs are designed for handling any general-purpose program, regardless

1.2 GPU computing 9

of whether it involves intensive number crunching or not. Because of this, GPUs ended
up having a higher number of processing units, greater aggregate memory bandwidth but
higher latency and slower, simpler individual cores. CPUs have much higher clock speeds,
more advanced instruction processing and more cache per core. The hardware architecture
disparities between CPUs and GPUs are depicted in Fig 1.9. The transistor counts asso-
ciated with various functions are abstractly represented by the relative sizes of different
shaded areas. The figure provides a visual representation of the diverse components of a
computer system. Computation is represented in green, instruction processing in gold, L1
cache in purple, higher-level cache in blue, and memory (DRAM) in orange, with the latter
being notably larger than the caches.

Figure 1.7: Moore’s Law Timeline, including Moore’s Bend with Transistors/CPU Inflected with
Multi-Core CPUs beginning in 2005. The number of transistors is shown with orange triangles,
the single thread performance is shown by blue circles, the frequency by red upside down triangles
and the number of logical cores per integrated circuit is indicated by black diamonds.

10 1. Introduction

20
07

20
10

20
13

20
16

20
19

20
22

0

20

40

60

80

100

CPU GPU

Year

Sh
ar

e
of

 T
O

P5
00

 p
er

fo
rm

an
ce

 [%
]

Figure 1.8: Evolution of the performance share in the TOP500 list from November 2004 until
November 2023.

Figure 1.9: An illustration of the components of an example CPU on the left and GPU on the
right. The relative allocation of transistors to different functions is represented by the relative
sizes of different shaded areas. Computation is shown in green, instruction processing in gold,
L1 cache in purple, higher level cache in blue and memory (DRAM) in orange. Figure obtained
from NVIDIACorporation (2021).

1.3 Numerical fluid dynamics 11

1.3 Numerical fluid dynamics

In this part, we will discuss the equations that describe the (turbulent) flow of gas using
the fluid approximation. This approximation assumes that the gas is collisional, meaning
that the velocity distribution of the gas particles is Maxwellian. For a sufficient number of
collisions to occur, the mean free path and the time between collisions must be significantly
smaller than the length and time scales of interest. In our case, these scales are determined
by the periodic simulation box in which we drive our turbulence, and the time at which
we sample the turbulence in the box. Both of these scales are large enough to allow the
fluid approximation to hold.

The fluid approximation enables us to define a density ρ, velocity v, and pressure P
at any point x in space. While it is possible to have multiple fluid species with individual
densities and velocities that interact with each other, in this work, we will focus on the
single-fluid case. This means that fluid quantities are represented in terms of, for example,
the total density ρ and the velocity at the center of mass of the resolution elements. If we
ignore viscous effects, the evolution of these quantities is dictated by the Euler equations.

We do not consider the evolution of magnetic nor radiation fields in this thesis. In the
final chapter we allow for a simplified cooling description.

Quantities

Before we turn to the equations let us define the quantities of interest.

Name Symbol Unit (SI)

Gas density ρ kg/m3

Particle number density N 1/m3

Velocity v⃗ m/s
Temperature T K
Sound speed Cs m/s
Isothermal sound speed cs m/s
Pressure P N/m2

Internal energy density E J/m3

Internal specific energy e J/kg
Internal specific enthalpy h J/kg
Total specific energy etot J/kg
Total specific enthalpy htot J/kg

(1.1)

Among these variables only five of them are independent

ρ, v⃗, e (1.2)

All other variables in Table 1.1 can be expressed from our five chosen variables. The
number density is connected to density via the mean weight of gas particles µ

ρ = Nµ, (1.3)

12 1. Introduction

Similarly the internal energy density is connected to the specific internal energy

E = ρe (1.4)

with the total specific energy being the sum of the internal energy and the kinetic energy:

etot = e+
1

2
|v⃗|2 (1.5)

Similarly with specific enthalpy we first define it as

h = e+
pV

ρ
(1.6)

and the total specific enthalpy

htot = h+
1

2
|v⃗|2 (1.7)

To connect energy to pressure we need the so called equation of state. In this work we
only concern ourselves with ideal gases.

1.3.1 Ideal gas

An ideal gas is a simplification of real gas dynamics that allows us to treat gas particles as
point particles moving randomly. The only interparticle interactions are perfectly elastic
point-like collisions. Such a gas obeys the ideal gas law

pv = nRT (1.8)

and the resulting simplified equation of state

p = (γ − 1) ρe, (1.9)

where γ the adiabatic index of the gas. It tells us about the number of degrees of freedom
of each gas particle f

γ = 1 +
2

f
(1.10)

Monoatomic gas has three translational degrees of freedom, one per spatial dimension
and a resulting γ = 5/3 = 1.67. Diatomic gas has two additional rotational degrees of
freedom for a γ = 1.4. The adiabatic index is also known as the heat capacity ratio
because we can also define it as the ratio of the heat capacity at constant pressure to heat
capacity at constant volume:

γ =
cp
cv

(1.11)

In adiabatic processes of ideal gases, γ relates pressure and density as

p = Kργ (1.12)

with K being a constant related to entropy. K stays constant in the absence of viscosity,
shocks, cooling and heating. We can now also derive the adiabatic sound speed of ideal
gas as:

C2
s =

∂P

∂ρ
= γ

P

ρ
= γ(γ − 1)e. (1.13)

1.3 Numerical fluid dynamics 13

1.3.2 Euler equations

To describe the time evolution of gas flows we turn to conservation laws. Namely the
conservation of mass, momentum and energy. The laws can be expressed as a system of
partial differential equations (PDEs) or in the form of integral equations.

Mass conservation

An arbitrary volume V is delineated from the rest of the space by its surface ∂V = S with
a normal unit vector n⃗ at each and differential surface element as dS. Absent any sources
or sinks any change of mass in this volume only happens through mass flux through the
surface S.

∂

∂t

∫
ρ dV +

∫
∂V

ρv⃗ · n⃗ dS = 0 (1.14)

Applying the divergence theorem to the second term of the equation above converts the
surface integral of the flux to the volume integral of the divergence

∂

∂t

∫
ρ dV +

∫
V

∇ · (ρu⃗) dV = 0 (1.15)

The above equation holds true for any choice of dV , therefore we have arrived at the PDE

∂ρ

∂t
+∇ · (ρv⃗) = 0 (1.16)

this is also known as the continuity equation.

Momentum conservation

The conservation of momentum density ρv⃗ can be derived in a similar way to the conser-
vation of mass with a slight complication due to the fact that we have to take into account
all forces that act on the surface by the gas surrounding the volume. We start the same
way as before, except here we replace ρ with ρv⃗

∂

∂t

∫
ρv⃗ dV +

∫
∂V

ρv⃗v⃗ · n⃗ dS = 0 (1.17)

Except this is not the full story, as we need to account for external forces from other
gas bordering our dV . Force is simply F = pS so we get another term.

∂

∂t

∫
ρv⃗ dV +

∫
∂V

ρv⃗v⃗ · n⃗ dS +

∫
∂V

pn⃗ dS = 0 (1.18)

By introducing the unit matrix I and plugging it in the third term, rewriting it as pI · n⃗
allows us to apply the divergence theorem.

14 1. Introduction

∂

∂t

∫
ρv⃗ dV +

∫
V

∇ · (ρv⃗v⃗ + Ip) dV = 0 (1.19)

because this can be applied to any dV we can write the PDE for momentum conservation

∂ρv⃗

∂t
+∇ · (ρv⃗v⃗) +∇p = 0 (1.20)

Energy conservation

The total specific energy of a gas parcel etot has two constituent parts. The internal specific
energy which is related the the gas temperature and the specific kinetic energy which
depends on the velocity of the parcel. Like with the derivation of momentum conservation
we need to account for the influences from surrounding gas on our parcel dV .

∂

∂t

∫
ρ

(
e+

v2

2

)
dV +

∫
∂V

ρ

(
e+

v2

2

)
v⃗ · n⃗ dS +

∫
∂V

pv⃗ · n⃗ dS = 0 (1.21)

Applying the divergence theorem and merging the second and third terms

∂

∂t

∫
ρ

(
e+

v2

2

)
dV +

∫
∂V

∇ ·
{(

ρe+
1

2
ρv⃗2 + p

)
v⃗

}
= 0 (1.22)

The resulting PDE reads

∂ρetot
∂t

+∇ · {(ρetot + p) v⃗} = 0. (1.23)

Having derived this third and final conservation law we now have the necessary mathe-
matical framework to study the inviscid flow of gas in the universe. To study viscous flows
one needs to use the Navier-Stokes equation.

1.3.3 Navier-Stokes equations

The Navier-Stokes equations listed below are a set of parabolic PDEs which describe the
flow of viscous fluids. They are thought to govern the motion of all fluids in every context,
from the cosmological and galactic, through design of planes, water turbines to weather
forecasting. Despite their vast importance and even wider applicability it is currently un-
known whether for a given set of initial conditions there always exists a smooth solution
for the Navier-Stokes equations. Since May 2020 the Clay Mathematics Institute identi-
fied this Navier–Stokes existence and smoothness problem as one of the Millennium Prize
Problems whose solution carries a $1M prize. We do not concern ourselves with this and
define the Navier-Stokes equation as

∂u

∂t
+∇ · F = ∇ · FNS, (1.24)

1.3 Numerical fluid dynamics 15

with FNS being the Navier-Stokes flux vector. It is a non-linear function both of the state
vector u and its gradient ∇u. In the canonical form

FNS =

 0
Π

v ·Π+ χ(γ − 1)ρ∇u

 , (1.25)

with a viscous tensor

Π = νρ

(
∇v +∇vT +

2

3
∇ · v

)
. (1.26)

The presence of ∇ which dissipates shear motions with viscosity ν and heat conduction
with thermal diffusivity χ fluids now generate entropy as they flow and not only in the
presence of shows which we discuss in the next section.

1.3.4 Shocks and other discontinuities

Since a large fraction of this thesis deals with treating shocks we will briefly introduce
these intriguing phenomena here.

As alluded by Eq. (1.12) a fluid parcel’s entropy normally stays constant. In the pres-
ence of shocks this assumption breaks down even for completely inviscid flows. Intuitively
one can think of shock waves like extremely steep sound waves. They can form from
strong sound waves because the sound speed is proportional to

√
T , and as a consequence

the warmer top of the wave will start “catching up” with the cooler preceding valley and
steepen. Eventually the sound wave will become steep enough to form a discontinuity.

Assuming a 1D shock moving through a medium we put ourselves in the reference frame
of the shock and define the pre- and post-shock regions of gas as the region which has not
passed through the shock and the region which has, respectively. In our example, a gas
particle will only ever go from the pre-shock to the post-shock region, never the other way
around. The pre-shock region has a density ρ1 and the post-shock ρ2. The two regions are
separated by the shock front and their properties connected by the so called shock jump
conditions, also known as the Rankine-Hugoniot conditions. We will derive them below.

We start with the equations of mass flux, momentum flux, and energy flux conservation
across the shock front:

ρ1v1 = ρ2v2 (1.27)

p1 + ρ1v
2
1 = p2 + ρ2v

2
2 (1.28)

1

2
v21 +

γ

γ − 1

p1
ρ1

=
1

2
v22 +

γ

γ − 1

p2
ρ2
. (1.29)

Next we define auxiliary variables representing specific volumes as Vi = ρ−1
i and the

associated mass flux j = ρ1v1 = ρ2v2. Substituting them into the equations above yields

v1 = jV1 v2 = jV2

p1 + j2V1 = p2 + j2V2
(1.30)

16 1. Introduction

Combining these two together results in

j2 = (p1 − p2) / (V2 − V1) . (1.31)

This quadratic equation has two solutions. One where p1 > p2 and another where p1 < p2.
The former solution is unphysical and will turn into a rarefraction wave. So we focus on
the latter one where the post-shock region has the higher pressure.

Substituting v2 − v1 = j (v2 − v1) into the equation above and only considering the
positive root because of our decision to only focus on the shock solution gives us

v1 − v2 =
√
(p2 − p1) (V1 − V2) (1.32)

We have arrived at the relation between the pre- and post-shock gas velocities. Now we
turn our attention to how the energy changes across the jump.

First we take Eq. (1.29) and rewrite it using the total specific enthalpy htot as

ρ1htotv1 = ρ2htotv2. (1.33)

Using the definition of htot gives

ρ1

(
h1 +

1

2
v21

)
v1 = ρ2

(
h2 +

1

2
v22

)
v2. (1.34)

Using the conservation of mass from Eq. (1.27) yields

h1 +
1

2
v21 = h2 +

1

2
v22, (1.35)

and rearranging h1 and h2 on one side and again using the relation v2 − v1 = j (V2 − V1)
we get

h2 − h1 =
j2

2

(
V 2
1 − V 2

2

)
, (1.36)

which when substituting in Eq. (1.31) and using the definition of enthalpy from Eq. (1.6)
results in

e2 − e1 =
1

2
(V1 − V2) (p2 − p1) . (1.37)

We have arrived at the relation between the pre- and post-shock energy of the gas.
In their seminal book on fluid dynamics, Landau & Lifshitz (1959) derive the jump

conditions for polytropic gases as

ρ2
ρ1

=
u1
u2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

P2

P1

=
2γM2

1

γ + 1
− γ − 1

γ + 1

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

(1.38)

1.4 Discontinuous Galerkin Method 17

with Mi = |vi|/CS being the Mach number. From these relations we can draw some
general conclusions about the behaviour of gases undergoing shocks. Changing our frame
of reference from the shock to the laboratory frame where the pre-shock region is at rest
and the shock is moving through it from left to right we can conclude:

1. the maximum gas compression ρ2/ρ1 is:

(a) monoatomic gas: 4

(b) diatomic gas: 6

2. the Mach number of the pre-shock region is M1 < 1, and for the post-shock region it
is M2 > 1

3. shocks generate entropy and are the only source of entropy for the integral form of
hydro equations without viscosity.

1.4 Discontinuous Galerkin Method

In Section 1.3.2 we have derived the Euler equations. They are a system of hyperbolic
partial differential equations which describe the conservation of mass, momentum and
total energy of a fluid as

∂u

∂t
+

d∑
α=1

∂fα(u)

∂xα
= 0, (1.39)

We can define a state vector u in which we collect the five independent variables from
Eq. (1.2):

u =

 ρ
ρv
e

 , e = ρu+
1

2
ρv2. (1.40)

By defining the ideal gas equation of state,

p = ρu (γ − 1) , (1.41)

we make our system complete. The last missing ingredient from Eq. (1.39) are the fluxes
fα(u):

f1 =


ρvx

ρvxvx + p
ρvxvy
ρvxvz

(ρe+ p)vx

 , f2 =


ρvy
ρvxvy

ρvyvy + p
ρvyvz

(ρe+ p)vy

 , f3 =


ρvz
ρvxvz
ρvyvz

ρvzvz + p
(ρe+ p)vz

 . (1.42)

Assembling the flux vectors into F = (f1,f2,f3), we can write the Euler equation in its
compact form,

∂u

∂t
+∇ · F = 0. (1.43)

18 1. Introduction

In classic finite volume methods this equation is solved on a grid with each cell holding
exactly one value for each element of the state vector. Below we introduce how this is done
for our choice of a high-order Discontinuous Galerkin (DG) method.

1.4.1 Representation of conserved variables

In the Discontinuous Galerkin approach, the state vector uK(x, t) in each cell K is ex-
pressed as a linear combination of time-independent, basis functions ϕK

l (x) and wK
l (t) N

time dependent weights.

uK(x, t) =
N∑
l=1

wK
l (t)ϕK

l (x). (1.44)

As such the global state of the simulation is fully described by the set of all weights. The
“Discontinuous” part of the method’s name originates from the lack of any constraint on
the continuity of the solution across cell boundaries.

The implementation of DG in this thesis uses Legendre polynomials to form its or-
thonormal basis functions. The rectangular cells used are all of equal size forming a classic
Cartesian grid. Note that both order of the basis function as well as the cell size and shape
can be generalized in DG.

1.4.2 Time evolution

The derivation of time evolution of the time dependent weights wK
l starts by taking the

Euler equation (1.39), multiplying it with a basis function and integrating it over cell K:∫
K

ϕK
l

∂u

∂t
dx+

∫
K

ϕK
l ∇F dx = 0. (1.45)

Now integrating the second term by parts and applying the divergence theorem to the
intermediate result leads to the so-called weak formulation of the conservation law:∫

K

ϕK
l

∂u

∂t
dx+

∫
∂K

ϕK
l F dn−

∫
K

∇ϕK
l F dx = 0. (1.46)

with |K| being the cell volume.
We now insert the definition u and use the orthonormal property of our set of basis

functions to arrive at a differential equation for the time evolution of the weights:

|K|dw
K
l

dt
=

∫
K

∇ϕK
l F dx−

∫
∂K

ϕK
l F ⋆(u+,u−) dn. (1.47)

The discontinuity of states across cell interfaces in the third term is addressed by replacing
F (u) on cell surfaces with a flux function F ⋆(u+,u−) where u+ and u− are the state
vectors parallel and anti-parallel to n. Here we can reach for a tool commonly deployed
in finite volume methods – the Riemann solver. More precisely, we use the approximate
Riemann HLLC solver solver by Toro (2009) as implemented in the AREPO code (Springel,
2010; Weinberger et al., 2020).

1.5 Turbulence 19

1.5 Turbulence

In this section we will introduce the theory of turbulence. What characterises turbulent
flows, how do we study them, which scales are important in it and how the energy is
transferred by turbulence.

An important number describing how a given fluid flow is susceptible to turbulence is
its Reynolds number. Defined as the ratio between the inertial force to viscous or friction
force

Re =
uL

ν
(1.48)

where u is the flow speed, L a characteristic length and ν is the fluid’s kinematic viscosity.
Flows with low Reynolds numbers are stabilised by viscous forces and are therefore more
likely to be smooth, laminar. While high Reynolds number flows are turbulent – charac-
terised by vortices, eddies and other instabilities, due to being dominated by inertial forces.
The chaotic flow characteristic of turbulence defies classical fluid description and we have
to resort to a statistical description (Pope, 2000).

Now consider a high Reynolds number flow. Under the assumption of a subsonic flow,
where we can assume the fluid is practically incompressible and only stirred by solenoidal
shear modes. A shear flow is known to give rise to various fluid instabilities, chief among
them the Kelvin-Helmholtz instability. It gives rise to many vortices of various sizes and it is
exactly these swirling motions on which Kolmogorov (1941) based his theory of turbulence
which we will briefly introduce below.

1.5.1 Kolmogorov’s theory of incompressible turbulence

Let us consider a turbulent flow in a quasi-stationary state established by a constant time-
averaged energy injection rate ϵ [J/g]. The eddies that make up this flow vary in size l
and have a corresponding characteristic velocity that is a function of their size u(l) with a
corresponding timescale τ(l) = l

u
. We can now define a scale dependent Reynolds number

Re(l) =
lu(l)

ν
. (1.49)

The process of large eddies, which are unaffected by viscosity, to create ever smaller ones
continues until Re(l) approaches unity, at which point viscous forces take over and effi-
ciently convert the kinetic motions into heat through dissipation. This transfer of large
scale kinetic energy to smaller scales is known as the energy cascade and is one of the main
features of Kolmogorov’s theory.

For high Reynolds number flows Kolmogorov hypothesised that the small scale motions
(compared to the driving scale) are statistically isotropic and do not hold any information
about larger scales. And consequently the statistical properties of these small scale motions
can depend only on the energy injection rate ϵ and shear viscosity ν.

20 1. Introduction

Using dimensional analysis we define Kolmogorov length and the associated velocity
and timescale

η =

(
ν3

ϵ

) 1
4

, (1.50)

uη = (ϵν)
1
4 , (1.51)

τη =

√(ν
ϵ

)
. (1.52)

Plugging in the just defined characteristic scales into Eq. (1.49) we can see that at Kol-
mogorov length scales

Re(η) =
η uη
ν

= 1, (1.53)

the Reynolds number is unity and as such the Kolmogorov length describes the dissipation
range.

The second Kolmogorov’s similarity hypothesis states that for a range of scales between
the driving and the dissipation range L0 > l > η where the statistics are determined
exclusively by energy injection ϵ.

In this case we can combine ϵ with a eddy size l, where L0 > l > η and construct

u(l) = (ϵl)
1
3 , (1.54)

τ(l) =

(
l2

ϵ
l

) 1
3

. (1.55)

In the inertial range the energy transfer rate is expected to be scale invariant. First we
define the transfer rate

T (l) ∼ u2(l)

τ(l)
, (1.56)

and under the assumption of scale invariance

T (l) ϵ, (1.57)

meaning that all injected energy simply moves through the inertial range. This gives us

ϵ ∼ U3
0

L0

, (1.58)

where U0 is the characteristic velocity of large scale, L0 sized eddies.
This allows us to derive the scaling relations between the all three characteristic flow

properties in the inertial range and Re,

η

L0

= Re−
3
4 , (1.59)

uη
U0

= Re−
1
4 , (1.60)

1.6 Challenges in modelling turbulence and overview of this thesis 21

τη
τ

= Re−
1
2 , (1.61)

and conclude that the properties of the inertial range are completely set by the Reynolds
number!

Energy dissipation of Kolmogorov turbulence

Wave number k is defined as k = 2π/l and the amount of kinetic energy stored in turbulent
motions between two wave numbers is

△E =

∫ k2

k1

E(k) dk, (1.62)

with E(k) being the energy spectrum of Kolmogorov turbulence. In the case of inertial
range we know that every statistic depends only on ϵ and l or in this case k(l). As such it
follows

E(k) = C ϵa bb, (1.63)

with C being a numerical constant determined from simulations and experiments to be
∼ 1.5 (Pope, 2000) and a, b numbers obtained through dimensional analysis. We quickly
see that a = 2/3 and b = −5/3. We have arrived at the famous −5/3 slope characteristic
of energy power spectrum of subsonic turbulence.

1.6 Challenges in modelling turbulence and overview

of this thesis

The thesis is structured as follows: In Chapter 2 we describe out first implementation of
the DG method on GPUs with sub-cell shock capturing. We extensively tested our imple-
mentation using various standard fluid dynamics tests and driven isothermal turbulence
and implemented a novel Navier-Stokes solver, which has proven difficult for DG methods
so far. In Chapter 3 we apply the method from the previous chapter to the problem of
supersonic driven isothermal turbulence. We present an improven shock capturing tech-
nique necessary to robustly threat the network of shocks present in a M > 10 turbulent
box. Additionally we employ a novel projection of primitive variables to cell edges which
proves crucial to stability. Finally, at the end of the thesis, we summarise in Chapter 4 our
results and discuss possible extensions of the work and future research directions.

22 1. Introduction

Chapter 2

High-order Discontinuous Galerkin
hydrodynamics with sub-cell shock
capturing on GPUs

This work has been published in the Monthly Notices of the Royal Astronomical Society,
Volume 522, Issue 1, Pages 982-1008.

Hydrodynamical numerical methods that converge with high-order hold particular
promise for astrophysical studies, as they can in principle reach prescribed accuracy goals
with higher computational efficiency than standard second- or third-order approaches.
Here we consider the performance and accuracy benefits of Discontinuous Galerkin (DG)
methods, which offer a particularly straightforward approach to reach extremely high or-
der. Also, their computational stencil maps well to modern GPU devices, further raising
the attractiveness of this approach. However, a traditional weakness of this method lies
in the treatment of physical discontinuities such as shocks. We address this by invoking
an artificial viscosity field to supply required dissipation where needed, and which can be
augmented, if desired, with physical viscosity and thermal conductivity, yielding a high-
order treatment of the Navier-Stokes equations for compressible fluids. We show that our
approach results in sub-cell shock capturing ability, unlike traditional limiting schemes
that tend to defeat the benefits of going to high order in DG in problems featuring many
shocks. We demonstrate exponential convergence of our solver as a function of order when
applied to smooth flows, such as the Kelvin-Helmholtz reference problem of Lecoanet et
al. (2016). We also demonstrate excellent scalability of our GPU implementation up to
hundreds of GPUs distributed on different compute nodes. In a first application to driven,
sub-sonic turbulence, we highlight the accuracy advantages of high-order DG compared
to traditional second-order accurate methods, and we stress the importance of physical
viscosity for obtaining accurate velocity power spectra.

24 2. High-order DG with sub-cell shock capturing on GPUs

2.1 Introduction

Computational fluid dynamics has become a central technique in modern astrophysical
research (for reviews, see, e.g., Trac & Pen, 2003; Vogelsberger et al., 2020; Andersson &
Comer, 2021). It is used in numerical simulations to advance the understanding of countless
systems, ranging from planet formation (e.g. Nelson et al., 2000) over the evolution of
stars (e.g. Edelmann et al., 2019), and the interplay of gas, black holes and stars in galaxy
formation (e.g. Weinberger et al., 2017), up to extremely large scales involving clusters of
galaxies (e.g. Dolag et al., 2009) or the filaments in the cosmic web (e.g. Mandelker et al.,
2019).

This wide breadth of scientific applications is also mirrored in a bewildering diversity of
numerical discretization schemes. Even so the underlying equations for thin, non-viscous
gases – the Euler equations – are the same in a broad class of astrophysical studies, the
commonly applied numerical methods come in many different flavors, and are sometimes
based on radically different principles. At a basic level, one often distinguishes between La-
grangian and Eulerian discretization schemes. The former partition the gas into elements
of (nearly) constant mass, as done for example in the popular smoothed particle hydro-
dynamics (SPH) approach (e.g. Monaghan, 1992) and its many derivatives. In contrast,
the latter discretize the volume using a stationary (often Cartesian) mesh (e.g. Stone &
Norman, 1992), such that the fluid is represented as a field. Hybrid approaches, which for
example use an unstructured moving-mesh (Springel, 2010) are also possible.

For mesh-based codes, finite-volume and finite-element methods are particularly pop-
ular. In the finite-volume approach, one records the averaged state in a cell, which is
updated in time by the numerical scheme. This approach combines particularly nicely
with the conservative character of the Euler equations, because the updates of the con-
served quantities in each cell can be expressed as pair-wise fluxes through cell boundaries,
yielding not only a manifestly conservative approach but also a physically intuitive formu-
lation of the numerical method. In finite-element approaches one instead expands the fluid
state in terms of basis functions. In spectral methods, the support of the basis functions
can be the full simulation domain, for example if Fourier series are used to represent the
system.

Discontinuous Galerkin (DG) approaches (first introduced for non-linear problems by
Cockburn & Shu, 1989), which are the topic of this thesis, are a particular kind of finite-
element approaches in which a series expansion for the solution is carried out separately
within each computational cell (which can have a fairly general shape). Inside a cell,
it is thus simply a truncated spectral method. The solutions for each of the cells are
coupled with each other, however, at the surfaces of the cells. Interestingly, high-order
accuracy of global solutions can be obtained simply through the high order of the spectral
method applied inside a cell, while it does not require continuity of the solutions at the cell
interfaces. This makes it particularly straightforward to extend DG schemes to essentially
arbitrarily high order, because this does not make the coupling at cell interfaces any more
complicated. This is quite different from high-order finite volume schemes, where the
reconstruction step requires progressively deeper stencils at high order (Janett et al., 2019).

2.1 Introduction 25

Another advantage of the DG approach is that it allows in principle cells of different
convergence order to be directly next to each other (Schaal et al., 2015). This makes a
spatially varying mesh resolution, or a spatially varying expansion order, more straightfor-
ward to implement than in high-order extensions of finite volume methods, where typically
the high-order convergence property is compromised at resolution changes unless preserved
with special treatments.

Despite these advantages, DG methods have only recently begun to be considered in
astrophysics. First implementations and applications include Mocz et al. (2014); Schaal
et al. (2015); Kidder et al. (2017); Velasco Romero et al. (2018); Guillet et al. (2019), as
well as more recently Lombart & Laibe (2021); Markert et al. (2022); Deppe et al. (2022).
We here focus on exploring a new implementation of DG that we developed from the
ground up for use with graphical processing units (GPUs). The recent advent of exascale
supercomputers has been enabled through the use of graphical processing units (GPUs) or
various other types of accelerator units. The common feature of these accelerators is the
capability to execute a large number of floating point operations at the expense of lower
memory bandwidth and total memory per computing unit (few MBs compared to few GBs
on an ordinary compute node) compared to the CPU. Another peculiarity of accelerators
is that they have hundreds of computing units (roughly equivalent to CPU cores) which
execute operations in a single instruction, multiple data (SIMD) mode. Since many of the
newest and largest supercomputers use such accelerators, it becomes imperative to either
modify existing simulation codes for their efficient use, or to write new codes optimized for
this hardware from scratch.

While there are already many successes in the literature for both approaches (e.g.
Schneider & Robertson, 2015; Ocvirk et al., 2016; Wibking & Krumholz, 2022), most
current simulation work in the astrophysical literature is still being carried out with CPU
codes. Certainly one reason is that large existing code bases are not easily migrated to
GPUs. Another is that not all numerical solvers easily map to GPUs, making it hard or
potentially impossible to port certain simulation applications to GPUs.

However, there are also numerous central numerical problems where GPU computing
should be applicable and yield sizable speed-ups. One is the study of hydrodynamics
with uniform grid resolutions, as needed for turbulence. In this work, we thus focus on
developing a new implementation of DG that is designed to run on GPUs. We base
our implementation of DG on Schaal et al. (2015) and Guillet et al. (2019), with one
critical difference. We do not apply the limiting schemes described in these studies as they
defeat the benefits of high-order approaches when strong shocks are present. Rather, we
will revert to the idea of deliberately introducing a small amount of artificial viscosity to
capture shocks, i.e. to add required numerical viscosity just where it is needed, and ideally
with the smallest amount necessary to suppress unphysical oscillatory solutions. As we
will show, with this approach the high-order approach can still be applied well to problems
involving shocks, without having to sacrifice all high-order information on the stake of a
slope limiter.

This chapter is structured as follows. In Section 2.2, we detail the mathematical basis of
the Discontinuois Galerkin discretization of hydrodynamics as used by us. In Section 2.3,

26 2. High-order DG with sub-cell shock capturing on GPUs

we generalize the treatment to include source terms which involve derivatives of the fluid
states, such as needed for the Navier-Stokes equations, or for our artificial viscosity treat-
ment for that matter. We then turn to a discussion of shock capturing and oscillation
control in Section 2.4. The following Section 2.5 is devoted to elementary tests, such as
shock tubes and convergence tests for smooth problems. In Section 2.6 we then show
results for “resolved” Kelvin-Helmholtz instabilities, and in Section 2.7, we give results
for driven isothermal turbulence and discuss to what extent DG methods improve the nu-
merical accuracy and efficiency of such simulations. Implementation and parallelization
issues of our code, in particular with respect to using GPUs, are described in Section 2.8,
while in Section 2.9, we discuss the performance and scalability of our new GPU-based
hydrodynamical code. Finally, we give a summary and our conclusions in Section 2.10.

2.2 Discontinuous Galerkin discretization of the Euler

equations

The Euler equations are a system of hyperbolic partial differential equations. They encap-
sulate the conservation laws for mass, momentum and total energy of a fluid, and can be
expressed as

∂u

∂t
+

d∑
α=1

∂fα(u)

∂xα
= 0, (2.1)

where the sum runs over the d dimensions of the considered problem. The state vector u
holds the conserved variables: density, momentum density, and total energy density:

u =

 ρ
ρv
e

 , e = ρu+
1

2
ρv2. (2.2)

To make our system complete we need an equation of state which connects the hy-
drodynamics pressure p with the specific internal energy u. If γ is the adiabatic index,
i.e. the ratio of the specific heat of the gas at a constant pressure Cp to its specific heat at
a constant volume Cv, the ideal gas equation of state is

p = ρu (γ − 1) . (2.3)

We also need to specify the second term of Eq. (2.1). The fluxes fα(u) in three
dimensions are:

f1 =


ρvx

ρvxvx + p
ρvxvy
ρvxvz

(ρe+ p)vx

 , f2 =


ρvy
ρvxvy

ρvyvy + p
ρvyvz

(ρe+ p)vy

 , f3 =


ρvz
ρvxvz
ρvyvz

ρvzvz + p
(ρe+ p)vz

 . (2.4)

2.2 Discontinuous Galerkin discretization of the Euler equations 27

By summarizing the flux vectors into F = (f1,f2,f3), we can also write the Euler equations
in the compact form

∂u

∂t
+∇ · F = 0, (2.5)

which highlights their conservative character. Numerically solving this set of non-linear,
hyperbolic partial differential equations is at the heart of computational fluid dynamics.
Here we shall consider the specific choice of a high-order Discontinuous Galerkin (DG)
method.

2.2.1 Representation of conserved variables in DG

In the Discontinuous Galerkin approach, the state vector uK(x, t) in each cell K is ex-
pressed as a linear combination of time-independent, differentiable basis functions ϕK

l (x),

uK(x, t) =
N∑
l=1

wK
l (t)ϕK

l (x), (2.6)

where the wK
l (t) are N time dependent weights. Since the expansion is carried out for

each component of our state vector separately, the weights wK
l are really vector-valued

quantities with 5 different values in 3D for each basis l. Each of these components is a
single scalar function with support in the cell K.

The union of cells forms a non-overlapping tessellation of the simulated domain, and
the global numerical solution is fully specified by the set of all weights. Importantly, no
requirement is made that the piece-wise smooth solutions within cells are continuous across
cell boundaries.

We shall use a set of orthonormal basis functions that is equal in all cells (apart from
a translation to the cell’s location), and we specialize our treatment in this chapter to
Cartesian cells of constant size. The DG approach can however be readily generalized to
other mesh geometries, and to meshes with variable cell sizes. Also, we will here use a
constant number N of basis functions that is equal for all cells, and determined only by
the global order p of the employed scheme. In principle, however, DG schemes allow this
be varied from cell to cell (so-called p-refinement).

