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Zusammenfassung
In dieser Arbeit wird über die Beobachtung chiraler Randmoden mit Hilfe von ultrakalten
Atomen in einem optischen Honigwabengitter, in dem das Tunneln moduliert wird, berichtet.
Durch periodische Modulation des Hamiltonians, auch bekannt als Floquet-Engineering,
realisieren wir drei Floquet topologische Phasen, darunter eine anomale Floquet-Phase, in
der die Chern-Zahl verschwindet, aber dennoch topologische Randmoden existieren.

Das Vorhandensein von Randzuständen in topologischen Materialien ist über die Kor-
respondenz zwischen Volumen und Rand direkt mit den topologischen Invarianten des
Volumens verbunden. In periodisch angetriebenen Systemen ist dieses Grundprinzip je-
doch modifiziert und die Kenntnis über konventionelle topologische Invarianten ist nicht
ausreichend, um das Vorhandensein von topologischen Randmoden vorherzusagen. Eine
vollständige topologische Charakterisierung der drei Floquet topologischen Phasen mittels
Windungszahlen wird durch die Messung der Lückenschließungen der Quasi-Energielücken
und der Änderung der Berry-Krümmung an den Phasenübergängen ermöglicht. Wir verfolgen
die Größe der Quasi-Energielücken in dem modulierten System mit Hilfe von Stückelberg-
Interferometrie. Die Berry-Krümmung wird Quasiimpuls-aufgelöst gemessen, indem die im
Impulsraum lokalisierte Atomwolke durch die Brillouin-Zone beschleunigt und die durch
die Berry-Krümmung hervorgerufene anomale Auslenkung aufgezeichnet wird.

Topologisch geschützte Randmoden spielen eine entscheidende Rolle bei der Unter-
suchung von topologischen Phasen der Materie. Die Randmoden sind robust gegenüber
schwachen Störungen wie Unordnung und können einen dissipationsfreien Transport ermög-
lichen. Dies steht im Gegensatz zu dem Verhalten in gewöhnlichen Isolatoren und kann
wertvolle Erkenntnisse darüber liefern, unter welchen Bedingungen topologische Phasen ent-
stehen oder verschwinden. Wir demonstrieren ein experimentelles Protokoll zur Realisierung
chiraler Randmoden in optischen Gittern, indem wir eine topologische Schnittstelle mit
Hilfe einer Potentialstufe erzeugen, die mit einem programmierbaren optischen Potential
erzeugt wird. Wir zeigen, wie man effizient Teilchen in diesen Randmoden in den drei
verschiedenen topologischen Floquet-Regimen präparieren kann. Indem wir die Höhe der
Potentialstufe kontrollieren, zeigen wir, wie die Randmoden an der topologischen Schnitt-
stelle entstehen. Wir beobachten, wie die Eigenschaften der Potentialstufe die Randmode
in den drei Regimen beeinflussen, und wir zeigen, wie die Breite der Potentialstufe die
Randmode im Haldane-Regime beeinflusst.

Die Beobachtung von Randmoden erweitert den Werkzeugkasten für kalte Atome erheb-
lich, um topologische Eigenschaften in verschiedenen Phasen der Materie mit ultrakalten
Atomen zu untersuchen, insbesondere in langsam getriebenen Systemen und bei Vorhan-
densein von Unordnung im Gitter, wo andere Techniken nicht anwendbar sind.
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Abstract
This thesis reports on the observation of chiral edge modes using ultracold atoms in a
tunneling modulated optical honeycomb lattice. By periodically modulating the Hamil-
tonian, also known as Floquet engineering, we realize three Floquet topological regimes,
among which an anomalous Floquet phase, where the Chern number vanishes, yet topo-
logical edge modes persist.

The presence of edge states in topological materials is directly connected to the topo-
logical invariants of the bulk via the bulk-boundary correspondence. In periodically-driven
systems, however, this fundamental principle is modified and knowledge about conventional
bulk topological invariants is insufficient to predict the existence of topological edge modes.
A full topological characterization of the three Floquet topological regimes using winding
numbers is performed by measuring the gap closings of the quasienergy gaps and the change
of Berry curvature at the phase transitions. We track the size of the quasienergy gaps in
the modulated system by employing Stückelberg interferometry. The Berry curvature is
measured in a quasimomentum resolved fashion by accelerating the atomic cloud, which
is localized in momentum space, through the Brillouin zone and recording the anomalous
displacement induced by the Berry curvature.

Topologically protected edge modes play a crucial role in the study of topological phases
of matter. The edge modes are robust to weak perturbations such as disorder and can
allow for dissipationless transport, which contrasts with the behavior in ordinary insulators
and can provide valuable insights under which conditions topological phases emerge or
disappear. We demonstrate an experimental protocol for realizing chiral edge modes in
optical lattices, by creating a topological interface using a potential step that is generated
with a programmable optical potential. We show how to efficiently prepare particles in
these edge modes in the three distinct Floquet topological regimes. Controlling the height
of the potential step we reveal how edge modes emerge at the topological interface. We
observe how the properties of the edge influence the edge mode in the three regimes and
show how the edge width influences the edge mode in the Haldane regime.

The observation and manipulation of edge modes greatly expands the cold atom toolbox
to probe topological features of different phases of matter with ultracold atoms, in partic-
ular in slowly-driven systems and in the presence of disorder, where other techniques
are not applicable.
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CHAPTER 1

Introduction

The ability to probe the behavior of a quantum mechanical system close to its ground state
has been greatly improved with the preparation of Bose Einstein condensates (BEC) [1–3]
and degenerate Fermi gases [4]. With the unique control and access to novel observables
inaccessible to solid state system, ultracold atoms provide a unique platform to investigate
a wide range of phenomena [5, 6].

Being able to independently control the interaction among the particles [7], their
geometry [8] or dimensionality allows experiments in very different regimes [9]. In three
dimensions we find e.g. Bose Einstein condensation of atoms [10] and molecules made
up of fermionic atoms [11–14] in the BEC-BCS crossover [15]. In two dimensions with a
continuous symmetry true long-range order is absent at any finite temperature [16, 17]
and atoms only condense to quasi-condensates due to the unbinding of vortex–antivortex
pairs [18–20]. In one dimensional systems, which can be realized utilizing a two dimensional
optical lattice [21], the properties of bosonic particles exhibit properties of fermionic particles
in the so-called Tonks-Giradeau-Gas [22–26]. Tuning individual parameters of these cold
atomic samples enables probing of the phase transition from a thermal gas to a BEC, or
the formation of a quantum droplet [27–30] or supersolid [31–35].

Not only the ability to prepare quantum systems in a vast landscape of experimental
parameters but also the observation of the resulting phases is dramatically changed by
the microscopic manipulation techniques that have been developed in recent years in cold
atom platforms. Quantum gas microscopes enable the observation of individual snapshots
of the microscopic many-body wave functions [36–38]. Preparing engineered initial states
allows for direct observation of quasiparticles [39, 40] and their time evolution [40, 41],
and such preparations can be facilitated by new techniques where atoms are sorted into
defect-free arrays [42, 43]. Finally dynamically tuning parameters of the Hamiltonian
across phase transitions and observing the underlying dynamics enables a new approach
to investigate quantum critical phenomena [44, 45].

In contrast to thermodynamic phase transitions, where thermal fluctuations are driving
the phase transitions, some of the mentioned above represent a quantum phase transi-
tions, where quantum fluctuations due to the Heisenberg uncertainty principle [46] drive
the phase transition [47].
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2 Introduction

In contrast to the notion of a phase as illustrated above, which are distinguished
by the presence or absence of a symmetry or equivalently described by a local order
parameter [47, 48], such as continuous translational symmetry in a liquid compared to a
discrete translational symmetry in a solid, we can also identify topological phases of matter,
which go beyond the usual classification of phases of matter based on symmetry breaking and
cannot be characterized by a local order parameter. The arguably most prominent example
is the integer quantum Hall effect [49–51]. When a current Ix runs through a sample with
an applied transversal magnetic field Bz, a transverse voltage Vy builds up. For sufficiently
strong magnetic fields at low enough temperatures, and if the sample can be described as a
two-dimensional electron gas, we find plateaus of the transverse conductivity [52]

Gxy ≡
Ix
Vy

= n
e2

h
, (1.1)

with n ∈ N. These plateaus are extremely stable and solely depend on the fundamental
constants of the electron charge e and Planck’s constant h, furthermore they are insen-
sitive to the geometry of the sample and the microscopic parameters of the system [53].
Since the redefinition of the SI-units in 2019, e2/h is a fixed quantity [54]. The precise
quantization of the transverse conductivity is directly related to the topological invari-
ants of the system, i.e., even though n may differ for various bands the system does not
undergo a phase transition where the symmetries of the system change. The transverse
conductivity is intimately linked to the existence of chiral edge modes of the sample via
the bulk-boundary correspondence [55].

Topology in mathematics is concerned with the properties of a geometric object that are
preserved under continuous deformations [56]. An example for such a topological invariant
would be the genus g of a closed surface, which quantifies the number of holes in the surface.
The genus does not change as long as the number of holes is unchanged, i.e., a bottle and a
sphere are equivalent with g = 0, while a mug can be continuously deformed to a torus,
which both exhibit g = 1. The genus can be connected to the integrated curvature over the
surface, highlighting that the genus is not a local but a global quantity of the surface.

In a similar fashion we can define a curvature of a gapped, non-degenerate band in
the Brillouin zone, the Berry Curvature, which when integrated also results in an integer
invariant, the Chern number. The invariant n in the integer quantum Hall effect, is simply
the sum of the Chern numbers of all occupied bands. Two bands with the same Chern
number can only be continuously transformed, i.e., without closing of the energy gap,
between one another if they exhibit the same value of the topological invariant, i.e., belong
to the same topological class [57, 58]. More generally Hamiltonians can be classified by their
symmetry class and dimensionality. According to the Altland-Zirnbauer classification [59,
60] the Hamiltonians can be categorized conditional on whether they exhibit time-reversal,
chiral and particle-hole symmetry. A system exhibiting the integer quantum Hall effect in
the presence of a magnetic field breaks time reversal symmetry, similarly does the seminal
Haldane model even though it does not require a net magnetic field [61]. According to the
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Altland-Zirnbauer classification the system is described by a Z invariant in the absence of
chiral and particle-hole symmetry. This Z invariant is the Chern number for a single band.

Coupling the spin and orbit degree of freedom results in a system additionally conserving
time reversal symmetry [62, 63]: the quantum spin Hall insulator, which was experimentally
observed soon after the theoretical proposal [64, 65]. Here the topological classification of
the topological insulator is described by a Z2 invariant. While the integer and quantum
spin Hall effect can be explained in a single particle picture, the fractional quantum Hall
effect [66–68] requires interacting particles. The resulting quasi particles obey fractional
statistics [69, 70], exhibit long-range entanglement [71, 72] and can exhibit non-Abelian
states [71, 73]. Common to all topologically non-trivial systems is the existence of gapless
boundary states predicted via the bulk-boundary correspondence [57, 60].

The topological invariants are robust to small perturbations, because the invariant
cannot change unless a gap in the spectrum is closing. Therefore also the gapless boundary
states are not affected by these perturbations. Considering again the integer quantum Hall
effect, the transverse conductivity can be explained by one dimensional metallic states
located in close vicinity to the edge of the system [55, 74–78]. These edge modes are chiral
i.e., they only transport current in one direction and do not scatter e.g. due to disorder in
the lattice [57, 79]. The detection of topological chiral edge modes presents direct evidence
of the topological nature of the underlying system.

The implementation with ultracold atoms requires further efforts in order to implement
a topological band structure because a magnetic field does not break time reversal symmetry
for charge neutral particles, such as ultracold atoms in an optical lattice. To mimic the
coupling of a charged particle on a lattice to a magnetic field, the coupling to its vector
potential is implemented via a complex tunneling element [80]. Applying an oscillating
force to a particle in a lattice strongly affects its tunneling rate [81, 82]. Shaking, i.e.,
periodically applying a force to the lattice, in a two-dimensional honeycomb lattice enables
the realization of complex tunneling and the implementation of the Haldane model [83,
84], in a similar fashion this enabled the direct observation of edge modes in a lattice of
photonic waveguides [85]. Other modulation schemes such as laser assisted tunneling or
a direct modulation of the tunnel coupling also implement interesting band strutures [80,
86–88], such as the Hofstadter Hamiltonian [89]. Common to all the schemes which rely on a
periodic modulation is breaking of time translational invariance, which results in a periodic
quasienergy restricted to, in analogy to the momentum in a lattice, the Floquet Brillouin
zone with a width proportional to the modulation frequency. If the energy scales of the
system become comparable to the modulation frequency an anomalous Floquet phase can
emerge, where a different topological description is necessary compared to static systems [86,
87]. The concept of classifying driven systems by their symmetries and dimensionality can
be extended to the stationary states of the driven system by considering the evolution
operator of the system [90]. Periodic modulation, also referred to as Floquet engineering,
offers a wide parameter range to explore [88, 91], which implements the equivalence of static
systems in the high frequency limit [88, 92, 93] and genuine out of equilibrium systems for
low driving frequencies [86, 87]. Such an out of equilibrium phase which does not have
a static counterpart is the aforementioned anomalous Floquet phase. It is characterized
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by a Chern number of zero, i.e., the conventional bulk-boundary correspondence would
predict no edge modes, however the system still exhibits edge modes. The topological
classification can then be performed by identifying a new set of invariants - the winding
numbers [87]. The full characterization of a N band system then requires the knowledge
of N winding numbers or alternatively the knowledge of N − 1 Chern numbers and one
winding number or any other combination.

A striking difference compared to e.g. the Haldane model is the behavior in the presence
of disorder, where the anomalous Floquet phase is expected to host chiral edge modes even
when all bulk states are fully localized, the anomalous Floquet Anderson insulator [94–96].
In the presence of disorder probing the bulk topological features of the band structure
experimentally is challenging, however the observation of the edge mode of the system can
serve as a clear signature whether the system is topological or not. This can serve as a
sensitive probe to identify topological phase transitions induced by disorder or interactions.

Topologically protected edge modes play a crucial role in the study of topological phases
of matter as they provide hallmark evidence of the quantized transport. By creating
more than one edge in a fractional quantum Hall system, edge modes can collide [97] or
interfere [98, 99] and provide evidence of the anyonic exchange statistic of the underlying
quasiparticles. Understanding how the edge potential modifies the spatial structure of
modes on the edge in quantum Hall system still poses interesting questions [100–104].
In the presence of smooth confining potentials interactions may induce quantum phase
transitions on the edge, while leaving the bulk unperturbed, resulting in additional structure
on the edge [103]. Directly observing how electrons, or atoms in optical lattices, move
along the edge might give insights to the microscopic behavior of these systems. While
cold atom experiments are taking significant steps towards realizing fractional quantum
Hall physics [105, 106], faithful preparation of the initial state will be challenging in larger
systems [107]. Implementations of their non-interacting counterpart provide access to the
bulk topological invariants [108–111], but have so far not been probed on the edge.

The observation of edge modes in systems simulating the effects of the integer quantum
Hall effect, such as a lattice of twisted waveguides [85, 112–114], electronic circuits [115] or
the internal levels of an atom [116–118] is facilitated by the naturally sharp boundaries
of these systems. In cold atom systems the edges are typically smooth, hindering the
preparation of a sharp boundary. Despite many proposals for two-dimensional systems [119–
122] observation of edge modes in real space with cold atoms so far remained elusive.

This thesis
Here we present the observation of chiral edge modes in a two-dimensional real-space Floquet
system by generating a topological interface in the lattice. The work presented in this
thesis builds on and extends the toolbox used to probe ultracold atoms in topological band
structures. By periodically modulating the tunneling in the optical honeycomb lattice [86]
we implement a Floquet topological system that can realize the Haldane model and the
anomalous Floquet phase, thus realizing a system close to the quantum Hall system and a
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topological phase in the out of equilibrium setting without static counterpart. By probing
the energy gap using Stückelberg interferometry we directly identify the phase transition
between the two regimes, which also highlights the robustness of the topological phases
over a wide parameter range. Tracking the evolution of the Berry curvature at the phase
transition allows for reconstruction of the topological invariants of the system presenting
a full characterization of the topological invariants [111].

In a second experiment [123] we build on the knowledge of the phase diagram and
implement a topological interface in the lattice by applying a potential step. We present
the observation of chiral edge modes in a two-dimensional real-space Floquet system at a
topological interface. Precisely controlling the spatial extent, position and phase profile of
the initial wave function using an optical tweezer we probe the existence and properties
of the chiral edge modes. Being able to probe the bulk and edge of the system we can
verify the bulk-boundary correspondence and observe edge modes in the non-trivial phases,
but observe non in the static lattice. We identify the presence of edge modes also in
the anomalous Floquet phase confirming the previous topological characterization. The
tunability of the edge potential allows us for the first time to investigate the emergence of
edge modes as we establish a topological interface by varying the height of the potential.
Tuning the width of the potential we observe a slowing of the edge mode.

Outline
This thesis is divided into six chapter as follows.

Chapter 2 introduces the concept of geometrical phases and establishes the connection
between the topological invariants and the existence of edge modes. The Haldane model is
discussed to gain some intuition for the physics in the honeycomb lattice. It proceeds by
reviewing the concept of Floquet engineering and illustrates the tunneling modulated honey-
comb lattice. Anomalous Floquet phases are discussed comparing different driving protocols.

The experimental setup is briefly introduced in Chapter 3. The cooling scheme is
introduced and the optical potentials are discussed in greater detail. Implementing high
resolution optical potentials requires careful alignment of the large NA optics which is
discussed along with a method to characterize the achieved resolution.

The full characterization of the topological invariants in the tunnel-modulated hon-
eycomb lattice is presented in Chapter 4. We introduce the experimentally implemented
driving protocol and highlight the measurement of the quasi energy gaps. By measuring
Hall deflections we track the evolution of the Berry curvature at the phase transitions.
Combining the closing of the quasienergy gap and the change of the Berry curvature,
we derive winding numbers in the three topological phases presenting a full topological
characterization of the invariants.

Chapter 5 presents the observation and manipulation of edge modes in a two-dimensional
real-space Floquet topological system. Illustrating the initial state preparation, we confirm
the coherent evolution in the lattice by tracking the evolution of a initially localized wave
packet in the static lattice. We then present the observation of edge modes in the anomalous
Floquet regime, and compare its evolution to the static system. We show how to prepare
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edge modes in the Haldane regime and probe the phase profile ot these states. Quantifying
the velocity of the edge mode we study the emergence of edge modes as we increase the
height of the potential step. Changing the width of the step potential we observe a slowing
down of the edge mode as expected from theory.

The main findings are summarized in Chapter 6 and it provides a brief outlook on
future directions.

Publications
The central results presented in this thesis have been published or appeared as preprints
in the following references:

• K. Wintersperger, C. Braun, F.N. Ünal, A. Eckardt, M.D. Liberto, N. Goldman, I.
Bloch, and M. Aidelsburger, Realization of an Anomalous Floquet Topological System
with Ultracold Atoms, Nature Physics 16, 1058 (2020)

• C. Braun, R. Saint-Jalm, A. Hesse, J. Arceri, I. Bloch, and M. Aidelsburger, Real-
Space Detection and Manipulation of Topological Edge Modes with Ultracold Atoms, 2023,
arXiv:2304.01980, preprint

https://doi.org/10.1038/s41567-020-0949-y
https://arxiv.org/abs/2304.01980


CHAPTER 2

Topological phases and the tunneling modulated
honeycomb lattice

The behavior of non-interacting electrons in solids is commonly described by a band
structure [124, 125]. The eigenstates associated with these energy bands can be classified
according to their topological structure [55]. We will first introduce the concept of geometric
phases which can arise in cyclic adiabatic processes in Section 2.1. Section 2.2 will review
the paradigmatic Haldane model and discuss its topological properties. Section 2.3 will
illustrate the implications of a periodically driven Hamiltonian, then Section 2.4 will discuss
how the previously introduced concepts can be utilized to generate topologically non-trivial
bands with charge neutral particles by modulating the Hamiltonian periodically. The
resulting anomalous Floquet phase is introduced in Section 2.5 and the new necessary
invariants to characterize its topology will be discussed in Section 2.5.2.

2.1 Geometric Phases
A prominent example for a geometric phase arising in a classical system is the Foucault
pendulum. We consider a pendulum located somewhere on the surface of the earth, which
is rotating around its axis of rotation, therefore the path the pendulum follows is a circle. A
fixed pendulum oscillates in a plane, upon moving the pendulum on the surface of the earth
this plane will move. For example, transport at constant latitude θ will introduce a rotation
of the plane of the pendulum by 2π cos(θ). For a general path the angle of rotation will be
given by the solid angle enclosed by the path [126]. The angle of rotation is independent of
the speed at which the pendulum is traveling, as long as it is not too fast, and solely depends
on the geometry of the path, which justifies its name. In a similar fashion we can find
geometric phases emerging in quantum system for adiabatic transport - the Berry phase.

2.1.1 Cyclic adiabatic evolution
In the following we will illustrate the effect of cyclic adiabatic evolution and the possibility of
an emerging topological phase factor [127, 128]. We will consider the evolution of a quantum
state |ψ(t)⟩ under the influence of a time-varying Hamiltonian Ĥ(t) = Ĥ(P(t)), where P(t)

7



8 Topological phases and the tunneling modulated honeycomb lattice

is representing the time-varying parameters of the Hamiltonian. P(t) is a point in the
parameter space with a certain dimension of the Hamiltonian. The instantaneous eigenstates
|n,P⟩ and eigenenergies En(P) will be related to the Hamiltonian at setting P according to

Ĥ(P) |n,P⟩ = En(P) |n,P⟩ (2.1)

⟨m,P|n,P⟩ = δm,n,

where δm,n is the Kronecker-Delta. The change of the parameters P(t) will be periodic
along a closed path C with a period T , i.e.,

C : P(0) → P(t) → P(T ) = P(0). (2.2)

Starting from an eigenstate of the Hamiltonian, we assume that the parameters P are
evolving such that the evolution is adiabatic, i.e., there is no admixture of other states
during the evolution, this condition can be expressed as

⟨m,P(t)| [ d
dt
Ĥ(t)] |n,P(t)⟩ ≪ |En(P(t))− Em(P(t))|2

ℏ
, for all m ̸= n, (2.3)

where Ei(P(t)) corresponds to the eigenenergy of state |i,P(t)⟩, which means that the
change of energy related to the left side of Equation 2.3, is significantly smaller than the
relevant angular frequency associated to energy gaps of the Hamiltonian, especially the
gaps in energy with respect to the state under consideration |n,P⟩.

During a cyclic evolution of a static, i.e., time-independent Hamiltonian, the state |ψ(t)⟩
with energy Eψ will only pick up a dynamical phase factor according to the energy of the state

|ψ(T )⟩ = e−
i
ℏEψT |ψ(0)⟩ . (2.4)

For a more general, time-dependent Hamiltonian, the evolution will follow the Schrödinger
equation

iℏ
d

dt
|ψ(t)⟩ = Ĥ(P(t)) |ψ(t)⟩ , (2.5)

we can express the state vector in the basis {|n,P⟩} with time-dependent coefficients cn(t)

|ψ(t)⟩ =
∑
j

cj(t) |j,P(t)⟩ , (2.6)

and after plugging it into the Schrödinger equation find for the coefficients

d

dt
cn(t) = −cn(t)

(
i

ℏ
En(t) + ⟨n,P(t)| d

dt
|n,P(t)⟩

)
. (2.7)

We can now integrate Equation 2.7 and find for the coefficients

cn(t) = e−
i
ℏ
∫ t
0 En(t

′)dt′ ei
∫ t
0 i⟨n,P(t′)| d

dt′ |n,P(t′)⟩dt′ + cn(0), (2.8)



2.1 Geometric Phases 9

where we again recover the dynamical phase, but also find an additional phase factor
due to the evolution of the eigenvectors, with cn(0) representing the initial phase. We
can rewrite the second term such that it is time-independent, and only depends on the
path of P in parameter space [128]

γn(t) =

∫ t

0
i ⟨n,P(t′)| d

dt′
|n,P(t)⟩ dt′

=
∑
j

∫ Pj(t)

Pj(0)
i ⟨n,P(t)| ∂

∂Pj
|n,P(t)⟩dPj

=

∫ P(t)

P(0)
An(P)dP. (2.9)

An(P) = i ⟨n,P(t)| ∇P |n,P(t)⟩ (2.10)

is referred to as Berry connection or Berry potential. Note that ⟨n,P(t)| ∇P |n,P(t)⟩
is purely imaginary, as

2ℜ(⟨n,P(t)| ∇P |n,P(t)⟩) = ⟨n,P(t)| (∇P |n,P(t)⟩) + (∇P ⟨n,P(t)|) |n,P(t)⟩ (2.11)

= ∇P ⟨n,P(t)|n,P(t)⟩ = 0. (2.12)

The cyclic evolution of the state vector |ψ(t)⟩ along the parameter trajectory C, assuming
it initially was in an eigenstate |n,P(t)⟩, therefore results in two phase factors

|ψ(t)⟩ = e−
i
ℏ
∫ t
0 En(t

′)dt′eiγn(t) |n,P(t)⟩ , (2.13)

where γn(t) solely arises from the eigenvectors |n,P(t)⟩ of Ĥ(P(t)). For an open path we
can always find a gauge transformation in order to remove γn(t), since the eigenvectors
are only defined up to an arbitrary phase. If however the path is closed, one cannot
remove γn(T ) by a gauge transformation because the start and endpoint correspond to
the same point, this phase is called Berry phase [127]. Note that the Berry phase is
gauge invariant, while the Berry connection is not. Therefore the Berry phase may lead
to a physically relevant observable, e.g. the Aharonov-Bohm phase [129, 130], while the
Berry connection is gauge-dependent and can therefore not be observed [127, 131]. The
Aharonov-Bohm phase is picked up by encircling a magnetic flux with charged particles,
even though the magnetic field is not present in the trajectory of the charged particles,
which can be shown e.g. in an interferometer [132].

From Equation 2.10, we can derive an anti-symmetric second-rank tensor, the Berry
Curvature

Ωn(P) = ∇P ×An(P). (2.14)
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In contrast to the Berry connection the Berry Curvature is gauge independent and can
thus be observed experimentally. Using Stokes’ theorem we can convert the Berry phase
integral over the loop C to a surface integral over the surface S enclosed by C

γn(C) =

∮
C
An =

∫
S
Ωn(P). (2.15)

Note that only phases mod 2π are observable. An alternative way of expressing Ωn(P),
which also is well defined, if |n,P⟩ is not smoothly single-valued, reads

Ωn(P) = i
∑
n̸=m

⟨n,P| ∇PĤ(P) |m,P⟩ × ⟨m,P| ∇PĤ(P) |n,P⟩
(Em(P)− En(P))2

. (2.16)

Equation 2.16 shows that the Berry curvature can exhibit singularities whenever the
eigenenergies become degenerate. These points can host topological phase transitions,
where the properties of the underlying system can change abruptly.

2.1.2 Geometric Phases in Periodic potentials
For most solid state materials a periodic potential is the starting point for a microscopic
theory. A periodic potential V (r) = V (r + R), where R is any point on the Bravais
lattice, according to Bloch’s theorem requires the solution to have the same periodic-
ity [124, 133]. For the stationary Schrödinger equation describing a single particle at
quasimomentum k in energy band n

Ĥ(r)ψnk(r) =

(
p̂2

2m
+ V (r)

)
ψnk(r) = Enkψ

n
k(r) (2.17)

the resulting eigenstates are the so called Bloch-waves which are made up of a plane wave
eik·r and a cell periodic function unk(r) = unk(r+R) with the same symmetry as the potential:

ψnk(r) = eik·runk(r). (2.18)

Upon combining Equation 2.18 and Equation 2.17 we find an explicit dependence of the
cell periodic functions, unk(r) on the respective quasimomentum k,(

(p̂+ ℏk)2

2m
+ V (r)

)
unk(r) = Enku

n
k(r). (2.19)

As the quasimomentum dependence is inherent to the problem of particles in a periodic
potential, various Berry phase effects can occur when k is changed in crystals [131]. We can
therefore rephrase the Berry connection (Equation 2.10) and Berry curvature (Equation 2.14
on the lattice as a function of quasimomentum, where the abstract parameter P is now
the quasimomentum k

An(k) = ⟨unk| i∇ |unk⟩ (2.20)

Ωn(k) = ∇k ×An(k) = ⟨∇ku
n
k| × |∇ku

n
k⟩ . (2.21)
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Note that the quasimomentum can always be transferred back to the first Brillouin zone
by adding a linear combination of reciprocal lattice vectors. The Brillouin zone has the
topology of a circle in one dimension, a torus in two dimensions and that of an n-dimensional
torus in n-dimensions, i.e., the quasimomentum is periodic.

2.1.3 The bulk-boundary correspondence

The Berry curvature has real physical consequences; it is instructive to consider the current
resulting from an external constant electric field E [55, 128]. This way we can connect the
Berry curvature and the transverse conductivity, i.e., the Hall resistance. Assuming an
the electric field is homogeneous and pointing in the x-direciton, we find the expectation
value of the velocity in y-direction to be

v̄y =
1
ℏ
∂En
∂ky

− i
eEx
ℏ
(
⟨∂kxunk|∂kyunk⟩ − ⟨∂kyunk|∂kxunk⟩

)
, (2.22)

where e is the elementary charge and Ex the electric field strength. This result is obtained
by considering the linear response to the electric field using the Kubo formula, for a
more detailed derivation see e.g. [134]. The system performs Bloch oscillations under the
influence of the weak electric field and gives rise to a Hall current perpendicular to the
electric field. For a filled band the velocity due to the Bloch oscillations vanishes and
only the second part remains, the Hall conductivity σH , which is the ratio of the current
density and electric field Ex is then given by

σH =
e2

h
i

∫
BZ

dkxdky
2π

(
⟨∂kxunk|∂kyunk⟩ − ⟨∂kyunk|∂kxunk⟩

)
(2.23)

=
e2

h

i

2π

∫
BZ

dkΩn(k), (2.24)

where the electron density per reciprocal space is dkxdky
(2π)2 . The right part of the equation

resembles the Berry curvature integrated over the Brillouin zone, it is necessarily an integer
and therefore highlights that the transverse Hall conductivity is quantized in terms of
the so-called Chern number

Cn =
i

2π

∫
BZ

dkΩn(k) ∈ Z, (2.25)

where Ωn corresponds to the component of Ωn perpendicular to the plane of k. The Chern
number is a property of the energy bands of the Hamiltonian and it is robust to continuous
perturbations as long as no energy gaps are closing. This gives rise to remarkably stable
transverse conductivity if the Fermi energy lies within a spectral gap of the Hamiltonian.
The integer quantum Hall effect resembles a system with non-zero Chern number and was
first experimentally discovered by von Klitzing in 1980 [49]. The transverse conductivity
is restricted to integer multiples of e2/h, the exact multiple is determined by the sum
of the Chern numbers over all occupied bands below the Fermi energy. The connection
between the precise quantization and the topological order of the bulk bands was first
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derived by Thouless, Kohmoto, Nightingale and den Nijs and is commonly referred to as
TKNN -invariant [55]. Shortly before, Halperin realized that on the edge of a sample, in
which the integer quantum Hall effect can be observed, extended states localized at the
edge of the sample can carry a current, whereas the bulk dispersion of the sample exhibits
a gap and is therefore insulating [75]. The existence of these conducting edge modes was
then unambiguously related to the bulk topological invariant by Hatsugai [76, 77]. This
established the bulk-boundary-correspondence. For a topologically non-trivial bulk band
there must exist an edge mode bridging the gap to the next band.

2.2 The Haldane Model

The Haldane model is one of the paradigmatic models featuring topologically trivial and
non-trivial states [61]. In the presence of magnetic fields two-dimensional electron gases
exhibit Landau levels and exhibit quantized transverse resistance values depending on
the Fermi energy, which is known as the integer quantum Hall effect [49, 128, 135]. The
quantized transverse conductivity emerges from the topological properties of the bands,
i.e., the Berry curvature and its integrand over the Brillouin zone: the Chern number [128].
In contrast to the integer quantum Hall effect, where a magnetic field is crucial, the
Haldane model does not require a net magnetic flux through the plaquette, which is the
smallest closed loop on the lattice.

2.2.1 Geometry of the Haldane model

The Haldane model relies on a real nearest neighbor tunneling in combination with a
complex next-nearest neighbor tunneling on a honeycomb lattice, i.e., whenever a particle
tunnels along this bond its wave function picks up a complex phase ϕ. This complex phase
results from the coupling of a charged particle to a vector potential A, which gives rise to a
magnetic field B = ∇×A. In a microscopic picture this coupling can be expressed via the
Peierl’s phase ϕ that we attached to the tunneling [136], it is equivalent to the Aharonov
Bohm phase the particle picks up on a closed path encircling a magnetic flux [129, 130].

The flux pattern of the Haldane model is depicted in Figure 2.1, it respects the symmetry
of the honeycomb lattice and threads the unit cell with positive and negative magnetic flux
±Φ, which corresponds to the surface integral of the normal component of the magnetic
field passing through the respective surface. The honeycomb lattice is no Bravais lattice
but a combination of two triangular lattices, i.e., there are two kinds of lattice sites: A- and
B-sites. One choice of lattice vectors, where a is the distance between an A- and B-site, is

a1 =
a

2

(
3√
3

)
a2 =

a

2

(
3

−
√

3

)
. (2.26)
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Figure 2.1 | Tunneling directions, flux pattern and resulting dispersion for the Haldane Model. a,

Plaquette of the honeycomb lattice with A- (red) and B-sites (blue). The directions relevant for nearest and

next-nearest neighbor tunneling are also depicted. The arrows connecting the same sublattice indicate

the directions for which the tunneling process is related to a positive phase. b, Flux pattern in the unit

cell. The unit cell is cut into 13 segments, out of which the central one is not pierced by a magnetic flux.

The remaining segments are alternatingly pierced by positive and negative flux ±Φ. There is no net flux

piercing the unit cell. c, Dispersion relation for changing sublattice offset ∆. The dispersion shows the

two gap closings at K for negative ∆ and K
′

for positive ∆. The color of the dispersion corresponds to ∆

indicated with the colorbar. The complex tunneling here is t/J = 0.1 with a phase φ = π/2.

