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1 INTRODUCTION 

1.1 LUNG CANCER 
1.1.1 Epidemiological facts 

Lung cancer is one of the most common diseases worldwide and a leading cause of death in 

adults. Despite new techniques of detection and treatment, the 5-year survival rate for lung 

cancer patients continues to be < 15% (Fry et al., 1996). The main reason for this low survival 

rate is that neoplastic lesions are usually detected at a late invasive stage. Early detection of 

lung cancer, preferably in stage I or carcinoma in situ, can increase the 5-year survival rate. 

In many countries lung cancer is most frequently diagnosed between the sixth and the seventh 

decade of life. While lung cancer has been predominantly a disease of men, the increase in 

cigarette smoking by women has changed this situation dramatically. In most developed 

countries mortality rates range from 35 to 95 deaths per 100,000 in men and 10 to 20 deaths 

in women (Cancer Rates and Risks, 1997). Every year approximately 46,000 cases of 

bronchial carcinoma are diagnosed in Germany, and around 40,000 patients die from this 

disease (Statistisches Bundesamt, 1996). 

Lung cancers are of epithelial origin. Epithelial bronchogenic carcinomas can be divided into 

three categories on a histological basis (Table 1): 1. benign, 2. dysplasia and carcinoma in 

situ, 3. malignant. The malignant tumors (class III) are further subdivided into small cell 

carcinoma (SCLC) and three other groups: squamous cell carcinoma, adenocarcinoma, and 

large cell carcinoma, which are termed non-small cell lung cancer (NSCLC) (WHO, 1997). 

The minor groups, adenosquamous carcinoma, carcinoid tumor, and others comprise only 5% 

of the total. 

Non-small-cell lung cancer is the most common lung malignancy, accounting for 75% of all 

lung cancers. At the time of diagnosis, approximately 60% of non-small-cell lung cancer 

cases are locally advanced or metastatic, and more than 85% of patients diagnosed with this 

neoplasm die. The 5-year survival rate of patients presenting with locally advanced disease is 

about 10%, and for those with stage IV disease survival drops to 1% (Mountain, 1997). As 

this situation has not changed for the past two decades, new approaches for early diagnosis 

and more effective treatment are needed. 
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Table 1. World Health Organization histological classification of epithelial bronchogenic 
carcinoma (1997). 

Class I          Benign 
Class II         Dysplasia and carcinoma in situ 
Class III        Malignant 

A. Squamous cell carcinoma (epidermoid) and spindle (squamous) carcinoma 
B. Small cell carcinoma 

1. Oat cell 
2. Intermediate cell 
3. Combined oat cell 

C. Adenocarcinoma 
1. Acinar 
2. Papillary 
3. Bronchoalveolar 
4. Mucus-secreting 

D. Large cell carcinoma 
1. Giant cell 
2. Clear cell 

 

1.1.2 Etiology of bronchial carcinoma 

Approximately 90% of lung cancers develop in individuals who have a history of tobacco 

consumption. In addition, a variety of occupational and environmental carcinogens increase 

the risk of lung cancer. Occupational exposure to asbestos, radon, and metals such as beryl-

lium (known to be an animal carcinogen), copper, chromium, nickel, arsenic, and coal 

products carries  an  increased  risk  for  lung  cancer which is independent of that of smoking 

(Fraumeni, 1982). A dose-response effect has been established for occupational and probably 

non-occupational exposure to asbestos (Seidman et al., 1996). This effect is synergistic with 

that of tobacco smoke (Kjuus et al., 1986). While asbestos exposure increases the risk of lung 

cancer by fivefold among smokers (Hammond et al., 1979), radon exposure increases it by 

about threefold (Samet, 1989). The evidence of risk from environmental exposure to radon 

has been considered equivocal, but a meta-analysis of the eight largest domestic studies 

showed a significantly increased trend for lung cancer risk from indoor radon exposure. There 

is no evidence that the risk lessens if the dose is reduced (Lubin and Boice, 1997). 

Dietary habits seem to influence lung cancer risk as well. Several studies have demonstrated 

that a diet deficient in anti-oxidant micronutrients such as carotenoids and vitamins C and E, 

which act as free-radical scavengers, and selenium, a component of anti-oxidant enzymes, 
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may increase the risk of lung cancer (Kuale et al., 1983; Ziegler, 1989). Although evidence 

for the involvement of these individual components is contradictory, the results of two studies 

suggested an inverse association between vegetable and fruit intake and lung cancer 

(Steinmetz et al., 1993; Le Marchand et al., 1993). 

Molecular genetic analyses suggest that there may also be a genetic predisposition to certain 

types of cancer. An increased frequency of expression of certain oncogenes or tumor 

suppressor genes (e. g., ras and p53) or genes encoding enzymes involved in the metabolism 

of carcinogens may be associated with an increased risk of lung cancer (Heighway et al., 

1986; Shields, 1993). Chromosome abnormalities are present in lung cancer cells, but it is far 

from clear that these anomalies are the cause of the cancer rather than the result of the genetic 

instability observed in malignant transformation (Birrer and Minna, 1988). The causal chain 

of genetic changes has not yet been elucidated. 

The definitively most effective way of decreasing death rates from lung cancer is prevention, 

i.e., to stop smoking. Squamous and small cell carcinomas as well as adenocarcinomas are 

associated with smoking. Their relative risk increases with the number of cigarettes smoked, 

the duration of smoking, the lower the age when starting to smoke, the extent of inhalation, 

the tar and nicotine content of the cigarettes smoked, and the use of unfiltered cigarettes 

(Loeb et al., 1984). Unfortunately, there is a long latency between stopping smoking and risk 

normalization (Beckett, 1993). The risk of carcinoma correlates with the amount of smoked 

cigarettes. The so-called pack years factor is the product of the daily smoked cigarette packs 

and the years of consumption. This means that even in cases of abstinence for 20 or 30 years, 

the cancer risk for people who quit smoking remains higher than for people who have never 

smoked (Samet, 1991). 

The tobacco business plays a very important financial role in the world economy. Alone in 

Germany tobacco consumption continues to rise annually by about 1.5%. The German Public 

Treasury reported in 1998 tax revenues from tobacco products amounting to 22 billion DM. 

This probably explains why the Government does not fight nicotine abuse more energetically. 

1.1.3 Diagnostic approaches to lung cancer 

Since early lung cancer lesions do not cause symptoms, less than 13% of lung cancer patients 

can be successfully treated with the help of surgery, chemotherapy, or radiotherapy. Chest 
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symptoms usually appear when the cancer is advanced, and then only palliative treatment is 

possible. Experience with other organs containing epithelial cells such as the cervix, 

esophagus, and colon has shown that if the neoplastic lesions can be detected and treated 

during the intraepithelial stage, the cure rate can be improved (Lam et al., 1993a). 

Evidence of systemic symptoms may be detected only by taking a detailed history. A normal 

clinical examination does not exclude the possibility of lung cancer, particularly in the 

presence of finger clubbing. Therefore, patients with unexplained or persistent chest 

symptoms should have a chest X-ray (Thatcher, 1998). Chest X-ray used to be one of the 

most important tools in the diagnosis of lung cancer. It detects some tumors, but in case of 

hidden tumors an X-ray must be repeated after a couple of weeks. X-ray does not exclude the 

possibility of mediastinal tumors. Computed tomography (CT) provides a far better resolution 

of the lung lesions than X-ray film. Moreover, CT imaging can often detect lesions that 

cannot be resolved on X-ray film. It also allows the measurement of hilar and mediastinal 

lymph nodes and the investigation of the metastatic status of the liver and adrenal glands for 

use in staging. Magnetic resonance imaging (MRI) does not offer any advantage over CT 

scanning, and the clinical value of radionuclide scanning is limited by its lack of specificity 

(Kies et al., 1978; Little et al., 1986).  

It is important to note that successful diagnosis and therapy of bronchial carcinoma depend on 

the histology of the neoplasias and their spread. Despite the advanced treatment modalities for 

small intraepithelial neoplastic lesions in the tracheo-bronchial tree, the identification and 

localization of such tumors remain problematic. Novel methods for detecting and localizing 

early lung cancer, therefore, deserve particular attention. One such method is a solid-state 

microscopy that is used for screening the cytology of sputum specimens. Sputum cytology is 

the only non-invasive method that can detect pre-malignant lesions or carcinoma in situ in the 

tracheo-bronchial tree. Unfortunately, the clinical benefit of sputum cytology is low (Lam et 

al., 1993b). If three sputum samples are obtained, it is possible to diagnose up to 80% of 

central tumors, but the method’s efficacy decreases for peripheral tumors, plummeting to 20% 

for those less than 3.0 cm in diameter (Ginsberg, 1997). It is, however, possible to improve 

the method’s sensitivity by measuring the spatial variability of deoxyribonucleic acid (DNA) 

distribution in the nuclei of normal bronchial epithelial cells. Normal cells growing in the 

proximity of cancerous cells exhibit different DNA distribution patterns than normal cells of 
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individuals without cancer. This phenomenon is known as malignancy-associated changes 

(MAC; Burger et al., 1981). 

Sputum examination has one limitation: it does not provide information about the site of 

origin of the malignant cells. Currently, bronchoscopy is the only available diagnostic tool 

that can localize small, radiologically occult early cancers and provide specimens for 

cytological and histological investigations. Although it is an invasive technique, it can be 

safely performed under local anesthesia, with or without sedation. Nevertheless, the detection 

and localization of occult cancers by conventional fiber optic bronchoscopy still present 

difficulties. The use of conventional white light bronchoscopy prior to surgery is likely to 

miss significant dysplasia or carcinoma in situ in about 60 to 70 percent of cases. The main 

reason for this is the size of such carcinomas: they are only a few cell layers thick and have a 

surface diameter of a few millimeters (Woolner et al., 1984). These small, thin lesions may 

not produce any abnormality that is visible to conventional white-light bronchoscopy. In some 

cases, subtle changes such as an increase in redness, granularity, or a slight thickening of the 

mucosa may be noted. While these changes are often observed with malignancies, they may 

also be associated with a variety of chronic irritative conditions (Lam et al., 1993a). 

1.1.4 Early detection, staging, and prognosis 

Recent advances in imaging technology have not yet fulfilled their promise for screening lung 

cancer patients at risk. Strategies for dealing with early lung cancer fall into three categories: 

true screening programs for the evaluation of asymptomatic individuals; early detection 

programs for the evaluation of patients presenting with ambiguous symptoms; and early 

intervention programs aimed at stopping or reversing the processes involved in lung 

carcinogenesis before the development of invasive malignancy (Wagner and Ruckdeschel, 

1995). 

The value of screening for lung cancer in persons at increased risk remains controversial. 

Four randomized studies have been performed: Memorial-Sloan Kettering (Melamed et al., 

1984) and John Hopkins Lung Projects (Frost et al., 1984) compared annual chest 

roentgenograms in a control group with roentgenograms and sputum cytology in an 

experimental group. The Mayo Lung Project and the Czechoslovak study compared regular 

and frequent rescreening roentgenograms in an experimental group with sporadic or 

infrequent re-screening in a control group. These trials came to the conclusion that screening 
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for lung cancer is not beneficial. Improvements of certain aspects of screening were also taken 

into consideration, but only automated image cytometry in sputum analysis seems to yield 

better results than classic sputum cytology (Palcic et al., 1991).  

Restricting screening to smokers with impaired expiratory flow might enhance its efficacy, as 

smokers with chronic obstructive pulmonary disease (COPD) have more than threefold higher 

incidence of lung cancer than do smokers without COPD (Petty, 1995). The use of low-dose 

CT scanning might improve the early detection of small cancers by standard and lateral 

roentgenograms (Ryan, 2001). Furthermore, the search for potential tumor markers detectable 

in early bronchial neoplasia (Lang et al., 2000) or in blood is still ongoing (Chen et al., 1996). 

No screening strategy has yet been shown in a prospective trial to reduce lung cancer 

mortality. However, screening of a high-risk group of male smokers 45 years of age or older 

could provide a shift to diagnosis at an earlier stage and consequently make the findings of 

CT studies more reliable (Wagner, 1995). 

It is important to estimate the stage of disease at diagnosis in order to determine the most 

suitable management for each individual patient. The method of staging now used worldwide 

is the TNM notation proposed by Denoix (1994). This system  is  based  on  the  work  of  

Mountain (Mountain et al., 1974; Mountain, 1986, 1989, 1997). T stands for tumor (its size 

and how far it has spread within the lung and to nearby organs), N for spread to lymph nodes, 

and M for metastasis. The TNM classification provides a semi-quantitative description of the 

local and distant spread of tumor growth. Primary tumors are divided into four categories (T1–

T4), depending on size and local infiltration. Lymph node spread is described according to site 

(N1–N3), and distant metastatic spread as absent (M0) or present (M1). Four stages: I, II, III 

(subdivided into IIIA and IIIB), and IV are defined. A new staging system has recently been 

approved by the UICC (International Union Against Cancer) and AJCC (American Joint 

Committee on Cancer) in which stages I and II have also been subdivided (Ginsberg, 1997; 

Table 2). Mediastinoscopy – a technique for determining the involvement of superior 

mediastinal lymph nodes - can facilitate accurate staging of tumors, which have not already 

been assessed as inoperable. Video-assisted thoracoscopy allows the identification of 

peripheral nodules that can then be biopsied or excised using minimally invasive techniques 

(Mack et al., 1992). Thoracotomy allows the most refined staging, but may differ from 

assessments based on previous diagnostic procedures (Fernando and Goldstraw, 1990). 
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Table 2. Staging of non-small cell lung cancer (WHO, 1997) 

Current staging* 
Stage 0  Carcinoma in situ 
Stage IA  T1N0M0 
Stage IB  T2N0M0 

Stage IIA  T1N1M0 
Stage IIB  T2N1M0 

T3N0M0 
Stage IIIA  T3N1M0 
                                   T1-3N2M0 
Stage IIIB  T4 any N M0 
                                    Any T N3M0 
Stage IV  Any T any N M1 
* Staging is not relevant for occult carcinoma, designated TxNoMo. 

The two most important functions of a staging system are to estimate the patient’s prognosis 

and to guide suitable treatment. Unfortunately, staging systems are neither perfect nor can 

they provide absolute criteria with which every clinical scenario can be managed (Mountain, 

1986). Even so, surgery remains the treatment of choice for all patients with clinical stage I or 

II disease (Naruke et al., 1988). Surgical resection is, however, possible in only 20% to 30% 

of all patients with NSCLC, mainly because of locally advanced disease and a high incidence 

of distant metastases. For early-stage resectable NSCLC, the 5-year survival rate is 60% for 

stage I, 40% for stage II, and 20% for limited stage IIIA; in case of mediastinoscopy-positive 

N2 disease, 5-year survival drops to 5% - 10%. The 5-year survival rate is even 0% in 

unresectable, locally advanced, bulky stage IIIA or IIIB diseases (Mountain, 1997; Nesbitt et 

al., 1995). 

In SCLC and many other malignancies, the serum lactate dehydrogenase levels appear to be 

an independent survival parameter (O’Connell et al., 1986; SØrensen et al., 1989). Other risk 

factors under investigation include ploidy, expression of epidermal growth factor receptors, 

neuroendocrine and genetic markers on the tumor cells (Ginsberg et al., 1997) and a 

carbohydrate antigen related to the blood group antigen H (Miyake et al., 1992). SCLC has a 

greater metastatic potential and is more sensitive to radiation treatment and chemotherapy 

than NSCLC. In the past, the most consistent prognostic variable in small-cell lung cancer 

was the spread of disease as determined by staging. The Veteran’s Administration Lung 

Cancer Study Group developed a simple two-stage system for SCLC:  limited disease (LD) 
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usually means that the cancer involves only one lung and the lymph nodes on the same side of 

the chest. Extensive disease (ED) signifies that the cancer has spread to the other lung, to 

lymph nodes on the other side of the chest, or to distant organs. The probability of survival for 

LD patients is significantly superior to that for patients with ED (Shepherd et al., 1993). 

