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Linking hippocampal sequences and spatial representations

Abstract

In the rodent hippocampus, spatial pathways are represented by the sequential
activation of multiple place cells, each corresponding to a specific location. This
activation pattern, referred to as theta sequences, occurs at theta frequencies (4–12
Hz) and reflects a one-dimensional (1D) trajectory. Akin to drawing a line on a paper
surface, the spatial pathway conveyed by a theta sequence may assume arbitrary
shapes within a 2D space. The precise way theta sequences propagate within the
2D topology spanned by place cells and the nature of the spatial pathways they
represent remain unclear.

In the first manuscript, we investigated the firing order of theta sequences as the
animal traverses their respective place fields. By analyzing the place cell activities
while the rats were free foraging in a 2D open space, we found that some place cells
mirrored the temporal order of the locations visited by the animal, while others
exhibited a fixed firing order independent of the running trajectory. This finding
leads to our proposition that theta sequences result from the interaction between
extrinsically and intrinsically driven mechanisms, with firing orders coordinated by
extra-hippocampal sensorimotor input and intra-hippocampal network connectivity,
respectively.

In the second manuscript, we proposed a theoretical framework to account for the
observed heterogeneity of theta sequences. We simulated a spiking neural network
of place cells within the cornus ammonia 3 (CA3) and dentate gyrus (DG) lay-
ers. Extrinsic sequences arise from short-term plasticity mechanisms among CA3
place cells and propagate in the direction of movement. In contrast, intrinsic se-
quences propagate in a fixed temporal order along the CA3 place cells connected
by unidirectional projections via the DG layer. Our simulations demonstrated that
this two-layer network enabled the concurrent propagation of extrinsic and intrinsic
sequences, reproducing the experimental findings of two temporal orders of theta
sequences.

In conclusion, this thesis reveals the phenomenon wherein 1D theta sequences
propagate within a 2D space along multiple 1D manifolds, namely the running
trajectory and the spatial paths determined by intra-hippocampal connectivity pat-
terns. The intrinsic sequences extend beyond the animal’s actual positions, offering
a non-local representation of space, and potentially support spatial memory through
their stable temporal patterns.
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1 Introduction

1.1 The hippocampus

1.1.1 The hippocampus and episodic memory

The hippocampus is located in the medial temporal lobe. The name ”hippocampus”

originated from its shape resembling a seahorse. The memory function of the hippocam-

pus garnered attention following the study of patient H.M., who underwent surgery to

remove the medial temporal lobe including a large part of the hippocampus, to control

his epileptic seizures (Scoville and Milner, 1957). After the surgery, he suffered from se-

vere anterograde amnesia as he could not acquire new memories from recent events, and

moderate temporally graded retrograde amnesia, since he was able to recall the memories

of his early life but not the memories shortly before the surgery. However, his other cog-

nitive functions, such as general intelligence, working memories and sensory perception,

remained unaffected. The inability to remember new events, and his memory being more

degraded in the recent than the remote past, suggest a functional role of the hippocampus

in memory consolidation since an interruption of the consolidation process would result in

a failure of recalling those memories still in the progress of consolidation but spare those

already consolidated.

Although the brain areas removed in patient H.M. included not only the hippocampus but

also the surrounding regions—such as amygdala and entorhinal cortex—further studies in

the following decades have confirmed the association between the hippocampus and mem-

ory function. Studies have demonstrated that (see Squire et al. (2015) for review) lesions

in the hippocampus lead to both anterograde and temporally graded retrograde amne-

sia in rodents (Morris et al., 1982, Moser and Moser, 1998, Clark et al., 2002), primates

(Zola-Morgan and Squire, 1990) and humans (Squire and Alvarez, 1995). Furthermore,

increased neuronal activity in the human hippocampus correlates with memory encoding

and retrieval behaviors (Addis et al., 2004, Greicius et al., 2003). Researchers, therefore,

hypothesized that the hippocampus is crucial for memory processes, including memory

acquisition, consolidation, and retrieval.

1.1.2 The trisynaptic circuit

Our understanding of the memory functions of the hippocampus has improved through the

study of its anatomy and functional connectivity (Figure 1A). The hippocampal forma-

tion consists of the dentate gyrus (DG), cornus ammonis 3 (CA3), CA1, and subiculum

regions. The entorhinal cortex (EC) layer II primarily inputs to the hippocampal for-

mation via the perforant path; this pathway delivers sensorimotor inputs (e.g., visual,

vestibular, or proprioceptive from perception and self-motions during spatial navigation)

from neocortical regions to the hippocampus. The hippocampus, including DG, CA3, and
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CA1, propagates information through both feed-forward and recurrent network structures

(see Figure 1B). Eventually, the information is projected back to the deep layer V and

VI of the EC and cortical areas. This pathway, known as the trisynaptic circuit, involves

connections from the EC layer II to DG (first synapses via the perforant path), DG to

CA3 (second synapses via mossy fibers), and CA3 to CA1 (third synapses via Schaffer

collaterals) and serves as an information processing unit for the sensorimotor inputs from

the neocortex. The perforant path from the EC layer II also branches off and projects

directly to CA3 (Steward, 1976). In parallel, the EC layer III also forms synaptic projec-

tions to the CA1 area, known as temporoammonic pathway (Witter et al., 1988, 2000),

allowing the EC inputs to reach CA1 directly, skipping DG and CA3.

Intracellular recordings have demonstrated synaptic plasticity, such as long-term poten-

tiation and depression, in the hippocampus, including the perforant path (Bliss and

Lømo, 1973, Lømo, 2003), mossy fibers (Alger and Teyler, 1976, Zalutsky and Nicoll,

1990, Weisskopf et al., 1993), Schaffer collaterals (Schwartzkroin and Wester, 1975, Al-

ger and Teyler, 1976), and the temporoammonic path (Dvorak-Carbone and Schuman,

1999, Remondes and Schuman, 2003, Aksoy-Aksel and Manahan-Vaughan, 2013). There-

fore, the hippocampus is capable of experience-dependent changes that may subserve

memory functions. For instance, the CA3’s auto-associative network structure enables

pattern completion, which allows partial inputs to trigger previously remembered com-

plete patterns stored in synaptic strengths (Jensen et al., 1996, Bennett et al., 1994).

The DG network, on the other hand, facilitates pattern separation, which differentiates

similar memory items with different contexts through competitive learning and inhibitory

feedback connections (Leutgeb et al., 2007, Myers and Scharfman, 2009a, 2011, Guzman

et al., 2021). Notably, lesion studies and pharmacological blocking along the trisynaptic

circuit have demonstrated various types of memory dysfunctions in remembering spatial

locations (Morris et al., 1982), object identification (Zola-Morgan and Squire, 1990), fear

conditioning (Kim and Fanselow, 1992, Anagnostaras et al., 1999), and socially acquired

memories (Winocur, 1990).

1.1.3 Selectivity to different sensorimotor stimuli

One manifestation of memory is the emergence of selective neuronal activity. A well-

known example is the ”Jennifer Aniston neuron” (Quiroga et al., 2005). In their study,

electrodes were implanted into the medial temporal lobes of eight human patients to record

neuronal activities. The subjects were presented with various pictures of individuals and

objects. They found that some neurons exhibited high firing selectivity towards specific

types of pictures. For instance, a neuron in the left posterior hippocampus responded

exclusively to photos of the celebrity Jennifer Aniston, regardless of different costumes,

backgrounds, expressions, and viewing angles. However, when presented with photos of

other individuals, landmarks, or objects, this neuron remained inactive. Interestingly,

2
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Figure 1: (A) Locations of the hippocampus and different subregions. Figure adapted
from Roux et al. (2021) with permission under Creative Commons Attribution (CC BY)
4.0 license: https://creativecommons.org/licenses/by/4.0/. MF: Mossy fibers. RC: Re-
current collaterals. SC: Schaffer collaterals. PP: Perforant path. lpp: Lateral perforant
path. mpp: Medial perforant path. (B) Schematic illustrations of neural pathways in the
hippocampus according to Amaral and Witter (1989) and Andersen et al. (2006). The
hippocampal formation (DG, CA3, CA1, subiculum) receives cortical input via the super-
ficial layers II and III of the EC and projects the output back to the neocortex via the deep
layers V/VI of the EC. CA3 forms recurrent connections with itself and back-projections
to the DG (Scharfman, 2016). Thick arrows denote the trisynaptic circuit (PP, MF, and
SC).
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these neurons also responded to letter strings of the name of the preferred celebrity,

photos of the characters played by that celebrity in movies and even the sound of the

spoken name (Quian Quiroga et al., 2009). The high selectivity to the identity of a

stimulus, and the invariance to the change in stimulus features irrelevant to the identity

and sensory modalities, signify a recognition of the abstract identity of the stimulus. The

stimulus is, hence, represented by neuronal activity, which is often considered a form of

memory since the stimulus information is encoded in a neural substrate and available to

be further retrieved and processed by other neurons.

The ”Jennifer Aniston cell” is just an example of selective activity in the hippocampus.

Decades of research have shown that pyramidal cells in CA1 and CA3, and granule cells

in DG exhibit tuning curves of firing rates in response to a wide variety of stimuli. Place

cells (O’Keefe, 1976), for example, only generate action potentials when an animal vis-

its a specific location in an environment, remaining inactive in other locations. Time

cells (Eichenbaum, 2014), on the other hand, fire exclusively at specific moments when a

behavioral task reaches a particular time interval. Other stimuli include odors (Shahbaba

et al., 2022a) and sounds (Aronov et al., 2017). In the primate hippocampus, selective

activities extend even to stimuli with complex features like faces and objects (Fried et al.,

1997, Sliwa et al., 2016), as well as abstract cognitive information such as reward val-

ues (Knudsen and Wallis, 2021). The wide range of selective activities suggests that the

hippocampus serves a more general memory function rather than being limited to specific

types of stimuli like places and odors. It is worth emphasizing that the selective activity

or tuning curve of a neuron is a correlational measure. This means that the information

of the stimulus is encoded or represented by neuronal activity, without necessarily imply-

ing that the neuronal activity is causally responsible for the conscious mental recall or

utilization of the stimulus information.

1.2 Roles of the hippocampus in spatial navigation

The hippocampus plays a vital role in memory function across various sensorimotor modal-

ities, but neuroscientists have shown particular interest in studying the spatial memory

represented by the hippocampus. One reason is that spatial memory is critical to daily ac-

tivities, such as foraging for food, exploring unfamiliar territories, or remembering object

locations. Since the emergence of mobile animals, navigation has been essential for sur-

vival and adaptive behavior. Furthermore, spatial memory gives a measurable behavioral

output. The ability of a rodent to remember a space can be measured by its performance

to navigate in a maze. In contrast, other memory types, such as episodic memory, are

more challenging to measure due to their mental and internal nature. The explicit behav-

ioral output of spatial memory thus allows simpler experimentation. As spatial memory

is one aspect of the overarching general memory functions of the hippocampus, the study

of it could also provide implications on the underlying mechanisms of memory as a whole.
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In the present thesis, we primarily focus on the rodent hippocampus due to the accessibility

of its experimental data. Additionally, the structural similarities between the rodent and

human brain, as both are mammals, can also provide valuable insights into fundamental

aspects of human memory function.

1.2.1 Place cells: positional tuning and spatial memories

The crucial role of the hippocampus in spatial memory was demonstrated by Morris et al.

(1982). In their experiment, rats navigated a water maze without visual or olfactory cues

to find a fixed hidden platform. Rats with intact spatial learning abilities remembered the

platform’s location and improved their performance over multiple trials. However, rats

with complete damage to the dorsal and ventral hippocampus took significantly longer

to reach the goal than the control group. Despite showing improvement over time, the

performance of the lesion group never surpassed that of the best-performing normal rats

trained to search for a random platform. This finding indicates the essential role of the

rodent hippocampus in spatial memory.

The neuronal activity that represents spatial memory was first identified by O’Keefe

and Dostrovsky (1971). They discovered that pyramidal cells in the CA regions of the

hippocampus only discharge action potentials when the animal is in a specific location of

the environment and remains inactive when the animal is outside of that region. These

cells are called place cells, and the regions with the elevated firing activity are referred to as

place fields (Figure 2A). Since place cell activity correlates with the animal’s position, it is

believed to represent the spatial environment. This gave rise to the concept of a cognitive

map, where neural activity supports the mental representation of space, including the

identities of locations and their relationships. Place cells are considered the fundamental

building blocks of the cognitive map as their firing patterns encode positional information

essential for navigation.

Notably, hippocampal pyramidal cells only develop location-specific firing after the ani-

mals become familiar with the environment, typically requiring more than 4–5 minutes

of exploration time (Bittner et al., 2017, Frank et al., 2004) or several laps of track

traversal (Dong et al., 2021). Hence, the formation of place fields is a result of experience-

dependent changes in neural activity induced by learning or memory processes. Further-

more, place cells also encode locations that are significant for the animals. Studies have

shown concentrated firing activity of hippocampal pyramidal cells in regions associated

with reward (Hollup et al., 2001), preferred grooming locations (Pfeiffer, 2022), and loca-

tions of objects and landmarks (Deshmukh and Knierim, 2013). This demonstrates that

the representation of spatial memory in the hippocampus is often influenced by visual

salience and contextual factors such as motivational aspects of tasks.

5



Linking hippocampal sequences and spatial representations

Figure 2: (A) Place fields on a linear track. Top: Schematic illustration of the behavioral
task, where the rat runs back and forth along a 1.6m linear track for a reward. Middle:
Recorded spikes of a CA1 pyramidal cell as vertically jittered ticks overlaid on the animal’s
trajectory (gray line). Red and blue colors indicate the forward and backward instanta-
neous heading direction at the spike times. Bottom: Average firing rate of the neuron as a
function of the animal’s position on the track. The place cell is active only for the positions
between 0 m and 0.4 m and exhibits directional selectivity preferring forward heading di-
rection. An open dataset (available at https://crcns.org/data-sets/hc/hc-11/about-hc-11)
provided by Grosmark and Buzsáki (2016) and Grosmark et al. (2016) was used. (B) Po-
sitional and directional firing rate map of a CA1 pyramidal neuron in a 2D space reported
by Acharya et al. (2016). Left: Firing rate is depicted as the grayscale heatmap. Numbers
on top denote the range of the firing rate in Hz. Spikes are plotted as dots colored accord-
ing to the instantaneous heading direction following the color wheel. Note the position
specificity and the preferred heading direction of the firing activity. Right: Polar plot of
the firing rate as a function of heading orientation. Figure reused with permission of the
rights holder, Elsevier. (C) Navigation by egocentric representation of space. The current
position estimate is computed by integrating the previous positions and heading directions
provided by self-motion cues such as vestibular input. (D) Allocentric representation of
spatial map. A spatial map is constructed based on the relationship between landmark
features. Self-position is thus determined by the landmark positions as observed by the
animal. This spatial representation relies on external visual cues rather than self-motion
cues.
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1.2.2 Directional tuning of place cells

In terms of spatial memory, the activity of place cells is selective not only to positions,

but also to the heading direction of the animals. The first discovery was by McNaughton

et al. (1983), where they found that in a radial 8-arm maze, some pyramidal cells in

the hippocampus exhibited a higher firing rate for inbound trajectories but lower than

outbound ones, or vice versa. Subsequent studies further demonstrated the directional

selectivity of place cells in linear mazes (Figure 2A) and 2D space (Figure 2B) in CA1,

CA3 and DG regions (Muller et al., 1994, Markus et al., 1995, Cacucci, 2004, Mankin

et al., 2019, Acharya et al., 2016, Stefanini et al., 2020).

The selectivity to directionality, however, varies across different task demands. Markus

et al. (1995) found that the proportion of place fields with significant directional tuning

(10%) in 2D open space is much less than those in linear and radial mazes (80%). The

directional selectivity of place cell thus depends on how open the spatial environment is

and how stereotypical the animal’s movement trajectory is. A further study by Acharya

et al. (2016) demonstrated that narrowing the width of a visual bar on the wall was

enough to increase the sharpness of the directional tuning curve of place cells, despite the

environment enclosure remaining the same. The above studies showed that the degree

of directional selectivity in place cell firing is influenced by how much the directional

information is demanded by the behavioral tasks and available from the sensory cues.

How the hippocampal place cells become selective to heading direction is still unclear.

According to the neural pathways (Figure 1B), directional modulation of hippocampal

place cells presumably inherits from the upstream activity of head-direction cells in the

medial EC and the postsubiculum (Taube et al., 1990a,b, Bett et al., 2013). Head-direction

cells are different from place cells. Their firing rate only depends on the head direction

but not the animal’s location. These cells are prevalent in the postsubiculum as well

as in the MEC, where they exist across all layers (Giocomo et al., 2014). The head-

direction signal in these regions likely originates from both vestibular and visual systems

(for reviews, see Yoder and Taube (2014), Munn and Giocomo (2020)). Lesions in the

vestibular system have been shown to disrupt the directional tuning in the head-direction

cells in postsubiculum (Stackman and Herbert, 2002), and manipulation of visual cues was

able to predict the change in directional tuning (Goodridge et al., 1998, Acharya et al.,

2016). However, both types of inputs could compensate for the behavioral deficit arising

from the absence of one another (Hüfner et al., 2011, Wallace et al., 2002, Stackman

and Herbert, 2002), indicating that the either vestibular or visual inputs can be flexibly

utilized depending on their availability.
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1.2.3 Navigation by path integration and the allocentric cognitive map

The neural representations of positions and head directions serve as crucial spatial met-

rics for spatial navigation. One method of navigation that utilizes these metrics is path

integration (Figure 2C, also called dead reckoning), where animals internally update their

current position relative to a starting point by integrating past locations and heading di-

rections over time. This kind of navigation is egocentric, meaning that the spatial metrics

are referenced to the animal itself and self-motion cues such as vestibular inputs are used

to update position estimates. Previous study has shown that rats are able to navigate in

the dark when only self-motion cues are available (Wallace et al., 2002), demonstrating

their ability to utilize path integration for spatial navigation.

On the other hand, navigation also involves an allocentric representation (Figure 2D),

which relies on spatial relationships like distances and orientations between visual land-

marks, objects, and pathways to create a global map of the environment (Buzsáki and

Moser, 2013). Animals determine their position on the spatial map by comparing their

orientation and distance to landmarks. Since the spatial map is constructed using ex-

ternal visual cues, self-motion cues are no longer necessary for estimating self-location.

Past studies have provided supportive evidence for such allocentric representation. For

example, Stackman and Herbert (2002) showed that visual cues providing allocentric ref-

erences of space became necessary for the rats to complete the spatial navigation task,

after their vestibular system was lesioned. Other studies demonstrated that changes in

visual cues can control the locations of place fields (Muller and Kubie, 1987, Knierim

et al., 1995), suggesting that neural representations of space carry information related to

allocentric references. Furthermore, recent research identified ”landmark vector cells” in

the hippocampus (Deshmukh and Knierim, 2013), which fire specifically when the animal

is at a certain distance and orientation to a landmark, providing evidence of a relational

representation between landmarks and objects in the hippocampus.

Both egocentric and allocentric navigation require the spatial metrics provided by the posi-

tion and head-direction signals for calculating the self-position and constructing a spatial

map of the environment. The neural representation of position and head directions in

the hippocampus is thus a potential candidate for supporting the navigation behaviors.

Targeted activation of place cells has been shown to bias the behavior to the associated

location (Robinson et al., 2020), indicating the causal role of hippocampal place represen-

tation in spatial navigation. The exact mechanism of how spatial representations support

navigation behaviors is, however, still unclear and an ongoing area of research.

1.3 Theta rhythm and the temporal code

In the hippocampus, large groups of neurons participate in synchronized firing activity at

theta-band frequency (6–12Hz), which can be observed in the electroencephalogram and

8
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electrophysiological recordings as a rhythmic signal. The theta oscillation power waxes

and wanes depending on the behavioral state of the animal. It becomes stronger when the

animal actively explores an environment or engages in locomotion, and becomes weaker

when the animal is immobile or sleeping. The firing activity of place cells is also modulated

by the theta oscillation and phase-locked to the theta oscillation on average (Fox et al.,

1986).

One primary functional role of the theta oscillation is to support the temporal code.

Unlike the rate code, in which the neurons encode the spatial memories via their firing

rate, place cells also encode information via the precise spike timings of their action

potentials. The spike times are organized by theta oscillation and can encode the animal’s

position as well as relational memories. Indeed, past studies have shown that disruption

of the theta rhythm could severely affect spatial navigation performance (Mitchell et al.,

1982). It is worth noting that some of the experiments employed targeted pharmacological

blocking (Bolding et al., 2020) and cooling (Petersen and Buzsáki, 2020) of the medial

septum and were able to disrupt the theta rhythm while leaving firing fields of place cells

intact. They demonstrated that a mere rate code without the theta temporal code is

insufficient for spatial navigation. In this chapter, we discuss the spatial representation

in the hippocampal theta temporal code and the origin of the theta rhythm.

1.3.1 Phase precession and theta sequences in 1D

One prominent reflection of the theta temporal code is phase precession. O’Keefe and

Recce (1993) discovered that the spike timing of place cells relative to the background

theta oscillation could indicate the animal’s location within the place field (see Figure

3A). During their experiment, they recorded hippocampus activity using tetrodes while

the animal ran on a linear track. The local field potential (LFP), resulting from the

synchronized firing of nearby neurons around the recording site, exhibited a theta rhythm

at 7–12Hz.

As the animal entered a place field, the associated place cell began firing. Initially, the

timing of the action potential was in the late phase of the theta oscillatory cycle, but it

progressively advanced with each cycle as the animal moved across the field. Finally, as

the animal exited the place field, the spike occurred in the early theta phase. As a result,

the spike phase of a place cell precesses in every theta cycle and negatively correlates

with the distance travelled within the place field (Figure 3B), encoding the positional

information via the theta temporal code.

Phase precession is a phenomenon observed in single-cell activity. However, the theta

temporal code can also be observed at the population level. When the animal sequentially

traverses multiple overlapping and neighboring place fields, each cell undergoes phase

precession, but the spike phases of different cells are separated by a phase lag. This
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Figure 3: Figure adapted from O’Keefe and Recce (1993) demonstrating phase precession
of a CA3 place cell on a linear track. (A) Recording of action potentials of the place cell.
(B) Theta phases at the spike times. The spike phase starts from the later portion of the
theta cycle at about 360 degrees and progressively advances (or decreases) through each
subsequent theta cycle as the rat moves within the place field. (C) Theta activity of the
local field potential (LFP) recorded by tetrodes. Vertical ticks mark the beginning of a
theta cycle. (D) Identification of the beginning of the theta cycle via a template matching
algorithm. (E) Phase-position relationship of all the spikes from a different place cell.
Each spike is plotted with its spike phase against the animal’s position at the time of
the spike occurrence. Phase precession is discernible through the negative correlation
between the spike phase and animal positions within the place field. Parameters of the
linear regression fit are provided on top. Figure was reused with permission of the rights
holder, John Wiley and Sons.
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phenomenon, known as theta sequences, has been observed in experiments where the

activation of the next cell follows a phase delay after the previous cell, forming a firing

sequence of multiple place cells within a theta cycle (Figure 4A and 4B).

The theta sequences can be examined by the cross-correlation between a pair of place cells,

which describe the probability that one cell would fire a spike after the spike of another

cell, as a function of the time lag. The theta sequence was first discovered by Skaggs

et al. (1996) through cross-correlation methods, and subsequently confirmed by other

studies (Dragoi and Buzsáki, 2006, Foster and Wilson, 2007, Feng et al., 2015). Figure

4C shows the cross-correlation functions between a place cell with the three other place

cells with progressively farther place fields. At behavioral timescale, spike probability

peaks at 100ms, 200ms and 300ms, corresponding to the behavioral times required for the

animal to travel to the place field centers in this example. However, within the window

of the theta cycle (about ±100 ms), correlation already peaks at 10ms, 20ms and 30ms,

indicating that the sequences of places are reflected by the spike sequences ten times faster

than the behavioral experiences. This leads to the idea of sequence compression (Skaggs

et al., 1996, Dragoi and Buzsáki, 2006), where behavioral sequences at a longer timescale

are encoded by spike sequences coordinated by theta rhythm at a much shorter timescale.

The spatial representation of theta sequences thus also ”sweeps ahead” of the animal

as place cells representing the prospective locations fire even before the animal actually

reaches their place field centers.

One of the functional benefits of sequence compression is the facilitation of associative

learning via long-term synaptic plasticity. A theta sequence compresses multiple behav-

ioral experiences into a theta cycle, which is approximately the induction time window

(below ±20 − 40 ms) of spike-time-dependent plasticity (Bi and Poo, 1998) in the hip-

pocampus, facilitating binding of memory events and learning of their temporal order.

Such possibilities have been confirmed by various theoretical models (Jensen et al., 1996,

Scarpetta and Marinaro, 2005, Shen et al., 2008, Sato and Yamaguchi, 2009, George et al.,

2023). Sequence learning encompasses not only spatial memories but also non-spatial

stimuli such as odors in rodents (Allen et al., 2016, Shahbaba et al., 2022b) and object

identities in human (Heusser et al., 2016), leading to the notion that the hippocampus

supports the relational memory in general or even episodic memory, where a sequence of

events is re-experienced by recalling memories in the correct temporal order.

1.3.2 Theta sequences and phase precession in 2D

Most studies concerning the temporal code in theta rhythm focus on 1D linear tracks.

However, naturalistic navigation often requires spatial memories of a 2D or 3D environ-

ment. One fundamental issue is that the theta sequence is propagated from one place

cell to another, inherently making the sequence propagation 1D. In a 1D linear track, the
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Figure 4: Schematic illustration of theta sequences in a 1D environment. (A) Top: A rat
traverses a series of place fields along a linear track. Bottom: Theta activity with 100ms
period and raster plot of spikes from the place cell population. Four example place cells
are shaded with the same colors as the place fields. Place cells fire sequentially within each
theta cycle as the rat moves through them. (B) Phase precessions of the four example cells,
each separated by a phase shift. (C) Cross-correlation indicating the spike probability
versus the time lags from the red cell to all other three cells (from top to bottom rows).
Left: Cross-correlations at the behavioral timescale. Peak time lags indicate the time it
takes for the animal to move from the center of the red place field to the blue, yellow, and
green field centers in 100 ms, 200 ms, and 300 ms, respectively. Right: Cross-correlations
at the theta timescale. Peak time lags are 10ms, 20ms, and 30ms, respectively, in the
theta sequences, demonstrating a ten-fold temporal compression of behavioral sequences
into the theta spike sequences.
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activity propagation necessarily follows the movement trajectory. In a 2D environment,

space is represented by 2D place fields distributed across the environment and sequence

propagation is no longer restricted to align with the movement trajectory due to the spa-

tial topology, allowing it to vary in the propagation direction. It is, therefore, unclear

how activity can be propagated among the place cells spanning a 2D topology and, con-

sequently, how the spike phase precesses when the animal approaches a place field from

different directions.

