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Zusammenfassung

Hohlkernfasern leiten Licht direkt innerhalb von Flüssigkeiten oder Gasen und eignen sich
daher ideal für Anwendungen, die eine starke Licht-Materie Wechselwirkung erfordern. Ins-
besondere verdrillte Varianten dieser Fasern sind aktuell von Interesse, da sie die Nutzung
von Licht mit zirkularer Polarisation oder Bahndrehimpuls (OAM) ermöglichen. Einer brei-
ten Verwendung stehen allerdings fehlende Methoden zur Chipintegration und lange Ana-
lyt-Austauschzeiten entgegen, da der hohle Kern nur von den Endflächen aus zugänglich ist.

Hier lösen wir diese Probleme mithilfe eines 3D-Nanodruckverfahrens, basierend auf
Zwei-Photonen-Polymerisation, welches erlaubt Hohlkernwellenleiter direkt auf Silizium-
chips herzustellen. Zwei Geometrien werden durch Transmissionsmessungen, Simulationen
und analytischer Theorie untersucht: "Light Cages" und "Microgap" Wellenleiter. Durch
einen seitlich offenen Kern können die Diffusionszeiten deutlich reduziert werden, was am
Beispiel von Absorptions- und Fluoreszenzspektroskopie verdeutlicht wird. Im Vergleich zu
Kapillaren sind die Austauschzeiten für Flüssigkeiten um das Fünffache reduziert, während
sich die Füllzeiten für Gase kaum von denen in Küvetten unterscheiden.

Im Vergleich der beiden Wellenleiter zeigt sich, dass Microgap Wellenleiter geringere
Transmissionsverluste (0,4 - 0,7 dB/mm im sichtbaren Bereich), größere Transmissions-
fenster (∆λ = 200 nm) und kürzere Herstellungszeiten (10 min/mm) bieten. Statistische
Analysen verdeutlichen die hohe Reproduzierbarkeit des Herstellungsverfahrens, mit Ab-
weichungen von 2 nm innerhalb eines Chips und 15 nm zwischen verschiedenen Chargen.

Darüber hinaus demonstrieren wir den ersten chipintegrierten verdrillten Hohlkern-
wellenleiter. Die hergestellten verdrillten Light Cages weisen eine Ganghöhe von 90 µm
auf, weniger als die Hälfte von vergleichbaren Glasfasern. Optische Messungen zeigen, dass
die Verdrillung chirale Resonanzen erzeugt, in denen Licht einer bestimmten Händigkeit mit
einer verlustbehafteten Kernmode höherer Ordnung gekoppelt wird, was zu einem starken
zirkularen Dichroismus von 0,8 dB/mm führt. Unterstützend wird eine theoretische Anal-
yse der verdrillungsinduzierten Phänomene in axial und außeraxial verdrillten Wellenleitern
präsentiert, einschließlich des Auftretens superchiraler Felder, Spin- und OAM-abhängiger
räumlicher Modeneigenschaften, des Ursprungs von zirkularer und OAM-Doppelbrechung
und einer Erläuterung der häufigsten Koordinatentransformationen für deren Simulation.

Diese Ergebnisse ebnen den Weg, um die jahrelange Forschung an (verdrillten) Hohlk-
ernfasern in chipintegrierte Anwendungen umzusetzen, wie kompakte Echtzeit-Sensoren
für Umweltüberwachung, Point-of-Care Diagnostik, chemische Analysen, Lab-on-a-Chip
Geräte und chirale Spektroskopie sowie im Bereich nichtlinearer Optik und Quantenoptik.



Abstract

Hollow-core fibers guide light directly inside liquids or gases making them ideal for appli-
cations requiring strong light-matter interaction. Recently, twisted versions of these fibers
have attracted additional interest, unlocking applications involving circular polarization
or orbital angular momentum (OAM). However, their widespread use in practical devices
is hindered by the lack of methods for chip integration, and impracticably long analyte
exchange times, given that the hollow core can only be accessed from its end faces.

In this thesis, we overcome these limitations by using two-photon-polymerization-based
3D nanoprinting to implement hollow-core waveguides directly on silicon chips. Two geome-
tries are investigated via transmission measurements, simulations, and analytical theory:
the previously reported light cage, and the newly introduced microgap waveguide. Their
unique design allows side-wise access to the core leading to drastically decreased diffusion
times, showcased on the example of absorption and fluorescence spectroscopy. Remark-
ably, the exchange times for liquid analytes were reduced five-fold compared to equivalent
capillaries, while filling times for gases were nearly indistinguishable from those of cuvettes.

Comparing the two waveguides, microgap waveguides were found to offer better perfor-
mance metrics, such as lower propagation loss (0.4 - 0.7 dB/mm in the visible, 1.3 dB/mm
at λ = 1400 nm), larger spectral transmission windows (∆λ = 200 nm), and shorter fab-
rication times (10 min/mm). A statistical evaluation indicates high repeatability of the
fabrication method with variations in the realized dimensions as low as 2 nm in a single
fabrication run and 15 nm for different batches.

Furthermore, this thesis marks the first demonstration of an on-chip twisted hollow-
core waveguide. The realized twisted light cages feature a record helical pitch distance
of 90 µm, less than half that of comparable glass fibers. Optical measurements reveal
twist-induced chiral resonances selectively coupling light of one handedness to a lossy
higher-order core mode, resulting in strong circular dichroism of 0.8 dB/mm. The results
are supported by extensive theoretical analysis of twist-induced phenomena in both on-
and off-axis twisted waveguides, including the emergence of superchiral fields, spin- and
OAM-dependent spatial mode properties, the origin of circular and OAM birefringence,
and a discussion of the most common coordinate transformations used in their simulation.

The presented results open the door for translating years of (twisted) hollow-core fiber
research to on-chip devices, enabling compact optical sensors for real-time applications like
environmental monitoring, point-of-care testing, chemical analysis, lab-on-a-chip devices,
and chiral spectroscopy, as well as applications in nonlinear and quantum optics.



Chapter 1

Introduction

Beginning with the first successful demonstration of a laser in 1960 [1], the field of photon-
ics has shaped both our everyday world and scientific research beyond recognition. The
high level of control over the electromagnetic field reached by advances in modern laser
technology nowadays gives experimental access to timescales of attoseconds (10−18 s) [2],
lengthscales of a thousandth of the diameter of a proton (10−18 m) [3], and allows trap-
ping and manipulation of single atoms [4]. Maybe unsurprisingly, many Nobel Prizes in
physics have been awarded for these advances and related applications, with the most
recent examples being the detection of gravitational waves in 2017 [5], the pioneering of
quantum information science using entangled photon pairs in 2022 [6], and the generation
of ultrashort laser pulses in 2018 [7] and 2023 [8].

On the technological side, applications of photonics were similarly disruptive, for ex-
ample, extreme ultraviolet lithography used by high-end chipmakers today allows to create
integrated circuits with feature sizes down to 8 nm [9], while photolithography in general
enables virtually all electronic devices that we rely on.

Transitioning to the topic of this thesis, a further application of photonic technology
are optical fibers, the photonic analog of an electronic wire, transporting light from one
location to another. Similar to lasers, research into optical fibers took off in the 1960s
with the development of so-called step-index fibers [10]. These consist of at least two
elements, a core made of a material with a high refractive index, and a cladding of a lower
refractive index (Fig. 1.1(a)). When light is coupled into the core, it impinges onto the
core-cladding interface under a shallow angle and is reflected back due to total internal
reflection (similar to a diver not being able to look out of the water if the viewing angle
is too shallow because the refractive index of water is higher than that of air). Such
fibers are created by heating a glass preform to temperatures of about 2000◦C (above
the glass transition temperature) [11], after which the softened material is drawn into
a micrometer-sized strand using large (∼10 m high) fiber drawing towers. Such fibers
can readily be fabricated on kilometer lengthscales and transmit light over a distance of
about 100 km before amplification is required. Such a low signal attenuation and the
fact that light can be used to transmit information independently at multiple wavelengths
make fibers far superior to electronic cables for telecommunication purposes. Today, fiber
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High/low index Air

Step-index Antiresonant Photonic bandgap

Solid-core

Hollow-core

(a) (b) (c)

Figure 1.1: Common fiber geometries. (a)
In a step-index waveguide, light is con-
fined in a material of higher refractive in-
dex by total internal reflection. (b,c) In
hollow-core waveguides, light propagates in
air or other low-index media. Confinement
can be provided by the antiresonance ef-
fect shown in (b) for a revolver hollow-core
fiber. A periodic cladding provides confine-
ment via a photonic bandgap with an ex-
ample being the photonic crystal fiber in
(c). Waveguide mode is sketched in red.

optical communication forms the backbone of the internet with undersea cables connecting
different continents. Due to the large social impact of this innovation, Charles Kao, who
initially identified suitable materials for these fibers [12], was awarded the Nobel Prize in
2009 [13].

While the propagation loss of step-index fibers has reached extremely low values, it is
always fundamentally limited by Rayleigh scattering on residual material impurities or ab-
sorption of the material. Therefore, the idea seemed appealing to create fibers where light
is guided in air or vacuum, where the losses are not limited by the material. However, for
such hollow-core waveguides another light guidance mechanism needed to be identified
as the index of air is lower than that of common materials preventing guidance via total
internal reflection. To understand the alternative approaches, it is important to be famil-
iar with the concept of waveguide modes, which are a set of solutions to the underlying
Maxwell’s equations (explained in more detail in Section 2.1). Generally, modes are local-
ized either to the core, cladding, or the space surrounding the waveguide. Confining light
to the core therefore requires that light cannot couple from the core mode to any of the
cladding or free-space modes. One approach to achieve this involves creating a cladding
with a periodic microstructure (Fig. 1.1(c)). Similar to electrons in crystalline solids, this
periodicity creates a gap in the band structure for certain frequency ranges [14]. Within
this photonic bandgap no modes are available in the cladding, thus preventing light from
leaving the core volume. It turns out, however, that even simpler geometries can be used,
which just consist of a single ring of cladding elements (Fig. 1.1(b)). Here, light is confined
in the low-index medium by the antiresonance effect [15]. In essence, a difference in
the momenta of photons of the core mode and those of the cladding mode inhibit coupling
as, otherwise, momentum conservation would be violated. Designing such antiresonant
waveguides typically relies on numerical or analytical calculations of the involved modes,
which is introduced in Section 3.1. Generally, the distinction between photonic bandgap
guidance and antiresonance guidance lacks a clear boundary (for an in-depth comparison of
the guidance mechanisms and an overview of possible fiber geometries see [16] and Fig. 1.7
therein). Meticulous engineering of the cladding elements and refining of the fiber-drawing
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process led to substantial advances ever since the first demonstration of a microstructured
hollow-core fiber in 1999 [17]. Today, the lowest loss achieved with a hollow-core fiber
is 0.17 dB/km [18], which matches that of the best solid-core fibers (0.14 dB/km) [19].
Further improvements in the accuracy of the fabrication process might therefore result in
hollow-core fibers replacing the current solid-core fibers for telecommunication purposes in
the coming years [20].

Apart from the potentially lower propagation loss, hollow-core waveguides have a fur-
ther advantage over solid-core waveguides: as light is guided inside the hollow core, one
can fill the core with gases or liquids, which can then interact with the confined light
over long distances. This strong light-matter interaction can be used for a number of
purposes [21]. Most relevant is currently the use in nonlinear optics, where light-gas inter-
action at high intensities is employed for supercontinuum generation and compression of
ultrashort laser pulses1. In this thesis, we study the application of hollow-core waveguides
in optical sensing techniques, which can similarly benefit from the increased interac-
tion length. Here, some of the most relevant techniques used in chemical analysis and
biomedical applications are infrared (IR) absorption spectroscopy, Raman spectroscopy,
and fluorescence spectroscopy. All three techniques characterize a sample based on the
energy of molecular vibrations (and rotations) as shown in Fig. 1.2.
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processes for spectroscopic sensing applications.
Red arrows denote the measured energy, either
via absorption (IR spectroscopy), emission (flu-
orescence spectroscopy), or scattering (Raman
spectroscopy). Fluorescence involves nonradia-
tive transitions (curved gray arrow) to the lowest
vibrational level of the excited electronic state,
mediated by collision with other molecules. Ra-
man scattering can be included in this diagram
via virtual excited states. A decay from these
states can either reduce or increase the energy of
the scattered photon by that of the vibrational
excitation (Stokes or Anti-Stokes scattering, re-
spectively).

In IR spectroscopy, the energy of a photon is absorbed and excites the molecule to
a higher vibrational state, leaving a characteristic absorption line in the spectrum of the
transmitted light. Raman spectroscopy, on the other hand, relies on inelastic scattering of
light on a molecule, reducing or increasing the energy of the photon by the energy of the
vibration. Both techniques are complementary, as IR absorption probes transitions where
the dipole moment of the molecule changes, while Raman scattering probes transitions

1As a side note, spectral broadening in gas-filled hollow-core fibers is often the first step in the afore-
mentioned generation of attosecond pulses.



4 1. Introduction

with a change in polarizability2. Lastly, fluorescence spectroscopy drives an electronic
transition of the molecule using light of a short wavelength (typically in the ultraviolet)
and measures the characteristic spectrum of the re-emitted light, which covers a range
of longer wavelengths due to the loss of energy to the different molecular vibrations, as
shown in Fig. 1.2. The resulting characteristic spectral features then allow to quantify
which functional groups or specific molecules are present in the sample. All of these three
techniques have previously been used in the context of hollow-core fibers [22], demon-
strating fiber-integrated IR absorption [23, 24] and fluorescence spectroscopy [25, 26], as
well as fiber-enhanced Raman spectroscopy [27, 28, 29]. The measured detection lim-
its can be comparable to those of established techniques used in analytical chemistry
labs, for example, a concentration of 0.02 nM of fluorescein dye has been detected in a
hollow-core fiber [26] compared to 0.025 nM of a similar dye in liquid chromatography-
mass spectrometry (LC-MS) [30]. However, it is worth noting that lower detection lim-
its down to molecular monolayers or even single molecule detection can be achieved by
using surface-enhanced infrared or Raman spectroscopy with nanostructured substrates
(SEIRA [31]/SERS [32, 33]) - a limit that has not been reached in fibers. Moreover, it is
important to point out that many widely used analytical techniques use labeled antibodies,
such as ELISA (Enzyme-linked immunosorbent assay), LIA (luminescent immunoassay),
and FIA (fluorescent immunoassay), which allow highly specific and sensitive detection
down to concentrations of 1-100 pM. While specific detection of biomolecules has been
demonstrated in hollow-core fibers via fluorophore-labeled antibodies, the detection limits
are still orders of magnitude larger than in the established laboratory techniques [34].

Nonetheless, optical sensors based on hollow-core fibers can be used in a variety of ap-
plications, as such ultralow detection limits are rarely required, particularly in low-cost
devices and portable applications. Foreseeable use cases are sensing of climate-relevant
gases in environmental monitoring [35], breath analysis [36], industrial process monitor-
ing [37], detection of explosives [38], point-of-care drug monitoring, and food safety [28, 39].
Apart from these analytical techniques, hollow-core waveguides are also of interest in quan-
tum optical applications where light needs to interact with atomic or ionic vapors [40].

The main advantage of using hollow-core fibers in these systems is the higher level
of integration, as bulky free-space optics can be replaced by fibers, simplifying alignment
and making the devices more robust against mechanical damage. The next logical step in
this development is the full integration of optical sensing techniques onto a single
chip for mass fabrication. In this context, considerable progress has been made in recent
years with integrated light sources [41, 42, 43] and on-chip spectrometers [44, 45, 46] being
demonstrated. At the same time, less attention has been directed to the integration of the
waveguide element in between them, while glass fibers are not compatible with the typi-
cally used planar photolithography techniques. However, since the waveguide defines the
interaction region between light and analyte, it has a major influence on the properties of

2Since water is a polar molecule, it has many IR-active vibrational transitions, resulting in a substantial
background signal in certain spectral regions in IR spectroscopy. Raman spectroscopy, on the other hand,
does not capture these transitions, making it particularly useful for the analysis of aqueous solutions.
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the resulting device, like response times, detection limits, or decoherence times of quantum
states, thus requiring further research.

So far, most integrated waveguides still rely on solid cores, where - as in step-
index fibers - light is guided mostly inside the core and only a small fraction of the field -
the evanescent waves - can be exploited for analyte interactions [47, 48, 49], as shown in
Fig. 1.3(a).

(a) (b) (c)

ARROW
SlotStrip

Solid-core Hollow-core

(d) Microgap Light cage

PolymerSi/SiO2/Si3N4/InP/InGaAsP

(e)

Hollow-core with side-wise access to core

Figure 1.3: Chip-integrated waveguides. (a,b) In strip and slot waveguides a considerable
fraction of the optical power (shown in red) is present inside the solid core. (c) Antiresonant
reflecting optical waveguides (ARROWs) feature a hollow core that can only be accessed
from the end faces. (d,e) Microgap waveguides and light cages allow side-wise access to
the core via the introduction of gaps along the waveguide axis or the open spaces between
polymer strands (indicated by black arrows).

To some degree, this issue can be overcome. For instance, single- [50, 51] and multi-
slotted waveguides [52] have been developed, where two or more subwavelength-sized solid
cores in close proximity provide a larger evanescent field region, thereby increasing the
volume of light-matter interaction (Fig. 1.3(b)). However, a non-negligible fraction of the
field remains inside the waveguides material, which is an inherent problem to solid core
guidance.

The ideal solution would be the integration of hollow-core waveguides on a chip, where
the guided mode overlaps nearly completely with the medium. However, the only common
approach in this context is represented by antiresonant reflecting optical waveguides (AR-
ROWs), which confine light by a sophisticated multilayer cladding [53, 54, 55], and thus
require a lengthy multi-step fabrication process (Fig. 1.3(c)). Furthermore, they come at
the cost of poor accessibility of the core volume due to the tube-like geometry - a major
problem that applies identically to all hollow-core fibers. In practice, passive introduction
of analytes into the micrometer-sized core via diffusion from its end faces is impractica-
bly slow, requiring devices to actively pump the analyte through the waveguide which
cannot be integrated straightforwardly [56]. Such filling times are particularly long for
low-pressure atomic vapors used in quantum optical experiments and can be on the order
of months for a waveguide length of a few centimeters [57, 58, 59], while passive exchange
times for liquids are on the order of hours [25].

To mitigate this issue, several techniques have been developed to increase the side-
wise accessibility, i.e., "openness" of hollow-core waveguides by introducing lateral holes
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into their cladding - including femtosecond laser drilling [60, 61, 62], application of heat
and pressure [63], and etching [64, 65]. Although such perforated hollow-core waveguides
feature orders of magnitude lower analyte exchange times, the inserted holes increase the
propagation loss, require an additional lengthy post-processing step, and can lead to vari-
ations between different waveguide batches.

In light of these shortcomings, our collaboration pioneered the use of a novel fabrication
approach for realizing on-chip hollow-core waveguides featuring a large structural openness
while maintaining low propagation loss: 3D nanoprinting using two-photon absorption
based direct laser writing of polymeric photoresists (in the following abbreviated as 3D
nanoprinting). As a result, so-called light cages were realized two years prior to the be-
ginning of this thesis [66]. Light cages consist of a hexagonal array of polymer strands
and offer unhindered side-wise access to the core volume - a unique feature that cannot
be realized in fiber drawing or two-dimensional fabrication approaches (Fig. 1.4(a)). Fur-
thermore, 3D nanoprinting is a simple two-step process, that does not rely on cleanroom
conditions, high temperatures, or harsh chemicals, thus overall reducing the fabrication
complexity compared to ARROWs.

(a) (b)Light cage Microgap waveguide

Figure 1.4: Illustration of 3D-nanoprinted hollow-core waveguides investigated in this the-
sis. (a) The light cage allows analytes to enter the light-guiding core via the open space
between strands while the light remains confined via the antiresonance effect. (b) Micro-
gap waveguides enable entry of analytes in the core region by micrometer-sized gaps along
the waveguide (shown here for ammonia molecules). Artwork in (b) was created by Vera
Hiendl, e-conversion (DFG cluster of excellence) and is part of [67].

As a parenthesis: the origin of this fabrication method ultimately dates back to 1931
when Nobel laureate Maria Göppert-Mayer theoretically outlined the process of two-photon
absorption in atoms in her PhD thesis [68]. She showed that atoms can absorb two photons
of lower energy to transition to their excited state instead of a single high-energy photon.
As the probability for this process scales proportionally to the square of the intensity,
two-photon absorption is in general only possible in the focus of a high-intensity pulsed
laser beam. Yet, this property is of advantage in photopolymer-based microfabrication
because it allows a laser beam to be scanned in three dimensions through a photoresist,
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solidifying it precisely at the center of the focused beam and nowhere else. This idea was
first demonstrated in 1997 by Shoji Maruo et al. [69] and matured quickly into a reliable
commercially available technology, now enabling fabrication of complex three-dimensional
structures with the smallest feature sizes being on the order of 100 nm (more details in
Section 3.2). Consequently, 3D nanoprinting found applications across a variety of fields,
including 2D metasurfaces [70], 3D metamaterials [71, 72], photonic crystals [73], microlens
systems [74], free-form optics [75], photonic wire bonding [76], biocompatible cell-culture
scaffolds [77], tissue engineering [78], and microneedles for drug delivery [79], all with the
ability of using multiple materials [80].

Building on the previous works on light cages, we present here a second type of 3D-
nanoprinted hollow-core waveguide with a simplified design, making it more accessible for
reproduction by other researchers, reducing the fabrication time and propagation losses,
and allowing for a straightforward analytical description of its optical properties. The
design of these microgap waveguides features two elements which alternate on the mi-
crometer scale as shown in Fig. 1.4(b): (1) a square-shaped hollow waveguide segment
responsible for confining light via the antiresonance effect and (2) an open gap region
allowing fast side-wise access to the core.

Starting with a description of the relevant theoretical aspects for this thesis in Chap-
ter 2, and the used experimental and numerical methods in Chapter 3, the latest results
on light cages and microgap waveguides are presented in Chapter 4. Specifically, we
demonstrate the experimental realization of microgap waveguides up to lengths of 5 cm,
report their optical properties based on transmission measurements, and compare the re-
sults to two analytical models. Coming back to the aforementioned optical sensing appli-
cations, proof-of-principle experiments on absorption spectroscopy of gases and liquids in
this on-chip waveguide are conducted, revealing- most importantly - a drastic decrease in
the analyte exchange time compared to capillaries of the same length.

Regarding light cages, several earlier studies were already conducted before the be-
ginning of this thesis. First of all, it was shown that increasing the number of polymer
strands in so-called dual ring light cages can reduce the propagation losses, as it is ex-
pected for antiresonant waveguides [81]. Furthermore, it had been shown that light cages
can be coated with aluminum oxide nanofilms (Al2O3) via atomic layer deposition allowing
to fine-tune the wavelengths of the resonances after the initial fabrication, and potentially
making the waveguide more resistant against polymer-degrading chemicals [82]. While a
full integration of light cages with light sources and spectrometers on a single chip has not
yet been attempted, a higher level of integration was demonstrated in Ref. [83], where light
cages were interfaced with fibers. This was achieved by fixing a delivery and a collection
fiber to the ends of a V-shaped groove on a silicon chip (which aligns the fibers correctly),
and subsequently fabricating the light cage in the groove in between these fibers. All wave-
guides presented in this thesis can principally be interfaced with fibers in this way, which
allows the waveguide chip to be plugged into external light sources and spectral analyzers.
In terms of sensing applications, absorption spectroscopy of gases [83] and liquids [84] had
been demonstrated, as well as electromagnetically induced transparency in light cages filled
with atomic vapors, relevant for integrated quantum optics [57].
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Still missing in all of these works, is a quantitative study of the fabrication limits im-
posed by the chosen 3D nanoprinting approach. Based on this motivation, we present a
detailed experimental study of various light cage properties in Chapter 4.2. Specifically,
we reveal the current limit of maximally feasible device length, unlock the fabrication accu-
racy of the nanoprinting from optical measurements, and discuss the mechanical stability
of the light cage geometry. Furthermore, we demonstrate that light cages can be used
for on-chip fluorescence spectroscopy, one of the important optical sensing applications
that had not yet been investigated. To increase the amount of captured fluorescence, dual
ring light cages were used, with the results corroborating the earlier findings of a strongly
reduced filling time. Overall, the findings presented in Chapter 4 clearly indicate the po-
tential of 3D-nanoprinted hollow-core waveguides in the context of chip-integrated optical
sensing devices, offering short response times, customizable optical properties by changing
the geometrical parameters, and long light-matter interaction lengths.

The second part of this thesis explores an additional opportunity held by the applica-
tion of 3D nanoprinting, namely the ability to fabricate twisted waveguides - an idea
that has remained largely unexplored so far. Twisted waveguides belong to the class of
chiral optical materials, which has attracted considerable attention in recent years, both
on the fundamental [85, 86] as well as the applied side [87, 88, 89]. A key driving force
behind these developments is the quest to find new ways to synthesize, sort, and detect
chiral biomolecules, as their left- and right-handed versions can have dramatically different
physiological effects on living organisms [90]. With optical techniques, chiral molecules can
be distinguished based on their interaction with left- or right-handed circularly polarized
light (LCP or RCP, respectively). These interactions manifest in circular dichroism
(a difference in absorption between LCP and RCP light) and circular birefringence (a
rotation of the direction of linearly polarized light during propagation).

On-axis (fiber)Off-axis
(fiber)

On-axis
(on-chip)

Helical core
(a)

Chiral fiber grating
(b)

Spun optical
fiber

(c)
Twisted light

cage

(f)

High/low index glass AirPolymerTwist axis

Hollow-core
(e)

Solid-core
(d)

Figure 1.5: On- and off-axis twisted waveguide geometries. The waveguides are twisted
along the axial direction (into the plane of the paper) with the location of the twist axis
shown in yellow. Twisted waveguides are typically realized from fibers (a-e), while this
thesis investigates 3D-nanoprinted twisted waveguides, allowing on-chip integration (f).
Note that chiral fiber gratings either feature an elliptical core or a slightly eccentric circular
core (b). Spun optical fibers are often realized from bow-tie fibers (c).



9

In the context of waveguides, these chiroptical effects are not present if the waveguide
is straight3 but can be realized in a twisted geometry. Among other applications, this
enables the polarization state of circularly polarized light to be maintained under external
perturbations (vibrations, mechanical stress, etc.), which is of utmost importance in the
above-mentioned sensing of the weak optical response of chiral molecules.

Twisted waveguides generally fall into two categories, based on whether the light-
guiding core lies on the twist axis or off-axis as shown for some common examples in Fig. 1.5.
The vast majority of these waveguides are twisted fibers (i.e., made out of glass) produced
by spinning the preform during the drawing process or in a thermal post-processing step.
An example of a simple twisted fiber geometry are chiral fiber gratings, which are created by
twisting fibers with an elliptical or slightly eccentric core (often a small fabrication-induced
asymmetry is sufficient). In such fibers, very high twist rates (up to 1 turn per 24 µm [91])
can be realized resulting in strong circular dichroism (up to 3 dB/mm [92]). However, in
more complex geometries, such as the commercially available spun optical fibers (created
from fibers with strong linear birefringence) or photonic crystal fibers, such high twist
rates could not yet be achieved (see Fig. 1.6 and detailed overview in Table C.1). The
same issue is inherent to the complex geometry of twisted hollow-core fibers which - to our
knowledge - were first demonstrated in 2017/2018 by Edavalath and Roth et al. [120, 119].
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Figure 1.6: Achieved twist rates for the waveguide geometries shown in Fig. 1.5. Solid-core
waveguides are shown as filled triangles, hollow-core waveguides as rings, and theoretical
investigations as stars. Blue denotes glass-based waveguides, while 3D-nanoprinted wave-
guides are shown in orange. Works from this thesis are the twisted light cage ("PCF-type"),
and a theoretical investigation on off-axis twisted waveguides ("Theory"). All works are
listed in more detail in Table C.1.

3Straight waveguides do not possess circular birefringence or circular dichroism provided that the
material itself is not chiral.
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Still, as motivated earlier, hollow-core waveguides are generally more desirable from an
applications perspective, especially for sensing devices.

In this thesis, we demonstrate that this limitation in twist rate can be overcome by the
use of 3D nanoprinting, which allows to directly fabricate twisted structures without any
further processing steps. Although two previous works already applied this novel approach
demonstrating an off-axis twisted waveguide [102] and an on-axis twisted photonic crystal
fiber [101], the authors did not fully investigate the optical properties of the resulting
waveguides neither by experiment, nor by simulation or analytical modeling. Here, we
cover all of these aspects in a detailed study on twisted light cages - the first twisted
hollow-core waveguide realized on a chip (Fig. 1.7(b)).

(a) (b) Twisted light cageOff-axis twisted waveguide

Figure 1.7: Illustration of twisted waveguides investigated in this thesis. (a) Off-axis
twisted waveguides guide light along a helical path. Their optical properties were studied by
simulations and analytical theory. (b) Twisted light cages are on-axis twisted waveguides,
which were realized by 3D nanoprinting.

As an introduction to twisted light cages, we first study a single off-axis twisted
polymer strand in Chapter 5 to gain an understanding of the effect of twisting on
the cladding modes of light cages. In this theoretical study, we provide a guide to the
simulation of twisted waveguides, which relies on the use of suitable coordinate frames
such that the waveguide becomes invariant along one of the new coordinates. In this
context, we point out that helical waveguides defined in the three most commonly used
coordinate frames (Frenet-Serret, helicoidal, and Overfelt frame) generally differ in their
geometry and optical properties4 - an important but so far overlooked fact, that applies
to all works on twisted waveguides. Furthermore, we report the emergence of superchiral
fields on the surface of the waveguides, which have attracted interest due to their ability
to enhance the weak chiroptical response of chiral molecules [85, 121]. Lastly, we analyzed
more theoretical aspects of these waveguides manifesting in the form of spin- and orbital
angular momentum-dependent splittings in the spatial properties of the modes - which

4In principle, all three coordinate frames are equivalent but twisted waveguides are often defined as
having a circular cross section in the plane spanned by two of the coordinates. The three geometries
resulting from this definition are physically different.
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are potentially related to the photonic spin Hall and orbital Hall effects (introduced in
Section 2.4).

Experimental and simulation results on twisted light cages are presented in Chapter 6.
Specifically, we investigate the formation of twist-induced resonances between different core
modes of the light cage and measure the resulting circular dichroism at several twist rates.
Furthermore, the presence of circular birefringence is discussed based on the simulation
results and compared to an analytical model [99, 104].

The presented results open an avenue for translating the vast amount of research on
twisted waveguides to on-chip devices. Possible applications include circular polarization
filtering [119], twist and tension sensing [93], and the broadband generation of orbital
angular momentum [122, 123, 124]. The full potential of twisted hollow-core waveguides
could be used in applications requiring the interaction of liquids or gases with a stable
circular polarization state, such as for circularly polarized supercontinuum generation [125],
Raman lasers with tunable polarization states [126], or in chiral spectroscopy.



Chapter 2

Theoretical Background

Understanding the mode formation in 3D-nanoprinted waveguides requires knowledge of
the underlying equations and terminology of waveguide physics, which is introduced here.
For the studies on twisted waveguides, further basics on optical chirality, including spin and
orbital angular momentum are required. Furthermore, three suitable coordinate frames for
the simulation of twisted waveguides are introduced. Lastly, the spin-orbit interaction of
light traveling on curved trajectories is covered, which is of relevance to off-axis twisted
waveguides.

2.1 Theory of Waveguides

2.1.1 Maxwell’s Equations and Wave Equations
All optical theory and simulations in this thesis are governed by Maxwell’s equations in
matter, containing - in the most general form - the free charge density ρfree and current
density Jfree [127]:

∇ · D = ρfree, ∇ · B = 0,

︸ ︷︷ ︸
inhomogeneous equations

∇ × H = Jfree + ∂D
∂t

, ︸ ︷︷ ︸
homogeneous equations

∇ × E = −∂B
∂t
. (2.1)

"Free" means that these quantities are not attributable to the charges or currents con-
fined within the material on a microscopic level. When a material interacts with electro-
magnetic radiation, a polarization density P or magnetization density M can be induced in
this material (or be present without a field, e.g., in permanent magnets). P and M contain
an average of the microscopic interactions and are used to separate the total charge density
ρ and total current density J into their free and bound parts [128]:

ρbound = −∇ · P, Jbound = ∇ × M + ∂P
∂t
,

ρ = ρfree + ρbound, J = Jfree + Jbound.
(2.2)
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Electric flux density D and magnetic field strength H were introduced above as auxiliary
fields and are related to the electric field strength E and the magnetic flux density B by:

D = ε0E + P, H = 1
µ0

B − M, (2.3)

where ε0 is the vacuum permittivity and µ0 is the vacuum permeability. If the material
response (polarization, current, or magnetization) is linear in E or H, respectively, the
following simplification can be made:

D = ε0εrE, Jfree = Jext + σE, B = µ0µrH, (2.4)

where εr is the relative permittivity, σ is the electrical conductivity, and µr the relative
permeability. The separation of the free current into a conduction current σE and an
external current Jext depends on the specific problem. For anisotropic materials (where
the material response is not always parallel to the inducing field) these parameters are
second-rank tensors, for isotropic materials they reduce to a scalar.

In general, all fields introduced in this section depend on space and time, and the
material properties may be non-local and dependent on all previous times [129]. For prob-
lems involving conductive materials, like plasmons in metals, it is beneficial to modify
the relative permittivity to include the conductivity as an imaginary part, which results
in a different classification of bound and free currents [129]. Low-order nonlinear opti-
cal processes can be treated by expanding the polarization density P as a power series
in E [130].

This thesis deals with linear dielectric materials which are insulating (σ = 0), not
time-dependent, and in some instances anisotropic in εr and µr. Free charges or currents
do not occur. By applying the curl operator to Maxwell’s curl equations (Eq. 2.1) two
separate wave equations for E and H are obtained. These equations are called vector
wave equations of linear media:

∇×
(
µr

−1∇ × E
)

+ 1
c2

0
εr
∂2E
∂t2

= 0,

∇×
(
εr

−1∇ × H
)

+ 1
c2

0
µr
∂2H
∂t2

= 0,

(2.5)

where c0 = 1√
ε0µ0

is the speed of light in vacuum.

2.1.2 Waveguides
Waveguides are optical elements that guide light along a certain path by confining it to
a cross section that is usually on the order of a few micrometers for visible light. Ideal
waveguides are translationally invariant along one coordinate z of the underlying coordinate
system, infinitely long, and feature a constant cross section in the plane spanned by the
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remaining two coordinates x and y. These assumptions are well justified for optical fibers,
which can be several kilometers in length and are manufactured with very high precision.
With these simplifications, the eigenmodes of the waveguide can be expressed in a separable
form [131]:

E(x, y, z, t) = e(x, y)eiβze−iωt,

H(x, y, z, t) = h(x, y)eiβze−iωt,
(2.6)

where β denotes the propagation constant, and a harmonic time dependence with fre-
quency ω has been assumed. If the coordinate system (x, y, z) is a Cartesian system, and
the materials of the waveguide are isotropic and nonmagnetic (µr = 1), the vector wave
equations (Eq. 2.5) can be simplified yielding:

(
∇2 + n2

c2
0
ω2
)

E = −∇
(
E · ∇ ln (n2)

)
,

(
∇2 + n2

c2
0
ω2
)

H = −
(
∇ ln (n2)

)
× (∇ × H) ,

(2.7)

where n(x, y) = √
εr is the refractive index and derivatives ∂

∂z
of the fields can be replaced by

iβ. The right-hand side of Eq. 2.7 contains the term ∇ ln (n2), which couples the different
Cartesian field components. Methods to solve this equation for a variety of geometries are
well described in Ref. [131].

The simplest waveguide geometry is a step-index fiber. It consists of a core made
of a high refractive index material surrounded by a cladding of a lower refractive index.
Light is guided in the core by total internal reflection at the core-cladding boundary. In
this case ∇ ln (n2) vanishes everywhere except for the boundary between the two regions.
Inside of these regions, Eq. 2.7 reduces to the scalar wave equation (Eq. 2.8) for all
Cartesian field components f of e and h. As an approximation, the scalar wave equation
can furthermore describe a waveguide with arbitrary index profile if the index difference
between the highest index nco and the lowest index ncl of the cross section is small. Such
structures are referred to as weakly guiding fibers.

(
1
k2

0

(
∂2

∂x2 + ∂2

∂y2

)
+ n2(x, y)

)
f(x, y) = n2

eff f(x, y) for ∆ � 1 (2.8)

The relation c0 = ω/k0 was used and two important quantities of waveguides were intro-
duced:

neff = β

k0
(effective mode index),

∆ = n2
co − n2

cl
2n2

co
(refractive index contrast).

(2.9)
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The z dependence of the modes can then be stated as eiβz = eik0neffz showing that a
mode propagates in waveguides like in a material with refractive index neff . The real part
of neff describes the phase evolution of the mode and its imaginary part the losses. A mode
with ncl < neff ≤ nco is a bound mode, which decays evanescently in the cladding, while
a mode with 0 ≤ neff < ncl is a radiation mode which oscillates in the cladding and
therefore carries energy away from the core [131]. These two types completely describe the
properties of the waveguide but often it is convenient to introduce a third type of mode, so-
called leaky modes. Leaky modes are still localized to the core region but continuously
dissipate energy as they propagate due to a weak oscillating field outside of the core.
Their effective index therefore features a nonzero imaginary part. Mathematically, leaky
modes can be constructed from the continuum of radiation modes [132], i.e., the real part
of the effective index fulfills 0 ≤ Re{neff} < ncl. While leaky modes correspond to the
experimentally measured modes in antiresonant fibers, their mathematical treatment can
be complicated as their fields diverge at large distances from the core when assuming
infinitely long waveguides, thus preventing normalization (see Sec. 24-11 in Ref. [131]).

The occurrence of bound modes in fibers can be understood more intuitively when
noting that Eq. 2.8 has the same form as the time-independent Schrödinger equation [133],
with "mass" m = ~2k2

0/2, "energy" E = −n2
eff and "potential" V = −n2(x, y). Like in

quantum mechanical potential wells, fibers with small core sizes and small refractive index
contrast support less bound modes than fibers with large refractive index contrast and
large core sizes. At least one bound mode exists since a finite two-dimensional potential
well always supports at least one bound mode [134]. If the fiber has exactly one such
bound mode (or two when considering two possible polarization directions) it is referred
to as single-mode fiber, otherwise it is a multimode fiber.

A simple estimate of the number of modes in a step-index fiber can be obtained by
calculating its V number [131]:

V = 2π
λ
rc

√
n2

co − n2
cl, (2.10)

where rc is the radius of the core. A fiber is single-mode for V < 2.405 and the number
of modes in a multimode fiber can be estimated by V 2/2 for large V [131]. When the
wavelength increases, the V number decreases meaning that the modes of highest order
are not able to propagate anymore in the fiber. This phenom - known as modal cut-off -
occurs when neff = ncl and is crucial for understanding the light guidance mechanism in
light cages, as explained in Section 4.2.2.

The full solution for a step-index fiber is obtained by imposing boundary conditions (de-
rived from Maxwell’s equations) at the interface between the solutions of the homogeneous
regions. For circular step-index fibers the exact solutions are well known and available in
Ref. [135]. Due to the coupling of field components by the ∇ ln (n2) term, all modes have
at least one longitudinal field component. Specifically, the modes of a circular fiber can
be categorized into four groups [131]: TE0,m or transverse electric (Ez = 0), TM0,m or
transverse magnetic (Hz = 0), and two hybrid modes where neither the electric nor
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the magnetic field is transverse. The hybrid modes are denoted as HEν,m (Ez is dominant)
and EHν,m (Hz is dominant). ν ≥ 1 and m ≥ 1 are integers classifying the modes. TE
and TM modes are nondegenerate while HE and EH modes are two-fold degenerate: HEe

and EHe have radial field components which are even functions of the azimuthal angle φ
while they are odd functions for HEo and EHo.

The polarization state of these vector modes can be quite complex. Therefore, it is
often beneficial to use an approximation to the exact solutions under the weak guidance
approximation (∆ � 1). In this case, the modal fields are to good approximation transverse
(i.e., Ez = Hz = 0) and uniformly polarized [131]. Therefore they are called LPl,m

or linearly polarized modes. l = 0, 1, 2, ... denotes the mode order in the azimuthal
direction and m = 1, 2, ... the mode order in the radial direction. Field distributions of
LP modes can be found in Refs. [136, 135]. As the index contrast ∆ or the mode order l
increases, the approximation of the eigenmodes as LP modes becomes worse. For ∆ = 0,
on the other hand, the vector modes coincide with the scalar LP modes with the vector
modes being grouped together as shown in Table 2.1.

Table 2.1: Correspondence between scalar LP modes and vector modes in the weak guid-
ance approximation (∆ → 0). The fundamental modes (with the highest effective index)
are HEe

1,1 and HEo
1,1 corresponding to the two-fold degenerate LP0,1 mode.

Order l Scalar mode Vector modes

0 LP0,m HEe
1,m, HEo

1,m

1 LP1,m HEe
2,m, HEo

2,m,TE0,m, TM0,m

≥ 2 LPl,m HEe
l+1,m, HEo

l+1,m,EHe
l−1,m, EHo

l−1,m

Therefore, LP modes are two-fold degenerate for l = 0 and four-fold degenerate for
l ≥ 1. The degeneracy arises because the direction of the transverse polarization of LP
modes is arbitrary, yielding two linearly independent solutions with the same effective
index. For l ≥ 1 the fields of LP modes contain a phase term e±ilφ which results in another
two-fold degeneracy due to the arbitrary choice of the sign.

The intensity distribution of a mode, which can be measured with a CCD camera,
is equal to the time-averaged longitudinal component of its Poynting vector 〈S〉z. The
Poynting vector can be obtained from the calculated fields as [137]:

〈S〉 = 1
2 Re{E × H∗}. (2.11)

2.1.3 Coupled Mode Theory
During the course of the thesis, several situations arise where two waveguide modes couple
and form a supermode. This phenomenon can be understood based on coupled mode
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theory (CMT), which will be introduced here based on Chapter 4 of Ref. [135].
CMT is a perturbative approach based on the assumption that the solution to Maxwell’s

equations in the coupled system E(x, y, z), H(x, y, z) can be described as a superposition
of two (or a finite number) of modes in the uncoupled system (labeled with subscripts
1,2)1:

E(x, y, z) = A(z)e1(x, y)eiβ1z +B(z)e2(x, y)eiβ2z, (2.12)
H(x, y, z) = A(z)h1(x, y)eiβ1z +B(z)h2(x, y)eiβ2z, (2.13)

where β1 and β2 are the propagation constants of the modes in the uncoupled system. The
coefficients A and B depend on z because the modes of the uncoupled system are generally
not eigenmodes of the coupled system.