2.2.2 Time evolution

To derive the equations governing the time evolution of the DG weights wK
l , we start with

the original Euler equation from Eq. (2.5), multiply it with one of the basis functions and
integrate over the corresponding cell K:∫

K

ϕK
l

∂u

∂t
dx+

∫
K

ϕK
l ∇F dx = 0. (2.7)

28 2. High-order DG with sub-cell shock capturing on GPUs

Integration by parts of the second term and applying the divergence theorem leads to the
so-called weak formulation of the conservation law:∫

K

ϕK
l

∂u

∂t
dx+

∫
∂K

ϕK
l F dn−

∫
K

∇ϕK
l F dx = 0. (2.8)

where |K| stands for the volume of the cell (or area in 2D).
If we now insert the basis function expansion of u and make use of the orthonormal

property of our set of basis functions,∫
K

ϕK
l (x)ϕ

K
m(x)dx = δl,k|K|, (2.9)

we obtain a differential equation for the time evolution of the weights:

|K|dw
K
l

dt
=

∫
K

∇ϕK
l F dx−

∫
∂K

ϕK
l F ⋆(u+,u−) dn. (2.10)

Here we also considered that the flux function at the surface of cells is not uniquely defined
if the states that meet at cell interfaces are discontinuous. We address this by replacing
F (u) on cell surfaces with a flux function F ⋆(u+,u−) that depends on both states at
the interface, where u+ is the outwards facing state relative to n (from the neighbouring
cell), and u− is the state just inside the cell. We will typically use a Riemann solver for
determining F ⋆, making this akin to Godunov’s approach in finite volume methods. In
fact, the same type of exact or approximate Riemann solvers can be used here as well.
We use for ordinary gas dynamics a simplified version of the Riemann HLLC solver by
Toro (2009) as implemented in the AREPO code (Springel, 2010; Weinberger et al., 2020).
We have also included an exact Riemann solver in case an isothermal equation of state is
specified.

What remains to be done to make an evaluation of Eq. (2.10) practical is to approximate
both the volume and surface integrals numerically, and to choose a specific realization for
the basis functions. We shall briefly discuss both aspects below. Another ingredient is
the definition of the weights for the initial conditions. Thanks to the completeness of the
basis, they can be computed by projecting the state vector u(x) of the initial conditions
onto the basis functions ϕK

l of each cell:

wK
l =

1

|K|

∫
K

uϕK
l dV. (2.11)

If a finite number N of basis functions is used to approximate the numerical solution, the
total approximation error is then

L1 =
1

|K|

∫
K

∣∣∣∣∣u(x)−
N∑
l=1

wK
l ϕK

l (x)

∣∣∣∣∣ dV. (2.12)

We shall use this L1 norm to examine the accuracy of our code when analytic solutions
are known.

2.2 Discontinuous Galerkin discretization of the Euler equations 29

2

3

4

5

raw data
fit: ndof=10 cells=10 order=1 L1-norm=2.33

2

3

4

5

fit: ndof=10 cells=5 order=2 L1-norm=0.99

0 0.2 0.4 0.6 0.8

2

3

4

5

fit: ndof=10 cells=1 order=10 L1-norm=0.10

x

y

Figure 2.1: An example of fitting an arbitrary, smooth function y = f(x) with 10 degrees of
freedom, but varying number of cells and polynomial orders used for these cells, as labelled in the
different panels. The L1 error norm for approximating the function is highest in case piece-wise
constant approximations are used, while it drops when fewer, but piece-wise linear cells are used,
and finally reaches its lowest value when a single cell with a single 10th order polynomial is used.

30 2. High-order DG with sub-cell shock capturing on GPUs

2.2.3 Legendre basis function

Following Schaal et al. (2015), we select Legendre polynomials Pl(ξ) to construct our set
of basis functions. They are defined on a canonical interval [−1, 1] and can be scaled such
that they form an orthogonal basis with normalization chosen as:∫ 1

−1

Pl(ξ)Pm(ξ)dξ = 2 δl,m. (2.13)

Note that the 0-th order Legendre polynomial is just a constant term, while the 1-st order
features a simple pure linear dependence. In general, Pl(ξ) is a polynomial of degree l.

Within each cell, we define local coordinates ξ ∈ [−1, 1]d. The translation between
global coordinates x to local cell coordinates ξ is:

ξK =
2

h

(
x− xK

c

)
, (2.14)

with h being the cell size in one dimension, and xK
c is the cell centre in world coordinates.

Multi-dimensional basis functions are simply defined as Cartesian products of Legendre
polynomials, for example in three dimensions as follows:

ϕK
l (x) = P 3D

l [ξK(x)], (2.15)

with
P 3D
l [ξK] ≡ Plx(ξ

K
x) · Ply(ξ

K
y) · Plz(ξ

K
z), (2.16)

where the generalized index l enumerates different combinations of Legendre polynomials
lx(l), ly(l), and lz(l) in the different directions. In practice, we truncate the expansion at
a predefined order n, and discard all tensor products in which the degree of the resulting
polynomial exceeds n. This means that we end up in 3D with

N3D(n) =
1

6
(n+ 1)(n+ 2)(n+ 3) (2.17)

basis functions, each a product of three Legendre polynomials of orders lz,y,z ∈ {0, . . . , n}.
In 2D, we have

N2D(n) =
1

2
(n+ 1)(n+ 2), (2.18)

and in 1D the number is N1D(n) = n+ 1. The expected spatial convergence order due to
the leading truncation error is in each case p = n + 1. From now on we will refer to p as
the order of our DG scheme, with n = p− 1 being the highest degree among the involved
Legendre polynomials.

In Figure 2.1, we show an example of approximating a smooth function with Legendre
polynomials of different order and with a different number of cells, but keeping the number
of degrees constant. In this case, the approximation error tends to be reduced by going to
higher order, even when this implies using fewer cells.

2.2 Discontinuous Galerkin discretization of the Euler equations 31

2.2.4 Gaussian quadrature

An integration of a general function f(x) over the interval [−1, 1] can be approximated by
Gaussian quadrature rules, as ∫ 1

−1

f(x) dx ≃
ng∑
j=1

gj f(xj) (2.19)

for a set of evaluation points xj and suitably chosen quadrature weights gj. We use ordinary
Gaussian quadrature with internal points only. The corresponding integration rule with
ng evaluation points is exact for polynomials up to degree 2ng − 1. If we use Legendre
polynomials up to order n, we therefore should use at least ng ≥ (n + 1)/2 integration
points. Note, however, that the nonlinear dependence of the flux function on the state
vector u means that we actually encounter rational functions as integrands and not just
simple polynomials. As a result, we need unfortunately a more conservative number of
integration points for sufficient accuracy and stability in practice. A good heuristic is to
take the number of basis functions used for the one-dimensional case as a guide, so that
one effectively employs at least one function evaluation per basis function. This means we
pick ng = n+ 1 in what follows.

Multi-dimensional integrations, as needed for the surface and volume integrals in our
Cartesian setup, can be carried out through tensor products of Gaussian integrations. We
denote the corresponding function evaluation points as ξvolj = (xj1 , xj2 , xj3) and Gaussian

weights as gvolj = gj1 · gj2 · gj3 for the combination j = (j1, j2, j3) of Gaussian quadrature
points needed for integrations over the cell volume in 3D. For surface integrations over our
cubical cells, we correspondingly define ξsurk,x+ = (+1, xk1 , xk2), and ξsurk,x− = (−1, xk1 , xk2) for
evaluation points on the right and left surface in the x-direction of one of our cubical cells,
with k = (k1, k2) and likewise for the y- and z-directions. The corresponding Gaussian
quadrature weights are given by gsurk = gk1 · gk2 .

Putting everything together, we arrive at a full set of discretized evolutionary equations
for the weights. For definiteness, we specify this here for the three dimensional case:

dwK
l

dt
=

1

4

3∑
α=1

∑
j∈

[1,ng]3

{
fα[u

K(ξvolj)] ·
∂P 3D

l (ξvolj)

∂ξα

}
gvolj

−1

8

3∑
α=1

∑
k∈

[1,ng]2

{
P 3D
l (ξsurk,α+)f

⋆
α

[
uK,α+(ξsurk,α−),u

K(ξsurk,α+)
]

−P 3D
l (ξsurk,α+)f

⋆
α

[
uK(ξsurk,α−),u

K,α−(ξsurk,α+)
]}

gsurk . (2.20)

Here the notation uK,α+ and uK,α− refer to the state vectors evaluated for the right and
left neighbouring cells of cell K in the direction of axis α, respectively. The state vector

32 2. High-order DG with sub-cell shock capturing on GPUs

evaluations themselves are given by

uK(ξ) =
N∑
l=1

wK
l P 3D

l (ξ). (2.21)

Note that the prefactor 1/|K| in front of the surface integral terms in Eq. (2.20) turns
into 1/8 as a result of the change of integration variables mediated by Eq. (2.15). The
volume integral acquires a factor of 2/h from the coordinate transformation, thus the final
prefactor becomes 1/4. The numerical computation of the time derivative of the weights
based on a current set of weights is in principle straightforward using Eq. (2.20), but
evidently becomes more elaborate at high-order, involving numerous sums per cell.

In passing we note that instead of just counting the number of cells per dimensions,
both the storage effort and the numerical work needed is better measured in terms of the
number of degrees of freedom per dimension. A fixed number of degrees of freedom (and
thus storage space) can be achieved with different combinations of cell size and expansion
order. The hope in using high-order methods is that they deliver better accuracy for a
fixed number of degrees of freedom, or arguably even more importantly, better accuracy
at fixed computational expense.

2.2.5 Time integration

With

ẇ ≡ dwK
l

dt
(2.22)

in hand, standard ODE integration methods such as the broad class of Runge-Kutta inte-
grations can be used to advance the solution forward in time. We follow standard procedure
and employ strongly positivity preserving (SPP) Runge-Kutta integration rules as defined
in Schaal et al. (2015, Appendix D). Note that when higher spatial order is used, we
correspondingly use a higher order time integration method, such that the time integra-
tion errors do not start dominating over spatial discretization errors. The highest time
integration method we use is a 5 stage 4-th order SSP RK method.

The timestep size ∆t is set conservatively as

∆tmax = fCFL
h

2p (cs, max + vmax)
, (2.23)

where h is the cell size, fCFL is the Courant–Friedrichs–Lewy factor, cs, max denotes the
global maximum sound speed and vmax is the global maximum kinematic velocity, respec-
tively. We use a fCFL of 0.5 for all problems except the shock tube, Sedov blast wave and
double blast wave where a more conservative 0.3 was used instead.

For high order runs (p > 4) we did not see time integration errors to start dominating
over the spatial discretization errors, despite employing only a 4-th order RK scheme.
We attribute this to our use of a low Courant factor and to including global maximum
velocities in the timestep criterion. Once the errors from time integration would start to

2.3 Treatment of viscous source terms 33

dominate at high order, we could recover sufficient accuracy of our time integration scheme
by appropriately scaling the time-step size as hr/4.

2.3 Treatment of viscous source terms

As we will discuss later on, our approach for capturing physical discontinuities (i.e. shocks
and contact discontinuities) in gas flows deviates from the classical slope-limiting approach
and instead relies on a localized enabling of artificial viscosity. Furthermore, we will gen-
eralize our method to also account for physical dissipative terms, so that we arrive at a
treatment of the full compressive Navier-Stokes equations.

To introduce these methods, we start with a generalized set of Euler equations in 3D
that are augmented with a diffusion term in all fluid variables,

∂u

∂t
+∇ · F = ∇ · (ε∇u), (2.24)

where u and F are the state vector (2.6) and the flux matrix (2.4), respectively.
The crucial difference between the normal Euler equations (2.1) and this dissipative

form is the introduction of a second derivative on the right-hand side, which modifies the
character of the problem from being purely hyperbolic to an elliptic type, while retaining
manifest conversation of mass, momentum and energy. This second derivative can however
not be readily accommodated in our weight update equation obtained thus far. Recall,
the reason we applied integration by parts and the Gauss’ theorem going from Eq. (2.5)
to Eq. (2.8) was to eliminate the spatial derivative of the fluxes. If we apply the same
approach to ∇ · (ε∇u) we are still left with one ∇-operator acting on the fluid state.

2.3.1 The uplifting approach

In a seminal paper, Bassi & Rebay (1997) suggested a particular treatment of this second
derivative inspired by how one typically reduces second (or higher) order ordinary differ-
ential equations (ODEs) to first order ODEs. Bassi & Rebay (1997) reduce the order of
Eq. (2.24) by introducing the gradient of the state vector, S ≡ ∇u, as an auxiliary set of
unknowns. This yields a system of two partial differential equations:

S −∇u = 0, (2.25)

∂u

∂t
+∇ · (F − ϵS) = 0. (2.26)

Interestingly, if we consider a basis function expansion for S for each cell in the same
way as done for the state vector, then the weak formulation of the first equation can be
solved with the DG formalism using as input only the series expansion of the current state
u. This entails again an integration by parts that yields volume and surface integrations
for each cell. To compute the latter, one needs to adopt a surface state u⋆ for potentially
discontinuous jumps u+ and u− across the cell boundaries. Bassi & Rebay (1997) suggest to

34 2. High-order DG with sub-cell shock capturing on GPUs

use the arithmetic mean u⋆ = [u− +u+]/2 for this, so that obtaining the series expansion
coefficients for S is straightforward. One can then proceed to solve Eq. (2.26), with a
largely identical procedure than for the Euler equation, except that the ordinary flux F
is modified by subtracting the viscous flux Fvisc = ϵS. At cell interfaces one furthermore
needs to define the viscous flux uniquely somehow, because S can still be discontinuous in
general at cell interfaces. Here Bassi & Rebay (1997) suggest to use the arithmetic mean
again.

A clear disadvantage of this procedure, which we initially implemented in our code,
is that it significantly increases the computational cost, memory requirements and code
complexity, because the computation of S involves the same set of volume and surface
integrals that are characteristic of the DG approach, except that it actually has to be
done three times as often than for u in 3D, once for each spatial dimension. But more
importantly, we have found that this method is prone to robustness problems, in particular
if the initial conditions already contain large discontinuities across cells. In this case, the
estimated derivatives inside a cell can reach unphysically large values by the jumps seen
on the outer sides of a cell.

In hindsight, this is perhaps not too surprising. For a continuous solution, there is
arguably little if anything to be gained by solving Eq. (2.25) with the DG algorithm if a
polynomial basis is in use. Because this must then return a solution identical to simply
taking the derivatives of the basis functions (which are analytically known) and retaining
the coefficients of the expansion. On the other hand, if there are discontinuities in u at the
boundaries, the solution for S sensitively depends on the (to a certain degree arbitrary)
choice made for resolving the jumps in the computation of the surface integrals for S. In
particular, there is no guarantee that using the arithmetic mean does not induce large
oscillations or unphysical values for S in the interior of cells in certain cases.

For all these reasons we have ultimately abandoned the Bassi & Rebay (1997) method,
because it does not yield a robust solution for the diffusion part or the equations in all
situations, and does not converge rapidly at high order either. Instead, we conjecture that
the key to high order convergence of the diffusive part of the PDE system is the availability
of a consistently defined continuous solution across cell boundaries.

2.3.2 Surface derivatives

For internal evaluations of the viscous flux (which in general may depend on u and ∇u)
within a cell, we use the current basis function expansion of the solution in the cell and
simply obtain the derivative by analytically differentiating the basis functions. We argue
that this is the most natural choice as the same interior solution u is used for computing
the ordinary hydrodynamical flux.

The problem, however, lies with the surface terms of the viscous flux, as here neither
the value of the state vector nor the gradient are uniquely defined, and unlike for the
hyperbolic part of the equation, there is no suitable ‘Riemann solver’ to define a robust
flux for the diffusion part of the equation. Simply taking arithmetic averages of the two
values that meet at the interface for the purpose of evaluating the surface viscous flux is

2.3 Treatment of viscous source terms 35

Figure 2.2: Two cells K− and K+ that meet at a joint face. The corresponding polynomial
solutions u− and u+ are in general discontinuous at the interface. To unambiguously define a
joint solution and its gradient on the interface, we construct an interpolant solution on a domain
K∗ placed symmetrically around the interface. In the normal direction, a fraction f of both cells
is covered (we pick either f = 3/4 or f = 1 in practice), in the the transverse direction(s), the
cells are covered in full.

not accurate and robust in practice.
We address this problem by constructing a new continuous solution across a cell in-

terface by considering the current solutions in the two adjacent cells of the interface, and
projecting them onto a new joint polynomial expansion in a rectangular domain that covers
part (or all) of the two adjacent cells. This approach is similar to the recovery method
proposed by van Leer & Nomura (2005) in their work on solving the diffusion equation
in DG. This interpolated solution minimizes the L2 difference to the original (in general
discontinuous) solutions in the two cells, but it is continuous and differentiable at the cell
interface by construction. The quantities u and ∇u needed for the evaluation of the vis-
cous surface flux are then computed by evaluating the new basis function expansion at the
interface itself.

A sketch of the adopted procedure is shown in Figure 2.2. The two solutions in the two
adjacent cells are given by

uK−
(x) =

N∑
l=1

wK−

l ϕK−
(x). (2.27)

and

uK+

(x) =
N∑
l=1

wK+

l ϕK+

(x). (2.28)

We now seek an interpolated solution in terms of a set of new basis functions ψK⋆
defined

on the domain K⋆, i.e.

ũK⋆

(x) =
N⋆∑
l=1

qK⋆

l ψK⋆

(x). (2.29)

36 2. High-order DG with sub-cell shock capturing on GPUs

In order to avoid a degradation of accuracy if the solution is smooth, and to provide suffi-
cient accuracy for the gradient, we adopt order n+1 for the polynomial basis of ũK⋆

. As for
ordinary cells, the generalized index l enumerates different combinations [lx(l), ly(l), lz(l)]
of Legendre polynomials and their Cartesian products in the multidimensional case. If, for
example, the two cells are oriented along the x-axis, we define

ψK⋆

l (x) = Plx(ξ
K⋆

x) · Ply(ξ
K
y) · Plz(ξ

K
z), (2.30)

where now the mapping of the x-extension of the domain K⋆ into the standard interval
[−1, 1] is correspondingly modified as

ξK
⋆

x =
1

f h

(
x− xK

−
c + xK

+

c

2

)
, (2.31)

where f is the fraction of overlap of each of the two cells (see Fig. 2.2). The coefficients
qK⋆

l can then be readily obtained by carrying out the projection integrals

qK⋆

l =
1

|K⋆|

∫
K⋆

u(x) ψK⋆

l (x) dV (2.32)

=
1

|K⋆|

N∑
m=1

[
wK−

m

∫
K−

ϕK−

m ψK⋆

l dV +wK+

m

∫
K+

ϕK+

m ψK⋆

l dV

]
.

The projection is a linear operation, and the overlap integrals of the Legendre basis func-
tions can be precomputed ahead of time. In fact, many evaluate to zero due to the or-
thogonality of our Legendre basis. In particular, this is the case for the transverse basis
functions if their order is not equal, so that the projection effectively becomes a sparse
matrix operation that expresses the new expansion coefficients in the normal direction as a
sum of one or several old expansion coefficients in the normal direction. This can be more
explicitly seen by defining Legendre overlap integrals as

A−
m,l =

∫ 0

−1

Pm(2fx+ 1)Pl(x) dx, (2.33)

A+
m,l =

∫ 1

0

Pm(2fx+ 1)Pl(x) dx. (2.34)

Then the new coefficients can be computed as follows

qK⋆

(lx,ly ,lz) =
1

2f

lx∑
mx=0

[
A−

mx,lx
wK−

(mx,ly ,lz) + A+
mx,lx

wK+

(mx,ly ,lz)

]
. (2.35)

Note that for transverse dimensions, only the original Legendre polynomials contribute,
hence the new coefficients are simply linear combinations of coefficients that differ only in
the order of the Legendre polynomial in the x-direction. Also note that for the transverse

2.3 Treatment of viscous source terms 37

dimensions, the highest Legendre orders ly and lz that are non-zero are the same as for the
original coefficients, i.e. the fact that we extend the order to n + 1 becomes only relevant
for the direction connecting the two cells.

Another point to note is that the basis function projection can be carried out indepen-
dently for the left and right side of an interface (corresponding to the first and second part
of the sum in eqn. 2.35), each yielding a partial result that can be used in turn to evaluate
partial results for ũ ∇ũ at the interface. Adding up these partial results then yields the
final interface state and and interface gradient. This means that this scheme does not
require to send the coefficients wK±

to other processors in case K− and K+ happen to be
stored on different CPUs or GPUs, only “left” and “right” states for ũ and ∇ũ need to
be exchanged (which are the partial results that are then summed instead of taking their
average), implying the same communication costs as, for example, methods that would
rely on taking arithmetic averages of the values obtained separately for the K− and K+

sides.
Finally, we choose f = 3/4 for the size of the overlap region for n ≤ 2, but f = 1 for

higher order n > 2. For the choice of f = 3/4, the estimate for the first derivative of the
interpolated solution ends up being

∇ũ =
u+ − u−

h
n, (2.36)

for piece-wise constant states, where h is the cell spacing, n is the normal vector of the
interface, and u± are the average states in the two cells. This intuitively makes sense for
low order. In particular, this will pick up a reasonable gradient even if one starts with a
piece-wise constant initial conditions, and even if n = 0 (corresponding to DG order p = 1)
is used. We also obtain the expected convergence orders for diffusion problems (see below)
with this choice when n ≤ 2 is used. On the other hand, we have found that it is necessary
to include the full available information of the two adjacent cells by adopting f = 1 for
still higher order in order to obtain the expected high-order convergence rates for diffusion
problems also for n > 2.

2.3.3 The Navier-Stokes equations

While we will use the above form of the dissipative terms for our treatment of artificial
viscosity (see below), we also consider the full Navier-Stokes equations. They are given by:

∂u

∂t
+∇ · F = ∇ · FNS, (2.37)

where now the Navier-Stokes flux vector FNS is a non-linear function both of the state
vector u and its gradient ∇u. We pick the canonical form

FNS =

 0
Π

v ·Π+ χ(γ − 1)ρ∇u

 , (2.38)

38 2. High-order DG with sub-cell shock capturing on GPUs

with a viscous tensor

Π = νρ

(
∇v +∇vT +

2

3
∇ · v

)
(2.39)

that dissipates shear motions with viscosity ν. We also include optional heat conduction
with thermal diffusivity χ. Note that the derivatives of the primitive variables can be
easily obtained from the derivatives of the conservative variables when needed, for example
∇v = [∇(ρv) − v∇ρ]/ρ, and one can thus express the velocity gradient ∇v in terms of
∇u and u.

2.3.4 Passive tracer

Finally, for later application to the Kelvin-Helmholtz problem, we follow Lecoanet et al.
(2016) and add a passive, conserved tracer variable to the fluid equations. The density of
the tracer is cρ, with c being its dimensionless relative concentration. It can be added as a
further row to the state vector u. Since the tracer is conserved and simply advected with
the local velocity, the corresponding entry in the flux vector is cρv. Further, we can also
allow for a diffusion of the tracer with diffusivity η, by adding ηρ∇c in the corresponding
row of the Navier-Stokes flux vector. The governing equation for the passive tracer dye is
hence

∂(cρ)

∂t
+∇ · (cρv) = ∇(ηρ∇c). (2.40)

2.4 Shock capturing and oscillation control

2.4.1 Artificial viscosity

High-order numerical methods are prone to oscillatory behaviour around sharp jumps of
density or pressure. Such physical discontinuities arise naturally at shocks in supersonic
fluid motion, and they are an ubiquitous phenomenon in astrophysical gas dynamics. In
fact, the Euler equations have the interesting property that perfectly initial conditions
can evolve with time into states that feature real discontinuities. The physical dissipation
that must happen in these jumps is implicitly dictated by the conservation laws, but
discrete numerical methods may not always produce the required level of dissipation, such
that postshock oscillations are produced that are reminiscent of the Gibbs phenomenon in
Fourier series expansion around jump discontinuities.

Our DG code produces these kinds of oscillations with increasing prominence at higher
and higher order when discontinuities are present. And once the oscillations appear, they
do not necessarily get quickly damped because of the very low numerical dissipation of
high-order DG. Shocks, in particular, seed new oscillations with time, because inside cells
the smooth inviscid Euler equations are evolved – in which there is no dissipation at all.
Thus the entropy production required by shocks is simply not possible. Note that the
oscillations are not only physically wrong, they can even cause negative density or pressure
fluctuations in some cells, crashing the code.

2.4 Shock capturing and oscillation control 39

One approach to prevent this are so-called slope limiters. In particular, the family of
minmod slope limiters is highly successfully used in second-order finite volume methods.
While use of them in DG methods is possible, applying them in high order settings by
discarding the high-order expansion coefficients whenever the slope limiter kicks in (see
Schaal et al., 2015; Guillet et al., 2019) is defeating much of the effort to going to high
order in the first place. Somehow constructing less aggressive high-order limiters that
can avoid this is a topic that has seen much effort in the literature, but arguably only
with still limited success. In fact, the problem of coping with shocks in high-order DG
is fundamentally an issue that still awaits a compelling and reasonably simple solution.
Recent advanced treatments had to resort to replacing troubled cells with finite volume
solutions computed on small grid patches that are then blended with the DG solution (e.g.
Zanotti et al., 2015; Markert et al., 2021).

We here return to the idea that this problem may actually be best addressed by res-
urrecting the old idea of artificial viscosity (Persson & Peraire, 2006). In other inviscid
hydrodynamical methods, in particular in the Lagrangian technique of smoothed particle
hydrodynamics, it is evident and long accepted that artificial viscosity must be added to
capture shocks. Because the conservation laws ultimately dictate the amount of entropy
that needs to be created in shocks, the exact procedure for adding artificial viscosity is not
overly critical. What is critical, however, is that the there is a channel for dissipation and
entropy production. It is also clear that shocks in DG can be captured in a sub-cell fashion
only if the required dissipation is provided somehow, either through artificial viscosity that
is ideally present only at the place of the shock front itself where it is really needed, or
by literally capturing the shock by subjecting the “troubled cell” to a special procedure in
which it is, for example, remapped to grid of finite volume cells.

Persson & Peraire (2006) suggested to use a discontinuity (or rather oscillation) sensor
to detect the need for artificial viscosity in a given cell. For this, they proposed to measure
the relative contribution of the highest order Legendre basis functions in representing the
state of the conserved fields in a cell. A solution of a smooth problem is expected to be
dominated by the lower order weight coefficients, and statistically the low order weights
should be much larger than their high order counterparts. In contrast, for highly oscillatory
solutions in a cell (which often are created as pathological side-effects of discontinuities),
the high order coefficients are more strongly expressed.

We adopt the same discontinuity sensor as Persson & Peraire (2006). For every cell K,
we can calculate the conserved variables u(x) using either the full basis in the normal way,

u(x) =

N(p)∑
i=1

wK
l ϕl

or by omitting the highest order basis functions that are not present at the next lower
expansion order, as

û(x) =

N(p−1)∑
i=1

wK
l ϕl

40 2. High-order DG with sub-cell shock capturing on GPUs

The discontinuity/oscillatory sensor SK in cell K can now be defined as

SK =

∫
K
(u− û)(u− û)dV∫
K
u(x)u(x) dV

, (2.41)

where we restrict ourselves to one component of the state vector, the density field. Note
that due to the orthogonality of our basis functions, this can be readily evaluated as

SK =

∑Np

l=Np−1
[wK

l]2∑Np

l=1[w
K
l]2

(2.42)

in terms of sums over the squared expansion coefficients. While we have 0 ≤ SK ≤ 1,
we expect SK to generally assume relatively small values even if significant oscillatory
behaviour is already present in K, simply because the natural magnitude of the expansion
coefficients declines with their order rapidly. Persson & Peraire (2006) argue that the
coefficients should scale as 1/p2 in analogy with the scaling of Fourier coefficients in 1D, so
that typical values for SK in case oscillatory solutions are present may scale as 1/p4. Our
tests indicate a somewhat weaker scaling dependence, however, for oscillatory solutions
developing for identical ICs, where the troubled cells scale approximately as SK ∼ 1/p2 as
a function of order.

In the approach of Persson & Peraire (2006), artificial viscosity is invoked in cells once
their SK value exceeds a threshold value, above which it is ramped up smoothly as a
function of SK to a predefined maximum value. While this approach shows some success
in controlling shocks in DG, it is problematic that strong oscillations need to be present
in the first place before the artificial viscosity is injected to damp them. In a sense, some
damage must have already happened before the fix is applied.

For capturing shocks we therefore argue it makes more sense to resort to a physical
shock sensor which detects rapid, non-adiabatic compressions in which dissipation should
occur. We therefore propose here to adapt ideas widely used in the SPH literature (Morris
& Monaghan, 1997; Cullen & Dehnen, 2010), namely to consider a time-dependent artificial
viscosity field that is integrated in time using suitable source and sink functions. Adopting
a dimensionless viscosity strength α(x, t), we propose the evolutionary equation

∂α

∂t
= α̇shock + α̇wiggles −

α

τ
(2.43)

for steering the spatially and temporarily variable viscosity. For the moment we use a
simple shock sensor α̇shock = fv max(0,−∇ · v) based on detecting compression, where
fv ∼ 1.0 can be modified to influence how rapidly the viscosity should increase upon
strong compression. In the absence of sources, the viscosity decays exponentially on a
timescale

τ = fτ
h

p cs
, (2.44)

where h/p is the expected effective spatial resolution at order p, cs is the local sound speed,
and fτ ∼ 0.5 is a user-controlled parameter for setting how rapidly the viscosity decays
again after a shock transition.

2.4 Shock capturing and oscillation control 41

0.40 0.45 0.50 0.55 0.60 0.65 0.70

1.0

1.5

2.0

2.5

3.0

3.5

0.2

0.4

0.6

0.8

1.0

al
ph

a
fie

ld

x

de
ns

ity

0.2

0.4

0.6

0.8

1.0

al
ph

a
fie

ld

Figure 2.3: Zoom into a Mach number M = 4 shock that is simulated with order p = 9. The
upstream gas has unit density and unit pressure. Individual mesh cell boundaries are indicated
with dotted lines. The density field obtained with artificial viscosity included is shown as a solid
blue, while the result without artificial viscosity is shown as a grey line in the background. The
artificial viscosity field itself is shown as orange line (scale on the right). The analytic shock
position at the displayed time is at x = 0.5, in the middle of one of the mesh cells. The circles
mark the locations where the density has reached 20 and 80 percent, respectively, of the shock’s
density jump. We use the distance ∆xshock of the corresponding points as a measure of the shock
width.

Finally, the term α̇wiggles in Equation (2.43) is a further source term added to address
the occurrence of oscillatory behaviour away from shocks. In fact, this typically is seeded
directly ahead of strong shocks, for example when the high-order polynomials in a cell with
a shock trigger oscillations in the DG cell directly ahead of the shock through coupling
at the interface. Another typical situation where oscillations can occur are sharp, moving
contact discontinuities. Here the shock sensor would not be effective in supplying the
needed viscosity as there is no shock in the first place. We address this problem by
considering the rate of change of the oscillatory senor SK as a source for viscosity, in the
form

α̇wiggles = fw max

(
0,

d logSK

dt

)
, (2.45)

for SK > Sonset, otherwise α̇wiggles = 0. When d log SK/dt is positive and large, oscillatory
behaviour is about to grow and the cell is on its way to become a troubled cell, indicating

42 2. High-order DG with sub-cell shock capturing on GPUs

1 10

0.1

1.0

p

sh
oc

k
w

id
th

 [h
]

Figure 2.4: Shock width in units of the cell size as a function of the order p of our DG code, for
a Mach number M = 4 shock that runs into gas at rest. The dashed line marks a ∆xshock ∝ 1/p
power law, which accurately describes our measurements, except for the lowest order result with
piece-wise constant states, which is so highly diffusive that it does not require any artificial
viscosity.

that this should better be prevented with local viscosity. In this way, oscillatory solutions
can be much more effectively controlled than waiting until they already reached a substan-
tial size. It is nevertheless prudent to restrict the action of this viscosity trigger to cells
that have SK above a minimum value Sonset, otherwise the code would try to suppress even
tiny wiggles, which would invariably lead to very viscous behaviour. In practice, we set
Sonset = 10−4/p2, and we compute d logSK/dt based on the time derivatives of the weights
of the previous timestep.

We add α as a further field component to our state vector u, meaning that it is spatially
variable and is expanded in our set of basis functions. We do not advect the α field with the
local flow velocity as to allow it to fall behind moving discontinuities and to fully suppress
any excited oscillations there. Also, advecting the α field at high order would require a
limiting scheme for this field itself. Note that in the post-/pre-shock region we can assume
the first term of Eq. (2.43) to be unimportant. Once the wiggles are suppressed the second
term disappears as well, so that then the default choice of parameters suppresses any
existing α field to percent level in a handful of time steps. Only the shock sensor source
function is actually variable in a cell, whereas our oscillatory sensor affects the viscosity
throughout a cell.

Finally, the actual viscosity applied in the viscous flux of Eqn. (2.37) is parameterized

2.4 Shock capturing and oscillation control 43

as

ϵ = αcs
h

p
, (2.46)

and we impose a maximum allowed value of αmax = 1, primarily as a means to prevent
overstepping and making the scheme violate the the von Neumann stability requirement
for explicit integration of the diffusion equation, which would cause immediate numerical
instability. Since our timestep obeys the Courant condition, this is fortunately not implying
a significant restriction for effectively applying the artificial viscosity scheme, but it imposes
an upper bound that can be used safely without making the time-integration unstable.

We have found that the above parameterisation works quite reliably, injecting viscosity
only at discontinuities and when spurious oscillations need to be suppressed, while at the
same time not smoothing out solutions excessively. Figure 2.3 shows an example for a
Mach number M = 3 shock that is incident from the left on gas with unit density and
unity pressure, and adiabatic index γ = 5/3. The simulation has been computed at order
p = 9, and at the displayed time, the shock position should be at x = 0.5, for a mesh
resolution of h = 1.0/21. We show our DG result as a thick blue line, and also give the
viscosity field α(x) as a red line. Clearly, the shock is captured at a fraction of the cell size,
with negligible ringing in the pre- and post-shock regions. This is achieved thanks to the
artificial viscosity, which peaks close to the shock center, augmented by additional weaker
viscosity in the cell ahead of the shock, which would otherwise show significant oscillations
as well. This becomes clear when looking at the solution without artificial viscosity, which
is included as a grey line in the background.

The blue circles in Fig. 2.3 mark the places in which the solution has reached 20 and
80 percent of the height of the shock’s density jump. We can operationally define the
difference in the corresponding x-coordinates as the width ∆xshock with which the shock is
numerically resolved. In Figure 2.4 we show measurements of the shock width for the same
set-up, except for varying the employed order p. We see that the shock width declines with
higher order, accurately following the desired relationship ∆xshock ∝ 1/p, except for the
lowest order p = 1, which deviates towards broader width compared to the general trend.
The importance of this result for the DG approach can hardly be overstated, given that it
has been a nagging problem for decades to reliably capture shocks at sub-cell resolution in
DG without having to throw away much of the higher resolution information. The result
of Figure 2.4 essentially implies that shocks are resolved with the same width for a fixed
number of degrees of freedom, independent of the employed order p. Whereas using higher
order at a fixed number of degrees of freedom is thus not providing much of an advantage
for making shocks thinner compared to using more cells, it at least does not degrade the
solution. But smooth parts of a solution can then still benefit from the use of higher order.