The question was addressed by Skaggs et al. (1996), who also examined the spike phase

of place cells in a 2D space. They found that place cells tended to fire in the later part of

theta cycle when the rat entered the place field and in the early part of theta cycle when

the rat exited the field. However, the question remains whether spike phases still advance

progressively with traveled distance, as seen in 1D tracks. A more detailed investigation

by Huxter et al. (2008) demonstrated that phase precession occurs in a 2D place field

regardless of the travel direction (Figure 5A-B). Specifically, they devised a measure called

the ”directional rate zone” (DRZ) as a positional variable that is invariant to the angle

of place field traversal (Figure 5C). The DRZ is negative when the animal is heading

towards the peak of the rate map, and positive when the animal is heading away, with the

magnitude of the DRZ normalized to the values of the firing rate map (0 at the maximum

firing rate and 1 at zero firing rate). They found that the negative correlation between

the DRZ and spike phase still exists regardless of the approach direction, demonstrating

the presence of phase precession in a 2D environment (Figure 5D-E).

Furthermore, Huxter et al. (2008) also investigated the theta sequence in 2D space (Figure

6A). They found that the peak time lag of the cross-correlation between two place cells

flipped signs when the rat encountered the place fields in the opposite temporal order. It

indicates that whichever place cell is activated first, its spike would precede the spike of

the next place cell in the firing sequence. A theta sequence thus propagates in the same

direction as the running direction and flips its firing order when the running direction is

reversed (Figure 6B-C).

The findings of Huxter et al. (2008) confirm that, at least in the investigated CA1 region

of the hippocampus, the temporal code in theta rhythm exists in 2D space. The theta

sequence propagates along place cells in the same order as sampled by the running move-

ment and thus encodes the running trajectory. As a result, single-cell phase precession is

preserved in different directions of approach.

1.3.3 Origin of theta oscillations

The medial septum (MS) has long been considered the putative source of the theta rhythm

in the brain, with previous studies indicating that lesions in the MS region disrupt theta

oscillations in the hippocampus (Mitchell et al., 1982, Yoder and Pang, 2005). Notably,
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Figure 5: Figure adapted from Huxter et al. (2008), demonstrating phase precession in a
2D space. (A) Left: Three trajectories overlaid on a firing map of a place cell. Right: Spike
timings of place cells relative to theta oscillations along the three running trajectories.
Spike phase advances in each theta cycle. (B) Phase-distance relationship of the place
cell in (A) in four running directions. r denotes the Pearson’s correlation coefficient.
(C) Calculation of the directional rate zone (DRZ). |DRZ|=0 when the animal is at the
field peak location and |DRZ|=1 when the firing rate is zero. DRZ is positive when
the animal moves toward the field center and negative when it moves away. (D) Phase-
DRZ relationship displays phase precession across all running directions. (E) Phase-DRZ
relation plot color-coded by the mean firing rate of all place cells from all rats in Huxter
et al. (2008). Figure reused with permission of the rights holder, Springer Nature.
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Figure 6: Figure adapted from Huxter et al. (2008), demonstrating the dependence of
theta correlations on the running trajectory. (A) Two place fields with high and low
overlap. r indicates spatial correlation of the firing rates over the spatial bins. (B)
Cross-correlation of spike trains between a pair of place cells with high overlap (top) and
low overlap (bottom) for trajectories running from field A to B (left) and from B to A
(right). The time shift, determined by the peak firing probability, varies with the amount
of overlap. The sign of the time shift depends on the trajectory direction (A to B or B
to A). (C) Time shifts versus spatial overlap of the place field pairs. Like the 1D case in
Skaggs et al. (1996) and Figure 4, time shift increases as the place fields become farther
apart. Figure reused with permission of the rights holder, Springer Nature.
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Bland et al. (1999) reported that the transition of the hippocampus from an irregular firing

state to a synchronized theta state was preceded by the activation of theta-firing neurons

within the MS, suggesting that the MS neurons may play a pivotal role in initiating the

theta oscillation within the hippocampus.

Further investigation has narrowed down the source of theta rhythm to pace-making

neurons within the MS, which can spontaneously generate periodic firing patterns at

theta frequencies (Sotty et al., 2003, Morris et al., 2004, Varga et al., 2008). These

pacemaker cells are characterized by hyperpolarization-activated cyclic nucleotide-gated

(HCN) channels, which are permeable to sodium and potassium ions and can be activated

by hyperpolarization at -50mV (Benarroch, 2013). Consequently, the hyperpolarization

following an action potential would activate the HCN channels and trigger depolarization

again, producing periodic firing.

Notably, the GABAergic neurons in the MS were shown to possess HCN channels and

demonstrate rhythmic activity at the theta frequency (Varga et al., 2008). These GABAer-

gic cells project synapses to hippocampal CA1 interneurons, which, in turn, project to

CA1 pyramidal cells, thereby establishing a pathway for theta rhythmic modulation of

the hippocampus (Toth et al., 1993, Tóth et al., 1997). Such septal projections were also

found to terminate in DG, CA3 and the subiculum (Crutcher et al., 1981) and could sim-

ilarly modulate the theta rhythms in these areas. Importantly, experimental studies have

demonstrated the functional significance of these MS-Hippocampus connections. Pharma-

cological blockade of HCN ion channels within the MS has been shown to diminish theta

power in the hippocampus (Xu et al., 2004). Also, temporal analysis has revealed that

MS GABAergic neurons with HCN channels precede hippocampal CA1 interneurons by

approximately 30ms and the (LFP) by about 80ms (Hangya et al., 2009), further support-

ing the notion of an MS-hippocampus pathway of rhythmic synchronization. Therefore,

converging lines of evidence demonstrate that the synchronized activity at theta frequency

in the hippocampus is coordinated by the pacemaker cells of the MS.

However, the exclusive role of MS in theta rhythm generation has historically been chal-

lenged by evidence suggesting that the intrinsic circuits in the hippocampus can produce

rhythmic activity independently. Early in vitro studies (Konopacki et al., 1987, Bland

et al., 1988) demonstrated that cells in isolated hippocampal slices can spontaneously

fire at theta frequencies, highlighting the pace-making capabilities of the hippocampus’s

intrinsic circuits. However, these studies relied on the induction of theta rhythm through

carbachol, a cholinergic agent, thereby necessitating external cholinergic activation to

stimulate the pace-making circuits.

A similar in vitro study by Goutagny et al. (2009), which utilized an improved slicing

preparation that preserved more intrinsic circuits, revealed that spontaneous rhythmic
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firing in the hippocampus could occur without cholinergic activation or afferent inputs.

This finding suggests that isolated hippocampal circuits can initiate and maintain theta os-

cillations autonomously. Furthermore, the study identified a coupling mechanism between

the CA1 interneurons and pyramidal cells responsible for rhythmic firing. This coupling

involves interneurons receiving excitatory postsynaptic potentials (EPSPs) from pyrami-

dal cells and reciprocally providing inhibitory postsynaptic potentials (IPSPs), leading

to rebound spikes in pyramidal cells and maintaining periodic firing. Theoretical models

further support the notion that this coupling can result in self-sustained rhythmic firing

patterns (Santos et al., 2021). An optogenetic study by Amilhon et al. (2015) showed that

interneurons in CA1 expressing parvalbumin (PV) were able to control the theta rhythm

generation at 8 Hz. Additionally, computational simulations incorporating realistic hip-

pocampal models have revealed that theta rhythms can spontaneously emerge within the

CA1 region without external oscillatory modulation and identified the PV interneurons

are the primary contributors (Bezaire et al., 2016). Collectively, these studies support the

notion of intrinsic generation of theta rhythmic activity in the hippocampus as opposed

to the necessary external modulation from the MS.

While the involvement of the MS and the hippocampus itself in the theta rhythm gen-

eration is evident, either of these structures might not exclusively account for the origin

of theta oscillation (for reviews, see Buzsáki (2002), Colgin (2013)). Several other brain

areas have been revealed to contribute to the theta rhythm generation, including the

brain stem-diencephalon system (Vertes et al., 2004) and the EC (Montoya and Sains-

bury, 1985, Gu and Yakel, 2017). Moreover, the systemic theta phase shift along the

septo-temporal axis of the brain (Lubenov and Siapas, 2009, Patel et al., 2012) has also

led to the proposition of multiple intrinsic theta oscillators (Colgin, 2013). In conclusion,

the origin of theta rhythm in the hippocampus appears to involve a heterogeneous inter-

play among generators, potentially encompassing the MS, intrinsic hippocampal circuits,

and other brain regions, collectively contributing to synchronized firing patterns at the

theta frequency. Further research is needed to fully comprehend the intricate interplay

among these generators and their contributions to theta oscillations in the brain.

1.4 Computational models of the theta temporal code

The mechanism underlying the theta temporal code for space is still an ongoing area of

research. Neuroscientists have proposed theoretical models to account for the phenomena

of theta sequences and phase precession. The present thesis categorizes the computational

models into two families: intrinsic and extrinsic.

In intrinsic models, theta correlation depends solely on intra-hippocampal connectivity.

A simple example would be a unidirectional projection from one place cell to another,

which can create a short time latency between their spikes and, consequently, a phase
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lag in cross-correlation. The unidirectional projection implies that the sign of the theta

correlation does not change in response to extra-hippocampal sensorimotor inputs such

as running trajectory. In such cases, the sign of theta correlation remains the same even

when the running direction is reversed.

Conversely, in extrinsic models, theta correlation depends on the extra-hippocampal sen-

sorimotor input. The sequence order of place cell activity should mirror the order in which

their place fields are traversed. As a result, the theta correlation represents the tempo-

ral order of the trajectory and flips signs when the trajectory is reversed, as observed in

Huxter et al. (2008).

In this section, we discuss how these two families of models can explain the theta temporal

code and their strengths and weaknesses.

1.4.1 The intrinsic family

One representative model within the intrinsic family is Tsodyks et al. (1996). In their

theoretical framework, place cells unidirectionally project to the cells that represent the

next locations along the trajectory (Figure 7A). The activity of the place cell at the

current position of the animal causes the place cell at the next position to fire with

a time delay, which further activates the next connected place cell. The chain effect

generates a spike sequence of multiple place cells (Figure 7B top). Importantly, all place

cells receive global theta oscillatory inhibitory modulation, which resets the population

activity in every theta cycle and confines the spike timings into the theta timescale. A

crucial component in the model is the asymmetry of synaptic connections. Place cells

project synapses in a unidirectional manner to their counterparts, thereby preventing a

bidirectional propagation of place cell activity. Consequently, the temporal order of the

spike sequence is determined by the intra-hippocampal network connectivity.

The intrinsic models, therefore, heavily rely on the assumption of asymmetric connectivity.

Past modelling work by Wallenstein and Hasselmo (1997) and Scarpetta and Marinaro

(2005) showed that this asymmetric connectivity pattern could be acquired through past

experience. Specifically, they applied a causal Hebbian-like synaptic learning rule which

strengthens the connection from a pre-synaptic place cell to a post-synaptic place cell

if the former fires a spike before the latter. As a result, when place cells are activated

sequentially by a running trajectory, asymmetric connections reflecting the activation

order of these place cells are formed. Spike sequences can thus be coordinated by the

asymmetric connectivity after spatial experience. A similar model by Jensen et al. (1996)

showed that such sequence learning can be extended to remember a sequence of activation

patterns of neurons in general, not just place cells. This demonstrates that the capacity

of the theta sequence mechanism to encode the temporal order of multiple memory items.

Apart from learning, the asymmetric pattern could also arise from pre-existing synaptic
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connections among hippocampal neurons, which can already contribute to the temporal

correlation between their firing activities even prior to behavioral experiences (Dragoi and

Tonegawa, 2011, 2013).

However, the fundamental assumption of asymmetric connectivity poses a major challenge

of the model, as it fails to account for phase precession during backward travel against

the unidirectional projections (Cei et al., 2014). In such cases, the theta sequence would

propagate backward, and the theta correlation would not flip sign in response to movement

reversal (for illustration, see Figure 7B). Hence, the intrinsic model is unable to explain

the dependence of theta correlations on the behavioral trajectory, as observed in Huxter

et al. (2008) (also see Figure 6).

1.4.2 The extrinsic family

In contrast to intrinsic models, the theta correlation in extrinsic models is determined by

the temporal information from the extra-hippocampal input, specifically the sensorimotor

input current from the EC during spatial navigation. Thus, the theta correlation is able

to represent the trajectory and reproduce the trajectory dependence observed in Huxter

et al. (2008). One notable example is Romani and Tsodyks (2015). In their theoretical

framework, place cells are recurrently connected with symmetrical synaptic strengths but

undergo a mechanism called short-term depression (STD) (Tsodyks and Markram, 1997).

The STD limits the resource of neurotransmitters at the synapses, such that they could

be depleted by the sustained activity of the pre-synaptic neuron. As the animal traverses

a sequence of place fields, the place cells with field centers behind the animal are left with

depleted synapses and receive reduced recurrent input compared to those ahead of the

animal (Figure 7C). This creates a temporarily asymmetrical connectivity that is stronger

in the direction of travel and propagates the sequential activity of place cells forward. The

depleted synaptic resource will recover after the pre-synaptic neuron stops firing, with a

time constant between 200 and 800ms (Tsodyks and Markram, 1997). This period is

approximately the time required for rodents to cross a place field in most experimental

enclosures. Thus, the theta sequence can be initiated again when the same place field is

visited thereafter. Although the spike sequence is still produced by recurrent connections,

the temporal order of the sequence is determined by the animal’s movement (Figure 7D).

Several other models exist within the extrinsic family. Similar to STD, spike timings in

theta oscillation can also be coordinated by short-term facilitation (STF) (Thurley et al.,

2008). STF progressively amplifies the sensorimotor input received by the place cells

ahead of the animal compared to those behind it, creating a similar sequential activity.

Beyond the mechanisms of short-term plasticity, phase precession can also arise by lever-

aging the negative correlation between the amount of depolarization by spatial input and

the spike latency of a neuron. Increasing depolarization causes the membrane potential to
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Figure 7: Schematic illustrations of the theta sequence generation mechanisms in the
intrinsic and extrinsic models. (A) Theta sequences generation by the intrinsic network
connectivity with asymmetrical projections to the neighboring place cells, as originally
proposed by Tsodyks et al. (1996). Place cells project more strongly to their rightward
neighbors than to their leftward neighbors. xi indicates the center locations of the place
fields. (B) Spike raster plot of place cells (at location x1 to x5) when the animal moves
forward along the stronger direction of the asymmetry (left panel) and backward against it
(right panel). The model fails to account for phase precession during backward travel. The
solid gray line marks the running trajectory. Bottom: Cross-correlation between a pair
of place cells remains unchanged in both directions. The peak time lag is always negative
(the left cell fires before the right cell), even when the animal travels from right to left.
(C) Theta sequence generation by short-term depression mechanism proposed by Romani
and Tsodyks (2015). The synaptic resource (grayscale color) of the place cells behind the
movement is depleted, thereby generating spike sequence in the forward-moving direction.
(D) The theta sequence is movement-dependent and propagates forward in the direction
of travel. Theta correlation changes signs when the running direction is reversed.
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surpass the firing threshold progressively earlier, thereby inducing precessing spike phases.

However, as the spatial input diminishes, additional mechanisms are required to suppress

the progressive increase of spike phases in the later part of place field. Harris et al. (2002)

employed adaptation dynamics that prohibits spiking activity in the decreasing part of

the spatial input. In addition, Mehta et al. (2002) directly employed an asymmetrical in-

creasing ramp of spatial input, without a decreasing part of the spatial input, to generate

phase precession.

The extrinsic models coordinate spike timings via the temporal order of sensorimotor

input, which is fundamentally different from the intrinsic family where spike timings are

coordinated by recurrent connectivity. The trajectory-dependent theta temporal code

thus does not necessitate recurrent connectivity as demonstrated by the recurrence-free

models that utilize STF and asymmetry of spatial input.

1.5 Contributions of intrinsic circuitry to the temporal code

While the extrinsic models excel in accounting for the dependence of theta temporal code

on trajectories, the study by Huxter et al. (2008) primarily focused on the CA1 region

but not CA3 region. The CA1 region is a primarily feed-forward network structure while

the CA3 has more recurrent projections. As discussed in the previous section about

intrinsic models, theta sequences could be coordinated by recurrent connectivity between

place cells. This implies that the intra-hippocampal network connectivity should play a

larger role in the theta temporal code in the CA3 region and consequently, their theta

temporal code would be more consistent with the intrinsic models. However, a detailed

investigation into the theta temporal code in CA3 in comparison to CA1 has been lacking.

Moreover, the feedback projections linking CA3-DG and the phenomenon of hippocampal

replays during sharp-wave ripples (SWRs) also point towards potential contributions to

the temporal code from intra-hippocampal connectivity. Therefore, this section discusses

the rationales behind the intrinsically driven theta temporal code within the CA3 region.

1.5.1 Recurrent networks in the CA3 region

One anatomical difference between CA1 and CA3 is their network structures. In CA3,

pyramidal cells not only project axons to CA1 via Schaffer’s collaterals but also establish

connections with other pyramidal cells within the same CA3 region (Amaral and Witter,

1989, Ishizuka et al., 1990, Andersen et al., 2006). Roughly 30 to 70% of synapses from

CA3 pyramidal cells terminate within the same CA3 region (Le Duigou et al., 2014, Li

et al., 1994), forming a large recurrent and auto-associative network. In contrast, CA1

region is a mostly feed-forward structure. It receives the major input from the upstream

pyramidal cells in CA3 and EC layer II regions, mainly projecting to the subiculum region,

EC layer V and VI, and exhibiting comparatively fewer recurrent projections to themselves

21



Linking hippocampal sequences and spatial representations

(Amaral and Witter, 1989, Andersen et al., 2006).

Furthermore, CA3 pyramidal cells form not only recurrent projections to themselves, but

also backward projections to the DG. The CA3 neurons innervate mossy cells in the DG

hilus, which subsequently project to DG granule cells, and, in turn, to the CA3 pyramidal

cells via mossy fibers (Scharfman, 1994, 1995, 2007, 2016). Although the pathway is

indirect and involves inhibitory interneurons, it has been shown that activity of CA3 can

be reverberated to themselves via DG area (Penttonen et al., 1998), allowing DG activity

to participate in CA3 place cell computation. In fact, this CA3-DG recurrence has been

suggested to support the retrieval of hetero-associative memories (Lisman et al., 2005),

pattern separation of contextually similar memories (Myers and Scharfman, 2009b, 2011),

and prospective firing activity of CA3 place cells (Sasaki et al., 2018), indicating that the

back-projection pathway is functional for information processing.

The feedback projections within CA3 and the CA3-DG network can render the CA3 theta

temporal code less dependent on the external sensorimotor drive and more on the intra-

hippocampal connectivity. Hence, the experimental observation of trajectory-dependence

in CA1 theta correlations by Huxter et al. (2008) might not be transferable to the CA3

region and would warrant further investigation.

1.5.2 Hippocampal replay and preplay

Other than theta timescale, sequential activity of place cells also occurs during SWRs

which are high-frequency (100–250Hz) oscillations observed in LFP. These oscillations

typically appear as brief periods of high-amplitude deflections lasting for 100-200ms in

each event. SWRs can be generated by rapid bursts of spike sequences from place cells,

which often reactivate the spatial locations previously visited by the animal, giving rise

to the term ”replay” (see Figure 8 for the illustration). The replay sequences are as-

sociated with the performance of spatial learning (Girardeau et al., 2009, Ego-Stengel

and Wilson, 2009, Carr et al., 2011), are thought to enhance memory consolidation, as

the temporal correlation between neurons can reinforced by synaptic plasticity through

repeated sequential reactivation. Unlike theta sequences, which occur only when the ani-

mal is actively running , the replay sequences exclusively occur during sleep (Wilson and

McNaughton, 1994, Skaggs and McNaughton, 1996, Lee and Wilson, 2002), or awake but

immobile periods (Foster and Wilson, 2006, Karlsson and Frank, 2009, Diba and Buzsáki,

2007, Silva et al., 2015, Carr et al., 2011).

The temporal order of replay sequence is often considered to arise from the intrinsic

network connectivity. This is because the replay sequence emerges during stationary

states, even though the place cell sequence represents a trajectory extending beyond the

animal’s current stationary position. Therefore, the sequence order is not organized by

external sensorimotor inputs during online locomotive behaviors. Instead, it rather reflects
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correlations originating from intrinsic network dynamics, as the sequence order resembles

the past behavioral experiences, which could be encoded in the network connectivity.

Notably, the more frequently place cells are co-activated in theta cycles during running, the

stronger their correlations are in the replay sequences during sleep, indicating a Hebbian-

like learning rule underlying the acquisition of replay sequences (O’Neill et al., 2008).

Blocking NMDA receptors also prevents the replay sequences from encoding new spatial

sequences (Silva et al., 2015). These studies support the hypothesis that replay sequences

are coordinated by intrinsic network connectivity through learning.

Figure 8: Figure by Carr et al. (2011), adapted from Diba and Buzsáki (2007), illustrat-
ing hippocampal replay. Middle: Raster plot showing the spike times of 13 place cells
(color-coded) on the linear track as their place fields were sequentially traversed by the
animal. The LFP recorded in CA1 is shown on top of the spike raster. The left and right
insets illustrate the magnified windows of a forward and reverse replay sequence within
their SWRs, respectively. Note that both types of replays occur during immobile periods
as indicated by the low velocities. Figure reused with permission of the rights holder,
Springer Nature.

Another similar phenomenon is hippocampal preplay Dragoi and Tonegawa (2011, 2013).

In contrast to replay, preplay activates neuron sequences in SWRs even before the animal

explores a novel environment. These neurons later develop spatial tuning and become

place cells that represent the environment. Retroactively decoding the preplay sequences

using the place cells reveals spatially plausible trajectories. This discovery implies that

new behavioral experiences can be mapped onto pre-existing temporal sequences, pre-

sumably generated by intrinsic network connectivity, removing the need to re-learn a new

sequence structure of memory. It emphasizes the role of intrinsic network connectivity in

coordinating temporal coding.

Both hippocampal replay and preplay phenomena suggest that intrinsic network dynamics

could contribute to the coordination of sequence activity. Thus, it is worth investigating

whether a similar intrinsic mechanism, such as theta oscillations, can contribute to the

temporal code at a longer time scale.
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1.6 Summary

As discussed in previous sections, the CA3 region is well poised to generate sequential

activity reflective of intrinsic network dynamics, rather than the sensorimotor input, due

to the feedback projections with itself and the DG. Despite the evidence that the theta

sequence in CA1 represents the online running trajectory (Huxter et al., 2008), a direct

comparison of theta temporal code between CA3 and CA1 remains unexplored. Therefore,

we were motivated to investigate whether the theta temporal code in the CA3 region would

still exhibit the same degree of dependence on sensorimotor input.

In the first publication ”Directional Tuning of Phase Precession Properties in the Hip-

pocampus”, we analyzed the electrophysiological data from the rat hippocampus during a

free-foraging task in a 2D space. We assessed the contribution of intrinsic network circuits

to theta temporal code, by systemically quantifying the properties of phase precession and

theta correlation as a function of running direction. According to the predictions from

Tsodyks et al. (1996) model (Figure 7), a more intrinsically driven theta correlation would

remain invariant to trajectory reversal, and the phase precession should vary in different

running angles (Figure 9). With these indicators, we were able to gauge the influence

of intrinsic network dynamics and sensorimotor input on the theta temporal code. We

demonstrated that theta sequences were comprised of both extrinsically and intrinsically

driven correlations, with the latter being more pronounced in the CA3 place cell popula-

tion. Thus, the theta temporal code is coordinated by both intrinsic network dynamics

and sensorimotor input.
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Figure 9: Phase precession of a single place cell (shown in blue) driven by intrinsic network
dynamics through unidirectional (rightward) projections. However, it remains unclear how
the phase-position relationship varies with the running direction in a space represented
by a 2D topology of place cells.

In the second manuscript ”A theory of hippocampal theta correlations accounting for
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CA3 layer

DG layer

θDG

Figure 10: The network model of CA3 and DG place cells. The extrinsic sequence is
generated by the running trajectory via STD mechanisms within CA3 place cells. The
intrinsic sequence is produced by unidirectional feedback projections via the DG layer.
Temporal sequences thus propagate along the two 1D manifolds in a 2D space, namely
the trajectory and the spatial pathway represented by the CA3-DG projections.

extrinsic and intrinsic sequences”, we followed the notion of the heterogeneous nature

of theta correlations and proposed a spiking neural network model that can account for

the extrinsically and intrinsically driven theta correlations. The spike sequences that

induce these two types of correlations are termed extrinsic and intrinsic sequences. In

more detail, the model consists of two layers of place cells - CA3 and DG. Extrinsic

sequences arise from the STD mechanism within the CA3 layer, while intrinsic sequences

are organized by unidirectional feedback projections between CA3 and DG. The layer

separation allows for the simultaneous propagation of both types of sequences. Working

in concert, they generate theta correlations and phase precession that align quantitatively

with experimental findings. Furthermore, the extrinsic sequence follows the movement

trajectory, while the intrinsic sequence propagates along the unidirectional projection

pattern, which can to spatially deviate from the trajectory (Figure 10). Consequently,

the theta time code becomes capable of representing a 2D space through spike sequences

along multiple distinct 1D manifolds.