Using the fact that modes 1 and 2 fulfill Maxwell’s equations in the uncoupled system,
the coefficients of the supermodes in the coupled system are given by the following coupled
mode equations [135]:

dA
dz + c12

dB
dz e+i2δz − iκ11A − iκ12Be+i2δz = 0,

dB
dz + c21

dA
dz e−i2δz − iκ22B − iκ21Ae−i2δz = 0,

(2.14a)

(2.14b)

where δ = (β2 − β1)/2. Assuming that the power carried by the modes is normalized as∫∫
dxdy Re

{
ep × h∗

p

}
z

= 1, the coupling coefficient κpq, self-coupling coefficient κpp, and
mode-overlap coefficient cpq are given by:

κpq = ωε0

∫∫
dxdy (n2 − n2

q) e∗
p · eq ∀(p, q) ∈ {1, 2}2, (2.15)

cpq =
∫∫

dxdy (e∗
p × hq + eq × h∗

p)z ∀(p, q) ∈ {(1, 2), (2, 1)}, (2.16)

where n(x, y, z) is the refractive index distribution in the coupled system and np(x, y, z)
corresponds to the uncoupled system. How this division is done in practice is outlined in
Fig. 2.1 for two common examples. If the two modes are located in different waveguides,
which are brought in close proximity to each other, np would correspond to a single wave-
guide, and the coupled system is described by n = n1 +n2. For light cages, one can dissect
the waveguide into core and cladding as shown in Section 4.2.2. On the other hand, if
the modes are located within the same waveguide (n1 = n2), the modes can only couple2

if there is an index modulation such that n2 − n2
p 6= 0. This situation arises in twisted

light cages, where the index modulation is the difference in the index profile between the
untwisted and the twisted waveguide as discussed in Chapter 6.

1The time dependence e−iωt is omitted here.
2Modes of the same waveguide are not necessarily orthogonal if the system is lossy [138].
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n1
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(a) (b)

x

y
x
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n1=n2 nn

Figure 2.1: Examples of waveguides to which coupled mode theory can be applied. (a) In
a directional coupler, the modes of the individual waveguides with refractive index profiles
n1 and n2 are coupled due to the spatial proximity of the waveguides. (b) In a Bragg
waveguide two core modes of the same waveguide are coupled by a grating. In this case,
the uncoupled system is given by the waveguide without the grating as n1 = n2 (gray).
The grating represents the index modulation n− n1 (light blue) required for coupling.

In many cases, the coupling coefficients cpq and κpp are small compared to κpq and can
be neglected [135]. To find the supermodes of the coupled system for this simplified case,
it is beneficial to include the phase evolution term of Eq. 2.12 in the coefficients: Ã =
Aeiβ1z, B̃ = Beiβ2z. With this adaptation, the coupled mode equations for cpq = κpp = 0
read:

d
dz

(
Ã
B̃

)
= i

(
β1 κ12
κ21 β2

)
︸ ︷︷ ︸

M

(
Ã
B̃

)
. (2.17)

The eigenmodes of the coupled system can now be obtained as the eigenvectors of M, while
their propagation constants β± are given by its eigenvalues:

β± = β1 + β2

2 ±
√
δ2 + κ2, (2.18)

where κ = √
κ12κ21. For lossy modes, such as the leaky modes investigated in this thesis,

the effective index difference δ is complex with real part δr and imaginary part δi. This
allows three different regimes to be distinguished [139], which we denote according to the
terminology used in light-matter coupling [140] (for a graphical overview see Fig. 2.2):

1. Weak coupling: κ ≤ |δi|

On resonance (δr = 0) the square root term in Eq. 2.18 is purely imaginary resulting
in a crossing of the real parts of the effective indices and an anti-crossing of the
imaginary parts. If the system is excited in mode 1, the fraction of power in mode 2
is always lower than in mode 1. Therefore, this regime is also referred to as incomplete
coupling.

2. Exceptional point: κ = |δi| On resonance, the two eigenvalues coalesce into one
because the square root term is zero. A small reduction in the coupling constant
leads to a square root-dependent change in the loss of the supermodes. Due to this
large response, exceptional points are interesting for sensing applications [142].
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Figure 2.2: Different regimes in coupled mode theory based on Eq. 2.18. Regimes are indi-
cated on the top of each column. Real part (a) and imaginary part (b) of the propagation
constants of the modes in the uncoupled system (dashed lines) and of the supermodes in
the coupled system (solid lines). (c) Resonant coupling occurs when the real parts of the
effective indices match (δr = 0). Assuming that the coupled system is excited in state
1 of the uncoupled system at z = 0, power is exchanged between modes 1 and 2 during
propagation. In (a,b) Im{β1} = 1, Im{β2} = 10. In (c) Im{β1} = 0.01, Im{β2} = 0.5.
Idea for (a,b) is taken from [141].

3. Strong coupling: κ > |δi|

On resonance, the square root term is purely real. Consequently, there is a crossing
in the imaginary parts of the effective indices and an anti-crossing in the real parts.
If the system is excited in mode 1, the power oscillates between modes 1 and 2. At
certain locations in the waveguide, all power is present in mode 2. Therefore, this
regime is also called complete coupling. Coupling between (lossless) bound modes
always falls in this category because δi = 0 in this case.

In summary, lossy waveguide modes couple and form resonances if the real part of
their propagation constants match and if the modal overlap integral in Eq. 2.15 is nonzero.
Strong coupling additionally requires the losses of the mode to be similar, or the coupling
constant to be large.
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2.2 Chirality
The photons of the fundamental modes of twisted waveguides typically carry spin angular
momentum, while higher-order modes additionally carry orbital angular momentum. These
quantities are defined and discussed here along with the optical chirality density, which is
one way to characterize the chirality of the modal fields.

2.2.1 Spin Angular Momentum (Circular Polarization)
When photons carrying spin angular momentum (SAM) are absorbed by a small particle, it
starts to rotate around its center with the direction depending on the sign of the SAM [143].
SAM is closely related to circular polarization in a beam of light. Unfortunately, two
opposing conventions exist to define circular polarization. Here, we follow the convention
typically used in optics which defines the sense of rotation of the field vector as seen from the
point of view of the receiver (looking into the beam) [144]. Right circular polarization
(RCP) is then defined as a clockwise rotation of the polarization vector in time and left
circular polarization (LCP) as an anticlockwise rotation. According to this convention,
a photon that is part of a circularly polarized beam carries a SAM of s~ with s = +1 for
LCP and s = −1 for RCP [145]. For a mathematical definition, we define the temporal
and spatial evolution of a transverse plane wave as:

E = E0 Re
{
|Ψ〉 ei(kz−ωt)

}
, (2.19)

where |Ψ〉 lies in the plane transverse to the propagation direction, and E0 is the field
amplitude. Consistent with the optics convention, LCP and RCP plane waves can then be
stated as:

|s〉 = 1√
2

 1
si
0

 s = +1 for LCP → receiver sees anti-clockwise rotation
s = −1 for RCP → receiver sees clockwise rotation (2.20)

When drawing the polarization vector in the xy plane such that the propagation direction
(z) points out of the plane towards the reader’s eye, it rotates clockwise in time for RCP
light and anticlockwise for LCP light.

In particle and quantum physics [144], engineering [146], and radio astronomy [147],
on the other hand, the sense of rotation is typically defined from the point of view of the
source. This definition would interchange the names of LCP and RCP.

In general, a beam of light may be only partially polarized, the part that is polarized
may not be circular or may point out of the transverse plane. In this general case, the
polarization vector moves along an elliptical path which can be characterized by the four
Stokes parameters S0, S1, S2, S3. For transverse waves, these can be easily retrieved from
measurements [148, 149]. While S0 is the total intensity I of the beam, S1, S2, and S3 can
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be measured by recording the intensity after a linear polarizer under 4 angles separated by
45◦, and a circular polarizer set to transmit RCP or LCP, respectively.

Taking S1, S2, and S3 as the axes of a Cartesian coordinate system, a certain polari-
zation state lies on a sphere - the Poincaré sphere - with radius Ip where p is the degree of
polarization. While S1 and S2 describe the tilt of the polarization ellipse, S3 is related to
its ellipticity. A detailed description of all Stokes parameters can be found in Ref. [137].

Here, we mainly focus on the intensity normalized Stokes parameter Ŝ3 = S3
I

which is
defined as [137]:

Ŝ3 = IRCP − ILCP

I

p=1−−→ Ŝ3 = −1 for LCP
Ŝ3 = +1 for RCP

, (2.21)

where IRCP and ILCP are the intensities measured after a circular polarizer set to transmit
RCP or LCP, respectively. Note that Ŝ3 and spin have opposite signs in this commonly
used definition.

More generally, spin is a vectorial quantity and the spin contribution s of the electric
and magnetic field can be defined as [150, 151]:

sE = Im
{
Ê∗ × Ê

}
, sH = Im

{
Ĥ∗ × Ĥ

}
, (2.22)

with the normalized field vectors (i.e., of unit length) Ê and Ĥ. Since the spin vector is
oriented perpendicular to the polarization ellipse, it contains additional information about
the polarization structure of the mode. The degree of circularity of the respective field is
then given by: ∣∣∣Ŝ3

∣∣∣ = |s|. (2.23)

The direction of the spin vector relative to the propagation direction of the mode is used
to set the correct sign for Ŝ3. If the spin vector contains a component parallel to the
propagation direction a negative sign is used for Ŝ3, if it contains an antiparallel component
a positive sign is used.

2.2.2 Orbital Angular Momentum (OAM)
Apart from spin angular momentum, light can also possess orbital angular momentum
(OAM). Interest in this topic was sparked by Allen et al. in 1992 who showed that a
photon of a Laguerre-Gaussian beam carries an OAM of l~ [152]. The OAM has its origin
in the helical wavefronts of the beam, manifested in the eilφ phase factor of the field3.
Later, other beams were found to possess OAM, including Bessel beams, Bessel-Gaussian
beams, and Hermite-Gaussian beams [153]. Laguerre-Gaussian beams are most common in
free-space optics since they can be generated from a Gaussian beam using a Q-plate [154]
or spatial light modulator to imprint the helical phase profile. OAM manifests itself in
the rotation of a small absorbing particle around the phase singularity of the beam. This

3This definition of the sign of the OAM is valid for the phase propagation factor defined in Eq. 2.19 [145].
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can result in the particle rotating around its center (if the particle is placed on-axis) [155],
or orbiting the beam axis (if the particle is located off-axis) [156]. A detailed description
of theory, generation, measurement, and applications of OAM beams can be found in
Ref. [157].

In the context of step-index fibers, modes carrying an OAM of l can be expressed as
a superposition of its even and odd vector modes. The following equations hold for the
transverse field components |XXν,m〉 of the vector modes [158]:

Glm(r) eilφ |+〉 =
∣∣∣HEe

l+1,m

〉
+ i

∣∣∣HEo
l+1,m

〉
, (2.24)

Glm(r) eilφ |−〉 =
∣∣∣EHe

l−1,m

〉
+ i

∣∣∣EHo
l−1,m

〉
, (2.25)

Glm(r) e−ilφ |+〉 =
∣∣∣EHe

l−1,m

〉
− i

∣∣∣EHo
l−1,m

〉
, (2.26)

Glm(r) e−ilφ |−〉 =
∣∣∣HEe

l+1,m

〉
− i

∣∣∣HEo
l+1,m

〉
, (2.27)

where Glm(r) is the radial dependence of the corresponding LP mode, |+〉 denotes LCP
and |−〉 denotes RCP as defined in Eq. 2.20. The index ν denotes the magnitude of the
total angular momentum |l + s|. For l = 0 and l = 1 only those two equations involving the
HE modes are valid because ν ≥ 1. For l = 1, there are two additional relations involving
the TE and TM modes:

Glm(r) 1
2
(
eiφ |−〉 + e−iφ |+〉

)
= |TM0,m〉 , (2.28)

Glm(r) −i
2
(
eiφ |−〉 − e−iφ |+〉

)
= |TE0,m〉 . (2.29)

Note that these equations cannot be simplified to obtain pure OAM states because TE and
TM modes feature different effective indices.

For more general types of waveguides, in particular hollow-core waveguides, more than
one OAM state can contribute to an eigenmode of the waveguide. To dissect these con-
tributions, an orthonormal basis set with OAM-carrying basis states is required. Here, we
use Bessel beams as such a basis, because it is closely related to the Fourier basis used
in Cartesian coordinates [159]. Since the decomposition will be carried out for simula-
tion results defined in a finite area, boundary conditions need to be imposed on the basis
states. Here, we set the basis states Ψlp to zero at a certain radius R0 from the origin,
yielding [159]:

Ψlp(ρ, φ) = 1√
Nlp

Jl

(
ρ

R0
ul,p

)
eilφ, (2.30)

where Jl(x) is the lth order Bessel function of the first kind, ul,p is the pth root of Jl(x), and
Nlp = πR2

0J
2
l+1(ul,p) is a normalization constant. A transverse field of uniform polarization

can then be expanded as:

E(ρ, φ) =
∞∑

l=−∞

∞∑
p=1

al,pΨlp(ρ, φ), (2.31)
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with the complex amplitudes al,p:

al,p =
∫ R0

0
dρ
∫ 2π

0
dφE(ρ, φ) Ψ∗

lp(ρ, φ) ρ. (2.32)

2.2.3 Total Angular Momentum (TAM)
A clear distinction between spin and OAM was possible for the beams in the preceding
subsections because their fields were transverse [160]. However, such a simple distinction
is not possible if the field is non-transverse. The conflict is most obvious when passing a
transverse beam with a specific spin through a high numerical aperture lens. The lens does
not break the rotational symmetry of the system but in the focus of the lens, one finds that
part of the spin is converted to OAM [161]. In this case, only the total angular momentum
(TAM) j is conserved, with the total angular momentum density4 j given by [163]:

j = 1
c2 r × 〈S〉, (2.33)

where r is the position with respect to the center of the beam and 〈S〉 is the time-averaged
Poynting vector (cf. Eq. 2.11). The similarity to angular momentum in mechanics can be
seen by noting that the linear momentum of light is given by p = 1

c2 〈S〉.
Accompanying the total angular momentum density j, there is also an angular momen-

tum flux density M, related by the conservation law:
∂

∂t
ji +

∑
l

∂

∂xl

Ml,i = 0, (2.34)

where Ml,i described the flux of the i component of the angular momentum through a sur-
face oriented perpendicular to the l direction. M is defined in Ref. [164]. This conservation
law is analogous to the energy conservation law, where the Poynting vector S plays the role
of M. Agreeing with this analogy, the measurable TAM in a waveguide is characterized by
the component Mz,z. Interestingly, Mz,z can be separated in spin and OAM contributions
even if the beam is non-paraxial. Integrated over the whole beam, the spin contribution
Ms

z,z and OAM contribution Ml
z,z read [164]:

Ms
z,z = 1

2ω Im
{∫∫

dxdy(ExH
∗
x + EyH

∗
y )
}
,

Ml
z,z = 1

4ω Im
{∫∫

dxdy(−H∗
x

∂

∂φ
Ey + Ey

∂

∂φ
H∗

x − Ex
∂

∂φ
H∗

y +H∗
y

∂

∂φ
Ex)

}
.

(2.35a)

(2.35b)

To match this result with the spin s and OAM l used in the paraxial approximation, Ms
z,z

needs to be normalized by the total energy flux of the beam5 Pz =
∫∫

dxdy 〈Sz〉:

s =
Ms

z,z ω

Pz

, l =
Ml

z,z ω

Pz

, j = l + s. (2.36)

4While not directly obvious from this expression, j also contains the spin contribution as discussed in
Refs. [152, 162].

5Note that in Eq. 37 of Ref. [164] the energy flux (denoted as F) is incorrectly defined by a factor 1/ω.



24 2. Theoretical Background

2.2.4 Optical Chirality Density
Twisted waveguides possess geometrical chirality, i.e., a helical waveguide cannot be su-
perimposed with its mirror image. Chirality of optical fields, on the other hand, can be
characterized by their chirality density C. For nondispersive media C is given by [165]:

C(r) = ωn2

2c2 Im{E · H∗}. (2.37)

Please note that during the calculation of the dot product, the vector E is not to be
complex conjugated as one would typically do for a complex-valued scalar product. The
dispersion of the material was neglected here because there is no resonance of the polymer
within the investigated wavelength range

(
−λ∂n

∂λ
� n

)
. Formulas for the chirality density

inside lossy and/or dispersive media are available in Ref. [165].
C has a direct physical meaning in the sensing of small chiral molecules. Taking into

account only the electric and magnetic dipole transitions of the molecule, the absolute
difference in absorbance6 of RCP and LCP light was shown to be proportional to the
chirality density: (AR − AL) ∼ C [85].

To obtain a better understanding of the chirality density, it is calculated here for a
circularly polarized plane wave with spin s = ±1:

E = E0ei(k0nz−ωt) 1√
2

 1
si
0

 , B = −sin
c
E0ei(k0nz−ωt) 1√

2

 1
si
0

 , (2.38)

C(r) = s
ε0ωn

3

2c E2
0 (circularly polarized plane wave). (2.39)

As evident from this result, C has the same sign as the spin s and increases with intensity.

2.2.5 Superchiral Light
In typical sensing experiments, one is not interested in the absolute differences between
two signals but its relative change. Applied to chiral sensing, the quantity of interest
is usually the difference in absorbance between right- and left-circularly polarized light
normalized to the average absorbance. This quantity is called Kuhn’s dissymmetry factor
or g-factor [166]:

g = AL − AR

1
2 (AL + AR) . (2.40)

6Absorbance is defined as the negative decadic logarithm of the ratio of transmitted to incident power
on a sample: A = −log10

(
Itransmitted

Iincident

)
.



2.3 Coordinate Systems for Twisted Waveguides 25

Since molecules are much smaller than the pitch of the circularly polarized wave (i.e.,
the wavelength), their measured g-factors are very low, with typical values being smaller
than 10−3 [167].

Approximating the small molecule as a dipole, a relationship between the optical chi-
rality density of the electromagnetic field and the measured response of the chiral molecule
was shown theoretically [85] and experimentally [121] to be:

g = gmolecule · cC

2〈Ue〉ω︸ ︷︷ ︸
gfield

, (2.41)

where 〈Ue〉 = 1
2〈D · E〉 = 1

4 |D||E| is the time-averaged energy density of the electric field.
gmolecule is the g-factor that would be obtained in a measurement with plane wave CPL and
only depends on the properties of the molecule (energy levels and transition moments). The
second factor gfield describes a possible enhancement of the dissymetry factor relative to
plane wave CPL. Note that this formula is only valid for isotropic samples of molecules that
are much smaller than the wavelength of light and neglects any nonlinear interactions. For
molecules immobilized on surfaces or larger molecules, higher-order multipole transitions
need to be taken into account [85].

Interestingly, Eq. 2.41 shows that the measured g-factor of a given molecule can be
enhanced by engineering a suitable field with a large value of gfield. This can be achieved by
reducing the amplitude of the electric field while maintaining a high chirality density (e.g.,
strong magnetic field, and circular polarization of E and H). In the following chapters,
the quantity gfield will be used to characterize the chirality of the fields in the twisted
waveguides. For linear media one can simplify gfield as:

gfield = Z0
Im{E · H∗}

|E|2
, (2.42)

with Z0 =
√

µ0
ε0

being the vacuum impedance. For a linearly polarized wave gfield is equal
to 0 and plugging in the values for a circularly polarized plane wave from Eq. 2.38 yields:

gfield = s n (circularly polarized plane wave). (2.43)

Consequently, any field distribution with |gfield| > n can increase the measured g-factor
and is referred to as superchiral field.

2.3 Coordinate Systems for Twisted Waveguides
A helical waveguide can best be analyzed in a coordinate system that follows the twist
of the structure such that the waveguide becomes invariant along one of the new coordi-
nates. Here, three different choices of a suitable coordinate system are introduced. While
helicoidal coordinates are used for all simulations in this thesis, the section starts with a
more general discussion of the Frenet-Serret frame. At the end, a coordinate system used
by Overfelt [168] is presented.
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2.3.1 Frenet-Serret Frame
Any differentiable curve c that is parametrized by a single parameter t can be described
in a "self-defined" local orthonormal coordinate system, the Frenet-Serret frame. This
coordinate frame will turn out to be the natural choice for off-axis twisted waveguides.

In three dimensions, the Frenet-Serret frame consists of the tangent vector T̂ at a given
point of the curve, the normal vector N̂, and the binormal vector B̂ which are defined as
follows [169]:

T̂ = c′(t)
‖c′(t)‖ , N̂ = T̂′(t)∥∥∥T̂′(t)

∥∥∥ , B̂ = T̂ × N̂. (2.44)

Since T̂ is a unit vector, its derivative N̂ can not point along T̂ (its length does not change)
and therefore T̂ is orthogonal to N̂. Since B̂ is orthogonal to the other two vectors by
definition, (T̂, N̂, B̂) defines an orthonormal coordinate system.

Further insights can be gained by looking at the derivatives of the basis vectors which
are governed by the Frenet equations [169]:

T̂′(t) = aκ̄N̂︸ ︷︷ ︸
(a)

, N̂′(t) = a(−κ̄T̂ + τB̂)︸ ︷︷ ︸
(b)

, B̂′(t) = −aτN̂︸ ︷︷ ︸
(c)

, (2.45)

where a = ‖c′(t)‖. Since the definition of the Frenet-Serret frame is independent of the
parametrization, a can be chosen to be 1 if the curve is parametrized by the arc length.
Remarkably, these equations are general, holding for any sufficiently differentiable curve.
Eq. 2.45(a) and (c) serve as the definition of two proportionality constants, the curvature7 κ̄
and the torsion τ . Curvature κ̄(t) describes the deviation of the curve from a straight line,
which can locally be described as a circle with radius8 1/κ̄ where N̂ points towards its
center. Torsion τ(t) is a measure of twist - in the sense that it describes how fast the
binormal vector B̂ rotates around the tangent T̂. For a curve defined on a 2D plane, both
T̂ and N̂ lie within this plane meaning that B̂ is perpendicular to this plane and never
changes direction. Therefore, a curve having zero torsion at every point is equivalent to
the curve lying in a 2D plane.

Helices

A helix is a special type of curve that is defined by a constant curvature κ̄ and torsion τ at
every point of the curve [169]. The main parameters of a helix, which are used throughout
the thesis are defined in Table 2.2.

81/κ̄ is also referred to as the radius of curvature.
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Table 2.2: Definition of parameters used to describe a helix. Any curve with constant
curvature and torsion is a helix [169]. Based on the definitions in Eq. 2.45(c) τ is positive
for a right-handed helix and negative for a left-handed helix. The sign of α depends on
the choice of the coordinate system and will be defined in each subsection.

Pitch: P Twist rate: 1/P Curvature: κ̄ = ρ

ρ2+
(

P
2π

)2

Radius: ρ Angular twist rate: |α| = 2π/P Torsion: |τ | = 2πP
(2πρ)2+P 2

All simulations in this thesis are performed for left-handed helices. A helix is left-handed
when it is possible to move the left thumb along the helix axis such that the remaining
fingers curl along the helix trajectory. Note that the handedness does not depend on the
direction under which you look at the helix. This definition is in line with the definition of
circular polarization in Eq. 2.20: the curve traced out by the tip of the polarization vector
of an LCP beam in space (at a fixed moment in time) is a left-handed helix.

Left-handed helix

P

2ρ

Figure 2.3: Definition of a left-handed helix with pitch
P and radius ρ. When moving the thumb of the left
hand along the helix axis and rotating the hand in the
direction of the curled fingers, the fingertips move along
the path of a left-handed helix. Note that the same
result is obtained when pointing the thumb downwards.
Drawing of hand was adapted from Ref. [170].

The definition of the unit vectors of the Frenet-Serret frame can be well understood on
the example of an off-axis twisted waveguide that follows a left-handed helical path c(t)
with α > 0:

c(t) =

 ρ cos(αt)
−ρ sin(αt)

t

 . (2.46)

For this helical trajectory, the basis vectors can be calculated according to Eq. 2.44 yielding:

T̂ = 1√
1 + (αρ)2

−αρ sin(αt)
−αρ cos(αt)

1

 , N̂ =

− cos(αt)
sin(αt)

0

 , B̂ = 1√
1 + (αρ)2

− sin(αt)
− cos(αt)

−αρ

 .
(2.47)

These orthonormal unit vectors are shown below in Fig. 2.4. T̂ points in the tangential
direction, N̂ lies in the xy plane and points towards the twist axis, and B̂ is orthogonal to
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both. Therefore, a helical waveguide can be created by defining a refractive index profile
in the NB plane and extending it infinitely along the T̂ coordinate. The simplest helical
waveguide consists of a circular cross section in the NB plane and will be referred to as a
Frenet-Serret waveguide in the following.

(a) (b)

y

z

Normal
plane

x
y

z
T
^

N
^

B
^

2rc

Figure 2.4: Definition of a helical waveguide in the Frenet-Serret frame. The basis vectors
of the Frenet-Serret frame for a left-handed helix are shown in (a). N̂ and B̂ lie in the plane
which is normal to the tangent vector T̂ of the helical path. When defining a circle in the
NB plane (green with red border) and extending it infinitely along the third direction, a
Frenet-Serret waveguide is created. An orthographic side-view of the waveguide is depicted
in (b). Red stripes show the orientation of the circular cross sections.

2.3.2 Helicoidal Frame
Another local coordinate system to describe structures that are invariant along a helical
path is the helicoidal frame. Helicoidal coordinates (ξ1, ξ2, ξ3) are related to Cartesian
coordinates (x, y, z) via [106]:

r =

xy
z

 =

 ξ1 cos(αξ3) + ξ2 sin(αξ3)
−ξ1 sin(αξ3) + ξ2 cos(αξ3)

ξ3

 ⇔

ξ1
ξ2
ξ3

 =

x cos(αz) − y sin(αz)
x sin(αz) + y cos(αz)

z

 . (2.48)

For fixed values ξ1 and ξ2, the curve r(ξ3) is a left-handed helix for α > 0 (see Table 2.2).
From this definition, the basis vectors of the helicoidal frame can be derived as:

ξ1 = ∂r
∂ξ1

=

 cos(αξ3)
− sin(αξ3)

0

 , ξ2 = ∂r
∂ξ2

=

sin(αξ3)
cos(αξ3)

0

 ,

ξ3 = ∂r
∂ξ3

=

−ξ1α sin(αξ3) + ξ2α cos(αξ3)
−ξ1α cos(αξ3) − ξ2α sin(αξ3)

1

 .
(2.49)
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Note that ξ3 is not normalized and the system (ξ1, ξ2, ξ3) is not orthogonal. Since ξ1 and
ξ2 always lie in the xy plane, the helicoidal coordinate system is especially useful if the
wavefronts of the fundamental mode are perpendicular to the z axis. This is usually true
for on-axis twisted structures.

A helical waveguide can be constructed in this coordinate system by defining a per-
mittivity profile ε in the ξ1ξ2 plane (which is identical to the xy plane) and extending it
infinitely along the ξ3 coordinate:

ε(ξ1, ξ2, ξ3) = ε(ξ1, ξ2, 0)
⇐⇒

ε(x, y, z) = ε(x cos(αz) − y sin(αz), x sin(αz) + y cos(αz), 0).
(2.50)

When this profile is defined to be a circle, we refer to the resulting structure as a helicoidal
waveguide. Note that the helicoidal waveguide differs from the Frenet-Serret waveguide
in the way the circles are oriented (cf. Figs. 2.4 and 2.5).

(a) (b)

y

z

2rc

xy plane

x
y

zξ1

ξ2

ξ3

Figure 2.5: Definition of a helical waveguide in the helicoidal frame. The basis vectors of
the helicoidal frame for a left-handed helix are shown in (a). Note that only ξ1 and ξ2 are
normalized, which simplifies calculations. When defining a circle in the xy plane (purple
with red border) and extending it infinitely along the ξ3 direction, a helicoidal waveguide
is created. An orthographic side-view of the waveguide is depicted in (b). Red stripes show
the orientation of the circular cross sections.

In this thesis, the invariance of twisted waveguides along the ξ3 coordinate is used to
perform the optical simulations in two dimensions reducing computation time compared
to a full 3D simulation. This is possible because the vector wave equations (Eq. 2.5) have
the same form in any coordinate frame if the material properties (ε, µ) are replaced by
modified material properties (ε′, µ′) [171]:

ε′ = T−1ε (T−1)> det(T), µ′ = T−1µ (T−1)> det(T), (2.51)

where T−1 is the inverse of the Jacobian T = (ξ1, ξ2, ξ3) of the coordinate transformation
(calculated in Appendix B), > denotes the transposed matrix, and det the determinant.
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As the waveguides discussed in this thesis are made from isotropic materials (i.e., material
properties are scalars), Eq. 2.51 reduces to [172]:

ε′ = εG−1, µ′ = µG−1,

with G−1 =
(

T>T
det(T)

)−1

=

1 + α2ξ2
2 −α2ξ1ξ2 −αξ2

−α2ξ1ξ2 1 + α2ξ2
1 αξ1

−αξ2 αξ1 1

 .
(2.52a)

(2.52b)

Twisting a waveguide therefore effectively results in the material properties becoming
anisotropic, with the degree of anisotropy increasing with twist rate and distance from
the twist axis. Furthermore, it is important to note that the curl operator in Eq. 2.5 takes
on a nontrivial form as the helicoidal coordinate frame is not orthogonal [173].

2.3.3 Overfelt Frame

A third coordinate system in which a helical structure is translationally invariant along one
axis is the coordinate frame (ρ, φ, ζ) used by Overfelt [168]. Its relation to the Cartesian
lab frame is similar to the definition of cylindrical coordinates but includes an additional
dependence on the angular twist rate α:

r =

xy
z

 =

ρ cos(φ)
ρ sin(φ)
ζ + φ/α

 ⇐⇒

ρφ
ζ

 =


√
x2 + y2

tan−1(y/x)
z − tan−1(y/x)/α

 . (2.53)

When fixing a particular value of ρ and ζ, r(φ) describes a right-handed helix for α > 0.
By contrast, the helicoidal coordinate system describes a left-handed helix for α > 0. The
basis of the Overfelt system (eρ, eφ, eζ) is nonorthogonal and can be calculated as:

eρ = ∂r
∂ρ

=

cos(φ)
sin(φ)

0

 , eφ = ∂r
∂φ

= 1
α

−αρ sin(φ)
αρ cos(φ)

1

 , eζ = ∂r
∂ζ

=

0
0
1

 . (2.54)

To construct a helical waveguide, a refractive index profile is defined in the ρζ plane (which
is identical to the ρz plane of the cylindrical coordinate system) and extended infinitely
along the φ coordinate. When this profile is a circle, we refer to the resulting structure as
an Overfelt waveguide.
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(a) (b)

y

z

x
y

z

eς

eΦ

zρ plane

eρ

2rc

Figure 2.6: Definition of a helical waveguide in the Overfelt frame. The normalized basis
vectors of the Overfelt frame for a left-handed helix are shown in (a). When defining
a circle in the zρ plane (blue with red border) and extending it infinitely along the eφ

direction, an Overfelt waveguide is created. An orthographic side-view of the waveguide is
depicted in (b). Red stripes show the orientation of the circular cross sections.

2.4 Photonic Spin Hall and Orbital Hall Effect
Circularly polarized light traveling along curved trajectories (as in off-axis twisted wave-
guides) has been observed to split into two beams of opposite spin [174]. This unexpected
behavior is an example of the photonic spin Hall effect akin to the electronic spin Hall
effect observed in semiconductors [175, 176].

Both effects are based on the spin-orbit interaction, which is well known for elec-
trons bound to a nucleus. A similar term that couples the spin and orbital motion of
photons can be derived by approximating the complex electromagnetic fields as a single
wavepacket, describing only the motion of its center of gravity [177, 161]. Such a "semi-
geometrical approximation" can be applied when the trajectory of the wavepacket
changes on lengthscales much larger than the wavelength. More specifically the parameter
µ = λ0/(2πmin(κ̄−1, τ−1)) should be small. For a helical path, κ̄−1 and τ−1 are always
larger than the radius ρ of the helix. Therefore, µ < 9 × 10−3 with the parameters used in
this thesis (ρ = 14 µm, λ0 = 770 nm) and the approximation is principally valid.

The motion of the wavepacket can then be described to first order in µ as [178, 174]:

∂T̂
∂s

= κ̄ N̂,
∂r
∂s

= T̂ −Ŝ3
λ0

2πn κ̄ B̂︸ ︷︷ ︸
Spin-orbit splitting

, (2.55)

where r describes the position of the wavepacket parametrized by the arc length s of its
trajectory and (T̂, N̂, B̂) are the unit vectors of the Frenet-Serret frame for the trajectory
that the light would take without spin-orbit coupling. The Frenet-Serret coordinate system
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is defined in Section 2.3.1. κ̄ is the local curvature, Ŝ3 is the third Stokes parameter and
n is the refractive index.

The term on the right side is a consequence of the spin-orbit interaction of photonic
wavepackets and results in a spin-dependent splitting of the beam along the B axis. For the
helical waveguide with the highest investigated twist rate (ρ = 14 µm, P = 50 µm, λ0 =
770 nm, n = 1.54), the magnitude of the spin-orbit splitting term is equal to λ0

2πn
κ̄ = 4.3 ×

10−3. This value is about three orders of magnitude larger than in a well-known free-space
demonstration of the photonic spin Hall effect illustrated in Fig. 2.7. In this demonstration,
a beam was constrained to a helical path at the inner surface of a macroscopic glass cylinder
(ρ = 8 mm, P = 16 mm, λ0 = 633 nm, n ≈ 1.5, λ0

2πn
κ̄ = 7.6 × 10−6) [174]. In this case, the

LCP and RCP beams are found to be displaced along the z axis (i.e., along the twist axis),
which follows from integration of the spin-orbit splitting term over one turn of the helix.
In other words, the two beams propagate along helices with the same radius but different
pitch lengths. Experimentally, a splitting of about 2 µm was observed after a propagation
distance of 96 mm.

PLCP

PRCP Propagation direction (z)

Glass cylinder

RCP beam

LCP beam

Figure 2.7: Experimental demonstration of the photonic spin Hall effect performed in
Ref. [174]. A beam of LCP light (blue) and RCP light (green) is coupled into a cylinder
under identical conditions and propagates along a helical path on its inner surface. For a
left-handed helix, the RCP beam propagates with a larger helical pitch distance P than the
LCP beam leading to a spin-dependent separation. Magnitude of the effect is exaggerated.

Apart from this demonstration, two main scenarios have been identified where the
photonic spin Hall effect results in a spin-dependent splitting of a beam, i.e., refraction
and reflection at the interface between two homogeneous media [179, 180], and propagation
of light in a spatially inhomogeneous medium (referred to as the optical Magnus effect) [177,
181, 178].

Akin to the spin-orbit interaction, there is also an orbit-orbit interaction of photons,
which couples the intrinsic OAM of a mode (caused by an eilφ phase dependence) with
its orbital motion (extrinsic OAM). The OAM-dependent spatial shifts caused by this
interaction are referred to as photonic orbital Hall effect [182, 183]. The equations of
motion for µ � 1 are analogous to those of the spin Hall effect with the spin being replaced
by the total angular momentum [183]:

∂T̂
∂s

= κ̄ N̂,
∂r
∂s

= T̂ − (s+ l) λ0

2πn κ̄ B̂. (2.56)
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Therefore, the orbit-orbit interaction results in the same spatial splitting [184, 185] as the
spin-orbit interaction but with a potentially much larger amplitude since the value of l can
become arbitrarily large (within the number of available spatial modes).



Chapter 3

Experimental and Numerical
Methods

3.1 Numerical Simulation
While the propagation of electromagnetic waves can be solved analytically for a variety of
simple geometries, many real-world devices are more complex and require Maxwell’s equa-
tions to be solved numerically. In the case of waveguides consisting of linear materials the
governing equations are the vector wave equations (Eq. 2.5) combined with the separation
ansatz of Eq. 2.6. These equations are also valid for twisted waveguides noting that the
material properties become anisotropic and the differential operators need to be expressed
in the twisted reference frame. Here, the nonorthogonal helicoidal coordinate system is
used where the curl operator takes the form described in Ref. [173]. The discussion in this
section is based on Refs. [186, 187].

3.1.1 Basics of Computational Electromagnetism
A common numerical technique to solve partial differential equations - like the vector wave
equations - is the finite element method (FEM). FEM solvers expand the field in terms
of a finite set of basis functions Ψj which are nonzero only on a discrete patch of a mesh
and its surrounding elements (Fig. 3.2):

E =
N∑

i=j

cjΨj. (3.1)

The goal of the FEM solver is to determine the scalar expansion coefficients ci. For two-
dimensional problems like waveguides, the mesh is often triangular while three-dimensional
problems typically use tetrahedral or prism-shaped elements. An example of a mesh is
shown in Fig. 3.1. FEM solvers typically work in the frequency domain, i.e., the fields
are expressed in terms of their (temporal) Fourier components E(x, y, z, ω) such that:

E(x, y, z, t) = 1√
2π

∫
R

E(x, y, z, ω)e−iωtdω. (3.2)
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In this case, the vector wave equation for the electric field simplifies to1:

∇ ×
(
µr

−1∇ × E
)

− ω2

c2
0
εr E = 0. (3.3)

To discretize this equation, it is multiplied by a basis function Ψi from the left-hand side
and integrated over the complete simulation domain Ω. Integration by parts2 and assuming
that the field vanishes at the boundary ∂Ω (Dirichlet boundary condition) yields:

∫
Ω

(∇ × Ψi) · µr
−1∇ × E − ω2

c2
0

Ψi · εr E dV = 0. (3.4)

If this equation is fulfilled for any test function Ψi, then E is a solution to the vector wave
equation3. This statement is called the weak form of Maxwell’s equations. Now, the
expansion for E from Eq. 3.1 is inserted which results in a set of N linear equations that
can be written in the form of a matrix as:

Ac = 0, (3.5)

with c = (c1, c2, ...cN)T containing the coefficients of the electric field and A being an NxN
matrix with entries:

Ai,j =
∫

Ω
(∇ × Ψi) · µr

−1∇ × Ψj − ω2

c2
0

Ψi · εr Ψj dV. (3.6)

Since a basis function is defined to be nonzero only near a specific mesh cell with limited
overlap to other basis functions, the matrix A is populated only near the diagonal. Such a
sparse matrix can be efficiently inverted with LU solvers to find the solution for the electric
field coefficients c [186]. If only the eigenvalue of a mode is to be determined, it can be
found by the condition det(A) = 04.

Having found the solution for E, the solution for H can be directly calculated from
Maxwell’s curl equation (Eq. 2.1), which reads in frequency space:

H(x, y, z, ω) = 1
iωµ0

µr
−1 ∇ × E(x, y, z, ω). (3.7)

Alternatively, the vector wave equation for H can be solved and the solution for E is
subsequently calculated from the curl equation for H.

In the derivation of the weak form of Maxwell’s equations, the fields were assumed to
vanish at the boundary ∂Ω. To implement such a condition in a finite-sized simulation

1For better readability E(x, y, z, ω) is abbreviated as E.
2Integration by parts for curl operators reads:

∫
Ω A·(∇×B) dV =

∫
Ω(∇×A)·B dV −

∫
∂Ω(A × B)·dS

and is based on the vector identity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B).
3The mathematical details are well explained in Ref. [187].
4Otherwise the matrix would not be invertible and no solution for the electric field would exist. Note

that the basis functions Ψj need to fulfill the separation ansatz of Eq. 2.6.
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region, a perfectly matched layer (PML) can be used as the outermost part of the
simulation region, which was first shown in 1994 by Jean-Pierre Bérenger [188]. Today,
PMLs are understood as a coordinate transformation that maps the spatial coordinates to
the complex plane and are therefore referred to as stretched-coordinate PMLs [189, 190].
An example of the transformation in 1D is [187]:

x(τ) = x0 + (γr + iγi)τ, (3.8)

where γr and γi are positive, and τ = 0 at the location where the PML interfaces to the
rest of the simulation region. γi results in the decay of oscillating waves since inside the
PML exp(ikx) = exp(ik(x0 + γrτ)) exp(−kγiτ). The decay of evanescent waves entering
the PML is enhanced by γi because exp(−kx) is mapped to exp(−kx0 − ikγiτ) exp(−kγrτ).
Such a coordinate transformation effectively changes the material properties as described
in another context in Section 2.3.2.

For the exact wave equation, this PML perfectly absorbs every incoming wave. How-
ever, the numerical discretization can introduce reflections due to the change in material
properties at the interface to the PML. This problem can be alleviated by gradually in-
creasing the parameters γr and γi and choosing a sufficiently large upper value for τ .
Optimizing the PML for a given problem nevertheless remains a challenging task in com-
putational electromagnetism.

(a) (b)

PML
Strands

Core

Figure 3.1: Simulation region of a twisted light cage used as input for the FEM solver. (a)
Refractive index profile with air core (yellow) and polymer strands (cyan). (b) Triangular
mesh with different cell sizes in the core and strand. The simulation region is surrounded
by a PML to absorb outgoing waves. Scale bars denote 5 µm.

Apart from the Dirichlet boundary condition, other boundary conditions can be ap-
plied to ∂Ω. Among the most common are periodic boundary conditions (e.g., for
metasurfaces), perfect electrical conductor (PEC) or perfect magnetic conductor
(PEC) boundary conditions which set the tangential component of the respective field to
zero to simplify the simulations of symmetric structures.

Other popular numerical tools to solve Maxwell’s equations are rigorous coupled-
wave analysis (RCWA) and the finite-difference time-domain (FDTD) technique.



3.1 Numerical Simulation 37

For RCWA, the structure is subdivided into uniform layers and within each layer, the
fields and the geometry are expressed as a truncated (spatial) Fourier series5. Often RCWA
is used for periodic structures where the wavefunction is expressed as a Bloch wave. The
full solution is determined by imposing Maxwell’s boundary conditions at the interfaces
between the layers. RCWA is advantageous if the structure can be well divided into several
uniform layers since the computation time only depends on the number of layers but not
the height of each layer. Since RCWA is performed in Fourier space, large index contrast at
edges of the structure cannot be well resolved or require a large number of Fourier modes
to be simulated.