In total our artificial viscosity method uses five parameters, one for each of the three
terms of Eq. (2.43), a further general scaling factor α which is applied to the total viscous
flux as defined in Eq. (2.46), and an onset threshold Sonset. In this way we are able to
individually control the suppression of shocks, wiggles and the decay time of the viscous
field as well as the total magnitude of viscous flux. The default values we adopted for
these parameters throughout this work are α = 1.0, fv = 2.5, fτ = 0.5, fw = 0.2, and

44 2. High-order DG with sub-cell shock capturing on GPUs

10 100
Cell resolution Nc

10 11

10 9

10 7

10 5

10 3

10 1

p=1

p=2

p=3

p=4

p=5
p=6

p=7

p=8

2 4 6 8
Order p

Nc = 16

Nc = 32

Nc = 64

Nc = 128

L1
-n

or
m

Figure 2.5: Convergence of the Yee et al. (1999, 2000) vortex when evolved for t = 10.0 time
units. The left panel shows the error norm in the density fields as a function of spatial grid
resolution, for 8 different orders p of our DG scheme. The measured convergence orders for L1
(colored lines) are close to the expected L1 ∝ N−p

c power-laws (dashed grey lines). The actually
achieved convergence orders (fitted power-laws, shown as dotted lines) are typically even slightly
better than expected, except for the lowest order p = 1. The panel on the right-hand side
shows the same data, but as a function of DG order p, using a log-linear plot. For fixed grid
resolution, the error declines exponentially with the order p of the scheme, highlighting the very
fast improvement of accuracy when the DG order is increased. We note that the imposed periodic
boundaries for the chosen box size of 10 lead to an edge effect which puts the lower boundary of
the L1-norm to ∼ 10−11.

Sonset = 10−4.

2.4.2 Positivity limiter

With our artificial viscosity approach described above we intend to introduce the necessary
numerical viscosity where needed, such that slope limiting becomes obsolete. However, for
further increasing robustness of our code, it is desirable that it also runs stably if a too
weak or no artificial viscosity is specified, or if its strength is perhaps locally not sufficient

2.4 Shock capturing and oscillation control 45

for some reason in a particularly challenging flow situation. To prevent a breakdown of
the time evolution in this case, we consider an optional positivity limiter following Zhang
& Shu (2010) and Schaal et al. (2015). This can be viewed as a kind of last line of
defense against the occurrence of oscillations in a solution that ventures into the regime
of unphysical values, such as negative density or pressure. The latter can happen even
for arbitrarily small timesteps, especially when higher order methods are used where such
robustness problems tend to be more acute.

Finite-element and finite-volume hydrodynamical codes typically employ procedures
such as slope limiters to cope with these situations, this means they locally reduce the order
of the scheme (effectively making it more diffusive) by discarding high-order information.
A similar approach is followed by the positivity limiter described here, which is based on
Schaal et al. (2015), with an important difference in how we select the evaluation points.
We stress however that the positivity limiter is not designed to prevent oscillations, only
to reduce them to a point that still allows the calculation to proceed.

For a given cell, we first determine the average density ρ in the cell, which is simply
given by the 0-th order expansion coefficient for the density field of the given cell, and we
likewise determine the average pressure p of the cell. If either ρ or p is negative, a code
crash is unavoidable.

Otherwise, we define a lowest permissible density ρbottom = 10−6ρ̄. Next, we consider the
full set of quadrature evaluation points {xi} relevant for the cell, which is the union of the
points used for internal volume integrations and the points used for surface integrals on the
outer boundaries of the cell. We then determine the minimum density ρmin occurring for the
field expansions among these points. In case ρmin < ρbottom, which includes the possibility
that ρmin is negative, we calculate a reduction factor f = (ρ̄− ρbottom) / (ρ̄− ρmin) and
replace all higher order weights of the cell with

w′K
l = f wK

l for l > 1. (2.47)

This limits the minimum density appearing in any of the discrete calculations to ρbottom.
By applying the correction factor f to all fields and not just the density, we avoid to
potentially amplify relative fluctuations in the velocity and pressure fields.

We proceed similarly for limiting pressure oscillations, except that here no simple reduc-
tion factor can be computed to ensure that pmin stays above pbottom, due to the non-linear
dependence of the pressure on the energy, momentum and density fields. Instead, we
simply adopt f = 0.5 and repeatedly apply the pressure limiter until pmin ≥ pbottom.

In our test simulations the positivity limiter, as expected, does not trigger for inherently
smooth problems and thus is in principle not needed. However, when starting simulations
with significant discontinuities in the initial conditions, the positivity limiter usually kicks
in at the start for a couple of timesteps, especially for high order simulations, until the
artificial viscosity is able to tame the spurious oscillations, making the positivity limiter
superfluous in the subsequent evolution.

46 2. High-order DG with sub-cell shock capturing on GPUs

2.5 Basic tests

In this section we consider a set of basic tests problems that establish the accuracy of our
new code both for smooth problems, as well as for problems containing strong discontinu-
ities such as shocks or contact discontinuities. We shall begin with a smooth hydrodynamic
problem that is suitable for verifying code accuracy for the inviscid Euler equations. We
then turn to testing the diffusion solver of the code, as an indirect means to test the ability
of our approach to stably and accurately solve the viscous diffusion inherent in the Navier-
Stokes equations. We then consider shocks and the supersonic advection of a discontinuous
top-hat profile to verify the stability of our high-order approach when dealing with such
flow features. Applications to Kelvin-Helmholtz instabilities and driven turbulence are
treated in separate sections.

2.5.1 Isentropic vortex

The isentropic vortex problem of Yee et al. (1999, 2000) is a time-independent smooth
vortex flow, making it a particularly useful test for the accuracy of higher-order methods,
because they should reach their theoretically optimal spatial convergence order if every-
thing is working well (e.g. Schaal et al., 2015; Pakmor et al., 2016). We follow here the
original setup used in Yee et al. (1999) by employing a domain with extension [−5, 5]2 in
2D and an initial state given by:

vx(r) = −βy
2π

exp

(
1− r2

2

)
(2.48)

vy(r) =
βx

2π
exp

(
1− r2

2

)
(2.49)

u(r) = 1− β2

8γπ2
exp

(
1− r2

)
(2.50)

ρ(r) = [(γ − 1)u(r)]
1

γ−1 (2.51)

where we choose γ = 1.4, and β = 5. We evolve the vortex with different DG expansion
order n and different mesh resolutions N2

grid until time t = 10, and then measure the
resulting L1 approximation error of the numerical result for the density field relative to the
analytic solution (which is identical to the initial conditions). In order to make the actual
measurement of L1 independent of discretization effects, we use n+2 Gaussian quadrature
for evaluating the volume integral appearing in Eq. (2.12). Likewise, we use this elevated
order when projecting the initial conditions onto the discrete realization of DG weights of
our mesh.

In Figure 2.5 we show measurements of the L1 error as a function of grid resolution
Ngrid, for different expansion order from p = 1 to p = 8. The left panel shows that the errors
decrease as power laws with spatial resolution for fixed n, closely following the expected
convergence order L1 ∝ N−p

grid in all cases (except for the p = 1 resolution, which exhibits

2.5 Basic tests 47

slightly worse behavior – but this order is never used in practice because of its dismal
convergence properties).

Interestingly, the data also shows that for a given grid resolution, the L1 error goes
down exponentially with the order of the scheme. This is shown in the right panel of
Fig. 2.5, which shows the L1 error in a log-linear plot as a function of order p, so that
exponential convergence manifests in a straight decline. This particularly rapid decline of
the error with p for smooth problems makes it intuitively clear that it can be advantageous
to go to higher resolution if the problem at hand is free of true physical discontinuities.

2.5.2 Diffusion of a Gaussian pulse

To test our procedures for simulating the diffusion part of our equations, in particular
our treatment for estimating surface gradients at interfaces of cells, we first consider the
diffusion of a Gaussian pulse, with otherwise stationary gas properties. For simplicity, we
consider gas at rest and with uniform density and pressure, and we consider the evolution
of a small Gaussian concentration of a passive tracer dye under the action of a constant
diffusivity.

For definiteness, we consider a tracer concentration c(x⃗, t) given by

c(x⃗, t) = cb +
∑
j⃗

cg
2πσ2

exp

(
−(x⃗− j⃗)2

2σ2

)
, with σ2 = 2ηt, (2.52)

placed in a unit domain [−0.5, 0.5]2 in 2D with periodic boundary conditions. Here the
sum over j⃗ effectively accounts for a Cartesian grid of Gaussian pulses spaced one box size
apart in all dimensions to properly take care of the periodic boundary conditions. If we
adopt a fixed diffusivity η and initialize c(x⃗, t) at some time t0, then the analytic solution
of equation (2.40) tells us that eqn. (2.52) will also describe the dye concentration at all
subsequent times t > t0.

For definiteness, we choose η = 1/128, cb = 1/10, cg = 1, and t0 = 1, and examine the
numerically obtained results at time t = t0+3 = 4 by computing their L1 error norm with
respect to the analytic solution. In the top panel of Fig. 2.6, we show the convergence of
this diffusion process as a function of the number of grid cells used, for the first five DG
expansion orders. Reassuringly, the L1 error norm decays as a power-law with the cell
size, in each case with the expected theoretical optimum L1 ∝ N−p

cells. This shows that our
treatment of the surface derivatives is not only stable and robust, but is also able to deliver
high-order convergence.

The bottom panel of Figure 2.6 shows that this also manifests itself in an exponential
convergence as function of DG expansion order when the mesh resolution is kept fixed. For
this result, we adopted Ncells = 8 and went all the way to 10-th order.

While these results do not directly prove that our implementation is able to solve the full
Navier-Stokes equations at high-order, they represent an encouraging prerequisite. Also, we
note that both the version without viscous source terms (i.e. the Euler equations), as well
as the viscous term itself when treated in isolation converges at high order. We will later

48 2. High-order DG with sub-cell shock capturing on GPUs

on compare to a literature result for the Kelvin-Helmholtz instability in a fully viscous
simulation to back up this further and to test a situation where the full Navier-Stokes
equations are used.

2.5.3 Double blast wave

To test the ability of our DG approach to cope with strong shocks, particularly at high
order, we look at the classic double blast wave problem of Woodward & Colella (1984). The
initial conditions are defined in the one-dimensional domain [0, 1] for a gas of unit density
and adiabatic index γ = 7/5, which is initially at rest. By prescribing two regions of very
high pressure, P = 1000 for x < 0.1, and P = 100 for x > 0.9, in an otherwise low-pressure
P = 0.1 background, the time evolution is characterized by the launching of very strong
shock and rarefaction waves that collide and interact in complicated ways. Because of the
difficulty of this test for shock-capturing approaches, it has often been studied in previous
work to examine code accuracy and robustness (e.g. Stone et al., 2008; Springel, 2010).

In order to highlight differences due to different DG orders, we have run deliberately
low-resolution realizations of the problem, using 100 cells of equal size within the region
[0, 1]. We have then evolved the initial conditions with orderp = 2, p = 4, or p = 8.
Furthermore, we examine a run done with four times as many cells carried out at order
p = 2. This latter simulation has the same number of degrees of freedom as the p = 8
simulation, and thus should have a similar effective spatial resolution. For comparison
purposes, we use a simulation carried out with 10000 cells at order p = 2, which can be
taken as a result close to a converged solution. All simulations were run with our artificial
viscosity implementation using our default settings for the method (which do not depend
on order p).

In Figure 2.7, we show the density profile at the time t = 0.038, as done in many previous
works, based on our 100 cell runs. Clearly, the shock fronts and contact discontinuities
of the problem are quite heavily smoothed out for the p = 2 run with 100 cells, due to
the low resolution of this setup. However, the quality of the result can be progressively
improved by going to higher order while keeping the number of cells fixed, as seen by the
results for p = 4 and p = 8. This is in itself important. It shows that even problems
dominated by very strong physical discontinuities are better treated by our code when
higher order is used. The additional information this brings is not eliminated by slope-
limiting in our approach, thanks to the sub-cell shock capturing allowed by our artificial
viscosity technique.

Finally, in Figure 2.8 we compare the p = 7, 100 cell result to the p = 1 result using 400
cells. Recall that the order of the method is p+1 and the total number of degrees of freedom
of the two simulations is therefore the same. We find essentially the same quality of the
results, which is another important finding. This demonstrates that to first order only the
number of degrees of freedom per dimension is important for determining the ability of our
DG code to resolve shocks. Putting degrees of freedom into higher expansion order instead
of into a larger number of cells is thus not problematic for representing shocks. At the same,
it also does not bring a clear advantage for such flow structures. This is because shocks are

2.5 Basic tests 49

10 100
Cell resolution Nc

10 10

10 8

10 6

10 4

10 2

L1
-n

or
m

p=0

p=1

p=2

p=3

p=4

0 2 4 6 8 10
Order p

10 6

10 5

10 4

10 3

10 2

10 1

L1
-n

or
m

Figure 2.6: Convergence of the diffusion process of a Gaussian profile when started from a
smooth state. The top panel shows results for runs carried out at different mesh resolution Nc

and DG expansion order p, as labelled. For fixed expansion order, the L1 error declines as a power
law as a function of the spatial grid resolution, with the slope of the the expected convergence
rate. In the bottom panel, we show the error as a function of order at a fixed grid resolution of
Nc = 8. In this case, the error declines exponentially as a function of the expansion order.

50 2. High-order DG with sub-cell shock capturing on GPUs

0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

Nc=100
p=1
p=3
p=7

x

Figure 2.7: Double blast wave problem at fixed spatial resolution, but for increasing DG order.
This shows clearly that our new artificial viscosity method can cope with strong shocks, and that
adding higher order information is still worthwhile in treating problems with strongly interacting
shocks. For reference, a high resolution result with Nc = 10000, p = 1 is shown as thin black line.

ultimately always broadened to at least the spatial resolution limit. Real discontinuities
therefore only converge with 1st order in spatial resolution, and high-order DG schemes
do not provide a magic solution for this limitation as their effective resolution is set by
the degrees of freedom. Still, as our results show, DG can be straightforwardly applied
to problems with strong shocks using our artificial viscosity formulation. When there is a
mixture of smooth regions and shocks in a flow, the smooth parts can still benefit from the
higher order accuracy while the shocks are rendered with approximately the same accuracy
as done with a second-order method with the same number of degrees of freedom.

It is interesting to compare our results to other results in the literature. First we
compare to an older DG implementation with a moment limiter by Krivodonova (2007). At
low orders their mode by mode limiter performs marginally better than our implementation,
but as it was pointed by Vilar (2019) the mode by mode limiting does not work well for
higher orders. In contrast, our method remains stable and offers steadily improving results
as the order is increased. Vilar (2019) uses a DG implementation with a posteriori limiting
where troubled cells are detected at the end of the time-step and then recomputed using
a finite-volume method and flux reconstruction. Their approach is also able to resolve the

2.5 Basic tests 51

0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

p=7 Nc=100
p=1 Nc=400

x

Figure 2.8: Double blast wave problem at fixed number of degrees of freedom for two different
combinations of order and spatial resolution. This shows that for strong shocks the total number
of degrees of freedom determines accuracy of our solution. For reference, a high resolution result
with Nc = 10000, p = 1 is shown as thin black line.

complicated interactions of shocks and rarefaction waves and yields a steadily improving
result with higher resolution as well. To demonstrate that our DG implementation is
competitive with state-of-art weighted essentially non-oscillatory (WENO) schemes we
compare our results with those reported by Zhao et al. (2017). They simulated this problem
using an 8-th order WENO scheme with 400 grid cells. The WENO implementation
performs here somewhat better at a given number of degrees of freedom compared to
our DG method. Note that the number of degrees of freedom in a WENO scheme is order
independent and therefore our p = 7 run at at 100 cells has twice the number of degrees
of freedom as their 8-th order run with 400 cells, yet their result is closer to the ground
truth than ours.

2.5.4 Advection of a top-hat pulse

Next we consider the problem of super-sonically advecting a strong contact discontinuity in
the form of an overdense square that is in pressure equilibrium with the background. This
tests the ability of our code to cope with a physical discontinuity that is not self-steeping,
unlike a shock, i.e. once the contact discontinuity is (excessively) broadened by numerical

52 2. High-order DG with sub-cell shock capturing on GPUs

0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nc = 64, Ncross = 100
p = 0
p = 1
p = 2
p = 9
p = 9 highvisc

x
0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nc = 10, Ncross = 1
p = 9

x

Figure 2.9: Top panel: Square advection problem at t = 1.0 for different expansion orders p
using 64 grid cells in each case. At this time, the top hat profile has been advected 100 times
through the box. The initial profile, which is the analytic solution in this case, is shown as a
solid grey line in the background. Different numerical results are given for polynomial orders
p = 0, 1, 2, and p = 9, as well as for p = 9 with a higher artificial viscosity setting for stronger
wiggle suppression. Bottom panel: Square advection problem at t = 0.01 for p = 9 using 10 grid
cells. The profile has been advected through the box once. The dotted vertical lines indicate grid
cell borders. Sub-cell shock capturing can be observed.

viscosity, it will invariably retain the acquired thickness. In fact, the advection errors
inherently present in any Eulerian mesh-based numerical method will continue to slowly
broaden a moving contact discontinuity with time, in contrast to Lagrangian methods,
which can cope with this situation in principle free of any error.

A problem that starts with a perfectly sharp initial discontinuity furthermore tests the
ability of our DG approach to cope with a situation where strong oscillatory behaviour
is sourced in the higher order terms, an effect that is especially strong if the motion is
supersonic and the system’s state is characterized by large discontinuities. Here any naive
implementation that does not include any type of limiter or artificial viscosity terms will
invariably crash due to the occurrence of unphysical values for density and/or pressure.
The square advection problem is thus also a sensitive stability test for our high-order
Discontinuous Galerkin method.

In our test we follow the setup-up of Schaal et al. (2015), but see also Hopkins (2015) for
a discussion of results obtained with particle-based Lagrangian codes. In 2D, we consider a
domain [0, 1]2 with pressure P = 2.5 and γ = 7/5. The density inside the central square of
side-length 0.5 is set to ρ = 4, and outside of it to ρ = 1. A velocity of vx = 100 is added to
all the gas, and in the y-direction we add vy = 50. We simulate until t = 1.0, at which point

2.5 Basic tests 53

0.1 1.0

10 2

10 1

100

p=0

p=1

p=2

p=3

p=4
p=5

p=6

p=7
p=8

p=9

t

L1
-n

or
m

Figure 2.10: Time evolution of the L1 error norm for the density in the square advection
problem, calculated for polynomial orders p = 0 to p = 9 (from top to bottom) using 64 grid cells
in each case. The individual measurements for numerical outputs are shown with filled circles,
the lines are power-law fits L1 ∝ tn. Note that not only the absolute error at any given time
declines with increasing order p, also the slopes n become progressively shallower. This means
that the numerical diffusivity of the code becomes smaller for higher order, reducing advection
errors substantially. The measured slopes n for the p = 0 to p = 9 cases are in that sequence:
0.427, 0.335, 0.172, 0.056, 0.054, 0.049, 0.048, 0.046, 0.039, and 0.028. In the p = 0 case, only
the first three points were used to measure the slope.

54 2. High-order DG with sub-cell shock capturing on GPUs

the pulse has been advected 100 times through the periodic box in the x-direction and half
that in the y-direction, and it should have returned exactly to where it started. We have
also run the same test problem generalized to 3D, with an additional velocity of vz = −25
in the z-direction, and as well in 1D, where only the motion in the x-direction is present.
In general, the multi-dimensional tests behave very similarly to the one-dimensional tests,
with the size of the overall error being determined by the largest velocity. For simplicity,
we therefore here restrict ourselves in the following to report explicit results for the 1D
case only.

In Figure 2.9, we show the density profile of the pulse at t = 1.0 when 10 cells per
dimension are used, for different DG expansion orders p. A second-order accurate method,
p = 1, which is equivalent or slightly better than common second-order accurate finite vol-
ume methods (see also Schaal et al., 2015) has already washed out the profile substantially
at this time. Already order p = 2 does substantially better, with p = 3 results starting
to resemble a top hat profile. The 10th order run with p = 9 is able to retain the profile
very sharply, albeit with a small amount of ringing right at the discontinuities. Similarly
to our results for shocks, we thus find that our code is able to make good use of higher
order terms if they are available in the expansion basis. Applying simple limiting schemes
such as minmod in the high-order case is in contrast prone to lose much of the benefit of
high-order when string discontinuities are present in the simulation, simply because these
schemes tend to discard subcell information beyond linear slopes. We also show a p = 9
order run with higher artificial viscosity injection in regions with wiggles by using a lower
Sonset = 10−6. Spurious oscillations get dampened at the cost of a slightly wider shock
front.

Comparing our results in the bottom part of Fig. 2.9 to the DG implementation with
posteriori correction by Vilar (2019, their figs/subsonic. 5 and 7a), we can see that both
methods successfully capture the sharp transition in a sub-cell fashion. For this comparison
it is worth noting that in our case the shock is resolved within one cell, while in the setup
of Vilar (2019) the discontinuity occurs at the border of two cells.

To look more quantitatively at the errors, we show in Figure 2.10 the L1 error norm
of the density field as a function of time, for all orders from p = 0 to p = 9. We see that
the lowest order does very poorly on this problem, due to its large advection errors. In
fact, p = 0 loses the profile completely after about 10 box transitions, yielding a uniform
average density throughout the whole box. When one uses higher order, both the absolute
error at any given time but also the rate of residual growth of the error with time drop
progressively. The latter can be described by a power-law L1 ∝ tn, with a slope n that we
measure to be just 0.028 for p = 9, while it is still 0.335 for a second-order, p = 1 method.
The longer a simulation runs, the larger the accuracy advantage of a high-order method
over lower-order methods thus becomes.

2.6 Kelvin-Helmholtz instabilities 55

Figure 2.11: Time evolution of the dye concentration in a Kelvin-Helmholtz simulation using
64 DG-cells along the x-range [0, 1], at order p = 5, using a viscosity setting of Re = 105 and
∆ρ/ρ0 = 0.

2.6 Kelvin-Helmholtz instabilities

Simulations of the Kelvin-Helmholtz (KH) instability have become a particularly popular
test of hydrodynamical codes (e.g. Price, 2008; Springel, 2010; Junk et al., 2010; Valcke
et al., 2010; Cha et al., 2010; Berlok & Pfrommer, 2019; Tricco, 2019; Borrow et al., 2022),
arguably initiated by an influential comparison of SPH and Eulerian codes by Agertz et al.
(2007), where significant discrepancies in the growth of the perturbations in different nu-
merical methods had been identified. One principal complication, however, is that for initial
conditions with an arbitrarily sharp discontinuity the non-linear outcome is fundamentally
ill-posed at the discretized level (e.g. Robertson et al., 2010; McNally et al., 2012), because
for an ideal gas the shortest wavelengths have the fastest growth rates, so that one can
easily end up with KH billows that are seeded by numerical noise at the resolution limit,
rendering a comparison of the non-linear evolution between different methods unreliable.
Furthermore, in the inviscid case, the non-linear outcome is fundamentally dependent on
the numerical resolution so a converged solution does not even exist.

Lecoanet et al. (2016) have therefore argued that using smooth initial conditions across
the whole domain combined with an explicit physical viscosity is a better choice, because
this allows in principle converged numerical solutions to be reached. We follow their
approach here, and in particular compare to the reference solution determined by Lecoanet
et al. (2016) using the spectral code DEDALUS (Burns et al., 2020) at high resolution.

Specifically, following Lecoanet et al. (2016) we adopt as initial conditions a shear flow

56 2. High-order DG with sub-cell shock capturing on GPUs

Figure 2.12: Dye concentration in Kelvin-Helmholtz simulations, using Re = 105 and ∆ρ/ρ0 =
0, compared at fixed grid resolution but different times t and order p. Each of the nine panels
shows the high-resolution DEDALUS reference result (Lecoanet et al., 2016) in the left half, and
our DG result (at different order p as labelled) in the right half. All DG simulations were done
with Nc = 64 grid cells.

with a smoothed density and velocity transition:

ρ(x, y) = 1 +
∆ρ

ρ0

1

2

[
tanh

(
y − y1
a

)
− tanh

(
y − y2
a

)]
,

vx(x, y) = uflow

[
tanh

(
y − y1
a

)
− tanh

(
y − y2
a

)
− 1

]
,

(2.53)

2.6 Kelvin-Helmholtz instabilities 57

with uflow = 1, a = 0.05, y1 = 0.5 and y2 = 1.5 in a periodic domain with side length
L = 2. This is perturbed with a small velocity component in the y-direction to seed a KH
billow on large scales:

vy(x, y) = A sin(2πx)

[
exp

(
−(y − y1)

2

σ2

)
+ exp

(
−(y − y2)

2

σ2

)]
, (2.54)

where A = 0.01 and σ = 0.2 is chosen. The pressure is initialized everywhere to a constant
value, P (x, y) = P0, with P0 = 10. With these choices, the flow stays in the subsonic
regime with a Mach number M ∼ 0.25.

The free parameter ∆ρ/ρ0 describes the presence or absence of a density “jump” across
the two fluid phases that stream past each other. By adding a passive tracer field

c(x, y) =
1

2

[
tanh

(
y − y2
a

)
− tanh

(
y − y1
a

)
+ 2

]
(2.55)

to the initial conditions, we can study the KH instability also easily for the case of a
vanishing density jump. In fact, we shall focus on the case ∆ρ/ρ0 = 0 here as it is free
of the particularly subtle inner vortex instability in the late non-linear evolution of the
KH problem (Lecoanet et al., 2016), which further complicates the comparison of different
codes.

To realize the above initial conditions we evaluate them within each cell of our chosen
mesh at multiple quadrature points in order to project them onto our DG basis. We
perform this initial projection using a Gauss integration that is 2 orders higher than that
employed in the run itself. This ensures that integration errors from the projection of the
initial conditions onto our DG basis are subdominant compared to the errors incurred by
the time evolution, and are thus unimportant.

We choose identical values for shear viscosity ν, thermal diffusivity χ, and dye diffusivity
η. Below, we mostly focus on discussing results for a Reynolds number Re = 105 for which
we set ν = χ = η = 2uflow/Re = 2 × 10−5. We have also carried out simulations with a
higher Reynolds number Re = 106, obtaining qualitatively similar results, although these
simulations require higher resolution for convergence and thus tend to be more expensive.

2.6.1 Visual comparison

A visual illustration of the time evolution of the dye concentration for a simulation with
Re = 105 and ∆ρ/ρ0 = 0 is shown in Fig. 2.11. In this calculation, 64 DG cells were
used to cover the x-range [0, 1], which is the relevant number to compare to the resolution
information in Lecoanet et al. (2016). Expansion order p = 6 has been used in this
particular run. It is nicely seen that the KH billow seeded in the initial conditions is
amplified in linear evolution until a time t ∼ 1 − 2, then it rolls up multiple times in a
highly non-linear evolution, before finally strong mixing sets in that progressively washes
out the dye concentration throughout the vortex.

58 2. High-order DG with sub-cell shock capturing on GPUs

0 2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

Nc = 64 p=1
Nc = 64 p=3
Lecoanet (2016)

Nc = 64 p=2
Nc = 128 p=7

Time

S

Figure 2.13: Volume integrated dye entropy as a function of time. We show our DG simulation
results with 64 cells using orders p = 1 to p = 3, and a calculation with 128 cells and order
p = 7. All simulations were ran with Re = 105 and a density jump ∆ρ/ρ0 = 0. Already the
run with 64 cells and p = 3 shows an essentially converged result; still better resolutions yield
perfect agreement with the very high resolution results obtained by Lecoanet et al. (2016) with
the DEDALUS and ATHENA codes.

Upon visual inspection, this time evolution compares very closely to that reported by
Lecoanet et al. (2016). In Figure 2.12 we make this comparison more explicit by showing
results obtained for different order p at a number of times ‘face-to-face’ with their reference
simulation. In each of the panels, the left half of the picture contains the DEDALUS result
at resolution 3096 × 6144, while the right half gives our results at 64 × 128 resolution,
but with different orders p. We have deliberately chosen this modest resolution for this
comparison in order to allow some differences to be seen after all. They show up clearly
only at second-order in the top row, while at p = 4 they are only discernible at times
t = 4 and t = 6 as faint discontinuities at the middle of the images, where the result from
DEDALUS meets that from our DG code. Already by p = 5, visual inspection is insufficient
to identify clear differences. We note that for higher DG grid resolutions, this becomes
rapidly extremely difficult already for lower orders.

2.6 Kelvin-Helmholtz instabilities 59

2.6.2 Dye entropy

An interesting more quantitative comparison of our simulations to those of Lecoanet et al.
(2016) can be carried out by considering the evolution of the passive scalar “dye” in some
detail. The technical implementation of this passive tracer is described in Section 2.3.4.

A dye entropy per unit mass can be defined as s = −c ln c, and its volume integral is
the dye entropy

S =

∫
ρs dV, (2.56)

which can only monotonically increase with time. The dye entropy can be viewed as a useful
quantitative measure for the degree of mixing that occurs as a result of the non-linear KH
instability. To guarantee an accurate measurement of the dye entropy we perform the
integral above at two times higher spatial order than employed in the actual simulation
run. We also note than when computing the dye entropy we use our entire simulation
domain (although left and right halves give identical values), and we then normalize to
half of the volume to make our values directly comparable to those of Lecoanet et al.
(2016).

In Figure 2.13, we show measurements of the dye entropy evolution for several of our
runs, compared to the converged results obtained by Lecoanet et al. (2016) consistently
with the DEDALUS and ATHENA codes. We obtain excellent agreement already for 64
cells and order p = 4, corresponding to 256 degrees of freedom per dimension. Our under-
resolved simulations with fewer cells and/or degrees of freedom show an excess of mixing
and higher dye entropy, as expected.

We note that Tricco (2019) have also studied this same reference problem using SPH.
Interestingly, they find that simulations that are carried out at lower resolution than re-
quired for (approximate) convergence show an underestimate of dye mixing, marking an
important qualitative difference to the mesh-based computations. The SPH simulations
also require a substantially higher number of resolution elements to obtain an approxi-
mately converged result. Tricco (2019) get close to achieving this for the dye concentration
by using 2048 particles per dimension, but even then the dye entropy of their result falls
slightly below the converged result at t = 8.

2.6.3 Error norm

Finally, we consider a direct comparison of the dye entropy fields obtained in our sim-
ulations to the DEDALUS reference solution made publicly1 available by Lecoanet et al.
(2016) at a grid resolution of 3096 × 6144 points. To perform a quantitative comparison,
we consider the L2-norm of the difference in the dye fields, defined as

L2 =

[
1

V

∫
(cDG − cLecoanet)

2 dV

]1/2
. (2.57)

1https://doi.org/10.5281/zenodo.5803759

60 2. High-order DG with sub-cell shock capturing on GPUs

2 4 6 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

SPH nx 256
SPH nx 2048
FV nx = 2048

DG p=1
DG p=2
DG p=3
DG p=4

Time

L 2

Figure 2.14: Volume-averaged L2-error norm of the difference in the dye concentration relative
to a high-resolution spectral result as a function of time, for a set of DG simulations carried out
with 64 cells and different expansion order p = 1 to p = 4 (as labelled), for Re = 105 and a density
jump ∆ρ/ρ0 = 0. The DG results are presented with filled circles at the four available output
times of the spectral simulation, the connecting lines are there simply to guide the eye. Similarly,
we include SPH results by Tricco (2019) as triangles at two different resolutions. Finally, the
dashed line refers to the result obtained by Lecoanet et al. (2016) using the finite-volume code
ATHENA with 2048 cells.

In Figure 2.14 we show first the time evolution of the L2-norm, for DG simulations
carried out with 64 cells and orders p = 2 to p = 5. We also include results reported by
Lecoanet et al. (2016) for the ATHENA mesh code at a resolution of 1024 cells, as well
as SPH results by Tricco (2019) at particle resolutions of 256 and 2048, respectively. Our
p = 4 results with 64 cells are already as good as ATHENA with 2048 cells, demonstrating
that far fewer degrees of freedom are sufficient when a high order method is used for
this smooth problem. In contrast, a relatively noisy method such as SPH really struggles
to obtain truly accurate results. Even at the 2048 resolution, the errors are orders of
magnitude larger than for the mesh-based methods, and the sluggish convergence rate of
SPH will make it incredibly costly, if possible at all, to push the error down to the level of
what our DG code, or ATHENA, comparably easily achieve.

In Figure 2.15, we examine the error as a function of the employed DG expansion

2.6 Kelvin-Helmholtz instabilities 61

0 2 4 6 8 10 12

10 6

10 5

10 4

10 3

10 2

10 1

Nc = 64 p=1
Nc = 64 p=3
Nc = 64 p=5
Nc = 64 p=7
Nc = 64 p=9
Nc = 256 p=1
k=-0.53

Nc = 64 p=2
Nc = 64 p=4
Nc = 64 p=6
Nc = 64 p=8
Nc = 128 p=3
k=-0.34

p

L 2

Figure 2.15: Volume-averaged L2 error norm of the dye concentration field as a function of DG
order p for a set of simulations with Re = 105 and a density jump ∆ρ/ρ0 = 0 at t = 4. The circles
show simulations with Nc = 64 cells with progressively increasing order p (the run with p = 8 is
shown with a cross symbol while still being a member of the sequence of simulations with circles).
The crosses highlight three simulations with the same number of degrees of freedom, reached with
different combinations of Nc and p. The dotted line is a fit showing the rapid convergence we
achieve with increasing order p at Nc = 64. The dashed line indicates the convergence rate for
three simulations with equal number of degrees of freedom, as we increase the order. Among the
three runs with an equal number of degrees of freedom, the one with the highest order p achieves
the lowest L2-norm.

62 2. High-order DG with sub-cell shock capturing on GPUs

order. For a fixed number Nc = 64 of cells, we show the L2 error at time t = 4, for
orders p = 1 up to p = 9. It is reassuring that we again find exponential convergence for
this problem, where the error drops approximately linearly with p on this log-linear plot.
This demonstrates that we can fully retain the ability to converge at high-order for our
compressible Navier-Stokes solver, which is additionally augmented with thermal and dye
diffusion processes. We consider this to be a very important validation of our numerical
methodology and actual code implementation.

Another interesting comparison is to consider simulations that have an equal number of
degrees of freedom, but different cell numbers and expansion orders. In the figure (marked
with crosses), we also include results for the three cases Nc = 64/p = 8, Nc = 128/p = 4,
and Nc = 256/p = 2, which all have the same number of degrees of freedom per dimension.
Strictly speaking, the higher order ones have actually slightly less, given that the number
N2D(p) = p(p + 1)/2 of degrees of freedom per cell is slightly less than p2 for p > 1,
see Equation (2.18). Regardless, the run with Nc = 64 clearly has the lowest error. This
confirms once more that for a smooth problem it is typically worthwhile in terms of yielding
the biggest gain in accuracy to invest additional degrees of freedom into higher order rather
than additional cells.

