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Abstract 
We are part of an ageing society, which is due to changes in demographics amongst others 
driven by a drastic increase in life expectancy over the last century. The longer life 
expectancy comes at a cost: a rise in the prevalence of age-related neurodegenerative 
disorders, debilitating diseases with currently no cure available. Another group of diseases 
with substantial disease burden and societal impact are psychiatric disorders. In fact, 
comorbidity between these two groups of disorders and genetics have demonstrated that 
neurodegenerative and psychiatric disorders are interconnected. Age represents the 
strongest risk factor for neurodegenerative disorders and a body of evidence suggests that 
biological ageing is accelerated in psychiatric disorders. In-depth characterization of the 
cellular and molecular ageing process could therefore provide insights into disease aetiology.  

The ageing process affects the level of molecules, cells, and organs resulting in changes in 
function and physiology impacting the whole organism. The brain, with the prefrontal cortex 
- an area essential for higher cognitive functions - most affected, suffers structural decline 
during ageing. The brain consists of several different cell types each with specific features, 
functions and connections which together accomplish the brain’s complex computations. 
Using different (animal) model systems, several age-related changes in cellular morphology 
and function and affected biological pathways have already been identified. Yet, the human 
cortex has expanded massively during evolution and certain features of neurodegenerative 
disorders only seem to be present in humans necessitating the molecular investigation of the 
ageing process in a human-specific model. Moreover, detailed insights on the effects of 
ageing on the diverse cell types in the brain are still missing resulting in our incomplete 
understanding of both the normal and pathological ageing process. 

Therefore, this doctoral thesis aimed at characterizing how normal ageing affects gene 
expression in the different cell types of the prefrontal cortex. Using single nucleus RNA 
sequencing, the transcriptomes of ~ 800,000 nuclei, isolated from a large cohort (N=87) of 
human post-mortem brain samples of the orbitofrontal cortex, were examined. Since the 
brain samples were derived from individuals with and without a diagnosis of a psychiatric 
disorder, the effect of suffering from a psychiatric disorder on the ageing process could 
additionally be investigated. Integration of single nucleus RNA sequencing datasets derived 
from individuals with and without Alzheimer’s disease further enabled the exploration of the 
relation of age-related changes in neurodegenerative disorders. 

We were able to identify twenty different brain cell types and showed that ageing affects the 
transcriptome of nearly all cell types. The transcriptomic changes were largely cell-type 
specific with only a partial overlap of age-regulated genes between the different cell types. 
However, despite different genes being age-regulated, pathway analysis revealed a 
convergence of gene expression alterations across cell types onto dysregulated synaptic 
signalling. Moreover, an inhibitory neuron subtype, shown to be enriched in the cortex of 
primates (compared to mice), was identified as most strongly affected by the ageing process. 
Importantly, we were able to replicate our findings using previously published datasets both 
in bulk brain tissue and specific cell types. We could further demonstrate that age-related 
gene expression changes overlap with expression changes in Alzheimer’s disease in specific 
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cell types. Lastly, we provide evidence for accelerated transcriptomic ageing in individuals 
with psychiatric disorders and uncover age-related gene expression trajectories across 
individual cell types shifted in individuals with psychiatric disorders. 

In summary, the work presented in this doctoral thesis provides a comprehensive dataset of 
age-related gene expression changes in the individual cell types of the brain. Additionally, it 
offers insights into the biological processes affected by these alterations thereby expanding 
our knowledge of the molecular ageing process. In addition, the overlap of age-regulated 
genes with genes playing a role in Alzheimer’s disease provides a potential molecular 
explanation for why age represents the strongest risk factor for their development. Moreover, 
in several cell types, we identified genes whose expression was influenced by both ageing 
and psychiatric disease which may contribute to the accelerated brain ageing observed in 
individuals with psychiatric disorders. 
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Zusammenfassung 
Wir leben in einer alternden Gesellschaft, was auf demographische Veränderungen 
zurückzuführen ist, die unter anderem durch einen drastischen Anstieg der Lebenserwartung 
im letzten Jahrhundert bedingt sind. Die höhere Lebenserwartung hat jedoch ihren Preis: ein 
Anstieg in der Prävalenz altersbedingter neurodegenerativer Erkrankungen; belastende 
Krankheiten, für die es derzeit keine Heilung gibt. Eine weitere Gruppe von Krankheiten mit 
erheblichen gesundheitlichen Belastungen für Betroffene sowie gesellschaftlichen 
Auswirkungen sind psychiatrische Erkrankungen. Die Komorbidität zwischen diesen beiden 
Gruppen von Erkrankungen und die Genetik haben gezeigt, dass neurodegenerative und 
psychiatrische Erkrankungen miteinander verbunden sind. Das Alter ist der stärkste 
Risikofaktor für neurodegenerative Erkrankungen, und es gibt zahlreiche Hinweise darauf, 
dass der biologische Alterungsprozess bei psychiatrischen Erkrankungen beschleunigt ist. 
Eine eingehende Charakterisierung des zellulären und molekularen Alterungsprozesses 
könnte daher Einblicke in die Ursachen der Krankheiten liefern. 

Der Alterungsprozess wirkt sich auf der Ebene von Molekülen, Zellen und Organen aus und 
führt zu Veränderungen in Funktion und Physiologie, die den gesamten Organismus 
beeinflussen. Das Gehirn, insbesondere der präfrontale Kortex - ein Bereich, der für höhere 
kognitive Funktionen unerlässlich ist - erleidet während des Alterns einen strukturellen 
Verfall. Das Gehirn besteht aus mehreren verschiedenen Zelltypen mit jeweils spezifischen 
Eigenschaften, Funktionen und Verknüpfungen, die zusammen die komplexen 
Berechnungen des Gehirns durchführen. Anhand verschiedener (Tier-)Modellsysteme 
wurden bereits mehrere altersbedingte Veränderungen der zellulären Morphologie und 
Funktion sowie betroffene biologische Signalwege identifiziert. Der menschliche Kortex hat 
sich jedoch im Laufe der Evolution massiv vergrößert, und bestimmte Merkmale 
neurodegenerativer Erkrankungen scheinen nur beim Menschen aufzutreten, was die 
molekulare Untersuchung des Alterungsprozesses in einem human-spezifischen Modell 
erforderlich macht. Darüber hinaus fehlen noch immer detaillierte Erkenntnisse über die 
Auswirkungen des Alterns auf die verschiedenen Zelltypen im Gehirn, was zu unserem 
unvollständigen Verständnis sowohl des normalen als auch des pathologischen 
Alterungsprozesses beiträgt. 

Das Ziel dieser Doktorarbeit war, zu charakterisieren, wie normales Altern die Genexpression 
in den verschiedenen Zelltypen im präfrontalen Kortex beeinflusst. Mit Hilfe der single 
nucleus RNA Sequenzierung wurden die Transkriptome von etwa 800 000 Zellkernen 
untersucht, die von einer großen Kohorte (N=87) menschlicher postmortaler Gehirnproben 
des orbitofrontalen Kortex isoliert worden waren. Da die Gehirnproben von Personen mit und 
ohne Diagnose einer psychiatrischen Erkrankung stammten, konnte zusätzlich der Einfluss 
einer psychiatrischen Erkrankung auf den Alterungsprozess untersucht werden. Der 
Vergleich mit anderen single nucleus RNA Sequenzierungs-Datensätzen, von Personen mit 
und ohne Alzheimer, ermöglichte die Erforschung des Zusammenhangs von altersbedingten 
Veränderungen und neurodegenerativen Erkrankungen. 

Wir waren in der Lage, zwanzig verschiedene Zelltypen zu identifizieren und konnten zeigen, 
dass das Altern das Transkriptom fast aller Zelltypen beeinflusst. Die transkriptomischen 
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Veränderungen waren weitgehend zelltypspezifisch, da sich die altersregulierten Gene 
zwischen den verschiedenen Zelltypen nur teilweise überschnitten. Obwohl verschiedene 
Gene altersreguliert wurden, ergab die Analyse der Signalwege eine Konvergenz der 
Genexpressionsveränderungen über alle Zelltypen hinweg auf eine dysregulierte 
synaptische Signalübertragung. Darüber hinaus wurde ein Subtyp von inhibitorischen 
Neuronen, der im Kortex von Primaten (im Vergleich zu Mäusen) vermehrt vorhanden ist, als 
am stärksten vom Alterungsprozess betroffen identifiziert. Zu unterstreichen ist, dass wir 
unsere Ergebnisse mit Hilfe von bereits veröffentlichten Datensätzen replizieren konnten, 
und zwar sowohl im Gesamt-Gehirngewebe als auch in spezifischen Zelltypen. Wir konnten 
außerdem zeigen, dass sich altersbedingte Veränderungen der Genexpression in 
bestimmten Zelltypen mit den Expressionsveränderungen bei Alzheimer überschneiden. 
Schließlich liefern wir Beweise für ein beschleunigtes transkriptomisches Altern bei 
Menschen mit psychiatrischen Erkrankungen und decken altersbedingte 
Genexpressionsverläufe in einzelnen Zelltypen auf, die bei Menschen mit psychiatrischen 
Erkrankungen verschoben sind. 

Die in dieser Doktorarbeit vorgestellten Arbeiten umfassen einen großen Datensatz 
altersbedingter Veränderungen der Genexpression in den einzelnen Zelltypen des Gehirns. 
Außerdem bieten sie Einblicke in die biologischen Prozesse, die von diesen Veränderungen 
betroffen sind, und erweitern damit unser Wissen über den molekularen Alterungsprozess. 
Darüber hinaus liefert die Überschneidung von altersregulierten Genen mit Genen, die bei 
Alzheimer eine Rolle spielen, eine mögliche molekulare Erklärung dafür, warum das Alter 
den stärksten Risikofaktor für deren Entstehung darstellt. Des Weiteren haben wir in 
mehreren Zelltypen Gene identifiziert, deren Expression sowohl durch das Altern als auch 
durch psychiatrische Erkrankungen beeinflusst wird, welche zu der beschleunigten Alterung 
des Gehirns bei Menschen mit psychiatrischen Erkrankungen beitragen könnten. 
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1 |  Introduction 

1.1 Global population trends - our ageing society 
Over the last 100 years, the world population has drastically increased from roughly 2.5 billion 
people in 1950 to 8 billion in November 2022. This increase is due to a rise in births combined 
with a decrease in child mortality and overall improvements in global health care driven by 
the discovery of antibiotics, the development and global rollout of vaccinations and advances 
in prevention, diagnosis, and treatment of a myriad of communicable and non-communicable 
diseases. Current estimates by the United Nations (UN) predict a continued growth of the 
world population until the 2080s totalling 10.35 billion people by the end of the century. 
However, the demographic structure is changing: While in the 1950s the number of births 
was high, child mortality and the overall risk of death throughout life was also high, which 
resulted in a demographic structure resembling a pyramid with a broad base, the new-borns, 
and a steep narrowing at the top, the elderly (Figure 1.1a). Looking at today’s global 
population, the global median age has increased from 22.2 in 1950 to 29.7 in 2020 with the 
overall population structure still somewhat resembling a pyramid (Figure 1.1b), though with 
a much broader base and a less steep narrowing towards the older age groups indicating a 
population increase in/along all age groups. The UN’s projections for 2090 foresee a decline 
in birth rates resulting in only a minimal increase at the base with a parallel rise in middle and 
older age groups due to longer life expectancy transforming the former pyramid into a bell-
shaped structure (Figure 1.1c). This change in population structure depicts an overall 
healthier world population with a minimal risk of death until old age. However, the increasing 
share of elderly people poses new challenges not only for the economic but also for the 
healthcare sector [1, 2]. 

Figure 1.1: Population demographics throughout the years.  a-c, Population demographics in 
1950 (a), in 2020 (b) and projected population demographic in 2090 (c); F=female, M= male; Data 
obtained from [3]. 
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1.2 Neurodegenerative disorders - the burden of rising life 
expectancy 

The increase in life expectancy has been accompanied by a rise in individuals affected by 
age-related neurodegenerative diseases. Neurodegenerative diseases refer to a group of 
debilitating diseases with currently no cure available and for most only insufficient treatments. 
They include diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and 
other forms of dementia. Common to their pathology is the progressive accumulation of 
certain proteins, which leads to neuronal loss. This impairs normal brain function, ultimately 
resulting in the impairment of memory and cognition [4]. Dementia is an umbrella term for 
several conditions leading to deterioration in cognitive function with AD accounting for up to 
60 - 70% of all cases [5]. 

In fact, AD is the most common neurodegenerative disease with 32 million affected people 
globally [6]. Neuropathologically, AD is characterized by the accumulation of amyloid β (Aβ) 
aggregates and neurofibrillary tangles (NFTs) made up by tau proteins. Symptoms vary from 
person to person but commonly include memory loss, poorer judgement, difficulties with 
routine tasks, changes in mood and personality, increased anxiety, and social isolation [4]. 
Even though the exact pathomechanisms are not fully understood, it is thought that the 
progressive accumulation of Aβ and NFTs results from a disruption in protein homeostasis. 
This leads to compromised cellular function including mitochondrial dysfunction, dysfunction 
in the clearance system and calcium (Ca2+) signalling, which results in impaired neuronal 
activity and ultimately neuronal death. These alterations likely start in the entorhinal cortex 
and then further spread to connected regions including the hippocampus and cortex thereby 
affecting circuits involved in cognition and memory. [7, 8] Current treatments for AD include 
cholinesterase inhibitors, which reduce the enzymatic breakdown of acetylcholine, a 
neurotransmitter involved in memory and thinking. N-methyl-D-aspartate receptor 
antagonists are also used, which are thought to exhibit their effect via the regulation of 
glutamate levels. Other treatment options include immunotherapies, which target Aβ to 
reduce its aggregates. However, due to the complexity of AD pathogenesis, combination 
therapy rather than monotherapy may be necessary for more effective treatment. [9] 

PD represents the second most frequent neurodegenerative disorder, with worldwide more 
than 10 million people affected [10], and involves the abnormal aggregation and insufficient 
clearance of the so-called Lewy bodies, which are mainly composed of α-synuclein and 
ubiquitin. Clinical manifestation includes movement impairments such as tremors, muscle 
stiffness and slowed movement, but also mild cognitive impairment, depression, and anxiety. 
[11] The pathomechanisms implicated in PD include a gradual loss of dopaminergic neurons 
in the substantia nigra resulting in the observed motor deficits. Moreover, non-motor 
symptoms are attributed to neuronal dysfunction caused by an accumulation of α-synuclein 
across the central and peripheral nervous system. [12] Pharmacological treatments include 
dopaminergic and anti-cholinergic medication to alleviate motor symptoms, whereas 
selective serotonin reuptake inhibitors may be used for psychiatric symptoms. Additionally, 
some patients may benefit from deep brain stimulation. [13] 
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Besides certain genetic and environmental risk factors [4], older age is the strongest risk 
factor for both AD and PD, with the prevalence rate of dementias in Europe in the age group 
of 65 - 69 being 1.3% compared to 12.1% in people aged 80 - 84 years [14]. Hand in hand 
with the changes in population demographics due to an increasing share of older people, 
there has been a global increase in the number of cases of neurodegenerative diseases 
placing dementia at the seventh leading cause of death worldwide and even fourth when 
focusing on individuals above 69 [15]. To quantify the burden of disease, metrics such as 
disability-adjusted life years (DALYs) - a measure for the years of life lost due to a reduced 
quality of life caused by an illness and premature death - are used. The global DALYs caused 
by dementia were estimated to be 28 million [16] and the global costs constituting medical 
care, social care and costs for unpaid care (e.g. by relatives) amounted to 818 billion USD in 
2015 [17]. Moreover, it is estimated that by 2050 the number of individuals affected by 
dementia globally could triple (from 57 in 2019 to 152 million) [18] and nearly double in 
Europe (from 9.9 million in 2018 to 18.8 million) [14]. Thus, there is an urgent need for a 
better understanding of disease pathogenesis of neurodegenerative disease for earlier 
diagnosis, development of disease-modifying treatments and policy-making due to the 
significant impact on both the healthcare and economic sector. 
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1.3 Psychiatric disorders - complex disorders with substantial 
disease burden 

Psychiatric disorders are a complex, diverse group of illnesses, which significantly affect 
thinking, behaviour, perception, and emotions resulting in distress and a worsened ability to 
execute daily tasks. The most common psychiatric disorders are depression and anxiety 
disorders, with a global prevalence of 280 million and 301 million in 2019 respectively. Other 
important psychiatric disorders include schizophrenia (SCZ) and bipolar disorder (BPD), 
each affecting roughly 23.6 and 39.5 million people, respectively. Psychiatric disorders 
severely affect the quality of life and thus represent a substantial proportion of global disease 
burden, with almost 100 million DALYs attributable to the aforementioned four diseases in 
2019. [19] 

Twin studies have demonstrated that psychiatric disorders are highly heritable, estimating 
the heritability at 37% for major depressive disorders (MDD), 81% for SCZ and at 85% for 
BPD. [20] However, with large genome-wide association studies (GWAS) it has become 
evident that their genetic architecture is polygenic - with up to many thousands of different 
genetic loci, each with small effect size, contributing to the risk. Moreover, the pleiotropy for 
some of these genetic loci indicates that certain genetic factors are shared between specific 
psychiatric disorders. [21] Mapping of identified SCZ risk loci to genes followed by enrichment 
analysis revealed that implicated genes are expressed in the brain, in both excitatory and 
inhibitory neurons, and likely result in disrupted synaptic transmission [22]. Similarly, loci 
implicated in MDD [23] and BPD [24] are located in/near genes expressed in neurons and 
involved in neurotransmission. Besides the strong evidence of genetic risk factors for 
psychiatric disorders, different environmental exposures, such as childhood trauma [25], 
severe stress [26, 27], birth complications [28] and substance abuse [29] have also been 
implicated in their aetiology possibly mediated via epigenetic mechanisms. 

Patients suffering from MDD present a heterogenous symptom profile such as depressed 
mood, anhedonia, loss of energy, poor concentration, sleep disturbances, feelings of guilt 
and/or worthlessness, suicidal ideation, and changes in appetite and/or weight. The 
pathophysiological mechanisms implicated in MDD include reduced levels within the 
monoamine system, e.g. noradrenaline, dopamine and serotonin, dysfunction in 
glutamatergic and GABAergic neurotransmitter systems, and dysfunction in neuroendocrine 
systems including the hypothalamic-pituitary-adrenal (HPA) axis, however remain overall still 
poorly understood. [30, 31] Antidepressants are one possible treatment option for MDD and 
range from selective serotonin reuptake inhibitors, and serotonin-noradrenaline reuptake 
inhibitors to other compounds such as bupropion and ketamine, whose exact mechanisms 
of action are not known. Other treatments, with proven efficacy, include cognitive-behavioural 
therapy (CBT) and electroconvulsive therapy (ECT) [30]. 