Conventionally, the theta sequence was solely considered extrinsic, representing the run-

ning trajectory. The present thesis reveals an additional dimension of spatial encoding

within the theta temporal code characterized by intrinsic network dynamics and demon-

strates that multiple 1D theta sequences can represent 2D space.”.
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Directional Tuning of Phase Precession Properties in the
Hippocampus

Yuk-Hoi Yiu,1,2,3 Jill K. Leutgeb,4 and Christian Leibold1,2
1Fakultät für Biologie, Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, 2Department Biology II, Ludwig-
Maximilians-Universität München, 82152 Martinsried, Germany, 3Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität
München, 82152 Martinsried, Germany, and 4Neurobiology Section and Center for Neural Circuits and Behavior, University of California, San
Diego, La Jolla, California 92093

Running direction in the hippocampus is encoded by rate modulations of place field activity but also by spike timing correla-
tions known as theta sequences. Whether directional rate codes and the directionality of place field correlations are related,
however, has so far not been explored, and therefore the nature of how directional information is encoded in the cornu
ammonis remains unresolved. Here, using a previously published dataset that contains the spike activity of rat hippocampal
place cells in the CA1, CA2, and CA3 subregions during free foraging of male Long-Evans rats in a 2D environment, we
found that rate and spike timing codes are related. Opposite to a preferred firing rate direction of a place field, spikes are
more likely to undergo theta phase precession and, hence, more strongly affect paired correlations. Furthermore, we identi-
fied a subset of field pairs whose theta correlations are intrinsic in that they maintain the same firing order when the run-
ning direction is reversed. Both effects are associated with differences in theta phase distributions and are more prominent
in CA3 than in CA1. We thus hypothesize that intrinsic spiking is most prominent when the directionally modulated sen-
sory-motor drive of hippocampal firing rates is minimal, suggesting that extrinsic and intrinsic sequences contribute to phase
precession as two distinct mechanisms.

Key words: Directional sensitivity; hippocampus; phase precession; place cells; sequences; theta rhythm

Significance Statement

Hippocampal theta sequences, on the one hand, are thought to reflect the running trajectory of an animal, connecting past
and future locations. On the other hand, sequences have been proposed to reflect the rich, recursive hippocampal connectiv-
ity, related to memories of previous trajectories or even to experience-independent prestructure. Such intrinsic sequences are
inherently one dimensional and cannot be easily reconciled with running trajectories in two dimensions as place fields can be
approached on multiple one-dimensional paths. In this article, we dissect phase precession along different directions in all
hippocampal subareas and find that CA3 in particular shows a high level of direction-independent correlations that are incon-
sistent with the notion of representing running trajectories. These intrinsic correlations are associated with later spike phases.

Introduction
Hippocampal place cells establish a neuronal representation
of space by exhibiting elevated firing rates at only few

locations in an environment called place fields (O’Keefe
and Dostrovsky, 1971). Place field firing is thought to
underlie the capacity of an animal to navigate in space and
to form spatial memories (Morris et al., 1982; Moser et al.,
1993; Nakazawa et al., 2002). Place field firing also includes
a temporal code associated with the theta oscillation (4–
12 Hz) of the local field potential (O’Keefe and Recce,
1993): As a rat passes through a place field, the spikes phase
precess, that is, they occur at successively earlier theta
phases thereby encoding the relative location of the animal
within a place field (O’Keefe and Recce, 1993; Harris et al.,
2002). Phase precession is generally thought to implement a
compression of behavioral sequences to the theta time scale
so that in a 100 ms time window, spikes of multiple place
cells are elicited in the same order as the activation of the
associated place fields along the trajectory of the animal
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over the time scale of seconds (Melamed et al., 2004; Dragoi
and Buzsáki, 2006; Foster and Wilson, 2007; Jaramillo and
Kempter, 2017).

In one-dimensional mazes, the trajectory of an animal can be
uniquely mapped to a sequence of place fields; thus, spike
sequences on the theta time scale (Foster and Wilson, 2007) can
be easily interpreted as reflecting memories of previous locations
or planning of future actions (Feng et al., 2015). In two-dimen-
sional environments, place fields can be entered from multiple
directions, and hence place cells generally take part in encoding
multiple trajectories. Thus, place cells could either be linked to
multiple sequences, or place field sequences could be directional.
In the former case, sequential structure would be imposed by
sensory-motor (extrinsic) inputs, whereas the latter case would
render sequences of intrinsic origin supported by recurrent cir-
cuits or associative loops. Previous reports revealed that pair cor-
relation lags of place fields in the CA1 subregion depend on
running direction (Huxter et al., 2008) and thus support the ex-
trinsic hypothesis, but similar analyses for the CA2 and CA3 sub-
regions, which differ substantially in their cytoarchitecture,
plasticity, and protein chemistry, are missing.

In addition to sequence order, directional information is also
available to the entorhinal-hippocampal circuits from head
direction cells of the postsubiculum (Taube et al., 1990a,b) and
the medial entorhinal cortex (Sargolini et al., 2006; Giocomo et
al., 2014) and, to a limited extent, from within the cornu ammo-
nis itself (Leutgeb et al., 2000). These inputs might explain
observed directionality of some place fields (Leutgeb et al., 2004;
Acharya et al., 2016; Mankin et al., 2019); however, it is unclear
to which extent this rate directionality is related to directionality
of theta sequences.

Past studies have shown that compared with the CA1 region,
place cells in CA3 demonstrate a more persistent and consistent
activity pattern over an extended period of time (Mankin et al.,
2012) and across cue-altered environments (Lee et al., 2004), as
well as a higher stability of place field dynamics across multiple
recording sessions in the same environment (Mizuseki et al.,
2012). Consistently, CA3 place representations stabilized more
slowly after a change of environment than in CA1 (Leutgeb et al.,
2004). The stability, consistency, and slower stabilization of CA3
place fields, in addition to the classical anatomy indicating strong
recurrent connectivity (Amaral and Witter, 1989; Ishizuka et al.,
1990), lead to a belief that CA3 activity patterns are more reliant
on internal network dynamics and less influenced by external
sensory inputs. Therefore, we hypothesized that the theta
sequence activity in CA3 should be less dependent on the direc-
tionality in the behaviors of the animal than CA1.

Our results show that although the extrinsic contribution to
theta scale firing is dominant in all subareas, this is indeed least
visible in CA3. Moreover, we observe directionality in the phase
precession properties so that CA3 displays later spike phases in
the running direction opposite to the best firing rate direction.

Materials and Methods
Experimental design and statistical analysis. We reanalyzed a previ-

ously published dataset in Mankin et al. (2012, 2015). For a detailed
description of the data collection, we refer to the original work. In brief,
the dataset involves eight male Long-Evans rats that were trained to for-
age for randomly scattered cereal crumbs in either a square (80 cm � 80
cm) or a 16-sided polygon (50 cm radius, also referred to as circular) en-
closure. The experiment began after animals were trained 9–20d in the
enclosure. Single units were recorded simultaneously from the CA1,
CA2, and CA3 subregions for the course of the experiment, which lasted

2 d. On each day the rats completed two blocks of four 10 min sessions,
with two sessions in the square enclosure and two sessions in the circular
enclosure assigned in random order. The enclosures contain a 20 cm-
wide white cue card on an inside wall, and the cue card maintained a
constant angle with the cues outside the room.

Data analysis and statistical tests were performed on Python using
SciPy (Virtanen et al., 2020), NumPy (Harris et al., 2020) packages, and
custom routines based on CircStat toolbox (Philipp, 2009). We used
nonparametric Kruskal–Wallis tests with a post hoc Dunn’s test for sta-
tistical comparisons. Normally distributed data were tested using
Student’s t test. The Watson–Williams test was used for circular data.
For categorical data, we used x 2 and Fisher’s exact tests. The p-values
were adjusted for multiple comparisons using the Benjamini–Hochberg
procedure (Benjamini and Hochberg, 1995). We used two-tailed tests
throughout except for binomial tests, and p = 0.05 is chosen as the signif-
icance level.

Place field detection and delimination. For each place cell, we com-
puted a spatial map of firing rates from each 10 min session by dividing
the spike counts by the occupancy time in each space bin (1 cm� 1 cm).
Spikes and occupancy were smoothed by a Gaussian filter with an SD of
3 cm. Place fields were segmented along the closed contour line located
at 20% of the maximum rate and accepted if the peak rate exceeds 1Hz,
the field area is larger than 25 cm2, and the average firing rate within the
field is larger than outside the field. In the analysis, we separated place
fields into a border and a nonborder group. The groups are distin-
guished by the 20% line touching the boundary of the enclosure. Each
place cell could have multiple place fields that were analyzed separately.

Two place fields are said to be a pair if both field areas intersect and
contain at least 16 spikes of one field that occur next to a spike of the
other field within a time window of 60.08 s (see Fig. 4B). We defined
pairs as border pairs if at least one of the place fields touches the border.
In nonborder pairs, both place fields do not touch the border.

Directionality of place fields. To obtain the directional tuning curve
of place fields, we used a maximum likelihood maximization (MLM)
model (Cacucci et al., 2004). In brief, the model assumes an independent
relation between positional and directional firing probability distribu-
tions, whose product is the firing probability. The product assumption
furthermore ensures that directionality tuning is restricted to the
place field and that the tuning depends on a weighted sum of posi-
tion and direction. The solution of the directional term, which is
also the estimated directional tuning curve, can be fit by iteratively
maximizing firing likelihood to the observation of spikes. This
MLM model has an advantage of reducing sampling bias, which
usually arises at the enclosure borders where certain heading direc-
tions are severely undersampled.

Significance of directionality is determined by comparing the mean
resultant vector length (R) of the directional tuning curve to a shuffling
distribution, which is obtained by randomly shifting the spike times in a
cyclic fashion along a trajectory concatenated from all path segments tra-
versing the place field. The random time shift was repeated 200 times for
each place field. A place field is classified as significantly directional if
the R value exceeds the 95th percentile of its shuffling distribution. For
field pairs, the same method is used to determine the significance of
directional selectivity, except that the R is calculated from spike pairs.

Significance of the preferred precession direction is also determined
by comparison of R to a distribution obtained from shuffling spike times
over all passes through the field. In this case the R value for precession
directionality is computed from the directions of field traversals that
exhibit phase precession. A pass is labeled as precessing if the phase-
position relation of the spikes has a negative slope derived from linear-
circular regression (Kempter et al., 2012).

Correlation lags. We produced cross-correlograms for the spike
trains of every field pair, with the resolution of 5ms and a time window
between �150ms and 150ms. The resultant cross-correlograms were
then bandpass filtered (5–12Hz) to derive the correlation lag as the
phase at 0 time lag from the Hilbert transform of the theta filtered
correlograms.

Classification of extrinsic and intrinsic pairs. To quantify the de-
pendence of correlation lag on directionality, we devised the measures of
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“extrinsicity” and “intrinsicity” for each field pair. The extrinsicity is
computed as the Pearson’s correlation coefficient between the cross-cor-
relogram for runs from one field to another and the cross-correlogram
for runs in the opposite direction but with the sign of time-axis flipped.
The Pearson’s correlation coefficient (r) is then linearly transformed

(r9 ¼ r11
2

) to be in the range of 0 and 1. The extrinsicity is close to 1 if a

field pair was mainly driven by the external sensory input, as the sign of
correlation lag would be reversed if the place fields were traversed in a
reversed order. Similarly, the intrinsicity is computed as the Pearson’s
correlation coefficient between the two cross-correlograms without flip-
ping the sign of time-axis. The value of intrinsicity is close to 1 if the cor-
relation lag of a field pair was mainly dependent on its intrinsic
dynamics but less on the external sensory-locomotor input, leading to
similar correlograms in two running directions. Note that using this def-
inition, extrinsicity and intrinsicity are two independent values that are
not necessarily correlated. We classify a field pair as extrinsic (Ex) if its
extrinsicity exceeds its intrinsicity and as intrinsic (In) if its intrinsicity
exceeds its extrinsicity.

Inclusion criteria for analysis. The animal trajectory is split to
passes entering and exiting the place fields or pairs. Intervals in
which the speed of the animal is below 5 cm/s were excluded. The
passes are then chunked to smaller segments in which the speed
was always above 5 cm/s.

The pass segments and their spikes are only included if the pass du-
ration is longer than 0.4 s and satisfies a straightness threshold as in the
following:

R2 .mean1 qð std dev Þ ¼
11q

ffiffiffiffiffiffiffiffiffiffiffi
1� 1

n

r

n
;

where q = 5, R is Rayleigh Vector length of the heading samples of the
animal, and n is the number of heading samples. In case the pass is
chunked because of low speed, to determine the traveled distance of the
animal inside the place field relative to the entry point, only the first pass
segment entering the place field is included for analysis. The relative
position of the animal can thus be determined by distance traveled di-
vided by the field diameter.

Pair-crossing passes are classified as A! B if they start from an area
within field A but not field B, and end in an area within field B but not
field A. The opposite criteria apply for B ! A passes. Passes that do not
satisfy the above criteria, or cross either one of the field boundaries more
than once, are not assigned to any of the directional groups (A! B or B
! A). These unassigned passes were also included in computing the fir-
ing rate directionality but excluded for cross-correlation analyses. As a
result, field pairs that have no spike pairs along the A ! B or B ! A
passes were further excluded in the cross-correlation analyses.

Model simulation. Romani and Tsodyks (2015) proposed a recurrent
network model of the hippocampus, which we adapted and simulated
using our trajectory data. Here, we briefly summarize the key equations
of the model. The dynamics of firing rate mi(t) of place cell i at time t is
given by the following:

t _miðtÞ ¼ �miðtÞ1 f
�
IEi ðtÞ1 IRi ðtÞ

�
;

where t = 10ms is the time constant, f(.) is the firing rate function, IEi ðtÞ
is the sum of external positional and theta oscillatory inputs, and IRi ðtÞ is
the recurrent input from the other neurons. The latter is computed as
follows:

IRi ðtÞ ¼
1
N

XN
j¼1

WijmjðtÞxjðtÞ;

withWij denoting the synaptic weight from neuron j to i and xj denoting
the depletion state of the synaptic vesicle pool, which is recovering with
time constant tR = 800ms as follows:

_xiðtÞ ¼ 1� xiðtÞ
tR

� UxiðtÞmiðtÞ:

The parameter 0, U � 1 denotes the release probability. The intro-
duction of xi(t) penalizes the recurrent input from the highly activated
place cells with a delay, and therefore it produces asymmetrical weight
couplings that are stronger in the forward direction as the animal moves.

We adopted the model parameters from the toroidal environment
described in Romani and Tsodyks (2015). The periodicity of the envi-
ronment was removed by clipping the cosine function cos(x) at the value
of �1 for |x| . p . Our simulation thus has 32 � 32 neurons equally
spaced across a 2p � 2p unit squared environment. We randomly
chose one recording session in the square arena from the experimental
data as the trajectory, and rescaled the trajectory into the range of 0 and
2p and the average speed to be the same as in the original study (2p /5
unit per second). Simulation was implemented with 1ms temporal reso-
lution using the Euler method. Spikes from each place cell were then
subsampled by a fraction so that the average spike count of all simulated
place fields is the same as the experimental data.

Results
Directional tuning of place cells
Directionality of hippocampal place field activity has been
reported in a number of previous studies (Leutgeb et al., 2004;
Acharya et al., 2016; Mankin et al., 2019), but quantitative com-
parisons between those studies were hampered because of the
use of different methods and behavioral paradigms. Here, we an-
alyze the firing properties of simultaneously recorded CA1, CA2,
and CA3 neural networks under identical experimental condi-
tions. We thus first applied one established rate-based direction-
ality analysis on the datasets used in this article (Mankin et al.,
2012, 2015) for further comparison. Directional tuning for each
place field was quantified using the mean resultant vector length
(R) obtained from directionality fields derived by the MLM pro-
posed in Cacucci et al. (2004); Fig. 1A, single examples, 1B popu-
lations. Because mean resultant vector lengths are strongly
biased by the number of observations (Fig. 1B), we decided to
analyze directional tuning as a function of the spike count
threshold criterion for including place fields (Fig. 1C) and
include only the fields with spike counts higher than 40 in our
statistical analysis of place field directionality. We found that all
CA regions contain a fraction of directional fields that is above
chance level (Binomial test; CA1, 146/800 = 0.1825, p = 1.8e –
41; CA2, 111/521 = 0.2131, p = 2.4e – 38; CA3, 45/396 = 0.1136,
p = 3.5e – 07). The amount of directionality in all regions not
only depends on the overall spike count threshold of the place
field (showing an initial increase that is expected from the gain
in statistical power) but also on whether the place field is located
at the boundary of the arena (Fig. 1C).

Comparing the place field directionalities between CA
regions, CA1 and CA3 have a higher median R than CA2
[Kruskal–Wallis test; CA1 (n = 800) vs CA2 (n = 521) vs CA3
(n = 396), H(2) = 22.18, p = 1.5e – 05; post hoc Dunn’s test with
Benjamini–Hochberg correction; CA1 vs CA2, p = 0.0003, CA2
vs CA3, p = 3.8e – 05, CA1 vs CA3, p = 0.1920]. The fraction of
significantly directional fields in CA3 is lower than in CA1 and
CA2 (Fisher’s exact test for independence of significant fractions
with Benjamini–Hochberg correction; CA1 vs CA2, p = 0.2656;
CA1 vs CA3, p = 2.2e – 05; CA2 vs CA3, p = 0.0074). However,
as we increase the spike count threshold to admit only fields that
are highly sampled, the fraction of significantly directionally
tuned fields becomes similar in CA1 and CA3, as far as our data
allow such a comparison because of the only very few CA1 and
CA3 fields with high spike numbers (Fig. 1D).
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To accurately interpret the above results, we looked into pos-
sible confounds. A major influence on directionality could arise
from the presence of arena boundaries, both because they act as
salient sensory landmarks and they introduce a behavioral bias.
We thus further separated place fields into border and nonbor-
der fields. Including all the place fields regardless of spike counts,
we found that border fields in CA1 generally have higher direc-
tional selectivity than in the nonborder case [Kruskal–Wallis
test; border (n = 537) vs nonborder (n = 263), H(1) = 62.33,
p = 2.9e – 15; Fisher’s exact test; p = 5.7e – 05], whereas
CA3 exhibits significant border difference in median R
[border (n = 257) vs nonborder (n = 139), H(1) = 15.31, p =
9.1e = 05] but not in significant fraction (Fisher’s exact test;
p = 0.0885). Similar to CA1, directionality measures in CA2
also exhibit a significant border effect [Kruskal–Wallis test;
border (n = 359) vs nonborder (n = 162), H(1) = 31.95, p =
1.6e – 08; Fisher’s exact test; p = 3.6e – 07].

We thus conclude that place field rates in all CA areas
encode running direction, and directionality in CA1 and
CA2 is more strongly induced by borders, whereas this is
not the case for CA3 in which the directionality is more
similar between border and nonborder fields. Assuming
boundaries to induce a strong sensory-motor constraint,
this is already a first hint that CA1 activity is more strongly
influenced by extrinsic factors than CA3.

Preferred direction for phase precession in place fields
In addition to the firing rate code, because place field activity is
also temporally organized on the theta scale by phase precession
(Fig. 2A), we also asked to what extent directionality is also
reflected in this temporal code. For each place field, we therefore
identified a direction in which phase precession is more likely to
occur using single pass phase precession analysis (Schmidt et al.,
2009; Kempter et al., 2012; see above, Materials and Methods for
inclusion criteria). In brief, we fit a linear-circular regression line
for the phase-position relation in every single pass. Passes with
negative regression slope between –2p and 0 (per pass length)
are classified as phase precessing (Fig. 2B).

First, we computed the density of phase precession occur-
rences from all passes in all fields as a function of pass direction
relative to the preferred firing rate direction of the respective
field (Fig. 2C). We find most precessing passes along the best
rate direction, reflecting the fact that more spikes should give rise
to more detectable phase precession. However, not all spikes
may contribute to phase precession to the same degree, either
because of different levels of phase noise or because they occur
outside theta sequences. If phase precession is directional beyond
a simple spike count effect, it needs to show in an analysis per
spike. Thus, computing the density of precessing passes per spike
(Fig. 2C, right), we found that phase precession is more likely to
occur the more the pass direction differs from the preferred rate

D

C

B

A

Figure 1. Directionality of place field firing rates. A, Examples of place fields in square and circular enclosures of a free-foraging experiment overlaid with the trajectory of the animal in one
recording session and spike events color coded by heading direction (color wheel at right). Directional tuning curve is shown to the right of each spike position plot. Mean direction (black bar),
mean resultant vector length R (top), peak rate in Hz (bottom). B, R and total within-field spike counts of all border (B, teal) and nonborder (N-B, gold) place fields, as well as marginal distri-
bution of R (right). R values are strongly biased by sampling. Therefore, we excluded the fields with spike counts below 40 in our directionality analysis, indicated by the shaded region. C,
Median R (top row) and fraction of significantly directionally tuned place fields (bottom) by different spike number thresholds for all (solid line), border (dotted line), and nonborder (dashed
line) fields in each brain region as indicated. CA1 and CA2 directionality is strongly border driven. D, Fraction of all place fields (top) and border fields (bottom) by spike count thresholds.
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direction of the field (Spearman’s correlation; CA1, rs(6719) =
0.83, p = 2.0e – 12; CA2, rs(4837) = 0.39, p = 0.0085; CA3, rs(2625) =
0.62, p = 7.5e – 06), indicating that spike rate and phase preces-
sion differentially contribute to rate directionality.

In addition to this population-wide analysis, we also identi-
fied the direction in which precession is most probable per spike
for each field separately and call it the best precession angle
u precess. Histograms of preferred precession angles from all place
fields separately (Fig. 2E, top row) also demonstrate a significant
p shift from their preferred firing direction (V-test vs p direc-
tion; CA1, V(731) = 155.54, p = 2.2e – 16; CA2, V(466) = 51.75, p =
0.0003; CA3, V(341) = 47.12, p = 0.0002). However, by comparing
the R values of precessing passes to a shuffling distribution (see
above, Materials and Methods, shuffling procedures), we found
that only 24/829 (2.9%), 11/560 (2.0%), and 20/441 (4.5%) of
place fields in CA1, CA2, and CA3, respectively, exhibit signifi-
cant preferred precession direction, which is not significant
under binomial tests (CA1, p = 0.9990; CA2, p = 0.9999; CA3, p
= 0.7034). We thus conclude that although on the level of the

single field the antiphase relation between spike count and phase
precession is weak and does not reach significance (and therefore
has likely not been identified previously), there is a strong indica-
tion of such a relation on the population level.

To further rule out that the p shift between best rate and best
precession direction might arise as an epiphenomenon of differ-
ent spike counts, with the opposite of the preferred rate direction
being overrepresented by the normalization process, we recom-
puted the histograms of preferred precession angles by limiting
the passes to only those with low spike counts (,25% quantile of
all precessing passes in each CA region) so that there is no firing
rate directionality left in the used data. Our results show that the
place fields in all CA regions still demonstrate a significant p
shift from the preferred rate direction (Fig. 2E, bottom row; V-
test vs p direction; CA1, V(294) = 46.58, p = 6.1e – 05; CA2,
V(226) = 20.44, p = 0.0273; CA3, V(120) = 17.04, p = 0.0139). Thus,
on the population level, the direction of best phase precession
displays a consistent and significant bias toward the opposite of
the direction of best firing rate, corroborating the hypothesis of

E

F
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D

CA

Figure 2. Phase precession per spike is most prevalent opposite to the direction of highest firing rate. A, Top row, Three examples of phase precession pooled over all passes in one recording
session. Position is normalized to be between 0 and 1 with respect to the moments of entering and exiting the place field. Linear-circular regression line is indicated in black, characterizing
phase precession by its slope and onset phase. Bottom rows, Phase precession in example passes. Passes with slope between –2p and 0 are classified as incidents of phase precession. B,
Fraction of fitted negative slopes among all passes as a function of pass direction u pass for CA1, CA2, and CA3 (color as indicated) indicates a similar amount of precessing passes in all subre-
gions. C, Distribution of phase precessing passes in the whole dataset (left) mirrors the elevated spike count along the preferred rate direction u rate of the field (middle) pooled over all precess-
ing passes as a function of absolute angular deviation |d(u pass, u rate)| from pass direction u pass. We therefore normalized the spike distribution by precession occurrences (ratio of left and
middle graph) to obtain a distribution of phase precession per spike (right), which increases with angular distance |d(u pass, u rate)| (p-values from Spearman’s correlations; CA1, rs = 0.83; CA2,
rs = 0.39; CA3, rs = 0.62) indicating an excess of precession at |d(u pass, u rate)| = p that cannot just be explained by increased firing. D, The same analysis on a fieldwise level shows preferred
precession directions (per spike) u precess of single fields and best firing rate direction u rate to be offset by about p (marked by black line). E, Top, Same as D shown as normalized polar histo-
grams of u precess relative to u rate. Bottom, Only low-spike passes (25th percentile) are admitted (p-values are derived from V-test vs the null hypothesis of a circular mean at p ) to control for
high rate bias. Arrow marks direction of the mean resultant vector of the distribution, with the best rate direction pointing to the right. F, Cumulative distribution of R of all place fields in CA1,
CA2, and CA3. Kruskal–Wallis test indicates strongest directionality in CA3.
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distinct coding schemes and, hence, input streams, for spike tim-
ing and rate (Huxter et al., 2003).

Finally, we also compared distributions of Rayleigh vector
lengths R for phase precession tuning and found that although
CA1 and CA2 seem to have similar directionality, CA3 exhibits a
significantly higher directional selectivity (Fig. 2F; Kruskal–
Wallis test; CA1 (n = 753) vs CA2 (n = 485) vs CA3 (n = 363),
H(2) = 9.37, p = 0.0092; post hoc Dunn’s test with Benjamini–
Hochberg correction; CA1 vs CA2, p = 0.3351; CA2 vs CA3, p =
0.0084; CA1 vs CA3, p = 0.0267), further suggesting that direc-
tional information in CA3 place field activity is distinct from
CA1 and CA2.

