
 

The Advent of Transformer Models in Psychometrics: Natural Language 

Processing and its Prospects for Scale Development  

Björn Erik Hommel 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

München, 2024





The Advent of Transformer Models in Psychometrics: Natural Language 

Processing and its Prospects for Scale Development 

 

Inaugural‐Dissertation 

zur Erlangung des Doktorgrades der Philosophie 

an der Fakultät für Psychologie und Pädagogik 

der Ludwig‐Maximilians‐Universität München 

 

 

 

 

 

vorgelegt von 

Björn Erik Hommel 

aus Freising 

 

 

 

 

 

 

 

München, 2024



Erstgutachter:     Prof. Dr. Markus Bühner 

Zweitgutachter:     Prof. Dr. David Goretzko 

Drittgutachter:     Prof. Dr. Christian Heumann 

Tag der mündlichen Prüfung:  22.02.2024 



Table of Contents

Zusammenfassung ................................................................................................................... xiii 

Abstract .................................................................................................................................. xvii 

 

General Introduction .................................................................................................................. 1 

1.1. A Manifold Learning Approach to Psychometric Language Modeling ................................ 3 

1.2. The Transformer Model ................................................................................................... 5 

1.2.1 Encoder-Models ........................................................................................................... 6 

1.2.2 Decoder Models ........................................................................................................... 7 

1.2.3 Encoder-Decoder Models ............................................................................................. 8 

1.3. Manuscripts in this Thesis ............................................................................................. 10 

Study 1: Construct-Specific Automatic Item Generation .......................................................... 11 

2.1. Abstract ........................................................................................................................ 11 

2.2. Introduction .................................................................................................................. 12 

2.2.1 Challenges with the Automatic Generation of Personality Items .................................... 13 

2.2.2 Language Modeling Approaches to Construct-Specific Automatic Item Generation........ 14 

2.2.3 Markov Chains and n-gram Models ............................................................................. 15 

2.2.4 Distributed Semantics and Word Embeddings .............................................................. 16 

2.2.5 Recurrent Neural Networks and Long Short-Term Memory Networks ........................... 17 

2.2.6 Transformer Models and the Attention Mechanism ...................................................... 18 



vi  Table of Contents  

 

2.3. Proposed Method .......................................................................................................... 20 

2.4. Workflow and Illustration .............................................................................................. 26 

2.5. Empirical Study ............................................................................................................ 30 

2.5.1 Model Fine-Tuning and Item Generation ..................................................................... 31 

2.5.2 Overfit ...................................................................................................................... 32 

2.5.3 Content Validity ........................................................................................................ 32 

2.5.4 Questionnaire ............................................................................................................ 33 

2.5.5 Participants and Procedure .......................................................................................... 33 

2.6. Results ......................................................................................................................... 33 

2.7. Discussion .................................................................................................................... 42 

2.7.1 Limitations ................................................................................................................ 43 

2.7.2 Future Directions for the Automatic Generation of Non-Cognitive Items

  ................................................................................................................................. 44 

Study 2: Machine-Based Item Desirability Ratings ................................................................... 47 

3.1. Abstract ........................................................................................................................ 47 

3.2. Introduction .................................................................................................................. 48 

3.2.1 Utilizing LLMs to evaluate item desirability ................................................................ 49 

3.3. Method ......................................................................................................................... 50 

3.3.1 Data collection ........................................................................................................... 50 

3.3.2 Data pre-processing .................................................................................................... 53 

3.3.3 Models used in this study............................................................................................ 53 

3.3.4 Model for sentiment analysis ...................................................................................... 53 

3.3.5 Model for item desirability analysis ............................................................................. 54 

3.3.6 Measures and covariates ............................................................................................. 57 

3.4. Results ......................................................................................................................... 57 

3.5. Discussion .................................................................................................................... 60 

General Discussion ................................................................................................................... 62 



Table of Contents  vii  

 

  

4.1. Challenges and Future Directions ................................................................................... 64 

4.2. Conclusion ................................................................................................................... 66 

Appendices ............................................................................................................................... 67 

A. Supplemental Material for Study 1 ................................................................................. 67 

B. Supplemental Material for Study 2 ................................................................................. 71 

C. CRediT-Statement (Contributor Roles Taxonomy) .......................................................... 74 

References ................................................................................................................................ 75 

  



viii  Table of Contents  

 

  



List of Figures 

2.1 Study 1: Schematic Diagram of the Attention-Mechanism and Components of the Transformer Architecture ........................................... 22 

2.2 Study 1: Illustration of the Workflow of the Proposed Method for Construct-Specific Automatic Item Generation ................................... 27 

2.3 Study 1: Differences in Search Heuristics for Generated Items and Tokens ................................................................................................. 29 

 

3.1 Study 2: Simplified Schematic Diagram of Models and Training Data used in this Study........................................................................... 55 

 

B.1 Study 1: Annotated Histogram of Discrepancies Between Human- and Machine-Rated Judgments of Item Desirability .......................... 72



List of Tables 

2.1 Study 1: Comparison of Confirmatory Factor Analyses of Human- and Machine-authored Scales for Trained Construct Labels ............. 35 

2.2 Study 1: Descriptive Statistics and Factor Loadings of Machine-authored Items for Trained Construct Labels  ........................................ 36 

2.3 Study 1: Goodness of Fit Statistics, Factor Loadings and Reliability Estimates of Confirmatory Factor Analyses of Machine-authored 

Scales for Untrained Construct Labels  ......................................................................................................................................................... 39 

2.4 Study 1: Descriptive Statistics and Factor Loadings of Machine-authored Items for Untrained Construct Labels ...................................... 40 

 

3.1 Study 2: Included studies and data characteristics ......................................................................................................................................... 51 

3.2 Study 2: Results of Linear Regression Analyses for the Prediction of Human-rated Item Desirability ....................................................... 59 

 

A.1 Study 1: Examples of Endorsed and Rejected Machine-Authored Items in Content Validity Rating ......................................................... 68 

A.2 Study 1: Exploratory Factor Analysis Results of Machine-authored Items for Untrained Construct Labels ............................................... 69 



List of Abbreviations 

AGR Agreeableness 

AIG Automatic Item Generation 

AMR Abstract Meaning Representation 

BEN Benevolence 

BERT Bidirectional Encoder Representations from Transformers 

CAT Computerized Adaptive Testing 

CFA Confirmatory Factor Analysis 

CFI Comparative Fit Index 

CI Confidence Interval 

CON Conscientiousness 

EFA Exploratory Factor Analysis 

EGA Egalitarianism 

EGO Egoism 

EXT Extraversion 

GPT Generative Pre-Trained Transformer 

IPIP International Personality Item Pool 

JOV Joviality 

LLM Large Language Models  

LSTM Long Short-Term Memory Models 

MLM Masked Language Modeling 

MSE Mean Squared Error 



xii  List of Abbreviations  

 

NEU Neuroticism 

NLG Natural Language Generation 

NLP Natural Language Processing 

NLU Natural Language Understanding 

NSP Next Sentence Prediction 

OPE Openness To Experience 

OSF Open Science Framework 

PES Pessimism 

RMSEA Root Mean Square Error of Approximation 

RNNs Recurrent Neural Networks 

SD Standard Deviation 

SLOC Source Lines of Code 

WLSMV Weighted Least Square Mean and Variance Adjusted Estimators 

  



Zusammenfassung

Einleitung  Die vorliegende Arbeit setzt sich aus zwei Manuskripten zusammen (im 

Folgenden Studie 1 und Studie 2 genannt), welche die Anwendung von neuronaler 

Sprachverarbeitung im Kontext psychologischer Messmethoden und Diagnostik beleuchten. 

Im Fokus dieser Dissertation steht die Transformer-Modellarchitektur (Vaswani et al., 2017) – 

eine Klasse von Sprachmodellen, die sich in zahlreichen Aufgabenbereichen der natürlichen 

Sprachverarbeitung als herausragend erwiesen hat.  

Zwei Hauptkomponenten dieser Modellarchitektur werden unterschieden: Encoder-

Modelle (auch “bi-direktionale Modelle” genannt; bspw. BERT-Modelle; Devlin et al., 2018) 

eignen sich insbesondere zur interpretativen Sprachverarbeitung (natural language 

understanding; NLU) und repräsentieren einzelne Spracheinheiten (bspw. Wörter) als 

kontextualisierte, mehrdimensionale Vektoren. Interpretative Aufgaben, in denen Encoder-

Modelle bislang gute Leistung erzielt haben, umfassen unter anderem Textklassifikation, 

Lückenergänzungsaufgaben, Fragenbeantwortung, sowie die Eigennamenerkennung (Wang et 

al., 2019). Decoder-Modelle (auch “kausale Modelle” genannt; bspw. GPT-Modelle; Radford 

et al., 2018) finden primär Anwendung in der generativen Sprachverarbeitung (natural 

language generation; NLG) und produzieren Textsequenzen durch iteratives, probabilistisches 

Vorhersagen der nächsten Spracheinheit. 

Die bemerkenswerten sprachlichen Verarbeitungsfähigkeiten der Transformer-Modelle 

resultieren aus architektonischen Entscheidungen und den umfangreichen Datenmengen, mit 

der sie trainiert werden (Tunstall et al., 2022). Durch Transferlernen (transfer learning) können 

Transformer-Modelle sich effektiv an neue Aufgaben anpassen. In diesem Prozess erwerben 

die Modelle grundlegende linguistische Fähigkeiten durch Prä-Training (pretraining) anhand 
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von umfangreichen Textkorpora. Anschließend werden sie mithilfe eines kleineren, 

domänenspezifischen Datensatzes feinjustiert (fine-tuning). 

Studie 1  Im Gegensatz zu den Inhalten von psychologischen Leistungs- und 

Wissenstestverfahren kann die automatische Generierung von nicht-kognitiven Items (z. B. 

Persönlichkeitsitems) nicht algorithmisch mit konventionellen, schablonenbasierten 

Methoden gelöst werden (Gierl & Lai, 2015). Erste Erfolge hinsichtlich der automatischen 

Generierung von Persönlichkeitsitems wurden kürzlich durch den Einsatz rekurrenter 

neuronaler Netze erzielt (von Davier, 2018). Bislang konnten Items jedoch nur unkonditional, 

ohne die explizite Festlegung eines bestimmten Messziels (d. h., ein Persönlichkeitsmerkmal) 

generiert werden. Studie 1 demonstriert die Nutzung eines Transformer Decoder-Modells 

(GPT-2; Radford et al., 2019) zur gezielten Generierung von Persönlichkeitsitems für 

spezifische Konstrukte, indem ein impliziter Parametrisierungsansatz verwendet wird. Eine 

anschließende empirische Überprüfung der menschlich und maschinell erstellten Items zeigt, 

dass etwa zwei Drittel der automatisch generierten Items gute psychometrische Eigenschaften 

aufweisen (bspw. Faktorladungen über .40). Zudem erreichen etwa ein Drittel der maschinell 

erstellten Items eine Güte, die mit etablierten Persönlichkeitsitems vergleichbar ist oder diese 

sogar übertreffen. 

Studie 2 Die Genauigkeit von selbstberichteten Daten in den Sozial- und 

Verhaltenswissenschaften kann durch Antwortverzerrungen wie sozial erwünschtes 

Antwortverhalten beeinträchtigt werden (z. B., Krumpal, 2013; Nederhof, 1985). Forscher 

und Skalenentwickler erheben daher Bewertungen zur sozialen Erwünschtheit von einzelnen 

Items (item desirability; Edwards, 1957), beispielsweise um die Neutralität von Fragebögen 

zu gewährleisten, oder eine Gleichwertigkeit der Antwortalternativen in Zwangwahlaufgaben 

(forced-choice items) sicherzustellen (Converse et al., 2010; Hughes et al., 2021; Pavlov et 

al., 2021; Wetzel et al., 2021; Wood et al., 2022). Das Durchführen von Studien zur 

Bewertung der sozialen Erwünschtheit von Items kann jedoch zeitaufwendig und kostspielig 

sein, insbesondere da klare Richtlinien bezüglich der benötigten Stichprobengröße und -

zusammensetzung fehlen. Diese Studie demonstriert die Fähigkeit von Transformer Encoder-

Modellen, abstrakte semantische Attribute in Texten zu identifizieren. Sie demonstriert, wie 

ein Sentimentanalyse-Modell (XLM-roBERTa von Liu et al., 2019, modifiziert nach Barbieri 

et al., 2022) zur Bewertung der sozialen Erwünschtheit von Items mit Daten aus 14 

unabhängigen Stichproben trainiert werden kann. Die Ergebnisse zeigen eine starke und 
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signifikante Korrelation zwischen der menschlichen Bewertung der sozialen Erwünschtheit 

und der Einschätzung durch das Sprachmodell (N = 531, ρ = .80). 

Diskussion  In dieser Dissertation werden in zwei Studien die Potenziale von 

Transformer-Modellen zur Bewältigung typischer Herausforderungen in der 

Skalenentwicklung beleuchtet. In Studie 1 wird die generative Sprachverarbeitung zur 

automatischen Erstellung von konstruktspezifischen Persönlichkeitsitems vorgestellt. Studie 

2 hingegen legt dar, wie interpretative Sprachverarbeitung zur Bewertung der sozialen 

Erwünschtheit von Fragebögen auf Item-Ebene eingesetzt werden kann. 

Die praktische Relevanz dieser Forschung ist augenscheinlich. Die Entwicklung von Skalen 

ist ein aufwendiges Unterfangen, das durch eine Vielzahl an Herausforderungen geprägt ist. 

Aufgrund der inhärenten Unsicherheit bei der Vorhersage, welche Items in der endgültigen 

Version einer Skala beibehalten werden können, empfehlen etablierte Richtlinien oft, das 

Drei- bis Fünffache der beabsichtigten endgültigen Itemanzahl zu entwerfen (DeVellis & 

Thorpe, 2022, S. 98; Morey, 2013, S. 407). Die Ergebnisse der vorliegenden Dissertation 

bieten Forscher und Skalenentwickler eine Erweiterung des methodischen Reportoires der 

Testkonstruktion. 

Diese Arbeit knüpft in ihren theoretischen Beiträgen an die Ideen von Goldberg (1968) und 

Guttman (1944) an und schafft eine konzeptuelle Grundlage für psychometrische 

Sprachmodellierung – eine Betrachtung der wechselseitigen Beziehung zwischen Linguistik 

und Psychometrik im Kontext der Mannigfaltigkeits-Hypothese (manifold hypothesis; 

Narayanan & Mitter, 2010; Fefferman et al., 2016). Dieser Ansatz impliziert ein bi-

direktionales Sprachmodell, welches in der Lage ist, psychometrische Eigenschaften allein 

aufgrund der sprachlichen Merkmale von Items zu bestimmen und umgekehrt, gezielt Items 

basierend auf vorgegebenen Parametern zu generieren.  
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Abstract

Since the recent emergence of the transformer model architecture, the discipline of 

natural language processing has advanced significantly, as these deep neural language models 

demonstrate proficiency in both natural language generation and understanding. As measures 

in the behavioral and social sciences typically rely on linguistic stimulus material (i.e., rating 

scales), this thesis examines the utility of transformer models for the scale development 

process, as examined through two independent studies. Study 1 demonstrates natural 

language generation by showcasing how a transformer decoder model (i.e., GPT-2) can be 

trained to produce questionnaire items targeting specific personality traits. To test this 

method, various human- and machine-authored items were administered to a sample of 

survey respondents. Results indicated that two-thirds of the machine-authored items exhibit 

satisfactory psychometric properties. Study 2 showcases the utility of natural language 

understanding in mitigating social desirability bias in the context of scale development. Here, 

a transformer encoder model (i.e., based on the XLM-roBERTa model), originally trained for 

sentiment analysis, is modified and fine-tuned on item desirability ratings from 14 distinct 

studies. Results show strong predictions (ρ = .80) of human-rated item desirability by the 

model.  

This thesis contributes to the field of psychological measurement by supplying 

researchers and practitioners with novel methodological means to enhance the scale 

development process. It further examines the relationship between linguistics and 

psychometrics through the lens of the manifold hypothesis, proposing a psychometric 

language modeling framework, which posits that psychometric properties can be derived 

from linguistic aspects of psychological measures, and vice versa.  
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 General Introduction

Non-cognitive measures constitute one of the most prevalent response formats in the 

social and behavioral sciences, many of which employ the rating scale item format. In the 

overwhelming majority of cases, participants are presented with written statements or 

questions, which they then evaluate using a numerical scale. Given that the stimulus is 

linguistic in nature, it follows that an items measurement target and psychometric properties 

are exclusively determined by aspects of pragmatics, semantics, syntax, and morphology. 

Yet, there has been a limited interdisciplinary effort to incorporate linguistic theories and 

methodologies into the domain of psychological measurement. 