The clinical presentation of SCZ includes hallucinations and delusions (positive symptoms), 
social isolation, diminished motivation, emotional blunting (negative symptoms), abnormal 
mood and cognitive impairments. The pathophysiology of SCZ is (partly) characterized by 
several abnormalities in neurotransmission such as dopaminergic, glutamatergic, and γ-
aminobutyric acid (GABA)-ergic signalling, ultimately resulting in imbalances between 



INTRODUCTION Psychiatric disorders - complex disorders with substantial disease burden 

 5 

excitatory and inhibitory neurons. Classical antipsychotic medications block the dopamine 
D2 receptor, which efficiently reduces positive symptoms such as hallucinations, however, 
barely impact other symptom domains strongly suggesting that these are caused by different 
pathophysiological mechanisms. [32, 33] Other treatment options, e.g. CBT, have been 
shown to improve both positive and negative symptoms [34-36]. 

BPD is defined by unusual changes in a person’s mood. It consists of two phases: the manic 
and depressive phase. The manic phase is characterized by feeling elated, agitated, full of 
energy, being delusional and having illogical thoughts whereas the depressive phase is 
characterized by feelings of sadness, hopelessness, guilt, self-doubt, anhedonia, lack of 
energy and sleep disturbances. The pathomechanisms hypothesized to be involved in BPD 
include a destabilization of neurotransmitter signalling (mainly dopamine and serotonin) 
related to inflammatory processes in the white matter which ultimately result in periodic 
reshaping of brain network activities causing manic and depressive episodes [37]. Treatment 
options include medication, such as mood stabilizers, antipsychotics, antidepressants, or 
combinations thereof depending on the phase [38]. Additionally, psychotherapy [38] including 
CBT, and ECT [39, 40] have shown to be effective treatments. 

Individuals suffering from severe mental disorders (BPD, MDD, SCZ) are at an increased risk 
for cardiovascular disease [41], neurodegenerative disorders [42] and premature mortality 
[43], which means dying on average 10 - 20 years earlier compared to the general population 
[44]. Moreover, several studies suggest that psychiatric disease is associated with faster 
(accelerated) biological ageing. These studies used different proxies to assess biological age 
including sensory, motor and cognitive function [45], DNA methylation in blood [46-48] as 
well as gene expression [49] and MRI in brain [50].  

Although a variety of different treatments and therapies are available, our understanding of 
the disease pathologies is incomplete, evidenced by relapse and even treatment resistance. 
Given the increase in the prevalence of psychiatric disorders [51] - mainly due to 
demographic changes -, with a specific increase especially in depression and anxiety 
disorder during the COVID-19 pandemic [52], and the chronic nature of these disorders, it is 
critical to further our insights in the involved pathophysiological mechanisms in search for 
novel, more effective, and more targeted treatments including preventative measures. In this 
regard, it is also highly relevant to deepen our insights into the ageing process both under 
healthy and pathological conditions. 
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1.4 Interconnection between neurodegenerative and 
psychiatric disorders 

Epidemiological comorbidity has been reported for neurodegenerative and psychiatric 
disorders, and recent studies have indicated genetic correlation between them. However, our 
understanding of the underlying, shared pathophysiology is still limited. One of the largest 
longitudinal studies, conducted in New Zealand with more than 1.7 million participants over 
a period of 30 years, found that having a mental disorder increases the risk (relative risk of 
>4) of subsequently developing dementia [42]. Moreover, on average the onset of dementia 
was 5.6 years earlier compared to individuals without a history of mental disorder [42]. 

Psychiatric symptoms such as depression and psychosis are commonly observed in 
neurodegenerative disorders, including AD and PD [53-55]. In fact, there is a significantly 
increased risk for depression in individuals suffering from AD compared to individuals without 
dementia with prevalence estimates of up to 16% in dementia [56]. This increased risk is at 
least partly explained by genetic heritability due to an increased familial liability for depression 
[57, 58]. Familial studies as well as GWAS have also demonstrated a clear genetic 
component of psychosis seen in AD [54]. Both depression and psychosis have been 
associated with accelerated worsening of cognitive impairment in AD [59].  

The prevalence of depression in PD is estimated to be up to 35% and represents one of the 
most frequent non-motor symptoms [60] besides psychosis, present in up to 40% of 
individuals suffering from PD [61]. While pharmacological treatment including anti-cholinergic 
and dopaminergic medication has been linked to an increased psychosis risk, other intrinsic 
patient characteristics, amongst others severity of disease, depression, and poorer eyesight, 
have also been associated with risk for psychosis. [62] Depression and psychosis in PD 
patients are associated with an increased disease burden as indicated by an overall 
worsening of quality of life, and an elevated risk of hospitalization and mortality [63]. 

Recently, a shared genetic aetiology between SCZ and PD was shown [64]. Moreover, a 
study by Wingo and colleagues [65] examined genetic correlations between 
neurodegenerative and psychiatric disorders and found positive genetic correlations between 
AD and multiple psychiatric disorders, including MDD and BPD, providing evidence for 
shared underlying genetic architecture. Further, the integration of GWAS results with 
transcriptomic and proteomic data from human brain led to the identification of several shared 
proteins between neurodegenerative and psychiatric disorders with causal roles for disease. 
Sadeghi et al. [66] performed a meta-analysis of RNA-sequencing datasets of post-mortem 
brain samples from several neurodegenerative and psychiatric disorders and found several 
common dysregulated genes. Co-expression network analysis implicated neuronal 
dysfunction, impaired mitochondrial function as well as astrocyte and oligodendrocyte 
activation as shared alterations across the disorders, consistent with mechanisms identified 
by Wingo et al. [65]. 

Despite these efforts, exact mechanistic insights are limited. Given the rising incidence of 
neurodegenerative and psychiatric disorders, identification of shared pathophysiological 
mechanisms is crucial and could open new avenues for the development of therapeutics 
suitable across disorders.   
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1.5 The diverse cell types in the neocortex and their functions 
The neocortex, which together with the allocortex forms the cerebral cortex, is involved in 
higher cognitive functions including consciousness, perception, attention, as well as working 
memory and motor control [67]. It is one of the majorly affected regions in psychiatric 
disorders but also neurodegenerative disorders. Its complex functions are accomplished by 
the interplay of its diverse neuronal and glial cell types. Figure 1.2 summarizes the most 
important roles of the different cell types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: The diverse cell types in the brain and their functions.  The broad cell type classes 
(astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, and 
oligodendrocyte precursors) and their main functions are displayed. Figure was created with 
BioRender.com. 
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The cytoarchitecture of the neocortex is characterized by a six-layer structure. There a two 
main types of cortical neurons: glutamatergic projections neurons (also referred to as 
excitatory neurons) and GABA-ergic interneurons (also referred to as inhibitory neurons), 
which are named after the neurotransmitter they release; glutamate and GABA respectively. 
The vast majority of cortical neurons are excitatory neurons [68], which are characterized by 
their long axons projecting to (sub-) cortical and even sub-cerebral regions, whereas 
inhibitory neurons make local connections [69]. Neurons communicate by means of 
electrochemical signals. Dendrites receive chemical signals, in the form of neurotransmitters, 
from neighbouring neurons and deliver the signal to the soma. The axon propagates the 
signal in the form of action potentials to the presynaptic terminals thereby enabling 
communication between neurons. 

Different classes of excitatory neurons vary in morphology, connectivity, electrophysiology, 
and gene expression. On the one hand, they can be classified based on their laminar location 
(layer (L) 2 (L2) to layer 6 (L6)) and on the other hand, by their projection targets for both of 
which specific gene expression patterns have been identified [69-72]. Excitatory neurons with 
commissural projections are predominantly located in L2/3, L5 and L6, have ipsilateral 
projections to the cortex as well as the striatum and connect the two brain hemispheres by 
contralateral projections. Corticothalamic neurons and sub-cerebral projection neurons are 
classified as corticofugal. Corticothalamic neurons, primarily found in L6 and partially in L5, 
send projections to the thalamus, whereas sub-cerebral projection neurons, mainly localized 
to the deep L5, project to the brainstem and spinal cord. [69] However, studies profiling the 
single cell transcriptomes indicate that the diversity of excitatory neuron subtypes goes 
beyond these broad subclasses with more than 50 different excitatory neuron subtypes 
identified in the mouse neocortex [73, 74]. 

Inhibitory neurons also comprise a diverse group of cells with differences in developmental 
origin, morphology, connectivity, electrophysiology, and gene expression patterns enabling 
a dynamic modulation of local excitation of neighbouring neurons [75-77]. Studies focusing 
on electrophysiological and/or morphological characteristics identified 15 different inhibitory 
neuron subtypes in mouse visual cortex [78] and 10 in rat somatosensory cortex [79]. 
However, subclassification based on differences in single cell transcriptomes resulted in a 
strikingly higher number of subtypes ranging from more than 20 [73] in the visual cortex to 
more than 60 different interneuron subtypes within the whole mouse neocortex [74]. Though, 
given the fact that there is no standardized choice for the resolution parameters used in 
clustering algorithms of single cell expression data, it remains to be shown that these 
identified clusters represent true biological subtypes or simply mathematically defined groups 
[76]. One of the currently proposed models aims to provide an explanation for the great 
interneuron diversity: Once interneuron progenitors have become postmitotic four cardinal 
interneuron cell classes exist [77, 80]. These are characterized by the expression of LAMP5 
(lysosomal-associated membrane protein family member 5), PVALB (parvalbumin), SST 
(somatostatin), and VIP (vasoactive intestinal peptide) and by the (excitatory) neuron 
compartment they target. PVALB interneurons target the soma and adjacent dendrites, 
whereas SST interneurons target (apical) dendrites, and VIP interneurons synapse on other 
interneurons, predominantly SST interneurons [77]. Further subtype specification of the four 
cardinal classes via extrinsic cues occurs during their migration and once an interneuron has 
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reached its final position. What is more, dynamic changes in gene expression upon local 
brain activity allow further adaptation to state-specific demands. [77] 

Glial cells, including astrocytes, oligodendrocyte precursor cells (OPCs), oligodendrocytes 
and microglia, were originally proposed to simply represent the ‘glue’ of the brain passively 
supporting neuronal functions. This view has drastically changed since specific vital functions 
for each of the glial cells have been identified. Among the glial cell types, astrocytes are the 
most abundant and comprise two main subtypes: fibrous and protoplasmic [81]. Fibrous 
astrocytes are mainly located along white matter tracts and are structurally characterized by 
straight, less branched processes. Instead, protoplasmic astrocytes are predominantly found 
in the grey matter and are highly branched with many fine processes. They are spatially 
organized in non-overlapping domains resulting in areas of up to two million synapses that 
are under the control of one single astrocyte [82]. Astrocytes have various functional roles, 
some of which are better understood and characterized than others. One of their best-
characterized properties is the uptake and recycling of the neurotransmitter glutamate to 
glutamine via enzymatic conversion, which is then released and taken up by neurons to be 
converted back to glutamate. The lactate shuttle hypothesis proposes another metabolic 
cycle between astrocytes and neurons: Glucose enters the brain from the bloodstream via 
glucose transporters in the end-feet of perivascular astrocytes and is converted to lactate, 
which is released and taken up by neurons and used as energy source. However, since 
neurons themselves express glucose transporters, it is likely that several different pathways 
contribute to meet the high metabolic demands of neurons. [83] Astrocytes are also 
responsible for the maintenance of the extracellular ion homeostasis, especially after 
neuronal firing increases the extracellular potassium concentrations. Moreover, they are also 
involved in the control of brain pH, water transport as well as neutralization of reactive oxygen 
species (ROS). Since astrocytic processes are not only in contact with synapses but also 
surround blood vessels, as mentioned before, they also play an important role in the 
regulation of cerebral blood flood. [83, 84] 

Oligodendrocyte precursor cells (OPCs), also referred to as NG2+ glia, have a round cell 
body with highly branched processes and are uniformly distributed within both white and grey 
matter. Analogous to astrocytes, OPCs in the superficial layers of the cortex are organized 
in non-overlapping spatial domains [85]. Throughout the last decades, it has become evident 
that these highly proliferative cells do not only simply regenerate mature myelinating 
oligodendrocytes but also have other crucial roles in brain function. For example, OPCs have 
been shown to produce factors such as fibroblast growth factor 2, neuronal pentraxin 2, and 
prostaglandin D2 known to influence neuronal activity. In addition, OPCs express both AMPA 
(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and GABA receptors enabling them 
to receive neuronal signals and thus forming the so-called neuron-OPC synapse, whose 
exact functional role remains to be elucidated. Using their filopodia, OPCs constantly survey 
their microenvironment responding to neuronal activity, injury, and inflammatory cues. 
Interestingly, OPCs could themselves have immune-modulatory functions given that they 
express cytokine receptors, respond to chemokines, and can produce inflammatory 
modulators. [86] In-vitro, OPCs also have been shown to be able to present antigens after 
exposure to interferon-γ [87]. 
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Oligodendrocytes are the myelin-producing cells of the brain that insulate axons with several 
layers of cell membrane to allow for rapid saltatory conduction of action potentials. Along an 
axon, stretches of myelin are interspaced with unmyelinated areas, so-called nodes of 
Ranvier, areas with a high density of sodium (Na+) channels where ion exchange and thus 
action potentials occur and are propagated [88]. Oligodendrocytes are predominantly found 
in white matter where their thin processes are in contact with the myelin sheaths, but are also 
found in grey matter, located peri-neuronally in close association with the soma of neurons. 
A single oligodendrocyte myelinates numerous axons. The multi-layered myelin sheaths are 
tightly sealed in order to prevent leakage of ions; however, this also isolates the axons from 
the extracellular space and its vital metabolites. Astrocytes can provide metabolic support 
via contacts with neurons at the neuronal soma, synapses, or nodes, however, the long 
stretches of myelin-covered axons need to receive trophic support via different means. This 
is achieved by the metabolic coupling of the axon with the soma of the oligodendrocyte via 
cytoplasmic channels within the myelin sheaths. Similarly to astrocytes, oligodendrocytes 
may support increased metabolic demands of axons by the export of lactate via their 
monocarboxylate transporters in response to axonal glutamate release sensed by their N-
methyl-D-aspartate (NMDA) receptors. Alternatively, gap junctions between 
oligodendrocytes which allow the passage of small, polar molecules, such as amino acids 
and sugars, could provide another route for metabolic support. [89] 

Microglia, the innate immune cells of the brain, form part of the glial cell population, although 
they are derived from myeloid progenitors in the yolk sac [90] in contrast to all other glial cells 
that originate from the ectodermal lineage [91]. Microglia have a highly dynamic morphology: 
In their ‘surveillance’ state, they present themselves as highly ramified cells with numerous 
processes, which are constantly extended and retracted to sense the extracellular space. 
Microglia express several pattern recognition receptors enabling them to detect secreted 
molecules of pathogens or damaged neurons or other glial cells. Once activated, they retract 
processes and transform to an amoeboid shape. Clearance of microbes, debris and apoptotic 
cells is enabled by the large number of receptors necessary for phagocytosis and 
endocytosis. Moreover, migration (to injury sites) and localization of microglia are controlled 
by their chemokine receptors and integrins, which additionally support the phagocytic 
process by strengthening the binding to target cells. The magnitude and length of immune 
activation are regulated by their immune receptors. Microglia cooperate with astrocytes for 
some of their functions: After an injury, the release of adenosine triphosphate (ATP) by 
astrocytes helps to direct microglial processes to the injury site and the release of GABA can 
reduce microglial activation. Astrocytes also secrete milk fat globule protein epidermal growth 
factor 8, which binds apoptotic cells and thereby tags them for microglial phagocytosis. 
Microglia also have receptors for neurotransmitters, including AMPA, NDMA, glutamate 
metabotropic receptor 2 (MGLUR2) and GABA receptors, which they use to monitor neuronal 
activity to detect damaged neurons. At the same time, these receptors influence the release 
of inflammatory cytokines, e.g. AMPA inhibits whereas MGLUR2 promotes the release of 
tumour necrosis factor (TNF)-α. Additionally, microglia eliminate dendritic spines that do not 
form synaptic contacts via phagocytosis thereby impacting synapse strength and synaptic 
plasticity. Moreover, prevention of excitotoxicity, caused by the excess release of 
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neurotransmitters, is accomplished by wrapping of microglia around swollen axons, which 
results in membrane repolarization. [92] 

Brain endothelial cells (ECs), i.e. cells of mesenchymal origin, are flat cells forming a 
monolayer that lines blood vessels within the brain. Within this monolayer, ECs are 
connected via tight, adherens and gap junctions resulting in a tightly sealed barrier that limits 
passive diffusion from the bloodstream into the brain. The expression of specific efflux and 
influx transporters strictly controls the passage of molecules while at the same time allowing 
passive diffusion of oxygen from the bloodstream into the brain and of carbon dioxide 
diffusion out of the brain. Additionally, some small lipophilic molecules can pass whereas the 
uptake of glucose and amino acids is carrier-mediated and the passage of larger molecules 
such as leptin and insulin is enabled by receptor-meditated endocytosis. Several enzymes 
that metabolize drugs represent an additional, metabolic barrier. Therefore, brain ECs 
represent a central component of the blood brain barrier (BBB), the interface between the 
brain and the blood circulatory system, which helps maintain brain homeostasis by controlling 
metabolic support and protecting against toxins both from endogenous and xenobiotic origin. 
[93, 94] Other cells, which form part of the BBB include pericytes and astrocytes. Pericytes 
enwrap ECs, are surrounded by extracellular matrix and in contact with astrocytic end-feet. 
Pericytes control the proliferation of ECs and together with astrocytes and OPCs help 
establish the junctions between ECs necessary for BBB formation, maintenance, and 
integrity. [86, 95, 96]  

The accurate function and interplay between all different cell types is crucial for the brain’s 
capability to achieve the complex computations involved in cognitive as well as motor 
functions, and ultimately behaviour. It is essential to understand how these diverse cell types 
and their interactions are affected during ageing and by different brain diseases including 
neurodegenerative and psychiatric disorder. 
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1.6 Effects of ageing on the brain 
Ageing is accompanied by a reduction in cognitive performance, and we are only beginning 
to understand the underlying mechanisms. Interestingly, not all domains of cognitive function 
are equally affected by the ageing process: Functions including the encoding of new 
memories, processing speed, and working memory have been reported to linearly decline 
throughout adult life, whereas short-term memory and semantic knowledge seem to only 
decrease late in life (after the age of 70). Moreover, autobiographical knowledge, implicit 
memory and emotional processing remain stable across life. [97] 

The strongest macroscopic changes during ageing occur in the prefrontal cortex (PFC), 
which shows volumetric declines both in grey and white matter. The striatum, a region with 
strong functional connections to the PFC, also declines with age, whereas the hippocampus 
exhibits only minor structural changes. Interestingly, regions like the hippocampus and the 
entorhinal cortex are the areas to be first affected in neurodegenerative disorders such as 
AD. This led to the proposal of a two-component model of ageing with on the one hand, 
gradual age-related volumetric loss in the fronto-striatal systems even in the absence of 
disease and on the other hand, volumetric loss in the hippocampus and entorhinal cortex 
primarily associated with pathologies like AD. On the functional level, several studies have 
demonstrated an overall reduced PFC activity with age when performing executive tasks and 
occasionally (depending on the task) an activation of specific PFC subregions that are not 
activated in younger individuals, which has been suggested to represent a compensatory 
mechanism. [97] Furthermore, a study by Andrews-Hanna and colleagues found that the 
coordinated activation of the default mode network - which includes regions in the prefrontal 
and temporal cortex - is reduced with age, which is associated with poorer cognitive 
performance [98]. Even though the hippocampus only shows minor structural changes, 
activity in the left hippocampus related to memory decreases with age. Similarly, the 
amygdala gets less activated in response to negative stimuli with age with only minimal 
structural changes. Changes in the activity of these brain regions could additionally affect 
connected regions such as the PFC contributing to an overall less integrated activation at 
the circuit level. [97] 

On the microscopic level, it has been shown that there is only modest neuronal loss during 
ageing, however a striking change in morphological features: These include a reduction in 
dendritic arborizations as well as spine number and density. [97, 99, 100] A progressive loss 
of synapses from 16 to 98 years of age in non-demented individuals in the frontal cortex was 
shown by Masliah et al. [101]. Nevertheless, studies that followed only found a non-significant 
decrease in synapse number [102] or no reduction at all [103, 104], suggesting that synaptic 
loss may not be part of healthy human ageing at least not in the frontal cortex. Volumetric 
changes observed in white matter are further linked to the loss of myelin during ageing. On 
the one hand, some axons show reduced myelin sheath thickness because of incomplete re-
myelination while others are completely lost. To counteract, there is a constitutive myelination 
activation, which however also leads to the increase in myelin sheath thickness of some 
axons. Reduced myelin negatively affects the conduction velocity, which together with the 
changes in synaptic connectivity could explain the alterations seen at the circuit level. [97, 
99] Accumulation of Aβ and NFTs, besides being a hallmark of AD, is also observed in brains 
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of older cognitively healthy individuals. However, in normal ageing Aβ accumulation is 
primarily diffuse compared to dense deposits in AD. [99] Lipofuscin, aggregates made up of 
lipids and peroxidased proteins, also increases with age [100]. Overall, these accumulations 
are indicative of disruption in cellular proteostasis and clearance mechanisms. 