2.7 Driven sub-sonic turbulence

The phenomenon of turbulence describes the notion of an unsteady, random flow that is
characterized by the overlap of swirling motions on a variety of scales (e.g. Pope, 2000). In
three-dimensions, one finds that if fluid motion is excited on a certain scale (the injection
scale) it tends to decay into complex flow features on ever smaller scales, helped by fluid
instabilities such as the Kelvin-Helmholtz instability. Eventually, the vortical motions
become so small that they are eliminated by viscosity on the so-called dissipation scale.
If the injection of kinetic energy on large scales persists and is quasi-stationary, a fully
turbulent state develops which effectively exhibits a transport of energy from the injection
to the dissipation scale. For incompressible isotropic, subsonic turbulence, the statistics
of velocity fluctuations in such a turbulent flow are described by the Kolmogorov velocity
power spectrum, which has a power law shape in the inertial range, and a universal shape
in the dissipative regime.

For astrophysics, turbulence plays a critical role in many environments, including the
intracluster medium, the interstellar medium, or the buoyantly unstable regions in stars.
Numerical simulations need to be able to accurately follow turbulent flows, for example in
order to correctly describe the mixing of different fluid components, or the amplification
of magnetic fields. However, this is often a significant challenge as the scale separation
between injection and dissipation scales in astrophysical settings can be extremely large,
while for three-dimensional simulation codes it is already difficult to resolve even a mod-
erate difference between injection and dissipation scales. In addition, most astrophysical
simulations to date rely on numerical viscosity exclusively instead of including an explicit
physical viscosity, something that can in principal modify the shape of the dissipative part

2.7 Driven sub-sonic turbulence 63

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

h
nu

m
be

r

Injected energy
Dissipated energy
Mach number

Time

En
er

gy
 (a

.u
.)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

h
nu

m
be

r

Figure 2.16: Cumulative injected and dissipated energy, as well as global Mach number, as a
function of time in one of our driven turbulence simulations. The gas is initially at rest, and put
into motion by the driving. Eventually, energy injection is balanced by dissipation in a time-
averaged fashion, and the difference between the cumulative injected and dissipated energy is
reflected in the kinetic energy as measured by the Mach number.

of the turbulent power spectrum, thereby creating turbulent velocity statistics that dif-
fer from the expected universal form because they are directly affected by aspects of the
numerical method.

Of course, the general accuracy of a numerical method is also important for how well
turbulence can be represented. For example, Bauer & Springel (2012) have pointed out
that the comparatively large noise in SPH makes it difficult for this technique to accurately
represent subsonic turbulence. While this can in principle be overcome with sufficiently
high numerical effort, it is clear that methods that have a low degree of numerical viscosity
combined with the ability to accurately account for physical viscosity should be ideal for
turbulence simulations. Our DG approach has these features, and especially in the regime
of subsonic turbulence, where shocks are expected to play only a negligible role, the DG
method should be particularly powerful.

This motivates us to test this idea in this section by considering isothermal, subsonic,
driven turbulence in periodic boxes of unit density. The subsonic state refers to the average
kinetic energy of the flow in units of the soundspeed, as measured through the Mach
number. Instead of directly imposing an isothermal equation of state, we simulate gas

64 2. High-order DG with sub-cell shock capturing on GPUs

Figure 2.17: Two-dimensional slice through a driven, isothermal, subsonic 3D turbulence simu-
lation depicting the velocity amplitude |v| = (v2x + v2y + v2z)

1/2 at t = 20.48, for a simulation with
Nc = 128, p = 4, and Re = 105.

with a normal ideal gas equation of state and reset the temperature every timestep such
that a prescribed sound speed is retained. We have checked that this does not make
a difference for any of our results, but this approach allows us to use our approximate,
fast HLLC Riemann solver instead of having to employ our exact, but slower isothermal
Riemann solver.

2.7.1 Driving

To create the turbulence, we drive fluid motions on large scales. To do this consistently at
high order, we add a source function s(x, t) to the right-hand side of the Euler equations,
both in the momentum equation and as work function s · v in the energy equation. These
source terms have to be integrated with Gaussian quadrature over cell volumes to retain
the high-order discretization.

For setting up the driving field s(x, t), we follow standard techniques as implemented
in Bauer & Springel (2012), which in turn are directly based on Schmidt et al. (2006);
Federrath et al. (2008, 2009). The acceleration field is constructed in Fourier space by
populating modes in the narrow range 2π/L ≤ k ≤ 2 × 2π/L, with amplitudes scaled
to follow ∝ k−5/3 over this range. The phases of the forcing modes are drawn from an
Ornstein–Uhlenbeck process. They are periodically updated whenever a time interval ∆t
has elapsed, while keeping a temporal correlation over a timescale ts with the previous

2.7 Driven sub-sonic turbulence 65

10 1

100

101

102

driving
range

NC = 128 p=1
NC = 128 p=2
NC = 128 p=3
Kolmogorov spectrum

NC = 32 p=3
NC = 64 p=3
NC = 128 p=3
Kolmogorov spectrum

10 100 1000

10 1

100

101

102

NC = 128 p=1
NC = 128 p=2
NC = 128 p=3
Kolmogorov spectrum

10 100 1000

NC = 32 p=3
NC = 64 p=3
NC = 128 p=3
Kolmogorov spectrum

k [h/kpc]

k5/
3

<
E(

k)
>

Figure 2.18: Compensated velocity power spectra of driven turbulence simulations as a function
of wavenumber for varying numbers of cells, and varying spatial order. The panels in the top
row show simulations where the Euler equations were solved, whereas the bottom two panels give
results where the full compressible Navier-Stokes equations with a prescribed physical viscosity
were used. The region marked with a red shade is the driving range.

phases. This effectively yields a smoothly varying, random driving field. Our specific
settings for update frequency, coherence timescale and distribution function for drawing
the driving phases are as in Bauer & Springel (2012, their table 1, left column).

We here also restrict ourselves to include only solenoidal driving, i.e. we project out all
compressive modes in Fourier space by a Helmholtz decomposition. Specifically, if s is the

66 2. High-order DG with sub-cell shock capturing on GPUs

principal acceleration field constructed in the above fashion, we project it as

ŝ(k) =

(
δij −

kikj
k2

)
s(k) (2.58)

in Fourier space to end up with an acceleration field ŝ that is free of compressive modes,
which would only produce a spectrum of additional sound waves in our subsonic case.

2.7.2 Results for subsonic turbulence

All our turbulence simulations are started with gas of uniform density at rest. We monitor
the average kinetic energy, as well as the total cumulative injected kinetic energy and
the total cumulative dissipated energy, allowing us to verify the establishment of a quasi-
stationary state. An example for this is shown in Figure 2.16, where we illustrate the
build-up of the turbulent state in terms of the total energies. There is an initial ramp up
phase of the turbulence until t ∼ 5, during which the Mach number grows nearly linearly to
its final quasi-stationary time-averaged value of M ≃ 0.47. The cumulative injected energy
grows approximately linearly with time, whereas the dissipated energy tracks it with a time
lag, because the initial evolution until t ∼ 2.5 does not yet show any significant dissipation.
The difference between the injected and dissipated energies is the current kinetic energy
of the gas, and thus is effectively given by the Mach number.

In Figure 2.17, we show a visual example of the quasi-stationary turbulent state es-
tablished after some time, here simulated with Nc = 128 cells and order p = 4. The slice
through the magnitude of the velocity field illustrates the chaotic structures characteristic
of turbulence. Even though there are some steep gradients in the velocity field, the velocity
varies smoothly overall, reflecting the absence of strong shock waves in this subsonic case.

To statistically analyse the turbulent state we turn to measuring power spectra of the
velocity field at multiple output times, and then consider a time-average spectrum to reduce
the influence of intermittency. To calculate the final power spectrum of a simulation, we
average over 64 velocity power spectrum measurements over the time interval 5.12 < t <
20.48.

Inviscid treatment of gas

The behaviour of inviscid gas is described by the Euler equations of eqn. (2.2). Because
of the simplicity of this model and the desire to run simulations with as little viscosity
as possible to maximize the intertial range of the turbulence, it is a popular choice for
the study of turbulence. For example, the largest driven turbulence simulation to date by
Federrath et al. (2016) were performed using inviscid gas, as well as many other studies in
the field (e.g. Schmidt et al., 2006; Bauer & Springel, 2012; Bauer et al., 2016; Federrath
et al., 2008, 2010; Price & Federrath, 2010).

In the top two panels of Fig. 2.18, we show such simulations carried out with our DG
code. In all such simulation, the energy injected at large scales follows the Kolmogorov
spectrum and cascades from large to small scales. This part of the spectra is called the

2.7 Driven sub-sonic turbulence 67

inertial range and it follows the k−5/3 Kolmogorov spectrum closely, even though our gas
is compressible and the density fluctuations for our Mach number are not negligible any
more. Note that all our plots are compensated with a k5/3 factor, such that the Kolmogorov
spectrum corresponds to a horizontal line. The extent of the inertial range is primarily
determined by the total number of degrees of freedom in an inviscid simulation. However, as
we transition from the inertial range to the dissipation portion of the spectra, a noticeable
bump can be seen in which the spectrum significantly exceeds the power-law extrapolation
from larger scales. As energy is being transferred from larger to smaller scales, creating ever
smaller eddies, it eventually reaches scales at which the code cannot resolve smaller eddies
any more. This leads to a build-up of an energy excess at this characteristic scale, until
the implicit numerical viscosity terms become strong enough to dissipate away the arriving
energy flux. This effect is commonly known in numerical studies of turbulence and referred
to as the “bottleneck” effect. It should be pointed out that experimental determinations of
turbulent velocity spectra also show a weak form of this effect (see Verma & Donzis, 2007,
and references therein). Küchler et al. (2019) later even measured the relation between
the amplitude of the bump and Rλ of the flow. The problem of numerical simulations of
inviscid gas is however that the shape of the bump is determined by numerical details of
the hydrodynamic code and that it is usually excessively pronounced.

The bottleneck effect cannot be fixed by using higher resolution, or higher order for
that matter. Indeed, in the top two panels of Figure 2.18 we can see that the bottleneck
moves to ever smaller scales with increasing cell number at a fixed spatial order, and
similarly it moves towards smaller scales if we increase the spatial order of our method
at a fixed number of cells. While both avenues of adding further degrees of freedom
successfully widen the inertial range and push the dissipative regime to smaller scales,
they unfortunately cannot eliminate the “bump” in the bottleneck, or address the equally
incorrect detailed shape of the dissipation regime itself. This detailed shape changes slightly
as we vary the order p because the precise way of how numerical dissipation interacts with
the flow is modified by this, while in contrast increasing the number of cells leaves the
shape unchanged, because this just moves the dissipation regime to smaller scales in a
scale-invariant fashion.

The only way around this and to get closer to velocity spectra seen in experimental
studies of turbulence is to solve the full compressible Navier-Stokes equation, where the
dissipative regime is set not by numerics, but by the physical viscosity of the gas itself. If
this viscosity is large enough, it will effectively dissipate energy at scales larger than our
numerical viscosity. We consider this case in the following subsection.

Viscous treatment of gas

We now consider driven turbulence results akin to the simulations just discussed, with the
only difference being that we are now solving the full compressible Navier-Stokes equations
as described in Sec. 2.3.3. In the bottom two panels of Fig. 2.18, we display compensated
velocity power spectra with physical viscosity added. Such full Navier-Stokes simulations
exhibit the proper behaviour of the “bottlenect” effect, as the location and shape of the

68 2. High-order DG with sub-cell shock capturing on GPUs

bump become resolution-independent and do not depend on numerical code details any
more. Such simulations are in the literature referred to as “direct numerical simulations”
or DNS. Our code can achieve DNS for turbulence by either increasing the resolution or
the spatial order, as is evident in the bottom two panels of Fig. 2.18.

To determine if increasing the order of our method or its resolution is more beneficial,
we compare three simulations with approximately the same number of degrees of freedom,
but different resolutions and orders in Fig. 2.19. The orange line shows a run we can
consider a converged DNS result with Nc = 128 and p = 3. A simulation with identical Nc

but lower p in blue fails to fully converge. On the other hand, the green dashed line shows
a simulation with eight times fewer total number of cells, but at a higher spatial order. It
has as many degrees of freedom as the simulation shown in blue, and yet its power spectra
matches that of the simulation shown in orange. We can therefore conclude that running
driven turbulence at higher order is preferable to increasing the cell resolution. Or to put
it another way, if there is a limited number of degrees of freedom that can be represented
due to memory constraints, it is better to “spend” the memory on higher p than Nc. In
the present case, a comparison of the wall-clock time between the high cell resolution and
high order runs shows an about 2x faster calculation time at high order vs using a higher
cell resolution. For even high order, this CPU-time advantage may not persist, but the
memory advantage will. Given that turbulence simulations tend to be memory-bound, this
in itself can already be a significant advantage.

2.8 Code details

2.8.1 Parallelization strategy

Modern supercomputers consist by now of thousands to millions of computing cores, a trend
which is bound to continue. Recently, however, the most significant gains in computational
performance (measured in floating point operations per second – FLOPS) have came from
dedicated accelerator cards. These are most commonly, but not always, graphics processing
units (GPUs) that have been repurposed to do general computational work. Accelerators
achieve a large number of FLOPS by foregoing large, per-core caches and advanced control
circuitry for single compute units, while at the same time they are able to execute large
sets of threads concurrently in a data-parallel fashion.

Current GPU-accelerated computers typically consist of normal, CPU-equipped com-
pute nodes that are outfitted with attached GPU cards. Utilising the power of both, CPUs
and GPUs, efficiently with such heterogeneous machines is challenging. It requires not only
a suitable subdivision of the work, but often also an algorithmic restructuring of the com-
putations such that they can be mapped efficiently onto the massively parallel execution
model of GPUs, as well as prescriptions for data placement and movement between the
separate memory of CPU and GPUs. The problem becomes even harder when multiple
compute nodes with distributed memory, each with their own GPUs, are supposed to work
together on a tightly coupled problem. Efficient and scalable massively parallel codes for

2.8 Code details 69

10 100

100

101

driving
range

NC=128 p=1 Ndof=128
NC=128 p=2 Ndof=256
NC=064 p=3 Ndof=192

k [h/kpc]

k5/
3 <

E(
k)

>

Figure 2.19: Compensated velocity power spectra as a function of wavenumber for a similar
number of degrees of freedom, but varying the spatial order and the number of cells. The total
wall-clock time for the simulation runs 1283|p = 2, 1282|p = 3, and 643|p = 4 on 16 A100 GPUs
were 0.9, 3.9, and 1.8 hours, respectively. We note that one can keep the converged result obtained
with Nc = 128 and p = 3 by going to fewer cells and higher order (the Nc = 64 and p = 4 run),
while still achieving a speed-up.

such machines must decompose the problem into multiple parts, distribute the parts among
the available compute units, and only exchange data between various parts when really
needed.

In the present version of our code TENETGPU2, we address this by an implementation
that can execute a given hydrodynamical problem flexibly either on one or several GPUs,
on one or multiple CPU cores, or a mixture thereof. Independent on how GPUs and CPU-
cores are distributed onto different compute nodes, TENETGPU can in this way make
use of whatever is available, up to extremely powerful systems such as the first exascale
supercomputers that are presently put into service (which are GPU-accelerated, such as
‘Frontier’, ranked the fastest in the world according to the Top500 list released May 30,

2While our code is written from scratch for GPUs, its first version has been heavily inspired by the code
TENET of Schaal et al. (2015), hence we named ours TENETGPU. Source code: https://bitbucket.
org/Migelo/gpu_testbed

https://bitbucket.org/Migelo/gpu_testbed
https://bitbucket.org/Migelo/gpu_testbed

70 2. High-order DG with sub-cell shock capturing on GPUs

2022).

To achieve this flexibility, we split the mesh along the x-axis into different slabs, which
can have different thickness, if desired. Each slab is either computed by a different GPU, or
by one CPU core. The communication between slabs, which is realized with the Message
Passing Interface (MPI), thus needs to happen along the x-dimension between neighboring
slabs only, as all the needed data along the other two axes is locally available for the corre-
sponding slab. The data that is communicated consists of surface states or surface fluxes
at Gauss points needed for integrations over cell areas. For driving the GPU computations,
each GPU requires a separate CPU core as well. For example, if one has a compute node
with 32 cores and 2 GPUs as accelerator cards, a simulation with 2563 mesh cells could be
run by assigning slabs with a thickness of 98 cells to each of the GPUs, while letting the
remaining 30 compute cores each work on slabs with a thickness of 2 cells each. Of course,
this particular mixed execution example would only make sense if each of the GPUs would
be around ∼ 50 times faster than a single CPU core. In practice, the speed difference is
typically considerably larger, so most of the work should typically be assigned to GPUs if
those are available.

We also note that for the moment our code supports only meshes with uniform and
fixed resolution. However, a more general domain decomposition than just a slab-based
decomposition is planned for the future and in principle straightforward. This can, in
particular, remove the obvious scaling limitation of our current approach, where the number
of cells per dimension sets the maximum number of GPUs or CPU cores that could be
employed.

2.8.2 GPU computing implementation

The above parallelization strategy makes it clear that our code is neither a plain CPU
code nor a pure GPU code. Rather, it implements its core compute functionality where
needed twice, in a CPU-only version and in a GPU-only version. Both versions can be
interchangeably used for any given slab taken from the global computational mesh, and they
produce the same results. While this approach evidently requires some extra coding, we
have found that this is actually quite helpful for code validation, as well as for quantifying
the relative performance of CPU and GPU versions. Further, the extra coding effort can be
greatly alleviated by using wherever possible functions that can be compiled and executed
both by GPUs and CPUs based on a single implementation.

For the GPU code, we have used the CUDA programming model available for Nvidia
GPU devices. All our code is written in low level C++, and we presently do not make
use of programming models such as OpenACC, special GPU-accelerated libraries, or new
C++ language features that allow GPU-based execution of standard libraries via execution
policies. Our programming model is thus best described as MPI-parallel C++, accelerated
with CUDA3 when GPUs are available. If no GPUs are available, the code can still be

3We presently use the CUDA toolkit version 11.4, the GNU g++ 11 compiler and the C++17 standard.
For message passing, we prefer the OpenMPI-4 library, for Fourier transforms we use FFTW-3 and for

2.8 Code details 71

compiled into a CPU-only version.

For storing static data such as coefficients of Legendre polynomials or Gaussian quadra-
ture weights, we try to make use of the special constant memory on GPUs, which offers
particularly high performance, also in comparison to the ordinary general memory. Like-
wise, for computing parallel reductions across individual cells, we make use of the special
shared memory. However, the size of the corresponding memory spaces is quite limited,
and varies between different GPU hardware models. This can necessitate adjustments of
the used algorithms at compile time, depending on code settings such as the expansion
order and on which execution platform is used. We address this by defining appropriate
compile-time switches, such that these adjustments are largely automatic.

We note that the data of slabs that are computed with GPUs need to fit completely on
GPUs as we refrain from transmitting the data from the front end host computer to the
GPU on every timestep. Instead, the data remains on the GPU for maximum performance,
and only when a simulation is finished or a temporary result should be output to disk it
is copied back from the GPU to the front end host. Wherever such transfers are needed,
we use pinned memory on the front end to achieve maximum bandwidth between the host
and GPUs. GPUs can access such pinned memory directly, without going through the
host CPU first. The problem sizes we are able to efficiently tackle with GPUs are therefore
limited by the total combined GPU memory available to a run. Modern GPUs typically
have some 10 GBs of main memory, but the detailed amount can vary greatly depending
on the model, and is course a matter of price as well. The communication between adjacent
slabs is organized such that communication and computation can in principle overlap. This
is done such that first the surface states are computed and a corresponding MPI exchange
with the neighbouring slabs is initiated. While this proceeds, the volume integrals for slabs
are carried out by the GPU, and only once this is completed, the work continues with the
received surface data.

Because slabs that are computed on GPUs need to be executed in a massively thread-
parallel fashion with shared-memory algorithms, some changes in the execution logic com-
pared to the effectively serial CPU code are required. For example, to avoid race-conditions
in our GPU code without needing to introduce explicit locks, we process the mesh in a
red-black checkerboard fashion. Finally, we note that we also implemented a scheme that
makes our results binary identical when the number of mesh slabs is changed. This ul-
timately relates to the question about how the wrap-around between the leftmost and
rightmost planes of the mesh in our periodic domain is implemented. Here the order in
which fluxes from the left and right neighboring cells is added to cells needs to be unique
and independent of the location and number of slabs in the box in order to avoid that
different floating point rounding errors can be introduced when the number of slabs is
changed.

random number generation we rely on GSL 2.4.

72 2. High-order DG with sub-cell shock capturing on GPUs

Nc p min. memory need
128 1 512 MB
128 2 1440 MB
128 3 3520 MB
128 5 9856 MB
128 9 37.81 GB
2048 1 2048 GB
2048 2 5760 GB
2048 3 13.75 TB
2048 5 38.5 TB
2048 9 151.3 TB

Table 2.1: Minimum memory need for our DG code when a 3D simulation is assumed with
(Nc)

3 cells and expansion order p, including allowing for an artificial viscosity field. Here double
precision with 8 bytes per floating point number has been assumed.

2.8.3 Memory usage

Before closing this section, it is perhaps worthwhile to discuss the memory need of our DG
simulations, as this is ultimately determining the maximum size of simulations that can
be done for a given number of GPUs. To represent a scalar field such as the density ρ at
order p, we need for every cell a certain number of basis function weights NdD(p), were d is
the number of spatial dimensions, see equations (2.17) and (2.18). When multiplied with
the number of cells, we obtain the number of degrees of freedom, which is identical to the
number of floating point variables needed to stored the full density field. If we write the
total number of cells as (Nc)

d, then the total number of variables that need to be stored
for the DG weight vector is

Nw = (2 + d)(Nc)
dNdD(p). (2.59)

Here we assumed that we simulate the plain Euler equations without viscosity, where we
need (2 + d) conserved fields to describe the flow. If we account for our artificial viscosity
field, which will always be required for problems involving shocks, this number goes up by
one further unit, yielding

Nw = (3 + d)(Nc)
dNdD(p). (2.60)

A passive tracer field, if activated, would add a further unit in the prefactor. In 2D and
3D, a conservative upper bound for NdD(p) is pd, but this is not particularly tight. Already
for p = 2, N3D is lower than p3 by a factor of 2, for p = 4 this grows to a factor 3.2, and
for p = 10 the difference is more than a factor 4.5.

Another significant source of memory need lies in our timestepping algorithm. At
present we use stability preserving Runge-Kutta schemes that require a temporary storage
of the time derivatives of the weights, evaluated at several different points in time, depend-
ing on the order of the Runge-Kutta scheme, which we adjust according to the chosen p.

2.8 Code details 73

128 160 200 256 320 512

100

101

102

Ti
m

e
to

 c
om

pu
te

 o
ne

 ti
m

es
te

p
on

 G
PU

 (s
)

Runs on one node multiple nodes

128 160 200 256 320 512

100

101

102

103

Ti
m

e
to

 c
om

pu
te

 o
ne

 ti
m

es
te

p
on

 C
PU

 (s
)

Runs on one node multiple
nodes

p
5
4
3
2
1
0

NC

Figure 2.20: Weak scaling of TENETGPU for a 3D test problem. The y-axis shows the time
taken to compute one timestep averaged over a small number of timesteps. The left panel shows
results for GPU execution when the problem size N3

c , measured in terms of the number of cells
Nc per dimension, increases in several steps by close to a factor of two from Nc = 128 to Nc = 512
cells, and when between 1 to 64 GPUs are applied to the problem. In contrast, the right hand
panel gives results when the problems are executed on CPUs instead, using from 4 to 256 cores,
again keeping in each case the load per computational element constant. We carry out the
measurements for different expansion order, from p = 0 to p = 5. Ideal weak scaling corresponds
to horizontal lines (dashed). The dotted vertical line marks the transition between using CPU
cores or GPUs associated with a single compute node of our cluster, and the use of multiple nodes
in which MPI data exchange via the Intel Omni-Path takes place. The missing measurement at
p = 5 is due to the large memory required to store communication buffers, which make the
Nc = 512 problem not fit onto 64 GPUs. The missing data points at Nc = 400 are due to 400
not being divisible by 32, as this would lead to uneven distribution of work across the GPUs we
did not consider these runs.

The required temporary storage space Nẇ is thus a multiple of Nw, with a prefactor that
depends on the chosen order p, i.e.

Nẇ = ft(p)Nw. (2.61)

Here ft(p) depends on the number of stages in the Runge-Kutta scheme. Presently, we use
a setup where ft(p) = p for p ≤ 3, and ft(p) = 5 otherwise. The minimum amount of total
storage (in terms of needed floating point numbers) required by the code is thus

Nw = [3 + d+ ft(p)](Nc)
dNdD(p). (2.62)

During execution of our code using multiple GPUs or CPU cores, some temporary
buffer space is furthermore required to hold, in particular, send and receive buffers for

74 2. High-order DG with sub-cell shock capturing on GPUs

1 2 4 8 16 32
N gpu

10 2

10 1

100

101

102

Ti
m

e
co

m
pu

te
 o

ne
 ti

m
es

te
p

(s
)

p
0
2
4

1
3
5

1 2 4 8 16 32 64 128 256
N cpu

10 2

10 1

100

101

102

103

104

Ti
m

e
to

 c
om

pu
te

 o
ne

 ti
m

es
te

p
(s

)

Figure 2.21: Strong scaling of TENETGPU for a 3D test problem of size 2563 cells. The y-axis
shows the average time taken to carry out one timestep. The left panel shows timing results
when between 1 and 16 Nvidia A100 GPUs are used, while the right panel gives results when
between 1 to 256 ordinary Intel Xeon-6138 cores are used. Ideal strong scalability corresponds to
the dashed lines indicated in the panels. Missing data points at high orders and low number of
compute devices are due to the fact that such large problems do not fit on a single GPU / node.

fluid states or fluxes along slab surfaces orthogonal to the x-direction. These tend to be
subdominant, however, compared to the memory requirements to store the weights and
their time derivatives themselves. The latter thus represent the quantities that need to be
primarily examined to decide about the feasibility of a simulation in terms of its memory
needs. When we use the oscillatory sensor for controlling artificial viscosity, some further
temporary storage is needed as well, but since this is again small compared to Nw since
only two scalar quantities per cell are needed, this conclusion is not changed. Note that
our DG approach does not need to store gradient fields for any of the fields, which is
different from many finite volume methods such as, for example, AREPO. Also, use of the
Navier-Stokes solver instead of simulating just the Euler equations does not increase the
primary memory needs in any significant way.

In Table 2.1, we give a few examples of the memory need for a small set of simulation
sizes and simulation orders, which illustrates the memory needs of the code, and which
can be easily scaled to other problem sizes of interest. A single Nvidia A100 GPU with 40
GB of RAM could thus still run a Nc = 128 problem at order p = 9, or a 5123 problem at
quadratic order p = 1. For carrying out a 20483 simulation at p = 1, a cluster offering at
least 52 such devices would already be necessary.

2.9 Code performance 75

2.9 Code performance

In order to fully utilise large parallel supercomputers, a code has to be able to run efficiently
not only on a single core on one CPU, but also on hundreds to thousands of cores on many
CPUs. The degree to which this can accelerate the total runtime of a computation is
encapsulated by the concept of parallel scalability. Similarly, for a GPU-accelerated code
it is of interest to what extent the use of a GPU can speed up a computation compared to
using an ordinary CPU. If more than a single GPU is used, one is furthermore interested
in whether a code can efficiently make simultaneous use of several, perhaps hundreds of
GPUs. In this section we examine these aspects and present results of weak- and strong
scaling tests of our new code.

2.9.1 Weak scaling

Weak scaling performance describes a situation where a set of simulations of increasing
size is run and compared, but where the load per computational unit, be it a CPU core or
a GPU in our case, is kept constant. The time to perform a single timestep should remain
constant in this case, increasing only due to communication-related overhead, through
work-load imbalances, or through other types of parallelization losses, for example if a
code contains residual serial work that scales with the problem size.

Weak scaling results of our code are shown on Fig. 2.20. We run a 3D box with
constant density and pressure using the Navier-Stokes equations, the positivity limiter and
artificial viscosity. This setup is computationally very close to problems we are running
in production. We consider problem sizes of 1283, 1603, 2003, 2563, 3203, and 5123 cells,
forming a sequence that approximately doubles in size, with a factor of 64 enlargement
from the smallest to the largest runs. To compensate for the fact that the problem size does
not exactly double every time we increase the number of cells, we apply a correction factor
to the timing results at each resolution4. Correspondingly, we execute these problems with
one Nvidia A100 GPU for the smallest mesh size, and 64 GPUs for the largest mesh size,
keeping the load per GPU roughly constant. The results are shown in the left panel of
Fig. 2.20. For comparison, we also measure the execution speed if instead every GPU is
replaced by four CPU cores of Intel Xeon-6138 processors. The corresponding results are
shown in the right panel of Fig. 2.20. Finally, we repeat these measurements for different
DG expansion orders p = 0− 5.

The results in the figure show generally good weak scalability, but also highlight some
performance losses for large problem sizes. These arise in part because our domain is
split into slabs and not cubes. Larger problems lead to ever thinner slabs with a larger
surface-to-volume ratio and thus more communication between different slabs. We also
see the influence of enhanced communication on weak scalability when data needs to be

4The current version of the GPU part of the code can only run if Nc and the number of slabs in the
x-direction per rank are even. This and the fact that Nc has to be an integer in any case prevents ideal
doubling of problem size. The correction factors we apply are: 1283: 1.0, 1603: 0.977, 2003: 0.954, 2563:
1.0, 3203: 0.977, and 5123: 1.0.

76 2. High-order DG with sub-cell shock capturing on GPUs

transferred across node boundaries. At higher orders the weak scaling is generally better,
as the compute-to-communicate time ratio shifts strongly to the compute side.

2.9.2 Strong scaling

Strong scaling is a test where one runs a problem of given size on an ever increasing number
of compute units. Contrary to weak scaling, the load per compute unit decreases in this
test, and the time to perform a single timestep should decrease in inverse proportion to
the increasing computational power applied to solve the problem.

We show a strong scaling result in Fig. 2.21, again carried out for a 3D box with
constant density and pressure using the Navier-Stokes equations, the positivity limiter and
artificial viscosity. For definiteness, we use a simulation with 2563 cells, and consider orders
p = 0 to p = 5. The left panel of Figure 2.21 shows the average execution time for a single
step when 1, 2, 4, 8, or 16 Nvidia A100 GPUs are used. In contrast, the right panel of
Figure 2.21 shows the average execution time when CPU cores on a cluster with 2 Intel
Xeon-6138 CPUs are used, with 40 cores per node. We show results from 1 core to 256 cores.
Especially in the latter case, one sees clear limits of strong scalability, as communication
costs become quite large if the problem is decomposed into slabs that are just a single cell
wide. This stresses that there is always a limit for strong scalability, something that is
known as Ahmdahl’s law. By enlarging the problem size, this limit can however usually be
pushed to larger parallel partition sizes. Another major contributor to the degradation that
happens when going from 16 to 32 cores is the saturation of available memory bandwidth
of a single 20-core socket. We verified this using the STREAM benchmark5.

2.9.3 CPU vs GPU benchmark

Another interesting question is how the absolute speed of GPU execution of our code
compares to running it only on ordinary CPU cores. To estimate this speedup we take
the average execution times to compute a timestep from our weak scaling results for both
the GPU and CPU runs and consider their ratio. We do this for the three considered DG
orders p = 2 to p = 4, and for the varying problem sizes and number of compute units
used. Since we had used 4 CPU cores to pair up with 1 GPU, we rescale the results in two
different ways, to either compare the execution performance of four Nvidia A100 GPUs
with 40 Intel Xeon-6138 cores – which is how one of our compute nodes is equipped – or
to the performance of a single GPU compared to one CPU core (which thus gives 10 times
higher values).

The corresponding results are illustrated in Fig. 2.22. The speedup of GPU execution at
the node-level is modest for order p = 2, as there are not enough floating point operations
to fill up the GPUs. At p = 2, 3 we reach the highest node-level speedup observed among
this set of runs, it peaks at just over 8x the CPU speed for large problems. This runs show
better performance because there are a lot of floating points operations to perform at the

5https://github.com/intel/memory-bandwidth-benchmarks

https://github.com/intel/memory-bandwidth-benchmarks

2.9 Code performance 77

128 160 200 256 320 512

0

1

2

3

4

5

6

7

8

9

0

10

20

30

40

50

60

70

80

t C
PU

/t
G

PU
,

1
C

PU
 c

or
e

vs
 1

 G
PU

p
5
4
3
2
1
0

NC

t C
PU

/t
G

PU
, 4

0-
co

re
 C

PU
 n

od
e

vs
 4

-G
PU

 n
od

e

0

10

20

30

40

50

60

70

80

t C
PU

/t
G

PU
,

1
C

PU
 c

or
e

vs
 1

 G
PU

p
5
4
3
2
1
0

Figure 2.22: Ratio of time taken to calculate one timestep of test simulations with the Navier-
Stokes solver on GPUs or CPUs, based on our weak scaling test runs. The left vertical scale
shows results when we normalize them to the speed ratio for using 4 Nvidia A100 GPUs versus
40 Intel Xeon 6138 CPU cores, while the right scale normalizes the speed results to a comparison
of 1 GPU vs 1 CPU core.

same time, and all intermediate results still fit into the GPU’s limited shared memory. Such
shared memory is “on chip” and therefore about ∼100x faster than global memory. Once
the intermediate results become too large to fit into shared memory, the code determines
the maximum number of quadrature points it can process at once and proceeds forward in
batches of n quadrature points. At this point, a single GPU is about 80 times as fast as a
CPU core, but when comparing a fully equipped GPU node to a fully equipped CPU node,
more realistic numbers are in the ballpark of ∼ 8. Note that this speedup metric is based
on the specific hardware configuration of the cluster the authors had access to throughout
this project. While the configuration of four Nvidia A100 GPUs paired with about 40
Intel Xeon cores quite typically reflects the general HPC situation in 2021 and 2022, the
corresponding hardware characteristics are not universal and can be expected to evolve
substantially in future generations of CPU-GPU systems. In any case, the performances
we find are not far away from the ratio of the nominal peak performances of the involved
compute devices for double precision arithmetic (which we have used here throughout),
but this comparison also suggests that there is still some modest room for improvement in
the performance of our GPU implementation.