The lattice vectors span a rhomboid unit cell containing one A- and one B-site. The
corresponding unit cell in reciprocal space is spanned by the two reciprocal lattice vectors

K1 =
kL
2

(√
3

3

)
K2 =

kL
2

(√
3

−3

)
kL =

4π
3
√

3a
. (2.27)

The reciprocal lattice is also hexagonal, but rotated by 90◦ compared to the real-space
lattice, cf. Figure 2.1a and Figure 2.2a. In the Haldane model the nearest neighbor tunneling
along δj , j ∈ {1, 2, 3} is real with amplitude J , the next-nearest neighbor tunneling J ′

can have a complex phase ϕ and can be written as

J ′ = teiϕ, (2.28)

with t = |J ′|. The tunneling directions are illustrated in Figure 2.1a and are, in addition
to the lattice vectors (Equation 2.26), given by

a3 = a1 − a2 δ1 = a

(
−1
0

)
δ2 =

a

2

(
1

−
√

3

)
δ3 =

a

2

(
1√
3

)
(2.29)

The next-nearest neighbor tunneling occurs with positive phase +ϕ, with ϕ ∈ [0, 2π), when
connecting A- to A-sites and negative phase −ϕ when connecting B-sites with the same
vector aj , this is illustrated by the direction of the arrows in Figure 2.1 which always
represent a positive phase. The flux pattern is chosen such that a particle tunneling in a
loop along the edge of a plaquette acquires no phase, whereas a particle tunneling along the
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directions −a1 → a2 → a3, again forming a loop, picks up a phase of 2π×3Φ/Φ0, the reverse
direction would pick up a phase of −2π × 3Φ/Φ0, where Φ0 = |h/e| is the flux quantum.
In addition to the tunneling on the lattice a potential offset between A- and B-sites can
be present, which is denoted by ∆. Depending on the magnitude of inversion symmetry
breaking due to ∆ and broken time-reversal symmetry due to the complex tunneling J ′ the
system can either be in a topologically trivial state or in an integer quantum Hall state
with non-trivial topology. Inversion symmetry is present if changing r → −r leaves the
system unchanged, which is no longer the case for ∆ ̸= 0.

2.2.2 Tight binding description

We start from a microscopic description of the Haldane model in real-space by summing
the tunneling over all A-sites rA, and translate the position by −δ1 to also cover B-sites,
the Hamiltonian then reads

Ĥ =
∑
rA

[
J

3∑
j=1

(â†rA ârA+δj + h.c.) +
∆

2
(â†rA ârA − â†rA−δ1

ârA−δ1)

3∑
j=1

(J ′â†rA ârA+aj + h.c.) +

3∑
j=1

(J ′â†rA−δ1
ârA−δ1−aj + h.c.)

]
(2.30)

The operator âr annihilates a particle at position r, while â†r creates one. Note that the
aj ∈ {−a1,a2,a3} in order to have the proper orientation of the complex tunneling. We
Fourier transform the Hamiltonian to momentum space k to determine the dispersion
relation of the Haldane model. The creation and annihilation operators are given by

â†rA =
1√
N

∑
r

e−ik·rA â†k â†rA+δj
=

1√
N

∑
rA

e−ik·(rA+δj)b̂†k, (2.31)

where N counts the number of unit cells. We find

Ĥ =
∑
k

3∑
j=1

J(â†kb̂ke
ik·δj + h.c.)

+

3∑
j=1

J ′(â†kâke
ik·aj + b̂†kb̂ke

−ik·aj ) + h.c.

+
∆

2
(â†kâk − b̂†kb̂k), (2.32)

which is equivalent to a two-level system at every quasimomemtum k and thus the Hamil-
tonian can be written in the convenient form

Ĥ(k) = σ̂0h0(k) + σ̂ · h(k), (2.33)
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where σ̂0 is the 2 × 2 identity matrix and σ̂ is a vector composed of the Pauli matrices:

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (2.34)

With J ′ as defined in Equation 2.28, the h0(k) and the vector h(k) read

h0(k) =

3∑
j=1

2t cos(ϕ) cos(k · aj)

h(k) =


∑3

j=1 J cos(k · δj)
−
∑3

j=1 J sin(k · δj)
∆
2 −

∑3
j=1 2t sin(ϕ) sin(k · aj)

 . (2.35)

The eigenvalues as a function of quasimomentum, referred to as bands in the follow-
ing, are determined by

E±(k) = h0(k)± |h(k)| . (2.36)

The two bands touch at the Dirac cones if both inversion symmetry, and time-reversal
symmetry are present [57, 137], otherwise a gap opens. The gap at quasimomenta K :=

kL(0, 1)⊺ and K ′ := kL(0,−1)⊺, with kL = 4π/(a3
√

3), is

∆E(K) =
∣∣∣∆+ 6

√
3 sin(ϕ)

∣∣∣ ∆E(K ′) =
∣∣∣∆− 6

√
3 sin(ϕ)

∣∣∣ . (2.37)

Whenever ∆ = ±6
√

3 sin(ϕ) the gap closes and a topological phase transition occurs, where
the Chern number of the bands change. If ∆ = 0, i.e., inversion symmetry is present, but
t ̸= 0 and ϕ ̸= n × π, n ∈ Z the system is gapped and each band constitutes a Chern
insulator with Chern number ±1. If time-reversal symmetry is present, i.e., J ′ ∈ R, the
bands are topologically trivial and therefore their Chern number is 0. In the case of both,
broken time-reversal symmetry and broken inversion symmetry the bands are trivial for
|∆| >

∣∣6√3 sin(ϕ)
∣∣. Depending on the sign of ∆ the gap closes either at K (∆ < 0) or

at K ′ (∆ > 0). The resulting dispersion along the line Γ → K → K ′ → Γ is plotted in
Figure 2.1 for various values of ∆ showing the gap closing at K and K ′. The points in
the Brillouin zone Γ, K,K ′, M are illustrated in Figure 2.2a together with the Brillouin
zone in the hexagonal lattice and a possible unit cell in reciprocal space.

As briefly mentioned before the quantity changing at the topological phase transition
is the Chern number, or in a quasimomentum dependent fashion, the Berry curvature (cf.
Section 2.1.2). To gain more insight into what happens at the phase transition, we will now
approximate the Hamiltonian around the Dirac cones and calculate the Berry curvature.
By expanding the Haldane Hamiltonian up to first order in k at the K (K ′) points we find

Ĥ(K(′) + k) = −3t cos(ϕ)σ̂0 ∓
3
2
Jakyσx +

3
2
Jakxσy +

(
∆

2
± 3

√
3 sin(ϕ)

)
σ̂3, (2.38)
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Figure 2.2 | High symmetry path, Brillouin zone and Berry curvature in the Haldane model. a, Brillouin
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the topological regime. c, Berry curvature in the Haldane model for ∆ = 9
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3t, i.e., in the trivial regime.

In b and c t/J = 0.1 and φ = π/2.

where the ∓ corresponds to K and K ′ respectively. To see how the Berry Curvature
is changing as ∆ is modified, we can use Equation 2.16 to derive it from the expanded
Hamiltonian for the lower band and find

ΩK(′) = ∓
9J2a2 (∆/2 ± 3

√
3t sin(ϕ)

)
8
∣∣h(K(′) + k)

∣∣3 . (2.39)

We immediately see that for |∆| > 6
√

3t sinϕ the Berry curvature at K and K ′ have
opposite sign, cf. Figure 2.2c. As the Berry Curvature is concentrated where the band
gap between bands is small [138, 139], i.e., around the Dirac cones, the Chern number
of the band is zero in this case and the bands are therefore topologically trivial. In the
opposite case |∆| < 6

√
3t sinϕ the Berry curvature is of equal sign at both K and K ′ and

the band is therefore topologically non-trivial as shown on the example in Figure 2.2b.
The integrated Berry curvature over the Brillouin zone yields the Chern number of the
band which is C = ±1, depending on the sign of ∆. The findings for the shape and sign
of the Berry curvature again highlight that a topological phase transition requires the
bands to touch, and the sign changes of the Berry curvature occur exactly when the gap
vanishes, here at K or K ′, cf. Equation 2.37.

An additional property of the Berry curvature of a two-band system is that the sum of
Berry curvature of the two bands is zero at every quasimomentum, i.e., Ω−(k) = −Ω+(k),
where the superscript −(+) indicates the lower (upper) band.
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2.2.3 Haldane model in a strip geometry

The previous approach is well suited for infinitely extended systems however there are
also interesting states at the boundary of a finite system. The non-zero Chern number
for the band indicates the presence of a chiral edge mode [55]. These edge modes are
chiral conductive one-dimensional states located on the edge of a topologically non-trivial
sample. The states are chiral in the sense that they only conduct charge in one direction.
As the previously considered tight-binding model assumes an infinite lattice there are no
edges and therefore no edge modes present. We can however slightly modify the system
and consider a semi-infinite system, where one dimension is finite, while the other repeats
infinitely. The quasimomentum along the finite direction is no longer a good quantum
number, yet in the infinite direction quasimomentum still can give us intuition about the
properties of the system and its eigenstates.

The honeycomb lattice features states located on the edge also in the topologically
trivial case. These states are located on the edge of the sample but they are not chiral,
i.e., they are not conductive and do not propagate. Figure 2.3 shows the dispersion of
a semi-infinite strip terminated by a zigzag edge for different settings: a) in the trivial
phase with only nearest neighbor tunneling, b) in the presence of a sublattice offset, c) at
the phase transition where ∆ = 6

√
3t and d) in the topological phase where ∆ < 6

√
3t.

The bottom row of Figure 2.3 shows the real space wave function corresponding to the
eigenstate highlighted by the gray circle in the upper row. The real space wave function for
all settings are identical, highlighting that the topological nature is related to the entire
band of the system and not only a single state. Depending on the topological regime the
states located on the edge exhibit very different behavior. In the trivial phase, the edge
states are flat, do not connect the two bands and therefore provide no chiral transport, note
that these edge states do not occur on armchair terminated edges [140]. When reaching
the phase transition the bands touch and subsequently the gap reopens with the edge
mode connecting the two bands. When the edge modes connect the two bands there is
robust chiral transport due to the edge modes.

To illustrate the chiral transport we can consider a toy model where we can separate
the dynamics into a part parallel (y-direction) and a part perpendicular (x-direction) to the
edge. This is in principle not justified in the honeycomb lattice, as the two directions do not
separate, but we’ll assume this for the sake of simplicity here. We model an idealized edge
mode as a linear dispersion which bridges an energy gap ∆E across the entire Brillouin
zone from −π/L to π/L, where L is the length of the unit cell parallel to the edge i.e.,

E(ky) =
∆EL

2π
ky. (2.40)

We assume a wave packet occupying all states of the edge mode in the Brillouin zone equally.
The wave function parallel to the edge is therefore a superposition of plane waves with
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Figure 2.3 | Dispersion of the Haldane model on a semi-infinite strip geometry for different combina-
tions of sublattice offset ∆ and complex tunneling J

′. The phase of the complex tunneling for all panels

is φ = π/2. The gray circle in the top row indicates the energy and quasimomentum corresponding to

the wave function shown in the bottom row. a, Dispersion of the trivial honeycomb lattice in the absence

of next-nearest neighbor tunneling and sublattice offset. The trivial edge state is connecting the K to K
′

across the edge of the Brillouin zone while the group velocity of the edge mode is zero. b, Same as a but

with ∆/J = 0.6
√

3. The edge states on the two edges are now separated by ∆, but still have no group

velocity. The bands are localized on each of the two edges, the upper state, highlighted by the gray circle

(shown in f) lives on the A sites only and therefore on the right edge, while the lower edge state is located

on the other edge of the system and on B-sites only. c, Same as b but with t/J = 0.1, i.e., the system is

at the topological phase transition, as can be seen by the bands touching. The edge modes have now

acquired a net slope, i.e., non-zero group velocity and are touching at the K
′

point. d, Same as c but with

reduced ∆/J = 0.3
√

3, i.e., further in the topological regime. The gap between the bands has increased

and the edge modes now cross in between K and K
′

across the edge of the Brillouin zone. e, Real space

wave function for the edge state at ky = ±π/L located on the right edge. The edge mode is only located

on A-sites and exhibits an phase gradient of π between adjacent sites with significant population. f, Wave

function in the presence of an sublattice offset. g, Wave function at the topological phase transition. h,

Wave function in the topological regime. The arrow indicates the phase of the wave function, while the

shading represents the population, i.e., modulus squared of the wave function.

quasimomentum ky and energy E(ky). As we occupy all states equally we can evaluate the
resulting time-dependent wave function ψ(t) by integrating all possible ky states,

ψ(x, y, t) = ϕ(x)

∫ π/L

−π/L
dkye

−i
(
E(ky)

ℏ t−kyy
)

(2.41)
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= ϕ(x)
2 sin

(
π
L(

∆EL
h t− y)

)
∆ELt/h− y

, (2.42)

where ϕ(x) includes the normalization and shape of the wave function perpendicular to
the wall. The resulting wave function is propagating parallel to the wall with a group
velocity vg = ℏ−1∂E(ky)/∂ky = ∆EL/h. The wave packet does not disperse as a result of
the linear slope of the edge mode. If the particles would be in bulk states, which would
have a ky-symmetric distribution and more importantly, the energies of the bands are also
ky-symmetric, there would be no net motion, but the wave packet would disperse and
not facilitate chiral transport. The edge modes are furthermore protected, i.e., immune
to scattering, as the only state that is energetically close and additionally would allow
backscattering is located on the opposite edge of the strip and therefore the overlap with
this state is exponentially suppressed as the width of the strip increases.

In the following we will have a look at different terminations of the lattice, while still
cutting the system such that the size of the strip’s unit cell is minimized. Figure 2.4 shows
the resulting dispersion for three semi-infinite systems with different edge termination. The
most commonly studied terminations result in three different configurations of the lattice,
the zigzag, armchair and barbed edge. These terminations can be obtained directly by
cutting a two dimensional honeycomb lattice either parallel or perpendicular to a nearest-
neighbor link. Together with the twig edge, an armchair edge where one sublattice is
removed [141], these terminations can describe any edge possible in the honeycomb lattice.
The resulting edge for an arbitrary cut will not be discussed and we focus on the most
commonly studied edge types. As the twig edge cannot be realized with a straight cut and
is therefore experimentally significantly harder to achieve with the presented platform, we
continue with the zigzag, armchair and barbed edge. The three terminations are depicted
in the bottom row of Figure 2.4. As a semi-infinite strip naturally has two edges, in order
to only focus on one edge, we project the resulting eigenstates onto a region that only
includes one edge and part of the bulk but excludes the opposite edge. Each eigenstate is
depicted with the respective overlap with the introduced region (cf. Section 2.5.6). The
projection directly reveals that we find one edge mode on the right edge.

The different terminations result in different unit cells for the semi-infinite strip. The
unit cell of the zigzag and barbed edge is identical except for the termination with an A-
or B site on the edge which exhibit different connectivity. The length of the unit cell in
infinite direction is L =

√
3a. The armchair termination has a length of L = 3a. Due to

the larger unit cell the maximum quasimomenta along the infinite direction ky are smaller.
For the zigzag and barbed edge the Dirac cones are resolved at their respective projection
at ky = ±π/(

√
3a). Depending on the orientation of the edge, the edge mode is centered

at ky = 0 for the armchair and barbed edge, or at the edge of the Brillouin zone for the
zigzag terminated edge. The edge mode velocity also varies with the orientation of the
edge, as can be seen by the slope of the edge modes in Figure 2.4.
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Figure 2.4 | Dispersion of the Haldane model on a semi-infinite strip geometry for different termina-
tions and the respective wave functions of the edge mode in real space. The complex tunneling for all

panels is t/J = 0.1 with phase φ = π/2. The shading of the dispersion is derived from the weight of each

eigenstate on a region excluding the left edge, cf.Section 2.5.6. a, Dispersion of the zigzag terminated

system. b, Dispersion of the armchair terminated system. c, Dispersion of the barbed terminated system.

d, Real space wave function for the edge mode at ky = ±π/L located on the zigzag edge. The edge

mode is only located on A-sites and exhibits a phase gradient of π between adjacent sites with significant

population. e, Wave function for the edge mode at ky = 0 located on the armchair edge. In contrast to the

zigzag edge the edge mode occupies both A- and B-sites. Even though the phase between adjacent unit

cells is vanishing, there is a phase gradient within the unit cell. f, Wave function on the barbed edge at

ky = 0. The wave function is located exclusively on A-sites, the edge mode is not only located on the sites

on the edge and additionally exhibits a phase gradient within the unit cell. The population, inidicated by

the shading of the arrows, is normalized to the maximum population on a single site for the depicted

state with the arrows’ orientations indicating its complex phase.

2.3 Floquet engineering
As briefly mentioned in Section 2.2 electrically charged particles couple to a magnetic field
via the vector potential related to it. Along with the coupling to the magnetic field comes
broken time-reversal symmetry, enabling the quantum Hall effect. As atoms are charge
neutral particles their momentum does not couple to a vector potential resulting from a
magnetic field and therefore different methods to break time-reversal symmetry are required.
The phase resulting from photon assisted tunneling can be used to engineer fluxes on a
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lattice [142–144], alternatively the internal states of atoms can be utilized to mimic the
effect of a magnetic field [145–147]. Utilizing the engineered flux enables the realization of
magnetic field strengths going way beyond their solid state counterpart, and allow for the
realization of the Harper-Hofstadter model in optical superlattices [89, 148]. A different path
to break time-reversal symmetry is introducing a modulation in the time-domain. This can
either be done by choosing an aperiodic modulation or modulating in a chiral way [88, 149].
By engineering the modulation protocol a variety of phenomena can be realized, in solid state
samples a circularly polarized light field can induce a Hall response [83, 150–152] and alter
other electronic or magnetic properties [153, 154]. In photonic waveguides topological band
structures can be implemented by spatially modulating their shape [85, 155] and circular
shaking in an optical honeycomb lattice enables the realization of the Haldane model [84,
109, 110]. Dynamical localization, i.e., the reduction of the tunneling amplitude, due to the
periodic modulation of the lattice [156–158] and the Mott insulator to superfluid transition
[159] induced by the modulated tunneling due to the Floquet drive can be realized. There
is a plethora of other phenomena enabled by periodic modulation, which are not mentioned
above. In the following we will introduce the essential principles of Floquet engineering to
gain a basic understanding of the consequences of the time periodic modulation.

2.3.1 Time periodic Hamiltonian

For a periodic potential where continuous translation symmetry is broken but a discrete
translation symmetry is preserved, and therefore momentum is no longer a conserved
quantity we consider the periodic quasimomentum in the Brillouin zone and Bloch waves as
the solution to the Hamiltonian. If we break time translation symmetry by introducing a
periodic modulation of the system we therefore expect that energy is no longer a conserved
quantity and we have in analogy to the spatial counter part a periodic quasienergy. Following
the framework of Floquet theory we will show that quasienergy is periodic and how the
evolution of the system is modified [160, 161].

We are looking for a solution to the time-dependent Schrödinger equation

i
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (2.43)

where the Hamiltonian is periodic in time Ĥ(t) = Ĥ(t + T ) and T is the period of the
temporal modulation. Similar to Bloch waves, the solution again has to obey the periodicity
of the Hamiltonian, i.e.,

|ψn(t)⟩ = e−iεnt/ℏ |ϕn(t)⟩ , (2.44)

where |ϕn(t)⟩ = |ϕn(t+ T )⟩ is a Floquet mode of the system. εn is the quasienergy of
the Floquet mode which is only defined up to multiples of the modulation frequency ℏω
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Figure 2.5 | Energy spectrum of a static and time periodic system. a Energy spectrum of a static system

with non-zero Chern numbers. The edge mode is located in the gap between the bands. The energy is

bounded below at E = 0 indicated by the gray line. b Floquet Brillouin zone of a periodically modulated

system. The Floquet Brillouin zone (gray shading) hosts exemplary bands with Chern numbers C
± = 0.

The Floquet copies of the bands are shown in the extended scheme. Due to the periodic energy structure

we find two gaps in the system: g
0

(dashed line) in the center and g
π

(dotted line) at the edge of the

Floquet Brillouin zone. Each gap is characterized by a winding number W
0

or W
π

counting the number of

chiral edge modes.

with ω = 2π/T . Inserting the solution into the time-dependent Schrödinger equation,
we find for the Floquet modes(

Ĥ(t)− iℏ
∂

∂t

)
|ϕn(t)⟩ = εn |ϕn(t)⟩ . (2.45)

We immediately see that

|ϕn,m(t)⟩ = e−imωt |ϕn(t)⟩ ,m ∈ Z (2.46)

is an equivalent solution which is only shifted by m × ℏω compared to the previous
quasienergy εn. All states with different m relate to the same physical state.

The indices n,m therefore correspond to a class of solutions, where the energy can
be mapped to an equivalent Floquet Brillouin zone

ε ∈
]
−ℏω

2
,
ℏω
2

]
, (2.47)

similar to the Brillouin zone for the quasimomentum. Figure 2.5 shows a comparison between
a static and periodically modulated energy spectrum. In the periodically modulated case
(Figure 2.5b) energy is periodic and bands can wrap around the Floquet Brillouin zone.
Copies of the Floquet Brillouin zone are shown above and below to highlight the periodicity
of the quasienergy. For the depicted two band model we find two energy gaps: g0 in
the center and gπ at the edge of the of the Floquet Brillouin zone. For the topological
classification each gap can be described by a winding number W 0 and W π counting the
number of chiral edge modes as described in Section 2.5.2.
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2.3.2 Effective Hamiltonian

The evolution of the system under a periodic Hamiltonian can be considered to be made
up of consecutive pieces of duration T , where the system is always under the influence of
the same repeating Hamiltonian. The coherent time evolution of a state |Ψ(t)⟩ under the
influence of an arbitrary Hamiltonian Ĥ(t) from an initial time ti to a final time tf is given by

|ψ(tf )⟩ = Û(tf , ti) |ψ(ti)⟩ = T e−
i
ℏ
∫ tf
ti

dtĤ(t) |ψ(ti)⟩ , (2.48)

where T is the time-ordering operator. Therefore the time evolution during one period
of the time-periodic Hamiltonian is governed by the operator

Û(t0 + T , t0) = T e
− i

ℏ
∫ t0+T
t0

dtĤ(t)
. (2.49)

The time evolution operator over several periods results from the repetitive application, i.e.,

Û(t0 + nT , t0) =

n∏
k=1

T e
− i

ℏ
∫ t0+T
t0

dtĤ(t)
=
(
Û(t0 + T , t0)

)n
, (2.50)

furthermore it holds that

Û(t0 + T , T ) = Û(t0, 0). (2.51)

This means that we can also write

Û(t0 + nT , T ) = Û(t0, 0)
(
Û(T , 0)

)n
, (2.52)

but we note that the commutation of Û(t0, 0) and Û(t, 0) is only ensured at t0 = nT . One
important consequence of the illustrated properties is that knowledge of the evolution
operator for one period is sufficient to fully predict the long term dynamics of the system
except for an initial kick that is described by the evolution from time t = 0 to t0. The
evolution under the influence of the time-dependent Hamiltonian during one period described
by Û(t0 + T , t0) is ergo equivalent to the evolution of a Floquet-Hamiltonian ĤF which
does not explicitly depend on time

Û(t0 + T , t0) = e−
i
ℏ ĤF(t0)T , (2.53)

however the starting time t0 is relevant for the time dynamics of the system. By appropriate
choice of modulation protocol the evolution of the system can be designed to mimic a
Floquet-Hamiltonian with properties that would not be attainable otherwise. The Floquet-
Hamiltonian picture only holds for stroboscopic observation at integer multiples of the
modulation period nT , n ∈ Z.
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To obtain the Floquet-Hamiltonian ĤF we evaluate the evolution operator Equation 2.49,
which integrates the instantaneous Hamiltonian Ĥ(t) over one period [87]

ĤF(t0) =
iℏ
T

ln(Û(t0 + T , t0)). (2.54)

This definition of the Floquet-Hamiltonian allows for straightforward numerical implemen-
tation to obtain the spectrum of the modulated system.

To describe the time evolution independent of t0 we can introduce the unitary time-
periodic micromotion operator ÛF(t) = ÛF(t+T ), which takes Ĥ(t) into a rotating reference
frame, where we obtain the time independent effective Hamiltonian [88, 93]

Ĥeff = Û †
F(t)Ĥ(t)ÛF(t)− iℏÛ †

F(t)
∂

∂t
ÛF(t). (2.55)

The Floquet-Hamiltonian and the effective Hamiltonian exhibit the same spectrum and
are connected via [88, 93]

HF(t0) = ÛF(t0)ĤeffÛ
†
F(t0). (2.56)

To obtain the time evolution between arbitrary times from ti to tf , assuming tf ≥ ti+nT , n ∈
N ̸=0 and 0 < ti < T , we evaluate the time evolution in three parts: 1) from ti to T , 2) from
T to nT and 3) from nT to tf . The time evolution is thus governed by [88, 92, 93, 162]

Û(tf , ti) = ÛF (tf )e
− i

ℏ Ĥeff(n−1)T Û †
F(ti) (2.57)

= e−
i
ℏ K̂(tf )e−

i
ℏ Ĥeff(n−1)T e

i
ℏ K̂(ti) (2.58)

The Hermitian kick operators K̂(t) are also time periodic, i.e., K̂(t) = K̂(t + T ) and
take care of all effects related to the initial starting time, such that a ti-independent
Ĥeff can describe the evolution for all ti [92]. The subperiod motion is usually termed
micromotion as it captures the oscillations of the system due to the varying Hamiltonian.
Depending on the specific driving protocol the micromotion can significantly influence
the long time dynamics [92].

To avoid the dependence of the dynamics on the initial driving phase one possibility
is to adiabatically connect the undriven and driven states of the system. This can be
realized by slowly increasing the modulation amplitude to slowly deform the eigenstates
of the initial static Hamiltonian into the eigenstates of the effective Hamiltonian. The
time scale required for the initial ramp-up is strongly dependent on the exact modulation
scheme. However slowly ramping up the modulation opens the possibility to also prepare
the ground state of the effective Hamiltonian.

2.3.3 High frequency approximation
As discussed in the previous section the effective Hamiltonian is time-independent. For
sufficiently large modulation frequencies compared to the characteristic energy scale of
the system, e.g. the bandwidth of the first two energy bands, the effective Hamiltonian
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can be evaluated in a perturbative expansion in units of 1/(ℏω) [88, 92, 162]. To make
this approximation we separate the Hamiltonian into a time-independent part Ĥ0 and
a time-dependent part V̂ (t)

Ĥ(t) = Ĥ0 + V̂ (t) (2.59)

V̂ (t) =
∞∑
j=1

V̂ (j)eijωt + V̂ (−j)e−ijωt. (2.60)

Note that the time average of V̂ (t) is necessarily zero using this definition, all time-
independent components have been expressed via Ĥ0. The expansion reads

Ĥeff = Ĥ0 +
1
ℏω

∞∑
j=1

1
j
[V̂ (j), V̂ (−j)] (2.61)

+
1

2(ℏω)2
∞∑
j=1

1
j2

(
[[V̂ (j), Ĥ0], V̂

(−j)] + [[V̂ (−j), Ĥ0], V̂
(j)]
)

+O
(

1
(ℏω)3

)
One can also find a perturbative expansion for the kick operator, but as we will always
consider an adiabatic transition to the effective Hamiltonian it will not be reproduced
here [92]. This approach will be used in the following to show the exact mapping of the
tunnel modulated honeycomb lattice to the Haldane model as shown for the case of a
cosine and stepwise modulation in Section 2.4.

2.4 The tunneling modulated honeycomb lattice
To implement topologically non-trivial bands for charge neutral particles such as ultra cold
neutral atoms the system needs to be engineered in order to mimic e.g. the effect of a
magnetic field on a charged particle resulting in a complex tunneling. In the honeycomb
lattice one option is to shake the optical lattice in space, or alternatively to modulate the
tunneling in a chiral way. A very simple model was proposed by Kitagawa et al. where the
modulation consists of a three steps protocol which already offers a rich phase diagram [86].
As a stepwise modulation, with its infinitely fast transitions between the individual steps, is
experimentally very challenging, the experimental implementation is closer to a continuous
modulation where the tunneling is changing in a sinusoidal fashion. To show that the
three-step and sinusoidal modulation yield similar phases we will in the following compare
the resulting dispersions and topological phase diagrams.1.1

2.4.1 Modulation of the tunneling
In the following the setting will be as simple as possible in order to illustrate the essen-
tial effects of the modulation. The starting point shall be a tight binding Hamiltonian
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Figure 2.6 | Illustration of the stepwise and sinusoidal modulation. a, Illustration of the modulation

protocol. The tunneling is periodically enhanced along the bonds of the lattice. The bare tunneling

is J0 and enhanced for each direction to a maximum ΛJ0. b, Tunneling amplitudes during one period

in the stepwise protocol. The tunneling Ji for each direction is sequentially enhanced, while the other

two directions are unchanged. c, Tunneling amplitudes during one period in the cosine protocol. The

tunnelings are enhanced with a phase difference corresponding to 2π/3, it resembles the lowest Fourier

component of the stepwise protocol.

with periodically modulated tunneling as illustrated in Figure 2.6a. We rewrite Equa-
tion 2.32 as a matrix where the first entry corresponds to an A-site and the second to
the B-site of the unit cell.

Ĥ(t) =
3∑
j=1

(
0 Jj(t)e

ik·δj

J∗
j (t)e

−ik·δj 0

)
(2.62)

The tunneling is modulated in a periodic fashion, i.e., Jj(t) = Jj(t + T ), where T is
the modulation period and j ∈ {1, 2, 3} denotes the tunneling along direction δj , we
can thus apply Equation 2.54 to obtain Ĥeff. In the following we want to show that the
step-wise tunneling modulation

J step
j (t) =


J3 = ΛJ0, J1 = J2 = J0 for nT < t ≤ nT + T/3

J2 = ΛJ0, J1 = J3 = J0 for nT + T/3 < t ≤ nT + 2T/3

J1 = ΛJ0, J2 = J3 = J0 for nT + 2T/3 < t ≤ (n+ 1)T

(2.63)

and a (co)sinusoidal modulation

J sin
j (t) =

J0

2

(
1 + Λ+ (Λ− 1) cos

(
ωt+ j

2π
3

))
(2.64)
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of the tunneling result in a similar phase diagram. The bare tunneling along the bonds
is J0, during the drive it is enhanced by a factor Λ, the modulation amplitude and we
denote the modulation frequency as ω = 2π/T . The tunneling as a function of time for
the two modulation protocols is illustrated in Figure 2.6b and c. The drive protocol has
a sense of rotation, we will refer to it as chirality κ. The chirality takes into account if
the modulation occurs in a clockwise or anti-clockwise fashion, i.e., if the tunneling is
enhanced along the bonds (1, 2, 3) or (1, 3, 2). The resulting band structure for the two
modulation schemes is very similar. We will in the following compare the energy spectrum
and topological phase diagram of the system.

2.4.2 Comparison in the high frequency limit

The high frequency limit will not give great insight into the entire phases this model can
host, but will serve as a good starting point to explore the similarity and difference of the
two modulation protocols. Expanding the Hamiltonian in units of (ℏω)−1 and following [92]
the Floquet-Hamiltonian for a three steps protocol is given by

ĤF = Ĥ0 +
iπ

27ℏω

([
V̂1, V̂2

]
+
[
V̂2, V̂3

]
+
[
V̂3, V̂1

])
+O(ℏω)−2. (2.65)

The resulting Floquet-Hamiltonian, also in the high frequency expansion, still depends
on the initial driving phase of the modulation. The V̂j ’s correspond to the operators
describing the time-dependent part of the Hamiltonian during the j-th segment of the
period. For the considered case here, we have

Ĥstep
0 =

3∑
j=1

J0(Λ + 2)
3

(σ̂1 cos(k · δj) + σ̂2 sin(k · δj)) (2.66)

V̂j =
2J0(Λ− 1)

3
(σ̂1 cos(k · δj) + σ̂2 sin(k · δj))

+

3∑
i ̸=j

J0(1 − Λ)

3
(σ̂1 cos(k · δi) + σ̂2 sin(k · δi)) . (2.67)

The specific amplitudes result from the requirement of the sequence of V̂j ’s to have a
zero time average over one period. The Floquet-Hamiltonian then resembles a Haldane
model with complex next-nearest neighbor tunneling phase ϕ = −π/2 and ∆ = 0 (cf.
Equation 2.35) , i.e.,

Ĥstep
F = Ĥstep

0 +
2π(Λ− 1)2J2

0
27ℏω

σ̂3

3∑
j=1

sin(k · aj). (2.68)
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In a similar fashion we can evaluate the effective Hamiltonian in the sinusoidal modu-
lation protocol, utilizing Equation 2.61, we only need to include the lowest order (ℏω)−1.
With V̂ (t), which is responsible for the modulation of the tunnel coupling here,

V̂ (t) =
3∑
j=1

J(Λ− 1)
2

(σ̂1 cos(k · δj) + σ̂2 sin(k · δj)) cos(ωt+ 2πj/3), (2.69)

we immediately find that only the fundamental frequencies ±ω contribute, greatly simplifying
the calculation. The effective Hamiltonian in this case results in

Ĥsin
eff = Ĥsin

0 +
J2

0 (Λ− 1)2
√

3
8ℏω

σ̂3

3∑
j=1

sin(k · aj) (2.70)

with

Ĥsin
0 =

3∑
j=1

J0(Λ + 1)
2

(σ̂1 cos(k · δj) + σ̂2 sin(k · δj)). (2.71)

The resulting effective Hamiltonian again corresponds to a Haldane model with phase
ϕ = −π/2 and ∆ = 0. We therefore find that, identical to the Haldane model, the
Chern number of the lowest band will be C− = ±1 depending on the chirality of the
drive for both modulation protocols. The second band will always exhibit the opposite
Chern number of the lowest band.

Comparing Ĥsin
eff and Ĥstep

F one finds that the nearest neighbor tunneling in both cases
is increasing with increasing Λ, thus increasing the bandwidth of the bulk bands. The
next-nearest neighbor tunneling is, except for the prefactor being different by ≈ 7%, scaling
identically with frequency and modulation amplitude

J̃ sin = e∓iπ/2
J2

0 (Λ− 1)2
√

3
16ℏω

(2.72)

J̃ step = e∓iπ/2
J2

0 (Λ− 1)2π
27ℏω

. (2.73)

The gap ∆E at the Dirac points K and K ′ is directly connected to the next-nearest
neighbor tunneling by

∆E(K) = 3
√

3
∣∣∣J̃∣∣∣ . (2.74)

For both modulation protocols, the complex next-nearest neighbor tunneling results in a
topological gap opening at K and K ′. Figure 2.8b compares the minimal gap at K derived
in the high frequency expansion with the gap derived from the evolution operator obtained
from the numerical evaluation of the Floquet-Hamiltonian. For large Λ the deviation from
the high frequency approximation becomes visible. As introduced in Section 2.3.1, a time
periodic Hamiltonian will have a periodic quasienergy spectrum with, in the case of a
two-band model, two energy gaps: g0 and gπ. The gap we discuss in the high frequency
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approximation fundamentally is g0, as there is no periodic quasienergy. The numerical
evaluation however results in a periodic quasienergy spectrum, with an additional π-gap
gπ, cf. Figure 2.5, the displayed minimal gap is always min{g0, gπ}.