Exempt from this is a small stream of itemmetric research which according to Johnson 

(2004) emerged with Wiggins and Goldberg (1965). Itemmetricians set out to taxonomize the 

properties of individual questionnaire items, aiming to connect these features to survey 

response patterns. Characteristics of interest commonly regard test-retest statistics, rater-

perceived item attributes (e.g., item ambiguity, social desirability, categorization of item 

content), and simple lexicographic metrics (e.g., item length, negations, grammatical form). 

This strand of research has culminated in the body of literature on item writing guidelines 

(e.g., avoiding double-barreled questions and negations; e.g., Boateng et al., 2018; Clark & 

Watson, 1995; Rosellini & Brown, 2021), which has ultimately aided scale developers in 

reducing systematic error variance. However, Goldberg envisioned a more expansive 

objective for itemmetric research, aspiring towards an understanding of the underlying 

“relationships between item properties and scale validity” (Goldberg, 1968, p. 273). This 

aspiration hints at a framework that is fundamentally different from conventional 

psychometrics, in which the linguistic aspects of a group of items can inherently predict their 

structural validity and psychometric properties, without requiring being administered to a 
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sample. Moreover, a statistical model of this nature is not confined to be unidirectional but 

may be employed in a reverse manner, by generating item texts based on predefined 

specifications of construct and desired psychometric properties. 

Given recent advancements in natural language processing (NLP), language modeling 

offers a promising avenue for linking linguistics and psychometrics. Language models 

describe a class of stochastic models which aim to predict the likelihood of a sequence of 

linguistic units, such as words (e.g., Eisenstein, 2018; Jurafsky & Martin, 2019). The 

capabilities of such models vastly increased as conventional language models were extended 

by deep neural networks, marking the era of neural language models. The transformer model 

architecture is one relatively recent addition to the family of neural language models which 

has received exceptional attention in research and production, due to its previously 

unmatched linguistic capacity (Vaswani et al., 2017; Devlin et al., 2019).  

The goal of this thesis is to lay the foundation for psychometric language modeling, 

which aims to model the bidirectional function between the linguistic aspects of 

psychological measures and their psychometric properties.  Specifically, this framework 

relies on two core operations: Linguistic-psychometric mapping, which derives psychometric 

properties and perceived item attributes from a given item text, and psychometric-linguistic 

generation, that reconstructs item texts from these metrics in a reverse procedure. This 

manuscript features two empirical studies, each highlighting a distinct challenge in scale 

development that is addressed through transformer-based psychometric language modeling 

rather than by conventional methods. 

 



1.1. A Manifold Learning Approach to Psychometric Language 

Modeling 

The manifold hypothesis is central in machine learning and can elucidate the 

objectives of psychometric language modeling. It suggests that high-dimensional data in the 

natural realm often align closely with a lower-dimensional topological structure, or manifold 

(Narayanan & Mitter, 2010; Fefferman et al., 2016). 

In linguistics, for instance, the universe of all four-letter combinations in English 

represents a high-dimensional space, where the actual English words form a lower-

dimensional manifold. 

In psychometric language modeling, the goal is to discern and navigate the manifold 

of items that measure a specific construct. Here, an N-dimensional input space is considered, 

with dimensions equal to the maximum sensible token length of a questionnaire item. A 

“token” refers to the smallest linguistic unit, which can be as short as a single character or as 

long as a word, that is used in the vocabulary of modern language models (Jurafsky & 

Martin, 2019, p.  77). Take GPT-2 — a prominent pre-trained transformer model — as an 

instance, which encompasses a vocabulary of 50,257 tokens (Radford et al., 2019). 

Consequently, the ambient space comprises of 𝑁 × 50,257 possible token sequences, with 

the majority being non-sensical. Nonetheless, this ambient space embeds every conceivable 

construct-manifold. As such, the item stems “I am quiet around strangers.” and “I start 

conversations.” From the International Personality Item Pool (IPIP; Goldberg et al., 2006) are 

both lie on the one-dimensional introversion-extraversion-manifold. In ambient space, 

linearly navigating from the position of the first item (“I am quiet around strangers.”) to the 

coordinates of the second will not result in a smooth transition, as the intermediate points are 

likely to lie beyond the manifold. In other words, all coordinates in-between these two points 

are unlikely to hold questionnaire items. In contrast, traversing the one-dimensional 

introversion-extraversion-manifold from the first to the second item will yield meaningful 

items for each change in coordinates. While the manifold exists within the N-dimensional 

space, it is homeomorphic to a one-dimensional Euclidean space. 

Manifold learning describes a class of nonlinear dimensionality reduction techniques 

(e.g., manifold sculpting; Gashler et al., 2007) that can be used to approximate dimensions 

intrinsic to data (Lee & Verleysen, 2007). In the hypothetical case of the introversion-
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extraversion-manifold, the dimensionality may be expanded to further dimensions, which for 

instance describe psychometric properties (e.g., item difficulty) or the aforementioned rater-

perceived item attributes (e.g., social desirability). In psychometric language modeling, these 

dimensions may not be strictly orthogonal; for instance, item difficulty and social desirability 

are likely to be correlated. 

In summary, a model capable of discerning the linguistic manifestations of 

psychological constructs and inferring psychometric and perceived item attributes could 

significantly transform scale development, potentially obliterating the issue of deficient 

measures. Although ambitious, similar aspirations have lingered in the realm of 

psychological measurement, preceding Goldberg (1968), possibly dating back to Guttman’s 

(1944) “universe of items”.



1.2. The Transformer Model 

Understanding the manifold of questionnaire items, as discussed, provides a novel 

approach to investigating the linguistic and psychometric properties of items in psychological 

assessment. Yet, the practical implementation of this theoretical framework necessitates 

computational models that can accurately process and produce natural language while 

navigating through the high-dimensional space in which the manifold resides. Transformer 

models (Vaswani et al., 2017), renowned for their capability in managing linguistic data, 

appear to be suitable for this task. 

At the most fundamental level, the architecture of the transformer model can be 

subdivided into two integral parts. The encoder processes an input sequence of tokenized 

text, by repeatedly applying attention mechanisms that help the model capture contextual 

relationships in the data. This results in a condensed vector representation of the input 

sequence. The decoder then takes this representation and, using its own layers of attention to 

the encoder's output, predicts the desired output sequence. During the initial model training, 

also known as pretraining, the full architecture (encoder-decoder models) is often employed 

to acquire general linguistic capabilities which are autoregressively learned from vast corpora 

of curated text (Tunstall et al., 2022, p. 6). Model predictions are evaluated using cross-

entropy loss (e.g., Goodfellow et al., 2016, p. 178) and then backpropagated through the 

layers of the neural network of the transformer. The inner workings of the transformer model 

are covered in more detail in Hommel et. al (2022; referred to as Study 1 in this thesis).  

A notable advantage of transformer models is their capacity for transfer learning, 

allowing them to effectively adapt to new tasks (Tunstall et al., 2022). After the pretraining 

phase, where general linguistic proficiency is acquired, models can be subjected to domain 

adaptation and fine-tuning. In domain adaptation, models are trained on a specialized in-

domain corpus that closely aligns with a particular task. For transfer learning, while the 

model's learned weights (i.e., parameters) are retained, slight architectural modifications are 

introduced. Typically, these changes involve adding a specialized model head, such as one 

designed for text classification. Once training is finalized, depending on the specific task at 

hand, it's commonplace to retain only the encoder or decoder component of the model. In 

short, transfer learning leverages the foundational knowledge a model has gained from its 

initial training, enabling rapid adaptation to specialized tasks with little available training data 

(i.e., few-shot learning). 
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In the subsequent section, typical use cases for encoder-only, decoder-only, and 

encoder-decoder configurations are discussed within the framework of psychometric 

language modeling.  

1.2.1 Encoder-Models 

Encoder models, also known as bidirectional transformer models, were first 

popularized with the Bidirectional Encoder Representations from Transformers-model 

(BERT; Devlin et al., 2018), and proved to excel at a variety of linguistic challenges. The 

pre-training of the original BERT involved two training objectives: Masked language 

modeling (MLM) and next sentence prediction (NSP). In MLM, parts of a sequence of text 

(e.g., sentence) in the training data are intentionally obscured by a masking algorithm. The 

models’ objective is then to correctly identify the masked tokens. In NSP, pairs of sentences 

are extracted from the training corpus. For each original sentence pair, a secondary version is 

created by replacing the second sentence with a randomly selected one. During training, the 

model must determine if the second sentence in a pair genuinely follows the first or has been 

randomly inserted. 

Upon its initial release, the BERT model demonstrated unmatched performance across 

various linguistic tasks, including text classification, named entity recognition (e.g., 

identifying persons, organizations, or locations, within a text), and question answering, as 

evidenced by the GLUE benchmark (Devlin et al., 2018; Wang et al., 2019). Subsequent 

advancements have led to numerous modifications and improvements in encoder models. 

These enhancements are exemplified in models like DistilBERT, which employs knowledge 

distillation (a technique where a smaller model is trained to replicate the performance of a 

larger model; Sanh et al., 2020), RoBERTa, optimized for robust performance (Liu et al., 

2019), and both XLE and XLM-RoBERTa, which focus on cross-lingual proficiency 

(Conneau & Lample, 2019; Conneau et al., 2020). 

Despite the successes of encoder models like BERT in various tasks, they exhibit 

limitations in generating vector representations (i.e., embeddings) for entire sequences of 

text. For example, when encoding the aforementioned introversion-extraversion item “I am 

quiet around strangers.” using BERT, each token is mapped to an individual 768-

dimensional contextualized vector representation. In psychometric language modeling, a 

single vector representation for the entire item might be preferable for exploring its semantic 

relationship to other items. This constraint is addressed by bi-encoder sentence transformers, 
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as proposed by Reimers & Gurevych (2019). These models function by processing pairs of 

sentences independently through separate BERT networks. The outputs are then combined in 

a shared space using a mean-pooling operation, to produce a single fixed-size vector 

representation for each sentence. Such vectors can then undergo mathematical operations, 

such as determining distance metrics. For example, the cosine similarity between vectors of 

two item stems may be assessed to infer their semantic proximity. 

1.2.2 Decoder Models 

Decoder models, alternatively referred to as causal transformer models, gained 

prominence with the introduction of the Generative Pre-trained Transformer model (GPT, 

Radford et al., 2018), demonstrating notable proficiency in text generation. The training of 

the initial GPT model involved unsupervised pre-training on a sizable corpus containing 

unpublished books, as well as subsequent fine-tuning on various tasks, including text 

classification. As fine-tuning merely served increasing linguistic proficiency in text 

generation, the text classification head was discarded after the release of the model. Unlike 

encoder models, the advancement of decoder models can be attributed less to architectural 

changes and more to scaling, both in terms of larger model sizes (i.e., increase in layers and 

parameters) and expansive training datasets (Radford et al., 2019; Kaplan et al., 2020). 

Recent large language models (LLMs), including GPT-4 have consistently adhered to 

these scaling laws (OpenAI, 2023). While decoder models are traditionally associated with 

text generation, the observed scaling laws have led to the emergence of novel use cases. 

Typically, decoder models are utilized by supplying a prefix (i.e., a sequence of text) of a 

given length. The model then predicts the next token iteratively, until a special stop-token is 

predicted. For example, a decoder model trained on items from a psychological questionnaire 

may be prompted with the prefix “I start”, and consequently predict “[I start] conversations.” 

only to then conclude that the sequence is most likely to end after the punctuation character. 

However, as LLMs have scaled, decoder model applications have broadened. Notably, 

researchers found that GPT-2 can adhere to simple directives embedded in the prefix. For 

example, using "TL;DR" (short for "Too Long; Didn't Read," a common internet acronym 

requesting a brief summary) as a prefix, prompts the model to summarize a provided text, 

even without the model being explicitly trained for summarization (Tunstall et al., 2022, p. 

288). Moreover, the scaling laws have enabled larger models, like GPT-3, to exhibit 

advanced capabilities such as in-context learning (Brown et al., 2020). In this approach, the 
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model is provided with a few examples of the desired output within the prefix. Recognizing 

this pattern, the decoder aligns its predictions with the format set by these examples. This 

method stands out as it negates the need to fine-tune a pretrained model for specific tasks, 

leveraging the inherent flexibility of the model. 

1.2.3 Encoder-Decoder Models 

The transformer model architecture, as introduced by Vaswani et al. (2017), 

fundamentally employs an encoder-decoder structure, often termed sequence-to-sequence 

models. These models are designed to accurately map one text sequence to another, making 

them particularly suitable for tasks such as machine translation and text summarization.  

Prominent implementations of this architecture include the T5 (Raffel et al., 2020) and 

the BART model (Lewis et al., 2019). Unlike the original transformer introduced by Vaswani 

and colleagues, the T5 model extended its training to encompass more than just 

autoregressive next-token prediction. Notably, even tasks like text classification were framed 

as sequence-to-sequence challenges. For instance, in text classification, the model generates 

text labels instead of predicting fixed classes. In turn, the BART model integrates the 

pretraining approaches of both BERT and GPT within an encoder-decoder framework. In 

addition, various data transformation methods, such as sentence permutation and token 

deletion were employed to enhance its bidirectional understanding, increase its 

generalizability across tasks, and bolster its robustness to noisy data. 

In recent years, research has shifted its focus to decoder-only models, particularly as 

in-context learning has advanced with model scaling. This trend has sparked discussions 

questioning the continued relevance of encoder-decoder architectures (Fu et al., 2023; Gao et 

al., 2022). While encoder-decoder models ensure the decoder consistently attends to the 

encoded source sentence representation, advancements in the context-window size of cutting-

edge decoder models have made it viable to simply prepend the source sentence. This method 

could also address a significant limitation of encoder-decoder models, which is their need for 

larger training datasets due to the increased parameter count of their bi-component 

architecture. Indeed, research by Gao et al. (2022) demonstrates that decoder models exhibit 

comparable performance to encoder-decoder models in bilingual machine translation, a 

domain traditionally dominated by encoder-decoder architectures. 



The Transformer Model 9  

 

  

In conclusion, while encoder-decoder models present a viable option for psychometric 

language modeling, utilizing decoder-only models could offer a more computationally 

efficient approach for psychometric-linguistic generation. 

 



1.3. Manuscripts in this Thesis 
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Item Generation. Psychometrika, 87(2), 749–772. https://doi.org/10.1007/s11336-021-

09823-9  

2. Hommel, B. E. (2023). Expanding the methodological toolbox: Machine-based item 
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Hereafter, Study 1 refers to the first manuscript, and Study 2 to the second. Study 1 

showcases how decoder-models (i.e., GPT-2) can be fine-tuned to generate personality items 

for specific psychological constructs. Psychometric item and scale properties of generated 

items are compared to those of in established, human-authored scales. It further features a 

brief review of recent developments in the field of natural language processing and a 

technical examination of the transformer model architecture. Study 2 demonstrates how 

encoder-models (i.e., an adaptation of the XLM-roBERTa model) can be utilized to mitigate 

social desirability bias by predicting individual item desirability with high accuracy. Taken 

together, the studies featured in this thesis demonstrate how natural language generation (i.e., 

psychometric-linguistic generation) and natural language understanding (i.e., linguistic-

psychometric mapping) can solve common challenges associated with psychological scale 

development.  

All manuscripts were written by the author of this thesis. For individual contributions 

by co-authors, please see Appendix C (CrediT-Statement).  
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 Study 1: Construct-Specific Automatic Item 

Generation

The article entitled “Transformer-Based Deep Neural Language Modeling for Construct-

Specific Automatic Item Generation” published in Psychometrika (Hommel et al., 2022) is 

presented hereinafter. 

2.1. Abstract 

Algorithmic automatic item generation can be used to obtain large quantities of 

cognitive items in the domains of knowledge and aptitude testing. However, conventional 

item models used by template-based automatic item generation techniques are not ideal for 

the creation of items for non-cognitive constructs. Progress in this area has been made 

recently by employing long short-term memory recurrent neural networks to produce word 

sequences that syntactically resemble items typically found in personality questionnaires. To 

date, such items have been produced unconditionally, without the possibility of selectively 

targeting personality domains. In this article, we offer a brief synopsis on past developments 

in natural language processing and explain why the automatic generation of construct-

specific items has become attainable only due to recent technological progress. We propose 

that pre-trained causal transformer models can be fine-tuned to achieve this task using 

implicit parameterization in conjunction with conditional generation. We demonstrate this 

method in a tutorial-like fashion and finally compare aspects of validity in human- and 

machine-authored items using empirical data. Our study finds that approximately two-thirds 

of the automatically generated items show good psychometric properties (factor loadings 

above .40) and that one-third even have properties equivalent to established and highly 
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curated human-authored items. Our work thus demonstrates the practical use of deep neural 

networks for non-cognitive automatic item generation. 