78 2. High-order DG with sub-cell shock capturing on GPUs

2.10 Summary and Conclusions

In this study, we have described a novel hydrodynamical simulation code which is based
on the mathematical Discontinuous Galerkin approach. The fluid state is expanded in this
method into a set of spatially varying basis functions with time-variable weights, yielding
a separation of the temporal and spatial dependencies. The time evolution of the weights
is obtained in a weak formulation of the underlying partial differential equations of fluid
dynamics.

Our work builds up on the earlier development of a DG code by Schaal et al. (2015) and
Guillet et al. (2019), but extends it into several crucial directions. First of all, we have de-
veloped a novel GPU implementation from scratch, thereby demonstrating the substantial
potential of these acceleration devices for achieving higher computational performance in
astrophysical applications. This potential has already been identified in a few first finite-
volume hydrodynamical GPU codes in astrophysics, but ours is the first one that can carry
out DG calculations of the full Navier-Stokes equations at very high order of p = 10 and
beyond.

Secondly, we have introduced a novel approach to shock-capturing at high order, solving
the long-standing problem that standard slope-limiting techniques do not work well at high
order and tend to discard in troubled cells much of the advantage that is supposed to be
delivered by a high order approach. The latter can only be rescued if the DG method is
able to capture physical discontinuities in a sub-cell fashion. By means of our new source
routines for a time-dependent artificial viscosity field, we have demonstrated very good
shock-capturing ability of our code, with a shock broadening that closely tracks the effective
spatial resolution h/p that we expect from the method based on its number of degrees of
freedom per dimension. While this does not necessarily give high-order approaches an
advantage for representing a shock compared with a lower order method with the same
number of degrees of freedom, at least it also is not worse – using a high-order approach
will however in any case still be beneficial for all smooth parts of a flow. If it performs at
the same time as well as a lower order method in places where there is a shock, this can be
a significant advantage. For contact discontinuities, similar considerations apply, but here
high-order methods have the additional advantage of exhibiting greatly reduced numerical
diffusivity. Contact discontinuities that move over substantial timespans therefore also
benefit from the use of higher order.

Third, we have stressed that the use of physical viscosity is often a key to make problems
well posed and amenable to direct numerical solutions. Here we have introduced a novel
method to define the viscous surface fluxes at cell interfaces. This is based on arriving
at unambiguous derivatives at interfaces by projecting the two piece-wise solutions in
the adjacent cells onto a continuous basis function expansion covering both cells. The
derivatives can then be computed in terms of analytic derivatives of the basis functions. We
have shown that this technique is robust, consumes much less memory and computational
effort than the uplifting technique, and most importantly, it converges at the expected
rapid convergence rate when high order is used.

In fact, in several of our test problems, we could show that our DG code shows for

2.10 Summary and Conclusions 79

smooth problems exponential convergence as a function of expansion order p, while for
fixed order, the L1 error norm declines as a power-law of the spatial resolution, L1 ∝
hp. These favourable properties suggest that it is often worthwhile to invest additional
degrees of freedom into the use of higher expansion order rather than employing more
cells. However, since every DG cell effectively represents a small spectral problem in which
the required solution evaluations and volume integrations are carried out in real space, the
computational cost to advance a single cell also increases rapidly with order p. In practice,
this can make the optimal order quite problem dependent.

With our present implementation we could obtain excellent agreement with the refer-
ence Kelvin-Helmholtz solution computed by Lecoanet et al. (2016) with the spectral code
DEDALUS. Remarkably, we achieved this already with 64 cells and order p = 4, for which
our results are equally as accurate as those obtained with the finite volume code ATHENA

at second order using 2048 cells. This again shows the potential of the DG approach.
Given that in this work we could overcome one of its greatest weaknesses in an accurate,
simple, and robust way – namely the treatment of shocks at high order – we are confident
that the DG method could soon turn into a method of choice in astrophysical applications,
rivaling the traditional finite volume techniques. Our next planned steps to make this a
reality are to add additional physics such as radiative cooling and self-gravity to our code,
and to provide functionality for local refinement and derefinement (h-adaptivity), as well
as to allow for varying the expansion order used in a single cell (p-adaptivity). The high
performance we could realize with our GPU implementation, which outperforms modern
multi-core CPUs by a significant factor, furthermore strengthens the case to push into this
direction, which seems also a necessity to eventually be able to harness the power of the
most powerful supercomputers at the exascale level for unsolved problems in astrophysical
research.

80 2. High-order DG with sub-cell shock capturing on GPUs

Chapter 3

Supersonic turbulence simulations
with GPU-based high-order
Discontinuous Galerkin
hydrodynamics

This work has been submitted to the Monthly Notices of the Royal Astronomical Society.

We investigate the numerical performance of a Discontinuous Galerkin (DG) hydro-
dynamics implementation when applied to the problem of driven, isothermal supersonic
turbulence. While the high-order element-based spectral approach of DG is known to
efficiently produce accurate results for smooth problems (exponential convergence with
expansion order), physical discontinuities in solutions, like shocks, prove challenging and
may significantly diminish DG’s applicability to practical astrophysical applications. We
consider whether DG is able to retain its accuracy and stability for highly supersonic tur-
bulence, characterized by a network of shocks. We find that our new implementation,
which regularizes shocks at sub-cell resolution with artificial viscosity, still performs well
compared to standard second-order schemes for moderately high Mach number turbulence,
provided we also employ an additional projection of the primitive variables onto the poly-
nomial basis to regularize the extrapolated values at cell interfaces. However, the accuracy
advantage of DG diminishes significantly in the highly supersonic regime. Nevertheless, in
turbulence simulations with a wide dynamic range that start with supersonic Mach num-
bers and can resolve the sonic point, the low numerical dissipation of DG schemes still
proves advantageous in the subsonic regime. Our results thus support the practical appli-
cability of DG schemes for demanding astrophysical problems that involve strong shocks
and turbulence, such as star formation in the interstellar medium. We also discuss the sub-
stantial computational cost of DG when going to high order, which needs to be weighted
against the resulting accuracy gain. For problems containing shocks, this favours the use
of comparatively low DG order.

82 3. Supersonic turbulence with high-order DG

3.1 Introduction

Turbulence is a fundamental physical phenomenon that appears universally in fluid flow
(e.g. Launder, 1974; Larson, 1981; Mellor & Yamada, 1982; Kim et al., 1987; Menter, 1994;
Frisch, 1995; Goldreich & Sridhar, 1995; Balbus & Hawley, 1998; Pope, 2000; Brandenburg
& Åke Nordlund, 2011), and thus affects many fields of study, including meteorology, en-
gineering, and, of course, astrophysics. For example, there is turbulence in and around the
Sun, something that will be further characterized by a recently approved NASA Medium-
Class Explorer mission (Klein et al., 2023). In our Galaxy, the interstellar medium (ISM)
is characterized by supersonic turbulent motions that shape the gas distribution and gas
kinematics, and that play a fundamental role in regulating star formation, as first ob-
served by Larson (1981), with a recent review on the topic by Ballesteros-Paredes et al.
(2020). Multiple recent works used ALMA to study the influence of turbulence on star
formation (e.g. Li et al., 2020; Gómez et al., 2021; Bhadari et al., 2023). The ongoing
PASIPHAE (Tassis et al., 2018) and POSSUM (Anderson et al., 2021) surveys will soon
produce a full tomographic map of the galactic magnetic field, shedding new light on the
nature ISM and CGM turbulence.

The observational interest in ISM turbulence is matched only by the vast number of
theoretical investigations. Because turbulence has a commanding influence on the distri-
bution of gas in the ISM, many studies, dating back decades, have looked into this (e.g.
Scalo et al., 1998; Passot & Vázquez-Semadeni, 1998; Ostriker et al., 1999; Klessen, 2000;
Wada & Norman, 2001; Ballesteros-Paredes & Mac Low, 2002; Li et al., 2003; Kravtsov,
2003; Mac Low et al., 2005; Federrath et al., 2009, 2021; Mathew et al., 2023; Rabatin &
Collins, 2023). Using the results from these studies a series of new star formation recipes
were proposed by, e.g., Kretschmer & Teyssier (2020) and Girma & Teyssier (2024), among
others.

Hydrodynamical simulations are a primary tool for the study of such highly non-linear
physics. But numerical effects and resolution limitations strongly influence the quality of
the obtained hydrodynamical results, motivating a constant search for improvements in
numerical schemes and likewise demanding careful validation of new techniques.

In this chapter, we investigate the main properties and effects of high-order Discontin-
uous Galerkin (DG) methods when applied to supersonic turbulence. The DG approach is
a general tool of applied mathematics first used to solve the equations of neuron transport
by Reed & Hill (1973) and then robustly defined in a series of five papers by Cockburn
& Shu (1988, 1989); Cockburn et al. (1989, 1990); Cockburn & Shu (1998). DG has been
gaining traction as a key method for solving partial different equations, such as the Euler
equations of fluid flow used in multiple recent works (Schaal et al., 2015; Velasco Romero
et al., 2018; Guillet et al., 2019).

In a companion study (Cernetic et al., 2023), we have presented an implementation of a
GPU-accelerated, MPI-parallel DG code for solving the Navier-Stokes equations. We could
confirm the high accuracy and computational efficiency of this approach in a variety of test
problems, even showing exponential convergence as a function of the employed spectral
order. We also demonstrated that shocks and physical discontinuities can be handled by

3.1 Introduction 83

an artificial viscosity field at sub-cell resolution. The width of these continuities is however
fundamentally limited by the effective spatial resolution of the scheme, and thus only
linearly improves with higher spatial resolution, as is the case with ordinary finite volume
schemes. This raises the important question whether the advantages of DG are defeated
in problems containing many shocks, a question we seek to address in this chapter.

A physical setting where this perhaps can be answered in a particularly succinct way
is supersonic, isothermal turbulence. The density probability distribution function (PDF)
and the power spectrum of compressible, supersonic turbulence play an important role
especially in theories of star formation. However, super- and hypersonic turbulence are
particularly challenging for Eulerian mesh codes given the extremely high ram pressures,
strong shocks, and huge density contrasts that develop in this regime, in addition to regions
of nearly vanishing density. This makes it hard to capture the inertial range of supersonic
turbulence accurately, even more so than for subsonic turbulence.

In DG methods, the solution inside cells is approximated by smooth, high-order poly-
nomials. It is clear that strong shocks passing through cells may play havoc with such
polynomials, causing strong Gibbs-like oscillations, and worse, potentially trigger so wide
oscillations that unphysical values of fluid variables occur. To address this, we in this chap-
ter introduce a modification of our sub-cell shock capturing scheme – actually simplifying it
considerably compared to our previous approach – by resorting to a classic von Neumann-
Richtmyer viscosity (Von Neumann & Richtmyer, 1950). In addition, we introduce a novel
regularlisation of the primitive variables at cell boundaries, which proves critical to stably
and accurately evolve high Mach number turbulence with DG at high order.

In this chapter, we demonstrate the accuracy of these new implementations by consid-
ering a number of test problems containing strong shocks. We then move on to simulations
of driven, isothermal turbulence. We vary the Mach number systematically from low values
to Mach numbers beyond ten, comparing at each stage DG with a standard, second-order
finite volume method based on piece-wise linear reconstruction. We analyze velocity power
spectra, structure functions and density PDFs in order to examine the advantages brought
by going to DG as compared to classic finite volume (FV) methods with the same number
of cells. We also include an analysis of high dynamic range simulations that can resolve
the sonic point.

The chapter is structured as follows. First, in Section 3.2, we summarize the DG ap-
proach in general and the particular implementation we have developed in our GPU-based
code. Then, in Sections 3.3 and 3.4, we introduce two method improvements in the form
of a new artificial viscosity treatment and a projection method for the primitive fluid vari-
ables. Combined, they allow sustained high mach number turbulence simulations with DG.
In Section 3.5 we detail our implementation of turbulence driving and our measurements of
basic turbulence statistics. Section 3.6 presents our main simulation results in the form of
a systematic suite of turbulence simulations, from the subsonic to the supersonic regimes.
For a specific choice of driving, we extend the dynamic range in Section 3.7 substantially
by going to higher resolution, allowing us to see the transition from supersonic to subsonic
turbulence at the sonic point. We discuss the computational cost of high-order DG in
Section 3.8, and conclude by summarizing our results in Section 3.9.

84 3. Supersonic turbulence with high-order DG

3.2 Discontinuous Galerkin hydrodynamics

The Discontinuous Galerkin (DG) approach is a general high-order finite element method
for numerically solving partial differential equations (e.g. Cockburn & Shu, 1989). Here we
apply it to the Euler and Navier-Stokes equations for numerical hydrodynamics. Consider
the Euler equations

∂u

∂t
+

d∑
α=1

∂fα(u)

∂xα
= 0, (3.1)

with the state vector u storing the conserved variables of each cell, and the sum α running
over their spatial dimensions and fα(u) being the analytical flux matrix. The state vector
consists of

u =

 ρ
ρv
e

 , e = ρu+
1

2
ρv2, (3.2)

with u being the specific internal thermal energy, while ρ denotes the fluid density, v its
velocity, and e its total energy density. To completely describe the gas we also need an
equation of state connecting the pressure p with u and ρ. For this we employ the ideal gas
equation,

p = ρu (γ − 1) , (3.3)

where γ is the ratio of specific heats at constant pressure and constant volume, respectively,
commonly known as the adiabatic index. The flux matrix fα(u), spelled out explicitly in
3D, is given by

f1 =


ρvx

ρvxvx + p
ρvxvy
ρvxvz

(ρe+ p)vx

 , f2 =


ρvy
ρvxvy

ρvyvy + p
ρvyvz

(ρe+ p)vy

 , f3 =


ρvz
ρvxvz
ρvyvz

ρvzvz + p
(ρe+ p)vz

 . (3.4)

The key starting point of the DG method is to approximate the solution of the Euler
equations (3.1) in each cell of interest by projecting the state vector (3.2) onto a set of
orthogonal basis functions for each cell. The resulting solution representation is allowed
to be discontinuous across element boundaries, i.e. each cell has its own projection that is
independent of that in neighbouring cells. The time evolution of the solution in each cell
and the coupling of the solutions across cell boundaries are derived from a weak form of
the underlying differential equations. At cell boundaries, this gives rise to numerical flux
functions that can be computed with the help of Riemann solvers, similarly to how this is
done in finite volume discretizations with Godunov’s method.

3.2 Discontinuous Galerkin hydrodynamics 85

3.2.1 Basis expansion

To be more explicit, we express the state vector uK(x, t) in each cell K as a linear combi-
nation of time-independent, differentiable basis functions ϕK

l (x),

uK(x, t) =
N∑
l=1

wK
l (t)ϕK

l (x), (3.5)

where the wK
l (t) are N time dependent weights. Since the expansion is carried out for

each component of our state vector separately, the weights wK
l are really vector-valued

quantities with 5 different values in 3D for each basis function l. Each of these components
is a single scalar function with support in the cell K.

We decompose our simulation domain into a set of non-overlapping cells of equal size,
and we pick tensor-products of Legendre polynomials as basis, so that each cell has a
smooth polynomial solution within it. The solution may in general jump across the cell
boundaries, and a special treatment is needed for the diffusion equation in this case due to
its second spatial derivatives (and likewise for the Navier Stokes equations), which we will
briefly specify below. In any case, at a given time the global numerical solution is fully
determined by the set of all weights.

In the following, we only consider Cartesian cells of uniform size and a fixed number
of basis functions per cell. It is possible to generalise the DG approach to a variety of
other cell geometries, to spatially vary the cell size (h-refinement), and to modify the
expansion order applied to individual cell’s (so-called p-refinement). For more details on
DG implementations that realize adaptive mesh refinement, see for example Schaal et al.
(2015) and Guillet et al. (2019). For DG methods with local p-refinement see Mossier et al.
(2022) and references within.

3.2.2 Time evolution

To evolve the simulation in time we need to derive a way for evolving the time-dependent
weights from one time-step to another. Starting with the Euler equations (3.1), we multiply
it with a test function, e.g. one of our basis functions ϕl, and integrate over a cellK, yielding∫

K

ϕK
l

∂u

∂t
dx+

∫
K

ϕK
l ∇F dx = 0. (3.6)

Integrating the second term by parts and using Gauss’s theorem we can transform the
integral over the cell into an integral over volume and its outer surfaces, respectively,
yielding the so-called weak formulation of the hyperbolic conservation laws of the Euler
equations: ∫

K

ϕK
l

∂u

∂t
dx+

∫
∂K

ϕK
l F dn−

∫
K

∇ϕK
l F dx = 0, (3.7)

where |K| stands for the volume/area/length of the cell.

86 3. Supersonic turbulence with high-order DG

Using the orthornomality of our Legendre basis,∫
K

ϕK
l (x)ϕ

K
m(x)dx = δl,k|K|, (3.8)

we can simplify the integrals and obtain a differential equation for the time evolution of
the weights:

|K|dw
K
l

dt
=

∫
K

∇ϕK
l F dx−

∫
∂K

ϕK
l F ⋆(u+,u−) dn. (3.9)

Here we also considered that the flux function at the surface of cells is not uniquely defined
if the states that meet at cell interfaces are discontinuous. We address this by replacing
F (u) on cell surfaces with a flux function F ⋆(u+,u−) that depends on both states at the
interface, where u+ is the outwards facing state relative to n (from the neighbouring cell),
and u− is the state just inside the cell. We typically use an approximate Riemann solver
for determining F ⋆, but of course an exact Riemann solvers can be used as well. In the
remainder of this work, we use the Riemann HLLC solver by Toro (2009) as implemented
in the AREPO code (Springel, 2010; Weinberger et al., 2020).

What remains to be done to make an evaluation of Eqn. (3.9) practical is to approxi-
mate both the volume and surface integrals numerically. For the integrations, we employ
Gaussian quadrature that turns the volume and surface integrals into discrete sums. The
number of Gauss points needs to be chosen consistently with the selected expansion order
p (see Schaal et al., 2015) such that the L1-error norm,

L1 =
1

|K|

∫
K

∣∣∣∣∣u(x)−
N∑
l=1

wK
l ϕK

l (x)

∣∣∣∣∣ dV, (3.10)

of the total approximation error declines as L1 ∝ h−(p+1) with spatial resolution h. Simi-
larly, the time integration method of the differential equation for dwK

l /dt needs to be of
sufficiently high order to avoid that time integration errors dominate the total error budget.
We choose Runge-Kutta schemes of appropriate order to achieve this goal. For full details,
in particular for the location of the Gauss points and for the specific enumeration of the
basis functions we have chosen, we refer to our earlier study. There, also other practical
aspects, such as the definition of the weights for given initial conditions, are discussed.

3.2.3 Diffusion operator across cell boundaries

To generalize the above approach to treat the full Navier-Stokes equations (hereafter NS),
or a general diffusion operator ∇ · (ε∇u) that we used in our previous work (Cernetic
et al., 2023) to introduce artificial viscosity for shock capturing, we add the corresponding
dissipative term as a source term to the basic Euler equation, so that it reads, for example,
as

∂u

∂t
+∇ · F = ∇ · (ε∇u), (3.11)

with u being the state vector (3.5) and F the flux matrix (3.4).

3.2 Discontinuous Galerkin hydrodynamics 87

0

1

2

3

4

5

FV-N100 FV-N200 FV-N400

0

1

2

3

4

5

DG-K1-N100 DG-K1-N200 DG-K1-N400

4 2 0 2 4

0

1

2

3

4

5

DG-K3-N100

4 2 0 2 4

DG-K4-N200

4 2 0 2 4

DG-K9-N400

x

Figure 3.1: Shu-Osher shock interaction test problem at time t = 1.8, for different resolutions
and numerical schemes. The initial conditions contain a Mach number M = 3 shock wave that
is incident on a sinusoidal density perturbation. The top row shows the problem when simulated
at different resolutions (as labelled, where the number following ‘N’ is the number of cells over a
domain length of 10 units) with a conventional finite volume (FV) method with piece-wise linear
reconstruction. Even with 400 cells, the short-wavelength wiggles (see the enlarged insets) in
the solution (dotted line) are only poorly resolved. In the middle row, we show equivalent DG
computations at order k = 1, i.e. also with a linear expansion inside cells. The results especially
for the 200 and 400 cell resolutions are drastically improved. In the bottom row, we extend the
results to higher order DG schemes, up to a tenth-order accurate scheme (k = 9), demonstrating
that our implementation can robustly treat strong shocks at high order thanks to our new artificial
viscosity scheme.

88 3. Supersonic turbulence with high-order DG

Figure 3.2: Density field of the Liska & Wendroff (2003) implosion test at time t = 2.5,
simulated with 400 × 400 cells either with DG at order k = 1 (right panel), or with a finite
volume scheme (left panel). Both methods describe the fluid with linear functions inside cells.
The initial conditions contain a region of strongly reduced density and pressure in the lower left
corner. This launches a shock towards the origin which reflects at the reflecting boundaries of
the domain. The interaction of the shocks at the corner and the diagonal produces a jet of dense
gas along the diagonal direction. The test is very sensitive to numerical diffusion, which tends
to limit the length of the diagonal jet. As our results demonstrate, our DG scheme is not only
capable of capturing the strong shock interactions while accurately maintaining the symmetry of
the system, it also shows clearly less numerical diffusion than the equivalent finite volume scheme.

The crucial difference between the normal Euler equations (3.1) and this dissipative
form is the introduction of a second derivative on the right-hand side, which modifies the
character of the problem from being purely hyperbolic to an elliptic type, while retaining
manifest conversation of mass, momentum and energy. This second derivative can not be
readily accommodated in our weight update equation obtained thus far. Recall, the reason
we applied integration by parts and the Gauss’ theorem going from Eq. (3.6) to Eq. (3.7)
was to eliminate the spatial derivative of the fluxes. If we apply the same approach to
∇ · (ε∇u) we are still left with one ∇-operator acting on the fluid state.

Our method for addressing this effectively works by constructing a new continuous
solution of u across all pairs of adjacent cells. To this end we create a “virtual” cell that
overlaps partially or in full with the two constituent cells. By evaluating each cell’s weights
and projecting them onto the common overlapping basis we obtain the basis of the virtual
cell. Note that this projection is a sparse matrix operation in which the new coefficients
are a sum of the old expansion coefficients, making the estimation of second derivatives at
cell interfaces reasonably efficient.

3.2 Discontinuous Galerkin hydrodynamics 89

0

2

4

6

8

10

12

0 2 4 6 8 10 12

25

20

15

10

5

0

p x

0 2 4 6 8 10 12

30

20

10

0

10

20

v x

x

Figure 3.3: Illustration of the occurrence of problematic, extrapolated primitive variable values
at cell boundaries when derived naively from the conservative variables. All panels show a skewer
through a 3D, driven-turbulence simulation of high Mach number with vertical lines delineating
different cells. The upper left panel shows density, the lower left panel shows the momentum
px along the x-direction. The right panel displays the velocity (blue lines) calculated by taking
the ratio of the left panels. This is compared to the velocity calculated with our new method
(described in Sec. 3.4), shown in orange. The latter approach projects the velocity itself on the
polynomial basis, based on the values attained at the internal Gauss points within a cell.

3.2.4 Parallelisation on GPUs

Compared to ordinary finite volume schemes, DG approaches require the evaluation of
polynomial expansions at a variety of Gauss points, and the cell evolution is described not

90 3. Supersonic turbulence with high-order DG

only by cell averages but instead by multi-valued expansion vectors for each fluid variable.
Calculating the time evolution of these high-order weights increases the computational work
needed per cell. At the same time, the coupling to neighboring cells at arbitrary order only
ever involves surface states. In contrast to finite volume codes, where ever deep stencils
are needed for higher and higher order reconstructions. As such the algorithm therefore
features a comparatively high computational intensity with only modest communication
needs in comparison to high-order finite volume approaches. These characteristics are
in principle favourable for reaching a high fraction of the theoretical peak performance on
modern computing hardware which operates in a Single Instruction, Multiple Data (SIMD)
mode. And since much of the work on different cells can be done fully in parallel, it is
attractive to consider GPUs as computational engines for DG methods.

We have therefore developed our DG implementation from the ground up to use GPUs.
Otherwise, CPUs can also be used. Parallelisation over multiple GPUs is achieved through
the message passing interface (MPI), i.e. clusters of compute nodes each equipped with
one or several GPUs can be employed. In principle, our code architecture also allows a
mixed operation of CPUs and GPUs, although this is typically not a preferable strategy
in practice as their relative speeds will in general not be well matched, and our work-load
decomposition between the two is static and fixed at start-up. Full technical details of
our code are described in Section 9 of our previous study (Cernetic et al., 2023). In the
present work we focus primarily on the algorithmic efficiency of DG for problems involving
many shocks and not on absolute code speed. The latter is of course also quite sensitive
to implementation details and the employed computing hardware.

3.3 Viscous shock capturing

One important conceptual feature of DG is that there is no source of viscosity in the
sub-cell evolution, because DG is designed to evolve a smooth, differentiable field of the
conservative variables under the inviscid Euler equations as accurately as possible. By
construction, there is no source of entropy in this evolution. It follows that a true physical
discontinuity, in the form of a shock wave in which the inviscid assumption breaks down,
cannot be represented correctly – because this would require that entropy is produced by
irreversibly converting some of the kinetic energy to heat.

In our previous study we have addressed this by introducing an explicit viscosity field
that was treated with a special high-order DG solver for a diffusive source term added
to the Euler equations (i.e. turning them effectively into a generalized form of the Navier-
Stokes equations). This artificial viscosity field could then be used for the purpose of shock
capturing, besides optionally adding physical viscosity and/or heat diffusion. To steer the
strength of the artificial viscosity, we had introduced both a simple shock sensor based on
the rate of local compression and a ‘wiggle sensor’ that was meant to detect rapid, spurious
oscillations in the flow. Each of them could ramp up the local viscosity, while without such
a sensor trigger the strength of the artificial viscosity was made to decay again to zero on
a short timescale.

3.3 Viscous shock capturing 91

We could demonstrate that this approach allowed a capturing of shock waves at sub-cell
resolution. Still, this scheme is quite complicated and technically involved, as the treatment
of the viscous source function introduces additional computational cost as well as memory
overhead. Another disadvantage is that some of the viscosity was effectively added as
a type of post hoc damage control, namely only when the solution already exhibited a
strongly oscillatory character. The simulation thus first needed to develop a problematic
local character before this is “healed” again by supplying needed dissipation, while it would
evidently be better to prevent the occurrence of local problems in the first place.

We have therefore reconsidered the parametrisation of our artificial viscosity. One
should perhaps first comment that the word “artificial” is really a bit of a misnomer in
this context. While we stick to using this term for consistency with the literature, a better
name would arguably be “required viscosity”, because having no dissipation in a DG-cell
that features a shock is physically plainly wrong. Adding the viscosity that needs to be
there is hence in principal “natural” not artificial.

In any case, we here resort to a version of the well-known von Neumann-Richtmyer
viscosity first described in Von Neumann & Richtmyer (1950), which has been exploited
successfully in the field for decades (Wilkins, 1980), and incidentally has also motivated
the parametrisation of artificial viscosity commonly employed in smoothed particle hydro-
dynamics (Monaghan & Gingold, 1983). The von Neumann-Richtmyer viscosity is based
on the idea to introduce a viscous pressure Π in rapidly compressing parts of the flow
(indicating a region undergoing a shock), and to add it to the ordinary thermal pressure,
so that the sum of the two pressures enters in the usual place in the momentum and energy
equations. The effect of this will be that the compression is slowed, with kinetic energy
being converted to internal energy in an energy-conserving fashion. However, since the ex-
cess pressure Π is only added during the compression phase, the produced heat energy does
not give rise to the same pressure when the gas can expand again, thus the thermal energy
cannot be converted back to kinetic energy in full, unlike for ordinary adiabatic compres-
sion and expansion. Such an irreversible conversion of kinetic energy to heat is exactly
what happens at a shock, and it is a process that is associated with entropy production.

More explicitly, if we label the entropy per unit mass of the gas through an entropic
function, A = p/ργ, then the Euler equations show that the volume density ρA of the
entropic function is a conserved quantity outside of shocks (e.g. Springel & Hernquist,
2002), governed by the additional conservation law

∂

∂t
(ρA) + ∇⃗ · (ρAv) = 0. (3.12)

Adding a viscous pressure in the Euler equations as described above gives rise to

dA

dt
= −1

2

γ − 1

ργ
Π∇ · v, (3.13)

where d/dt is the convective derivative. Hence, a judiciously chosen Π can inject the
required entropy.

92 3. Supersonic turbulence with high-order DG

The basic parametrisation of the von Neumann-Richtmyer viscosity we adopt is the
classic form

Π = αvisc ρ

(
h

p

)2

|∇ · v|2, (3.14)

for ∇·v < 0, otherwise Π is zero. Here h/p gives the expected spatial resolution of our DG
scheme of order p (with h being the cell size). The parameter αvisc is dimensionless and
roughly determines over how many resolution elements a shock is resolved. Typical values
should be in the range αvisc ≃ 1.0− 3.0. Note that the precise value will not be important
for determining the properties of the post-shock flow, as the total dissipation occurring at
a shock is prescribed by the conservation laws, i.e. the effective shock profile auto-adjusts
such that that the correct total dissipation occurs. However, the sharpness of the shock
and the degree to which there may be residual postshock-oscillations still depend on αvisc

and the functional form adopted for Π.
The quadratic dependence on ∇ · v proves effective in selectively adding viscosity in

shocks, while introducing only negligible viscosity in other places of the flow. However, the
above parametrisation can still leave some postshock oscillations downstream of a shock,
essentially because the viscosity shuts off too rapidly after passing through the strongest
rate of compression. To mitigate this, one can augment the viscosity with a small additional
bulk viscosity contribution, of the form

Π = βvisc ρcs

(
h

p

)
|∇ · v|, (3.15)

where cs is the sound speed. As the latter increases in a shock, this preferentially affects
the shock region past the maximum compression rate, and thus helps to damp out post-
shock oscillations. This viscosity parametrisation is however less specific than that with
a quadratic dependence on the velocity divergence, and hence can lead to an unwanted
damping of flow features such as sounds waves when used with a non-negligible value of
βvisc. We thus typically either set βvisc = 0, or choose a value around βvisc ≃ 0.1αvisc.

In most practical applications we have found that αvisc ∼ 2.0 and βvisc ∼ 0.2 provide a
good compromise between stability, narrowness of shocks, and the damping of postshock
oscillations, largely independent of flow type and DG-order p. To protect against the
possibility that the viscous force applied in one timestep could become so large that it
would reverse the compressive motion, we limit Π against a maximum value of

Πmax =
1

2
ρ

(
h

p

)2 |∇ · v|
∆t

, (3.16)

where ∆t is the prescribed timestep at the beginning of the step. A similar type of limiter
is used in the SPH code GADGET (Springel et al., 2001).

In practical terms, we simply add Π to the pressure computed for the fluid state at all
internal Gauss-points used in the volume integration over the flux function, on the grounds
that here the inviscid Euler equations need to be augmented with dissipative terms to
introduce entropy production where necessary. Π is calculated using the quadrature point

3.3 Viscous shock capturing 93

specific ρ and |∇ · v|. In the surface integrals, we do not introduce any artificial viscosity.
This is because the Riemann solver computes a wave solution that injects entropy into the
downstream cell when appropriate, or in other words, here the inviscid Euler equations
are implicitly already supplemented with a means to irreversibly convert kinetic energy to
heat.

Recall for comparison that in finite volume methods there are two ways to produce
entropy. One is through the Riemann problems solved at cell interfaces, and this is present
in equivalent form in our DG approach as just mentioned. The other is through the
implicit averaging step that is done at the end of every timestep, where only the average
state of cells is retained (to be followed by a reconstruction step from scratch the the
beginning of the next step). This averaging step also produces entropy in general, for
example when it mixes gas phases of different temperature that have streamed into a cell.
The Discontinuous Galerkin approach misses this source of entropy (likewise this is absent
in SPH). In many situations this is advantageous, for example in pure advection, while for
shocks it is an impediment – here DG needs to be augmented with a suitable channel to
entropy production, and this is exactly what we achieve with the artificial viscosity.

In order to be able to directly compare our DG implementation with artificial viscosity
shock-capturing to a classic second-order accurate finite volume (FV) scheme, we have
added such a scheme to our code as well. The FV approach can in essence be viewed as
a DG-scheme of order K = 0, i.e. where only cell-averages of the conserved variables are
stored, but which is augmented with a reconstruction step that computes linear slopes of
the fluid variables for each cell (through piece-wise linear reconstruction), raising it again
to the description of the fluid as done by a K = 1 DG-scheme. Then these slopes are used
to compute the interface states left and right of all cell interfaces, which are in turn fed to
the Riemann solver to compute the fluxes between cells. Unlike in a DG scheme of order
K = 1, the slopes are not evolved in time, but rather discarded after every step and then
re-estimated. The FV scheme therefore does not need to compute fluxes inside cells, unlike
the corresponding DG scheme.

For carrying out the piece-wise linear reconstruction in our FV scheme, we estimate
the slopes for the primitive variables in each spatial direction, preventing over- and un-
dershoots with a monotonised central slope limiter. This limiter still has the so-called
total variation diminishing (TVD) property, but it is substantially less diffusive than, for
example, the minmod limiter. Note, however, that the scheme is not guaranteed to be
positivity preserving, so that in simulations with extreme density variations (such as in
supersonic turbulence) we have introduced an additional slope-liming criterion based on
a troubled cell indicator in order to be able to robustly run simulations in all situations.
In particular, if a cell ends up with negative density in a timestep, such a cell is flagged
as a ‘troubled cell’ for this step, meaning that its slope estimate is set to zero, and the
corresponding timestep calculation is simply repeated. Because for flat slopes positivity
can be guaranteed for reasonable timesteps, this then allows the simulation to proceed.

For our general DG implementation, we employ a similar approach to guarantee pos-
itivity and code stability in case challenging local flow situations should arise. We here
verify positivity at all Gauss points also in all intermediate steps of the Runge-Kutta time

94 3. Supersonic turbulence with high-order DG

integration. If negative density or pressure values occurs, we apply a positivity limiter that
in the first instance tries to scale all high-order weights such that the negative values can
be avoided. The computation of the timestep is then repeated. If even a flat expansion
inside a cell is not able to rectify the situation, we reduce the timestep size and try again.

Before closing this section, we consider two illustrative tests of the new artificial vis-
cosity treatment in DG. In Figure 3.1 the well-known Shu-Osher shock tube problem (Shu
& Osher, 1989, their test problem 8). This describes the interaction of a strong incoming
Mach M = 3 shock wave with an adiabatic standing wave in density. The result is a com-
plicated oscillatory pattern in the downstream region of the shock, which is challenging for
numerical schemes to resolve accurately. The initial conditions are given by, for z < −4,
as ρ = 3.857143, vx = 2.629369, and P = 10.33333, and for x ≥ −4 as ρ = 1 + 0.2 sin(5x),
vx = 0 and P = 1, with and adiabatic index γ = 1.4.