The minimal gap at any quasimomentum in a Floquet modulated system is always upper
bounded to ℏω/2. When any of the gaps becomes of the same order as the modulation
energy we can expect the system to significantly deviate from the high frequency expansion,
as coupling in between Floquet copies, i.e., across the edge of the Floquet Brillouin zone,
can be as strong as the coupling inside the Floquet Brillouin zone. Coupling between
different Floquet copies is not included in the high frequency expansion [93].

To have an estimate of the modulation parameters leading to a coupling between Floquet
Brillouin zones we can consider the largest gap ∆E, corresponding to the energy difference
of between the two bands inside the Floquet Brillouin zone at Γ,

∆E(Γ) = 6Jeff (2.75)

J sin
eff =

J0(Λ + 1)
2

(2.76)

J step
eff =

J0(Λ + 2)
3

, (2.77)

The effective tunneling Jeff corresponds to the tunneling of the time-independent part of
the Hamiltonian Ĥ0, and only depends on the modulation amplitude, therefore by scanning
the modulation angular frequency ω, we can expect to find a point where the modulation
energy ℏω equals the bandwidth ∆E. Whenever the bandwidth is an integer multiple of
the drive the bands can touch and potentially hybridize. The band touching can only occur
on high symmetry points of the Brillouin zone [163]. The critical modulation amplitude
Λcrit as a function of the modulation frequency of the two driving protocols then reads

Λsin
crit =

ℏω
3J0

− 1 (2.78)

Λstep
crit =

ℏω
2J0

− 2. (2.79)

Note that the high frequency approximation does not predict the closing of the gap
and is only used to gain intuition for when gap closings can occur. Still the high fre-
quency approximation nicely shows the effect of the modulated tunneling, resulting in
complex next-nearest neighbor tunneling and the opening of a topological gap at the
Dirac points for high frequencies.

2.5 Anomalous Floquet Phases
Periodic driving of system parameters can simulate the time evolution of an effective
Hamiltonian. If the effective Hamiltonian can be obtained in a high frequency expansion
as described in Section 2.3.3, it can be mapped to a static system [86]. The effective
Hamiltonian can exhibit exotic properties that would otherwise be hard to obtain such as
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topologically non-trivial band structures or sign inverted tunneling amplitudes compared
to the static case. As the system is equivalent to a static Hamiltonian the topological
bands are well described by their Chern number.

If the modulation frequency becomes comparable to the intrinsic energy scale of the
Hamiltonian an anomalous Floquet phase can emerge where the topological characterization
using Chern numbers is incomplete. The anomalous Floquet phase is a genuine out of
equilibrium phase of matter and there exists no equivalent static counterpart. The periodicity
of the quasienergy is crucial for the anomalous Floquet phase as its edge modes wrap around
the Floquet Brillouin zone. The anomalous Floquet phase therefore requires a topological
characterization using winding numbers, which extent the topological characterization to
driven systems and will be discussed in Section 2.5.2.

To illustrate the properties of anomalous Floquet systems we will first consider a toy
model to gain insight into the essential properties. We will then consider how the winding
number is derived from the evolution operator of the system and related to the Chern
number and how it changes at band touchings.

Anomalous Floquet phases have been implemented in several experimental platforms
among photonic waveguides [112, 113, 164], structured microwave resonators [165, 166],
nanophotonic lattices [167, 168], liquid crystal devices [169] and acoustic resonators [170].

2.5.1 Instructive example

To gain an intuitive understanding of the anomalous Floquet phase we can consider a toy
model on a honeycomb lattice. Figure 2.7a shows the schematic protocol consisting of three
time steps of equal duration T/3, where T is the period of the driving protocol. During
each of the three time steps tunneling along the bold bond direction in the schematic is
enabled, while the other two bond directions, depicted by the dashed lines, exhibit no
tunneling. The tunneling along the allowed bonds is chosen such that a particle hops along
this bond with unit probability. To realize the deterministic tunneling the duration during
which tunneling is enabled is chosen such that every enabled tunneling realizes a π-pulse
for the two level system consisting of the two connected sites, i.e.,

J =
3π
2T

(2.80)

along the bonds with enabled tunneling and J = 0 on all other bonds. In this fine-tuned
case the trajectory of the particles on the lattice can easily be reconstructed by following
the path of a particle. The trajectory of a particle in the bulk and on the edge are
shown in Figure 2.7b for the evolution during two periods of the drive. The steps of the
drive are encoded in the color of the arrows indicating the tunneling, where lighter colors
indicated earlier times. The particle in the bulk fulfills a cyclic motion around one plaquette,
recurringly occupying the same site after every two periods. This time evolution, if we
stroboscopically examine the system every 2T , can be described by an effective Hamiltonian
that is just the identity matrix Ĥeff = 1. This is true for all bulk states.
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Figure 2.7 | Toy model to illustrate the properties of the anomalous Floquet phase. a, Modulation

protocol for the toy model case. The tunneling along the dashed bonds is zero during every time step.

The tunneling along the bold highlighted bonds is J = 3π/(2T). The duration during which the tunneling

is enabled therefore corresponds to the equivalent of a π-pulse between the two connected sites. b,

Resulting trajectories in real space during two periods of the drive. A particle in the bulk is, irrespective of

the initial site being an A- or B-site, performing loops around a plaquette. The motion during 2T in the

bulk is illustrated by the arrows’ color, where a darker arrow represents later times. All particles located

in the bulk of the system will return to their initial position after 2T . If the particle is initially located on

the edge the resulting trajectory winds along the edge of the system, i.e., the motion corresponds to an

edge mode of the system. The edge mode is enabled by the absence of the horizontal bonds on the edge,

where the particle cannot move during one third of the period. The particles initially located on A-sites

(white markers) on the edge still belong to the bulk. c, Resulting dispersion of the effective Hamiltonian

on a semi-infinite strip in the fine-tuned case J = 3π/(2T). The states are plotted with a weight resulting

from a projection onto all states except a small region on the right edge. The bulk dispersion is entirely flat

as expected from a trivial evolution where all states return to their initial position after one period. The

dispersion of the edge is connecting the two flat bulk bands at zero energy and at energy ±̄hω/2. Each

band has one edge mode entering and one edge mode leaving the band which corresponds to C = 0.

A state on the edge however performs a very different trajectory, as illustrated on the
left edge of Figure 2.7b. The particle starting on the edge first hops along the edge during
the first step, then during the second step while the horizontal tunneling is enabled, it is
not moving since there is no horizontal bond connecting this site to another. Afterwards
the particle again follows the tunneling dictated by the drive and moves along the edge,
until a horizontal tunneling would occur. But since there again is no horizontal bond
on that site the particle cannot tunnel. This process repeats over and over and so the
particle is transported along the edge. This behavior is clearly not covered by the effective
Hamiltonian being simply the identity matrix. Depending on the initial phase of the drive,
a particle localized on an edge site either performs a bulk or edge trajectory, but there
is always an edge mode independent of the initial phase.
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From this toy model we can immediately see that the Chern number of the bulk bands,
which is described by the trivial evolution Ĥeff = 1, is C− = 0. Considering Equation 2.16
we also immediately see that the Berry curvature in this case is vanishing in the entire
Brillouin zone. Yet there still are propagating modes along the edge. This calls for a
different description of the topology of this driven system and shows that the stroboscopic
picture is incomplete for anomalous Floquet systems.

2.5.2 Topological characterization - winding numbers

When Kitagawa and coworkers conceived the driving protocol [86] introduced in Section 2.4
and the fine-tuned case described above, there was no complete picture of how to relate
driven, out of equilibirum topological phases, to those of static systems. Rudner and
coworkers then established a relationship between the winding numbers and the Chern
number connecting the topology of the driven and static systems [87]. The winding number
and its derivation from the evolution operator will be discussed in the following.

As illustrated in the instructive example before (Section 2.5.1), the anomalous Floquet
phase realizes a system in which the bulk is topologically trivial, while there are topologically
protected edge modes on the boundary of the system, or from an energy perspective there
are edge modes located in both spectral gaps of the Hamiltonian [86, 87]. The Chern
number is given by the difference in the number of chiral edge modes above and below
a specific band, this still holds for the periodically driven case. But since energy is now
periodic, even for the “lowest” band there is always an energy below as the spectrum is
unbounded. Therefore any band of the system can have an edge mode entering from below
and leaving above, i.e., every band in the system can have a vanishing Chern number.

We can therefore not predict the existence of edge modes from the Chern number alone,
but require a different characterization. It still holds that the sum of the Chern numbers
over N bands derived from N initially trivial bands sums to zero,

∑N
n Cn = 0 [171]. The

Chern number stems from the effective Hamiltonian which is only accurate after averaging
over one full period and does not consider the micromotion during the period. We can
investigate the evolution operator more closely, as it also incorporates the micromotion.
From the limit where the bulk evolution operator Û(k, t) = 1 is described by the identity,
we can then define the winding number as [87]

W (Û) =
1

8π2

∫
dtdkxdkyTr

(
Û−1∂tÛ

[
Û−1∂kxÛ , Û

−1∂ky Û
])
. (2.81)

The winding number directly gives the net number of chiral edge modes (counterclockwise
minus clockwise) [87]

nedge =W (Û). (2.82)

However we must note that this definition only works in the case where all bands collapse
onto each other and their evolution is described by the identity 1. In this case there is only
one gap, where the winding number corresponds to the number of edge modes. If we want to
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characterize a system away from this extreme limit, we need to find a map from the general
Floquet operator Û(k, t) to the trivial Floquet operator Ûε(k, t) = 1∀k. Furthermore there
needs to be a continuous interpolation between Ûε(k, t) and Û(k, t), maintaining a gap
around the quasienergy value εs which smoothly varies between the quasienergy of interest
ε and ℏω/2 [87]. Upon finding such an evolution operator, we can immediately compute
the winding number, which counts the number of edge modes at quasienergy ε, via

nedge(ε) =W (Ûε). (2.83)

In essence, we need to map the complicated general system to the trivial system without
closing a gap, so that the winding number remains an invariant. The Chern number of
the band located in between quasienergy ε and ε′ is related to the winding numbers
at these energies via

Cε,ε′ =W (Ûε′)−W (Ûε). (2.84)

This shows that the common bulk-boundary correspondence is invalid in periodically driven
systems away from the high frequency limit, though it still holds in a slightly modified
version. Now not the bulk band but rather the full evolution operator carries the information
whether an edge mode exists, which can then be cast into the winding number. We can thus
envision a modified bulk boundary correspondence, where the non-zero winding numbers,
which still are topological invariants of the bulk, predict the presence of edge modes.

2.5.3 Obtaining the winding numbers - theory
Relating the winding number to quantities other than the evolution operator itself, can help
us to gain an understanding of how we can experimentally determine them. As mentioned
briefly before the sum of Chern numbers of the considered N bands sums to zero, but
as we saw before, this does not give a full characterization of the topology of the system.
In contrast to the static system where N − 1 topological invariants fully characterize the
N bands, we require N invariants in the time periodic case. These N invariants can
equivalently be the winding numbers in between the bands, or alternatively the N − 1
Chern numbers and the sum of the topological charges of the zone edge singularities, which
describe how the Chern numbers of the bands change at a topological phase transition,

C1, ..., Cn,
∑
i

qZES
i . (2.85)

The qZES
i are related to the degeneracies of the eigenvalues of the evolution operator,

which can not be removed, across the edge of the Floquet Brillouin zone [172]. We will
see in the following how the topological charge can be related to the band touching and
change of Berry curvature at the singularity. Similar to the models described above and the
experimental setup discussed later, we will consider a two dimensional Brillouin zone and
an additional parameter λ describing the modulation parameter space across a topological
phase transition at λs = 0 at ks. Under the assumption that only two of the N bands are
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touching we can focus only on these two and assume the rest to be constant [111, 172–174],
in that case we can describe the system by an effective two-level Hamiltonian as

Ĥeff(k, λ) = σ̂ · h(k, λ), (2.86)

where h(k, λ) takes values in R3 and vanishes at the band touching. We are only
interested in the region located close to the degeneracy and can therefore expand Equa-
tion 2.86 around Ps = (λs,ks). If the band touching is non-degenerate and linear, the
expansion to first order suffices [172]

h(P) = (λ− λs)
∂h(P )

∂λ

∣∣∣∣
Ps

+ (kx − kx,s)
∂h(P)

∂kx

∣∣∣∣
Ps

+ (ky − ky,s)
∂h(P)

∂ky

∣∣∣∣
Ps

. (2.87)

The partial derivatives constitute the Jacobian of Heff(k, λ) at the singularity, as long as
there are no gaps closing we can continuously deform the Hamiltonian homotopically until
the Jacobian matrix coincides with the canonical basis. The orientation of the basis O
which is equivalent to the sign of the determinant of the Jacobian matrix J(Ps), is given by

O = sgn (det(J(Ps))) = sgn(∂λh ·
(
∂kxh× ∂kyh

)
). (2.88)

With the canonical basis we can therefore write the Hamiltonian after the continuous
deformation as

Ĥeff(P) = Oσ̂P, (2.89)

which exhibits a singularity at P = 0, for which the Berry Curvature of the two bands is

Ω∓(P) = ±O P

|P|3
, (2.90)

where ∓ indicates the lower and upper band. The Berry flux Φ through a closed surface S
containing the singularity can be easily calculated by transforming to spherical coordinates
and picking the surface to be a sphere

Φ∓ =

∫
S
Ω∓(P)dS = ±O

∫ π

0
dθ

∫ 2π

0
dφ|P|2 sin(θ)

P

2|P|3
· P

|P|
= ±O2π (2.91)

We find that the Berry Flux is directly related to the orientation of the basis or the sign
of the Jacobian matrix determinant, which is the topological charge at the singularity
and determines how the winding numbers or Chern numbers of the two bands at the
singularity change [171, 175]

Qs = sgn (det(J(Ps))) . (2.92)



2.5 Anomalous Floquet Phases 35

As measuring the Berry flux through a plane perpendicular to the λ-direction is significantly
easier, as it breaks down to measuring the Berry Curvature in the kx-ky-plane, we deform
the sphere through which we have so far measured the Berry flux. We deform the sphere
into a cuboid of height ϵ in λ-direction and centered around Ps [111, 174]. As we can
choose ϵ to be arbitrarily small, the entire Berry flux is penetrating the upper and lower
faces of the cuboid, the flux through these surfaces for the lower band is

Φ−
±ϵ =

∫ k0
x

−k0
x

dkx

∫ k0
y

−k0
y

dkyΩ
−(λ± ϵ,k)eλ = ±πQs. (2.93)

Here we take both surfaces to be oriented along the unit vector in λ-direction eλ. In
order to recover the previous result we need to take the difference of the two fluxes
through the surfaces at λ ± ϵ

Φ− = Φ−
+ϵ − Φ−

−ϵ = 2πQs. (2.94)

The Berry Curvature changes by 2πQs infinitesimally away from the phase transition.
With the assumption of a linear band touching we already fixed |Qs| = 1, therefore we
are only interested in the sign change of the Berry flux. By probing the close vicinity
of Ps we can directly relate the sign change of the Berry curvature to the topological
charge at the singularity

Qs = sgn
(
Ω−(ks, λ+ ϵ)− Ω−(ks, λ− ϵ)

)
= ∆Ω−(ks) (2.95)

For a periodically modulated lattice where there are gaps at quasienergy 0 and ±ℏω/2 we
can quantify the topological charge in the gaps via the sign change of the Berry curvature
of the band below the considered gap. As the Berry curvature of the two bands is equal
in magnitude but of opposite sign, the charges can be determined by either of the two
bands’ Berry curvature:

Q0
s = sgn(∆Ω−(ks)) = −sgn(∆Ω+(ks)) (2.96)

Qπs = sgn(∆Ω+(ks)) = −sgn(∆Ω−(ks)) (2.97)

In this way we can determine the topological charge of the singularity. The winding number
in gap j changes exactly by this topological charge when crossing the phase transition

∆W j =W j
+ϵ −W j

−ϵ = Qjs (2.98)

In this fashion, by tracking the winding numbers and determining the topological charge
at the phase transitions it is possible to fully characterize the topology even in the driven
case. We required the band touching to be linear and non-degenerate, but this derivation
can be extended to also work for quadratic band touchings [172].

We experimentally reconstruct the winding numbers using the method presented above,
and the results are presented in Section 4.4.
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2.5.4 Phase transitions in the tunneling modulated honeycomb lattice

Coming back to the tunneling modulated honeycomb lattice with step and cosine protocol:
we found that the high frequency approximation maps to the Haldane model and gives
intuition regarding the effects that arise due to the modulated tunneling in the high frequency
regime. However the high frequency approximation does not cover the full phase diagram
of the model that can be explored with such Floquet drives. Especially the anomalous
Floquet phase introduced in Section 2.5.1, where all Chern numbers are equal to zero cannot
be represented in the high frequency approximation. One way to include band touchings
across the edge of the Floquet Brillouin zone is to include more copies in the Floquet
operator [93]. A different approach consists in evaluating the Floquet-Hamiltonian by
numerically integrating the evolution over one period, cf. Equation 2.54. As the evolution
operator is periodic, the Floquet-Hamiltonian exhibits an energy spectrum within the
Floquet Brillouin zone. By construction the resulting states are periodic in energy and
therefore include the band touching across the edge of the Floquet Brillouin zone.

Figure 2.8a shows the resulting energy spectrum obtained by numerically evaluating
the evolution operator and obtaining the Floquet-Hamiltonian from it. The modulation
frequency is ℏω/J0 = 32/3, the upper panel considers the stepwise modulation, the bottom
panel is obtained from the sinusoidally modulated system. Overall the shape of the bands
are very similar. For Λ ̸= 0 we observe a gap opening at K, and for increasing Λ eventually
a band touching and reopening in the π-gap at Γ. The touching in the π-gap occurs
for Λ ≈ 3.3 in the stepwise and Λ ≈ 2.5 for the cosine modulation. The numerically
obtained Λ match very well with the expression obtained from the high frequency limit by
comparing the modulation frequency and the bandwidth of the system (cf. Equation 2.78
and Equation 2.79), Λsin

crit = 23/9, Λstep
crit = 10/3.

Figure 2.8b shows the resulting minimal gap ∆Emin at Γ and K for varying Λ. We
find that the gap at K behaves very similarly in the sinusoidal and step modulated case
and even the prediction by the high frequency approximation matches well for Λ < 5. The
minimal gap at Γ cannot be predicted by the high frequency expansion and we observe a
closing at different Λ for the two modulation protocols. We find several touching points,
where the gap at Γ vanishes. At each of these, the topological nature of the bands can
change. To get a more intuitive picture why these phase transitions occur we can, instead of
changing the modulation amplitude Λ as done in Figure 2.8, vary the modulation frequency
ω. Upon varying the modulation frequency, we also change the size of the Floquet Brillouin
zone compared to the bandwidth of the modulated system.

To illustrate the changing dispersion and the change of the other quantities at the phase
transitions we will here focus on the step-wise modulated lattice. The different columns of
Figure 2.9 show the same evaluation of a tunneling modulated system with Λstep = 4 but
varying modulation energy ℏω/J0, which is the same within each row. The two dimensional
band structure is evaluated up to kL = ±4π/(3

√
3a), which corresponds to the distance

from the center of the Brillouin zone Γ to K and K ′. The Berry curvature is evaluated in
a rhombic Brillouin zone centered around Γ, the dispersion along the high symmetry line
Γ →M → K → Γ (cf. Figure 2.2a). The dispersion is shown in the extended Floquet zone
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Figure 2.8 | Resulting dispersion and gap size for cosine and stepwise modulation. a, Dispersion in the

tunneling-modulated lattice for the stepwise (top) and sinusoidal (bottom) modulation for a frequency

h̄ω/J0 = 32/3. In both cases the modulation first opens the gap at the Dirac points and increases the

bandwidth of both bands, until the bands reach the edge of the FBZ and hybridize indicating the transition

to the anomalous regime. b, Comparison of the minimal gap. The frequency is fixed to the value also

used in a while the modulation amplitude is increased. The dashed (solid) lines correspond to the cosine

(stepwise) modulation. The blue color shows the gap at Γ, the orange lines the gap at K. The gray lines

show the high-frequency expansion, which agrees well for moderate amplitudes. As the bands become

dispersive faster in the cosine modulation scheme, the gap closing at Γ occurs first in this case.

scheme with the copies of the bands above and below. The dashed horizontal line represents
the edge of the Floquet Brillouin zone at ±ℏω/2. The strip dispersion is evaluated on
a semi-infinite strip terminated by an zigzag edge. The color code in the right column
indicates the topological phase, which is kept consistent throughout the thesis.

As we have seen before, in the high frequency limit the system maps to a Haldane model,
where the modulation leads to a breaking of time-reversal symmetry and an opening of a
gap at K and K ′. The Floquet Brillouin zone is significantly larger than the bandwidth of
the system in the high frequency limit and thus coupling between Floquet copies in the
π-gap is absent. As this arguments holds for arbitrarily high frequencies, it is justified to
deduce W π = 0. Therefore the edge mode in the Haldane phase is located in the 0-gap, and
we have a winding number W 0 = 1. Figure 2.9a shows the system for ℏω/J0 = 28. The
Berry curvature is positive and concentrated at K and K ′, the sign of the Berry curvature
at one of the Dirac cones has changed compared to the static lattice due to the chiral
modulation of the tunneling amplitudes. The band structure compared to the static lattice
is only slightly modified with the main difference being a gap opening at the Dirac points.
In the strip geometry the 0-gap therefore hosts an edge mode connecting the K and K ′

points of the lower and upper band. The existence of this edge mode is expected from the
Bulk boundary correspondence, as the Chern number of the lower band is C− = 1. The
dispersion of the semi-infinite strip is derived from a system with an infinitely sharp wall
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Figure 2.9 | Bandstructure, Berry Curvature, dispersion along the high symmetry line and dispersion
of a strip terminated with zigzag edge. a, h̄ω/J0 = 28. b, h̄ω/J0 = 12.2. c, h̄ω/J0 = 11.8. d, h̄ω/J0 = 9.

e, h̄ω/J0 = 6.1. f, h̄ω/J0 = 5.95. g, h̄ω/J0 = 5. Λ
step = 4 in all panels.
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separating the system at an zigzag edge into a low and high potential region. The potential
V0 ≫ J0, ℏω is significantly exceeding all other energy scales of the system. The spectrum
is filtered to show only the states located in the low energy region of the wall while excluding
the sites located at the numerical edge. The filtering is done by calculating the overlap of
each state with the low energy region, this overlap is also reflected in the darkness of the
data-points, with darker colors representing a stronger weight cf. Section 2.5.6.

As the modulation frequency is reduced, the size of the Floquet Brillouin zone is reducing
proportionally and the band gap in the π-gap is decreasing. The bandgap at Γ is the largest
in the 0-gap and conversely the smallest gap in the π-gap. We can therefore expect the
bands to first touch at Γ when reducing the modulation frequency. Figure 2.9b shows the
dispersion of the bands at ℏω/J0 = 12.2 shortly before the phase transition. The bands
have not obviously changed their shape compared to Figure 2.9a. We observe a buildup of
positive Berry curvature at Γ shortly before the band touching, additionally we observe a
spreading and slight reduction of the Berry curvature at the K and K ′ points. After the
band touching at ℏω/J0 = 12 the bands hybridize in the π-gap at Γ and a gap reopens,
cf. Figure 2.9c, where ℏω/J0 = 11.9. The Berry curvature in the lowest band in the
vicinity of Γ has changed from positive to negative by ∆Ω− = −2π indicating a topological
charge Qπ = − sgn(∆Ω−) = 1 and thus a winding number W π = 1. Integrating the Berry
curvature to obtain the Chern number we find C− = 0. Even though the band structure
and dispersion of the system is not changing dramatically, the Berry curvature very clearly
indicates the phase transition. After the band touching we find an edge mode in the π-gap
as expected from W π = 1. The depicted modulation frequencies were chosen such that
the gap at Γ is approximately equal before and after the phase transition. The gap can
be very well approximated by a linear function of slope 1 when measured in units of ℏω.
This topological phase will be referred to as the anomalous phase.

As we further lower the modulation frequency a moat in the dispersion around Γ

emerges [176–178], cf. Figure 2.9d. The negative Berry curvature, which initially was
localized at Γ, has spread along with the ring and is now concentrated in the degenerate
minimum of the moat. The moat can intuitively be understood from the shape of the
dispersion of the uncoupled bands. The center part of it originates from the e.g. initially
upper band protruding through the lower band. At the point where the two bands cross in
energy the modulation leads to a coupling and an opening of a gap forming an avoided
crossing between the two bands resulting in the moat. The edge modes in both the 0-gap
and the π-gap are now bridging the entire Brillouin zone, indicating that the edge modes
are supported for any quasimomentum. As now both winding numbers are non-zero, we
find that the Chern number which is related to the winding number of both bands via

C∓ = ±(W 0 −W π) = 0. (2.99)

Even though C∓ = 0, the system exhibits edge modes clearly showing the anomalous
character of this phase [86], highlighting that the Chern numbers are no longer sufficient
to characterize the topology of this system [87].
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Figure 2.10 | Topological phase diagram in the tunnel modulated honeycomb lattice as a function of
modulation frequencyω and amplitude Λ. a, Stepwise modulation showing the Haldane phase for high

frequency and small amplitude, the anomalous phase after crossing the first phase transition and the

Haldane like phase after the second phase transition. The solid lines are the predictions from the effective

bandwidth of the high frequency expansion. b, Cosine modulation showing the identical phases as a,

with shifted phase transitions. The solid lines are again the predictions from the effective bandwidth of

the high frequency expansion. There is a plethora of different phases located in the gray shaded area at

small modulation frequencies, which are not futher characterized.

A second band touching occurs at Γ when further lowering the frequency of the drive,
this time the 0-gap is closing at ℏω/J0 = 6. We again observe a peaking of the Berry
curvature before the transition at ℏω/J0 = 6.1 and a subsequent inversion at ℏω/J0 = 5.9,
cf. Figure 2.9e and f. With the gap closing the edge mode in the 0-gap is annihilated, ergo
the winding number in the 0-gap is W 0 = 0, as there are no edge modes present in the
0-gap. The topological charge of this transition is Q0 = sgn(∆Ω−) = −1, as the Berry
curvature of the band below the gap is changing by ∆Ω− = −2π. The size of the gap at
the phase transition is now changing with a slope of 2, when measured in units of ℏω. This
is due to the fact that the bands are wrapping twice around the Floquet Brillouin zone,
e.g. enabling the bands to hybridize with themselves wrapped around the Floquet Brillouin
zone. The Chern number of the system after the phase transition is C∓ = ∓1, exhibiting
one edge mode in the W π gap. The system exhibits topological properties closely related
to the Haldane phase, we will therefore refer to this phase as the Haldane-like phase.

2.5.5 Phase diagram for step and sinusoidal modulation
To further characterize the resulting topological phases of the modulated tunneling scheme,
in the following we will compare the topological phase diagram as a function of modulation
amplitude and frequency. The quantity we will consider is the Chern number, note however
that the Chern number is not sufficient to describe the out of equilibrium anomalous
Floquet phase, it can still show where the topological phase transitions occur. We obtain
the phase diagram by numerically time-integrating the evolution operator to get the Floquet-
Hamiltonian, and subsequently calculate the Chern number from the resulting eigenstates.
The resulting changes of the Chern numbers validate the accuracy of the predictions made
for the occurrence of the gap closing in Section 2.4.2. Figure 2.10a shows the resulting phase



2.5 Anomalous Floquet Phases 41

diagram for the stepwise modulation, the phase diagram for the sinusoidal modulation is
shown in Figure 2.10b. As illustrated before both modulation schemes host a Haldane phase
with C− = 1 in the high frequency limit. Once the bandwidth of the effective Hamiltonian
matches the modulation frequency the transition to the anomalous phase with C− = 0 occurs
in both modulation schemes, as predicted by Equation 2.78 and Equation 2.78. The black
lines in Figure 2.10a and b show the respective prediction from the high frequency expansion
also for the following transitions. Upon further reducing the modulation frequency ω or
increasing the modulation amplitude Λ the Haldane-like phase emerges. The topological
characterization of the anomalous phase is incomplete, when just considering the Chern
number as further illustrated in Section 2.5.2. In the Haldane-like phase the Chern number
is opposite in sign compared to the Haldane phase, i.e., C− = −1. The phase transitions
occur at slightly different modulation parameters for the sinusoidal and stepwise modulation
of the tunneling otherwise they result in an essentially equivalent phase diagram, when
considering the first three phases connected to the high frequency limit.

As the two drives are closely linked it would be possible to connect the two phase
diagrams without gap closings as the phases are topologically equivalent. We can introduce
a parameter describing whether the drive is more linked to the step or sinusoidal drive,
e.g. by removing frequency components > ω from the stepwise drive. By varying this
parameter the stepwise modulation can be “smoothened” into the sinusoidal modulation,
which would directly link the two phase diagrams. The respective phases will be connected
without a gap closing, i.e., without phase transition in between.

The gray shaded area in Figure 2.10 covers a multitude of other phases occurring in the
two modulation schemes with greatly varying Chern numbers. The phases differ between
step and sinusoidal modulation and are not covered here. Experimentally realizing the
corresponding phases might be very challenging as they occur at low modulation frequencies
even compared to the energy scales related to the lattice. This renders the achievable
minimal gap size also very small. The small gap between the bands proves experimentally
very challenging as adiabatic probing becomes harder and a faithful determination of
quantities concerning only a single band, such as the Chern number, become very difficult.

2.5.6 Tight binding in a finite system
The description of the dynamics in the lattice can be understood well in reciprocal space for
an infinitely extended lattice, as a Fourier transform in that case results in quasimomenta
well defined within one Brillouin zone. As these systems are infinitely extended they do
not have an edge. If we want to study the behavior of the system on the edge, we need to
crop the system to a finite size in at least one direction. A very convenient option is the
semi-infinite strip displayed in Figure 2.11a. The system consists of a unit cell of size Lx in
the finite and L along the infinite direction, which is repeated indefinitely in the y-direction.
The unit cell, highlighted by a red rectangle, results in a zigzag edge. The tunneling within
the unit cell is unaltered, while the tunneling to the adjacent copies, indicated by the fainter
sites, gets multiplied by a factor e±ikyL, where ky is the quasimomentum along the infinite
direction and L =

√
3a for the displayed zigzag edge. The sign of the complex phase depends
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Figure 2.11 | Geometry of a semi-infinite strip with a step potential in the center. a, Semi-infinite strip

geometry with highlighted unit cell. The strip is finite along the x-direction and the solid drawn sites in

the red rectangle represent the unit cell. The three types of bonds are drawn in different shades of blue

and can be modulated in a time-dependent fashion. b, Same as a but with a region of interest highlighted.

A specific region of the lattice can be selected to only investigate the eigenstates mainly located within

the region. c, Potential energy V along the finite x-direction of the strip. The vertical lines on the left and

right edge on the strip represent the numerical edges, which correspond to an infinitely high, infinitely

sharp boundary. The edge of interest is located at the center of the strip in finite direction. The potential

step is of height V0 and width ℓ as indicated by the arrow. d, same as b but with the region of interest

highlighted on the potential. The region includes a bulk region but only on one side of the edge and

excludes the numerical edge. e Dispersion of the strip in the anomalous phase for quasimomenta in

the infinite y-direction. All eigenstates are shown with equal weight. Two systems shifted by an energy

V0 = 3.75̄hω are visible but are hard to disentangle as the two spectra are folded and overlapping in the

Floquet Brillouin zone. f Dispersion of the region highlighted in b and d, where darker data points have

larger weight in the region. By projecting the eigenstates onto the selected region only the bulk at zero

energy has significant weight and only the edge mode at the introduced edge is visible.

on the orientation of the tunneling along y. This results in quasimomentum in the infinite
direction along y still being a good quantum number, while we find a finite number of modes
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in the x-direction of the lattice. We can consider e.g. nearest-neighbor tunneling along
three different bond directions δj distinguished by their orientation illustrated by different
shadings in Figure 2.11a. To modify the properties of the edge we can apply a potential
offset between sites or regions of the semi infinite lattice as illustrated in Figure 2.11c and
d. For clarity the potential outside of the strip has been set to ∞, as the numerical edge
effectively constitutes an infinitely sharp and infinitely high potential barrier. Due to this
numerical edge we can expect edge modes to be always located at the numerical edge in
a topologically non-trivial system. However the properties of the numerical edge cannot
be modified arbitrarily, we therefore introduce the previously mentioned potential offset
in the center of the system, where we can control the height V0 of the potential and its
width ℓ. The potential energy within the system is modeled as

V (x) =
V0

2

[
erf

(
2(x0 − x)

ℓ

)
+ 1
]
, (2.100)

where erf(x) is the error function, x0 is the position of the edge in the finite direction,
chosen here to be in the middle of the system, and ℓ encodes the width of the edge, defined
as the length from 8% to 92% of the height of the edge. The resulting potential for ℓ = 1a
is depicted in Figure 2.11c and d, where the edges of the numerical system are displayed
as being of infinitely high potential energy. The resulting dispersion for the system in the
anomalous phase (Λ = 10, ℏω/J0 = 15) is depicted in Figure 2.11e, where the potential
height is V0 = 3.75ℏω, such that we can expect an edge mode to form on the edge introduced
in the center as V0 significantly exceeds all energy scales of the system. The dispersion
includes the bulk of the system at V = 0 and the copy shifted by V = V0 and folded in
the Floquet Brillouin zone exhibiting edge modes on the numerical edges and the edge
introduced in the center. To focus only on the part of the system at potential energy V = 0
we define a region of interest S, illustrated by the gray shaded region in Figure 2.11b and
d. The projection P(µ,S) of each eigenstate |ψµ⟩ can be calculated according to

P(µ,S) =
∑
site j

1S(j) ⟨j|ψµ⟩ , (2.101)

where 1S(j) = 1 if site j belongs to the region S and 0 otherwise. We plot each point of
the spectrum with its overlap encoded in the color where darker colors indicate a larger
overlap. The dispersion depicted in Figure 2.11f shows that the bands corresponding to
the high part of the potential energy are removed together with the edge mode on the
left numerical edge. Only the anomalous edge mode in the 0 and π-gap of the spectrum
located in the center of the system is still present. For clarity points with an overlap
smaller than 10% are not displayed.