The FDTD technique discretizes the field solutions into regularly spaced time steps [191].
It uses the fact that the E field at the next time step can be calculated from the spatial
distribution of the H field at the current time step using Maxwell’s curl equations (Eq. 2.1).
Conversely, the H field at the following time step can be updated based on the calculated
spatial distribution of the E field. As a result, the fields are updated alternately at each
time step. In terms of spatial discretization, the field components are often represented
on a Yee lattice [192]. On this lattice, the Cartesian field components of E and H are
interlaced such that a given component of E is surrounded by the four components of H
required to calculate the next time step for E, and vice versa. The main advantage of
FDTD is its ability to analyze the system’s response across a wide frequency range in a
single simulation run by using a broadband excitation pulse. FDTD is also particularly
well-suited for describing nonlinear processes, that depend on the varying field amplitude.

However, both the RCWA and the FTDT method suffer from a common disadvantage:
they discretize the fields on a regularly spaced lattice which means that the lattice spacing
needs to reflect the smallest feature size throughout the entire structure. The finite element
method offers a significant advantage in this regard because it allows the size of the mesh
cells to vary across the geometry. Locations where the field undergoes rapid changes like
interfaces can be resolved with a finer mesh and areas where the the transverse wavevector
of the field is small can be approximated by a larger mesh. This flexibility in mesh cell
sizes leads to a substantial reduction in computation time.

A further degree of freedom is presented by the choice of the basis functions, which are
often polynomials. While tuning the mesh size is referred to as h-refinement, tuning the
polynomial degree is referred to as p-refinement (Fig. 3.2). In many cases, the solver can
automatically perform these refinements, enhancing the accuracy of the simulation with
minimal additional computation time.

Since many problems in physics and engineering are based on partial differential equa-
tions, FEM solvers are well-developed and widely used. Practical course material on com-
putational electromagnetism including videos of lectures can be found in Ref. [193].

5Therefore RCWA is also referred to as Fourier modal method (FMM).
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Figure 3.2: Example of adaptive meshing in 1D FEM. (a) Polynomial basis functions
Ψj of linear (blue) and quadratic (yellow/orange) degree. (b) A field E represented as
superposition of these basis functions. Finer details can be resolved if the mesh elements
become smaller (h-refinement) or the polynomial degree is increased (p-refinement).

3.1.2 Setup and Convergence of the FEM Solver
In this thesis two commercial FEM solvers are used, COMSOL Multiphysics (RF module)
for untwisted waveguides and JCMsuite (PropagatingMode module) for twisted waveguides
since JCMsuite natively supports the helicoidal coordinate system. The workflow is similar
for both software packages and will be outlined for JCMsuite here.

First, the waveguide is defined by specifying a 2D refractive index profile and sur-
rounding the simulation region with a PML as shown in Fig. 3.1. The dispersion of the
refractive index of the polymerized resist, from which the waveguide is made, is
provided by Nanoscribe GmbH in the form of a single-term Sellmeier equation (shown in
Fig. 3.3):

n(λ) =
√

1 + A1λ2

λ2 − λ2
1
, (3.9)

with A1 = 1.3424689 and λ1 = 0.128436 µm. More detailed formulas including the imagi-
nary part of the refractive index and its changes under different polymerization conditions
can be found in Ref. [194]. In our analysis, we neglected the losses of the polymer because
(1) only a negligible portion of the field is guided inside the polymer, and (2) scattering
losses due to surface roughness of the polymer are likely higher than the intrinsic loss of
the material.

Next, a triangular mesh is created with the resolution in each domain being deter-
mined by the "MaximumSidelength" option. Since JCMsuite currently does not support
adaptive meshing for twisted structures, these values need to be determined manually. If
the transverse wavevector component ktransverse can be estimated, a good first guess is to
limit the cell size to 1/6 of the typical transverse wavelength (2π/ktransverse) within each
domain.
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Figure 3.3: Refractive index of the poly-
merized resist (IP-Dip, Nanoscribe GmbH)
calculated using Eq. 3.9.

An important parameter is the "Precision" setting of the solver which allows tuning
the accuracy of the matrix solver, the PML, and - in case of untwisted structures - any mesh
refinements, simultaneously[195]. A higher precision setting should generally be preferred
but needs to be reduced if the matrix solver fails to find solutions at this precision level.

The settings of the PML are determined automatically by JCMsuite, i.e., the stretching
parameters and the thickness are determined such that the numerical errors due to reflected
waves from the PML remain below the set precision level. This is done by iteratively
increasing the thickness of the PML until the reflectance is small enough. The process can
be accelerated by defining a certain "StartThicknessLevel" to avoid the iteration starting
with a too low PML thickness.

Lastly, the convergence of the computed eigenvalues under changes in the mesh size
needs to be checked. The convergence of the real and imaginary part of neff with decreasing
mesh size in the core and strands of a twisted light cage (discussed later in Chapter 6)
with a strand diameter of D = 3.6 µm is shown in Fig. 3.4. As evident from Fig. 6.13 the
fundamental mode of the twisted light cage develops more and more fine features as the
twist rate increases which requires the use of finer meshes. A mesh size that yields sufficient
convergence for this geometry at all investigated twist rates was λ/6 in the strands and
λ/2 in the core6. For a λ = 770 nm this results in a mesh consisting of 117,950 triangles.

If the eigenvalues do not converge with decreasing mesh size, the distance between the
outermost part of the structure and the PML should be adjusted. If the distance is too
small, unwanted interactions with the PML might occur. If the distance is too large, the
solver might not be able to find the correct eigenmode.

6λ denotes the free-space wavelength.
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Figure 3.4: Convergence of the FEM simulation of the effective index neff with decreasing
mesh size on the example of a twisted light cage. The cross section of the waveguide is
depicted in Fig. 3.1. The convergence was checked for twist rates ranging from 0 to 10
twists per mm as indicated in the legend. The mesh size was varied both in the hollow
core (left panels) and in the strands (right panels). Real (a) and imaginary (b) part of
neff have converged to a satisfactory level for all twist rates once the mesh size reaches λ/2
in the core and λ/6 in the strands (dashed black lines). For even smaller mesh sizes, the
computation time increases strongly (c). Selected meshes for the sizes indicated by the
arrows are depicted in (d). The right-circularly polarized fundamental mode of the light
cage was simulated at λ = 770 nm. For the simulations in the left panels, the mesh size in
the strands was fixed to λ/6, while the mesh size in the core was fixed to λ/2 in the right
panels.

3.2 Fabrication via 3D Nanoprinting
The waveguides investigated in this thesis are fabricated by 3D-laser-nanoprinting
via two-photon-polymerization of liquid photoresist, abbreviated throughout as 3D
nanoprinting. The technology emerged in 1997 [69] and became widely available through
commercialization by Nanoscribe GmbH in 2007.

Today, 3D nanoprinting is a mature technology enabling fabrication of 3D structures
with feature sizes down to hundreds of nanometers and total sample footprints reaching
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up to several centimeters. Three advantages set it apart from other lithographic tech-
niques such as photolithography or electron-beam lithography: (1) the ability to create
3D structures in a single processing step, (2) short manufacturing times allowing fabrica-
tion of large-scale structures, and (3) cost-effective fabrication without the need for high
temperatures, harsh chemicals or cleanroom conditions.

(a) (b)

Substrate

Polymerized
structure

Resist

Objective

Voxel System controls

Femtosecond laser &
galvanometric mirror

3D piezo

2D mechanical stage

Sample

Microscope with z-drive

z

x
y

Figure 3.5: 3D nanoprinting setup. (a) Sketch of the dip-in configuration, where the
objective is immersed in the photoresist. The beam is scanned in the xy plane by a
galvanometric mirror. Structures are fabricated layer by layer within a single processing
step (red arrow denotes fabrication direction). (b) Photographic image of the Nanoscribe
Photonic Professional GT system used in this thesis indicating the main components. The
room is illuminated by yellow light to avoid unwanted polymerization of the resist.

As illustrated in Fig. 3.5(a), 3D nanoprinting works by scanning a focused laser beam
through a photoresist containing monomers and a small concentration of a photoinitiator,
typically around 1% [196]. The photoinitiator molecules absorb light at twice the photon
energy and start a polymerization reaction in the focal volume. Achieving the necessary
rates for this third-order nonlinear process demands high peak intensities, which typically
requires the use of pulsed femtosecond lasers. The polymerized volume resulting from a
point exposure is referred to as a voxel - the building block of 3D nanoprinting. In analogy
to a conventional 3D printer, structures are built up layer by layer by raster scanning of
the laser focus through the resist. The spacing between these layers is referred to as
slicing distance and between the individual lines in one layer as hatching distance as
depicted in Fig. 3.6. To achieve the highest resolution, a high numerical aperture objective
is inserted directly into the resist in what is known as the dip-in configuration. This

Substrate

z

x

y

Slicing distance

Hatching distance

Figure 3.6: Slicing and hatching in
3D nanoprinting. Polymer layers
(blue) are separated by the slic-
ing distance. Each layer is created
by scanning the focused laser beam
along the hatch lines (orange), which
are separated by the hatching dis-
tance. Direction of hatch lines typi-
cally alternates between layers.
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configuration is selected to avoid any aberrations of the focus during fabrication. Following
laser exposure, the structures are developed by immersion in a solvent which removes any
unpolymerized resist. This type of resist is referred to as negative-tone resist. In
contrast, positive-tone resists start from a gel or solid state and any unexposed areas
remains after the development, which is advantageous if a structure with holes or voids is to
be created [89]. The refractive index of 3D-nanoprinted polymers typically falls within
the range of 1.5-1.7 in the visible, close to that of common glasses [197]. Furthermore,
materials like conductive or biocompatible polymers, metals, high-refractive index glasses,
and composite materials can be used with additional processing steps albeit with varying
tradeoffs [197].

In this thesis, a commercial 3D nanoprinting system (Photonic Professional GT,
Nanoscribe GmbH, Fig. 3.5(b)) was used and all waveguides were realized on polished
Silicon substrates in negative-tone IP-Dip resist (Nanoscribe GmbH). Laser pulses from
a femtosecond laser with a center wavelength of 780 nm, repetition rate of 80 MHz, and
pulse length of 100 fs are focused through a high numerical aperture objective (Plan-
Apochromat 63x/1.40 Oil DIC, Zeiss, NA = 1.4) to induce polymerization of the resist.
The waveguides are created laterally (xy) by scanning the focused laser beam using a
galvanometric mirror and axially (z) by piezo-driven displacement of the substrate. Due to
the occurrence of aberrations and a decrease in intensity towards the edges of the print field,
the waveguides are divided into a number of segments with maximal lengths of 180 µm.
After completing a segment, the substrate is shifted along the waveguide axis (here: x) by
means of a mechanical stage. Artifacts arising from the stitching process were minimized
by calibrating the mechanical stage and could further be improved by using stitch-free
nanoprinting where mechanical stage and galvanometric mirror move in sync [198]. All the
above commands are defined in a .gwl file using the DeScribe software. Typical printing
parameters are listed in Table 3.1. Note that the reported value for the acceleration of the
galvanometric mirror is only applicable within the framework of machines by Nanoscribe
GmbH. Generally, a low mirror acceleration should be used to achieve a high quality of
the edges of the printed structures.

Table 3.1: Typical parameters used for the fabrication of waveguides via 3D nanoprinting.

Parameter Value
Slicing distance 200 nm

Hatching distance 150 nm
Acceleration of galvanometric mirror 1 V/ms2

Scanning speed 70,000 µm/s
Laser power 37 mW (setting in Describe: 74%)

After laser exposure, the unpolymerized resist was removed by immersion in propy-
lene glycol monomethyl ether acetate (PGMEA, Sigma Aldrich) for 30 min and Methoxy-
nonafluorobutane (Novec 7100 Engineered Fluid, 3M) for 15 min, followed by evaporative
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drying in air. Methoxy-nonafluorobutane is used in the last step of the development pro-
cess because it has a low surface tension which reduces the capillary forces acting on the
sample during the drying process.

An important aspect to understand in 3D nanoprinting is the advantage provided by
the two-photon absorption process for the achievable feature sizes and resolution. For
a voxel to form, the photoinitiator needs to absorb light to become activated (typically
forming a radical). The probability for this process scales proportional to the intensity
for single-photon absorption, while it is proportional to the square of the intensity for
two-photon absorption. Assuming a Gaussian beam [130], the focal intensity distribution
follows an exponential decay in the radial direction proportional to exp(−2(r/w0)2), and
drops off slowly as 1/(1 + z/zr)2 in the axial direction, where w0 is the beam waist in
the focal plane, and zr = πw2

0n/λ is the Rayleigh length. Consequently, the two-photon
absorption process results in a better confinement of the voxel, especially along the axial
direction vz as shown in Fig. 3.7. The resulting shape of the voxel is ellipsoidal with an
aspect ratio vz/vxy of typically around 3.5 for high-NA objectives [199]. From a practical
point of view, voxels with low aspect ratios are desirable in order to achieve the same
printing resolution along all dimensions.
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Figure 3.7: Normalized absorption probability in single-photon-polymerization (SPP) and
two-photon-polymerization (TPP) in the focus of a Gaussian beam. (a,b) show profiles
through the center of the focus. The profile in (c) describes two sequential point exposures
separated in radial direction by 2w0. Due to the tighter confinement of the voxel in TPP,
the overlap between features in close proximity to each other is reduced. (d) Sketch of
the ellipsoidal voxel with lateral size vxy and axial size vz. z0 and w0 denote the Rayleigh
length and beam waist, respectively. (a,b) adapted from Ref. [67].

Additionally, photopolymerization is subject to a chemical nonlinearity, i.e., a cer-
tain threshold concentration of the active photoinitiator needs to be reached before poly-
merization starts. Consequently, operating close to this polymerization threshold allows
for the realization of arbitrarily small feature sizes - both with single- and two-photon ab-
sorption [200]. In practice, this regime can be reached by increasing the scanning speed
of the beam, reducing the laser power, or by adding a polymerization inhibitor to the
resist [200]. Employing this approach, suspended wires with sub-100 nm lateral feature size
have been successfully fabricated [201], with the record achieving a width of 23 nm [202].
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However, these small voxel sizes come at the cost of decreased mechanical stability and
higher susceptibility to laser power fluctuations because the degree of crosslinking in the
polymer is low near the threshold [203]. More complex structures require minimal lateral
voxel sizes of at least 200 nm [199].

The main advantage of two-photon absorption lies in a more technical aspect: Once
the photoinitiator is activated, it remains in this state for prolonged times if the threshold
concentration is not yet reached, resulting in a buildup of active photoinitiator along the
complete beam path [203]. This memory effect is especially detrimental in single-photon-
polymerization as 100 out-of-focus exposures with 1% of the threshold intensity would
already be enough to create unwanted artifacts [196]. Two-photon-polymerization, on the
other hand, can tolerate up to 10,000 of such exposure giving the photoinitiator time to
return to its inactive state.

Due to the memory effect, the achievable lateral and axial resolution (i.e., the
smallest achievable spacing between features such that they can still be distinguished) is
given by a version of Abbe’s diffraction limit [203]:

dlateral = λ

2
√

2NA
= 197 nm, daxial ≈ λA

2
√

2NA
= 689 nm, (3.10)

where A is the aspect ratio of the voxel. Compared to single-photon-polymerization, the
resolution in a two-photon-polymerization process is better by a factor of

√
2 as illustrated

in Fig. 3.7(c). The calculated values correspond to the 3D nanoprinting system used in this
thesis, assuming A = 3.5. An experimental demonstration for a simular system reached
dlateral = 375 nm and daxial = 509 nm [204]. Further improvements in the resolution can
be achieved by shrinking the polymer structures in a heat treatment allowing up to 5-fold
reduction in side lengths [205].

Overall 3D nanoprinting by two-photon-polymerization offers the best combination
of high printing speed (voxels/s) and high resolution within the group of 3D additive
manufacturing techniques (for a good overview see [206] and continuously updated
version online [207]). Higher resolution is only achievable at orders of magnitude longer
fabrication times, e.g., with electron beam induced deposition of gaseous precursors [208]
or the emerging aerosol jet 3D nanoprinting technique [209].

3.3 Optical Transmission Measurements
To determine the optical properties of the fabricated samples, the transmission of white
light through the waveguides was measured as shown in Fig. 3.8. The setups consist of
a broadband supercontinuum laser source (SuperK Fianium, NKT Photonics, wavelength
range: 390 nm - 2400 nm, repetition rate: 152 kHz - 80 MHz, output power: 5-15 mW in a
10 nm window), in- and outcoupling objectives mounted on 3D translation stages (Olym-
pus, 20 x, NA = 0.4; Olympus, 10 x, NA = 0.25), a CCD camera (Thorlabs DCU223C) for
imaging the waveguide mode, and a spectrometer (Princeton Instruments Acton MicroSpec
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2500i, grating period: 300 g/mm, blaze angle: 750 nm, spectral resolution: ∆λ = 0.13 nm,
detector: Princeton Instruments Acton Pixis 100) connected to a multimode-fiber (M15L05,
core size: 105 µm). Light is coupled to the fundamental mode of the waveguide, which is
optimized by beam steering and shifting the objective on a 3D translation stage (Elliot
Martock MDE122). The process is monitored by imaging the core mode onto the camera
and optimizing for highest pixel intensity while preserving the shape of the fundamental
mode. In a second step, the power coupled to the fiber of the spectrometer is maximized.
For measurements of wavelength ranges beyond 1100 nm, an optical spectrum analyzer
(Ando AQ-6315A) is used, which needs to be combined with a notch filter to block the
pump laser of the supercontinuum source at 1060 nm. All recorded spectra are normalized
to a reference spectrum taken without a sample and the objectives moved closer together
to compensate for the missing length of the waveguide. Mode images at different wave-
lengths were recorded using the wavelength selector of the supercontinuum source (SuperK
SELECT, smallest transmission bandwidth: 10 nm).
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Figure 3.8: Setup for transmission and circular dichroism measurements. White light:
supercontinuum laser source, PBS: polarizing beamsplitter, HPol/VPol: horizontal/vertical
linear polarizer, QWP: quarter waveplate, Qbj: objective, CCD: camera, L: lens, M: mirror
pair for beam steering. Flip mirrors determine whether polarized or unpolarized light is
sent to the waveguide chip, and a beam dump is used for selecting a specific polarization.
Component library from Ref. [210] was used.

The setup allows light of several polarization states to be used, in particular unpolarized,
linearly polarized (horizontal/vertical with respect to the plane of the sample substrate),
and circularly polarized (LCP/RPC) light. To generate polarized light, linear polarizers
(Thorlabs LPVIS100, 550 - 1500 nm), and a quarter waveplate (Thorlabs AHWP05M-980,
690 - 1200 nm) with its optical axis oriented at a 45◦ angle with respect to the axis of the
polarizers were used.

Circularly polarized light was needed specifically to determine the circular dichroism of
twisted waveguides (i.e., a difference in transmission of LCP/RPC light) which is discussed
in Chapter 6. Measurements of circular dichroism pose additional requirements on the
setup because reflections and refractions on any surface reduce the degree of circularity
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of the polarization state, thus creating elliptically polarized light (because the Fresnel
reflection coefficients are generally different for TE and TM incidence [137]). To avoid this,
the quarter waveplate is the last optical element before the light is coupled to the waveguide.
Furthermore, any shifts of the beam need to be avoided when switching between LCP and
RCP light as such shifts would change the amount of light that is coupled to the waveguide,
thus leading to false positive CD measurements. To avoid any mechanical movement, the
two linear polarizers are placed in the arms of a Mach Zehnder interferometer beam path.
By blocking one arm of the beam path, a specific linear polarization (horizontal or vertical)
is selected, which translates to a specific circular polarization after the quarter waveplate.
The beam path is created using two polarizing beamsplitters (Thorlabs PBS252, 620 - 1000
nm) to avoid the 75% loss that would occur for non-polarizing beamsplitters. For accurate
measurements, a precise overlap of the two beams created in the interferometer is essential,
which is achieved by ensuring that the beam positions match at two points that are about
1.5 m apart: an iris at the output of the interferometer and the pinhole represented by the
multimode fiber.



Chapter 4

3D-Nanoprinted Antiresonant
Hollow-Core Waveguides

As mentioned in Chapter 1, 3D nanoprinting is a promising fabrication technique for
realizing chip-integrated hollow-core waveguides. A unique advantage of this approach is
the ability to realize structures with high structural openness, allowing any medium of
interest to enter the waveguide passively via diffusion. As such, the presented works are
a step towards realizing compact, cost-efficient, and mass-producible photonic devices and
sensors such as infrared and Raman spectrometers, integrated quantum optical circuits,
optofluidic setups, or point-of-care diagnostics.

Two types of hollow-core waveguides will be discussed, the microgap waveguide consist-
ing of square-shaped waveguide segments separated by micrometer-sized gaps for analyte
exchange, and the light cage featuring a freely suspended hexagonal array of polymer
strands with side-wise access to the core. Light guidance in both waveguides is provided
by the antiresonance effect, i.e., by a mismatch between the effective index of the core
and cladding modes. The specific implementation of this guidance mechanism in both
waveguides will be explained.

In Section 4.1, all relevant optical properties of microgap waveguides, such as prop-
agation loss, tunability of the resonances, and influence of the gaps on transmission are
experimentally revealed and simulated. Furthermore, two analytical models for light guid-
ance in square-core antiresonant waveguides are developed that correctly describe the ex-
perimental behavior. To demonstrate the sensing capabilities, absorption spectroscopy of
ammonia gas and aqueous solutions of Rhodamine 6G (R6G) dye was performed.

Light cages were previously introduced in Refs. [66, 81, 82] and the fundamental
aspects of light guidance covered in these works will be summarized in Section 4.2. Building
on these works, we study the repeatability and accuracy of the fabrication method and
demonstrate that waveguide lengths of up to 3 cm can be reached. Additionally, possible
applications of light cages in fluorescence spectroscopy will be covered. Overall, the study
of light cages serves as a basis for Chapter 6, where twisted variants of these waveguides
will be studied.
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4.1 Microgap Waveguides
The results presented in this chapter are published in Ref. [211]:

J. Bürger, V. Schalles, J. Kim, B. Jang, M. Zeisberger, J. Gargiulo, L. S. Menezes, M. A.
Schmidt, and S. A. Maier

“3D-nanoprinted antiresonant hollow-core microgap waveguide - an on-chip platform for
integrated photonic devices and sensors”

Reprinted with permission from ACS Photonics 2022, 9, 3012-3024, https://pubs.acs.
org/articlesonrequest/AOR-QEIASFHMWY966VSDTB2V. Copyright 2022 American Chem-
ical Society. Note that results from the Master’s thesis of the author [67] are used in this
chapter as they are required to introduce the topic. Specifically, the transmission measure-
ments and theoretical modeling of the waveguides are part of [67]. All work related to the
gas sensing experiment and writing of the manuscript [211] was carried out during the
doctorate.

The concept of microgap waveguides was motivated by the desire to create a 3D-nanoprinted
hollow-core waveguide with a straightforward design, simplifying reproduction and allow-
ing complete analytical modeling of its optical properties. The design features two elements
that alternate on the micrometer scale as shown in Fig. 4.1: (1) a square-shaped hollow
waveguide segment of length L responsible for confining light via the antiresonance effect,
and (2) an open gap region of length G allowing fast diffusive access to the core. The light
confining segment consists of the hollow core with edge length D, surrounded by a polymer
wall of thickness W and refractive index nW .

D

W

Gap
Confining segment 

x

y
z

Figure 4.1: Illustration of the on-chip
hollow-core microgap waveguide fabri-
cated via 3D nanoprinting. The main pa-
rameters are gap size G, segment length
L, wall thickness W , and core size D.
Inset: Square-shaped cross section.

4.1.1 Light Guidance in Square-shaped Hollow-core Waveguides
As the refractive index of the used polymer is on the order of nW = 1.5 (Fig. 3.3), modes
in the lower-index core are not bound by total internal reflection. To understand why the
formation of stable modes is still possible, it is insightful to study the optical properties

https://pubs.acs.org/articlesonrequest/AOR-QEIASFHMWY966VSDTB2V
https://pubs.acs.org/articlesonrequest/AOR-QEIASFHMWY966VSDTB2V
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of a single waveguide segment of infinite length, i.e., neglecting the gaps. In the following,
we describe the optical properties of this segment using FEM simulations and develop
two analytical models for the effective index and propagation loss of the fundamental core
modes.
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Figure 4.2: Optical properties of micro-
gap waveguides (theory). (a,b) Spectral
distribution of the real part of the ef-
fective index and the attenuation of the
fundamental core mode (red: 2D FEM
simulation of a rounded cross section of
the waveguide, green: Fabry-Pérot model,
blue: leaky slab waveguide model). The
vertical black dashed lines in (a) de-
note the position of the cladding reso-
nances (Eq. 4.5). All calculations include
the material dispersion of the polymer.
(c) Median-filtered spectral distribution
of the optical power located in the poly-
mer walls normalized to the total power
of the mode integrated over the complete
simulation region (square with length of
34 µm). (d) Simulated Poynting vector
distribution of the core mode at the wave-
lengths indicated in (a,b) by the red stars
(A: Close to resonance, B: Off-resonance,
C: Azimuthal sub-resonance). Red ar-
row denotes the polarization of the prop-
agating mode. The calculations were per-
formed for D = 20 µm and W = 1 µm.

Numerical simulations were conducted for a 2D cross section of the waveguide fol-
lowing the description in Section 3.1. To reduce the computation time, we leveraged the
Cartesian symmetry of the waveguide allowing the simulation region to be limited to one
quarter of the cross section. For this approach, perfect-electrical conductor and perfect
magnetic conductor boundary conditions were applied along the vertical and horizontal
symmetry lines, respectively. The simulations reveal the formation of a fundamental mode
in the core with broad spectral bands of high transmission, which are delimited by sharp
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resonances with orders of magnitude higher loss (Fig. 4.2(b)). For practical applications,
the waveguide will be operated in the off-resonance domains, in which losses of about
0.01 dB/mm for visible light are theoretically achievable (D = 20 µm, W = 1 µm). Sim-
ulations of the shape of the fundamental mode show that in these low-loss regions, the
shape of the mode nearly follows the C4z symmetry of the cross section and most of the
optical power is located inside the core (Fig. 4.2(d), image B). Only a small fraction of
the power of well below 10−3 remains inside the polymer wall (Fig. 4.2(c)), similar to the
previously investigated light cage geometry [83]. Closer to the resonance, the mode spreads
out along the polarization direction, transforming to an elliptical shape (Fig. 4.2(d), image
A). This asymmetric shape arises due to the polarization dependence of the reflections on
the confining walls.

The fundamental idea why stable modes can exist in the low-index medium can be
understood based on a ray model. According to Fresnel’s equations [128], even low-index
dielectrics become highly reflective under near-grazing incidence, effectively turning the
waveguide walls into mirrors. However, due to the finite thickness of the walls, interference
of waves inside the material needs to be taken into account. At certain wavelengths,
this interference leads to Fabry-Pérot resonances where the confining material becomes
completely transparent. In the wavelength intervals between these resonances, light can
be guided with low loss.

The derivation of this Fabry-Pérot model can be seen as the counterpart to a pre-
viously reported analytical description of tube-type hollow-core waveguides [212]. The
analysis starts by initially assuming perfect reflectivity, resulting in field nodes on the sur-
faces of the wall. In this case, the wavevector of the fundamental mode (i.e., the direction
of the ray) is given by:

k =

κκ
β

 , (4.1)

where κ = π/D is the transverse wavevector component, β =
√
k2

0 − 2κ2 is the propagation
constant, and k0 is the free space wavevector. This step fixes the angle of incidence (π/2−Θ)
at the core-cladding boundary. A posteriori, we now find that the assumption of grazing
incidence (Θ � π/2) is justified if the core size is much larger than the wavelength (D � λ),

θ
κ

β

k x

z D

Z
θ

Ray

(a) (b)

Figure 4.3: Sketch of the wavevector components (a) and zig-zag length Z (b) for the
Fabry-Pérot model. Only the horizontal walls are shown. Light is propagating along the
z direction with propagation constant β. When taking the vertical wall pair into account,
two reflections occur over the distance Z. θ is the inclination angle of the ray.
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which is the case in the fabricated structures. In the next step, we take into account the
finite reflectivity of the walls, describing them as Fabry-Perot resonators yielding reflection
coefficients rFP

TE/TM for transverse electric (TE) and transverse magnetic (TM) polarized
waves as [213]:

rFP
TE/TM = rTE/TM(1 − e2iφ)

1 − r2
TE/TMe2iφ , rTE = κ− κW

κ+ κW

, rTM =
κ− κW

n2
W

κ+ κW

n2
W

, (4.2)

κ2
W = k2

0n
2
W − β2, φ = WκW , (4.3)

TFP
TE/TM = 1 −

∣∣∣rFP
TE/TM

∣∣∣2, (4.4)
where rTE and rTM are the reflection coefficients at a single air-dielectric interface obtained
from Fresnel’s equations, κW is the transverse wavevector component in the wall, φ is
the phase acquired by the waveguide mode in a single pass through the wall and TFP

TE/TM
is the transmission through the Fabry-Pérot slab. Eq. 4.2 directly allows calculation of
the resonances, which correspond to the wavelengths λRes where the reflectivity of the
Fabry-Perot slab vanishes (rFP

TE/TM = 0):

λRes = 2W
m

√
n2

W − 1 ∀ m ∈ N, (4.5)

where m is the order of the resonance, which is equal to the number of field oscillations
in the polymer layer. To estimate the real and imaginary parts of the effective index of
the fundamental mode in the off-resonance regions, we define the zig-zag length Z along
the waveguide axis over which the fundamental mode undergoes two reflections, one on a
horizontal wall and one on a vertical wall (Fig. 4.3):

Z = βD

κ
≈ k0D

κ
for D � λ. (4.6)

With this lengthscale, the attenuation coefficient α or - alternatively - the imaginary part
of the effective index can be calculated as1:

α = 2Tav

Z
, Im(neff) = λ2Tav

4πD2 , (4.7)

with Tav = (TTE + TTM)/2 describing the polarization averaged transmission coefficient of
the Fabry-Pérot slab. Lastly, the effect of the resonances on the real part of the effective
index is addressed. To this end, we calculate the additional phase shift ∆φ due to the
imperfect reflections on the walls resulting in a modification ∆β of the propagation constant
compared to the perfectly reflecting waveguide:

∆φ = arg
(

−rF P
TE + rF P

TM
2

)
, ∆β = 2∆φ

Z
. (4.8)

1Over a length z, the transmission follows T = exp(−αz) = exp(−2 Im(neff)k0z).
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With this modification, the real part of the effective index can be expressed as:

Re(neff) = β + ∆β
k0

=
√

1 − λ2

2D2 + λ2∆φ
2πD2 . (4.9)

In summary, the Fabry-Pérot model yields closed-form expressions for the dispersion and
the propagation loss of the fundamental core mode, which matches well with the results of
the FEM simulation shown in Fig. 4.2(a,b), with small deviations occurring towards longer
wavelengths. Most relevant from a practical point of view is Eq. 4.5, which shows that
the spectral positions of the resonances solely depend on the thickness of the wall W for a
given refractive index nW of the polymer.

In a broader context, the Fabry-Pérot model reveals that the mechanism of light guid-
ance in microgap waveguides is based on the antiresonance effect [214] - a phenomenon
observed in all hollow-core waveguides studied in this thesis. At certain wavelengths, the
core mode is phase-matched to a cladding mode of the Fabry-Pérot cavity (vertical dashed
black lines in Fig. 4.2(a)), leading to large propagation losses due to the removal of power
from the core mode. Away from the resonances, the wavevector mismatch grows which
prevents mode coupling to occur, resulting in transmission bands with low loss (cf. dis-
cussion on mode coupling in Section 2.1.3). Using Eq. 4.7, these off-resonance losses can
be shown to scale as Im(neff) ∼ D−4 [67], which is in line with previous findings for tube
waveguides [212]. Therefore, the losses can be made arbitrarily small by choosing larger
core diameters as the incidence angle on the core-cladding interface gets more and more
shallow. However, antiresonantly confined modes always dissipate energy during propaga-
tion and are therefore referred to as tunneling leaky modes or leaky modes [215]. Such
leaky modes are common to many waveguides where light is not guided via total internal
reflection, such as ARROWs [53], hollow-core photonic-crystal fibers [216, 217] or revolver
hollow-core fibers [218].

As a separate step, we investigated a model that describes the square core as an in-
dependent superposition of two infinitely extended slab waveguides [135] corresponding to
the horizontal and vertical wall pair, respectively (details can be found in Appendix A).
For this leaky slab waveguide model, the effective indices of the fundamental TE and
TM modes of a single slab waveguide were calculated numerically by solving Maxwell’s
equations with suitable boundary conditions. These were then combined to obtain the
complex effective index neff of the square-shaped waveguide while neglecting the fields in
the corners (Fig. A.1). Note that this approximation is particularly valid in situations
where the core extent is substantially larger than the wavelength λ as it is the case for the
fabricated samples. Furthermore, simulations showed that the exact shape of the corners
is irrelevant, both for the position of the resonances and the off-resonance loss [67]. The
results of this model (blue lines in Fig. 4.2(a,b)) yield virtually complete overlap with the
full electromagnetic simulation (red lines).

None of the two models accounts for azimuthal resonances (Fig. 4.2(d), image C), visible
through field oscillations along the long axis of the rectangular cladding elements, which
has a length of D + 2W . The spectral positions of these azimuthal resonances strongly
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depend on the shape of the corners, where the approximation of having two independent
slab waveguides breaks down [67]. As shown in Ref. [219] these azimuthal resonances do
not notably impact the modal characteristics and thus can be neglected for the microgap
waveguide.

4.1.2 Implementation of Microgap Waveguides
The microgap waveguides were fabricated directly on silicon chips in a single pass of 3D
nanoprinting using liquid IP-Dip photoresist with the procedure described in Section 3.2.
The entire waveguide is supported from below by a chain of supporting blocks, which makes
fabrication independent of potentially rough or tilted substrate surfaces. The maximum
spacing between blocks in order for the structure to be stable was determined to be 60 µm.
This design allows quick and reproducible fabrication, with a typical manufacturing time
of 10 minutes per millimeter waveguide length. SEM and transmission microscopy images
of the resulting waveguides are shown in Fig. 4.4.

10 μm

(a)

200 μm

(d) L G 10 μm

10 μm

5 cm

Si chip

(c)
100 μm

(b)

Figure 4.4: Fabrication of microgap waveguides. (a,b,c) Scanning electron microscope
(SEM) images of a fabricated structure showing the cross section (a), the gap between
adjacent elements (b), and an overview (c). Note that the dimensions in (b) and (c) are
affected by the tilt of the chip during SEM imaging. Insets in (c): Photographic image of
a 5 cm long microgap waveguide nanoprinted onto a silicon chip; CCD image of the core
mode. (d) Transmission microscopy image of three waveguides (top view).

The degree of reproducibility of the printing method is verified for light cages in Sec-
tion 4.2 - showing low chip-to-chip variations of the printed dimensions of about 15 nm.
An overview of fabrication inaccuracies is provided in Table 4.10.

Combined with the accessibility of all three spatial dimensions offered by 3D nanoprint-
ing, the parameters of microgap waveguides can be straightforwardly adapted to the re-
quirements of a certain application. This flexibility was used in Ref. [67] to investigate the
impact of changing wall thickness W (600 nm - 2 µm), core size D (10 µm - 20 µm), gap
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length G (2 µm - 40 µm) and segment length L (45 µm - 1 mm). The maximum waveguide
length reached is 5 cm (see inset image in Fig. 4.4(c)). These experimental results will be
summarized in the next subsection.

In order to quantify the amount of open space for side-wise accessing the core, we
calculated the structural openness factor (SOF) for all fabricated devices. The SOF
is defined here as the fraction of the surface area of the waveguide that is open to the
environment [66] which in this case is given by SOF = G/(L + G). Fully functional
samples with SOFs ranging from 0.2% to 18% were fabricated.

4.1.3 Characterization of Transmission Loss, Resonance Tunabil-
ity and Gaps

The fabricated waveguides were characterized optically by measuring their transmission
spectrum and mode profile using an unpolarized supercontinuum white light source. Details
of the setup are described in Section 3.3.

All investigated samples show a core mode formation from the blue to the near-infrared,
matching the shape predicted by the numerical simulations (Fig. 4.2(d)). The recorded
spectra show bands with high transmission delimited by resonance dips, reaching contrasts
of more than 60 dB for the sample with 5 cm length. Repeatability of the fabrication is
high as indicated by the light-colored lines in Fig. 4.5 which represent transmission spectra
of identical copies of the waveguide located on the same chip.

Based on the idea of the cut-back method, we determined the propagation loss of
samples with a core size of D = 20 µm and SOF of 1 % (L = 176 µm, G = 2 µm) by
measuring the transmission spectrum of samples with different length ranging from 0.5 cm
to 5 cm (Fig. 4.5(a)). The results were fitted with the expected transmission for an ideal
waveguide:

T (z) = A exp(−αz), Attenuation [dB/length] = 10 dB
ln(10)α, (4.10)

where A < 1 describes the coupling loss arising from a mismatch between the field of
the focused laser beam and the profile of the fundamental mode. A is also referred to as
butt coupling coefficient and was introduced as cpq in the section on coupled mode theory
(Eq. 2.16). From this fit, the modal attenuation within the transmission bands in the
visible is obtained as 0.38 - 0.72 dB/mm increasing to 1.25 dB/mm in the IR (1400 nm)
for this specific core size and gap length. The coupling loss for the used setup was on the
order of 3 - 4 dB.

According to Eq. 4.5, the resonance wavelengths can be tuned by varying the thick-
ness of the polymer walls W . This relationship was experimentally verified by changing the
thicknesses of the vertical walls between 600 nm and 2 µm with step sizes down to 60 nm
(circles in Fig. 4.5(b)). Using Eq. 4.5 we calculated the experimentally realized wall thick-
nesses and verified that the designed step sizes (i.e., thickness increments) were successfully
implemented as 62 nm and 67 nm (samples with wall thicknesses of 1670 nm, 1737 nm,
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Figure 4.5: Optical properties of microgap waveguides (experiment). (a) Transmission
spectra of waveguide samples (G = 2 µm, L = 176 µm, D = 20 µm, W = 1.55 µm) with
different total lengths (red: 0.5 cm, orange: 1.5 cm, green: 3 cm, blue: 5 cm). Vertical
dashed lines: Theoretical resonance wavelengths of order m obtained from the Fabry-
Pérot model. Bottom plot: Spectral distribution of the modal attenuation. Values of
copies of a certain structure are shown as curves with lower degree of color saturation. (b)
Measured dependence of resonance wavelengths (circles) on wall thickness. Lines show the
relation expected from the Fabry-Pérot model (Eq. 4.5). Gray curves show transmission
spectra for the lowest (W = 601 nm) and largest (W = 2085 nm) investigated wall widths.
(c) Measured mode profiles at selected wavelengths indicated by red circles in (a). Modes
between 420 nm and 710 nm are represented by their true colors as measured by the
camera. Scale bars have a length of 10 µm.

and 1799 nm). The thickness of the horizontal walls was kept fixed to 1.7 µm because a
separate experiment showed that resonances corresponding to the horizontal walls are not
observable [67]. Evaluating the change of the resonance wavelengths with wall thickness
yields tuning slopes between 1.13 nm/nm for the m = 2 resonance and 0.25 nm/nm for
the m = 9 resonance. Remarkable is the large free spectral range of 220 nm in the visible
of the sample with 600 nm wall thickness as shown in the left panel of Fig. 4.5(b). This
thickness is close to the transverse size of the printed voxel which sets a fundamental size
limit to the features realizable by 3D nanoprinting. By calculating the difference between
the measured wall thickness and the designed wall thickness, we determined the lateral
voxel size vxy to be (358 ± 23) nm for the used printing parameters [67].
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Furthermore, the impact of the gaps on the transmission characteristics was studied
by comparing samples with a fixed SOF of 18 % but different distributions of gaps to a
reference sample which is nearly completely closed (SOF = 1 %, G = 2 µm) [67]. For a
fixed SOF, the losses decrease when a large number of small gaps is used instead of a few
long gaps. Assuming that the gap loss of the reference sample is negligible, we determined
a loss per gap of 0.003 dB for a gap size of G = 5 µm increasing to 0.22 dB per gap for
G = 40 µm.

In all recorded transmission spectra, a double dip structure is visible, which most
likely arises due to fabrication-related inhomogeneities in the wall thickness. Numerical
simulations reveal that surface roughness in the cross section of the waveguide can lead to
a splitting of the resonances, especially towards shorter wavelengths [67]. Another reason
might be a slight difference in the wall width between the left and right side of the square-
shaped cross section. By fitting a sample spectrum with a two-width model, this difference
was determined to be on the order of 50 nm for a wall thickness of 1.55 µm [67].

4.1.4 Discussion of Optical Properties
The two presented analytical models are in good agreement with the numerical simu-
lations, with the leaky slab waveguide model showing the best overlap, especially at IR
wavelengths, all of which confirm that antiresonance guidance is the relevant light guid-
ance effect. Note that Eq. 4.5 accurately predicts the spectral positions of the resonances
(Fig. 4.5(b)), providing a straightforward pathway to design samples with desired optical
properties.