1.1.5 Normal lung physiology and lung cancer biology 

The lungs are two sponge-like organs located in the chest on the right and the left sides. Each 

is divided into several lobes. Together with the heart, great vessels, esophagus, thymus, and 

certain nerves, the lungs completely fill the thoracic cavity. They have a highly organized 

structure consisting of air-containing tubes, alveoli, blood vessels, and elastic connective 

tissue. Air is drawn in via the nose or mouth, through the trachea or windpipe, and then into 

the bronchi, tubes that enter into each lung. The bronchi divide further into bronchioles. The 

airways within the lungs are the continuation of those connecting the lungs to the nose and 

mouth. Termed the conducting portion of the respiratory system, these airways constitute a 

series of highly branched tubes that become smaller in diameter and more numerous at each 

branching, much like arteries and arterioles. The smallest of these tubes end in tiny blind sacs, 

the alveoli, which number approximately 300 million. All portions of these air pathways and 

alveoli receive a rich supply of blood via the blood vessels, which constitute a large portion of 

the total lung tissue (Fig. 1). 

This conducting system of tubes serves several important functions: 

• The epithelial linings contain hair-like projections, called cilia that constantly beat 

toward the pharynx. These cilia line the respiratory airways to the end of the 

bronchioles. In the same regions are epithelial glands, which secrete mucus.  

• Particulate matter, such as dust contained in the inhaled air, adheres to the mucus, 

which is constantly moved by the cilia to the pharynx, and is then swallowed. Besides 

keeping the lungs clean, this mucus escalator is an important component of the body’s 

defenses against bacterial infection, since many bacteria enter the body on dust 

particles. A major cause of lung infection is probably due to a reduction of ciliary 

activity by noxious agents; a single cigarette can cause the cilia to become non-motile 

for several hours. This coupled with the stimulation of mucus secretion induced by 

these same agents, may result in partial or complete airway obstruction due to the 
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 air flows through the respiratory passages, it is warmed and moistened by contact 

stationary mucus. A second protective mechanism is provided by the phagocytic cells, 

which are present in large numbers in the respiratory tract lining. These cells, which 

engulf dust, bacteria, and debris, are also injured by cigarette smoke and other air 

pollutants. 

 

 

Figure 1: Schematical drawing of the human airway system. The airways and the 
esophagus are indicated in red. This picture was taken from Human Physiology, The 
Mechanisms of Body Function, Vander A. J, Sherman J. H. and Luciano D. S.; third edition 
1980, McGraw-Hill Book Company. 

• As

with the epithelial lining. 
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• The vocal cords, two strong bands of elastic tissue, lie stretched across the lumen of 

the larynx. The movement of air past them causes them to vibrate, providing the tones 

of phonation. 

• The walls of the respiratory airways contain richly innervated smooth muscle sensitive 

to certain circulating hormones, e. g., epinephrine. Contraction or relaxation of this 

muscle alters the resistance to air flow.  

Gas exchange in the lungs takes place at the alveoli. They are lined by a continuous single 

thin layer of epithelial cells resting on a thin basement membrane that turn rests on a very 

loose mesh of connective tissue elements constituting the interstitial space of the alveolar 

walls. Most of the alveolar wall is occupied by capillaries, whose endothelial lining is 

separated from the alveolar epithelial lining by only the very thin interstitial space. 

The alveolar epithelium also contains some thicker specialized cells (type II cells) that 

produce surfactant. The interstitial space contains phagocytic cell (macrophages) and other 

connective tissue cells, which function as part of the lung’s defense mechanisms. Finally, 

pores in the alveolar membranes permit some flow of air between the alveoli. This collateral 

ventilation can prove very important when the duct leading to an alveolus is occluded by 

disease, since some air can still enter via pores between the alveolus and adjacent alveoli 

(Vander et al., 1980; Fig. 2).  

As mentioned above, the lung consists anatomically and physiologically of at least three sepa-

rate parts. The trachea and main bronchi are normally lined by ciliated, pseudostratified, 

columnar epithelium and also contain neuroendrocrine cells. The predominant types of tumors 

arising in large central airways are squamous cell and small cell carcinomas. The thickness of 

the epithelium lining gradually lessens as the airways become smaller.  

The pseudostratified, ciliated columnar cells gradually give way to ciliated columnar and 

finally ciliated cuboidal cells in the terminal bronchioles. Epithelial mucous cells are found 

throughout the conducting airway. Interspersed among the cuboidal cells of the terminal and 

respiratory bronchioles are Clara cells, thought to produce the mucus covering for these small 

airways.  
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The predominant histology seen in peri-

pherally arising lung cancers is adenocarci-

noid. Lung adenocarcinomas can be 

divided morphologically into solid and 

bronchoalveolar types. At the cellular level, 

these tumors arise from type II pneumo-

cytes that normally produce surfactant. The 

bronchoalveolar carcinomas are believed to 

arise from Clara cells that play a role in 

xenobiotic metabolism. Each of these cell 

types expresses characteristic differentia-

tion markers that may form the basis for 

detection and therapeutic strategies (Table 

3; Mulshine et al., 1992). 

B 

A 

Figure 2: Macroscopic and microscopic compo-
nents of the pulmonary system. (A) Bronchioles 
and alveoli represent the terminal structures of the 
lung where the gas exchange takes place. Note the 
mesh-like organization of the capillaries. (B) Sche-
matic drawing of the ciliated pseudostratified epithe-
lium of the alveoli. This picture was taken from Hu-
man Physiology, The Mechanisms of Body Func-
tion, Vander A. J, Sherman J. H. and Luciano D. S.; 
third edition 1980, McGraw-Hill Book Company. 

Approximately one-fifth of lung carcino-

mas are undifferentiated large cell tumors 

that cannot be assigned to one of the above 

lineages. All histological types can be 

found admixed within a single tumor. This 

admixture is consistent with their develop-

ment from a common stem cell of variable 

differentiation potential. The different 

tumor histologies and anatomic location of 

lung tumors may derive from the normal 

distribution of partially committed cell 

lineages, the variable penetration of differ-

ent carcinogenic components of cigarette 

smoke into different regions of the lung, 

and possibly also the differences in local metabolic transformation of procarcinogens and the 

effects of the extracellular matrix and paracrine growth factors on carcinogenesis (Mulshine et 

al., 1992). 
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Table 3. Markers of lung cancer differentiation  

Adenomatous   Neuroendocrine   Squamous 
Clara 10-kD protein   Chromogranin A   Cytokeratin 
Surfactant-associated protein  Leu 7     Involucrin 
Carcinoembryonic antigen  Neuron-specific enolase  Epidermal growth 

factor receptor 
ras oncogene    Dopa decarboxylase   Transglutaminase 
 

Normal cell and tumor types are characterized by a typical rather than absolute organ distri-

bution. Lung cancers of all cell types may be found in any location within the tracheobron-

chial tree and lung. This finding implies that, while there may be some very early events 

common to the development of all types of lung cancer, further preneoplastic and neoplastic 

development can follow along several divergent lines. Screening strategies should be able to 

detect each of these. The shift observed in the proportion of lung cancers of the various his-

tological types over the past several decades, with predominant cell type changing from 

squamous cell to adenocarcinoma, should be considered in a theory of lung cancer initiation 

and promotion (Devesa et al., 1991). 

 

1.2 NEW TECHNIQUES FOR FLUORESCENCE 
 DETECTION OF LUNG CANCER 
1.2.1 5-Aminolevulinic acid induced protoporphyrin IX 

At the beginning of the twentieth century, many researchers started developing the concept of 

fluorescence detection of tumors. In 1933 Sutro and Burman observed that when surgically 

excised breast tissue was exposed to Wood’s light, normal breast tissue fluoresced green, 

whereas breast cancer tissue fluoresced purple (Sutro and Burman, 1933). Since the color of 

tissue autofluorescence induced by ultraviolet light is variable and the intensity of the fluo-

rescence is low, hence the difficulty to see the color, most of the research in fluorescence 

bronchoscopy since the 1960s has employed exogenous compounds such as hematoporphyrin 

derivatives or Photofrin to enhance the ability to detect early lung cancer (Lam and Profio, 

1995). This kind of bronchoscopy is based on the fact that normal tissue fluoresces differently 

than abnormal tissue when exposed to a certain wavelength of light. According to this prin-

ciple there are two methods for detecting early lung cancer: 1. the detection of the specific 
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changes in autofluorescence of tumor and normal tissue, and 2. the application of fluoro-

chromes, which are preferentially accumulated in tumor tissues. In early investigations, 

patients were treated with photosensitizers such as hematoporphyrin derivative (HpD) or its 

partially purified form, dihematoporphyrin ether/ester (DHE), also known as Photofrin 

(Lipson et al., 1961, 1964; Dougherty et al., 1984). 

The principles of fluorescence diagnosis of tumors are as follows: a. HpD or Photofrin emits a 

red fluorescence when excited by violet light, and this can be detected by sensitive imaging 

devices; and b. the concentration of HpD or Photofrin in malignant tumors is higher than in 

most nonmalignant tissue; thus tumors can be detected by their more intense fluorescence 

(Cortese et al., 1979). However, the use of fluorescence detection with synthetic porphyrin 

mixtures still has certain limitations in diagnostic effectiveness mainly, due to side effects 

such as skin photosensitization and interference by tissue autofluorescence (Dougherty et al., 

1990). Therefore, new substances like protoporphyrin IX (PPIX) are being investigated. 

It is well known that the concentration of endogenous protoporphyrin IX (PPIX), the 

immediate precursor in heme biosynthesis, can be enhanced by administration of 5-

aminolevulinic acid (5-ALA). The biosynthetic pathway to heme consists of eight discrete 

enzyme-catalyzed steps, which are distributed between the mitochondrial and the cytosolic 

compartments of the cell (Batlle, 1993; Fig. 3). 

The 5-aminolevulinic acid synthase (ALA synthase) reaction occurs in two steps in the 

mitochondria: 1. condensation of succinyl CoA and glycine to form enzyme-bound α-amino-β 

ketoadipate, and 2. decarboxylation of α-amino-β-ketoadipate to form 5-aminolevulinate. This 

is the rate-limiting reaction of heme synthesis in the stroma, and it is, therefore, strictly 

regulated. There are two major means of regulating the activity of the enzyme. The first is by 

regulating the synthesis of the enzyme, which is important because its half-life is only about 

one hour. Enzyme synthesis is represented by heme and hematin. The second control is 

feedback inhibition by heme and hematin. Hence, heme plays a dual role in decreasing its 

own rate of synthesis. The product of the reaction, 5-ALA, diffuses into the cytoplasm, where 

the subsequent steps of heme synthesis take place. 
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heme 
7 
protoporphyrin IX 
6 
protoporphyrinogen IX 
5 
coproporphyrinogen III 

Figure 3: Heme biosynthesis – an overview. Note that heme biosynthesis takes place in both 
the mitochondrion and the cytoplasm of the cell. Therefore, the enzymatic machinery is located in 
both compartments and two of the intermediates, δ-aminolevulinic acid and coproporphyrinogen, 
have to be shuttled into the cytoplasm and the mitochondrion, respectively. Taken from 
NetBiochem; copyright: Baggott and Dennis, 1994, 1995. 

Mitochondrion 

succinyl CoA + Glycine 
                  1  
δ-aminolevulinic acid

The ALA dehydratase reaction is a condensation of two molecules of ALA to form 

porphobilinogen, the first pyrrole. The next step is the synthesis of uroporphyrinogen I and 

III. The production of uroporphyrin III requires two enzymes, and the substrates are four 

molecules of porphobilinogen. The first reaction is catalyzed by uroporphyrinogen I synthase. 

The second reaction is catalyzed by uroporphyrinogen III cosynthase. Uroporphyrinogen 

decarboxylase decarboxylates the acetic acid groups, converting them into methyl groups. 

The physiologically significant substrate is uroporphyrinogen III. The product is 

coproporphyrinogen III, which is transported back to the mitochondria, where the remainder 

of heme synthesis occurs. The mitochondrial enzyme, coproporphyrinogen III oxidase, 

catalyzes the next reaction, which produces protoporphyrinogen IX. Protoporphyrinogen IX 

oxidase converts the methylene bridges between the pyrrole rings to methenyl bridges. 

Resonance of double bonds around the entire great ring, with its resulting stabilization, is now 

possible. The product is protoporphyrin IX (PPIX). Finally, ferrochelatase adds iron (II) ions 

to PPIX, forming heme. The enzyme requires iron (II), and the reducing agents ascorbic acid 

and cysteine (Fig. 4).  

Cytoplasm
δ-aminolevulinic acid        
           2                                        
porphobilinogen          uroporphyrinogen III       coproporphyrinogen III 
                        3                                           4 
                                    uroporphyrinogen I         coproporphyrinogen I 
                                                                     4 
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Figure 4A-E: Biosynthesis of Protoporphyrin IX from 5-aminiolavulinic acid. Description see 
Legend to Figure 4G, F. 
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detection and localization of dysplasias and early-stage malignant lesions in a variety of body 

sites (Kennedy et al., 1990). 

 

Figure 4F, G: Biosynthesis of Protoporphyrin IX from 5-aminolavulinic acid. Taken from 
NetBiochem; copyright: Baggott and Dennis, 1994, 1995. 

F 

G 

It has been suggested that the deficiency in iron ions or ferrochelatase, the enzyme required 

for conversion of PPIX to heme, in tumors results in the accumulation of PPIX in contrast to 

normal host tissue (Batlle, 1993). According to Abels et al. (1997) and Fritsch et al. (1997), 

however, selective formation of PPIX in tumors is not primarily due to reduced ferrochelatase 

activity, but rather to active uptake of ALA. 

PPIX is an efficient photosensitizer. Kennedy and colleagues initiated clinical applications of 

5-ALA topically to treat skin cancer. Subsequently, 5-ALA was investigated for fluorescence 
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tent than other photosensitizing drugs, thus minimizing damage 

to normal surrounding tissues during treatment (Peng et al., 1997; Webber et al., 1997). 

scence techniques were therefore 

developed to enhance the visual contrast between tumor and healthy tissue. Recently, 

orous tissue. Despite successful results after applying 5-ALA to 

detect or to treat several types of malignancies, there are significant limitations to the topical 

s certain limitations of ALA-induced PPIX, such as shallow tissue 

penetration and inhomogeneous biodistribution, and enhances the total PPIX formation. In 

The clinical use of ALA is attractive for two reasons. First, PPIX preferentially accumulates 

in tumor tissue to a greater ex

Second, PPIX is rapidly cleared from the body, resulting in skin photosensitization lasting 

only 48 h (Regula et al., 1995; Kennedy and Pottier, 1992). 

As mentioned earlier, CIS and preneoplastic lesions (dysplasias) are difficult to detect and 

localize by standard white-light bronchoscopy. Novel fluore

fluorescence bronchoscopy has used 5-ALA administered as an aerosol (Baumgartner et al., 

1996). Preliminary clinical results showed that in more than 100 patients with an established 

or suspected lung cancer, the inhalation of 200 mg of 5-ALA diluted in 5 ml 0.9% NaCl 

solution by a conventional jet nebulizer or a volume-and-flow controlled inhalation device for 

a homogeneous deposition of a dose of 60 mg in 2.5 ml 0.9% NaCl solution is both feasible 

and safe. No side effects were registered apart from an occasional cough in patients who often 

have bronchitis. A relative disadvantage of exogenously applied 5-ALA is that the 

bronchoscopy can only be done (about 90–120 min) after the inhalation of 5-ALA, and it is 

also necessary to induce high levels of PPIX (Huber et al., 1999). 

1.2.2 5-ALA esters 

Photodynamic diagnosis (PDD) and photodynamic therapy (PDT) are based on the selective 

accumulation of PPIX in tum

application of this compound because of its hydrophilic characteristics. Therefore, further 

improvements are needed. 