From the resulting solutions of the Floquet-Hamiltonian we can immediately plot the
resulting eigenstates on the lattice. When plotting a wave function extending over several
unit cells, the wave function in the adjacent unit cell is displayed with an additional a
phase shift kyL corresponding to their quasimomentum.
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Figure 2.12 | Two-dimensional band structure as a function of kx, ky and projections along kx and
ky. Dispersion of a two-dimensional modulated honeycomb lattice with Λ = 4 and h̄ω/J0 = 9, i.e., in

the anomalous regime. Integrating the dispersion along kx or ky results in the dispersion shown by the

light blue and red points in the vertical projections. The dispersion of a strip (armchair termination right,

zigzag termination left), plotted with weight obtained by projecting the state onto a region up to 4a from

the edge to only show the edge mode dispersion, is also shown in the projections in varying shade of

black. The vertical gray bars represent the maximum quasimomentum in the direction of the strip. The

unit cell for a strip with armchair termination (right projection) is longer than the unit cell for an zigzag

edge terminated strip(left projection), therefore the size of the Brillouin zone is smaller in the armchair

case. The shape of the dispersion for the semi-infinite strip can therefore be understood as the resulting

dispersion of a two dimensional system integrated along the finite direction. Note that this mapping is

not fully justified and serves mainly as illustration, given that there are only a fixed number of modes in

the finite direction of the strip and there is no continuum. However it suffices to explain e.g. the location

of the K and K
′

points in the strip dispersion.

The dispersion of the resulting semi-infinite strip depends on the geometry of the system.
The location of the Dirac cones in the Brillouin zone as well as the shape of the dispersion
varies with the edge termination, as shown e.g. in Figure 2.4 for different terminations
of the lattice in the Haldane model. One striking difference is the location of the K and
K ′ points in the Brillouin zone of the strip for an armchair terminated compared to a
zigzag terminated system. The size of the Brillouin zone in the infinite direction is limited
to a maximum quasimomentum kmax = ±π/L, where L is the length of the unit cell in
the periodic direction. The envelope of the dispersion can be intuitively understood by
considering the projection of the quasimomenta along the finite direction as shown in
Figure 2.12. The dispersion of a periodic system in the anomalous phase with Λ = 4 and
ℏω/J0 = 9 is displayed along with the projected band structure of the upper and lower
band along ky (right) and kx (left). On top of the integrated dispersion we show the
dispersion obtained on a semi infinite strip in black. The dispersion of the semi infinite
strip is displayed with S being located close to the edge (ℓ = 0.05) to only highlight the
edge mode and not show the bulk states. Taking a zigzag edge terminated strip, with the
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infinite direction being the y-direction, we obtain a dispersion equivalent to the one of the
infinite system projected along kx, with the differing size of the Brillouin zone indicated
by the vertical gray bars, and the presence of edge modes.

An armchair terminated system would result from the infinite lattice when applying
a potential edge parallel to the y-direction with kx remaining a good quantum number.
In this case we obtain the dispersion with the envelope originating from the dispersion
of the infinite system along ky, as shown in the left panel of Figure 2.12. One main
difference arising from the different orientation of the strips is the location of K and K ′,
which are centered and overlapping with Γ in the Brillouin zone of the armchair geometry,
compared to the zigzag geometry.



CHAPTER 3

Experimental Setup

The experiments presented here rely on coherent ultracold matter waves in optical lattices.
In order to obtain a coherent matter wave in an optical lattice we prepare a Bose–Einstein
condensate (BEC) of 39K and slowly ramp up the optical lattice in order to adiabatically
transfer the cloud to the lowest band. The necessary experimental steps and tools used
in the experiment will be outlined below. The overview will mainly focus on the newly
introduced components of the setup such as the tweezer trap, and the programmable
potentials enabled by the digital micromirror device (DMD), and only briefly summarize
the essential steps to achieve a BEC. The experimental setup is described in greater detail
in [179, 180] and more recent changes are covered in [174, 181, 182].

3.1 Laser Cooling and magnetic transport
3.1.1 Laser cooling
The experiment starts by loading a double-species 2D magneto-optical trap (MOT) of 87Rb
and 39K from the background pressure in the 2D MOT. Atoms are cooled by two orthogonal
pairs of counter-propagating, circularly polarized, red-detuned laser beams in two directions,
while the combination with a transverse magnetic quadrupole field results in a transverse
trapping [183, 184]. In the longitudinal direction a resonant beam pushes the rubidium
atoms towards the 3D MOT chamber, the potassium atoms are cooled with an axial cooling
beam that is reflected off a spatial filter in the differential pumping section between 2D and
3D MOT chambers [183, 185]. From these cold beams we load a 3D MOT [186, 187] in 2.5 s
for rubidium and ≈ 0.2 s for potassium, the duration of the potassium MOT is adjusted on a
weekly basis to optimize the final atom number and temperature of the BEC. The 3D MOT
consists of three orthogonal pairs of counter-propagating, circularly polarized, red-detuned
laser beams and a magnetic quadrupole field trapping the cloud in all spatial dimensions.

3.1.2 Magnetic transport and evaporation
Once the MOT-loading is finished, the cloud consisting of rubidium and potassium is
simultaneously compressed by increasing the magnetic gradient [188], and we subsequently
perform an optical molasses [186, 189] to cool the compressed cloud to sub-Doppler

46
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temperatures. The cloud ends up in a mixture of spin states. To be able to transport all
atoms in a magnetic trap we optically pump all atoms into the magnetically trappable
|F = 2,mF = 2⟩ state. The first step of the magnetic transport is to load the cloud into a
magnetic quadrupole trap, which is just strong enough to trap all potassium atoms but only
rubidium atoms in mF = 2, all other spin states are lost due to gravity or are magnetically
anti-trapped. This trap is then compressed by increasing the current and the cloud is
afterwards transported by a set of consecutive overlapping coils to the science chamber [190].
The transport between MOT and science chamber is guided through a differential pumping
tube in order to achieve a lower background pressure in the science chamber. The last coil
of the transport is also used to create a strong magnetic quadrupole field after the transport.
We trap the cloud in this strong quadrupole field and apply a repulsive laser beam at
760nm to the center of this magnetic quadrupole trap to prevent spin flip losses [191, 192].

While the atoms are held in the optically plugged quadrupole trap [193] for ≈ 10 s
we apply a microwave field to evaporate the most energetic rubidium atoms by sweeping
the microwave frequency [194, 195], while the remaining rubidium cloud sympathetically
cools the potassium atoms which are unaffected by the microwave field [196–198]. The
microwave field drives the transition from the trapped |F = 2,mF = 2⟩ to the anti trapped
|F = 1,mF = 1⟩, which prevents heteronuclear spin changing collisions between Rb and K
compared to a radio frequency evaporation via the |F = 2,mF = 1⟩ state [199, 200].

We ramp the optical trap up during the last 470ms of the microwave evaporation
while also reducing the confinement of the magnetic trap. We thereby transfer the cloud
from the magnetic quadrupole into a far off resonant optical dipole trap [201]. To elim-
inate spin changing collisions [202] we transfer all atoms to their absolute ground states
|F = 1,mF = 1⟩ via a microwave sweep for rubidium and a radio frequency sweep for
potassium. To provide a quantization axis we apply a bias magnetic field during the last
70ms of the magnetic quadrupole ramp down. Atoms that were not successfully transferred
and remained in |F = 2,mF = 2⟩ are removed by a pulse of resonant light.

3.1.3 Feshbach Resonance
One important property of 39K, which is routinely used in the experiment is the availability
of several wide Feshbach resonances such as the resonance at B0 = 402.70(3)G [204–208].
There are several other narrower Feshbach resonances available to tune the scattering length
for the |F = 1,mF = 1⟩ state, as well as resonances between different mF states [204–208].
In the vicinity of a Feshbach resonance the s-wave scattering length as behaves as [7]

as = aBG

(
1 − ∆

B −B0

)
, (3.1)

where aBG is the background scattering length, ∆ the width and B0 the position of the
resonance. The Feshbach resonance allows tuning the interaction strength of the 39K
atoms in the BEC, from strongly repulsive to non-interacting and eventually to attractive
interactions without crossing the resonance. The resonance is very wide, which reduces the
stability requirements on the absolute and relative magnetic field stability. The resonance
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Figure 3.1 | Feshbach resonances and geometry of the crossed dipole trap and lattice. a, Scattering

length in the vicinity of the Feshbach resonances. Interspecies Feshbach resonance for
39

K and
87

Rb (blue)

with the position indicated by the vertical dashed line at B0 = 317.9(5)G with a width ∆ = 7.6 G and
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at B0 = 402.70(3)G exhibits aBG = −29.0(3)a0 and a width of ∆ = −52G [204–208]. The
Feshbach resonance between 87Rb and 39K at B0 = 317.9(5)G with a width ∆ = 7.6G and
background scattering length aBG = 34a0 is also utilized to enable faster thermalization by
enhancing the scattering length during evaporation [186, 196, 197, 203]. The appearance
of the Feshbach resonance relies on the presence of an molecular bound state that is
energetically close to the scattering channel of two unbound atoms at large distance, the
open channel. A Feshbach resonance occurs when the bound molecular state approaches
the scattering state in the open channel. Even if the coupling is small, it can significantly
mix the two states. The energy difference between the states can be e.g. magnetically
tuned if the corresponding magnetic moments differ [7]. The Feshbach resonances utilized
in the experiment are displayed in Figure 3.1a.

We currently use the Feshbach resonance to tune the scattering length of 39K to 6a0

in the honeycomb lattice to probe the dynamics while reducing the heating. Tuning
the scattering length also enables probing of different excitation processes during the
modulation [209, 210]. Tuning the chemical potential in the BEC can also be beneficial
when probing corrugations in the generated potential, as we can adjust the energy scale of
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the particles compared to the potential independently. In the future we hope to be able to
control the heating and e.g. probe the interacting Haldane model [211–213].

3.2 Optical Trap
3.2.1 Crossed optical dipole trap
The red-detuned crossed optical dipole trap at λ = 1064nm crosses under an angle of
≈ 90 ◦ and captures the atoms in the maximum of intensity. The resulting potential is
related to the local intensity via [201]

Vdip(r, t) =
πc2

2

(
ΓD2

ω3
D2

2 + gFmFP
∆D2

+
ΓD1

ω3
D1

1 − gFmFP
∆D1

)
I(r, t), (3.2)

where c is the speed of light, ΓD1(D2) the natural linewidth and ωD1(D2) the frequency of
the D1(D2) line, gF the Landé factor, mF the magnetic quantum number of the state,
P characterizes the polarization of the light (P = 0,±1) for linearly and circularly σ±

polarized light, and ∆D1(D2) the detuning from resonance. The detuning is determined by

1
∆D1(D2)

=
1

ωL − ωD1(D2)
+

1
ωL + ωD1(D2)

, (3.3)

where ωL = 2πλ/c is the angular frequency of the trapping light, depending on the
wavelength λ, the potential can be either repulsive or attractive. As the trap is red-detuned
the optical trapping potential is attractive. The beams of the optical dipole trap in the
setup are elliptical with an aspect ration of ≈ 1 : 10, to create very oblate samples providing
a suitable starting point to prepare truly two-dimensional samples in the future. The setup
for one of the two crossed beams had to be rebuilt in a more compact way to free up space
for the tweezer trap, speckle and DMD setup. The new setup shall be quickly summarized
here. We derive the linearly polarized light from a polarization maintaining large mode
area photonic crystal fiber1 which is collimated by a 30mm UVFS triplet collimator2. To
filter the polarization we use a thin film polarizer3. Afterwards the beam is shaped by a
cylindrical 3 : 1 telescope in the horizontal direction and one 1 : 3 telescope in the vertical
direction4. A 400mm lens then focuses the beam, we overlap it with one of the optical
lattice beams on a dichroic mirror5 and steer both beams into the science chamber. The
focused beams of the crossed dipole trap exhibit waists of ≈ 30µm × 300µm with the
smaller waist in vertical direction. Size inequalities between the two beams are compensated
by adjusting the power balance between them to initially achieve the deepest possible trap
and eventually a trap providing isotropic trapping in the horizontal plane. The orientation
of the cell geometry and laser beams is shown in Figure 3.1b.

1NKT Photonics LMA-PM-15
2Optosigma HFTLSQ-20-30PF1
3Optoman Brewster TFP (PAN1184)
4Edmund optics #37-607, Thorlabs LC4210-B, Edmund optics #37-607
5Optoman dichroic mirror (PAN1730)
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The loading of the optical dipole trap from the magnetic trap is followed by a 1 s hold
time at the maximum power, where the scattering length between 39K and 87Rb is tuned
via the Feshbach resonance at 317.9(5)G to ≈ 263a0 [196, 197, 203]. The magnetic field is
derived from the same coils as the magnetic quadrupole field. By inverting the current in
one of the coils the magnetic field is homogeneous and pointing in vertical direction out
of the plane of the crossing optical dipole trap. We subsequently force the evaporation
by exponentially ramping down the intensity of the optical dipole trap. Once the trap
mainly supports only 39K due to the smaller gravitational sag compared to 87Rb, we change
the magnetic field strength to the Feshbach resonance for 39K. The Feshbach resonance at
402.70(3)G [204–208] is used to tune the scattering length to of 39K to ≈ 140a0. During a
final slow evaporation ramp the scattering length is tuned to ≈ 44a0. We achieve an almost
pure BEC of ≈ 2 × 105 atoms, where we can freely choose the scattering length with the
Feshbach resonance. This presents the starting point for the actual experiment.

3.2.2 Optical Tweezer Trap
To control the spatial extent and the position of the cloud in the lattice in a very controlled
manner, we implement an optical tweezer [42, 214–217]. The optical tweezer is a dipole
trap at 1064 nm, where the position is controlled by an acousto-optical deflector (AOD)6.
The AOD diffracts an incoming collimated laser beam at an angle depending on the radio
frequency driving it. This angular deviation is then mapped to a position by using a lens,
whose focus coincides with the AOD position. A relay telescope shapes the beam to have
the desired waist before the high resolution objective to achieve a tight focus in the atomic
plane. The setup used is schematically depicted in Figure 3.2 along with other beams that
are guided through the objective, which is further detailed in Section 3.4.

To be able to transfer atoms from the optical dipole trap into the tweezer and releasing
a localized cloud from the tweezer to the lattice requires precise alignment of the respective
foci to one another. For the experiments preparing edge modes, the atomic cloud is initially
prepared in the tweezer trap but we eventually release it from this tweezer into the combined
potential of the optical dipole trap and lattice. To prevent center of mass excitations in the
vertical direction of the crossed dipole trap very fine alignment is necessary. To optimize the
vertical overlap between the focus of the tweezer and the focus of the crossed dipole trap
we scan the position of the objective in vertical direction with a stepper motor and track
the evolution of the cloud after release from the tweezer for every position of the objective.
If the alignment is correct and the two foci coincide, we observe no dynamics in the vertical
direction. However even small displacements on the order of 1µm lead to center of mass
oscillations in the optical dipole trap. To characterize the relative displacement and optimize
the overlap we load the atoms into the tweezer trap which is e.g. focused slightly below the
crossed dipole trap as illustrated in Figure 3.3a. As the vertical trapping frequency of the
small tweezer is not negligible compared to the crossed dipole trap, the combined minimum
of the potential is slightly below the center of the crossed dipole trap and the cloud will
start to move towards the focus of the dipole trap once the tweezer is switched off. The

6AA Optoelectronic DTSXY-400-1064
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Figure 3.2 | Optical setup below the high resolution objective. Four different setups are guided through

the objective. The imaging (blue), the DMD (red), the speckle setup (green) and the tweezer trap (dark red).

The imaging beam is propagating through the cloud first, and then through the objective, propagating

in opposite direction of the other beams. The different beams are separated or overlapped on several

dichroic mirrors (components no. 1, 15, 4). The tweezer position in the plane of the atomic cloud can

be tuned via an acousto-optical deflector. The DMD enables the projection of arbitrary potentials. The

speckle beam enables the creation of random disorder potentials on the lattice.

excited cloud then continues to oscillate in the crossed dipole trap for a time thold until
we release it completely and image it with a camera transversal to the optical axis of the
objective after a ttof = 7ms time of flight. The spatial resolution along the transverse axis
of the objective is not sufficient to observe the oscillation in situ. We therefore image the
cloud after time of flight, where we map the velocity of the cloud to a position since

ωz × ttof ≫ 1, (3.4)

where ωz/(2π) = 330(30)Hz is the vertical trap frequency of the crossed optical dipole
trap. The longer time of flight magnifies the resulting oscillations significantly compared
to the in situ oscillation. After performing this measurement for several thold we observe
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Figure 3.3 | Schematic of the focusing procedure to overlap the focus of the tweezer trap and the
crossed dipole trap and experimental verification. a Schematic of the arrangement used to focus the

tweezer. The focus of the tweezer is controlled by vertically moving the objective, which also shifts the

location of the focus. In the case depicted here, the focus is below the crossed dipole trap (ODT) leading

to a cloud that is initially trapped slightly below the center of the dipole trap. Upon release from the

tweezer the cloud is dragged upwards as indicated by the dashed gray arrow and subsequently oscillates

in the crossed dipole trap. The position of the objective is remote controlled via a closed loop stepper

motor. b Representative measurement used to focus the tweezer. For several vertical positions of the

objective indicated by the different colors of the data points, we observe the vertical position z after time

of flight for several hold durations thold. The oscillations reverse their initial phase upon crossing the

focus. The solid lines are a fit to the data with a damped sinusoidal function. The error bars correspond

to the standard error of the mean.

an oscillation with an amplitude and initial phase depending on the relative alignment of
the two foci. By adjusting the position of the infinity corrected objective we can move the
focus of the tweezer to match the optical dipole trap. From the resulting amplitude and
phase of the oscillation we can deduce the focus mismatch. Figure 3.3b shows an exemplary
measurement where we vary the position of the objective in order to focus the tweezer trap
on the crossed dipole trap. Depending on the relative distance we observe an oscillation with
different initial phase clearly indicating an initial up- or downwards motion of the cloud.

The position of the focus needs to also match with the imaging of the cloud and the
DMD potential (cf. Section 3.2.3). The initial position of the objective compared to
the optical dipole trap was referenced by the imaging (cf. Section 3.4), we subsequently
adjusted the tweezer trap with the aforementioned method but used the f = 150mm lens
(16 in Figure 3.2) to focus the tweezer trap. Knowing that the tweezer and imaging are
both on focus, future alignment was done by collectively focussing all beams transmitted
through the objective by translating the objective itself.

The estimated waist of the tweezer in the atomic plane is ≈ 1µm. As we are not
interested in the exact size of the beam but rather the trapping potential it creates, we
characterize the trapping potential by exciting the cloud trapped in the tweezer and fit
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Figure 3.4 | Trap frequency calibration of the tweezer trap. We excite the tweezer in x- and y-direction

and study the evolution of the velocity after an expansion in the dipole trap for various hold times after the

excitation. a, Oscillation in x-direction for three settings of the control voltage which is proportional to the

intensity, 0.25 V (blue), 0.4 V (red), 0.5 V (gray). The panels show the oscillation together with the resulting

sinusoidal fit. b Oscillation in y-direction for the same settings as a. c Resulting oscillation frequency ωtw

as a function of the control voltage Vset together with a fitωtw = α/(2π)
√

Vset. We find α = 2.8(1) kHz/
√

V

from fitting the x and y data simultaneously. The up facing triangles are the x, the down facing triangles

the y data points. Error bars represent standard error of the mean and the respective fit errors. The data

points are an average of up to 3 realizations.

its oscillation frequency. To excite the cloud we displace the optical tweezer in 215µs by
≈ 480nm in x- and y-direction, this creates a center of mass excitation in the cloud. After
displacing the tweezer we hold the cloud in the trap for a variable amount of time thold

then abruptly switch off the tweezer and let the cloud expand in the dipole trap for 0.5ms

and subsequently take an absorption image. By the expansion in the dipole trap we map
the momentum at the time of switching off the tweezer to a position in the dipole trap.
We extract this position by fitting the resulting absorption images with a two-dimensional
Gaussian and then fit a sinusoidal function to the x- and y-positions as a function of
time thold from which we can extract the trapping frequency. This analysis assumes a
harmonic approximation to the Gaussian trapping potential resulting from the tweezer. The
resulting analysis is displayed in Figure 3.4, where we show the resulting oscillation in x- and
y-direction together with the resulting trapping frequency. The two settings most commonly
used in the experiment yield a trap frequency of 1.3(1) kHz and 2.0(1) kHz. By tuning the
trap frequency the spatial extent of the wave packet can be tuned to match a desired size.

The position of the trap can be dynamically controlled by changing the radio frequency
input sent to the AOD. We use this functionality on the one hand to align the tweezer
precisely to the center of the BEC, on the other hand we use linear sweeps of the frequency
to accelerate the wave packet located in the tweezer. We prepare the wave packet at a
desired (quasi-)momentum by displacing the tweezer shortly before releasing the cloud
from the tweezer into the lattice or dipole trap. In most of the experiments we accelerate
the wavepacket along the y−direction, which is antiparallel to L1, cf. Figure 3.1, during
a time δt, the coordinates of the tweezer are indicated by ytw, the position of the center



54 Experimental Setup

of mass of the wave packet is ⟨y⟩. The motion of the tweezer during the linear frequency
sweep is described by

ytw(t) = ytwi + (ytwf − ytwi )t/δt. (3.5)

To a good approximation the evolution of the wave packet follows the classical equa-
tion of motion

mK
d2⟨y⟩
dt2

= −∇U(y, t), (3.6)

where U(y, t) is the optical potential of the tweezer, approximated by a parabola with
trapping frequency ωtw:

U(y, t) =
mKω

2
tw

2
(
y − ytw(t)

)2
. (3.7)

Assuming the center of mass is initially at rest d⟨y⟩
dt (t = 0) = 0 and the initial position

of the cloud coincides with the initial tweezer position ⟨y⟩(t = 0) = yi we can integrate
the equation of motion

⟨y⟩(t) = ytwi +
ytwf − ytwi
ωtwδt

[ωtwt− sin(ωtwt)] . (3.8)

At the end of the linear frequency ramp t = δt the final velocity of the center of mass vy is

vy(t = δt) =
ytwf − ytwi

δt
[1 − cos(ωtwδt)] . (3.9)

The final velocity exhibits a ωtw dependent maximum for ramp durations of δt = 2.33/ωtw,
the numerical factor arises from maximizing x 7→ [1 − cos(x)] /x, which is maximum for
x ≈ 2.33. The displacement ytwf − ytwi can be chosen independently as long as the harmonic
approximation is valid. We observe the breakdown of this approximation in the experiment
for displacements of the tweezer that are large such that the Gaussian envelope of the
tweezer trap is weaker than the harmonic approximation and we do thus not drag the
cloud with the gradient we would expect. To experimentally measure the final velocity
imposed by the moving tweezer we let the atoms evolve in the dipole trap after applying
the linear displacement ramp and switch off all potentials except for the dipole trap. We
measure the position of the center of mass of the cloud as a function of the evolution
time that is varied between 0 and 1ms. The position in the direction of the kick is linear
with time, and we extract the corresponding velocity with a weighted linear fit (insets
in Figure 3.5). The measured velocities range between 0µm/ms and 10µm/ms, and are
converted into a phase gradient via

∇ϕ =
mK

ℏ
vy. (3.10)
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Figure 3.5 | Calibration of the applied phase gradient by displacing the tweezer. a, Phase gradient of

the wave packet induced by displacing the tweezer in the lattice. The dotted lines are an interpolation of

the measurements with an empirical function used in further evaluations. b, same as a but without the

lattice potential while applying the kick. The velocity of the wave packet is measured as a function of the

total displacement of the tweezer for two different in-plane trapping frequencies: ωtw/(2π) = 1.3(1) kHz

in light blue, and 2.0(1) kHz in dark blue. The dashed lines are the analytic predictions from the motion

of a cloud in a harmonic potential. The inset shows the averaged measurement of center of mass (CoM)

of the atoms after the kick and a variable evolution time (evol. time) in the optical dipole trap for the

lowest value ofωtw and displacements of 0.19 µm (circles), 0.78 µm (squares), 1.36 µm (diamonds), and

1.94 µm (pentagons). The linear weighted fits from which the velocity is extracted is shown in the inset,

the associated uncertainty provides the error bar for the respective main graph which is smaller than the

data points. The depicted datapoints in the insets are an average of 6 individual realizations for a and

16 realizations in b. The arrows at displacement ≈ 1 µm indicates the phase gradient that was used in

measurements to populate the edge mode in the Haldane regime in Chapter 5.

Figure 3.5 shows the resulting phase gradient as a function of the displacement of the
tweezer for two values of ωtw. We show the resulting velocity after displacing the tweezer
in the lattice in Figure 3.5a and in the dipole trap only in Figure 3.5b. In both cases
we observe good agreement with the classical prediction for displacements up to ≈ 1µm,
after which the resulting velocity is reduced compared to the harmonic approximation.
This displacement also matches the waist of the tweezer beam, where a deviation from the
harmonic approximation can be expected. However we find that the harmonic approximation
is valid in both cases, when giving the kick in the lattice or in the dipole trap, highlighting
that initial state is dominated by the tweezer and the dispersion of the lattice is negligible.
We find that the maximum phase gradient applied in the lattice is smaller compared to
the phase gradient in the dipole trap for large displacements, yet it is still sufficient to
reach the edge of the Brillouin zone.

3.2.3 Arbitrary binary potentials utilizing a DMD
Digital micromirror devices provide binary spatial control of the reflectivity by flipping
microscopic mirrors into on and off positions. This offers unique control over the intensity
pattern in a desired plane enabling arbitrary patterns to be realized [218] such as preparing
different initial states of bulk BECs [219–221] as well as controlling the local potential on
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individual lattice sites implementing boundaries, disorder or local energy shifts [222–224].
We use the DMD to create a controlled optical potential step in the lattice, inhibiting
the tunneling across the boundary between the region with low and high potential. In
order to create a clean potential with little corrugations and high spatial resolution, precise
control of the imaging system and illuminating light source is necessary. Temporal coherent
illumination with a narrowband laser source will inevitably lead to diffraction and thus
unwanted corrugations of the desired potential [225, 226]. In order to reduce the resulting
diffraction the optical coherence length, i.e., the distance over which a propagating light
source will remain coherent and thus interfere, should be as short as possible. Assuming
a Gaussian spectrum of the light source centered at λ the coherence length is inversely
proportional to its emission bandwidth ∆λ [227]

lc =
2 ln(2)λ2

π∆λ
. (3.11)

Fundamentally the illumination with a very wideband incoherent light source such as an
LED would be ideal, but the extremely wide opening angle in combination with the large
emission area renders high intensity illumination in combination with a demagnification of
the DMD image impossible [228]. An alternative can be a superluminescent diode with
a spectrum that can span tens of nanometers [229–231] which is subsequently amplified
by one or two stages of tapered amplifiers [223, 232].

Due to the lack of superluminescent diodes around 700nm, we have attempted to use a
similar approach utilizing a laser diode with anti-reflection coated front facet7 at ≈ 735nm
to seed a two stage tapered amplifier8 setup. We aimed at getting a potential height of
≈ h×10 kHz in the experiment, and therefore required stable operation at 500mW after the
second tapered amplifier. Unfortunately the operation of the laserdiode without feedback
resulted in a very fast degradation of the output power, such that stable operation was
not possible. The output spectrum of the system proved to be sufficiently wide with a
3dB-bandwidth of 4nm centered at 730 nm rendering this approach fundamentally viable.

In search for a more stable setup we tested the spectrum of broadband multimode
laser diodes and eventually settled for a combination of four λ = 638nm laser diodes9 that
are spatially multiplexed using a micro knife edging module10. The resulting spectrum
exhibits a full width at half maximum bandwidth of ∆λ = 1nm which results in a
coherence length of lc = 180µm providing temporal-incoherence and thus significantly
reduced speckle contrast to ≈ 3%.

To deliver the beam from the light source to the experiment we use a square core
multimode optical fiber11, which additionally provides a spatially incoherent almost homo-
geneous square output mode. The square-core fiber maps the temporal incoherence into
rapidly varying spatial incoherence thus reducing the speckle contrast due to the differential

7eagleyard Photonics EYP-RWE-0740-02000-1500-SOT02
8eagleyard Photonics EYP-TPA-0735-00500-3006-CMT03
9USHIO HL63623HD

10Lasertack Beam Combiner Module, fixed distance, 4mm focal length
11Thorlabs FP150QMT



3.2 Optical Trap 57

mode delays of the propagating modes in the fiber. The differential mode delay, i.e., the
time delay between the fastest and slowest mode, can reach ≈ 100ps/m in a square core
fiber [233], which corresponds to a delay per fiber length in free space of ≈ 3 cm/m enabling
significant reduction of the spatial coherence as the maximum delay significantly exceeds
the coherence length of the light source. We additionally sweep the center frequency of the
radio frequency drive to the acousto-optic modulator12 used for stabilizing the intensity of
the beam impinging on the DMD in order to change the input angle of the fiber coupling
and thus additionally average different mode excitations in the fiber to further suppress
speckle contrast to ≈ 3%, as depicted in Figure 3.7b. While the reduced temporal coherence
reduces the speckle contrast it can enhance the optical resolution if the image formation
happens incoherently [234], see also Section 3.4. The output beam of the square core
fiber has very short range spatial coherence, i.e., in contrast to a single mode fiber the
phase relation and therefore propagation direction at every point of the mode is uniform
within the numerical aperture of the fiber. This effectively reduces the resolution limit,
i.e., the minimal separation d between two points that the imaging system can project,
to the Abbe limit or Rayleigh criterion [235, 236]

d =
λ

2 NA
. (3.12)

This however is only true if the size of the illuminated area and the NA of the fiber is
matched to the objective’s NA and the projected size of the potential, i.e., if the etendue
is conserved. To achieve this we carefully matched the optics after the fiber to achieve
a resolution as close as possible to the diffraction limit.

The optical setup behind the glass cell is depicted in Figure 3.2, this configuration was
used for most of the presented measurements. The fiber tip is imaged with an aspheric
condenser lens13 onto the surface of the DMD14 with a size of ≈ 5mm× 5mm. We then
image the central diffraction order of the DMD image into the atomic plane using a telescope
with an independently calibrated demagnification of 40.94 consisting of a 1m achromatic
lens15 and a custom objective16 with effective focal length of 25mm. This demagnification
oversamples the DMD such that approximately 4 pixels on the DMD contribute to an
area of one point spread function of the objective. Using this setup we image the fiber tip,
which has an emission area of ≈ 150µm × 150µm, onto an area of ≈ 120µm × 120µm
matching the etendue of the fiber to the objective.

This setup is very simple and therefore comparatively easy to align. Two important
requirements are the perpendicular alignment of the objective’s optical axis with respect
to the glass cell and minimizing the distance between optical axis and the atomic cloud.
The strategy followed to achieve both is further elucidated in Section 3.4.

The objective is only achromatic for 767nm and 780 nm, therefore all other wavelengths
require a refocusing, which in this case is achieved by laterally displacing the 1m achromatic

12Crystal Technologies AOMO 3200-125
13Thorlabs ACL1512U-B
14Vialux V-7000
15Thorlabs ACT508-1000-A
16Special Optics 54-25-25
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lens to achieve a focused image in the atomic plane. To focus the DMD potential we
display a checkerboard pattern on the DMD then adiabatically load the BEC into this
potential and eventually take an in situ absorption image. We choose the checkerboard
pattern such that there is still a significant modulation visible in the absorption images
of the cloud. The resolution limit due to the incoherent illumination and wavelength is
smaller than the resolution limit of the imaging [234]. For a defocused image the sharpest
features are absent which becomes especially visible in the corners of adjacent cells which
lead to a merging or separation of the individual cells of the checkerboard pattern if the
potential is not on focus. We cannot directly quantify the achieved resolution but expect
a performance that results in an edge width of ≈ 0.7µm17.

To calibrate the height of the potential we abruptly apply an optical checker board
potential for a short amount of time thold and observe the Kapitza-Dirac effect [237] after
an expansion in the dipole trap for 10ms. We perform this measurement for several beam
intensities of the beam illuminating the DMD displaying a checker board pattern with
period 2dsq. We image the cloud after the expansion in the dipole trap and record the
population in the zeroth and first diffraction orders. The first diffraction orders appear
at positions associated with the wave-vector of the potential k1 ∝ 1/dsq which exhibit a
kinetic energy of ER = ℏ2k2

1/(2mK). In our experiments the kinetic energy does not exceed
h × 1 kHz. For potential heights exceeding the related recoil energy V0 > ER and hold
durations thold ≈ V0/ℏ the diffraction experiments are in the Raman-Nath regime [238,
239]. The time evolution of the diffraction orders is directly related to the potential height
as illustrated in the following.