Numerical investigations showed that fabrication inaccuracies such as a rounding
of the corners or surface roughness that is uniform along the waveguide axis (e.g., parallel
stripes running along the waveguide axis) does not have a strong impact on the waveguide
transmission [67]. This is in line with previous findings that the exact shape of the corners
of polygonal hollow-core waveguides is irrelevant for its optical properties [220]. Loss due
to the introduction of gaps was investigated experimentally and also found to be low with
about 10−2 dB per gap for gaps shorter than 10 µm. However, the experimentally ob-
served off-resonance loss is about one order of magnitude higher than predicted by theory.
This could be explained by surface roughness that is non-uniform along the waveguide
axis therefore acting as a grating that leads to scattering losses. Preliminary AFM mea-
surements of the waveguide walls showed that such roughness is present in the fabricated
samples. Future work will target improving the wall uniformity and quality to reach higher
levels of transmission, particularly at IR wavelengths. Furthermore, the theoretical mod-
eling indicates that an increased core size D substantially reduces modal attenuation, as
losses were found to scale as 1/D4 [67]. This phenomenon is also found in antiresonant
fibers [212] and is different from waveguides that operate on total internal reflection, where
the modal losses are defined by scattering and material absorption. As the reflectivity
of the waveguide walls increases with the refractive index contrast, a further reduction
of the loss of the waveguide could principally be achieved by using materials with higher
refractive index during the printing process like ceramics or crystalline materials provided
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that the strong shrinkage of the typically used hybrid organic-inorganic resists during the
heat-induced curing can be substantially reduced [221, 222, 223, 224, 225]. On the other
hand, materials with lower refractive indices like quartz glass might also be beneficial be-
cause the losses from surface roughness could be lower [226, 227] and the resonances shift
less with a varying wall thickness (see Eq. 4.5). However, the optical properties of the
waveguides also depend to a great extent on the mechanical stability of the resist and
the ability to create optically smooth surfaces, making it hard to judge a priori which
type of resist is best suited. Overall, the use of inorganic materials would provide better
stability of the microgap waveguides against harsh environmental conditions. As shown
for light cages, protection against corrosive chemicals can also be provided by coating the
nanoprinted structures with alumina nanofilms via low-temperature atomic layer deposi-
tion (ALD) [82, 57].

The experiments indicate that the introduction of gaps into the waveguide system does
not influence the position of the transmission bands but only the magnitude of the overall
transmission. For reaching a certain SOF, it seems beneficial to distribute many small
gaps along the waveguide axis instead of a few long gaps. Here, we want to point out that
beam diffraction of the waveguide mode in the gaps is low since the Rayleigh length of a
comparable Gaussian-shaped mode is on the order of 200 µm which is much longer than
the investigated gap sizes. Imperfect terminations of the segments or a manufacturing-
induced offset between segments perpendicular to the beam axis could further contribute
to the gap loss.

The high degree of reproducibility of the transmission spectra of copies of the same
waveguide within one chip shows that the 3D nanoprinting process is a highly precise
method for manufacturing waveguides. A quantitative study of the reproducibility is pro-
vided in Section 4.2 for light cages. Despite the fact that the voxel size is approximately
half the wavelength of the femtosecond laser, sub-wavelength control of the wall thickness
down to 60 nm is possible using 3D nanoprinting (Fig. 4.5(b)).

Compared to ARROW waveguides, microgap waveguides achieve similar propagation
loss and total sample lengths [228, 54] while offering simplified fabrication and transverse
access to the core region through the gaps. In addition, square-core waveguides are in-
tentionally independent of the polarization direction of the light, which is an advantage
over ARROW waveguides which often have rectangular cross sections [229, 230, 231, 232].
One particular advantage of microgap waveguides is their large structural openness factor:
Waveguide architectures that contain holes that are introduced in a post-processing step,
often reach SOFs of only 0.001 % − 0.005 % [60, 61, 62], while in contrast, the fabricated
microgap waveguides reach SOFs of up to 18 %. Such high openness is especially important
for experiments relying on passive diffusion of a medium into the core, such as low vapor
pressure quantum optics [57], nanoparticle tracking analysis [233], or the sensing of gases
and liquids presented in the next two subsections.
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4.1.5 Sensing Applications
The large structural openness and the ability to precisely tune the wavelengths of the
transmission bands, make microgap waveguides interesting for on-chip sensing applications,
both for liquid and gaseous samples. As proof-of-principle, we use microgap waveguides to
demonstrate refractive index sensing of isopropanol/water mixtures, and absorption
spectroscopy of ammonia (gas) and Rhodamine 6G dye solution (liquid).

Quantitative analysis is possible by relating the measured absorbance A and the molar
concentration c of the analyte via Lambert-Beer’s law [234]:

A = log10

(
P0

P

)
= εcl, (4.11)

with the incident power P0, the transmitted Power P , the molecular absorption coefficient ε,
and the absorption path length l. It is important to note that Lambert-Beer’s law is only
valid if the modal field is entirely present inside the analyte. As shown in Fig. 4.2(c) this
assumption is justified in microgap waveguides as the fraction of power inside the material
of the waveguide is well below 10−3 within the transmission bands. This provides a clear
advantage over solid-core waveguides, where a non-negligible part of the field is guided in
the material and only the evanescent field interacts with the analyte. Since the extent of
this evanescent field is wavelength-dependent, solid-core waveguides require complex modal
calculations that precisely consider the waveguide geometry to modify Lambert-Beer’s law
for quantitative sensing applications [235].

Chamber

Waveguide
chip

5 mm
Figure 4.6: Example of an experimen-
tal chamber used in the sensing experi-
ments. This specific chamber was used
in gas sensing of ammonia and includes
gas in- and outlets (two holes on the
top side).

To define a specific interaction volume, the waveguides are placed in 3D-printed
chambers made by a conventional 3D-printer (Agilista from Keyence Corp., method:
PolyJet technology, photopolymer: AR-M2, see Fig. 4.6). Laser light can enter and exit
the chamber through borosilicate glass windows with a thickness of 0.15 mm each. An-
alytes are introduced into the chamber and passively diffuse into the waveguide. A key
aspect of the study involves determining the timescale for this process, i.e., the analyte
exchange time. We investigate how this time depends on the gap size and compare it to
the diffusion speed in bulk media, and in capillaries without side-wise openings (SOF = 0).
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Sensing of Gases

Gas sensing in microgap waveguides is demonstrated on the example of ammonia, which
features a strong absorption line at a wavelength of λ0 = 1501.74 nm [236, 237]. The
employed setup consists of a tunable diode laser (TUNICS 1550, Photonetics), two micro-
scope objectives for in- and outcoupling (Edmund, 20 x, NA= 0.4; Olympus, 10 x, NA =
0.25), a short-wave infrared camera (ABS, IK1513), and an infrared photodiode (Thorlabs,
S122C) to monitor the outgoing power (Fig. 4.7). Gas mixtures of nitrogen with varying
concentrations of ammonia ranging from 10 % to 100 % were prepared using a computer-
controlled gas mixer (Qcal, GMS_4CH_HP). From there the gas mixture flows through
a tube to the inlet of the experimental chamber while the outlet is open to ambient air.
Further details on the experiment and data analysis are reported at the end of this section.

(b)
Obj Obj PD

Chamber +
Microgap waveguide IR

Molecules interacting
with waveguide mode

(a)

Figure 4.7: IR gas absorption spectroscopy with microgap waveguides. (a) Illustration of
the inside of the waveguide filled with ammonia molecules (light is propagating towards
the reader’s eye). Artwork was created by Vera Hiendl, e-conversion (DFG cluster of
excellence). (b) Schematic of experimental setup illustrating the diffusion of ammonia
molecules into the waveguide core (IR: tunable infrared laser, Obj: microscope objective,
PD: IR photodetector, arrows: gas in- and outlets).

To ensure that the targeted wavelength lies within a transmission band of the microgap
waveguides, we implemented samples with a wall width of W = 1.67 µm. The correspond-
ing transmission spectrum of one of the used waveguides is depicted in Fig. 4.8. All samples
feature a waveguide length of 5 mm.

First, we determined the transmission through a microgap waveguide with a SOF of
5.4 % (G = 10 µm, L = 176 µm) as a function of the ammonia concentration. As expected,
a clear dip in the transmission centered around the absorption line at λ0 can be observed,
reducing the transmitted power by about 15 % if the chamber is filled entirely with ammo-
nia (Fig. 4.9(a)). For low ammonia concentrations between 10 % and 50 %, we find that
the absorbance increases linearly with concentration (Fig. 4.9)(b)) in line with Lambert
Beer’s law (Eq. 4.11). On the other hand, the absorbance saturates for higher concentra-
tions. This trend is also observed in a reference measurement conducted through the same
gas chamber but without coupling light to the waveguide, eliminating any influence from
the waveguide itself. As reported elsewhere [238, 239], this saturation can be attributed
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Figure 4.8: Optical properties of the micro-
gap waveguide sample used for ammonia
gas sensing. Normalized transmission spec-
trum recorded in air (G = 10 µm, L =
176 µm, D = 20 µm, W = 1.67 µm, total
length: 5 mm). Targeted ammonia absorp-
tion line at λ0 = 1501.74 nm is shown in
red. Gray region could not be investigated
because a notch filter was required to block
the pump laser of the white light source. In-
set: Recorded mode profile at λ0.

to collisional broadening of the lineshape with increasing ammonia concentration, which
results in an increase in the area of the absorption dip but a reduction in amplitude.

To determine the limit of detection (LoD) - the lowest concentration of ammonia
that can be detected with our setup - we use the absorbance data for concentrations
between 10 % and 50 % to obtain a linear calibration curve (Fig. 4.9(b)) in accordance
with Eq. 4.11:

A = a · cr + b, (4.12)

where cr is the volume concentration of ammonia in percent. The values of the coefficients
a and b are listed in Table 4.1 and agree with the reference measurement without the
waveguide within one standard deviation. The data points from the two measurements are
expected to overlap since light travels the same distance through the ammonia gas.
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Figure 4.9: Results of gas sensing.
(a) Waveguide transmission spectra for
varying concentrations of ammonia mixed
with nitrogen, recorded around a strong
ammonia absorption line (λ0 = 1501.74
nm, green dots: absorption data accord-
ing to HITRAN database [236, 237]).
Transmission values larger than one are
caused by laser power fluctuations. (b)
Corresponding absorbance at λ0 (blue:
measurement from (a), orange: reference
measurement without waveguide, blue line:
calibration curve).
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Table 4.1: Coefficients of linear calibration curves for the ammonia absorbance measure-
ments with and without waveguide.

Coefficients a σa b σb

With waveguide 6.89 × 10−4 0.23 × 10−4 1.09 × 10−2 0.08 × 10−2

Without waveguide 7.46 × 10−4 0.64 × 10−4 1.05 × 10−2 0.22 × 10−2

From the calibration curve, the LoD can be obtained as [234]:

LoD = 3σ
s
, (4.13)

where, σ is the standard deviation of the residuals of the fit, and s is the slope of the cali-
bration curve. For the specific configuration used here, we determined a limit of detection
of LoD = 3.1 %.

To further assess the diffusion capabilities, the gas filling time into the core has been
determined through time-resolved measurements. Specifically, the transmission through
waveguides with different gap sizes (G = 2 µm - 20 µm, Fig. 4.10) was continuously mon-
itored at the center of the absorption line at λ0. Each measurement started by switching
the incoming gas from 100 % nitrogen to 100 % ammonia.
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Figure 4.10: Dynamic measurements of am-
monia absorption. (a) Time-resolved decay
of the transmission for different gap sizes G
when filling the chamber with 100 % ammo-
nia (recorded at λ0). (b) Filling time of the
waveguides shown in (a) as a function of SOF
(dotted gray line: filling time of the chamber
measured without any waveguide).

The initial plateau (t < 0, T = 1 in Fig. 4.10(b)) appears due to the time the gas needs
to flow from the gas mixing unit into the gas chamber. After the waveguide is reached,
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the transmission shows a rapid decay, indicating diffusion into the different waveguide seg-
ments. Note that no further decrease in transmission was observed at any longer time,
indicating no further diffusion. The filling times for different gap sizes, defined by the time
difference between 90 % and 20 % of the originally transmitted power (see end of this
section for the choice of these values), are shown in Fig. 4.10(b). Here, larger gaps lead to
a faster decay of the transmission and reach 2.0 s for a gap size of 20 µm (corresponding to
a SOF of 10 %). This value is nearly identical to the filling time of the gas chamber itself,
which was determined in a separate measurement to be 1.92 s. Note that for the smallest
gap size (G = 2 µm, SOF = 1.1 %) twice that time is required (all measured values are
listed in Table 4.2). The shoulder in the transmission data, which is visible after the initial
decay, results from mechanical compression and decompression of the waveguide, leading
to size modulation of the core section and thus the core mode.

Further experimental details:

All measurements were performed with a fixed gas flow rate of 75 sccm provided by the
gas mixer. Each measurement was started two minutes after changing the concentration
to ensure that the gas inside the chamber was replaced completely. For the spectroscopic
measurement, the laser wavelength was swept through the wavelength region of 1501.55 nm
to 1501.95 nm with a step size of 1 pm. The bandwidth of the laser is 100 kHz which is well
below the used step size. Each spectrum was normalized to an individual linear baseline,
that connects the transmission values at the border of the region of interest (1501.57 nm
and 1501.93 nm). A single measurement took around three minutes, which is limited by
the scanning speed of the tunable laser.

Since we did not record the ingoing laser power with a separate photodiode, power
fluctuations are present in the raw data between measurements of different ammonia con-
centrations. Therefore each spectrum was normalized to an individual linear baseline, that
connects the transmission values at the border of the region of interest (1501.57 - 1501.93
nm). This explains why some values in the transmission spectra exceed one and might be
the reason for the deviation of the linear calibration curve from the measurement with 0 %
ammonia (Fig. 4.9(b)). Oscillations in the spectra are caused by the coupling objectives.

For the time-resolved measurement, the transmission wavelength remained constant at
the center of the absorption line at λ0. To compare the filling times of the waveguides with
different gap sizes, all transmission data was individually normalized to the interval [0,1].
The original data shows a transmission drop of around 15 % as expected from the static
measurements for an ammonia concentration of 100 % (dark purple curve in Fig. 4.9(a)).
The filling times were then determined as the time difference between reaching 90 % and
20 % of the normalized transmitted power. Those limits were chosen to suppress the effect
of fluctuations at the beginning of the measurement and the shoulder after the initial decay.

The specifications of the waveguides used in the time-resolved measurements are listed
in Table 4.2. To achieve waveguides with different SOFs, the segment length was held
constant at L = 176 µm while the gap size G was changed with the number of segments
being adjusted to reach a similar length of the waveguides (second column of Table 4.2). As
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Table 4.2: Geometric parameters of the waveguides used in the dynamic experiments.

Gap
size [µm]

Waveguide
length [µm]

Total #
of gaps

Confined
space [µm]

Unconfined
spacea[µm]

Unconfined
spaceb[µm]

Filling
time [s]

2 4448 24 4400 48 800 3.84
5 4520 24 4400 120 800 2.83
10 4454 23 4224 230 976 2.28
15 4569 23 4224 345 976 2.04
20 4488 22 4048 440 1152 1.98

a Due to gaps within the waveguide.
b Due to gap between glass walls of chamber and waveguide.

an overview, we decompose the length that the light travels through the chamber into three
contributions (columns 4-6 of Table 4.2) : (1) the length over which the light is confined,
which is determined by the number and length of the segments, (2) the unconfined space
due to the gaps (sum of the length of the gaps), and (3) the space between the glass
windows and the first/last waveguide segment.

Even without using microgap waveguides for the gas absorption experiment, the trans-
mission through the gas chamber does not change instantaneously when it is filled with
ammonia because some time is required for the gas previously present inside the chamber
to be replaced. To determine this filling time, a bulk measurement was performed in the
same chamber without coupling light to the waveguide. Since the light travels the same
distance through the gas as in the waveguide experiments, this measurement allows the
bulk filling time to be determined. The measurement started by changing the incoming
gas from 100 % nitrogen to 100% ammonia, revealing a bulk filling time of 1.92 s.

Sensing of Liquids

The results presented in this section are published in Ref. [240]:
J. Kim, J. Bürger, B. Jang, M. Zeisberger, J. Gargiulo, L. S. Menezes, S. A. Maier, and

M. A. Schmidt
“3D-nanoprinted on-chip antiresonant waveguide with hollow core and microgaps for

integrated optofluidic spectroscopy”
Optics Express 31, 2833-2845 (2023), https://doi.org/10.1364/OE.475794

Reprint and adaptations are permitted under the terms of the Optica Open Access Pub-
lishing Agreement. ©2023 Optica Publishing Group. Users may use, reuse, and build
upon the article, or use the article for text or data mining, so long as such uses are for
non-commercial purposes and appropriate attribution is maintained. All other rights are
reserved.

https://doi.org/10.1364/OE.475794
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To demonstrate the applicability of microgap waveguides to liquid-based sensing and
optofluidics, absorption spectroscopy of an aqueous solution of R6G dye is performed,
as well as refractive index sensing of a mixture of water and isopropanol.

For the studies in the previous chapters, where the core of the waveguide was filled with
air or gases, the refractive index of the medium was simply assumed to be 1, independent
of the actual gas. For liquid environments on the other hand, the refractive index depends
on the specific medium, leading to the following modified equation for the resonance
wavelengths [241]:

λRes = 2W
m

√
n2

W − n2
L ∀ m ∈ N, (4.14)

where, W is the wall thickness, while nW and nL refer to the refractive index of the polymer
and liquid, respectively. Light guidance via the antiresonance effect is possible as long as
nL < nW ≈ 1.5, which is the case for common liquid analytes (aqueous solutions, saliva,
blood). For analytes with higher refractive indices, light would be guided via total internal
reflection, as in conventional solid-core guidance.

To verify the refractive index dependence of the resonance wavelengths, six refrac-
tive index scenarios were established by different mixtures of water and isopropanol (IPA)
covering a ranging from n = 1.33 - 1.38 at λ = 527 nm (Fig. 4.11(b)). The mixtures
were filled into a waveguide chamber hosting a microgap waveguide of 15 mm length and a
wall thickness of W = 1.468 µm. Next, the transmission spectrum through the waveguide
was determined using the setup described in Section 3.3. The measurements reveal an
increasing blue shift of the transmission dips for higher IPA concentrations (i.e., higher
refractive indices) reaching values of up to 80 nm for a difference in refractive index of
0.05 (Fig. 4.11). Overall, the results are in high agreement with the analytical prediction
of Eq. 4.14, proving that light is guided in the liquid by the antiresonance effect. The
resulting sensitivity on the refractive index amounts to ∼ 1600 nm/RIU at a wave-
length of 750 nm, which is comparable to other refractive index sensors based on cavity
resonances [242] but below that of surface plasmon resonance sensors [243]. In addition,
we note that no degradation of the optofluidic waveguide was observed over time, neither
in water or IPA, nor in harsher environments (e.g., water/ethanol [244]), presumably be-
cause the structure is fully polymerized after development. Combined with the high fringe
contrast of 40 dB in the spectral region 700 nm < λ < 780 nm, microgap waveguides are
well suited for applications as refractive index sensor in integrated devices.

Next, we turn to the application of absorption spectroscopy, demonstrated here
for aqueous solutions of Rhodamine 6G (R6G) dye. The waveguide is customized for this
purpose with the wall width set to W = 1.55 µm, ensuring that the absorption peak of the
dye at 527 nm falls within a transmission band of the water-filled waveguide (cf. Eq. 4.14).
To enable fast diffusion of the dye into the waveguide core, the SOF of the waveguide is
chosen to be 10 % (G = 20 µm, L = 176 µm). Generally, absorption spectroscopy benefits
from large interaction lengths between liquid and light as this increases the contrast of
the transmission dip. To determine, which maximal length can be practically achieved, we
determined the transmission loss of the chosen microgap waveguide in water. Analogous
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Figure 4.11: Refractive index sensing in microgap waveguides. (a) Spectral distribution of
transmission for different mixture ratios of water/IPA (indicated in the legend). (b) Re-
fractive index of water/IPA mixture as a function of IPA concentration at λ = 527 nm.
(c) Spectral locations of measured transmission dips as a function of IPA concentration
(points). Solid lines denote the expected dependence on the refractive index according to
Eq. 4.14. A waveguide with G = 20 µm, L = 176 µm, D = 20 µm, W = 1.468 µm and
total length of 15 mm was used.

to Section 4.1.3, the transmission through 5 samples with different lengths ranging from
5 mm to 15 mm was measured and the loss was determined by Eq. 4.10. Here, we would
expect slightly higher losses compared to the air-filled waveguide as a lower index contrast
between medium and wall results in lower reflectivity of the wall according to Fresnel’s
equations [128]. Yet, at the wavelength of maximum absorption of R6G (λ = 527 nm),
the losses amount to 0.4 dB/mm - a value that is nearly identical to the loss of air-
filled microgap waveguides shown in Fig. 4.5. Most likely, the lower reflectivity of the
walls is compensated for by lower scattering losses, given that the perturbation of the
waveguide due to surface roughness scales proportionally to the index contrast and is
therefore reduced. Moreover, filling the waveguide with water results in fewer resonances
within the same wavelength range (cf. Eq. 4.14). The primary reason behind this is that
the reduced index contrast leads to a lower number of modes in the polymer walls.

For the absorption spectroscopic experiments, a waveguide length of 15 mm is
chosen resulting in manageable transmission losses of 6 dB. Inside the chamber, the wave-
guide was exposed to aqueous solutions of different concentrations of R6G, and spectrally
resolved power transmission measurements were performed (Fig. 4.12(a)). A clear reduc-
tion in light transmission in the region of the dye absorption is visible, increasing for higher
dye concentrations as expected. A key observation is the excellent overlap of the molar
attenuation coefficient between the waveguide measurements and a reference measurement
in a cuvette almost across the entire relevant spectral range (Fig. 4.12(b)). Note that the
measured values of the molar attenuation coefficient both lie within the range of those
reported in literature [245]. This agreement is also an a posteriori evidence for the direct
application of the Beer-Lambert law, resulting from the high fraction of power in the wave-
guide core. Another key feature is the spectrally wide transmission bands covering almost
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Figure 4.12: Liquid sensing in microgap waveguides via absorption spectroscopy. (a) Spec-
tral distribution of transmission of the waveguide in case the concentration of R6G in water
is varied (as indicated in the legend). Note that the raw data is shown, i.e., the transmis-
sion is not normalized to the spectrum of the supercontinuum source here. (b) Spectral
distributions of the molar attenuation coefficient of R6G measured at a concentration of
15 µM, using the waveguide (green) in comparison to the corresponding reference obtained
with a cuvette (red). The orange dashed lines in (a) and (b) refer to the main absorption
wavelength of R6G, while the light yellow areas indicate the spectral interval of the main
absorption of the R6G molecules. (c) Calibration curve at the main absorption wavelength
of the dye (λ = 527 nm). A waveguide with G = 20 µm, L = 176 µm, D = 20 µm,
W = 1.55 µm and total length of 15 mm was used.

the entire absorption range of the dye (light yellow areas in Fig. 4.12(a,b)). It should be
mentioned that the fine spectral features of the microgap waveguide are imprinted on the
absorption spectrum, which, however, do not influence the result, i.e., the determination
of the molar attenuation coefficient in any way.

The limit of detection (LoD) of the absorption spectroscopic measurements is again
determined by Eq. 4.13. To this end, the slope s of the measured linear dependence
of the absorbance on the concentration (evaluated at the main absorption wavelength
of the dye λ = 527 nm), dashed lines in Fig. 4.12(c)) is used. The fluctuations of the
measured absorbance σ were here determined as the standard deviation of a series of 20
blank transmission measurements without analytes (microgap waveguide and reference
with water only) following the procedure described in Ref. [234]. The resulting data is
summarized in Table 4.3, which allows a direct comparison to the cuvette-based reference
measurements. The results show nearly equal LoD values for microgap waveguide (75 nM)
and reference measurements (72 nM), emphasizing the quality of the nanoprinted structure
and the applicability of the microgap waveguide concept within the context of spectroscopic
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applications. Note that the LoD depends not only on the waveguide itself but also on the
employed detection system. Thus, it can be expected that improved diagnostics can further
reduce the LoD. The minimum measured concentration in the experiments is c = 0.939 µM
for both waveguide and reference.

Table 4.3: Comparison of spectroscopic properties of microgap waveguide and cuvette.

Microgap waveguide Cuvette
Slope of calibration curve s [µM−1] 0.0791 0.0741

Standard deviation of absorbance (blank) σ 0.00198 0.00178
Limit of detection [nM] 75 72

Molar attenuation coefficient ε [µM−1m−1] 5.28 5.07

To reveal the influence of the gaps on the diffusion properties of the micro-
gap waveguide from the experimental side, additional time-resolved experiments were per-
formed. As described at the end of this section, a defined amount of R6G was introduced
into the water-filled chamber and the change of the transmitted power at the main ab-
sorption line of R6G was determined over time (Fig. 4.13). The benchmark figure chosen
here was the time after which the transmitted power dropped to 10 % of the power be-
fore the addition of the dye (t10%). In the case of the microgap waveguide this time was
t10% = 2.4 min, which is much shorter than the filling time of a capillary having a compa-
rable inner diameter (t10% = 13.5 min, diameter: 20 µm). Note that even a capillary with
a much larger diameter of 224 µm showed a longer diffusion time (t10% = 6.9 min). Thus,
the results clearly show improved diffusion properties of the microgap waveguide compared
to conventional systems that allow accessing the core only via the waveguide ports.
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Figure 4.13: Diffusion-related properties of
the microgap waveguide in liquids. Transmit-
ted power through the waveguide (green, core
size: D = 20 µm), and two capillaries (red:
core size: D = 224 µm, purple D = 20 µm)
as a function of time after injection of R6G.
All curves have been normalized to the trans-
mitted power at t = 0. Sample lengths were
5 mm and λ = 527 nm.

Further experimental details:

To establish different refractive index environments, various mixtures of isopropanol (iso-
propyl alcohol, IPA, 99.9 % Carl Roth GmbH) and distilled water were prepared (IPA/wa-
ter volume fractions: 0, 20, 40, 60, 70, 100 % v/v). The refractive index of the composite
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liquid can be found in one of our previous works [84]. Solutions containing defined con-
centrations of R6G (R4127 from Sigma-Aldrich, Inc.) were made with distilled water by
diluting a highly concentrated solution (30 µM) to 15, 7.5, 3.75, 1.875, and 0.938 µM.
These solutions were also used in the reference experiments. The absorption spectrum of
each solution was controlled before the measurements using a UV-VIS spectrophotometer
(V-666 from JASCO, Deutschland GmbH).

The dimensions of the used 3D-printed chamber were as follows: width: 2.0 cm,
height: 1.0 cm, length: 1.5 cm and a liquid volume of ∼ 1 mL was used.

During the measurements, the liquids were exposed to broadband white light from the
supercontinuum laser source. Preliminary temperature measurements have shown that the
infrared part of the spectrum does not lead to any heating of the liquid and has no influence
on the results. For normalization of the transmitted power, reference measurements have
been performed by moving the beam 500 µm above the waveguides. This procedure results
in exactly the same interaction length as in the experiments with waveguides.

To find the spectral locations of the transmission dips, the measured spectra were
fitted by Gaussian functions within the vicinity of each individual resonance, allowing to
extract the wavelength of minimal transmission.

For the time-resolved experiments monochromatic light at the main absorption
line of R6G (λ = 527 nm) was coupled into a microgap waveguide located in distilled
water. In the next step, a defined amount of 15 µM R6G solution was introduced into
the chamber and the transmitted power was acquired every 300 ms using a power meter.
Thus, the temporal evolution of the diffusion of the dye into the waveguide core was
measured by following the decrease in transmission resulting from the filling of the core
with the absorbing species. The results were compared to reference measurements using
capillaries of different core diameters. Note that compared to the absorption spectroscopic
measurements, shorter samples of 5 mm length were considered, as otherwise, the diffusion
time of the capillary sample can exceed practically feasible values.

4.1.6 Discussion of Sensing Applications
The agreement of the measured absorbance between the waveguide and the reference mea-
surements verifies that microgap waveguides are well suited for absorption spectroscopy in
gases (Fig. 4.9(b)) and liquids (Fig. 4.12(b)).

Of particular interest from the application perspective are the time-resolved measure-
ments of the absorbance, which show a strong reduction in the analyte exchange time
when microgap waveguides are used instead of waveguides without gaps (i.e., capillaries) of
the same length (shown for liquid sensing in Fig. 4.13), and when the structural openness
factor (gap size) of microgap waveguides is increased (shown for gas sensing in Fig. 4.10(b)).
The measured exchange time is generally composed of three contributions: (i) filling time
of the chamber, (ii) bulk diffusion into the free areas between the segments and (iii) re-
stricted diffusion into the cores of the segments themselves. Due to the latter, the samples
with small SOF show a slower diffusion in the gas sensing experiments, with a delay of 2 s
compared to the chamber itself. This is in contrast to the samples with the largest SOF
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(about 10 %), filling up nearly as fast as the gas chamber. Therefore, we attribute the
decrease in filling time for larger gap sizes G to the fact that these samples allow more
bulk-type diffusion. A further reduction of the filling time can be achieved by using even
more gaps or by local modification of the microgap waveguide (e.g., perforation or partial
opening of the segments), which can be easily realized by means of 3D nanoprinting. Such
a reduction in the exchange time is especially relevant for passive sensing of liquids (i.e.,
without stirring or pumping), as the measured exchange time is on the order of minutes
in these experiments instead of seconds. This difference results from the about 4 orders
of magnitude lower diffusion coefficients in liquids compared to gases due to the difference
in density and the different magnitude of intermolecular forces [246]. In general, fast ex-
change times are desirable in any application demanding high throughput (e.g., devices in
commercial analytical laboratories), or fast response times (e.g., breath analysis).

Apart from response time, the limit of detection is a crucial performance parameter
of sensing devices. For example, relevant ammonia concentrations in environmental gas
sensing, are on the order of parts per billion (ppb) [247]. In this regard, we would like to
point out that in our system, the measured LoD for ammonia of 3.1 % is predominantly
limited by the detection system and not by the waveguide itself. As reported for instance
in Ref. [248, 249], more advanced detection methods such as wavelength-modulation spec-
troscopy, lock-in detection, monitoring of the incident laser power or chemical methods
(e.g., spectrophotometric ammonia detection) can be employed to measure ammonia con-
centrations in the ppb range.

A comparison of the achievable detection limits for liquid-based absorption spectroscopy
in waveguides is shown in Table 4.4. A first category of comparable systems are evanescent
field-based slab and ridge waveguides [250, 38, 251, 252], which overall exhibit similar
performance parameters compared to the microgap waveguide. Note that a key advantage
of the microgap waveguide is that the light-matter interaction occurs within a hollow core.
In contrast, in evanescent field-based systems, the interaction takes place near a surface,
which can lead to undesirable effects. For example, unwanted absorption features were
measured in Ref. [250], resulting from dimer formation near a surface. Such an effect was
not observed in the experiments for microgap waveguides, which renders additional surface
treatment unnecessary.

Optical fibers with liquid cores are a further class of systems the microgap wave-
guide should be compared to. For example, Teflon can be used as a cladding material
to guide light directly in water due to its very low refractive index [253]. However, the
high intrinsic surface roughness necessitates very large core diameters in the millimeter
range to compensate for the scattering losses. Another relevant type of fiber with greater
structural complexity are antiresonant hollow-core fibers, which are used, for example, to
detect pharmaceuticals in water through UV spectroscopy [39]. As the length of hollow
fibers used in these experiments is on the order of meters, the fringe contrast resulting
from the absorbing species is much larger than in centimeter-scale microgap waveguides.
The increased interaction length therefore results in orders of magnitude lower detection
limits, both in liquids [253] and gases [254]. However, the associated filling times of such
fibers may exceed practically feasible limits. Instead, microgap waveguides can be directly
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Table 4.4: Comparison of the performance of microgap waveguides with other waveguide
systems used for absorption spectroscopy of liquids (yellow: on-chip slab waveguides,
orange: on-chip solid-core waveguides, brown: fibers with hollow core). Molar concen-
trations c and LoD correspond to R6G unless specified otherwise by footnotes.

Waveguide type Length
[mm]

Cross section
[µm ×µm]

Minimal
c [nM]

LoD
[nM]

Wave-
length

Ref.

Microgap waveguide 15 20 × 20 988 75 VIS This
work

Slab waveguide 30 16,700 × 10,000 1,000 n/a VIS [250]
Slab waveguide 5 20,000 × 10,000 2,200 10a VIS [38]
Planar nanoribbon 1.5 0.15 × n/a 6,000 300,000b VIS [251]
Polymer-core waveguide 110 40 × 50 n/a n/a VIS [252]
Liquid-core fiber 1,300 1,000 ×1,000 0.13 n/a VIS [253]
Hollow-core fiber 1,000 30 ×30 100c 50c UV-VIS [39]
a for TNT (trinitrotoluene, explosive)
b for EITC (eosin-5-isothiocyanate, photosensitizer)
c for SMX (sulfamethoxazole, antibiotic)

immersed in the analyte, which can transversely enter the core region.
Learning from these examples, the LoD of microgap waveguides could be further re-

duced by increasing the waveguide length. An increase from the current length of 5 mm
to the maximally investigated length of 5 cm would principally allow measuring ten times
lower concentrations.

4.1.7 Conclusion

In summary, we introduced a novel type of integrated on-chip hollow-core waveguide that
shows strong light-analyte interaction over centimeter distances with fast analyte exchange
times. Microgap waveguides with lengths of up to 5 cm were realized on silicon chips
through 3D nanoprinting, avoiding time-consuming multi-step fabrication procedures. As
confirmed by two mathematical models and numerical simulations, light guidance in this
type of waveguide is based on the antiresonance effect, which is reflected by characteristic
dips in the transmission spectrum. Our study included full optical characterization, reveal-
ing modal loss, impact of gap size, and spectral tuning potential. Examples of highlights
include operation from visible to near-infrared wavelengths with an off-resonance loss of
0.4 - 0.7 dB/mm, extremely broadband transmission windows (> 200 nm), clear resonance
dips with exceptionally high fringe contrasts (> 60 dB), low loss per gap (0.003 dB), and
controlling resonance wavelengths through precise nanoprinting with successfully imple-
mented step sizes (i.e., increments) in wall thickness of 60 nm. Particularly noteworthy is
the exceptionally large structural openness factor of 18 %, exceeding those of perforated
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waveguides by more than a thousand.
The application potential was demonstrated in the context of absorption spectroscopy

of both gaseous and liquid analytes. Experiments with aqueous solutions of R6G dye
revealed a reduction in analyte exchange time from 14 min to 2 min when microgap wave-
guides are used instead of capillaries of the same length and diameter. For ammonia gas,
the measured filling time of the waveguide was nearly indistinguishable from bulk type
diffusion in cuvettes. Due to the extremely high fraction of the modal power present in
the core (> 99 %), quantitative measurements of the analyte concentration are possible
by direct application of Lambert-Beer’s law without any modification. The determined
detection limits are in the range of comparable systems and could be improved by using
more sophisticated detection techniques or increasing the waveguide length.

Due to these unique properties, application of the on-chip antiresonant hollow-core
microgap waveguide can be expected in a variety of fields related to integrated spectroscopy,
including bioanalytics (e.g., detection of contamination), environmental sciences (e.g., gas
analysis) and life sciences (e.g., nanoparticle tracking analysis, Raman spectroscopy). Fu-
ture work will focus on extending the transmission windows of microgap waveguides to
the highly relevant fingerprint region in the mid-infrared (MIR) spectral range, allowing
specific detection of biomolecules in common biomedical analytes such as blood or saliva
via MIR-spectroscopy.
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4.2 Light Cages

The results presented in this chapter are published in Ref. [255]:
J. Bürger, J. Kim, B. Jang, J. Gargiulo, M. A. Schmidt, and S. A. Maier

“Ultrahigh-aspect-ratio light cages: fabrication limits and tolerances of free-standing 3D
nanoprinted waveguides ”

Optical Materials Express 11, 1046-1057 (2021), https://doi.org/10.1364/OME.419398

Reprint and adaptations are permitted under the terms of the OSA Open Access Publishing
Agreement. ©2021 Optica Publishing Group. Users may use, reuse, and build upon the ar-
ticle, or use the article for text or data mining, so long as such uses are for non-commercial
purposes and appropriate attribution is maintained. All other rights are reserved.

Moving to a more complex 3D-nanoprinted hollow-core waveguide, this chapter discusses
recent results on the light cage. Light cages consist of a hexagonal array of freely suspended
polymer strands, allowing lateral access to the core volume without the addition of gaps
along the waveguide axis as shown in Fig. 4.14. Light cages were previously introduced in
Ref. [66] with subsequent studies reported in Refs. [81, 82, 83, 84].

Light cage

Beam

Strand

Ring
Λ

d

Figure 4.14: Geometry of the light
cage. Bottom-left inset: Cross sec-
tion of the waveguide indicating the
pitch distance Λ and diameter of the
polymer strands d. Top-right inset:
CCD image of the core mode under
white light excitation.

Here, we discuss the fabrication characteristics of these waveguides arising from the
used two-photon polymerization lithography. The current limits of achievable waveguide
length (3 cm), single strand aspect ratio (8200), and modal attenuation are revealed. Fur-
thermore, we unlock the fabrication accuracy of the 3D nanoprinting method from optical
measurements. Very high reproducibility for light cages on the same chip is found, while
different conditions in fabrication cycles impose chip-to-chip variations. We also highlight
the relevance of including reinforcement rings to prevent structural collapse during the de-
velopment step of the fabrication. The results presented uncover key issues resulting from
the 3D nanoprinting fabrication process, which can be transferred to other nanoprinted
waveguides like the microgap waveguides reported in Section 4.1.

Additionally, we report a further application of light cages in fluorescence spectroscopy
on the example of Rhodamine B dye in Section 4.2.5.

https://doi.org/10.1364/OME.419398
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4.2.1 Design and Implementation

The design of the light cage has similarities with revolver-type antiresonant fibers [256] -
both consisting of dielectric elements in the micrometer range, which surround a hollow
core (cf. Fig. 1.1(b)). In the case of the light cage, these elements are solid polymer
strands that are distributed in a hexagonal arrangement. Unlike fibers, these strands
are not surrounded by a closed tubular cladding but are freely suspended, with mechanical
stability being ensured by support rings connecting adjacent strands laterally at preselected
distances. At the bottom of the hexagon, the waveguide structure is supported by a chain
of solid polymer blocks elevating the structure from the substrate (Fig. 4.15).

Light cages

3 cm
Si chip

10 μm

100 μm

(c)

50 μm

(d)

(a)(a)(a) (b)

Figure 4.15: Fabricated light cage samples. (a) Photographic image of three light cages
nanoprinted onto a silicon chip (length: 3 cm). (b,c,d) SEM images showing an oblique
view of the end facet of a light cage (b), an oblique view of two light cages on one chip (c),
and a top view (d). Note that the dimensions indicated in the images with oblique view
are impacted by the tilt of the sample.

In this work, we specifically studied light cage geometries consisting of twelve strands,
all with a common strand diameter (d ≈ 3.6 µm), pitch (center-to-center distance, Λ =
7 µm), common dimensions of the support rings (width along waveguide axis: 3 µm,
thickness: 1 µm), and support block spacing (LBlock = 178 µm). These values result
in a large structural openness factor (SOF) of (Λ − d)/Λ = 0.49. We investigated the
transmission and mechanical stability of the waveguides as a function of the support ring
spacing (LSupp = 45 µm) and total waveguide length LLC with the values in brackets
corresponding to the standard geometry shown in Fig. 4.15. Furthermore, the variations
in the optical properties of light cages located on the same chip (i.e., within one fabrication
run), and between different chips (i.e., fabrication on different days) were analyzed.

The light cages were fabricated on polished silicon substrates by 3D nanoprinting using
liquid IP-Dip photoresist with the procedure described in Section 3.2. The used print-
ing parameters are summarized in Table 4.5. These settings were chosen to ensure high
accuracy of the printed structures and result in a manufacturing time of 18 minutes per
millimeter waveguide length.
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Table 4.5: Parameters for fabrication of light cages.

Parameter Value
Slicing distance 150 nm

Hatching distance 100 nm
Acceleration of galvanometric mirror 1 V/ms2

Scanning speed 55,000 µm/s
Laser power 31 mW (setting in Describe: 62%)

4.2.2 Light Guidance Mechanism

Similar to microgap waveguides, light guidance in light cages is enabled by the anti-
resonance effect allowing light to be guided in a low-index medium filling the core (air
or liquids) despite the cladding consisting of polymer strands with a higher refractive in-
dex. In light cages, this effect is based on the hybridization of the individual strand modes
leading to the formation of ring-like cladding supermodes. In certain wavelength ranges,
the mode in the central hollow core cannot couple to these supermodes due to a large
wavevector mismatch (inhibited coupling) leading to transmission bands with low optical
attenuation as shown in Fig. 4.16. In between these transmission bands, light couples
from the core to the lossy cladding supermodes resulting in a characteristic distribution
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Figure 4.16: Light guidance mechanism in light cages. (a) Light is guided due to an
antiresonance between the core mode and the strand supermode. (b) Poynting vector (Sz)
and phase of the electric field of the core mode. LP-like modes of the strands are visible
in the logarithmic plot. (c) Spectral distribution of the real part of the effective index and
the attenuation of the core mode (orange). A qualitative sketch of the dispersion of the
coupled strand modes is added in blue based on Ref. [66]. Gray square at 770 nm lies
within an off-resonance band, where a phase mismatch between core and strand modes
prevents coupling resulting in low propagation loss. Vertical dashed lines correspond to
the cut-off wavelengths of the isolated strand modes. The strand diameter is d = 3.6 µm.
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of spectral resonances. This behavior has been experimentally confirmed in a series of
works [66, 82, 81] and an example of such a transmission spectrum is shown in Fig. 4.18.

In order to better understand why light is not able to "escape" in between the strands,
it is crucial to understand the coupling of strand modes that gives rise to the confining
ring-like supermode. While a detailed description is available in Ref. [66], we provide a
qualitative explanation to outline the key characteristics. In this 2D model, we assume that
the strand mode can be represented by a single wavevector, dissected into the propagation
constant β and a radial component kr such that2:

nk0 =
√
β2 + k2

r . (4.15)

This allows three cases to be distinguished as depicted in Fig. 4.17. If the wavelength is
much smaller than the strand diameter, the effective index of the strand mode neff = β/k0
is larger than the index of air (n = 1). Since Maxwell’s boundary conditions require that β
is identical in air and within the material of the strand, the radial wavevector component
in air needs to be purely imaginary in order to fulfill Eq. 4.15. Consequently, the mode is
bound to the strand and its field in air decays fast ∼ exp(− Im(kair

r )r). In this case, the
overlap between the strand modes is limited and no coupling occurs.

For longer wavelengths, neff decreases and approaches 1, meaning that the imaginary
part of kair

r is reduced. The field is still evanescent in air but now extends further towards
the other strands resulting in stronger coupling.

The wavelength at which neff = 1 is referred to as cut-off wavelength λco because
the mode in the strand is no longer guided by total internal reflection as the wavelength
increases further because the imaginary component of kair

r vanishes. Instead, the strand
mode exists as a leaky mode (cf. Section 2.1.2), with an oscillating field in air carrying away
power from the strand (kair

r becomes real). As the field no longer decays exponentially in
air, the modal fields of the strands overlap and couple strongly forming the sought-after
ring-like supermode (Fig. 4.17(c)).