2.2. Introduction 

Research on automatic item generation (AIG) represents a promising endeavor as it 

allows obtaining vast numbers of items by utilizing computer technology. Although progress 

in this field has yielded numerous notable contributions such as generative algorithms for 

creating Raven’s Progressive Matrices ,, software for the generation of multiple-choice items 

(Gierl et al., 2008), and the theoretical foundations of AIG (Drasgow et al., 2006), there is a 

dearth of methods that can be utilized for the generation of item formats typically used to 

assess non-cognitive constructs such as personality traits. We believe that this gap in the 

literature can be attributed to the special linguistic challenges posed by items used to measure 

non-cognitive constructs. Recently, advances in the field of deep learning and natural 

language processing (NLP) have made it possible to address these challenges. In his 

pioneering work, von Davier (2018) successfully demonstrated that personality items can be 

generated by training a type of recurrent neural network known as long short-term memory 

(LSTM) network on a set of established personality statements. Although von Davier’s model 

produces syntactically correct statements that resemble those typically found in 

questionnaires, its utility is limited as it does not permit the generation of items that are 

specific to a given construct. Test development, however, is always goal-oriented and intends 

to measure explicit knowledge, skills, abilities, or other characteristics. As stated by Gorin 

and Embretson (2013), “Principled item design, whether automated or not, should begin with 

a clear definition of the measurement target” (p. 137). Since the publication of von Davier’s 

article, fast-paced developments in computer science have continued to push the boundaries 

of what can be achieved by language modeling.  

In this article, we focus on the issue of construct-specificity for non-cognitive item 

generation, that is, the creation of items for a predefined measurement target. We first outline 

and formalize the linguistic problem that requires a solution, so that construct-specific AIG 

can be achieved. We then offer a brief synopsis of previous language modeling techniques to 

illustrate the challenging problem of synthesizing semantically and syntactically valid 

statements that can be used to measure psychological states and traits. We highlight a 

relatively new group of neural networks known as Transformers (Vaswani et al., 2017) and 

explain why these models are suitable for construct-specific AIG and subsequently propose a 



Introduction 13  

 

  

method for fine-tuning such models to this task. Finally, we provide evidence for the validity 

of this method by comparing human- and machine-authored items with regard to their 

psychometric properties. 

2.2.1 Challenges with the Automatic Generation of Personality Items 

Modern approaches to AIG for cognitive items typically rely on a three-step process 

(Gierl & Lai, 2015). A target knowledge, skill, or ability is first organized into a conceptual 

model that structures the cognitive and content-specific information required by test takers to 

solve problems in the desired domain. This cognitive model is subsequently used to define a 

formative item model, incorporating components such as item stem, response options, and 

placeholder elements. Items are finally assembled by combining all possible variations of 

options and element inputs. While these template-based AIG-techniques have indisputable 

advantages in comparison to manual item authoring, the generation of non-cognitive item 

inventories (e.g., personality questionnaires) demands somewhat different approaches (Bejar, 

2013). 

Rating scales are frequently used for measuring non-cognitive constructs in the social 

and behavioral sciences, and they can be used to illustrate the difficulty of employing 

template-based AIG. Consider the statement “I am the life of the party” used in the 

International Personality Item Pool (IPIP; Goldberg et al., 2006) to assess individual 

differences in extraversion, one of the Big Five personality traits (Digman, 1990). At least 

two problems immediately become apparent if we would attempt to craft an item-template 

based on this statement. First, when examined independently, not a single word in this 

sentence is explicitly descriptive of extraverted behavior. Second, if “party” were regarded as 

an interchangeable word, the universe of meaningful alternative nouns that could replace it is 

quite limited. Replacing it with synonyms or closely related words would most likely render 

the item trivial and restrict the scale’s ability to capture variance. This example illustrates that 

other non-template based generation techniques may be more adequate in the case of 

personality items. 

Before examining possible alternatives to template-based AIG techniques, we first 

describe requirements that must be met by such a method. We propose four criteria that a 

sequence of words generated by a language model must satisfy to qualify as a rating scale 

component. First, the latent variable of interest must be linguistically encoded in the word 

sequence; this is synonymous with the concept of content validity (Cronbach & Meehl, 
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1955). Second, the sequence must be syntactically arranged such that it reassembles the 

grammar of a target natural language. Third, the sequence must have certain characteristics 

that elicit reliable and valid responses from test takers (see Angleitner et al., 1986 for a 

systematic taxonomy of typical item-construct relations). Finally, generated sequences must 

be segmented into meaningful units of adequate length; preferably, the text of a rating scale 

item should be limited to a single short sentence. 

Although psychometric item and scale properties are dependent on a variety of 

additional formal aspects, such as avoiding double negations and ambiguity (see Krosnick & 

Presser, 2010, for a comprehensive overview), the mentioned characteristics represent a 

minimum standard for personality items created with AIG techniques. The difficulty of 

meeting this standard consistently with AIG becomes obvious when revisiting the previously 

mentioned IPIP item (“I am the life of the party”) — a statement that requires a considerable 

inferential leap to identify its relationship to trait-level extraversion. Three approaches to 

non-template-based AIG are typically distinguished. While syntax- and semantics-based 

techniques employ linguistic rule-based systems (e.g., syntax trees, grammatical tagging) to 

generate items, sequence-based procedures attempt to predict new content by using linguistic 

units in existing data (Xinxin, 2019). Hereafter, we examine language modeling as a 

sequence-based non-template approach to the automatic generation of personality items. 

2.2.2 Language Modeling Approaches to Construct-Specific Automatic Item Generation 

In principle, the problem of AIG of personality items can be posed as a language 

modeling problem. A language model is a function, or an algorithm for learning such a 

function, that captures the salient statistical characteristics of the distribution of sequences of 

words in a natural language, typically allowing one to make probabilistic predictions of the 

next word given preceding ones (Bengio, 2008). Such models are frequently employed to 

solve a variety of NLP tasks, such as machine translation, speech recognition, dialogue 

systems, and text summarization. 

Throughout this paper, we consider the problem of construct-specific AIG to be the 

inverse problem of text summarization (Rush et al., 2015). Instead of capturing the semantic 

essence of a text and producing a shorter, more concise version of it, we wish to do the 

inverse and expand a concept expressed by a short sequence of words or even a single word 

(e.g., “extraversion”) into a longer text sequence that is strongly representative. This task may 

be regarded as concept elaboration, which in language modeling terms can be described as 
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the conditional probability of finding the item stem (ι) —defined as a sequence of words 

(𝑤1, 𝑤2, … , 𝑤𝑛)— for the linguistic manifestation of a given construct (ψ) as 

𝑃(ι) = 𝑃(𝑤1, 𝑤2, … , 𝑤𝑛|ψ) (2.1) 

However, in practice generic generative language models base their word predictions 

not on a global latent factor corresponding to a specific abstract concept but on previously 

generated words, either directly or in the form of hidden state encoding contextual 

information (e.g., Bengio, 2008; Zellers et al., 2019). Consequently, the conditional 

probability of any given word (𝑤𝑘) is given by the following recurrence relation, relating it 

to the conditional probabilities of all previous words: 

𝑃(𝑤[1,𝑛]) = 𝑃(𝑤1)𝑃(𝑤2|𝑤1)𝑃(𝑤3|𝑤[1,2]) … 𝑃(𝑤𝑛|𝑤[1,𝑛−1]) 

= ∏ 𝑃(𝑤𝑘|𝑤[1,𝑘−1])

𝑛

𝑘=1

 

(2.2) 

To achieve concept elaboration for construct-specific AIG, one must seek to find 

solutions that allow Equation 2.2 to approach Equation 2.1 asymptotically. For the remainder 

of this section, we recapitulate historical developments in NLP that have led to ever more 

sophisticated approaches to language modeling and that eventually allowed for construct-

specific AIG as presented in this paper. 

2.2.3 Markov Chains and n-gram Models 

When estimating conditional word probabilities, merely counting the co-occurrence of 

words in a given corpus does not suffice. Alone, it fails to calculate probabilities for word 

sequences that have not occurred previously in the corpus. Early solutions to this problem 

involved the use of n-gram models relying on the Markovian assumption that the probability 

of a word can be approximated by calculating the conditional probability of the 𝑛 words 

preceding it (Jurafsky & Martin, 2020). While n-gram models remain in frequent use for 

various NLP tasks due to their simplicity, they introduce a dilemma that becomes 

increasingly critical for more complex chunks of text: smaller context windows (e.g., bigram 

models) result in less accurate predictions while larger n-models decrease the probability of 

finding any particular sequence of words in a given text, yielding missing data. Another 

disadvantage of n-gram models is their tendency to neglect any information that is not 

contained in the immediate neighborhood of a target word, largely disregarding some types of 

syntactic structures and failing to maintain semantic continuity over larger sequences. 



16 Study 1: Construct-Specific Automatic Item Generation 

 

Overall, n-grams are insufficient for the purpose of concept elaboration because the task 

demands the consideration of broader contextual information and AIG in the domain of 

personality items particular requires the creation of novel statements. 

2.2.4 Distributed Semantics and Word Embeddings 

The notion that semantic meaning is derived from context is the central assumption of 

the distributional hypothesis (Harris, 1954); as famously summarized by John R. Firth: “You 

shall know a word by the company it keeps” (Firth, 1962, p. 11). A notable shift toward 

distributional semantics in the practice of language modelling took place with the advance of 

word embeddings as produced by models such as word2vec (Mikolov, Chen, et al., 2013; 

Mikolov, Sutskever, et al., 2013). Word embeddings represent the meaning of words by 

mapping them into a high-dimensional semantic space, which is achieved by evaluating 

neighboring context words. Originally, this was accomplished by training a binary classifier 

to either predict a target word based on its context words (Continuous Bag-of-Words Model) 

or vice versa (Continuous Skip-gram Model). For each iteration, logistic regression weights 

are updated to maximize the prediction. These eventually yield an n-dimensional embedding 

matrix in which each word in a vocabulary is represented as an embedding vector. The 

embedding thereby contains semantic information and one can perform mathematical 

operations on the word vectors to identify relationships. 

For example, if the task is to find words related to “extraversion,” a model trained on 

an appropriate corpus can be prompted to return the k number of words showing the highest 

similarity to it. The similarity may be evaluated by the value of the cosine between 

embedding vector pairs. “Party” might show a higher relatedness to “extraversion” than to 

“agreeableness,” representing the higher likelihood of “party” co-occurring with 

“extraversion” in a corpus or other words that co-occur with “extraversion” and thus 

transitively increase the similarity. A major benefit of these models is the fact that they can 

achieve distributed semantic representations through semi-supervised learning, meaning that 

they require no labeled input data and rely solely on raw text. However, since each word is 

represented by a single point in a semantic space, word embeddings perform poorly on words 

that entail multiple meanings or in the case of word sequences (Camacho-Collados & 

Pilehvar, 2018). Similar to n-gram models, basic word embeddings do not incorporate 

enough contextual information to pose a viable option for the automatic generation of 
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personality items. Embeddings have nevertheless remained central in NLP and is an integral 

part of many modern architectures (e.g., the transformer model, as explained in section 2). 

2.2.5 Recurrent Neural Networks and Long Short-Term Memory Networks 

To remedy the problem of limited contextual encoding, word embeddings have 

successfully been used in conjunction with a variety of deep neural networks. Deep neural 

networks are layered architectures that extract high-level features from input data by passing 

information through multiple computational stages. These stages or layers consist of multiple 

smaller, interconnected computational units called neurons, which behave in a manner 

loosely analogous to their human counterparts by altering their state through a non-linear 

activation (Rosenblatt, 1958; Lapedes & Farber, 1988). The outputs of the neurons of each 

layer are variously connected to the inputs of the subsequent layer. Similar to linear 

regression analysis, the initial output of a single neuron is a linear function of its inputs, a 

weight, and an associated intercept referred to as the bias term; however, the initial output is 

then always fed through a so-called activation function to get the final output—often a 

sigmoid, making it in some ways also similar to logistic regression. The activation signal 

output from one neuron represents a statistical identification or recognition of an intermediate 

pattern in the space formed using the previous layer’s outputs as a basis. The outputs of all 

neurons in a layer then together become the basis of the space in which the patterns identified 

by the activations of each neuron in the subsequent layer reside (Montavon et al., 2011). The 

accuracy of the network in achieving its task is evaluated by a predefined loss function; an 

iterative procedure is then followed that identifies the neurons in the network responsible for 

the largest losses and shifts their weights some small step in the direction of the negative 

gradient of the loss. This stochastic gradient-descent algorithm is known as backpropagation. 

Finally, various classical information-theoretical measures are used to determine when to 

terminate the training of the model. The use of many layers helps the model create 

increasingly abstract and, usually, meaningful representations of the original data that then 

improve its overall robustness and accuracy. Since a more thorough review of deep neural 

networks is beyond the scope of this article, the interested reader is referred to Lapedes and 

Farber (1988), Nielsen (2015), and Goodfellow et al. (2016) for introductory material. 

Among deep neural network architectures, recurrent neural networks (RNNs, Elman, 

1990) have been particularly convenient for language modeling. Recurrent neural networks 

are inherently designed to perform well on sequential data, since information about previous 
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inputs is preserved by feeding the output of the network back into itself along with new 

inputs. This mnemonic quality is of crucial importance for sentence generation tasks, as the 

probability of a given word occurring is linked to the sequence of words preceding it. Models 

with this property are termed autoregressive. In practice, however, simple recurrent neural 

networks struggle to maintain this state persistence or coherence throughout longer input 

sequences and tend to “forget” previous words. This phenomenon, commonly referred to as 

the vanishing gradient problem (Hochreiter, 1991), is discussed in detail in Bengio et al. 

(1994). 

Long short-term memory models (LSTM; Hochreiter & Schmidhuber, 1997; 

Jozefowicz et al., 2015) expand on the recurrent neural network architecture and solve the 

problem of long-distance dependencies, namely learning the relationships between words 

even if they are not in close proximity. LSTMs work by passing state vectors (the output of 

the network from the previous step) through a specialized structure that helps the model learn 

what information to remember or to forget. This structure uses gates to determine what 

information to add or to remove from the state. By actively forgetting information when it 

becomes irrelevant and, likewise, selecting and carrying important parts of the input data 

through to the next step, LSTMs have shown exceptional performance in a wide variety of 

NLP tasks. We refer to Olah (2015) for a thorough introduction to LSTMs. 

With these developments in language modeling in mind, it is reasonable that von 

Davier (2018) chose LSTM-models for AIG and it is apparent why there could not have been 

fruitful attempts prior to these advances. Since von Davier’s seminal contribution, however, 

research in NLP has progressed substantially. Although LSTMs show better performance 

than traditional recurrent neural networks in long-distance dependencies, they too suffer from 

vanishing gradients when given particularly long sequences and tend to require large amounts 

of hardware resources, preventing most researchers from being able to afford training larger 

models. 

2.2.6 Transformer Models and the Attention Mechanism 

One of the most recent and arguably substantial paradigm shifts since the initial 

advance of distributional semantics was sparked by the introduction of the transformer model 

by Vaswani et al. (2017). Its model architecture holds numerous advantages when applied to 

sequential data such as natural language. First, sequential data can be processed in parallel by 

transformer models, reducing the resources required to train such a model. Sequential 
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information (i.e., the order of words) is preserved by a process termed positional encoding, 

which engrains each word in a sentence with its intended sequential position. As a 

consequence, larger and more competent language models can be trained. Second, and of 

central importance to the design, transformer models learn through a mechanism referred to 

as self-attention. In essence, self-attention refers to the concept of determining the relevance 

of a word in relation to the relevance of other words in the input sequence. We provide more 

details on how attention is computed in the next section of this article. In particular, these two 

features allow the transformer model to learn long-range dependencies better than LSTMs. 

Since the publication of Vaswani et al.'s (2017) paper, a plethora of transformer 

implementations have been released with various modifications. One typically distinguishes 

between bidirectional and unidirectional transformer models. Bidirectional models attempt to 

predict each token in a sequence by using tokens that both precede and succeed the current 

target. Tokens are sequences of characters in a particular vocabulary that are grouped 

together as a useful semantic unit (e.g. words, syllables, prefixes, punctuations, etc.; Manning 

et al., 2008). This makes such models suitable for tasks like binary text classification or 

machine translation (Camacho-Collados & Pilehvar, 2018; González-Carvajal & Garrido-

Merchán, 2021). Unidirectional models however based their predictions of tokens in a 

sequence only on the set of preceding words, making them autoregressive. They are therefore 

sometimes referred to as causal transformer models and have proven themselves to be 

exceptionally useful in various applications in the domain of text generation. 