Phase precession properties show dependence on pass
direction
To further support the existence of directional effects on phase
precession and to elucidate the underlying processes, we
searched for directional modulations of phase precession proper-
ties by quantifying single pass onset phase and precession slope
and plotted their occurrence density (Fig. 3A) for different rela-
tive pass directions |d| (defined as the absolute circular difference
between pass direction and preferred rate direction of the place
field). Although there was no significant correlation between pre-
cession slope and |d| in any CA region (CA1, r(5020) = –0.008, p =
0.5768; CA2, r(3514) = 0.031, p = 0.0564; CA3, r(2044) = 0.013, p =
0.5558), we found that phase onsets slightly but significantly
increase as the heading deviates more from the preferred rate
direction in CA3 (r(2625) = 0.078, p = 5.4e – 05), also, but barely

significantly, in CA1 (r(6719) = 0.024, p = 0.0459), but not signifi-
cantly in CA2 (r(4837) = –0.023, p = 0.0952). Thus, the opposite
directions of best firing rate are signified by later phases, which
could reflect more prospective parts of theta sequence activity
(Foster andWilson, 2007).

For illustration, we plotted the typical characteristics of phase
precession for cases when the animal runs along (|d| , 30°) or
against (|d| . 150°) the preferred rate direction (u rate) by sepa-
rately fitting a regression line for the phase-position relation to
passes from all fields in these two cases (Fig. 3B) and found that
passes aligned to the opposite of best rate direction indeed have
on average a significantly higher onset of precession than those
with different directions in CA3 region but not in CA1 and CA2.
The average precession slopes do not differ between the two
groups of passes.

The difference in onset phases between along-u rate and
against-u rate passes is also corroborated by the phase histograms
(Fig. 3C), where in CA1 and CA3 the against-u rate group exhibits
a significant shift to later phase as compared with along-u rate

group.
Thus, at least in CA3, phase precession tends to start from a

higher phase when the running direction of the rat aligns with
the opposite of preferred rate direction, corroborating that phase
precession exhibits directional modulations.

Directional selectivity in paired place fields
Phase precession is often considered a single-cell reflection of
place cell sequences during theta (Dragoi and Buzsáki, 2006;

C

BA

Figure 3. Directional dependence of phase precession properties. A, Marginal distributions of precession density as a function of onset phase and slope, color coded by the difference
between pass angle u pass and best rate angle u rate (top, illustration of the color code). Black dot indicates the circular mean of marginal density. B, Average phase-position relations for cases
where the animal is running along (blue) and against (green) u rate. Schematic illustration above. Against-u rate condition has higher onset than along-u rate condition; po denotes the p-value
from Watson–Williams test for onset difference (along-u rate vs against-u rate, mean6 SEM in radians; CA1, 3.666 0.04 vs 3.776 0.05, F(1,2073) = 2.93, p = 0.0871; CA2, 3.786 0.04 vs
3.78 6 0.05, F(1,1301) = 0.00, p = 0.9978; CA3, 3.44 6 0.06 vs 3.94 6 0.07, F(1,848) = 25.34, p = 5.9e – 07). There is no difference in slopes between both cases; ps denotes the p-value
from Kruskal–Wallis test for slope difference (mean 6 SEM in radians per unit position; CA1, �4.62 6 0.08 vs �4.54 6 0.10, H(1) = 0.84, p = 0.3584; CA2, �4.48 6 0.10 versus
�4.576 0.13, H(1) = 0.06, p = 0.8117; CA3,�4.446 0.12 vs�4.206 0.14, H(1) = 1.69, p = 0.1940). C, Histograms of spike phases from precession samples show higher spike phase for
passes against u rate; p-values are derived from Watson–Williams test for the difference between the circular means (shown as vertical bars) between the two cases (along-u rate vs against-
u rate, mean6 SEM in radians; CA1, 3.666 0.04 vs 3.776 0.05, F(1,2073) = 2.93, p = 0.0871; CA2, 2.506 0.02 vs 2.506 0.02, F(1,19271), 0.01, p = 0.9867; CA3, 1.616 0.02 vs 2.226
0.03, F(1,17151) = 285.63, p = 1.5e – 63).
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Foster and Wilson, 2007; Feng et al., 2015; Leibold, 2020), and as
such it should show up in peak lags of pair correlation functions too
(Dragoi and Buzsáki, 2006; Huxter et al., 2008; Geisler et al., 2010;
Schlesiger et al., 2015). In two-dimensional environments, such cor-
relation lags have been shown to flip signs depending on the order
in which a trajectory samples the place fields (Huxter et al., 2008),
arguing for strong external (behavioral/sensory) drive of sequence
structure. We therefore hypothesized that if phase precession
reflects sequence firing, correlation lags should also be tuned to cer-
tain directions. To test our assertion, we first identified overlapping
pairs of place fields (Fig. 4A) and included only spike pairs that are
spaced, at most, 80ms in time (Fig. 4B). This criterion allowed us to
admit only the spike pairs that form part of a putative theta firing
sequence.

Overall, directionality results are very comparable between spike
pair and single spike analysis from Figure 1. We observe significant
directionality in all subregions and a higher median R in CA3 (Fig.
4D; statistics in legend). Most importantly, however, directional
tuning of pairs is much higher (in terms of median R) than of single

spikes (Kruskal–Wallis test for median R difference between single
spikes and spike pairs at spike count threshold 40; CA1, single (n =
800) vs pair (n = 258), H(1) = 153.84, p = 2.5e – 35; CA2, single
(n = 521) vs pair (n = 181),H(1) = 113.50, p = 1.7e – 26; CA3, single
(n = 396) vs pair (n = 88), H(1) = 78.70, p = 7.2e – 19), and thus we
conclude that spike correlations in theta sequences induce addi-
tional directionality in line with our initial hypothesis.

Again, separating field pairs into border and nonborder, we
find that pair directionality in CA3 is also border sensitive (Fig.
4, statistics in legend) in contrary to single spike directionality.
Particularly, border-sensitive CA3 pairs extend to high R values
even for spike-pair counts .100 (Fig. 4C). These findings sug-
gests that border sensitivity in CA3 is specifically tied to the cor-
relation structure, whereas in CA1 it is mostly inherited from the
directional firing rates.

Directionality of pair correlation
Because the pair firing rate showed region-dependent differen-
ces, we hypothesized that these differences should also transfer
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A

Figure 4. Pair correlations are highly directional in CA3. A, Examples of pairs of place fields (black contour lines) and the directional tuning curves of paired spikes. Number below the con-
tour plot indicates the amount of field overlap (calculated as 1 – Dks, where Dks is 2D Kolmogorov–Smirnov distance between two place fields). Resultant vector length (R) of the directional dis-
tribution is printed below the tuning curve. B, Raster plots of spike times in a pair of overlapping fields during traversal from field B to A. Admitted paired spikes with time difference,0.08 s
between field A and B are in orange. C, R and spike-pair count for the whole populations of border and nonborder pairs in CA1, CA2, and CA3. Pairs with spike-pair counts below 40 are
excluded in our statistical comparisons, indicated by the shaded region. D, Median R (top) and fraction of significantly directional pairs (bottom) by different spike-pair number thresholds.
Spike pairs in all CA regions were significantly directional [CA1, 31/258 = 12.02% (Binomial test, p = 6.9e – 06); CA2, 17/181 = 9.39% (p = 0.0097); CA3, 9/88 = 10.23% (p = 0.0319)].
Comparing regions in terms of R, we found that CA3 has higher directional selectivity than CA1 [Kruskal–Wallis test; CA1 (n = 258) vs CA2 (n = 181) vs CA3 (n = 88), H(2) = 10.82, p =
0.0045; post hoc Dunn’s test with Benjamini–Hochberg correction; CA1 vs CA2, p = 0.1413; CA2 vs CA3, p = 0.0030; CA1 vs CA3, p = 0.0315]. In CA1, and different from the single spike results
in Figure 1, also in CA3 directionality is induced by the proximity to the border in terms of resultant vector lengths [Kruskal–Wallis test; CA1, border (n = 217) vs nonborder (n = 41), H(1) =
4.39, p = 0.0361; CA3, border (n = 56) versus nonborder (n = 32), H(1) = 9.64, p = 0.0019]. E, Fraction of all place fields (top) and border fields (bottom) by spike-pair count thresholds.
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to spike timing correlations (Fig. 5A). Huxter et al. (2008)
reported that spike correlation lags in CA1 depend on path
direction and thus show a strong extrinsic (sensory/behavioral)
dependence, and so we followed their approach and confirmed
their main results for all three CA regions, that is, correlation
lags decrease as the overlaps of the field pairs increase, and the
sign of the lags flip if the path direction is reversed (Fig. 5B).

However, a closer inspection of the correlation functions
reveals that they often do not have a clear single peak, and thus
we devised a new approach, taking into account the symmetries
of the full correlation function. Field pairs whose activities rely
on intrinsic dynamics and are insensitive to sensory stimulus
should show a similar shape of the correlation function regard-
less of reversing the path direction. In contrast, the correlation
lags of extrinsic pairs should flip sign as an effect of direction re-
versal (Fig. 6A,C, single pass example). Based on this principle,
we were able to quantify intrinsicity and extrinsicity of a pair,
using the overlap of the correlation functions of both pass direc-
tions (original and flipped, extrinsicity; original and original,
intrinsicity; Fig. 6B,D; also see above, Materials and Methods).
Pairs with higher extrinsicity than intrinsicity are classified as ex-
trinsic and vice versa.

The ratios of extrinsic to intrinsic field pairs in CA1 and
CA2 are significantly different from the expected equality,
whereas that of CA3 is not (Fig. 6E, top, one-way x 2 test for

equal proportion of extrinsic and intrin-
sic pairs: CA1, 184 : 128 ¼ 1:44; x 2

ð1;312Þ ¼
10:05; p ¼ 0:0015; CA2, 113 : 83 ¼ 1:36;
x 2
ð1;196Þ ¼ 4:59; p ¼ 0:0321; CA3, 37 : 30 ¼

1:23; x 2
ð1;67Þ ¼ 0:73; p ¼ 0:3924). As a fur-

ther measure for a bias toward extrinsic-
ity or intrinsicity that also takes into
account the amount of ex(in)trinsicity,
we computed their difference, and found
that all regions exhibit a significant bias
toward extrinsicity except in CA3 (Fig.
6E, bottom; Student’s t test for extrinsic-
ity-intrinsicity with expected value of 0;
CA1, mean = 0.0434, t(311) = 5.56, p =
5.8e – 08; CA2, mean = 0.0453, t(195) =
3.92, p = 0.0001; CA3, mean = 0.0291,
t(66) = 1.64, p = 0.1047). We therefore
conclude that the pair correlations in
CA1 and CA2 demonstrate a strong de-
pendence on path directionality but not
significantly so in CA3.

The most parsimonious explanation for
intrinsic pair correlation structure would be
to assume that place cells are bound into
rigid sequences that play out independent of
running direction. In such a scenario, place
field firing should be highly directional, and
pairs with similar preferred direction should
reveal more of the intrinsic correlation
structure than pairs with opposite preferred
direction. We thus further separated pairs
into those with similar (angle difference
,90°) and dissimilar (.90°) best rate angles
(Fig. 6F) and found that pooling over all CA
regions, the similar pairs indeed have a
lower extrinsic-intrinsic ratio than dissimi-
lar pairs (similar = 203:158 = 1.28; dissimilar
= 131:83 = 1.58, Fisher’s exact test; p =
0.0353). Resolving for the different CA

regions, the effect was significant in CA1 (similar = 108:84 =
1.29, dissimilar = 76:44 = 1.73, p = 0.0441) and CA3 (similar =
20:23 = 0.87, dissimilar = 17:7 = 2.43, p = 0.0333) but not in CA2
(similar = 75:51 = 1.47, dissimilar = 38:32 = 1.19, p = 0.0930).
Thus place field pairs with similar directional tuning may con-
tribute more to the activation of intrinsic sequence activation at
least in CA1 and CA3.

Contrary to the extrinsic pairs, the intrinsic pairs are invariant
to sensory inputs and maintain their firing order even when they
are reversely sampled (Fig. 6C, single pass example). A possible
mechanism could be that intrinsic pairs are asymmetrically con-
nected and bias the generation of theta sequences in one direc-
tion. We thus hypothesized that the pair correlation structure
reflects two contributions, extrinsic sequences that are produced
by sensory inputs and flip order with the running directions and,
in addition, intrinsic sequences produced by the internal connec-
tions in a fixed order.

To dissociate the intrinsic sequences from the extrinsic ones,
we focused on intrinsic pairs, and for those we separated the run-
ning trajectories into two groups; either they align with (“Same”
group) or are opposite (“Opposite” group) to the intrinsic direc-
tional bias that is identified via their cross-correlation signals. A
directional bias of A ! B would mean the correlation signal
always has a peak at negative time lag even when the animal
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Figure 5. Strong extrinsic effect on correlation lag in all CA regions. A, Top row, Examples of a field pair with low over-
lap (left) and its cross-correlograms when the animal runs from field A to field B (middle) and in the opposite direction
from B to A (right). The spike correlation lag f , indicated by the distance of the closest peak to midline, generally flips
sign when the direction is reversed. Bottom row, Example of a field pair with high overlap. Note that the magnitude of
correlation lag is smaller than the high-overlap example. B, The higher the field overlap, the larger the spike correlation
lag. Relation between spike correlation lags and the amount of field overlap for all pairs in CA1, CA2, and CA3 when the
animal runs from field A to B (top) and from field B to A (bottom). Black straight line shows linear-circular regression line
(Direction A to B, CA1, r(412) = –0.43, p, 1.0e – 63; CA2, r(260) = –0.39, p = 2.9e – 09; CA3, r(134) = –0.48, p = 6.6e –
08; Direction B to A, CA1, r(414) = 0.49, p, 1.0e –63; CA2, r(280) = 0.17, p = 0.0030; CA3, r(121) = 0.39, p = 1.3e – 05).
Vertical and horizontal curves are the marginal distribution of spike correlation lags and field overlap, respectively.
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traverses from B to A (Fig. 7A). Similarly, a directional bias
of B ! A is determined by having both correlation peaks at
positive time lag (Fig. 7B). In the Same passes, both extrin-
sic and intrinsic sequences could be present and hardly dis-
tinguishable as they have the same firing order. Whereas in
the Opposite passes, the occurrence of extrinsic sequences
is less, as indicated by the lack of reversal of the cross-corre-
lation signal, and hence the theta sequences would be more
representative of the underlying intrinsic firing order.
Therefore, a comparison between Same and Opposite passes
could reveal the difference between extrinsic and intrinsic
sequences. More specifically, we asked whether phase pre-
cession, as a potential single-cell reflection of a theta
sequence, would differ in onsets, slopes, and phase distribu-
tions between Same and Opposite running directions.

In line with our initial hypothesis, we found that precession is
more likely to occur when passes align with the directional bias
(Fig. 7C). The Same condition has a higher fraction of precession
than Opposite condition in all CA regions, but only reaching sig-
nificance in CA1 and CA2 (Fisher’s exact test; CA1, p = 0.001;
CA2, p = 0.0284; CA3, p = 0.0550). Considering only the precess-
ing passes, there is no difference in precession slopes between
Same and Opposite [Fig. 7E; bottom; Kruskal–Wallis test; CA1,
Same (n = 236) vs Opposite (n = 174), H(1) = 0.69, p = 0.4048;
CA2, Same (n = 213) vs Opposite (n = 164), H(1) = 0.15, p =
0.7015; CA3, Same (n = 61) vs Opposite (n = 39),H(1) = 2.52, p =
0.1126], but the phase onset of precession exhibits clear regional
differences. CA3 has higher phase onset when the passes are op-
posite to the directional bias (Fig. 7E; top, Watson–Williams test;
CA3, F(1,98) = 5.24, p = 0.0243), whereas such difference is not
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Figure 6. Place field correlations reveal region-specific extrinsic and intrinsic contributions. A, Top, Illustration of theta sequence from an example extrinsic pair during a single pass when
the rat runs from field A to B (A! B, left). Place cell A (sky blue) fires ahead of B (purple) in each theta cycle (gray and white shaded intervals). When the trajectory direction is reversed (B
! A, right), place cell B fires ahead of A. Bottom, Phase-position relations of spikes for the example pair in A, pooling from all passes in condition A ! B (left) and B ! A (right). B,
Intrinsicity (blue text) is computed by Pearson’s correlation (see above, Materials and Methods) between the cross-correlograms of two running directions (A! B and B! A, left), whereas
the computation of extrinsicity (red text) takes the cross-correlogram of A! B and flipped cross-correlogram of B! A (right). C, Same as A, but an intrinsic pair. Cell B fires ahead of A even
in the direction A! B. D, same as B, but with higher intrinsicity than extrinsicity. E, Top, Scatter plots of intrinsicity versus extrinsicity for all field pairs. The diagonal line represents the deci-
sion boundary; pairs above it are classified as intrinsic pairs and pairs below it as extrinsic pairs. Ratio of extrinsic pairs to intrinsic pairs (red number) and p-values (one-way x 2 test) indicate
significant bias toward extrinsicity for CA1. Bottom, Histograms of differences between extrinsicity and intrinsicity. Mean m (black bar) and p-value of the t test of mean versus zero suggest a
bias toward extrinsicity for all brain regions. F, Intrinsicity versus extrinsicity for pairs with similar (difference,90°, top row) and dissimilar (.90°, bottom row) best rate angles. Detailed sta-
tistics are reported in the text.
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significant in CA1 (F(1,408) = 2.54, p = 0.1115) and CA2 (F(1,375) =
0.35, p = 0.5552). Consistently, pooling the spikes from all pre-
cessing passes, the spike phase distribution from Opposite passes
shows a significant shift to later phases as compared with Same
passes only in CA3 (Fig. 7F; Watson–Williams test; CA3, F(1,2002) =
18.76, p = 1.6e – 05) but not in CA1 (F(1,6017) = 1.86, p = 0.1730)
and CA2 (F(1,6272) = 0.48, p = 0.4890).

According to our hypothesis that extrinsic and intrinsic
sequences are played out in parallel and that intrinsic pairs result
from a suppression of extrinsic sequences in one direction, the
association between intrinsic sequences and later spike phases
should be more strongly visible in intrinsic pairs than in extrinsic
pairs. We thus also inspected the phase distributions in extrinsic
pairs. Because by definition, extrinsic pairs do not have a direc-
tional bias, we resorted to compare the spike phase distributions
from all precessing passes between extrinsic and intrinsic pairs,

regardless of their pass directions. The upward shift of spike
phases in intrinsic sequences (if they include more intrinsic
pairs), should then show up as a higher marginal spike phase
than that of extrinsic pairs. Statistical analysis confirms this pre-
diction and shows that precessing passes from intrinsic pairs
indeed exhibit higher spike phases than extrinsic pairs in CA2
and CA3, but not in CA1 (Watson–Williams test, mean6 SEM in
radians; CA1, Ex 2.076 0.018 vs In 2.036 0.026, F(1,15816) = 0.82,
p = 0.366; CA2, Ex 2.30 6 0.020 vs In 2.59 6 0.032, F(1,9227) =
45.28, p = 1.8e – 11; CA3, Ex 1.20 6 0.035 vs In 1.44 6 0.044,
F(1,4232) = 12.68, p = 0.0002).

Our results support our hypothesis that intrinsic pairs display
two types of sequences, extrinsic and intrinsic in the Same direc-
tion and predominantly intrinsic sequences in the Opposite
direction. Trajectories Opposite to the directional bias of spike
pair lags display later spike phases and higher onsets.
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Figure 7. Prospective representation is revealed in CA3 intrinsic pairs. A, Top, Correlogram of an example pair with directional bias A ! B (A always fires before B). Bottom, Passes that
align with the directional bias A! B (left, brown, denoted as Same), and those are opposite to the directional bias (right, blue, denoted as Opposite). Origins of passes are marked as black
crosses. B, An example pair with directional bias B! A. C, Fraction of passes that are precessing for Same and Opposite (Opp) conditions; p-values are derived from Fisher’s exact test. D, Top,
Phase-position relation for all precessing Same passes. Black solid curve marks the average of all individual linear-circular fits from each precession, and black bar marks the marginal mean
phase. Bottom, Same as top but for Opposite condition instead. Linear-circular fit and marginal mean phase for Same passes from the top are also shown in dashed lines here for comparison.
E, Top, Cumulative density of onsets for all precessing Same and Opposite passes. Colors as in C; p-values are derived from Watson–Williams test for differences in onset phases. Bottom,
Cumulative density of slopes; p-values are derived from Kruskal–Wallis test for differences in slopes. F, Distribution of spike phases for all precessing Same and Opposite passes; p-values are
derived from Watson–Williams test for differences in mean phases (vertical bars). See text for detailed statistics.
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It might seem counterintuitive that when the intrinsic pairs
are traversed in the opposite direction, sequences play out in a
backward order, and yet there is phase precession. We therefore
propose a possible explanation for the coexistence of intrinsic
sequence and phase precession that is in line with our analysis
results by assuming that intrinsic pairs consist of a leading cell
and an enslaved cell. The enslaved cell only fires with a delay af-
ter the leading cell was active. Consequently, their correlation
structure is fixed in both directions. As the leading cell undergoes
phase precession, the enslaved cell fires after the precessing

spikes of the leading cell, and, hence, also precesses with a phase
shift (Fig. 8A).

The first prediction of the enslavement hypothesis is that the
enslaved cell only fires within the overlap region between the two
fields. As a result, the Opposite condition would have a higher
spike phase than the Same condition because both leading and
enslaved spikes are present in the prospective cycles at the begin-
ning of the field (Fig. 8B, left). Whereas in Normal pairs, without
enslaved spikes (Fig. 8C), there would be no phase difference
between Same and Opposite (Fig. 8D, left). The prediction is
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Figure 8. Co-occurrence of phase precession and intrinsic sequences. A, Schematic illustration of how intrinsic sequences arise from enslaved spiking. The enslaved cells only fire at a fixed
delay after the leading cell, causing a fixed temporal order even if the animal runs in the opposite (Opp) direction (bottom row). This relation predicts that enslaved cells mostly fire in the over-
lap region of the two place fields (shaded area). B, Phase precession of leading (cyan dots) and enslaved (dark purple) cells plotted for Same, Opp, within, and outside overlap region, respec-
tively, from left to right. Data were generated artificially for illustration purposes. Marginal distribution of spike phase (solid curve) and its circular mean (solid black bar) are shown on the
right of each plot. Light violet dots and dashed lines represent an alternative dataset of enslaved spikes with larger phase shifts from the leading spikes. Note that the phase means of Opp
passes and in nonoverlap regions are higher than Same and overlap, respectively. C, Schematics of theta sequences produced by Normal pairs without enslaved spikes. Note that the firing order
is reversed when the pair is traversed in the opposite direction and both cells fire symmetrically in the nonoverlap region. D, Phase precession in normal pairs. Note that there is no difference
in marginal phase means across all conditions. E, Phase distribution of precession spikes in Overlap and Nonoverlap regions for intrinsic (top) and extrinsic (bottom) pairs in CA1, CA2, and CA3;
p-values are derived from Watson–Williams test comparing the circular difference of phases between nonoverlapping regions and overlaps. CA3 shows a larger effect in the phase difference as
compared with CA1 and CA2. See text for detailed statistics.

2292 • J. Neurosci., March 16, 2022 • 42(11):2282–2297 Yiu et al. · Directional Phase Precession

Linking hippocampal sequences and spatial representations

38



compatible with our experimental findings in Figure 7, where
the marginal phase mean and onset in the Opposite condition
are higher than in the Same condition, indicating a possible con-
tribution of enslaved spikes to the intrinsic structure of CA3.

Another assumption in the enslavement hypothesis illustrated
in Figure 8 is that the precession of leading cells in the Opposite
condition would start at a lower onset and last for a shorter num-
ber of cycles than in Same because of the diminished forward
recurrent connection when the pair is traversed in the opposite
order. It would lead to the second prediction that the mean phase
in the region where place fields are nonoverlapping should be
higher than within the field overlap (Fig. 8B, far right). On the
contrary, the “Normal” pairs would show no phase difference
between overlap and nonoverlap regions as phase precession is
symmetrical in both directions (Fig. 8D, far right).

The prediction of higher overlap phase in nonoverlap regions
from the enslavement hypothesis can be tested by comparing the
phase distributions between overlap and nonoverlap regions in
the experimental data (Fig. 8E, top row). We found that in
CA3 intrinsic pairs, nonoverlap spiking indeed has a higher
mean phase than in the overlap (mean 6 SEM in radians;
Nonoverlap 2.02 6 0.07 vs Overlap 1.35 6 0.04, Watson–
Williams test, F(1,2745) = 50.69, p = 1.4e – 12). A similar trend is
also observed in CA1 intrinsic pairs, but the difference is smaller
than in CA3 (Nonoverlap 2.41 6 0.03 vs Overlap 2.18 6 0.02,
F(1,9905) = 26.03, p = 3.4e – 07). These results support that in CA1
and CA3, the intrinsic structure is generated by enslaved spikes.
As a control, we also inspected the nonoverlap-overlap phase dif-
ferences in the extrinsic populations (Fig. 8E, bottom row). In

CA3, the phase difference has decreased as
compared with its intrinsic counterpart
(CA3 extrinsic, Nonoverlap 1.57 6 0.05 vs
Overlap 1.14 6 0.04, F(1,3813) = 33.53, p =
7.6e – 09), whereas in CA1, there is even a
higher mean phase in the Overlap region
(CA1 extrinsic, Nonoverlap 1.97 6 0.03 vs
Overlap 2.06 6 0.02, F(1,17 523) = 7.48, p =
0.0062), indicating that enslaved spiking is
less involved in the extrinsic pairs.

Intrinsic sequences and phase precession
are thus not contradicting each other, if we
assume that one field exhibits only enslaved
spikes. The existence of enslaved spikes can
explain both higher spike phase in the oppo-
site traversal direction as well as in the nono-
verlap area, which are both in agreement with
the data.