To analyze the formation of resonances in light cages, it is important to note that
the effective index of the mode in the hollow core is always close to 1 in air (see simulation
results in Fig. 4.16(c)). Therefore, coupling between core and strand modes must occur
close to the cut-off of the strand modes to ensure phase matching (cf. Section 2.1.3 on
coupled mode theory). To predict the cut-off wavelengths, the strand modes can be ap-
proximated as LP modes in the weak guidance approximation (introduced in Section 2.1.2)
with the modal fields being described by Bessel functions. This approximation allows to
calculate the corresponding cut-off wavelength λco of an isolated strand mode located in
air by [131]:

λco = πdNA
ul−1,m

, NA(λ) =
√
n2

p(λco) − 1, (4.16)

where ul−1,m is the mth root of the Bessel function of order l − 1, NA is the numerical
aperture, np(λ) is the refractive index of the polymer, and l and m refer to the azimuthal

2n is the refractive index and k0 is the vacuum wavevector.
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Figure 4.17: Qualitative sketch of the cut-off behavior of the strand modes on the example
of the LP02 mode. The relevant wavevector components of the strand mode are shown
(a) at a wavelength λ far away from the cut-off wavelength λco, (b) near the cut-off, and
(c) below the cut-off. Blue rectangle represents a side view of the strand (propagation
direction is along the z axis). The wavevectors in the strand kstrand and in air kair are
shown in red. Both wavevectors are dissected into the propagation constant β and the
radial component kr (shown in black). Real parts of the wavevectors are represented as
arrows, imaginary parts as dashed lines, and absolute values as solid lines. For simplicity
the radial component in the strand kstrand

r is assumed to be identical in all cases. A
qualitative sketch of the intensity distribution is shown for an isolated strand on the left
and for the strand supermode on the right. Furthermore, the refractive index profile along
the radial direction is shown with neff being the effective index of the isolated strand mode.

and radial order of the LP mode, respectively. As expected from the simple model - and
proven experimentally in Refs. [66, 82] - the spectral positions of the resonances λR are
described accurately by these cut-off wavelengths: λR ≈ λco. In particular, the LP modes
of low order in l (l = 0, l = 1) were found to be most relevant [66].

What is left, is to understand why light can be guided in the core with low loss in the
spectral regions between the resonances. In these off-resonance transmission bands,
the loss is determined by the wavevector mismatch between the core mode and the strand
supermode. To this end, the dispersion of the supermodes was analyzed in Ref. [66]
using a nearest-neighbor coupling model developed by Birks et. al [257] in the context
of photonic bandgap fibers. To avoid calculating all possible strand mode combinations,
the model analyzes two "edge" supermodes which limit the effective index region of all
possible supermodes. Results of this calculation are shown in Ref. [66] and are sketched
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qualitatively in Fig. 4.16(c). As the phase mismatch between the core mode and the
supermodes grows quickly away from the resonances, the coupling is strongly reduced and
only a small fraction of power remains in the strands (Fig. 4.16(b)).

More intuitively, the existence of the supermodes divides the state space in such a
way that the core mode is only surrounded by ring-like supermodes of the strands. If
coupling to the strand modes is inhibited, the only other path for losses would require
tunneling to the next available free-space radiation mode, which is an unlikely process. In
particular, the off-resonance loss can be further reduced by adding more strands, making
the tunneling barrier wider. This approach has for example been used to create "dual-ring"
light cages with lower propagation loss in Ref. [81]. To note here is that the exact location
of the strands is irrelevant for the spectral position of the resonances, as these are solely
determined by the strand diameter and the refractive index (cf. Eq. 4.16), making the light
cage geometry relatively robust against fabrication inaccuracies. In the context of fibers,
it was shown that even arbitrary arrangements of strands surrounding a hollow core can
enable low-loss light guidance [258].

Furthermore, we show in Section 6.5, that the dispersion of the fundamental mode of
light cages is very similar to that of a tube waveguide (i.e., the cross section is a solid
ring) made out of the same polymer material with a thickness that is slightly smaller than
the strand diameter. This result further corroborates the fact that the ring-like supermode
of the strand modes acts like a tube for confining light inside the light cage.

4.2.3 Statistical Analysis of Fabrication Accuracy
The optical properties of the samples were determined by measuring the transmission T
across the visible spectral range using the setup and procedure described in Section 3.3.
The off-resonance modal attenuation was calculated by fitting the transmission values with
the expected exponential decay (Eq. 4.10).

In order to allow for statistically analyzing geometry variations of the structure in-
duced by the fabrication, we determine the spectral positions of the transmission dips (i.e.,
resonance wavelengths λR) from the experimental data of light cages of identical length
and fabrication parameters. Then we identify the order of the LP mode of the strand
that is causing the resonance by using the list of cut-off wavelengths of various LP modes
in Table 4.9. Next, the corresponding mean wavelength λR = 1/N ∑

λR,i and standard
deviation σλR

= (1/(N −1)∑(λR,i −λR)2)1/2 is determined, where i is the sample number,
N is the number of light cages of identical length and λR,i is the corresponding resonance
wavelength. The associated values of the mean strand diameter d and standard deviation
σd can then be straightforwardly calculated via Eq. 4.16:

d = ul−1,m

πNA(λR)
λR, (4.17)

σd =
∣∣∣∣ ∂d∂λR

∣∣∣∣ σλR
≈ ul−1,m

πNA(λR)
σλR

. (4.18)
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Note that in Eq. 4.18 we assume that the dispersion of the NA is negligible allowing to use
the respective value at λR. Furthermore, we neglect refractive index variations resulting
from two-photon polymerization of the resist because these only occur between different
fabrication runs and are extremely small with absolute deviations of below 0.005 [194].

4.2.4 Optical Characterization and Discussion
The maximum sample length that has been achieved here was LLC = 3 cm, representing
the current state-of-the-art in light cage length and constituting a factor of three improve-
ment to previous experiments (LLC = 10.5 mm reported in Ref. [66]). This leads to an
aspect ratio (length-to-diameter) of a single strand of approximately AR = 8200 which
to our knowledge represents the largest AR of a 3D-nanoprinted structure that is partially
suspended. Examples of freely suspended nanoprinted structures from other groups are
presented in Table 4.6 showing aspect ratios < 500, which is more than ten times smaller
than the light cage structure shown here.

Table 4.6: Comparison of different 3D-nanoprinted structures that include suspended-type
elements. Examples of non-free-standing waveguides are also shown (gray).

Structure type Free-standing Smallest
width [nm]

Aspect
ratio

Reference

Light cage yes 3,600 8,200 This work
Woodpile partially 350 357 [259]
Microtube yes (vertical) 600 100 [260]
Single nanopillar yes (vertical) 9,000 50 [261]
Taper on fiber yes 15,100 16 [262]
Microneedles yes (vertical) 630 10 [263]
Freeform lens yes (vertical) 105,000 1.1 [264]
Step-index waveguide no (fixed to

substrate)
600 33,000 [265]

Bragg grating waveguide no 1,500 66.7 [266]

The spectral characterization of the 3 cm long light cage in Fig. 4.18 shows an alter-
nating sequence of regions of low and high loss, with the resonance wavelengths being
correctly predicted by the cut-off of the LP0m and LP1m modes via Eq. 4.16. These results
confirm that light is guided by an antiresonance between the core mode and the strand
supermodes. On closer inspection, the resonances feature a double-dip substructure (e.g.,
around λ = 800 nm), which might arise from LP mode splitting as discussed later in the
section.

Similar to the study on microgap waveguides (cf. Section 4.1.3), we determine the off-
resonance modal attenuation of the light cage by measuring the transmission through
samples of different lengths (5 mm - 20 mm, Fig. 4.19(a-d)). The resulting transmission
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Figure 4.18: Spectral distribution of the
measured transmission through a 3 cm
long light cage. Vertical lines denote the
cut-off wavelengths of the LP modes in-
dicated on the top. Cut-off wavelengths
were calculated via Eq. 4.16 using a strand
diameter of d = 3.592 µm.

loss is close to 0.65 dB/mm at around λ = 520 nm increasing to about 1 dB/mm at
near-infrared wavelengths. These values lie within the range of commonly used on-chip
hollow core waveguides [54, 267] and high contrast photonic band gap fibers [268]. Fur-
thermore, the measured losses agree with that of significantly shorter light cages previously
reported [66], indicating that the fabrication accuracy is maintained over the increased dis-
tance. Therefore, even longer waveguide lengths can principally be realized. Here, it is
important to note that long writing times lead to a higher probability of contamination
and structural deformation. If the writing area is larger than the area where the immersion
lens and chip are in contact with the resin, it is difficult to keep the entire writing area well
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Figure 4.19: Measured optical properties of light cages. (a-d) Spectral distribution of
transmission through light cages samples with various lengths LLC of 5 mm (a), 10 mm
(b), 15 mm (c), and 20 mm (d). The propagation loss was calculated from exponential
fitting of the transmitted power versus sample length at the spectral location of high
transmission and is shown in (e). The gray dashed line in (e) is a guide to the eye.
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covered with resin throughout the printing process. Future strategies to increase the length
of the implemented light cages therefore target reducing the writing time by using other
photoresins with a coarser voxel size. The magnitude of the losses leads to an attenuation
of several tens of dB over the 3 cm, which indicates that longer light cages have practi-
cal limitations for the used core radius and on the basis of the current implementation
scheme. Similar to microgap waveguides and other tube-like antiresonant waveguides, the
losses can principally be reduced by increasing the core extent as modal attenuation scales
approximately proportional to the inverse of the fourth power of the core diameter [212].

Generally, the measured loss values are about one to two orders of magnitude higher
than predicted by simulations (Fig. 4.16(c)). In this context, it is important to reveal the
impact of the reinforcement rings on modal attenuation from the experimental per-
spective. While the rings are required to hold the strands in their hexagonal arrangement,
they introduce a non-uniformity along the waveguide axis that might lead to scattering
losses. At the same time, the rings reduce the lateral openness of the cage structure and
therefore their number should be kept to a minimum. To address this issue, a series of light
cages of identical length (LLC = 10 mm) but different longitudinal spacing between the
rings (10 µm, 30 µm, 50 µm, 70 µm) have been implemented on one chip and the spectral
distribution of the transmission of the fundamental core mode has been determined. These
measurements show neither a significant spectral shift of the resonances nor a substantial
change of the transmission value (change of transmission values in the transmission bands
throughout this measurement series is < 2.5 dB). Overall, no consistent trend is observ-
able from these measurements, indicating that the impact of the reinforcement rings on the
modes is minimal. This experimental observation is supported by simulations, which indi-
cate that the fraction of modal power present inside the polymer is negligible [84]. Overall,
these findings suggest that the main origin of the observed modal attenuation results from
surface roughness of the strands.

The spectral bandwidth of the measured transmission bands is within the order of
20 nm - 40 nm in the visible spectrum. Larger spectral bandwidth can principally be
achieved by implementing strands with smaller diameters, potentially allowing broadband
applications for dispersion control in nonlinear optical devices or ultrafast spectroscopy.

To specify the structural deviations induced by 3D nanoprinting for identical
light cages that are located on the same chip (intra-chip), we use the above-mentioned
data analysis procedure for an ensemble of five identical light cages of length LLC = 15 mm
(N = 5, example of transmission spectrum is shown in Fig. 4.19(c)). Using an automated
numerical procedure (Mathematica: FindPeaks), we determine the spectral positions of
the transmission dips within the spectral interval 575 nm < λ < 840 nm including five
different orders of modes. Note that the fundamental mode (LP01 mode) of the strands
has no cut-off and therefore cannot impose a resonance in the transmission spectrum of
the light cage. Several dips include double-dip features, which presumably result from a
lift of LP modal degeneration which is associated either with polarization mode splitting
due to coupling to hybrid HE and EH modes (resulting from the large refractive index
contrast between polymer and air) or from a slight ellipticity of the strands (leading to
a lifting of the otherwise degenerate modes in the purely cylindrical case). In the anal-
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ysis, we assign identical labels for the two sub-resonances within one transmission dip
according to the LP mode nomenclature. The resulting values (Table 4.7) show that the
implementation via 3D nanoprinting yields highly reproducible structures within one chip
since the standard deviation of the determined resonance wavelengths is extremely small
(σλ < 1 nm), which is supported by the value obtained by averaging over all standard de-
viations (σλ = 0.3 nm). Note that due to the small absolute value of the deviations, a large
sample length of LLC = 15 mm was chosen here in order to increase the fringe contrast of
the dips and therefore allows for a more precise localization of the resonance wavelengths.
A preliminary study has shown that samples with different lengths show deviations of a
similar order of magnitude. Moreover, the calculated standard deviations of the strand
diameter (determined by Eq. 4.18) yield values within the nanometer range including the
corresponding mean value (σd = 2 nm) additionally confirming the appropriateness of using
3D nanoprinting for implementing highly reproducible light cage structures. Note that the
mean of the calculated mean diameter (d = 3665 nm) is close to the diameter used in the
corresponding dispersion simulations (d = 3.6 µm in Fig. 4.16(c)). The small standard
deviations overall show extremely small structural variations for light cages located on the
same chip, indicating excellent reproducibility, which is close to values known from fiber
optics. Note that for microstructured optical fibers, fiber drawing within a single drawing
process is highly reproducible [269], while fiber structures can vary significantly between
different runs.

Table 4.7: Result of the statistical analysis for uncovering the intra-chip reproducibility of
the light cage (LLC = 15 mm).

Resonance order λR [nm] σλ [nm] d [nm] σd [nm]
LP08 596.3 0.3 3641 2
LP08 603.4 0.2 3687 1
LP17 638.8 0.4 3647 2
LP17 645.5 0.3 3687 2
LP07 688.1 0.4 3643 2
LP07 695.0 0.6 3681 3
LP16 746.3 0.1 3650 1
LP16 754.2 0.1 3689 1
LP06 818.8 0.4 3659 2

The chip-to-chip, i.e., inter-chip variations of the structural features of the light
cages have been analyzed in a similar way to the intra-chip analysis presented in the previ-
ous paragraph. Here, we investigated the spectral positions of five resonances of three light
cages located on different chips (details can be found in Table 4.8, LLC = 5 mm). An ap-
proximately ten times larger variation of the spectral positions of the resonance wavelengths
σλ was observed (mean standard deviation σλ = 2.9 nm), which is reflected in correspond-
ingly higher variations of the strand diameter (mean standard deviation σd = 15 nm).
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This value is reasonable given the current experimental circumstances: The dimensions of
3D-nanoprinted polymer structures are subject to strong shrinkage during the development
process with rates of up to 26 % per dimension [270]. Therefore, the actual dimensions
of a 3D-nanoprinted structure strongly react to fluctuations in the development process
(e.g., exact timing, temperature, final concentration of photoresist in developer, humidity),
potentially imposing structural changes from sample to sample. Therefore the measured
larger chip-to-chip variations appear realistic on the basis of the experimental circum-
stances, which will be improved in future studies. Note that the inter-chip measurement
uses a different version of light cages which have a larger mean diameter (d = 3841 nm)
and were performed with a broadband optical spectrum analyzer (cf. Section 3.3). The
latter has the consequence that only a single dip per resonance could be resolved, leading
to a single value of λR per strand mode (Table 4.8).

Table 4.8: Result of the statistical analysis for uncovering the inter-chip reproducibility of
the light cage (LLC = 5 mm).

Mode λR [nm] σλ [nm] d [nm] σd [nm]
LP08 626.2 2.1 3832 13
LP17 670.8 2.5 3837 14
LP07 722.8 3.5 3833 19
LP16 787.2 2.9 3856 14
LP06 859.5 3.5 3845 15

An important issue needing consideration is the structural collapse of the light cage
during the drying stage of the development process. When the used solvent evaporates a
meniscus is formed between adjacent strands which results in a deformation of the high
aspect ratio strands if the capillary forces exceed the elastic restoring force of the poly-
mer. To understand the collapsing effect from the experimental perspective, we fabricated
another series of light cages with the same pitch (Λ = 7 µm) and length (LLC = 2 mm)
but with different spacing between reinforcement rings. Increasing the spacing from 30 µm
to 70 µm does not lead to a visible difference between the light cages (Fig. 4.20(b-d)),
while for a spacing of 100 µm a deformation of the light cage cross section in the middle
between two rings is observed (Fig. 4.20(e)). We attribute this phenomenon to radially
inward capillary forces (red arrows in Fig. 4.20(a)) that the strands experience during the
drying process.

The results presented clearly indicate the necessity of including reinforcement rings,
which distribute the stress from the capillary forces more evenly during the transition from
the liquid to the air environment. This consideration applies in particular to situations
where the liquid has a high surface tension, such as aqueous solutions. A further improve-
ment of the mechanical stability or conversely, a larger spacing between support rings might
be obtained by using photoresists with a higher Youngs modulus such as IP-L780 [271] or
by improving the polymerization through an additional curing procedure [270].
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Figure 4.20: Study of the mechanical stability of the light cage, showing the necessity to
include reinforcement rings to support the cage. (a) Sketch showing the capillary force
induced collapsing process emerging during the drying process. SEM images on the right
side show light cages of same pitch and length (Λ = 7 µm, LLC = 2 mm) but with different
distance between the reinforcement rings ((b) 30 µm, (c) 50 µm, (d) 70 µm, (e) 100 µm).

Further details of the study:

The cut-off wavelengths of the LP modes that are relevant for this section have been calcu-
lated using the material dispersion of the polymer from Eq. 3.9. The resulting wavelengths
for the LP modes with l = 0 and l = 1 are shown in Table 4.9.

Table 4.9: Calculated cut-off wavelengths of the LP modes for a strand of diameter
d = 3.64 µm located in air.

l=0 λco [µm] l=1 λco [µm]
LP02 3.460 LP11 5.511
LP03 1.893 LP12 2.404
LP04 1.309 LP13 1.536
LP05 1.003 LP14 1.131
LP06 0.815 LP15 0.897
LP07 0.688 LP16 0.744
LP08 0.596 LP17 0.638

4.2.5 Sensing Applications
Light cages can generally be used for the same application scenarios as microgap wave-
guides as both feature a large structural openness factor allowing liquids or gases to freely
enter the core volume to interact with the guided light. In this context, light cages have
been successfully employed in waveguide-integrated absorption spectroscopy of gases [83]
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and liquids [84], and integrated quantum optical experiments (electromagnetically induced
transparency in cesium vapor) [57]. Here, we summarize the results of a further appli-
cation, namely fluorescence spectroscopy of an aqueous Rhodamine B dye solution.
Additionally, light cages were applied for nanoparticle tracking analysis during the
course of this thesis, the results of which are reported in Ref. [244].

Fluorescence Spectroscopy

The results presented in this chapter are published in Ref. [272]:
J. Kim, B. Jang, T. Wieduwilt, S. C. Warren-Smith, J. Bürger, S. A. Maier, and M. A.

Schmidt
“On-chip fluorescence detection using photonic bandgap guiding optofluidic hollow-core

light cage”

Reproduced from APL Photonics 7, 106103 (2022), https://doi.org/10.1063/5.0102071
with the permission of AIP Publishing.

The on-chip detection of fluorescent light is essential for many bioanalytical and life-science
related applications, such as medical diagnostics [273], quantitative polymerase chain re-
action (qPCR) tests (e.g., for detection of SARS-CoV-2 RNA) [274], fluorescence enzyme-
linked immunosorbent assays (ELISA) [275], or fluorescence resonance energy transfer
(FRET) assays [276]. In this section, we show that fluorescence light from R6G dye gen-
erated in the core of a water-filled light cage can be efficiently captured and guided to the
waveguide ports. Two aspects of light cages make them particularly interesting for this
application: (1) light is guided almost exclusively in the analyte, which minimizes back-
ground signals from fluorescence or Raman scattering of the waveguide material, and (2)
the analyte can be quickly exchanged through the open space between the strands within
an on-chip environment.

The detection of fluorescence is in general more difficult than measuring an absorbing
material in a waveguide. As described in Section 4.1.1 for microgap waveguides, anti-
resonant waveguides can only confine light rays incident on the cladding under grazing
angles. While this condition is well satisfied for the waveguide mode propagating nearly
parallel to the waveguide axis, fluorescence light emanates from a molecule in all spatial di-
rections. Therefore, we decided to add a second ring of confining strands to the light cage,
increasing the total strand number from 12 to 18 (Fig. 4.21). As explained in Section 4.2.2,
a larger number of strands decreases the propagation loss and allows for a more efficient
capturing of the fluorescence light. This dual ring light cage geometry was previously
introduced in Ref. [81] and a sketch of the geometry is shown in Fig. 4.21.

For the experimental demonstration, we choose Rhodamine B dye (RhoB, molar
mass: 479.01 g/mol) dissolved in water and use a light cage length of LLC = 4.5 mm. Two
concentration ranges corresponding to a low (0.075 µM < c < 2.4 µM) and a high (3.75 µM
< c < 30 µM) dye concentration were prepared. The solutions were characterized using a
separate spectrometer (F550B, Perkin Elmer), which showed that the maximum excitation

 https://doi.org/10.1063/5.0102071
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Figure 4.21: Dual ring light cages used in the fluorescence spectroscopy experiment.
(a) Schematic of the geometry indicating the pitch Λ, strand diameter d, and core size
D. SEM images on the right depict fabricated structures, including (b) a view of the end
face, (c) an oblique view, and (d) a top view. Note that the dimension indicated in (c) is
affected by the tilt of the sample during imaging.

and emission (for c = 1 µM) occurs at λ= 552.6 nm and λ = 576.5 nm, respectively. Here,
another advantage of the fabrication via 3D nanoprinting comes into play: as we can
precisely adjust the diameter of the strands, it is possible to tune the spectral locations of
the transmission bands such that both excitation and emission wavelengths lie within high
transmission domains (cf. Eq. 4.16). Therefore, the light cage allows for both guiding the
excitation light to the fluorescent molecules and efficiently capturing the uniformly emitted
fluorescence light. For the measurements, the fundamental core mode was excited with a
narrowband diode laser (W532-50FS, Pavilion Integration Corp., λ = 532 nm, maximal
power 50 mW) and the output light was detected using a fast spectrometer (USB2000,
Ocean insight, 450 nm < λ < 800 nm, ∆λ = 0.32 nm), while a notch filter (blocking range
523 nm < λ < 544 nm, extinction ratio < 20 dB, OD = 6 @ 533 nm) was inserted into the
beam path to prevent the residual excitation light reaching the detection system. Two fixed
integration times were used at the spectrometer, one optimized for the low concentration
range and another for the high concentration range, to be able to compare the measured
fluorescence power within each range. As described in Section 4.1.5, the light cage chips
are placed in a chamber which is then filled with the dye solution.

Imaging the intensity distribution of the fluorescence light at the output facet of
the waveguide reveals the clear hexagonal symmetry of the fundamental mode of the light
cage, proving that the fluorescence light is captured by the waveguide (Fig. 4.22(c)). Only
a negligible fraction of the guided power is present in the strands completely vanishing
in a reference measurement without dye at the same integration time. Any fluorescence
background from the material of the strands can therefore be neglected for the investigated
concentrations.

The fluorescence power guided to the output increases with dye concentration, with
the emission peaking at roughly λ = 579 nm as expected (Fig. 4.22(a,b)). Note that for the
high concentrations, a spectral red-shift of the fluorescence maximum is observed, which is
in accordance with bulk measurements and can be explained by dimer formation [277, 278].
As the raw data captured by the spectrometer is shown, the spectral fingerprint of the light
cage is visible in the emission spectra, leading to a reduction of the recorded power around



86 4. 3D-Nanoprinted Antiresonant Hollow-Core Waveguides
F

lu
or

es
ce

nc
e 

po
w

er
 [a

.u
.]

(a)

500 550 600 650
0

0.5

1

2.4
1.2
0.6
0.3
0.15
0.075
0

RhoB conc. [µM]

Wavelength [nm]
500 550 600 650

0

0.5

1

Wavelength [nm]

30
15
7.5
3.75
0

(b)

RhoB conc. [µM]

Figure 4.22: Measured fluorescence collection properties of the dual ring light cage demon-
strated on the example of RhoB dissolved in water. Spectral distribution of the collected
fluorescence power is shown for (a) the low concentration regime (0 < c < 2.4 µM), and
(b) the high concentration regime (0 < c < 30 µM). The yellow areas denote the location
of resonances of the light cage. Each set of curves was normalized to the range [0,1]. Inset
in (b): Measured output mode in case the excitation light at 532 nm is filtered out, thus
solely corresponding to the collected fluorescence light (c = 30 µM).

the resonances of the light cage (yellow areas in Fig. 4.22). Furthermore, we note that the
small peaks for 530 nm < λ < 535 nm result from the residual excitation light passing
through the notch filter and not from the residual fluoresce of the dye, which is evident
from the fact that the amplitude of this peak does not change with dye concentration.

For a quantitative assessment of the light cage properties, we analyzed the fluores-
cence power (normalized to the power at c = 2.4 µM) as a function of concentration at the
main fluorescence wavelength (λ = 579 nm) for both the light cage and a cuvette-based
reference measurement (Fig. 4.23). As for the absorption spectroscopic experiments with
microgap waveguides, we determine the limit of detection (LoD) from these calibration
curves using Eq. 4.13.

The resulting LoD in the case of the light cage is LoD = 8 nM, matching the value from
the bulk cuvette measurements (LoD = 10 nM). Similar to the experiments on microgap
waveguides, achieving lower detection limits requires the use of more sophisticated detec-
tion techniques, or the use of fibers of much longer lengths but without the possibility for
passive analyte exchange. For example, a LoD of 0.1 nM has been demonstrated in a 10 cm
long hollow-core photonic crystal fiber [25].

In analogy to the experiments on microgap waveguides, we perform time-resolved
experiments to monitor the diffusion of the dye into the core after adding a certain
amount of dye to the water-filled chamber. To this end, we track the fluorescence power
at the main fluorescence wavelength (λ = 527 nm) and compare the results to a fiber-type
capillary of similar core diameter and length. As a benchmark, we use the elapsed time t99%
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Figure 4.23: Quantitative analysis of the fluorescence properties. Measured fluorescence
power/concentration relation for (a) dual-ring light cage and (b) cuvette-based reference
measurement. The dots correspond to the measured data, while the dashed lines are
linear fits. (c) Time-resolved increase of the fluorescence power after injection of the dye
into the chamber. Dual-ring light cage (green) is compared to a fiber-type capillary with
comparable core diameter (cyan, core diameter D = 15 µm). Identical chambers and
lengths (L = 5 mm) are used. The horizontal gray dashed line refers to 99 % of the
saturated power. Data in (a,b,c) was evaluated at the main fluorescence line (λ = 579 nm,
orange dashed line in Fig. 4.22).

until 99 % of the maximal fluorescence power is reached on saturation of the waveguide
with the dye solution. The results shown in Fig. 4.23(c) reveal that the use of light cages
reduces the filling time 2.6-fold from t99% = 1280 s for the capillary to t99% = 500 s for
the light cage. This difference would grow even larger if longer waveguides are considered
as the filling time of light cages is in principle independent of sample length but would
increase for capillaries, which can only be accessed from the end faces.

4.2.6 Conclusion

As previously reported, the light cage represents a novel type of hollow core on-chip optical
waveguide with unique properties such as diffraction-less light guidance over centimeter
distances, side-wide access to the core, and a high fraction of optical power inside the core
region [66]. As such it is well suited for future integrated sensing applications [279] that
demand fast response times and minimal background signal originating from the material
of the waveguide. In this chapter, we demonstrated the highest so far achieved waveguide
length for light cages of 3 cm, corresponding to a single-strand aspect ratio of 8200. The
measured modal attenuation lies in the range of 0.5 - 1 dB/mm in the visible, suggesting
that realizing even longer waveguide lengths requires strategies to reduce the propagation
loss.

The investigation of structural intra-chip variations shows extremely small variations
(σd = 2 nm) yielding a very high level of reproducibility that is essential from the ap-
plication perspective. About ten times larger chip-to-chip variations have been observed
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(σd = 15 nm), which mainly result from fluctuations in the development processes, which
can be improved by exerting more rigorous control over the sample treatment conditions.
Finally, the importance of including reinforcement rings to mechanically support the sus-
pended structures particularly during exposure of light cages to a liquid environment has
been uncovered. Particularly the conducted study on reproducibility is not only relevant
for light cages but can also be translated to other 3D-nanoprinted waveguides, especially to
nanoprinted geometries with suspended structures. As an overview, the fabrication inac-
curacies encountered in the study on light cages and microgap waveguides are summarized
in Table 4.10.

Table 4.10: Overview of the different types of fabrication inaccuracies and the impact on
the fabricated dimensions.

Type of inaccuracy Effect Magnitude

Surface roughness (constant aver-
age dimensions)

Broadening of reso-
nances, increased loss

Not studied, 30 - 40
nm reported in other
works [101, 75]

Differences in the dimension within
one structure (e.g., different thick-
ness of left and right wall in micro-
gap waveguides, or between differ-
ent strands of light cages)

Splitting of resonances 50 nm in microgap wave-
guides

Intra-chip variations (different av-
erage dimension between two struc-
tures on the same chip)

Shifting of resonances 2 nm in light cages [255]

Inter-chip (i.e., batch-to-batch)
variations (different average di-
mensions on different chips)

Shifting of resonances 15 nm in light cages [255]

In terms of sensing applications, we showed that by using dual-ring light cages, fluo-
rescence light from a dye-doped aqueous solution can be efficiently captured and guided
to the waveguide ports. As experimentally demonstrated, the flexibility of the light cage
design and of the 3D nanoprinting process allows for localization of both the excitation and
emission within the high transmission domains of the fundamental core mode. Detection
limits for Rhodamine B that match bulk measurements and fast dye diffusion into the
waveguide core were revealed experimentally.

Similar to microgap waveguides, applications of light cages in areas such as bioanalytics
and environmental sciences are conceivable, while more sophisticated applications such as
Raman spectroscopy could be targets of future research. As the light cage concept is not
limited to liquids of a specific refractive index, the acquisition of fluorescence signals from
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a variety of analytes is possible, as well as from multiple emitting species. Therefore, light
cages offer a promising new direction for the use of hollow-core waveguides in laboratory-
on-a-chip applications, combining high-efficiency fluorescence detection with integrated
microfluidics.

4.3 Comparison between Microgap Waveguides and
Light Cages

Microgap waveguides and light cages target similar applications as both are on-chip hollow-
core waveguides with a large structural openness enabling fast analyte exchange. In com-
parison, the design of light cages allows for a larger structural openness factor of currently
49 %, while the realized microgap waveguides samples feature a maximal SOF of 20 %.
Therefore, light cages are generally preferable for applications requiring the fastest response
times, particularly if diffusion speeds are low as it is the case for liquid analytes.

For gas sensing, on the other hand, even the SOF of 20 % in microgap waveguides
proved sufficient to approach filling times near the limit of bulk diffusion. In this case,
microgap waveguides might be more relevant, as their simplified design allows shorter
manufacturing times (10 min/mm vs. 18 min/mm for light cages), and lower propagation
losses, especially in the infrared spectral range (1.25 dB/mm vs. 3 dB/mm @ 1400 nm).
As a result, longer waveguide lengths are feasible using microgap waveguides before the
attenuation becomes impracticably high (samples with 5 cm vs. 3 cm were realized). In
turn, the contrast of the core-strand resonances is larger in microgap waveguides (> 60 dB
for the 5 cm long sample vs. 25 dB for the 3 cm long light cage), which is, for example,
relevant for the accurate determination of the resonance wavelength in refractive index
sensing.

Another advantage of microgap waveguides is an exceptional mechanical stability, which
allows the realization of wall widths as narrow as 600 nm. In contrast, the strand diameter
of light cages currently stands at 3.6 µm, with preliminary experiments suggesting that
strand diameters below 2 µm are not feasible due to the strong capillary forces acting on
the strands during development. Presumably, the continuous walls of microgap waveguides
allow for a more even distribution of capillary forces, while they are concentrated on the
smaller strands in light cages, explaining the different mechanical properties. Due to the
smaller feature sizes of the cladding elements, the number of cladding modes can be reduced
in microgap waveguides, resulting in much wider spectral transmission windows (> 200 nm
vs. ∼ 50 nm in light cages).

In comparison to ARROWs, both microgap waveguides and the light cages have decisive
advantages, such as lateral access and thus significantly faster diffusion, and the avoidance
of costly and time-consuming multi-step manufacturing processes by using 3D nanoprinting
- while all three waveguides offer similar losses on the order of 1 dB/mm.

It is important to note that a substantially enhanced level of integration can be reached
through interfacing 3D-nanoprinted waveguides with optical fibers using V-grooves on sili-
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con chips, an approach that has been demonstrated for light cages [83] but can also be
applied to microgap waveguides. Another appealing approach is to nanoprint structures
directly on the end face of optical fibers, which has been realized both for conventional
hollow-core waveguide geometries [101], and microgap waveguides [280].



Chapter 5

Off-axis twisted waveguides

The results presented in this chapter are currently under review for publication in a
journal. A preprint is available on arXiv [281]:

J. Bürger, A. C. Valero, T. Weiss, S. A. Maier, and M. A. Schmidt
“Impact of coordinate frames on mode formation in twisted waveguides”

The journal allows reproduction of the work in dissertations without requesting permission.

As a preparation for the study on twisted light cages presented in Chapter 6, we investigated
the optical properties of modes inside the solid core of a single off-axis twisted strand.

The interest in such off-axis twisted waveguides started emerging in the 1980s due to
the observation that single-mode fibers helically coiled around a cylinder exhibit circular
birefringence, manifested by the rotation of the polarization state of linearly polarized
light as it propagates along the waveguide [117, 109, 282, 283]. The rotation was initially
understood based on the transversality of light [117], which means that the polarization
vector is constrained to the surface of the k-sphere. As the wavevector k changes direction
when light propagates along the helix, the polarization vector is parallel transported on the
surface of the sphere [161] - a concept well known from differential geometry [284]. Due to
the curvature of this surface, it was found that the polarization vector does not necessarily
return to its original state after the light completes a closed loop on the k-sphere. More
specifically, the polarization vector rotates relative to the laboratory frame whenever the
light’s trajectory features a nonzero torsion1. This conceptual framework initially served
well in explaining the observed circular birefringence in helical fibers2.

Among many other fields in physics, the identification of a quantum mechanical geo-
metrical phase factor reported by Michael Berry in 1984 [288] - now widely known as the

1Torsion refers here to a purely geometrical quantity and is not related to any torsional stress in the
material.

2Note that we always use the term "helical waveguide" to refer to an off-axis twisted waveguide, in
distinction to on-axis twisted waveguides [92, 97, 124, 96] or two-dimensional spiraling waveguides [285,
286, 287].
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Berry phase - sparked new insights into the physics of light traveling along curved tra-
jectories. In fact, the first observation of this seminal theoretical work was accomplished
in such a helically coiled fiber in 1986 [289, 290]. Building on the previous works, it was
found that the angle by which linearly polarized light is rotated in one turn of the helical
waveguide corresponds to the Berry phase.

The theory evolved further in the years thereafter, in particular, it was realized that
light traveling along curved trajectories experiences a spin-orbit and orbit-orbit inter-
action coupling the spin or orbital angular momentum (OAM) of a beam of light to its
orbital motion [177, 161, 183, 174]. The emergence of circular and OAM birefringence in
helically coiled fibers could now be explained as a direct consequence of these couplings.
Conversely, spin-orbit and orbit-orbit interactions were found to act back on the trajec-
tory of light splitting the beam depending on its spin and OAM. These effects are now
known as the photonic spin Hall [178, 174] and orbital Hall effects [182, 183] (introduced
in Section 2.4).

In all of these early works, the cross-sectional shape of the helical waveguides is assumed
to be circular in the plane perpendicular to the helical path, which can be well described in
the Frenet-Serret frame. On the other hand, more recent experimental works often use the
helicoidal frame to perform simulations of fibers fabricated with off-axis twisted air holes or
capillaries [98, 119, 115, 93, 110]. In this chapter, we point out that the resulting structures
differ, both in their geometry and their optical properties - an important fact that has
previously been overlooked. Furthermore, we compare the results to helical waveguides
defined in a third coordinate system, the "Overfelt frame" [168], which is derived from
a toroidal geometry. Given that virtually all works on twisted waveguides use one of
these coordinate systems, the presented results could be of importance to a wide range of
waveguide designs.

Another aspect frequently lacking in previous works is a comprehensive description of
the transformation of fields from the helicoidal frame back to the laboratory
frame. We describe this process in detail in Appendix B and explain under which con-
ditions it is possible to define an effective refractive index for modes of on- and off-axis
twisted waveguides in the lab frame. Such an effective index is needed for example when
analyzing coupling to modes in straight waveguides or for comparison to experimental
results.

We conducted simulations for both single-mode and multimode variants of the three
off-axis twisted waveguide types and compared the results to an analytical model for the
effective index [122] and loss [291] of modes in helical waveguides. The study investigates
twist rates of up to 20 turns per mm, which are, to our knowledge, the highest investi-
gated so far for off-axis twisted waveguides (an overview of such works can be found in
Appendix C). Spin- and OAM-dependent splittings in the spatial properties of the modes
were analyzed, as well as the emergence of superchiral fields on the surface of the wave-
guides (i.e., fields with a larger chiral asymmetry than circularly polarized plane waves,
see Section 2.2.5 and Refs. [85, 121]).
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5.1 Geometry of Helical Waveguides
Starting from a coordinate system that features a coordinate in which a helix is translation
invariant, a natural way to define a helical waveguide is the following: set a circular refrac-
tive index profile with radius rc in the plane spanned by the unit vectors of the remaining
two coordinates and extend it infinitely in the direction of translation invariance. Using
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Figure 5.1: Helical waveguide geometries. (a) Illustration of the three waveguide types
investigated in this chapter. (b) In these off-axis twisted waveguides, the core is located at
a distance ρ from the twist axis. (c) Orthographic side views of the Frenet-Serret waveguide
(green), the helicoidal waveguide (purple), and the Overfelt waveguide (blue). All helices
are left-handed with a pitch distance P . (d) Basis vectors of the corresponding coordinate
systems. The waveguides are defined to have a circular cross section with radius rc in the
plane spanned by the two basis vectors which are not tangential to the helical path (black
curve). Red lines in (c) denote the orientation of the circular cross section. Note that only
the Frenet-Serret system is orthogonal.

this procedure, the Frenet-Serret, helicoidal, and Overfelt waveguide were defined
from their respective coordinate systems in Section 2.3. For comparison, the investigated
waveguides are shown side-by-side in Fig. 5.1. For the study, we use an off-axis distance
ρ = 14 µm (the radius of the helix), and a core radius of rc = 1.8 µm or rc = 0.2 µm for
the multimode or single-mode variants of the waveguides, respectively.

To gain further insights into the differences in the geometry of the three waveguides,
it is useful to determine their cross sections in the xy plane, which are depicted in
Fig. 5.2. Interestingly, these cross sections can take on quite non-trivial shapes, and an
exact analytical description is - to our knowledge - not available. When the twist rate tends
to 0, the Frenet-Serret waveguide becomes more and more straight with T̂ pointing mostly
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in the z direction. Therefore, the shape of the Frenet-Serret waveguide approaches that
of the helicoidal waveguide for low twist rates. As the twist rate approaches infinity, the
Frenet-Serret waveguide becomes more and more like a torus with T̂ lying mostly in the
xy plane. This is precisely the shape to which an Overfelt waveguide collapses at infinite
twist rate, which is why the cross sections of both waveguides approach each other at high
twist rates.
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Figure 5.2: Cross sections of helical waveguides in the xy plane. Cross sections were
calculated numerically for four different twist rates (noted on the top) using an off-axis
distance of ρ = 14 µm and rc = 1.8 µm. The center of the twist axis is located below
the shown coordinate range at x = y = 0. The geometry of the Frenet-Serret waveguide
(green) approaches that of the helicoidal waveguide (purple) for low twist rates and that
of the Overfelt waveguide (blue) for high twist rates. Gray dashed lines show an analytical
approximation of the cross section, which is valid in the limit of weak coiling (κ̄rc � 1)
and if the extent of the ellipse in x direction is much smaller than 2πρ. Waveguide modes
were simulated for twist rates up to 20/mm.

Knowing the cross sections of the three waveguides in the xy plane allows to perform
all following FEM simulations in the helicoidal coordinate system because the shape of
the cross sections merely rotates around the twist axis as the z coordinate is changed (i.e.,
a structure that is invariant along the helical trajectory in one of the coordinate systems
is also invariant in the other two systems). Specifically, we calculate the modal properties
using a commercial FEM solver (PropagatingMode module of JCMwave). JCMwave offers
built-in support for the helicoidal coordinate system, along with appropriately defined
perfectly matched layers.

To simplify the definition of the geometry in the simulations, we derive an analytical
approximation of the cross sections describing the shape as an ellipse adapting an idea
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from Ref. [106]: When imagining the helical waveguide to be wound around a cylinder, it
is possible to "cut" the cylinder along the axial direction and "unroll" it onto a plane as
shown in Fig. 5.3. We point out that this unrolling is only possible in the limit of weak
coiling, i.e., if the radius of curvature of the helix is much larger than the radius of the
core (κ̄rc � 1). Otherwise, the side of the waveguide facing away from the cylinder is
much longer than the side facing towards the inside preventing the unrolling. The weak
coiling approximation is valid for all investigated waveguides up to arbitrary twist rates
since κ̄rc < rc/ρ < 0.13 � 1.

(a) (b) OverfeltFrenet-Serret Helicoidal

2πρ

P
ψ

2rc

2r c
x

2πρ 2πρ

2rC
ψ ψ

2rc

2r c
x

Figure 5.3: Approximation for the xy cross section of the investigated helical waveguides
as ellipses. When imagining the waveguides to be placed on the surface of a cylinder (a),
the surface can be cut along the orange dashed line and unrolled onto a plane (b), provided
that the waveguides are weakly coiled (κ̄rc � 1). The waveguides are tilted by an angle ψ,
giving rise to elliptical cross sections in the xy plane with semi-axes rx

c and ry
c , as long as

2rx
c � 2πρ. ry

c points into the plane and is equal to rc for all three waveguides. In its
defining coordinate systems, each waveguide has a circular cross section with radius rc.