At the molecular level, several neurotransmitters, and hormones as well as their receptors 
reduce during ageing thereby affecting synaptic signalling. Mitochondria are essential for the 
production and storage of cellular energy through oxidative phosphorylation using the 
electron transport chain. Intact mitochondrial function is therefore crucial to meet the high 
metabolic demands of neuronal cells necessary for the regulation of ion gradients as well as 
transport along axons and ultimately signalling. However, with age mutations in the 
mitochondrial DNA accumulate, which results in an increased production of ROS. ROS, 
whether derived endogenously or exogenously (from e.g. UV radiation, toxins, chemicals), 
cause oxidative damage to lipids, proteins and nucleic acids. This can result in cross-links 
between biomolecules (DNA, RNA, proteins, lipids) and accumulation of aggregates or 
structural and functional changes of proteins. Autophagy is one of the cell’s mechanisms for 
degrading unneeded cellular components thereby recycling and producing nutrients. 
Autophagy declines throughout ageing, which is partly due to the accumulation of lipofuscin 
which impairs autophagocytic function. [99, 100] Studies in mice [105] and worms [106] have 
shown that increasing autophagy increases life span, whereas reduction leads to a 
decreased life span and neurodegeneration [107-109]. Misfolded or damaged proteins are 
tagged by ubiquitin thereby labelled for proteasomal degradation. The ubiquitin-proteasome 
system (UPS) also plays an essential role in synaptic transmission by controlling the vesicle 
pool and release at the presynaptic membrane and protein abundance (such as receptors) 
at the post-synapse [100]. During ageing, UPS activity declines, which leads to the 
accumulation of ubiquitinylated proteins. Interestingly, ubiquitinylated protein aggregates are 
found during normal brain ageing, surpassing a pathological threshold in neurodegenerative 
disorders including AD and tauopathies [110]. The reduction of both autophagy and the UPS 
contributes to the disruption of cellular homeostasis due to the accumulation of insoluble 
aggregates, insufficient clearance of damaged organelles including mitochondria, and 
excessive ROS production. [99, 100] Calcium (Ca2+) acts as a second messenger, is an 
indicator of cellular energy demand via the mitochondrial ATP production and is involved in 
the regulation of synaptic signalling and plasticity, cell survival and death. The extracellular 
concentration of Ca2+ is ~ 1 mM compared to the much lower intracellular levels of ~ 100 nM 
in neurons [111]. Thus, calcium homeostasis is crucial and is maintained by the regulation of 
voltage- and ligand-gated Ca2+ channels, mitochondria, the endoplasmatic reticulum (ER), 
and Ca2+ binding proteins. Yet, during ageing expression changes and modulation of the 
activity of Ca2+ channels in combination with a decrease in the Ca2+ buffering mechanisms 
in the ER and mitochondria and alterations in the levels of Ca2+ binding proteins lead to 
reduced Ca2+ efflux and a prolonged Ca2+ concentration increase in the cytoplasm. This can 
lead to the breakdown of membranes and organelles, increased production of ROS and the 
activation of cell death pathways. [112] 

These altered processes are also reflected by changes in the transcriptome. Examination of 
the brain transcriptome across different species including worms, flies, mice, rats, and (non-
) human primates revealed conserved gene expression changes with age. Reduced 
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mitochondrial function is amongst the conserved pathways. It has been causally linked to 
ageing with studies in worms and mice showing that a reduced function shortens whereas 
an increased function prolongs life span. [110] Another common affected pathway is the 
stress response, which increases with age. Yet, a study by Loerch et al. [113] comparing 
age-related gene expression changes in the cortex of mice, rhesus macaque and humans 
showed that only a fraction of age-regulated genes were shared across species. Moreover, 
they found an evolutionary shift in age-related gene expression regulation between mice, 
which upregulated the majority of the genes, and primates (macaques and humans), which 
downregulated most of the age-regulated genes. Recent studies in mice [114] and rhesus 
macaque [115] have begun to look at the effect of ageing on the different cell types in the 
brain revealing an additional layer of complexity. These studies indicate that gene expression 
changes are not uniform across cell types, but rather distinct gene expression changes occur 
in the diverse cell types. In addition, studies in commonly used model organisms such as 
mice and rats have shown that these species do not naturally develop Aβ deposits, whereas 
studies in non-human primates have shown accumulation of Aβ but rarely NFTs with age 
[116, 117]. Since current research suggests a progression from Aβ to tau accumulation 
subsequently affecting cognition and causing neurodegeneration [118, 119], it is not clear if 
these Aβ deposits (alone) represent AD(-like) pathology that is accompanied by neuronal 
loss seen in AD and PD in humans. These findings highlight the importance of studying 
normal ageing and age-associated pathologies in the human brain specifically besides the 
use of a variety of animal models. 
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1.7 Transcriptomic profiling of the brain 

1.7.1 Bulk vs single cell transcriptomic profiling 

Since more than two decades, next-generation sequencing (NGS) approaches have been 
used to examine the transcriptomes across different organs, in diverse species and under 
different experimental and pathological conditions, including neurodegenerative and 
psychiatric disorders. These helped advance mechanistic insights across scientific fields. 
However, most of these studies performed so-called bulk RNA-sequencing, profiling tissue 
homogenates, thereby obtaining gene expression values averaged across multiple cell types 
comprising the tissue. Besides not being able to assign observed gene expression changes 
to specific cell types, transcriptomic changes can also be diluted out when they are subtle 
and only present in a specific cell type and gene expression levels get averaged across all 
cell types. Single cell sequencing (sc-seq) refers to techniques that can measure the DNA or 
RNA content of individual cells of a sample enabling the examination of cell-type-specific 
changes and cellular heterogeneity. [120] Figure 1.3 provides a schematic comparison 
between bulk and sc-RNA-seq.  

 

 

 

 

 

 

 

 

Figure 1.3: Comparison of bulk RNA seq with single cell RNA seq.  The brain consists of a variety 
of different cell types. When performing bulk RNA seq the tissue is homogenised, and RNA is extracted 
and sequenced representing a mixture of transcripts from these different cell types. However, using 
single cell RNA seq methodologies, the individual cells can be captured and transcripts attributable to 
each cell can be quantified. Clustering of cells based on similarity in gene expression allows for 
assignment of cell-type labels and cell-type specific analysis. Figure was created with BioRender.com 
and modified from [121]. 

 

The first sc-RNA-seq study coupled to NGS was performed in 2009 by Tang et al. examining 
the whole transcriptome of a mouse blastomere [122]. Since then, different approaches for 
single cell isolation have been applied, amongst others fluorescence-activated cell sorting, 
plate-based and microdroplet-based microfluidics, resulting in different numbers of cells to 
be profiled ranging from low (several hundreds of cells) to high (several thousands of cells) 
throughput. Moreover, certain sc-RNA-seq methodologies are biased towards either the 3’ 
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or 5’ end of the transcripts whereas others examine the full-length transcript, which 
additionally allows for splicing analysis. [120, 123] One highly used commercial platform is 
the Chromium system (10x Genomics) which uses a microdroplet-based microfluidic 
approach to partition cells into microdroplets, so-called gel bead in emulsions (GEMs), 
forming a separate reaction compartment for each individual cell. Next, the cells are lysed, 
and RNA fragments are captured using barcoded complementary oligos. This is followed by 
a reverse transcription reaction, ligation of adaptors and amplification. After sequencing, the 
transcripts can be traced back to the cells they originated from owing to the barcode within 
the GEMs. Using clustering algorithms cells with similar transcriptomes are grouped together, 
and cell types can be assigned to these clusters based on the expression of known cell-type 
specific genes. [120] 

 

1.7.2 Single cell sequencing of the human brain 

One initial drawback of sc-seq methods was the requirement of intact single cells, which 
hindered the profiling of solid tissues and especially frozen archived tissue, such as post-
mortem brain. However, the possibility to isolate intact nuclei from frozen tissue and their 
applicability for single nucleus RNA-seq (sn-RNA-seq) was soon demonstrated [124-126]. 
This permitted the examination of cell-type-specific alterations in brain disorders such as 
psychiatric and neurodegenerative diseases using post-mortem brain samples, as 
exemplified by the following studies: In autism-spectrum disorder, excitatory neurons from 
L2/3 and L4 as well as microglia were identified as the most severely affected [127]. A study 
performing sn-RNA-seq in the dorsolateral prefrontal cortex of neurotypical individuals and 
individuals having suffered from major depression found the strongest transcriptomic 
changes in deep-layer excitatory neurons and OPCs [128]. Two sn-RNA-seq studies 
implicated neuronal cell types in the pathophysiology of SCZ, with significant contributions 
from PVALB interneurons and deep-layer neurons [129, 130]. Additionally, it was shown that 
dysregulated genes were enriched for genes mapped to SCZ risk loci from GWAS [129, 130]. 
Furthermore, Smajic et al. identified a specific dysfunctional dopaminergic neuron cluster in 
midbrain of PD patients as well as a decrease in oligodendrocyte number, an increase in the 
microglia population and their activation [131]. Moreover, several studies have profiled 
samples of the prefrontal cortex of subjects with and without AD, implicating 
oligodendrocytes, and disruption of myelination as core features of AD pathology [132, 133]. 
Additionally, shifts in the proportions of cell subtypes, including astrocytes, were identified 
[132, 133]. 

Although these studies have advanced our understanding of brain pathologies, we have 
limited knowledge of the normal ageing process at the cell-type level. Since age represents 
the strongest risk factor for neurodegenerative disorders and accelerated ageing has been 
described in individuals suffering from psychiatric disorders, it is essential to deepen our 
insights on gradual changes that occur during normal ageing. First studies focusing on 
normal ageing at cell-type resolution have been performed in model organisms such as mice 
[114] and rhesus macaque [115] but are however still lacking in humans. 
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2 |  Rationale and Objectives 
Ageing is a continuous process that affects the level of cells, organs, and the whole organism. 
The brain accomplishes complex functions which are brought about by the interplay of its 
highly specialized neuronal and glial cells. However, some of its functions decline throughout 
ageing. In addition to various age-related changes in the brain being conserved across 
species, as outlined in the introduction, certain aspects of ageing are primate or even human-
specific [110]. Our current knowledge of ageing is limited since most studies (in humans) 
have studied ageing with a focus on neurodegeneration (by comparing individuals with and 
without neurodegenerative disease) but have hardly looked at ageing as a continuous 
process [99]. We therefore have little insight into the individual cell type contribution to ageing 
in the brain and whether all cells are equally vulnerable to the ageing process. Moreover, it 
is not clear whether genes changing their expression throughout ageing play a role in 
neurodegenerative disorders and could thus potentially help us explain why age is such a 
strong risk factor for their development. Furthermore, several studies have indicated that 
psychiatric disorders are associated with accelerated biological ageing, but whether this is 
seen across all cell types in the brain, which genes could be driving this process and how 
much of it is attributable to heritable genetic factors remains to be elucidated. 

The aim of this thesis was to better characterize the transcriptomic changes associated with 
the ageing process across individual cell types in the human brain and to understand how 
these are related to neurodegenerative and psychiatric disorders. In order to do so, post-
mortem brain samples from a cohort of neurotypical individuals and individuals having 
suffered from psychiatric disease spanning an age range from 26 to 84 years of age were 
used. Samples from the orbitofrontal cortex were chosen due to its involvement in cognitive 
function [134], structural and functional decline during ageing [135], and its implication in the 
pathophysiology of several psychiatric disorders [136, 137]. Using single nucleus RNA seq, 
the transcriptomes of several thousand nuclei per individual were profiled to understand the 
individual cell-type specific changes across ageing. Additionally, individuals were genotyped, 
and bulk DNA methylation was profiled to address the following questions: 

sn-RNA-seq: 

1) Which genes linearly change their expression along ageing and in which cell types? 
2) Which molecular pathways and cellular functions are affected by these gene expression 

changes in the affected cell types? 
3) Have these genes been implicated in the disease pathogenesis of neurodegenerative 

disorders, focusing on Alzheimer’s disease? 

sn-RNA-seq, DNA methylation measurement, genotyping: 

4) Do we find evidence of biological age acceleration at the epigenetic and transcriptomic 
level in individuals suffering from psychiatric disease?  

5) Are linear age-related gene expression changes shifted when suffering from a psychiatric 
disease and if so in which cell types and how much is driven by genetic factors? 
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3 |  Material and Methods 
 

3.1 Description of post-mortem brain cohort 
Ethical approval for this study was obtained by the Ludwig Maximilians-Universität Munich 
(22-0523) and the Human Research Ethics Committees at the University of Wollongong 
(HE2018/351). Brain samples (from the orbitofrontal cortex) were obtained from 87 
individuals from the NSW Brain Tissue Resource Centre in Sydney, Australia. Donors or their 
next of kin provided written informed consent for brain autopsy. For this study, donors were 
classified as either controls based on the absence of any psychiatric diagnosis, or as cases, 
who had been diagnosed with one of the following psychiatric disorders (schizophrenia 
(SCZ), schizoaffective disorder (SZA), bipolar disorder (BPD) or major depressive disorder 
(MDD)). All included brains were neuropathologically examined to determine Braak stage. 
Out of all donors, only one individual (case) showed macro- and microscopic changes (Braak 
NFT stage III), but not in cortical areas. None of the brain donors had been diagnosed with 
a neurodegenerative disorder. Table 3.1 summarises cohort characteristics (mean ± SEM) 
including age, biological sex, diagnosis, post-mortem interval (PMI), brain pH, and RNA-
integrity number (RIN). Cases and controls did not differ in any of these parameters. 

 

 

 

 

 

 

 
 

Figure 3.1 displays an overview of the cohort showing the distribution of individuals along 
age coloured for cases and controls (Figure 3.1a) and for females and males (Figure 3.1b).  

Table 3.1: Cohort Description 

Figure 3.1: Age 
distribution of post-
mortem brain cohort.  
a-b, Age distribution of 
controls (green) and 
cases (orange) (a) and 
females (F; yellow) 
and males (M; blue) 
(b) used in this study. 
Each dot represents 
one individual. 
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Tissue dissection from fresh-frozen post-mortem tissues of the orbitofrontal cortex (BA11) 
was performed by the NSW Brain Tissue Resource Centre in Sydney, Australia. Tissue was 
used for single nucleus RNA sequencing (sn-RNA-seq), and DNA extraction for genotyping 
as well as DNA methylation measurement.  

 

3.2 Nuclei Extraction & single nucleus RNA library 
preparation 

Figure 3.2 shows a schematic overview of the nuclei extraction and sn-RNA-seq procedure. 
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Figure 3.2: Schematic overview of single nucleus RNA-sequencing procedure.  Dissected brain 
tissue was dounce-homogenized and ultracentrifuged to obtain nuclei. Individual nuclei were captured 
into GEMs using the 10x Genomics microfluidics device. Each of the beads is covered with an 
oligonucleotide sequence consisting of a cell barcode (unique for each GEM), unique UMIs for 
transcript quantification and a poly-T stretch to hybridize with the mRNA’s poly-A-tail necessary for 
cDNA synthesis. cDNA synthesis is followed by library construction adding the required P5 and P7 
oligonucleotide sequences enabling hybridization and bridge amplification on the Illumina flow cell. 
Read 1 (R1) and Read 2 (R2) sequences are required for the annealing of sequencing primers to read 
the cell barcode and UMI as well as the sample index and cDNA while sequencing. After sequencing 
on the Illumina NovaSeq 6000 and alignment, cells are clustered based on similarity in their gene 
expression. These separate groups of cells can then be assigned a cell type label based on the 
expression of cell-type specific (known) marker genes. Finally, differential gene expression analysis 
for each cluster/cell type can be performed. Figure was created using Biorender.com and modified 
from [138, 139]. 

 

3.2.1 Randomisation 

For a balanced experimental design not confounded by the variables of interest, samples 
were divided into 16 batches using OSAT [140] randomised for age, sex, and disease status 
for nuclei extraction and subsequent sn-RNA-seq library preparation. 