Recently, results have shown that the chemical transformation of 5-ALA into its more 

lipophilic esters circumvent

order to obtain maximal flux across biological barriers, balanced partition coefficients and 

good water and lipid solubilities are required. Excessively lipophilic substances may be 

accumulated in cell membranes, and the passive transport of hydrophilic molecules across 

these barriers may be hindered (Lange et al., 1999). 
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 of increasing carbon chain length, and 

demonstrated in cell lines and animal models that several ALA pro-drugs are capable of being 

 

ethyl, and –propyl esters have been shown to induce more porphyrin 

fluorescence than ALA in normal mouse skin (Peng et al., 1996). This is probably not due to 

lls is highly dependent on intracellular esterase 

activity. This might be a limitation for the use of ALA esters in PDT. Although in some cases 

l, -butyl, -hexyl, methyl, and 

–ethyl. According to their study, ALA-hexyl ester and ALA-octyl ester gave the best results 

Kloek and colleagues (Kloek and Beijersbergen van Henegouwen, 1996, Kloek et al., 1998) 

synthesized a range of ALA esters using alcohols

absorbed, de-esterified, and converted into PPIX with higher efficiency than ALA itself. 

Gaullier et al. (1997) found that esterification of ALA with aliphatic alcohols reduces by 30-

150-fold the amount of drug needed to reach the same level of PPIX accumulation as that 

obtained with non-esterified ALA in human cell lines. Furthermore, the maximum PPIX 

accumulation in cell lines was higher when long-chain 5-ALA esters were used rather than

short-chained ALAs. 

The mechanism and rate of ALA uptake in human cells are still not known (Peng et al., 

1997). ALA-methyl, -

enhanced uptake of these compounds into the cells of the skin but rather to enhanced 

penetration through the interstitial space of the tissue. The lower amounts of PPIX in cells 

treated with short-chained ALA esters may be caused by a low rate of uptake through a 

transport protein and slow passive diffusion, or to a slow rate of intracellular deesterification. 

The production of PPIX induced by ALA esters is related to the length of the aliphatic alcohol 

used for esterification (Gaullier et al. , 1997). 

Studies performed by Davey et al. (1988) and Sawaki et al. (1990) showed that the use of 

esterified ALA for fluorescence labeling of ce

the esterase content is higher in tumor cells than in their normal counterparts, the opposite has 

also been demonstrated (Markey et al., 1993; Dube et al., 1984). 

Van den Bergh et al. (1999) have carried out experiments in an organ culture of pig bladder 

mucosa in order to screen the following 5-ALA esters: ALA-octy

compared with ALA itself. 5-ALA showed less than half the maximum fluorescence intensity 

than the best esters, although two orders of magnitude more ALA was applied than ALA-

hexyl ester or ALA-octyl ester. There was also a more homogeneous tissue distribution of 

ALA-hexyl ester than of ALA. Thus, these tests look promising for the application of 5-ALA 

esters in PDT. 
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intersystem crossing from the initially excited singlet state to the triplet state. The sensitizer in 

 acceptor or accept electrons itself from 

a suitable substrate in a so-called type I reaction, or transfer its energy to other molecules, e. 

¯·. At low pH the superoxide radical anion can be 

protonated to form the reactive HO2· radical. Direct electron transfer from the excited state of 

1.2.3 Optical properties of porphyrins 

The prerequisite for a dye to be a sensitizer is that its molecules must be able to undergo 

the triplet state can then either transfer electrons to an

g., ground-state oxygen (type II). In a type II pathway the reactive singlet oxygen is formed; it 

can oxidize most biological molecules. 

A type I mechanism results in hydrogen atom or electron transfer reactions between the 

sensitizer and some substrate or either radicals or radical ions, which can react with oxygen to 

yield the superoxide radical anion O2

the sensitizer to molecular oxygen to produce O2¯· is also classified as a type I process. In the 

type II process the energy transfer from sensitizer to ground-state oxygen produces the 

excited singlet state of oxygen, ¹O2 (Fig. 5).  

S + hν          →     ¹S*               Absorption yields singlet 
 
¹S*               →      S + hν F       Fluorescence 
 
¹S*               →     ³S*               Crossing results in a long-lived triplet state 
 
³S* + O2      →       S + ¹O2       Energy transfer yields singlet oxygen 
 
¹O2* + tissue  →       Necrosis 
Figure 5: Activation mechanism of type II sensitizers. Stable state molecules can also undergo 

ter-system crossing to produce more stable triplet states. Then triplet state molecules transfer 

roxide cause oxidative destruction of tissue. They constitute the 

es, the bacteriochlorins, and the 

g ability of porphyrins is apparent in patients having 

some inborn error of metabolism. Perhaps the best example is erythropoietic protoporphyria 

in
energy to ground-state oxygen to produce excited singlet oxygen. 

Both singlet oxygen and supe

basis for photodynamic cancer therapy. 

The porphyrins and related compounds such as the chlorin

phthalocyanines represent an important class of photosensitizers, because they are used in 

PDT of neoplasias. The photosensitizin

which is characterized by a defect in the enzyme ferrochelatase. The altered enzyme is less 

stable than the normal enzyme. Consequently a higher protoporphyrin concentration occurs in 
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emission peak in the far red zone around 700 

nm. When sufficiently intense, these wavelengths can be visualized by endoscopic devices 

ormal 

ucosa emits fluorescent light, with a major peak at 

r peak around 630 nm (red) when it is illuminated with 

collaboration with Xillix Technologies Corporation in Vancouver, Canada. LIFE consists of a 

the patient’s serum than normal, and the skin of these patients is photosensitive (Dubbelman 

and Shuitmaker, 1992). 

When PPIX is exposed to light of wavelengths within its absorption spectrum, some of the 

energy of the absorbed photons is emitted as red fluorescence. PPIX fluorescence in tissue 

peaks around 635 nm, there is a lower secondary 

that have been modified for exciting and detecting of fluorescence (Lam et al., 1993a). 

1.2.4 Autofluorescence 

Detection of dysplasia and carcinoma in situ can also be achieved without using any 

exogenous drug. Autofluorescence of bronchial tissue was shown to differ between n

and transformed epithelium. Bronchial m

520 nm (green) and a mino

monochrome blue light (442 nm). A 10-fold decrease in fluorescence and a proportional 

change from green to red light can be observed in bronchial carcinoma in situ and dysplasia. 

The reason for this decrease in autofluorescence in premalignant tissues is not yet clear. Most 

of the fluorescence comes from the submucosa. Several factors may be involved in the 

decrease of fluorescence in malignant tissues, such as a decrease in the amount of 

fluorophors, a high concentration of absorbing but non-fluorescing species, changes in the 

macromolecular composition of the extracellular matrix and an increase in the number of cell 

layers (Hung et al., 1991; Lam and Becker, 1996; Qu  et al., 1994). 

On the basis of these differences, Palcic and colleagues (1991) developed an imaging system 

that clearly delineates the exact site and size of these lesions. The lung imaging fluorescence 

endoscope (LIFE) was developed by the British Columbia Cancer Agency research staff in 

helium-cadmium laser light source (442 nm), two image-intensified, charged coupled device 

(CCD) cameras with green and red filters, respectively, a computer with an imaging board, 

and a color video monitor. Two images at different wavelengths (red and green) are 

simultaneously captured and precisely registered by the imaging board. The images are then 

combined and processed by the imaging board using a specially developed algorithm that 

allows normal tissue to be distinguished clearly from malignant tissue when displayed as a 

pseudocolor image on the video monitor. Normal tissue appears green, and tumor tissue, 
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ith fluorescence 

imaging, the sensitivity was 72.5% with the same specificity, representing a 50% 

 with white-light and autofluorescence imaging. Similar systems 

without a laser source have been developed in Japan and Germany. Stepp et al. (1997) in 

brown or brownish red. Biopsies for pathological confirmation can be performed on an 

abnormal area under direct vision. Fluorescence bronchoscopy using tissue autofluorescence 

is not a separate bronchoscopic procedure and does not require exogenous fluorescent drugs. 

Performed at the time of standard fiber optic bronchoscopy under local anesthesia, it provides 

added information to the diagnostic procedure. 

The LIFE system has been tested in several studies. The results of one of these studies 

showed that the sensitivity of white light bronchoscopy in detecting moderate and severe 

dysplasia and carcinoma in situ was 48.4% with a specificity of 94%. W

improvement in sensitivity. 

The LIFE system has been able to improve the endoscopic detection of early lung cancer 

using autofluorescence bronchoscopy (AFB). However, the complexity of this system does 

not allow direct comparison

collaboration with Karl Storz, Germany, developed a system consisting of two main 

components: a Xenon light source with an excitation by blue light and optical filters built into 

the bronchoscope. This system provides a better light intensity and readily allows change of 

mode between the white light and autofluorescence during a bronchoscopy. This system can 

further be used to detect drug-induced fluorescence by integrating various additional filters. 
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1.3 OBJECTIVES OF THE STUDY 
Lung cancer continues to be one of the most common malignancies in the world. Better 

screening procedures could increase patient survival rate. However, strategies for the early 

detection of lung cancer are still under development, and there are no suitable in vitro models 

that could help improve current diagnostic techniques such as fluorescence bronchoscopy and 

photodynamic therapy (PDT) of the lung.  

The aim of this investigation was to improve an organ culture of normal human bronchial 

mucosa co-cultivated with human lung tumor cells (EPLC-32M1) to study clinically relevant 

aspects directly under conditions that preserve the morphology of the original tissue in vivo. 

Prompted by the experience and preceding publications of our group on this topic, this study 

had the following aims: 

• To study the kinetics of 5-aminolevulinic acid induced protoporphyrin IX (PPIX) 

fluorescence in normal epithelium and tumorous tissue. 

• To analyze the kinetics of 5-ALA esters in comparison with 5-ALA in the mini-organ 

model. 

• To improve the three-dimensional mini-organ model by using GFP-transfected bronchial 

tumor cells for better visual contrast between tumor and normal areas. This could greatly 

help when evaluating the different pharmacokinetics of the above-mentioned substances. 

• To develop a model of normal respiratory mucosa, which remains viable for a prolonged 

period of time so that other parameters such as tumor cell proliferation or invasion could 

be measured in the future. 

In summary, the point in developing or improving this three-dimensional mini-organ model 

was to allow direct biological studies on clinical biopsy material under viable conditions. 

Nevertheless, the model mimics only certain biological characteristics of tumors in vivo; for 

example, circulation and blood supply are not included. 
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2 MATERIALS AND METHODS 

2.1 BIOLOGICAL MATERIAL 
Biopsies with a diameter of 1-2 mm were taken from the bronchial wall (normal tissue) of 

150 patients, undergoing routine fiber optic bronchoscopy at the Department of Pulmonology, 

Klinikum Innenstadt, Ludwig-Maximilians University (LMU), Munich. This study was 

approved by the LMU Committee on Medical Research Ethics, and all patients gave their 

written consent prior to bronchoscopy.  

The tumor cell line EPLC-32M1 was derived from a human squamous cell carcinoma 

(Bepler et al., 1988), which has been classified as a non-small-cell lung cancer (NSCLC). 

According to the histological classification of the original tumor, it was a epidermoid lung 

cancer. The tumor cell line was kindly provided by Dr. G. Jaques from the Philipps University 

Medical Center in Marburg in 1998.  

2.2 LAB MATERIAL 
• Culture flasks, 25 and 75 cm², NUNC, Denmark 

• Multi-well dishes, 24 wells, #662160, Greiner Labortechnik, Solingen, Germany 

• Petri dishes, Ø35 mm, #627 160, Greiner Labortechnik, Solingen, Germany 

• Disposable scalpels, #22, Feather, Cologne, Germany 

• Glass Pasteur pipettes, Brand GmbH + Co., Wertheim, Germany 

• Disposable serological pipettes, 2, 5, 10, 25 ml, FALCON, Becton Dickinson Labware, 

France, S.A 

• Centrifuge tubes, 14 ml, #188 261, Greiner Labortechnik, Solingen, Germany 

• Cryotubes, Cryo Vials, #121 277, Greiner Labortechnik, Solingen, Germany 

• Slides, normal and superfrost 76 x 26 mm, Menzel, #01/002 and 01/003, ResoLab, Bad 

Oeynhausen, Germany 

• Cover glasses, 18 x 18 mm, Menzel, #01/13, ResoLab, Bad Oeynhausen, Germany 

• Counting chamber, depth 0.100 mm; 0.0025 mm², Neubauer, Brand, Germany 

• Electronic pipette controller, Hirschmann, Germany 

• Tips, Eppendorf, Netheler-Hinz GmbH, Hamburg, Germany 
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2.2.1 Cell culture medium and supplements 

• RPMI 1640, #F-1215, Biochrom, Berlin, Germany 

• BEGM, Bronchial Epidermoid Growth Medium, #C-21260, ProCell, Heidelberg, 

Germany  

• plus Supplements, #C-39160, ProCell, Heidelberg: 

- 2 ml Bovine Pituitary Extract 

- 0.5 µg/ml epidermal growth factor (EGF), human, recombinant 

- 5 mg/ml insulin, bovine 

- 500 µg/ml hydrocortison 

- 500 mg/ml epinephrine 

- 6.5 ng/ml tri-iodo-L-thyronine 

- 10 mg/ml transferrin 

- 100 ng/ml retinoic acid 

- 100 mg/ml gentamicin, 2000x 

- 0.05 mg/ml amphotericin B, 2000x 

• DMEM Dulbecco’s Modified Eagle’s Medium, powder, #52100-021, Life Technologies, 

Karlsruhe, Germany 

• HEPES; N-2-hydroxyethylpiperacine-N´-2-ethansulfonic acid, powder, #11344-025, Life 

Technologies, Karlsruhe, Germany 

• NCS, Newborn calf serum, thermal inactivated, #26010-041, Life Technologies, 

Karlsruhe, Germany 

• Fungizone, amphothericin B, 250 µg/ml, #15290-026, Life Technologies, Karlsruhe 

• Penstrep, penicillin (10,000 IU/ml), streptomycin (10,000 µg/ml), #15140114, Life 

Technologies, Karlsruhe, Germany 

• L-glutamine, 220 MM, #25030-024, Life Technologies, Karlsruhe, Germany 

• Trypsin, solution 0.25%, #25050-014, Life Technologies, Karlsruhe, Germany 

• EDTA, ethylenediaminetetraacetic acid, 0,02%, #E-8008, Sigma, Deisenhofen, Germany 

• Agar Noble, powder, #A-5431, Sigma, Deisenhofen, Germany 

• PBS, Phosphate Buffered Saline, #14040-091, Life Technologies, Karlsruhe, Germany 

• Ethanol, pure, Pharmacy, Klinikum Großhadern, Munich, Germany 

• DMSO, Dimethyl sulfoxide, #802912, Merck-Schuchardt, Hohenbrunn, Germany 

• SUPERFECT Reagent, Transfection, 1.2 ml; #301305, Qiagen GmbH, Hilden, Germany 
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• Geneticin (G 418), selective sulfate antibiotic 5 g, #11811-031, Life Technologies/Gibco 

BRL, Paisley, Scotland 

• Hank’s solution, (without phenol red), 500 ml, Pharmacy, Klinikum Grosshadern, 

Munich, Germany 

• 5-Aminolaevulinic acid, Medac GmbH, Hamburg, Germany 

• 5-ALA esters, Photocure, Oslo, Norway 

2.2.2 Equipment, devices and instruments 

• Laminar Airflow, Heraeus, Munich, Germany 

• Incubator, Heraeus, Munich, Germany 

• Water bath, Julabo 19, Julabo Labortechnik GmbH, 77960 Seelbach, Germany 

• Centrifuge, Megafuge 2.0, Sepatech, Osterode, Germany 

• Microscope, LEICA DM IRBE, Type 307-072.056, GmbH Wetzlar, Germany 

• Camera; STORZ, Tricam SL pal  202220 20, Karl Storz-Endoscopy, Germany 

• Eppendorf pipettes, 0,5-10 µl ; 10-1000 µl, Eppendorf, Hamburg, Germany 

• Water bath with pump, Roth, Germany 

 

2.3 METHODS 
2.3.1 Preparation of media and agar plates 

Preparation of Bronchial Epidermoid Growth Medium (BEGM) 

• 500 ml     BEGM 

• Supplements 

The ingredients of the supplements were thawed and then mixed with BEGM medium. This 

solution could be stored for 2 weeks at 4°C. 