Noting that the waveguides are tilted by an angle ψ = tan−1(αρ) from the z axis after
unrolling, it is possible to describe the cross sections of the waveguides in the xy plane by
an ellipse. One axis of the ellipse is perpendicular to the surface of the cylinder and its
length ry

c is equal to the radius rc of the circular cross section defined in the corresponding
coordinate system. The length of the other axis rx

c can be calculated by trigonometry from
the sketches in Fig. 5.3(b), yielding the values listed in Table 5.1.

To be precise, the so-obtained cross section would now have to be "attached" back onto
the cylinder which deforms the ellipse according to the curvature of the cylinder (see right
panels in Fig. 5.2). However, this step would generate a more difficult shape and is not
required as long as the length of the ellipse along the azimuthal direction (here 2rx

c ) is
much smaller than the circumference (2rx

c � 2πρ). In this thesis waveguides up to twist
rates of 20/mm were simulated, where 2rx

c < 7.3 µm � 2πρ ≈ 88.0 µm, such that the
approximation of the cross sections as ellipses is valid.
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Table 5.1: Semi-major and semi-minor axes of the elliptical xy cross sections of the three
helical waveguides in the weak-coiling approximation, and provided that 2rx

c � 2πρ. rc is
the radius of the core defined within each of the coordinate systems.

Semi-axis Frenet-Serret Helicoidal Overfelt

rx
c

√
1 + (αρ)2 rc rc αρ rc

ry
c rc rc rc

5.2 Transformation of Effective Index to Lab Frame
The results returned by the mode solver are the fields in the xy plane at z = 0 and the
effective index nHelical

eff such that the fields F̃ in the helicoidal coordinate system satisfy [104]:

F̃(ξ1, ξ2, ξ3) = eikξ3 nHelical
eff F(ξ1, ξ2). (5.1)

We apply a coordinate transformation to evaluate the fields in Cartesian coordinates at
z 6= 0 which subsequently allows to display all modal quantities within the NB plane.
Step-by-step instructions are available in Appendix B.

When transforming the fields to Cartesian coordinates, the fields develop an addi-
tional z dependent phase factor which we refer to as the transformation phase (cf.
Appendix B.1.1). We show that the transformation phase only increases linearly in z un-
der specific conditions. Most importantly, the following conditions have to be satisfied:
(1) the electric field is circularly polarized with spin s = ±1, and (2) its spatial phase
profile is flat or has an OAM profile with an eilφ phase dependence. In this case it is
possible to define an effective index nLab

eff , such that the phase of the fields measured in the
lab frame increases as eikz nLab

eff with:

nLab
eff = nHelical

eff + (s+ l)αλ2π . (5.2)

This equation holds both for off-axis twisted waveguides and on-axis twisted waveguides
and matches with earlier derivations valid for on-axis twisted waveguides [104] and off-axis
twisted waveguides [122] that were derived based on different approaches. Compared to
these earlier derivations, we can also treat cases where the modes feature a noncircular
polarization state and find that the transformation phase does not increase linearly in
z in this case. More intuitively, these phase changes are caused by the rotation of the
polarization ellipse, following the twist of the waveguide. For example, if the short axis
of the polarization ellipse points along the x direction at z = 0, it will point along the y
direction at z = P/4. This effect is unique to modes in twisted waveguides as the polari-
zation state of an eigenmode in a straight waveguide does not change during propagation.
The definition of an effective index in the lab frame for such elliptically polarized modes
might therefore give the wrong impression, that they could couple to a mode in a straight
waveguide with the same effective index. Keeping these caveats in mind, we still apply
Eq. 5.2 to all results for better comparability.
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5.3 Analytical Description of Frenet-Serret Waveguides
To prepare for the interpretation of the FEM simulation results in Section 5.4, we first
need to understand why off-axis twisting has an impact on the optical properties of a
mode. To this end, we turn to a model that has been developed by Alexeyev and Yavorsky
based on perturbation theory in 2008 [122]. Their theory describes the optical properties
of Frenet-Serret waveguides - the simplest of the three waveguides types - and is based on
three assumptions:

1. The radius of curvature of the helix is small compared to the radius of the core:
rcκ̄ � 1 (weak coiling approximation).

2. The fields are transverse in the Frenet-Serret frame and can be described by the
scalar wave approximation. This approximation is valid for fibers with low index
contrast: ∆ = n2

Core−n2
Cladding

2n2
Core

� 1.

3. The torsion τ of the helix can be treated as a small parameter.
Formulating the scalar wave equation in the Frenet-Serret frame introduces a new set of
operators V̂i compared to the operator Ĥ0 of the untwisted system:

(Ĥ0 + V̂0 + V̂1 + ...) |Ψ〉FS = β2
FS |Ψ〉FS , (5.3)

where |Ψ〉FS denotes the two transverse components of the field and βFS the propagation
constant, both given in the Frenet-Serret frame. Expression for the operators can be found
in Ref. [122]. Under the assumptions given above, the additional operators V̂i can be
treated as small perturbations of the untwisted system. Using first-order perturbation
theory, the twist-induced corrections to the propagation constant can be calculated. The
dominant term is caused by the operator V̂0, which reads:

∆βFS = (s+ l)τ. (5.4)

This simple result implies that any waveguide forcing photons to move along a non-planar
path (which therefore has torsion) results in a twist-induced splitting of the effective modal
index proportional to the total angular momentum s+ l. For helical trajectories, the effect
is particularly simple due to the constant torsion of a helix.

The splitting can result in modes with different total angular momentum to have the
same effective index at a certain twist rate. In this case, Alexeyev and Yavorsky showed
that coupling between modes with a difference in total angular momentum of i can be
provided by the higher-order operators V̂i. This coupling is of interest for mode conversion
applications [292] but is not studied further here.

The result can be converted to the helicoidal coordinate frame by noting that the helix
is parametrized by the arc length in the Frenet-Serret frame while it is parametrized by
the z distance in the helicoidal frame:

nHelical
eff =

(
n0 + (s+ l)τ

k0

)√
1 + α2ρ2, (5.5)
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where n0 is the effective index of the mode in the untwisted waveguide. Note that the sign
of τ is negative for a left-handed helix. To get a better understanding of the magnitude
of the twist-induced splitting, the result can further be converted to the lab frame using
Eq. B.26:

nLab
eff = n0

√
1 + α2ρ2︸ ︷︷ ︸

Geometric increase
in path length

+ (s+ l) α
k0

(
1 − 1√

1 + α2ρ2

)
︸ ︷︷ ︸

Spin-orbit (s) and
orbit-orbit (l) interaction

. (5.6)

This result is valid when the modal field is circularly polarized and has a flat or OAM
phase profile (see Appendix B.1.3). The fact that the signs of τ and α are opposite was
used. For small twist rates αρ � 1 the result can be simplified showing that the splitting
of modes with different total angular momentum increases strongly with twist rate and
helix radius:

nLab
eff = n0

√
1 + α2ρ2 + (s+ l)ρ

2α3λ

4π for αρ � 1. (5.7)

For high twist rates, the splitting increases linearly in α:

nLab
eff = n0

√
1 + α2ρ2 + (s+ l)αλ2π for αρ � 1. (5.8)

This important result shows that twisting a waveguide lifts the degeneracy between modes
with the same magnitude of total angular momentum but different sign. In straight step-
index fibers, these modes are degenerate (cf. Section 2.2.2) and therefore the spin and
OAM state is not conserved during propagation (minor imperfections in any real-world
waveguide lead to a coupling of the degenerate modes).

5.3.1 Berry Phase in Helical Waveguides
On a more fundamental level, the additional phase induced by the twist (Eq. 5.4) can be
seen as a consequence of the spin-orbit and orbit-orbit interaction of light in the "semi-
geometrical optics" approximation (cf. Section 2.4) [122]. As light propagates under the
influence of these interactions, it acquires a spin- and OAM-dependent Berry phase
ΦB [290, 161, 183], the photonic equivalent of the Berry phase in quantum mechanics:

ΦB = (s+ l)
∫

C
A · dk = (s+ l)

∫
S

F · dS = (s+ l)Ω, (5.9)

where C is the contour traced out by the light in momentum space, F = ∇k × A = k
k3 is

the Berry curvature for s = +1 and l = 0, and A is the Berry connection for s = +1 and
l = 0 (defined in Ref. [161]). The second and third equalities hold if C is a loop such that
S is its enclosed surface on the k-sphere (∂S = C). In this case, the Berry phase is solely
determined by the solid angle Ω of the loop that the light traces out on the k-sphere.
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For off-axis twisted waveguides, k points along the tangent T̂ of the helix which is tilted
from the z axis by a fixed angle θ with cos(θ) = 1/

√
1 + α2ρ2 (cf. Section 2.3.1). Therefore,

the trajectory of the light traces out a solid angle Ω = 2π(1 − cos(θ)) after propagating
one turn in the helix. Plugging these terms into Eq. 5.9 yields the Berry phase shift after
propagating a distance z along the helix axis:

ΦB = (s+ l) 2π
(

1 − 1√
1 + α2ρ2

)
z

P
(Berry phase in a helical waveguide). (5.10)

The resulting correction to the effective index of the modes δn can be calculated from
δn = ΦB/(zk0) and coincides with the lab frame result obtained earlier (second term in
Eq. 5.6).

5.4 Simulation Results for Optical Properties of He-
lical Waveguide Geometries

With these preparations, we start analyzing the twist-rate-dependent optical properties of
the three helical waveguides. Modes were calculated numerically using a commercial FEM
solver (JCMwave) which directly supports calculations in the helicoidal coordinate system.
To this end, the approximation of the xy cross sections as ellipses with the parameters of
Table 5.1 was used.

Based on the 3D-nanoprinted waveguides reported in Chapters 4 and 6, and a recent
realization of helical waveguides with this technique [102], we chose the refractive index n
of the waveguides as that of the photoresist defined in Eq. 3.9. Specifically, the simulations
were conducted at a wavelength of λ = 770 nm, and a refractive index of the core of
nco = 1.5423 with a cladding made out of air (n = 1). First, we analyze multimode
variants of the three waveguides (rc = 1.8 µm), for which the resulting V number is 17.25
(number of guided modes: V 2/2 ≈ 149).

5.4.1 Fundamental Modes in Multimode Waveguides
The optical properties of the twisted multimode waveguides are very similar across a large
range of investigated twist rates (5/mm - 20/mm) since the cross sections of the waveguides
are so wide that the specific shape plays a minor role. The two fundamental modes are
circularly polarized with the wavefronts lying in the NB plane as shown in Figs. D.1
and D.3.

The real part of the effective index and the circular birefringence (difference in the real
part of the effective index between the LCP and RCP mode, evaluated in the lab frame)
match well with the analytical model of Eq. 5.6 for all waveguide types. Off-axis twisting
has two immediate consequences: (1) the effective index of the mode increases due to the
longer path that the light is traveling along the helix to reach a certain distance z (first
term in Eq. 5.6 and Fig. 5.4(a)), and (2) a splitting occurs between modes with different
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Figure 5.4: Optical properties of multimode helical waveguides (rc = 1.8 µm). (a) Twist
rate dependence of the real part of the effective mode index of the two fundamental modes
calculated in the lab frame. A darker color shade denotes the LCP mode, a lighter shade
the RCP mode. (b) Circular birefringence BC (i.e., difference between the effective index
of the two lowest-order modes). Note that for low twist rates (< 5/mm) the modes of the
Overfelt waveguide become elliptically polarized. Red dashed lines in (a,b) represent an
analytical prediction for the Frenet-Serret waveguide (Eq. 5.6).

total angular momentum (second term in Eq. 5.6 and Fig. 5.4(b)). Compared to typical
values of birefringence found in polarization-maintaining fibers (10−3 - 10−4), much higher
birefringence on the order of 10−2 can be reached at the highest investigated twist rate of
20/mm (αρ = 1.8).

Since the cross section of the Overfelt waveguide becomes infinitely narrow along the
B direction for α → 0 (see Fig. D.3), its optical properties deviate from those of the other
two waveguides for twist rates below 5/mm. Due to the narrowing of the cross section, the
two fundamental modes change from being circularly polarized to linearly polarized at low
twist rates, resulting in a larger (linear) birefringence. As the modes are more and more
localized in air, the effective index approaches 1 for α → 0.

5.4.2 OAM Modes in Multimode Waveguides
Next, we investigated the four OAM modes with |l| = 6 in the multimode Frenet-Serret
waveguide. The modes are organized in two groups, one originating from the EH5,1 mode
pair of the untwisted waveguide with a total angular momentum (TAM) of ±5 and the
other one from the HE7,1 mode pair with a TAM of ±7 [158]. As the twist rate rises,
the effective index of the modes overall increases with the same geometrical factor as
the fundamental modes (first term in Eq. 5.6 and Fig. 5.5(a)). On the other hand, the
birefringence within each mode pair is 5 or 7 times larger than for the fundamental modes,
respectively, as expected from the second term in Eq. 5.6. This larger splitting for OAM
modes is a consequence of the photonic orbit-orbit interaction term being l times as large
as the spin-orbit interaction term. Off-axis twisting therefore lifts the degeneracy of OAM
modes with the same total angular momentum, resulting in OAM birefringence. This
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Figure 5.5: OAM modes in Frenet-Serret waveguide geometry (rc = 1.8 µm). (a) Twist rate
dependence of the real part of the effective mode index in the lab frame for the four modes
with |l| = 6. The two modes with total angular momentum (TAM) of ±5 (green) stem
from the even and odd EH5,1 modes of the untwisted waveguide, while the two modes with
TAM of ±7 (orange) originate in the HE7,1 modes. (b) OAM birefringence between these
mode pairs. Note that the other pairings (+5/-7 and -7/+5) are already nondegenerate
in the untwisted case. The simulated splitting matches well with the analytical prediction
(red dashed line, Eq. 5.6). (c,d) Longitudinal component of the Poynting vector of the
modes with TAM of ±7 for a twist rate of 5/mm. Evaluating the azimuthal distribution of
the Poynting vector along a selected circle shows an increase in the intensity at the side of
the waveguide that points towards the central twist axis. This asymmetry is different for
the two modes, which might be a result of the photonic orbit-orbit interaction. Panel (d)
additionally displays the phase of the B component of the electric field with the cross
section of the waveguides shown as gray line.

effect can be used to create fibers, which preserve the OAM state during propagation.
Furthermore, twisting can induce coupling between modes, which enables twist-based mode
converters [122]. While not explored further in this study, such a coupling can be observed
for the mode pair with a TAM of ±5 at a twist rate of 2.7/mm, explaining the discontinuity
in the green curves in Fig. 5.5(a,b).
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5.4.3 Fundamental Modes in Single-mode Waveguides

To study single-mode variants of the three waveguide types, the core radius was reduced to
rc = 0.2 µm, resulting in a V number of 1.92. Contrary to the multimode case, the optical
properties of these waveguides differ strongly from each other. As the cross section is much
narrower, any change in the cross section from a circular profile affects the polarization of
the mode as shown in Fig. 5.6(d). The resulting mix of linear and circular birefringence in
the fundamental modes of the helicoidal and Overfelt waveguide can be much larger and of
opposite sign than that of the Frenet-Serret waveguide (Fig. 5.6(b)). As the cross section
of the Frenet-Serret waveguide is circular in the NB plane at all twist rates, its modes
remain circularly polarized and their effective indices are accurately described by Eq. 5.6.
Another aspect to consider is that the fraction of power located in air is also dependent
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Figure 5.6: Optical properties of single-mode
helical waveguides (rc = 0.2 µm). (a,b,c)
Twist rate dependence of the real part of
the effective mode index, the birefringence,
and the attenuation of the two fundamen-
tal modes calculated in the lab frame. A
darker color shade denotes the LCP mode,
a lighter shade the RCP mode. Red dashed
lines in (a,b,c) represent an analytical predic-
tion for the Frenet-Serret waveguide (Eqs. 5.6
and 5.12). (d) Spatial distribution of the
transverse (NB) component of the electric
field of the LCP mode at three different twist
rates. Polarization ellipses show that the field
of the Frenet-Serret waveguide (green box) re-
mains circularly polarized at all twist rates.
Helicoidal waveguide (purple box) and Over-
felt waveguide (blue box) feature elliptically
polarized eigenmodes at high or low twist rate,
respectively. The cross section of the wave-
guides is highlighted as yellow line. Note that
the modes of the Overfelt waveguide could not
be calculated for twist rates below 5/mm due
to very high loss and low confinement in the
core (blue dots in a,b,c and blank field in d).
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on the shape of the cross section. For example, the fraction of power in air is increased at
small twist rates (αρ � 1) for the Overfelt waveguide, and at large twist rates (αρ > 1)
for the helicoidal waveguide, which results in a reduction of the effective index (Fig. 5.7
and Fig. 5.6(a)).

+

Figure 5.7: Twist rate dependence of the frac-
tion of power present inside the core calculated
for the single-mode helical waveguides geome-
tries indicated in the legend. The power in-
side the core was calculated by integrating the
T component of the Poynting vector over the
area of the core in the NB plane. It was normal-
ized by the integral over the complete simula-
tion region as shown in the inset. A darker color
shade denotes the LCP mode, a lighter shade the
RCP mode. Note that the modes of the Over-
felt waveguide could not be calculated for twist
rates below 5/mm due to very high loss and low
confinement in the core (blue dots).

As expected from the analytical formula for the cross sections of the waveguides (Table 5.1),
the properties of the Frenet-Serret waveguide converge with those of the helicoidal wave-
guide for low twist rates and with those of the Overfelt waveguide for high twist rates. The
propagation loss of the waveguides will be discussed below in Section 5.6.

5.5 Effects of Bending on Modes in Helical Wave-
guides

5.5.1 Fundamental Modes in Multimode Waveguides
Next, we studied the spatial properties of the modes in more detail with an overview avail-
able in Appendix D. Regarding the intensity distributions of the fundamental modes in the
multimode waveguides, twisting has two effects: (1) the mode profile becomes narrower
and (2) it shifts away from the twist axis. These effects are shown in Fig. 5.8(a,b) for
the Frenet-Serret waveguide and in Fig. D.3 for the helicoidal and Overfelt waveguides.
Both effects are well known from fiber bends in a two-dimensional plane as the radius of
curvature decreases [293]. If the bent waveguide is approximated as a circle with a radius
of curvature R, it can be mapped to a straight waveguide using a conformal transfor-
mation [294]. This mapping results in a modified refractive index profile that increases
approximately linear (for R � rc) across the waveguide and cladding: n ≈ n0 (1 + x/R),
where x = 0 corresponds to the center of the waveguide and n0 is the refractive index pro-
file of the waveguide before bending [295] (see Fig. 5.9). More intuitively, as the mode has
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Figure 5.8: Spatial properties of modes in the multimode Frenet-Serret waveguide depicted
in the TNB frame. (a) Distribution of the T component of the Poynting vector (i.e.,
tangential to the helix) of the LCP mode at four different twist rates. At increasing twist
rate, the waveguide becomes bent such that the center of the mode moves to larger radii,
i.e., away from the twist axis. A line cut of these distributions along the N direction
through the center of the waveguide is shown in (b). The zoomed inset shows that the
RCP mode (brown) moves further outwards than the LCP mode (green), potentially a
consequence of the photonic spin Hall effect. (c) At a high twist rate of 20/mm, the
Poynting vector develops a transverse component pointing in the negative B direction for
both LCP and RCP modes. (d) The spin vector of the electric field sE also develops a
transverse component that points in opposite directions for the two polarizations. The
magnitude of sE is equal to the third component of the Stokes vector S3.

to propagate a larger distance on the outside of the bend than on the inside, the mapped
refractive index increases away from the center of curvature. The reason for the observed
shift of the modal patterns towards the region of higher index can be seen when noting that
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Figure 5.9: Description of bent waveguides. The wavefronts in the bent waveguide (orange)
are perpendicular to the propagation direction (gray arrow) resulting in the effective index
(red) decreasing towards the outside of the bend. Equivalently, the waveguide can be
described as a straight waveguide (right panel) with a refractive index profile that increases
away from the center of curvature. Idea for figure is taken from Ref. [296].



5.6 Loss in Helical Waveguides 105

the scalar wave equation is equivalent to the time-independent Schrödinger equation [133]
for a potential equal to −n2. Consequently, the mode moves to larger radii to minimize its
"energy". For helical waveguides, the radius of curvature of the bend is given by R = 1/κ̄,
which decreases with increasing twist rate.

5.5.2 OAM Modes in Multimode Waveguides
While twisting strongly impacts the effective index of OAM modes, its impact on the
mode profile is much weaker than for the fundamental mode. Contrary to the fundamental
modes, the center of the modes with |l| = 6 does not shift away from the twist axis as
shown in Fig. 5.5(d). This is to be expected since the effect of bending on the mode profile
is known to decline as the mode order increases [293, 297]. What is typically observed for
OAM modes in bent fibers is that the angular intensity distribution is slightly nonuniform
with a peak on the side facing away from the center of curvature [293, 297, 298]. However,
the OAM modes in the twisted Frenet-Serret waveguide peak on the side facing towards
the twist axis as shown in Fig. 5.5(c). This asymmetry must therefore be purely related
to the twist.

5.5.3 Fundamental Modes in Single-mode Waveguides
The intensity distribution of the modes in the single-mode Frenet-Serret waveguide remains
virtually unaffected by twisting due to the confinement provided by the high index contrast
as shown in Fig. 5.10(a). For systems with a lower index contrast, a shift of the center
of the mode would be expected [293] similar to what has been discussed above for the
multimode system.

5.6 Loss in Helical Waveguides
Propagation loss in off-axis twisted waveguides is different from the loss of the correspond-
ing untwisted waveguide for two reasons: (1) The geometric path length to reach a certain
axial distance z is increased because the light is traveling along a helical trajectory, and (2)
additional loss arises from bending. The geometric factor effectively increases the intrin-
sic loss γ0 of the untwisted waveguide, which might be present due to surface roughness
or material absorption. We denote the associated attenuation coefficien3 for the twisted
waveguide as γgeo:

γgeo = γ0

√
P 2 + (2πρ)2

P
= γ0

√
1 + α2ρ2. (5.11)

Bend loss of optical fibers has been studied extensively for situations where the weak
guidance approximation is satisfied (∆ � 1), the modal field inside the twisted core is the

3The attenuation coefficient is defined via the relation I(z) = I(0) exp(−γz), where I denotes the
optical power.
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same as in the straight fiber, and the radius of curvature is much larger than the radius
of the core (R � rc) [131, 299]. More advanced models exist if one or more of these
assumptions are not satisfied [293, 300, 301]. Here, we use the model from Ref. [131] that
is valid when all three assumptions are met and includes a correction factor taking into
account that the bends do not lie within a flat plane but occur along a helical path. In
this case, the attenuation coefficient γbend is given by [291]:

γbend =
√
π

2rc

V 2
√
W

U2

√
rc

R
e− 4

3
R
rc

W 3∆
V 2

(
1 − 1

2(αρ)2 + 3
32(αρ)4

)
︸ ︷︷ ︸

correction for helical bend

, (5.12)

where V = 2π(n2
co − n2

cl)rc/λ is the V number, ∆ = (n2
co − n2

cl)/(2n2
co) = 0.29 is the

refractive index contrast and R = 1/κ̄ is the radius of curvature of the helix. U(V ) and
W (V ) are numerical solutions to a transcendental equation characterizing the mode and
can be obtained from Ref. [131]. For the single-mode Frenet-Serret waveguide, one has
V = 1.92, U = 1.50, and W = 1.20 and for its multimode version V = 17.25, U = 2.27,
and W = 17.10. Note that the mode profile of the multimode waveguide changes as the
twist rate increases, thus Eq. 5.12 is only approximately valid.

The resulting bend loss γbend is shown for the Frenet-Serret waveguide in Fig. 5.6(c),
matching well with the simulated data. Interestingly, bending strongly affects the loss of
the single-mode waveguide as the twist rate increases while it remains negligibly low for
the multimode variant (below 2 × 10−24dB/mm at the highest investigated twist rate).
As the simulated loss of the multimode waveguides is below the noise level of the solver,
it is not shown. This difference in bend loss can be understood based on the conformal
transformation method described above. Since the mapped refractive index profile increases
away from the center of curvature, at some distance from the waveguide - the caustic
boundary - the mapped index of the cladding is higher than that of the core mode and
the field becomes radiative due to the absence of total internal reflection [295]. As the
field of the multimode waveguide remains well confined within the core, its amplitude at
the caustic boundary is very low. In the single-mode waveguide on the other hand, a
much larger fraction of the field is present inside the cladding, thus explaining the notable
difference in bend loss.

The geometric contribution to the loss γgeo was not analyzed in this study because the
material of the waveguide was assumed to be lossless (γ0 = 0). Preliminary simulations
with lossy materials showed that the total loss is well described as the sum γgeo + γbend in
this case.

5.7 Twist-induced Effects on Spatial Mode Properties

5.7.1 Spin- and OAM-dependent Effects
Apart from the large shift of the center of the modes induced by bending, we also ob-
serve several spin- and OAM-dependent splittings in the spatial properties of the modes,
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summarized here for the Frenet-Serret waveguide: (1) For the multimode waveguide, the
center of the LCP and RCP modes (evaluated on the T component of the Poynting vec-
tor) are split along the N direction as shown in Fig. 5.8(b). The splitting increases with
twist rate and reaches 30 nm (about 1 % of the core diameter) for a twist rate of 20/mm.
(2) In the single-mode case, such a splitting occurs for the transverse component of the
Poynting vector SNB while a splitting cannot be observed in its longitudinal component.
The splitting reaches 50 nm (12.5 % of the core diameter) for a twist rate of 20/mm as
shown in Fig. 5.10(b). (3) For the OAM modes in the multimode variant, we observe that
the difference between the intensity on the top and bottom side of the vortex depends on
the sign of the total angular momentum. Bottom and top refers to the side facing towards
and away from the twist axis, respectively as shown in Fig. 5.5(c,d).
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Figure 5.10: Spatial properties of modes in
the single-mode Frenet-Serret waveguide.
(a) Distribution of the longitudinal (T)
and transverse (NB) component of the
Poynting vector at low (1/mm) and high
(20/mm) twist rates. The longitudinal
component remains unchanged when the
twist rate increases while the transverse
component shifts in opposite directions
along the N axis. (b) Line cut of SNB along
the N direction through the center of the
waveguide. The splitting might be a con-
sequence of the photonic spin Hall effect.
Yellow circles in (a) highlight the cross sec-
tion of the waveguides.

As a result, we hypothesize that these spin- and OAM-dependent splittings arise due
to an interplay between the confinement provided by the waveguiding structure, and the
photonic spin Hall [177, 174] and photonic orbital Hall [182, 183] effects. When light
propagates along a curved trajectory that changes on lengthscales much larger than the
wavelength, its movement can be characterized by equations of motion for the center
of gravity of the mode. These equations contain a spin-orbit [177, 161] and an orbit-
orbit [183] interaction term, that results in spatial splittings between modes with distinct
total angular momenta as described in Section 2.4. In fact, these photonic spin Hall
and orbital Hall effects are just another consequence of the spin-orbit and orbit-orbit
interaction of light [161], which so accurately describes the circular birefringence of the
helical waveguides (cf. Section 5.3.1). Therefore it is likely that these effects are at the
origin of the observed spatial splitting, although they do not apply directly to modes
confined in waveguides.
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5.7.2 Transverse Components of the Poynting and Spin Vectors
At high twist rates (> 10/mm), the fundamental modes of all investigated waveguide types
(single-mode and multimode) develop an increasingly large transverse component of the
Poynting vector SNB, shown exemplarily for the Frenet-Serret waveguide in Fig. 5.8(c) and
Fig. 5.10(a). The direction of this additional component is along the negative B direction
regardless of polarization. Similarly, the spin vector sE of the electric field contains a trans-
verse component along the B direction for high twist rates, pointing in opposite directions
for the two spin states (Fig. 5.8(d)). The evolution of these properties at different twist
rates can be found for all waveguide types in Appendix D. Transverse spin is well known
to occur in evanescent waves where its direction is independent of polarization and led to
applications involving spin-momentum locking [150, 302, 303]. The origin of transverse
spin and momentum in helical waveguides remains to be studied.

5.7.3 Elliptically Polarized Eigenmodes and Superchiral Fields
Lastly, we want to point out an effect that becomes apparent when the cross section of
the twisted single-mode waveguide is elliptical in the NB plane as it is the case for the
helicoidal waveguide. As discussed, the interplay of the linear birefringence of the core and
the circular birefringence caused by the twist results in elliptically polarized eigenmodes.
Similar to a linearly polarized mode, the modal fields are enhanced in the direction of the
long axis of the polarization ellipse. These locations differ for the electric and magnetic
field as shown in Fig. 5.11(a). In this example, the magnetic field is enhanced at the top
and bottom surface of the core, while the electric field is reduced. Combined with the fact
that the fields are still circularly polarized to a sufficient degree, such a configuration is
ideal for creating superchiral fields.
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Figure 5.11: Spatial properties of modes in
single-mode helicoidal waveguides. (a) The
elliptically polarized eigenmodes of the heli-
coidal waveguide feature a reduced electric
field on the top and bottom surface of the
waveguide (left panel) while the magnetic field
is enhanced (middle panel). This difference
results in a superchiral field with gfield being
larger than the refractive index on the outside
of the core (right panel). (b) Line cut of gfield
along the N direction through the center of the
waveguide. Yellow circles in (a) highlight the
cross section of the waveguides.

We quantify the superchirality in terms of the factor gfield (defined and explained in Sec-
tion 2.2.5), with |gfield| > n indicating a superchiral field. In brief, gfield is the enhancement
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factor of the molecular g-factor, which is typically measured in chiral sensing experiments.
Here, we found an enhancement factor of ≈ 1.4 on the surface of the waveguide. Values of
gfield for other twist rates can be found in Fig. D.4. We note that this value is lower than in
the pioneering experiment for superchiral fields, where an enhancement of around 11 was
measured [85, 121]. However, our enhancement occurs in a region of space where the field
has an appreciable intensity while the pioneering experiment was carried out in the node
of a standing wave where the intensity is low. Further research is required to optimize
the superchirality in helical waveguides (e.g., by increasing both the twist rate and the
linear birefringence), and to find a method to place molecules precisely in the regions of
superchiral field.

5.8 Discussion
The numerical results for the effective index of all three multimode helical waveguides are
in high agreement with the analytical prediction, underpinning the fact that the cause of
the circular birefringence and OAM birefringence is a purely geometrical effect inherent
to the helical path. As such, the phase difference between modes with different total
angular momentum δnLab

eff k0z does not depend on wavelength, material, and core size (cf.
Eq. 5.6). Helical waveguides can therefore find applications as broadband spin- and OAM-
preserving waveguides. More generally, any waveguide with nonzero torsion at each point
of its trajectory will be able to preserve the angular momentum state of the light.

A typical example of a Frenet-Serret waveguide is a piece of fiber helically coiled around
a cylinder, as it was used in the first experiments on helical waveguides [282, 117, 304, 289].
Helical waveguides can also be created by twisting a fiber with an off-axis core [109, 115].
Such fibers are fabricated by either spinning the preform while drawing the fiber or in a
thermal post-processing step [106]. In this situation, it is conceivable that both helicoidal
or Frenet-Serret type waveguides can in principle be created depending on the fabrication
conditions. Since both types converge to the same shape at low twist rates, a difference
would only be observable at high twist rates (αρ � 1) where fabrication inaccuracies might
play an additional role. Finally, the Overfelt waveguide might be relevant for situations
where a helical waveguide is constructed by extending a toroidal shape in the z direction
or to describe Frenet-Serret waveguides at large twist rates.

All waveguides created with planar fabrication techniques on the other hand, necessarily
have zero torsion and can therefore not exhibit circular or OAM birefringence based on ge-
ometric effects. Chip-integration of helical waveguides therefore requires three-dimensional
fabrication techniques such as 3D nanoprinting. This technique can be used to realize all
three discussed waveguide types and even provides the ability to freely choose the cross
section within the NB plane. A first realization of a 3D-nanoprinted helical waveguide was
reported in Ref. [102], albeit without providing a detailed study of the optical properties
or the geometry. While the twist rate achievable in fibers is inherently limited by the prop-
erties of the glass, 3D nanoprinting can potentially realize higher twist rates with pitch
distances down to the core diameter. With our simulations, we explored waveguides with
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pitch distances as low as 14 times the core diameter, but even lower pitch distances seem
theoretically feasible given the low bend loss in the multimode versions of the waveguides.
The study on twisted light cages following in Chapter 6 showed that twist rates of 10/mm
can be achieved experimentally, corresponding to αρ = 0.9 while a value of αρ ≈ 0.5 was
reported in Ref. [102]. Another technique that allows realizing helical waveguides on a
chip is direct laser writing, where a small refractive index modification is created in glass
by scanning of a focused femtosecond laser beam [305, 306, 307]. However, precise control
over the cross section of the waveguide proved to be challenging due to aberrations of the
focal spot inside the glass that need to be compensated [308, 309].

The study of the polarization properties of modes in helical waveguides revealed that
the shape of the cross section in the NB plane strongly impacts their optical properties if
the waveguides are single-mode. Any deviation from a circular cross section can induce
linear birefringence, thus creating elliptically polarized eigenmodes. The simple analytical
formula by Alexeyev and Yavorsky [122] is therefore not sufficient to describe the effective
index in this specific case. Instead, a recently developed theoretical model for off-axis
twisted waveguides with elliptical cross sections in the Frenet-Serret frame [103] could
be applied to predict the birefringence and polarization of the helicoidal and Overfelt
waveguide. This would require prior knowledge of the modes of an untwisted waveguide
with the same elliptical cross section.

Elliptically polarized eigenmodes also occur in on-axis twisted waveguides with an ellip-
tical cross section and were applied in creating ultranarrow (sub-megahertz) spectral dips
in stimulated Brillouin scattering [310]. The authors used that the polarization state of
elliptically polarized modes depends on the wavelength, which is another intriguing effect
that is unique to twisted waveguides.

5.9 Conclusion
In summary, this theoretical study presented comprehensive insights into mode formation
in three types of helical waveguides, named Frenet-Serret, helicoidal, and Overfelt wave-
guides. The comparison of numerical simulations and theoretical analysis revealed that the
effective index of Frenet-Serret waveguides can be accurately described by an analytical
formula by Alexeyev and Yavorsky [122] (Eq. 5.6) even if (1) the index contrast is large
(n = 1.54 to air, ∆ = 0.29), (2) the mode is not entirely transversely polarized, (3) the
mode profile changes from that of the untwisted waveguide, and (4) the twist rate ap-
proaches relatively high values. Furthermore, we discussed the propagation loss in helical
waveguides, describing it as a sum of bend loss [291] and intrinsic loss. We also provided
a novel derivation of an equation to transform the effective index from the helicoidal to
the lab frame that is valid for both on- and off-axis twisted waveguides up to arbitrary
twist rates, provided that the spatial properties of the modes fulfill certain conditions. It
is worth noting that there are cases where it is not advisable to assign such a lab frame
effective index, e.g., when the modes are elliptically polarized.
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The wavefronts of the modes in the three types of helical waveguides were found to lie
transverse to the tangent of the helix (i.e., in the NB plane), up to the highest investigated
twist rates of 20/mm. While the Frenet-Serret waveguide maintains a circular cross section
in the NB plane at all twist rates, the helicoidal and Overfelt waveguides can exhibit
elliptical cross sections, leading to non-circular polarization if the core size is small. These
elliptically polarized modes were found to generate superchiral fields on the surface of the
waveguides. Lastly, the study explored spin- and OAM-dependent splittings in the spatial
intensity distribution of the modes, showing potential links to the photonic spin Hall and
orbital Hall effects.

While the investigated waveguide geometries were determined by the properties of the
underlying coordinate systems, helical off-axis waveguides with arbitrary cross sections can
be simulated with the technique described in this work. The larger parameter space can be
used to precisely control the polarization states of the eigenmodes and optimize the genera-
tion of superchiral fields, which could lead to novel types of waveguide-based chiral sensing
devices. In the past, helical waveguides were realized by twisting glass fibers since an
implementation via planar fabrication techniques is not possible. Such helical waveguides
were mostly used for their circular birefringence, which prevents linearly polarized light
from becoming elliptically polarized in the presence of mechanical stress. This robustness
against environmental fluctuations is employed in applications such as fiber optic current
and magnetic field sensors based on the Faraday effect [311, 312, 304], or optical twist and
tension sensors [117]. However, with the potential for modern on-chip integration through
3D nanoprinting [102, 66, 211] or direct laser writing [305, 306, 307], these waveguides hold
promise for accessing new applications, including chiral spectroscopy, integrated Brillouin
lasing for ultrahigh-resolution optical sensing [310], and OAM-maintaining transport of
optical signals on a chip. On a fundamental level, exploring ultrahigh twist rates with
pitch distances close to the diameter of the off-axis core may offer insights into complex
physical effects such as strong spin-orbit and orbit-orbit interactions.



Chapter 6

Twisted Light Cages

The results presented in this chapter will soon be submitted for publication in a peer-
reviewed journal. Figures and text passages will appear in similar or identical form in
this publication.

With the working principle of light cages explained in Section 4.2 and the foundations of
twisted waveguides detailed in Chapter 5, this section presents theoretical and experimental
results on twisted light cages - the culmination of this thesis.

Support blocks

Support rings

Twisted strands P/6

Figure 6.1: Illustration of a twisted
light cage. P : helical pitch distance.
Inset: CCD image of the core mode
at λ = 600 nm.

Twisted light cages are on-axis twisted waveguides and differ in two key points from
the off-axis twisted solid-core waveguides presented earlier:

1. Light cages are hollow-core waveguides and host lossy higher-order modes. At first,
this might seem a disadvantage compared to the low loss of high-contrast solid-
core waveguides. However, the absence of loss also excludes the presence of circular
dichroism, i.e., a difference in loss between the LCP and RCP mode. Twisted light
cages, on the other hand, were found to possess strong circular dichroism by chirally
selective coupling of the fundamental core mode with a lossy higher-order core mode.

2. As explained in Chapter 4, light is guided inside the hollow core with only a very small
fraction of optical power being present inside the (potentially absorbing) material of
the waveguide. This allows high-power applications and access to wavelength ranges
where a material platform is considered too lossy for solid-core guidance, e.g., in the
technically relevant extreme ultraviolet (XUV) range [313].
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Previous works on twisted waveguides (see Table C.1 for an overview) almost ex-
clusively concern fibers (i.e., waveguides drawn from a glass preform). Here, the highest
values of circular dichroism are found in chiral fiber gratings, i.e., on-axis twisted solid-
core fibers with a non-circular cross section [91, 92, 95, 96, 97] reaching values of up to
3 dB/mm [92]. Loss in these fibers stems from the coupling of the core mode to lossy
cladding modes. Due to the simple geometry of these fibers (a single core embedded in
a homogeneous cladding), very high twist rates can be achieved, typically implemented
by spinning the fiber in a thermal post-processing step. The highest reported twist rate
corresponds to a helical pitch distance of 24 µm [91].

However, based on the advantages of hollow-core fibers outlined above in point 2, ways
were sought to fabricate twisted fibers with more complex geometries. Using thermal post-
processing or spinning of the preform during fiber drawing, several variants of twisted
photonic crystal fibers (PCF) were demonstrated, albeit usually with solid cores and
without analyzing their circular dichroism [93, 94, 99, 110, 105, 106, 107, 114, 111]. A
notable exception is a study by Roth et al. from 2018, which reported a twisted hollow-
core PCF reaching a circular dichroism of 8.3 db/m [119]. However, twisting the more
complex PCF geometries proved to be challenging and achievable twist rates are limited
to about 340 µm (reported in Ref. [98]).

We show that this limitation in twist rate can be overcome by using 3D nanoprinting
and present the first comprehensive study on twisted hollow-core waveguides fabricated by
this method, attaining pitch distances down to 88 µm. (One similar work exists where a
3D-nanoprinted twisted coreless PCF segment was demonstrated (pitch distance: 200 µm)
but optical properties were not analyzed beyond imaging the intensity distribution of the
mode [101].) The measured circular dichroism in twisted light cages reached values of up
to 0.8 dB/mm - a significant improvement over the twisted hollow-core PCF of Ref. [119],
albeit at the expense of an overall higher propagation loss.

As explained in Chapter 4, a further drawback of the fiber-based twisted waveguides
is the lack of methods for automated large-scale chip integration, therefore restricting
their potential use cases. Twisted light cages, on the other hand, can be fabricated directly
on an existing photonic chip adding functionalities such as circular polarization filtering or
OAM conversion. Furthermore, applications in chiral spectroscopy or as microscopic twist-
and tension sensor can be foreseen.

6.1 Geometry and Fabrication
Fabrication via 3D nanoprinting allows the twist to be implemented already in the design
step, i.e., in the computer-aided design (CAD) file that is processed by the printer. There-
fore no additional processing steps are required compared to untwisted waveguides (these
steps are described in Section 3.2). 5 mm long light cages with four different twist rates
ranging from 0/mm to 11.4/mm were realized in this way. The fabrication parameters are
listed below in Table 6.1 while SEM and photographic images of the waveguides are shown
in Fig. 6.2(a,b).
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Table 6.1: Parameters for fabrication of twisted light cages.

Parameter Value
Slicing distance 200 nm

Hatching distance 100 nm
Acceleration of galvanometric mirror 3 V/ms2

Scanning speed 15,000 µm/s
Laser power 29 mW (setting in Describe: 58%)

The fabricated waveguides are referred to as multimode strand light cages in the
following to emphasize, that resonances between the core and strand modes can be ob-
served in their transmission spectra (which were investigated for untwisted light cages in
Section 4.2.4). As explained in the next section, twisting the waveguide induces additional
resonances between two core modes. To better investigate the origin of these resonances,
most simulations were performed for twisted light cages with single-mode strands (single-
mode strand diameter: 2rc = 0.4 µm, multimode strand diameter: 2rc = 3.6 µm). For
these single-mode strand light cages, the strand mode does not have a cut-off such
that no core-strand resonances are present at the investigated wavelength of λ=770 nm
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Figure 6.2: Geometry of twisted light cages. (a) SEM images of fabricated structures
viewed from the top. (b) Photographic image of a twisted light cage sample fabricated
on a Si-chip via 3D nanoprinting (arrow indicates position of the waveguides). (c) Cross-
sectional geometry of the multimode strand light cage including the relevant parameters
(lateral pitch distance Λ = 7 µm, strand offset ρ = 14 µm, and strand diameter 2rc =
3.6 µm). (d) Single-mode strand light cages (used in simulations only) feature a smaller
strand diameter of 2rc = 0.4 µm, which prevents any resonances between core and strand
modes. For better readability, the sketch at the bottom of (d) is used throughout the
chapter to refer to this geometry. Both geometries feature the same values of ρ and 2rc/Λ
but differ in the number of strands (12 for the multimode strand variant, 108 for the single-
mode strand variant).
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(see Fig. 6.3). To compensate for the smaller strand diameter, the number of strands was
increased from 12 to 108, such that the ratio of strand diameter to lateral pitch distance1

2rc/Λ remains the same (see Fig. 6.2(d)). This ensures that both variants feature a com-
parable propagation loss as the fraction of open space between the strands is identical (see
Fig. 6.3). Note that all simulations concern left-handed waveguides with the strand diam-
eters stated above, except when comparing the results to the experimental data presented
in Section 6.6.