As noted by Vaswani et al. (2017), self-attention shows better computational 

performance than recurrent techniques (i.e., LSTMs) when the input sequence is smaller than 

the dimensionality of the word representation. It has become common practice for research 

teams to release transformer model implementations that have been pretrained on 

exceedingly large general language datasets. If such a model is obtained, one can easily 

perform additional training on a more task-specific dataset in a process known as fine-tuning 

(Howard & Ruder, 2018). During fine-tuning, the weights of the pretrained model will shift 

and bias the latent features toward a better representation of the task-specific corpus. Notable 

releases of bi- and unidirectional transformer models include the Bidirectional Encoder 

Representations from Transformers (BERT; Devlin et al., 2018) and the Generative 

Pretrained Transformer (GPT; Radford et al., 2018). In early 2019, OpenAI released the 

GPT-2 model (Radford et al., 2019) as the largest pretrained causal language model to that 

date.  
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GPT-2 received much attention due to its unparalleled ability to perform well across 

several different NLP tasks, such as reading comprehension, translation, text summarization, 

and question answering. Furthermore, numerous examples have demonstrated GPT-2’s 

ability to generate long paragraphs of text that have a startling level of syntactic and semantic 

coherence. It is important to note that the effectiveness of GPT-2 is not due to any major 

modifications to the original transformer architecture, but can largely be attributed to 

increased processing power and the data-set used to train the model. Specifically, the model 

was trained on a 40-gigabyte corpus obtained by systematically scraping 8 million web 

documents. In total, OpenAI has released four versions of GPT-2, with the largest model 

possessing a 48-layer decoder block consisting of 1.5 billion parameters, embedding words in 

a 1600-dimensional ambient space (Radford et al., 2019). 

2.3. Proposed Method 

Although pre-trained transformer models are capable of generating fairly coherent 

bodies of text, it is oftentimes desirable to specialize their linguistic capabilities for specific 

application domains. The process of applying previously attained knowledge to solve a 

related family of tasks is referred to as transfer learning, and is especially powerful for 

applications with scarce training data (Zhuang et al., 2020). The underlying assumption is 

that neural networks learn relatively universal representations in the early layers that are good 

low-level features for a large family of related tasks. The general nature of these low-level 

features suggests that it should be possible to reuse them for related tasks, reducing the 

amount of training time or data required to derive specialized models from a general one. 

Utilizing pre-trained transformer models for construct-specific AIG therefore requires fine-

tuning them for the task of concept elaboration. 

Transformer models learn by taking the positionally encoded embeddings 𝑥𝑖 (as 

explained in section 1.2.2) for each token 𝑖 of a sequence of length 𝑛. The length of the 

embedding vectors 𝑥𝑖, the model dimensionality, is dependent on the language model used 

with typical values ranging from d = 768 to 1,600 in the case of GPT-2. These vectors are 

then multiplied with weights matrices to calculate the attention vectors 𝑧𝑖 for each token 𝑖. 

Each element in 𝑧𝑖 is an attention weight that reflects the relevance of each other token in the 

sequence in relation to the current token 𝑖.  
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Specifically, the attention vector 𝑧𝑖 = 𝑧𝑖,1, … , 𝑧𝑖,𝑛 for token 𝑖 is calculated on the basis 

of the vectors 𝑞𝑖 = 𝑞𝑖,1, … , 𝑞𝑖,𝑛, 𝑘𝑖 = 𝑘𝑖,1, … , 𝑘𝑖,𝑛 and 𝑣𝑖 = 𝑣𝑖,1, … , 𝑣𝑖,𝑛. These vectors are 

obtained by 𝑥𝑖 ⋅ 𝑊𝑞|𝑘|𝑣 where 𝑊 are weight matrices that are randomly initialized or learned 

and propagated by previous layers. While 𝑞𝑖 can be understood as an abstraction of the input 

values, 𝑘𝑖 are respective abstractions of all other embeddings in the context with 𝑣𝑖 as 

associated values. These vectors are obtained for each token in a given sequence and the 

attention matrix 𝑍 is then based on the aggregate matrices 𝑄, 𝐾, 𝑉: 

𝑍 = σ (
𝑄𝐾𝑇

√𝑛
) ⋅ 𝑉 (2.3) 

where σ is a softmax transformation for each vector of the input matrix, with length of 

𝑛. While typically τ =  1 is for regular softmax, it is sometimes used as a parameter to 

transform the probability distribution for multinomial sampling: 

σ(𝑎) =
𝑒

𝑎
τ

∑ 𝑒
𝑎𝑖
τ𝑛

𝑖=1

 (2.4) 

The resulting attention matrix 𝑍 is a square 𝑛 ×  𝑛 matrix containing attention 

weights between all the input tokens in the sequence.  

In most architectures, including GPT-2, the vectors 𝑞𝑖, 𝑘𝑖, and 𝑣𝑖 are subdivided into 

multiple heads (h) before calculation of 𝑍 to allow the entire attention process described 

above to attend to multiple parts of the sequence at the same time; the calculation of such 

attention heads is repeated multiple times in parallel by concatenating the heads together into 

a single larger matrix. When using multiple attention heads, it becomes necessary to multiply 

the concatenated multi-head attention matrix by an additional final weight matrix in order to 

let the model learn through the training process how to map the multiple attention heads into 

a single homogenous attention representation. In the final step, this multi-headed self-

attention matrix is subsequently normed and passed as a hidden state through a fully-

connected neural network (Radford et al., 2019), before being output to the subsequent 

transformer layer. In this fashion, the above process repeats iteratively as embeddings are 

passed on through the M layers of the transformer (i.e., 12 to 48 layers in the case of GPT-2). 

Figure 2.1 shows a schematic depiction of the central aspects of the transformer architecture. 

Note that the model architecture depends on additional components, (e.g., positional 

encoding), which are however not central to this paper.
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Figure 2.1: Schematic Diagram of the Attention-Mechanism and Components of the Transformer Architecture. 
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Note. The process illustrates the encoding and transformation of the sequence “walks by river bank” by components of the transformer 

architecture (Vaswani et al., 2017). Weight matrices (𝑊𝑚,𝐾|𝑄|𝑉
ℎ  and 𝑊𝑚) are randomly initialized and then learned during the training process. In 

case of causal language models, masking (see Equation 2.5) is applied to 𝑍𝑚
ℎ . (a) = Matrix product of 𝐾𝑚

ℎ𝑇
 and 𝑄𝑚

ℎ ; (b) Scaling and softmax is 

applied; 𝑛 = Input sequence length; 𝑑 = Model dimensionality, i.e. length of embedding vectors; ℎ = Current attention head; 𝑛ℎ= Number of 

attention heads;  𝑚 = Current layer; 𝑋𝑚= Embedding matrix (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦: 𝑛 × 𝑑); 𝑋𝑚
ℎ = Embedding matrix subset (𝑛 ×

𝑑

𝑛ℎ
); 𝑊𝑚,𝐾|𝑄|𝑉

ℎ  = 

Key, query, and value weight matrices (𝑛 ×
𝑑

𝑛ℎ
); 𝐾𝑚

ℎ𝑇
 = Transposed key matrix (𝑛 ×

𝑑

𝑛ℎ
); 𝑄𝑚

ℎ  = Query matrix (𝑛 ×
𝑑

𝑛ℎ
); 𝑉𝑚

ℎ = Value matrix 

(𝑛 ×
𝑑

𝑛ℎ
); 𝑍𝑚= Attention matrix (𝑛 × 𝑑); 𝑊𝑚= Weight matrix (𝑛 × 𝑑); 𝐿𝑚= Layer output matrix (𝑛 × 𝑑); ⨪ = Matrix subdivision; ⨥ = Matrix 

concatenation.
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As described above, however, the attention for each token could include all other 

tokens in the sequence, resulting in bidirectional predictions. As previously explained, causal 

language models aim to predict tokens by only evaluating preceding tokens. Therefore, the 

self-attention must be masked to form a lower triangular matrix: 

∀𝑧𝑖,𝑗 ∈ 𝑍: 𝑗 ≤ 𝑖 ⇒ 𝑧𝑖,𝑗 = −∞ (2.5) 

Where 𝑖 is the position of a token in the sequence, 𝑗 is the iteration for 𝑗 ≤ 𝑖, and −∞ 

is used rather than zeroing so that after the softmax operation the corresponding entries in the 

output attention vector will be zeroed. 

Once training is completed, tokens can be predicted by multiplying the output vectors 

of the final transformer layer with the matrix of all embedding vectors 𝑥 for the entire 

vocabulary and then a final softmax operation is performed to ensure that the output is a 

probability distribution. A sequence of words can then easily be generated either by 

deterministic querying or sampling by using various hyperparameters. One typically 

distinguishes between two generative modalities when using transformers for causal language 

modeling. In unconditional sampling, the model generates a sequence of tokens based merely 

on a decoding method that governs how tokens are drawn from a probability distribution. In 

conditional sampling, the output is additionally based on a fixed, predefined token or token 

sequence. Loosely speaking, conditional generation works by triggering the transformer 

models’ associations to a given input. While decoding methods permit a coarse way of 

controlling from what part of the probability distribution tokens are sampled, they do not 

grant explicit semantic output manipulation. We therefore subsequently propose a technique 

for the indirect parameterization of causal language models that allows for construct-specific 

AIG. 

To leverage the capacity of pretrained language models such as GPT-2, it is 

conventional to perform additional training on data that is close to the target domain. In the 

case of AIG for personality items, the training data must naturally consist of items from 

validated personality test batteries. One possibility is fine-tuning models to only be capable of 

generating a narrow selection of items that represent a single fixed construct. Since this is an 

undesirable prospect, the goal must be to fine-tune a model to more generally traverse the 

manifold of possible item-like sequences while being guided toward specific construct-

clusters. Conversely, if tokens in the beginning of a sequence are representative of a latent 

construct, they may be used to prompt the completion of a sentence which may also be 
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indicative of the construct. Transformer models may then be trained to pay privileged 

attention to such indicative tokens. Sampling from a transformer model trained in this way 

would yield a closer approximation of Equation 2.1.  It is common practice to achieve this 

goal indirectly by combining special input formatting during fine-tuning with conditional text 

generation (e.g., Rosset et al., 2020). The special input formatting teaches the model to 

conform to a segmented pattern concatenated by delimiter tokens. This pattern is then 

partially prompted in conditional generation and extrapolated by the model output. In the 

context of construct-specific AIG, we propose a training pattern where ϕ is the function 

encoding the construct ψ and the item stem ι by a concatenation (◦) of strings:  

ϕ(ψ, ι) = 𝑢1
𝐴 ∘ 𝑐1 ∘ ⋯ ∘ 𝑢𝑚

𝐴 ∘ 𝑐 ∘𝑚 𝑢𝐵 ∘ 𝑤1 ⋯ 𝑤𝑛 (2.6) 

In this pattern, the single character delimiter tokens 𝑢𝐴 separate 𝑚 construct labels 

and 𝑢𝐵 separates the concatenated construct labels from a sequence of 𝑛 words (w) that 

constitute the item stem. The result is a string, consisting of one or multiple short descriptive 

labels of psychological constructs separated by delimiter tokens, followed by a statement that 

is indicative of those constructs (e.g., such a string might look like: 

“#Anxiety#Neuroticism@I worry about things”). Fine-tuning a pre-trained causal transformer 

model with data in this format permits later querying ϕ(ψ) in conditional generation to return 

a sequence ι that is heuristically related to the construct labels. 

Fine-tuning the transformer to this pattern results in changes to its model weights. 

These shifted weights tend to represent transformations that best capture the context of the 

tokens before the delimiter token. How well it can do this is measured by forcing the 

transformer to attempt to generate the expected set of training items from the associated 

construct labels. The general concept of the uncertainty with regard to these attempts is 

termed perplexity, and in transformers is measured by the cross-entropy loss. The 

classification error is calculated for each token for its deviation from the predicted token and 

combined for the overall expected sequence. The loss is then back-propagated and the 

learning algorithm makes small changes to the model weights. This results in slight changes 

to the family of transformations it represents that grow over time into larger changes, biasing 

the family increasingly toward those that best encode the transformation equivalent to a very 

approximate form of concept elaboration. However, in practice, it works well enough to 

provide a practical tool for AIG.  



26 Study 1: Construct-Specific Automatic Item Generation 

 

2.4. Workflow and Illustration 

We demonstrate implicit parameterization by illustrating how training data is encoded 

and GPT-2 fine-tuned to the downstream task of construct-specific AIG. In doing so, we hope 

to guide researchers and practitioners in a tutorial-like fashion and to motivate them to 

explore the promising interdisciplinary domain of NLP applied to a psychometric context. 

Note that this procedure is expected to work similarly for any causal transformer model or 

more generally any autoregressive model. We recommend the use of the transformers Python 

package (Wolf et al., 2020) for fine-tuning or text generation using a wide variety of 

transformer models. Pretrained GPT-2 models in various sizes can be obtained via the 

package. At the Open Science Framework (OSF) at https://osf.io/3bh7d/, we provide an 

online repository with an example training data set, as well as Python code accompanying 

this section. Readers who wish to replicate our method will find references to source lines of 

code (SLOC) for fine-tuning the model (example_finetuning.py) and item generation 

(example_generation.py) in the remainder of this section. 

If one wishes to fine-tune GPT-2 for the generation of construct-specific personality 

items, a possible large dataset of validated items must be acquired (see SLOC #27). This 

dataset must then be encoded according to the segmented training pattern previously 

described (see Equation 2.6; SLOC #33). Figure 2.2 shows how the encoding scheme for the 

previously referenced exemplary items “I am the life of the party”, intended to assess 

extraversion, and “I worry about things”, intended to assess neuroticism and anxiety. As 

delimiter tokens we chose single ASCII characters that are infrequently used in writing. 

https://osf.io/3bh7d/?view_only=2046ff4528034ba787fbc9718aefea8c


Workflow and Illustration 27  

 

  

Figure 2.2: Illustration of the Workflow of the Proposed Method for Construct-Specific Automatic Item Generation 

 

Note. Workflow for (a) fine-tuning a causal transformer model using the proposed segmented training pattern, and (b) applying the partial 

pattern to prompt a causal transformer for the generation of construct-specific item stems. The depicted transformer shows the 12-layer decoder 

architecture of the Generative Pretrained Transformer adopted from Radford et al. (2018), although the workflow in principle is agnostic to what 

causal transformer architecture is chosen.
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Before commencing fine-tuning, a tokenizer is used to disassemble the encoded 

training data for smaller units corresponding to tokens in the models’ vocabulary (see SLOC 

#42). This results in a vector of integers, where each integer represents a token in the 

vocabulary. It may be meaningful to add all construct labels to the vocabulary in advance, so 

that these are learned as a single unit during fine-tuning (see SLOC #46). Considerations with 

regard to additional fine-tuning modalities must be made, such as determining learning-rates, 

choosing optimization algorithms, or termination criteria but are not exclusively pertinent to 

language modeling and will therefore not be further discussed in this article (see SLOC #54). 

Once fine-tuning is performed, the partial pattern (ϕ[ψ], see Figure 2.2, SLOC #13) 

can be used as a prompt in conditional generation. Generation will consequently yield item 

stems that are heuristically in the semantic vicinity of the requested construct labels, even if a 

requested construct label was not in the fine-tuning dataset. When using language models for 

text generation, multiple search heuristics can be applied that directly influence next word 

inference. Although a multitude of such techniques are conceivable, we will in the following 

discuss three frequently applied methods, namely greedy search, beam search, and 

multinomial sampling. The arguably most straightforward approach to text generation is to 

use a greedy search strategy (SLOC #17), in which inference is based on nothing but the 

highest probability token for each prediction step. For construct-specific AIG, this is the 

conditional probability of a word at prediction step k given a history of words that contains 

the linguistic manifestation of a given latent variable. Text generated using greedy search 

may suffer from repeating sub-sequences (Suzuki & Nagata, 2017) and may produce 

sentences that either lack ingenuity or exhibit an overall low joint probability. In contrast, 

beam search may reduce the risk of generating improbable sequences by comparing the joint 

probability of 𝑛 alternative sequences (i.e., beams; SLOC #32) and selecting the overall most 

probable sentence (Vijayakumar et al., 2018). Figure 2.3 illustrates the differences in the case 

of construct-specific AIG for these two search heuristics. 
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Figure 2.3: Differences in Search Heuristics for Generated Items and Tokens 

 

Note. Item generation after fine-tuning when prompted for the construct label Pessimism, 

using various search heuristics. (a) greedy search; (b) beam search with n = 3 search beams, 

dashed lines indicate lower total sequence probabilities; (c) to (g) show next-token 

probabilities for the premise “#Pessimism@I am” on the y-axis; (c) multinomial sampling 

with no transformation; (d) multinomial sampling with top-k = 10; (e) multinomial sampling 

with nucleus sampling at top-p = .7; (f) multinomial sampling with temperature = 0.5; and (g) 

multinomial sampling with temperature = 1.5.  
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Whereas greedy and beam search result in deterministic output and arguably fairly 

prototypical items, multinomial sampling (SLOC #49) comprises a variety of methods that 

accomplish text generation by sampling from the probability distribution of words, which 

oftentimes is transformed beforehand. In practice, this not only results in a larger pool of 

potential items but also mirrors human language more accurately, as argued by Holtzman et 

al. (2019). Multinomial sampling should be used if the goal is to generate a larger set of 

items.  