3.2.2 Nuclei Extraction 

From the frozen tissue pieces, 50 - 60 mg were cut using a sterile scalpel on dry ice, 
transferred to a 1.5 ml Eppendorf tube and stored at -80°C until nuclei extraction. All buffers 
were prepared the day before the start of each batch. Nuclei extraction buffer (NEB) and 
sucrose cushion were prepared with autoclaved milliQ water whereas resuspension buffer 
was prepared with DPBS (Table 3.2 shows the details of needed equipment as well as buffer 
composition). Buffers were stored at 4°C. Extraction protocol was modified from [141]: All 
steps were performed on ice. On the day of the experiment, IGEPAL-CA630 and RiboLock 
RNase-Inhibitor were added to the NEB to a final concentration of 0.1% and 40 U/ml 
respectively. Tissue pieces were transferred into the dounce homogenizer and 600 µl of ice-
cold NEB buffer were added to each sample, followed by a 5 min incubation. Next, dounce 
homogenisation with the loose pestle was performed for 30 strokes followed by 15 strokes 
with the tight pestle. Walls of dounce-homogenizer were rinsed with 400 µl of NEB buffer. 
Nuclei suspension was transferred to an ultracentrifuge tube. Then, 1.8 ml sucrose cushion 
were added to the bottom of the ultracentrifuge tube (leaving the nuclei suspension layered 
on top of the sucrose cushion). For balancing of the ultracentrifuge, tubes were weighed and 
if necessary, weight adjustments were performed by adding a corresponding volume of NEB 
buffer on top. Samples were ultra-centrifuged at 28,100 rpm, 4°C for 2 h 30 min. RiboLock 
RNase-Inhibitor (to a final concentration 40 U/ml) and DAPI (1:1000) were added to the 
resuspension buffer. Immediately after ultracentrifugation, tubes were placed on ice and 
supernatant was removed using vacuum suction leaving only the nuclei pellet behind. To 
each nuclei pellet 80 µl of resuspension buffer were added, followed by a 30 min incubation 
and subsequent gently resuspension of nuclei pellet. Pre-separation filters were washed with 
200 µl of resuspension buffer. Next, nuclei suspension was filtered through. Filters were then 
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washed with 50 µl of resuspension buffer. Nuclei concentration was determined via manual 
counting using a C-Chip Neubauer chamber. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Single nucleus RNA library preparation 

Using the Chromium Single Cell 3’ Reagents kit v3.1 (10x Genomics) sn-RNA-seq 

libraries were prepared according to the manufacturer’s instructions (10x Genomics user 

guide). Table 3.3 provides an overview of necessary chemicals and equipment. As target 

recovery per sample 10,000 nuclei were chosen. Figure 3.3 shows representative traces 

of the Bioanalyzer Chip after cDNA synthesis and of a completed library. Libraries were 

stored at -20°C until completion of all libraries (two batches per week were processed). 
Libraries were pooled equimolarly, followed by treatment with the Illumina Free Adapter 
Blocking Reagent. Library pools were sent for sequencing to the Core Facility Genomics at 
Helmholtz Munich and sequenced in two batches on the NovaSeq 6000 System (Illumina, 
San Diego, California, USA). 

Table 3.2: Overview of equipment, chemicals, and buffer composition for nuclei 
extraction 
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Figure 3.3: Library construction quality control.  a-b: Representative Bioanalyzer traces during sn-
RNA-seq library preparation; after cDNA synthesis (a) and after completion of library construction (b). 

 
  

Table 3.3: Overview of equipment, chemicals for single nucleus RNA seq 
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3.3 Pre-processing - sequence alignment, filtering, and 
normalization 

Pre-processing and alignment were performed using the Cell Ranger software v6.0.1 (10x 
Genomics). First, sequencing reads of each sample were demultiplexing using their sample 
index. Since nuclei (and not cells) were sequenced, sequencing reads were aligned to a pre-
mRNA reference. Next, individual nuclei were demultiplexed using the nuclei barcodes and 
subsequently unique molecular identifiers (UMI) were counted. The mean reads per nuclei 
were 13,536.69 (ranging between 7,305 and 33,1105; Figure 3.4). Mean sequencing 
saturation per sample was 24.8% (ranging between 14.5% and 57.3%). 

 

Figure 3.4: Distribution of mean 
reads per nuclei  a, Histogram 
depicting the mean reads per nuclei 
across samples. The green line 
marks 75% quartile of reads per 
nuclei. 

 

 

 

 

 

 

 

In order to avoid bias from samples with very high number of reads per nuclei, a 
downsampling per nuclei to the 75% quartile of reads per nuclei (14,786 reads) was 
performed. For further quality control and clustering using scanpy v1.7.1 [142], count 
matrices of all individuals were combined. Several thresholds were used to filter nuclei: 
Nuclei with <500 counts, <300 genes and a mitochondrial percentage ≥ 15 were discarded. 
Moreover, genes not expressed in ≥ 500 nuclei were filtered out. Next, doublets were called 
using DoubletDetection v3.0 [143] and removed, which resulted in a dataset of 813,095 
nuclei. Finally, data was normalized using sctransform v0.3.2 [144]. 
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3.4 Clustering and assignment of cell types 

3.4.1 Clustering 

For clustering highly variable genes were selected and Leiden clustering was applied. Differ-
ent resolution parameters from 0.5 to 1 were tested. One cluster was removed since 3 indi-
viduals contributed > 25% of nuclei of that cluster, resulting in a final dataset containing 
787,685 nuclei.  

3.4.2 Cell type assignment 

For initial cell-type assignment, a label transfer algorithm (scarches v0.4.0 [145]) was applied, 
with cell-type labels from the Allen Brain Atlas (Human Multiple Cortical Areas SMART-seq, 
available at: https://portal.brain-map.org/atlases-and-data/rnaseq/human-multiple-cortical-
areas-smart-seq) serving as reference for our clusters. After initial assignment, cluster labels 
were refined by a manual curation based on marker gene expression [125, 127, 128]. Table 
3.4 summarizes marker genes used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Subclustering of LAMP5 inhibitory neurons 

Subclustering of cluster In_LAMP5 cluster was performed using Leiden clustering at 
resolution 0.1. This revealed two subtypes: In_LAMP5_1 (highly expressing LAMP5, NRG1, 
and FREM1) and In_LAMP5_2 (highly expressing, LAMP5, CHST9, and LHX6). 

Table 3.4: Marker genes used for cell type assignment. 
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3.5 Exploration and choice of covariates 
Since technical differences between the samples (such as the library preparation batch) are 
expected to be the same across all cell types, the influence of covariates was explored using 
a full pseudobulk count matrix. This full pseudobulk count matrix was generated by summing 
the gene-wise counts within one individual across all cell types. Next, a strict filter, retaining 
only genes with ≥ 10 counts in ≥ 90% of all individuals, was applied, followed by variance 
stabilizing transformation (vsd, DESeq2 [146]) and principal component analysis (PCA). 
Figure 3.5a shows a scree plot depicting the variance explained by each PC. PC1-PC4 
explain more than 50% of the variance in the data. Significant correlation of continuous 
variables with PCs was observed for RIN, PMI, pH and age (Figure 3.5b). Canonical 
correlation analysis (CCA) further identified library preparation batch (lib_batch) as a 
covariate (Figure 3.5c). Additionally, biological sex and disease status were included as 
covariates. Next, a batch-corrected expression matrix was generated by calculation of 
normfactors, voom transformation and applying the removebatchEffect function [147]. 
Thereafter PCA was performed on the batch-corrected expression matrix and the first PC 
was included as an additional covariate representing hidden confounders. To obtain the 
variance explained by each of the individual covariates, variance partitioning [148] was 
performed (Figure 3.5d). Most of the variance was explained by the library preparation batch, 
followed by pH and PC1. Since information on RIN was missing for one individual, value was 
imputed using impute function from Hmisc package v5.0-1 [149]. 
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Figure 3.5: Exploration and choice of covariates.  a, Scree plot depicts the explained variance for 
principal components (PCs; PC1-PC20). The orange line represents the cumulative explained 
variance. b, Heatmap displaying the Kendall correlation of continuous covariates with PCs. Asterisk 
(*) marks significant correlation after multiple testing correction (using the Benjamini-Hochberg (FDR) 
method). c, correlogram depicting the correlation of covariates with PCs obtained via canonical 
correlation analysis. d, violin plot of explained variance (from full pseudobulk dataset) for the different 
experimental variables and covariates chosen to be adjusted for in the differential expression analysis. 
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3.6 Differential gene expression analysis 
For differential gene expression (DGE) analysis, a pseudobulk approach was chosen, since 
two recent studies showed that single cell specific differential expression tools, such as 
MAST, suffer from pseudoreplication bias leading to an increase in false positives [83, 84].  

Thus, pseudobulk count matrices for each individual were computed by summing the gene-
wise counts within each cell type respectively. For each of these count matrices, the same 
filter was applied removing genes with less than 10 counts in 75% of individuals. Table 3.5 
shows the number of expressed genes in each cell type after filtering as well as the number 
of individuals contributing nuclei to each cell type.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DGE analysis was performed using edgeR’s glmQLFtest function [150, 151] including the 
selected covariates (final model: ~ Age + Disease Status + Sex + pH + RIN + PMI + lib_batch 
+ PC1). Disease status was a binary variable (0= controls, 1 = psychiatric cases). 
Differentially expressed (DE) genes with FDR-adjusted p-value of < 0.1 were considered for 
downstream analysis. This slightly more lenient cut-off was chosen since pseudobulk 
approaches are considered to be more conservative than single cell specific methods [152, 
153]. To test for interactive effects, the interaction term (Age*Disease Status) was 
additionally included in the model. To test for genes associated with polygenic risk scores 
(PRS), the term Disease Status was replaced by the respective PRS. 

 

Table 3.5: Number of genes expressed per cell type and 
individuals contributing to each cell type. 
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3.7 Similarity measure for differentially expressed genes 
between cell types 

The overlap index (OI) of DE genes between two cell types (C1 and C2), to estimate the 
similarity in gene expression change, was calculated as follows:  

OI(C1,C2)	= (|	#$	∩	#&||#$| +|	#$∩	#&||#&| )/2 

Compared to the Jaccard index, this OI considers the overlap proportion in comparison to 
each of the two cell types separately and not the union (as for the Jaccard index). Thus, 
equal weight is given to each of the two cell types, which is essential given the (sometimes) 
large difference in total number of DE genes between cell types. 

 

3.8 Visualisation of differentially expressed genes 
Batch-corrected count matrices were computed to be able to visualise DE genes: The filtered 
pseudobulk count matrices for each cell type were first normalised using edgeR’s [81] 
function calcNormFactors. Then voom-transformation (limma) was applied, followed by 
removal of batch effects (disease status + sex + pH + RIN + PMI + lib_batch + PC1) using 
the function removeBatchEffect (limma, v3.48.3 [79]). For the visualisation of age- and 
disease-related changes, removeBatchEffect was applied to remove all batch effects except 
disease status. 

 

3.9 Cell type abundance 
To investigate if cell types change in abundance during the course of ageing, cell type pro-
portions of each cell type for each individual were estimated by dividing the number of nu-
clei in a specific cell type by the total number of nuclei of the respective individual. Next, 
multiple linear regression was used to test for association between age and cell type com-
position for each cell type respectively controlling for covariates (sex, disease status, pH, 
RIN, PMI and lib_batch). At an FDR-adjusted p-value of < 0.05 associations were consid-
ered significant. 
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3.10 Validation using previously published datasets 
Different datasets were used to validate observed age-related gene expression changes:  
Two studies (Lu et al. [154] and Kumar et al. [155]) had identified age-related transcriptional 
changes in the human cortex using bulk sequencing approaches. Differentially expressed 
Affymetrix probes (Lu et al.) were mapped to ensembl IDs and IDs not expressed in the 
filtered full pseudobulk dataset were removed. Using Fisher’s exact test (GeneOverlap 
v1.28.0 [156]) overlap between the two datasets for up- and downregulated genes 
respectively was tested. Kumar et al. provided a discovery and replication dataset. For 
validation, only significant DE genes present in both discovery and replication datasets were 
used. After mapping gene symbols to ensembl IDs and filtering out IDs not expressed in the 
filtered full pseudobulk dataset, overlap was determined. The direction of effect (up- or 
downregulation) was not provided in Kumar et al.’s supplementary data and thus not 
considered for the overlap. 

For validation of cell-type specific age-regulated genes, another sn-RNA-seq dataset [157] 
as well as two datasets one from sorted microglia [158] and another one from sorted 
astrocytes [159] were leveraged. To validate age-related genes in In_LAMP5, differential 
expression for age was performed in the same cell type “In_LAMP5_validation”. Its summed 
pseudobulk expression matrix was filtered and voom-normalized before performing 
differential expression using limma [147]. The model was adjusted for all covariates 
(identified by the authors of the original publication): age, sex, PMI, genetic PC1, psychiatric 
diagnosis (controls, MDD, post-traumatic stress disorder), lifetime antipsychotic use, day of 
the experiment, percentage of cells in the cluster over the total of cells and batch. For the 
Fisher’s exact test, up- and downregulated age-regulated genes respectively at an FDR-
adjusted p-value of < 0.1 for In_LAMP5 from this study and age-regulated genes at nominal 
p-value < 0.05 for In_LAMP5_validation were used. 

Next, age-regulated genes identified in purified populations of microglia [158] and astrocytes 
[159] (FDR-adjusted p-value < 0.05) were compared to age-regulated genes in microglia and 
astrocytes (broad cell type cluster; FDR-adjusted p-value < 0.1) of this study. Analogous to 
the comparisons above, ensembl IDs not expressed in the filtered pseudobulk expression 
matrix (of microglia and astrocytes respectively) were removed before testing for overlap. To 
investigate the comparability of effect sizes, spearman correlation of log2FC of overlapping 
genes was calculated for the respective comparisons in In_LAMP5, microglia and astrocytes. 
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3.11 Over-representation analysis of biological pathways and 
disease 

In order to understand, which biological pathways are affected by the gene expression 
changes during ageing, over-representation analysis (ORA) for up- and downregulated age 
DE genes was performed using clusterProfiler (v4.0.5 [160]). Moreover, to investigate in 
which diseases the age-regulated genes are implicated, disease enrichment analysis using 
DOSE (v3.18.3 [161]) was conducted. All genes expressed in the respective cell type (at 
minimum of 10 counts in 75% of the individuals) were considered as background. Since the 
different cell types have different numbers of DE genes (Table 4.2), only GO/disease terms 
were considered that had ≥ 5% of the DE genes overlapping with the term genes and > 2 
genes per term. At an FDR-adjusted p-value < 0.05, terms were considered significant. To 
reduce redundancies in the list of GO-terms and for visualization, semantic similarity analysis 
using GO-Figure! [162], with default parameters, was applied. 

 

3.12 Comparison of transcriptomic changes between age and 
Alzheimer’s disease 

Two studies (Mathys et al. [132] and Lau et al. [133]) had previously uncovered cell-type-
specific transcriptomic changes related to Alzheimer’s disease (AD) in prefrontal cortex using 
sn-RNA-seq. Both AD studies had assigned broad cell type labels and had identified 
astrocytes, endothelial cells, excitatory and inhibitory neurons, microglia, and 
oligodendrocytes (and oligodendrocyte precursors only in [132]). To examine the cell-type 
specific overlap between age-associated and AD-associated genes, the cell-type specific AD 
DE genes were overlapped with the age DE genes in the corresponding broad cell type (after 
filtering out AD DE genes not expressed in the filtered pseudobulk expression matrix of the 
corresponding cell type). 

 

3.13 Calculation of transcriptomic age  
To estimate the biological age based on gene expression in brain, a transcriptomic age 
predictor derived from brain samples of the same region (BA11), developed by Lin and 
colleagues [49], was used. The transcriptomic age predictor was derived from bulk 
expression; therefore, the full pseudobulk count matrix was used. After removing genes with 
less than 10 counts in 75% of individuals, counts were normalized using the calcNormFactors 
function (edgeR [150]) and voom transformation (limma, v3.48.3 [147]). The transcriptomic 
age predictor is based on the weighted expression of 76 genes. Gene symbols were first 
mapped to ensembl IDs. Next, missing ensembl IDs (i.e. genes not expressed in the filtered 
pseudobulk count matrix) were identified: Out of the 76 genes only 3 were missing (APLNR, 
KCNA6, and MIR29C). Transcriptomic age for each individual was calculated by multiplying 
the gene expression value by its provided coefficient (weight) summed for all 73 genes. To 
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re-scale the unit of the transcriptomic age back to the unit of chronological age by year a 
linear regression was fit between chronological age and transcriptomic age. As a measure 
for deviation of biological from chronological age, transcriptomic age acceleration was 
computed by regressing transcriptomic age on chronological age adjusting for the library 
preparation batch (lib_batch; the strongest batch effect - see Figure 3.5d). Using multiple 
linear regression, the association of disease status (cases) with transcriptomic age 
acceleration (correcting for covariates (sex, pH, RIN, PMI and PC1)) was investigated. 

 

3.14 DNA extraction 
Isolation of genomic DNA from ~10 mg frozen OFC tissue was performed using the QIAamp 
DNA mini kit (Qiagen) following the manufacturer’s instruction ‘Protocol: DNA purification 
from Tissues’ without performing the RNase A treatment. Next, DNA was concentrated using 
the DNA Clean & Concentrator-5 (Zymo Research) kit. Genomic DNA was used for DNA 
methylation measurement as well as genotyping (see next sections). 

 

3.15 DNA methylation measurement and calculation of 
epigenetic clocks 

For a balanced experimental design not confounded by our variables of interest, sample 
position (column and row) on a 96-well plate was randomised for age, sex, and disease 
status using OSAT [140]. 

The EZ-96 DNA Methylation kit (Zymo Research, Irvine, CA) was used for bisulfite-conver-
sion of 400 ng DNA on a 96-well plate. The Illumina Infinium MethylationEPIC BeadChip 
(Illumina, San Diego, CA, USA) was used according to manufacturer’s guidelines to measure 
epigenome-wide DNA methylation (DNAm). Each column of the 96-well plate represented one 
batch of the Infinium MethylationEPIC BeadChip. 

To estimate biological age based on DNAm, two DNAm clocks were computed; Horvath’s 
multi-tissue clock [163] and a recently developed cortical clock [164]. For each of the two 
DNAm clocks, processing of raw intensity values was performed as suggested by the original 
publications. Thus, for Horvath’s multi-tissue clock raw intensity values were transformed into 
beta-values followed by quality control with the minfi R package [165, 166]. Next, stratified 
quantile normalization [167] and subsequent beta-mixture quantile normalization (BMIQ) 
[168][96] was applied. For the cortical clock [164], raw intensity values were processed using 
the watermelon and bigmelon R packages according to the preprocessing pipeline by 
Shireby et al. [164, 169, 170]. PCA was performed separately after transformation of beta-
values to M-values for each of the two clocks to detect potential outliers (>3 SD on two first 
principal components). None of the samples met exclusion criteria during quality control 
(mean detection of p-value > 0.05, distribution artefacts in raw beta-values, sex mismatches, 
or outliers). Next, technical batch effects (array and row) showed the strongest associations 
with principal components and were thus corrected for sequentially with ComBat (sva 
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package) [171]. Batch-corrected M-values were transformed into beta-values and sample 
mix-ups were excluded using MixupMapper [172]. Other covariates (brain pH and freezer 
storage time) significantly correlated with the first 5 PCs and were thus included as covariates 
in all subsequent analyses. 