-5

-4

-3

-2

-1

R
e 

(n
ef

f)-
1

 [
1

0
-4

]

Untwisted

(a)

(b)

600 700 800

10-2

10-1

100

101

2rc=0.4μm

2rc=3.6μm

L
o

ss
 [

d
B

/m
m

]

Wavelength [nm]

Selected wavelength

Figure 6.3: Comparison between multi-
mode and single-mode strand light cages.
Spectral distribution of the real part of
the effective index (a) and attenuation (b)
of the fundamental mode of the untwisted
waveguides. The single-mode strand light
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in a transmission band of the multimode
strand light cage (purple). Insets in (b)
depict the geometries (individual strands
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Regarding the specific geometry, twisted light cages are on-axis twisted waveguides,
i.e., the hollow light-guiding core is centered on the twist axis. The polymer strands
that form the cladding, on the other hand, are off-axis twisted waveguides providing a
link to the results obtained in Chapter 5. Of the three analyzed off-axis twisted waveguide
geometries, the Frenet-Serret type seems the best choice at first. This would ensure that the
cross section of the strand modes is circular in the plane perpendicular to their propagation
direction (i.e., the tangent of the helical path). However, we chose the strands to be of the
helicoidal type, meaning that their cross section is defined to be circular in the xy plane
(see Fig. 6.2(c)). Two thoughts guided this choice:

1. 3D nanoprinting of a geometry containing several circles in the xy plane is most ro-
bust against fabrication inaccuracies as the printer operates on a Cartesian grid (i.e.,
the variation of the cross section between individual strands is minimal). Implement-
ing strands of the Frenet-Serret type would require the cross sections to be elliptical

1The ratio 2rc/Λ (usually referred to as d/Λ) is an important structural parameter in PCFs since it
remains constant during the fiber drawing process (it is the same in the preform as in the finished fiber).
More importantly, the parameter has been shown to determine the maximal number of modes present in
a solid-core PCF [314].
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in the xy plane, be tilted with respect to each other, and feature a twist-rate depen-
dent ellipticity (cf. Table 5.1). Keeping in mind that the shape of the 3D-nanoprinted
voxel is also elliptical2, it is more challenging to ensure that all strands have identical
properties with this geometry - an open task for future works.

2. Fabricated samples feature strand diameters corresponding closely to the multimode
strands analyzed in Section 5.4.1. In this case, the difference in optical properties
between the helicoidal and Frenet-Serret waveguides was found to be minimal.

6.2 Origin of Circular Dichroism
The untwisted single-mode strand light cage does not allow resonances between the core
and strands to form. Yet, when twisting the structure and simulating the optical properties
at a fixed wavelength, resonances appear at certain twist rates as shown in Fig. 6.4(a,b).
Some of these resonances are achiral resonances, i.e., they affect the RCP and LCP
fundamental mode in the same way. Others are chiral resonances such that only one
of the two modes features an increased loss while the mode of the opposite handedness is
unaffected, thus giving rise to circular dichroism.

By analyzing the real part of the effective index we find that the resonances are caused
by coupling of the fundamental core mode with a lossy higher-order core mode and occur
whenever:

1. The effective refractive indices nHelical
eff of the two modes match.

2. The total angular momentum j of the modes differs by an integer multiple of n,
where n is the order of the rotational symmetry of the waveguide cross section Cnz

(n = 6 for light cages).

To note here is that the analysis is performed in the helicoidal coordinate frame. The
strong splitting in nHelical

eff between modes of the same OAM order |l| is therefore not a
physical effect but merely caused by the rotation of this coordinate frame relative to the
lab frame (see Ref. [104] and Appendix B). The splitting that remains when transforming
the results to the lab frame is about three orders of magnitude smaller as shown later in
Section 6.4. When neglecting these marginal deviations (i.e., assuming that the effective
index evaluated in the lab frame does not depend on twist rate), Eq. B.16 can be used to
describe the index of the modes in the twisted frame:

nHelical
eff ≈ nl,m

eff

∣∣∣
α=0

− (s+ l)αλ2π , (6.1)

where nl,m
eff

∣∣∣
α=0

is the effective index of a mode with azimuthal order l and radial order m
in the straight waveguide. Eq. 6.1 is shown as gray dashed line in Fig. 6.4(a) and allows to
predict the twist rates (or wavelengths) at which the indices of two modes intersect based

2A voxel is the volume polymerized by a point exposure (cf. Section 3.2). In the xy plane it has an
elliptical cross section with the half-axes aligned along the x and y axis.
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Figure 6.4: Theory of twist induced resonances in single-mode strand light cages. (a) The
real part of the effective index of the fundamental core modes (l = 0) intersects with that
of higher-order core modes (l 6= 0) at certain twist rates. Coupling occurs if the difference
in total angular momentum between the modes ∆j = ∆s + ∆l is equal to 6q, q ∈ Z.
The first achiral resonance (∆s = 0, ∆l = 6) is shown on the left panel, while the right
panel depicts the modes involved in the first chiral LCP resonance (∆s = +2, ∆l = 4),
and first chiral RCP resonance (∆s = −2, ∆l = 8). The analysis is performed in the
helicoidal frame which causes a splitting between modes along the gray dashed lines given
by Eq. 6.1. The results for the fundamental modes are identical in the right and left panel
of (a,b). Curves for the higher-order modes in (b) are only shown near the resonance to
improve clarity. (c) Distributions of Poynting vector Sz, phase of Ex, and third component
of Stokes vector S3 for four pairs of the fundamental mode and the relevant higher-order
mode at twist rates indicated by the gray arrows. At chiral resonances, the spin state
of the oppositely polarized modes mixes to allow coupling (four panels in bottom right
corner). As a side note, the spiraling features in the phase patterns are explained in
Appendix E.1. The wavelength is 770 nm and scale bar in (c) denotes 10 µm. The two
remaining resonances between twist rates of 1 - 1.5/mm are analyzed in Fig. E.2.
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purely on the knowledge of the modes in the untwisted waveguide. Therefore, resonances
between the fundamental modes (l = 0, s = ±1, m = 1, j = l+ s) and higher-order modes
(l̃, s̃, m̃, j̃) can be calculated by the two conditions:

α∆j = k0(n0,1
eff − nl̃,m̃

eff ),
∆j = 6q for q ∈ Z,

(6.2a)
(6.2b)

where ∆j = j − j̃ is the difference in total angular momentum between the modes. Note
that the right-hand side of the Eq. 6.2a is always positive, which imposes a condition on
the sign of q. For left-handed waveguides α and q are positive, such that the resonances
are caused by higher-order modes with j̃ < 0.

Eq. 6.2a effectively describes a diffraction grating as used in the context of fiber
gratings [315]. This is to be expected since twisting introduces a periodic modulation
along the propagation direction, thus acting as a grating. The left side of the equation
is the grating wavevector for a period length P/6 and diffraction order q, and the right
side describes the wavevector mismatch between the modes (see Fig. 6.5). This transfer
of linear momentum can occur both in twisted waveguides and untwisted waveguides
with a periodic index modulation. Eq. 6.2b, on the other hand, describes a transfer
of angular momentum mediated by the twisted structure, which does not occur in
untwisted waveguides.

k0neff
0,1

k0
 

neff
l,m

2π
P/6

q

P/6

Fundamental mode

Higher-order mode

(a)

(b)

Figure 6.5: Interpretation of twisted waveguides
as gratings. (a) Side view of a twisted light cage
with 6-fold rotational symmetry. Its cross sec-
tion repeats after a distance P/6 although each
individual strand features a helical pitch distance
P . (b) Wavevectors involved in coupling of two
core modes. The grating vector of the twisted
waveguide (orange) mediates the phase matching.
Note that the spin- and OAM-selectivity is hid-
den in the order q, as the grating can only couple
modes with ∆j = 6q.

The origin of the selection rule ∆j = 6q (Eq. 6.2b) can be understood based on
the symmetry of the modes of the untwisted waveguide [104]. For circularly symmetric
systems (e.g., round step-index fibers), modes are eigenstates of the angular momentum
operator with the eigenvalue j being an integer. However, the rotational invariance is
broken in light cages due to their hexagonal cross section. In general, a lower Cnz rotational
symmetry implies that modes need to be constructed as a superposition of eigenstates of
the angular momentum operator with integer eigenvalues j0 + nq ∀ q ∈ Z [104]. These
angular momentum harmonics therefore allow a mode with a certain dominant angular
momentum j0 (in previous equations simply referred to as j) to couple to all modes with a
dominant angular momentum of j0 +nq. Without these harmonics, such a coupling would
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not be possible because the eigenstates of the angular momentum operator are mutually
orthogonal. To further corroborate this argument, the fundamental mode of the light cage
will be decomposed into its OAM eigenstates in Section 6.3.

With this model in place, we can answer the question why some of the twist-induced
resonances are achiral and others are chiral. The required condition ∆j = ∆s + ∆l = 6q
can be achieved in two ways. For ∆s = 0, ∆l = 6q, both the LCP and RCP fundamental
mode couple to the corresponding higher-order modes with l̃ = −6q at the same twist rate,
thus resulting in an achiral resonance. When a fundamental mode couples to a higher-order
mode of opposite spin (∆s = −2, ∆l = 6q + 2 or ∆s = +2, ∆l = 6q − 2), the resonances
of the LCP and RCP fundamental mode occur at different twist rates resulting in chiral
resonances (see Fig. 6.4(a)).

One might now ask, why modes of different spin angular momentum s are allowed
to couple as these states are mutually orthogonal in free space. This can be resolved
when noting that each eigenstate of the angular momentum operator with eigenvalue j
does not necessarily contain just one spin state. In fact, even in round step-index fibers,
the fundamental HE1,1 mode with angular momentum j = 1 is a superposition of three
states: a dominant contribution with s = 1 and OAM l = 0, and two minor contributions3

with (s = −1, l = 2) and (s = 0, l = 1) [316]. The letters s and l used throughout the
manuscript refer to the dominant contribution, while the weaker contributions enable the
coupling between modes carrying different labels s. Near chiral resonances, hybrid modes
containing both spin states form as shown in the lower row of Fig. 6.4(c).

The coupling conditions Eqs. 6.2a and 6.2b have first been derived for q = 1 in the
context of chiral fiber gratings (i.e., on-axis twisted solid-core fibers) using first-order per-
turbation theory [292, 123]. While our derivation can successfully predict the spectral
locations of twist-induced resonances, a perturbative approach would give access to addi-
tional details like the hybridization of modes and the formation of anti-crossings in the
real part of the effective index. To our knowledge, Eqs. 6.2a and 6.2b have not yet been
derived in the context of higher-order perturbation theory (i.e., for arbitrary values of q) for
on-axis twisted waveguides. Nevertheless, a conceptual outline for the use of higher-order
perturbation theory was developed for off-axis twisted waveguides [122]. As an alterna-
tive, the details of mode coupling in twisted waveguides could potentially be analyzed
using coupled mode theory, which was introduced for straight waveguides in Section 2.1.3.
However, the stated mode coupling equations in Cartesian coordinates (Eq. 2.14) are not
directly applicable to twisted waveguides, as the differential operators take on a different
form in helicoidal coordinates since the system is not orthogonal [173], which complicates
the derivation. An attempt without taking these changes into account can be found in
Ref. [317] but is likely only applicable at low twist rates. Lastly, we note that Eqs. 6.2a
and 6.2b have previously been validated for resonances occurring in on-axis twisted PCFs,
that are caused by a coupling between core and cladding modes [318]. Our work addi-
tionally demonstrates the applicability to resonances caused by coupling between two core
modes.

3The contribution with s = 0 arises from the field component along the longitudinal direction.
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6.3 Angular Momentum Selection Rule
As stated in the previous section, modes in light cages contain angular momentum har-
monics of the form j0 + 6q ∀ q ∈ Z, where j0 is the dominant angular momentum [104].
To confirm this theoretical statement, we analyze the OAM distribution of the RCP
fundamental mode of an untwisted light cage with j0 = −1. To this end, the mode is
decomposed into Bessel beams of radial order p and azimuthal order l, where l corresponds
to the (integer) OAM order of the Bessel beam as explained in Section 2.2.2. Some rele-
vant Bessel beam basis functions are shown in Fig. 6.6(a). The result of this analysis is a
probability distribution |al,p|2, that - when summed over the radial order p - denotes the
probability for finding a photon with angular momentum l in the analyzed mode of the
light cage. This distribution is expected to contain OAM harmonics of the form l = 6q
with s = −1, and l = 6q−2 with an opposite spin s = +1. While polarization was not ana-
lyzed here, the distribution of OAM harmonics shown in Fig. 6.6(d) matches this expected
pattern. Furthermore, the decomposition shows that contributions with l = 6q− 2 feature
relatively weak amplitudes explaining why the coupling strength in chiral resonances is
lower than in achiral resonances. Looking at the effective modal index shown in Fig. 6.4, it
is clear that chiral resonances arise from weak coupling (on resonance the real part of the
two modes is identical while there is a gap in the loss), while modes are strongly coupled
in achiral resonances (on resonance, a gap opens in the real part of the effective index
while the loss is identical for both modes). Weak and strong coupling are differentiated
based on whether the coupling strength is smaller or larger than the losses, respectively,
as described in Section 2.1.3.

Convergence of the decomposition was checked by computing the sum of all prob-
abilities, yielding ∑l

∑
p |al,p|2 = 1 − 3.5 × 10−5. The maximal order of p was chosen such

that any further rise in p would increase the sum of probabilities by about the same amount
as a further rise in the maximal value of |l| (see Fig. 6.6(c,d)). A further choice that has to
be made is the value of R0, which is the radius of the circle, on which the Bessel functions
are defined. Changing R0 mostly changes the amplitude distribution among the different
radial orders p but has little impact on the OAM distribution ∑p |al,p|2. To minimize the
impact of this ambiguous choice, all further OAM decompositions are performed for 10
different values of R0 ranging from 13 to 16 µm. The resulting standard deviations are
shown as error bars in Fig. 6.7 and indicate an increasing error for larger values of |l|.

The - now verified - angular momentum selection rule (Eq. 6.2b) provides a direct
link between the rotational symmetry of the waveguide and the number of allowed
resonances. To emphasize this point, additional simulations were performed for a geometry
where the 108 strands of the single-mode light cage are arranged in a circle instead of a
hexagon, resulting in a C108z rotational symmetry. Indeed, the OAM decomposition of
the fundamental LCP and RCP modes shown in Fig. 6.7(b) indicates that the first OAM
harmonics occur only for |l| = 108 and |l| = 108 ± 2 (for the respective contributions of
opposite spin). The lower number of OAM harmonics in the untwisted structure directly
translates into a reduction in the number of twist-induced resonances. In fact, resonances
are completely absent for the round structure in the range of investigated twist rates of
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Figure 6.6: Decomposition of a mode into Bessel beams for analyzing its OAM content.
(a) The electric field Ex of the RCP fundamental mode of an untwisted single-mode strand
light cage (left panel) can be decomposed into a series of Bessel beams Ψlp with amplitudes
al,p according to Eq. 2.32 (right panels). Ψlp is defined within a circle of radius R0 (yellow
dashed line) with values on the boundary being 0. Field values outside of this circle are not
analyzed. (b) Distribution of |al,p|2 up to |l| = 30 and p = 60 for the mode shown in (a).
(c,d) Summing |al,p|2 over l or p shows the convergence of the decomposition procedure.
The sum over all squared amplitudes is close to 1 indicating a good fit (c).

0-3.5/mm (see Fig. 6.8(c)). Next, we analyzed the effect of twisting on the OAM
distribution (so far only untwisted waveguides were discussed). For left-handed twisted
waveguides, the amplitudes of the negative OAM orders increase, both for the hexagonal
and round light cage (see lower row in Fig. 6.7(b)). Calculating the average OAM of
the RCP modes based on the OAM distribution yields l̄ = −1.9 × 10−6 for the untwisted
hexagonal light cage and l̄ = −3.6×10−4 for a twist rate of 3.5/mm. A possible explanation
for this relatively small effect might lie in modal hybridization. As previously discussed and
shown in Fig. 6.4, only modes with negative OAM are able to couple to the fundamental
mode for left-handed twist, while the index difference to the modes with positive OAM
increases. Therefore, even away from resonances, the fundamental mode will always be
- to a small extent - hybridized with modes carrying negative OAM, thus explaining the
shift of the OAM distribution.
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Figure 6.7: OAM decomposition of modes in a hexagonal (left panels) and a round (right
panels) single-mode strand light cage. (a) Electric field of fundamental RCP modes at the
indicated twist rates. Light blue lines denote the geometries, both including 108 strands
(strands are not shown individually for readability). (b) OAM decomposition for the RCP
(brown) and LCP (blue) fundamental modes. Both LCP and RCP modes contain dominant
OAM contributions equal to integer multiples q of 6 (hexagonal geometry, left panels) or
108 (round geometry, right panels). Overlapping bars from RCP and LCP modes result
in gray color. Smaller contributions of l = 6q ± 2 are also present, which are likely of the
opposite polarization, such that j = 6q in all cases. Twisting shifts the average of the
OAM distribution towards negative values for a left-handed twist (lower panels in b).

6.4 Origin of Circular Birefringence
Apart from circular dichroism, on-axis twisted waveguides are known to be circularly bire-
fringent, although typically weaker than the previously discussed off-axis twisted wave-
guides (cf. Section 5.4.1). To evaluate the measurable circular birefringence, the
real part of the effective index is transformed back to the laboratory frame by Eq. B.16
using the dominant values of s and l. As the amplitudes of the OAM harmonics are several
orders of magnitude smaller, they can be neglected in this transformation. Circular bire-
fringence BC is then calculated as the difference in effective index nLab

eff between the LCP
and RCP mode. BC increases from 0 in the untwisted waveguide to 7.5 × 10−6 at a twist
rate of 3.5/mm (Fig. 6.8). This value is similar to circular birefringence in commercially
available spun optical fibers [112] and is therefore sufficient to ensure robust propagation
of circularly polarized light. The polarization direction of linearly polarized light would be
rotated by an angle θ = BC πz/λ ≈ 9◦ for a waveguide length of z = 5 mm.



6.4 Origin of Circular Birefringence 123

-3.0

-2.5
R

e
(n

e
ff
)-

1
 [

1
0

-4
]

 l=0 (RCP)
 l=0 (LCP)Lab frame

(a)

0.0

0.5

 Analytical model
 Simulation

B
C
[1

0
-5

]

(b)

0 1 2 3

0.1

1

10

L
o
ss

 [
d
B

/m
m

]

Twist rate [#/mm]

(c)

-2.5

-2.0

 l=0 (RCP)
 l=0 (LCP)Lab frame

 Analytical model
 Simulation

0 1 2 3
Twist rate [#/mm]

Figure 6.8: Optical properties of twisted single-mode strand light cages in the lab frame.
Left panels show the hexagonal, right panels the round geometry. (a) Real part of the
effective index of the RCP and LCP fundamental mode. (b) Circular birefringence (i.e.,
difference between the effective index of the LCP and RCP mode). Light gray line is
an analytical prediction based on the properties of the untwisted waveguide (Eq. 6.3).
(c) Attenuation of the fundamental core modes. Vertical lines are predictions for the
resonances according to Eq. 6.6 (blue: LCP, brown: RCP, gray: LCP and RCP). Insets
in (c) depict the geometries.

The physical origin of circular birefringence in on-axis twisted waveguides is again
related to the angular momentum of the modes. It turns out that even in an untwisted
waveguide the angular momentum distribution is not symmetric if the rotational invariance
is broken, i.e., the amplitudes of the contributions with j0 + 6q are different from those
with j0 − 6q [104]. Using a perturbative approach, this small asymmetry has been shown
to be the cause of circular birefringence in on-axis twisted waveguides [99, 104]:

BC = α(〈j〉 − j0)
λ

π
, (6.3)

where 〈j〉 denotes the angular momentum flux of the RCP mode in the untwisted waveguide
and is calculated as the sum of spin angular momentum flux 〈s〉 and orbital angular
momentum flux 〈l〉 defined in Eq. 2.36. For the RCP mode in the hexagonal light cage,
〈s〉 = −0.99947, 〈l〉 = 3.8 × 10−4, and 〈j〉 = −0.99909 = j0 + 9.1 × 10−4. We note that the
value of 〈l〉 differs from the average l̄ obtained in the OAM decomposition. This discrepancy
likely arises because in the OAM decomposition, only the electric field component Ex was
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analyzed while the calculation of 〈l〉 involves all transverse electric and magnetic field
components. Nevertheless, both l̄ and 〈l〉 decrease with increasing twist rate confirming
the earlier result.

The outcome of Eq. 6.3 is shown as gray line in Fig. 6.8(b) matching well with the
simulated values in the absence of resonances. Circular birefringence is found to be lower
in the round light cage than in the hexagonal version because the C108z symmetry of the
round light cage is close to complete rotational invariance where BC would be 0. For
OAM modes, the circular birefringence is about one order of magnitude larger than for the
fundamental modes and a description via Eq. 6.3 is less reliable due to the large number
of resonances (see Fig. 6.9).

Interestingly, any intersections in the effective indices of the fundamental modes and
the OAM modes are absent after the results are transformed to the lab frame using
Eq. B.16 (see Fig. 6.9(a)). This is to be expected since only the index of the dominant
angular momentum contribution was transformed, while the coupling is provided by the
angular momentum harmonics. As these harmonics feature a different angular momentum
of j0 + 6q, their index is transformed differently by Eq. B.16 which would result in the
expected intersections with the dominant contribution of the other mode. Therefore, it
is generally best to describe on-axis twisted waveguides in the helicoidal frame where all
angular momentum harmonics feature the same effective index.
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6.5 Resonance Prediction Based on Tube Model
Eqs. 6.2a and 6.2b allow to predict twist-induced resonance based on the effective indices
of the higher-order modes in the untwisted waveguide. While these can be obtained from
simulations, it is insightful to apply a recently reported model for tube-type hollow-core
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fibers [212], which allows to calculate the indices of higher-order modes based on the
dispersion of the fundamental mode.

w

2R
Air

n

Figure 6.10: Geometry of the tube
waveguide model of Ref. [212]. The
model applies to waveguides where the
cross section is a ring with inner radius
R, thickness w, and refractive index n.

The model approximates the cladding surface to be locally flat4, which is a good ap-
proximation if R � λ. If the core is filled with air, the effective index of its modes can be
described as [212]:

nl,m
eff = 1 −

u2
l,m

2 (k0R)−2 −
u2

l,m

2
n2 + 1√
n2 − 1

(k0R)−3 cot
(
k0w

√
n2 − 1

)
+ O

(
(k0R)−4

)
, (6.4)

where ul,m is the mth root of the lth order Bessel function of the first kind. l = ...,−1, 0, 1, ...
and m = 1, 2, ... refer to the azimuthal and radial order of the modes, respectively, akin
to the definition of LP modes. HE and EH vector modes are grouped together in this
equation by neglecting contributions of O ((k0R)4). The equation also holds for TE and
TM modes if the refractive index contrast is low (n ≈ 1). Since the following analysis is
based on modes with |l| 6= 1, TE and TM modes can be neglected entirely.

The model is verified using the fundamental modes of the multimode and single-mode
strand light cage. As shown in Fig. 6.11, the model is in good agreement with the sim-
ulated effective index with small deviations occurring around the resonances. The fitted

600 700 800

-3

-1

2rc=0.4μm

Tube model

Wavelength [nm]

R
e

 (
n

ef
f)-

1
 [

1
0

-4
]

(a) (b)

600 700 800

-5

-3

-1

2rc=3.6μm

Tube model

Wavelength [nm]

Figure 6.11: Application of the tube waveguide model [212] to light cages. The model
(gray dotted line) accurately describes the dispersion of untwisted light cages with single-
mode strands of diameter 2rc of 0.4 µm (a) and multimode strands of diameter 3.6 µm (b).
The fitted parameters were: R = 12.37 µm; w = 0.267 µm for (a), and R = 11.5 µm;
w = 3.448 µm for (b).

4The model is similar to the one used for microgap waveguides in Section 4.1.1.
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parameters R and w are remarkably close to the hexagon radius ρ = 14 µm and strand
diameter 2rc of the light cage, showing that the strand supermodes of the light cage indeed
behave like a tube that confines the light inside the core.

Having determined the parameters of the model, Eq. 6.4 can be used to estimate the
index of all higher-order modes, which only depends on ul,m for a fixed wavelength:

nl,m
eff ≈ 1 − Au2

l,m, (6.5)

where A(λ) does not depend on the order of the mode. The quadratic dependence of
the indices on ul,m matches well with the simulated modal indices as shown in Fig. 6.12.
Plugging this relation into Eq. 6.2a then allows to determine the twist rates at which
resonances may occur:

α∆j ≈ Ak0(u2
l̃,m̃ − u2

0,1). (6.6)

Note that for large values of l or m, the function ul,m grows approximately linearly in m
and l. The twist rates of the chiral and achiral resonances obtained with this model are
shown as vertical lines in Fig. 6.8(c) matching well with the simulated resonances at low
twist rates. At higher twist rates, the model projects that more and more resonances occur
but the prediction of the exact twist rates becomes less reliable.
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Figure 6.12: Effective index of higher-
order modes in untwisted single-mode
strand light cages. Indices of modes of
radial order m = 1 and azimuthal or-
ders l ranging from 0 to 6 were simulated
(orange squares). Gray dashed line corre-
sponds to the tube model (Eq. 6.5) with
parameters obtained from the dispersion
of the fundamental mode (m = 1, l = 0).

6.6 Experimental Results
The experimentally realized twisted multimode strand light cages are right-handed
and feature a strand diameter of 2rc = 3.814 µm, which was determined from the measured
spectral resonances of the untwisted waveguide via Eq. 4.16. Four different twist rates
ranging from 0/mm to 11.4/mm were realized with the corresponding SEM images shown
in Fig. 6.13(b).

As a first verification of the theoretical modeling, the LCP fundamental mode was
excited in one of the twisted waveguides and mode images were recorded at different
distances from the end face of the waveguide. Since the mode is invariant in the helicoidal
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frame, its intensity distribution is supposed to follow the right-handed twist of the wave-
guide in the lab frame. This rotation could be confirmed in the measurement5 as shown in
Fig. 6.13.
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Figure 6.13: Experimental results for twisted multimode strand light cages with strand
diameter 2rc = 3.814 µm. (a) CCD images of the LCP core mode along different axial
positions recorded by moving the focal plane of the objective into (left) or out of (right)
the waveguide. As expected, the intensity distribution follows the rotation of the right-
handed twisted structure as z is changed (blue lines). Images were overexposed to better
show this effect. Aberrations arise due to the presence of the strands when imaging inside
the waveguide (left image) or due to diffraction once the mode leaves the waveguide (right
image). (b) SEM images of the four studied light cages with twist rates up to 11.4/mm. (c)
Normalized transmission spectra of RCP (orange) and LCP (blue) light through 5 mm long
waveguide samples. (d) Simulated loss spectra of the same waveguides. Arrows indicate
the wavelength of largest circular dichroism (difference in loss between modes of opposite
circular polarization). Insets in (c,d) show the core mode at 770 nm.

5A video of the rotation of the mode will likely be made available in the Supporting Information of
the manuscript that is being prepared.
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Next, the circular dichroism (CD) was determined using the white light transmission
setup described in Section 3.3. CD is here defined as the absolute value of the difference
in loss between the LCP and RCP mode. In Fig. 6.13(c,d) the results are compared to
numerical simulations of the modal attenuation of waveguides with identical properties.
Three different regimes can be distinguished: (1) In the untwisted waveguide only core-
strand resonances are present and the transmission is identical for LCP and RCP light.
(2) At intermediate twist rates (0 - 1.3/mm), first twist-induced core-core resonances form,
shown in more detail in Fig. E.3. For the twist rate of 0.95/mm depicted in Fig. 6.13(c,d)
such a resonance is not present in the investigated wavelength range. The core-strand
resonances can still be clearly distinguished and remain nearly unaffected by twisting,
except for small spin-dependent shifts (for more detail see Fig. E.4). These shifts give
rise to weak CD but were not investigated further. (3) At high twist rates (1.5 - 10/mm)
more and more twist-induced resonances appear which result in strong CD and overall
higher loss (more details in Fig. E.5). Due to the large number of resonances, core-strand
resonances cannot be distinguished anymore in the loss spectra.

Overall, the experimental results clearly confirm the presence of CD in twisted light
cages, reaching values of up to 0.8 dB/mm at a twist rate of 5.7/mm. The CD is about two
orders of magnitude larger than in the previously reported twisted hollow-core fiber [119].
Nevertheless, we note that the overall loss at which this CD is achieved is very high in
the current realization. To reach a 10 dB discrimination between LCP and RCP light, the
two modes would be attenuated by 58 dB and 68 dB, respectively as shown in Table 6.2.
On the other hand, the associated simulations indicate that the optical properties can be
considerably improved given the current dimensions of the waveguide. Specifically, a CD of
5.4 dB/mm can potentially be reached, translating to losses of 2.9 dB and 12.9 dB for the
two polarizations after a propagation distance of 1.9 mm (see Fig. 6.13(d) and Table 6.2).

Table 6.2: Comparison of measured (exp.) and simulated (sim.) CD to fiber-based twisted
hollow-core waveguide of Ref. [119].

Waveguide CD Loss (-)a Loss (+)a Length for
10 dB CDb

Loss (-) at
this lengthb

This work (exp.) 0.8 dB/mm 4.6 dB/mmc 5.4 dB/mmc 12.5 mm 58 dB
This work (sim.) 5.4 dB/mm 1.5 dB/mm 6.9 dB/mm 1.9 mm 2.9 dB
Fiber of [119] 8.3 dB/m 1.4 dB/m 9.7 dB/m 1.2 m 1.7 dB
a Loss (+/-) corresponds to the circular polarization state with highest or lowest loss,

respectively.
b The length to reach a 10 dB discrimination between the two polarization states and

loss (-) corresponding to this length are shown.
c The attenuation was calculated by assuming a coupling loss of 5 dB determined in

earlier measurements of untwisted light cages discussed in Section 4.2.4.
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There are two possible explanations for the higher loss in the fabricated wave-
guides: (1) Surface roughness of the strands leads to additional scattering loss explain-
ing why the off-resonance loss in the untwisted waveguide is about one order of magni-
tude larger than in simulations (cf. Section 4.2.4). (2) The cross section of the twisted
strands varies with the axial position in the waveguide, which results in a broadening of
the core-strand resonances leading to higher losses. This would explain the absence of
clear core-strand resonances in the sample with the intermediate twist rate of 0.95/mm
(see Fig. 6.13(c,d)).

6.7 Discussion and Applications
The simulations clearly indicate the potential of twisted light cages as on-chip elements
providing circular dichroism via chiral resonances. Provided that fabrication quality can
be increased, waveguides of the currently achieved dimensions are able to provide com-
parable discrimination between LCP and RCP light and comparable loss as a 1.2 m long
piece of the recently reported twisted hollow-core fiber [119] but at a length of only 1.9
mm (cf. Table 6.2). Furthermore, 3D nanoprinting allows interfacing with other on-chip
waveguides by photonic wire bonding [76] without any additional processing steps. To
this end, tapered structures can be used for maximizing the modal overlap between the
small core of a step-index waveguide and the larger mode area of the hollow-core wave-
guide [319]. Integration with fibers has been successfully demonstrated using V-grooves on
silicon chips [83, 244] or fabrication directly onto fiber-end faces [101].

Future work will focus on solving the fabrication-related challenges, e.g., by analyzing
the cross section of the waveguide at different locations using a focused ion beam (FIB)
system and precompensating any deviations during the design step. Further improvements
may be reached by changing the fabrication direction from horizontal to vertical such that
the axis of the waveguide is aligned perpendicular to the substrate. With this adjustment,
the shape of the voxel within the cross-sectional plane of the waveguide changes from el-
liptical to circular, thus enhancing the accuracy of the fabrication. Furthermore, strategies
to reduce the overall propagation loss will be explored, e.g., by reducing the spacing be-
tween strands, adding a second ring of strands as demonstrated in Ref. [81], or applying
techniques for reducing the surface roughness of the polymer described in Ref. [320].

Possible applications of twisted light cages are demonstrated in Fig. 6.14 on the
example of the single-mode strand light cage. The CD of chiral resonances shown in
Fig. 6.14(a) allows twisted light cages to act as a circular polarization filter that can
be placed in line with existing waveguides in devices where a pure circular polarization
state is required, e.g., in areas such as optical communication, chiral sensing, or quantum
optics. As light cages are 3D chiral structures (as opposed to planar structures with
2D chirality6), they suppress polarization of a specific handedness both for forward- and

6Difference between 2D and 3D chirality is discussed in Refs. [321, 322]. Planar structures of a single
height (metasurfaces) can only provide 2D chirality, which reverses under change of propagation direction,
unless the material itself is chiral (e.g., chiral dye molecules [323] or cholesteric liquid crystals [324]).
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backward propagating light. Improved designs with lower propagation loss would therefore
be of high relevance for the realization of single-handedness chiral cavities which require
spin-dependent loss [325, 326]. Chiral cavities can enhance the weak chiroptical signals
from chiral biomolecules [327, 328, 329], generate circularly polarized laser emission [330],
and are of interest in quantum optics for their chiral vacuum states [331, 326]. The use
of light cages in this context would be particularly beneficial as they allow direct access
to the cavity mode through the open space between the strands for introducing atoms or
molecules into the cavity.
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Figure 6.14: Potential on-chip applications of twisted light cages. (a) Spectral distribu-
tion of the attenuation around a chiral resonance enabling strong circular dichroism in a
centimeter-scale waveguide. (b) Real part of the effective index in the lab frame around an
achiral resonance. A waveguide with adiabatically increasing twist rate could convert the
fundamental core mode to a mode carrying OAM (here: l = −6). (c) Spectral distribution
of the attenuation around an achiral resonance. Increasing the twist rate results in a shift
of the resonance towards longer wavelengths (bottom panel). This effect can be applied
for twist and tension sensing. Dashed gray line denotes the analytical model of Eqs. 6.2a
and 6.4. All subfigures (a-c) show simulation results for the single-mode strand light cage.

Another frequently explored application of on- and off-axis twisted waveguides is OAM
generation [122, 123, 124]. However, in the case of twisted PCFs, the OAM is carried
by a lossy cladding mode in most works [106, 119, 98, 94], which limits their use as mode
converters. An exception is Ref. [107], where OAM beams were generated in the core of
the twisted fiber but used an additional fiber Bragg grating for mode coupling. Twisted
light cages, on the other hand, offer two advantages in this regard: (1) OAM modes
can be generated directly in the light-guiding core, and (2) 3D nanoprinting provides a
straightforward path to implement adiabatic mode conversion by enabling fabrication of
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structures with spatially varying twist rates. Fig. 6.14(b) shows an example where an
adiabatically increasing twist rate would result in conversion of a mode with l = 0 to a
mode with l = −6. Such adiabatic coupling yields a broad operating bandwidth, which
is an advantage over resonant coupling at a fixed twist rate. Preferably, adiabatic mode
coupling should be implemented for an achiral resonance as their larger coupling strength
allow for shorter device lengths7.

In terms of sensing applications, twisted light cages are sensitive to torsion and
tension, which both affect the helical pitch P . According to Eq. 6.2a, the wavelength λr at
which resonances occur is equal to λr = P ∆n/∆j, where ∆n(λ) and ∆j are the mismatch
in effective index and angular momentum of the modes in the untwisted waveguide. The
wavelength dependence of ∆n can be described by the tube waveguide model of Eq. 6.4,
which predicts a shift of the resonances to longer wavelengths as the twist rate increases,
matching well with the simulated values in Fig. 6.14(c). As ∆n grows approximately
quadratically in l, while ∆j grows linearly in l, higher-order resonances generally feature
a higher sensitivity to changes in P . For the first achiral resonace (∆j = 6), we find a
torsion sensitivity ∆λr/∆α of 0.11 nm/(rad/m). In other words, the resonance wavelength
increases by 1 nm if P decreases by 1.5 µm. This value lies within the range of sensitivities
between 0.03 - 0.5 nm/(rad/m) reported for fiber-based measurements [334, 335, 93, 336].

We note that many of the above applications have already been realized using chiral
fiber gratings which often perform better than twisted hollow-core waveguides. Examples
include circular dichroism of 3 dB/mm over a bandwidth of more than 80 nm [92], a torsion
sensitivity of 0.47 nm/(rad/m) for a 24 mm long grating with a resonance contrast of 32
dB [334], OAM generation with high coupling efficiency [96], and polarizers based on
adiabatically twisted fibers [337].

However, chiral fiber gratings are solid-core fibers and suitable methods for large-scale
chip integration are lacking. Advantages of hollow-core light cages therefore lie in appli-
cations where a strong interaction of gases or liquids with the light in the core is desired,
such as in nonlinear frequency conversion. The benefit of using twisted waveguides
in these applications is mostly related to their circular birefringence, which allows circu-
larly polarized supercontinuum generation (BC = 1.1 × 10−6) [125] or light sources with
pressure-tunable polarization states based on Raman scattering (BC = 3×10−8) [126]. For
twisted light cages, simulations indicate that BC is on the order of 10−6 - 10−5 and could
be further increased by using larger twist rates (cf. Eq. 6.3). As a result, twisted light
cages offer an opportunity for the chip integration of the aforementioned works, while also
increasing the robustness of the polarization state against environmental fluctuations.

Regarding the theoretical analysis of twist-induced resonances, we observed a
discrepancy between our findings and those presented in earlier works on twisted PCFs [98,
106], an issue previously addressed in Ref. [318]. We want to extend this discussion to the

7For mode coupling between two waveguides to be adiabatic the coefficient η =
∣∣ 1

2Γ
∂θ
∂z

∣∣ � 1, where
θ = arctan(κ/∆), ∆ is the wavevector mismatch between the modes, κ is the coupling coefficient, and
Γ =

√
∆2 + κ2 [332, 333]. Assuming that ∆ varies linearly along the waveguide with ∂∆

∂z ≡ g, and κ is
constant, then η = gκ

2(∆2+κ2)3/2 < g
2κ2 . Larger coupling strengths κ therefore allow larger values of g (i.e.,

quicker changes of the twist rate) while maintaining adiabaticity.
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theoretical analysis in Ref. [119], which states that only modes of the same total angular
momentum are allowed to couple. Yet, visual inspection of Fig. 6 of this work indicates the
coupling of a core mode with angular momenta s = +1, l = 0, j = +1 with a cladding mode
with s = −1, l = +12, j = +11, seemingly contradicting their claim. Using the angular
momentum selection rule Eq. 6.2b for the 5-fold rotationally symmetric fiber, however,
would explain this coupling correctly as a chiral resonance.

Finally, we want to address the question whether the high twist rates achievable with
3D nanoprinting offer an advantage over glass-based fabrication techniques. As evident
from Eq. 6.2a, higher twist rates are generally beneficial as they enable coupling of the
fundamental mode to modes of very high OAM order, which feature higher losses and
can therefore result in stronger circular dichroism. However, the coupling strength to
such modes is currently limited, as their amplitudes in the OAM decomposition of the
fundamental mode are very low (cf. Fig. 6.7). Future work will focus on increasing the
amplitudes of these higher-order OAM contributions by using non-polygonal arrangements
of the strands providing a path for both, stronger circular dichroism, and stronger circular
birefringence (via the factor 〈j〉 − j0 in Eq. 6.3). Furthermore, it is worth noting that the
coupling of two core modes should generally lead to higher coupling strengths compared to
core-cladding resonances, where the modes are spatially separated. Thus, the full potential
of strongly twisted 3D-nanoprinted hollow-core light cages remains to be unlocked.

6.8 Conclusion
In summary, this chapter gave a detailed overview of the physics of twisted light cages and
contains the first experimental demonstration of circular dichroism in an on-chip hollow-
core waveguide. Building on previous works, the origin of circular dichroism [122, 292, 123,
318] and circular birefringence [104, 99] in these waveguides have been explained based
on the presence of higher-order OAM states in the fundamental mode of the untwisted
waveguide.

The presence of circular dichroism was found to be related to twist-induced chiral
resonances, which result from coupling of a higher-order core mode with the fundamental
mode of opposite spin. Furthermore, a selection rule applies, which only allows resonances
to occur if the total angular momentum of the involved modes differs by multiples of the
order of the rotational symmetry of the waveguide (= 6 for hexagonal light cages). In
this context, we presented a straightforward derivation for the mode coupling condition
based on the properties of the helicoidal coordinate frame, which is valid for core and
cladding modes in on-axis twisted waveguides. The twist rate or spectral location, where
these resonances occur, was shown to be determined by the properties of the untwisted
waveguide and can be predicted analytically by approximating the geometry of light cages
as a tube [212].

While large circular dichroism of 0.8 dB/mm was measured experimentally, high propa-
gation losses currently limit the immediate applicability of twisted light cages in real-world
scenarios. Yet, with improvements in fabrication quality, the novel implementation via
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3D nanoprinting has the potential to translate years of research on twisted PCFs into on-
chip devices. Such applications include waveguide-integrated and broadband generation
of circular polarization and OAM beams, nonlinear frequency conversion with circularly
polarized light [125, 126], twist- and tension sensing, and chiral spectroscopy.



Chapter 7

Summary and Outlook

This thesis presented the application of 3D nanoprinting as a powerful tool for the chip
integration of straight and twisted hollow-core waveguides. Three waveguide types were
fabricated, characterized by optical transmission measurements, and analyzed by simula-
tion and analytical theory. In particular, we introduced a novel type of on-chip hollow-core
waveguide, the microgap waveguide, which features a simplified fabrication procedure and
improves the previously reported light cage in terms of propagation loss, transmission band-
width, and fabrication time. Furthermore, we demonstrate the first twisted hollow-core
waveguide realized on a chip, a twisted light cage.