The potential created by the DMD in the atomic plane is a checkerboard. We de-
note the potential as

Vsq(x, y) =
V0

2

[
sq

(√
2(x+ y)

L

)
sq

(√
2(x− y)

L

)
+ 1

]
, (3.13)

where dsq is the size of one square of the checkerboard, and V0 is the height of the potential,
and the function sq(x) is the 1-periodic function defined as

sq(x) =

{
1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1.
(3.14)

It will be useful to already note that V (x, y) reaches only values 0 and V0. We start
with a BEC in the dipole trap, which we model as all the atoms being in the state of
momentum p = 0, denoted as |p = 0⟩. After flashing the potential for duration t, the
atoms end up in the state

|ψ(t)⟩ = e

(
−i V (x̂,ŷ)t

ℏ

)
|p = 0⟩ . (3.15)

17Defined as the length from 8% to 92% of the height of an edge.
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In the case where the potential V is a sinusoidal function in one direction, one gets the
usual Kapitza-Dirac diffraction as in an optical lattice [238]. In general, we would have
to decompose the evolution operator exp(−iV t/ℏ) in the momentum basis to know where
the atoms at |p = 0⟩ end up, which can be tedious if the potential V is arbitrary. Here
however, the potential is a checkerboard, which has the advantage of having only two
values. The evolution operator can therefore be written as

e−iV (x̂,ŷ)t/ℏ = 1̂ +
(
eiV0t/ℏ − 1

) sq
(√

2(x̂+ŷ)
L

)
sq
(√

2(x̂−ŷ)
L

)
+ 1̂

2
(3.16)

= eiV0t/(2ℏ)

cos
(
V0t

2ℏ

)
1̂ + i sin

(
V0t

2ℏ

) sq
(√

2(x̂+ŷ)
L

)
sq
(√

2(x̂−ŷ)
L

)
2

 (3.17)

We can now write the spatial function that appears on the right of the expression
as an inverse Fourier transform:

sq
(√

2(x̂+ŷ)
L

)
sq
(√

2(x̂−ŷ)
L

)
2

=
∑

{px,py}

S̃(px, py) exp (−ipxx̂− ipyŷ) , (3.18)

where S̃ is the Fourier transform of the function on the left. As a result, the state
that we obtain is:

|ψ(t)⟩ = eiV0t/(2ℏ) cos
(
V0t

2ℏ

)
|p = 0⟩+

∑
{px,py}

ieiV0t/2ℏ sin
(
V0t

2ℏ

)
S̃(px, py) |px, py⟩ . (3.19)

The relative population P0 in the order 0 of the diffraction pattern is therefore

P0 = cos2
(
V0t

2ℏ

)
, (3.20)

and the relative population Ppx,py in any higher order of the pattern (i.e., any (px, py)

that appears in the spectrum of the spatial pattern) is

Ppx,py = sin2
(
V0t

2ℏ

)
|S̃(px, py)|2. (3.21)

We show an exemplary image of the diffraction orders after expansion in the dipole trap in
Figure 3.6a. The resulting sinusoidal oscillation is shown in Figure 3.6b, we additionally
allow the fit function to have an offset to account for imperfect background subtraction
or diffraction into higher orders, which we do not count separately. The resulting slope
of the potential is extracted by fitting the potential depths for three values of dsq and
we find 11.12(3) kHz/V.

The setup described above and depicted in Figure 3.2 has one major drawback - it is
not easily possible to reduce the resolution, i.e., making the image more blurry, without
affecting at the same time the resolution of the imaging and the size and depth of the
small tweezer trap. This lies in the fact that the Fourier plane of the DMD is located
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Figure 3.6 | Calibration of the DMD potential height. a, Exemplary absorption image after diffraction

from the checkerboard potential projected with the DMD with dsq = 1 mm after an expansion of 10 ms.

The light blue highlighted regions are summed up and constitute the first order diffraction orders, the

dark blue highlighted region is the zeroth order. b, Measurement of the summed optical density in the

regions corresponding to the zeroth (circles) and the first (diamonds) diffraction orders. The error bars

correspond to the standard deviation of the population in the respective order for images taken with

the same parameters. The solid lines show the sinusoidal fits from which the frequency is extracted.

c, Height of the repulsive potential evaluated using sinusodial fits as shown in b as a function of the

voltage used to control the laser intensity for three values of dsq: 1.0 mm (circles), 1.3 mm (diamonds)

and 1.7 mm (pentagons). The error bars correspond to the uncertainty of the fit, and the dashed black

line is a weighted linear fit of all the measured points, which has a slope of 11.12(3) kHz/V.

very close to the objective, which is the plane where we would need to crop the Fourier
components of the projected pattern. Cropping Fourier components there would also
affect the imaging and the tweezer trap. If we crop the DMD beam in a different location,
it mainly reduces the intensity without reducing the imaging resolution too much also
leading to vignetting. To overcome this shortcoming we modify this setup and introduce
an additional Fourier plane so we crop Fourier components of the DMD potential while
leaving the other beam paths unaffected.

To implement a setup with an additional Fourier plane we image the DMD onto an
intermediate plane p1 with a 4f -setup, cf. Figure 3.7a, consisting of an f1 = 150mm

achromatic lens18 and a f2 = 100mm singlet lens19. In between the two lenses we have
placed an automated iris20 to crop selectively the highest frequency components of the
image down to a given radius. To verify the size of the iris opening we image the iris after
each shot showing excellent repeatability of the iris opening d with a standard deviation
of 15µm of the set diameter.

In the intermediate plane p1 the resulting image can be observed with a removable
camera21. We show two exemplary images for an iris with opening slightly smaller than
the corresponding size of the objective’s Fourier plane (Figure 3.7b) and maximally closed

18Thorlabs AC254-150-AB-ML
19Thorlabs LA1509-A
20Thorlabs ELL14 and SM1D12
21Allied Vision 1800 U-319m
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Figure 3.7 | Setup and resulting width of an edge for the setup with tunable resolution. a, The DMD is

imaged on the atomic plane (p2). An iris of variable diameter d is added in the Fourier plane to vary the

width of the potential step. The DMD light at 638 nm is overlapped with the tweezer beam (tw.) at 1064 nm

with a dichroic plate and focused with a microscope objective. The imaging beam (img.) at 767 nm is

propagating in the opposite direction and passing through the dichroic plate to reach the camera (not

shown). b, Optical potential in the intermediate plane (p1) generated with the DMD and recorded with a

camera. The diameter of the iris, and thus the Fourier plane, is slightly larger than the corresponding size

of the objective. The gray rectangle indicates the area integrated for the curve shown in d. c, Same as b,

but the diameter of the iris is closed as much as possible to a minimum diameter of d = 0.91(1)mm. The

brown rectangle indicates the area integrated for the curve shown in d. The scale bar in b and c is 10a

in the atomic plane p2. d, Resulting edge width. The edge width is extracted for a position close to the

atomic cloud. We show the data of the integrated signal highlighted by the rectangles in b and c together

with the corresponding fit. The iris diameter corresponds to a diameter slightly larger than the diffraction

limit (b) and the smallest iris diameter from Figure 5.22b (c).

(d = 0.91(1)mm, Figure 3.7c) iris together with a cut of the edge in Figure 3.7d. The
images are scaled by the demagnification of the final telescope consisting of a f3 = 750mm

achromatic lens22 and the objective f4 = 25mm to represent the effective size in the plane
of the experiment p2. The fits in Figure 3.7d are fits to an edge defined in Equation 2.100
and result in widths of ℓ = 1.8a for the larger and ℓ = 10.5a for the smaller iris opening. We
are therefore able to smoothly tune the width of the transition from high to low potential
of the DMD over almost one order of magnitude, with the limit being the final iris opening
restricted by the construction of the iris. Due to the spatially incoherent illumination of
the DMD with the wideband laser source described above, it is necessary to adjust the
set point of the potential height due to cropping of low frequency components located off
axis. The incoherent illumination results in a random transversal distribution of Fourier
components. To compensate for this we adjust the set point to always maintain the same
transmitted optical power through the iris for all iris openings. In contrast a coherently
illuminated image results in a bright central spot in the Fourier plane, where the cropping
of Fourier components does not result in a reduced maximum intensity of the image and
no adjustment of the set point would be necessary.

22Thorlabs AC508-750-A
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3.2.4 Random optical disorder potentials - Speckle

In addition to the aforementioned controlled binary potential we have realized a setup to
create random optical potentials. Anderson localization [240], i.e., the peculiar localization
of non-interacting particles in random potentials can be investigated in a very controlled
way in quantum gas experiments in one- [241, 242] and three-dimensional systems [243,
244]. In the presence of strong on-site interactions the interplay with disorder enables the
study of many-body localization [245–247] and if or how these systems thermalize [246].
Investigations in two-dimensional systems are challenging as the percolation threshold,
i.e., trapping in trivially enclosed regions of the disorder is significantly higher than in
one and three dimensions [248–251].

Nevertheless the anomalous Floquet phase poses interesting phenomena in the presence
of disorder [94, 95, 252]. In contrast to usual quantum Hall systems, where extended bulk
states are required for the edge modes to exist [75], the anomalous Floquet Anderson
Insulator hosts chiral edge modes in the absence of extended bulk states [94]. Furthermore
disorder-induced topological phases should be in reach in this experiment [94, 253–262],
where e.g. in a driven, disordered photonic honeycomb lattice with a sublattice offset the
system can be brought to a topologically non-trivial regime by the disorder [113]. The
presented experiment is able to test similar dynamics over potentially wider parameter range
and verify how e.g. the shape of the edge influences the transition to the non-trivial regime.

The idea we initially pursued with the disorder setup was to inhibit the expansion
dynamics [263–267] of bulk states, while the edge modes, which are more robust to disorder,
still propagate in the system [74, 75, 268, 269].

Figure 3.8 shows a simulation of the proposed experiment comparing the expansion of a
wave packet close to a potential barrier in the Haldane model with and without disorder. The
disorder reduces the expansion of the bulk modes, while the edge mode is still propagating.
The simulation is done for a static Haldane model without disorder in Figure 3.8a and c
and with disorder in Figure 3.8b and d. We simulate a zero-centered normally distributed
disorder with strength ∆/J = 0.5 such that every lattice site is randomly shifted in energy
by the disorder. The nearest neighbor tunneling is J , the next nearest neighbor tunneling
J ′/J = 0.1× e±iπ/2. The sign of the phase affects the Chern number of the bands C. If the
sign of the phase is inverted the propagation direction of the edge mode is also reversed.
The initial state in the simulation is a wave packet localized to a single site next to a sharp
potential barrier with a height of V0/J = 50. The depicted population of the resulting
wavefunction |Ψ|2 is evaluated after a free evolution in the lattice for ≈ 15τ , where τ = ℏ/J
is the tunneling time. To more easily identify the edge mode we time evolve the system
with a positive phase of the complex tunneling resulting in Ψ+ and with opposite phase
resulting in Ψ−. The lower panels of Figure 3.8 show the differential signal after subtraction
∆ |Ψ|2 = |Ψ+|2−|Ψ−|2 after the same expansion time. The wave functions in the disordered
lattice are an average over 200 independent disorder realizations to reduce fluctuations due
to the individual realizations. Comparing the final wave function with and without disorder
we immediately see that the occupation of the fastest states in the bulk is strongly reduced
in Figure 3.8b. The disordered optical lattice offers the advantage to significantly reduce
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Figure 3.8 | Simulation of the expansion dynamics in the Haldane model with and without Gaussian
Disorder. We evaluate the time dynamics of a initially localized wave packet for ≈ 15τ in the vicinity of

a sharp edge. The simulation is done on a square of area 60a × 60a with in total 2760 sites, the right

half exhibits a potential V0/J = 50 compared to the right half of the image. The images are rebinned in

order to reflect the imaging resolution of the experiment. a, Evolution of the wave packet in the lattice

without disorder, with the phase of the complex tunneling being positive. b, Evolution in the lattice with

disorder of strength ∆/J = 0.5. In contrast to the evolution without disorder the bulk states spread

significantly less during the evolution. c, Difference signal after subtracting the signal with positive phase

of the complex next nearest neighbor tunneling from the same evolution but with negative phase. The

evolution happens in the clean lattice without disorder. d, Same as c but with disorder. The images show

the average over 200 independent disorder realizations.

the occupation of states with high group velocity and therefore eases the detection of a
chiral signal. This is especially relevant when the overlap with the edge mode is not as
good, e.g. due to the fact that the exact location of the edge and the correct preparation
protocol is unknown and disorder can help to detect a first signal.

The implementation in the experiment relies on a diode-pumped solid state laser23

operating at λspeckle = 532nm and a holographic diffuser24 introducing random phase shifts
to the wavefront. The setup is depicted in Figure 3.2 and in more detail in Figure 3.9a. The

23Lighthouse Photonics Sprout G-15W
24Edmund Optics #35-693
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output of the photonic crystal fiber25 provides a mode field diameter of MFD = 12.2±1.5 nm,
which translates to a divergence half angle of θ0 = 1.6 ± 2 ◦. To protect the fiber tip from
potential dust we have placed an anti reflection coated window26in front of the fiber facet,
low power residual reflections will not harm the optical performance as the wavefront is
random after the diffuser. After a free propagation for adjustable distance the beam hits
the fused silica holographic diffuser providing a full width at half maximum divergence
angle for a collimated beam of 2 ◦. The diffuser is mounted off axis in a remote controlled
rotation mount27 to realize different random phases on the beam and therefore different
disorder potentials. The divergence of the beam after the diffuser is then reduced with a
f1 = 100mm focal length lens, in the focal plane p1 of this lens we have a fully developed
speckle pattern. This speckle pattern is then demagnified with a telescope consisting of
an achromatic lens with f2 = 1000mm and the objective with f3 = 25mm. We positioned
the diffuser such that we slightly overfill the rear focal plane of the objective, i.e., some
of the power gets clipped on the objective in order to slightly enhance the power at high
spatial frequencies to achieve a smaller speckle size.

The wavefront of speckle is random, therefore aberrations or lens errors do not matter,
however it is still relevant to focus the speckle in order to achieve the smallest disorder
correlation length and the largest intensity. The intensity-intensity auto-correlation of
the speckle pattern, representing the correlation length of the disorder on the lattice in
the setup, is defined as [226]

⟨I(r)I(r+∆r)⟩ = Ī2(1 + |µ(∆r)|2), (3.22)

where r and ∆r are the position and the connecting vector in the focal plane, Ī is the
mean intensity and µ(∆r) is the field-field correlator

µ(∆r) =
⟨E(r) ·E(r+∆r)∗⟩√〈
|E(r)|2

〉〈
|E(r+∆r)|2

〉 . (3.23)

Assuming illumination of a lens with a homogeneous temporally coherent beam we find
that µ(∆r) in the focus of the lens solely depends on the numerical aperture NA of the lens.
The assumption here is that the wavefront of the impinging field on the lens is δ-correlated
as it would be the case for the light transmitted through a diffuser at sufficient distance.
Assuming the lens exhibits a circular aperture we find

µ(∆r) = 2
J1(NA k∆r)

NAk∆r
, (3.24)

where k = 2π/λspeckle is the angular wave number of the light, ∆r the radial distance
between the two points of consideration and J1(x) the Bessel function of the first kind.
We can identify a correlation length for the intensity correlations as the first zero-crossing

25NKT Photonis aeroGUIDE POWER
26Thorlbas WG41050-A
27Thorlabs ELL14K
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of µ(∆r), i.e., the first root of J1(x) is x0 ≈ 3.8, after which the correlations are close
to unity. Taking the values used in the experiment NA = 0.5 and λspeckle = 532nm
we find a correlation length

rc =
x0

NAk
≈ 648nm. (3.25)

The normalized covariance function, which in the signal processing context is usually
referred to as autocorrelation, is related to Equation 3.22 via [226]

|µ(∆r)|2 =
⟨I(r)I(r+∆r)⟩ − Ī2

Ī2 . (3.26)

Unfortunately we are not able to homogeneously illuminate the rear focal plane of the
objective and therefore need to take the Gaussian envelope of the beam into account. To
gain some intuition on how the diffuser creates a speckle pattern, we can draw similarities
between a Gaussian beam and the random phase front beam after a diffuser. A collimated
Gaussian beam with waist w0 a distance f away from the lens with focal length f will
exhibit a waist w1 = λf/(πw0) after the lens, i.e., if the initial beam is large, the resulting
beam will be small and vice versa. The two sizes are linked via the Fourier transforming
property of the lens converting angles to positions and vice versa. In a similar fashion
the size of the random wave front on the rear focal plane of the objective determines the
size of the speckle grains, while the size of the individual phase patches directly affects
the size of the envelope in the focal plane.

A linear phase gradient in the wavefront results in a displacement of the focus after the
lens. The random wavefront of a beam after a diffuser, will result in random displacements
after transmission through a lens. If we envision the wavefront after a diffuser to consist of
many small patches with varying phase the average size of these patches will determine the
size of the speckle pattern envelope, i.e., the area illuminated with the speckle.

To get an estimate of the size of the speckle grains after the diffuser we can approx-
imate the wave front emitted from the diffuser by many small Gaussian beams with a
half angle divergence of

θ =
λ

πwϕ
, (3.27)

where the size of the phase patches for the aforementioned θ = 1 ◦ diffuser would be
wϕ ≈ 10µm large. After the f1 = 100mm lens the size of the phase patches determines
the size of the envelope in the intermediate plane p1, which should have increased by
approximately 1.6mm due to the randomly introduced phase patches. The beam emerging
from the fiber is diverging, therefore depending on where we position the diffuser compared
to the fiber facet, we can adjust the size of the beam on the diffuser, and therefore also the
envelope of the beam with random phase profile on the lens f1, which eventually affects the
size of the speckle grains in p1. As the surface of the diffuser is imaged on the rear focal
plane of the objective, which has a radius of 12.5mm, we aim at a waist on the diffuser
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Figure 3.9 | Speckle setup and exemplary speckle pattern and its statistical properties. a, Setup to

generate a speckle pattern in the focal plane of the objective. The beam is collimated after transmission

through the diffuser by f1, and the resulting speckle pattern in plane p
1

is imaged into the atomic plane

p
2

by a telescope. b, Cut of the normalized covariance function of the speckle pattern displayed in d
in x- (dark blue) and y-direction (light blue). c, Fourier transform of the speckle pattern displayed in d.

The displayed spectra (dark blue x-, light blue y-direction) have been averaged along the orthogonal

dimension in order to average the fluctuations. By fitting the Fourier transform of a Gaussian beam

(dashed lines) to the spectra (points) we find a corresponding waist of wx = 26.7 µm and wy = 27.3 µm.

d, Example of one experimental speckle realization in the rear focal plane of the objective.

of roughly 1/10 of that. As long as the beam in the rear focal plane is sufficiently large,
the size of the speckle will be very close to the diffraction limit.

However we have experimentally observed that a 25mm spherical singlet lens does not
lead to speckle correlated on a length scale comparable to the diffraction limit because a
significant fraction of the marginal rays exhibit too strong spherical aberrations and do
not contribute to the interference pattern. We do not expect this to be the case for the
actual objective as it should provide diffraction limited performance also at 532nm. To
estimate the size of the beam in the focal plane we image the speckle pattern located in
the rear focal plane of the objective. An exemplary image for one realization of the speckle
pattern is depicted in Figure 3.9d. We imaged the speckle pattern for various transversal
positions of the diffuser but did, as expected, not find a significant variation of the speckle
size, while the size of the envelope is changing. The normalized covariance function and
the power spectrum for the displayed speckle pattern are presented in Figure 3.9b and
d. After removing the zero frequency peak from the spectrum of the intensity |F{I(r)}|,
which corresponds to the average intensity of the speckle pattern, we can fit the power
spectrum along the spatial frequencies νx and νy with the Fourier transform of a Gaussian
beam and extract its effective waist. From the average waist of the speckle grains in x-
and y-direction we can deduce the envelope of the speckle pattern in the focal plane of
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the objective, which would be ≈ 160µm, which is only slightly larger than the maximum
size of the DMD created potential.

To numerically create a speckle pattern with the desired properties and to reproduce the
experimental results we can emulate the properties of the diffuser by low-passing a random
phase pattern with normally distributed probability, where the mean µ = 0 and a standard
deviation of σ = 4π. Assuming a Gaussian beam, and imprinting the random phases on
this beam, one can use the Fresnel transfer function approach, an approximation of the
Fresnel diffraction integral, to propagate this speckle pattern in space, such that the speckle
pattern will emerge [226, 270, 271]. The Gaussian beam with random phases corresponds
to the wavefront immediately after the diffuser E(r′, z = 0), assuming N samples with
a sample spacing δl, the samples in Fourier space will have coordinates kx, ky spaced by
1/(Nδl). The beam E(r, z = 0) after a propagation of distance z is then given by

E(r, z) = F−1
{
F
{
E(r′, z = 0)

}
eiπλz(k

2
x+k

2
y)
}
, (3.28)

where F (−1) denotes the (inverse) Fourier transform. This approach can easily suffer from
aliasing, i.e., the quadratic-phase transfer function is not sampled properly in Fourier space.
To mitigate this one can zero pad the sample, or choose a sample length Nδl ≪ w, with
w being the waist of the beam on the diffuser. The underlying approximations break
down in the far field, i.e., the procedure works well for w2/(λz) ≫ 1 [271]. The speckles
resulting from the propagation will exhibit the size chosen in the low-pass filtering of
the phase pattern and the envelope of the initial beam will remain unchanged, as the
frequency components are not shifted but only acquire a complex phase, cf. Equation 3.28.
To simulate the final speckle pattern we have implemented a second Fourier transform
mimicking the role of the objective. The speckle pattern obtained with this approach
reproduce the experimentally observed correlation lengths and envelopes of the beam.

3.3 Optical Lattice
The resulting trapping potential of an optical trap directly follows the spatial and temporal
intensity distribution of the light field, cf. Equation 3.2. By interfering two or more laser
beams defect-free periodic potentials can be created commonly referred to as optical lattices.
The extraordinary degree of control and the moderate energy scales allow for observation
of the system in real time, with momentum resolution and even directly observing the
density distribution in the lattice [5, 6, 21].

3.3.1 Lattice Setup
In the experiment we use a titanium-sapphire laser28 running at 745 nm to create an optical
honeycomb lattice. The output of the lattice laser is split into three independent beams,
where the intensity and frequency of each beam can be controlled with high bandwidth

28MSquared Solstis, later a Sirah Matisse CS
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Figure 3.10 | Optical lattice potential and geometry of the tight binding model. a, Real space potential

of the optical lattice. The lattice is derived from three blue detuned interfering beams under an angle

of 120
◦

with polarization out of plane. The potential is depicted for a 1E rec deep honeycomb lattice, the

centers of the plaquettes consitute a triangular lattice which is nine times stronger than the honeycomb

potential. b, Resulting lattice sites and geometry of the lattice. The distance between an A- and a B-site is

described by the lattice spacing a as indicated by the arrow. The unit cell indicated by the gray shaded

area is spanned by the two lattice vectors a1 and a2 and contains one A- (white) and one B-site (gray).

by an acousto-optic modulator29. The laser beams cross at the position of the atomic
cloud under angles of 120◦ and create an optical honeycomb lattice. Due to the wavelength
at λL = 745nm, i.e., the beams are blue-detuned compared to the D1 and D2 lines in
39K at 770 nm and 767 nm, the generated optical potential is repulsive. The three beams
propagate in plane along the directions

k1 = kL

0
1
0

 k2 = kL

−
√

3/2
−1/2

0

 k3 = kL


√

3/2
−1/2

0

 , (3.29)

with kL = 2π/λL. The waist of the beams is w0,h ≈ 400µm for the horizontal in plane
waist and out of plane, in vertical direction w0,v ≈ 100µm. Astigmatic Gaussian beams,
neglecting the time dependence, can be described by

E(r,k) = E0

√
zR,1zR,2√

q(k · r, zR,1)
√
q(k · r, zR,2)

exp
(
−i |k|

(
r21

2q(k · r, zR,1)
+

r22
2q(k · r, zR,2)

)
− ik · r

)
, (3.30)

with q(z = k · r) = z + izR being the complex beam parameter, zR = πw2
0/λ the Rayleigh

range and r1, r2 describe the directions along the two waists w0,1, w0,2 perpendicular to
29G&H AOMO 3200-124
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the beam where θ is the angle between the axis of r1 with respect to the electric field. The
orientation of r1 and r2 perpendicular to the propagation are defined via

r1 = − sin(θ)
k×E0

|k| |E0|
· r+ cos(θ)

E0

|E0|
· r (3.31)

r2 = cos(θ)
k×E0

|k| |E0|
· r+ sin(θ)

E0

|E0|
· r. (3.32)

For simplicity we can consider only the plane wave part of the Gaussian beams, this does
not capture the anti-confinement induced by the blue detuned lattice beams but allows for
a simpler calculation. As the beams propagate in the x-y plane we can split the electric
field into an out-of-plane and an in-plane part, which for each beam can have a phase
difference αj for elliptical polarizations, the field for beam j then reads

Ej(r, t) = e−i(kj ·r−ωLt)
(
cos(θj)Es,j + sin(θj)e−iαEp,j

)
, (3.33)

where Es,j = ez cos(θ)2
√
Ij/(ϵ0c) is the out-of-plane component, Ep,j = ek×ez sin(θ)2

√
I0/(ϵ0c)

the in-plane component, c is the speed of light, ε0 the vacuum permittivity and Ij the
peak intensity. The angle θj is defined compared to the z-axis and the propagation di-
rection kj here. The resulting intensity distribution I(r) = Is(r) + Ip(r) for the two
polarizations is then given by

Is(r) =
cε0
2

∣∣∣∣∣∣
3∑
j=1

Es,j(r, t)

∣∣∣∣∣∣
2

=
cε0
2

3∑
j,l=1

√
IjIl cos(θj) cos(θl)e−i(kj−kl)·r (3.34)

Ip(r) =
cε0
2

∣∣∣∣∣∣
3∑
j=1

Ep,j(r, t)

∣∣∣∣∣∣
2

=
cε0
2

3∑
j,l=1

√
IjIl sin(θj) sin(θl) cos(ηj − ηl)e

−i(kj−kl)·rei(αj−αl)

(3.35)

If all beams are polarized out-of-plane and exhibit equal intensity the resulting inten-
sity distribution reads

I(r) = I0

(
3 + 4 cos

(√
3

2
kLx

)
cos
(

3
2
kLy

)
+ 2 cos

(√
3kLx

))
. (3.36)

This intensity distribution constitutes the starting point for the experiments in the optical
honeycomb lattice. The exemplary potential with the lattice sites of one plaquette is depicted
in Figure 3.10a, the resulting lattice geometry is shown in Figure 3.10b. The intensity is
up to a proportionality factor equivalent to the trapping potential, cf. Equation 3.2. The
natural energy scale in an optical lattice is the recoil energy

Erec =
ℏ2k2

L

2m
, (3.37)
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Figure 3.11 | Lattice depth and scattering rate for various wavelengths. a, Maximum lattice depth at

center of the lattice for beams with a power of 0.5 W, with waists of 400 µm × 100 µm. The lattice depth is

evaluated in E rec at the respective wavelength. The depth of the potential for red detuning (λL > 767 nm

is evaluated for in plane polarization, and is opposite in sign. b, Scattering rate resulting from the trapping

potential of a 1 E rec honeycomb lattice at different detuning of the lattice. Close to the resonance of the

D1 and D2 lines the scattering diverges as 1/∆. The highlighted wavelengths show other easily available

wavelengths which were also considered.

where in the case of 39K the atomic mass mK = 6.47 × 10−26 kg and therefore the recoil
energy is Erec = h × 9.23 kHz. This energy corresponds to the kinetic energy an atom
gains after emitting or absorbing one lattice photon.

During the course of this thesis the laser used to generate the lattice had to be replaced
several times, during one replacement we also have changed the lattice wavelength from
previously 736.8 nm to now 745nm, as the smaller detuning provides a significantly deeper
trapping potential as shown in Figure 3.11a. By reducing the detuning and operating
the lattice closer to the resonance of the D1 and D2 we also find enhanced scattering,
which is proportional to the intensity of the trapping light, equivalently to the depth of the
resulting potential but scales unfavorably with ∆−2

D1(D2)
. Operating the lattice further from

resonance is therefore favorable as it reduces the resulting scattering of lattice photons,
but requires higher laser power which limits the available range of detuning. Figure 3.11b
shows the scattering rate resulting from the trapping potential with lattice depth 1Erec

at the respective wavelength.
We have experimentally also tested the lattice at 755nm, but have found the coherence

time in the lattice to be insufficient for the experiments we want to conduct. We performed
expansion experiments from a very localized wave packet released abruptly from the
optical tweezer into the static optical lattice to perform a quantum random walk, (cf.
Section 5.1.2) [263, 264, 266]. If the coherence of the state is maintained during the
evolution, we expect a non-Gaussian distribution as well as interference fringes within
the bulk of the area covered by the quantum walk [263]. Figure 3.12a and c show the
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Figure 3.12 | Expansion dynamics in the optical lattice at 755 nm and 745 nm. a, Expansion from a tightly

confining optical tweezer in an ≈ 6 E rec optical lattice derived from 755 nm light. The cloud expands for

1 ms after switching of the tweezer. b, Same as a but the lattice wavelength is 745 nm. c, Same as a, but

after 5 ms of expansion in the lattice. d, Same as c, but the lattice wavelength is 745 nm. For clarity a

background image has been subtracted in panels a,c to remove residual atoms that intially have not been

trapped in the tweezer. The displayed images are averages over 302 independent realizations for b,d and

122 realizations for a,c.

evolution of the cloud after 1ms and 5ms in a honeycomb lattice generated by 755nm laser
light. The cloud does not show clean edges and significantly deviates from a hexagonal
shape. The evolution of a cloud in a lattice derived from interfering 745 nm laser light
is depicted in Figure 3.12b and d for 1ms and 5ms of expansion duration. The images
clearly show a sharper edge and interference features in the bulk. We concluded that
the approximately two times higher photon scattering rate is responsible for the reduced
coherence and continued to use the lattice further off resonance at 745nm which performed
similar to 736.8 nm which had been used in previous experiments.

3.3.2 Calibration of the lattice depth
When generating the lattice potential for the experiment it is crucial to adjust the intensity
of the interfering laser beams at the position of the cloud such that the three intensities
are equal for each beam. The dynamics in the honeycomb lattice does not separate along
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Figure 3.13 | Adjusting the intensties of the lattice beams and calibration of the lattice depth. a,

Momentum distribution observed after abruptly switching off the lattice. The lattice beams forming the

potential exhibit an imbalance in intensity resulting in imbalanced population in the first order peaks.

The yellow and gray circles indicated the area used to determine the weight in the respective orders. The

area between yellow and gray is subtracted to remove background counts. b, Band occupation during the

Stückelberg sequence with low population in the lowest band. The image is overlapped with the Brillouin

zones of the first three zones. The displayed second (red) and third (gray) Brillouin zone map Γ to the

same point after band mapping. c, same as b, but the band population is mostly in the lowest band. d,

Resulting population oscillation as a function of hold time with the frequency reflecting the bandgap at

Γ. The populations in b and c are indicated by the shaded triangle. The markers indicate the measured

band population, the solid line is the result of the fit.

different directions of the lattice, therefore any slight imbalance directly influences the
dynamics in both spatial directions. Slight inequality in the shape of the beam, or slight
misalignment of the lattice beams with respect to the position of the cloud directly influences
the resulting intensity at the position of the cloud, even if the power in each beam is identical.
The power of each lattice beam is controlled in a closed loop with individual setpoint for
each beam. To verify that the intensity in each beam at the location of the cloud is identical,
we adiabatically load a BEC into the lowest band of the resulting lattice potential at a
depth of ≈ 5.9Erec, hold it in the lattice for 10ms and subsequently abruptly switch off all
confining laser beams and the lattice to perform a time of flight expansion for 3.5ms, after
which we take an absorption image of the cloud. The resulting density distribution after
time of flight reflects the momentum distribution in the lattice [272–274]. The envelope
of the interference pattern is related to the Wannier function in the lattice, while the
periodic features are related to the coherent interference of the Wannier functions after the
expansion, analogus to the optical interference after transmission through a grating. The
lattice sites are occupied with a BEC with flat phase, which results in coherent interference
of the matter wave after time of flight whenever their momentum matches a combination of
the reciprocal lattice vectors multiplied with ℏ. Due to a finite coherence length and a finite
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time of flight the observed distribution is a convolution of the real space distribution of the
cloud and its momentum distribution resulting in a finite width cloud at each of the peaks.
As the envelope reflects the shape of the Wannier function the weight of the peaks is directly
related to the intensity in each lattice beam. If one of the three beams exhibits less intensity
compared to the other two it results in a Wannier function which is more extended in the
direction of the weaker beam. Therefore the envelope of the cloud after time of flight is
narrower in this direction compared to the other two and the resulting peaks perpendicular
to the beam appear more pronounced. This scenario is depicted in Figure 3.13a, where we
show an absorption image after time of flight, where the intensity of the lattice beams is
imbalanced. The beam propagating from the lower left to the upper right of the image is
weaker compared to the other two, resulting in weaker peaks along its propagation direction.
To adjust the intensity of the lattice beams we count the number of atoms in each of the six
first order peaks and adjust the intensity such that we find equal population in all peaks.

To calibrate the depth of the resulting lattice we perform a Stückelberg interferometry
sequence [275–277]. The sequence starts with a BEC prepared in the ground state of the
optical lattice with zero quasimomentum at Γ. The scattering length is set to as = 6 a0

to reduce any possible interaction effects. By detuning the frequency of two of the lattice
beams we can apply a force in an arbitrary direction [174]. For simplicity we consider a
linear change in frequency for one of the lattice beams. We find an acceleration of the
interference pattern in the direction of this laser beam

a =
2
3
λL

∆f

∆t
. (3.38)

The resulting force changes the quasimomentum linearly in time by

F∆t = ℏ∆k. (3.39)

The resulting change in quasi momentum in the direction of the lattice beam is

δk =
2λLm∆f

3ℏ
. (3.40)

One implicit assumption is the absence of any other restoring force such as the harmonic
trap. Especially for small forces the harmonic trap can lead to a significant change of the
resulting quasimomentum as the acceleration of the interference pattern inevitably translates
the cloud trapped within it. Utilizing the frequency modulation of the lattice we accelerate
the cloud through the Brillouin zone from Γ via M to Γ′. Γ′ is located at the center of the
neighboring Brillouin zone, is equivalent to Γ and only serves to distinguish whether the
cloud is in the moving lattice or at rest. The force is chosen such that it coherently transfers
a fraction of the cloud to the second band of the honeycomb lattice, i.e., the resulting state
is a coherent superposition of the two bands at Γ′ with energies E1

Γ and E2
Γ:

|ΨΓ′⟩ = a1 |ψ1
Γ′⟩+ a2 |ψ2

Γ′⟩ (3.41)
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The frequency detuning is kept constant for a time thold and thus keeps the cloud at
quasimomentum Γ′ where the two states accumulate a dynamical phase according to

|ΨΓ′⟩ = a1 |ψ1
Γ′⟩ e−iE

1
Γthold/ℏ + a2 |ψ2

Γ′⟩ e−iE
2
Γthold/ℏ. (3.42)

By inverting the force a fraction of the cloud is again transferred from the first to the
second band and vice versa, the state can then be described by

|ΨΓ⟩ = a1(ã1 |ψ1
Γ⟩+ ã2 |ψ2

Γ⟩)e−iE
1
Γthold/ℏ + a2(ã1 |ψ2

Γ⟩+ ã2 |ψ1
Γ⟩ e−iE

2
Γthold/ℏ. (3.43)

Once the cloud is back at Γ we ramp the lattice potential to zero on a time scale slow
compared to the energy gap in the lattice but fast compared to scattering and momentum
redistribution processes, which maps the momentum distribution in the lattice to the
free space dispersion of the particles [278]. This enables, neglecting the initial extent of
the wave function in the trap, direct mapping of the resulting momentum to the band
population and is referred to as bandmapping. After a time of flight, which directly relates
the momentum to a position via r = ℏkttof/m, we find the population of the second
band located at the position related to Γ in the second band, while the population of the
first band is still at located k = r = 0. The bandmapping procedure corresponds to a
projection and subsequent measurement of the population in the respective band. The
population in the first band after bandmapping is∣∣⟨ψ1

Γ|ΨΓ⟩
∣∣2 = |a1ã1|2 + |a2ã2|2 + |a1ã1a2ã2| 2 cos((E1

Γ − E2
Γ)thold/ℏ+ φ). (3.44)

Upon repeating the experiment for various hold times thold we find the population in the
lowest band oscillating with a frequency proportional to the energy gap at Γ enabling a
direct determination of the band gap. This technique can be utilized to measure the band
gap at any quasimomentum as long as a significant mixing is achieved when accelerating
to the respective quasimomentum. An exemplary measurement of the energy gap at Γ is
shown in Figure 3.13b together with two representative images after band mapping with
most atoms in the lowest band, and an image where a large fraction of the population is in
the second band. The measurement results in a frequency of 6.68(2) kHz, corresponding
to a 5.84Erec deep lattice.