Preparation of RPMI medium 

• 500 ml     RPMI Medium 

•     5 ml     L-glutamine 

•   50 ml     NCS 

• 400  µl     amphotericin B 
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• 400  µl     penicillin-streptomycin 

The complete medium could be stored for at least 2 weeks at 4°C. 

Preparation of DMEM medium (wash medium) 

• 200    ml     DMEM with 25 mM HEPES 

•   22,4 ml     NCS 

• 320     µl     non-essential amino acids 

• 800     µl     amphotericin B 

• 440     µl     penicillin-streptomycin 

This solution was stored at 4°C. 

Co-culture medium 

• 80 ml BEGM + supplements 

• 20 ml RPMI medium 

Both media were mixed, freshly prepared for each experiment, and stored at 4°C. 

Preparation of agar plates 

• 2.25 g          Agar Noble, powder 

• 150 ml         distilled water 

• 30 ml            DMEM (double concentrated) 

• 6 ml              NCS 

• 75 µl             non-essential amino acids 

• 240 µl            amphotericin B 

• 120 µl            penicillin-streptomycin 

Agar powder was dissolved with a magnetic stirrer in distilled water at 50°C. The thus 

obtained agar solution was sterilized by autoclaving. To prepare the tissue culture plates, the 

agar solution was heated in a microwave oven and then DMEM was added. By means of an 

automatic pipettor the agar gel was uniformly distributed in 20-well plates. The ready agar 

plates were wrapped and stored at 4°C. 
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2.4 THE THREE-DIMENSIONAL MINI-ORGAN MODEL 
2.4.1 Biopsy cultivation 

Biopsies were usually taken from visually normal mucosa at the tracheal carina or from one 

of the main bronchi. One to four biopsies, 1-2 mm in size, were obtained from each patient. 

Immediately after removal, the tissue specimens were aseptically transferred to a test tube 

containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-

inactivated newborn calf serum (Bals et al., 1998). Afterward the biopsies were washed 

several times with DMEM medium in Petri dishes in order to remove all remaining mucus or 

blood. The washed biopsies were transferred to 16-mm multi-well dishes coated with 0.5 ml 

of Agar Noble. One biopsy was cultured in each well in the presence of 200 µl BEGM. Each 

culture was numbered and evaluated under a light microscope according to the following 

criteria: 

- size (number of visual fields) 

- percentage of the epithelialized borders of the biopsy 

- percentage of the surface having ciliated epithelium 

The medium was changed the first time after 2 or 3 days of culture and thereafter twice a 

week. Every week tissue cultures were transferred to a new well. The cultures were 

maintained at 37°C in 5% CO2. In case of contamination with fungus or bacteria, the whole 

plate was discarded. Within 10 to 14 days the tissue cultures were mostly covered by epithelia 

and could be used for the three-dimensional model. 

2.4.2 The tumor cell line EPLC-32M1 

The tumor cell line EPLC-32M1 established in Marburg was obtained from a lymph-node 

metastasis of a patient with moderately differentiated squamous cell carcinoma of the lung. In 

order to establish a stable tumor cell line, tumor specimens were transplanted into nude mice 

and then the resulting tumors were cultivated (Bepler et al., 1988; Heidtmann et al., 1992). 

Generally, nude mouse xenografts histologically resembled the patients’ tumors. These tumor 

cells show epitheloid, slightly elongated features in culture with highly refractory cell borders 

and perinuclear granulation. They contain a single, central, round nucleus with even 

chromatin pattern, and two or more nucleoli. At confluence, a cobblestone-like monolayer 

with an occasional piling-up of cells could be observed. The periodic acid-Schiff (PAS) 
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reaction indicative of mucus production was negative. EPLC-32M1 cells grow adherently 

with population doubling times (PDT) of 16 hours and form colonies on the average size of 

512 per 10,000 cells (cloning efficiency: 5.1%). The saturation density corresponds to 

500,000 cells per cm² (Bepler et al., 1988; Ulbricht et al., 1995). 

EPLC-32M1 cells produce human chorionic gonadotropin (HCG) as determined by radio 

immunoassay and display high-affinity binding sites for epidermal growth factor (EGF) 

identified by radio-receptor assay. Over-expression of the c-myc proto oncogene was 

observed (Bepler et al., 1988) (Table 4). 

Table 4. Expression of marker proteins in the tumor cell line EPLC-32M1 (according to 
Bepler et al., 1988). 
 

Biochemical characteristics: 
DDC (U/mg)                                                          <0.1 
NSE  (ng/mg)                                                         97.4 
α-HCG (ng/mg)                                                     115.6 
β- HCG (ng/mg)                                                     <0.2 
EGF max binding (fmol/mg)                                  490 
Oncogene expression 
c-myc               +++ 
N-myc       - 
L-myc       - 
c-myb       - 
Abbreviations: DDC = L-Dopa decarboxylase, NSE = Neuron-specific enolase, HCG = Human chorionic 
gonadotropin, EGF = Epidermal growth factor 

 

2.4.3 Monolayer culture 

EPLC-32M1 cells were cultivated in 25-cm² culture flasks containing RPMI 1640 medium 

supplemented with 10% NCS. Cells were incubated at 37°C in 5% CO2. The growth medium 

was changed every 2 or 3 days, and when the mono-layer culture was confluent, cells were 

split. Generally, the tumor cells were seeded at such a density that confluence was reached by 

the end of the week. Therefore, it was necessary to split them only once a week to maintain 

the same growth rate. The EPLC-32M1 cell line was kept as a constantly growing culture, and 

every six passages cells were frozen in liquid nitrogen for future experiments. 
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2.4.4 Co-culture 

To prepare the three-dimensional model, biopsies from normal tissue of patients were 

required as well as the EPLC-32M1 tumor cell line. After 10 days of culture biopsies became 

completely epithelialized. Parts of the organ culture’s surface consisted of a denuded 

basement membrane or an exposed fibrillar stroma of connective tissue with vascular 

elements covered with a continuous layer of epithelium. Cilia were not present in all biopsies. 

Considerable variation in the amount of motile cilia among the different biopsies was 

observed after the cultivation period (Al-Batran et al., 1997; 1998).  

Organ cultures were pre-cultivated for 2 weeks and then cut into two pieces with a scalpel. 

The obtained tissue fragments were carefully placed into the 16-mm multi-well dishes coated 

with Agar Noble with the help of a 2-ml pipette. The medium was immediately removed. It 

was important not to injure the surface of the fragments. The samples were observed under a 

light microscope in order to define the wound site. Then the tissue fragments were inoculated 

with 1.2 µl of an EPLC-32M1 tumor cell suspension after the fifth or seventh passage. Tumor 

cells were seeded at the wound surface using an Eppendorf pipette (0.5-10 µl). The resulting 

co-cultures were incubated for about an hour, and then 50 µl co-culture medium was pipetted 

into the co-cultures. The three-dimensional models were kept at 37°C in 5% CO2. After 24 

hours of incubation the co-cultures were washed several times and transferred into fresh agar-

coated wells with 200 µl co-culture medium. Every two to three days the co-cultures were 

transferred to fresh wells, and the whole agar-coated plate was changed every week to avoid 

contamination. The co-cultures chosen for the experiments were 14 or 20 days old (Fig. 6). 

co-culture with 
EPLC-32M1 
tumor cells

Figure 6: Schematic representation of co-culture of normal bronchial epithelium with EPLC-
32M1 tumor cells. Epithelial biopsies were cut with a scalpel and the “wound” was seeded with 
tumor cells. 
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2.5 THE GREEN FLUORESCENT PROTEIN (GFP) 

2.5.1 Overview 

The natural phenomenon of bioluminescence, in which visible light is generated by an 

organism as a result of a chemical reaction, has fascinated scientists for many years. 

Nowadays bioluminescence has revolutionized in vivo studies of dynamic processes. Green 

bioluminescence was known to be a feature of marine coelenterates, but only in 1971 with the 

discovery by Morin and Hastings did the knowledge that the green color derives from an 

intrinsically green fluorescent protein become widespread. Most of the work on characterizing 

this protein was done in the laboratories of Frank Johnson and Osamu Shimomura 

(Shimomura and Johnson, 1975) and of John Blinks. Blinks studied the bioluminescence of 

the jellyfish Aequorea victoria and characterized the tandem of proteins responsible for the 

light emission, namely aequorin and the green fluorescent protein (Blinks et al., 1978). 

A. victoria is a hydromedusan jellyfish found mainly at Friday Harbor, WA, U.S.A. Its 

bioluminescence arises from a photoprotein found in specialized photocytes in the umbrella of 

the organism (Fig. 7). The photoprotein aequorin contains luciferin which is (coelenterazine) 

bound to the protein with oxygen. Binding of calcium ions (Ca2+) to the protein triggers the 

oxidation of coelenterazine to coelenteramide and the consequent emission of blue light; for 

this reason, the complex is often called the blue fluorescent protein (BFP). However, light 

emitted by A. victoria is blue-green, because the excited state BFP undergoes radiation-

less energy transfer to GFP to produce an excited state of GFP, which emits green light as it 

 
Figure 7: The hydromedusan jellyfish Aequorea victoria. (A) Picture obtained with an overhead flash 
in an aquarium. (B) Green bioluminescence emitted from the rim of the jellyfish. Taken from: Mills, C.E. 
1999-present. Bioluminescence of Aequorea, a hydromedusa. Electronic internet document available at 
http://faculty.washington.edu/cemills/Aequorea.html. Published by the author, web page established June 
1999, last updated (19 June 2003). 
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relaxes to its ground state. 

Green fluorescent protein is comprised of 238 amino acids. It is extremely stable in neutral 

buffers up to 65°C, displaying a broad range of pH stability from 5.5 to 12 (Prasher et al., 

1992). GFP has a major excitation peak at 395 nm (with a minor peak at 475 nm) and an 

emission maximum at 509 nm (Morise et al., 1974). The main advantage of GFP is that it 

exhibits strong visible fluorescence without requiring cofactors or other enzymes. Its 

enormous flexibility as a non-invasive marker in living cells allows for numerous other 

applications such as a cell lineage tracer, reporter of gene expression, and as a potential 

measure of protein-protein interaction and sub-cellular protein localization. 

2.5.2 Generation of the stable GFP-expressing EPLC-32M1 tumor cell line 

To enhance resolution of the visualized tumor cell infiltration in the three-dimensional mini-

organ model, the EPLC-32M1 tumor cell line was transfected with a GFP expression vector. 

The mammalian expression vector pEGFP-N1 (Fig. 8) was purchased from CLONTECH 

Laboratories, Palo Alto, CA, USA). The vector was transformed into a dam-host, and fresh 

DNA was made. EPLC-32M1 cells were maintained in RPMI medium supplemented with 

10% NCS. Cells were seeded the day before transfection in a 60-mm dish with 5 ml of growth 

medium containing serum and antibiotics (Fungizone/Penstrep). The optimal confluence for 

transfection was 60% - 80%. EPLC-32M1 cells were incubated with the transfection mixture 

containing 5 µg of plasmid DNA and Superfect reagent. Transfection was made according to 

QIAGEN’s protocol for stable transfection. Cells were harvested by Trypsin/EDTA 48 hours 

after transfection, and subcultured at a ratio of 1:10 in the appropriate selective medium 

containing Geneticin G418. Stable fluorescent clones were selected and isolated. The clones 

were amplified and transferred by conventional cell culture methods. One EPLCGFP clone 

(No. 37) was chosen because of its high-intensity GFP fluorescence and stability. The three-

dimensional model was prepared with the GFP-transfected cells according to the procedure 

mentioned in 4.4. The crucial step in transfecting cells is choosing the adequate transfection 

method. After attempts with electroporation and Ca3(PO4)2 transfections, the liposome-

mediated method was chosen, since it resulted in a very high transfection efficiency in the 

EPLC-32M1 cell line. 
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Figure 8: Vector for establishment of stable transfectants expressing enhanced green fluo-
rescent protein (EGFP). The expression of EGFP is driven by the human cytomegalovirus (CMV) 
promoter. The expression of the bacterial neomycin gene is controlled by the simian virus 40 (SV40) 
early promoter and allows for selection of Geneticin (G418)-resistant transfectants. 

Source: www.clonetech.com.

The transfected tumor cells were continuously kept under observation to detect any changes 

in the growth phase. No changes were observed. Tumor cells proliferated at the same rate as 

the non-transfected cells. This was an important prerequisite for the next experiments. Also 

the 5-ALA uptake was observed in cell culture. As shown in Fig. 9, most of the transfected 

cells developed a striking PPIX-fluorescence after 5-ALA incubation. Using 405 nm 

excitation (Hg-lamp), both PPIX and GFP fluorescence could be viewed simultaneously.  

 

Figure 9: 5-ALA mediated fluorescence in EGFP-expressing EPLC-32M1 lung tumor 
cells. Cell were cultivated in chamber slides, incubated with 0.6 mM 5-ALA for 15 min and 
fluorescence of PPIX and GFP was simultaneously recorded under Hg lamp illumination 
using 405 nm excitation (A). A transmitted light picture of the same area is shown in (B).  

A B 
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experimental set-up is shown in Fig. 11. 

 

2.6 INCUBATION WITH PHOTOSENSITIZERS 
2.6.1 Co-culture incubation with 5-ALA 

To study the pharmacokinetics of 5-ALA-induced PPIX fluorescence in the mini-organ 

model, a solution of 3 mg 5-ALA was incubated in 10 ml Hank’s medium containing non-

essential amino acids for 15 min at 37°C. Afterward the co-culture was washed twice 

avoiding direct sunlight and then placed into a tempered chamber (Effenberg, Munich, 

Germany) containing only Hank’s medium mounted on a confocal microscope (DMIRBE, 

LEICA, Munich, Germany; Fig. 10). Images of the co-cultures were obtained with a 2.5x 

lens. To visualize PPIX-fluorescence, the co-culture was illuminated for about 2 seconds with 

an Hg lamp (λ = 405 nm). Fluorescence intensities were registered at about 635 nm 

(maximum peak of PPIX fluorescence) and at 509 nm (GFP fluorescence emission). The 

 

Figure 10: Fluorescence microscope with mounted tempered chamber for recording of the 
fluorescence of co-cultures. The chamber was tempered by continuously pumping water from a 
37°C water bath through the metal casing of the co-culture. 

tempered 
chamber 

CCD camera  

temperature
sensor 
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(Stemmer Imaging, GmbH, Puchheim, Germany) with the help of OPTIMAS Software 

confocal 
microscope 

water bath 

fluorescence 
microscope 

pump

 

camera recorder 

Figure 11: Experimental set-up for recording of fluorescence of co-cultures. The temperature in 
e co-culture was controlled by pumping water from the 37°C bath (left, foreground) through the 
cubation chamber mounted on the confocal microscope. The recorded fluorescence was directly 

th
in
processed and displayed on the computer screen. 

Fluorescence images of the co-culture were recorded by a three-chip color CCD camera 

(OPTIMAS Corporation, Seattle, Washington 98124-0467). Images were taken 30, 45, 60, 75, 

90, 105, 120, 140, 160, 190, 220, 250, 280, 310 min after beginning incubation with 5-ALA. 