Three common schemes are frequently used to transform the probability mass of the 

distribution when applying multinomial sampling. In top-k sampling, the probability mass for 

next word prediction is redistributed from the entire vocabulary to the k words with the 

highest probability (A. Fan et al., 2018). This effectively eliminates the risk of sampling 

words at the tail of the distribution while arguably permitting variations that are somewhat 

plausible. Nucleus sampling, also known as top-p sampling, may be used to improve the 

performance of top-k by allowing the cut-off to adjust dynamically to the distribution. 

Nucleus sampling also truncates the probability distribution, but instead of redistributing 

probabilities to the top k words, it prunes based on the cumulative probabilities of words 

before reaching a threshold (Holtzman et al., 2019). For instance, the example “e)” in Figure 

2.3 shows a truncated probability distribution of 17 possible next-token predictions for the 

given prefix “#Pessimism@I am”. The cumulative probability of these tokens amounts to ≤ 

70%, thereby prohibiting that improbable will be sampled. The top-k and top-p sampling 

schemes however maintains the shape of the distribution which either may be heavily skewed 

and thereby too predictable, or too uniform to produce a coherent sentence or item. This can 

be rectified, independently from top-k or top-p sampling, by a modification to the softmax 

transformation (see Equation 2.4) which magnifies or suppresses the modalities of the 

distribution by manipulating the τ coefficient. This parameter is referred to as temperature 

(e.g., Wang et al., 2020) and is a useful utility for controlling the “creativity” of the generated 

output (see Figure 2.3). Higher values for τ will yield a more uniform probability distribution 

of next-word predictions and thus favor variety.  

2.5. Empirical Study 

To test the proposed method, we compared human- and machine-authored items 

within a questionnaire in an online survey, similar to von Davier (2018). However, the 

generation of construct-specific items requires additional considerations with regard to 
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structural validity. Data, code, and generated items accompanying this study are available 

from https://osf.io/3bh7d/. Note that this repository also contains Python code to replicate the 

methods proposed in this paper. In addition, we provide a web application demonstrating 

construct-specific automatic item generation on https://cs-aig-server-2uogsylmbq-

ey.a.run.app/1.  

2.5.1 Model Fine-Tuning and Item Generation 

We obtained a pretrained 355 million parameter GPT-2 model with the goal of fine-

tuning it to construct-specific AIG2. Out of the 4,452 item stems and 246 construct labels in 

the International Personality Item Pool3 (Goldberg, 1999; Goldberg et al., 2006), we selected 

1,715 unique item stems grouped by associated construct labels with a mean of 2.40 (SD = 

1.84) labels for each stem. This dataset served as training data to subsequently fine-tune the 

335M to the AIG-task, and was fed as delimited concatenated strings of construct labels and 

item stems as previously described in Equation 2.6. Training was performed on a Nvidia 

GeForce RTX 2070 Super using the CUDA 9.1.85 and cuDNN 7.6.3 toolkits with 

TensorFlow 1.14.0 (Abadi et al., 2016) and Python 3.6.9 by an adaptation of GPT-2-Simple 

(Woolf, 2020) on Linux Ubuntu 18.04.4. Fine-tuning was terminated after 400 training steps 

with a learning-rate of 5e-04 at final cross-entropy loss of 0.83. A full list of example items 

generated during the fine-tuning process can be found in the OSF repository. 

We then prompted the model to generate item stems for two sets of construct labels in 

conditional generation. The first set consisted of five trained construct labels (openness to 

experience, conscientiousness, extraversion, agreeableness, and neuroticism) which were 

introduced to the model in the training dataset during fine-tuning. The second set in turn 

consisted of five untrained construct labels (i.e., benevolence, egalitarianism, egoism, 

joviality, and pessimism) that were not introduced during fine-tuning. In total, we generated 

 

 

 

1 An up-to-date link is provided in the online repository. 

2 Retrieved April 28, 2020, from https://storage.googleapis.com/gpt-2/models/335M/ via 

https://github.com/openai/gpt-2/blob/master/download_model.py 

3 Retrieved on the April 22, 2020, from https://ipip.ori.org/ 

https://osf.io/3bh7d/?view_only=55dd64a0b3f4422696f3874126c4f7a3
https://cs-aig-server-2uogsylmbq-ey.a.run.app/
https://cs-aig-server-2uogsylmbq-ey.a.run.app/
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1,360 item stems associated with one of these construct labels. All items were generated 

using multinomial sampling with varying temperatures (0.7, 0.9; and 1.1) to increase the 

variability of the item pool. We refrained from using top-k or top-p sampling to sample from 

the full probability distribution of tokens. 

2.5.2 Overfit 

Overfitting is a major obstacle and common phenomenon in training deep neural 

networks (Srivastava et al., 2014). Instead of learning abstract features, an overfitted model 

will tend to reproduce the original training data. We assessed an index of string similarity 

between the data used for model fine-tuning and the model`s generated output as a proxy 

measure for model overfit. Coefficients were calculated by inverting and normalizing the 

Levenshtein distance (Levenshtein, 1966) between two item stems, which theoretically may 

range from 0 to 1, whereas the latter indicates an exact match between item stems. In essence, 

this metric reflects the number of single character insertions, deletions, or substitutions one 

must make for two strings to become identical. We regarded item stems with a similarity 

index ≥ .90 as being largely identical to the training data and thus symptomatic of overfit. As 

most statistical thresholds are picked rather arbitrarily, we carefully chose a cut-off value 

based on qualitative judgement. For example, the similarity coefficient between the generated 

item, “I like to be the center of attention,” and the IPIP item, “I love to be the center of 

attention,” amounts to .95 and thus the item was discarded, whereas the similarity between “I 

am easily angered” and “I am easily annoyed” was below the threshold at .85. A full list of 

similarity indices for each generated item stem can be found in the OSF repository, including 

a reference to the most similar item in the training data. The mean similarity between the 

generated items and the most similar items in the training data was .68 (SD = .16), with 164 

items (12.0%) exceeding the similarity threshold of .90 and, thus, were omitted from the 

dataset. 

2.5.3 Content Validity 

We further omitted duplicate items and items that were labeled with more than one 

construct down to a selection of 283 items. Items were subsequently rated for content validity 

by two independent expert judges who were carefully instructed to only rate items as valid if 

they (a) considered the item stem to be syntactically and linguistically correct and (b) 

regarded the item stem to be either clearly symptomatic or clearly asymptomatic (in case of 

reversed items) of the latent variable described by the construct label. The items were rated 
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with an agreement of .72 (95% CI [.64, .80]) as indicated by Cohen’s kappa. A total of 151 

(53.4%) items were endorsed by both raters for content validity. While Table A.1 in the 

online supplemental section provides some examples of content valid and rejected items, a 

data file with the full list of accepted and rejected generated item stems can be found in the 

OSF repository.  

2.5.4 Questionnaire 

To properly assess the psychometric properties of the generated items, we derived a 

Likert-style questionnaire consisting of both human- and machine-authored items. From the 

remaining set of 151 machine-authored items unanimously endorsed for content validity, we 

randomly selected 5 items for each construct label. This resulted in 25 CLIS-tuples for the 

five trained construct labels and 25 CLIS-tuples for the five untrained construct labels. We 

decided to include only a random selection of 50 items into the questionnaire to prevent 

fatigue in respondents and to safeguard data quality. As for the set of human-authored items, 

we used the 25 items from the BFI dataset in the R psych-package (version 2.0.9; Revelle, 

2020, based on Goldberg, 1999; not to be confused with the Big Five Inventory by John et 

al., 2012). The BFI is composed of established items taken from the IPIP and reflects the Big 

Five factors (i.e., openness to experience, conscientiousness, extraversion, agreeableness, 

and neuroticism). 

2.5.5 Participants and Procedure 

The final questionnaire consisted of 75 human- and machine-authored items using a 5-

point Likert scale and was converted into an online survey. We recruited 273 participants 

through Amazon Mechanical Turk in exchange for $0.50 upon completion. Items were 

presented in a randomized order. We used two measures to identify and exclude potential 

careless responders. First, we included 3 bogus items in accordance with the 

recommendations by Meade and Craig (2012), which instructed participants to pick a certain 

response option on the presented scale. Second, we excluded participants with unreasonable 

response speed based on a relative-speed index ≥ 2.0 (Leiner, 2019). This resulted in a final 

sample of 220 respondents. 

2.6. Results 

We first tested the equivalence between human- and machine-authored items for 

trained construct labels at the scale level. Models were computed using confirmatory factor 
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analysis (CFA) with polychoric correlations and robust weighted least square mean and 

variance adjusted (WLSMV) estimators, which have been shown to produce accurate 

estimates for ordered categorical items with even small samples (Flora & Curran, 2004). The 

fit statistics are reported in Table 2.1. CFA model fit was overall similar for machine-

authored and human-authored scales, with better fit for machine-authored conscientiousness 

and extraversion items and better fit for human-authored agreeableness and neuroticism 

items. Especially the fit for the machine-authored agreeableness scale was strikingly poor 

(CFI = .80, RMSEA = .27). Here we found the low fit to be due to correlated residuals 

between the item pairs “I care a lot about others” and “I am not a nice person” on one hand, 

and “I am easily angered” and “I am not easily offended” on the other. These correlated 

residuals can be explained by the comparatively high semantic similarity of the respective 

items. 

We used McDonalds’s omega coefficient of internal consistency to assess reliability, 

which ranged between .72 (openness to experience, 95% CI [.65, .78]) and .87 (neuroticism, 

95% CI [.84, .90]) for human-authored, and .46 (conscientiousness, 95% CI [.36, .57]) and 

.75 (extraversion, 95% CI [.68, .81]) for machine-authored items. We bootstrapped omega 

coefficients and corresponding confidence intervals in 5,000 iterations for each scale to 

compare human- and machine-authored items and found significantly smaller reliabilities for 

machine-authored items for all Big Five dimensions with the exception of openness to 

experience (ωℎ𝑢𝑚𝑎𝑛 = .72, ω𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = .66, p = .097).  

For a better understanding of the validity of specific machine-authored items, we next 

compared factor loadings of each individual machine-authored item when added to a model 

with five human-authored items of their respective scale. As depicted in Table 2.2, a total of 

8 machine-authored items (32%) exhibited factor loadings greater or equal to those of their 

human-authored counterparts. Moreover, 16 items (64%) exceeded the commonly referenced 

cut-off value of .40 (e.g., Hinkin, 1995). In summary, we found evidence that a substantial 

part of the machine-authored items was as valid as human-authored items, but that other 

machine-authored items were not suitable at all. 
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Table 2.1: Comparison of Confirmatory Factor Analyses of Human- and Machine-authored Scales for Trained Construct Labels 

 
Human-authored Machine-authored 

 
Scale CFI RMSEA λmean λrange ω ωCI CFI RMSEA λmean λrange ω ωCI p 

Openness to experience .95 .14 .62 [.82, .72] .72 [.65, .78] .95 .10 .54 [.44, .75] .66 [.66, .58] .097 

Conscientiousness .93 .23 .72 [.74, .81] .81 [.76, .85] 1.00 .00 .44 [.15, .69] .46 [.46, .36] <.001 

Extraversion .98 .15 .77 [.89, .86] .86 [.82, .89] 1.00 .05 .67 [.34, .90] .75 [.75, .68] <.001 

Agreeableness .96 .17 .73 [.86, .80] .80 [.75, .85] .80 .27 .58 [.35, .87] .63 [.63, .49] <.001 

Neuroticism .99 .13 .80 [.91, .87] .87 [.84, .90] .98 .17 .56 [.02, .92] .70 [.70, .61] <.001 

Note. N = 220 respondents. λmean = Mean of standardized factor loadings; λrange = Range of standardized factor loadings; ω = Omega coefficient 

of internal consistency; ωCI = percentile bootstrapped 95% confidence interval for omega coefficient. p = bootstrapped probability of models’ 

differences in omega coefficients (K = 5,000 bootstrapped resamples; data from k = 446 iterations were omitted due to failed model 

convergence).
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Table 2.2: Descriptive Statistics and Factor Loadings of Machine-authored Items for Trained Construct Labels 

Item M SD 
Frequencies 

Skewness Kurtosis λ ∈ λhuman 
1 2 3 4 5 

I can enjoy a wide variety of musical styles. 

(OPE+) 
4.10 1.05 7 13 30 71 99 −1.16 0.76 .62 1 

I like to be surprised. (OPE+) 3.13 1.32 32 39 61 45 43 −0.10 −1.08 .36 0 

I love to contemplate the universe and its beauty. 

(OPE+) 
3.94 1.12 9 15 46 60 90 −0.87 −0.04 .65 1 

I like to be with people who are different from 

myself. (OPE+) 
3.50 1.06 9 25 75 68 43 −0.32 −0.43 .35 0 

I am not a fan of change. (OPE-) 3.11 1.32 29 47 61 36 47 0.00 −1.13 .35 0 

I am not always on time for work. (CON-) 4.01 1.28 12 28 21 43 116 −1.02 −0.29 .53 0 

I know that I make many mistakes. (CON-) 2.53 1.20 53 61 57 35 14 0.35 −0.84 .20 0 

I work too hard. (CON+) 3.17 1.28 25 45 62 44 44 −0.07 −1.05 .55 0 

I do not like to read or study. (CON-) 4.23 1.04 8 8 27 59 118 −1.44 1.55 .54 0 

I am not concerned with details. (CON-) 4.27 0.95 4 10 23 68 115 −1.39 1.57 .65 0 

I am able to speak confidently. (EXT+) 3.96 1.11 8 18 37 69 88 −0.92 0.06 .84 1 

I avoid public places. (EXT-) 3.50 1.28 21 31 44 66 58 −0.50 −0.85 .46 0 

I am able to handle myself in a crowd. (EXT+) 3.98 1.07 8 15 34 79 84 −1.02 0.44 .73 1 

I do not like to talk about myself. (EXT-) 2.59 1.25 50 65 52 32 21 0.41 −0.84 .45 0 
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Item M SD 
Frequencies 

Skewness Kurtosis λ ∈ λhuman 
1 2 3 4 5 

I am able to hold my own in a discussion. (EXT+) 4.16 0.97 6 11 19 90 94 −1.37 1.74 .60 1 

I care a lot about others. (AGR+) 4.25 0.92 4 5 34 67 110 −1.23 1.30 .87 1 

I am easily angered. (AGR-) 3.96 1.17 11 19 31 65 94 −1.00 0.07 .39 0 

I don’t like to argue. (AGR+) 3.95 1.14 10 17 38 65 90 −0.94 0.05 .23 0 

I am not easily offended. (AGR+) 3.43 1.25 16 45 38 71 50 −0.36 −1.00 .24 0 

I am not a nice person. (AGR-) 4.51 0.84 3 5 17 47 148 −1.95 3.83 .79 1 

I am generally happy and content. (NEU-) 2.15 1.19 82 70 36 18 14 0.91 −0.07 .72 0 

I am often upset by minor things. (NEU+) 2.30 1.23 72 69 33 34 12 0.64 −0.71 .89 1 

I am a person who is easily moved by the good 

moods and bad moods of others. (NEU+) 
3.47 1.23 22 24 52 73 49 −0.55 −0.63 .28 0 

I am generally cheerful and optimistic. (NEU-) 2.30 1.26 72 67 43 18 20 0.76 −0.42 .69 0 

I seldom feel scared. (NEU-) 3.01 1.28 30 57 45 56 32 0.00 −1.15 .38 0 

Note. Based on data from N = 220 respondents. λ = Standardized factor loading in a CFA model with the five human-authored items and the 

respective machine-authored item; ∈ λhuman = Factor loading of respective machine-authored item within the range of factor loadings for human-

authored scales (1 = within the range); OPE = Openness to experience; CON = Conscientiousness; EXT = Extraversion; AGR = Agreeableness; 

NEU = Neuroticism; +/- indicates positive or negative keying.
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Finally, we examined machine-authored items generated for untrained construct 

labels. As shown in Table 2.3, omega coefficients indicated satisfactory to good reliability for 

three scales (benevolence; egalitarianism; pessimism), particularly when considering the 

small number of items per scale, and fit statistics also indicated satisfactory to good model fit. 

In contrast, model fit statistics and reliability estimates for egoism and joviality were not 

satisfactory. As shown in Table 2.4, at the item level a total of 19 items (76%) exceeded 

factor loadings of .40 in confirmatory factor analyses.  