3.4 Imaging and Objective Alignment
High optical resolution in the atomic plane is crucial for any ultracold atom platform
if any manipulation is to be performed in real space [6]. One very prominent example
are quantum gas microscopes, where the occupation in an optical lattice can be frozen
and subsequently imaged directly [36, 37], giving access to entirely new observables such
as charge or spin correlators [279].

High spatial resolution also enables the preparation of peculiar initial states and its
subsequent observation in bulk systems [219, 220], or deterministic preparation of vortices
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[280] and by dynamically adapting and resorting the trapping geometry the assembly of
defect free arrays with high fidelity [42, 43]. However, it requires precise control and
calibration of the prepared potential [218, 221].

Prerequisite to achieve this is an imaging system with as little aberrations as possible.
Especially optical systems with large numerical aperture are prone to suffer from aberrations.
A first step to avoid as many aberrations as possible is careful optical design of the
objective, as this requires a high level of expertise to design [281–283] and manufacture
we outsource these steps.

Once the objective is mounted next to the glass cell, alignment perpendicular to the
vacuum window and alignment of the optical axis to the optical trap is extremely crucial to
achieve the desired performance of the objective. As the first experiments performed on
this machine were done in reciprocal space [209, 210, 284, 285], where extremely fine spatial
resolution was not necessary, the imaging path and objective were not aligned perfectly.

3.4.1 Density density correlations in a thermal gas
To extract information on the actual point spread function and aberrations present with the
current configuration, we adapted the procedure developed in the group of Cheng Chin [286,
287]. In summary the idea is to image a thermal cloud which is correlated only on a very
short length scale, extract the spatial frequency spectrum of these correlations and from
the observed spectrum deduce the transmission function of the imaging system.

The equal time density density correlations κ(r1, r2) in a thermal gas, where ri are
the positions under consideration is given by

κ(r1, r2) = ⟨Ψ̂†(r1)Ψ̂(r1)Ψ̂
†(r2)Ψ̂(r2)⟩ (3.45)

= ⟨Ψ̂†(r1)Ψ̂
†(r2), Ψ̂(r1)Ψ̂(r2)⟩+ ⟨Ψ̂†(r1)Ψ̂(r1)⟩ δ(r1 − r2), (3.46)

the Ψ(r) are the bosonic field operators creating a particle at position r. For a gas above
quantum degeneracy the particles are uncorrelated down to a length scale comparable
to the thermal de Broglie wavelength [288]

λth =
√

2πℏ2/(mkBT ), (3.47)

where kB is the Boltzmann constant, m the mass of the particle and T its temperature.
For a gas of 39K at a temperature of 10µK the thermal de Broglie wavelength λth = 88nm
and is about an order of magnitude smaller than the imaging wavelength λimag = 767nm.
Therefore the resolution limit which is on the order of λimag prevents the observation of these
correlations and any visible correlations are not transmitted through the imaging system.

To obtain the connected density density correlations in the limit of λimag ≫ λth we
subtract the trivial contribution of the random first order contribution and divide by
the mean density to obtain

κC(r1, r2) = δ(r1 − r2), (3.48)
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which resembles the correlations observed in an ideal gas [289]. This means that the
frequency spectrum of these fluctuations is flat, i.e., it corresponds to white noise and
all spatial frequencies are equally weighted.

3.4.2 Absorption Imaging
To observe the density fluctuations in the experiment we need to use a detector, in our
case we use an EMCCD camera30 to record absorption images [290]. To record the density
distribution of the cloud we use a sequence of three images: we first send resonant light
through the atomic sample and record it on the camera, then switch off all the trapping
light in order to release all the atoms and take an image where we send the equivalent light
pulse again and record it on the camera, finally in a third image we record a background
image without sending any light pulse.

Depending on whether we image the cloud in situ or after time of flight, we use a
slightly different imaging frequency. When imaging potassium in situ, we apply a magnetic
field of around 403G in order to tune the scattering properties to the desired strength as
described in Section 3.1.3. This shifts the energies of the states and therefore the resonance
where we image [187, 291]. In situ, as we are at moderate magnetic fields, the F , mF

are no longer the good quantum numbers and we image on the |mJ = −1/2,mI = 3/2⟩ to
the |mJ = −3/2,mI = −1/2⟩ transition. As this transition is not fully closed due to the
admixture of neighboring states, it limits the number of scattered photons and therefore
the signal to noise of the final image. In a later stage of this experiment we have added
an additional imaging laser to improve the number of scattered photons [292].

In time of flight imaging the magnetic field is switched off and we can image in the
presence of only a small bias magnetic field to define a quantization axis. As the BEC
is initially in the state that is adiabatically connected to the |F = 1,mF = 1⟩ state, in
order to image on a closed transition with large transition dipole matrix element, we
repump the atoms from their initial state to |F = 2,mF = 2⟩ and subsequently image
on the transition to |F = 3,mF = 3⟩.

The Beer-Lambert law relates the observed reduction in intensity due to light being
scattered by the atomic cloud to the column density ncol(x, y) by [187, 293]

I(r) = I0e
−σ0

∫
n(r,z)dz = I0e

−σ0ncol(r), (3.49)

where σ0 is the resonant scattering cross section, r the position in and z perpendicular
to the atomic plane and I0 the incident intensity. For a two-level system the resonant
scattering cross section is simply given by σ0 = 3λ2/(2π). This can be related to a saturation
intensity, defined as the intensity where the radiative decay with rate Γ is equal to the
Rabi frequency of the driving field, which reads

Isat =
hcπΓ

3λ3 . (3.50)

30Andor iXon 885
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For imaging intensities significantly exceeding Isat corrections, such as an intensity dependent
scattering cross section need to be taken into account in order to extract the density with
high fidelity [181, 293].

The resulting column density can then be extracted from the aforementioned three
images taken with the camera via

ncol(r) = − 1
σ0

ln
(

Iwith(r)− IBG(r)

Iwithout(r)− IBG(r)

)
, (3.51)

where Iwith(out) corresponds to the picture with light and with(out) atoms, IBG is the
background picture taken without imaging light.

3.4.3 Extracting the modulation transfer function from absorption images

The quantity we initially extract is an atom number per pixel on the camera, which is related
to the actual density by the magnification of the imaging system and the point spread
function P(r). If the size of one point spread function is significantly larger than the size of
one pixel A its influence on the calculation of the column density is simply given by the
convolution of the actual density with the point spread function and the envelope of a pixel

nexp(rj) =
Nj

A
=

∫
n(r)P(rj − r)Π

(
rj − r√

A

)
dr, (3.52)

rj corresponds to the position of j-th pixel in the atomic plane and the area of the
pixel is represented as

Π

(
r√
A

)
=

{ 0, if |r| >
√
A
2

1
2 , if |r| =

√
A
2

1, if |r| <
√
A
2 .

(3.53)

As we are not interested in the average envelope or mean value of each pixel, we will
only consider fluctuations around the mean value N̄j and mean value of the density n̄(r).
We then find the fluctuations of the density δn(r) = n(r) − n̄(r), combining this with
Equation 3.52 and taking the Fourier transform we end up with

δnexp(k) = δn(k)OTF(k)W(k), (3.54)

where δnexp(k) =
∑

j δNje
−ik·rj is the discrete Fourier transform of the atom number

fluctuations δNj = Nj − N̄ of the pixels, OTF represents the Fourier transform of P(r)

and W the Fourier transform of the pixel window.

In the following we will argue that we can set W = 1 for all relevant k. Assuming
we have chosen a magnification such that the length of one pixel in the atomic plane√
A ≪ λ, the point spread function will essentially be constant across one pixel and

therefore not alter the response of the imaging system. In our case we have a pixel size in
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the atomic plane of
√
A = 396nm, while the wavelength is λ = 766.7nm. Alternatively

we can consider one spatial dimension of

W(k) =

∫ ∞

−∞
Π(x/

√
A)eikx = 2

√
A sinc(k2

√
A), (3.55)

and find that the Fourier transform of the window function falls off significantly slower
than the point spread function and we can therefore approximate W(k) ≈ 1 for the spatial
frequencies of interest. We therefore have

δnexp(k) = δn(k)OTF(k). (3.56)

As illustrated before the Fourier spectrum of a gas above quantum degeneracy is flat, i.e.,
δn(k) ≈ 1, and we can determine the optical transfer function from the noise spectrum of a
thermal gas and therefore calibrate the performance of the imaging system. One assumption
we have not explicitly discussed so far is the extent of the cloud along the imaging axis
(z-direction), ideally the gas is confined to a single plane with extent much smaller than
the Rayleigh range of the smallest optical features the objective can resolve. If the gas
is significantly extended, the presence of the highest spatial frequencies can be detected,
but we are averaging over the vertical extent of the cloud and therefore e.g. aberrations
at these frequencies are averaged and not clearly visible.

As we are not able to a perfectly prepare a gas with flat density, such that we can directly
subtract the mean value, we need to average several realizations. The individual fluctuations
have a random phase on the image, therefore we have to average the absolute value of
the optical transfer function |OTF(k)| = MTF(k), which is equivalent to the modulation
transfer function. For a perfect imaging system the optical and modulation transfer function
are equivalent, since there are no phase shifts in the wavefront. Because each spatial
frequency is independent, we can relate the two via a phase transfer function ϕ(k), i.e.,

OTF(k) = MTF(k)eiϕ(k). (3.57)

We now have to distinguish between coherent and incoherent imaging.

For a coherent imaging we effectively have an incoming plane wave E0 which is scattered
on the object and the scattered spherical dark wave ∆E is interfering with the incident
wave and eventually this interference results in the image [286]. The point spread function
therefore does not need to be strictly positive in this case, as the diffraction on the object
and the resulting interference can lead to an in- or decrease in the resulting field strength
and thus intensity in the image. As described before the atomic density is directly related
to the transmission of the intensity t2, where t is the transmission of the electric field.
The camera detects two images, which are for simplicity background-noise free here, and
are related to the transmission as

t2 =
I ′

I0
∝ |E0 +∆E|2

|E0|2
≈ 1 + 2 Re

[
∆E

E0

]
, (3.58)
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and we can relate the density to the negative logarithm of the transmission

n ∝ − ln(t2) ≈ −2 Re
[
∆E

E0

]
. (3.59)

The scattered field is directly related to the atomic density in the object plane, which we will
for simplicity describe as a two dimensional arrangement of point sources emitting a field ϵ

∆E =
∑
i

ϵp(k− ki), (3.60)

where k = 2πr/(λf) relates the position in the object plane to the wave vector after the
lens with focal length f , the final imaging lens will again relate the wave vector to the
position on the sensor. The dark field is proportional to the incident field but it picks
up a phase δs depending on the exact detuning compared to resonance, i.e., ϵ ∝ eiδsE0.
We can therefore combine Equation 3.60 and Equation 3.59 to find, that the point spread
function for coherent or absorption imaging will be given by

Pc(r) ∝ Re[eiδsp(k)]
∣∣
k= 2πr

λf
. (3.61)

We have so far not considered the transfer function for coherent imaging, fundamentally
in a perfect system all frequencies of the field are transmitted with equal amplitude up to
the maximum frequency. For an aberration free system the point spread function follows
from the Fraunhofer diffraction. After a circular aperture we find

P ideal
c =

J1(
2πNA r

λ )
2πNA r

λ

. (3.62)

The maximum spatial frequency is limited by the aperture stop of diameter D, which
is usually given by the numerical aperture

NA = sin
(

arctan
(
D

2f

))
≈ D

2f
(3.63)

of the lens closest to the atoms with focal length f . This leads to the maximum resolvable
spatial angular frequency

kmax = 2πνmax = 2π
NA

λ
, (3.64)

where νmax is the maximum spatial frequency.
Unfortunately no imaging system is perfect and there are always aberrations present.

In order to quantify the aberrations we can use the Nijboer-Zernike theory of aberrations,
which expands the wavefront of the image on the unit disk. This works very reliably and
allows for an identification of the individual components of aberrations present in the
system. After identifying the leading aberrations one can use the obtained knowledge
to improve the system by trying to reduce the detected wavefront error. We can treat
the accumulated aberrations as if they would all occur on the exit pupil and eventually
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result in an aberrated point spread function on the detector. Following [286] we can
define a simplified pupil function

p(rp, θp) = Π

(
2rp
D

)
e−

4r2p
D2τ2 eiΘ(rp,θp), (3.65)

with radius rp and angle θp in the pupil plane. The radial envelope consists of a sharp cutoff
at the radius of the aperture D/2 and a Gaussian envelope reducing the amplitude with
increasing radius. The envelope can be physically motivated by the increasing angle of inci-
dence for marginal rays and therefore increased reflectivity of the surface as the anti reflection
coatings perform slightly worse for large angle of incidence. Additionally the phase term

Θ(rp, θp) ≈ S0

(
2rp
D

)4

+ α

(
2rp
D

)
r cos(2θp − 2ϕ) + β

(
2rp
D

)2

(3.66)

accounts for spherical aberration S0, astigmatism α with an axis oriented along θp = ϕ

and a defocus β. As discussed before, we can relate the point spread function to the
modulation transfer function via a Fourier transform

F(Pc(r)) = OTFc(k), (3.67)

and therefore fit the obtained modulation transfer function with a pupil function

Mc =
∣∣∣F (Re

[
eiδSF−1(p)

])∣∣∣ . (3.68)

We show two examples of an almost well aligned imaging system together with the
corresponding fit in Figure 3.14. We image 87Rb atoms in situ in the crossed optical dipole
trap with a vertical waist of ≈ 30µm and average the resulting images to obtain an average
image. We then calculate the Fourier transform of the difference between every image and
the mean of all images and subsequently average the absolute value of the obtained Fourier
transforms. The result displayed in Figure 3.14a is obtained when the objective is vertically
aligned with the center of the atomic cloud. No aberrations are directly visible in both the
experiment and the fit to the data shown in Figure 3.14b. In contrast when longitudinally
displacing the objective by 10µm, we obtain the image shown in Figure 3.14c. Here we
can clearly observe a concentric ring due to the defocus, where the ellipticity of the ring
is a result of astigmatism present in the system. One very striking difference between
experiment and theory are the features at high spatial frequencies, which are not resolved
in the experimental images. We believe that the missing contrast at high spatial frequency
is a result of averaging in longitudinal direction due to atoms being out of focus. The wave
function of the atomic cloud is randomly projected in every measurement and therefore the
position compared to the focus is randomly distributed preventing the clear identification of
aberrations at large spatial frequency. To also obtain this information we would require to
trap the cloud in a trap with significantly tighter confinement along the imaging direction.
This could be implemented by trapping the cloud in a vertical lattice, or alternatively by
using a colder sample in order to reduce the thermal occupation of higher states in the
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Figure 3.14 | Resulting modulation transfer function and corresponding fits. a, Experimentally obtained

modulation transfer function |M(k)| from in situ absorption images of
87

Rb. The objective is aligned well,

except for a slight displacement of the optical axis compared to the cloud of atoms. The black dashed

lines correspond to the theoretical resolution limit of the objective νmax = NA /λ. The white dashed line

corresponds to the maximum frequency obtained by fitting the data with the model. The fitted cutoff

frequency is slightly larger than the theoretical limit. b, Result of the fit obtained by fitting a model

including spherical aberrations, astigmatism and defocus to the data presented in a. c, Experimentally

obtained image with a defocus of 10 µm compared to a, the elliptical rings arising from the defocus and

astigmatism are clearly visible. d, Result of the fit to the data in c. In contrast to the experiment there is still

strong contrast at higher spatial frequencies, which we attribute to the averaging along the propagation

direction in the experiment. The sample is not strictly two-dimensional and extents wider than the depth

of focus at larger spatial frequencies. This significantly limits the lower bound of aberrations that can be

extracted. The fitted cutoff frequency is slightly larger than the theoretical limit, which might be due to

the slight displacement reducing the maximum angle in one direction, while increasing it in the other or

a tilted imaging beam.

dipole trap. Assuming that the used commercial objective is performing well, we believe to
not be limited by the vertical extent of the cloud as we try to perform all experiments in
the ground state of the harmonic oscillator formed by the vertical direction of the optical
dipole trap, where we have a an effective harmonic oscillator length of the BEC of 0.96µm.

3.4.4 Alignment of the objective
The result presented in Figure 3.14 is the result of a very careful pre-alignment making
sure that the objective is already very parallel to the window of the glass cell. To achieve
good initial alignment we have covered the objective in order to align a reference beam
perpendicular to the glass cell. As a starting point we overlapped a reference beam with the
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imaging beam, where we were sure that it was hitting the atoms in order to not misalign
the optical axis of the objective. Once the reference beam was perpendicular to the glass
cell, we put a glass plate on top of the objective in order to have a flat surface perpendicular
to the objective. The reflection emerging from the glass plate was then aligned to also
be perpendicular to the glass cell, i.e., overlapping with the incoming beam. Once this
was done the tip and tilt of the objective were correct and the only degree of freedom was
the position of the optical axis compared to the cloud. In order to minimize this distance
we translated the objective and measured the correlations of the thermal gas, if the two
positions are not overlapping well, the Fourier plane is significantly cropped and only part
of the correlations are visible. By translating the objective the size of the Fourier plane
can be increased until it is eventually round. With this method we could obtain a radial
distance of the center of the cloud and the optical axis of ≈ 150µm.

To further improve the alignment we eventually used two reference beams with wave-
length 532 nm, one from below the objective and one from above. The choice for 532 nm
eased this procedure as also very faint reflections are easily visible by eye. The beam
coming from above propagating through the glass cell, then through the objective was
interferometrically aligned to the objective such that all the waves emerging from the
several surfaces of the glass cell and objective form the most concentric patterns achievable.
Subsequent tip, tilt and translations of the objective were then used to optimize this pattern
as much as possible. The beam below, first transmitted through the objective, then the
glass cell, was used in order to verify the objective alignment was as good as possible.
The verification with the beam from below was slightly more sensitive as the available
propagation distance was significantly longer (≈ 2m) compared to above (≈ 0.7m). With
the reference beam from above we also had a measure to obtain the distance between
the optical axis of the objective and the cloud. The beam was chosen such that it would
have waist of ≈ 10µm in the atomic plane, this results in a beam with a Rayleigh range
long enough to pierce a hole visible in absorption imaging through the quadrupole trap.
After taking an absorption image of the cloud we only need to translate the objective to
the desired position. A few iterations of realigning the upper reference beam, piercing a
hole through the cloud and translating the objective were necessary in order to align the
optical axis to the center of the quadrupole trap and the center of the optical dipole trap
to < 10µm. The final distance is significantly smaller than the diffraction limited field of
view of the objective which spans approximately a disk with radius 75µm.

3.4.5 Comparison of absorption and fluorescence imaging

Even though we currently do not perform fluorescence imaging, we still want to introduce the
relation of the point spread function and the transfer functions for incoherent or fluorescence
imaging. In contrast to absorption imaging we have no coherent background field, every
atom is emitting a field with random phase compared to the other atoms, assuming the
interparticle spacing is > λ and superradiance does not occur [294, 295].
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Figure 3.15 | Comparison of the modulation transfer function for coherent and incoherent imaging and
coherent imaging of two point sources with varying relative phase of the emitted field. a, Modulation

transfer function for coherent and incoherent imaging without aberrations. In the coherent case we have

chosen an envelope falling off to e
−1

at the cutoff frequency NA /λ. The incoherent modulation transfer

function falls off smoothly and extents to higher frequency than the coherent one. The comparison

here is potentially slightly misleading as we are comparing a field and intensity transfer function here.

b, Resulting intensity distribution when imaging two point sources separated by d = 0.61λ/NA with

different relative phase. The case of φ = π/2 is equivalent to the case of two incoherent point sources.

The dashed lines indicate the location of the two point sources.

For a perfect incoherent imaging system the optical transfer function can be calculated
analytically. Starting from an ideal lens with circular aperture and numerical aperture NA
we find, that the point spread function is given by a radially symmetric Airy disk

Pinc(r) =

(
J1(

2πNA r
λ )

2πNA r
λ

)2

, (3.69)

where J1(r) is the first Bessel function of the first kind. In contrast to the absorption
imaging case, we find that the point spread function here scales as the square of the Fourier
transform of the pupil function, while the absorption imaging is linear. To obtain the optical
transfer function we take the Fourier transform of the point spread function and find [296]

OTFinc(ν) = F(Pinc(r)) = {p ∗ p}(r)

=
2
π

arccos
(

νλ

2 NA

)
− νλ

2 NA

√
1 −

(
νλ

2 NA

)2
 for ν < λ/(2 NA). (3.70)

This corresponds to the convolution of two circular pupil functions p(r), which implies that
the optical transfer function is always real and non-negative. A more intuitive picture for
the convolution arises when considering how a certain spatial frequency arises in the image.
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For a certain spatial frequency two rays emerging from the exit pupil separated by a specific
distance need to interfere in the image plane. The convolution of the two pupil functions
then evaluates how often this distance arises, the zero frequency components correspond to
the maximum, while larger distance can be realized less often. We find that the smallest
resolvable features in coherent or absorption imaging are two times larger compared to the
resolution limit in incoherent imaging λ/(2 NA). Figure 3.15a shows the modulation transfer
function for the coherent and incoherent case with the same numerical aperture. Even
though this discussion suggests that the resolution limit of incoherent imaging is superior
to coherent imaging, depending on the relative phase φ two coherently illuminated points
can either be resolved or unresolved. The resulting intensity of two aberration free coherent
point sources, as described in Equation 3.62, separated by a distance d = 0.61λ/NA,
commonly referred to as the Rayleigh criterion of resolution is given by

I ∝

∣∣∣∣∣J1
(2πNA

λ (r − d)
)(2πNA

λ (r − d)
) + eiφ

J1
(2πNA

λ (r + d)
)(2πNA

λ (r + d)
) ∣∣∣∣∣ . (3.71)

The resulting intensity distribution is shown in Figure 3.15b for three different relative
phases φ. If the phase difference is zero or an integer multiple of 2π, the two point sources
cannot be resolved. For a phase difference of π/2 we recover the same intensity distribution
as obtained for two incoherent point sources, i.e., we would call it resolved. However when
picking a relative phase of π, the intensity in between the two point sources drops to zero and
the contrast is better than the incoherent case. As we are performing absorption imaging in
the experiment, and we are not able to freely choose the phase of the wave for every atom,
we therefore end up with the a fixed phase for all atoms corresponding to the case of φ = 0.
In principle we could image the cloud with a quickly varying speckle pattern in order to
recover the incoherent case as we are averaging over many different phase realizations.



CHAPTER 4

Anomalous Floquet phases in the intensity
modulated optical honeycomb lattice

In a system in the anomalous Floquet phase, the bulk-boundary correspondence is insufficient
to predict the existence of edge states. The lower of the two bands exhibits C− = 0 but
there are still chiral edge modes located at the edge of the system [86, 87]. Proper
characterization of the topological invariants requires a characterization of at least one
winding number and the knowledge of the Chern number of all other relevant bands or
alternatively determination of all winding numbers. While the anomalous Floquet phase
has successfully been implemented in many systems where the existence of edge modes
could be probed [112, 113, 164–170], a full topological characterization of the anomalous
Floquet phase was first realized in this experiment [111].

In this chapter we will characterize the topological invariants of the Haldane, anomalous
and Haldane-like regimes. Following a path through the phase diagram we determine the
parameters for which the closing of the gap occurs. By connecting the topological invariants
of the system in the high-frequency limit to those at lower modulation frequency, we can
track their evolution at the phase transitions to the anomalous and Haldane-like phase. We
experimentally probe the Berry curvature using Hall deflections and deduce the change of
the winding numbers when combining this information with the gap closing. The entire
characterization relies on probing the bulk properties of the bands and does not require
additional information e.g. about the edge of the sample.

This chapter summarizes the main findings; further details, such as the characterization
of the second band or the mapping of the entire phase diagram can be found in [111]
and are covered extensively in the PhD-thesis of Karen Wintersperger [174], where also
details on the 6-band Floquet calculation are presented.

The following chapter is based on the joint work of Karen Wintersperger,
Christoph Braun, F. Nur Ünal, André Eckardt, Marco Di Liberto, Nathan
Goldman, Immanuel Bloch and Monika Aidelsburger [111].

85
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4.1 The driving protocol
Realizing an analogue to a magnetic field acting on a charged particle, e.g. an elec-
tron, requires special efforts if the particle is neutral [80, 91, 297]. Several approaches
have been successful in implementing the analogue of a magnetic fields in cold atoms,
e.g. by rotating the gas [298, 299], driving Raman transitions in the bulk [300] or in
a lattice [89, 144, 148, 301].

Techniques that are readily implemented on the experiment presented above involve
phase shaking, i.e., the modulation of the phase of the optical lattice which can modify
the tunneling in amplitude and phase [84, 156, 302–304], and chiral modulation of the
tunneling amplitude, which was implemented on this experiment for the first time in a
cold atom setting [86, 111].

The modulation of the tunneling amplitude is implemented by periodically varying
the intensity in each of the laser beams. We break time reversal symmetry by choosing
the modulation of each of the three lattice beams such that they exhibit a pairwise phase
difference of 2π/3. This leads to a variant of the modulation introduced in Section 2.4,
where we modulate the intensity of the beams in a sinusoidal fashion, which leads to a
slight modification of the modulation of the tunneling. The intensity of the three lattice
beams is modulated according to

Ii(t) = I0 (1 −m+m cos (ωt+ φi)) , (4.1)

where m is the relative modulation amplitude, ω the modulation angular frequency, I0
the base intensity leading to a balanced lattice, φi = κ2π

3 (i − 1) the initial phase and
i ∈ [1, 2, 3] is the index of the laser beam. The parameter κ = ±1 indicates the chirality
of the modulation i.e., if the modulation is performed with positive or negative sense
of rotation. The resulting intensity modulation is depicted in Figure 4.1a. To illustrate
the difference compared to the previously discussed case (cf. Section 2.4), where we
assumed a sinusoidal modulation of the tunneling amplitudes, the resulting nearest neighbor
tunneling amplitudes are shown in Figure 4.1b. The tunneling amplitudes are obtained
by fitting an ab initio calculation [174, 180] with a two-band tight binding model. To fit
the dispersion the three nearest neighbor tunneling amplitudes Ji and the next-nearest
neighbor tunneling amplitudes J̃i are free parameters. The two-band model is keeping the
distance and orientation of the nearest neighbor tunneling fixed, even though the sites
are slightly translated throughout the modulation period, which would lead to a slight
modification of the dispersion as discussed in Section A of the Appendix. The tunneling
amplitudes still follow a similar pattern as the intensity, but the relation is non-linear. To
good approximation the tunneling amplitudes can be described by

Ji(t) = Jme
B cos(ωt+φi)) + J0. (4.2)

For a base depth of the lattice of 6Erec and an amplitude of m = 0.25 we fit the parameters
Jm = 0.21Erec, J0 = −0.06Erec and B = 0.79. During the course of one period the maximal
tunneling is ≈ 11 times the minimal tunneling. The next nearest neighbor tunneling is also
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Figure 4.1 | Intensities during the modulation period resulting nearest neighbor tunneling and lattice
potential a, Intensity of the lattice beams during one period. b, Nearest (solid) and next nearest (dotted)

neighbor tunneling amplitude for a 6 E rec deep lattice with modulation amplitude m = 0.25. The two

tunneling amplitudes are out of phase by 2π/3, but otherwise follow a similar scaling. The maximum

next-nearest neighbor tunneling is approximately 14 times smaller than the maximum nearest neighbor

tunneling. c, Resulting lattice potential at times t = 0T (left) t = T/3 (middle) and t = 2T/3 for a

modulation amplitude m = 0.25. The base depth of the potential is 6 E rec. The energy barrier along

the three nearest neighbor tunnelings is reduced in a different direction at every time step leading to a

chirality of the modulation and time reversal symmetry breaking.

modulated but is out of phase compared to the nearest neighbor tunneling

J̃ ′
i(t) = J ′

me
B′ cos(ωt+φi+2π/3)) + J ′

0, (4.3)

where we find the parameters to be J ′
m = 5.41 × 10−3Erec, J ′

0 = 0.93 × 10−3Erec and
B′ = −1.69. The Ji are oriented along the δi and the J ′

i along the ai as illustrated in
Figure 2.1. The resulting fit parameters are stated without an error estimate, as the
resulting uncertainty is dependent on the choice of grid size, which was chosen to be a
25 × 25 grid in the Brillouin zone. The stated values serve more as a reference for the
energy scales involved and yield approximate results, as the influence of bands other than
the two lowest band is still relevant [111, 174]. However the essential physics is entirely
described by the two band model.
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Figure 4.2 | Amplitude modulation and center of mass quasimomentum during the Stückelberg in-
terferometry sequence a, Intensity modulation of the lattice beams. The intensity of each lattice beam

Ij(t) is ramped up linearly during the first 5T of the modulation. The modulation amplitude is unchanged

for a hold time thold = NT , with N ∈ N and then linearly ramped down again. The final value of the

Intensity is I0(1−m), from which the lattice is then adiabatically ramped down, performing bandmapping.

The population in the respective bands can be resolved after time of flight (not shown). b, Center of

mass quasimomentum during the Stückelberg sequence. The quasi momentum of the cloud is changed

non-adiabatically from Γ to Γ of the adjacent Brillouin zone here. The acceleration is chosen such that we

arrive at Γ once the maximum modulation amplitude is reached. The return path is chosen equivalently,

once the modulation amplitude is starting to be ramped down we start to also accelerate the cloud back to

the center of the Brillouin zone. The acceleration to any other quasi momentum is performed equivalently

only the end point is different.

4.2 The gap closings
As we have seen in Section 2.5.4 we require two ingredients for the phase transition to
occur: 1) a closing of the quasi-energy gap in either the 0- or π-gap and 2) a sign change
of the Berry curvature at the singularity, i.e., the band touching point.

In order to experimentally characterize the band gap we employ Stückelberg interferom-
etry [275–277] as described in Section 3.3. The experiment starts with a BEC prepared at Γ
in the lowest band of the lattice with a depth of V = 6Erec. The lattice wavelength for the
results presented in this Chapter 4 is λL = 736.8 nm. To prepare the system adiabatically
in the ground state of the modulated lattice and avoid kicking the system we ramp the
modulation up slowly during the first 5T [92]. The modulation is increased linearly, then
held constant during the hold time thold, and eventually ramped down again during 5T (cf.
Figure 4.2a), subsequently the lattice is ramped down adiabatically to map the population
in the two bands to momenta corresponding to the first and second band. The resulting
population in the two bands can then be determined from an absorption image obtained
after a time of flight ttof = 3.5ms. As the system is periodically modulated, the sampling
duration of the hold times is fixed to be a multiple of the modulation period NT with N ∈ N.

We apply a strong force Fa/h ≈ 4 kHz to accelerate the BEC to the quasi momentum
Q, at which we want to probe the band gap. The trajectory in reciprocal space during the
Stückelberg sequence is depicted in Figure 4.2b for Q = Γ. The force is chosen such that
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the population of the two bands are coupled, which coherently transfers population between
the bands during the acceleration from Γ to the edge of the Brillouin zone eventually
creating a superposition of the two bands at Q. During the hold time at Q the cloud
acquires a differential phase proportional to the energy difference of the bands, which leads
to constructive or destructive interference when the cloud is accelerating back from Q to
Γ, where again the population of the two bands is coupled coherently. For observation at
NT the accumulated phase corresponds to the energy difference resulting from the effective
Hamiltonian. The acceleration along the path Γ →M → Γ in order to probe Q = Γ occurs
in tΓ = 0.163ms, the acceleration Γ →M to probe Q =M in tM = 0.82ms and the Force
to reach Q = K from Γ is applied for tK = 0.094ms. The times are smaller or comparable
to the ramp duration of the modulation ramp up, the start of the acceleration is adjusted
in order to arrive at Q once the modulation is fully ramped up and the hold time begins.

The experimental realization is not a perfectly isolated two band system. Direct, i.e.,
single photon processes of the drive, or indirect multi-photon excitations can couple higher
bands to the two bands of interest. This can lead to a slight deformation of the band if the
process is off resonant or to an avoided crossing if the bands are coupled resonantly. The
p-bands, the four next higher bands of the honeycomb lattice after the two s-bands, can
couple to the two s-bands during the drive and create an additional population in a third
band. This leads to an additional accumulation of phase during the hold time, resulting in
a oscillation at a different frequency. To account for this additional phase accumulation
and the resulting two frequency oscillation we fit a sum of two cosine functions to the
resulting population in the first band as a function of the hold time

n1(t) = e−(t−t1)γA1 cos(ω1(t− t1)) +A2 cos(ω2(t− t2)) + n1
0. (4.4)

The parameters of the function A1, A2, γ, ω1, ω2, t1, t2, n
1
0 are free fit parameters. The

frequency of the main oscillation, defined by the oscillation with the largest amplitude is
the one we attribute to the energy gap between the two s-bands as we expect the coupling
to the higher bands to be only a perturbation leading only to a small population in those
bands. For most of the modulation parameters the amplitude of the second oscillation is
indeed significantly smaller confirming the weak perturbation assumption. As the transfer
between the bands during the acceleration does not work perfectly for all of the modulation
parameters we allow for an offset of the population oscillation n1

0. Additionally the cloud
is extended in reciprocal space, ergo the dispersion within the wave packet’s momentum
space width leads to a dephasing. Furthermore loss of coherence due to heating or atoms
that are scattering leads to a damping of the oscillations which is captured by the damping
term γ. The extent in reciprocal space is small enough to describe the oscillation by
a single frequency oscillation and damping term, where the frequency of the oscillation
corresponds to the center of mass of the cloud.