PPIX fluorescence intensities in tissue (excitation 375 – 440 nm) were quantified by using the 

OPTIMAS image analysis system macro in pre-determined areas of interest (AOI). Three 

AOIs were defined at the borders of the normal tissue in the organ culture comprising normal 

epithelium and three at the borders of the tumor. With another OPTIMAS macro based on 

densitometry, fluorescence intensities of these AOIs were evaluated. Nonlinear system 

response was corrected by a corresponding gamma-correction. (Fluorescence intensity values 

thus determined increased linearly with increasing intensity). Values were calculated 

automatically in EXCEL. To correct for illumination inhomogeneities during measurements, a 

shade correction was applied by dividing the obtained values by a standard reference, which 

consisted of a homogeneous fluorescent silicon slice (ELASTOSIL, pigment paste FL RAL 
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nt offset. k1 – k3  and i were the fit variables. 

ed.  

ities of tumor and normal 

9010, LR RTV-2, Wacker-Chemie GmbH, Munich, Germany). Finally, values from EXCEL 

were exported into SIGMA PLOT 2001, a statistical software (Jandel Scientific, California, 

U.S.A.) for further evaluation. Intensity in the red channel of the image (peak of PPIX 

fluorescence) was evaluated as a parameter of the amount of PPIX in tissue. The 

autofluorescence was part of this fluorescence intensity in tissue, which was considered 

constant throughout the measurement. Autofluorescence intensities (measured in the green 

channel) were subtracted from the measured intensities in order to dissociate PPIX 

fluorescence from unspecific background fluorescence. The resulting PPIX fluorescence 

intensities in tumor and in normal epithelium of the co-culture model were graphed as a 

function of the time after beginning of incubation. A three compartment model was used in 

the present study to evaluate the take-up of 5-ALA and the transformation of 5-ALA into 

PPIX (Heil, 1996). This mathematical model is fitted numerically to each single measured 

fluorescence kinetic: The first compartment is represented by the volume of rinsing solution 

applied to the co-culture, the second compartment is allocated to a theoretical volume of 

storage of 5-ALA or 5-ALA esters (intra- and extra-cellular), and the third compartment is 

equivalent to the volume of storage for the synthesized PPIX. The formula for the numerical 

fit is as follows,  

whereby c(t) represents the concentration of PPIX at time t, k1-k3 are different variables and  

i denotes a consta
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From the fit-curves for c(t) to the experimental data,  the maximal intensities (I max) and the 

times after incubation, where I max was obtained were determin

The Mann-Whitney-test was used for nonparametric one-way test analysis for variance and 

comparison of independent samples.  The PPIX fluorescence intens

epithelium in co-cultures were compared using the SIGMA Statistical software package 

(Jandel Scientific, U.S.A.).  
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Data show the median, the mean ± the standard error of the mean as well as several 

percentiles from the bottom to the top: 5%, 10%, 25%, 75%, 90% and 95%. 

2.6.2 Co-culture incubation with 5-ALA esters 

5-ALA, 5-ALA methyl, butyl, and hexyl esters were dissolved in Hank’s medium containing 

non-essential amino acids; co-cultures were incubated for 15 min at 37°C. After incubation, 

the same procedure as in 6.1 was followed. In this set of experiments co-cultures were kept 

after measurements and were transferred into fresh agar-coated wells with co-culture medium. 

Cultivation of the samples continued under the same conditions for about 3 weeks. During 

this period of time, it was possible to perform new measurements with the same co-cultures, 

but with different concentrations of a certain ALA-ester, beginning with the lowest: 0.12 mM, 

0.24 mM, 1.2 mM, and 2.4 mM. 
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3 RESULTS 

3.1 THE THREE-DIMENSIONAL MINI-ORGAN MODEL 
From previous studies it is well documented that human bronchial tissue can be kept in viable 

conditions in vitro (Cailleau et al., 1959; Barrett et al., 1976, Al-Batran, 1997; Bals et al., 

1998). The present study has also shown that human bronchial mucosa can be maintained for 

a prolonged period of time as a non-adhesive organ culture using the agar overlay technique. 

The organ cultures could be preserved for at least 2 months under the conditions described in 

the Material and Methods section (2.4.4). At the start of the culture period, only parts of the 

tissue fragments were covered with epithelium. In some biopsies, a fraction of the epithelial 

cells were ciliated. After about 7 or 10 days of culture, the tissue fragments became more or 

less spherical and a few of them were completely covered by epithelium. The epithelial cells 

at the border of the cut surface migrated to cover the rest of the fragment. The new epithelium 

was thin compared to the intact epithelium. Sometimes shorter cilia were seen forming 

clusters of various sizes spread all over the surface of the organ culture. This finding suggests 

an ongoing formation of cilia during the first 2 weeks of culture. An increasing number of 

cilia during the second week of culture also support the notion that cell differentiation 

processes take place in this mini-organ model. However, throughout the first 2 months the 

morphology of the epithelium is variable and presents some changes such as the loss of goblet 

cells, loss of ciliated cells, appearance of shorter surface cells. These changes suggested that 

the culture conditions, although maintaining viability after that time, are not able to maintain 

normal differentiation. The mechanism of these morphological changes is not completely 

understood. 

Another important feature of the mini-organ model is that the tumor cells (EPLC-32M1) 

invaded mostly into the wounded area of the co-culture and did not attach to or destroy the 

epithelial structure. However, in older co-cultures (over 21 days old) the tumor cells caused 

partial damage to the epithelia and in some cases, a massive invasion into the stroma was 

observed.  
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Fig umor. 
The co-culture was incubated with 5-

ure 13: Differential accumulation of 5-ALA-induced PPIX in normal epithelium and t
ALA as described in Fig. 12. (A) Transmitted light, UV 

illumination (B). Note the preferential PPIX fluorescence in the tumor (marked area) of a co-culture 
15 min after a 15 min incubation with 5-ALA. 

cultures PPIX fluorescence was first detected in tumorous areas (Fig. 13A, B). 

 

ation with 5-ALA. 

cultures PPIX fluorescence was first detected in tumorous areas (Fig. 13A, B). 

 

The mini-organ model consisting of normal human bronchial mucosa co-cultivated with 

human lung tumor cells (EPLC-32M1) was used to study the kinetics of 5-ALA-induced 

PPIX fluorescence in normal epithelium and in tumorous tissue. Fluorescence intensity was 

taken as parameter for the amount of PPIX in the tissue. As early as 15 min after having 

finished the 15 min incubation period, PPIX fluorescence was obvious in normal epithelium 

as well as in the tumor in 4 of 24 co-cultures (Fig. 12A, B), whereas in the remaining 20 co-

The mini-organ model consisting of normal human bronchial mucosa co-cultivated with 

human lung tumor cells (EPLC-32M1) was used to study the kinetics of 5-ALA-induced 

PPIX fluorescence in normal epithelium and in tumorous tissue. Fluorescence intensity was 

taken as parameter for the amount of PPIX in the tissue. As early as 15 min after having 

finished the 15 min incubation period, PPIX fluorescence was obvious in normal epithelium 

as well as in the tumor in 4 of 24 co-cultures (Fig. 12A, B), whereas in the remaining 20 co-

Figure 12: Simultaneous accumulation of 5-ALA-induced PPIX in normal epithelium and 
tumor. The co-culture was incubated with 1.2 mM 5-ALA for 15 min, washed and 15 min later 

raphed with transmitted light (A) or under UV illumination (B) (see Materials and Methods photog
section for details). The fluorescence image shows PPIX accumulation in normal bronchial epithelium 
(white arrowheads) and in tumor (marked area). Note the intensive autofluorescence of the 
connective tissue (B). In (A) the normal bronchial epithelium is marked with black arrowheads. 

A B

A B
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Figure 14: Kinetics of accumulation of 5-ALA-induced PPIX 
The co-culture was incubated with 5-

in normal epithelium and tumor. 
ALA as described in Fig. 

 

12. Pictures were taken under UV 
illumination after 160 min where maximum fluorescence was observed (A) or 340 min (B). Note the 

in) after incubation with 5-ALA a preferential PPIX 

accumulation in tumor was detected. Also a steady increase of PPIX fluorescence intensity in 

 fluorescence in tumor and normal tissue of a 

representative young co-culture are depicted in Fig. 15.  

On the other hand, the AOIs placed in tumor showed different PPIX fluorescence intensities 

after 50 or 60 min probably due to an inhomogeneous synthesis of PPIX. A highly significant 

difference (p<0.001) between the maximum of PPIX fluorescence intensity in tumor and 

normal epithelium was found (Fig. 16). 

During the first measurements (30–60 m

tumor was observed from 60-180 min after application of 5-ALA, nevertheless, in normal 

tissue the PPIX fluorescence intensity increased within 100 and 200 min after the end of  the 

incubation period, reaching a maximum before fluorescence began to fall. A maximum of 

PPIX fluorescence intensity in tumor was observed between 130 and 180 min after the 

beginning of incubation (Fig. 14A, B).  

A B

strong PPIX fluorescence in the tumor (marked area) and clear fluorescence in the normal epithelium 
(white arrowheads) of the co-culture (A). Only a faint fluorescence can be visualized in both tumor and 
normal epithelium after 340 min (B). 

In figures: 13B, 14A, B it is possible to see the strong autofluorescence of connective tissue in 

the center of the mini-organ model. And also, it is possible to observe that the surface 

epithelium represents a barrier for the invading tumor cells.  

The pharmacokinetics of 5-ALA-mediated PPIX
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Figure 15: Pharmacokinetics of 5-ALA-induced PPIX fluorescence. A representative young 
co-culture was cultivated for 16 days and then incubated for 15 min with 1.2 mM 5-ALA, washed 
and the PPIX fluorescence intensities were recorded in tumor (●) and normal epithelium (○). Solid 
line: three-compartment fit. 

PPIX fluorescence intensities at the borders of the tumor were higher than at the borders of 

the normal epithelium as well as in the whole normal tissue. The tumor borders tended to 

reach PPIX fluorescence maxima earlier than the borders of the normal epithelium. The 

maximum of PPIX fluorescence intensity in tumor and normal epithelium was reached nearly 

at the same time (Fig. 17). 

Figure 16: Differential accumula-
tion of 5-ALA-induced PPIX in 
tumor and normal bronchial 
epithelium. The co-cultures were 
cultivated for 16 days, and then 
incubated with 1.2 mM 5-ALA for 15 
min. After washing, PPIX fluo-
rescence intensities were measured 
over 6 hrs every 15-30 min. The me-
dian and the 5/25/75/95 percentiles 
of maximal PPIX fluorescence inten-
sities as derived from the fit for 
tumorous and normal areas are 
indicated. The number of experi-
ments is given below the x-axis. The 
difference between maximum PPIX 
fluorescence intensities in tumor and 
in normal tissue was highly 
significant (p<0.001). 

 N= 
 

13                      11 



RESULTS
 
 
 

41 

1113N =

        tumor              normal epithelium

in
c.

 ti
m

e 
(m

in
) f

or
 m

ax
. P

P
IX

 fl
uo

. i
nt

en
si

ty
240

220

200

180

160

140

120

100

80

60

21

22

13

12

differences in the surface between the mini-organ models after 16 days or 21-30 days of 

Figure 17: Time needed to 
reach maximal accumulation 
of 5-ALA-induced PPIX in tu-
mor and normal bronchial epi-
thelium. The co-cultures were 
incubated with 1.2 mM 5-ALA for 
15 min, then washed and PPIX 
fluorescence intensities were 
measured over 6 hrs every 15-30 
min. The median and the 
5/25/75/95 percentiles of the 
times needed to reach maximal 
PPIX fluorescence intensities as 
derived from the fit for tumorous 
and normal areas are indicated. 
The number of experiments is 
given below the x-axis. The time 
difference between maximum 
PPIX fluorescence intensities in 
tumor and in normal tissue was 
not significant. 

 

 

In the present work, young and old co-cultures were analyzed separately due to the marked 
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Figure 18: Pharmacokinetics of 5-ALA-induced PPIX fluorescence. A representative older co-
culture was cultivated for 28 days and then incubated for 15 min with 1.2 mM 5-ALA, washed and the 
PPIX fluorescence intensities were recorded in tumor (●) and normal epithelium (○). 
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 a rapid rise of PPIX fluorescence in tumor and in normal 

ithelium was observed (Fig. 18). The maximum of PPIX fluorescence intensity in tum  

was significantly different (p<0.05) from the maximum of

normal epithelium (Fig. 19). 

  

cultivation.  A massive invasion of tumor cells into the stroma of older mini-organ models 

was seen (21–30 days), also

ep ors

 PPIX fluorescence intensity in 

Figure 19: Differential accumula-
tion of 5-ALA-induced PPIX in 
tumor and normal bronchial 
epithelium. The co-cultures were 
cultivated for 28 days and then 
incubated with 1.2 mM 5-ALA for 
15 min. After washing, PPIX fluo-
rescence intensities were 
measured over 6 hrs every 15-30 
min. The median and the 
5/25/75/95 percentiles of maximal 
PPIX fluorescence intensities as 
derived from the fit for tumorous 
and normal areas are indicated. 
The number 
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of experiments is 
given below the x-axis. The 

 

difference between maximum PPIX 
fluorescence intensities in tumor 
and in normal tissue was signifi-
cant (p<0.05). 

 N= 
 

4                      4 

Comparing both groups of co-cultures: (14-16 days) and (21-30 days), the PPIX fluorescence 

intensity level in tumors of older organ cultures was significantly higher (p<0.05; Fig. 20A). 

In normal epithelium, PPIX-fluorescence intensities levels were about the same (Fig. 20B).   
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Figures 20: Maximal PPIX accumulation in tumor (A) and in normal epithelium (B) of standard 
(14-16 d) or extended co-cultures (21-30 d). The co-cultures were incubated for 15 min with 1.2 
mM 5-ALA and then washed. The median and the 5/25/75/95 percentiles of maximal PPIX fluo-
rescence intensities for tumorous and normal areas are indicated. The number of experiments is 
given below the x-axis. The difference between maximum PPIX fluorescence intensities in tumor 
tissue in standard and extended co-cultures was significant (p<0.05). Similar PPIX levels were 
reached in normal epithelium of both groups of co-cultures (B). 
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3.3 KINETICS OF ALA ESTERS IN THE MINI-ORGAN 
 MODEL 
The co-cultures were incubated in solutions containing different concentrations of various 5-

ALA esters. According to published data (Peng et al., 1996; Uehlinger et al., 2000), a “wider 

window” of concentrations is observed among the ALA esters at which optimal PPIX 

accumulation can be measured. Several concentrations were tested in the mini-organ model in 

order to determine the concentration of each of the 5-ALA derivatives for optimal differential 

labeling of tumor and normal areas in the co-culture while keeping the viability of the tissue. 

Four concentrations were chosen for this study: 0.12 mM, 0.24 mM, 1.2 mM and 2.4 mM, 

except for 5-ALA butyl ester. Due to a low signal, an extra concentration (0.48 mM) was 

tested (Fig. 21).  
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Figure 21: Semi-logarithmical re-
presentation of the PPIX fluores-
cence intensity in tumor and in 
normal epithelium as a function of 
5-ALA butyl ester (b-ALA) concen-
trations. The mini-organ model was 
incubated for 15 min with 5-ALA 
butyl ester (0.12 mM, 0.24 mM, 0.48 
mM, 1.2 mM and 2.4 mM) and then 
washed before starting fluorescence 
measurements. An extra concentra-
tion (0.48 mM) was chosen and 
tested due to the low signal of PPIX 
fluorescence obtained in tumor (●) as 
well as in normal epithelium (○) with 
the standard concentrations. 
 

The dependency of maximal PPIX fluorescence intensity in tumor and in normal tissue from 

the four above mentioned concentrations after application of h-ALA and m-ALA is depicted 

in Figure 22.  Then the most suitable ALA esters concentrations for further experiments were 

chosen according to the present data: 0.48 mM for b-ALA; 2.4 mM for m-ALA and 0.24 mM 

for h-ALA.  

The mini-organ models were incubated during the same period of time (15 min) as with 5-

ALA with the above mentioned optimal concentrations for every 5-ALA ester. The same 

procedure was used for this set of experiments as already described in Material and Methods. 
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In the following fluorescence micrographs of co-cultures in white light and blue light at the 

beginning and at the end of the measurements it is possible to observe the marked differences 

of PPIX accumulation in tumor and normal epithelium of several co-cultures incubated with 

b-ALA, m-ALA and h-ALA respectively (Fig. 23A-I). Co-cultures incubated with b-ALA 

presented a lower signal of PPIX fluorescence than co-cultures treated with m-ALA or h-

ALA. Moreover, a strong PPIX fluorescence intensity and a homogeneous PPIX 

accumulation in tumor was observed in the co-cultures incubated either with m-ALA or with 

h-ALA. 