Epigenetic age (DNAmAge) was calculated for Horvath’s multi-tissue clock using the 
methylclock package [163, 173] and for the cortical clock using code provided by the authors 
[164, 174]. Epigenetic age was then used for estimating epigenetic age acceleration 
(AgeAccel), i.e. the residuals of the regression of epigenetic age on chronological age 
adjusted for the covariates pH and freezer storage time. Since different cells contribute to 
the bulk DNA methylation profile, proportions of neuronal cells were estimated from the 
epigenome-wide DNA methylation as suggested by Guintivano et al. [175]. To examine the 
association of disease status (cases) with epigenetic age acceleration multiple linear 
regression was used controlling for sex, smoking status and neuronal cell proportions. Out 
of the 87 individuals, one individual could not be profiled for DNA methylation due to too low 
DNA yield. Moreover, for seven individuals smoking status was unknown, which led to a final 
cohort of 79 individuals (controls n=27, cases n=52) for multiple linear regression analysis. 

 

3.16 Genotyping  
For a balanced experimental design not confounded by our variables of interest, sample 
position (column and row) on a 96-well plate was randomised for age, sex, and disease 
status using OSAT [140]. Three columns represented one batch (24 samples per genotyping 
array). 

With the Illumina GSA-24v2-0_A1 arrays genome-wide single nucleotide polymorphism 
(SNP) genotyping was performed according to the manufacturer’s guidelines (Illumina Inc., 
San Diego, CA, USA). PLINK [176] was used for genotypic quality control. SNPs with a call-
rate <98%, MAF < 1% or a p-value for deviation from Hardy-Weinberg-Equilibrium <1x10-5 
were removed. Next, individuals were removed if their call-rate was < 98%. If two individuals 
presented relatedness (pihat)> 0.125, the individual with the higher call-rate was kept in the 
analysis. Individuals defined as genetic outliers (based on deviation of more than 4 standard 
deviation (SD) on the first 3 MDS-components of the IBS-matrix after LD-pruning) were also 
excluded. None of the 87 individuals qualified for any of the above-mentioned exclusion cri-
teria. After quality control, genotypes were subjected to imputation using shapeit2 [177] and 
impute2 [178] using the 1000 Genomes Phase III reference sample. Next, SNPs with an info 
score > 0.6, a minor allele frequency > 1%, or deviating from Hardy–Weinberg equilibrium 
(p-value < 1 × 10−5) were excluded from further analysis resulting in 9,652,209 SNPs. 
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3.17 Calculation of polygenic risk scores 
GWAS studies for a cross-disorder psychiatric phenotype [179] and schizophrenia [22] were 
used for the calculation of polygenic risk scores (PRS). To infer posterior SNP effect sizes in 
the summary statistics of GWAS, the PRS-CS package (v1.0.0 [180]) in python (v3.6.8) was 
used. The linkage disequilibrium reference panel computed from the 1000 Genomes Project 
phase 3 European samples was used (linked on the PRS-CS GitHub page [181]). The 
parameter for global shrinkage of PRS-CS, phi, was not specified for the cross-disorder 
phenotype since the large sample size of the GWAS allowed for phi to be learned from the 
data. For SCZ, however, phi was specified to 1e-2, as suggested for highly polygenic traits. 
For the calculation of PRS per individual, based on the previously inferred posterior effect 
sizes, PLINK (v2.00a2.3LM) [182, 183] with the score parameter was used. 
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4 |  Results 
4.1 Experimental Design 
To study the cell-type specific transcriptomic changes that occur during (non-pathological) 
ageing, post-mortem brain samples from a cohort of 87 individuals that spanned an age 
range from 26 to 84 years of age were used. Neuropathological examination of all brains 
revealed no signs of neurodegenerative processes ensuring to minimize their possible 
influence on the investigated ageing process. The inclusion of both neurotypical individuals 
(controls) and individuals having suffered from psychiatric disease (cases) enabled the 
additional investigation of the influence of disease status on ageing. 

First, several aspects were evaluated to ensure no systematic bias was present between 
controls and cases. There was no difference in mean age, PMI, and RIN, number of nuclei 
recovered by sn-RNA-seq as well as the median number of genes and counts (Figure 4.1a-
f). 

Figure 4.1: No systematic differences between healthy controls and psychiatric cases.  a-f, 
Boxplots showing age (a), post-mortem interval (PMI) (b), RNA-integrity number (RIN) (c), number of 
nuclei (d), median number of genes (e) and median number of counts (f) between controls (coloured 
in green) and cases (coloured in orange). P-value obtained from t-test (normally distributed data) and 
Wilcoxon-test (non-normally distributed data) is shown. 
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Next, correlation of age (the variable of interest) with the covariates was tested. No correla-
tion of age with PMI, or age with median number of genes or median number of counts were 
found (Figure 4.2a-d). However, there was a modest, negative correlation between age and 
RIN (Figure 4.2e), which has previously been reported [184]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Correlation of age with covariates.  a-e, Scatterplots depicting the correlation of age 
with PMI (a), number of nuclei (b), median number of genes (c), median number of counts (d) and RIN 
(e). Each dot represents one individual with controls coloured in green and cases coloured in orange. 
Spearman correlation coefficient and p-value are shown. 
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4.2 Identification of the diverse cell types in human 
orbitofrontal cortex 

After quality control, filtering and normalization, Leiden clustering was applied using highly 
variable genes to group the nuclei based on similarity in gene expression profiles. The clus-
tering of the nuclei was not driven by experimental variables (batch) or covariates (sex, dis-
ease status) or individual donors (Figure 4.3a-h). 

Figure 4.3: Clustering of nuclei.  a-c, Uniform manifold approximation and projection (UMAP) show-
ing ~800 000 nuclei from 87 donors from the orbitofrontal cortex coloured by experimental batch (a), 

disease status (b), and sex (c) indicating that clustering was not driven by these parameters. Each 

dot represents one nucleus. d-f, Stacked bar plots showing the percentage contribution to the 
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respective cell type cluster from experimental batch (d), disease status (e) and sex (f). g, UMAP show-
ing ~800 000 nuclei from 87 donors from the orbitofrontal cortex coloured by donor. h, Stacked bar 
plot showing the percentage contribution to the respective cell type cluster from each donor. Each dot 
represents one nucleus. 

 

Next, a label transfer algorithm was used to transfer cell type labels from the Allen Brain Atlas 
to identified cell type clusters. This was followed by manual curation of assigned labels using 
known marker genes expression. Overall, seven broad cell types (Figure 4.4a) and 20 cell 
subtypes could be identified (Figure 4.4b). This included endothelial cells, diverse glial cell 
types (two astrocyte sub-types (fibrous (Astro_FB) and protoplasmic (Astro_PP), microglia, 
oligodendrocytes, and oligodendrocyte precursor cells (OPC)) and several subtypes of ex-
citatory and inhibitory neurons. Importantly, there was no difference between controls in 
cases in the mean number of nuclei per cell type (Supplementary Table 1). 

Figure 4.4: Cell type assignment.  a-b, Uniform manifold approximation and projection (UMAP) 
showing ~800 000 nuclei coloured by broad cell type (a) and cell subtypes (b). 
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Table 4.1 shows the number of 
nuclei per cell type class for both 
broad and cell subtype classifica-
tion. 

 

 

 

 

 

 

 

Figure 4.5a-d shows an overview of the expression of the marker genes used for cell type 
assignment. 

 

 

 

 

 

 

 

 

 

 

Table 4.1: Number of nuclei 
per broad cell type cluster 
and per cell type cluster. 

Figure 4.5: Marker gene expression 
across cell types.  a, Dotplot (left) depicting 
the gene expression of representative 
marker genes, which are grouped by broad 
cell types. Dendrogram (right) depicting the 
relationship between identified cell types 
based on similarity in gene expression. b-d, 
Dotplot depicting the gene expression of 
representative marker genes of astrocyte 
subtypes (b), inhibitory neuron subtypes (c) 
and excitatory neuron subtypes (d). The size 
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of the dot is proportional to the fraction (%) of nuclei expressing the gene and the colour represents 
the mean expression level. Astro = Astrocytes, FB= fibrous, PP= protoplasmic, Exc = excitatory, In= 
inhibitory, L= cortical layer, OPC= oligodendrocyte precursors, Ba= Basket, Ch=Chandelier 

 

4.3 The transcriptome of all cell types is affected by ageing 
After cell-type assignment, gene counts were summed for each cell type within each individ-
ual respectively. Next, differential gene expression (DGE) analysis using edgeR [150, 151] 
was performed to identify genes that linearly change their expression along ageing (inde-
pendent of case-control status). The following covariates were adjusted for in all analyses: 
disease status, sex, pH, RIN, PMI, library preparation batch, and PC1 followed by multiple 
testing correction using the Benjamini-Hochberg (FDR) method [185]. Out of the 20 identified 
cell types, all except endothelial cells had significant age-regulated genes (Table 4.2). Over-
all, 5,161 genes were differentially expressed (DE) with age (FDR adjusted p-value < 0.1) in 
at least one cell subtype. The majority of the DE genes encode protein-coding genes (mean 
across cell types: 91%). 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Number of differentially 
expressed genes with age shown for 
broad and cell subtypes at FDR-
adjusted p-value < 0.1 and < 0.05. 
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The top ten up- and downregulated DE genes within each cell type are listed in Supplemen-
tary Table 2 and Supplementary Table 3. Up- and downregulated DE genes displayed high 
symmetry in the extent of change (fold change (FC)) as shown in Figure 4.6. 

Figure 4.6: Fold change distribution of differentially expressed genes.  a-b, Violin plots showing 
distribution of the FC per 10 years of differentially expressed genes (at FDR-adjusted p-value < 0.1) 
for up- (a) and downregulated (b) genes. 

 

Except for oligodendrocytes, more than 
50% of the DE genes in each cell type 
were downregulated with increasing age 
(Figure 4.7), which is consistent with re-
sults obtained from bulk brain tissue in 
both humans and rhesus macaque [110, 
115].  

 

Figure 4.7: Quantification of up- and 
downregulated genes.  Barplot depicting 
the percentage of up- and downregulated dif-
ferentially expressed (DE) genes (at FDR-
adjusted p-value <0.1) for the respective cell 
types.  
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The cell type with the highest number of DE genes were upper layer excitatory neurons 
(Exc_L2-3, Table 4.2). However, differences in the statistical power between cell types to 
detect DE genes exist due to factors such as the number of nuclei as well as the number of 
sequencing reads per cell type [186]. Thus, to estimate how strongly each cell type was 
affected by the ageing process irrespective of these confounding factors, we normalized the 
number of DE genes per cell type to the total sequencing reads of the respective cell type. 
Using this metric (number of DE genes per one million reads), we found that In_LAMP5, one 
inhibitory neuron subtype, showed the most striking changes with age (Figure 4.8a). Since 
there was a prominent gap in the relative number of DE genes between the most (In_LAMP5) 
and second most (Exc_L4-6_2) affected cell type, we further focused on In_LAMP5. Sub-
clustering of In_LAMP5 revealed two subtypes (Figure 4.8b): In_LAMP5_1 highly expressed 
LAMP5, NRG1 and FREM1 and constituted ~65% of the nuclei, whereas In_LAMP5_2 (35% 
of the nuclei) showed strong co-expression of LAMP5, LHX6 and CHST9 (Figure 4.8c). 
Comparison of the relative number of DE genes revealed that In_LAMP5_2 had the highest 
ratio mainly contributing to the effect seen in In_LAMP5 (Figure 4.8d). Interestingly, LAMP5 
inhibitory neurons expressing LHX6 have been previously reported to have increased during 
evolution and to have become abundant in the cortex of primates [187]. 
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Figure 4.8: Severity of DE changes.  a, Barplot depicting how strongly each cell type is affected by 
ageing estimated by the relative number of differentially expressed (DE) genes; y-axis shows the ratio 
of the number of DE genes (at FDR-adjusted p-value <0.1) per 1 million reads. b, Uniform manifold 
approximation and projection (UMAP) showing the expression level of LAMP5 within the identified two 
LAMP5 inhibitory neuron subtypes. c, Dotplot showing the expression of representative marker genes 
for the two identified LAMP5 inhibitory neuron subtypes. d, Barplot depicting how strongly each cell 
type is affected by ageing estimated by the relative number of differentially expressed (DE) genes; y-
axis shows the ratio of the number of DE genes (at FDR-adjusted p-value <0.1) per 1 million reads. 

The two identified LAMP5 inhibitory neuron subtypes are highlighted.   

 

4.4 Cell-type specific and universal transcriptomic changes 
during ageing 

After having identified age DE genes in the different cell types, we wanted to understand the 
extent of coordinated as well as universal changes across cell types. In general, there were 
no age DE genes present in all of the 19 cell types that showed changes with age. Even, 
when comparing the broad cell type classes, only three common age DE genes - ARPP19, 
NFKBIA and OLFM1 - could be identified (Figure 4.9). These three genes have been linked 
to ageing before, yet not always based on data from brain tissue. 

Figure 4.9: Shared differentially expressed genes across broad cell type classes.  a-c, Scatter-
plots showing log normalized gene expression corrected for covariates across ageing of significantly 
differentially expressed genes (ARPP19 (a), NFKBIA (b), OLFM1 (c)) across all broad cell types. Error 
bands represent the 95% confidence interval. Exc=excitatory, In=inhibitory neurons. 

 

 

 

 



RESULTS Cell-type specific and universal transcriptomic changes during ageing  

 44 

To visualize the overlap of DE genes between the cell types for up- and downregulated DE 
genes, we normalized the number of shared DE genes between two cell types to the total 
number of DE genes of each of the two cell types and took the average. As shown in Figure 
4.10, downregulated age DE genes showed a higher degree of overlap than upregulated age 
DE genes indicated by the darker colour and thicker lines connecting the different cell types. 
Interestingly, downregulated age DE genes did not only show an overlap between the neu-
ronal cell types (both excitatory and inhibitory) but also with glial cells, including astrocytes, 
oligodendrocytes and OPCs, except microglia. Within the upregulated age DE genes, neu-
ronal cell types showed overlap whereas all glial cells showed rather unique profiles indicated 
by the large size of the circles. 

Figure 4.10: Similarity in age-regulated genes across cell types  a-b, Visualisation of shared and 
cell-type specific DE genes for upregulated (a) and downregulated (b) DE genes (at FDR-adjusted p-
value <0.1). The number of overlapping DE genes between two cell types was normalized to the total 
number of DE genes of each of the two cell types and the average was taken (overlap index (OI) - see 
section 3.7). The thickness of the grey line connecting two cell types is representative of this shared 
proportion of DE genes; with a thicker line indicating a higher overlap. The size of the circle for each 
cell type indicates the proportion of cell-type-specific DE genes with a bigger circle indicating a higher 
number of unique DE genes. 

 

The large proportion of unique age-regulated genes is partly driven by genes uniquely ex-
pressed in these cell types. Cell types including protoplasmic astrocytes (Astro_PP), micro-
glia, oligodendrocytes, OPCs and upper-layer excitatory neurons (Exc_L2-3) show cell-type 
specific expression for some of their upregulated genes (Figure 4.11a). Within the down-
regulated genes only microglia and upper-layer excitatory neurons had cell-type specific 
expressed genes that were differentially expressed with age (Figure 4.11b). The high pro-
portion of uniquely age-regulated genes in Exc_L2-3 is likely due to the fact that this cell 
type had the largest number of nuclei, sequencing reads and thus detected/expressed 
genes. Interestingly, LAMP5 inhibitory neurons, besides being the most strongly affected 
cell type, had no uniquely expressed DE genes. 
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Figure 4.11: Cell-type specific expression of differentially expressed genes.  a-b, Barplot quan-
tifying the proportion of DE genes per cell type that are either uniquely expressed in the respective cell 
type or are expressed in <5 other cell types, between 5-9 other cell types, between 10-14 other cell 
types or 15 -19 other cell types shown for up- (a) and downregulated (b) DE genes. 

 

In general, several genes previously linked to ageing, such as CAMK4 (Calcium/Calmodu-
lin Dependent Protein Kinase IV) and FKBP5 (FKBP prolyl isomerase 5), were coordinately 
regulated across multiple cell types (Figure 4.12a-b). CAMK4 has been previously identi-
fied to be downregulated with age across several species [113]. It acts as a transcriptional 
regulator and is involved in synaptic signalling [188]. FKBP5 is amongst the genes with the 
highest magnitude of change (log2FC from 0.029 to 0.047 per year) with upper-layer excit-
atory neurons (Exc_L2-3) showing the highest up-regulation with age (Figure 4.12b), as 
previously reported [189]. FKBP5 has been linked to AD by hindering tau degradation and 
SNPs in FKBP5 have been shown to increase the risk for psychiatric diseases. Several 
genes involved in neuronal signalling are downregulated with age in multiple cell types. For 
example, NREP (neuronal regeneration related protein) significantly decreases with age in 
11 cell types (both neuronal and glial) with excitatory neurons showing the strongest 
changes (Figure 4.12c). NREP is important for both neuronal differentiation and axon re-
generation. NPTX2 (neuronal pentraxin 2), a gene involved in excitatory synapse formation, 
significantly decreased with age in five excitatory neuron types and was amongst the top 
five downregulated DE genes in four of these cell types (Figure 4.12d). As mentioned 
above, in microglia we observed a lot of DE genes not differentially expressed in other cell 
types (Figure 4.11a-b). Additionally, several genes uniquely expressed in microglia were 
among the DE genes such as MS4A6A and HLA-DRB1. MS4A6A displays the highest 
magnitude of change (log2FC: 0.059 per year) of all DE genes (Figure 4.12e). It has cru-
cial roles in immune response and SNPs in this gene have been linked to AD [190, 191]. 
HLA-DRB1 shows a significant increase with age (Figure 4.12f) and genetic associations 
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with longevity [192] and AD [193] have been reported for this gene. Overall, this provides 
evidence that age affects the expression of a multitude of genes with certain genes being 
regulated only in specific cell types and others changing in a coordinated manner across 
several cell types. 

Figure 4.12: Shared and cell-type specific age-regulated genes  a-f, Scatterplots showing log nor-
malized gene expression corrected for covariates across ageing of significantly differentially expressed 
genes in respective cell types for CAMK4 (a), FKBP5 (b), NREP (c), NPTX2 (d), MS4A6A (e) and 
HLA-DRB1 (f). Error bands represent the 95% confidence interval. 
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4.5 Changes in cell-type abundance during ageing 
Next, we examined if cellular composition changes during ageing. We calculated the propor-
tion of each cell type per individual and then applied multiple linear regression to test for an 
association of age and cell type proportion. We found that the majority of the cell types do 
not change in abundance (Table 4.3). However, In_VIP and OPCs showed a significant re-
duction with age whereas oligodendrocytes increased with age. 

 

 

 

 

 

 

 

 

 

 

 

  

Table 4.3: Most cell types do not change in abundance with age 



RESULTS Validation of transcriptomic changes across ageing in bulk brain datasets  

 48 

4.6 Validation of transcriptomic changes across ageing in 
bulk brain datasets 

After having identified cell-type-specific age-regulated genes, we wanted to evaluate how our 
results compared to previous studies. Most of the published studies examining gene 
expression changes with age in human brain, have used bulk sequencing methods. Thus, to 
be able to compare with these bulk studies, we generated a ‘full pseudobulk’ dataset by 
summing the gene-wise counts within each individual across all cell types before performing 
DGE analysis. In total, 2387 genes were identified as age-regulated (FDR-adjusted p-value 
<0.1). Next, we used Fisher’s exact test, to test for overlap of our identified DE genes with 
two studies by Lu and colleagues [154] and Kumar and colleagues [155] having identified 
age-regulated genes in human cortex. We could show a significant overlap for both age up- 
and downregulated DE genes with the study by Lu et al. as well as a significant overlap with 
age-regulated genes identified by Kumar et al. (directionality of effect was not available) 
underscoring the validity of our analysis (Table 4.4a-b).  