Relation between pair correlation and
phase precession
Following up the hypothesis from Figure 8
that intrinsic pairs are resulting, at least partly,
from enslaved spikes, we suggested that
both phase precession and pair correlations
contribute different aspects to theta sequen-
ces, as proposed previously (Middleton and
McHugh, 2016). We thus finally asked
whether we can identify a direct relation
between the intrinsicity/extrinsicity prop-
erty and the directionality of phase preces-
sion in the data to further corroborate our
enslavement hypothesis. To this end, we dis-
tinguished trajectories that are either paral-
lel (,90°) or opposite (.90°) to the best rate

angles of the fields of a pair with parallel best rate directions (Fig.
9A) and included only passes with phase precession in both
fields. Because the late spike phases appear to be associated with
the passes opposite to the best rate angles in single fields (Fig. 2),
as well as the intrinsicity in CA3 (Fig. 7), we hypothesized that
the association should also transfer to field pairs. Our analyses
show that indeed when the trajectories oppose both of the best
rate angles, there is a higher proportion of intrinsic pairs contrib-
uting to phase precession (Fig. 9B) and a higher marginal spike
phase of co-occurring phase precession in CA3 (Fig. 9C) than in
the case when the trajectory runs in parallel to both best rate
angles. These directional differences are not observed in CA1
pairs. CA2, surprisingly, shows the opposite trend that higher
spike phases are more associated with the best rate direction, but
there is no difference between the contributions of extrinsic and
intrinsic pairs. The findings on CA3 corroborate that both corre-
lation structure and phase precession are direction dependent in
CA3, where the intrinsic field pairs seem to lack strong extrinsic
drive in one running direction and thus would exhibit enslaved
spikes at later spike phases when the running direction opposes
their best rate direction. In extrinsic pairs the extrinsic drive
seems strong in all running directions to overrule the intrinsic
structure and allows cells to fire at earlier phases.

Computational model as control
To further corroborate that the observed directionality effects in
place field activity are not just an artifact of running trajectories
or data analysis, we applied our analysis to simulations of a

C

B

A

Figure 9. Field pairs in CA3 exhibit higher intrinsicity and fire at later spike phases in the direction opposite to the best
rate angles. A, Schematic illustration of how trajectories are divided into two groups, Both-parallel (left), if trajectories
across a field pair deviate ,908 from their best rate angles, and Both-opposite (right), if trajectories deviate .908

from their best rate angles. B, Numbers of extrinsic and intrinsic pairs exhibiting phase precession in Both-parallel and
Both-opposite cases. In CA3, there is a significantly higher contribution from intrinsic pairs in Both-opposite case than in
Both-parallel case; p-values are derived from Fisher’s exact test. C, Phase distributions of phase precessing passes.
The Both-opposite case in CA3 shows a significantly later spike phase than the Both-parallel case. Vertical bars mark the
circular means; p-values are derived from Watson–Williams test (Both-parallel vs Both-opposite, mean6 SEM in radians;
CA1, 2.15 6 0.0252 vs 2.18 6 0.0369, F(1,7917) = 0.53, p = 0.4654; CA2, 2.57 6 0.0321 vs 2.22 6 0.0369, F(1,4638) =
40.31, p = 2.4e – 10; CA3, 1.266 0.0561 vs 1.676 0.0609, F(1,1841) = 18.55, p = 1.7e – 05).
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spiking model that does not include directional information as
input (Romani and Tsodyks, 2015) but can be fed with the
animal trajectories of our experiments (see above, Materials
and Methods for simulation details). In brief, the model neu-
rons integrate place-specific inputs, theta-periodic inputs, and
symmetric recurrent connections with short-term synaptic
depression. The recurrent connections give rise to omnidirec-
tional phase precession but, because of their symmetry, do not
impose preferred intrinsic sequential activity. Also, because
the place-specific inputs are not directionally modulated, we
reasoned that any directionality and any intrinsicity we find in
the model must be artificial. Indeed, as expected, directional-
ity analyses on the single field firing rates showed that the
fraction of significantly directional simulated place fields does
not exceed chance level of 5% (61/1024 = 5.96%, p = 0.0936,
Binomial test; Fig. 10A). Similarly, by pooling over all fields
again, we did not find a significant correlation of phase pre-
cession per spike with the distance to preferred rate direction
(Fig. 10B; Spearman’s correlation coefficient rs(1386) = –0.27,
p = 0.0710). A further inspection on the distribution of pre-
ferred precession angles on a single field basis did not reveal a
significant p shift with respect to the preferred rate angles
(Fig. 10D; V-test against p ; for all passes, V(383) = –26.21, p =
0.9709; Fig. 10E; for low-spike passes, V(174) = –30.61, p =
0.9995). After again separating the passes into groups of
against-u rate (n = 105) and along-u rate (n = 361), with.150°

and,30° angular difference in radians from the best rate angles,
respectively (Fig. 10F), we consistently found no significant dif-
ference of their average precession curves (Kruskal–Wallis test
for difference in slopes; H(1) = 0.09, p = 0.7591; Watson–
Williams test for difference in onsets; F(1464) = 0.01, p = 0.9415),
and there was also no significant difference in the means of spike
phases between groups against-u rate and along-u rate (Watson–
Williams test; F(1,7639) = 2.78, p = 0.0953; Fig. 10G). Thus, as
expected by model design, properties of phase precession in the
model generally do not show a significant dependence on the
heading directions of the animal.

A virtue of the investigated Romani and Tsodyks (2015)
model is that it contains recurrent synaptic connections, and
we asked to what extent they might explain intrinsic correla-
tion structure observed in the data. We thus repeated direc-
tionality analysis at the level of field pairs on the simulated
data. Similar to the single field results, the fraction of signifi-
cantly directional pairs never exceed chance level in the model
(169/3197 = 5.29%, p = 0.2394, Binomial test; Fig. 11A); how-
ever, the dependence of correlation lags on place field distance
can be well reproduced (Fig. 11B), demonstrating that phase
precession induces direction-dependent sequential firing of
model place fields.

We next computed extrinsicity and intrinsicity of the
model correlations and found a fraction of extrinsic pairs
similar to CA1 (Fig. 11C; Ex:In = 1313:851 = 1.54; one-way
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Figure 10. Simulation results using the model by Romani and Tsodyks (2015). A, Directionality of simulated single fields. Median R (left) and fraction of significantly (Sig. Frac.) directional
place fields (middle) by spike count thresholds for all (solid line), border (dotted), and nonborder (dashed) fields. Right, the fraction of all border and nonborder place fields by spike count
thresholds. Frac., Fraction. B, Distribution of precession incidences (dark blue) and spikes (orange) as a function of |d(u pass,u rate)|, the difference between pass direction and best rate direction
of the place field. Ratio of blue and orange line in green shows no significant trend (Spearman’s correlation, rs(1386) = –0.27, p = 0.0710). C, Scatter plot for the relation between best preces-
sion angle u precess and rate angle u rate of all place fields reveals no obvious structures. D, Distribution of u precess directions of all precessing passes corrected to u rate shows no significant 180

°

difference of two best angles. E, Distribution of u precess directions of low-spike passes. F, Average precession slopes (phase-position curves) from precession samples against (green) and along
u rate (blue); ps and po are derived from Kruskal–Wallis test for slope difference and Watson–Williams test for onset difference respectively. G, Distribution of spike phases for precession sam-
ples against and along u rate. Vertical bars denote the circular means of the distributions; p-value is derived from Watson–Williams test comparing the difference of two circular means.
Detailed statistics are reported in the text.
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x 2 test for equal proportion of extrinsic and intrinsic pairs;
x 2
ð1;2164Þ ¼ 98:63; p ¼ 3:0e� 23) as well as the bias to extrin-

sicity (Fig. 11D; Student’s t test for extrinsicity-intrinsicity
with expected value of 0; mean = 0.0409, t(2163) = 17.52, p =
2.2e – 64), suggesting that the balance between spatial
inputs and recurrent connections in the Romani and
Tsodyks (2015) model has an extrinsic bias most similar to
CA1.

To conclude, although a network model with asymmetric
weight couplings can reproduce the results of phase precession
and correlation lags in a two-dimensional environment includ-
ing the extrinsic bias prominently observed in CA1 ensembles,
further extension is still required to account for directional selec-
tivity in place field networks and their effect on phase precession,
specifically on the onset phase, and the less extrinsic dynamics of
CA3.

Discussion
We showed that theta-scale timing of place cell activity in all
regions of the hippocampus proper exhibits directional modula-
tions. This first applies to phase precession, which is most promi-
nent (per spike) in the direction opposite to the one with the
largest firing rate, and this effect is more prevalent and acute in
CA3 than in CA1 and CA2. In addition, best precession tuning
in CA3 is associated with higher onset phases. Second, by
inspecting directionality of spike pairs from two overlapping
place fields, we showed that pair correlation exhibits higher
directionality than single spikes from individual place fields.
Furthermore, using cross-correlation analysis, we demonstrated
that CA1 pair correlations are better explained by external sen-
sory inputs induced by overt movement than CA3 pairs. This
suggests that CA3 place field correlations are more strongly
intrinsically determined. In addition, a closer inspection into the
intrinsic pairs revealed that the intrinsic sequences, which are
invariant to the sampling order of place fields, are also associated
with higher onset and spike phases in CA3 phase precession.

Finally, we used the model by Romani and Tsodyks (2015) and
showed that the interaction between directionality and theta ac-
tivity (described above, Results) cannot be solely explained by an
omnidirectional generation mechanism of theta sequences.
Nonetheless, the model shares a similar dependence on extrinsic
information, thus being more analogous to CA1 rather than
CA3.

The directionality of place field firing in 2 d open environ-
ments has a long history of debate. Although classical studies on
the influence of landmark cues (Kubie and Muller, 1991), as well
as early modeling work (Touretzky and Redish, 1996), clearly
acknowledge the availability of directional information to the
place cell system, there was disagreement about the degree to
which this information becomes overt in place field activity
(Muller et al., 1994; Anderson et al., 2006; Acharya et al., 2016).
In the present study, we have found 10�20% of significantly
directional place fields, which is similar to previous reports
(Markus et al., 1995; Acharya et al., 2016; Mankin et al., 2019),
although directionality seems to strongly depend on the behav-
ioral setting. Markus et al. (1995) found 80% of place cells with
significant directionality in eight-arm mazes and 20% in an open
circular platform. Acharya et al. (2016) also showed that the sig-
nificant fraction of heading-direction modulated cells could vary
as a function of the width of visual cue on the wall as more place
cells were head-direction modulated near the border.

Most interestingly, and consistent with these previous reports,
our analysis revealed that directionality of CA1 in familiar envi-
ronments is heavily induced by proximity to the border, even at
a high spike count threshold where the sampling bias is relatively
small. However, this border effect is less prominent in simultane-
ously recorded CA3 place cells. One possible explanation is that
there is no border-related directionality in novel environments
but develops via learning processes, which is more difficult and,
hence, slower in CA3 because of its recurrence. This idea has
been suggested in a previous modeling study from Brunel and
Trullier (1998), which demonstrated that place cells become less
directionally selective through synaptic plasticity when they are

DCB

A

Figure 11. Directionality of pair correlations in model simulations. A, Median R (left) and fraction of significantly directional pairs (middle) by spike count thresholds for all (solid line), border
(dotted), and nonborder (dashed) pairs. Right, Fraction of all, border, and nonborder field pairs. B, Relation of spike correlation lags and field overlap of all pairs for direction A! B (left) and
B! A (right). Linear-circular regression line is in black (A! B, r(2659) = –0.38, p,1.0e –90; B! A, r(2663) = 0.35, p, 1.0e – 90). Vertical and horizontal curves show the marginal distri-
butions. C, Intrinsicity versus extrinsicity for all pairs (one-way x 2 test of equal extrinsic-intrinsic ratio). D, Density of differences between extrinsicity and intrinsicity (mean m, black bar; p-value
from Student’s t test of mean vs 0) show a significant trend toward extrinsicity.
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visited in all directions (as in the nonborder case) as compared
with the border case when fields are visited only in a subset of
directions. Also a second model by Navratilova et al. (2012) sug-
gested that the firing rate of place cells is initially independent of
directions but develops to be directionally selective through ex-
perience and synaptic plasticity. Assuming that the same learning
mechanism further differentiates between border and nonborder
directionality, the border difference would thus develop slower
in CA3 because of its larger degree of recurrent connectivity.
Both models support the idea that the differential directionality
between border and nonborder cells in familiar environments
could be explained via plasticity induced by early experiences in
novel environments. Our finding, however, that borders induce
strong directionality of CA3 spike pairs (Fig. 4), questions the
assumption of these models that directionality is learned but
rather supports the idea that CA3 pair directionality reflects the
directional imbalance of extrinsic and intrinsic activity (Fig. 8).

The main conjecture of the present work was that inherent
network dynamics could induce directionality of place cell spike
timing. Through multiple lines of analysis, we repeatedly found
that in our dataset, CA3 exhibits more hints to intrinsic dynam-
ics than CA1. This was, for example, suggested by their theta-
scale correlations being more invariant to the trajectory. These
findings are very much in accordance with anatomy. Pyramidal
cells in CA3 project extensive recurrent collaterals in rodents and
primates (Amaral et al., 1984; Anderson et al., 2006), whereas
such recurrence is not so much obvious in the CA1 region (but
see Deuchars and Thomson, 1996, for rodents). However, a fur-
ther possibility to explain CA3 bias toward intrinsic dynamics
could be its unique position in the mammalian hippocampal-
entorhinal circuitry. Sensory information from entorhinal cortex
layer II is projected to CA3 not only via the direct perforant
pathway but also via mossy fiber pathway of dentate gyrus (DG),
contributing to an extra layer of internal processing through the
granule and mossy cell loop. Indeed, CA3 activity in rats with
DG lesions showed reduced prospective firing in an eight-arm
maze (Sasaki et al., 2018), which is strikingly consistent with our
observed direction dependence of theta onset phases. The ana-
tomic consistency of the enthorinal-hippocampal formation
across mammals, as well as consistent reports on hippocampal
phase precession in several mammalian species including
Chiroptera (Eliav et al., 2018) and primates (Qasim et al., 2021),
let us speculate that the bias toward stronger intrinsic sequences
in CA3 is a common feature within this animal class as a whole
and specifically also expected to be seen for primates and
humans despite their less precise spatial firing patterns (Ekstrom
et al., 2003).

The directional selectivity of phase precession provides wide-
spread support of our initial hypothesis that directional informa-
tion should also express itself in hippocampal theta sequences,
yet the anatomic foundations of this directional modulation can
only be speculated on so far. One possible explanation would be
to assume that it is the direct entorhinal inputs to CA3 that
induce the directional dependence of firing rate, which would be
consistent with directional drive from postsubiculum and ento-
rhinal head direction and conjunctive cells (Sargolini et al.,
2006). According to Figures 2D and 7, this input would be
reduced in passes opposite to best rate directions. Consequently,
intrinsic CA3 activity would then mostly be explained by the
indirect DG mossy fiber pathway, which was shown to induce
prospective out-of-field spiking (Sasaki et al., 2018), potentially
indicating enslaved spikes. In the best rate direction, according
to our hypothesis, strong direct entorhinal input should induce

earlier theta spike phases in addition to the DG-induced theta
sequences. Conversely, against the best rate direction, DG-
induced theta sequences would still play out invariantly despite
the weaker entorhinal directional drive. In such a scenario, we
would predict that intrinsic pairs would dominate phase preces-
sion properties over those extrinsically induced. A direct test of
these predictions is provided in Figure 9. Although the outcomes
are consistent with our predictions, the conclusiveness is limited
because of small sample sizes, particularly in CA3. Yet the above
hypotheses could be tested even more directly by acute differen-
tial suppression of entorhinal and DG pathways, which we would
predict to selectively alter phase precession in the different run-
ning directions.

Intrinsic hippocampal correlations are incompatible with
the interpretation of the hippocampus as a pure spatial map
but rather imply the existence of prestructure (Dragoi and
Tonegawa, 2011). The degree to which intrinsic activity is
expressed in familiar environments is, however, relatively
small and clearly visible only in CA3, thus arguing for a rela-
tively small role of intrinsic structure in supporting spatial
navigation in familiar environments. The situation in novel
environments, however, might be different with a stronger
effect of prestructure on organizing hippocampal representa-
tions. This is in line with the finding that theta sequences only
develop with time (Feng et al., 2015) as initially some pairs
may predominantly fire in the wrong intrinsic order. The idea
—contrary to the models of Brunel and Trullier (1998) and
Navratilova et al. (2012)—that directional invariance develops
in an experience-dependent way on top of prestructured
sequences has important implications for theories of spatial
memory formation because it would favor the notion of sen-
sory integration into existing temporal structure (cf. Buzsáki
and Tingley, 2018; Leibold, 2020).
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A theory of hippocampal theta 
correlations accounting for extrinsic and 
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Abstract Hippocampal place cell sequences have been hypothesized to serve as diverse 
purposes as the induction of synaptic plasticity, formation and consolidation of long- term memo-
ries, or navigation and planning. During spatial behaviors of rodents, sequential firing of place 
cells at the theta timescale (known as theta sequences) encodes running trajectories, which can be 
considered as one- dimensional behavioral sequences of traversed locations. In a two- dimensional 
space, however, each single location can be visited along arbitrary one- dimensional running trajec-
tories. Thus, a place cell will generally take part in multiple different theta sequences, raising ques-
tions about how this two- dimensional topology can be reconciled with the idea of hippocampal 
sequences underlying memory of (one- dimensional) episodes. Here, we propose a computational 
model of cornu ammonis 3 (CA3) and dentate gyrus (DG), where sensorimotor input drives the 
direction- dependent (extrinsic) theta sequences within CA3 reflecting the two- dimensional spatial 
topology, whereas the intrahippocampal CA3- DG projections concurrently produce intrinsic 
sequences that are independent of the specific running trajectory. Consistent with experimental 
data, intrinsic theta sequences are less prominent, but can nevertheless be detected during theta 
activity, thereby serving as running- direction independent landmark cues. We hypothesize that the 
intrinsic sequences largely reflect replay and preplay activity during non- theta states.

eLife assessment
This important work presents an interesting perspective for the generation and interpretation of 
phase precession in the hippocampal formation. Through numerical simulations and comparison to 
experiments, the study provides a convincing theoretical framework explaining the segregation of 
sequences reflecting navigation and sequences reflecting internal dynamics in the DG- CA3 loop. 
This study will be of interest for researchers in the spatial navigation and computational neurosci-
ence fields.

Introduction
As a rat navigates in an environment, place cells fire sequentially during one theta cycle (∼100 ms) and 
form time- compressed representations of behavioral experiences (Skaggs et al., 1996), called theta 
sequences. Theta sequences were proposed to be driven by extrinsic (extrahippocampal) sensorim-
otor input (Foster and Wilson, 2007; Huxter et al., 2008; Romani and Tsodyks, 2015; Yiu et al., 
2022), since they are played out in the direction of travel during locomotion and, hence, represent 
current behavioral trajectories. In contrast, various types of hippocampal sequences have also been 
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proposed to arise from intrinsic hippocampal connectivity. Non- local activation of place sequences 
during immobile periods was observed in replay of past locations after the space has been explored 
(Skaggs and McNaughton, 1996; Lee and Wilson, 2002) as well as in preplay (Dragoi and Tonegawa, 
2011) of prospective locations before the animal explores a novel environment. In addition, some CA3 
place cells exhibit out- of- field firing at reward locations (Sasaki et al., 2018). These remote activations 
of place cells reflect the underlying circuit connectivity rather than the actual location and movement 
of the animal. Furthermore, a subset of CA3 cell pairs shows rigid theta correlations with peak lags 
that are independent of the traversal order of their place fields (Yiu et al., 2022), suggesting the 
existence of hard- wired sequences even when sensorimotor drive is present. Such intrinsic sequences 
that are driven by intrahippocampal connectivity (Tsodyks et al., 1996), although less predominantly 
observed during theta (Yiu et al., 2022), are generally interpreted as reflecting spatial memories or 
planning (Kay et al., 2020).

Existing models for theta sequences are, however, either fully extrinsic or intrinsic. The former 
often employ short- term plasticity (Romani and Tsodyks, 2015; Thurley et al., 2008), which creates 
synaptic couplings that are temporally stronger along the instantaneous forward direction. In contrast, 
intrinsic models, such as the Tsodyks et al., 1996 model, use a fixed asymmetrical weight matrix pre- 
designed to align with one movement trajectory (for review see Maurer and McNaughton, 2007; 
Jaramillo and Kempter, 2017). Neither of these models alone can explain the simultaneous presence 
of rigid and flexible correlations in theta sequences. Here we present a network model that accounts 
for both types of correlations by separating their generation into two anatomically distinct layers: CA3 
and dentate gyrus (DG). Extrinsic sequences are generated in the CA3 layer by short- term synaptic 
plasticity mechanisms, while the intrinsic sequences are evoked by the CA3- DG feedback loop with 
fixed asymmetrical weights, as inspired by the experimental evidence that lesions of DG abolish non- 
local activation of CA3 place cells (Sasaki et al., 2018) and CA3 theta correlations (Ahmadi et al., 
2022).

In this paper, we present a model for theta correlations that unifies both extrinsic and intrinsic 
mechanisms. Extrinsic and intrinsic sequences can propagate simultaneously in separate directions, 
along the movement trajectory and the pre- designed CA3- DG feedback loops, respectively. As a 
result, spike correlations display directionality as the two sequences cross each other at various angles: 
The more parallel they are, the stronger the correlation. Our simulations are in quantitative agreement 
with directionality properties found in experimental data (Yiu et al., 2022) and propose that rigid 
correlation structure can serve as a stable temporal pattern, which is recognizable across multiple 
movement directions. This temporal ‘landmark’ pattern allows spatial encoding even if sensory- motor 
experience is lacking and may reflect the mechanistic basis for replay in non- theta states.

Results
Dependence of theta sequences on heading directions: Extrinsic and 
intrinsic sequences
Theta- scale correlations of place cells have been explained by previous models using two different 
types of network mechanisms, intrinsic and extrinsic ones. For intrinsic models spike correlations are 
explained by only the recurrent connectivity of the neuronal network (Figure 1A). For extrinsic models, 
the spike correlation is defined by sensory- motor parameters such as movements (Figure 1B). We first 
illustrate how these mechanisms work for two exemplary representatives of these two major model 
classes.

For intrinsic models, we refer to the Tsodyks et al., 1996 model where phase precession is gener-
ated by the fixed asymmetrical connectivity between place cells. Spike phases of the place cells ahead 
of the animal decrease as the excitatory drive is gradually increasing, but only along the direction in 
which the connection strength is asymmetrically stronger (e.g. rightward in Figure 1A), called the 
asymmetry direction. Here we simulate a network of CA3 place cells with fixed asymmetrical connec-
tivity (see Methods section: CA3 recurrent connections) as suggested in the Tsodyks et al., 1996 
model and applied our model to behavioral running trajectories in a 2- d open space (Figure 1C). Phase 
precession and spike correlations (Figure 1D–E) are compared for opposite running directions. In our 
simulations, all place cells project excitatory synapses to their counterparts with rightward neighboring 
place fields. Phase precession therefore is determined by how closely the running direction matches 
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the asymmetry direction imposed by the intrinsic connections. The closer the trajectory angle aligns 
with this asymmetry direction, the more negative is the slope of phase precession (Figure 1E). Since in 
this case, the theta sequence only propagates rightwards as place cells are sequentially activated from 
left to right, the signs of spike correlations between cell pairs remain invariant to the movement direc-
tion (Figure 1F, see Methods section: Cross- correlation analysis). Intrinsic models thus cannot explain 
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Figure 1. Phase precession depends on running direction in intrinsic models but not extrinsic models. (A) Left: Schematic illustration of the intrinsic 
Tsodyks et al., 1996 model. When the animal runs through a series of place fields (solid circles) in 1- D, the place cells fire action potentials in sequence 
at the theta timescale (spike raster with corresponding colors). Recurrent connectivity is pre- configured and asymmetrical (connection strengths 
indicated by arrow sizes). Right: Cross- correlation function between the red and magenta cell, which remains the same for both running directions. 
(B) Left: Schematic illustration of the extrinsic Romani and Tsodyks, 2015 model. Recurrent connections behind the animal are temporarily depressed 
by short- term plasticity, and thereby, become movement- dependent. Right: Cross- correlation flips sign in the opposite running direction. (C) Simulated 
trajectories (duration 2 s) in a 2- d environment (80×80 cm) with speed 20 cm/s in left and right (left column), diagonal (middle), and up and down 
(right) directions. (D–F) Simulation results from the intrinsic model (with fixed asymmetrical connectivity inspired by the Tsodyks et al., 1996 model). 
Place cells only project synapses to their right neighbors. (D) Spike raster plots of place cells along the orange (left panel) and light green (right panel) 
trajectories (colors defined in C). Theta sequence order remains the same in the reversed running direction. Black line indicates animal position. 
(E) Phase- position relation for the spikes colored in C. Linear- circular regression (gray line) parameters are indicated on top. Positions of the animal at 
the first and last spike are normalized to 0 and 1, respectively. (F) Averaged cross- correlation of all cell pairs separated by 4 cm along the trajectory. 
Reversal of running direction does not flip the sign of the peak lags. (G–I) Same as D- F, but for the extrinsic model (spike- based variant of Romani and 
Tsodyks, 2015 model). Correlation peaks flip after reversal of running direction.
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experimentally observed directional independence of phase precession and directional dependence 
of theta spike correlations (Huxter et al., 2008).

Our example of an extrinsic model is based on our spiking simulations of the originally rate- based 
model by Romani and Tsodyks, 2015, where phase precession was explained by symmetric recurrent 
connections that undergo running direction- dependent attenuation by short- term synaptic depres-
sion (STD): place fields with centers behind the current animal position on the trajectory thereby 
received largely reduced recurrent input resulting in recurrently driven theta sequences to play out 
only in forward direction (see Methods section: CA3 recurrent connections). We simulated our spiking 
variant of the Romani and Tsodyks, 2015 model with the same trajectories as the intrinsic model 
(Figure 1G–I), and recovered direction- independent phase precession (Figure 1H). Since now, the 
theta sequences are played out in the same direction as the movement, theta spike correlations are 
symmetrically reversed (Figure 1I) as shown experimentally in CA1 neurons (Huxter et al., 2008; Yiu 
et al., 2022).

In area CA3, however, theta spike correlations are neither solely extrinsic (Yiu et al., 2022; Kay 
et al., 2020), since phase precession properties change in relation to running directions, nor are they 
solely intrinsic since reversal of correlation is still observed in most of the sequences (Huxter et al., 
2008; Yiu et al., 2022). We therefore propose a new theory of phase precession for CA3 incorpo-
rating both intrinsic and extrinsic factors.

Directional sensory input
To, however, fully explain directional properties of theta phase precession and theta spike correla-
tions by a model, also directional modulations of firing rates (Yiu et al., 2022) need to be taken into 
account.