The pharmacokinetics of PPIX fluorescence accumulation in a representative co-culture after 

application of b-ALA, m-ALA and h-ALA at their optimal concentrations are depicted in 

Figure 24A to C. Comparison of the kinetics of 5-ALA esters revealed that b-ALA shows 

lower PPIX levels than h-ALA and m-ALA. B-ALA did not return to pre-incubation intensity 

levels after reaching its maximal level of PPIX in tumor as well as in normal epithelium (Fig. 

24B). Maximal PPIX accumulation was observed in co-cultures incubated with m-ALA and 

h-ALA respectively. H-ALA induced the highest PPIX fluorescence intensity at a 

significantly lower concentration (0.24 mM) in contrast to 5-ALA (1.2 mM), m-ALA (2.4 

mM) and b-ALA (0.48mM). In the co-culture with h-ALA, PPIX reached a maximum in 

tumorous and normal areas at about the same time (Fig. 24C).  
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Figure 22: Semi-logarithmical representation of the PPIX fluorescence intensity in tumor and in 
normal epithelium as a function of 5-ALA hexyl ester (A) and 5-ALA methyl ester 
concentrations (B). The mini-organ model was incubated for 15 min with 0.12 mM, 0.24 mM, 1.2 mM 
and 2.4 mM 5-ALA hexyl ester (A) and 5-ALA methyl ester (B), respectively and then washed before 
recording maximal PPIX fluorescence intensity in tumor (●) as well as in normal epithelium (○). The 
most suitable 5-ALA esters concentrations for further experiments were chosen according to the 
present data: 0.24 mM for h-ALA and 2.4 mM for m-ALA. 
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A sharp peak of PPIX fluorescence intensity in tumor was observed in the kinetics of the co-

cultures incubated with m-ALA dropping fast to almost ground levels (Fig. 24B). 

Summarizing the results of the in vitro measurements of PPIX accumulation in several co-

cultures treated with the 5-ALA esters, it was found that co-cultures incubated in 0.48 mM b-

 

A B C

D E F

G H I

Figure 23: Kinetics of accumulation of 5-ALA methyl ester- (A-C), 5-ALA butyl ester- (D-F) and 
5-ALA hexyl ester-induced PPIX fluorescence in normal epithelium and tumor (G-I). The co-
cultures were incubated with optimal concentrations of 5-ALA esters (2.4 mM m-ALA,  0.48 mM b-
ALA and 0.24 mM h-ALA) for 15 min and washed. Pictures were taken under white light (A, D, G) or 
UV illumination either after maximal accumulation of PPIX fluorescence in tumorous areas of the co-
cultures was observed (B, E, H) (see Figure 24). Only a low level residual PPIX fluorescence can be 
seen after 340 min (C, F, I). Note the strong PPIX fluorescence in the tumors at the fluorescence 
maximum (see regions corresponding to the area circumscribed with a white line).  
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ALA yield very low fluorescence signals, although PPIX fluorescence intensity was 

significantly (p<0.01) elevated in tumorous areas compared to normal tissue (Fig. 25A). 

 

Summarizing the results of the in vitro measurements of PPIX accumulation in co-cultures 

treated with the 5-ALA esters and 5-ALA (Fig. 25A, B), it was found that the maximal PPIX 

fluorescence intensity in co-cultures incubated in 2.4 mM of m-ALA did significantly differ 

The co-cultures incubated in 0.48 mM of b-ALA yield very low fluorescence signals, 

although PPIX fluorescence intensity was significantly (p<0.01) elevated in tumorous areas 

compared to normal tissue. However, times to reach maximal PPIX fluorescence intensity in 

both areas was not significantly different. The difference between maximum PPIX 
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between tumor and normal epithelium, but the PPIX intensity maximum was reached earlier 

in tumor than in normal tissue (p<0.05). Maximal PPIX fluorescence intensities in tumorous 

and in normal areas were not statistically significantly different neither in co-cultures treated 

with 5-ALA nor with m-ALA, although the optimal m-ALA concentration was twice higher 

(2.4 mM) than the concentration of 5-ALA. 
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Figure 24: Representative pharmacoki-
netics of 5-ALA methyl ester- (A), 5-ALA 
butyl ester- (B) and 5-ALA-hexyl ester-
induced PPIX fluorescence (C). The mini-
organ model was cultivated for 16 days and 
then incubated for 15 min with either 2.4 mM 
5-ALA methyl ester (A), 0.48 mM 5-ALA 
butyl ester (B), or 0.24 mM 5-ALA hexyl 
ester (C), washed and the PPIX fluores-
cence intensities were recorded in tumor (●) 
and normal epithelium (○).  
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The values plotted in Figure 25 A and B indicate a significantly higher PPIX accumulation in 

tumor compared to normal epithelium (p<0.05) in co-cultures incubated with 0.24 mM of h-

ALA. Times needed to reach PPIX fluorescence intensity maxima did not differ significantly 

fluorescence intensities induced by 5-ALA and b-ALA was significant in tumor tissue 

(p<0.01) as well as in normal epithelium (p<0.01).  

Figure 25: Differential accumulation of 5-ALA and m-, b-, h-ALA-induced PPIX fluorescence 
in tumor (A) and normal bronchial epithelium (B) of co-cultures. Co-cultures were incubated 
with 1.2, 2.4, 0.48 and 0.24 mM of 5-, m-, b-, h-ALA respectively for 15 min, then washed and PPIX 
fluorescence intensities as derived from the fit were measured over 6 hrs every 15-30 min. The 
median and the 5/25/75/95 percentiles of maximal PPIX fluorescence intensities for tumorous and 
normal areas are indicated. PPIX fluorescence intensity was significantly higher in tumors compared 
to normal epithelium (p<0.01), except for b-ALA and h-ALA.  
 

Figure 26: Time needed for maximal accumulation of 5-ALA and m-, b-, h-ALA-induced PPIX 
fluorescence in tumor (A) and normal bronchial epithelium (B) of co-cultures Co-cultures were 
incubated with 1.2, 2.4, 0.48 and 0.24 mM of 5-, m-, b-, h-ALA respectively for 15 min, then washed 
and PPIX fluorescence intensities as derived from the fit were measured over 6 hrs every 15-30 
min. The median and the 5/25/75/95 perce
tumorous and normal areas are indicated. Ti

ntiles of maximal PPIX fluorescence intensities for 
mes needed to reach PPIX fluorescence maxima in 

tumor and normal epithelium were significantly different only for m-ALA (p<0.05). 
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ulation in both areas of the mini-

organ model) the values of fluorescence intensities were first assorted according to the 

substances and then averaged. The results are depicted in the Figure 27 containing box-plots 

box-plot representing 5-ALA ratios. 5-ALA shows a higher overall consistency in its 

distribution in tumorous and normal areas. A comparison of T/NE ratios between 5-ALA and 

b-ALA presented a mean contrast from 2.52 (5-ALA) to 3.19 (b-ALA), and also all 

percentiles ≥ 50% from the box-plot representing b-ALA ratios show a PPIX distribution with 

a positive skew in comparison to the box-plots showing the 5-ALA and m-ALA ratios. This 

could be one of the explanations for an inhomogeneous distribution of b-ALA-induced PPIX 

in tumor and normal epithelium. The T/NE ratios distribution of PPIX fluorescence intensities 

between 5-ALA and h-ALA show a mean contrast from 2.52 to 2.06 respectively, and also a 

homogeneous distribution of PPIX in tumorous and in normal areas. Indeed, according to the 

p

between tumors and normal epithelia except for m-ALA (Fig. 26A, B). As compared with 5-

ALA, the optimal concentration for h-ALA was 5 times lower (0.24 mM), but it showed a 2-

fold higher PPIX fluorescence intensity in tumor as well as in normal epithelium. 

Analyzing the distribution of PPIX fluorescence intensity ratios between tumor and normal 

epithelium (T/NE) at 635 nm (representing PPIX accum

with a bold black line as the mean value as well as the median and several percentiles from 

the bottom to the top: 5%, 10%, 25%, 75%, 90%, 95%. 
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The mean ratio referred as “T/NE ratio” of co-cultures incubated with 5-ALA did not show an 

increased value with respect to the T/NE ratio of co-cultures treated with m-ALA. On the 

other hand, all percentiles from the box-plot representing m-ALA ratios are higher than in the 

resent results, the mean T/NE ratio of 5-ALA is higher than the h-ALA mean ratio, but the 
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Fig. 27: Tumor/Normal Epithelium ratios 
of  5-ALA and m-, b-, h-ALA in the mini-
organ model. The bold black line shows 
the mean value, the other black line the 
median and several percentiles from the 
bottom to the top: 5%, 10%, 25%, 75%, 
90% and 95%. 5-ALA and h-
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ALA show a 
better distribution of PPIX in the co-
cultures. M-ALA and b-ALA present a PPIX 
distribution with a positive skew, so far the 
highest ratio was observed by b-ALA, but 
also not a consistency in the PPIX 
distribution in tumorous and normal areas. 
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evaluation of the pharmacokinetics of 

5-ALA-induced PPIX fluorescence in vitro were greatly enhanced (Fig. 31A-C). After the 15 

cence measurements were performed in the co-

ed f  

model, exclusively in the bronchial epithelium, and  

fluorescence, thereby demonstrating a stable high-level GFP expression in vitro during the 

culture period.  

normal tissue in several co-cultures was obvious (Fig. 33A). In addition, a significant 

difference is not statistically significant. The m-, and b-ALA T/NE ratios compared with the 

5-ALA T/NE ratio also proved to be non-significantly different in the Mann-Whitney-Test. 

 

3.4 KINETICS OF 5-ALA INDUCED PPIX FLUORESCENCE 
 IN CO-CULTURES WITH GFP-EXPRESSING LUNG 
 TUMOR CELLS 
In order to improve the present mini-organ model, the EPLC-32M1 tumor cell line was 

transfected with a GFP expression vector. Using GFP-transfected tumor cells in the organ co-

culture system, the visualization of tumor areas and the 

min of incubation with 5-ALA, the first fluores

culture. As shown in Fig. 31B, PPIX accumulat irst of all at the borders of the mini-organ

 the tumorous areas showed a strong GFP

A B C

A rapid rise of PPIX fluorescence in tumor was achieved 60 min after the end of incubation 

with 1.2 mM of 5-ALA as shown in the pharmacokinetics in Fig. 32. According to the present 

results, the highly significant difference (p<0.001) of PPIX accumulation between tumor and 

Figure 31: Kinetics of accumulation of 5-ALA-induced PPIX fluorescence in co-cultures 
consisting of normal epithelium and GFP-expressing lung tumor cells. The co-cultures were 
cultivated for 15 days and then incubated with 1.2 mM 5-ALA for 15 min and washed. Pictures were 
taken under white light (A) or UV illumination either 30 min (B) or 160 min later (C). Note preferential 
accumulation of PPIX in the bronchial epithelium of the co-culture after 30 min of 5-ALA removal 
(white arrowheads in B) and maximal PPIX fluorescence in the tumor area (see regions 
corresponding to the area circumscribed with a white line) of the co-culture (C). 
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crease of PPIX levels in tumor was detected between the co-cultures made  

difference in the time profiles of maximal PPIX accumulation (p<0.001) was found in tumor 

as well as in normal areas of the co-cultures (Fig. 33B).  

 

No significant in

Figure 32: Pharmacokinetics of 5-ALA-induced PPIX fluorescence in a co-culture cultivated 
with GFP-expressing lung tumor cells. The mini-organ model was cultivated for 16 days and 
then incubated 

time after incubation (min)

0 100 200 300 400

PP
IX

-fl
uo

re
sc

en
ce

 in

for 15 min with 1.2 mM of 5-ALA, washed and the PPIX fluorescence intensities 
 tumor (●) and in normal epithelium (○). were recorded in

Figure 33: Differential accumulation (A) and time needed for maximal accumulation (B) of 5-
ALA-induced PPIX fluorescence in co-cultures consisting of normal epithelium and GFP-
expressing lung tumor cells. Co-cultures were cultivated for 14-16 days, then incubated with 1.2 
mM 5-ALA for 15 min and washed. For experimental details see Legend to Figure 25. The differ-
ence of maximal PPIX fluorescence intensity in tumors and normal epithelium was highly signifi-
c
t
ant (p<0.001). Times needed to reach PPIX fluorescence maxima differed significantly between 
umors and normal epithelia (p=0.001).  
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However, a significan l PPIX accumulation 

(p<0.01) was found in norm al epithelium 

and tumorous portion

No significant increase of PPIX levels in tumor was detected between the co-cultures made 

with GFP-expressing lung tumor cells and without (Fig. 34A, B).  

t difference in the time profiles of maxima

al epithelium. PPIX fluorescence kinetics in norm

s after incubation with 5-ALA are well differentiated. 
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Figure 34: Maximal PPIX accumulation in tumor (A) and in normal epithelium (B) of co-
cultures cultivated with the lung tumor cell line EPLC-32M1 or the GFP-transfected lung 
tumor cell line (GFP-EPLC-32M1). The co-cultures were incubated for 15 min with 1.2 mM 5-
ALA and then washed. No significant difference (p=0.987) of PPIX levels in tumor in both groups 
of co-cultures was detected (A). Similar PPIX levels were reached in normal epithelium of both 
groups of co-cultures (B).  
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The great advantage of the three-dimensional mini-organ model is that it mimics in vivo 

conditions a lot better than cell culture experiments or two-dimensional cultures. In the 

present study, the fact of having a confrontation between normal tissue and tumor cells and 

notwithstanding the more complex culture system, the three-dimensional mini-organ model 

provides a different sensitivity to chemical and physical anti-tumoral treatments.   

There are major differences between both culture methods, three-dimensional and two-

dimensional cultures in vitro: In an organ culture the intercellular matrix and the intercellular 

relationship are preserved, this is not the case in a tissue culture, where the intercellular 

relationship is altered and the intercellular matrix is removed. Besides that, the two-

dimensional cultures require an interaction with a solid artificial substrate (Schleich et al., 

1976). 

A spheroid culture is also a three-dimensional model, however it mimics only certain aspects 

of  the tumor such as proliferation status, oxygen concentration and part of the metabolic 

activity. This type of model lacks the interaction between tumor and normal tissue. Frequently 

mentioned drawbacks by using 3D spheroid cultures are the time- and labor-consuming 

culturing techniques. Furthermore, effects on the spheroids due to mechanical manipulation 

(agitation, transportation, pipetting, suspension culture) or chemicals (coating substrates) 

cannot be excluded (Santini et al., 1999). Another crucial point for effective experiments 

regarding the pharmacokinetics of drugs is the homogeneity in size distribution, 

reproducibility, and a short formation time for the spheroids. Kelm et al.,(2002) suggested 

that spheroid growth after 10 days may be hampered by a decay in conditions, such as 

spontaneous degradation of glutamine, photo-degradation of some vitamins and amino acids, 

and increased osmolarity due to evaporation. 

Another advantage of the three-dimensional mini-organ model is a remarkable stability during 

the culture time (a month). Also it is a good alternative to animal experiments, by avoiding 

expensive animal tumor models and corresponding ethical problems. 