 

 

 

 
  

Table 4.4: Validation of transcriptomic changes across ageing with previously published 
bulk datasets.  
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4.7 Validation of transcriptomic changes across ageing in 
several cell types 

Next, we wanted to validate our cell-type-specific age-regulated genes. Since LAMP5 
inhibitory neurons were identified as the cell type most severely affected by age, we wanted 
to validate the extent of age-regulated genes in this cell type in an independent dataset. 
Chatzinakos and colleagues [157] had identified the same cell type in their sn-RNA-seq 
dataset derived from 32 samples from the dorsolateral prefrontal cortex (of a cohort 
consisting of controls and individuals having suffered from MDD and post-traumatic stress 
disorder). We performed DGE analysis for age in this cell type and observed a significant 
overlap for both up- and downregulated age DE genes (Table 4.5a, Figure 4.13a). Next, we 
used Spearman correlation to compare the effect sizes (log2FC) and found highly congruent 
directionality of effect and effect sizes as evidenced by a Spearman correlation coefficient 
(ρ) of log2FC of 0.74 (p-value < 2.2e-16). Then, we compared our identified DE genes in 
microglia and astrocytes (broad cell type cluster) with studies that combined cell purification 
with bulk RNA-sequencing. Krawczyk and colleagues [159] had isolated astrocytes whereas 
Galatro and colleagues [158] had purified microglia to study gene expression changes over 
the course of ageing in these cell types. For astrocytes, we identified a significant overlap in 
downregulated age DE genes and in microglia both up- and downregulated age DE genes 
showed a significant overlap between the two studies (Table 4.5b-c). The directionality of 
effect was highly congruent for both astrocytes and microglia, with high correlations of the 
effect sizes between the overlapping DE genes in astrocytes (ρ of log2FC: 0.66, p-value: 
0.024; Figure 4.13b) and in microglia (ρ of log2FC: 0.88, p-value: 1.6e-6; Figure 4.13c). 
These analyses provide validation of age-regulated genes within specific cell types and 
across methodological approaches, emphasizing the consistency of findings between 
different sn-RNA-seq datasets as well as the comparability between data from sn-RNA-seq 
and sequencing in sorted cell populations. 

 

Table 4.5: Validation of transcriptomic changes across ageing In_LAMP5 (a), astrocytes (b) 
and microglia (c).  
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Figure 4.13: Validation of transcriptomic changes across several cell types  a, Scatterplot 
depicting log2FC of overlapping DE genes and spearman correlation (a) in In_LAMP5 between this 
study (x-axis; DE genes with FDR-adjusted p-value < 0.1) and DE genes identified in In_LAMP5 by 
Chatzinakos et al. [157] (y-axis; DE genes with nominal p-value < 0.05); The five genes with highest 
positive and negative log2FC (in both studies) and genes with divergent (div) directionality are labelled 
b-c, Scatterplot depicting log2FC of overlapping DE genes and spearman correlation (b) in astrocytes 
between this study (x-axis; DE genes with FDR-adjusted p-value < 0.1) and a study by Krawczyk et al. 
[159] (y-axis; DE genes with FDR-adjusted p-value < 0.05); (c) in microglia between this study (x-axis; 
DE genes with FDR-adjusted p-value < 0.1) and a study by Galatro et al. [158] (y-axis; DE genes with 
FDR-adjusted p-value < 0.05). All overlapping genes are labelled. Error bands represent the 95% 
confidence interval. 
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4.8 Affected biological pathways in ageing 
To identify in which biological pathways the age-regulated genes are involved, we split age 
DE genes (at FDR-adjusted p-value <0.1) in up- and downregulated and performed over-
representation analysis (ORA). Since often-times several gene-ontology (GO) terms contain 
a similar set of genes and are therefore related, we next applied semantic similarity analysis. 
This groups similar terms thereby decreasing redundancies within the list of significantly 
enriched GO terms. Seven cell types showed significantly enriched pathways within their 
upregulated DE genes (Supplementary Table 4), whereas seventeen cell types showed 
significantly enriched pathways within their downregulated DE genes (Supplementary Table 
5). A commonly upregulated process between the excitatory and inhibitory neurons was 
cytoskeleton organisation. However, most of the processes were specific for the respective 
cell type which relates back to a less coordinated transcriptional response within upregulated 
genes between cell types (as shown in Figure 4.10). Upregulated DE genes in microglia 
were involved in several immune processes including T-cell mediated immunity, regulation 
of leukocyte apoptotic process, and protein autoubiquitination (Figure 4.14a). This 
upregulation of immune pathways with age in microglia is consistent with findings from 
studies in both mice and humans (31,33). Interestingly, within the downregulated DE genes 
enrichment for GO-terms involved in synaptic signalling (e.g. chemical synaptic transmission, 
synapse organization, signal release), cellular ion homeostasis and G-protein-coupled 
receptor signalling was found across excitatory and inhibitory neurons but also all glial cells, 
except microglia (Figure 4.14b-d). Several metabolic processes including nucleotide 
metabolic process, glycoprotein biosynthetic process and carbohydrate metabolic process 
were affected in inhibitory neurons. LAMP5 inhibitory neurons specifically showed 
enrichment for cellular respiration (oxidative phosphorylation) pathways (Figure 4.14d). 
Overall, this indicates that besides different genes changing during ageing in the different 
cell types, these are involved in similar pathways, especially neurotransmission. Additionally, 
certain pathways are dysregulated specifically in inhibitory neurons. 
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Figure 4.14: Affected biological pathways in ageing  a-d, Representative semantic similarity 
scatterplots depicting significantly enriched biological processes (at FDR-adjusted p-value < 0.05) in 
the upregulated age DE genes in microglia (a) and the downregulated age DE genes in Astro_PP (b), 
Exc_L4-6_1 (c) and In_LAMP5 (d). Semantic similarity analysis places similar GO terms more closely 
together on a semantic space x and y. The circle is proportional to the number of GO terms 
representing the circle and the colour represents the log10 p-value. 
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4.9 Enrichment of diseases in age-regulated genes 
Next, we wanted to investigate whether age-regulated genes have been associated with 
specific diseases. We therefore performed disease enrichment analysis and found that 
downregulated age DE genes across several cell types showed an enrichment for genes 
linked to cognitive disorder as well as psychiatric disorders including schizophrenia (Figure 
4.15a-h). Upregulated age DE genes did not show enrichment for any brain-related disorders 
(Supplementary Table 6). 

Figure 4.15: Enrichment of diseases in age-regulated genes  a-h, Bar plots depicting the disease 
enrichment (at FDR-adjusted p-value < 0.05) of downregulated age DE genes across cell types. Top 
five disease terms (based on FDR-adjusted p-value) are shown. For cell types that had less than five 
significantly enriched terms, all terms are shown (a-c; Exc_L4-6_1, In_SST, Exc_L4-6_2). The colour 
of the bars represents the FDR-adjusted p-value. 
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4.10 Age-regulated genes overlap with genes associated with 
Alzheimer’s disease 

Since age is the biggest risk factor for neurodegenerative diseases such as AD, we next 
investigated whether age-regulated genes could play a role in AD. We therefore compared 
age DE genes with DE genes identified in AD. Two studies, one by Mathys and colleagues 
[132] and another one by Lau and colleagues [133], had compared gene expression in 
controls and individuals with AD at the single cell level in the prefrontal cortex. These two AD 
studies had assigned broad cell type classes only (astrocytes, endothelial cells, excitatory 
and inhibitory neurons, microglia, oligodendrocytes, and OPCs (only in [132])) and we 
therefore compared them to our DE results in broad cell type clusters. We used Fisher’s 
exact test to evaluate the overlap of genes upregulated in AD and upregulated with age and 
of genes downregulated in AD and downregulated with age. Consistent with both AD studies, 
we show that genes upregulated in individuals with AD in astrocytes and oligodendrocytes 
significantly overlap with up-regulated age DE genes in the respective cell types (Figure 
4.16, Table 4.6a,c). Moreover, genes downregulated in individuals with AD in astrocytes and 
excitatory neurons significantly overlap with up-regulated age DE genes in the respective cell 
type (Figure 4.16, Table 4.6b,d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Overlap of age-regulated genes with genes dysregulated in AD  Visualisation of the 
overlap of age DE genes with AD DE genes (from two AD sn-RNA-seq datasets; Mathys et al. [132] 
and Lau et al. [133]) for up- and downregulated genes respectively. Overlaps are only shown if these 
were significant in both AD datasets. The circle is proportional to the odds ratio and the colour 
represents the FDR-adjusted p-value (see also Table 4.6). 
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Examples of genes with this concordant change with age and in AD include SLC6A15, GRM3 
and RPH3A (Figure 4.17). SLC6A15, an amino acid transporter, is significantly upregulated 
with age and shows higher expression in AD cases in oligodendrocytes (Figure 4.17a-b). It 
is a risk gene for MDD [194] but also has been genetically linked to AD [195]. GRM3 is 
downregulated with age and downregulated in AD (Figure 4.17c-d). SNPs within GRM3 
have been associated with increased risk for schizophrenia as well as poorer cognitive 
function [196]. RPH3A, a gene involved in neurotransmitter release, is downregulated in 
excitatory neurons both with age and in AD (Figure 4.17e-f). Higher RPH3A protein levels in 
human prefrontal cortex have been associated with cognitive resilience [197], whereas lower 
levels have been associated with higher Aβ burden [198]. These results suggest that the 
development of AD could possibly be favoured when gradual changes in gene expression 
during ageing, especially in astrocytes, surpass a certain threshold level.  

Table 4.6: Overlap of age-regulated genes with genes dysregulated in AD. 
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Figure 4.17: Examples of genes with concordant change with age and in AD.  a,c,e, Scatterplots 
depicting log normalized gene expression corrected for covariates across ageing in the respective cell 
types for SLC6A15 (a), GRM3 (c), and RPH3A (e). b,d,f, Bar plots depicting mean expression level of 
SLC6A15 (b), GRM3 (d), and RPH3A (f) and fold change (log2FC) between controls and cases with 
AD. Data was taken from Mathys et al. [132]. 
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As a next step, we investigated whether we could identify genes with an opposite regulation 
between ageing and AD. To this end, we compared upregulated age DE genes (at an FDR-
adjusted p-value <0.1) with AD downregulated genes and vice versa for each broad cell type. 
We were able to identify two genes, LINGO1 and KCTD17, which decrease with age (Figure 
4.18a,c) however are increased in individuals with AD in excitatory neurons (Figure 4.18b,d). 
These genes could be of interest for drug targeting as they may serve as protective factors. 

Figure 4.18: Divergent gene expression changes between ageing and AD.  a,c, Scatterplots 
depicting log normalized gene expression corrected for covariates across ageing of the two DE genes 
whose expression decreases with age - LINGO1 (a) and KCTD17 (c) - but is increased in cases of AD 
compared to controls. Error bands represent the 95% confidence interval. b,d, Bar plots depicting 
mean expression level of LINGO1 (b), and KCTD17 (d) and fold change (log2FC) between controls 
and cases with AD. Data was taken from Mathys et al. [132]. 
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4.11 Evidence of accelerated transcriptomic ageing in 
psychiatric disorders across multiple cell types 

Transdiagnostically, severe mental disorders, which include BPD, MDD, and SCZ, have been 
associated with lower life expectancy [199] and elevated risk of developing neurodegenera-
tive disorders [42], which are further linked to a higher mortality rate. Moreover, previous 
research provides evidence that biological ageing is accelerated in psychiatric disorders. 
These studies used diverse modalities in different tissues such as DNA methylation in blood 
[46-48], gene expression [49] and magnetic resonance imaging (MRI) [50] in brain for the 
estimation of biological age. Therefore, we calculated both epigenetic and transcriptomic age 
(acceleration) in our cohort to investigate differences between controls and psychiatric cases. 

Using EPIC arrays, we quantified bulk DNA methylation (DNAm) levels from the same OFC 
tissue. Next, we computed DNAm age using two epigenetic clocks, the CorticalClock derived 
from human cortex as well as Horvath’s multi-tissue clock. We found that the estimated 
DNAm age correlated highly with the chronological age (Figure 4.19; CorticalClock: Pearson 
correlation coefficient (R) of 0.96, p-value: < 2.2e-16; Horvath’s multi-tissue clock: R=0.94, 
p-value: < 2.2e-16). We then calculated DNAm age acceleration by regressing DNAm age 
estimate on chronological age and used multiple linear regression to evaluate differences 
between controls and psychiatric cases. However, no difference in epigenetic age accelera-
tion between the two groups was found (Table 4.7). 

 

Figure 4.19: Estimation of epigenetic age.  a-b, Scatterplots depicting the Pearson correlation coef-
ficient (R) of chronological age (x-axis) with DNA methylation age (DNAmAge; y-axis) estimated using 
the CorticalClock (a) and Horvath’s multi-tissue clock (b). Error bands represent the 95% confidence 
interval. 
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Table 4.7: Multiple linear regression of epigenetic age acceleration 
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We next estimated transcriptomic age using a transcriptomic brain age predictor developed 
by Lin et al. [49] that was derived from the exact same cortical brain region, BA11. Since the 
transcriptomic brain age predictor was developed using bulk gene expression, we used our 
‘full pseudobulk’ dataset. We obtained age acceleration by regressing transcriptomic brain 
age estimates on chronological age. The predicted transcriptomic age correlated highly with 
chronological age (Figure 4.20, R=0.83, p-value: < 2.2e-16). Moreover, we were able to 
replicate within our cohort the previously reported age acceleration in cases of severe mental 
disorders using multiple linear regression (p-value: 0.02; Table 4.8) 

 

 

Figure 4.20: Estimation of 
transcriptomic age.  Scatterplot 
depicting the Pearson correlation 
coefficient (R) of chronological age 
(x-axis) with transcriptomic age (y-
axis). Error band represents the 
95% confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8: Multiple linear regression of transcriptomic age acceleration 
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The fact that we found evidence for accelerated transcriptomic age in psychiatric cases as 
well as an enrichment of age-downregulated DE genes for genes implicated in psychiatric 
disorders, led us to further investigate how ageing trajectories of gene expression may be 
shifted in severe mental disorders. Thus, we first tested for interactive effects of age and 
disease status. Only two genes, namely SLC25A37 in fibrous astrocytes (Astro_FB) and 
GTPBP6 in a deep-layer neuronal cluster (Exc_L4-6_3), with an interactive effect of age and 
disease status, were identified (Figure 4.21). This small number of detected genes could be 
due to insufficient power for these types of statistical analysis. SLC25A37 encodes a mito-
chondrial iron carrier and is a risk gene for major depression [200]. GTPBP6, a GTP-binding 
protein, is involved in the assembly and dissociation of mitochondrial ribosomes [201]. 

Figure 4.21: Genes with an interactive effect of age and disease status.  a-b, Scatterplots depict-
ing log normalized gene expression corrected for covariates across ageing for genes with an interactive 
effect between ageing and disease status; SLC25A37 in Astro_FB (a) and GTPBP6 in Exc_L4-6_3 
(b). Error bands represent the 95% confidence interval. 
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Next, we wanted to understand the extent of the 
overlap of age-regulated genes with disease-
status-associated genes. We therefore 
performed differential gene expression analysis 
for disease status and found several genes 
significantly associated with disease status 
within different cell types as shown in Table 4.9. 
The much lower number of disease-associated 
DE genes compared to age-regulated DE genes 
is consistent with the result from variance 
partitioning (Figure 3.5d) which showed that age 
contributed much more to the variance of gene 
expression than disease status. Therefore, to 
detect small changes, large statistical power is 
needed. In line with this, the highest number of 
disease-associated genes was detected in 
upper-layer excitatory neurons (Exc_L2-3); the 
cell type with the largest number of nuclei. We 
then compared the age-regulated with the 
disease-associated genes (at FDR-adjusted p-
value <0.1) and found that, within four excitatory 
neuron clusters and OPCs, a substantial 
proportion of disease-associated genes was 
also age-regulated (Figure 4.22).  

 

 

 

 

 

 

 

 

Figure 4.22: Comparison of age-regulated genes with disease-associated genes across cell 
types.  a-f, Venn diagram showing the overlapping genes of age-regulated and disease-associated 
genes (at FDR-adjusted p-value < 0.1) for the respective cell type. 

 

Table 4.9: Number of differentially 
expressed genes associated with disease 
status shown per cell type at FDR-
adjusted p-value < 0.1 and < 0.05. 

 



RESULTS Evidence of accelerated transcriptomic ageing in psychiatric disorders across 
multiple cell types  

 63 

  

Fisher’s exact test revealed a significant overlap for three excitatory neuron clusters (Exc_L2-
3, Exc_L4-6_1, and Exc_L4-6_3; Table 4.10) between disease-associated and age-
regulated genes. 
 

 

Importantly, genes whose expression is influenced by both age and disease status can 
display a congruent or opposing directionality of effect of age and disease status. Congruent 
refers to genes with an upregulation with age and a higher expression in psychiatric cases 
or downregulation with age and a lower expression in psychiatric cases. Opposing, however, 
refers to genes with an upregulation with age and lower expression in psychiatric cases and 
vice versa. We therefore calculated the proportion of DE genes with a congruent or opposing 
directionality for the cell types that showed an overlap between age-regulated and disease-
associated genes. This analysis revealed a concordance in expression change in all of the 
tested cell types (Figure 4.23). This concordance was especially pronounced in one of the 
deeper-layer neuron clusters (Exc_L4-6_3). These results indicate a convergent signature in 
gene expression change with ageing and in psychiatric disease providing evidence for 
accelerated ageing across multiple cell types. 

 

 

Figure 4.23: Concordance in 
expression change for genes 
associated with both age and 
disease status.  Bar plot showing 
the percentage of DE genes (at FDR 
adj. p-value < 0.1) regulated in the 
same (congruent) direction or oppos-
ing directions amongst genes asso-
ciated with both age and disease sta-
tus for the respective cell types. 