The solution domain at t = 1.8 has five zones, from left to right they are the flat initial
section, followed by wide waves, followed by very sharp narrow waves, then a sharp density
jump and finishing with a set of wide sine-like oscillations. At Ncell = 100 the finite volume
scheme with linear reconstruction is able to reliably resolve zone one and five. The same
order DG method shown in the middle row performs slightly better in the wide waves
section and much better resolving the last smooth waves section. Going to k = 3 which
results in a 4-th order method shown in the bottom row, the blue line only has slight
deviations from the analytic solution in zone two where it fails to resolve the sharp edges
of zig-zag waves. Moving on to Ncell = 200, the FV method resolves the wide zig-zag waves
better, while the sharp narrow waves do not improve significantly. On the other hand, the
same zone improves significantly with k = 1 almost fully resolving the narrow waves. At
Ncell = 400, FV has basically fully resolved the zig-zag waves, akin to DG. But it still fails
to resolve zone three with its sharp narrow waves. The same order DG method resolves
the waves much better while also accounting for the very sharp upper bump between the
waves and the shock, albeit with some ringing. Moving on to the last row where we show
the performance of high order DG methods to showcase their stability. It is interesting to
see the ringing at Ncell = 200 with k = 5 at the zig-zag waves and slightly at the narrow
waves. The same ringing is missing at in an odd order method at Ncell = 400 with k = 9.
This highly refined method does not suffer from any ringing, showcasing the robustness of
our DG also in the presence of strong shocks at high order, made possible here by the use
of the artificial viscosity.

As second problem we consider the implosion test of Liska & Wendroff (2003), which
consists of a square-shaped 2D domain of extension [0, 0.3]2 with reflective boundary condi-
tions in which the region x+y < 0.15 has initially density ρ = 0.125 and pressure P = 0.14,
while all the other gas has ρ = 1 and P = 1.0. The gas is at rest in the beginning and has
an adiabatic index of γ = 1.4. When the system evolves in time, the region of strongly
reduced density and pressure in the lower left corner produces a shock towards the origin
which undergoes a double reflection at the domain walls. The interaction of the shocks at
the corner and the diagonal produces a jet of dense gas along the diagonal direction. In
addition, further shocks bounce off at the opposite sides of the domain, and the Richtmyer-
Meshkov instability produces intricate flow features as shocks cross contact discontinuities

3.4 Primitive variables at cell interfaces 95

in the problem.
In Figure 3.2 we show the state at time t = 2.5 for a DG simulation with 400×400 cells

at order k = 1 (i.e. with a linear run of the fluid variables inside cells), and we compare
to an equivalent finite volume simulation with the same number of cells. This test is very
sensitive to numerical diffusion, which tends to limit the length of the diagonal jet. The
comparison highlights that the DG scheme is able to accurately capture the strong shocks
in the system based on the artificial viscosity treatment, and it is does so with noticeable
less numerical diffusivity than the finite volume scheme. In fact, our second-order DG
result appears close to or even better than the third-order finite result based on piece-wise
parabolic reconstruction reported by Stone et al. (2008) for the ATHENA code. We have
also carried out this test with higher order DG schemes and higher cell resolutions (not
shown), which reveal still finer detail in the fluid evolution, as expected.

3.4 Primitive variables at cell interfaces

In simulations of supersonic turbulence, extreme density contrasts and networks of strong,
interacting and overlapping shocks are encountered that put any numerical scheme to
a stress-test in terms of robustness. We already mentioned that this is even the case for
simple finite volume schemes that use piece-wise linear reconstructions, but these problems
become even more acute in high-order approaches such as our DG scheme. Only extremely
diffusive, first order schemes are free of such troubles.

One particular issue we noticed in supersonic turbulence calculations with DG is that
our default approach to compute the primitive variables at the cell interfaces can sometimes
produce extreme velocity values that are basically unphysical. After being processed by
the Riemann solver, the resulting inaccurate fluxes then pollute the solutions inside the
cells. The problem originates in our definition of the velocity field inside cells as ratio
of the polynomial describing the momentum density and the polynomial describing the
density, which both are evolved separately. The ratio of two polynomials is a rational
function that can be well outside the space of our underlying polynomial basis functions.
While the values obtained at the interior Gauss points should be reasonably well behaved,
because these velocities enter the internal flux computation, the extrapolated values at cell
interfaces are much less well constrained. And indeed, in cells that show large excursions
of density and/or momentum density from the mean (perhaps even in opposite directions),
the velocities one obtains at cell interfaces by dividing the two polynomial expansions can
become quite extreme, especially if the density itself approaches very small values.

This is illustrated in Figure 3.3 along a one-dimensional skewer through a low-resolution
DG simulation (323 cells with expansion order K = 2) of Mach number M ≃ 3 turbulence.
The two panels on the left show the mass density and the x-component of the momentum
density, respectively, while the right panel shows their ratio (black), i.e. the inferred vx-
velocity. The cell boundaries are indicated with vertical dotted lines.

It is clearly seen, and expected, that the polynomial solutions inside cells can in general
give rise to discontinuous jumps of the conserved and primitive variables at cell boundaries.

96 3. Supersonic turbulence with high-order DG

These jumps are no problem for the DG scheme, and they preferentially tend to occur when
there are shocks and contact discontinuities. However, what is nevertheless a problem are
the extreme velocity values that can result at cell interfaces when the momentum and
density values are divided by each other, as seen for example in the two cells between
x = 6 and x = 7, and x = 11 and x = 12, respectively.

We have solved this issue by defining reconstructed primitive variable fields in each cell,
simply by computing a polynomial expansion of the primitive variables themselves based
on the values they assume at the internal Gauss points of the cells. The procedure for
obtaining the corresponding coefficients is akin to how one would project initial conditions
onto the polynomial expansion by exploiting the completeness of the basis. The projection
of an arbitrary field f(x) onto the basis functions ϕK

l of a cell can be done by

wK
l =

1

|K|

∫
K

f ϕK
l dV, (3.17)

and the volume integration can be approximated by Gaussian quadrature. We can now set
for f the vector of primitive variable fields expressed through the polynomial expansion
of the conserved variables (i.e. for the velocity this will be a rational function obtained
as the ratio of momentum density and mass density), and use our standard order for
approximating the volume integral with Gaussian quadrature, so that ultimately only the
values of the conservative variables at the Gauss points enter. This will then mean that
we, for example, obtain an approximation for the velocity field by a polynomial of the same
order as used for the conservative variables, and this polynomial goes in principle1 through
the velocity values obtained at the Gauss points, whereas the extrapolated values at the
cell interfaces are now bounded and in general better behaved than obtained for the ratio
of momentum density and mass density at these same points. Note that for the density
field itself, this procedure just returns the same field again, because the density is already
a representable polynomial function at the given order.

When we use these ‘polynomial extrapolations’ for the flux computation at cell inter-
faces we find that this drastically improves the robustness and the quality of results for our
supersonic turbulence and strong shock simulations, whereas for all smooth problems it
does not make any tangible difference. Figure 3.3 illustrates this clearly by also including
the projected velocity field obtained in this fashion. At those cell interfaces where the ratio
of momentum and mass density produced large excursions of the predicted velocities the
extrapolations obtained from the projected velocity field are much more reasonable and
well behaved. Everywhere else there is no substantial difference.

1Since in 2D and 3D we discard in the tensor product of Legendre polynomials cross terms of higher
order than imposed in 1D, this is not exactly true, and the polynomial projection in essence entails some
small level of smoothing.

3.5 Driving and measuring turbulence 97

0 2 4 6 8

0

20

40

60

80

100

120

1

2

3

4

5

6

7

8

M
ac

h
nu

m
be

r

Injected energy
Dissipated energy
Mach number

t / teddy

En
er

gy
 (a

u)

Figure 3.4: Cumulative injected and dissipated energy, as well as global volume averaged Mach
number, as a function of time in one of our driven turbulence simulations. The vertical dashed
line indicates the time at which we start our power spectra measurements. The gas is initially at
rest, and put into motion by the driving. Eventually, energy injection is balanced by dissipation
in a time-averaged fashion, and the difference between the cumulative injected and dissipated
energy is reflected in the kinetic energy as measured by the Mach number.

3.5 Driving and measuring turbulence

In the following, we collect the definitions of some basic quantities to characterize the
statistical properties of turbulence and describe our method for driving turbulence. We
also detail our measurement techniques for turbulence-related quantities that we examine
later on.

3.5.1 Basic statistics of supersonic and subsonic turbulence

The Mach number of turbulence is often defined as

M =
〈
v2/c2s

〉1/2
, (3.18)

which is a volume-weighted quantity that only depends on the velocity field v in units of
the sound-speed cs. It is also possible to define a density-weighted Mach number, given

by Mρ = ⟨ρv2/ρ⟩1/2 /cs, which can also be expressed in terms of the total kinetic energy

98 3. Supersonic turbulence with high-order DG

Figure 3.5: Slices through the turbulent velocity field of simulations with different Mach number,
here M = 0.1, M = 0.4, M = 1.6, and M = 6.4, as labelled. In each case, the color map shows
the velocity amplitude |v| = (v2x + v2y + v2z)

1/2 in units of the corresponding characteristic velocity,
here taken as the Mach number times the sound speed. For definiteness, the DG calculations have
used 2563 cells and k = 2, and each panel shows the state after the same number of eddy turn-
over times after the start of the simulations. The subsonic simulations show a nearly self-similar
behaviour, as expected for this setup. However, as we transition into the supersonic regime, it is
evident that the character of the turbulence qualitatively changes.

3.5 Driving and measuring turbulence 99

10 100 1000

10 7

10 5

10 3

10 1

101

103

Nc=256
M=12.8
M=6.4
M=3.2
M=1.6
M=0.8
M=0.4
M=0.2
M=0.1

k [h/kpc]

E(
k)

Figure 3.6: Velocity power spectra for different turbulent Mach numbers, from the subsonic to
the highly supersonic regime, as labelled. For each driving strength, we compare DG simulations
with order p = 2 (dashed) and p = 3 (dotted) with corresponding finite volume simulation (solid).
The black dashed line indicates the Kolmogorov E(k) ∝ k−5/3 power-law slope, indicative of the
subsonic cascade, whereas the dotted black line shows the Burgers E(k) ∝ k−2 scaling indicative
of supersonic turbulence where dissipation is part of the self-similar cascade. The simulations here
use only 2563 cells and thus have a fairly limited dynamic range that can only resolve a very small
part of the turbulent cascade before entering the dissipative regime. Nevertheless, the sequence
clearly shows a steeping of the slope towards the supersonic regime, marking the transition from
Kolmogorov to Burgers turbulence. Also, the second-order DG runs can resolve the turbulence
to higher wave number than the second-order accurate finite volume scheme, reflecting DG’s
higher accuracy and reduced numerical dissipation. Interestingly, while third-order DG likewise
does better than second-order DG in the subsonic regime, this advantage nearly vanishes in the
supersonic regime.

100 3. Supersonic turbulence with high-order DG

0.001 0.01 0.1

0.01

0.1

1

10

M
(l)

0.35

0.49

Mach number
12.8
6.4
3.2
1.6
0.8
0.4
0.2
0.1

l

Figure 3.7: Velocity structure function for different turbulent Mach numbers, from the subsonic
to the highly supersonic regime, as labelled. For each driving strength, we show DG simulations
with order p = 2. The black dashed lines indicate fits done between 0.1 < l < 0.25 for the
most subsonic and the most highly supersonic runs. The vertical and horizontal dotted grey lines
indicate the super- to subsonic transitions for simulations where it happens. The simulations here
use only 2563 cells and thus have a fairly limited dynamic range that can only resolve a very small
part of the turbulent cascade before entering the dissipative regime. Nevertheless, the sequence
clearly shows a steeping of the slope towards the supersonic regime, marking the transition from
Kolmogorov to Burgers turbulence. In particular, we measure slopes of 0.35 and 0.49 for our two
fits, quite close to the expected scalings of 1/3 and 1/2 for subsonic and supersonic turbulence,
respectively.

of the flow, Mρ = (2Ekin/Mtot)
1/2/cs. While for subsonic turbulence both measures are

equal, M ≃ Mρ, for supersonic turbulence there is a small difference, with Mρ being
generally slightly smaller than M. Pan et al. (2022) cite Mρ ≃ M0.96 for the relation
between the two quantities in the supersonic regime, which matches our own findings very
closely. Note that we consider in this chapter only isothermal flows in which cs is constant,
which simplifies the discussion considerably.

The characteristic velocity, v(l), of the turbulent velocity field is scale-dependent, and
we define this quantity (following Federrath et al., 2021) in terms of the total second-order
velocity structure function, as follows

v(l) =
1

2

[〈
|v(x)− v(x+ l)|2

〉
x,l=|l|

]1/2
, (3.19)

where we average over a large number of random pairs that are separated by a fixed
distance l = |l|. Based on this quantity, we can also define a scale-dependent Mach

3.5 Driving and measuring turbulence 101

10 3 10 2 10 1 100 101
10 2

10 1

100

FV
M

0.8
1.6
3.2
6.4
12.8

10 3 10 2 10 1 100 101

DG-1

10 3 10 2 10 1 100 101
10 2

10 1

100

DG-2

10 2 10 1 100 101

M = 3.2 Nc = 1024
FV
DG-K1

dp
 /

dl
og

Figure 3.8: Density probability distribution functions (PDFs) in different turbulence simula-
tions, carried out for a variety of Mach numbers and different numerical schemes. In the top
two and the bottom left panel, we compare FV, DG at order k = 1, and DG at order k = 2,
as labelled, for a suite of 2563 simulations at Mach numbers from 0.8 to 12.8. All three numer-
ical schemes show a qualitatively very similar behaviour in which the shape of the density PDF
transitions from an approximately normal form in density in the subsonic regime to a log-normal
shape in the supersonic regime (note that we use log10 in the PDF’s vertical normalization), with
a width that grows with Mach number. The bottom right panel compares PDFs at a fixed Mach
number of M = 3.2 for higher resolution runs of 10243 cells carried out with FV and DG-1. Here
we see that the PDFs are not identical after all, but that the DG scheme is able to resolve slightly
higher densities than the corresponding FV scheme.

102 3. Supersonic turbulence with high-order DG

0.10

1.00

M
(l)

10 3 10 2 10 1 100

0.100

0.075

0.050

0.025

0.000

0.025

0.050

lo
g 1

0[M
(l)

/(
l/l

s)
1/

2]

0.490.42

l

Figure 3.9: Velocity structure function (top panel) for a high-resolution DG run with 10243

cells and k = 1, for driven turbulence with Mach number M = 3.2. For pair distances equal to
half the box size (right-most dashed vertical line), the structure function starts out at values close
to the box-averaged Mach number. From this driving scale, it takes until at least three times
smaller scales (marked by the middle dashed vertical line) before a self-similar turbulent cascade
develops. The structure function then first drops relatively steeply towards smaller scales, close
to the expected M(l) ∝ l1/2 scaling for Burgers turbulence. Around the sonic point at ls, where
M(ls) = 1, the scaling flattens as the turbulence transitions into the subsonic regime. Here a
scaling M(l) ∝ l1/3 would be expected if an extended inertial range is present, until a strong
steeping sets in when the dissipation regime is entered. The bottom panel shows the velocity
structure function in a compensated form, where it is multiplied by the factor (l/ls)

−0.5 which
brings out subtle shape difference more clearly. Right when the supersonic turbulence cascade
sets in, we measure a slope of 0.49 for M(l), close to the expectation. Furthermore, there is a
clear break around the sonic scale where the structure function flattens. Out fit in this region
returns a slope of ≃ 0.42, somewhat steeper than expected. However, this is not really surprising
as the still fairly limited dynamic range of this calculation and the influence of the bottleneck
effect are likely causes for this small difference.

3.5 Driving and measuring turbulence 103

number, M(l) = v(l)/cs. On the largest scales, l = L/2, where L is the box size, we
expect the velocities of the pairs to be antiparallel on average, reflecting the corresponding
property of the driving field, so that there M(l) should approach the total Mach number
of the simulation box.

Previous work has demonstrated a scaling of v(l) ∝ lα with α ≃ 1/2 in the supersonic
regime, while this flattens to α = 1/3 in the subsonic regime. If turbulence is supersonic
on the largest length scales, we thus expect the existence of a “sonic scale” ls where the
characteristic velocities have fallen to the sound speed, with M(ls) = 1. Based on the
velocity scaling in the supersonic regime, we expect this roughly for ls = Linj/M2, or in
terms of wave number, for

ks ≃ kinjM2. (3.20)

This estimate assumes that the supersonic cascade is already well developed right at the
injection scale, which is however typically not the case in practice as some range of scales
is required before the self-similarity of the cascade is fully established. In any case, unam-
biguously identifying the sonic point in a turbulence calculation is challenging as it requires
to resolve an inertial range both in the supersonic regime and in the subsonic regime, which
demands very high dynamic range. Federrath et al. (2021) have recently accomplished this
in a simulation of ground-breaking size, using a grid size of 100483 cells. We shall later try
to identify the sonic scale in DG simulations of considerably smaller size.

Besides characterizing the statistics of the velocity field in real-space through structure
functions, it is also common to consider its correlation functions, for example the two-point
correlations ⟨v(x+ l)v(x)⟩x and its Fourier-transform, the velocity power spectrum. The
latter can be defined as

Ev(k) =

(
2π

L

)3

|v̂(k)|2, (3.21)

where v̂ is the Fourier transform of the velocity field. For a statistically isotropic velocity
field, it is customary to define the k-shell averaged energy spectrum E(k) through

E(k) = 4πk2 ⟨Ev(k)⟩ . (3.22)

The total velocity dispersion is then given as the integral over E(k). In particular we have

M =
1

c2s

∫
E(k) dk. (3.23)

In the subsonic regime, we expect the Kolmogorov (1941) scaling E(k) ∝ k−5/3 of the
velocity power spectrum, while in the supersonic regime this is expected to steepen to
Burgers (1948) turbulence with E(k) ∝ k−2.

3.5.2 Driving isothermal turbulence

We drive turbulence following the same approach as in our previous work on subsonic
turbulence (Cernetic et al., 2023) which in turn follows closely the procedure described in

104 3. Supersonic turbulence with high-order DG

many previous works, such as Schmidt et al. (2006); Federrath et al. (2008, 2009, 2010);
Price & Federrath (2010) and Bauer & Springel (2012).

The acceleration field is constructed in Fourier space between the fundamental mode
of the box, kmin = 2π/L, and kmax = 4π/L = 2kmin, with Fourier mode phases chosen
at random from an Ornstein–Uhlenbeck process. As injection scale we can thus define
kinj ≃ kmax, corresponding to half the box size in real space. The Ornstein–Uhlenbeck
process is used because it is temporally homogeneous, meaning its variance and mean
remain constant over time. This type of frequent but correlated driving results it a semi-
stationary turbulent field which simplifies its sampling. The randomly chosen phases are
updated every timestep ∆t, yielding a discrete time evolution update prescription for the
Fourier phases xt, as follows:

xt = f xt−∆t + σ
√

(1− f 2) zn, (3.24)

where f is a decay factor defined as f = exp(−∆t/tc), with tc being the correlation time-
scale. zn is a Gaussian random variable and σ is the variance.

Through the use of a Helmholtz decomposition, the driving can be made either fully
solenoidal, fully compressive, or a combination of the two. To stay consistent with our
previous work on subsonic turbulence (Cernetic et al., 2023) we retain the same purely
solenoidal driving. In the subsonic regime, compression modes created by compressive
driving would result in sound waves propagating through the simulation. Such large-scale
sound waves start coupling to smaller scales only when their non-linear steepening starts to
dominate. For supersonic turbulence, compressive driving has however a more important
influence on the properties of turbulence (e.g Federrath et al., 2008, 2010; Federrath, 2013).

The driving has three free parameters which have to be chosen carefully to quickly es-
tablish a quasi-stationary turbulent field that faithfully represents the statistical properties
of turbulence at the intended Mach number. We can define the eddy turn-over timescale
on the injection scale as

T =
L

2csM
. (3.25)

The correlation timescale tc in the driving prescription is the characteristic lifetime of
Fourier modes of the driving field, and thus should ideally be of the order or slightly
smaller than the eddy turnover time. Based on this we set the correlation timescale as
tc ≃ T . We furthermore set the mode update frequency ∆t to be 100 times smaller than
tc to assure a smooth transition from one mode to the next.

The third parameter in Eqn. (3.24), σ, determines the strength of the turbulent driving,
and as such the achieved Mach number. To get intuition for this parameter, let us consider
the relation between the driving strength and the Mach number in the quasi-stationary
end state. We start with the energy injection rate per unit mass, ϵ, which scales as

ϵ ∝ σ2∆t (3.26)

based on the driving prescription itself. Guided by this expression, we define the strength
of the driving through a parameter

Einj = σ2 tc, (3.27)

3.5 Driving and measuring turbulence 105

and express σ in terms of Einj. Then the achieved energy injection rate scales linearly with
the prescribed parameter Einj as

ϵ ∝ Einj, (3.28)

approximately independently of tc. In the regime of subsonic Kolmogorov turbulence, the
driving creates characteristic velocities that are expected to scale with length scale and
energy injection rate as

v(l) ∝ (ϵl)1/3 , (3.29)

which means that the achieved Mach number varies as

M ∝ ϵ1/3 ∝ E
1/3
inj . (3.30)

For doubling the Mach number, we thus need to triple our driving strength Einj while tc
and ∆t should be halved.

After driving sets in from gas at rest, turbulence tends to become fully developed only
for times t ≥ 2T . We thus analyze turbulence by averaging the results for a large number
of outputs between 3T < t < 8T (as, e.g., in Federrath et al., 2021), which gives us enough
independent samplings of the box to get robust and converged results with respect to
temporal averaging. We note that it also requires some range of scales between the driving
scale and the onset of a fully developed self-similar turbulent cascade. One can therefore
not expect to immediately obtain proper turbulent scaling right at the scale where the
driving ends, but rather needs to go to somewhat smaller scales. For example, Federrath
et al. (2021) conservatively estimate that the turbulent supersonic cascade becomes fully
developed for l < L/8 when the driving is centered at a scale of L/2, which is similar to
our work.

We note that we typically not simulate an isothermal gas directly in this work, but
rather one with an adiabatic index of γ = 1.0001. After every timestep, we restore a
uniform temperature by extracting (or adding) thermal energy as needed. This allows us
to measure the actual energy injection rate by determining the volume integral of the work
the external driving field does on the gas, and a dissipation rate by accounting for the
energy we need to extract to maintain a uniform temperature. The difference between
these time integrated rates is then the instantaneous total turbulent kinetic energy of the
gas if it started from rest. In Figure 3.4 we show an example of the time evolution of the
total Mach number and the cumulative injected and dissipated energies for a turbulence
simulation with Mach number M ≃ 6.4. We see that the cumulative injected energy grows
approximately linearly with time, and this evolution is tracked by the dissipated energy,
albeit with some time delay. Dissipation only starts to set in after about one eddy turnover
time, while it takes until about t ≃ 3 teddy before a quasi-stationary turbulent state has
developed where the Mach number does not grow anymore but rather fluctuates around a
long-term average value.

106 3. Supersonic turbulence with high-order DG

3.5.3 Measuring structure functions and power spectra

To measure velocity structure functions, we define a logarithmic set of radial bins between
half the box size as maximum distance, and the nominal resolution limit, L/[(k+1)N], as
minimum distance, where L is the box size, N is the number of cells per dimension, and k
the DG order. Typically we adopt 100 such bins. Upon each output time, we then draw
for each bin a fixed number (typically 105) of random positions in the box, plus a set of
random directions uniformly distributed over the unit sphere. A second position paired
with each point is then determined relative to the first one based on these directions with
the distance of the corresponding radial bin, taking periodic wrap-around in the simulation
box into account. The velocity values at the two selected coordinates are then evaluated
based on the polynomial expansions of the cells the points fall into. The corresponding
squared velocity differences are summed for each bin, averaged, and converted to the
velocity structure function as defined in Eqn. (3.19). To reduce statistical noise in the
measurement for a single output and obtain a robust statistical characterization of the
quasi-stationary turbulent state, many measurements over an extended time period are
averaged, as described earlier.

For measuring velocity field power spectra, we adopt a Fourier mesh with dimension
Ngrid = N(1 + k). Velocity values at the regular grid positions are then evaluated based
on the polynomial expansions within the corresponding DG cells. We use the MPI-parallel
FFTW library to transform the velocity field to Fourier space, separately for each spatial
velocity dimension. In each case, the corresponding velocity mode powers are summed up
in finely binned k-space shells, so that the average mode power of the 3D velocity field can
be computed. We typically use a fine set of 2000 logarithmically spaced bins in k-space.
These fine shells can later be adaptively rebinned in a plotting script to form larger bins,
as desired. Here we typically rebin such that bins containing just a few modes are accepted
for low-k (otherwise the k-bins would get too wide there), while for high-k the bins can
be made narrower while still having large mode counts and thus good statistics. Following
standard conventions in the field, we present the velocity power spectrum in terms of the
quantity E(k) as defined in Eqn. (3.22).

3.6 Turbulence with DG in the supersonic and sub-

sonic regimes

In this section we want to investigate whether our new DG scheme – with artificial vis-
cosity shock capturing and an auxiliary projection of the primitive variables to deal with
extrapolations to cell boundaries – is capable of robustly and accurately simulating driven
isothermal turbulence well into the supersonic regime. To this end we first consider a set
of simulations where we vary the Mach number systematically but keep otherwise all rel-
evant numerical parameters the same. For definiteness we consider N3 = 1283 cells and
DG orders k = 1 and k = 2, and we compare to matching finite-volume simulations with
piece-wise linear reconstruction as conventional base-line results. Our simulation sequence

3.6 Turbulence with DG in the supersonic and subsonic regimes 107

starts with Mach number M = 0.1, and then we modify the driving strength and the
time correlation parameters of the driving routine systematically to create a sequence of
simulations in which the Mach number doubles in each step, until we reach M ≃ 12.8. We
note that in the subsonic regime, the Mach numbers realized by this procedure accurately
match the expected doubling in each step, while for M significantly above unity, they
start to fall slightly short. This is of course expected at some level due to the stronger
dissipation in the supersonic case already in the driving regime. This could be corrected
for by a correspondingly stronger increase in the driving strength in the supersonic regime,
something that we however found not really necessary yet over the limited range in Mach
numbers explored here. Note that in each case we simulate for the same number of eddy
turn-over times, which however corresponds to different absolute timespans.

In Figure 3.5, we visually illustrate the turbulent velocity field for the M = 0.1, M =
0.4, M = 1.6, and M = 6.4 cases. In each panel, we show the corresponding simulations
after the same number of eddy turn-over times after the start of the simulations. While
the two subsonic simulations look qualitatively very similar, with the most important
difference being the amplitude of the velocity field, the character of the turbulent field
clearly starts to differ as we transition into the supersonic regime. This is accompanied by
the appearance of strong velocity discontinuities (i.e. shocks), and the velocity field begins
to exhibit sharper gradients as well.

This difference also becomes readily apparent in a quantitative way when we consider
the velocity power spectra of this sequence of simulations, which we show in Figure 3.6. We
here compare the simulations with the finite volume approach (solid lines) to corresponding
runs carried out with DG at orders k = 1 (dashed) and k = 2 (dotted). All Mach numbers
from M = 0.1 to M = 12.8 are shown in a single diagram, which is readily possible as
they are offset vertically due to their systematically different velocity amplitudes. The
common plot makes it evident that the shape of the power spectra systematically changes
when transitioning into the supersonic regime. While the inertial range outside the driving
range is small due to the limited dynamic range of these simulations, it is still sufficient
to show a transition from a E(k) ∝ k−5/3 Kolmogorov-spectrum in the subsonic case
to a E(k) ∝ k−2 Burger spectrum in the supersonic regimes. This trend is reproduced
consistently both by the DG simulations and the finite volume scheme.

Another important and interesting trend is seen for the relative difference between the
DG and the FV simulations. At given cell resolution, going from FV to DG significantly
extends the dynamic range over which the turbulence can be followed. This is already the
case for k = 1, and even more so for k = 2, with the latter showing also signs of a more
pronounced bottleneck effect, which reflects the different and generally lower numerical
dissipation in this scheme. The detailed dissipation processes are also the reason why
some of the DG runs show slightly enhanced velocity power again on the smallest scales,
within cells. As this happens deep in the dissipation regime anyway, it is however not of
concern for the practical applicability of the DG method.

Importantly, the improvement in the dynamic range brought about by k = 1 and k = 2
DG in the subsonic regime nearly disappears in the supersonic regime. Clearly, the accuracy
advantages of DG do not play out as effectively any more for supersonic turbulence, if at all.

108 3. Supersonic turbulence with high-order DG

10 4

10 2

100

E(
k)

N1024 DG-K1

10 100 1000

103

k2 E
(k

)

N1024 DG-K1

k

Figure 3.10: Velocity power spectrum of the turbulence simulation shown in Fig. 3.9, i.e. for
a DG run with k = 1 and 10243 cells. The top panel shows E(k) directly, whereas the bottom
panel displays the same data again, but this time compensated by a factor k2 to compress the
vertical dynamic range and highlight subtle changes in shape. The dashed vertical line marks
the end of our driving range, which can be discerned as a region of elevated power. At slightly
larger k than this injection scale, a region with a fully developed supersonic turbulent cascade
develops. This is indicated by the dashed horizontal line in the bottom panel, which has the
E(k) ∝ k−2 slope of Burgers turbulence. At still smaller scales, the spectrum becomes flatter
again, close to the E(k) ∝ k−5/3 expected for Kolmogorov turbulence. We have indicated this
slope as an inclinded dashed line in the bottom panel, with the dotted line marking the scale
where extrapolations of the two power laws intersect. This intersection is reasonably close to the
sonic scale inferred from the velocity structure function. We also note that there is a prominent
bottleneck effect (as expected) with a small shoulder in the power spectrum before E(k) drops
rapidly in the dissipative regime.

3.6 Turbulence with DG in the supersonic and subsonic regimes 109

10 3 10 2 10 1 100

0.100

0.075

0.050

0.025

0.000

0.025

0.050

N1024 DG-K1
N512 DG-K1

N1024 - FV
N512 - FV

l

lo
g 1

0[M
(l)

/(
l/l

s)
1/

2]

Figure 3.11: Convergence of the velocity structure function (shown in compensated form as
in the bottom panel of Fig. 3.9) between calculations that use 5123 or 10243 cells, and either
finite volume (FV) or DG with order k = 1, respectively, as labelled. The sonic scale used for
rescaling the plots is the same for all lines and corresponds to the value measured for the DG
run at the 10243 resolution. Interestingly, the 5123 simulation with DG does nearly as well as
the 10243 run with FV, but both show at most a very feeble hint for a transition between the
supersonic and subsonic regimes of turbulence. This is because of the closeness of the dissipation
regime at this resolution, which already affects the region around the sonic scale strongly. For the
5123 run with FV, the dynamic range is clearly insufficient to resolve the region around the sonic
point properly. In contrast, the high-resolution DG run is already able to distinguish different
slopes of the cascade in the supersonic and supersonic regimes, although it is clear that also this
calculation can still be expected to be influenced by resolution effects in the transition region.

110 3. Supersonic turbulence with high-order DG

Of course, this does not come as a complete surprise in light of our earlier discussion about
the challenges involved in capturing true discontinuities with high-order DG methods. In
fact, based on this we can already view it as a success that DG can robustly treat supersonic
turbulence after all, with an accuracy that is at least comparable or even slightly better
than that of a finite volume method. Since any supersonic cascade will eventually transition
into the subsonic regime again, this is ultimately encouraging, because it means that in
simulations that offer sufficiently high dynamic range, the advantages of DG can still
become important again in the subsonic regime. We will explicitly return on this point in
Section 3.7.

Besides considering the velocity statistics, it is also interesting to look for systematic
differences in the density PDF, and in the velocity structure function. In Figure 3.8, we
show density probability distribution functions obtained by considering the density fields
in different high-resolution 2D slices through the simulation boxes at different times, and
then averaging the results. We compute the histograms in terms of logarithmic density,
i.e. a strictly parabolic shape of our measured density PDF would therefore correspond to
a lognormal distribution.

3.7 Simulating the super- to subsonic transition

As we have just seen, DG simulations offer comparatively little accuracy gains in the
supersonic regime of turbulence, but they can yield considerably more accurate results in
the subsonic regime by moving the numerical dissipation scale in smooth flows to smaller
scales. This raises the question whether DG can still be advantageous in a simulation of
supersonic turbulence when it has enough dynamic range to transition into the subsonic
regime. Then we may expect that perhaps both, the transition around the so-called sonic
point, as well as the subsonic part of the turbulent cascade, are represented better by the
DG approach compared with traditional FV methods.

To examine this question we consider two reasonably high resolution simulations of
supersonic M = 3.2 turbulence, carried out with 10243 cells and the k = 1 DG order, and
with a piece-wise linear finite volume approach, for comparison. This resolution is a far
cry from the large 100483 simulation recently used by Federrath et al. (2021) to resolve the
location of the sonic point. Since we employ a somewhat smaller Mach number to begin
with, we should in principle have, however, a chance to see something if the numerical
technique is less dissipative than standard finite volume approaches, given that according
to Eqn. (3.20) the sonic point should be for M = 3.2 only about a factor of 10 away from
the injection scale.

In Figure 3.9 we show the velocity structure function of the k = 1 DG simulation, with
the top panel directly showing the measured Mach number as a function of scale as defined
in Eqn. (3.19), while the bottom panel shows the structure function in a compensated way
by dividing it with a l1/2 dependence, which is the expected scaling in the regime of a
self-similar supersonic turbulence cascade. Thanks to a large compression of the vertical
scale, this compensated version brings out a number of important details in the shape of

3.7 Simulating the super- to subsonic transition 111

Figure 3.12: Visualization of the turbulence for FV (top panel) and DG (bottom panel) simu-
lations at Mach number M = 3.2. We use a two-dimensional color map, where the logarithm of
density is mapped to brightness while the logarithm of the gas velocity is mapped to color hue, as
indicated. The fields are shown at the same time, using 10243 cells. Superficially the images look
quite similar, but closer inspection reveals a richer and more pronounced small-scale structure in
the DG simulation.