Next, we sought to discern the latent structure of the untrained item set using 

exploratory factor analysis (EFA) with polychoric correlations and oblique rotation. We 

expected that this structure would reflect a five-factor solution, corresponding to the five 

untrained construct labels that we had requested from the fine-tuned GPT-2 model. In line 

with this expectation, parallel analysis suggested a 5-factor solution. The loadings matrix of 

the subsequent EFA showed generally distinct loadings for conceptual items for benevolence, 

egalitarianism and pessimism (see results provided in Table A.2 in the online supplemental 

material). The fifth factor appeared to be rather specific and absorbed items that poorly fitted 

to the respective conceptual scales, as indicated by relatively low proportional variance and 

heterogenous loading patterns. 
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Table 2.3: Goodness of Fit Statistics, Factor Loadings and Reliability Estimates of 

Confirmatory Factor Analyses of Machine-authored Scales for Untrained Construct Labels 

Scale CFI RMSEA λmean λrange ω ωCI 

Benevolence 1.00 .05 .69 [.49, .94] .74 [.67, .79] 

Egalitarianism .99 .09 .76 [.67, .87] .78 [.69, .85] 

Egoism .90 .12 .44 [.08, .85] .58 [.47, .67] 

Joviality .83 .16 .44 [.17, .92] .54 [.42, .62] 

Pessimism .99 .11 .70 [.45, .93] .82 [.77, .86] 

Note. N = 220 respondents. λmean = Mean of standardized factor loadings; λrange = Range of 

standardized factor loadings; ω = Omega total coefficient of internal consistency; ωCI = 

bootstrapped 95% confidence interval for omega coefficient, based on K = 5,000 bootstrap 

iterations. 
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Table 2.4: Descriptive Statistics and Factor Loadings of Machine-authored Items for Untrained Construct Labels 

Item M SD 
Frequencies 

Skewness Kurtosis λ 
1 2 3 4 5 

I care about others' well-being. (BEN+) 4.41 0.76 2 1 21 77 119 −1.40 2.61 .78 

I forgive others. (BEN+) 3.85 1.09 9 19 39 82 71 −0.85 0.05 .55 

I am not a person who would do anything nice for 

anyone. (BEN-) 
4.57 0.79 2 6 12 44 156 −2.15 4.71 .66 

I have little sympathy for poor people. (BEN-) 4.17 1.23 14 17 16 44 129 −1.38 0.70 .49 

I am not interested in others feelings. (BEN-) 4.30 0.98 4 11 25 55 125 −1.41 1.36 .94 

I believe that the rights of others should be treated 

equally. (EGA+) 
4.72 0.59 1 2 4 43 170 −2.78 10.18 .87 

I believe that all races are created equal. (EGA+) 4.60 0.89 6 4 13 27 170 −2.52 6.09 .71 

I believe that it is wrong to exploit others for your own 

gain. (EGA+) 
4.52 0.92 7 5 9 44 155 −2.35 5.37 .67 

I believe in the equality of all peoples. (EGA+) 4.65 0.72 2 3 11 38 166 −2.49 6.95 .81 

I believe that the rights of others should be respected 

without question. (EGA+) 
4.35 0.84 2 6 22 72 118 −1.38 1.88 .77 

I believe that I have the right to my own way of life. 

(EGO+) 
4.45 0.72 2 1 15 79 123 −1.57 3.69 .08 

I often exaggerate my achievements. (EGO+) 1.94 1.11 97 74 25 13 11 1.24 0.84 .26 

I believe that I am the best. (EGO+) 2.57 1.35 67 44 50 35 24 0.34 −1.11 .85 

I believe that I have more power than others. (EGO+) 2.20 1.17 78 63 46 22 11 0.71 −0.41 .60 
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Item M SD 
Frequencies 

Skewness Kurtosis λ 
1 2 3 4 5 

I am not overly proud of my achievements. (EGO-) 3.28 1.32 26 41 49 54 50 −0.23 −1.11 .39 

I am very jovial. (JOV+) 3.37 1.18 15 37 65 57 46 −0.24 −0.83 .92 

I do things that are not fun. (JOV-) 3.34 1.23 16 41 69 41 53 −0.12 −0.99 .17 

I sometimes laugh out loud. (JOV+) 4.33 0.93 4 11 13 73 119 −1.61 2.39 .18 

I am never sad. (JOV+) 1.92 1.14 106 61 26 18 9 1.15 0.40 .39 

I am easily entertained. (JOV+) 3.62 1.06 12 17 58 88 45 −0.68 0.05 .55 

I am not likely to succeed in my goals. (PES+) 1.90 1.13 110 54 33 14 9 1.15 0.46 .71 

I can see that things are never going to be the way I 

want them to be. (PES+) 
2.72 1.33 51 50 57 33 29 0.26 −1.05 .52 

I am not optimistic. (PES+) 2.09 1.28 103 49 26 29 13 0.88 −0.51 .93 

I am always on the lookout for a better way. (PES-) 1.99 0.97 79 83 44 9 5 0.90 0.55 .45 

I look at the bright side. (PES-) 2.23 1.25 79 69 32 23 17 0.83 −0.39 0.90 

Note. Based on data from N = 220 respondents. λ = Standardized factor loadings in a CFA model including the five machine-authored items of 

the respective dimension; BEN = Benevolence; EGA = Egalitarianism; EGO = Egoism; JOV = Joviality; PES = Pessimism; +/- indicates 

positive or negative keying.
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2.7. Discussion 

This paper offers a comprehensive examination of how deep learning language 

modeling can be used to automatically generate valid personality items that measure specific 

constructs. To achieve this, we utilized a popular pretrained transformer model, GPT-2, by 

fine-tuning it using the International Personality Item Pool (Goldberg et al., 2006). In doing 

so, we expand on work by von Davier (2018) in which Long Short-Term Memory Models 

were trained to create syntactically correct items. 

Our primary contribution emphasizes construct-specific automated item generation, 

showing that it is possible to align item stems to specific constructs and to classify 

unconditionally generated item stems with correct construct labels. To achieve this, we taught 

GPT-2 a pattern by concatenating strings of personality statements with labels corresponding 

to constructs for which the items were conceptualized. By learning this pattern, we 

anticipated that the model would respond by generating valid item stems when prompted by a 

given construct label. We considered this task to be the inverse problem of text 

summarization since it requires a model to elaborate on a concept. As we outlined in the 

introductory section of this paper, this can only be achieved by language models which are 

able to learn the relationship between words beyond close proximity. Transformer models 

excel at long-distance dependencies and it is conceivable that GPT-2 is the first model that is 

capable of the construct-specific generation of personality items. The ability to adapt to 

patterns such as the segmented training pattern used in this paper is an important prerequisite 

for AIG because it permits an agent to exert control over the generated output after fine-

tuning is completed. The successful adaptation of GPT-2 to the segmented training pattern 

therefore not only fulfills the basic requirements for meaningful AIG-applications, but also 

implies that additional perhaps more complex patterns could be learned.  

In addition to this conceptual contribution, we conducted an empirical study to 

examine how automatically generated items fared when assembled into a personality 

questionnaire. We studied two groups of items to test the structural validity of machine-

authored items. One set consisted of items generated for construct labels which GPT-2 had 

learned during fine-tuning, while the other set comprised items authored for construct labels 

that were not introduced earlier. Our results showed that neither set of items is comparable in 

structural validity to what should be expected from a psychometrically sound personality 

questionnaire. Yet approximately one third of the machine-authored items for untrained 
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construct labels showed sizable factor loadings in the same range as those of human-authored 

items of the same scale. More than half of these items even met or exceeded cut-off values 

commonly used by scale developers. Additionally, several items of the set of items generated 

for untrained construct labels exhibited satisfactory scale statistics. For example, 76% 

showed factor loadings above .40 and in three out of five scales, internal consistency 

exceeded coefficients of .70. Considering that generated items were in competition with items 

developed through years of research, we deem these results highly encouraging.  

2.7.1 Limitations 

Although the capabilities of modern pretrained causal transformers are quite 

formidable, some restrictions remain that limit their applicability to AIG. Most notably, the 

quality of items generated with our method is currently difficult to predict. As some items 

generated by our model were qualitatively and psychometrically inferior to human-authored 

items, any practical application would currently require expert oversight. This is also 

necessary to avoid that semantically very similar items are selected, a problem that we 

observed in our study for the agreeableness scale, and which resulted in poor model fit due to 

correlated residuals. Human-in-the-loop systems are quite common in machine learning (Chai 

& Li, 2020) and may be a tolerable transitional solution. This problem could perhaps be 

remedied by automatically evaluating semantic similarity in post-processing. Next, generated 

items tend to contravene item writing guidelines and psychometric principles. As such, we 

have frequently seen fine-tuned models phrase double-barreled items, use negations, or 

conflate multiple constructs within one item, violating unidimensionality (Nunnally & 

Bernstein, 1994). Perhaps this could be remedied by training a bidirectional classifier model 

(e.g., a BERT-network; Devlin et al., 2018) to detect such violations. Such a penalty could be 

integrated in the loss-function when fine-tuning a language model to AIG. Moreover, we 

identified inadequate item difficulty as a dominant reason for poor item and scale statistics in 

machine-authored items. For example, all items generated for the egalitarianism construct 

label were overwhelmingly endorsed by respondents. Extreme difficulty is a likely symptom 

of a variety of potential causes, such as statements that are socially undesirable to endorse or 

reject (e.g., “I believe that all races are created equal”). It is important to find ways to gain 

control over these aspects to advance this line of research and to make practical applications 

of AIG feasible. 
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While our proposed method solves concept elaboration in the case of AIG in the 

domain of personality, we have not offered any tangible advice on how the process of fine-

tuning causal transformers can be optimized to improve our results. Here, a variety of 

enhancement measures are conceivable. In light of the dearth of openly accessible training 

data in the domain of personality testing, perhaps data augmentation techniques similar to 

those conventionally applied in image recognition can be applied (Perez & Wang, 2017). 

Moreover, researchers could attempt to optimize the fine-tuning process more directly, 

perhaps by modifying the objective function of the neural network or by freezing the lower 

layers of the transformer (J. Lee et al., 2019; Lu et al., 2021). 

On a more fundamental level, another obstacle is that we remain oblivious to the true 

size of the problem space. As such, it is currently not possible to estimate the limits of GPT-

2—or any other causal transformer model—with regard to our notion of concept elaboration. 

One simply cannot know in advance what level of precision or proportion of validity that can 

be achieved by current technology given better training strategies or better training data. In 

addition, although we advocated the use of multinomial sampling for the generation of larger 

item pools, techniques must be derived to estimate the size of the universe of possible 

meaningful items that can be obtained from a model. In essence, since there is no theoretical 

reason to assume that probabilistic language models per se should be inferior to human test 

developers, deficiencies in item generation can only be attributed to model architecture, 

pretrained model parameters, and fine-tuning. Since the proportion of each of these 

components is likely to remain unknown, it is difficult to judge how close our results come to 

a model-specific optimum. This is problematic since it leaves future researchers without 

means to determine if stagnation is due to inadequate methodology with regard to model fine-

tuning or because a language models’ potential has been exhausted. 

2.7.2 Future Directions for the Automatic Generation of Non-Cognitive Items 

Future developments in deep language modeling will likely continue to benefit 

research and assessment technology for sequence-based AIG for personality items. As noted 

by a reviewer, one might wonder in what use case it is desirable to obtain large quantities of 

personality items. The primarily current practical utility of our proposed method is limited to 

a decision support system (Rosenbusch et al., 2020) for item authors, which in some cases 

may lessen the dependence on content specialists. When constructing a scale, authors require 

a large item pool from which they can select items with the best psychometric properties to 
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cover the full breadth of a target construct. Even larger quantities of items are required in 

computerized adaptive testing (CAT), where test developers may use our approach with 

multinominal sampling, to obtain a large variety of potential items. Language models for 

non-cognitive AIG may be a valuable tool to expand the original item pool, improving the 

quality of scales. We demonstrate this use case by offering an easy-to-use internet tool at 

https://cs-aig-server-2uogsylmbq-ey.a.run.app/ for creating items for a given construct, which 

can be used by scale authors without knowledge of computer science or AIG.  

Furthermore, it is important to note that deep language models not merely generate 

text, but also derive embeddings that encode a richness of abstract information about the 

generated item. Operations on such vectors could lead to a host of potential improvements in 

scale development. For example, measures of semantic similarity (Kjell et al., 2019; 

Rosenbusch et al., 2020) could be integrated in the loss-function of a transformer model or 

perhaps even explicitly prompted to enable test developers to specify a desirable distance to a 

target construct. This could permit psychometricians to control content coverage a priori to 

item development. 

While our research demonstrates that implicit parameterization can be used for item 

generation at the construct level, future work should attempt to expand on such 

parameterization to include psychometric properties. The highly promising prospect of using 

CAT in conjunction with AIG has previously been discussed in the literature (Glas & van der 

Linden, 2003; Simms et al., 2011; Luecht, 2013). Sentence embeddings offer a potential 

extension of CAT to the domain of personality item generation, if difficulty estimates could 

be extracted from such embeddings. When this is achieved, it is conceivable that personality 

questionnaires could be assembled “just-in-time,” tailored to the individual test-taker, instead 

of maintaining large, static item banks, as usually required for CAT. This goal, distant as it 

currently may seem, may help guide the future research agenda in the field of non-cognitive 

AIG. Such an agenda should primarily focus on two aspects: 

First, language models must reliably produce valid items. In contrast to template-

based AIG-techniques, this is more difficult to attain when using probabilistic language 

models. Indeed, Bejar (2013) noted that “item generation and construct representation go 

hand in hand” (p. 43). This is much closer to the truth when using strictly algorithmic 

approaches to AIG, rooted in conventional item modeling  (Gierl et al., 2008). The heuristic 

nature of pretrained language models, however, obscures the relationship between output and 
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construct, rendering such methods exceedingly unpredictable. In order to use just-in-time 

AIG in conjunction with CAT, it is imperative that the item generating method —in our case 

language models —reliably produce items that represent a requested construct, i.e., hold 

validity, without exceptions. This may be achieved by modifications to the model 

architecture, larger pretrained models, or better and larger quantities of training data. 

Second, future AIG techniques must permit control over latent parameters such as 

item difficulty, measurement invariance, or even face validity. As illustrated by some items 

generated within the scope of our empirical study, the proportion of socially desirable items 

was tremendously high. Such levels of item difficulty are rarely desirable in psychometric 

testing. Naturally, in contrast to static item banks used for CAT which contain information 

about item difficulty, a just-in-time generated item used for the same purposes must be 

precalibrated to specific difficulty levels prior to its creation. 

Besides such general improvements, we would welcome the application of language 

modelling to other test formats that have not been addressed by conventional AIG techniques 

to date. Certainly, situational judgement tests (Lievens et al., 2008), forced-choice response 

formats (Cao & Drasgow, 2019), and conditional reasoning tests (James, 1998) could also 

benefit from the potential that lies within modern approaches to language modeling. 
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 Study 2: Machine-Based Item Desirability 

Ratings

The article entitled “Expanding the methodological toolbox: Machine-based item desirability 

ratings as an alternative to human-based ratings” by Hommel (2023), featured in Personality 

and Individual Differences, will be referenced in the following section. 

3.1. Abstract 

The accuracy of self-reported data in the social and behavioral sciences may be 

compromised by response biases such as socially desirable responding. Researchers and scale 

developers therefore obtain item desirability ratings, in order to maintain item neutrality, and 

parity with alternative options when creating forced-choice items. Gathering item desirability 

ratings from human judges can be time-consuming and costly, with no consistent guidelines 

with regard to required sample size and composition. However, recent advancements in 

natural language processing have yielded large language models (LLMs) with exceptional 

abilities to identify abstract semantic attributes in text. The presented research highlights the 

potential application of LLMs to estimate the desirability of items, as evidenced by the re-

analysis of data from 14 distinct studies. Findings indicate a significant and strong correlation 

between human- and machine-rated item desirability of .80, across 521 items. Results 

furthermore showed that the proposed fine-tuning approach of LLMs results in predictions 

that explained 19% more variance beyond that of sentiment analysis. These results 

demonstrate the feasibility of relying on machine-based item desirability ratings as a viable 

alternative to human-based ratings and contribute to the field of personality psychology by 

expanding the methodological toolbox available to researchers, scale developers, and 

practitioners. 
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3.2. Introduction 

Social desirability bias is a pervasive phenomenon that affects the accuracy of self-

reported data in the social and behavioral sciences (e.g., Krumpal, 2013; Nederhof, 1985). 

Survey respondents are inclined to conceal socially undesirable traits and endorse statements 

that cast them in a favorable manner. Past research has commonly distinguished between two 

major facets of social desirability bias: self-deception, which constitutes positively biased 

responses that subjects believe to be true, and impression management, which refers to 

deliberate attempts to convey a favorable image to specific audiences (Paulhus, 1986).  

Some of the methods proposed to cope with the potential threats of impression 

management involve creating forced-choice questionnaires with items possessing an equal 

degree of desirability (e.g., Converse et al., 2010; Hughes et al., 2021; Pavlov et al., 2021; 

Wetzel et al., 2021). In a similar vein, others have suggested devising instruments purely 

consisting of items of neutral desirability (e.g., Wood et al., 2022). To this end, a well-

established approach for evaluating the desirability of items is employing survey respondents 

or a panel of judges to rate individual items on a desirability scale (Edwards, 1957, p. 5). 