Nevertheless the three-dimensional mini-organ model presents certain disadvantages: 1. The 

size variability among co-cultures, which depends on the size of the biopsies. This might have 

 
 

4 DISCUSSION 

4.1 THE THREE-DIMENSIONAL MINI-ORGAN MODEL 



DISCUSSION
 

 

 54 

contributed to the high variance of fluorescence intensities observed with co-cultures used in 

the experiments of the present study. Therefore one can also expect such variances in the 

pharmacokinetics in clinical trials. 2. The quality of the tissue which depends on health 

conditions of the donors. It is well known from the work of Auerbach (Auerbach et al., 1961) 

that the bronchial epithelium of human patients with bronchitis or smoking histories, 

especially those with bronchogenic squamous cell carcinomas, show variable numbers of 

abnormal areas including metaplasia, dysplasia, and other changes. All these factors might 

affect the nature of the human bronchial epithelium in culture. Although, in this work, 

fluorescence measurements were performed only at the borders of the co-culture, marked 

differences from co-culture to co-culture were observed, probably due to the differences in the 

morphological structure of the epithelium. As mentioned in the Methods section, biopsies 

were usually obtained from the upper lobe carina and selected according to their size and the 

presence of cilia in order to minimize fluctuations in the fluorescence measurements.  

 

4.2 PHARMACOKINETICS OF 5-ALA-INDUCED PPIX 
 FORMATION IN THE MINI-ORGAN MODEL 
One of the aims of this work was to assess the pharmacokinetics of 5-ALA-induced PPIX 

fluorescence in normal human bronchial epithelium as well as in tumor. PPIX appears to 

localize exclusively in the mucosa rather than the connective tissue and muscle of hollow 

organs (Bedwell et al., 1992; Loh et al., 1993). This was also the case in the mini-organ 

model, as a representative model of the human bronchial mucosa co-cultivated with tumor 

cells. PPIX accumulation was always registered in the normal epithelium of the co-culture, 

and with a higher intensity in tumorous areas. It is well known that after 5-ALA application a 

marked enrichment of porphyrins is usually observed in tumors as compared to normal 

tissues. This may be due to the low activity of ferrochelatase (El-Sharabay et al., 1992) and 

probably also to the high activity of the rate-limiting enzyme PBGD in cancerous cells 

(Gibson et al., 1998). The synthesis and cellular accumulation of PPIX is presumably a 

function of local ALA uptake, porphyrin synthesis, iron depletion and lymphatic or vascular 

clearance of PPIX (Tope et al., 1998).  

A higher PPIX fluorescence intensity was mostly achieved in the tumor areas compared to the 

normal epithelium. This might be explained by an increased metabolic activity of 5-ALA 

processing enzymes or a higher stability of PPIX within tumor cells. In the case of the old co-
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intensity was detected in tumor as well as in the normal 

ence 

kinetics in tumor from various co-cultures, but the PPIX fluorescence kinetics in normal 

or patients the best interval between inhalation and PDD (about 

wever, an unresolved issue is still the 

cultures, a high PPIX fluorescence 

epithelium. Moreover, a similarity was found among the shapes of the PPIX fluoresc

tissue presented differences in the shape from one co-culture to another, which means PPIX 

accumulation is quite heterogeneous in normal areas. The present study is not dealing with 

questions like the way of 5-ALA application, nevertheless, this is an issue to consider at 

patients treatment as PPIX kinetics in normal and tumorous tissue might depend on the route 

of administration. Oral and intravenous administration of 5-ALA in humans has been 

described leading to accumulation of PPIX in several organs including the skin (Peng et al., 

1995; Loh et al., 1993). Other investigators have demonstrated the suitability of applying 5-

ALA by intravenous injection, leading to a faster accumulation of PPIX within tumor than 

topical administration for superficial bladder carcinomas (de Blois et al., 2001; Kriegmair et 

al., 1994). 

In a Phase-I-study in lung tum

90 – 120 min after inhalation) has already been evaluated (Huber, 1999). There are no side 

effects apart from the occasional cough in these patients mostly affected by bronchitis. In the 

three-dimensional mini-organ model the maximal PPIX fluorescence intensity was also 

achieved in tumor approximately 2 hours after the incubation with 5-ALA, on the other hand, 

PPIX  fluorescence was still present in the normal epithelium of the co-culture after 7 or 8 

hours. The time at which maximal PPIX fluorescence intensity in patients was detected 

correlates with the time kinetics in the proposed model, showing in this way its suitability for 

pharmacokinetics studies of  different photosensitizers. 

The present study shows good selective accumulation of PPIX in tumor and in normal 

epithelial areas of the co-culture model versus connective tissue after application of 5-ALA. 

The difference between maximum PPIX fluorescence intensities in tumor and in normal 

epithelium was highly significant (p<0.001). Ho

desirable differential distribution between tumor and normal tissue, since PPIX levels in the 

normal epithelium remain variably.  
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suitable 

rug for PDD and PDT. The PPIX fluorescence intensity observed with h-ALA was two-fold 

mprove 

-culture 

al. The optimal 

In addition, PPIX distribution in tumorous areas of the three-dimensional mini-organ model 

4.3 5-ALA ESTERS IN THE MINI-ORGAN MODEL 
To compare the pharmacokinetics of the 5-ALA methyl, butyl, hexyl ester with that of 5-ALA 

induced PPIX fluorescence in the three-dimensional mini-organ model, the PPIX fluorescence 

intensity dependence from different ALA-ester concentrations was considered. The reason for 

using a more lipophilic compound than 5-ALA is because 5-ALA shows a poor ability to 

diffuse through biological membranes, and as a consequence, a high dose of 5-ALA must be 

administered in order to increase PPIX in the tumorous tissue at a level required for PDD 

and/or PDT. Also, one pursues a deeper penetration in tissue and a more homogeneous 

interstitial availability. 

According to the results obtained in the present work, h-ALA induced the highest PPIX 

fluorescence intensity at a significantly lower concentration (0.24 mM) in contrast to 5-ALA 

(1.2 mM), m-ALA (2.4 mM) and b-ALA (0.48 mM). One may expect h-ALA to be a 

d

higher compared to the 5-ALA induced PPIX fluorescence intensity, which could i

photodetection of bronchial carcinoma. The amount of the applied h-ALA in the co

model was 5 times lower than that of 5-ALA reaching in general a higher sign

concentration of 5-ALA esters is crucial in order to guarantee PPIX formation without 

exceeding the concentration threshold, at which PPIX level decreases. Studies performed in 

cultured cells from the lung and bladder by Uehlinger et al. (2000) have also shown the 

influence of the concentration on PPIX formation induced by 5-ALA and its esters. It was 

observed that a reduction of PPIX formation at higher concentrations than the optimal 

concentration is correlated to a reduction in cell viability as determined by measuring the 

mitochondrial activity. In the present work, a decay of the PPIX fluorescence intensity in co-

cultures incubated with high concentrations of h-ALA was observed. This indicate a certain 

grade of cytotoxicity of h-ALA in the mini-organ model. After the measurements, a few of 

these co-cultures were kept under normal culture conditions, and within 2 days they were 

observed under a light microscope. The epithelium appeared to be damaged and even cellular 

lysis was detected. 

appeared to be more homogeneous after incubation with h-ALA or m-ALA as shown in the 

box plots (Fig. 25A-B). This probably implies a better drug penetration, which could lead to 

improved therapeutic results in vivo. However, Bigelow et al. (2001) performed studies with 
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al epithelium. Furthermore, PPIX induced by m-ALA was rapidly eliminated 

from normal and tumorous areas in comparison to PPIX induced by h-ALA or 5-ALA. 

et al., 2001) indicate that these esters 

might have a better performance when administered systematically. One must also bear in 

ni-organ model with high doses of 5-ALA esters did not 

present any advantage in detecting PPIX fluorescence, on the contrary, cell lysis in the normal 

pithelium was observed. Therefore, it makes sense to investigate the efficacy of 5-ALA 

esters applied in lower doses. H-ALA meets this demand at a concentration of 0.24 mM, also 

spheroids incubated with h-ALA and showed that the membrane esterase activity in the 

outermost cells limits the PPIX production rather than the saturation of the hem biosynthetic 

pathway. Saturation of esterase activity seems to play a role in establishing the more uniform 

spatial distribution of porphyrin fluorescence observed in spheroids models incubated with h-

ALA. 

High tumor selectivity after topical application of m-ALA has been reported by Peng et al. 

(2001). In their study PPIX fluorescence was selectively and homogeneously distributed in 

thick basal cell carcinoma (BCC) lesions with little fluorescence seen in the dermis. These 

facts are of clinical relevance since m-ALA exhibits less photo-toxicity in local normal tissue

during PDT. In agreement with this report, PPIX pharmacokinetics in the mini-organ model 

after application of m-ALA showed a substantial differential distribution of PPIX between 

tumor and norm

A prodrug suitable for PDT should ideally have lipophilic as well as hydrophilic properties. 

Increased lipophilicity of an ALA derivate contributes to higher bioavailability by enhancing 

the penetration rate through membranes. However, when an ALA derivate is too lipophilic, it 

may accumulate in membranes without being liberated in order to exert its biological action 

(Guy and Hadgraft, 1992; Bonina et al., 1995). The fact that butyl-ALA and methyl-ALA 

failed to induce high levels of PPIX in the co-culture model at lower concentrations than 5-

ALA, does not necessarily imply that these compounds will be useless in any situation. 

Reports from other authors (Casas et al., 2001; Bigelow 

mind that the prodrug stability is of importance, as 5-ALA esters require esterases to be 

converted into the active drug. If the suitable esterases are not present, one cannot expect 

effects at all from the prodrug, even if it has good diffusion properties. Therefore, it might be 

necessary to use enhancers in order to optimize 5-ALA and its derivates penetration. 

Incubating the three-dimensional mi

e
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l be detected 

l., 1995) a plateau has also been observed in the pharmacokinetics of 

 was obtained with b-ALA, although it showed a very weak PPIX 

fluorescence signal in tumor as well as in normal epithelium.  

m-ALA could be a good candidate applied in low doses as PPIX could stil

adequately without cytotoxicity effects for the normal tissue. 

The pharmacokinetics of b-ALA-induced PPIX in the co-cultures presented a distribution 

with positive skew of PPIX in the normal epithelium. This might be due to the fact that after 

reaching the maximum PPIX intensity in normal tissue, PPIX residuals remained for hours 

until they were eliminated (see Fig. 25B). In the pharmacokinetics of co-cultures incubated 

with h-ALA, PPIX fluorescence intensities drop until a low level, which last for a couple of 

hours after finishing the experiment. In reports from other authors (Chang et al., 1996; Bachor 

et al., 1996; Iinuma et a

5-ALA esters after reaching the maximal PPIX fluorescence intensity in cell cultures derived 

from bladder tumors and in rat urothelium in vivo. Probably this plateau is caused by both the 

balance between PPIX synthesis and PPIX utilization, which should happen with all 

precursors, and the penetration of precursors into deeper lying cells, which should increase 

with liposolubility of the 5-ALA esters (Marti et al., 1999). 

5-ALA esters such as h-ALA and m-ALA may diffuse passively across the plasma 

membrane, and thereby bypass totally or in part the receptor-mediated transport mechanism 

of 5-ALA, or use another active or facilitated transport mechanism than 5-ALA. The 

production of PPIX induced by 5-ALA esters is influenced by the aliphatic chain length of the 

alcohol used for esterification (Gaullier et al., 1997). Also this phenomenon might be 

attributed to the membrane esterase activity, which is apparently involved in limiting PPIX 

synthesis in the interior of the tumor cells. 

In regards to the ratios T/NE, it was possible to observe not a very strong PPIX range of 

dispersion in co-cultures treated with 5-ALA and h-ALA, but  co-cultures incubated with m-

ALA or b-ALA presented a skewed distribution of PPIX (Fig. 27). However, if to compare 

these 4 T/NE ratios, 5-ALA and m-ALA showed the best ratios. On the other hand, a stronger 

PPIX fluorescence intensity was reached only with a lower concentration of h-ALA. And the 

highest T/NE ratio
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s. Tumor cells transfected with a GFP expression plasmid provide a selective image 

 main 

ey have 

 

4.4 GFP IN THE MINI-ORGAN MODEL 
Optical imaging of tumorous areas in the mini-organ model has been challenging, because 

tumor cells usually do not have a specific optical quality that clearly distinguishes them from 

normal tissue. Tumor cell imaging aided by endogenous GFP fluorescence presents powerful 

feature

with a very high intrinsic contrast to the other tissues. GFP expression in the tumor cells is 

stable over indefinite time periods allowing a better visualization of tumor growth and 

metastasis.  

The GFP-expressing lung tumor cell line EPLC-32M1 has become an invaluable new tool to 

improve the three-dimensional mini-organ model. According to the present data, the cell 

growth rate was not altered after transfection, and the GFP-transfected tumor cells invaded the 

wounded surface of the organ model as before. With this step it was possible to show a 

replication and an enhanced resolution of selective organ colonization in vitro. The

reason to have used GFP-transfected tumor cells in the co-culture model was the fact that 

during the evaluation of the PPIX accumulation in tumor and normal tissue, it was not always 

possible to identify the demarcation of tumor areas, accurately. GFP clearly facilitated this 

task. In this work it has been demonstrated that this GFP-enhanced organ model facilitates the 

study and evaluation of the pharmacokinetics of 5-ALA induced PPIX, specially in co-

cultures that didn’t have a flawless epithelium. As the tumor cells always attached to the 

wounded side, but in the case of a lack of epithelium in the co-culture, it was observed that 

tumor cells also invaded the underlying stroma. Then before transfecting tumor cells it was 

hard to judge if those areas were tumor free or not.  

In the present work it was also shown that the GFP-transfection of the lung tumor cells did 

not change their invasive behaviour. The use of E. coli derived reporter gene lacZ as a marker 

for identifying disseminated cells in animal models, has been utilized and recommended by 

several investigators (Rømer et al., 1995; Fjellbirkeland et al., 1998), however, th

observed that the lacZ transfection may modify some phenotypic characteristics of lung tumor 

cell lines. 

The three-dimensional mini-organ model with GFP-transfected tumor cells could be used to 

optimize the formulation of 5-ALA esters in regards to their retention in the tissue of interest. 
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AL CANCER 

easurements for a given route 

elevance, as these characteristics are needed to be 

studied before drug application. 

4.5 THE ROLE OF FLUORESCENCE DIAGNOSIS IN 
 EARLY DETECTION OF BRONCHI
More effective methods for early detection of lung cancer are needed. Fluorescence detection 

using differences in tissue autofluorescence among pre-malignant, malignant and normal 

bronchial tissues has opened up a new possibility of detecting and localizing early lung cancer 

lesions (Lam et al., 1993b; Lam and Profio,1995). On the other hand, the method of 

autofluorescence bronchoscopy has limitations regarding sensitivity and specially specificity. 

Fluorescence bronchoscopy is potentially useful in the preoperative assessment of patients 

with lung cancer to determine the extent of the endobronchial spread and to detect dysplastic 

lesions or in situ carcinomas that are invisible on conventional white light examination (Lam 

and Becker, 1996). 5-ALA has been investigated for fluorescence detection and localization 

of dysplasia and early stage malignant lesions in different body sites. An advantage of 5-ALA 

is that the spectral properties of PPIX are known, however, the administered ALA dose and 

the time interval between administration and the fluorescence m

of delivery must still be optimized, because the tissue contrast depends strongly on these 

factors (van der Veen et al., 1994; Heyerdahl et al., 1997; Loh et al., 1993). On account of 

this, there is a need of a tumor model in vitro suitable for pharmacokinetics studies. In the 

present work it has been shown the advantage of the three-dimensional mini-organ model to 

elucidate the pharmaco-kinetic properties of 5-ALA and 5-ALA esters  in order to optimize 

the drug delivery. The differences in the kinetics and PPIX fluorescence intensities in tumor 

and in normal epithelium have a clinical r

Moreover, in the co-culture model it was possible to observe that the fluorescence intensity 

induced by 5-ALA or 5-ALA esters can be much stronger than autofluorescence. This might 

facilitate the scanning of large tissue areas and also reduce costs in the clinical application. 
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sis and minimally invasive treatment modalities. During the past few years, 

fluorescence bronchoscopy and endobronchial photodynamic therapy (PDT) have evolved as 

 

cumulation of PPIX in tumor without 

causing damage to the normal tissue was determined for 5-ALA methyl, butyl and 

e needed to reach maximal accumulation of 5-ALA-induced PPIX in tumor 

and in normal epithelium was analyzed. 