112 3. Supersonic turbulence with high-order DG

the structure function. In particular, on large scales, we see a settling region that ranges
between the driving scale at L/2 down to about ∼ L/12. Only at still smaller scales, the
supersonic cascade has fully developed. Interestingly, this then follows quite accurately a
v(l) ∝ l0.5 slope until there is a quite sudden change in slope to v(l) ∝ l0.4, which is the
expected slope in the region of the subsonic cascade. We thus think that this clear kink
in the structure function identifies the sonic point – the supersonic to subsonic transition.
We have also identified a scale ls in the structure function where v(ls) = cs. This scale lies
close to the place where we detect the change in slope in the structure function, but it is
not identical to it in our results. Towards still smaller scales, the compensated structure
function eventually reaches a maximum after following the v(l) ∝ l0.4 inertial range for a
while, and then declines rapidly due to a steeping of the slope.

A similar behaviour can be inferred from the velocity power spectrum, which we show
in Figure 3.10 for the same simulation. Again, we show in the top panel the plain power
spectrum, while in the bottom panel we plot it in a compensated form where the power
spectum has been multiplied with a k2 factor. The latter is the expected slope for Burgers
turbulence in a supersonic cascade. Indeed, our results for the velocity power spectrum
accurately follow this slope over a small dynamic range beginning slightly out of the driving
region, once the turbulence had a chance to fully develop in a self-similar fashion. Even-
tually the power spectrum flattens to the k−5/3 slope of Kolmogorov turbulence, which
manifests as a rise in the componsated version of the plot. There is thus a clear kink in the
spectrum which we can again interpret as a manifestation of the sonic point. The subsonic
intertial range is however not very large in our simulation due to its limited numerical
resolution, and thus the bottleneck effect from the onset of the dissipation range influences
a good part of it. Towards still smaller scales, the power spectrum eventually transitions
fully into the dissipation due to the numerical viscosity of the discretization method.

It is interesting to compare the shape of the structure function between DG and a finite
volume scheme, something we present in Figure 3.11. There we show both the k = 1 DG
simulation as well as the corresponding FV simulation for 10243 cells in the same plot.
In addition, we also include two further simulations computed instead with a lower 5123

resolution. Interestingly, while the FV simulation with 10243 cells also shows a kink in the
structure function where the sonic point is expected, the supersonic slope is flatter than
expected, and the feature appears somewhat washed out compared to the k = 1 DG result.
In addition, the transition to the dissipation regime appears considerably earlier. It is thus
evident that the DG approach represents the sonic point much more accurately than the
FV scheme, and it is also much less diffusive on small scales, allowing it to capture a larger
part of the subsonic turbulent cascade.

Remarkably, the 5123 result for k = 1 DG is nearly as good as the 10243 FV result,
and it likewise shows evidence for the sonic point, albeit not as cleanly as the 10243 DG
result. In contrast, the 5123 finite volume result fails to yield any trace of the sonic point.
Apparently it is simply already too diffusive. Our comparison thus confirms that DG can
offer advantages even in simulations of supersonic turbulence, provided the resolution is
high enough that the transiton to subsonic turbulence can be resolved and the associated
subsonic cascade is of interest for the analysis of the simulation.

3.8 Discussion on computational cost 113

Finally, it is also instructive to visually verify the better small-scale resolving power of
the DG approach in maps of the turbulence field. In Figure 3.12, we compare visualizations
of the turbulent density field in slices through the box of the 10243 DG and FV runs. We
show the fields at the same time, with the logarithm of the density encoded as pixel
brightness while the logarithm of the gas velocity is mapped to color hue. Superficially
the images look quite similar, but closer inspection reveals a richer and more pronounced
small scale structure in the DG simulation. This confirms our earlier quantitative findings
for the velocity structure function and the velocity power spectrum, and reflects the better
resolving power of the DG approach for the subsonic part of the turbulent cascade. There
is thus no question that DG simulations of supersonic turbulence deliver higher accuracy
than FV simulations for an equal number of cells. But the relative computational cost of
the methods is also an important aspect that needs to be considered. We will turn to this
question in the next section.

3.8 Discussion on computational cost

Let us now discuss the accuracy and computational cost of DG. We have shown that DG
is applicable to supersonic turbulence, and that it is also fairly accurate in this regime,
but apparently not significantly more so than a finite volume technique. But is it then
worthwhile to go to high order given the computational cost of DG? Unlike for smooth
problems, no exponential convergence can be expected in the supersonic regime, instead the
width of shocks is expected to decline only as the effective spatial resolution of the scheme.
Presumably this means that low-order methods are computationally more efficient if shocks
play a prominent role for the evolution of the simulated system. To make this aspect more
specific, we discuss in the following the expected computational cost of the DG method as a
function of the employed order. This should shed some light on where potential sweetspots
lie for different types of simulations.

For definiteness, we consider simulations carried out with N3 cells at DG order k, using
ideal hydrodynamics.This means we use bk = 1

6
(k + 1)(k + 2)(k + 3) Legendre coefficients

to describe each of the f = 5 five conserved fields (mass density, three spatial momentum
densities, and energy density). The total number of degrees of freedom (DOF) is thus
DDG = fbkN

3, which is also the storage footprint of the scheme and equals the total
length of the vector of weights. Note that the information content that can be captured
by any simulation is arguably best given by this quantity, since the value of each degree of
freedom is in principle independent of all others.

For one evaluation of the time derivative of the weights, we need to carry out an internal
integration over the fluxes, as well as a flux computation over the surfaces of the cells, with
the latter involving a Riemann solver. To carry out the volume integrals over the DG cells
we need vk = (k + 1)3 internal Gauss points each, while integrating the fluxes over each
face of a cell requires sk = (k + 1)2 Gauss points.

Let us first consider the volume integrations and try to estimate the number of floating
point operations required for this. We shall treat them all as equivalent in cost (disregarding

114 3. Supersonic turbulence with high-order DG

that divisions are more expensive), for simplicity, and will be content with an approximate
count. Optimized code implementations may perhaps reach a slightly smaller operation
count, for example through clever reuse of partial results, but should not be able to change
the overall scaling. At each internal Gauss point, we first of all need an evolution of the
field expansion to get the conserved variables of the fluid at the corresponding coordinate,
which requires of order 2 bk f floating point operations. Conversion of the conserved states
to the full hydrodynamical flux then requires of order cF ≃ 15 operations at each Gauss
point. This flux is then contracted with spatial derivatives of the Legengre basis functions
to give a contribution to the time derivative of the weights, the cost of this is about
6 fbk per Gauss point. Multiplying each of these partial contributions with a Gaussian
quadrature weight and then adding them up to yield the overall contribution to the time
derivative of the weights gives another 2 fbk operations per Gauss point. Summing this
up for all internal Gauss points, we thus need about vk(10 bk f + cF) operations for the
internal volume integration.

For the surface fluxes, we need 6 sk Gauss points in total per cell. The evolution of
the field expansions costs again 2 bk f operations per Gauss point. These fluid states in
conserved variablles are then converted to primitive variables, and are fed together with the
state from the neighbouring cell to a Riemann solver, yielding the flux vector. Computing
this very conservatively costs at least ∼ 2 cF for a (very) approximate Riemann solver. But
since this cost has to be spent only once per interface for the two adjacent cells and Gauss
points, we can can approximate the cost of this part of the calculation again with ≃ cF
operations per Gauss point. Contracting the fluxes with a surface normal does not require
a full scalar product in this case since we know that exactly one component of the normal
vector is unity, but we still need to multiply with a Legendre function value, a Gaussian
quadrature weight, and add things up to the total partial result for the weight change,
requiring about 3 fbk per surface Gauss point, yielding a total cost of 6 sk(5 bk f + cF) per
cell.

The cost of the computation of the time derivative of the DOFs (i.e. the vector of
weights, dw/dt), is thus approximately

Cẇ = N3[vk(10 bk f + cF) + 6sk(5 bk f + cF)] (3.31)

=
5

3
N3(k + 1)2(5k4 + 50k3 + 175k2 + 259k + 183),

which reveals a steep Cẇ/N
3 ∝ k6 increase of the computational cost per cell when going to

high-order. Furthermore, note that the time integration itself requires several evaluations
of this quantity if one aims for a consistently high order of the time integration. For the
stabillity-preserving Runge-Kutta schemes we use, we need, for example, 2 stages for a
second-order accurate scheme (k = 1), and 3-stages for a third order scheme. For a fourth
order scheme, one would ideally like to use a 4-stage Runge-Kutta scheme, which however
does not exist in a purely forward form, so we need to use a 5-stage scheme instead. At
still higher order, similar compromises may need to be made but we ignore some of these
details here by estimating that we need (k + 1) evaluations of the time derivative of the
DOFs to complete one timestep. Staging intermediate results according to the Butcher

3.8 Discussion on computational cost 115

101 104 107 1010 1013 1016 1019

10 15

10 12

10 9

10 6

10 3

100

smooth problem in 3D

N
1
8
64
512

k
0
1
2
3
4
5
6
7
8

computational cost

L 1
 e

rro
r

Figure 3.13: Expected scaling of the total numerical error as a function of the invested com-
putational effort for a smooth hydrodynamical problem simulated with DG at different order k
(coloured solid lines) in a three-dimensional box with N3 cells, based on Eqn. (3.33). A few
illustrative problem sizes are marked with symbols, as labelled. High-order methods incur a
substantially higher computational cost for a given number of cells, but they are also able to ap-
proximate a smooth solution more accurately. The error drops progressively faster as a function
of resolution for higher order methods, in fact so fast that they become the method of choice
– in the sense of requiring the lowest computational cost – for large enough problem sizes and
sufficiently small target error.

tableau of the Runge-Kutta scheme, and adding up the time derivatives with the Butcher
weights to yield the final result at the end of the step, needs about (k+1)2×DDG floating
point operations, so that we end up with a cost per timestep of about

Cstep = (k + 1)Cẇ + (k + 1)2fbkN
3. (3.32)

Finally, the permissable Courant timestep also becomes smaller at higher order, as ∆t ∝
h/(k + 1), with h ∝ 1/N . The total number of timesteps needed to evolve a system over
some finite time interval T therefore scales in proportion to (1 + k)N . The resulting total

116 3. Supersonic turbulence with high-order DG

101 104 107 1010 1013

10 3

10 2

10 1

100

single planar shock in 3D

N
1
8
64
512

k
0
1
2
3
4
5
6
7
8

computational cost

L 1
 e

rro
r

Figure 3.14: Expected scaling of the computational cost and total numerical error for a planar
shock problem simulated with DG at different order k (coloured solid lines) in a three-dimensional
box with N3 cells that otherwise exhibits a homogeneous fluid state everywhere outside the shock.
In this situation, only the numerically broadened shock itself is contributing to the error budget,
which thus declines only with the linear spatial resolution as L1 ∝ N−1(k + 1)−1. As a result,
higher-order methods do not provide a scaling advantage of their numerical error, i.e. the relative
accuracy of low and high order methods stays invariant as a function of resolution, and their
higher baseline computational cost per cell (compare the illustrative problem sizes marked with
symbols) is not worthwhile. Note, however, that problems of practical interest do not consist
of shocks only, rather they also have non-trivial smooth regions in between shocks, where the
considerations of Fig. 3.13 apply. In general, which order is computationally most cost efficient
is therefore problem-dependent.

computational cost thus scales as

Ctot = (1 + k)N
[
(k + 1)Cẇ + (k + 1)2fbkN

3
]

(3.33)

=
5

6
N4(1 + k)4(10k4 + 100k3 + 315k2 + 523k + 372).

To leading order, the computational cost therefore scales as Ctot ∝ N4k8 in 3D applica-
tions of DG. This makes going to very high-order impractical, and moderate order is only

3.8 Discussion on computational cost 117

worthwhile if this indeed delivers a correspondingly high accuracy.
To get a better idea of the critical trade off between computational cost and reached

accuracy, we consider a fiducial error norm L1 = akN
−(k+1) as a function of computational

cost for different orders k of the DG-scheme. A decline of the error as L1 ∝ N−(k+1) is
expected for smooth problems, and reflects the decrease of the error norm with spatial
resolution at fixed order, while for fixed resolution, the error declines exponentially with
order p = k + 1. Empirically, the coefficient ak in front typically shows only a weak
dependence on order. Instead of simply taking it to be constant, we here set a0 =1, and
for order k > 1 we assume that L1 for N = 1 and order k is equal to the error norm for
k−1 at the same number of degrees of freedom. In other words, we assume that for N ≃ 1
trading in spatial degrees of freedom for expansion order coefficients keeps the accuracy
roughly fixed, which is reasonable (in fact, for smooth problems, we typically expect that
the accuracy improves in this case for the high-order scheme, see Fig. 15 in Cernetic et al.
(2023)).

In Figure 3.13 we now show the expected L1 error norm based on this prescription as a
function of computational cost, for different order. Note that increasing the cost implicitly
means considering larger problem sizes N3. Despite the steep increase of the cost with
order, for large problem sizes the high-order schemes tend to be advantageous, i.e. they
deliver higher accuracy at a given computational cost, or conversely, they can reach a given
computational L1 error for lower computational cost. For intermendiate problem sizes, or
low target accuracies, the situation is less clear cut, and here intermediate or lower order
can be computationally advantagous. This is also confirmed by experimental findings,
as reported for example in Schaal and Bauer. We thus conlude again that for smooth
problems, where L1 ∝ N−(k+1) holds, high-order DG methods tend to be cost effective.
Importantly, they also have other attractive properties, such as much lower advection errors
and excellent angular momentum conservation.

However, an important flipside to this discussion, which is relevant for the present
chapter, is that once the error norm declines more weakly with spatial resolution due to
the presence of true physical discontinuities such as shocks, this cost advantage of DG
methods is defeated. We can make this more explicit by considering a fiducial simulation
with a single planar shock wave in a 3D box with an otherwise homogenous fluid state.
This could be realized, for example, by inflow and outflow boundary conditions on opposite
sides of the box, and by matching the inflow and outflow states with the Rankine-Hugoinot
to the jump conditions of a strong shock. In such a situation we expect the error norm to
decline as L1 = bkN

−1(k+1)−1, with an approximately constant prefactor (in the following
we set bk = 1). The shock does become narrower with higher spatial resolution or high
order, but it does so only linearly. This profoundly alters the relation between invested
computational cost and expected accuracy, as illustrated in Figure 3.14 for this situation.
It is now always computationally favorable to reach a desired accuracy (here equivalent to
shock width) by investing into higher N rather than into higher order k.

This does not automatically imply that higher-order DG methods are worthless for
problems involving shocks, because in non-trivial flow problems there is typically a lot of
interesting structure in regions outside of shocks, and these are rendered less accuractely

118 3. Supersonic turbulence with high-order DG

by low order methods. Also, recall that most of the volume will always be outside of shocks,
given that shocks are in principle arbitrarily thin transition layers, so the volume fraction
occupied by them is very small even when taking numerical broadening into account. So
since one will typically be still interested in reaching high accuracy in smooth parts of the
flow, a high order DG method can often be the most efficient choice. One simply then
has to pay the price that some of the computational effort is consumed for an inefficient
representation of shocks. In principle, this deficiency could be overcome by an approach
where one applies h-refinement (i.e. increasing the grid resolution while lowering order
p = k+1) in places with shocks, while in smooth regions one should rather use p-refinement
(increasing order p while reducing mesh resolution h). Whether this is readily feasible in
practice is however problem dependent.

3.9 Conclusions

One of the challenges of using DG methods for simulating supersonic turbulence is the
appearance of Gibbs-like phenomena, especially at higher orders. These phenomena can
cause spurious oscillations and numerical instabilities in the presence of shocks. The arti-
ficial viscosity method proposed by Cernetic et al. (2023) as well as the simpler artificial
viscosity parametrisation proposed in the present chapter can mitigate this problem, but
they alone are not sufficient to stably evolve highly supersonic flows with DG at high order.

In such flows, multiple shocks can interact, and very steep gradients of fluid variables
develop inside cells. Especially for the computation of fluid states at cell surfaces, which
in essence can be viewed as a polynomial extrapolation from the Gauss points inside
the cells, this can frequently lead to problems. Because our code evolves the conserved
variables u = (ρ, ρv, e), to obtain the velocity we need to divide the polynomial expansion
of momentum density by that for the density, but this can lead to unphysical values at
cell surfaces in the presence of very strong field variations, particularly when the density
becomes very low. Similarly for the pressure, where the kinetic energy density needs to
be subtracted from the total energy density, so that the pressure becomes a complicated
rational function which is not necessarily as well behaved as the polynomial basis functions.
This destroys the robustness of DG for highly supersonic flow.

To solve this issue we have introduced a novel projection approach of the primitive
variables. They are first evaluated based on the conserved variables at the internal Gauss
points, and the resulting values are used to define a polynomial expansion of the primitive
variables over the cells. This regularizes the extrapolation to cell surfaces and avoids
unphysical values there. Together with our simplified artificiall viscosity method this makes
it possible to successfully simulate non-trivial test problems involving multiple interacting
shocks as well as driven supersonic turbulence.

Our main findings can be summarized as follows:

• We have introduced a simple but effective approach to capture shocks in high-order
Discontinuous Galerkin discretisations of the Euler equations of fluid dynamics. It

3.9 Conclusions 119

relies on the familiar von Neumann-Richtmyer viscosity applied at the internal Gauss
points of each cell. This approach works well at all orders, is robust, has no storage
overhead, and allows shock-capturing with sub-cell resolution.

• Simulations with very strong shocks become much more robust and accurate if the
primitive variables at cell interfaces are not simply derived from the extrapolated
conserved variables there, but rather from a polynomial expansion of the primitives
themselves, which is uniquely obtained from the values they assume at the internal
Gauss points.

• Using these two methodological advances, we have succeeded to stably run supersonic
turbulence simulations of isothermal gas at Mach number 12.8 with high-order DG.
This has previously been met with severe stability problems, and thus this represents
in its own right an important advance for the practical applicability of DG approaches
in astrophysics.

• While DG offers significant accuracy gains over finite volume schemes in the subsonic
regime (which manifests itself in an extended intertial range and reduced numerical
dissipation), this advantage is progressively diminished and nearly lost in the su-
personic regime. However, once the sonic point is approached, the higher accuracy
of DG starts to be noticeable again, and for simulations that have enough dynamic
range to also resolve parts of the subsonic cascade, DG begins to shine again.

• We have given a simple analysis of the numerical cost of our DG implementation at
order k, based on estimating the required number of floating point operations to carry
out a 3D simulation with N3 cells over a fixed timespan T . This cost increases rapidly
with order and resolution, as ∝ N4k8. For smooth problems, the error declines so
rapidly for high k that it is in principle still worthwhile to employ high order. The
physical discontinuity of a shock defeats this scaling, however, and here low-order is
more cost efficient.

Our findings in this chapter make DG fully applicable to astrophysical problems in-
volving strong shocks and contact discontinuities. Particularly the very low advection
errors and accurate angular momentum conservation of DG compared with finite volume
schemes should make this method interesting for many applications, for example for prob-
lems involving multiphase has. However, as soon as many shocks are present, it appears
unlikely that high-order DG methods with k > 2 are computational cost effective. Rather,
a sweetspot can be expected for k = 1 or k = 2, and it is probably worthwhile to further
optimize production codes for this regime.

120 3. Supersonic turbulence with high-order DG

Chapter 4

Discussion and outlook

In this chapter, we summarize the results of the thesis and give an outlook for possible
studies in the future. For a general overview and the background of this thesis, we refer to
Section 1.6.

4.1 Summary of this thesis

The goal of this thesis was to assess how high order numerical methods on GPUs perform
in simulations of sub- and supersonic driven turbulence. We also insights insights on how
to write massively parallel scientific codes that are able to harness all CPUs and GPUs of
modern exa-scale machines. We concentrated on studying treatment of shocks and making
the fragile Discontinous Galerkin method robust.

In Chapter 2 I demonstrate that the Discontinuous Galerkin method can be used to
simulate subsonic turbulence with a high accuracy, even exhibiting exponential convergence
with higher order integration.

In Chapter 3, I performed a parameter study of supersonic turbulence with the Dis-
continuous Galerkin method and found that the method is robust against shocks and can
be used to simulate supersonic turbulence with a high accuracy despite the presence of a
network of strong shocks. Up to a Mach number of M = 12.8 the first order DG method
offers significant benefits over the classic finite volume method with linear reconstruction.

4.2 Future extension of this thesis

The developed high-order hydrodynamics code that runs natively on GPUs has a wide
range of possible future applications both because it can utilize the largest GPU accelerated
supercomputers while at the same time using modern hydrodynamic methods capable of
resolving smaller scales at the same number of degrees of freedom.

The benefits of exponential convergence with spatial order can be readily exploited
in studying the source of heating in galaxy clusters, which exhibit very short cooling
times tcool < 1 Gyr but abnormally low corresponding star formation (Rawle et al., 2012).

122 4. Discussion and outlook

Additionally, the hot, low density, weakly magnetised plasma that makes up atmospheres
of galaxy clusters leads to large electron mean free paths, making thermal conduction
an important factor. By using the existing Navier-Stokes solver with shear viscosity and
thermal diffusivity enhanced by the DG MHD implementation from Guillet et al. (2019)
I will run high resolution simulations of the ICM to fully resolve the dissipation scale and
constrain sources of heating in galaxy clusters.

The stability of this DG implementation for supersonic flows opens the possibility to
study a wide variety of astrophysical systems. One problem where the capability of DG
to better resolve the smooth parts of the simulation despite the presence of strong shocks
would be an analysis of star formation in supersonic and multiphase ISM (Veilleux et al.,
2020). To this end I will implement a cooling prescription proposed by (Townsend, 2009),
set up a global high resolution (∼pc) ISM simulation and explore the injection of turbulence
in the ISM by stellar feedback, winds and supernovae. A similar setup could be used in
conjunction with the AGN model of Costa et al. (2020) to study how the ISM turbulence
responds to AGN outflows.

Staying with AGNs, another possible application of the code is to study cosmic ray
production in AGN jets and a detailed investigation of the jet’s wake. Recently Mbarek
& Caprioli (2019) showed the potential of relativistic jets of powerful AGNs to produce
ultra-high-energy cosmic rays (UHECRs) up to 1020 eV through reacceleration in the jets
– the espresso mechanism. I would simulate a single AGN jet in a z-extended box and
investigate its influence on cosmic ray acceleration at a resolution a few times higher than
the current state-of-art. Such a simulation would at the same time allow to study the jet’s
wake. It is thought the wake can to pull down ejected gas, forcing it to be reaccreted and
thus further fueling the AGN.

From the algorithmic point of view one extension of this thesis would be to implement
a p-refinement of the DG elements. This way the order of computational cells under-
going shocks could be dynamically decreased, while the polynomial order of cells in the
smooth parts of the computational domain could be increased. This way a much higher
dynamic range could be obtained at the same amount of total degrees of freedom. Such an
implementation would be compared to the h-refinement based approach by Schaal et al.
(2015).

Another natural algorithmic extension of this thesis would be to implement purely
hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics proposed by
Schlottke-Lakemper et al. (2021) and compare it to other established gravity solvers like
TreePM (Xu, 1995; Bagla, 2002; Springel et al., 2005), fast multipole method (FMM)
introduced by Greengard & Rokhlin (1987) and a hybrid FMM-PM approach by Springel
et al. (2021).

Bibliography

Agertz, O., Moore, B., Stadel, J., Potter, D., Miniati, F., Read, J., Mayer, L., Gawryszczak,
A., Kravtsov, A., Nordlund, Å., Pearce, F., Quilis, V., Rudd, D., Springel, V., Stone,
J., Tasker, E., Teyssier, R., Wadsley, J., Walder, R. (2007), Fundamental differences
between SPH and grid methods , MNRAS, 380(3), 963

Anderson, C. S., Heald, G. H., Eilek, J. A., Lenc, E., Gaensler, B. M., Rudnick, L., Van
Eck, C. L., O’Sullivan, S. P., Stil, J. M., Chippendale, A., Riseley, C. J., Carretti,
E., West, J., Farnes, J., Harvey-Smith, L., McClure-Griffiths, N. M., Bock, D. C. J.,
Bunton, J. D., Koribalski, B., Tremblay, C. D., Voronkov, M. A., Warhurst, K. (2021),
Early Science from POSSUM: Shocks, turbulence, and a massive new reservoir of ionised
gas in the Fornax cluster , Publ. Astron. Soc. Australia, 38, e020

Andersson, N., Comer, G. L. (2021), Relativistic fluid dynamics: physics for many different
scales , Living Reviews in Relativity, 24(1), 3

Armitage, P. J. (1998), Turbulence and Angular Momentum Transport in a Global Accretion
Disk Simulation, ApJ, 501(2), L189

Bagla, J. S. (2002), TreePM: A Code for Cosmological N-Body Simulations , Journal of
Astrophysics and Astronomy, 23(3-4), 185

Balbus, S. A. (2000), Stability, Instability, and “Backward” Transport in Stratified Fluids ,
ApJ, 534(1), 420

Balbus, S. A. (2001), Convective and Rotational Stability of a Dilute Plasma, ApJ, 562(2),
909

Balbus, S. A., Hawley, J. F. (1998), Instability, turbulence, and enhanced transport in
accretion disks , Reviews of Modern Physics, 70(1), 1

Ballesteros-Paredes, J., André, P., Hennebelle, P., Klessen, R. S., Kruijssen, J. M. D.,
Chevance, M., Nakamura, F., Adamo, A., Vázquez-Semadeni, E. (2020), From Diffuse
Gas to Dense Molecular Cloud Cores , Space Sci. Rev., 216(5), 76

Ballesteros-Paredes, J., Mac Low, M.-M. (2002), Physical versus Observational Properties
of Clouds in Turbulent Molecular Cloud Models , The Astrophysical Journal, 570, 734,
ADS Bibcode: 2002ApJ...570..734B

124 BIBLIOGRAPHY

Bassi, F., Rebay, S. (1997), A High-Order Accurate Discontinuous Finite Element Method
for the Numerical Solution of the Compressible Navier Stokes Equations , Journal of
Computational Physics, 131(2), 267

Bauer, A., Schaal, K., Springel, V., Chandrashekar, P., Pakmor, R., Klingenberg, C. (2016),
Simulating Turbulence Using the Astrophysical Discontinuous Galerkin Code TENET , in
Software for Exascale Computing - SPPEXA 2013-2015 , edited by H. Bungartz, P. Neu-
mann, W. E. Nagel, volume 113 of Lecture Notes in Computational Science and Engi-
neering , 381–402, Springer

Bauer, A., Springel, V. (2012), Subsonic turbulence in smoothed particle hydrodynamics
and moving-mesh simulations , MNRAS, 423(3), 2558

Berlok, T., Pfrommer, C. (2019), On the Kelvin-Helmholtz instability with smooth initial
conditions - linear theory and simulations , MNRAS, 485(1), 908

Bhadari, N. K., Dewangan, L. K., Pirogov, L. E., Pazukhin, A. G., Zinchenko, I. I., Maity,
A. K., Sharma, S. (2023), Fragmentation and dynamics of dense gas structures in the
proximity of massive young stellar object W42-MME , MNRAS, 526(3), 4402

Bluck, A. F. L., Maiolino, R., Sánchez, S. F., Ellison, S. L., Thorp, M. D., Piotrowska,
J. M., Teimoorinia, H., Bundy, K. A. (2019), Are galactic star formation and quenching
governed by local, global, or environmental phenomena? , Monthly Notices of the Royal
Astronomical Society, 492(1), 96

Borrow, J., Schaller, M., Bower, R. G., Schaye, J. (2022), SPHENIX: smoothed particle
hydrodynamics for the next generation of galaxy formation simulations , MNRAS, 511(2),
2367

Brandenburg, A., Åke Nordlund (2011), Astrophysical turbulence modeling , Reports on
Progress in Physics, 74(4), 046901

Burgers, J. (1948), A Mathematical Model Illustrating the Theory of Turbulence, Advances
in Applied Mechanics, 1, 171

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., Brown, B. P. (2020), Dedalus:
A flexible framework for numerical simulations with spectral methods , Physical Review
Research, 2(2), 023068

Cernetic, M., Springel, V., Guillet, T., Pakmor, R. (2023), High-order discontinuous
Galerkin hydrodynamics with sub-cell shock capturing on GPUs , MNRAS, 522(1), 982

Cha, S.-H., Inutsuka, S.-I., Nayakshin, S. (2010), Kelvin-Helmholtz instabilities with Go-
dunov smoothed particle hydrodynamics , MNRAS, 403(3), 1165

Chabrier, G. (2003), Galactic Stellar and Substellar Initial Mass Function, PASP, 115(809),
763

BIBLIOGRAPHY 125

Cockburn, B., Hou, S., Shu, C.-W. (1990), The Runge-Kutta Local Projection Discontinu-
ous Galerkin Finite Element Method for Conservation Laws. IV: The Multidimensional
Case, Mathematics of Computation, 54(190), 545

Cockburn, B., Lin, S.-Y., Shu, C.-W. (1989), TVB Runge-Kutta local projection discontin-
uous Galerkin finite element method for conservation laws III: One-dimensional systems ,
Journal of Computational Physics, 84(1), 90

Cockburn, B., Shu, C.-W. (1988), The Runge-Kutta local projection P1-discontinuous-
Galerkin finite element method for scalar conservation laws , in 1st National Fluid Dy-
namics Conference, 636

Cockburn, B., Shu, C.-W. (1989), TVB Runge-Kutta Local Projection Discontinuous
Galerkin Finite Element Method for Conservation Laws II: General Framework , Math-
ematics of Computation, 52(186), 411

Cockburn, B., Shu, C.-W. (1998), The Runge-Kutta Discontinuous Galerkin Method for
Conservation Laws V: Multidimensional Systems , Journal of Computational Physics,
141(2), 199

Costa, T., Arrigoni Battaia, F., Farina, E. P., Keating, L. C., Rosdahl, J., Kimm, T.
(2022), AGN-driven outflows and the formation of Lyα nebulae around high-z quasars ,
MNRAS, 517(2), 1767

Costa, T., Pakmor, R., Springel, V. (2020), Powering galactic superwinds with small-scale
AGN winds , MNRAS, 497(4), 5229

Cullen, L., Dehnen, W. (2010), Inviscid smoothed particle hydrodynamics , MNRAS, 408(2),
669

Dennis, T. J., Chandran, B. D. G. (2005), Turbulent Heating of Galaxy-Cluster Plasmas ,
ApJ, 622(1), 205

Deppe, N., Hébert, F., Kidder, L. E., Throwe, W., Anantpurkar, I., Armaza, C., Bonilla,
G. S., Boyle, M., Chaudhary, H., Duez, M. D., Vu, N. L., Foucart, F., Giesler, M., Guo,
J. S., Kim, Y., Kumar, P., Legred, I., Li, D., Lovelace, G., Ma, S., Macedo, A., Melchor,
D., Morales, M., Moxon, J., Nelli, K. C., O’Shea, E., Pfeiffer, H. P., Ramirez, T., Rüter,
H. R., Sanchez, J., Scheel, M. A., Thomas, S., Vieira, D., Wittek, N. A., Wlodarczyk,
T., Teukolsky, S. A. (2022), Simulating magnetized neutron stars with discontinuous
Galerkin methods , Phys. Rev. D, 105(12), 123031

Dolag, K., Borgani, S., Murante, G., Springel, V. (2009), Substructures in hydrodynamical
cluster simulations , MNRAS, 399(2), 497

Edelmann, P. V. F., Ratnasingam, R. P., Pedersen, M. G., Bowman, D. M., Prat, V.,
Rogers, T. M. (2019), Three-dimensional Simulations of Massive Stars. I. Wave Gener-
ation and Propagation, ApJ, 876(1), 4

126 BIBLIOGRAPHY

Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., Alef, W., Asada, K.,
Azulay, R., Baczko, A.-K., Ball, D., Baloković, M., Barrett, J., Bintley, D., Blackburn,
L., Boland, W., Bouman, K. L., Bower, G. C., Bremer, M., Brinkerink, C. D., Brissenden,
R., Britzen, S., Broderick, A. E., Broguiere, D., Bronzwaer, T., Byun, D.-Y., Carlstrom,
J. E., Chael, A., Chan, C.-k., Chatterjee, S., Chatterjee, K., Chen, M.-T., Chen, Y.,
Cho, I., Christian, P., Conway, J. E., Cordes, J. M., Crew, G. B., Cui, Y., Davelaar,
J., De Laurentis, M., Deane, R., Dempsey, J., Desvignes, G., Dexter, J., Doeleman,
S. S., Eatough, R. P., Falcke, H., Fish, V. L., Fomalont, E., Fraga-Encinas, R., Freeman,
W. T., Friberg, P., Fromm, C. M., Gómez, J. L., Galison, P., Gammie, C. F., Garćıa, R.,
Gentaz, O., Georgiev, B., Goddi, C., Gold, R., Gu, M., Gurwell, M., Hada, K., Hecht,
M. H., Hesper, R., Ho, L. C., Ho, P., Honma, M., Huang, C.-W. L., Huang, L., Hughes,
D. H., Ikeda, S., Inoue, M., Issaoun, S., James, D. J., Jannuzi, B. T., Janssen, M., Jeter,
B., Jiang, W., Johnson, M. D., Jorstad, S., Jung, T., Karami, M., Karuppusamy, R.,
Kawashima, T., Keating, G. K., Kettenis, M., Kim, J.-Y., Kim, J., Kim, J., Kino, M.,
Koay, J. Y., Koch, P. M., Koyama, S., Kramer, M., Kramer, C., Krichbaum, T. P.,
Kuo, C.-Y., Lauer, T. R., Lee, S.-S., Li, Y.-R., Li, Z., Lindqvist, M., Liu, K., Liuzzo,
E., Lo, W.-P., Lobanov, A. P., Loinard, L., Lonsdale, C., Lu, R.-S., MacDonald, N. R.,
Mao, J., Markoff, S., Marrone, D. P., Marscher, A. P., Mart́ı-Vidal, I., Matsushita, S.,
Matthews, L. D., Medeiros, L., Menten, K. M., Mizuno, Y., Mizuno, I., Moran, J. M.,
Moriyama, K., Moscibrodzka, M., Müller, C., Nagai, H., Nagar, N. M., Nakamura, M.,
Narayan, R., Narayanan, G., Natarajan, I., Neri, R., Ni, C., Noutsos, A., Okino, H.,
Olivares, H., Ortiz-León, G. N., Oyama, T., Özel, F., Palumbo, D. C. M., Patel, N.,
Pen, U.-L., Pesce, D. W., Piétu, V., Plambeck, R., PopStefanija, A., Porth, O., Prather,
B., Preciado-López, J. A., Psaltis, D., Pu, H.-Y., Ramakrishnan, V., Rao, R., Rawlings,
M. G., Raymond, A. W., Rezzolla, L., Ripperda, B., Roelofs, F., Rogers, A., Ros, E.,
Rose, M., Roshanineshat, A., Rottmann, H., Roy, A. L., Ruszczyk, C., Ryan, B. R.,
Rygl, K. L. J., Sánchez, S., Sánchez-Arguelles, D., Sasada, M., Savolainen, T., Schloerb,
F. P., Schuster, K.-F., Shao, L., Shen, Z., Small, D., Sohn, B. W., SooHoo, J., Tazaki,
F., Tiede, P., Tilanus, R. P. J., Titus, M., Toma, K., Torne, P., Trent, T., Trippe,
S., Tsuda, S., van Bemmel, I., van Langevelde, H. J., van Rossum, D. R., Wagner,
J., Wardle, J., Weintroub, J., Wex, N., Wharton, R., Wielgus, M., Wong, G. N., Wu,
Q., Young, K., Young, A., Younsi, Z., Yuan, F., Yuan, Y.-F., Zensus, J. A., Zhao, G.,
Zhao, S.-S., Zhu, Z., Algaba, J.-C., Allardi, A., Amestica, R., Anczarski, J., Bach, U.,
Baganoff, F. K., Beaudoin, C., Benson, B. A., Berthold, R., Blanchard, J. M., Blundell,
R., Bustamente, S., Cappallo, R., Castillo-Domı́nguez, E., Chang, C.-C., Chang, S.-H.,
Chang, S.-C., Chen, C.-C., Chilson, R., Chuter, T. C., Córdova Rosado, R., Coulson,
I. M., Crawford, T. M., Crowley, J., David, J., Derome, M., Dexter, M., Dornbusch, S.,
Dudevoir, K. A., Dzib, S. A., Eckart, A., Eckert, C., Erickson, N. R., Everett, W. B.,
Faber, A., Farah, J. R., Fath, V., Folkers, T. W., Forbes, D. C., Freund, R., Gómez-Ruiz,
A. I., Gale, D. M., Gao, F., Geertsema, G., Graham, D. A., Greer, C. H., Grosslein, R.,
Gueth, F., Haggard, D., Halverson, N. W., Han, C.-C., Han, K.-C., Hao, J., Hasegawa,
Y., Henning, J. W., Hernández-Gómez, A., Herrero-Illana, R., Heyminck, S., Hirota,
A., Hoge, J., Huang, Y.-D., Impellizzeri, C. M. V., Jiang, H., Kamble, A., Keisler, R.,