A unique feature of all discussed waveguides is a large structural openness enabling
fast passive analyte exchange in contrast to hollow-core fibers, which can be filled only via
the end faces. This property is particularly appealing for real-time optical sensing devices,
which require liquids or gases to interact with the guided light. Here, we conducted proof-
of-principle experiments on absorption spectroscopy of ammonia gas and aqueous solutions
of Rhodamine 6G dye, as well as fluorescence spectroscopy of Rhodamine B dye. The
results indicate limits of detection matching those of cuvette-based reference measurements,
and a strong reduction in the analyte exchange time compared to capillaries of the same
length.

Furthermore, the reproducibility of the 3D nanoprinting approach was studied on the
example of light cages by inferring the realized dimension from the characteristic resonances
in the transmission spectrum. Waveguides produced within a single fabrication run on the
same chip reveal low variations in the dimensions (2 nm), while batch-to-batch variations
are about one order of magnitude larger (15 nm). This remarkable level of accuracy
underscores the potential of 3D nanoprinting in the context of integrated waveguide optics.

The ability to access all three spatial dimensions is also intriguing for the fabrication of
chiral photonic structures. Here, we demonstrated the implementation of twisted hollow-
core waveguides with unprecedented twist rates overcoming those of similar twisted hollow-
core fibers [119] by more than two orders of magnitude: twisted light cages.

Specific coordinate frames for the analysis of such waveguides were introduced in a
theoretical study on off-axis twisted solid-core waveguides. In this context, we clarify that
structures defined with a circular geometry in these coordinates are not identical and pos-
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sess different optical properties in the single-mode regime. On the other hand, structures
with larger core sizes, such as those obtainable with 3D nanoprinting, behave similarly
from the optics perspective. These findings are relevant to many works on twisted wave-
guides as virtually all are using either the investigated Frenet-Serret, helicoidal, or Overfelt
frame in their theoretical modeling. We investigated circular and OAM birefringence of
these waveguides, confirming that their origin is a purely geometric effect related to the
curved helical path. Additionally, we uncovered that superchiral fields can be created on
the surface of off-axis twisted waveguides and found spin- and OAM-dependent spatial
splittings in the intensity distribution of the modes. Potential origins of these observations
were identified to be the photonic spin Hall and orbital Hall effects.

With these preparations, we conducted an experimental and theoretical study on twisted
light cages - an on-axis twisted waveguide. The fabricated samples were found to possess
strong circular dichroism (CD), enabled by twist-induced resonances between two of the
core modes. We categorized these resonances into achiral (without CD) and chiral reso-
nances (with CD), and provided an analytical theory for predicting their spectral locations
based on the dispersion of the untwisted waveguide. Furthermore, we discuss the occur-
rence of circular birefringence based on the analysis of the angular momentum distribution
of the fundamental mode. The simulated birefringence is on the same order as in commer-
cially available spun optical fibers, indicating that twisted light cages can robustly guide
circularly polarized light. Overall, this thesis presented the first detailed study of all rele-
vant optical properties of 3D-nanoprinted twisted waveguides, which is - more generally -
applicable to any high-index contrast twisted waveguide.

Looking ahead, the ongoing trend of device miniaturization presents exciting prospects
for the application of both straight and twisted 3D-nanoprinted hollow-core waveguides. As
an example, a recent work demonstrated the monolithic integration of a laser, a 100 µm long
evanescent-field waveguide, and a spectrometer for mid-infrared spectroscopy [338]. This
device could be considerably improved by using 3D-nanoprinted hollow-core waveguides,
which offer longer interaction lengths, larger overlap of the field with the analyte, and lower
background signals from the material of the waveguide. These advantages identically apply
to other optical sensing techniques [339], such as Raman, fluorescence, or circular dichroism
spectroscopy. Due to the fast analyte exchange times of the demonstrated waveguides, such
compact sensors could find numerous applications in passive sensing devices, such as in
environmental monitoring, point-of-care testing, and chemical analysis.

Another interesting application scenario are microfluidic lab-on-a-chip devices, where
analytes can be mixed with reagents via piezoelectric micropumps [340]. Such devices are
already commercially available for applications such as DNA and cell analysis, immuno-
assays, clinical and pharmaceutical analysis, microreactors, and fuel cells [341, 342, 343].
A relatively new development in this direction are organs-on-a-chip, which mimic the phys-
iological response of human organs and are used in drug development [344]. All of these
devices could benefit from the additional integration of optical sensing techniques using
hollow-core waveguides for analyzing the reaction products.
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An overall similar approach is targeted in lab-on-a-fiber sensors, where external fiber-
coupled light sources and spectrometers are used, while the active region of the device
lies on a fiber tip or exposed section of the fiber [345]. In this context, the integration of
light cages with delivery and detection fibers was recently demonstrated [83], as well as 3D
nanoprinting of square-shape hollow-core waveguides directly onto fiber end faces [280].

Applications outside of sensing technology could arise in nonlinear frequency conver-
sion [313] and quantum optical experiments using low-pressure atomic vapors [57]. Spe-
cific applications of twisted 3D-nanoprinted waveguides include broadband generation and
guidance of circular polarization and OAM beams, nonlinear frequency conversion with
circularly polarized light [125, 126], integrated Brillouin lasing for ultrahigh-resolution op-
tical sensing [310], twist- and tension sensing, and chiral spectroscopy.

One important issue that needs to be resolved before all of these applications can
become reality is the still relatively high manufacturing cost of 3D nanoprinting considering
investments on the order of several hundred thousand euros for a tool that can fabricate
about 30 waveguides of 5 mm length per day. Two approaches exist to remedy this problem.
First, the fabrication can be parallelized using so-called multi-focal arrays. In a recent
demonstration of this approach, 2000 individually addressable focal spots were generated
in the focal plane of a single objective via a digital micro-mirror device (DMD) [346]
meaning that several foci can "work" on polymerizing a single structure. This approach
reached high printing speeds of 2×106 voxels/s (for an up-to-date list of achievable printing
speeds see [207]), while maintaining small lateral and axial feature sizes (90/140 nm). The
second approach involves reducing the cost of the 3D nanoprinter. Currently, expensive
femtosecond lasers are required to drive the two-photon polymerization process. A novel
approach instead uses two-step absorption (i.e., a real intermediate excited state of the
photoinitiator molecule instead of a virtual state), which strongly increases the likelihood
of the process while maintaining the square dependence on the intensity [347]. Therefore,
an orders of magnitude cheaper continuous-wave laser can be used, as demonstrated with
a 405 nm laser diode at a power of 0.1 mW, while maintaining the high resolution known
from two-photon polymerization (300/420 nm lateral/axial resolution).

Combining both approaches could result in significantly lower fabrication costs, opening
avenues for future hollow-core waveguide based integrated optical devices. In more general
terms, advances in 3D nanoprinting could lead to a new era of 3D photonic architectures,
affecting applications as far as optical neural networks [348], optical analog computing [349,
350], or optical quantum computing [351].



Appendix A

Leaky Slab Waveguide Model for
Microgap Waveguides

Here, we describe the second theoretical model for describing light guidance in microgap
waveguides, which takes into account that the walls of the waveguide are not perfectly
reflecting and therefore the field nodes of the fundamental mode do not occur exactly at the
core-cladding boundary. Despite the relatively simple square-shaped geometry, a complete
analytical model is still lacking. Here, we present an approximation by superposing the
exact solutions for the TE0 and TM0 modes of an infinitely extended hollow slab waveguide.
This corresponds to crossing two infinitely extended slab waveguides at a 90◦ angle and
neglecting the interference of the solutions at the corners of the waveguide where the field
intensity is low. Our analysis follows the argument in Ref. [135].
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We start with Maxwell’s equations in linear media with refractive index n and make
an ansatz for the electric and magnetic fields Ẽ and H̃ propagating along the z direction:
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Ẽy

Ẽz
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Ẽ = E(x, y)ei(ωt−βz), H̃ = H(x, y)ei(ωt−βz). (A.2)

The ansatz is used to solve Maxwell’s equations in each of the five regions of the slab
waveguide individually and then impose boundary conditions to combine the solutions.
Since the geometry is homogeneous along y, ∂E

∂y
= ∂H

∂y
= 0. Furthermore, we separate the

solutions into two branches according to their polarization by setting Ez = 0 (TE modes)
or Hz = 0 (TM modes). Plugging the ansatz Eq. A.2 in Eq. A.1 and using these conditions,
we obtain the following set of equations:

TE: Ex = Ez = Hy = 0, Hx = − β

ωµ0
Ey, Hz = i

ωµ0

∂Ey

∂x
, (A.3)

∂2Ey

∂x2 +(k2
0n

2 − β2)Ey = 0, (A.4)

TM: Hx = Hz = Ey = 0, Ex = β

ωε0n2Hy, Ez = − i
ωε0n2

∂Hy

∂x
, (A.5)

∂2Hy

∂x2 +(k2
0n

2 − β2)Hy = 0. (A.6)

According to Eqs. A.4 and A.6 both Ey and Hy are oscillatory functions of x and all
other field components can be derived from them. Based on this observation we make the
following ansatz for the TE solution:

Ey =


A1 exp(iκCx) for region 1
A2 sin(κWx) + A3 cos(κWx) for region 2
A4 cos(κCx) for region 3

, (A.7)

with κC = k0

√
n2

C − n2
eff , κW = k0

√
n2

W − n2
eff , and neff = β/k0. In the ansatz, we used the

symmetry of the waveguide around its center line at x = 0, which allows to calculate the
solution for regions 4 and 5 via Ey(x) = Ey(−x).

The boundary conditions for the tangential components of Ẽ and H̃ state that Ey

and Hz ∝ ∂Ey

∂x
are continuous across the interfaces. Considering the two interfaces for

x > 0, this condition yields four independent equations of which we consider the real part.
This linear system can be written in the form of a matrix M such that M P = 0 with
P = (A1, A2, A3, A4). For the solution to be nontrivial, it is required that det(M) = 0
which yields the following analytical equation for the index nTE of the TE mode that we



solved numerically:

det


cos(κCb) − sin(κW b) − cos(κW b) 0

0 − sin(κWa) − cos(κWa) cos(κCa)
−κC sin(κCb) −κW cos(κW b) κW sin(κW b) 0

0 −κW cos(κWa) κW sin(κWa) −κC sin(κCa)

 = 0 [TE], (A.8)

where a = D/2 and b = D/2 + W denote the interface locations. The TM solution nTM
can be obtained with a similar ansatz for Hy and the boundary condition that Hy and
Ez ∝ ∂Hy

∂x
are continuous across the interface yielding the following equation:

det


cos(κCb) − sin(κW b) − cos(κW b) 0

0 − sin(κWa) − cos(κWa) cos(κCa)
− κC

nC
2 sin(κCb) − κW

nW
2 cos(κW b) κW

nW
2 sin(κW b) 0

0 − κW

nW
2 cos(κWa) κW

nW
2 sin(κWa) − κC

nC
2 sin(κCa)

 = 0 [TM]. (A.9)

To obtain an approximation for the real part of the propagation constant βSquare and the
effective index nSquare

eff of the square waveguide, we calculate and combine the transverse
wavevector components kTE and kTM of the TE and TM solution of the slab waveguide as
shown in Fig. A.2.

k2
TE/TM = k2

0

(
1 − Re2{nTE/TM}

)
, (A.10)

Re2{βSquare} = k2
0 − k2

TE − k2
TM, (A.11)

Re2{nSquare
eff } = Re2{nTE} + Re2{nTM} − 1. (A.12)

kTE

kTM

k0.Re(nTE)

k0
x

y
z

k0.Re(nTM)

k0

Slab

k0 kTE

kTMβSquare

Square

Figure A.2: Sketch of the wavevector components for the leaky slab waveguide model.
Light is propagating along the z direction. The middle column shows the case for an
infinitely extended slab waveguide with the two confining walls located perpendicular to
the x axis (top) and y axis (bottom). Right column shows the situation for the square
waveguide with four confining walls.

The imaginary part of the effective index is obtained by summing the imaginary parts
of the effective indices of the TE and TM mode (by adding the second pair of walls to the
slab waveguide the ray has to undergo twice as many reflections, thus the losses increase):

Im{nSquare
eff } = Im{nTE} + Im{nTM}. (A.13)
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Appendix B

Simulation of Twisted Waveguides

All simulations of twisted waveguides were performed using the helicoidal coordinate sys-
tem, as implemented in a commercial FEM solver (PropagatingMode module of JCMwave).
Due to the invariance of the waveguide along the ξ3 coordinate, eigenmodes of helical wave-
guides can be separated into a phase factor and a modal field, which does not depend on
ξ3 [104]:

F̃(ξ1, ξ2, ξ3) = eiκξ3F(ξ1, ξ2), (B.1)

where κ/k0 = nHelical
eff is the eigenvalue of the mode returned by the mode solver. The

resulting field needs to be transformed back to the Cartesian lab frame as described in
detail in this section. Furthermore, we show under which conditions it is possible to define
an effective mode index in the lab frame.

B.1 Transformation of Fields from Helicoidal Frame
to Lab Frame

We assume that the solution of the field E is known for the plane z = ξ3 = 0 and the field
at an arbitrary point (x̃, ỹ, z̃) is to be calculated in the lab frame. The field components are
transformed from the helicoidal frame to the lab frame by the Jacobian of the coordinate
transformation T:

E = Exx̂ + Eyŷ + Ezẑ = Eξ1ξ1 + Eξ2ξ2 + Eξ3ξ3, with

Ex

Ey

Ez


︸ ︷︷ ︸

ELab

= T

Eξ1

Eξ2

Eξ3


︸ ︷︷ ︸
EHelical

. (B.2)
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EHelical and ELab were introduced to denote the coordinate vectors of E in the two frames.
For the helicoidal coordinate system, the Jacobian and its inverse T−1 read:

T = (ξ1, ξ2, ξ3) =

 cos(αξ3) sin(αξ3) α(−ξ1 sin(αξ3) + ξ2 cos(αξ3))
− sin(αξ3) cos(αξ3) −α(ξ1 cos(αξ3) + ξ2 sin(αξ3))

0 0 1



=

 cos(αz) sin(αz) αy
− sin(αz) cos(αz) −αx

0 0 1

 ,
(B.3)

T−1 =

cos(αξ3) − sin(αξ3) −αξ2
sin(αξ3) cos(αξ3) αξ1

0 0 1



=

cos(αz) − sin(αz) −α(x sin(αz) + y cos(αz))
sin(αz) cos(αz) α(x cos(αz) − y sin(αz))

0 0 1

 .
(B.4)

Furthermore, it is useful to define the transformation matrices at the initial plane (ξ3 =
z = 0):

T0 =

1 0 αξ2
0 1 −αxξ1
0 0 1

 , T0
−1 =

1 0 −αξ2
0 1 αξ1
0 0 1

 . (B.5)

In practice, the transformation between the coordinate systems is performed using the
following steps:

1. The point (x̃, ỹ, z̃) in the lab frame corresponds to a certain point (ξ̃1, ξ̃2, ξ̃3) in the
helicoidal frame, which is calculated by Eq. 2.48:ξ̃1

ξ̃2
ξ̃3

 =

x̃ cos(αz̃) − ỹ sin(αz̃)
x̃ sin(αz̃) + ỹ cos(αz̃)

z̃

 . (B.6)

2. Next, the field components in the helical frame EHelical at the point (ξ̃1, ξ̃2, ξ3 = 0)
are determined. Since JCMwave returns the field components in the lab frame ELab

at z = 0, they need to be converted to the helical frame keeping z = ξ3 = 0 using
Eq. B.5:

EHelical(ξ̃1, ξ̃2, ξ3 = 0) = T0
−1ELab(x̃ cos(αz̃)− ỹ sin(αz̃), x̃ sin(αz̃)+ ỹ cos(αz̃), z = 0).

(B.7)
Here, we used that ξ1 = x and ξ2 = y for ξ3 = z = 0 according to Eq. 2.48. Note that
the point at which the solution ELab is evaluated depends on z due to the rotation
of the two coordinate frames in relation to each other. Other solvers might directly
return the field components in the helicoidal frame, in which case this step can be
omitted.
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3. The phase evolution factor from Eq. B.1 is introduced:

EHelical(ξ̃1, ξ̃2, ξ̃3) = eiκξ̃3EHelical(ξ̃1, ξ̃2, ξ3 = 0). (B.8)

4. The field is transformed back to the lab frame using Eq. B.3:

ELab(x̃, ỹ, z̃) = TEHelical(ξ̃1, ξ̃2, ξ̃3)

= eiκz̃︸︷︷︸
phase

 cos(αz̃) sin(αz̃) 0
− sin(αz̃) cos(αz̃) 0

0 0 1


︸ ︷︷ ︸

rotation of field

ELab(x̃ cos(αz̃) − ỹ sin(αz̃), x̃ sin(αz̃) + ỹ cos(αz̃), z = 0︸ ︷︷ ︸
rotation of coordinates

).

(B.9)

The solution contains three contributions: (1) the phase evolution calculated in the he-
licoidal frame, (2) a rotation of the polarization ellipse around the z axis, and (3) the
rotation of the coordinate frames with respect to each other.

An important observation is that the "shape" of the 3D polarization ellipse remains the
same as the field propagates along the waveguide and merely rotates around the z axis. For
fields where the polarization is the same at every point in the xy plane, one can therefore
state that:

1. Transverse fields remain transverse.

Ez(x, y, 0) = 0 ⇐⇒ Ez(x, y, z) = 0 (B.10)

2. The degree of circularity as defined in Eq. 2.23 does not change.

Ŝ3(x, y, 0) = Ŝ3(x, y, z) (B.11)

Eq. B.9 can be applied to calculate the phase evolution in the lab frame, which is
important when studying mode coupling or other interference effects with structures that
are not part of the twisted frame (e.g., a straight waveguide running parallel to a twisted
waveguide). A necessary condition for mode coupling to occur is typically stated in the
form that the effective index of the two modes needs to match. In the following sections,
we show for a few relevant examples under which conditions it is possible to define an
effective index in the lab frame - which is not always possible.

B.1.1 Fields Located On-axis
First, the possibility of defining an effective index in the lab frame is investigated for fields
whose center is located on - or close to - the twist axis (as opposed to fields which are
located in an off-axis core studied in Appendix B.1.2). For on-axis fields, it is possible to
track the phase evolution of a fixed point (x, y) in the lab frame as the z coordinate is
increased (see Fig. B.1).
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Circularly Polarized Beams With OAM Phase Profile

The simplest case is a transverse field in the lab frame which is perfectly circularly polarized
at every point in space at z = 0 and has an OAM phase profile with the singularity located
on the twist axis.

ELab
s,l (x, y, z = 0) = 1√

2

1
si
0

 eilφ , (B.12)

where s = ±1 denotes the spin, l ∈ Z the OAM order and φ = tan−1(y/x) the azimuthal
angle. The field in the lab frame at z 6= 0 can be obtained by applying Eq. B.9, yielding:

ELab
s,l (x, y, z) = 1√

2

1
si
0

 eil tan−1
(

x sin(αz)+y cos(αz)
x cos(αz)−y sin(αz)

)
eisαzeiκz. (B.13)

Using the addition theorem for tangens, tan(γ + δ) = tan(γ)+tan(δ)
1−tan(γ)tan(δ) , the term in the expo-

nential can be simplified as:

tan−1
(
x sin(αz) + y cos(αz)
x cos(αz) − y sin(αz)

)
= tan−1

(
tan(αz) + y/x

1 − tan(αz)y/x

)
︸ ︷︷ ︸

tan(αz+tan−1(y/x))

= αz + tan−1(y/x). (B.14)

The resulting equation for the evolution of the field in the lab frame is therefore:

ELab
s,l (x, y, z) = 1√

2

1
si
0

 eilφei(s+l)αzeiκz = ELab
s,l (x, y, z = 0)ei(s+l)αzeiκz. (B.15)

We denote κz as the helical propagation phase and (s + l)αz as the transformation
phase. For this example, both phases increase linearly in z which allows to define an
effective index in the lab frame nLab

eff as:

nLab
eff = nHelical

eff + (s+ l)αλ2π , (B.16)

where nHelical
eff (α) = κ/k0 is the effective index in the helical frame. Note that this result

does not contain approximations and holds for arbitrary twist rates as long as the fields
have the structure defined in Eq. B.12.

The origin of the transformation phase is illustrated in Fig. B.1 for a circularly sym-
metric structure. According to Eq. B.9, a field that is invariant under changes of ξ3 in the
helicoidal frame rotates in the lab frame as z is increased, following the helical path of the
structure. If the field carries OAM, the rotation of this phase profile results in the OAM
contribution to the transformation phase lαz. Eq. B.9 shows that apart from the phase
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profile, the polarization ellipse is also rotated when z increases. This rotation results in
the spin contribution to the transformation phase sαz.

It is important to note that the helical propagation phase typically also carries a de-
pendence on α. For the structure shown in Fig. B.1, it is straightforward to see that
the transformation phase is exactly canceled by the twist rate dependence of the helical
propagation phase: An on-axis structure with circular symmetry cannot be twisted (i.e.,
it does not change when twisted). For systems that are not circularly symmetric (e.g.,
hexagonal cores), the sum of the two phases remains dependent on the twist rate giving
rise to circular birefringence.

-π

π

0

(a)

z=0 z=P/8 z=P/4 z=3P/8

z

(b)

Ey

Ex

Ey

Ex

Ey

Ex

Ey

Ex

LC
P

C
oo
rd
in
at
e

ro
ta
tio
n

F
ie
ld

ro
ta
tio
n

Figure B.1: Graphical explanation of the transformation phase for a circularly polarized
transverse field with s = l = 1. For on-axis fields, the phase evolution is evaluated at
fixed point (x, y) in the lab frame (gray crossed circle) as the z coordinate is increased.
(a) shows the consequence of the rotation of the helical coordinate frame with respect to
the lab frame. To isolate this effect, the phase of the x component of ELab(x cos(αz) −
y sin(αz), x sin(αz)+y cos(αz), 0) is evaluated (right hand side of Eq. B.9). As z increases,
the phase at (x, y) grows resulting in the OAM contribution to the transformation phase:
lαz. The black bulge is a guide to the eye. (b) shows the isolated effect of the rotation of
the field (middle term in Eq. B.9). As z increases the polarization ellipse is rotated with
a period equal to the pitch length P of the helicoidal coordinate system, resulting in the
spin contribution to the transformation phase: sαz. Note that for the structure shown
here, the sum of transformation phase and helical propagation phase does not depend on
the twist rate due to its circular symmetry.
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Elliptically Polarized Beams

Next, we study an example of eigenmodes which are transverse and elliptically polarized.
For simplicity, the phase profile is assumed to be flat and the polarization is set to be
constant across the beam cross section for z = 0:

ELab
s̃,l (x, y, z = 0) = 1√

1 + (1 − ε)2

 1
s̃(1 − ε)i

0

, (B.17)

where s̃ = ±1 determines the direction of rotation of the polarization vector. Different
values of the ellipticity of the polarization ellipse are investigated, which is defined as [135]:

ε = ax − ay

ax

, (B.18)

where ax denotes the length of the major axis of the polarization ellipse and ay the length of
the minor axis. ε = 0 corresponds to circular polarization and ε = 1 to linear polarization.
Applying Eq. B.9, yields the field at z 6= 0:

ELab
s̃,l (x, y, z) = 1√

1 + (1 − ε)2

 cos(αz) + s̃ sin(αz)(1 − ε)i
− sin(αz) + s̃ cos(αz)(1 − ε)i

0


︸ ︷︷ ︸

ETransformation

eiκz. (B.19)

While the helical propagation phase κz occurs in the same form as for circularly po-
larized fields, the transformation phase cannot be stated in a simplified form. Therefore,
the transformation phase is determined numerically as the argument of ETransformation. The
increase of the transformation phase with z is shown for several values of ε below.

In untwisted waveguides, the propagation phase ϕ always increases linearly in z, even if
the waveguide is filled with an anisotropic material due to the invariance of the structure in
the z direction. This linearity is the basis for the definition of the effective refractive index
neff via ϕ = neffk0z. Twisted waveguides are however not invariant in the z direction of the
lab frame. A peculiar consequence is that the propagation phase of non-circularly polarized
eigenmodes of twisted waveguides can differ substantially from this linear increase such as
in Fig. B.2(c). Therefore, it is generally not advisable to define an effective index in the lab
frame via Eq. B.16. For example, a situation could arise where an eigenmode of a twisted
waveguide would be assigned the same effective index as an eigenmode of an untwisted
waveguide although their phases do not match locally at each z position.

More generally, the deviation from the linear increase in phase is a consequence of
the rotation of the polarization ellipse as the field propagates along the twisted structure.
For example, after propagating a quarter of the helix pitch the polarization ellipse shown
in Fig. B.2(c) would be oriented vertically instead of horizontally. This is a fundamen-
tal difference to fields propagating in untwisted waveguides, where the orientation of the
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Figure B.2: Transformation phase for elliptically polarized transverse fields with s̃ = 1.
The phases of the x and y component of ETransformation are shown as solid blue and orange
lines, respectively. As the ellipticity of the polarization ellipse ε is increased, the differences
to the phases of circular polarization (shown as dotted lines) grow larger. For ellipticities
of ε = 0.5 (a) and ε = 0.7 (b), the phase difference to LCP (ε = 0) remains below 0.2π.
For a very high ellipticity of ε = 0.9 (c) a strong deviation from the linear increase in z
can be observed. Insets show the shape of the polarization ellipse.

polarization ellipse does not change. In this example, the overlap between the mode of a
twisted and an untwisted waveguide would constantly change along the z direction, cor-
roborating the fact that modes of structures with different twist rates cannot simply be
compared by looking at the effective index.

Nonetheless, Eq. B.16 still correctly predicts the average phase increase over one twist
period (dotted lines in Fig. B.2) and can therefore serve as guidance if the ellipticity of
the field remains small enough such that the z dependence of the overlap integral can
be neglected. In that case, the matching of effective indices defined by Eq. B.16 would
give a necessary condition for quasi-phase-matching of two modes - similar to quasi-phase-
matching in nonlinear optics.

Beams With Arbitrary Phase Profiles

A similar deviation from the linear phase increase occurs if the phase profile of the beam
does not depend exactly linearly on φ, e.g., if the OAM phase profile is distorted due to
coupling to other modes. For simplicity, we study a fictitious example, where the azimuthal
phase increases only in one half of the beam and is constant in the other half. The field is
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assumed to be transverse and circularly polarized:

ELab
s (x, y, z = 0) = 1√

2

1
si
0

 eif(φ(x,y)) f(φ) =
2φ 0 ≤ φ < π

0 π ≤ φ < 2π
, (B.20)

where s = ±1 denotes the spin φ ∈ [0, 2π[ is the azimuthal angle and f(φ) defines the
phase profile. Again, we calculate the field for z 6= 0 using Eq. B.9, yielding:

ELab
s (x, y, z) = 1√

2

1
si
0

 eif(φ(x cos(αz)−y sin(αz),x sin(αz)+y cos(αz)))eisαz

︸ ︷︷ ︸
ETransformation

eiκz. (B.21)

While the helical propagation phase κz occurs in the same form as in the previous examples,
the transformation phase needs to be extracted as the argument of ETransformation shown
below in Fig. B.3:
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Figure B.3: Transformation phase for a beam
whose phase profile differs from that of an OAM
beam. As an example, a fictitious mode with s = 1
and the phase profile shown in the inset is as-
sumed. The phases of the x and y component of
ETransformation are shown as solid blue and orange
lines, respectively. A strong deviation to the lin-
ear phase increase of a mode with perfect OAM
phase profile with s = l = 1 (dotted lines) can be
observed.

Fig. B.3 confirms that care should be taken when using Eq. B.16 to determine an
effective index in the lab frame for eigenmodes of twisted structures. If the spatial phase of
modes differs substantially from eilφ, the propagation phase of the mode does not increase
linearly in the z direction, which defeats the purpose of defining an effective index.

B.1.2 Fields Located Off-axis
This subsection deals with fields that are located in an off-axis region of space that winds
around the twist axis. In this case, it is not possible to track the phase evolution of a
fixed point (x, y) in the lab frame because as the z coordinate is changed, the core that
is carrying the field moves away from this position (see Fig. B.4) Therefore we track the
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phase evolution of a point that is located at a constant position relative to the center of
the core as viewed in the lab frame.

Let’s assume that the off-axis core is centered at a distance ρ from the twist axis. In
the lab frame, this core moves along a helical trajectory r0(z) according to Eq. 2.50. We
now track a point that is placed at a constant (i.e., independent of z) offset r1 from this
trajectory in the xy plane with local coordinates x̄ and ȳ. Without loss of generality, the
position of the core at z = 0 is chosen to be located on the positive part of the x axis:

r0(z) =

 ρ cos(αz)
−ρ sin(αz)

z

, r1 =

x̄ȳ
0

, r(x̄, ȳ, z) = r0(z) + r1(x̄, ȳ) =

x̃ỹ
z̃

. (B.22)

Circularly Polarized Beams With OAM Phase Profile

As before, we first look at the simple case of a perfectly circularly polarized transverse field
with a perfect OAM phase profile - now with the singularity located at the center of the
off-axis core:

ELab
s,l (x, y, z = 0) = 1√

2

1
si
0

 eilφ̄, (B.23)

where s = ±1 denotes the spin, l ∈ Z the OAM order and φ̄ = tan−1(y/(x − ρ)) the
azimuthal angle relative to r0(z = 0). To calculate the field in the lab frame at z 6= 0, the
field at z = 0 needs to be evaluated according to Eq. B.9:

ELab
s,l (x̃ cos(αz̃) − ỹ sin(αz̃), x̃ sin(αz̃) + ỹ cos(αz̃), z = 0)

=ELab
s,l (ρ+ x̄ cos(αz̃) − ȳ sin(αz̃), x̄ sin(αz̃) + ȳ cos(αz̃), z = 0)

= 1√
2

1
si
0

 eil tan−1
(

x̄ sin(αz̃)+ȳ cos(αz̃)
x̄ cos(αz̃)−ȳ sin(αz̃)

)
.

(B.24)

Following the same algebra as in the previous section one arrives at:

ELab
s,l (r(x̄, ȳ, z)) = 1√

2

1
si
0

 eil tan−1(ȳ/x̄)ei(s+l)αzeiκz = ELab
s,l (r(x̄, ȳ, z = 0))ei(s+l)αzeiκz.

(B.25)
This result has the same form as Eq. B.15 for on-axis fields. Therefore, we showed that
it is also possible to define an effective index in the lab frame for off-axis fields - as long
as the fields have the structure defined in Eq. B.23. The previously obtained formula for
transforming the effective index Eq. B.16 also holds for these off-axis fields:

nLab
eff = nHelical

eff + (s+ l)αλ2π . (B.26)
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Figure B.4: Explanation of the OAM contribution to the transformation phase for fields
located in an off-axis core. A circularly polarized transverse field with s = l = 1 is shown
in the lab frame as z is increased in steps of 1/6 of the helical pitch. The phase is evaluated
at a fixed point r1 relative to the center of the moving core r0(z). Note that only the effect
of the rotation of the helical coordinate frame with respect to the lab frame is shown. To
isolate this effect, the phase of the x component of ELab(x̃ cos(αz) − ỹ sin(αz), x̃ sin(αz) +
ỹ cos(αz), 0) is evaluated (right hand side of Eq. B.9). As z increases, the phase at the
tracked point (gray crossed circle) increases resulting in the OAM contribution to the
transformation phase: lαz. The black bulge is a guide to the eye.

Non-transverse Beams

For a field in an off-axis core, its phase fronts are generally perpendicular to the helical
trajectory of the core. Therefore, the field develops a z component and Eq. B.25 - derived
for fields transverse to the z axis - does not apply anymore. In this case, the field is usually
still circularly polarized (i.e.,

∣∣∣Ŝ3

∣∣∣ = 1) but the 3D polarization ellipse does not lie in the
xy plane. As an example, we study a beam with uniform circular polarization where the
polarization ellipse is tilted out of the xy plane by a tilt angle β:

ELab
s (x, y, z = 0) = 1√

2

1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)


1
si
0

 = 1√
2

 1
i cos(β)
i sin(β)

 . (B.27)

Again, Eq. B.9 is applied to calculate the field in the lab frame at z 6= 0. Since the field
does not have a spatial dependence, the result is independent of the chosen trajectory
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r(x, y, z) and applies to both off-axis and on-axis fields:

ELab
s (x, y, z) = 1√

2

 cos(αz) + i cos(β) sin(αz)
− sin(αz) + i cos(β) cos(αz)

i sin(β)


︸ ︷︷ ︸

ETransformation

eiκz. (B.28)

The transformation phase is calculated as the argument of ETransformation. Note that the
phase of the z component of ETransformation does not change because the transformation
includes a rotation of the polarization ellipse around the z axis.

3
2

5
2

2

y

z

x

0 π 2π
0

π

π

π

2π

π

y

z

x
β

y

z

x

T
ra

ns
fo

rm
at

io
n 

ph
as

e

αz αz αz

(a) (b) (c)

Arg (E Tr.
x )

Arg (E Tr.
y )

β =0°

0 π 2π 0 π 2π

β=85°β=75°β=20°

Figure B.5: Transformation phase for circularly polarized fields with s = 1 which are not
transverse to the z axis. The polarization ellipse is tilted out of the xy plane by an angle β
as indicated in the figure. The phases of the x and y component of ETransformation are shown
as solid blue and orange lines, respectively. As the tilt angle is increased, the differences to
the phases of an untilted polarization ellipse (shown as dotted lines) grow larger. For tilt
angles of β = 20◦ (a) and β = 75◦ (b), the phase difference to the untilted ellipse remains
below 0.2π. Only for very high tilt angles of β = 85◦ (c) a strong deviation from the linear
increase in z can be observed.

The transformation phase deviates from the linear increase in z if the field is not
transverse. However, the phase difference to a transverse field with the same spin remains
small even for high tilt angles of β = 75◦ (Fig. B.5(b)). Therefore, Eq. B.16 can still be
used as a guide to the phase evolution of the mode in the lab frame.
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B.1.3 Summary
Eigenmodes of twisted waveguides have unique properties when it comes to their propaga-
tion. Since their field profile and their polarization ellipses rotate - following the twist of
the structure - they can in general not be compared to a field propagating in an untwisted
waveguide or a waveguide with a different twist rate. However, an exception exists if the
field fulfills the following conditions:

• The field is transverse to the z axis.

• The field is circularly polarized with s = ±1.

• The spatial phase profile is flat or has an OAM profile with a eilφ phase dependence.

Under these conditions, the propagation phase of the field increases linearly in the lab
frame and an effective index in the lab frame can be defined using Eq. B.16:

nLab
eff = nHelical

eff + (s+ l)αλ2π . (B.29)

This equation holds both for on-axis fields and fields located in an off-axis twisted core.
An effective index in the lab frame can still be defined if the conditions are only slightly
violated, especially if the polarization is still circular but the polarization ellipse is tilted
out of the xy plane which is usually the case for off-axis twisted waveguides.



Appendix C

Overview of Works on Twisted
Waveguides

Different types of on- and off-axis twisted waveguides are reported in the literature. Table C.1,
shown on the next two pages, presents a broad selection of works in order of achieved (or
theoretically analyzed) twist rate. Cross sections of these waveguide geometries are de-
picted in Fig. 1.5. A graphical overview of this table is available in Fig. 1.6.

To showcase the potential of 3D nanoprinting, a reference from 2009 on helical meta-
surfaces by Gansel et al. was included. This work reports the - to our knowledge - smallest
pitch distance achieved so far with this technology: 1.8 µm [89]. However, as the total
length of these helices is only about 5 µm, this result is not directly applicable in the
context of the twisted waveguides presented in this thesis.
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Appendix D

Additional Simulation Results for
Off-axis Twisted Waveguides

To allow a better comparison of the modal properties across the three investigated off-
axis twisted waveguide types, detailed plots for different twist rates are available on the
next pages. Only the results for multimode waveguides are shown while identical plots are
available for the single-mode variants in the Supplemental Material of the corresponding
manuscript preprint [281]. The following optical properties (defined in Chapter 2) were
evaluated:

• Longitudinal component of the Poynting vector ST.

– Corresponds to the intensity that would be measured at the output of the
waveguide.

• Transverse component of the Poynting vector SNB.

– Both, the longitudinal and transverse components were scaled by the same value
so that their magnitude can be compared.

– If this component curls around the center of the waveguide in the azimuthal
direction, the mode contains OAM. A small fraction of OAM is present in the
fundamental modes because spin and OAM are only well separated as long as the
paraxial approximation is strictly valid [302]. For the single-mode waveguides in
particular, the paraxial approximation is not well satisfied and some of the spin
angular momentum is converted to OAM while the total angular momentum is
conserved [161].

• Transverse component of electric and magnetic field, ENB and HNB, respectively.

– White ellipses denote shape and orientation of the polarization ellipse within the
NB plane (i.e., neglecting the longitudinal field component). Arrows indicate
the direction of rotation of the polarization vector in time.
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• Spin vector of electric and magnetic field, sE and sH, respectively.

– The magnitude of the spin vector corresponds to the Stokes parameter Ŝ3 of
the respective field.

– The transverse component of the spin vector is shown on top of Ŝ3 in the square-
shaped plots.

– The longitudinal component of the spin vector can be seen in the projection of
the spin vector onto the TB plane shown in the rectangular box below. The
height of the box corresponds to the maximal value of 1. The scaling of the
arrows in the box and the rectangle is the same.

• Phase of one of the transverse components of the electric and magnetic field.

– The phase of the B component is shown unless the N component is dominant.
Labels in the plots indicate which component is shown.

– The absolute value of the phase varies between plots.

• Characterization of the chirality of the fields in the form of gfield.

– If |gfield| > n, the field is superchiral.
– gfield is not shown for multimode waveguides since its magnitude is close to n

at all twist rates.
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Figure D.1: Spatial properties of fundamental modes in the multimode Frenet-Serret wave-
guide (V = 17.25) depicted in the TNB frame. Four different twist rates from 1/mm to
20/mm are shown. Modes remain circularly polarized up to the highest twist rate. The
cross sections of the waveguides are shown as black lines in (d). Since the cross section is
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frame is not perfectly circular. Quantities depicted in (a-d) are explained at the beginning
of this chapter.
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As shown in Fig. 5.11 of the main text, superchiral fields can occur on the surface
of helicoidal waveguides. Concerning this figure, additional line cuts of gfield along the
N direction for different twist rates can be found here in Fig. D.4.
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Figure D.4: Superchiral fields in helicoidal waveguides. gfield was evaluated for the LCP
fundamental mode along the N direction through the center of the waveguide. This is an
extension of Fig. 5.11(b) of the main text. (a) At low twist rates (0.01/mm), gfield is close to
n like in a circularly polarized plane wave. At high twist rates (20/mm) the field becomes
linearly polarized resulting in an overall lower value of gfield. (b) At an intermediate twist
rate (2.5/mm) the field becomes superchiral on the surface of the waveguide (gfield>1).
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Additional Simulation Results for
Twisted Light Cages

E.1 Spiraling Phase Patterns in OAM Modes

Fig. 6.4(c) shows that modes carrying OAM feature a spiraling phase profile on the outside
of the core, which is different from the OAM phase profile inside the core. The spiraling
pattern arises as the sum of an OAM phase profile with that of a diverging lens whose focal
length is found to be largely independent of twist rate and OAM order. The diverging field
outside of the core might be related to the higher propagation loss of OAM modes compared
to the fundamental modes, as energy is constantly carried away from the core.
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Figure E.1: Interpretation of "spiraling" phase profile of OAM modes shown in Fig. 6.4.
For negative OAM (a), the phase profile twists counterclockwise outside of the core region,
while it twists clockwise for positive OAM (b). Phase profiles on the left were simulated
for a RCP mode at a twist rate of 0.8/mm. The twisting phase profile can be modeled
as the sum of an exp(ilφ) phase profile and the phase of a diverging lens (focal length:
−190 µm). Inside the core (yellow shaded area), the phase profile does not twist. Scale
bar denotes 10 µm.
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E.2 Additional Twist-induced Resonances

Here, two more resonances in twisted light cages are analyzed, completing the analysis
presented in Fig. 6.4. The simulation results corroborate the explanation of twist-induced
resonances in Section 6.2.
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Figure E.2: Further twist induced resonances in single-mode strand light cages supplement-
ing Fig. 6.4. (a) Real part of the effective index in the helicoidal frame and (b) attenuation
of the fundamental core modes (l = 0) and relevant higher-order core modes. Left panel
shows the second achiral resonance (∆s = 0, ∆l = 12), and right panel a further chiral
resonance (∆s = +2, ∆l = 4). The OAM mode involved in the chiral resonance is of
second radial order (i.e., m = 2 in the notation used for the tube model in Section 6.5).

E.3 Optical Properties of Multimode Strand Light
Cages

The analysis of multimode strand light cages in the main part of the thesis was limited
to the four twist rates of the fabricated samples. Here, additional results are presented
for intermediate twist rates. Note that these results were calculated for a strand diameter
of 2rc = 3.6 µm with left-handed twisting direction, while the results shown in Fig. 6.13
pertain to right-handed structures with 2rc = 3.814 µm.
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strand light cages at different twist rates. Dispersion was calculated in the lab frame using
Eq. 5.2. Left panel: low twist rates (0 - 1.3/mm). Right panel: high twist rates (1.465 -
10/mm). Twisting induces resonances to higher-order core modes, e.g., at a wavelength of
770 nm for a twist rate of 1.05/mm.

The left panel of Fig. E.3 and Fig. E.4 indicate that the spectral position of core-
strand resonances is nearly unaffected by twisting. This can be understood based on the
analysis of off-axis twisted waveguides in Chapter 5. The strands of multimode strand
twisted light cages correspond exactly to the multimode helicoidal waveguides analyzed
earlier. Twisting was shown to increase the effective modal index of the strands due to
the increased path that the light has to travel along the helical trajectory (cf. Eq. 5.6).
However, light in the core remains on the twist axis and is therefore not forced to travel
along an elongated path. Thus, the effective index of the core mode (evaluated in the
lab frame) does not increase with twist rate as shown in Fig. 6.8. Since the index of the
core is lower than that of the strands, twisting only increases this index difference further.
Core-strand resonances therefore still only occur at the cut-offs of the strand modes (see
more details in Section 4.2.2 on the untwisted light cages), which are apparently (mostly)
unaffected by twisting.
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Figure E.5: Explanation for increased loss at high twist rates. (a) The number of al-
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corresponding standard deviation.
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