The modulated system exhibits two gaps in the spectrum. The gap within the Floquet
Brillouin zone, the 0-gap and the gap across the edge of the Floquet Brillouin zone, the
π-gap. The minimum sampling rate we can take is 1/T , otherwise the micromotion becomes
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important and we cannot describe the system with the effective Hamiltonian. Therefore
the maximum frequency we can faithfully sample is

ωmax =
ω

2
. (4.5)

This corresponds to a faithful determination of an oscillation with two samples per period
at the maximum resolvable frequency. Unless the initial phase is very unfortunate and we
always sample the zero crossing of the oscillation the frequency can be clearly distinguished
from ω = 0. The Nyquist–Shannon sampling theorem however strictly requires the sampling
rate to be larger than twice the minimal frequency that can be measured. As we can
not expect a gap to suddenly jump once it is close to ℏωmax we can still distinguish the
frequencies 0 and ωmax due to the gap we observe for parameters that are close to the
one with maximum frequency. Higher frequencies ω′ > ωmax that could potentially be
present in the spectrum of n1(t) are creating an alias in the frequency range 0 to ωmax

determined by |ω′ −Nωmax|, where N ∈ N is the integer closest to ω′/ωmax. From this
discussion we find that we cannot arbitrarily measure any gap in the system- not even
when only considering two bands.

The energy width of Floquet Brillouin zone is ℏω, for any Q we find that the 0-gap
g0 and π-gap gπ fulfill g0 + gπ = ℏω. Therefore by sampling with a rate 1/T we will
always determine the gap

∆Eexp = min(g0, gπ), (4.6)

with g0, gπ ≤ ℏω/2.

Measuring the gap at a single point in the phase diagram is not sufficient to directly
identify whether the observed oscillation corresponds to the 0- or π-gap. In the high
frequency limit however we can safely assume gπ ≫ ℏω and therefore we can unambiguously
identify the observed oscillation to correspond to a measurement of g0. Upon lowering the
modulation frequency, the two band gaps will become more and more similar in magnitude
until g0 = gπ = ℏω/2. Afterwards gπ < g0 and we therefore probe the π-gap, as now
gπ < ℏωmax. Whenever the observed gap becomes equal to the maximum resolvable gap,
the measured gap, after further reducing the modulation frequency, is the opposite gap
compared to the one observed before the maximum. An equivalent description based
on the alias of the larger of the two gaps gives an equivalent picture, meaning that due
to the sampling frequency both, the frequency resulting from the π-gap, and the 0-gap
result in the same detected frequency.

Figure 4.3a shows the raw data averaged over 3 − 4 individual realizations of the
population in the lowest band n1 as a function of hold time thold and modulation frequency
ω/(2π) probing the quasi-energy gap at Γ. We measure at a fixed modulation amplitude of
m = 0.25 while changing the frequency. We immediately see how the modulation of the
population in the lowest band becomes slower as the modulation frequency is reduced and
eventually diverges at the gap closing around ω/(2π) ≈ 11 kHz, where there is no temporal
modulation visible. Subsequently for further reduction of the frequency, the gap reopens,
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Figure 4.3 | Time trace of the population oscillation for various modulation frequencies and corre-
sponding spectra. a, Resulting population oscillations. The population oscillation is measured using

Stückelberg interferometry for various frequencies in the rangeω/(2π) ∈ [5 kHz, 16 kHz] and fixed modu-

lation amplitude m = 0.25 at Γ. The relative population of the lowest band n
1(t) is measured varying the

hold time for each modulation frequency. Each datapoint represents the mean of 3 − 4 independent

realizations. b, Spectrum of the population oscillation. We calculate the fast Fourier transform of the

oscillations shown in a for every modulation frequency. The zero frequency component is not displayed.

The gap opening and closing can be directly observed from the spectrum.

becomes maximal, where we observe alternating minima and maxima at every multiple of
the sampling time at ω/(2π) ≈ 8 kHz. Eventually we observe another gap closing around
ω/(2π) ≈ 5.5 kHz before the frequency scan terminates. From the observed measurement
we can clearly identify two gap closings and one peaking of the gap at ℏω/2. An almost
equivalent depiction is shown in Figure 4.3b, where we display the Fourier transform of
each time trace. The spectrum nicely highlights the aforementioned reduction of the gap,
as can be seen by the shift of the maximum frequency component of the spectrum towards
lower frequency, which reaches zero at ω/(2π) ≈ 11 kHz. The spectrum also captures the
peaking of the gap at ℏω/2 at ω/(2π) ≈ 8 kHz. The presented measurement underlines
the versatility of the Stückelberg interferometry approach to quantitatively determine the
energy gap of the system in a momentum resolved way. Even though the measurement
at a single modulation frequency is not sufficient to directly determine, whether the 0- or
π-gap is currently the smaller of the two, a frequency scan starting from the high frequency
limit allows to also identify the observed gap unambiguously. The measurement presented
in Figure 4.3 does not directly connect to the high frequency limit.

To directly probe the system in the high frequency limit and extract the full information
about which gap is measured we perform a slightly different sweep through the phase
diagram as depicted in Figure 4.4. The phase diagram is calculated numerically and the
phase boundaries are also confirmed experimentally over a wide parameter range [111, 174].
The measurement starts at ω/(2π) = 40 kHz and m = 0.1, where any energy scale of the



92 Anomalous Floquet phases in the intensity modulated optical honeycomb lattice

Figure 4.4 | Path through the phase diagram. The depicted path through the phase diagram smoothly

connects the high frequency limit, where the system is in the Haldane regime, to the anomalous and

Haldane-like phase. The trajectory combines a frequency sweep in the Haldane phase with an amplitude

sweep crossing the transition from the Haldane to the anomalous phase and a final frequency sweep to

probe the transition from the anomalous to the Haldane-like phase. The path is chosen such that the

expected size of the gaps is experimentally easily accessible avoiding low frequency and low modulation

amplitude resulting in very small gaps as well as high frequency and large modulation amplitude, where

coupling to higher bands might become problematic.

system is significantly smaller than ℏω, i.e., the system is in the high frequency limit and
we can be sure that g0 ≪ gπ. We reduce the modulation frequency while keeping the
modulation amplitude fixed down to ω/(2π) = 10 kHz. This part of the sweep is entirely
located within the Haldane regime, where due to the modulation the gap at K and K ′

has opened. The frequency sweep is followed by an increase of the modulation amplitude
to m = 0.3 at fixed ω/(2π) = 10 kHz, during which we expect the system to undergo a
topological phase transition from the Haldane to the anomalous regime. The final part of
the path through the phase diagram is another frequency sweep reducing the modulation
frequency to ω/(2π) = 4.6 kHz at modulation amplitude m = 0.3. Here we find another
phase transition from the anomalous regime to the Haldane-like regime.

This described path allows a smooth connection of the different phases to the high fre-
quency limit where the topological characterization is known and we find bands with
C− = 1 [84, 85].

To fully characterize the topological nature of the phase transitions we first identify where,
and which gap is closing in the spectrum and consecutively measure how the Berry curvature
is modified as we traverse the phase transitions. We perform Stückelberg interferometry at
closely spaced points along the smooth path depicted in Figure 4.4 and extract the energy
gap at the three high symmetry points of the Brillouin zone Γ, M and K. The measured
energy gap at Γ is shown in Figure 4.5. In the high frequency limit we determine a band-gap
that is close to the bandwidth of a static system as modulation is only introducing a weak
perturbation. We measure the 0-gap. As we reduce the modulation frequency, we observe
a peaking of the measured gap at a value of ℏω/2 around ω/(2π) ≈ 15 kHz, and we find
g0 = gπ. Until we observe another maximum of the measured gap we now have identified
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Figure 4.5 | Observed minimal gap along the path through the phase diagram at Γ. The measured gap

at Γ is the result of a fit to a Stückelberg interferometry sequence consiting of 23 time samples, where

each is averaged over 3 − 4 individual realizations. The solid line is the theoretical value obtained from a

six band Floquet calculation of the modulated lattice. The different color shadings indicate the different

topological phases, green Haldane, blue anomalous and orange Haldane-like. The phase transitions

occur at the gap closing. At the cusps the measured gap changes as indicated by dashed lines and the

indicator at the top. The resulting spectrum along the high symmetry line in the Haldane, at the phase

transition to the anomalous phase and the transition to the Haldane-like phase is depicted in the top row

for m ∈ {0.1, 0.215, 0.3} andω/(2π) ∈ {30 kHz, 10 kHz, 6.2 kHz}. The two band structures at the phase

transition illustrate the band touching in the π- and 0-gap. Error bars denote fitting errors.

that we do measure the π-gap. Following the path through the phase diagram we find a gap
closing at m ≈ 0.2 and ω/(2π) = 10 kHz, where the π-gap is closing and the bands hybridize
across the edge of the Floquet Brillouin zone. This gap closing indicates a possible change
of the winding number characterizing the π-gap W π. Another cusp of the experimentally
determined gap is located at m = 0.3 at ω/(2π) ≈ 8 kHz, where we now find gπ = g0 and
we therefore subsequently directly measure the 0-gap, which is closing at ω/(2π) ≈ 6 kHz,
where W 0 might change. The solid line is the theoretical expectation for the gap between
the two lowest bands extracted from a six band ab initio Floquet calculation [111, 174].

The upper panel of Figure 4.5 shows the band structure along the high symmetry line
Γ → M → K → Γ calculated by projecting onto the lowest to bands of the six band ab
initio Floquet calculation close to the phase transitions illustrating how the bands touch
in the respective gaps as described above [111, 174].

To exclude any other gap closing and therefore additional possible phase transitions we
also measure the energy gap at M and K. Measuring the gap at the three high symmetry
points Γ, M and K is sufficient as gap closings can only occur at these points in our
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Figure 4.6 | Observed minimal gap along the path through the phase diagram at M and K. The measured

gap is the result of a fit to a Stückelberg interferometry sequence consiting of 23 time samples, where

each is averaged over 3 − 4 individual realizations. The solid line is the theoretical value obtained from a

six band Floquet calculation of the modulated lattice. The different color shadings indicate the different

topological phases, green Haldane, blue anomalous and orange Haldane-like. The gap remains open

across all phase transitions indicating no additional gap closing. Error bars denote fitting errors.

modulation scheme [163]. Figure 4.6 shows the observed gap at K and M along the path
through the phase diagram (cf. Figure 4.4). We observe no gap closing at either of the two
points in the Brillouin zone for the parameters investigated. However we also here observe
a cusp in the observed gaps indicating that the π-gap in between the Floquet Brillouin
zone is smaller compared to the 0-gap for ω/(2π) < 6 kHz.

4.3 Deflection measurements

Several methods have been demonstrated in cold atom platforms to be able to experimentally
detect Berry curvature [109, 284, 305]. The approach we will pursue here is based on
locally resolving the Hall drift arising from Berry curvature traversed by the cloud [84,
108, 131]. The Berry curvature acts on the cloud in a similar fashion compared to a
magnetic field leading to a transverse deflection [131, 306, 307] and is described by the
semi-classical equation

vn(k) =
∂εn
ℏ∂k

− 1
ℏ
F×Ω(k), (4.7)
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where vn is the velocity a particle in the nth band with quasienergy dispersion εn(k)

experiences when a force F is applied. The Berry curvature Ω(k) is assumed to extend
the space to a third dimension perpendicular to the plane of quasimomentum and acts
in analogy to a magnetic field leading to a transverse anomalous velocity. A filled band
will only experience a net effect of the Berry curvature if the Chern number is non-zero
otherwise the positive and negative contributions of the Berry curvature exactly cancel.
The force accelerating the cloud has to be chosen such that the cloud adiabatically follows
only a single band and no excitations to higher bands are created. We have experimentally
probed the maximum force in order to not excite to higher bands, which would lead to a
reduction of the observed perpendicular deflection. When applying a force to probe the
Berry curvature, we observe on top of the velocity resulting from the dispersion ∂εn(k)/∂k
a transverse velocity proportional to the Berry curvature Ω(k). Performing an acceleration
along a path therefore leads to a transverse displacement if the Berry curvature is non-
zero. Using a narrow cloud in momentum space allows for a quasimomentum resolved
measurement of the Berry curvature.

When probing the entire Brillouin zone we expect to observe a net deflection in the
Haldane regime, while observing no deflection in the anomalous phase, where the Chern
number is vanishing. As it is not straight forward to fill the entire Brillouin zone with
bosonic particles, we chose a slightly different approach to probe the entire Brillouin zone.
Starting from a BEC located at the center of the Brillouin zone we measure the deflection
resulting from an acceleration along different paths in reciprocal space chosen such that
we effectively probe a large fraction of the Brillouin zone. The paths shown in Figure 4.7a
were chosen to probe the deflection in the direction of Γ → K → K ′ and Γ →M → Γ. We
probe all six possible directions for each path to exclude any asymmetric imperfections and
repeat the measurement in the Haldane and anomalous regime. The Berry curvature in
the Haldane regime (m = 0.25, ω/(2π) = 16 kHz) is still concentrated at the Dirac points,
while there is no Berry curvature elsewhere (cf. Figure 4.7). In the anomalous regime
(m = 0.24, ω/(2π) = 10 kHz) we find, in addition to the still concentrated positive Berry
curvature at K and K ′, negative Berry Curvature located at Γ.

The resulting deflection after performing the acceleration along the path is measured in
a differential measurement. We modulate the lattice once with positive chirality, perform
the experiment and record the resulting position of the cloud and subsequently repeat the
experiment with opposite chirality, which leads to opposite sign, but otherwise identical,
Berry curvature. Due to the inverted Berry curvature we measure a deflection in opposite
direction. The difference in position between the two experiments constitutes twice the
transversal deflection, while trivial motion due to the accelerated lattice is removed by this
measurement technique. Figure 4.7 shows the resulting deflection along the paths in K and
Γ direction for all 6 directions respectively in the Haldane and anomalous regime. We find
positive deflections in theK direction for both regimes, while the deflection in the Γ direction
is compatible with zero in the Haldane regime and negative in the anomalous regime.

As the Chern number results from the integration of the Berry Curvature in Brillouin
zone, the observed deflections are compatible with C− = 1 in the Haldane regime. The
deflections in the anomalous regime are well compatible with C− = 0 as the deflections
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Figure 4.7 | Paths used to probe the Brillouin zone in the anomalous and Haldane regime and resulting
measurement. a, Paths used to probe the entire Brillouin zone. Starting from Γ the cloud is accelerated

along 12 different paths to probe K and Γ along different directions. b, Berry curvature in the Haldane

(m = 0.25, ω/(2π) = 16 kHz) and anomalous regime (m = 0.24, ω/(2π) = 10 kHz). c, Resulting

transversal deflection probing the Berry curvature at K and Γ in the Haldane and anomalous regime along

the different paths shown in a. The deflection in the Haldane regime is positive at K and small but positive

at Γ. In the anomalous regime we observe a positive deflection at K and a negative deflection with equal

magnitude at Γ.

are of equal magnitude but opposite sign when comparing Γ- and K-path. The solid lines
represent the theoretical expectation without free parameters taking into account the Berry
curvature distribution, harmonic trap and width of the cloud in reciprocal space [111, 174].

As illustrated in Section 4.2, the bands touch at Γ and simply holding a BEC at Γ while
linearly ramping up the modulation amplitude in the anomalous regime will lead to an
uncontrolled population in the two bands as a fraction of the population is transferred when
the two bands touch. In order to avoid the band touching point we have developed ramp-up
schemes for each of the three phases which keep the cloud at quasimomenta away from
the band touching, while also maximizing the minimal gap. The modulation amplitude is
always ramped in a linear fashion, while the frequency is swept such that the gap is maximal
during the ramp-up. For the deflection measurements in the Haldane and anomalous regime
this leads to an additional complication, where we have a quasi momentum k0 during which
the system is ramped to the final modulation parameters and a final quasimomentum kf ,
at which we evaluate the deflection. The deflection during the ramp-up and acceleration to
k0 is small, yet it is determined independently by recording the position at the end of the
ramp-up and eventually subtracted from the full deflection observed after an acceleration
to kf . The relative length of k0 and kf is kept fixed for all directions (cf. Figure 4.8a).

Figure 4.8b shows the trajectory of m and ω during the ramp-up. For the preparation
at high modulation frequency in the Haldane and anomalous regime the cloud is accelerated
towards M in order to increase the gap at the position, where the cloud is located. For
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is equivalent along all measured directions. b, Paths in the phase diagram taken during the ramp-up.

The wave packet is moved away from Γ to avoid transferring atoms to the second band during the band

touching.

ω/(2π) > 8 kHz in the Haldane and anomalous regime we use a linear ramp-up at fixed
modulation frequency. In the anomalous regime for ω/(2π) < 8 kHz we use the path crossing
the gap closing between Haldane and anomalous phase. The cloud has already been moved
away from Γ when crossing the phase transition from the Haldane to the anomalous regime,
where the two bands touch, enabling high fidelity preparation of the cloud in the “lowest”
band. In the Haldane-like regime however we do not need to have an acceleration during the
ramp-up as Γ of the lowest band is always gapped, even for m = 0, enabling a direct ramp
to prepare the cloud in the lowest band at Γ. We directly ramp the modulation amplitude
up, while adjusting the modulation frequency to maximize the gap during the ramp.

If we had kept the cloud at rest at Γ and ramped the modulation up in the anomalous
regime without crossing a phase transition, e.g. by keeping ω/(2π) = 6 kHz fixed and
linearly increasing the modulation amplitude, we would have ended up with the entire
population in the second band of the Floquet band structure. As Γ and the minimum of
the dispersion surrounding it which originally were part of the lowest band in the static
lattice are now attached to the second band in the modulated case the cloud is “transferred”
to the upper band. The attribution “lowest” band is not very well defined in the modulated
band structure especially when the resulting bands emerge due to a coupling between the
bands of the static lattice as is the case in the anomalous regime. However in principle a
local attribution is still possible, where e.g. the minimum at Γ in the anomalous regime
is characteristic of the lowest band in the static lattice, while the minima at the Dirac
points are reminiscent of the second band.
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the anomalous and Haldane-like regime (left) and the anomalous and Haldane regime (center). The

residual asymmetry of the Berry curvature is related to the choice of initial phase. The depicted Berry

curvatures are evaluated for parameters (left to right)ω/2π = {6 khz, 6.4 khz, 10 khz, 10 khz, 10 khz} and

m = {0.3, 0.3, 0.22, 0.21, 0.1}.

Having a consistent way to probe the same band throughout the phase diagram as
illustrated in Figure 4.8b, we proceed to probe the Berry curvature at Γ along the path
through the phase diagram presented in Figure 4.4. We accelerate the cloud from Γ →
M → Γ → M to probe the deflection induced due to the Berry Curvature at Γ in the
Haldane and anomalous regime. As described before the initial path Γ →M is traversed
during the ramp-up in the Haldane and anomalous phase. The observed deflections in the
Haldane regime are slightly positive even though there is no Berry curvature located at Γ

(cf. Figure 4.9 top right). This stems from the fact that the cloud is extended in reciprocal
space and a small fraction of the cloud still experiences the positive Berry curvature at
K and K ′ leading to a positive deflection. When approaching the phase transition we
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observe an increase of the detected deflection which results from the buildup of positive
Berry curvature at Γ before the phase transition. The measured deflection flips sign at
the phase transition and a distinct negative deflection is observed. The Berry curvature
follows the same pattern: the positive peak before the phase transition flips sign and turns
negative as illustrated by the Berry curvature at the phase transition. When getting further
away from the transition, the Berry curvature spreads into a ring leading to constant
negative deflection. Shortly before the phase transition to the Haldane-like regime we again
observe a positive deflection and a jump to negative deflection at the phase transition to
the Haldane-like regime at ω/(2π) ≈ 6.2 kHz. The deflection in the Haldane-like regime is
probed by ramping the modulation up while keeping the cloud located at Γ, and probing
the path Γ → M → Γ. This results in an equivalent deflection compared to the path
M → Γ →M , which is effectively probed in the Haldane and anomalous regime after the
ramp-up. After the phase transition we again observe a reduction of the magnitude of
the deflection when further going away from the phase transition. The deflections match
quantitatively well with the theoretical model taking into account the momentum space
width, path in reciprocal space, and the harmonic trap. The Berry curvature is derived
from the six band Floquet calculation [111, 174]. The background shading illustrates the
different topological phases as derived from the gap closing at Γ.

4.4 Obtaining the winding numbers - experiment

Combining the deflection and gap measurement we are now able to determine the winding
numbers in the gaps throughout the phase diagram. The measurement of the quasienergy
gap provides information regarding which gap is closing, while the deflection measurements
show how the Berry Curvature is changing and whether its sign change is positive or negative
at the phase transition, i.e., at the singularity. The band touchings are linear band touchings,
and therefore the Chern and equivalently winding numbers can only change by ±1.

We have already established that the Chern number of the lowest band in the Haldane
phase is C− = 1, while the π-gap is trivial and therefore the winding number in the
0-gap is (cf. Equation 2.84)

W 0
Haldane = C−

Haldane +W π
Haldane = 1. (4.8)

The π-gap hosts no edge modes in the Haldane regime and we therefore only have a
single edge-mode in the 0-gap.

As discussed in Section 2.5.3 for a linear band touching the observed sign change of the
Berry curvature allows for the determination of the topological charge at the singularity
which in turn can be directly related to the winding number. The winding number can
only change if the respective gap is closing. At the phase transition from the Haldane
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to the anomalous regime we observe a gap closing of the π-gap. The deflection changes
from positive to negative, i.e.,

sgn(∆s−⊥(Γ)) = sgn(∆(Ω−(Γ)) = −1 = −Qπs (4.9)

and the change of the winding number in the π-gap is therefore (cf. Equation 2.97)

∆W π = 1. (4.10)

The winding numbers and Chern number of the bands in the anomalous phase are

W 0
anomalous = 1

W π
anomalous = 1 (4.11)

C−
anomalous =W 0

anomalous −W π
anomalous = 0.

The winding number directly counts the number of edge modes in the gap, we therefore
have two edge modes now, one in the 0-gap, one in the π-gap. Both winding numbers
have the same sign i.e., the edge modes have the same slope and are therefore propagating
in the same direction.

The 0-gap closes at the transition from the anomalous to the Haldane like regime. Argu-
ing in an analogue fashion we find for the topological charge at the gap closing of the 0-gap

sgn(∆s−⊥(Γ)) = sgn(∆(Ω−(Γ)) = −1 = Q0
s (4.12)

Therefore the winding number in the zero gap changes by (cf. Equation 2.96)

∆W 0 = −1 (4.13)

and we find for the Chern and winding numbers

W 0
Haldane−like = 0

W π
Haldane−like = 1 (4.14)

C−
Haldane−like =W 0

Haldane−like −W π
Haldane−like = −1.

The slope of the edge mode is unchanged, but now is hosted in the π-gap in contrast
to the Haldane phase. From a topological stand point the Haldane-like and the Haldane
phase are equivalent and can be mapped onto each other by a unitary transformation
changing the assignment of the lowest band. We are only able to distinguish the two
phases with the additional knowledge gained by following the system through the phase
diagram connecting it to the high frequency limit.

Fundamentally the system should be probed infinitesimally close to the singularity but
this is experimentally not possible. Close to the band touching point the gaps become very
small and remaining adiabatic with respect to these gap sizes is not feasible. Furthermore
we would need to extract the Berry curvature locally at Γ only, experimentally we probe
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a region given by the momentum space width of the cloud. However the sign change of
the Berry curvature and the good agreement with the theoretical expectation justify the
attribution of the winding numbers presented above.

The measurements presented above have allowed for a complete characterization of the
topological quantities of the band structure in three different regimes. Furthermore the
determination of the winding numbers enables counting the number of edge modes in every
respective gap with a bulk system. In principle the system still exhibits an edge, however
for the harmonically trapped system the edge is a very broad region [308].



CHAPTER 5

Chiral edge modes in tunneling modulated
optical lattices

The bulk-boundary correspondence directly connects the topological invariants of the bulk
to the presence of edge states at the boundary of a sample [75–77, 309–311]. The Chern
number counts the number of chiral edge modes in the gap above a given band minus the
number of edge modes in the gap below it. These chiral edge modes are made up of states
localized at the edge of the sample and form a conductive channel. Energetically the edge
states are located in the gap between two bands, therefore they are immune to scattering
on e.g. impurities as there are no states available to scatter into [57]. We refer to the edge
of the sample as the interface to a system with different topological properties, such as the
topologically trivial vacuum, compared to the system of interest, e.g. a quantum Hall system.
A strong potential energy difference between two system can also result in a topological
interface where the region where the potential energy is changing becomes topologically
trivial. The robustness of the edge mode is directly linked to the topology of the bulk bands
as they are absent once the system enters the topologically trivial regime. This way they
also represent a sensitive probe to verify the topological nature of a system. For Floquet
systems that can be mapped to static systems, such as the Haldane regime in the modulated
vlattice, the Chern number correctly predicts the number of edge modes. However the
anomalous Floquet phase presents a system, where the bulk-boundary correspondence is
insufficient to predict the existence of edge states as we have a system with C− = 0 but
still find edge states [86, 87]. As we have seen in the previous Chapter 4 the system should
still host chiral edge states as predicted by the characterization with winding numbers [111,
174]. The winding numbers have been measured by observing bulk quantities of the system.
The following chapter will illustrate the observation of edge modes located at a potential
step in the system introduced by a programmable optical potential. We show how the edge
modes are efficiently populated in different topological regimes and how they emerge as we
increase the height of the potential step in the system. Furthermore we investigate how the
width of the potential step affects the edge mode propagation in the Haldane regime.

The following chapter is based on the joint work of Christoph Braun, Raphaël
Saint-Jalm, Alexander Hesse, Johannes Arceri, Immanuel Bloch and Monika
Aidelsburger [123].
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Figure 5.1 | Schematic of the setup and phase diagram. a, Illustration of the optical potential and the

initial state. A potential step (gray cylinder) is applied on a selected region of the system to block the

motion of particles in the modulated lattice (arrows), generating a sharp edge. The initial state is prepared

by trapping a cloud of atoms (BEC, indicated in dark blue) in an optical tweezer (red) near the edge.

After releasing the cloud, the atoms exhibit a chiral motion along the edge, illustrated by the different

blue shadings. b, Phase diagram of the amplitude-modulated honeycomb lattice at depth 5.9 E rec. The

different topological regimes are characterized by the tuple of winding numbers (W0,Wπ) of the two

quasienergy gaps. The hexagons mark the modulation parameters used in this work [m = 0.25, green:

ω/(2π) = 16 kHz, blue: ω/(2π) = 7 kHz and orange: ω/(2π) = 5 kHz].

5.1 Observation of edge modes
Topologically protected edge modes lie at the heart of the quantized conductivity in quantum
Hall systems, both in the integer and fractional case. Should the topological invariants of
a bulk system be inaccessible, the existence of robust chiral edge modes can still reveal
if the system is in a non-trivial phase.

We present an experimental protocol to directly observe edge modes in optical lattices
in real space. First we establish that the dynamics observed in the experiment correspond
to a coherent evolution in the lattice, and that the prepared initial state occupies a large
fraction of the Brillouin zone. Furthermore we show how to prepare and detect chiral
edge modes in the modulated lattice and compare the their evolution to the topologically
trivial case, where we observe no chiral transport. We show how to prepare edge modes
in different geometries and different topological regimes.

5.1.1 Initial state preparation
The schematic experiment setup is depicted in Figure 5.1a, we prepare a small cloud of atoms
in the tweezer trap (cf. Section 3.2.2) which is located close to a repulsive optical potential.
To initiate the experiment we release the cloud from the tweezer into the modulated optical
honeycomb lattice and observe its subsequent evolution. We have chosen three sets of
parameters, where we investigate the existence and properties of the edge modes. We
probe 1) the Haldane regime with C− = 1 and W 0 = 1, W π = 0, 2) the anomalous regime
where the Chern number vanishes C− = 0, but we still find edge modes W 0 = 1, W π = 1
and 3) the Haldane-like regime where C− = −1 and the only edge state is located in the
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Figure 5.2 | Trapping potential of tweezer, lattice and edge potential and timing sequence. a Optical

potentials before ramping up the tunneling modulation amplitude. The horizontal and vertical cut are

indicated by the two gray dashed lines. The tweezer is assumed to have a waist of 1 µm andωtw = 2.0 kHz,

the edge width is ℓ = 2.5a, the height of the potential applied in the region x > 0 is V0 = 20 kHz, the

lattice depth is 5.9 E rec. The color scale in the main image is saturating at the maxima in the center of the

plaquette, to reflect the smaller energy changes of the tweezer and the wall as well. The contour lines

are plotted in the same color scale and represent the potential of the tweezer alone, every contour line

corresponds to an increase of ≈ h × 0.2 kHz. b Timing sequence to prepare edge modes in the intensity

modulated optical honeycomb lattice. The intensity ramp of the individual beams is shown with respect

to the switch off time of the tweezer trap marking t = 0, the starting point of the evolution in the lattice.

The frequency of the modulation is reduced to show an oscillation on this coarse time scale.

π-gap W π = 1, W 0 = 0. Compared to the bulk measurements presented before the phase
diagram is qualitatively equivalent, but the phase transitions occur at slightly different
parameters due to a change of lattice wavelength (cf. Figure 4.4 and Section 3.3) from
736.8nm to λL = 745nm. The parameters to probe the three topological regimes, Haldane
(green), anomalous (blue) and Haldane-like regime (orange) are depicted in Figure 5.1b.
The color attribution to the topological regimes will be kept consistent, whilst the static
lattice which will be depicted in gray scale.

To probe the existence and dynamics of the edge modes we need to prepare and probe
a highly excited state of the system. In contrast to a solid state sample, where the Fermi
energy can be tuned to match the energy of the edge mode, we have no Fermi sea filling all
states below the edge mode, but a BEC which macroscopically occupies a single state. We
utilize the BEC where all atoms are in the same state to be able to achieve a good signal
to noise ratio when populating the edge mode, yet careful preparation is still crucial. To
prepare a wave packet in the target state we follow the sequence depicted in Figure 5.2b.
After the evaporation in the crossed optical dipole trap we slightly compress it in order
to generate a weakly confining potential when the blue detuned repulsive optical lattice is
fully on to prevent atom loss. After the crossed dipole trap has ramped to it final value we
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load a part of the cloud into the tweezer by adiabatically ramping up the tweezer beam
intensity within 40ms. The tweezer is overlapped with the center of the crossed dipole trap
in order to guarantee optimal overlap between the two traps. The tweezer is not ramped to
its final value yet to reduce losses occurring due to holding the cloud in the tweezer at high
density for a long time. Only a small fraction of the cloud can be trapped in the tweezer.

After the loading time of 150ms we remove all atoms which are not trapped in the tweezer
as they would contribute an unwanted background signal when studying the dynamics of
the cloud released from the tweezer. In order to release the unwanted atoms trapped only
in the crossed dipole trap, we increase the intensity of the tweezer trap while simultaneously
lowering the crossed dipole trap. The values are experimentally optimized in order to
retain as many atoms in the tweezer as possible while achieving full removal of unwanted
background atoms. The removal sequence consists of a 10ms intensity ramp with a 10ms

hold time in the low power crossed dipole trap and compressed tweezer. The intensity of
the tweezer is increased and is sufficient to hold the cloud against gravity, while the crossed
dipole trap intensity is reduced and not sufficient to sustain atoms against gravity on its own.

After the unwanted atoms have been dropped from the crossed dipole trap we increase
its intensity again back to its previous value, whilst the tweezer on the other hand is now
ramped to its final value in 10ms. After preparing atoms only in the tweezer trap we do
now prepare the remaining potentials of the experiment. We switch the edge potential
created by the DMD on and linearly ramp its intensity to its final value within 30ms.
Once the ramp of the edge potential is finished the optical honeycomb lattice is ramped
up in an exponential fashion within 30ms. The ramp-up of the lattice was verified to
be adiabatic by ramping-up the lattice with a bulk BEC trapped in the crossed dipole
trap and subsequently performing band mapping. We do not observe any excitations
to the second band. Furthermore we require the system to be adiabatic compared to
the harmonic oscillator levels of the tweezer with frequency ωtw ≥ 1.3 kHz. As we do
not see excitations when ramping the lattice up in the crossed dipole trap, we expect
to create no excitations in the tweezer. The potential energy landscape after switching
on the lattice to 5.9Erec, Erec = ℏ2k2

L/(2mK) = h × 9.23 kHz is depicted in Figure 5.2a.
The combination of crossed dipole trap and optical lattice leads to a residual harmonic
trapping frequency in the x − y-plane of ωr/(2π) = 17(1)Hz and a vertical trapping
frequency of ωz/(2π) = 330(30)Hz. The modulation of the tunnel couplings is ramped
to its maximum amplitude within the first 5T , where T = 2π/ω, of the drive. Once the
modulation has reached its maximal amplitude, the tweezer trap is abruptly switched off
projecting the state of the quantum harmonic oscillator onto the lattice. This switch-off
time constitutes t = 0. For some experiments, an acceleration of the tweezer in order to
kick the cloud as discussed in Section 3.2.2, and prepare it at a given quasimomentum is
timed such that it ends at t = 0 as well. For a trap with the parameters of the tweezer
trap {ωx, ωy, ωz} = 2π × {2 kHz, 2 kHz, 0.33 kHz}, we trap Natoms = 200 (cf. Section 5.3)
with a scattering length of as = 6a0. We find a harmonic oscillator length

aho =

√
ℏ
mω

(5.1)



106 Chiral edge modes in tunneling modulated optical lattices

10a

t = 0.01 ms ≈ 0τ t = 1.00 ms ≈ 7τ t = 2.00 ms ≈ 14τ t = 5.00 ms ≈ 35τ

0 1.1OD 0 0.3OD 0 0.1OD 0 0.04OD

Figure 5.3 | Expansion dynamics in the static honeycomb lattice. The cloud is initially prepared in a

tweezer with ωtw/(2π) = 1.3(1) kHz and released into the static lattice with depth 5.9 E rec. The first

image is taken shortly after switching of tweezer and is representative of the initial state in the lattice.