BIBLIOGRAPHY 127

Kimura, K., Kono, Y., Kubo, D., Kuroda, J., Lacasse, R., Laing, R. A., Leitch, E. M.,
Li, C.-T., Lin, L. C. C., Liu, C.-T., Liu, K.-Y., Lu, L.-M., Marson, R. G., Martin-Cocher,
P. L., Massingill, K. D., Matulonis, C., McColl, M. P., McWhirter, S. R., Messias, H.,
Meyer-Zhao, Z., Michalik, D., Montaña, A., Montgomerie, W., Mora-Klein, M., Muders,
D., Nadolski, A., Navarro, S., Neilsen, J., Nguyen, C. H., Nishioka, H., Norton, T.,
Nowak, M. A., Nystrom, G., Ogawa, H., Oshiro, P., Oyama, T., Parsons, H., Paine,
S. N., Peñalver, J., Phillips, N. M., Poirier, M., Pradel, N., Primiani, R. A., Raffin,
P. A., Rahlin, A. S., Reiland, G., Risacher, C., Ruiz, I., Sáez-Madáın, A. F., Sassella,
R., Schellart, P., Shaw, P., Silva, K. M., Shiokawa, H., Smith, D. R., Snow, W., Souccar,
K., Sousa, D., Sridharan, T. K., Srinivasan, R., Stahm, W., Stark, A. A., Story, K.,
Timmer, S. T., Vertatschitsch, L., Walther, C., Wei, T.-S., Whitehorn, N., Whitney,
A. R., Woody, D. P., Wouterloot, J. G. A., Wright, M., Yamaguchi, P., Yu, C.-Y.,
Zeballos, M., Zhang, S., Ziurys, L. (2019), First M87 Event Horizon Telescope Results.
I. The Shadow of the Supermassive Black Hole, ApJ, 875(1), L1

Fabian, A. C. (2012), Observational Evidence of Active Galactic Nuclei Feedback , ARA&A,
50, 455

Federrath, C. (2013), On the universality of supersonic turbulence, MNRAS, 436(2), 1245

Federrath, C., Klessen, R. S., Iapichino, L., Beattie, J. R. (2021), The sonic scale of
interstellar turbulence, Nature Astronomy, 5, 365

Federrath, C., Klessen, R. S., Iapichino, L., Hammer, N. J. (2016), The world’s largest
turbulence simulations , arXiv e-prints, arXiv:1607.00630

Federrath, C., Klessen, R. S., Schmidt, W. (2008), The Density Probability Distribution
in Compressible Isothermal Turbulence: Solenoidal versus Compressive Forcing , ApJ,
688(2), L79

Federrath, C., Klessen, R. S., Schmidt, W. (2009), The Fractal Density Structure in Su-
personic Isothermal Turbulence: Solenoidal Versus Compressive Energy Injection, ApJ,
692(1), 364

Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., Mac Low, M. M. (2010),
Comparing the statistics of interstellar turbulence in simulations and observations.
Solenoidal versus compressive turbulence forcing , A&A, 512, A81

Frisch, U. (1995), Turbulence. The legacy of A.N. Kolmogorov

Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V., Green,
R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J.,
Richstone, D., Tremaine, S. (2000), A Relationship between Nuclear Black Hole Mass
and Galaxy Velocity Dispersion, ApJ, 539(1), L13

128 BIBLIOGRAPHY

Girma, E., Teyssier, R. (2024), A new star formation recipe for magnetohydrodynamics
simulations of galaxy formation, MNRAS, 527(3), 6779

Goldreich, P., Sridhar, S. (1995), Toward a Theory of Interstellar Turbulence. II. Strong
Alfvenic Turbulence, ApJ, 438, 763

Gómez, G. C., Vázquez-Semadeni, E., Palau, A. (2021), Density profile evolution during
prestellar core collapse: collapse starts at the large scale, MNRAS, 502(4), 4963

Greengard, L., Rokhlin, V. (1987), A fast algorithm for particle simulations , Journal of
Computational Physics, 73(2), 325

Guillet, T., Pakmor, R., Springel, V., Chandrashekar, P., Klingenberg, C. (2019), High-
order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discon-
tinuous Galerkin scheme, MNRAS, 485(3), 4209

Häring, N., Rix, H.-W. (2004), On the Black Hole Mass-Bulge Mass Relation, ApJ, 604(2),
L89

Herbst, W., Assousa, G. E. (1979), Supernovas and Star Formation, Scientific American,
241(2), 138

Herwig, F., Woodward, P. R., Mao, H., Thompson, W. R., Denissenkov, P., Lau, J.,
Blouin, S., Andrassy, R., Paul, A. (2023), 3D hydrodynamic simulations of massive
main-sequence stars - I. Dynamics and mixing of convection and internal gravity waves ,
MNRAS, 525(2), 1601

Hillebrandt, W., Niemeyer, J. C. (2000), Type Ia Supernova Explosion Models , Annual
Review of Astronomy and Astrophysics, 38(1), 191

Hopkins, P. F. (2015), A new class of accurate, mesh-free hydrodynamic simulation meth-
ods , MNRAS, 450(1), 53

Janett, G., Steiner, O., Alsina Ballester, E., Belluzzi, L., Mishra, S. (2019), A novel fourth-
order WENO interpolation technique. A possible new tool designed for radiative transfer ,
A&A, 624, A104

Jermyn, A. S., Bauer, E. B., Schwab, J., Farmer, R., Ball, W. H., Bellinger, E. P., Dotter,
A., Joyce, M., Marchant, P., Mombarg, J. S. G., Wolf, W. M., Sunny Wong, T. L., Cin-
quegrana, G. C., Farrell, E., Smolec, R., Thoul, A., Cantiello, M., Herwig, F., Toloza,
O., Bildsten, L., Townsend, R. H. D., Timmes, F. X. (2023), Modules for Experiments in
Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Auto-
matic Differentiation, and Infrastructure, ApJS, 265(1), 15

Junk, V., Walch, S., Heitsch, F., Burkert, A., Wetzstein, M., Schartmann, M., Price,
D. (2010), Modelling shear flows with smoothed particle hydrodynamics and grid-based
methods , MNRAS, 407(3), 1933

BIBLIOGRAPHY 129

Kidder, L. E., Field, S. E., Foucart, F., Schnetter, E., Teukolsky, S. A., Bohn, A., Deppe,
N., Diener, P., Hébert, F., Lippuner, J., Miller, J., Ott, C. D., Scheel, M. A., Vincent, T.
(2017), SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics ,
Journal of Computational Physics, 335, 84

Kim, J., Moin, P., Moser, R. (1987), Turbulence statistics in fully developed channel flow
at low Reynolds number , Journal of Fluid Mechanics, 177, 133

King, A., Pounds, K. (2015), Powerful Outflows and Feedback from Active Galactic Nuclei ,
ARA&A, 53, 115

Klein, K. G., Spence, H., Alexandrova, O., Argall, M., Arzamasskiy, L., Bookbinder, J.,
Broeren, T., Caprioli, D., Case, A., Chandran, B., Chen, L.-J., Dors, I., Eastwood,
J., Forsyth, C., Galvin, A., Genot, V., Halekas, J., Hesse, M., Hine, B., Horbury, T.,
Jian, L., Kasper, J., Kretzschmar, M., Kunz, M., Lavraud, B., Le Contel, O., Mallet, A.,
Maruca, B., Matthaeus, W., Niehof, J., O’Brien, H., Owen, C., Retinò, A., Reynolds, C.,
Roberts, O., Schekochihin, A., Skoug, R., Smith, C., Smith, S., Steinberg, J., Stevens,
M., Szabo, A., TenBarge, J., Torbert, R., Vasquez, B., Verscharen, D., Whittlesey,
P., Wickizer, B., Zank, G., Zweibel, E. (2023), HelioSwarm: A Multipoint, Multiscale
Mission to Characterize Turbulence, Space Sci. Rev., 219(8), 74

Klessen, R. S. (2000), One-Point Probability Distribution Functions of Supersonic Turbu-
lent Flows in Self-gravitating Media, The Astrophysical Journal, 535, 869, ADS Bibcode:
2000ApJ...535..869K

Kolmogorov, A. (1941), The Local Structure of Turbulence in Incompressible Viscous Fluid
for Very Large Reynolds’ Numbers , Akademiia Nauk SSSR Doklady, 30, 301

Kormendy, J., Ho, L. C. (2013), Coevolution (Or Not) of Supermassive Black Holes and
Host Galaxies , ARA&A, 51(1), 511

Kravtsov, A. V. (2003), On the Origin of the Global Schmidt Law of Star Formation, The
Astrophysical Journal, 590, L1, ADS Bibcode: 2003ApJ...590L...1K

Kravtsov, A. V., Borgani, S. (2012), Formation of Galaxy Clusters , Annual Review of
Astronomy and Astrophysics, 50(1), 353

Kretschmer, M., Teyssier, R. (2020), Forming early-type galaxies without AGN feedback: a
combination of merger-driven outflows and inefficient star formation, MNRAS, 492(1),
1385

Krivodonova, L. (2007), Limiters for high-order discontinuous Galerkin methods , Journal
of Computational Physics, 226(1), 879

Küchler, C., Bewley, G., Bodenschatz, E. (2019), Experimental Study of the Bottleneck in
Fully Developed Turbulence, Journal of Statistical Physics, 175(3-4), 617

130 BIBLIOGRAPHY

Landau, L. D., Lifshitz, E. M. (1959), Fluid Mechanics , Course of theoretical physics / by
L. D. Landau and E. M. Lifshitz, Vol. 6, New York: Pergamon, second edition

Larson, R. B. (1981), Turbulence and star formation in molecular clouds., MNRAS, 194,
809

Launder, B. (1974), The numerical computation of turbulent flows , Computer Methods in
Applied Mechanics and Engineering, 3(2), 269

Lazarian, A. (2016), Damping of Alfvén Waves by Turbulence and Its Consequences: From
Cosmic-ray Streaming to Launching Winds , ApJ, 833(2), 131

Lazarian, A., Xu, S. (2022), Damping of Alfvén Waves in MHD Turbulence and Implica-
tions for Cosmic Ray Streaming Instability and Galactic Winds , Frontiers in Physics,
10, 702799

Lecoanet, D., McCourt, M., Quataert, E., Burns, K. J., Vasil, G. M., Oishi, J. S., Brown,
B. P., Stone, J. M., O’Leary, R. M. (2016), A validated non-linear Kelvin-Helmholtz
benchmark for numerical hydrodynamics , MNRAS, 455(4), 4274

Li, S., Zhang, Q., Liu, H. B., Beuther, H., Palau, A., Girart, J. M., Smith, H., Hora, J. L.,
Lin, Y., Qiu, K., Strom, S., Wang, J., Li, F., Yue, N. (2020), ALMA Observations of NGC
6334S. I. Forming Massive Stars and Clusters in Subsonic and Transonic Filamentary
Clouds , ApJ, 896(2), 110

Li, Y., Klessen, R. S., Mac Low, M.-M. (2003), The Formation of Stellar Clusters in
Turbulent Molecular Clouds: Effects of the Equation of State, The Astrophysical Journal,
592, 975, ADS Bibcode: 2003ApJ...592..975L

Liska, R., Wendroff, B. (2003), Comparison of Several Difference Schemes on 1D and 2D
Test Problems for the Euler Equations , SIAM Journal on Scientific Computing, 25(3),
995

Lombart, M., Laibe, G. (2021), Grain growth for astrophysics with discontinuous Galerkin
schemes , MNRAS, 501(3), 4298

Mac Low, M.-M., Balsara, D. S., Kim, J., de Avillez, M. A. (2005), The Distribution
of Pressures in a Supernova-driven Interstellar Medium. I. Magnetized Medium, The
Astrophysical Journal, 626, 864, ADS Bibcode: 2005ApJ...626..864M

Mac Low, M.-M., Klessen, R. S. (2004), Control of star formation by supersonic turbulence,
Reviews of Modern Physics, 76(1), 125

Mandelker, N., van den Bosch, F. C., Springel, V., van de Voort, F. (2019), Shattering of
Cosmic Sheets due to Thermal Instabilities: A Formation Channel for Metal-free Lyman
Limit Systems , ApJ, 881(1), L20

BIBLIOGRAPHY 131

Markert, J., Gassner, G., Walch, S. (2021), A Sub-element Adaptive Shock Capturing Ap-
proach for Discontinuous Galerkin Methods , Communications on Applied Mathematics
and Computation, doi: 10.1007/s42967-021-00120-x

Markert, J., Walch, S., Gassner, G. (2022), A discontinuous Galerkin solver in the FLASH
multiphysics framework , MNRAS, 511(3), 4179

Mathew, S. S., Federrath, C., Seta, A. (2023), The role of the turbulence driving mode for
the initial mass function, MNRAS, 518(4), 5190

Mbarek, R., Caprioli, D. (2019), Bottom-up Acceleration of Ultra-high-energy Cosmic Rays
in the Jets of Active Galactic Nuclei , The Astrophysical Journal, 886(1), 8

McConnell, N. J., Ma, C.-P. (2013), Revisiting the Scaling Relations of Black Hole Masses
and Host Galaxy Properties , ApJ, 764(2), 184

McKee, C. F., Ostriker, E. C. (2007), Theory of Star Formation, ARA&A, 45(1), 565

McNally, C. P., Lyra, W., Passy, J.-C. (2012), A Well-posed Kelvin-Helmholtz Instability
Test and Comparison, ApJS, 201(2), 18

Medina-Torrejón, T. E., de Gouveia Dal Pino, E. M., Kowal, G. (2023), Particle Accelera-
tion by Magnetic Reconnection in Relativistic Jets: The Transition from Small to Large
Scales , ApJ, 952(2), 168

Mellor, G. L., Yamada, T. (1982), Development of a Turbulence Closure Model for Geo-
physical Fluid Problems (Paper 2R0808), Reviews of Geophysics and Space Physics, 20,
851

Menter, F. R. (1994), Two-equation eddy-viscosity turbulence models for engineering ap-
plications , AIAA Journal, 32(8), 1598

Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R., Hernquist, L. (2014), A discontinuous
Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophys-
ical simulations , MNRAS, 437(1), 397

Monaghan, J. J. (1992), Smoothed particle hydrodynamics., ARA&A, 30, 543

Monaghan, J. J., Gingold, R. A. (1983), Shock Simulation by the Particle Method SPH ,
Journal of Computational Physics, 52(2), 374

Morris, J. P., Monaghan, J. J. (1997), A Switch to Reduce SPH Viscosity , Journal of
Computational Physics, 136(1), 41

Mossier, P., Beck, A., Munz, C.-D. (2022), A p-Adaptive Discontinuous Galerkin Method
with hp-Shock Capturing , Journal of Scientific Computing, 91(1), 4

132 BIBLIOGRAPHY

Nagakura, T., Hosokawa, T., Omukai, K. (2009), Star formation triggered by supernova
explosions in young galaxies , Monthly Notices of the Royal Astronomical Society, 399(4),
2183

Nelson, R. P., Papaloizou, J. C. B., Masset, F., Kley, W. (2000), The migration and growth
of protoplanets in protostellar discs , MNRAS, 318(1), 18

NVIDIACorporation (2021), CUDA C++ Programming Guide: Design Guide, https:

//docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf

Ocvirk, P., Gillet, N., Shapiro, P. R., Aubert, D., Iliev, I. T., Teyssier, R., Yepes, G.,
Choi, J.-H., Sullivan, D., Knebe, A., Gottlöber, S., D’Aloisio, A., Park, H., Hoffman,
Y., Stranex, T. (2016), Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Sim-
ulation of Reionization and Galaxy Formation in the Local Universe, MNRAS, 463(2),
1462

Ostriker, E. C., Gammie, C. F., Stone, J. M. (1999), Kinetic and Structural Evolution
of Self-gravitating, Magnetized Clouds: 2.5-dimensional Simulations of Decaying Turbu-
lence, The Astrophysical Journal, 513, 259, ADS Bibcode: 1999ApJ...513..259O

Pakmor, R., Springel, V., Bauer, A., Mocz, P., Munoz, D. J., Ohlmann, S. T., Schaal, K.,
Zhu, C. (2016), Improving the convergence properties of the moving-mesh code AREPO ,
MNRAS, 455(1), 1134

Pan, L., Ju, W., Chen, J.-H. (2022), An exact relation for density fluctuations in com-
pressible turbulence, MNRAS, 514(1), 105

Pan, L., Wheeler, J. C., Scalo, J. (2008), The Effect of Turbulent Intermittency on the
Deflagration to Detonation Transition in Supernova Ia Explosions , The Astrophysical
Journal, 681(1), 470

Passot, T., Vázquez-Semadeni, E. (1998), Density probability distribution in one-
dimensional polytropic gas dynamics , Physical Review E, 58(4), 4501

Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., Timmes, F. (2011), Modules
for Experiments in Stellar Astrophysics (MESA), ApJS, 192(1), 3

Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., Dotter,
A., Farmer, R., Goldberg, J. A., Jermyn, A. S., Kanbur, S. M., Marchant, P., Thoul,
A., Townsend, R. H. D., Wolf, W. M., Zhang, M., Timmes, F. X. (2019), Modules
for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation,
Convective Boundaries, and Energy Conservation, ApJS, 243(1), 10

Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G.,
Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim,
M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C.,

https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/archive/11.2.0/pdf/CUDA_C_Programming_Guide.pdf

BIBLIOGRAPHY 133

Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B.,
Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg,
H. J. M., Couch, W. J., Project, T. S. C. (1999), Measurements of Omega and Lambda
from 42 High-Redshift Supernovae, The Astrophysical Journal, 517(2), 565

Perrone, L. M., Latter, H. (2022), Magneto-thermal instability in galaxy clusters - I. Theory
and two-dimensional simulations , MNRAS, 513(3), 4605

Persson, P.-O., Peraire, J. (2006), Sub-Cell Shock Capturing for Discontinuous Galerkin
Methods , AIAA Inc., Reston, VA

Piffaretti, R., Jetzer, P., Kaastra, J. S., Tamura, T. (2005), Temperature and entropy
profiles of nearby cooling flow clusters observed with XMM-Newton, A&A, 433(1), 101

Pope, S. B. (2000), Turbulent Flows , Cambridge University Press

Price, D. J. (2008), Modelling discontinuities and Kelvin Helmholtz instabilities in SPH ,
Journal of Computational Physics, 227(24), 10040

Price, D. J., Federrath, C. (2010), A comparison between grid and particle methods on the
statistics of driven, supersonic, isothermal turbulence, MNRAS, 406(3), 1659

Quataert, E. (2008), Buoyancy Instabilities in Weakly Magnetized Low-Collisionality Plas-
mas , ApJ, 673(2), 758

Rabatin, B., Collins, D. C. (2023), Density and velocity correlations in isothermal super-
sonic turbulence, MNRAS, 525(1), 297

Rawle, T. D., Edge, A. C., Egami, E., Rex, M., Smith, G. P., Altieri, B., Fiedler, A.,
Haines, C. P., Pereira, M. J., Pérez-González, P. G., Portouw, J., Valtchanov, I., Walth,
G., van der Werf, P. P., Zemcov, M. (2012), The Relation between Cool Cluster Cores
and Herschel-detected Star Formation in Brightest Cluster Galaxies , ApJ, 747(1), 29

Reed, W. H., Hill, T. R. (1973), Triangular mesh methods for the neutron transport equa-
tion

Reinecke, M., Hillebrandt, W., Niemeyer, J. C. (2002), Three-dimensional simulations of
type Ia supernovae, A&A, 391, 1167

Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M.,
Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M.,
Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs,
C., Suntzeff, N. B., Tonry, J. (1998), Observational Evidence from Supernovae for an
Accelerating Universe and a Cosmological Constant , The Astronomical Journal, 116(3),
1009

134 BIBLIOGRAPHY

Rizzuti, F., Hirschi, R., Arnett, W. D., Georgy, C., Meakin, C., Murphy, A. S., Rauscher,
T., Varma, V. (2023), 3D stellar evolution: hydrodynamic simulations of a complete
burning phase in a massive star , Monthly Notices of the Royal Astronomical Society,
523(2), 2317

Robertson, B. E., Kravtsov, A. V., Gnedin, N. Y., Abel, T., Rudd, D. H. (2010), Compu-
tational Eulerian hydrodynamics and Galilean invariance, MNRAS, 401(4), 2463

Scalo, J., Vázquez-Semadeni, E., Chappell, D., Passot, T. (1998), On the Probability Den-
sity Function of Galactic Gas. I. Numerical Simulations and the Significance of the Poly-
tropic Index , The Astrophysical Journal, 504, 835, ADS Bibcode: 1998ApJ...504..835S

Schaal, K., Bauer, A., Chandrashekar, P., Pakmor, R., Klingenberg, C., Springel, V. (2015),
Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adap-
tive mesh refinement , MNRAS, 453(4), 4278

Schlottke-Lakemper, M., Winters, A. R., Ranocha, H., Gassner, G. J. (2021), A purely
hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics , Journal of
Computational Physics, 442, 110467

Schmidt, W., Ciaraldi-Schoolmann, F., Niemeyer, J. C., Röpke, F. K., Hillebrandt, W.
(2010), Turbulence in a Three-Dimensional Deflagration Model For Type Ia Super-
novae. II. Intermittency and the Deflagration-to-Detonation Transition Probability , ApJ,
710(2), 1683

Schmidt, W., Hillebrandt, W., Niemeyer, J. C. (2006), Numerical dissipation and the
bottleneck effect in simulations of compressible isotropic turbulence, Computers & Fluids,
35(4), 353

Schmidt, W., Niemeyer, J. C., Hillebrandt, W. (2006), A localised subgrid scale model for
fluid dynamical simulations in astrophysics. I. Theory and numerical tests , A&A, 450(1),
265

Schneider, E. E., Robertson, B. E. (2015), CHOLLA: A New Massively Parallel Hydrody-
namics Code for Astrophysical Simulation, ApJS, 217(2), 24

Shu, C.-W., Osher, S. (1989), Efficient Implementation of Essentially Non-oscillatory
Shock-Capturing Schemes, II , Journal of Computational Physics, 83(1), 32

Springel, V. (2010), E pur si muove: Galilean-invariant cosmological hydrodynamical sim-
ulations on a moving mesh, MNRAS, 401(2), 791

Springel, V., Di Matteo, T., Hernquist, L. (2005), Modelling feedback from stars and black
holes in galaxy mergers , MNRAS, 361(3), 776

Springel, V., Hernquist, L. (2002), Cosmological smoothed particle hydrodynamics simula-
tions: the entropy equation, MNRAS, 333(3), 649

BIBLIOGRAPHY 135

Springel, V., Pakmor, R., Zier, O., Reinecke, M. (2021), Simulating cosmic structure for-
mation with the GADGET-4 code, MNRAS, 506(2), 2871

Springel, V., Yoshida, N., White, S. D. M. (2001), GADGET: a code for collisionless and
gasdynamical cosmological simulations , New Astron., 6(2), 79

Steindl, T., Zwintz, K., Vorobyov, E. (2022), The imprint of star formation on stellar
pulsations , Nature Communications, 13(1), 5355

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., Simon, J. B. (2008), Athena: A
New Code for Astrophysical MHD , ApJS, 178(1), 137

Stone, J. M., Norman, M. L. (1992), ZEUS-2D: A Radiation Magnetohydrodynamics Code
for Astrophysical Flows in Two Space Dimensions. I. The Hydrodynamic Algorithms and
Tests , ApJS, 80, 753

Tassis, K., Ramaprakash, A. N., Readhead, A. C. S., Potter, S. B., Wehus, I. K.,
Panopoulou, G. V., Blinov, D., Eriksen, H. K., Hensley, B., Karakci, A., Kypriotakis,
J. A., Maharana, S., Ntormousi, E., Pavlidou, V., Pearson, T. J., Skalidis, R. (2018),
PASIPHAE: A high-Galactic-latitude, high-accuracy optopolarimetric survey , arXiv e-
prints, arXiv:1810.05652

Toro, E. (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, XXIV, 724, Springer Berlin, Heidelberg

Townsend, R. H. D. (2009), An Exact Integration Scheme for Radiative Cooling in Hydro-
dynamical Simulations , ApJS, 181(2), 391

Trac, H., Pen, U.-L. (2003), A Primer on Eulerian Computational Fluid Dynamics for
Astrophysics , PASP, 115(805), 303

Tricco, T. S. (2019), The Kelvin-Helmholtz instability and smoothed particle hydrodynam-
ics , MNRAS, 488(4), 5210

Valcke, S., de Rijcke, S., Rödiger, E., Dejonghe, H. (2010), Kelvin-Helmholtz instabilities
in smoothed particle hydrodynamics , MNRAS, 408(1), 71

van Leer, B., Nomura, S. (2005), 17th AIAA Computational Fluid Dynamics Conference,
American Institute of Aeronautics and Astronautics, Toronto, Ontario, Canada

Veilleux, S., Maiolino, R., Bolatto, A. D., Aalto, S. (2020), Cool outflows in galaxies and
their implications , A&ARv, 28(1), 2

Velasco Romero, D. A., Han Veiga, M., Teyssier, R., Masset, F. S. (2018), Planet-disc
interactions with discontinuous Galerkin methods using GPUs , MNRAS, 478(2), 1855

Verma, M. K., Donzis, D. (2007), Energy transfer and bottleneck effect in turbulence,
Journal of Physics A Mathematical General, 40(16), 4401

136 BIBLIOGRAPHY

Vilar, F. (2019), A posteriori correction of high-order discontinuous Galerkin scheme
through subcell finite volume formulation and flux reconstruction, Journal of Compu-
tational Physics, 387, 245

Vogelsberger, M., Marinacci, F., Torrey, P., Puchwein, E. (2020), Cosmological simulations
of galaxy formation, Nature Reviews Physics, 2(1), 42

Von Neumann, J., Richtmyer, R. D. (1950), A Method for the Numerical Calculation of
Hydrodynamic Shocks , Journal of Applied Physics, 21(3), 232

Wada, K., Norman, C. A. (2001), Numerical Models of the Multiphase Interstellar Matter
with Stellar Energy Feedback on a Galactic Scale, The Astrophysical Journal, 547, 172,
ADS Bibcode: 2001ApJ...547..172W

Weinberger, R., Springel, V., Hernquist, L., Pillepich, A., Marinacci, F., Pakmor, R.,
Nelson, D., Genel, S., Vogelsberger, M., Naiman, J., Torrey, P. (2017), Simulating galaxy
formation with black hole driven thermal and kinetic feedback , MNRAS, 465(3), 3291

Weinberger, R., Springel, V., Pakmor, R. (2020), The AREPO Public Code Release, ApJS,
248(2), 32

Wibking, B. D., Krumholz, M. R. (2022), QUOKKA: a code for two-moment AMR radia-
tion hydrodynamics on GPUs , MNRAS, 512(1), 1430

Wilkins, M. L. (1980), Use of artificial viscosity in multidimensional fluid dynamic calcu-
lations , Journal of Computational Physics, 36(3), 281

Woodward, P., Colella, P. (1984), The Numerical Stimulation of Two-Dimensional Fluid
Flow with Strong Shocks , Journal of Computational Physics, 54(1), 115

Xu, G. (1995), A New Parallel N-Body Gravity Solver: TPM , ApJS, 98, 355

Yee, H. C., Sandham, N. D., Djomehri, M. J. (1999), Low-Dissipative High-Order
Shock-Capturing Methods Using Characteristic-Based Filters , Journal of Computational
Physics, 150(1), 199

Yee, H. C., Vinokur, M., Djomehri, M. J. (2000), Entropy Splitting and Numerical Dissi-
pation, Journal of Computational Physics, 162(1), 33

Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A. (2015), Space–time adaptive ADER
discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume
limiting , Computers & Fluids, 118, 204

Zhang, X., Shu, C.-W. (2010), On positivity-preserving high order discontinuous Galerkin
schemes for compressible Euler equations on rectangular meshes , Journal of Computa-
tional Physics, 229(23), 8918

Zhao, F., Pan, L., Li, Z., Wang, S. (2017), A new class of high-order weighted essentially
non-oscillatory schemes for hyperbolic conservation laws , Computers & Fluids, 159, 81

Acknowledgements
I am deeply thankful to my supervisor, Volker Springel, without his extensive supervision,
guidance and magic C++ MPI skills I would still be still stuck in 1D. I really appreciated
his availability to answer any and all questions I ever had, regardless of his immensely busy
schedule.

I am also grateful to Rüdiger Pakmor for relentless willingness to help in all matters of
numerics and career. And to Klaus Dolag for his role as the second assessor for my thesis.

Additional thanks go to Thorsten Naab with whom I did an internship at MPA back in
2017 during which I decided MPA is the place where I want to do my PhD. Thank you for
all the personal and career support throughout my MPA journey. Looking back to 2017
reminded me of how we were still young and blissfully unaware of what was waiting for us
in 2020 when I started my PhD.

Talking about the pandemic™ I am first immensely grateful to my parents Tanja and
Simon who not only exfiltrated me from Germany just hours before it closed its borders
on March 16th, but alongside my brother Blaž warmly welcomed me back to my childhood
home during the first lockdown. It was a surprise and a pleasure to spend about half a
year in the same household setup that we had back in my high school times.

I could not have made it through the pandemic™ without the many friends I made at
MPA. Before starting my PhD I had the pleasure of getting to known Matteo, Max, Ivan,
Timo and Bernhard. I have to express gratitude to the many fellow PhD students and
postdocs with whom we’ve created countless forever memories. Thank you fellow PhDs;
Chris B., Monica, Nahir, Aniket, Oliver, Simon, Christian, Jessie, Teresa, and postdocs;
Tiara, Tiago, Enrico, Daniela and Deepika.

Thank you Hitesh and Fulvio for caring about the MPA community and taking over
The Commonroom, I look forward to sharing a cold beverage with you during my future
visits to MPA.

Thank you Chris D. for the almost PhD long D&D session! Anna and Adam, one could
not ask for better co-adventurers!

A big shout-out to the Commonroom thief thanks to whom I got to experience the
German judicial system.

Andrej, thank you for your support me through the intense period of grief following my
father’s death.

My thanks go to all the secretaries, thank you Maria, Cornelia, Gabi, and Sonja. Their
hard work, dedication and efficiency are greatly appreciated.

Finally, I want to thank my family for their support and encouragement throughout
my PhD. I am especially grateful to my parents and grandparents for their unconditional
love and support.

	Zusammenfassung
	Abstract
	Introduction
	Turbulent systems in the Universe
	Star formation
	Stellar evolution
	Intracluster medium
	Supernovae
	AGN
	Cosmic rays
	Outlook on turbulence simulations

	GPU computing
	Numerical fluid dynamics
	Ideal gas
	Euler equations
	Navier-Stokes equations
	Shocks and other discontinuities

	Discontinuous Galerkin Method
	Representation of conserved variables
	Time evolution

	Turbulence
	Kolmogorov's theory of incompressible turbulence

	Challenges in modelling turbulence and overview of this thesis

	High-order DG with sub-cell shock capturing on GPUs
	Introduction
	Discontinuous Galerkin discretization of the Euler equations
	Representation of conserved variables in DG
	Time evolution
	Legendre basis function
	Gaussian quadrature
	Time integration

	Treatment of viscous source terms
	The uplifting approach
	Surface derivatives
	The Navier-Stokes equations
	Passive tracer

	Shock capturing and oscillation control
	Artificial viscosity
	Positivity limiter

	Basic tests
	Isentropic vortex
	Diffusion of a Gaussian pulse
	Double blast wave
	Advection of a top-hat pulse

	Kelvin-Helmholtz instabilities
	Visual comparison
	Dye entropy
	Error norm

	Driven sub-sonic turbulence
	Driving
	Results for subsonic turbulence

	Code details
	Parallelization strategy
	GPU computing implementation
	Memory usage

	Code performance
	Weak scaling
	Strong scaling
	CPU vs GPU benchmark

	Summary and Conclusions

	Supersonic turbulence with high-order DG
	Introduction
	Discontinuous Galerkin hydrodynamics
	Basis expansion
	Time evolution
	Diffusion operator across cell boundaries
	Parallelisation on GPUs

	Viscous shock capturing
	Primitive variables at cell interfaces
	Driving and measuring turbulence
	Basic statistics of supersonic and subsonic turbulence
	Driving isothermal turbulence
	Measuring structure functions and power spectra

	Turbulence with DG in the supersonic and subsonic regimes
	Simulating the super- to subsonic transition
	Discussion on computational cost
	Conclusions

	Discussion and outlook
	Summary of this thesis
	Future extension of this thesis

	Bibliography
	Acknowledgements