We therefore included both directional and positional modulation of the sensory input to the model 
place cells (Figure 2A–B) with randomized preferred heading directions (see Methods section: Spatial 
input). The sensory input is assumed to arise from MEC, and hence, it is also theta- modulated and 
phase- shifted by  70◦  with respected to the peak of theta cycle (Mizuseki et al., 2009). Furthermore, 
since the precession slope observed in the Romani and Tsodyks, 2015 model is limited (- 1.13 radians 
per field size, see Figure 1H) as compared to the experimental reports (- 4.44 radians (Yiu et  al., 
2022) and about -2.0 radians (Harris et al., 2002) per field size), we introduced short- term synaptic 
facilitation (STF) to the sensory input (Berretta and Jones, 1996; Thurley et al., 2008) generating 
temporally asymmetric depolarization as suggested by intracellular recordings in vivo (Harvey et al., 
2009; Figure 2B). STF amplifies the sensory current at the later part of the field, thus creating phase 
precession with steeper slopes thereby extending the phase range (see Methods section: Spatial 
input). Finally, we designated the synaptic weights to be stronger between place cells with similar 
preferred heading directions (Figure 2C) as has been proposed (Brunel and Trullier, 1998) as a result 
of Hebbian plasticity applied to directional firing fields.

A simulation of the place cell network was performed for a rightward trajectory through the arena 
based on our variant of the extrinsic Romani and Tsodyks, 2015 model (Figure 2D). We focus on two 
sets of place cells, one for which the trajectory aligns with the preferred heading direction of the field 
(red, denoted as best direction) and one for which the trajectory runs opposite the preferred heading 
direction (denoted as worst direction; Figure 2F). Phase precession has a lower onset and marginal 
spike phase along best direction than along the worst (Figure 2G–H), which is consistent with experi-
mental data (Yiu et al., 2022 report mean spike phases ± SEM for best and worst direction of 1.61 ± 
0.02 and 2.22 ± 0.03 in radians respectively), reflects that larger depolarizations generally yield shorter 
latencies. Directionality of the input, although it yields lower spike phases through higher depolar-
ization, does not affect spike pair correlations, which remains solely extrinsic (Figure 2I). Thus, even 
though rate directionality and directional bias in recurrent connectivity can render phase precession 
directionally dependent, they are not sufficient to account for intrinsic sequences.

Generation of intrinsic sequences by the DG-CA3 recurrent network
To explain the expression of intrinsic sequences in CA3, we propose them to be generated by the 
interaction of two networks, CA3 and DG (Figure 3A). DG is a good candidate region to be involved 
in phase precession, since lesions of it were shown to reduce prospective spiking (Sasaki et al., 2018) 
and to lower the onset phase of phase precession (Ahmadi et al., 2022). In our model, the neurons in 
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DG receive excitatory synaptic inputs from CA3 place cells (putatively via hilar mossy cells) and project 
back to the CA3 cells with place field centers at a different location (Equation 3) to induce propa-
gation of intrinsic sequences along a specific spatial direction. The CA3 cells at the target location 
of DG input are then activated and evoke higher depolarization in cells with place fields at the next 
DG target locations through the feedback. This scheme produces a rigid sequence whose activation 
order is independent of the movement direction. The connection pattern of DG- CA3 projections (for 
brevity, we also refer to it as ‘DG loop’ in the subsequent text) could be determined by pre- existing 
network structure or past experience through associative learning, or both.

Figure 3, provides schematic illustrations, for a DG layer that either only projects CA3 activity 
to their rightward neighbours ( θDG = 0◦ , Figure 3A) or only to their leftward neighbors ( θDG = 180◦ , 
Figure 3E). Simulations for both cases ( θDG = 0◦  and  θDG = 180◦ ) assume a rightward trajectory. Apart 

A B C

D E

F G H I

103

Figure 2. Directional input gives rise to spikes at lower theta phase. (A) Directional input component of an 
example place cell. (B) Total sensory input as the sum of directional and positional drive of an example place cell 
for the animal running along (red dashed line, left) and opposite (blue dashed line, right) the preferred heading 
direction of the cell, respectively named as best and worst direction. The sensory input is modelled by oscillatory 
currents arriving with +70° phase shift relative to theta peaks (gray vertical lines). Place fields are defined by a 5 cm 
rectangular envelope. Solid lines depict the input current including short- term synaptic facilitation. (C) Synaptic 
weights ( Wij , color) from the place cell at the center (the darkest dot) to its neighbors in the 2- d environment. 
Each dot is a place field center in 2- d space. Arrows depict their preferred heading directions. (D) Spike raster plot 
sorted by visiting order of the place fields along the trajectory. Spikes of the cells with best and worst direction 
are colored in red and blue, respectively. (E) Phase position plots for the cells with best and worst direction from D 
(labels as in Figure 1E). The mean phase is marked as horizontal gray bar. (F) Example place cell centers with best 
(<30° different from the trajectory; red) and worst (>150°; blue) directions relative to the rightward trajectory (gray 
line). Only centers of cells that fire more than 5 spikes are shown. (G) Slopes and onsets of phase precession of the 
population from (F). Marginal slope and onset distributions are plotted on top and right, respectively. Note higher 
phase onset in the worst- direction case. (H) Spike phase distributions. Higher directional inputs generate lower 
spike phases. (I) Average spike correlation between all pairs with 4 cm of horizontal distance difference when the 
animal runs rightwards and leftwards. Peak lags are flipped as expected from an extrinsic model.
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Figure 3. DG- CA3 loop introduces directionality of theta sequences. (A) Illustration of synaptic connections from 
CA3 place cells to DG and vice versa. DG layer mirrors the place cell population in CA3 and redirects the CA3 
inputs back to different locations. Here, DG cells project into CA3 place cells with fields 4 cm displaced to the right 
of the pre- synaptic CA3 cells.  θDG  denotes the angular difference between the DG projection direction and the 
animal’s movement direction. (B) Spike raster plots sorted by cell indices along the trajectory (2 s duration) from 
x=-20 cm to x=20 cm. Cells with best and worst angles are marked by red and blue colors, respectively. (C) Phase- 
position plots as is Figure 2E. (D) Distributions of precession slopes, onsets and spike phases as in Figure 2G–H. 
(E–H) Same as A- D, but with DG cells projecting opposite to the animal’s movement direction ( θDG = 180◦ ). In F, 
cyan and yellow shaded regions indicate the examples of forward sequence induced by the movement (extrinsic), 
and backward sequence induced by the DG recurrence (intrinsic), respectively. (I) Average spike correlations for 

 θDG = 0◦  and  θDG = 180◦  for pairs separated by 4 cm along the trajectory. Note that for  θDG = 180◦ , there is a 
relative excess of spike- pairs with positive lags. (J) Left: Intrinsicity and extrinsicity (see Methods) for all pairs from 
the populations with best (red) and worst (blue) direction. Pair correlations above and below the identity line are 
classified as intrinsic and extrinsic, respectively. Numbers are the ratios of extrinsically to intrinsically correlated 
field pairs. Note that the red best direction pairs are more extrinsic than the blue worst direction pairs due to 
higher sensory input. Middle: Ex/Intrinsicity of pairs with similar (<30°) and dissimilar (>150°) preferred heading 
angles. Pairs with similar preferred heading angle s are more intrinsic due to stronger DG- CA3 recurrence. Right: 
Cumulative distribution of the differences between extrinsicity and intrinsicity. Dissimilar and best direction pairs 
have higher bias to extrinsicity than similar and worst direction pairs, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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from the addition of the DG layer, the model architecture and parameters of CA3 layer are the same as 
in Figure 2 (including best and worst direction in place field firing rate), which only generates extrinsic 
sequences through STD in the CA3 recurrent synaptic connections. DG- loop connectivity is addi-
tionally modulated by firing rate directionality of the CA3 place fields. Fields with similar preferred 
heading directions are more strongly connected via the loop than those with opposite preferred 
heading directions (see Methods section: DG layer).

We found that, when the simulated animal is running in the same direction as the DG- CA3 projec-
tion, phase precession starts from a higher phase (Figure 3C–D) due to the forward activation of place 
cells through DG layer (recovering the effect of asymmetric connectivity in the original Tsodyks et al., 
1996 model), as compared to the model without DG layer (Figure 2G–H). Spike phases in best direc-
tion remain lower than along the worst direction (Figure 3D). When, however, the animal is running 
against the DG- CA3 projection (Figure 3E), extrinsic sequences are still present in forward direction, 
evoked by the movement of the animal, but the intrinsic sequences are played out backward as deter-
mined by the direction of fixed recurrence (see cyan and yellow shaded regions in Figure 3F). The 
latter is reflected by the higher phase at the end of the phase position plots (Figure 3G) which leads 
to flatter precession slopes and decreases the fraction of phase precession (slope <0) of all traversal 
trials (Figure  3H). A closer look into pair correlation reveals that for trajectories opposite to the 
DG- loop projection ( θDG = 180◦ ), spike probability is added to positive time lags (Figure 3I). There-
fore, introducing fixed recurrence through DG loops elicits both extrinsic and intrinsic sequences and 
qualitatively changes theta sequences.

To quantify the degrees of extrinsic and intrinsic sequence firing in a way allowing comparison to 
experimental reports, we use the measures extrinsicity and intrinsicity (Yiu et al., 2022) that are based 
on pairs of place cells with overlapping place fields (see Methods section: Extrinsicity and intrinsicity, 
and Discussion). In our simulation, extrinsically and intrinsically driven cell pairs are both present in the 
population (Figure 3J), indicating a coexistence of extrinsic and intrinsic sequences. Our model repro-
duces a greater extrinsicity for cell pair activity when running direction aligns with both best place field 
directions as compared to when it aligns to both worst field directions, since along the best direction, 

θDG=0°

Phase range (rad)

Spike phase (rad)

D

De
ns

ity
 o

f 
sp

ik
e

De
ns

ity
 o

f 
ce

lls

A

B

C

θDG=0° θDG=180°

Pair distance (cm)

Control
Lesion

Figure 4. DG lesion reduces theta compression and phase precession range. DG recurrence is turned off to 
simulate the lesion condition. (A) Positional sensory inputs into a place cell in lesion (purple) and control (green) 
cases. The control case is identical to Figure 3. In the lesion case, DG input is compensated by increased sensory 
input with increased probability of synaptic release, hence reduced short- term synaptic facilitation. (B) Theta 
compression, that is correlation between peak correlation lag and distance of field centers in the control case. 
Each dot represents a field pair. Linear- circular regression line is indicated in black. Note that the sign of regression 
slope ( a  in radians/cm) is determined by the directions of DG loop (negative in  θDG = 180◦ ). (C) same as B, but for 
the lesion case. Theta compression is reduced as compared to the control condition. (D) Top: Distribution of spike 
phase during phase precession in all active (spike count > 5) cells in control and lesion case. Bottom: Distribution 
of phase precession range for all active cells.

Figure supplement 1. Effects of STF and STD time constants on theta sequences.

Figure supplement 2. Effects of running speed on theta sequences.

Figure 3 continued
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cells receive more sensory depolarization, and thus, the movement- dependent extrinsic sequences 
are more activated. The model also explains, why pairs with similar preferred heading directions may 
be less extrinsic than pairs with approximately opposite preferred heading direction (dissimilar pairs), 
since the DG loop preferentially connects CA3 place cells with similar preferred heading directions. 
Both of the results follow the same trend as found in experimental data (Yiu et al., 2022 report ratios 
of extrinsically to intrinsically correlated CA3 field pairs of 1.57 for both- best directions, 0.41 for both- 
worst directions, 0.87 for similar pairs and 2.43 for dissimilar pairs).

Thus, by introducing feedback excitation via the DG layer, intrinsic sequences are able to propagate 
in fixed directions on top of the movement- dependent extrinsic sequences. Theta sequence direction-
ality is reflected through the change in spike correlation, which varies as a function of the difference 
between the direction of DG feedback and movement direction. The combination of extrinsic and 
intrinsic theta sequence activity is robust regarding changes of the parameters of short- term synaptic 
plasticity (Figure 3—figure supplement 1), as well as running speed (Figure 3—figure supplement 
2), as long as place fields are wide enough to allow spikes in sufficiently many theta cycles.

Lesion of DG reduces theta compression and phase precession range
One prediction of the DG- loop model, consistent with findings from DG lesion experiments (Ahmadi 
et al., 2022), is that DG would contribute to the temporal organization of spike sequences in CA3. To 
verify this hypothesis also in the model, we implemented a lesion of DG by disabling activity in the DG 
layer. To compensate for reduced excitatory drive caused by the lesion, we then increased probability 
of release of the sensory inputs thereby increasing the initial input amplitudes but removing short- 
term synaptic facilitation (Figure 4A).

We found that a DG lesion would reduce theta compression in sequence activity. Theta compres-
sion (Dragoi and Buzsáki, 2006) refers to the compression of seconds- long behavioural experience 
of place- field crossing into a neural representation of spike sequences at a shorter (theta) timescale. 
To quantify the strength of theta compression, we plotted the pair correlation lags versus the distance 
between the centers of two fields (abbreviated as ‘lags’ and ‘pair distance’ respectively), after simu-
lating a rightward trajectory (Figure 4B–C). The magnitude of the linear- circular regression slope  a  
measures how much theta phase encodes a certain interval in space, and therefore, the strength of 
theta compression. As a result, theta compression is reduced for the DG- lesioned case ( a = 0.053  
radians/cm for both  θDG = 0◦  and  θDG = 180◦ ), as compared to the control case ( a = 0.183  radians/
cm for  θDG = 0◦  and  a = −0.059  radians/cm for  θDG = 180◦ ) reproducing the finding (Ahmadi et al., 
2022) that spatial encoding via theta sequences crucially depends on intact DG and suggesting that 
the loss of DG inputs could be compensated for by the increase of release probability in the spared 
afferent synapses from the MEC. The DG lesion also reduces the spike phase and phase range of 
phase precession (Figure 4D), which indicates the participation of DG loops in high- phase spiking. 
Both weaker phase precession and theta compression stress the important role of DG in temporal 
organization of CA3 sequences.

Theta sequences in 2-d and out-of-field firing
So far, the model was only evaluated on bidirectional linear tracks, where running directions completely 
overlapped with the orientation of the DG loop connectivity. Now, we extend our analysis to 2- d space 
by examining oblique trajectories which cross the orientation of DG- loop projection at certain angles.

We first arrange the DG- loop connections such that the DG- loop orientation crosses a rightward 
trajectory at 45° and 225° (Figure 5A–F). Similar to the cases of  θDG = 0◦  and  θDG = 180◦  (Figure 3D 
and H), precession slopes are steeper and onsets higher when the trajectory direction aligns more 
with the orientation of the DG- loop, but with a smaller effect size for oblique crossings (Figure 5A 
and C) since DG- loop connectivity area only overlaps with part of the trajectory near the intersection. 
We further resolve the precession slope, onset and marginal phase for each place cell into 2- d maps 
(Figure 5B and D). Intrinsic sequences with a higher marginal spike phase can be clearly seen along 
the belt of DG- loop projections and are even extended to the outside of trajectory predicting ‘off- 
track’ spikes at high phases. Depending on the alignment between movement direction and DG- loop 
orientation, the slope becomes either more negative ( θDG = 45◦ ) or more positive ( θDG = 225◦ ). Anal-
ysis of extrinsicity and intrinsicity was conducted for all field pairs and confirmed the same trend as 
in Figure 3 that best and dissimilar pairs are more extrinsic than worst and similar pairs, respectively 
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(Figure 5E). As a quantitative prediction, we computed the angle differences between field centers of 
cell pairs for the extrinsic and intrinsic populations, and observe that place field center differences in 
extrinsically correlated field pairs are mostly oriented horizontally (along the running direction) while 
place field center differences from intrinsically correlated field pairs are oriented along the DG- loop 
orientation  θDG = 45◦ , as by design (Figure 5F).

θDG = 225°

θDG = 90°

θ
DG

= 270°

θDG = 45°DG

A B

C D

E F

G

H I

Figure 5. Intrinsic sequences lead to direction dependent 2- d phase precession and out- of- field firing (A) Left: 
Schematic illustration of DG- loop projection being tilted by 45° relative to the trajectory. Right: Distributions of 
phase precession onsets and slopes from the place cells along the trajectory as in Figure 2G. (B) Slopes (left), 
onsets (middle) and mean spike phases (right) of phase precession from the place cells as a function of field 
center. High spike phases and onsets occur along the DG- loop orientation where intrinsic spiking dominates and 
yield out- of- field firing (see the extrusions from horizontal dot clouds) with late onsets and phases. (C–D) Same 
as A- B, but DG- loop projection is at 225° relative to trajectory direction. (D) For DG loops pointing opposite to 
the sensorimotor drive, prospective firing along the DG loop yields less steep precession slopes and lower onset. 
(E) Extrinsicity and intrinsicity of all place field pairs along the trajectory as in Figure 3J. Some pairs are totally 
extrinsic (Ex = 1) because DG projection is absent at those parts of the trajectory. (F) Density of field pairs with 
extrinsic/intrinsic correlation as a function of the orientation of field center difference vector relative to the x axis. 
Intrinsic fields peak at 45°. (G) Same as A- D, but DG- loop orientations are perpendicular to the trajectory direction 
at 90° (top) and 270°. Prospective spikes from intrinsic sequences are initiated in the perpendicular directions. 
(H) Same as E, but with higher Ex- In ratios. (I) Field pairs with intrinsic correlations are at ±90°.
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The analysis above is repeated for the geometric configurations that DG- loop connectivity is mini-
mally interacting with the place cell activity induced by movement, that is when DG- loop orientation 
and the movement direction are perpendicular to each other ( θDG = 90◦  and  θDG = 270◦ , Figure 5G). 
Similar effects as in Figure  5B and D on precession slope, onset and marginal phases are also 
observed in the 2- d map, except that the effects are further restricted to the intersection area in the 
middle. Also, the whole population has become more extrinsic as compared to the 45° and 225° cases 
(Figure 5H, see the numbers for extrinsic- intrinsic ratios) due to the smaller overlapping area between 
DG- loop projection and the trajectory. Lastly, the pair center difference orientation confirms that field 
pairs with extrinsic correlations follow the trajectory direction while those with intrinsic correlation are 
biased towards the DG- loop orientations (90°).

The results demonstrate the distinct roles of extrinsic and intrinsic sequences in 2- d spatial 
encoding. The former represents trajectory direction while the latter the associative memory towards 
specific locations. They can be played out at the same time separately in different directions and only 
interact with each other when they overlap. The interaction is reflected in directional dependence of 
phase precession properties, most notably the higher spike phases from the DG- CA3 recurrent input, 
as well as increased intrinsicity of pair correlation and extended firing fields along the orientation of 
the DG- loop projections. Intrinsic sequences also triggered out- of- field firing (Figure 5B, D and G) 
at late theta phases. In this case, the DG- loop connects to cells with remote place fields. These cells 
could even display multiple separated place fields, with high spike phases indicating the target loca-
tion of the intrinsic sequence.

Topology-free mechanisms of extrinsic phase precession
A well- known problem of phase precession models based on recurrent connectivity that applies to 
both, the original intrinsic Tsodyks et al., 1996 and Romani and Tsodyks, 2015 model, is that they 
do not explain how the topological connectivity matrix (in our case  WCA3 ) is generated (Lisman and 
Redish, 2009; Jaramillo and Kempter, 2017). Extrinsic theta sequences in a first exposure to a novel 
environment should therefore be missing. Although Feng et  al., 2015 find that theta sequences 
on a first exposure of a novel linear track are indeed much weaker (maybe only reflecting intrinsic 
sequences), their results nevertheless indicate a very fast learning time scale that is hard to reconcile 
with recurrent learning of a full spatial topology (particularly the generalization to 2- d). Also their 
result might be hampered by place field plasticity that biases the decoder towards backward- shifted 
place maps of later trials (Parra- Barrero and Cheng, 2023). We therefore explored, whether extrinsic 
2- d sequences could also be generated by a model that is not relying on 2- d topology in the recurrent 
weights. To this end, we disabled the CA3 recurrence and compensated the missing level of excitation 
by an increased strength of the spatial input and the DG loops (see Methods section: Parameters of 
the models). Our simulations show that extrinsic sequences can still be generated by spatial input 
alone (Figure 6A), relying only on the short- term facilitation mechanism. Simulating CA3 activity with 
lesioned DG similarly abolishes the temporal organization of theta sequence and reduces the phase 
range (Figure 6B). The results demonstrate that the temporal order of extrinsic sequences could be 
coordinated solely by sensorimotor drive and does not necessarily require CA3 recurrence.

Functional role of intrinsic sequences
While the function of extrinsic theta sequences in encoding the actual trajectory of an animal 
(connecting the recent past, present and near future locations) is obvious, the potential role of the 
less readily apparent intrinsic sequences is not straight forward. Simulations of trajectories in 2- d 
(Figure 5) suggest intrinsic activity may serve a role to identify certain location- direction pairs inde-
pendent of the current trajectory. Here, we follow this idea by evaluating the hypothesis that the 
intrinsic sequences signal a stable ‘landmark’ (location/direction pair) cue by a temporal code that is 
invariant to different directions of approach.

To test our hypothesis, we constructed a downstream readout neuron that would reliably iden-
tify the presence of the intrinsic sequence independently of the animal’s running direction, whereas 
it would not be able to do so for only extrinsic sequences. To this end, we trained the synaptic 
weights using the tempotron learning rule (Gütig and Sompolinsky, 2006), which is able to imple-
ment binary classification based on temporal relations of input spike patterns (see Methods section: 
Tempotron). Two tempotrons were trained to recognize the spike patterns from the place cells, one 
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taking input from a model with DG- loop connectivity at  θDG = 0◦ , and one without DG- loop connec-
tivity to serve as a control only having access to extrinsic sequences (Figure 7A). Non- moving spatial 
inputs were applied to the CA3 place cells at the centers of with- loop and no- loop populations and 
their spike patterns in subsequent theta cycle were used as training patterns, mimicking a situation 
in which network activity is evoked without sensory- motor input as, for example in a offline situation 
before the animal walks or maybe even has seen the environment. The training patterns have only 
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Figure 6. Extrinsically driven theta correlations can be temporally organized by sensorimotor drive alone without 
CA3- CA3 recurrence. Simulations were performed without CA3- CA3 recurrence but with stronger spatial input. 
(A) Same as Figure 3. Extrinsically driven theta correlations and phase precession are still present. (B) Same as 
Figure 4. DG is still integral to the theta compression in a network model without CA3- CA3 recurrence.
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Figure 7. Intrinsic sequences provide a stable landmark for positional decoding using a tempotron. (A) Top: Two 
tempotrons are trained for place cell populations within the top (with DG loop; blue) and bottom (no DG loop; 
red) squares, to recognize the presence of the corresponding sequence activities. DG- loop rightward projection 
is indicated by blue arrow and only exists in the blue square. Non- moving spatial inputs are applied to the CA3 
network centered at the two locations (marked by black crosses) to evoke spike sequences for training. Bottom: 
Resulting spikes of the place cell network zoomed in to the subset of field centers from x=-10 to x=10 for y=+20 
(with- loop, top raster plot) and y=-20 (no- loop, bottom). Each theta cycle is one (+) training pattern, which the 
tempotron is trained to detect by eliciting a spike. (B) Example training pattern with spikes of place cells from 
x=-10 to x=10 (in each rectangular row) fixed at different values of y. Only one theta cycle is shown. Each place cell 
delivers spikes to the dendrite of the tempotron, producing post- synaptic potentials (PSPs) at the soma (line plot at 
the bottom). Synaptic weights are adapted by the tempotron learning rule such that PSPs can cross the threshold 
(gray line) and fire for the detection of the sequence. After the tempotron has fired, the PSPs will be shunted. 
(C) Sequence detection is tested while the simulated animal ran on a trajectory with varying direction ( φ ) from 0° 
to 360° with a 15° increment to detect the presence of the sequence. (D) Detection accuracies (ACC) for with- loop 
(red line) and no- loop (blue) input populations. Note that the tempotron cannot detect the no- loop sequences 
when tested on trajectories at various angles. (E) Detection of the intrinsic sequence for a trajectory  φ = 180◦  for 
the DG- loop condition. Spike raster is shown for every two horizontal rows of place cells in the arena and color- 
coded by the synaptic weights (see color bar on the right). Tempotron soma potential is shown at the bottom for 
each pattern. (F) Same as E, but for no- loop inputs. The tempotron remains silent.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Decoding of positional landmarks using tempotrons in a network model without CA3- CA3 
recurrence.
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(+) labels, which the tempotrons are trained to recognize by firing a spike (Figure 7B). We then test 
the tempotrons with spike patterns induced by the animal running on different trajectories through 
the trained location with running directions varying between 0° to 360° (Figure 7C). All spikes in each 
training and testing pattern are individually jittered by adding a noise term  σ ∼ N (0, (2 ms)2)  for 100 
times, producing 100 samples for each pattern. The tempotron is said to successfully recognize the 
sequence of a trajectory direction if any of the theta cycles throughout the trajectory elicits a spike, 
that is while running, the readout cell would evaluate the place cell sequence in every theta cycle for 
information on the trained landmark.

We found that the tempotron trained on the intrinsic sequence from the DG loop is able to recog-
nize the sequence patterns produced for all running directions, while the tempotron trained without 
a DG- loop fails to identify the extrinsic sequences most of the time (see accuracies in Figure 7D). The 
reason is that the spike patterns induced by intrinsic sequences remain similar to the training pattern 
despite being approached in other directions (see sequential contributions in Figure 7E), while spike 
patterns for the no- loop condition are different between training and testing (Figure 7F). The distinc-
tion is further illustrated in Figure 8, where 2- d maps of spike time gradients in one theta cycle are 
plotted with respect to running direction/training condition. Sequences always contain components 
that propagate along the projection direction of DG loop, while, without such a loop, they only prop-
agate along the running direction. Moreover, during training, the no- loop condition evokes concentric 

No CA3-CA3 recurrence
With DG loop

With
loop

No
Loop

Loop 
direction

Training TestingA

B

C

Figure 8. Illustration of spike time gradients in one theta cycle (500–600 ms) with and without DG loop. (A) Time gradients with a DG loop projecting to 
the rightward direction ( θDG = 0◦ ). Each arrow is located at a CA3 place field center. The arrow direction indicates the spike time gradient, equivalently 
the ‘travelling direction’ of sequence activity, which is calculated as the sum of the directions to the 8 neighbouring field centers, weighted by the 
difference between their mean spike times in one theta cycle. Arrow direction is color- coded according to the color wheel. Black cross marks the 
instantaneous position of the animal. The first column shows the training condition when a non- moving spatial stimulus is applied. The three columns on 
the right show the testing condition when the rat is running in various directions. The sequence mostly propagates rightwards, following the DG- loop 
direction even when the animal runs in different directions. (B) Same as A without a DG loop. Sequences propagate outward from the animal position as 
a concentric travelling wave during training. During testing, spike time gradients follow the running direction. (C) Same as A, using the network model 
without CA3 recurrence. As in Figure 6, the extrinsic sequence is driven solely by the STF mechanism of the spatial input. Intrinsic sequences in this 
model still remain invariant to running directions and function as spatial landmarks.
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waves, reflecting the 2- d topology of the recurrent weights. Similar results were also achieved without 
CA3- CA3 recurrence (Figure 7—figure supplement 1 and Figure 8C).