However, there are inherent challenges associated with obtaining item desirability ratings 

from judges. Pavlov et al. (2021) have underscored several important considerations, 

including determining sample size and its composition (e.g., subject matter experts versus 

target audiences), as well as the level of generalizability of ratings (i.e., whether they reflect 

general or context-specific desirability). The authors also note the absence of consistent and 

definitive guidelines in the existing literature regarding these decisions. Furthermore, from 

the perspective of scale developers, obtaining item desirability ratings may introduce an 

additional expensive and time-consuming step to an already lengthy scale development 

process. For example, in a recent study by Ryan et al. (2021), 157 judges were recruited, 

trained, and instructed to rate 1,470 personality statements for item desirability. 

Building upon the challenges of obtaining item desirability ratings from human 

judges, recent advances in natural language processing and deep learning introduce a 

promising alternative. Large language models (LLMs) have emerged as powerful tools, 

exhibiting remarkable competence in a range of linguistic tasks. This article demonstrates 

how LLMs can be modified to judge item desirability with high precision as evidenced by a 

comparison to data from human raters. This work contributes to the field of personality 

psychology by expanding the methodological tools available to researchers, scale developers, 
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and practitioners by introducing a computerized alternative to human-based item desirability 

ratings. A web application demonstrating machine-based item desirability rating is provided 

on: https://huggingface.co/spaces/magnolia-psychometrics/item-desirability-demo 

3.2.1 Utilizing LLMs to evaluate item desirability 

With the introduction of the transformer-model architecture, natural language 

processing has advanced significantly (for in-depth explanations of deep neural networks and 

transformer-based LLMs, see Hommel et al., 2022, and Urban & Gates, 2021). Transformer-

based LLMs have recently demonstrated their utility in psychological research, as scholars 

have successfully employed LLMs to automatically generate personality items (Götz et al., 

2023; Lee et al., 2022; Hommel et al., 2022), conduct content analysis (Fyffe et al., 2023), 

and extract psychological information from written text ( Fan et al., 2023; van Genugten & 

Schacter, 2022), among other applications. The success of these models can largely be 

attributed to their capacity for transfer-learning. Through a pre-training process, LLMs 

acquire general language knowledge and subsequently gain domain-specific expertise when 

fine-tuned for more narrowly defined tasks on specific training data, such as judging item 

desirability. 

Sentiment analysis is one domain in which LLMs have demonstrated comparable 

levels of proficiency to humans. This task usually involves categorizing text into pre-defined 

labels, based on its valence (i.e., positive, neutral, or negative). For example, sentiment 

analysis may classify the statement “I make friends easily” used in the International 

Personality Item Pool (Goldberg et al., 2006) to assess individual differences in extraversion 

as positive, with a probability of 79%. Previous research has established a close association 

between ratings of valence and item desirability (Britz et al., 2019, 2022). Taken together, it 

is plausible to expect that with sufficient training data, LLMs can learn to predict item 

desirability. 

It is important to note that the method presented in this article implies that items 

possess a true score in terms of their perceived desirability. The assumption that item 

desirability is most adequately represented by averaging individual ratings of judges has 

recently been challenged by Pavlov et al. (2021), who showed that more balanced forced-

choice item blocks can be constructed if disagreements between judges are incorporated in 

the item-matching procedure. Although the proposed LLM-based method aims to predict 

item desirability as a point estimate, it should not be misconstrued as conducting a 

https://huggingface.co/spaces/magnolia-psychometrics/item-desirability-demo
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desirability rating study with just a single individual judge, as LLMs encode terabytes of 

human-generated textual data, including expressions of attitudes and social interactions. 

In summary, the potential benefits of employing LLMs for evaluating item desirability 

are threefold. First, LLMs offer a cost-effective alternative to human-based ratings and the 

potential of evaluating item desirability on a larger scale. Once fine-tuned for this purpose, 

machine-based evaluation can be performed inexpensively and quickly, without the need for 

specialized hardware, yielding results within seconds. Second, an LLM-based point estimate 

of item desirability implicitly reflects diverse perspectives of human judgments. Finally, 

LLMs can provide a standardized and consistent approach to evaluating item desirability. 

3.3. Method 

Materials, data, and code for the present study are available through the Open Science 

Framework: https://osf.io/67mkz/. Data pre-processing, model training, and statistical 

analyses were conducted using Python (version 3.8.13) and R (version 4.2.1). 

3.3.1 Data collection 

To explore the predictive capacity of LLMs in determining human-rated item 

desirability, the study drew on a foundation of previously published data for analysis. Using 

Google Scholar, PsychINFO, and Web of Science, I conducted a literature search for studies 

reporting item desirability ratings using each of the keywords listed in the OSF repository 

accompanying this report. This resulted in a list of 234 peer-reviewed publications, of which 

14 provided adequate data (i.e., stimulus material in the form of single adjectives or item 

stems in English or German, as well as reported mean-rated item desirability) either in 

manuscript tables or in freely accessible online repositories. An overview of the data included 

in the present study can be found in Table 3.1. 

https://osf.io/67mkz/
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Table 3.1: Included studies and data characteristics. 

Study Instrument Language k n M SD 

Anderson (1968) Anderson's List of Personality-Trait Words English 555 100 2.93 1.46 

Schönbach (1972) Schönbach's List of Personality-Trait Words German 100 170 2.73 1.60 

Bochner & Van Zyl (1985) Bochner & Van Zyl's Compilation of Personality-Trait Words English 110 171 4.04 1.59 

Hampson et al. (1987) Goldberg's Personality-Descriptive Terms English 572 55 4.80 1.93 

Dumas et al. (2002) Dumas' Compilation of Personality-Descriptive Words English 77 581 3.63 1.68 

Chandler (2018) Anderson's List of Personality-Trait Words English 1106 39 2.95 1.57 

Chandler (2018) Chandler's Compilation of Personality-Trait Words English 976 47 2.44 1.26 

Andersen & Mayerl (2019) List of Teacher-Related Characteristics German 30 77 0.75 1.95 

Britz et al. (2019) Aachen List of Trait Words - German Version German 1212 100 -0.04 1.68 

Hughes et al. (2021) Big Five Aspects Scale English 98 42 4.07 1.65 

Hughes et al. (2021) Big Five Inventory 2 English 60 42 4.19 1.78 

Hughes et al. (2021) Five-Factor Markers English 38 43 4.51 1.72 

Hughes et al. (2021) International Personality Item Pool - NEO English 239 42 4.01 1.61 

Leising et al. (2021) Balanced Inventory of Desirable Responding - German Version German 20 30 -0.04 0.33 

Leising et al. (2021) Beck Depression Inventory - Modified German Version German 20 30 -0.52 0.21 

Leising et al. (2021) Big Five Inventory - 44 Items - German Version German 44 44 0.23 0.48 

Leising et al. (2021) Borkenau & Ostendorf's German Adjectives German 60 24 0.05 0.58 

Leising et al. (2021) International Personality Item Pool - 120 Items - German German 120 25 0.01 0.45 

Leising et al. (2021) Interpersonal Adjective List German 16 30 -0.04 0.63 
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Study Instrument Language k n M SD 

Leising et al. (2021) Level of Personality Functioning Scale German 60 24 -0.09 0.55 

Leising et al. (2021) Level of Personality Functioning Scale - Self-Report German 80 30 -0.17 0.37 

Leising et al. (2021) Life-Orientation-Test - German Version German 10 30 0.23 0.48 

Leising et al. (2021) Narcissistic Personality Inventory - German Version German 80 30 0.11 0.32 

Leising et al. (2021) Rosenberg's Self-Esteem Scale - Revised German Version German 10 30 -0.01 0.61 

Leising et al. (2021) Social Desirability Scale - 17 Items - German Version German 17 30 0.18 0.61 

Wessels et al. (2021) Wessels et al.'s Compilation of Life Experiences German 47 18 5.69 2.26 

Britz et al. (2022) Aachen List of Trait Words - English Version English 1000 203 0.20 1.61 

McIntyre (2022) Big Five Inventory - 44 Items English 43 193 4.65 1.64 

McIntyre (2022) O*NET Interest Profiler Short Form English 60 191 4.68 0.62 

McIntyre (2022) Person-Thing Orientation Scale English 13 193 4.90 0.66 

Wood et al. (2022) International Personality Item Pool - 50 Items English 24 73 4.35 2.10 

Wood et al. (2022) International Personality Item Pool - 50 Neutralized Items English 24 73 4.24 1.57 

Note. k = Group-wise item/adjective count; k = Group-wise sample size of judges; M, SD = Mean and standard deviation of item desirability 

ratings.
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3.3.2 Data pre-processing 

To ensure consistency in analyzing the data collected from various studies that 

employed different rating scales to measure item desirability, I z-transformed the human-

rated point estimates, taking into account the specific study and questionnaire from which the 

data originated. When LLMs evaluate individual units of text (e.g., words), they consider the 

context in which such units occur (Vaswani et al., 2017). I thus used string interpolation to 

embed adjectives in the dataset in sentences (e.g., “A person is gullible.”). Finally, text data 

was cleaned using the Python clean-text package (Filter, 2018) and spell-checked. 

3.3.3 Models used in this study 

All analyses of stimulus material (i.e., adjectives and item text) were based on two 

modified versions of the twitter-XLM-roBERTa-base model (referred to as the “base 

model”), an LLM trained by Barbieri et al. (2022; based on the roBERTa architecture, as 

proposed by Liu et al., 2019). Barbieri and colleagues fine-tuned this model for sentiment 

analysis on a multi-lingual dataset of approximately 198 million tweets, categorized into 

negative, neutral, and positive sentiment. It is freely accessible from 

https://github.com/cardiffnlp/xlm-t under the Apache 2.0 license. For any given text input, 

the model produces a vector with three values indicating the class-membership probabilities 

for each of the sentiment labels. The two modified versions used in this study are described 

below. Models were trained using Python using the transformers package (Wolf et al., 2020) 

on a Nvidia GeForce RTX 2070 Super GPU, using the CUDA 9.1.85 and cuDNN 7.6.3 

toolkits. 

3.3.4 Model for sentiment analysis 

As item desirability constituted a continuous variable in the data included in this 

study, I modified and re-trained the base model for regression, as opposed to classification, 

according to Figure 3.1. In simplified terms, the anatomy of LLMs can be divided into an 

input layer, a multi-layered body, and a classification head. The body of the base model 

comprises a 12-layer neural network that preserves the LLM’s bulk of knowledge in the form 

of learned parameters (i.e., model weights and biases). The model head, in turn, is trained on 

a specific task (i.e., classification of sentiment) where it is fine-tuned to make predictions 

based on the encoded representations provided by the body. As the base model head was 

designed to predict class probabilities of three labels, I discarded and replaced it with a layer 

culminating towards a single neuron to project one continuous variable. Re-connecting the 
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model body with the new regression head required fine-tuning the model on metric training 

data using mean squared error (MSE) optimization. To achieve this, I re-scored the original 

training text data used by Barbieri et al. (2022) and subtracted the class probabilities for 

negative sentiment from the predictions for positive sentiment (see Figure 3.1a to Figure 

3.1b). As re-training merely served to project the information contained in the model body to 

the head, I prevented the body’s parameters from updating during the training phase by a 

practice commonly referred to as “freezing layers” (Lee et al., 2019). Apart from these 

changes, I followed the procedure described by Barbieri et al. (2022). This modified model 

(referred to as the “sentiment model”) exhibited a near-perfect correlation of .99 with the 

base model’s predictions of the test data supplied by Barbieri et al. (2022). 

3.3.5 Model for item desirability analysis 

The second model used in this study was based on the sentiment model but further 

fine-tuned to predict item desirability ratings (referred to as the “desirability model”; see 

Figure 3.1c), using the data sources mentioned above. Employing a k-fold cross-validation 

approach (k = 10), items were grouped by study and questionnaire, and then randomly 

assigned to a training, validation, or test set, with an 80-10-10-split probability for each 

group. Urban & Gates (2021) provide an accessible introduction to k-fold cross-validation. 

Items and adjectives co-occurring across multiple subsets were only assigned once to a single 

partition to prevent biasing by the same stimulus being present in multiple partitions. The 

training partition thus comprised 2,740 items and interpolated adjectives with respective item 

desirability ratings. Fine-tuning terminated after 570 straining steps due to early stopping 

with an MSE = 0.36 for the best-performing fold (M = 0.41, SD = 0.05).  
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Figure 3.1: Simplified Schematic Diagram of Models and Training Data used in this Study 

 

Note. Illustration of the basic architecture and training data for (a) the base model for 

sentiment classification by Barbieri et al. (2022), (b) its modification for regressive sentiment 

prediction (sentiment model), and (c) the further fine-tuned model for item desirability 

prediction. Backpropagation updates model parameters for model head and (a, c) body during 

fine-tuning. 𝑦 = observed values represented by (a) sentiment classes in original training 
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data, (b) differences between positive and negative class membership probabilities, and (c) 

human-rated item desirability values; 𝑦̂ = predicted values by the respective LLM. 



Results 57  

 

  

3.3.6 Measures and covariates 

Group-wise z-transformed human-rated item desirability constituted the dependent 

variable in this study. To predict item desirability as judged by human raters, two machine-

based measures were employed; one derived from the sentiment model, and the other from 

the desirability model. I included three binary covariates in the analysis to assess the accuracy 

of machine-rated item desirability under more specific circumstances. Personality items, such 

as the statement "I am very content with myself" (Wood et al., 2022) may be less context-

dependent compared to items in other questionnaires, such as occupational interests (e.g., 

"[…] to create special effects for movies."; Rounds et al., 2010, as cited in McIntyre, 2022). I 

thus hypothesized that the former is more easily evaluated by LLMs, yielding a higher 

convergence between human- and machine-based ratings. I further expected the language of 

the stimulus material (English versus German) to moderate the prediction, considering the 

well-documented observation that even multi-lingual LLMs tend to perform better overall for 

tasks involving English text (Reimers & Gurevych, 2020). Lastly, as LLMs acquire the 

majority of their knowledge through pre-training on textual data authored by non-

psychologists, I anticipated that the predictions of LLMs would align more closely with item 

desirability judgments made by laypeople rather than those made by psychology students. 

3.4. Results 

Analysis conducted on the 521 items in the test and validation set revealed a high 

level of agreement of ρ = .80 between human- and machine-rated item desirability. These 

predictions were significantly stronger than compared to machine-rated sentiment (ρ = .66, p 

< .001), as determined by Steiger's (1980) test for dependent correlations. Extreme 

discrepancies between human- and machine-rated item desirability (measured in standardized 

residuals; 𝑆𝐷 ≥ |2|) were observed in 31 items (6%; see Figure B.1 in the online 

supplemental material for further details).  

I subsequently conducted multiple regression analysis to examine the extent to which 

the predictive power of the item desirability model varied depending on different covariates. 

Specifically, I examined possible moderating effects of the content domain (personality 

versus other) and language (English versus German) of the stimulus material, as well as the 

rater group (laypeople versus psychology students) who judged item desirability. As shown 

in Table 3.2, none of these interactions demonstrated a significant effect, suggesting that the 

machine-rated item desirability was able to deliver similarly accurate predictions across all 
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conditions examined. Additional variance explained by the moderated model was trivial (ΔR2 

= .01). 
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Table 3.2: Results of Linear Regression Analyses for the Prediction of Human-rated Item 

Desirability 

 β SE t p R2 

Sentiment main effect model     .44 

Intercept  0.00 0.03 4.63 <.001  

Machine-rated item sentiment  0.66 0.03 20.2 <.001  

Desirability main effect model     .63 

Intercept  0.00 0.03 -3.28 <.001  

Machine-rated item desirability  0.79 0.03 29.63 <.001  

Desirability interaction model     .64 

Intercept  0.00 0.05 -4.10 <.001  

Machine-rated item desirability   0.86 0.06 16.86 <.001  

Stimulus content domain -0.02 0.09 -0.60 .548  

Stimulus language  0.05 0.06  1.57 .116  

Rater group  0.07 0.05  2.66 .008  

Machine-rated item desirability × Stimulus content 

domain 

 0.03 0.12  0.90 .369  

Machine-rated item desirability × Stimulus language -0.06 0.07 -1.79 .073  

Machine-rated item desirability × Rater group -0.04 0.06 -0.94 .348  

Note. Stimulus content domain (0 = personality, 1 = other), Stimulus language (0 = English, 1 

= German), Rater group (0 = laypeople, 1 = psychology students). 



60 Study 2: Machine-Based Item Desirability Ratings 

 

3.5. Discussion 

The key finding of this study is a strong Spearman correlation coefficient of .80 

between the machine- and human-rated desirability scores, suggesting that the machine 

model is capable of ranking the estimated desirability of items in a manner that is largely 

consistent with human judgments. This level of concurrence between the model's predictions 

and human ratings likely exceeds the consensus among judges in most desirability studies. 

Results furthermore indicated that the proposed fine-tuning approach of the LLM results in 

predictions that explained variance beyond that of sentiment analysis. Moreover, the machine 

prediction of item desirability appears robust for items in the domain of personality, as well 

as other domains (e.g., occupational interests), and across different languages (i.e., English 

and German). These predictions do not appear to align more closely with the judgments of 

laypeople than with those of experts (i.e., psychology students).  