 

 

Table 4.10: Overlap of age-regulated genes with disease-associated genes across cell 
types 
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Genes displaying shifted ageing trajectories in psychiatric cases include genes previously 
linked to ageing. For example, RHBDL3 is age and disease-regulated in Exc_L4-6-2 (Figure 
4.24a) and has been previously associated with age [155]. It shows one of the most 
pronounced increases in expression with age. LINC00507 is downregulated with age and in 
cases in Exc_L4-6_1 (Figure 4.24b) and has been shown to be age-regulated [202] and to 
show cortex-specific expression [203]. APLF shows one of the strongest decreases with age 
and a reduction in psychiatric cases in Exc_L2-3 (Figure 4.24c). APLF is involved in DNA 
repair, which has been linked to the ageing process [204] but up until now not to psychiatric 
disease. COL19A1, downregulated with age and disease in Exc_L4-6_3 (Figure 4.24d), is 
part of the family of nonfibrillar collagens and contributes to synapse formation [205]. 
UNC13C, the only gene which was age- and disease-downregulated in OPCs (Figure 
4.24e), belongs to the Unc13 protein family, which is involved in (synaptic) vesicle fusion 
[206].  
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Figure 4.24: Examples of genes associated with both age and disease status.  a-e, Scatterplots 
depicting log normalized gene expression corrected for covariates across ageing for genes associated 
with both age and disease status in the respective cell type; RHBLD3 (a), LINC00507 (b), APLF (c), 
COL19A1 (d), UNC13C (e). Error bands represent the 95% confidence interval. 
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Since genetic factors contribute to the risk for psychiatric diseases, we wanted to examine 
if gene expression was influenced by polygenic risk. Using the genotype data, we calcu-
lated polygenic risk scores for each individual in our cohort for a cross-disorder psychiatric 
phenotype [179] and schizophrenia [22]. As expected, PRS for the cross-disorder pheno-
type was significantly higher (p-value: 0.0056; Figure 4.25a) in psychiatric cases and PRS 
for SCZ was trend-line increased (p-value: 0.054; Figure 4.25b), consistent with the mixed 
diagnosis within our cohort.  

Figure 4.25: Polygenic risk scores between controls and psychiatric cases  a-b, Boxplots depict-
ing polygenic risk score (PRS) for the cross-disorder psychiatric phenotype (a) and schizophrenia (b) 
between controls and psychiatric cases. Groups were compared using one-sided t-test and p-value is 
shown. 

 

Next, we stratified the cohort based on cross-disorder or SCZ PRS (instead of disease status) 
and performed differential gene expression analysis for PRS. However, we found that 
polygenic risk score was not associated with any genes in most of the cell types 
(Supplementary Table 7). This could be due to the fact that SNP-based heritability only 
explains a proportion of the heritability estimated by family and twin studies; SNP-based 
heritability in the case of schizophrenia is 24% [22]. To reduce the multiple testing burden, in 
an exploratory analysis, we only focused on the subset of disease-associated genes (at FDR-
adj. p-value < 0.1; Table 4.9). We performed multiple testing correction on the nominal p-
value only considering this subset. We reasoned that disease-associated genes are most 
likely to be associated with PRS, and that we might have enough power to detect small 
effects. Even amongst this subset, very few genes were associated with PRS at FDR <0.1, 
some of which overlapped with age-regulated genes and were regulated in a congruent 
manner (Table 4.11 and Table 4.12). One example, NREP, is shown in Figure 4.26. It is 
downregulated with ageing, psychiatric cases show a lower expression and a higher cross-
disorder-PRS is associated with a lower expression. This could indicate that a hypothetical  



RESULTS Evidence of accelerated transcriptomic ageing in psychiatric disorders across 
multiple cell types  

 67 

 

critical expression threshold of NREP is reached earlier in psychiatric cases and thereby 
could contribute to accelerated ageing. An underlying driver for this shift in the ageing 
trajectory between healthy controls and psychiatric cases could be genetic factors (as 
indicated by the association with cross-disorder-PRS). Yet, the exploratory nature of this 
analysis must be emphasized. Thus, genes with shifted ageing trajectories in psychiatric 
disease are likely the result of different factors including genetics, socio-economic and 
behavioural changes linked to the experience of living with the illness, environmental 
exposures as well as medication. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: Example of a gene associated with age, disease status and cross-disorder PRS.  a-
b, Scatterplots depicting log normalized gene expression corrected for covariates for NREP. Expres-
sion shown along ageing with controls coloured in green and psychiatric cases in orange (a) and along 
cross-disorder (CrossD) PRS (b). Error bands represent the 95% confidence interval. 

Table 4.11: Number of genes associated with cross-disorder PRS (within the 
subset of disease-associated genes). Genes overlapping with age-regulated 
genes are also shown.  

Table 4.12: Number of genes associated with schizophrenia 
(SCZ) PRS (within the subset of disease-associated genes). 
Genes overlapping with age-regulated genes are also shown.  
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5 |  Discussion 
In this thesis, single nucleus RNA sequencing was used to characterize cell-type-specific 
gene expression changes associated with the ageing process in the human orbitofrontal 
cortex. Since the post-mortem brain cohort consisted of control individuals and individuals 
diagnosed with a psychiatric disease, the influence of disease status on ageing could further 
be explored. Integration of publicly available sn-RNA-seq datasets from healthy controls and 
individuals with AD allowed us to examine the potential role of age-related gene expression 
changes in AD in individual cell types. We were able to show that ageing affects the 
transcription of a substantial fraction of genes and that cell-type specific gene expression 
changes across cell types result in dysregulation of synaptic transmission on the pathway 
level. Moreover, we replicated age-regulated genes as well as the extent of gene expression 
change in several cell types using publicly available datasets. Further, an inhibitory neuron 
subtype, LAMP5 inhibitory neurons, was identified as severely affected by age. Next, we 
found a significant overlap in age-regulated genes and genes implicated in AD, most notably 
in astrocytes. We replicated previously shown transcriptomic age acceleration in individuals 
suffering from psychiatric disease. Finally, we show that gene expression of several genes 
is not only influenced by age but additionally by psychiatric diagnosis thereby revealing a 
convergent signature of ageing and psychopathology. In summary, the research presented 
in this thesis offers a comprehensive dataset that encompasses a substantial number of age-
regulated genes and pathways. Additionally, it provides evidence for an implication of age-
regulated genes in both neurodegenerative and psychiatric disease. 

 

5.1 Model systems for the study of ageing and ageing-related 
pathologies - post-mortem brain as an essential resource 

A lot of the insights into the ageing process at the cellular and molecular level stem from 
studies in animal models. These include studies in flies, worms, rodents, and non-human 
primates. Animal models allow for an examination of the effect of the ageing process in an 
intact organism at the level of behaviour, functionality, organs, and cells under controlled 
experimental conditions which also include age at death and mode of death (hardly 
controllable in humans) - an important factor for the quality of investigated tissues. It further 
enables the investigation of the effects of environmental exposures such as stressors or 
treatment interventions. These studies have immensely contributed to our current 
understanding of affected molecules, genes, and pathways during the ageing process. 
However, successful translation to the clinic of potential drug candidates identified in animal 
models for brain-related pathologies is still challenging. [207] A possible explanation lies in 
evolutionary differences between humans and our model systems, partly due to the massive 
expansion of the primate and specifically human cortex [208, 209]. One of the most widely 
used animal models in the study of brain diseases (including psychiatric and 
neurodegenerative disease) is the mouse. However, the human brain volume is roughly a 
thousand times larger than the mouse brain [210]. Moreover, the human brain is gyrified,  
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having allowed the brain to expand in volume and surface area, while mice belong to the 
lissencephalic species presenting a smooth cortex surface [211]. And even though we can 
identify homologous brain areas between the two species, especially certain regions in the 
human cortex may lack specific counterparts in the mouse [212]. As mentioned in the 
introduction of this thesis, rodents (including rats and mice) do not naturally present hallmarks 
of neurodegenerative disease and some non-human primates show accumulation of Aβ but 
rarely NFTs [116, 117]. All in all, this underscores the importance of the use of human-specific 
model systems when studying both normal and pathological ageing. 

Since the discovery by Takahashi and Yamanaka [213] that pluripotent stem cells could be 
induced via the expression of four transcription factors from adult somatic cells, this 
technology has been leveraged across scientific disciplines to reprogram cells from control 
donors and donors with a disease or phenotype of interest. These induced pluripotent stem 
cell (iPSC) lines can then be further differentiated into a cell type of interest, including the 
different cell types of the human brain. Additionally, subsequent research demonstrated the 
utility of iPSCs to differentiate 3D structures, so-called organoids, which represent tissue 
models. Cerebral organoids [214] show a similar cytoarchitecture to the cerebral cortex and 
contain both neuronal as well as glial cell types. Yet, they often contain only few glial cells, 
especially microglia, and they lack the vasculature present in brain. [215] iPSCs present other 
important limitations in particular for the research of ageing and ageing-related pathologies 
like the late-onset forms of neurodegenerative diseases: iPSC-derived neurons both as 2D 
cultures and in cerebral organoids resemble both in structure, function and transcriptome an 
embryonic stage of second-trimester pregnancy [216, 217]. Moreover, reprogramming of the 
somatic cells into iPSCs results in an embryonic-like cell state in which the epigenetic 
landscape has been reset and therefore information on cellular donor age is lost [218]. This 
is consistent with findings from various studies comparing iPSC-derived neurons from 
neurotypical controls and individuals with neurodegenerative disorders, such as AD and PD. 
These studies could only recapitulate some but not all pathological hallmarks and ageing-
related features of the donor cells were lost. [218] While examination of neurons 
differentiated from iPSCs with genetic mutations associated with the familial forms of the 
disease provides insight into pathological mechanisms, it is not clear how these findings 
relate to the late-onset (sporadic) forms of neurodegenerative diseases, which are by far the 
most common form. This emphasizes that iPSC derived neural cell types may not be the 
model of choice for studying age-related processes and late-onset forms of 
neurodegenerative diseases.  

Another promising technology is the direct induction of neurons (iNeurons) from somatic 
cells, which does not pass through an embryonic-like state. Direct induction of different 
subtypes of neurons including motor neurons [219], and dopaminergic neurons [220] has 
been successfully demonstrated. Importantly, Huh and colleagues [221] demonstrated that 
these neurons retain the age of the donor cells as estimated by DNA methylation via 
Horvath’s multi-tissue clock. Moreover, other ageing features such as impaired mitochondrial 
function and nuclear pore defects [218, 222] are present in iNeurons derived from old donors. 
Mertens and colleagues [223] used fibroblasts from patients with AD and controls to 
differentiate iNeurons. They demonstrated that AD iNeurons show cellular defects and 
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transcriptomic alterations with a high concordance with data from human post-mortem brain. 
Most studies so far have focused on the direct conversion of fibroblasts to diverse neuronal 
subtypes but protocols for the direct conversion of glial cells have recently been developed 
[224-226] and are starting to be leveraged for the investigation of their roles in 
neurodegenerative disorders [227]. Yet, using direct conversion protocols only individual cell 
types can be derived and studied. Moreover, conversion efficiency is a critical factor and is 
often low. Besides, lower replication of fibroblasts from older donors (used for direct 
conversion) has been shown [218, 221]. In addition, the direction conversion does not result 
in an expandable intermediate cell state (like iPSCs) making scaling of experiments a 
challenge. 

This highlights the need to directly investigate the adult human brain. Non-invasive imaging 
techniques such as structural and functional MRI can provide insights into regional volume 
changes and differences in functional network connectivity. However, little inference on the 
precise underlying molecular mechanism can be made. Human post-mortem brain 
represents the full complex organ and samples derived from this intact tissue have a donor-
specific genetic background and contain all the diverse interconnected cell types in their 
mature state having undergone changes related to ageing or disease. While post-mortem 
brain provides a snapshot of the brain’s state at the time of death, studies have shown that 
slices from human post-mortem brains, obtained within hours after death, have been 
successfully cultured thereby allowing a certain degree of experimental manipulation, 
including the assessment of new pharmaceuticals [207, 228]. Moreover, post-mortem brain 
samples of large cohorts have been used for the study of epigenetic, transcriptomic, and 
proteomic alterations during ageing and ageing-related disease [132, 133, 229, 230]. These 
studies investigating gene regulation, gene and protein expression have provided 
mechanistic insights into disease processes and helped pinpoint potential new drug targets 
as well as biomarkers. Overall, this underscores the importance of human post-mortem brain 
as a highly valuable complementary “model system” for the study of ageing and ageing-
related pathologies. 
 
 

5.2 Effect of ageing on the transcriptome at single cell 
resolution 

sn-RNA-seq allowed us to examine the effects of ageing on the different cell types in the 
brain. The cell types we were able to identify using a label transfer algorithm and manual 
curation with cell type marker genes included different types of excitatory as well as inhibitory 
neurons and different glial cell types. These identified cell types are consistent with other sn-
RNA-seq studies in the prefrontal cortex. Moreover, similar cell type proportions, with excit-
atory neurons constituting the vast majority of nuclei, have been previously reported [127, 
128, 132, 133, 157]. We found that most of the cell types do not change in abundance with 
ageing except for VIP inhibitory neurons (In_VIP) and OPCs, which decrease with age. The 
decrease of OPCs goes hand in hand with an expected increase in the oligodendrocyte pop-
ulation and matches results from studies in mice [114] and rhesus macaque [115]. Overall, 
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these findings are in agreement with the idea that normal ageing does not lead to a substan-
tial loss of neurons [99], whereas pathological ageing, such as in AD and PD, is linked to the 
death of (certain) neuronal cell populations. 

Differential gene expression analysis enabled us to investigate the transcriptomic changes 
that occur during ageing within each of the 20 identified cell types. We could detect gene 
expression changes in all of the cell types, except for endothelial cells. Interestingly, the 
transcriptome of brain endothelial cells from mouse hippocampus has been shown to 
undergo age-related changes influenced by circulatory cues from the blood [231]. Moreover, 
brain endothelial cells in aged mice have reduced expression of tight junction proteins and 
increased expression of TNF-α indicative of BBB dysfunction [232]. The lack of age-related 
gene expression changes in endothelial cells in this thesis could result from insufficient 
statistical power since only ~ 13,600 endothelial nuclei were recovered. However, other cell 
types with fewer nuclei showed age-related gene expression changes. Another possibility 
could be region-specific differences in the effects of age on endothelial cells supported by 
MRI analysis in humans showing that the age-related breakdown of the BBB starts in the 
hippocampus [233]. 

Comparison of the genes affected by ageing between the cell types showed that the majority 
were age-regulated in a cell-type specific manner. This was only partly driven by genes 
uniquely expressed in these cell types. Microglia and upper-layer excitatory neurons 
(Exc_L2-3) were the cells with the most uniquely expressed genes identified as age-
regulated. Within the microglia this is likely to reflect their unique roles in immune response 
and their different lineage origin. Upper-layer excitatory neurons were the cell type with more 
than 200,000 nuclei thus increasing the chance of detection of more lowly expressed genes 
compared to other neuronal cell types. 

In an attempt to normalize differences in statistical power between cell types, we calculated 
the ratio of number of age DE genes per one million sequencing reads. This revealed that 
not all cell types are equally affected by the ageing process: LAMP5 inhibitory neurons 
seemed to be especially vulnerable. Despite the differences in age-regulated genes between 
the cell types, ORA identified disruption of synaptic signalling and G-protein-coupled receptor 
signalling as convergent affected pathways across neuronal and glial cell types. Importantly, 
several metabolic pathways were dysregulated within the inhibitory neurons. Age-regulated 
genes in LAMP5 inhibitory neurons were over-represented in pathways involved in oxidative 
phosphorylation and cellular respiration. This is indicative of mitochondrial dysfunction, a 
mechanism previously linked to both ageing and neurodegeneration [234]. In order for cells 
to function properly, ATP synthesis is crucial, particularly in neurons that have high metabolic 
needs. This is essential for the maintenance and regulation of ion gradients, facilitating 
transport along axons, and enabling firing. [235] Thus, dysfunctional mitochondria could 
provide a mechanistic explanation for why LAMP5 inhibitory neurons were identified as the 
most strongly affected cell type. Consistent with previous reports from several species of 
primed, aged microglia [115, 158, 236, 237], genes upregulated with age in microglia were 
over-represented in biological processes involved in immune response. While other studies 
in humans [159] and mice [238] have found evidence for reactive astrocytes in ageing, we 
did not. On the one hand, this could be due to differences in sampling, since Krawczyk and 
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colleagues [159] obtained their human brain samples from brain surgeries, not post-mortem. 
On the other hand, Clarke and colleagues [238] compared different brain regions in mice and 
found aged cortical astrocytes up-regulated fewer reactive astrocyte genes than aged 
astrocytes in hippocampus or striatum indicating brain-region-specific differences.  

Disease enrichment for psychiatric and cognitive disorders amongst downregulated age DE 
genes of several cell types provided evidence for their involvement in the disease aetiology 
of these disorders. This is in line with age being one of the strongest risk factors for 
neurodegenerative disorders as well as studies suggesting similar biological pathways are 
affected by ageing and psychiatric disorders [239]. 

Importantly, we were able to validate age-regulated genes. Comparison of previous studies 
in human bulk tissue with our ‘full pseudobulk’ dataset derived by summing gene counts 
across all cell types showed good agreement. Moreover, the importance of examining cell-
type-specific gene expression changes is highlighted by the fact that within our ‘full 
pseudobulk’ analysis 2,387 DE genes were identified in contrast to a total of 5,161 genes 
identified as DE in at least one of the cell types. This shows that certain cell-type-specific 
changes get diluted when looking at the bulk tissue. In addition, we used data from three 
additional studies to validate age-related gene expression changes in specific cell types; 
purified astrocytes [159] and microglia [158] combined with RNA sequencing and LAMP5 
inhibitory neurons derived from another sn-RNA-seq dataset [157]. Within all three cell types, 
we were able to replicate a significant proportion of age-regulated genes and additionally 
show that the extent of the expression change (log2FC) was highly correlated. This strongly 
underlines the robustness of our results between datasets derived from different human 
samples and across methodologies. 
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5.3 LAMP5 inhibitory neurons - an inhibitory neuron class 
worth further exploration 

In this thesis, LAMP5 inhibitory neurons were identified as a cell type particularly affected by 
the ageing process given the highest relative number of age DE genes, which could be linked 
to mitochondrial dysfunction. Interestingly, the number of LAMP5 inhibitory neurons was 
shown to be reduced in the cortex and hippocampus of a mouse model of AD [240]. These 
changes in cell type numbers were also seen in human brains of individuals with AD [240]. 
Several genes involved in mitochondrial function were downregulated with age in our LAMP5 
inhibitory neurons and were also downregulated in inhibitory neurons of AD brains [132, 133]. 
Dysfunctional mitochondria could therefore represent a mechanistic link between ageing and 
AD: Age-related accumulation of malfunctioning mitochondria - in the presence of other AD 
risk factors - culminates in the loss of these LAMP5 inhibitory neurons. 