5 SUMMARY 

Lung cancer is one of the most common malignancies in the world and remains the leading 

cause of  cancer death among men and women in developed countries, accounting for more 

deaths than breast, prostate and colorectal cancers combined. The cure for lung cancer is low 

(<15%) due to the lack of screening methods, the propensity for early spread, and the inability 

to cure metastatic disease. However, when people are diagnosed with early stage lung cancer, 

their chances of  5-year survival can be as high as 90%, hence the importance of methods for 

early diagno

promising technologies. The purpose of this thesis was to establish an in vitro model for lung 

cancer and to investigate clinically relevant pharmacokinetic parameters for the optimization 

of 5-aminolevulinic acid (5-ALA) application.  

The present study suggests that the in vitro three-dimensional mini-organ model consisting of 

normal human bronchial mucosa co-cultivated with human lung tumor cells (EPLC-32M1) is 

a good alternative to mono-layer or even spheroid cell culture due to a much closer similarity 

to the in vivo situation. It largely obviates the necessity for animal experiments to investigate 

various clinically relevant questions, e.g. drug pharmacokinetics. 

The three-dimensional mini-organ model has been applied to elucidate the accumulation of

the fluorescing photosensitizer protoporphyrin IX (PPIX) after delivery of 5-aminolevulinic 

acid (5-ALA) or some of its esters:  

• The optimal concentration for maximal ac

hexyl ester. Fluorescence intensity was taken as parameter for the amount of PPIX in 

the tissue. 

• The co-culture model was used to study the pharmacokinetics of 5-ALA-induced 

PPIX fluorescence and its esters in normal epithelium and in tumorous areas.  

• The tim

• Improvement of the three-dimensional mini-organ model by using GFP-transfected 

EPLC-32M1 lung tumor cells in the organ co-culture system was studied. 
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tumor and 

her than in 

 

 lipophilic nature, an enhanced tissue penetration has been 

 an attempt to further enhance the co-culture model, green fluorescent protein (GFP) 

expression plasmid-transfected lung tumor cells were used in the mini-organ model. 

Comparable results were obtained in the pharmacokinetics of 5-ALA between co-cultures 

made with GFP transfected and untransfected lung tumor cells. But GFP expression highly 

improved the experiment conditions, whereby a higher contrast was reached at the tumor/ 

normal epithelium boundaries.  

5-ALA-induced PPIX fluorescence showed marked differences in the kinetics in 

normal epithelium as the concentration of PPIX within tumorous areas was hig

normal tissue. PPIX fluorescence in tumor increased faster in most of the cases than in normal 

tissue, but also tended to decay earlier. The results of this study show that the relative 

fluorescence intensities of PPIX in tumor and normal epithelium are a function of the 

incubation time, concentration, distribution, and kinetics in tumorous and normal tissue.  

A number of 5-ALA derivatives are being used in order to modify and improve the tissue

distribution of the PPIX. The tumor/normal epithelium ratios (T/NE ratio) of PPIX 

fluorescence induced by 5-ALA and its esters were comparable and showed in general a good 

contrast in the three-dimensional mini-organ model. However, comparing 5-ALA with 5-

ALA hexyl ester, 5-ALA hexyl ester induced a 2-fold higher PPIX fluorescence intensity in 

tumor as well as in normal epithelium at a 5 times lower concentration (0.24 mM). A slight 

tendency to a rapid PPIX accumulation in tumor and in normal epithelium was observed in 

co-cultures incubated with 5-ALA methyl ester. In addition, maximal PPIX fluorescence 

intensities in these co-cultures show individual variations in tumor as well as in normal 

epithelium. The highest T/NE ratio was observed with 5-ALA butyl ester, but also an 

inhomogeneous distribution of PPIX in tumorous and normal areas. In general, it was possible 

to use the same mini-organ model for further experiments, which indicates that 5-ALA esters 

at their optimal concentrations are not toxic. 

Amongst the 5-ALA esters, 5-ALA hexyl ester is clearly to be favored as it combines 

homogeneous distribution, high T/NE ratio, high fluorescence intensities, and the lowest drug 

concentration needed. Due to its

assumed compared to the other esters as well as 5-ALA. In clinical studies 5-ALA hexyl ester 

has been used successfully to detect early carcinoma in the urinary bladder by fluorescence 

imaging.  

In
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 present work was to establish a model which allows the 

 taken into consideration in the present mini-

 can be applied to localize 

 One of the main targets of the

optimization of application parameters for 5-ALA-based fluorescence diagnosis for the early 

detection of lung cancer. The maximum of PPIX fluorescence intensity in the co-culture 

model was detected between 130 and 180 min after the beginning of incubation with 5-ALA. 

Clinical results obtained by Huber et al. indicate that a photodynamic diagnosis should be 

performed approximately 2 hours after topical administration of 5-ALA to patients. Thus the 

co-culture model corroborates the clinical observation and yields a quantitative confirmation 

both for the time delay between drug application and fluorescence bronchoscopy (or 

endobronchial PDT) and for the T/NE contrast that can be expected. The results also suggest 

that inhalation of 5-ALA hexyl ester at a lower concentration and slightly shorter time interval 

could enhance the procedures. 

Since the transport of 5-ALA by blood are not

organ model, the results of this study could primarily be applied to topical application of 5-

ALA and its derivatives, in the case of lung cancer per inhalation of these compounds. 

In order to obtain a significant improvement of patient survival, the number of tumors 

identified in early stages has to be increased. This could be achieved by enhanced sputum 

cytology screening. Then, optimized fluorescence bronchoscopy

early lesions with high sensitivity and endoluminal PDT can treat these lesions minimally 

invasive. 
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wickelten Technologien der Fluoreszenzbronchoskopie und 

ALA)-

Anwendung. 

n aufgrund seiner größeren Nähe zur in vivo-Situation darstellt. Tierexperimente 

zur Lösung verschiedener klinisch relevanter Fragen, wie z.B. die Untersuchung der Pharma-

okinetik eines Medikaments, werden dadurch weitgehend überflüssig. 

Das dreidimensionale Miniorganmodell wurde zur Analyse der Anreicherung des fluoreszie-

renden „Photosensitizers“ (lichtempfindliche Wirksubstanz) Protoporphyrin IX (PPIX) nach 

Gabe von 5-ALA und verschiedenen 5-ALA-Estern verwendet. Im Einzelnen wurden fol-

gende Untersuchungen durchgeführt: 

• Es wurde die optimale 5-ALA-Methyl-, 5-ALA-Butyl- und 5-ALA-Hexylester-

Konzentration für die maximale Anreicherung von PPIX im Tumor bestimmt, bei der 

es zu keiner Schädigung des Normalgewebes kommt. 

6 SUMMARY (GERMAN TRANSLATION) 

Lungenkrebs ist weltweit die häufigste maligne Erkrankung. Sie stellt die Haupttodesursache 

bei krebserkrankten Männern und Frauen in den westlichen Industrienationen dar und fordert 

mehr Tode als Krebserkrankungen der Brust, der Prostata, des Kolons und Rektums zusam-

mengenommen. Mangels geeigneter diagnostischer Methoden zur Früherkennung, aufgrund 

der frühen Metastasierung und dem Fehlen von Heilungsmöglichkeiten bei Metastasierung, 

ist die Heilungrate für Lungenkrebs sehr niedrig (<15%). Bei Erkennung des Lungenkrebses 

im Frühstadium kann die 5-Jahres-Überlebensrate allerdings bis zu 90% betragen. Daraus 

ergibt sich die Notwendigkeit zur Entwicklung von Methoden für die Frühdiagnose und 

minimal invasiven Behandlungsmodalitäten. In dieser Hinsicht viel versprechend erscheinen 

die in den letzten Jahren ent

endobronchialen photodynamischen Therapie (PDT). Das Ziel dieser Arbeit war die 

Etablierung eines in vitro-Modells für Lungenkrebs und die Untersuchung klinisch relevanter 

pharmakokinetischer Parameter für die Optimierung der 5-Aminolevulinsäure (5-

Die hier vorgestellte Arbeit legt nahe, dass das dreidimensionale Miniorganmodell aus nor-

maler menschlicher Bronchialschleimhaut und kokultivierten menschlichen Lungentumor-

zellen (EPLC-32M1) eine Alternative zu einschichtigen Zellkulturen oder sogar zu Sphäroid-

zellkulture

k
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• Das Kokulturmodell wurde zur Analyse der Pharmakokinetik von 5-ALA- und 5-

ALA-Ester-induzierter PPIX-Fluoreszenz in normalem Epithel und Tumorbereichen 

verwendet. 

• Die Zeit zum Erreichen maximaler Anreicherung von 5-ALA-induziertem PPIX in 

Tumor und normalem Epithel wurde analysiert. 

• Das dreidimensionale Miniorganmodell wurde durch die Verwendung von „green 

fluorescent protein“ (GFP)-transfizierten EPLC32M1-Lungentumorzellen im Organ-

kokultursystem verbessert. 

Eine stark erhöhte PPIX-Konzentration in Tumorarealen im Vergleich zum Normalgewebe 

ließ auf eine deutlich unterschiedliche Kinetik der 5-ALA-induzierte PPIX-Fluoreszenz in 

Tumor und normalem Epithel schließen. In den meisten Fällen nahm die PPIX-Fluoreszenz 

rascher im Normalgewebe zu, neigte aber dazu, früher wieder abzufallen. Zusammengenom-

men zeigte diese Studie, dass die relativen PPIX-Fluoreszenzintensitäten, die in Tumor- und 

Normalepithel gefunden werden, abhängig von der Inkubationszeit, Konzentration, 

Verteilung und Kinetik der 5-ALA-Derivate in Tumor- und Normalgewebe sind. 

Eine Reihe von 5-ALA-Derivaten findet zur Verbesserung der Gewebeverteilung von PPIX 

Verwendung. Das Verhältnis der 5-ALA- bzw. 5-ALA-Ester-induzierten PPIX-Fluoreszenz in 

Tumor- und Normalepithel (T/NE-Verhältnis) war vergleichbar und führte gewöhnlich zu 

einem guten Kontrast im Miniorganmodell. Allerdings zeigt sich beim Vergleich von 5-ALA 

mit 5-ALA-Hexylester, dass mit 5-ALA-Hexylester eine zweifach höhere PPIX-Fluores-

zenzintensität in Tumor und Normalepithel bei einer fünffach niedrigeren Konzentration  

(0,24 mM) erzielt werden konnte. Tendenziell akkumulierte PPIX rascher im Tumor und 

Normalepithel nach Inkubation der Kokulturen mit 5-ALA-Methylester. Es zeigten sich indi-

viduelle Schwankungen bei den maximalen PPIX-Fluoreszenzintensitäten, die in diesen Ko-

kulturen in Tumor und in normalem Epithel erreicht wurden. Das höchste Fluoreszenzinten-

sitätsverhältnis zwischen Tumor und Normalepithel wurde mit dem 5-ALA-Butylester beob-

achtet. Dies war jedoch mit einer inhomogenen Verteilung von PPIX in Tumor- und Normal-

gewebe verbunden. Meist war es möglich, die Miniorgankuturen für weitere Experimente zu 

verwenden, was nahe legte, dass 5-ALA-Ester bei ihren optimalen Konzentrationen nicht to-

xisch sind. 
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r Vorzug zu ge-

ptziele dieser Arbeit war die Etablierung eines Modells zur Optimierung der 

Applikationsparameter für die 5-ALA-basierte Fluoroszenzdiagnose zur Früherkennung von 

Bronchoskopie (oder 

im hier vorgestellten Miniorganmodell nicht mit einbe-

zog  

plikatio

Verbin

Um eine deutliche Verbesserung beim Überleben von Patienten zu erzielen, muss der Anteil 

der Patienten erhöht werden, bei denen Tumore früh diagnostiziert werden. Sputumzytologi-

sche Reihenuntersuchungen mit erhöhter Empfindlichkeit wäre eine der Möglichkeiten dieses 

Unter den getesteten 5-ALA-Estern ist eindeutig dem 5-ALA-Hexylester de

ben, da er Eigenschaften, wie homogene Verteilung, ein hohes T/NE-Verhältnis sowie hohe 

Fluoreszenzintensitäten bei niedriger Konzentration in sich vereinigt. Man nimmt an, dass der 

Grund für die im Vergleich zu 5-ALA und den anderen untersuchten 5-ALA-Estern beob-

achtete erhöhte Gewebepenetration in seiner lipophilen Natur zu suchen ist. In klinischen Stu-

dien wurde 5-ALA-Hexylester erfolgreich zum Nachweis von Harnblasenkarzinomen im 

Frühstadium durch Fluoreszenzbildgebung eingesetzt.   

Zur weiteren Verbesserung des Kokulturmodells wurden GFP-Expressionsplasmid-transfi-

zierte Lungentumorzellen im Miniorganmodell verwendet. Vergleichbare Resultate wurden in 

Bezug auf die 5-ALA-Pharmakokinetik in Kokulturen mit GFP-transfizierten oder untransfi-

zierten Tumorzellen erzielt. Durch die GFP-Epression wurde jedoch ein höherer Kontrast im 

Tumor/Normalepithel-Übergangsbereich erzielt, was die Durchführung der Experimente sehr 

erleichterte. 

Eines der Hau

Lungenkrebs. Maximale PPIX-Fluoreszenzintensitäten waren im Kokulturmodell 130 bis 180 

Minuten nach Gabe von 5-ALA beobachtbar. Ergebnisse klinischer Untersuchungen von 

Huber und Mitarbeiter zeigten, dass bei Patienten eine photodynamische Diagnose ungefähr 

zwei Stunden nach topischer 5-ALA-Gabe durchgeführt werden soll. Das Kokulturmodell 

bestätigt also diese klinischen Befunde qualitativ und quantitativ, insbesondere die zeitliche 

Verzögerung zwischen der Medikamentengabe und nachfolgender 

endobronchialer PDT) und den zu erwartenden T/NE-Kontrast. Des Weiteren legen die Er-

gebnisse nahe, dass Inhalation von 5-ALA-Hexylester bei einer vergleichsweise niedrigeren 

Konzentration und etwas kürzerer Einwirkdauer das Verfahren verbessern sollte. 

Da der Transport von 5-ALA im Blut 

en werden kann, sollten die Ergebnisse dieser Studie hauptsächlich bei der topischen Ap-

n von 5-ALA und seinen Derivaten, im Falle von Lungenkrebs durch Inhalation dieser 

dungen, Anwendung finden.  
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Zie

sierung

siven Behandlung dieser Läsionen anschließen. 

 

 

 

 

 

 

l zu erreichen. Idealerweise könnten sich optimierte Fluoreszenzbronchoskopie zur Lokali-

 von frühen Läsionen mit hoher Sensitivität und endoluminale PDT zur minimal inva-
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green fluorescent protein 

h-ALA  5-ALA hexyl ester 

PPIX  protoporphyrin IX 

7 ABBREVIATIONS 

AFB  autofluorescence bronchoscopy 

ATCC  American Joint Committee on Cancer 

B-ALA 5-ALA butyl ester 

BCC  basal cell carcinoma 

CCD  charged coupled device (camera) 

CIS  carcinoma in situ 

COPD  chronic obstructive pulmonary disease 

CT  computed tomography 

DHE  dihematoporphyrin ether / ester 

ED  extensive disease 

5-ALA  5-aminolevulinic acid 

GFP  

HpD  hematoporphyrin derivative 

LD  limited disease 

LIFE  lung imaging fluorescence endoscope 

MAC  malignancy-associated changes 

m-ALA 5-ALA methyl ester 

MRI  magnetic resonance imaging 

NaCl  sodium chloride 

NE  normal epithelium 

NSCLC non-small cell lung cancer 

PDD  photodynamic therapy 

PDT  photodynamic diagnosis 

SCLC  small cell carcinoma 

T  tumor 

TNM  tumor / lymph nodes / metastasis 

UICC  International Union Against Cancer 

WHO  World Health Organization 
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