Our results show that intrinsic sequences can provide a stable correlation signal which allows reli-
able decoding of locations through temporal correlations. The intrinsic temporal code remains detect-
able even when mixed with extrinsic sequences.

Discussion
We presented a model of hippocampal theta sequences in 2- d environments, suggesting that both 
extrinsic and intrinsic mechanisms are required to explain experimental reports that phase preces-
sion and spike timing correlations are non- homogeneous across running directions. Although phase 
precession already becomes directional by including direction- dependent sensory input into a purely 
extrinsic model, directionality of spike timing correlations cannot be explained by such a model. We, 
however, demonstrated that the correlation preference could be implemented by fixed recurrent loops 
via a model DG layer. We further supported the model assumptions by showing that DG lesions plus 
compensatory sensory drive can abolish the theta compression effect in CA3 spiking activity (Ahmadi 
et al., 2022). By employing a spike- based temporal pattern decoder (tempotron), we showed that the 
intrinsic sequences could function as stable signatures that act as anchors of the spatial code.

Early intrinsic models (Tsodyks et al., 1996) were challenged owing to their inability to generate 
phase precession in backward travel (Figure 1E, also see Cei et al., 2014), as well as the predomi-
nantly extrinsic correlations observed in CA1 (Huxter et al., 2008). In our hybrid model, phase preces-
sion still occurs during backward travel ( θDG = 180◦ ) but at a lower probability as indicated by the 
larger fraction of positive phase- position slopes (Figure 3H). Also, extrinsic sequences still dominate 
over intrinsic sequences as indicated by the majority of field pairs being extrinsic (Figure 3J). Both the 
reduced expression of phase precession in reverse runs and the dominance of extrinsic sequences are 
in accordance with the experimental data (Yiu et al., 2022).

The mixture of extrinsic and intrinsic mechanisms in our theory, naturally gives rise to the direction-
ality of spike correlations and phase distributions. As the trajectory aligns itself with the DG loops, 
the ratio of intrinsic to extrinsic sequences increases. As a result, spike correlations become more 
rigid and the phase distribution is shifted upward due to the accumulated synaptic transmission delay 
from the reverberating activity between CA3 and DG populations. Adding directional sensory input 
activates extrinsic sequences in the best direction more strongly, and hence, leads to an association 
between best- angle (worst- angle) pairs and extrinsicity (intrinsicity). These predictions of our model 
are corroborated by past reports of higher spike phases in the non- preferred arm of a T- maze (Kay 
et al., 2020) as well as the association of rigid correlations with upward shifts in spike phases and an 
increase in worst- angle pairs (Yiu et al., 2022). The experimental distinction between extrinsic and 
intrinsic components in theta sequences has so far only been achieved in pairs of place cells, owing to 
the limited number of simultaneously recorded place cells with overlapping fields. Our model predicts 
that similar distinctions should also be observable in higher- order statistics, obtained from overlap-
ping fields of a larger number of cells. Instead of correlation lags, we suggest to use temporal pattern 
detection methods (e.g. Chenani et al., 2019) to unveil the respective sequence contributions.

Since intrinsic sequences can also propagate outside the trajectory (out- of- field firing in Figure 5) 
and activate place cells non- locally, our model predicts direction- dependent expansion of place fields, 
or even multiple place fields, with the intrinsic sequence’s target location exhibiting late spike phases 
and higher phase precession onsets. Remote activation during locomotion has already been observed 
in a previous study (Sasaki et al., 2018) where CA3 place cells preferentially firing at one arm of the 
maze were also activated at reward locations at other arms. In our model, only short- range intrinsic 
connectivity was considered, thus, place field boundaries expand locally but in a skewed manner 
matching the sequence direction. Skewness of place fields has been reported by a number of studies 
(Mehta et al., 1997; Shen et al., 1997; Mehta et al., 2000; Ekstrom et al., 2001; Lee et al., 2004; 
Burke et al., 2008; Cei et al., 2014; Roth et al., 2012; Dong et al., 2021) showing place fields to be 
asymmetrically expanded opposite to the direction of travel. This effect was connected to plasticity 
as it develops after repeated traversal, and due to its dependence on NMDA receptor activation 
(Ekstrom et al., 2001; Burke et al., 2008; Shen et al., 1997). These plasticity studies show that the 
hippocampal place code is shaped by intrinsic synaptic computations including temporal activation 
patterns in theta sequences (Feng et al., 2015). Apart from being conducted on linear tracks and not 
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2- d environments, most of this work focused on CA1 and associated Schaffer collateral plasticity. Yet 
some prior studies (Lee et al., 2004; Roth et al., 2012) did show that place fields in CA3 were more 
skewed than in CA1, which our model would explain by CA3 expressing more intrinsic sequences than 
CA1 consistent with prior experimental observations (Yiu et al., 2022 reported ratios of extrinsically 
to intrinsically driven cell pairs of 1.44 in CA1 and 1.23 in CA3).

A further prediction of hard- wired DG loops is that the resulting activity patterns (intrinsic sequences) 
should not remap under conditions of global or partial remapping (Leutgeb et al., 2004). Instead the 
same intrinsic sequence components should be observable in multiple environments, however, they 
might only be seen in a small fraction and thus this prediction is potentially hard to test.

The back- projection from CA3 to DG is a crucial anatomical prerequisite of our model, but was rarely 
explored compared to the feed- forward inputs via the perforant pathway. The proposed CA3- DG 
recurrent structure of this model, albeit simplified, is consistent with the anatomical evidence. Pyra-
midal cells in CA3 innervate the mossy cells at the DG hilus (Scharfman, 1994; Scharfman, 2016), 
which then project to granule cells through both excitatory and inhibitory pathways (Hsu et al., 2016; 
Scharfman, 1995; Larimer and Strowbridge, 2008; Soriano and Frotscher, 1994), and subsequently 
back to CA3 pyramidal cells. An optogenetic study (Hsu et al., 2016) showed that the net effect of 
mossy cells on granule cells was predominantly inhibitory, suggesting that the DG ensembles excited 
by mossy cell synaptic drive are sparsified by suppressing unwanted out- of- ensemble activity. Indeed, 
past studies showed that reliable excitatory effect could be observed when granule cells were depo-
larized (Scharfman, 1995) and when they received back- propagation of sharp wave bursts from CA3 
population (Penttonen et al., 1998). This indicates that the excitatory recurrent pathway from CA3 
via DG exists and might allow activity reverberation between two layers. While our model, owing to 
its simplicity and generality does not require any DG specific pathways and would work equally well 
with any other anatomical interpretation of the CA3 feedback, we hypothesize the intrinsic feedback 
connectivity to arise via the DG, particularly because DG lesions were shown to eliminate the coordi-
nated temporal structure of CA3 activity and to be instrumental to sequence organization (Figure 4 
and Ahmadi et al., 2022).

Our model assumed a connectivity pattern in the DG loops, in which neurons activate the neigh-
bours along a specific direction, as inspired by Hebb’s phase sequences (Hebb, 1949) and, hence, 
replay of the loop would activate a spatially plausible virtual trajectory. The loop connectivity could 
either arise from previous learning, or might be present already beforehand (Dragoi and Tonegawa, 
2013), with spatial topology inherited by associating 2- d sensory features to cell ensembles in the 
loop (Leibold, 2020). The resulting topology can exhibit discontinuous long- range jumps to other 
locations (Sasaki et al., 2018) or consist of a discrete set of (behaviorally relevant) locations (Pfeiffer, 
2022).

Different from other phase precession models, we also included heading direction as part of the 
sensory input, as inspired by past literature that CA1 (Markus et al., 1995; Acharya et al., 2016; 
Stefanini et al., 2020), CA3 (Mankin et al., 2019), and DG place cells (Stefanini et al., 2020) exhibit 
directional selectivity in firing rates, potentially inherited from the upstream head- direction cells in 
the medial entorhinal cortex (Giocomo et al., 2014) and postsubiculum (Taube et al., 1990). As a 
result, the directional drive immediately translates to phase directionality in theta sequences, partly 
contributing to the upward shift of the phase distribution in the worst angles. Such phase direction-
ality arises naturally from the intracellular dynamics of a spike- based model, where stronger depolar-
ization causes earlier spiking. This phase- rate dependence has already been used in previous models 
(Harris et al., 2002; Mehta et al., 2002; Thurley et al., 2008), where the increasing depolarization 
within place fields directly relates to decreasing spike phases. The causal effect of firing rate on spike 
phases, however, was disputed by Huxter et al., 2003 as they showed that precession slopes and 
spike phases remained the same between high- and low- spiking runs, suggesting that the phase is not 
single- handedly determined by firing rate. In our model, firing rate is determined by both low- phase 
spiking from sensory input and high- phase spike arrivals of DG- CA3 loops, both producing opposing 
effects on the phase distribution. Thus, depending on the strength and geometry of the DG- CA3 
connectivity, spike phases are not fully determined by firing rate.

By using a tempotron to decode the spike patterns, we show that the spike patterns of intrinsic 
sequences can serve as a stable landmark which remains decodable across multiple running directions. 
The invariant temporal patterns could serve as anchors of spatial memories in a novel environment, 
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since place fields only stabilize after the animal becomes familiar with the environment (Wilson and 
McNaughton, 1993). The pre- existing sequence motifs, even at times when the spikes of the neurons 
are not spatially tuned to a location, can still encode the position based on their temporal relations 
alone. The idea has previously been spelled out (Cheng, 2013) and numerically verified (Leibold, 
2020; Parra- Barrero and Cheng, 2023) with multiple fixed sequences that form a decodable spatial 
representation.

Intrinsic sequences may thus act as a scaffold around which a new spatial code can be built for new 
but similar behavioral contexts, where similarity could for example be identified by a salient feature. 
Once the behavioral context of a situation changes, new intrinsic sequences would be observable. 
These intrinsic landmarks need to be stable across time, as shown for some dentate gyrus represen-
tations (Hainmueller and Bartos, 2018). We speculate that offline sequences observed during replay 
and preplay (for review see Buhry et al., 2011; Dragoi and Tonegawa, 2014), would correspond to 
the intrinsic activity patterns and indicate the context expectation of an animal (which can be detected 
by a tempotron). The functional roles of intrinsic sequences may thus not be limited to spatial memo-
ries. While, in the spatial domain, intrinsic sequences could be interpreted as spatial trajectories (Kay 
et al., 2020; Sasaki et al., 2018), virtual non- spatial trajectories could represent working memories 
contents (Jensen et al., 1996) available for general decision making processes.

Methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Python Python Software Foundation
https://www.python.org/  
RRID:SCR_008394

Software, algorithm Linear- circular regression Kempter et al., 2012
The algorithm is customized to 
our analyses

Software, algorithm Tempotron
Gütig and Sompolinsky, 
2006

The algorithm is customized to 
our analyses

Neuronal model
Generation of neuronal action potentials is modelled according to Izhikevich, 2003. The soma poten-
tial  v  and the adaptation variable  u  of unit  i  at time  t  (in ms) follows the equations:

 v̇i(t) = 0.04v2
i (t) + 5vi(t) + 140 − ui(t) + Ii(t)  

 u̇i(t) = a
[
b vi(t) − ui(t)

]
  

 Ii(t) = IR
i (t) + IS

i (t) − Iθ(t)  

Any time  v(t)  crosses the threshold 30 mV from below, we register a spike for the neuron and 
reset the soma potential by  v(t) ← c  and the adaptation variable by  u(t) ← u(t) + d . For the excitatory 
pyramidal place cells, we use parameters  a = 0.035 ,  b = 0.2 ,  c = −60  mV,  d = 8 , which provides the 
neuron with burst firing characteristics. For the inhibitory interneurons, the parameters were  a = 0.02 , 
 b = 0.25 ,  c = −65  mV, and  d = 2 , which corresponds to fast spiking patterns.  I(t)  is the total sum of 
recurrent  IR(t) , sensory  IS(t)  and oscillatory theta input

 
Iθ(t) = 7

[
1 + cos

(
2πt

100 ms

)]
/2

  

We chose to use the phenomenological spike generation model of Izhikevich, 2003, since it allows 
to adjust burst firing properties with only few parameters that efficiently emulate the bifurcation struc-
ture of spike generation. Synaptic integration below threshold is not affected by the spike generation 
model and will thus be treated by conventional synaptic models.

Spatial input
The place field centers  p

CA3
i =

[
xCA3

i (t), yCA3
i (t)

]
  of  80 × 80 = 6400  excitatory CA3 cells equally tile the 80 

by 80 cm square arena. Place cell firing rates are modelled direction- sensitive, with preferred heading 
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directions  ψ
CA3
i   semi- randomized among each 2×2 tile of place cells by randomly rotating a set of four 

equally spaced direction angles by a uniformly distributed angle  ξ , that is

 
[
ψCA3

i ,ψCA3
i+1 ,ψCA3

i+2 ,ψCA3
i+3

]
=
[
0◦, 90◦, 180◦, 270◦

]
+ ξ mod 360◦ .  

The sensory input  J
S
i (t)  into the  i - th neuron depends on the instantaneous position,  p(t) =

[
x(t), y(t)

]
 , 

and heading direction  ψ(t)  of the animal as

 

JS
i (t) =





AS
i (t) IMEC(t) if d

(
p(t), pCA3

i
)
≦ 5 cm

0 if d
(
p(t), pCA3

i
)

> 5 cm
  

 
AS

i (t) = Apos + Adir exp
(

cos
(
ψ(t) − ψCA3

i
)
− 1

)
  

 
IMEC(t) = 1

2

[
1 + cos

(
2πt

100 ms
+ 70◦ π

180◦

)]
,
  

where  Apos  is the amplitude of positional tuning and  d(·)  computes the Euclidean distance between 
two positions. The positional tuning curve is implemented as a rectangular box function, where the 
place cell only receives sensory input if the animal is within 5 cm from the field center. Directional 
tuning is implemented as an additional amplitude gain  Adir  to the positional current depending on the 
circular difference between the animal’s heading and the neuron’s preferred heading direction  ψ

CA3
i  . 

The sensory input is assumed to be modulated by theta oscillations from medial entorhinal cortex 
(MEC)  IMEC(t)  with a phase shift of 70° (Mizuseki et al., 2009).

The sensory input  JS  is subsequently transformed to the input current  IS  via short- term facilitation 
(STF)

 
ṡ F

i (t) =
(S F

0 − s F
i (t))

τ F + (S F
1 − s F

i (t))ΦFJS
i (t)

  

 IS
i = JS

i (t)
[
s F
i (t)

]2 ,  

where the facilitation variable  s
F

i   decays to  S
F

0   with a time constant  τ F = 500 ms  and increases to  S
F

1   
when the sensory input  J

S
i   is present. The time constant  τ F  of facilitation of neocortical synapses was 

in the range suggested by Tsodyks et al., 1998 following previous experimental reports (Mejías and 
Torres, 2008; Zucker and Regehr, 2002).  Φ F  controls the strength of the STF. The facilitation variable 
is squared to include non- linear interactions in presynaptic calcium dynamics. As a result, facilitated 
sensory input  I

S
i   increases over time and becomes stronger in the later part of the field, thus effectively 

generating a spatially graded input strength.
Note that only the CA3 place cells receive the sensory input.  I

S
i (t)  is not applied to the place cells 

in DG and all of the inhibitory interneurons.

CA3 recurrent connections
Place cells in CA3 connect with each other by excitatory synapses. The excitatory synaptic current  I

E
i (t)  

is conductance- based, and follows the equations:

 
ġE

i (t) = −gE
i (t)
τE + 1

NJ

∑

j,f
Wij sD

j (t) δ(t − t(f)j − τ0)
  

(1)

 IE
i (t) =

[
VE − vi(t)

]
gE

i (t)  (2)

The conductance  g
E
i   of a post- synaptic cell  i  is increased by the spike arrivals at times  t

(f)
j   from the 

pre- synaptic cell  j , and decay with a time constant  τE = 12 ms .  NJ = 6, 400  is the number of presyn-
aptic place cells,  VE = 0 mV is the reversal potential of the excitatory synapses and  τ0 = 2 ms  is the 
synaptic transmission delay.

The synaptic weights  Wij  from cell  j  to cell i depend on the distance between place cell centers and 
on the similarity of their preferred heading angles, i.e.,
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WCA3

ij = Jij

{
Bpos + Bdir exp

[
KCA3( cos(ψL

i − ψL
j ) − 1

)]}
exp

(
−d(pCA3

i , pCA3
j )2

2σ2

)
,
  

where  Bpos  and  σ = 2 cm  correspond to the maximum strength and width of the location- specific inter-
action, respectively.  Bdir  and  KCA3  control the maximum strength and the concentration of the direc-
tional dependence, respectively.  Jij  models the rightward asymmetry of the cell connections, which 
was only turned on when we simulated the 2- d variant of Tsodyks et al., 1996 model in Figure 1C–F 
and otherwise turned off in the rest of our analysis.

 

If rightward asymmetry is ON, Jij = 1 if xCA3
j < xCA3

i , else 0

If rightward asymmetry is OFF, Jij = 1   

Furthermore, the recurrent synaptic conductances underwent short- term synaptic depression (STD), 
as was proposed in Romani and Tsodyks, 2015 to serve as sequence generator in 2- d space. The 
mechanism penalizes the recurrent input into the place cells behind the animal. As a result, the differ-
ential recurrence strengths translate to a gradient of spike phases and produces extrinsic sequences in 
the direction of travel. We model the STD by the variable  s

D
i (t)  which represents the available synaptic 

resource and follows the dynamics:

 
ṡD
i (t) = 1 − sD

i (t)
τD − UDδ(t − t(f)i ) ,

  

where  s
D
i   recovers to 1 with a time constant  τD = 500  ms and is depleted by a fraction  UD  every time a 

spike occurs. The recovery time constant is comparable to experimentally obtained values of cortical 
neurons (200–800 ms in Tsodyks and Markram, 1997; Markram et al., 1998; Abbott et al., 1997; 
Zucker and Regehr, 2002) and previous modelling work (450–800 ms in Romani and Tsodyks, 2015; 
Haga and Fukai, 2018; Tsodyks and Markram, 1997; Tsodyks et al., 1998). The STD only applies 
to synaptic connections when presynaptic cells are CA3 place cells.  s

D
i (t)  is fixed at 1 when the pre- 

synaptic cells are inhibitory interneurons or DG place cells.

DG layer
We simulated  NDG = 40 × 40 = 1600  place cells in the DG layer, with place field centers equally tiling 
the environment. The DG cells do not receive sensory input. Their positional ( x

DG
i , yDG

i  ) and directional 
( ψ

DG
i  ) tunings are determining synaptic strengths to and from the CA3 layer. The directional tuning is 

semi- randomized as described for CA3. The synaptic current dynamics follow Equations (1) and (2). 
Excitatory synaptic weights from CA3 place cells to DG place cells are defined as

 
WCA3−DG

ij = CCA3
j BDG exp

[
KDG( cos(ψDG

i − ψCA3
j ) − 1

)]
exp

(
−d(pDG

i , pCA3
j )2

2σ2

)
,
  

which are dependent on the differences in the place field centers and preferred heading angles 
between the CA3 and DG populations. The variable  C

CA3
j   strengthens outgoing connections from 

CA3 place cells on the path corresponding to the intrinsic sequence by choosing

 
CCA3

j = maxk∈[−10,10]

{
exp

(−d(pC
k , pCA3

j )2

2σ2

)}
,
  

where  p
C
k   varies with the intrinsic path direction  θDG  as  p

C
k = [2k cos(θDG), 2k sin(θDG)] .

The excitatory synaptic strengths from DG to CA3 are chosen such that DG cells project back to 
CA3 cells with place field centers shifted by a vector  r = [4 cos(θDG), 4 sin(θDG)]  of fixed length of 4 cm 
along the intrinsic path, that is

 
WDG−CA3

ij = BDG exp
[
KDG (

cos(ψCA3
i − ψDG

j ) − 1
)]

exp

(
−d(pCA3

i − r, pDG
j )2

2σ2

)
.
  

(3)

The model has no synaptic connections between DG excitatory neurons.
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Inhibitory synapses
The model additionally contains  NI = 250  inhibitory interneurons (denoted as Inh) each for the CA3 
and the DG layer. They provide inhibitory feedback separately to the excitatory cells within each 
layer (CA3- Inh- CA3 and DG- Inh- DG). The dynamics of their synaptic currents mirrors the excitatory 
synapses, that is

 
ġI

i(t) = −gI
i(t)
τ I + 1

NI

NI∑

j
WX−Y

ij δ(t − t(f)j − τ0)
  

 II
i(t) =

[
VI − vi(t)

]
gI

i(t) ,  

with  τ I = 10 ms ,  VI = −80 mV . CA3 and DG have all- to- all connections to their inhibitory populations 
with uniformly randomized strengths, i.e.  W

X−Y
ij = WX−Y

0 ξ  , with  ξ ∼ U (0, 1)  is the maximum synaptic 
strength, and the notation X- Y corresponds to Inh- CA3 and Inh- DG connections. There is no synaptic 
connection between inter- neurons, that is  WInh−Inh = 0 .

The total recurrent current entering each excitatory neuron is thus the sum of the excitatory and 
inhibitory current:

 IR
i (t) = II

i(t) + IE
i (t)  

Table 1. Model parameters used in simulations according to Figure panels.
In, Ex, C. and L. refer to intrinsic, extrinsic, control and lesion respectively.

Name \
Figure 1 (In) 1 (Ex) 2 3 4 (C.) 4 (L.) 5 6A

6B 
(C.) 6B (L.) 7

 Apos 7.5 9.0 6.5 9.5 7.5 6.5

 Adir 0 6 9 8 6

 S
F

0  1 0 1.25 0 0.25 0 1.25 0

 S
F

1  1 2 1.25 2 1.5 2 1.25 2

 Φ F  0 0.001 0 0.001 0 0.001

 Bpos 1100 0

 Bdir 0 2000 1500 2000 0 1500

 KCA3 0 1

 Jij ON OFF

 UD 0 0.9 0.7

 NDG 0 40×40 = 1600

 BDG 0 3000 0 4000 4000 0 4000

 KDG 0 1

 NI  0 250

 W
CA3−Inh
0  0 50

 W
Inh−CA3
0  0 5

 W
DG−Inh
0  0 350

 W
Inh−DG
0  0 35
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Excitatory synapses to interneurons
Interneurons only receive all- to- all excitatory currents from their respective layer. Those currents are 
modelled according to Equations 1; 2. The synaptic weights are constant and denoted by  W

CA3−Inh
0   

and  W
DG−Inh
0  .

Parameters of the models
Model parameters that are adjusted in different analyses are listed in Table  1. The values of the 
synaptic weights and spatial input were chosen to allow for a large range of phase precession and 
stability of the network activity. For the analyses including the DG layer, weights are adjusted to allow 
coexistence of extrinsic and intrinsic sequences.

Cross-correlation analysis
Cross- correlation represents the probability that a spike of one place cell would occur following a 
certain time lag from the spike of the another cell. Cross- correlation is always empirically computed 
as a histogram of time lags between spike pairs with a resolution of 5ms in a window of 200ms. 
Throughout the present study, the direction of a time lag is designated as the lag of the first encoun-
tered cell relative to the next cell along the trajectory, except in Figure 1, where the direction of 
time lag follows the cell order along the  0◦ ,  45◦ , and  90◦  trajectory in each comparison group, and in 
Figure 2, where the time lag direction is from left to right cells.

Correlation lag is derived by band- pass (4–12  Hz) filtering the cross- correlation histogram and 
applying a Hilbert transform on the filtered signal. The phase of the analytic signal at time lag 0 is the 
correlation lag.

Extrinsicity and intrinsicity
We apply quantitative measures for the extrinsic or intrinsic nature of cross- correlations in a pair of 
place fields following Yiu et al., 2022. We compare the cross- correlation histograms of a field pair for 
a running direction along the DG loop ( θDG ) and opposite to the loop ( θDG + 180◦ ). Extrinsicity (Ex) is 
computed as the Pearson’s correlation ( r ) between two cross- correlation histograms, and intrinsicity 
(In) between the histogram of  θDG  and the horizontally flipped histogram of  θDG + 180◦ . The Pearson’s 
correlation is then transformed ( r′ = (r + 1)/2 ) to be in the range of 0 and 1. An extrinsic correlation 
would give an extrinsicity near 1, since the effect of DG loop is minimal and correlation histograms are 
similar in both  θDG  and  θDG + 180◦  directions. A pair of place fields with intrinsic correlation would see 
cross- correlation horizontally flipped in the  θDG + 180◦  condition due to the large effect of DG loop, 
and hence, give an intrinsicity near 1. We classify a pair as extrinsic if its extrinsicity exceeds intrinsicity, 
and vice versa.

Tempotron
A tempotron is a neuronally inspired classifier (readout neuron) whose dendritic synaptic weights can 
be adapted to recognize temporal patterns of spikes arriving at the afferents (for details, see Gütig 
and Sompolinsky, 2006). Briefly, the soma potential of the tempotron follows the equations

 
V(t) =

∑

i
wi

∑

i,f
K(t − t(f)i )

  

 K(t − t(f)i ) = V0(exp[−(t − t(f)i )/τ ] − exp[−(t − t(f)i )/τr]) ,  

where wi is the adaptable weight of the afferent fiber conveying spikes from place cell  i  to the tempo-
tron.  K(t − t(f)i )  is a post- synaptic potential (PSP) kernel with decay and rising time constants of  τ = 5 ms  
and  τr = 1.25 ms  respectively. V0 is a factor which normalizes the PSP kernel to 1. A spike is said to 
occur if  V(t)  crosses the firing threshold  VΘ = 2  from below. After threshold crossing, the afferents will 
be shunted and spike arrivals will not evoke more PSPs for the rest of the pattern. A pattern is defined 
as the set of spike times of all the pre- synaptic place cells in a theta cycle (100 ms).