Zooming in onto this cell type, we were able to identify two different subtypes. LAMP5 
inhibitory neurons co-expressing NRG1 and FREM1 in contrast to LAMP5 inhibitory neurons 
co-expressing LHX6 and CHST9. This subclustering analysis revealed that in fact, LAMP5+ 
LHX6+ inhibitory neurons had the most relative age DE genes. In 2018, Tasic and colleagues 
[74] described this cell type for the first time in the mouse cortex. They referred to it as 
‘unusual’ given the co-expression of Lamp5 (which is expressed in inhibitory neurons derived 
from the caudal ganglionic eminence) with Lhx6 and Nkx2.1 (transcription factors of the 
medial ganglionic eminence). A study by Krienen and colleagues [187] compared the 
different inhibitory neuron populations between primates and mice and showed that LAMP5+ 
LHX6+ cells were eight times more abundant in the primate compared to the mouse cortex. 
They also demonstrated differences in the distribution of LAMP5+ LHX6+ and LAMP5+ 
LHX6- inhibitory neurons. LAMP5+ LHX6+ cells were primarily located in L5 and L6, whereas 
LAMP5+ LHX6- cells were found across L1-5, with the largest proportions in L2/3. 
Interestingly, transcriptomically cortical primate LAMP5+ LHX6+ cells are most similar to 
Lamp5+ Lhx6+ ivy cells of the mouse hippocampus. Ivy cells form part of the neurogliaform 
family of cells, which present different characteristics than the other inhibitory neuron classes. 
Their synapses have a wider synaptic cleft and some synaptic boutons lack a clear 
postsynaptic target. [241]. They therefore can signal via volume transmission affecting 
several surrounding neurons [241, 242]. 

Overall, however, LAMP5 inhibitory neurons are a relatively recently assigned/denoted 
inhibitory neuron class, and we are therefore lacking detailed functional characterization. A 
recent study by Machold et al. [243] highlighted that cortical mouse Id2 (Lamp5) expressing 
neurons are comprised of both neurogliaform cells and non-neurogliaform cells with different 
connectivity and spiking patterns. Since a subtype of LAMP5 inhibitory neurons has been 
shown to be primate-enriched in the neocortex and evidence from this thesis points to this 
subtype being strongly affected by the ageing process, further research warrants an in-depth 
characterization of the LAMP5 inhibitory class and subtypes in primate- or even human-
specific model systems. 
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5.4 Ageing and Alzheimer - is it all about a threshold? 
Since age is one of the most prominent risk factors for neurodegenerative diseases such as 
AD, we wanted to explore the relationship of age-regulated genes with genes dysregulated 
in AD. Comparison of age-regulated genes with AD DE genes in two studies comparing 
healthy controls and AD patients in individual cell types showed a significant overlap for 
upregulated DE genes in astrocytes and oligodendrocytes and for downregulated DE genes 
in astrocytes and excitatory neurons. This could suggest that astrocytes are especially 
susceptible to age-related changes relevant in the pathogenesis of AD. The overlap in 
astrocytes does not stem from changes related to reactive astrocytes, previously implicated 
in AD [244]. Rather, impairment in neuronal support seems to be a common feature. 
Interestingly, the expression level of several overlapping genes has been linked to measures 
of cognition or AD disease severity. For example, GRM3 - a metabotropic glutamate receptor 
- is downregulated with age in astrocytes and shows lower expression in AD. An SNP in 
GRM3, resulting in trend-level lower expression in human PFC, was associated with poorer 
cognitive performance [196]. RPH3A is involved in synaptic vesicle exocytosis and 
downregulated during ageing and in AD. Reduced protein levels of RPH3A in the cortex of 
AD patients negatively correlated with Aβ burden [198]. Moreover, higher protein levels of 
RPH3A in human dorsolateral prefrontal cortex were shown to be associated with cognitive 
resilience [197]. Other examples of age-regulated genes that have been linked to AD include 
NPTX2 and NRGN, two synaptic proteins. NPTX2 is downregulated with age across several 
excitatory neuron types. Several proteomic studies have consistently shown NPTX2 to be 
downregulated in AD brains [245]. Moreover, reduction in its concentration was positively 
correlated with rates of cognitive decline and has therefore been proposed as a prognostic 
biomarker for AD [246]. NRGN is downregulated with age across several cell types including 
excitatory and inhibitory neurons, microglia and OPCs. In addition, NRGN’s expression level 
has been shown to negatively correlate with Aβ and tau pathology burden and with dementia 
severity [247]. These only represent a few examples of genes whose expression level 
correlates with AD severity and age and may be unrelated. However, it is tempting to 
speculate - in analogy to PRS - that once a set of several interconnected genes (with 
individually small effects) involved in a variety of biological pathways surpasses an 
expression threshold, an individual may deviate from the path of healthy to pathological 
ageing in the presence of other risk factors (Figure 5.1). These risk factors include behaviour 
(diet, exercise, smoking), environmental exposures (stress, neurotoxins) and genetic make-
up (SNPs). Surpassing of the threshold would result in a state where compensatory 
mechanisms have been exhausted which leads to the manifestation of the disease. These 
genes could therefore represent potential candidates for drug targeting; attempting to 
maintain/prolong ‘a healthy’ ageing trajectory. 

In addition, we identified two genes (KCTD17 and LINGO1) whose expression was regulated 
in opposite direction with age and in AD. KCTD17 is a member of the potassium channel 
tetramerization domain containing protein family, which has been linked to 
neurodegeneration and psychiatric diseases [248]. LINGO1 has been shown to regulate 
myelination [249] and to influence cleavage of Aβ precursor protein (APP) via direct 
interaction [250]. Even though these are only individual genes, and both ageing and 
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neurodegenerative processes are complex with multiple genes and pathways involved, these 
genes could also be interesting candidates for novel therapeutics. Interestingly so, a 
preclinical study in a transgenic mouse model of AD showed that the administration of an 
antibody directed against LINGO1 reduces Aβ burden and ameliorated cognitive defects 
[251]. However, a phase-II clinical trial for the use of LINGO1 antibody in multiple sclerosis 
failed to meet the primary endpoint of disability improvement [252]. Thus, further (pre-clinical) 
studies are needed to investigate the functional roles and evaluate the therapeutic potential 
of KCTD17 and LINGO1 for AD. 

 

 

 

 

 

 

Figure 5.1: Hypothetical model of how cumulative effects of age-regulated genes lead to 
pathological ageing  This figure displays a hypothetical model of how cumulative effects of age-
regulated genes lead to pathological ageing in different individuals at different ages. Healthy brain 
function is brought about by the complex interplay of diverse cell types in the brain. Ageing leads to 
gradual gene expression changes in a cell-type-specific manner resulting in altered biological 
processes, part of which are compensatory. However, a set of several interconnected genes (with 
individually small effects) involved in a variety of biological pathways will surpass a critical cumulative 
expression threshold at a certain age. Since compensatory mechanisms have been exhausted the 
individual shifts from the path of healthy to pathological ageing resulting in the manifestation of 
neurodegenerative disease. The age at which this shift to pathological ageing occurs is different for 
each individual depending on other risk factors, including genetics (SNPs), lifestyle (diet) and the 
environment (exposure to neurotoxins). Figure was created using Biorender.com. 
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5.5 Accelerated ageing in psychiatric disease - Evidence from 
different biological measures 

Studying the ageing process in humans is not a trivial task considering that chronological 
age is not necessarily representative of biological age. This is demonstrated by the great 
inter-individual variability in how fast individuals visibly age, differences in cognitive 
performance and age-related frailty [253]. Thus, several different biological measures 
derived from different tissues and using different modalities have been used as a means to 
estimate biological age. So-called epigenetic clocks are a commonly used method utilizing 
the methylation level of a set of cytosine guanine dinucleotides (CpGs) in the DNA for the 
prediction of biological (DNA methylation) age (DNAmAge). One of the first epigenetic clocks, 
the Hannum clock [254], was derived from whole blood samples, whereas Horvath’s clock 
[163] was derived from multiple tissues. Other biological age predictors use gene expression 
to predict biological age. Peters et al. [255] estimated biological age from blood samples 
using the expression level of ~ 1500 genes. Lin et al. [49] used gene expression from ~ 70 
genes from human post-mortem brain to construct a molecular brain age calculator. 
Moreover, structural MRI has been used as a neuroimaging biomarker to develop the brain 
age gap estimation (BrainAGE) to predict biological brain age. Common for all biological age 
predictors is that the deviation of the estimated biological age from the chronological age is 
used as a measure of age de- or acceleration. 

Several lines of evidence indicate accelerated ageing in psychiatric disease. Severe mental 
disorders, across diagnosis, are linked to shorter life expectancy, which means on average 
dying 10 - 20 years earlier compared to the general population. [44] While a portion of this 
excess mortality is attributable to unnatural causes of death including suicide and accidents, 
more than two-thirds are due to physical disease [256]. These include cardiovascular and 
respiratory disease as well as infections [44]. The increased risk for cardiovascular disease 
is partly driven by lifestyle factors including lack of exercise, unhealthy diet and smoking 
[256]. Additionally, antipsychotic medication is linked to an increased risk for gaining weight 
and diabetes mellitus [256]. Furthermore, several studies have found associations with 
accelerated biological ageing and psychiatric disease. For example, Han and colleagues [46] 
found increased epigenetic age in individuals suffering from MDD based on biological age 
estimates from DNAm measurements in blood and post-mortem brain. Lin et al. [49] 
developed a transcriptomic brain age predictor and showed significantly accelerated brain 
ageing in individuals with SCZ and BPD. Moreover, structural brain ageing (BrainAge) was 
shown the be significantly accelerated in MDD, SCZ and BPD with psychosis [257, 258]. 

In this thesis, epigenetic age in brain was not accelerated in psychiatric cases. Given that 
the majority of psychiatric cases in our cohort suffered from SCZ, this finding is consistent 
with other studies in post-mortem brain examining epigenetic age [259, 260]. On the other 
hand, we were able to replicate the results of Lin et al. [49] demonstrating accelerated 
transcriptomic age in cases with psychiatric disorders. This ‘discrepancy’ between epigenetic 
and transcriptomic age acceleration demonstrates that different estimates of biological age 
are unlikely to capture the same component of the bio-physiological ageing process [261]. 
This is also underlined by the fact that e.g. different epigenetic clocks which are based on  



DISCUSSION Accelerated ageing in psychiatric disease - Evidence from different biological 
measures  

 78 

 

the same biological measure - DNA methylation (though different CpGs) - do not necessarily 
show association to the same outcome variables [261]. Belsky and colleagues [262] 
compared three different CpG-based epigenetic clocks and their association with measures 
of physical and cognitive function. They showed that only one of the three clocks, the 
Hannum clock [254], was significantly associated with measures including balance and motor 
coordination as well as cognitive test scores [262]. In general, this highlights the necessity to 
deepen our understanding of the diverse biological measures used and which aspects of 
ageing they represent. 

Additionally, using our sn-RNA-seq data, we showed that the expression of several genes is 
influenced both by age and psychiatric disease. A concordance in directionality of expression 
change with age and in psychiatric cases indicates a shared signature across multiple cell 
types. Our exploratory analysis using polygenic risk scores could indicate that genetic factors 
may contribute to some of the gene expression changes of age- and disease-associated 
genes. Overall, the identified transcriptional changes, likely influencing cellular connectivity, 
could therefore potentially represent the molecular underpinnings of structural and functional 
changes in the brain observed during ageing and in psychopathology. The use of psychiatric 
medication, which increases the risk for metabolic syndrome, could be a potential 
confounding factor contributing to the observed accelerated transcriptomic ageing. However, 
accelerated structural BrainAge was found in patients suffering from psychosis independent 
of being medicated or not and BrainAge was not linked to cumulative antipsychotic 
medication exposure [263]. In addition, our results indicate that gene expression is likely 
influenced by other factors besides genetics such as living with a chronic psychiatric disease, 
which entails behavioural and lifestyle adaptations and environmental exposures. 
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5.6 Limitations 
Every study comes with certain limitations, and these should therefore be noted. Using 
human post-mortem brain does not allow the researchers to control for several variables as 
compared to studies in animal models. These include genotypic background, environmental 
exposures, lifestyle, medication use, and mode of death, which all contribute to inter-
individual differences at the gene expression level. Additionally, all samples cannot be 
processed for experiments on the same day and effects of these experimental batches have 
been shown to influence results. It is therefore essential that during study design, 
experimental procedures in the laboratory and during the analysis both sample and 
experimental factors are taken into account. Thus, we assigned samples into experimental 
batches using a balanced design not confounded by our variables of interest including age 
and disease status. Moreover, European ancestry of all individuals within our cohort was 
confirmed by genotyping. In our statistical model, we included covariates shown to influence 
gene expression including PMI, RIN, pH, and biological sex. However, due to all these 
potentially confounding factors common to human post-mortem studies, replication using 
data obtained from independent cohorts is essential and ensures validity of findings. Thus, 
by comparing our results both at bulk and single-cell level to previously published datasets 
we demonstrate robustness of our results.  

Even though we have shown evidence for accelerated transcriptomic ageing in psychiatric 
cases and identified genes with congruent regulation between age and disease, the 
contributions of genetic risk and additional factors that come with suffering from a psychiatric 
disease including lifestyle and medication use could not be disentangled. In order to do so, 
larger samples with a detailed longitudinal characterization of individuals such as from birth 
(e.g. via national health care registries) would be necessary. Despite the fact that this study 
presents one of the largest post-mortem cohorts profiled using sn-RNA-seq, future studies 
with even more samples and thus increased statistical power will likely identify additional 
genes associated with psychiatric disease in additional cell types. It will be interesting to 
examine if a part of these genes also shows congruent regulation with age-associated genes 
providing further insights into accelerated ageing at the cell-type-specific level. Additionally, 
some of the psychiatric cases within our cohort died by suicide. A recent study by Mullins 
and colleagues [264] showed that certain genetic loci contributing to risk for suicide are 
independent of those overlapping with risk for psychiatric disorders. However, since this 
subgroup within our cohort was relatively small, effects of suicide could not be further 
investigated. 

sn-RNA-seq has become a widely applied technique over the last 5 - 10 years due to the 
suitability of nuclei isolated from frozen tissue for transcriptomic profiling. Compared to whole 
cells, nuclei even present certain advantages such as less bias in cell capture, which can 
lead to the (additional) identification of rare cell types [126, 265]. What is more, dissociation 
of intact cells from tissues can affect the transcriptome. Yet, nuclei do not allow for the 
examination of mitochondrial transcription, a process reported to be affected both in ageing 
and neurodegenerative disorders. Moreover, using the three-prime sequencing method 
applied examination of splicing, shown to be affected by ageing, in neurodegeneration [266, 
267], and in psychiatric disorders [268, 269], is not possible. In addition, we were not able to 
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detect all cells of the cerebrovasculature, such as pericytes and vascular smooth muscle 
cells, impeding the investigation of the effects of the ageing process on their transcriptome. 
Due to their sparsity, enrichment methods are necessary to capture these cells in sufficient 
numbers and recent studies have started to characterize their diversity and their implications 
in neurodegenerative diseases [270, 271]. 

 

5.7 Future directions 
Going forward several interesting questions are yet to be answered. Examination of the cell-
type-specific regulatory landscape, including microRNAs, long non-coding RNAs, DNA 
methylation, histone marks and chromatin accessibility, and its changes during ageing will 
provide insights into the diverse gene regulatory mechanisms involved and their relation to 
observed gene expression changes. Moreover, the on-going development of methods to 
quantify the proteome of single cells will enable investigation of how the observed 
transcriptional changes are translated to changes in the proteome. Gene co-expression 
network analysis could be further applied to group genes with similar expression patterns 
and identify driver/hub genes. However, currently, methods that integrate co-expression 
networks across different cell types have yet to be developed. Exploring how a whole network 
of genes in interconnected cell types changes in expression would open the opportunity to 
understand changes seen at the circuit level. Furthermore, this thesis examined only linear 
age-related expression changes. Since it is probable that certain genes may present more 
complex patterns of expression during ageing, these should be explored in future studies. 

The LAMP5 inhibitory neuron class is strongly affected by ageing (as shown in this thesis) 
and in AD awaits a deep characterisation of its subtypes including the distribution of these 
subtypes in different brain regions and cortical layers, electrophysiological properties and 
how these cells integrate on a circuit level. Understanding all these details will provide clues 
on what leads to their vulnerability to ageing and neurodegeneration. 

This study correlated gene expression changes with age. However, the lack of information 
on cognitive measures of the individuals impeded the investigation of the relation to ageing-
related outcomes including cognitive decline. Therefore, longitudinal prospective studies are 
needed which perform deep phenotyping (including cognitive measures, structural and 
function brain imaging) ante-mortem as well as pathological examination and molecular 
investigation of brain tissues post-mortem. The ROSEMAP project [272] is one such 
longitudinal study focusing on ageing and dementia. A recent publication [273] leveraging 
data from this project evaluated differences in cellular neocortical populations between 
individuals with different levels of cognitive function/impairment with and without AD 
pathology and diagnosis at time of death. The authors thereby identified altered cellular 
communities in AD. 
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5.8 Conclusions 
We are part of an ageing society. While this demographic development is proof of immense 
improvements in prevention, diagnosis, and treatment of a variety of diseases, we are now 
facing a new pandemic with the rise in prevalence of age-related neurodegenerative 
disorders. Over the last decades, we have deepened our insights into both the normal and 
pathological ageing process of the brain using animal models, in-vitro model systems as well 
as human subjects. All of this scientific work revealed shared and species-specific changes 
at the structural, functional, cellular, and molecular level, however disease-modifying 
treatments for neurodegenerative disorders have yet to be identified. 

To date, the work presented in this thesis is the first study to examine age-related gene 
expression changes in the human brain at cell-type resolution and to evaluate differences in 
the gene expression ageing trajectories between healthy controls and individuals with 
psychiatric disease. We identified a large number of age-regulated genes in individual cell 
types and showed that age-associated genes overlap on the cell-type level with changes 
observed in Alzheimer’s disease, especially in astrocytes. Finally, we demonstrated that 
several genes are not only age-regulated but additionally associated with psychiatric 
diagnosis highlighting a convergence of the signature of ageing and psychopathology across 
multiple cell types. This could provide a biological explanation of the increased risk of 
cognitive decline and neurodegenerative disease in patients with psychiatric disorders. 
These findings have important clinical implications, as they highlight the need for better 
monitoring of patients with psychiatric diseases for age-related disorders such as cognitive 
decline. Moreover, early prevention and intervention strategies could improve outcomes for 
patients. 
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7 |  Appendix 

7.1 Supplementary Tables 
Supplementary Table 1: Comparison of number of nuclei per cell type between controls and 
psychiatric cases. 
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Supplementary Table 2: Top ten upregulated DE genes (based on log2FC) per cell type 
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Supplementary Table 2 CONTINUED 
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Supplementary Table 3: Top ten downregulated DE genes (based on log2FC) per cell type. 
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Supplementary Table 3 CONTINUED 
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Supplementary Table 4: Over-representation analysis of biological processes in upregulated 
age DE genes - summarized using semantic similarity analysis (only cluster representative shown). 
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Supplementary Table 5: Over-representation analysis of biological processes in downregulated 
age DE genes - summarized using semantic similarity analysis (only cluster representative shown). 
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Supplementary Table 5 CONTINUED 
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Supplementary Table 6: Disease enrichment of upregulated age DE genes. 
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Supplementary Table 7: Number of differentially expressed genes associated with cross-
disorder (CrossD) PRS and schizophrenia (SCZ) PRS shown per cell type at FDR-adjusted p-
value < 0.1. 
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