This article contributes to the field of personality psychology by broadening the 

methodological options accessible to researchers, scale developers, and practitioners. In the 

past, the measurement of item proneness to impression management was confined to the 

evaluation of stimulus material by human judges. The approach introduced in this article is 

fundamentally different, as it uses advanced natural language processing techniques to 

automatically obtain estimates of item desirability in an instant. 

The central limitation of this study is that it currently cannot determine the exact 

circumstances under which a machine model can be used to substitute human judges, as no 

clear pattern emerges as to how residuals result. In a few cases (6% of the examined items) 

extreme discrepancies between human and machine ratings can be observed (e.g., “self-

centered”; ε = -2.66; see Figure B.1 in the online supplemental material). A qualitative 

examination suggests that these exceptional cases arise from a combination of both 

underfitting (i.e., the estimates reflecting sentiment rather than desirability) and overfitting 

(i.e., the model becomes excessively specific to the training data). Given the study's restricted 

quantity and variety of training data (i.e., 2,740 items and adjectives originating from low-

stakes contexts), this issue can likely be addressed by increasing the amount and diversity of 

the items in future fine-tuning studies. Additional methodological solutions such as utilizing 

loss-functions that penalize extreme outliers (e.g., Huber loss; Huber, 1964) and employing 

regularization (e.g., Urban & Gates, 2021) may be investigated. 
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Furthermore, as briefly mentioned in the introduction of this article, the assumption 

that items possess a true desirability score has recently been called into question (Pavlov et 

al., 2021). The LLM employed in this study predicts item desirability as a point estimate and 

does not account for the potential heterogeneity of opinion among subsets of judges. The 

importance of incorporating heterogeneity in perceived desirability is exemplified by the fact 

that certain personality traits are considered more or less socially desirable across different 

cultures (Ryan et al., 2021). To address this limitation, future research can explore two 

avenues. First, apart from point estimates, LLMs could be trained using measures of 

statistical dispersion. Second, researchers could investigate whether uncertainty measures of 

the LLM's predictions align with systematic errors in human judgments (e.g., by using Monte 

Carlo dropout; Gal & Ghahramani, 2016). 

Further research may also be dedicated to investigating whether LLM-based estimates 

yield more generalizable predictions of item desirability compared to desirability ratings 

obtained from studies with human judges. Such a hypothesis may be justified by the fact that 

the base model employed in this study was originally trained on an extensive dataset of 2.5 

terabytes, comprising filtered text in 100 languages (Liu et al., 2019). It is thus plausible to 

propose that predictions generated by such a model may more accurately reflect the 

perception of item desirability among the general population, in contrast to studies employing 

smaller samples of human judges. The findings of this study provide an initial, albeit modest, 

indication supporting this hypothesis, as the data demonstrated that machine-rated item 

desirability exhibited a similar alignment with the judgments of both laypeople and 

psychology students. 

In conclusion, this study represents an important step forward in the use of advanced 

natural language processing techniques to automatically obtain estimates of item desirability. 

With further research and refinement, this method has the potential to transform the way 

researchers and practitioners measure social desirability bias. 
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 General Discussion

This dissertation comprises two studies exploring the efficacy of transformer models 

in addressing prevalent challenges in scale development. Study 1 demonstrates the 

proficiency of decoder-models, specifically GPT-2 (Radford et al., 2019), in generating 

personality statements tailored to distinct psychological traits. Although von Davier (2018) 

previously highlighted the capacity of Long Short-Term Memory Models to produce arbitrary 

personality statements, Study 1 stands out as the inaugural effort in automatic item generation 

(AIG) to yield items for targeted constructs. We attribute this advancement to a method 

termed implicit parameterization: a strategic training pattern that enabled GPT-2 to correlate 

construct labels with item stems. The findings indicate that, during inference, this approach 

can effectively guide the production of personality statements aligned with specific traits. 

These generated statements, when subjected to subsequent sample analyses, displayed 

commendable item and scale characteristics. 

Study 2 evaluates the application of an encoder model, specifically the twitter-XLM-

roBERTa-base (Barbieri et al., 2022), in predicting item desirability. This was achieved by 

adapting and fine-tuning a sentiment classifier—designed to discern positive and negative 

valence in text—using human-rated item desirability data from 14 independently sourced 

studies. The predictions exhibited a high degree of accuracy, and the validity remained 

consistent across different samples (i.e., rater groups) and item characteristics, such as 

stimulus language. This research serves as a testament to the efficacy of transfer learning 

(Tunstall et al., 2022) and introduces a novel method for automating item desirability ratings. 

The practical relevance of this research is evident. Scale development is a complex 

endeavor marked by a myriad of potential challenges. Due to the inherent uncertainty in 

predicting which items will be retained in a scale's final iteration, established guidelines often 
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advise drafting three to five times the intended number of final items (DeVellis & Thorpe, 

2022, p. 98; Morey, 2013, p. 407). Clark & Watson (1995) assert that the initial item pool 

should be deliberately overinclusive. Construct-specific non-cognitive AIG can provide scale 

developers with the tools to create such comprehensive scales. Additionally, the AIG model 

may be employed in concert with evaluative transformer models, such as the model derived 

from Study 2 to assess item desirability. Further evaluating generated items for semantic item 

similarity, using sentence transformer models (Reimers & Gurevych, 2019) may help inform 

construct coverage and scale variability in scale development. 

From a theoretical perspective, the current research holds implications for 

psychometric language modeling. The introductory section of this thesis framed 

psychometric language modeling through the lens of the manifold hypothesis, positioning it 

as a task consistent with manifold learning (Narayanan & Mitter, 2010; Fefferman et al., 

2016). Successful manifold learning necessitates that high-dimensional data reflect a lower 

intrinsic dimensionality (Lee & Verleysen, 2007). The condition of lower intrinsic 

dimensionality is evident in psychological items, a realization traceable to Spearman's 

foundational work on factor analysis (Bartholomew, 1995). Construct-specific AIG presents 

initial evidence of the potential to algorithmically approximate this lower intrinsic 

dimensionality from linguistic data. Additionally, the ability of language models to infer 

human-perceived item attributes, such as social desirability, from linguistic content 

underscores the feasibility of linguistic-psychometric mapping.  

The derivable conclusion, suggests that large language models (LLMs) possess an 

implicit grasp of the nomological network. This introduces the compelling prospect that 

LLMs can be directly probed to understand relationships between psychological constructs. A 

recent advancement in this direction is the work of Cutler & Condon (2023), who explored 

LLM embeddings of personality-related adjectives drawn from influential psycholexical 

studies by Allport & Odbert (1936), Goldberg (1982), and Norman (1963). Interestingly, they 

found that the correlational structure of LLM embeddings was similar to the five-factor-

pattern that emerges from survey data. The novelty lies not in the reconfirmation of the five-

factor model, but in the source of these findings, which is categorically different than the self- 

and other-report data usually accessible to the social and behavioral sciences. LLMs 

essentially function as silent observers, assimilating behaviors of countless individuals 

through text—spanning both real-life interactions and fictional narratives, encompassing self-

reports and descriptions of others. The organization and representation of knowledge within 
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LLMs is a pressing topic in contemporary deep learning research. Some researchers posit that 

LLMs hold internal representations mirroring the external world. For example, Li et al. 

(2023), after training a GPT model using Othello game transcripts, assert that the model 

sustains a continuous representation of the game board state. Gurnee & Tegmark (2023) 

similarly probed LLMs for spatial and temporal representations. Their analysis of activation 

patterns, resulting from encoding geographical data, identified model parameters closely 

mirroring latitude and longitude coordinates. Should future research replicate and expand 

upon such findings, it would be plausible to hypothesize that LLMs harbor relatively accurate 

representations of human psychology, namely, construct space. 

4.1. Challenges and Future Directions 

The contributions of this thesis, while rudimentary, provide an initial step towards a 

framework of psychometric language modeling. However, as the framework poses as a 

holistic model of the relationship between language and psychometrics, a central limitation of 

this dissertation is that it examines linguistic-psychometric mapping (i.e., construct-specific 

AIG) and psychometric-linguistic generation (i.e., machine-based item desirability analysis) 

as independent operations. As such, future research must investigate if LLMs can integrate 

mappings of these two key functions. While the manifold hypothesis offers a conceptual 

framework for psychometric language modeling, it must be noted that no studies within this 

thesis utilized manifold learning techniques, which encompass nonlinear dimensionality 

reduction, among other methods (Cayton, 2008). 

Establishing the architecture of a psychometric language model remains a 

forthcoming endeavor. A plausible design might leverage an encoder-decoder model 

structure. Training the decoder for automatic item generation while fine-tuning the encoder 

with multiple regression heads—each corresponding to a psychometric property or item 

attribute to predict—could compel the encoder to apprehend underlying item features. 

Recent research from Opitz & Frank (2022) are particularly enlightening. They 

introduced a method to decompose sentence embeddings into semantically interpretable 

features. As previously discussed in this manuscript, bi-encoder sentence transformers 

(Reimers & Gurevych, 2019) yield a text sequence representation as a single vector. 

Nonetheless, individual dimensions within this vector often encode abstract, non-intuitive 

information. This becomes apparent when considering items like “I start conversations.” and 

“I don’t talk a lot.”. Utilizing a distance metric, such as cosine similarity, on their 
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embeddings reveals a strong positive relationship. However, this presents interpretation 

difficulties, since the items portray opposing behaviors: one suggests initiating conversations 

and the other implies avoiding them. Opitz & Frank's approach leverages abstract meaning 

representation (AMR)—a semantic representation language which parses sentence meaning 

as a directed, acyclic graph. In their training process for sentence transformers, two sentences 

undergo comparison via multiple AMR metrics, resulting in distinct partitioning within the 

embedding space. Consequently, embeddings manifest regions or “subspaces” encoding 

specific semantic information. Referring back to the example, the items “I start 

conversations.” and “I don’t talk a lot.” might display pronounced similarity in subspaces 

detailing the concept of conversations, while the area highlighting negations would likely 

indicate a stark contrast.  

A training approach akin to the one employed by Opitz & Frank might prove crucial 

for advancing psychometric language modeling. Beyond the AMR-metrics utilized by Opitz 

& Frank, scholars might explore dedicating semantic subspaces to discernible perceived item 

attributes, such as social desirability. Investigating the connections between these partitions 

and psychometric properties could prove insightful. For example, one could hypothesize that 

the empirical correlation between two items might be predictable by the cosine similarity of 

the concept-subspace embeddings of the item text, while the correlation's sign might be 

determined by the negation vector. 

However, advancing psychometric language modeling may prove challenging. 

Although Study 2 demonstrated that LLMs can learn human-perceived item desirability, this 

was anchored on sentiment analysis—a task closely related to item desirability analysis. 

Therefore, it remains uncertain how well LLMs can learn other perceived item attributes or 

psychometric properties, such as item difficulty or discrimination. Learning the manifold of 

construct-related items would require excessive amounts of data for both established as well 

as for discarded questionnaire items in order to prevent sampling bias. 

 Since the publication of Study 1, there have been some advancements in the field of 

non-cognitive AIG. Subsequent to the publication of Study 1, progress has been made in non-

cognitive AIG. Götz et al. (2023) utilized an expanded GPT-2 model (774 million 

parameters) to showcase the utilization of in-context learning for generating construct-

specific personality items. Similarly, Lee et al. (2023) examined the psychometric properties 

and measurement invariance of items, generated using OpenAI’s GPT-3 model (Brown et al., 
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2020), and found them largely equivalent, if not superior, to items authored by humans. With 

these studies solidifying the feasibility of construct-specific AIG, the subsequent scholarly 

endeavours should focus on equipping scale developers with the tools necessary for 

generating items under highly specific conditions, thereby elevating AIG beyond merely 

serving as a wellspring of inspiration for item authors. 

4.2. Conclusion 

In the past, scale development has been described as both science and art (Schmeiser 

& Welch, 2006). Despite a myriad of test development handbooks and item writing 

guidelines, the success of the scale development process isn’t always warranted (e.g., 

Boateng et al., 2018; Clark & Watson, 1995; Rosellini & Brown, 2021). This thesis suggests 

that advances in linguistics, especially the integration of transformer models, can provide a 

solid empirical basis to enhance the scale development process. Looking ahead, there are two 

potential trajectories for LLMs in the field of psychological measurement. One perspective 

might regard LLMs and future developments in natural language processing as 

supplementary tools, amplifying the resources available to researchers, practitioners, and 

scale developers. Alternatively, a distinct pathway may attribute a more central role to LLMs 

within the social and behavioral sciences, positioning them not only as instruments to 

enhance scale development but also as entities to be explored for relationships within the 

nomological network, thereby fulfilling an epistemological function.
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Table A.1: Examples of Endorsed and Rejected Machine-Authored Items in Content Validity Rating 

 Endorsed Rejected 

Openness to Experience I like to experience new things. I love to be in nature. 

Conscientiousness I don't bother to read the fine print of a contract. I have an intense desire to know the truth. 

Extraversion I avoid public places. (R) I show a lot of my body. 

Agreeableness I have an extremely negative view of others. (R) 
I have an unusually warm or fuzzy feeling when I 

look at someone. 

Neuroticism I am often upset by minor things. I am often happy, even though I know I am not. 

Benevolence I have little sympathy for poor people. (R) I have a cold. 

Egalitarianism I believe that all people should have equal rights. I believe that all should live in harmony. 

Egoism I have an exaggerated sense of my own importance. I didn't think that way. 

Joviality I laugh often. I have a good time talking about the weather. 

Pessimism I believe that the future is bleak. I see things my way. 

Note. Excerpt from N = 1,360 generated items, showing typical examples of personality items endorsed for content validity or rejected during 

the rating process. R = Negatively keyed items. 
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Table A.2: Exploratory Factor Analysis Results of Machine-authored Items for Untrained Construct Labels 

Items 
Factor Loadings 

1 2 3 4 5 

I care about others' well-being. (BEN+) .12 .07 .82 .14 -.06 

I forgive others. (BEN+) .34 .03 .48 -.02 .23 

I am not a person who would do anything nice for anyone. (BEN-) -.03 .13 .46 -.35 .04 

I have little sympathy for poor people. (BEN-) -.33 .25 .35 -.32 .04 

I am not interested in others feelings. (BEN-) -.05 .02 .88 -.03 .03 

I believe that the rights of others should be treated equally. (EGA+) -.03 .83 .02 -.07 -.06 

I believe that all races are created equal. (EGA+) .03 .72 -.07 .04 .06 

I believe that it is wrong to exploit others for your own gain. (EGA+) -.14 .53 .26 -.09 -.17 

I believe in the equality of all peoples. (EGA+) .01 .83 .12 .17 -.05 

I believe that the rights of others should be respected without question. (EGA+) .00 .79 -.04 -.04 .16 

I believe that I have the right to my own way of life. (EGO+) .21 .47 -.19 .00 -.43 

I often exaggerate my achievements. (EGO+) .23 -.08 .03 .67 .03 

I believe that I am the best. (EGO+) .78 -.02 -.13 .11 .17 

I believe that I have more power than others. (EGO+) .65 -.07 -.13 .26 -.04 

I am not overly proud of my achievements. (EGO-) .45 .08 .05 -.14 .16 

I am very jovial. (JOV+) .63 -.02 .25 -.02 -.06 

I do things that are not fun. (JOV-) .20 .09 .10 -.05 .62 

I sometimes laugh out loud. (JOV+) .13 .04 .16 -.20 -.52 



70 Appendices 

 

Items 
Factor Loadings 

1 2 3 4 5 

I am never sad. (JOV+) .45 .05 -.21 -.18 .20 

I am easily entertained. (JOV+) .63 -.02 .15 -.03 -.19 

I am not likely to succeed in my goals. (PES+) -.53 -.08 -.11 .36 .07 

I can see that things are never going to be the way I want them to be. (PES+) -.19 .13 .07 .75 .02 

I am not optimistic. (PES+) -.53 .00 -.22 .41 -.05 

I am always on the lookout for a better way. (PES-) -.43 -.39 .00 .05 .06 

I look at the bright side. (PES-) -.65 -.12 -.23 .26 -.01 

Note. N = 220. Oblique rotation with polychoric correlations were used. Highest factor loadings on each component are in bold. CS = component 

solution. BEN = Benevolence; EGA = Egalitarianism; EGO = Egoism; JOV = Joviality; PES = Pessimism; +/- indicates positive or negative 

keying. 
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Figure B.1: Annotated Histogram of Discrepancies Between Human- and Machine-Rated Judgments of Item Desirability 
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Note. Extreme discrepancies between human- and machine-rated item desirability (N = 31) are coded as deviations exceeding an absolute value 

of 2 SD and annotated in tables for negative (left) and positive (right) desirability judgements. Y = human-rated item desirability; x = machine-

rated item desirability; ε = standardized residual value.
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