The weight wi follows the update rule

 

∆wi = 0.01
∑

t(f)i <tmax

K
(

tmax − t(f)i

)
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wi ← wi + ∆wi If a (+) pattern does not elicit a spike,

wi ← wi −∆wi If a (−) pattern does not elicit a spike,  

where tmax is the time at the peak of the soma potential  V(t) . The learning rule assigns credit to the 
afferents based on spike timing. Spike times closer to the peak are considered to have higher contri-
bution to the tempotron firing, hence their afferents are incremented by a larger step. After training, 
spike times with similar temporal correlations as the (+) patterns would be able to evoke enough PSP 
in the tempotron’s soma and elicit a spike as a positive response of binary classification, while those 
similar to (-) patterns would not elicit a spike from the tempotron.

We trained the tempotrons to identify the spike patterns of place cells at locations with and without 
intrinsic connectivity separately. To this end, we modified our network such that DG loops are present 
at the upper half of the arena, spanning the space from x=-20cm to x=+20 cm at y=+20 cm in direc-
tion  θDG = 0◦ , while the loop is absent in the lower half of the arena.

During training, we applied ‘non- moving’ spatial inputs to the CA3 place cells at the with- loop 
(0 cm, 20 cm) and no- loop (0 cm, –20 cm) locations for 1 s, as if the animal were standing still at the 
locations, evoking the activities representing the two location cues. For computational efficiency, we 
restricted our analysis to the populations of CA3 place cells within the 20 cm squared boxes centered 
at the two locations. Each population contains 400 pre- synaptic cells, forming the input space for the 
tempotron. The spikes from the with- loop population will train the first tempotron and those from the 
no- loop population will train the second tempotron. Prior to training, the input spikes are sub- divided 
to 10 patterns based on their theta cycles. Each pattern has a window of 100 ms. We added noise 
to the patterns by jittering the spikes with Gaussian noise  N ∼ (0, (2 ms)2)  for 100 times. As a result, 
each tempotron receives 10×100 = 1,000 training patterns from the activity evoked by the location. 
All training patterns are (+) patterns and there is no (-) pattern.

After training, trajectories (20  cm long, 1  s duration) with running directions from 0° to 360° 
with 15° increment were simulated to cross each of the locations. The trajectories produce a mix 
of extrinsic and intrinsic sequences in the with- loop population and only extrinsic sequences in the 
no- loop population. The patterns evoked by the running trajectories were separately applied to 
the tempotrons. The input spikes for testing were also subdivided into theta cycles and jittered in 
the same manner as during training, forming 1000 testing patterns for each running direction. A 
sequence is said to be correctly identified if the tempotron fires at at least 1 out of 10 theta cycles 
along the trajectory. The accuracy rate for each running direction of trajectory is computed across 
the 100 jittered realizations.

Code availability
We used Python 3 for simulations and visualization. The codes are available from a github repository 
(https://github.com/yyhhoi/directionalnet, copy archived at Yiu, 2023).
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3 Discussion

This thesis explores the spatial representation of temporal sequences in the hippocampus

at the theta timescale. Previously, theta sequences were thought to represent the running

trajectory, connecting past, present, and future locations. In our first manuscript Yiu

et al. (2022), we provided evidence that some place cells exhibit theta correlations that

are independent of the running trajectory, reflecting the underlying dynamics of the intra-

hippocampal network. The discovery of intrinsic sequences also agrees with the findings

of Pastalkova et al. (2008), which showed that the hippocampus could internally generate

theta sequences without being dependent on changing external environmental cues or self-

motion inputs. In the subsequent manuscript Yiu and Leibold (2023), we proposed that

the heterogeneity of theta correlations could be explained by the concurrent propagation

of extrinsic and intrinsic sequences, as modeled by a CA3-DG network. Most significantly,

our research has elucidated how 1D temporal sequences can represent a 2D spatial envi-

ronment. Sequences that propagate along 1D manifolds within the 2D topology of place

cells—either through the running trajectory (extrinsic) or via pathways determined by the

network connectivity (intrinsic)—can support spatial memories through temporal coding.

In this section, we first compare the key findings between the two manuscripts. We then

discuss the implications of these key findings, their connections with other aspects of

hippocampal temporal coding, and review other theoretical frameworks in light of our

results. The thesis concludes with suggestions for future research directions.

3.1 Comparison of key findings between the two manuscripts

3.1.1 Extrinsic and intrinsic sequences

Both manuscripts utilized quantitative measures of extrinsicity and intrinsicity to esti-

mate the trajectory dependency of theta sequences. Our model’s prediction of the het-

erogeneous nature of theta sequences, as presented in the first manuscript, aligns with

the trends observed in our experimental findings within the CA3 region, detailed in the

second manuscript. Notably, theta sequences exhibit stronger intrinsicity under condi-

tions of minimal sensorimotor inputs (at the non-preferred or worst angle) and when cell

pairs are more closely connected and exhibiting similar preferred directions. These results

further highlight the dual aspects of temporal codes coordinated separately by external

sensorimotor inputs and internal network dynamics.

3.1.2 Directionality of phase precession

Both manuscripts demonstrated that phase precession exhibits directionality, particularly

showing higher spike phases when the animal runs in the worst angle. Our model in

the second manuscript mechanistically explains the high spike phase as resulting from
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both weaker depolarization from spatial inputs and the more pronounced manifestation

of intrinsic sequences at the worst angle. This is consistent with the interrelationship

between intrinsic sequences, higher spike phases, and worst angles observed in our first

manuscript.

3.1.3 Difference between CA1 and CA3

The experimental data in our first manuscript showed that both intrinsically and ex-

trinsically driven theta correlations could be observed across all CA regions. However,

compared to CA3, the CA1 region exhibits a stronger bias towards extrinsic sequences, as

well as a less significant effect in the directionality of phase precession. While our model

in the second manuscript primarily focuses on accounting for the theta sequences observed

in CA3, the theoretical framework could also predict consistent observations in the CA1

region. Lacking a recurrent network structure such as back-projections between the CA3

and DG layers, CA1 is likely to produce more extrinsic sequences and thus exhibit less

pronounced directionality in phase precession.

Nonetheless, our experimental findings in the first manuscript shows that the intrinsic

sequence is still present in the CA1 region despite its primarily feed-forward structure.

It can be speculated that the intrinsic sequence in CA1 is derived from upstream CA3

inputs, which are more intrinsically driven and contain higher spike phases. This explana-

tion aligns with the theoretical framework proposed by Chance (2012), which suggested

that the high-phase spiking of CA1 place cells during phase precession originated from

upstream CA3 inputs.

3.2 Implications of intrinsic sequences

3.2.1 Non-local representations

Both manuscripts point towards the existence of non-local temporal sequences at the theta

timescale. ”Non-local” refers to temporal sequences that do not represent the immediate

nearby locations (as seen in the out-of-field firing in Yiu and Leibold (2023)) or do not

follow the actual behavioral order of the animal, as seen in intrinsic theta correlations

(Yiu et al., 2022, Yiu and Leibold, 2023).

Historically, non-local hippocampal sequences have been identified primarily at the SWR

timescales. A prominent example is hippocampal replay, where sequences may unfold in

a forward order from start to goal (Lee and Wilson, 2002, Pfeiffer and Foster, 2013) or

in reverse, retracing locations back to the starting point after the animal reaches the goal

(Foster and Wilson, 2006, Diba and Buzsáki, 2007). Intriguingly, replay can also activate

spatial pathways from previous environments, termed ”remote replay,” or be initiated by

mere visual observation of another rat’s task performance (Carr et al., 2011, Mou et al.,
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2022).

Theta sequences, despite the forward sweep into prospective locations, have generally

been considered as ”local”, since the prospective representation typically includes only

the current position’s surroundings and, as a result, is thought to be influenced by senso-

rimotor input and actual behavioral sequences. However, research has indicated that the

non-local representation at the theta timescale, extending beyond the animal’s surround-

ings, is possible. Wikenheiser and Redish (2015) found that the spatial sweep of theta

sequences extended farther when the goal was more distant (which cannot be explained

by variations in speed and acceleration), indicating a prospective representation that is

more dependent on goal-location than the sensorimotor input. Similarly, Kay et al. (2020)

demonstrated that, before a rat chose to turn left or right in the middle stem of a T-maze,

representations of spatial pathways along both left and right arms were alternating in the

theta cycles, showing that theta sequences are able to encode an alternative future that

has not been chosen by the animal. These findings further strengthen the notion that

spatial representation in theta sequences is not merely coordinated by sensorimotor drive

but also potentially by expectation, planning or memory, leading to a non-local represen-

tation that extends beyond the immediate surroundings of the animal and encompasses

hypothetical pathways.

Our experimental findings demonstrated that non-local representation exists at the theta

timescale and could defy the temporal order of sensorimotor drive at its weakest. Our

model simulation showed that such non-local theta sequences (intrinsic sequences) can be

coordinated by intra-hippocampal connectivity.

In our model, the goal-dependent forward sweep length could be explained by recur-

rent connections ending at the goal location, leading to a boundary effect that shortens

theta sequences near the goal. The representation of possible future pathways, as seen in

Kay et al. (2020), may be partially attributed to intrinsic connectivity along previously

traversed paths of the left and right arms. However, this explanation may require sup-

plementary mechanisms, such as feedback inhibition via interneurons, to fully account for

the observed alternation of different pathways within each theta cycle.

3.2.2 Relation to replay

The intrinsic sequences bear a resemblance to hippocampal replay, as both of their tempo-

ral orders are coordinated by intrinsic dynamics and represent non-local spatial sequences.

Past studies have posited that theta sequences facilitate replay sequences by associating

spatial locations through Hebbian learning during online movements. Given that a SWR

event can span 50-200ms, sufficient to cover the duration of a theta sequence, it is con-

ceivable that both replay and intrinsic sequences originate from the same intrinsic circuit

generator.
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However, evidence for non-local representation in the hippocampus at the theta timescale

is limited, this is likely because the presence of sensorimotor drive during locomotion

overshadows intrinsic sequences, as evidenced by our experimental results. In contrast,

during periods of immobility, the absence of this sensorimotor drive allows the sequential

patterns of linked ensembles to become more apparent and emerge as replay or pre-play.

Upcoming experiments could explore the hypothesis of a shared generator between intrin-

sic sequences and hippocampal replay by analyzing the trajectory dependence of theta

correlations between pairs of place cells that have previously participated in replay se-

quences.

3.2.3 Functional roles

By decoding the temporal patterns via tempotrons, we have demonstrated that intrinsic

sequences can serve as a stable ”landmark” memory which cannot be degraded by the

online sensorimotor input. The finding agrees with Leibold (2020) which showed that spike

sequences with temporal order independent of running trajectory can exclusively support

spatial memories without explicit rate coding. The ”landmark” memory is, therefore,

robust to place field remapping in a novel environment since only the spike timing patterns

contribute to the neural code but not the location specificity of the firing rate. As a result,

the intrinsic sequences might facilitate spatial learning in new environments. In a broader

context, our findings highlight a universal mechanism for memory encoding with temporal

patterns in parallel with firing rate.

Theta sequences driven by the intrinsic network connectivity have been previously sug-

gested to support the recall of memory sequences Jensen et al. (1996), Lisman et al. (2005).

This is because temporal correlation is stored in the connectivity, enabling neural patterns

to sequentially activate one another along the causal chain. The intrinsic sequences, given

their non-local representation, could facilitate the associative recall of spatial pathways,

functioning as working memory for tasks like decision making and planning during move-

ment. Thus, the concurrent propagation of both intrinsic and extrinsic sequences might

imply a dual process during spatial navigation: one that represents the memory of the

current trajectory (possibly for encoding or planning of immediate chosen movements)

and another that retrieves memories of alternative spatial pathways.

3.3 Dual coding in theta oscillations

3.3.1 Differences between phase precession and theta sequence

In the present thesis, we used phase precession as an indicator to gauge the trajectory-

dependence of theta sequences based on the notion that the theta sequence is a natural

outcome of the phase code across multiple cells. Yet, a growing body of evidence suggests
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that phase precession and theta sequences might originate from distinct mechanisms.

This distinction was first highlighted by Foster and Wilson (2007) where they shuffled the

spikes while preserving the phase-position relationship within individual cells. The results

showed a significant degradation in the temporal order of theta sequences post-shuffling.

This implies that the phase precession alone cannot trivially predict the temporal order

of theta sequences.

Subsequently, Feng et al. (2015) investigated the evolution of the theta temporal code

over time in a novel environment. Their findings revealed that the theta sequences, ini-

tially weaker in power, developed to be stronger after the first lap. In contrast, phase

precession was evident from the outset. This suggests that while theta sequences are

shaped by experience, phase precession is not. Further, Middleton and McHugh (2016)

blocked synaptic transmission from CA3 to CA1 neurons. The outcome was a disruption

in sequence correlation, but single-cell phase precession in CA1 remained unaffected. This

indicates that the CA3 input, predominantly influenced by intrinsic network recurrence,

is pivotal for the population temporal code, and EC input, primarily delivering the sen-

sorimotor information and becoming the main input source to CA1 after the blocking, is

sufficient to evoke single-cell phase precession in CA1. The finding further supports the

notion that the theta sequences and phase precession are not simply the two sides of one

coin, and they could arise from distinct processes.

The findings of Feng et al. (2015) and Middleton and McHugh (2016) resonate with the

implications of our model. The phase precession and the initially weaker theta sequences

in CA1, evident during the first exposure to a new track, might be attributed to extrinsic

sequences. The subsequent enhancement in theta sequence power could result from the

upstream input from CA3, where intrinsic connectivity has developed over time.

This explanation, however, requires intrinsic sequences to arise from experience-dependent

changes. In the present thesis, such learning of intrinsic sequences was not explored, as

intrinsic sequences are presumed to arise from pre-existing intra-hippocampal circuitry

motivated by the pre-play phenomenon (Dragoi and Tonegawa, 2011). Nevertheless,

previous studies on preplay hint at the possibility that the learning of intrinsic theta

sequences could be facilitated by the flexible mapping of new memory items onto the

pre-existing circuits. Notably, preconfigured sequences in SWRs have been proposed to

arise from such mappings, allowing the memory sequence to be rapidly encoded without

re-learning a previously known temporal order (Dragoi and Tonegawa, 2011, 2014, Fa-

rooq et al., 2019). An alternative explanation, involving the interchange of the roles of

intrinsic and extrinsic sequences, can also account for the results presented in Feng et al.

(2015). The initially weaker theta sequences could be attributed to pre-existing intrinsic

sequences, while extrinsic sequences develop over time, leading to the observed increase
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in theta power. Further testing of the exact roles of intrinsic and extrinsic sequences in

the experience-dependent modulation of theta power can be achieved by comparing the

trajectory-dependent theta correlations over time.

3.3.2 Relation to gamma oscillations

The dual process of theta sequences and phase precession was further elucidated in the

context of gamma oscillations (25–100Hz). These faster oscillations co-occur with theta

oscillations and can subdivide a single theta cycle into 5–8 shorter gamma cycles, which

are thought to encapsulate individual elements within the longer theta sequence (Jensen

et al., 1996).

Gamma oscillations are proposed to mediate the dual processes within theta oscillations

by differentiating between slow (25–55 Hz) and fast (60–100 Hz, occasionally referred to

as ”medium” in the literature) gamma frequencies. Prior research (Bieri et al., 2014,

Zheng et al., 2016, Guardamagna et al., 2023) have categorized theta cycles based on

whether they contain co-occurring slow and fast gamma components. In the CA1 region,

slow-gamma theta is found to encode longer and more prospective spatial pathways, ex-

hibiting stronger temporal correlations in spike sequences. These spikes are confined to

the late phase of the theta cycle. In contrast, fast-gamma theta primarily encodes the

current position within an ongoing trajectory, displaying phase precession with a strong

phase-position correlation that spans the full theta range. Notably, slow and fast gamma

oscillations in CA1 have distinct origins, arising from CA3 and EC inputs, respectively

(Schomburg et al., 2014).

The underlying mechanisms of the dual spatial coding in slow- and fast-gamma theta re-

main unclear. The most recent explanation was provided by Guardamagna et al. (2023),

who suggested that the model by Chance (2012), where EC and CA3 inputs drive the

early- and late-phase spiking in CA1 place cells respectively, best aligns with their ob-

servations of the dual spatial coding. Our model offers a similar insight, suggesting that

intrinsic and extrinsic sequences could give rise to distinctive temporal codes, which might

be reflected in the spatial coding of slow- and fast-gamma theta. However, the capacity

of our model to predict the mechanisms underlying slow- and fast-gamma spatial coding

remains limited, as our theoretical framework does not incorporate gamma oscillations or

the CA1 region.

To fully capture the interaction between theta and gamma time codes, our model would

need to include fast-spiking inhibitory interneurons. This would allow for the coordination

of spike timings within both fast- and slow-gamma ranges. Future research could explore

the implications of our model by examining the extrinsic and intrinsic correlations in theta

cycles associated with slow and fast gamma oscillations.
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3.4 Other theoretical frameworks

3.4.1 Continuous attractor neural network models

In this section, I would like to review how other phase precession models could fit with

our findings of extrinsic and intrinsic sequences. One model by Navratilova et al. (2012)

is based on continuous attractor neural networks, previously proposed to perform path

integration on head-directions and travelled distances (Skaggs et al., 1995, Samsonovich

and McNaughton, 1997, Zhang, 1996). In the Navratilova et al. (2012) model, each head-

direction cell activates a layer of place-by-direction conjunctive cells, which then project

to a layer of place cells with a spatial offset in the preferred direction of the head-direction

cell, similar to the projection displacement of CA3-DG recurrence in the present thesis

(Yiu and Leibold, 2023). Consequently, movement in a specific direction activates only

the associated head-direction cells and propagates the sequential activity through the con-

junctive cells with the corresponding projection displacement. The other head-direction

cells, except those encode the movement direction, remain inactive; thus, sequence only

propagates in the direction of travel. For a linear track, two head-direction cells and their

corresponding sets of conjunctive cells would suffice to produce theta sequences in both

forward and backward direction. In a 2D open space, multiple sets of head-direction and

conjunctive cells would be needed to encode a full angular range of 360 degrees. This

model shares similarities with the work of Romani and Tsodyks (2015), although the lat-

ter employs the STD mechanism and eliminates the need for multiple layers of conjunctive

cells to produce a direction-dependent projection displacement.

The Navratilova et al. (2012) model is primarily extrinsic, as it generates theta sequences

that propagate in the direction of forward movement, contingent upon adequate encod-

ing of the angular axis by a sufficient number of head-direction and conjunctive cells. To

account for intrinsic sequences, the model would necessitate modifications, such as includ-

ing a head-direction cell population characterized by broad directional tuning curves. A

head-direction cell with a nearly flat tuning curve, while maintaining the same projection

offset between the conjunctive and place cells, would replicate the fixed asymmetrical

connectivity in the Tsodyks et al. (1996) model. This would enable the place cells to

propagate sequences in a predetermined asymmetry direction, irrespective of the actual

direction of movement. Therefore, the concurrent propagation of both extrinsic and in-

trinsic sequences could be achieved through a diversified population of head-direction cells

with varying degrees of tuning sharpness. This extended model could potentially account

for the observed heterogeneity in theta correlations.

3.4.2 Detuned oscillator models

There is also a large family of models based on detuned oscillators (Lengyel et al., 2003).

In these models, pyramidal cell receives inhibitory input at a ”baseline” theta frequency
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(fb) and excitatory input at an ”active” frequency (fa), according to the equation:

fa(t) = kv|v(t)|+ fb(t),

where kv is the modulation strength constant and |v(t)| is the animal’s running speed,

which is set to zero when the animal is outside of the place field. As a result, the active

frequency remains the same as the baseline frequency when the animal is stationary but

increases to be higher than the baseline when the animal moves within the place field.

The active frequency is then ”detuned” from the baseline frequency when the animal runs

across the place field and excites the neuron at progressively earlier theta phase in each

theta cycle. The phase advance ∆ϕ(t) = ϕ(t) − ϕ(0) is dependent on distance traveled∫ t
0 |v(τ)|dτ and can be computed by:

∆ϕ =
∫ t

0
2π[fa(τ)− fb(τ)]dτ = 2kv

∫ t

0
|v(τ)|dτ

The model would be able to explain phase precession in 2-D as the spike phase starts

precessing at the time of field entry regardless of the direction of travel (since only the

magnitude of the vector v(t) matters) and thus, belong to the extrinsic family.

A further modification by Burgess (2008) included the directional selectivity:

fa(t) = kv[v(t) · dL] + fb(t),

which depends on the dot product between the running velocity and the unit vector

dL, denoting the preferred running direction of the neuron. As a result, the slope of

phase-position curve is negative when the running direction aligns with the preferred

direction, and is positive when the circular difference between the two directions is larger

than 90 degrees (because the active frequency is now slower than the baseline frequency).

This configuration would produce the same theta correlation in two opposite running

directions and aligns with the observation of purely intrinsic sequences (see Figure 1A-F in

manuscript II for illustration). However, their study also included the directional tuning of

firing rate. In this case, the detuned oscillator only fires and undergoes phase precession in

the directions near dL. The positive phase-position relation in the non-preferred direction

is thereby suppressed. Consequently, if a place cell receives upstream inputs from multiple

detuned oscillators, with preferred directions covering the full range of running directions,

phase precession can then occur in all directions with negative slopes and, in turn, exhibits

purely extrinsic theta correlation. Although the study of Burgess (2008) did not discuss

the intrinsic and extrinsic correlations, their network could potentially generate both

extrinsic and intrinsic sequences using a combination of upstream directionally selective
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detuned oscillators.

The major weakness of the detuned oscillator models is that the spike phase is the integra-

tion of the phase difference between the active and baseline frequency over time, and thus,

depends on the phase history since field entry. Zugaro et al. (2005) has shown that, after

resetting the theta phase by silencing the population activity via single-pulse stimulation,

single-cell spike phase resumes to phase value just before the interruption and continues

precessing. This shows that cells update the phase code in every theta cycle instead of

relying on the phase code history of previous cycles, which cannot be reconciled with the

prediction of detuned oscillator model where the phase precession is expected to restart

from the beginning after phase resetting. In addition, the detuned oscillator models are

phenomenological since the neuronal mechanism by which the animal’s velocity directly

modulates the active frequency was not explained.

3.5 Future directions

The notion of intrinsic sequences in the present thesis is relatively new compared to the

traditional view of extrinsic sequences. One aspect of intrinsic sequences that still awaits

further experiments is the prediction of non-local sequences by our model simulation.

While our first study (Yiu et al., 2022) focused on theta correlations of field pairs along

the trajectory, it would be worth investigating the theta correlation of field pairs with

one at the current position and another one outside of the trajectory or even outside of

its place field. The existence of non-local theta sequences would predict that such out-

of-trajectory or out-of-field theta correlation exists, which would further corroborate our

theory. However, the search for non-local correlations is limited by recording techniques

as it demands recording a large population of place cells that can sufficiently sample the

whole spatial environment and overlap with each other’s place fields. Recent advances in

tetrode arrays such as Guardamagna et al. (2022) which allow for the recording of nearly

100 units per rat, might enable such analysis.

Furthermore, identifying non-local sequences likely require a different data analysis ap-

proach. Traditionally hippocampal activity sequences were detected by Bayesian inference

of neural activity. However, during mobile periods, the temporal code of non-local se-

quences might be masked by the firing activity driven by sensorimotor input, particularly

in rate-based Bayesian decoders. Our first manuscript Yiu et al. (2022) also suggested

that the intrinsic sequences are the most elusive in the best firing direction. This could

explain why the non-local sequences were rarely detected during theta states but become

more apparent in immobile states such as SWRs. Unsupervised learning techniques for

sequential patterns, such as non-negative matrix factorizations (Mackevicius et al., 2019),

may offer a more suitable approach for identifying these intrinsic sequences within theta

activity.
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The present thesis focuses on the theta temporal code; however, the implications extend

to the temporal code at other timescales. For instance, spike sequences at both SWR

and theta might originate from the same pre-existing intrinsic circuitry and the intrinsic

sequences could be coordinated by slow-gamma oscillations. However, the exact interre-

lationship among theta, gamma and SWR is still unclear. Future research can focus on

elucidating the orchestration of temporal sequences across these three frequency bands.

Specifically, one could test whether the directionality of phase precession properties and

theta correlations differ between slow and fast gamma associated theta cycles, or if the

replayed place fields showed stronger intrinsic correlations.

While the present thesis suggests that both extrinsic and intrinsic sequences are required

to explain the heterogeneity of theta correlations, the short-term plasticity and asym-

metric recurrence may not be the exclusive generation mechanisms. As discussed before,

further extensions of the continuous attractor neural networks by Navratilova et al. (2012)

could potentially explain the extrinsic and intrinsic correlations, by using head-direction

signals to limit in which direction the sequence activity should propagate within a 2-D

topology of place cells. The head-direction signal in the present thesis has so far been

interpreted and implemented as a variation in the amount of sensorimotor drive without

directly modulating phase precession properties or the propagation directions of theta

sequences. Further work could investigate the more active role of head-direction signals

in coordinating the theta temporal code.

3.6 Conclusion

I want to conclude the thesis with a quote from Aristotle ”The whole is greater than

the sum of its parts.” The hippocampal sequence is a very representative example of this

saying. Spike sequences formed by multiple place cells do not merely represent multiple

places but deliver greater functions, such as representations of local and non-local spatial

pathways, and memories stored as temporal correlations alternative to firing rate. Spikes

when put in the right timings could in concert support various functions, including stable

landmark memories, memory encoding and retrieval. To unravel the spatial representation

of the hippocampus, one must understand the interplay between individual neurons and

the complex network dynamics they form. The same can also be said for any other neural

structures. The journey through this thesis has reminded us that in the complex world

of neuroscience, the mystery often lies in the connections, the patterns, and the holistic

view of the system.
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