The subsequent evolution shows the coherent quantum walk of the cloud in the real space lattice. The

momentum distribution of the cloud occupies a large fraction of the Brillouin zone. Every image is the

average of 302 independent experiment repetitions. The tunneling time τ = h̄/J0 = 145 ms is derived

from the nearest neighbor tunnel coupling J0 = h × 1.1(1) kHz.

of {ahox , ahoy , ahoz } = {0.36µm, 0.36µm, 0.89µm}. The harmonic oscillator lengths in the
x-y-plane are comparable to the lattice spacing a = 287nm. Following the variational
approach presented in [312, 313], we numerically find an effective harmonic oscillator length
{ahoeff.x , ahoeff.y , ahoeff.z } = {0.36µm, 0.36µm, 0.96µm}, which shows that we are indeed in
the weakly interacting regime, where the size of the condensate is only slightly modified due
to interactions. The assumption for the variational approach is a harmonically trapped BEC,
where the potential energy and interaction energy are not dominating the kinetic energy.
The effect of the interactions is to reduce the peak density compared to the non-interacting
case resulting in a spreading first along the axis of weakest confinement, here the vertical
z-direction. The variational parameters are effective trap frequencies of the non-interacting
ground state of a quantum harmonic oscillator. Subsequent minimization of the energy
resulting from the Gross-Pitaevskii equation [314] results in the above stated values.

5.1.2 Expansion dynamics in the static lattice
To make sure that the dynamics after releasing the cloud from the tweezer trap into the
lattice is coherent, we have studied the expansion of the cloud from the small dimple in the
static lattice. Figure 5.3a shows the initial density distribution of the atoms 10µs after
releasing the cloud from the tweezer with a trap frequency ωtw/(2π) = 1.3(1) kHz into the
static honeycomb lattice. The measured signal is the convolution of the actual density
distribution in the trap with the point-spread function of the imaging system. We expect the
initial state to be significantly smaller then the point spread function of our imaging system.
In the subsequent time evolution in the static lattice a hexagonal shape develops already
after 1ms. During the entire evolution we observe the characteristic hexagonal shape, which
is expected to emerge during coherent expansion dynamics for a homogeneously populated
band [265, 315]. Additionally, due to the interference of all the independent quasi-momenta,
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Figure 5.4 | Comparison of experiment and numerical simulation for the expansion dynamics in the
lattice. a, Two-band tight binding model. We evolve a two-band model in time on the optical lattice

with parameters close to the experiment. The image is rebinned to implement a resolution similar to

the experiment. b Experimental result of a quantum walk after 5 ms of expansion in the static lattice. c,

Histogram of the occurring group velocities from an ab initio calculation. The scale bars represent 10a in

the image, all images are scaled to show the same extent of the image. The plot limits in c are chosen

such that they correspond to the equivalent positions after 5 ms expansion in a and b.

a coherent evolution displays an interference pattern within the hexagonal shape as can be
observed in the expansion after t = 2.0ms and t = 5.0ms in Figure 5.3.

The hexagonal shape provides information about the spatial extent of the initial wave
packet. A cloud with larger spatial extent would only occupy a small fraction of the
Brillouin zone and therefore mostly occupy e.g. the minimum of the lowest band, where
the dispersion would be radially symmetric. Therefore the expansion of a cloud with larger
spatial extent would also be radially symmetric. If the wave packet is sufficiently localized a
large fraction of the Brillouin zone is occupied and we observe the strongly varying velocity
components within the Brillouin zone. This is explained by the quasi-momentum dependent
group velocities ∂kE(k)/ℏ. From an ab initio band calculation we have evaluated the group
velocity of the lowest band for all quasimomenta in the Brillouin zone and plot a histogram
of the occurrence of every group velocity. In the lowest band of the honeycomb lattice we
obtain the velocity distribution shown in Figure 5.4c. The image is scaled such that the
plotted velocities correspond to the positions in the other figures after the 5ms evolution
time. We find the fastest velocities at the Dirac cones at K and K ′ and slightly lower
group velocity towards M , therefore the expansion resembles the shape of the Brillouin
zone. The semiclassical group velocity is sufficient to describe the shape of the expansion
but does not capture the interference observed inside of the hexagon.

A two-band tight binding simulation with parameters close to the experimental real-
ization is able to capture the interference fringes at the edge of the hexagon, and again
confirms the hexagonal shape, cf. Figure 5.4a. We have fitted a two-band model to an ab
initio band structure calculation and find a nearest neighbor tunneling J = h× 1.09 kHz
and a next-nearest neighbor tunneling of J ′ = h× 0.05 kHz. For the simulation we prepare
a wavepacket localized to a single site and evolve the state in time for 5ms. The state after
5ms of expansion is shown in Figure 5.4a, to simulate the finite resolution we have rebinned
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Figure 5.5 | Tight binding expansion with various strengths of decoherence. A two-band tight binding

model with J = h × 1 kHz is evolved in time for 3 ms while applying a normal distributed random phase

δφ on every state after every tunneling time τ. The decoherence leads to the absence of interference and

eventually a Gaussian envelope of the population after expansion.

the resulting state to a similar spatial resolution as the experimental image shown in
Figure 5.4b and Figure 5.3. These measurements confirm sufficient localization of the initial
wave packet and support a coherent evolution in the lattice. We observe a similar quality
of the expansion dynamics when letting the atoms evolve in the bulk of the modulated
lattice in the three regimes as shown in Section 5.4.

In contrast, for an incoherent random walk a Gaussian distribution would be mea-
sured [263]. Figure 5.5 shows the resulting distribution of a quantum walk in the honeycomb
lattice with varying degree of coherence. We numerically propagate a state in a two-band
tight binding system with nearest neighbor coupling of J = h× 1 kHz and no next nearest
neighbor coupling for 3ms in time. We perform a Trotter expansion where every time step
is a duration of one tunneling time τ = ℏ/J . To simulate the effect of decoherence we apply
a random phase shift on every lattice site after each time step. The random phase on every
site has a normal distribution with standard deviation of parameter δϕ. In the absence of
dephasing (δϕ = 0) we recover the result presented above, where the quantum walk results
in the hexagonal shape with interference fringes within the boundary. With increasing
dephasing (0 < δϕ ≤ π/10) the interference pattern inside the hexagon disappears due to an
averaging of the constructive and destructive interference while the overall hexagonal shape
is still maintained. For stronger dephasing (δϕ ≥ π/6)we observe a radially symmetric shape
with approximately Gaussian envelope. In a similar fashion the result can be interpreted
as a temporally varying disorder potential resulting in a diffusive expansion of the wave
packet. As the individual dephasing pattern strongly influences the evolution, the results
presented in Figure 5.5 shows the average over 20 independent realizations.

5.1.3 Observation of edge modes in the anomalous regime
The observation of edge modes in photonic, mechanical or electrial devices fundamentally
exhibits a natural infinitely sharp boundary [85, 115, 155, 316, 317]. With cold atoms,
their observation was enabled by the concept of synthetic dimensions [147, 155]. There,
one real-space dimension is replaced by internal degrees of freedom, and the finite number
of coupled internal levels naturally creates a well-defined boundary [116–118]. In real-space,
however, the edges of the cold atomic systems are typically smooth and defined by the
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Figure 5.6 | Observation of anomalous Floquet topological edge modes on a repulsive disk potential.
a, Time-evolution of the atoms κ = +1. b, same as a but κ = −1. c Difference image ∆OD. The evolution

times are indicated on the left most image of each row. The modulation parameters are m = 0.25

ω/(2π) = 7 kHz. All absorption images are averages of 100−300 individual experimental realizations. The

scale bar represents a length of 10a. The position of the dashed lines is calculated from the programmed

pattern on the DMD.
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harmonic trap significantly complicating the observation of edge modes as their velocity
reduces and the signal spreads out [120, 308, 318]. In one dimension real-space edge
states have been observed in engineered lattices [223, 319] and Rydberg atom arrays [320].
Despite several strategies that have been proposed for two spatial dimensions [119–122],
their observation has so far remained elusive.

The characterization in reciprocal space (see Chapter 4) unambiguously proved the
existence of edge modes in the anomalous Floquet phase [111]. However, showing the
existence in a system where both, bulk and edge could be probed has not been implemented
so far. To prove the existence of the edge mode we prepare a sample by the sequence
illustrated in Figure 5.3b. The tweezer trapping frequency is chosen to be ωtw/(2π) =

2.0(1) kHz. The width of the edge potential is on the order of 0.7µm, limited by the
numerical aperture of the objective, cf. Section 3.2.3 and might potentially be further
deteriorated due to aberrations in the imaging system. We generate an edge in the system
by illuminating a selected area of the lattice with a repulsive potential which generates
a potential step separating the system into an area of low and high potential energy.
We position the tweezer close to the edge of the illuminated area, the position is varied
transversal to the edge in order to optimize the preparation of the atoms in the edge
mode. The precise alignment of the edge potential with respect to the symmetries of the
honeycomb lattice is irrelevant as the edge modes are immune to scattering e.g. due to
imperfections of the lattice potential. Equivalently defects in the lattice do not obstruct
the propagation of the edge mode [79].

Figure 5.6 shows the time evolution of the system after abruptly switching off the
tweezer in the anomalous regime, m = 0.25 and ω/(2π) = 7 kHz, corresponding to the
blue marker in Figure 5.1a. The projected potential consists of an repulsive disk of height
V0 = h × 16.7(3) kHz and radius 5.8µm (≈ 20a) preventing the atoms from tunneling
into this area. The shape of the potential is shown in the inset of Figure 5.6, where the
repulsive potential is shown in black. The evolution times are stated in absolute units
and additionally in nearest neighbor tunneling times of the static 5.9Erec lattice, where
J0 = h × 1.1(1) kHz is the nearest neighbor tunnel coupling and τ = ℏ/J0 = 145µs the
tunneling time. After releasing the atoms from the tweezer we observe that the wave
packet propagates along the potential boundary, following its shape, as is characteristic
for chiral edge modes (Figure 5.6a). The chirality of the images shown in Figure 5.6a is
κ = 1. Furthermore, while the potential is repulsive, the atoms remain close to the edge,
propagate over more than 20a and do not scatter into the bulk of the system, indicating
a good overlap of the initial wave packet with the edge mode. In addition, the wave
packet disperses while propagating, due to the non-linear dispersion relation of the edge
mode and as a result of the finite width of the edge [120, 308, 318]. The propagation
is almost entirely unidirectional along the potential edge, even thought the edge is not
following any symmetries of the lattice and can be viewed as consisting of an assembly
of various missing sites in the unit cell. To highlight the chiral nature of the edge mode,
the modulation direction is inverted to κ = −1 in Figure 5.6b. This changes the sign of
the winding numbers and therefore the chirality of the edge mode, which propagates in
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Figure 5.7 | Observation of anomalous Floquet topological edge modes inside a confining ring potential.
a, Time-evolution of the atoms κ = +1 b, same as a but κ = −1. c Difference image ∆OD. The evolution

times are indicated on the leftmost image of each row. The modulation parameters are m = 0.25

ω/(2π) = 7 kHz. All absorption images are averages of 40− 160 individual experimental realizations. The

scale bar represents a length of 10a. The position of the dashed lines is calculated from the programmed

pattern on the DMD.
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Figure 5.8 | Observation of anomalous Floquet topological edge modes next to a straight step potential.
a, Time-evolution of the atoms after releasing the atoms from the tweezer into the modulated lattice

(κ = +1), close to a straight potential edge represented by the dashed line. The inset illustrates the

shape of the repulsive potential, which is shown in black. b, same as a but with opposite chirality of the

modulation κ = −1. c Difference image ∆OD between the time evolution shown in a with κ = +1 and the

evolution under the opposite chirality κ = −1 shown in b. The evolution times of a and b are indicated at

on top of each column. The modulation parameters areω/(2π) = 7 kHz and m = 0.25 (blue marker in

Figure 5.1a). All absorption images are averages of 100 − 300 individual experimental realizations. The

scale bar represents a length of 10a. The position of the dashed lines is calculated from the programmed

pattern on the DMD.

opposite direction compared to the case κ = 1 shown in Figure 5.6a. Figure 5.6c shows
the difference between the images ODκ taken for κ = 1 and κ = −1,

∆OD = ODκ=+1 − ODκ=−1, (5.2)

where OD stands for optical density. Apart from the change in the propagation direction,
we observe very similar behavior as the edge modes propagate. The programmable repulsive
potential offers almost arbitrary control over the shape and orientation of the edge. In
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Figure 5.7 we show experimental results for a repulsive potential that creates a ring shaped
potential inside which the cloud is located in contrast to the measurements presented in
Figure 5.6 where the edge mode propagates on the outside of an obstacle. The inset in
Figure 5.7a illustrates the shape of the repulsive potential, which is shown in black. The
height of the ring potential is V0 = 17.0(3) kHz with an inner radius of 13.3µm (≈ 47a)
represented by the dashed line. As the initial state is now located to the left of the wall
compared to the measurement presented in Figure 5.6, where the initial state is aligned
to the right of the wall, we do now observe that the state with κ = 1 (Figure 5.7a) is
propagating in a clockwise fashion along the wall. This result further shows that we do
not have an external force or an overall gradient in the system driving Bloch oscillations
which would result in the same deflection for both orientations of the wall. Figure 5.7b
shows the evolution for opposite chirality of the drive κ = −1 but otherwise identical
experimental parameters. The difference signal (Figure 5.7c) also shows that upon inversion
of the modulation chirality the edge mode also changes chirality, while e.g. the dispersion
of the edge mode remains unchanged. We note that the images in Figure 5.7 show a
different OD as we had improved the imaging system with an additional repumper similar
to the technique presented in [292].

As the evaluation of the velocity in this curved geometry is not straightforward we have
also investigated a straight edge, where the system is separated in to two regions: one region
with low, and another region with high potential energy at energy V0 = h× 16.7(3) kHz. At
the interface between the two regions we again expect to detect an edge mode. The edge
implemented in the experiment is oriented parallel to a zigzag edge of the system. Figure 5.8
shows the evolution of the system after release from the tweezer next to a straight edge.
We observe the chiral propagation of the edge mode along the potential step depending on
the chirality of the drive (κ = 1 in Figure 5.8a and κ = −1 in Figure 5.8b). For the longest
evolution times (t = 12.5ms), the center-of-mass position of the cloud travels approximately
20a, and the fastest 20% of the atoms travel more than 30a.

The straightforward identification of edge modes illustrates the potential of our ex-
perimental protocol for probing the topological properties of Floquet topological systems,
where knowledge about the Chern numbers is insufficient, or where conventional meth-
ods for detecting bulk geometric properties are not applicable, e.g., in the presence of
disorder or strong interactions.

5.1.4 Comparison to the static lattice
To rule out any trivial contribution to the chiral signal, we prepare the system in the
topologically trivial band structure of the static lattice and for otherwise identical settings
as in the anomalous Floquet regime. We first optimize the position of the tweezer to
achieve the optimum overlap between the tweezer and the edge mode in the anomalous
regime. Once the position leading to maximum overlap between tweezer and edge mode is
found we alternatively take images in the static lattice and in the modulated lattice. The
parameters in the anomalous regime are m = 0.25 and ω/(2π) = 7 kHz (blue marker in
Figure 5.1a) with varying chirality κ = {+1,−1}. For the realizations in the static lattice
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Figure 5.9 | Comparison of the expansion in a trivial and topological band structure. a, Evolution of a

wave packet prepared in the unmodulated static lattice close to the edge imaged 5 ms after switching

off the tweezer. The left images correspond to all parameters of the experiment equivalent to κ = +1,

the right image to κ = −1. b, Difference image ∆OD for the dataset of a showing no chiral motion. c
Evolution of the wave packet 5 ms after releasing the cloud from the tweezer in the modulated lattice

in the anomalous regime. The initial position is identical to the dataset shown in a. The chirality of

the left image is κ = +1, the right image κ = −1. d Difference image ∆OD for the dataset of c clearly

highlighting the chiral motion in the topologically non-trivial phase. The images are the result of 67

individual realizations.

we keep all parameters of the programmed sequence identical except for the modulation
amplitude which we set to m = 0. In this way we can perform the identical analysis
and exclude e.g. systematic errors which might favor one over the other propagation
direction also in the static lattice.

Figure 5.9 shows the result of the described experiment. In the static lattice (cf.
Figure 5.9a) we observe a trivial localization due to the potential gradient similar to
a Wannier-Stark ladder [321, 322] and expansion in the static lattice as described in
Section 5.1.2. The expansion is slightly modified as atoms can be reflected from the wall or
slowly tunnel from a localized state on the wall into the bulk. Nevertheless we expect to not
observe any chiral or directional expansion on the edge. This expectation is confirmed, we
observe a symmetric expansion about the initial position of the wave packet (cf. Figure 5.9a).
The evolution of both “artificial” chiralities, as there is no sense of chirality for m = 0, is
identical down to the noise floor of the images. Figure 5.9c shows the difference image
∆OD between the two “artificial” chiralities shown in Figure 5.9a. The potential height in
these experiments is V0 = 17.0(3) kHz, which is significantly exceeding the energy scales
in the lattice which are on the order of J0 = h× 1.1(1) kHz. The individual sites located
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on the slope of the potential are therefore decoupled in the direction perpendicular to the
wall explaining the trivial localization on the edge.

In the anomalous regime we observe as described before the unidirectional propa-
gation of the cloud, which is shown in Figure 5.9c, for which the difference image is
shown in Figure 5.9d.

This experiment also rules out any potential systematic errors that might lead to the
unidirectional propagation behavior of the edge modes. Yet it is interesting to see the
close link between localization in the trivial case and the emergence of edge modes in the
topological case resulting from the potential gradient.

5.1.5 Preparation in the Haldane regime
The phase diagram hosts a multitude of topological phases [86, 111, 174, 323] as shown in
Figure 5.1. We have so far only explored the edge mode in the anomalous regime where
the system is described by a Chern number C− = 0 and W 0 = 1 and W π = 1, i.e., edge
modes are located in both of the gaps. The Haldane regime exhibits only a single edge
mode in the 0-gap and is fully described by the Chern number C− = 1, as long as we
assume the high frequency expansion holds. Probing this edge mode proved experimentally
more challenging compared to the anomalous regime as the overlap with the edge mode
that can be achieved by releasing the cloud from a static tweezer, which imprints no phase
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profile parallel to the edge, is not very large. However applying a kick to the cloud by
displacing the tweezer linearly in time improves the fraction of atoms in the Haldane edge
mode significantly. The kick accelerates the cloud to a finite velocity which is equivalent to
aphase gradient across the cloud (cf. Section 3.2.2). To prepare the system in the Haldane
regime we use a modulation amplitude m = 0.25 and modulation frequency ω/(2π) = 16
(green marker in Figure 5.1a) and prepare the system next to a straight edge with height
V0 = h × 2.2(1) kHz oriented parallel to a zigzag edge of the lattice. The energy scale
related to the modulation frequency is not exceeding the band width of the two s-bands of
the system dramatically, therefore we cannot claim the system to be in the high frequency
limit. However these parameters favor a relatively large gap at K of ∆EK = h× 1.4 kHz,
which should result in a greater velocity of the edge mode compared to a smaller gap,
cf. Section 2.2. Even though we do not probe the system in the high frequency limit the
system exhibits identical properties as it is still well gapped in the π-gap and we cannot
expect a strong influence of the Floquet copies.

Releasing the wave packet from a tweezer with trapping frequency ω/(2π) = 1.3(1) kHz
into the modulated lattice results in a very poor preparation of the edge mode as shown in
the left inset in Figure 5.10. Increasing the kick to apply a phase gradient which corresponds
to a point closer to the edge of the one-dimensional Brillouin zone oriented parallel to the
edge at kmax = π/(

√
3a) ≈ 0.58π/a (gray vertical line in Figure 5.10) results in improved

preparation of the edge mode as shown in the center inset. While the population in the
edge mode is increased there is still significant population in the bulk of the system, which
indicates that either the phase profile is not matching the edge mode, or that the density
profile resulting from the tweezer does not match with the density profile of the edge mode
and therefore results in a poor overlap of the wave function prepared in the tweezer and the
edge mode. By increasing the intensity in the tweezer trap we can increase the trapping
frequency to ωtw/(2π) = 2 kHz which reduces the spatial extent of the wave function.
Having the smaller cloud we can not only apply a larger phase gradient to the cloud but
also observe an improved loading into the edge mode, cf. the right inset in Figure 5.10
where we show a representative image for a phase gradient ≈ 0.45π/a. We observe very
little scattering into bulk states and a strong signal in the chiral edge mode in the Haldane
phase. This highlights the two conditions that need to be matched in order to achieve good
overlap with the edge mode: 1) the spatial extent of the wave functions need to match, and
2) the phase profile of the prepared wave packet needs to match the edge mode [121].

To quantify the occupation in the edge mode we evaluate the fraction of atoms in the
edge mode compared to the bulk population: the edge fraction. We let the wave packet
evolve for t = 1.5ms, a time long enough to separate atoms near the edge from those
scattered into the bulk modes, then the fraction of atoms in the edge mode is evaluated
as a function of the imprinted phase gradient as described below. For the smaller tweezer
trapping frequency (light green data points), we observe an overall poor overlap with
the edge mode which increases as we increase the phase gradient close to the theoretical
maximum of 0.58π/a. Decreasing the initial spatial extent of the cloud further with a
tighter tweezer reduces scattering into the bulk (dark green data points) while also reducing
the influence of the initial phase gradient applied to the cloud. We interpret this reduced
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data point of Figure 5.10 shown in the center inset.

dependence as the extent of the wave function approaching a single lattice site, where a
phase difference between neighboring sites is not well defined as mainly one site is occupied.

In contrast to the Haldane regime we find an extremely robust behavior in the anomalous
regime, where the fraction of atoms in the edge mode is largely independent of the
properties of the initial wave packet. In this regime, the initial wave packet is projected
onto both edge modes, one in the 0-gap and one in the π-gap, for each quasi-momentum.
Varying the parameters of the initial state should only affect the relative weight between
the two modes which we cannot independently resolve in the experiment. Section 5.1.6
discusses in detail how the edge states change in the different topological regimes and
for different edge terminations.

The edge population fraction, displayed in Figure 5.10, is determined by integrating
the OD in the respective regions of interest as illustrated in Figure 5.11. We prepare
the initial state with varying trap frequency ωtw/(2π) = 1.3(1) kHz and 2.0(1) kHz of
the optical tweezer and different initial phase gradients. In order to ensure the optimum
spatial overlap of the initial state with the edge mode, we additionally vary the position
with respect to the edge potential. Several absorption images are taken with the same
experimental parameters and averaged. To determine the size of the region of interest,
we verify that the integrated optical density is unaltered for small changes in the size of
the region of interest. Additionally, two regions of half the size of the previous ones are
defined separated from the central region to evaluate the background value of the image
as shown in Figure 5.11. We independently sum the optical density of the edge and bulk
regions of interest and subtract the summed optical density in the background regions
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Figure 5.12 | Observation of the edge mode in the Haldane regime. a, Time-evolution of the atoms after

releasing the atoms from the tweezer into the modulated lattice (κ = +1), close to a straight potential

edge of height V0 = h × 2.2(1) kHz represented by the dashed line. The inset illustrates the shape of the

repulsive potential, which is shown in black. b, same as a but with opposite chirality of the modulation

κ = −1. c Difference image ∆OD between the time evolution shown in a with κ = +1 and the evolution

under the opposite chirality κ = −1 shown in b. The evolution times of a and b are indicated at on

top of each column. The modulation parameters are ω/(2π) = 16 kHz and m = 0.25 (green marker in

Figure 5.1a). The data corresponds to the one highlighted by the inset for ωtw/(2π) = 2.0(1) kHz. All

absorption images are averages of 4 − 90 individual experimental realizations. The scale bar represents a

length of 10a. The position of the dashed lines is calculated from the programmed pattern on the DMD.

to obtain the signal from the bulk Sbulk and edge Sedge. These values are then used to
compute the fraction pedge of atoms in the edge region:

pedge =
Sedge

Sedge + Sbulk
. (5.3)

The error bar is evaluated using the standard deviation of the two values of the fraction
obtained for the two opposite chiralities of the lattice modulation and the noise of the
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Figure 5.13 | Changing the direction of the kick in the Haldane regime. Each image a-d shows the

evolution of the atoms with different parameters: the direction of the kick is indicated by the arrow on

the left pointing up or down; the chirality of the modulation by the direction of the circular arrow on the

top right, corresponding to κ = −1 in a,c, and κ = 1 in b,d. The cloud is prepared at ky ≈ 0.43π/a. The

trap frequency of the tweezer is ωtw/(2π) = 2.0(1) kHz. The black point indicates the initial position

of the cloud. The dashed line indicates, where the edge is located, and the scale bar on the bottom left

represents a length of 10a.

imaging system that is obtained from the standard deviation of the optical density in
the background region.

As Figure 5.11 and Figure 5.10 only show one of the two chiralities of the drive we show
the expansion dynamics in the Haldane phase in Figure 5.12. The shown data correspond
to the one highlighted by the inset of Figure 5.10 for ωtw/(2π) = 2.0(1) kHz. Compared to
the anomalous regime the dispersion of the edge mode and therefore the extent of the cloud
parallel to the edge is larger, however the center of mass is still propagating in a chiral way.

To prepare the edge mode in the Haldane regime we need to apply a kick to the cloud,
which results in a center of mass motion of the cloud compared to the lattice. We verify
here that the direction of this velocity kick does not change the subsequent dynamics of
the cloud, in particular that its direction of propagation along the edge is unaltered, and is
solely determined by the chirality of the topological edge mode. Figure 5.13 shows averaged
pictures of the evolution of a cloud of atoms in the Haldane regime under the two opposite
chiralities of the lattice modulation (top and bottom row), and with an initial velocity kick
that is applied in two opposite directions (left and right column). These pictures highlight
the fact that the direction of propagation of the atoms along the edge is only determined
by the chirality of the modulation, i.e., by the chirality of the topological edge mode. The
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direction of the initial kick does not intervene, since the purpose of this kick is to bring
the cloud of atoms from a flat phase profile closer to the phase profile corresponding to
the edge of the Brillouin zone along the infinite direction of the lattice. A kick in the
opposite direction results in the opposite phase gradient.

5.1.6 Edge states for different edge terminations
As we will see in the following the quasimomentum alone is not sufficient in order to
determine whether a kick is needed in order achieve good overlap with the edge mode.
The honeycomb lattice can be terminated with four high symmetry terminations: zigzag,
armchair, barbed and the more recently discovered twig-shaped edge [141]. The twig-shaped
edge consists of an armchair terminated system where either of the two sublattice sites
is removed from the outermost row of the edge. This edge cannot be obtained by simply
cutting an infinite honeycomb lattice with a straight cut. In the current setup this type of
edge cannot be realized due to the lack of single site addressing with the DMD potential,
and will therefore not be investigated further. Future experiments might be possible if the
spatial resolution is sufficient to realize this type of edge e.g. in a quantum gas microscope.
The zigzag edge and the barbed edge exist for the same orientation of the cut but are
shifted with respect to one another. The sites on the edge have different connectivity, the
zigzag edge has a connectivity of two, while the sites on the barbed edge have a connectivity
of one. The armchair edge arises when cutting the system at a 90◦ angle compared to a
zigzag or barbed edge. In contrast to the zigzag or barbed edge we do find both A- and
B-sites located on the edge of the system. Terminating the system in different geometries
results in different lengths of the unit cell parallel to the edge and therefore, according to
the Nyquist–Shannon sampling theorem, the maximum resolvable spatial frequency, i.e.,
quasimomentum varies inversely proportional to the length of the unit cell. The unit cell for
a zigzag or barbed edge has a length L =

√
3a, while the armchair edge unit cell is L = 3a

long. This results in different maximum quasimomentum along the edge, kmax = ±π/(
√

3a)
for the zigazag and barbed edge, while for the armchair edge kmax = π/(3a). As illustrated
in Section 2.5.6 and Figure 2.12 the shape of the band structure can be interpreted as
the integration of the two dimensional Brillouin zone along the finite direction. Instead of
quasimomentum in two dimensions the we now have real momentum in the finite direction
and quasimomentum along the periodically repeating direction. Momenta that are larger
than kmax are aliased, i.e., folded back to the Brillouin zone. This information however
is not lost as there can still be a real momentum within the unit cell, which arises as a
phase profile imprinted to the state within the unit cell.

Figure 5.14 shows the dispersion calculated for a stepwise modulation of the tunneling
amplitudes with Λ = 10 in the Haldane regime, at ℏω/(ΛJ0) = 4.5. The system is
terminated with a zigzag edge (left column), armchair edge (center column) and a barbed
edge (right column). In the Haldane regime we only find a single edge mode located in the
0-gap. The state highlighted by the downfacing triangle is plotted below the spectrum for
each of the three terminations. The population on every site is encoded in the color bar
which is normalized to the maximum population on a single site of the respective state.
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Figure 5.14 | Dispersion and exemplary edge states in the Haldane regime. a, Dispersion for a system

terminated with a zigzag edge. b, Dispersion for a system terminated with an armchair edge. c, Dispersion

for a system terminated with a barbed edge. d, Exemplary edge state on the zigzag edge in the 0-gap at the

edge of the Brillouin zone (downfacing triangle in a). e, Exemplary edge state on the armchair edge in the

0-gap located at ky = 0 (downfacing triangle in b). Even though the 0-gap edge state is located at ky ≈ 0

it still exhibits a phase profile within the unit cell and preparation of this edge mode would require a

kick. f, Exemplary edge states on the barbed edge in the 0-gap (downfacing triangle in c). The population

is mainly located on the edge, but the state still exhibits a phase gradient when comparing to the next

most populated state. The states plotted in the bottom row are highlighted by the downfacing triangle in

the upper row. The population, indicated by the shading of the arrows, is normalized to the maximum

population on a single site for the depicted state with the arrows’ orientations indicating its complex

phase. The shading of the spectra corresponds to the overlap of the system with a region excluding the

left numerical edge to only show one edge mode.

The orientation of the arrow tip on every site shows the phase of the state on this site,
with adjacent unit cells shifted by the quasimomentum of the state. In contrast to the
armchair and barbed edge, where the edge mode is located at zero quasimomentum ky = 0,
the edge mode in the zigzag terminated system is located at the edge of the Brillouin zone
ky = ±π/L. The edge mode in the zigzag and barbed case are almost entirely located on a
single site of the unit cell. As the edge mode on the zigzag edge has a phase difference of π
between unit cells, a non zero phase profile is required in order to achieve good overlap
with an edge mode. This observation confirms the experimental findings presented in
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Section 5.1.5. Judging only by the location of the edge mode in quasimomentum we could
expect to be able to prepare the armchair edge mode from an initial state with flat phase.
This is not true. One key difference compared to the zigzag edge is the residual phase profile
located within the unit cell of the armchair edge, where the most populated sites exhibit
a phase shift of π. Therefore in order to populate the edge mode in the armchair edge
geometry we also require a kick. Interestingly the extent of the state perpendicular to the
wall is also significantly larger in the armchair geometry compared to the zigzag or barbed
edge case and changes with the size of the gap. The smaller the gap, the more extended the
state is; this is likely related to the existence of the trivial edge states present in the zigzag
and barbed geometry but absent in the armchair geometry as introduced in Section 2.2.3.

In the experiment we do not prepare a infinitely sharp edge and therefore even though
it is oriented parallel to a zigzag edge, we can expect the system to also have a slight
barbed characteristic. The barbed edge would also require a kick, the phase profile along
the edge is flat but the next most populated sites in the barbed edge case are also shifted
with respect to the site on the edge, also resulting in a non-zero phase profile within the
unit cell. The preparation of this state would therefore also require a phase gradient. This
edge mode would also have a non-vanishing overlap with an extended wave packet with
flat phase along the edge, experimentally we however do not observe a significant edge
mode fraction for the weakly confining tweezer in Figure 5.10. Potentially we might not
manage to observe the edge mode in the barbed case as its slope is approximately two
times smaller compared to the zigzag edge.

As briefly mentioned in Section 5.1.5 the preparation of the edge mode in the anomalous
regime does not require a kick and simply releasing the cloud from the tweezer is sufficient
to achieve good overlap with the edge mode. Figure 5.15 shows the dispersion and
resulting edge states in the 0- and π-gap in the anomalous system for different edge
terminations at ℏω/(ΛJ0) = 1.5.

The additional edge mode in the π-gap emerged from a singularity at Γ, while the edge
mode in the 0-gap exists due to the rectified Berry curvature at K and K ′. Considering
the system shortly after the respective transition, the edge mode bridges the energy gap
at this respective quasimomentum, because it could not have been generated elsewhere.
Therefore the edge mode in the 0-gap exhibits a non-zero phase profile, while the edge
mode emerging from the band touching at Γ in the π-gap has a flat phase profile as it
is located around zero quasimomentum. This observation is confirmed along the zigzag
and armchair edge: The edge state in the 0-gap still exhibits a phse profile varying along
the edge, while the edge state in the π-gap exhibits a flat phase profile. The edge state
on the barbed edge (cf. Figure 5.15c and f) does not follow this observation stritly, both
edge states exhibit a flat phase profile. However, depending on the initial phase of the
drive there is an instance, where the edge state in the 0-gap exhibits a phase profile within
the unit cell, while the π-gap edge state always has a flat phase profile. This already
shows the importance of the micromotion, i.e., the evolution within one modulation cycle,
which is further discussed in Section 5.1.7.

Experimentally we also investigate the properties of the Haldane-like regime (orange
marker in Figure 5.1a). In this regime the edge mode in the 0-gap is annihilated due to
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Figure 5.15 | Dispersion and exemplary edge states in the anomalous regime. a, Dispersion for a system

terminated with a zigzag edge. b, Dispersion for a system terminated with an armchair edge. c, Dispersion

for a system terminated with a barbed edge. d, Exemplary edge states on the zigzag edge in the 0-gap

located at the edge of the Brillouin zone (left, downfacing triangle in a) and π-gap located at ky = 0 (right,

upfacing triangle in a) e, Exemplary edge states on the armchair edge in the 0-gap located at ky = 0

(left, downfacing triangle in b) and π-gap at ky = 0 (right, upfacing triangle in b). Even though the 0-gap

edge state is located at ky = 0 it still exhibits a phase profile within the unit cell and preparation of

this edge mode would require a kick. f, Exemplary edge states on the barbed edge in the 0-gap (left,

downfacing triangle in c) and π-gap (right, upfacing triangle in c). This edge mode in the barbed case

could be prepared without applying a kick in the anomalous regime, but its phase profile depends on the

initial phase of the drive. The two states plotted in the bottom rows are highlighted by the up- (π-gap,

right) and downfacing (0-gap, left) triangle in the upper row. The population, indicated by the shading

of the arrows, is normalized to the maximum population on a single site for the depicted state with the

arrows’ orientations indicating its complex phase. The shading of the spectra corresponds to the overlap

of the system with a region excluding the left numerical edge to only show on one edge mode.

a second band touching at Γ at the phase transition from the anomalous to the Haldane-
like regime, cf. Section 4.2 and Section 4.3. In the dispersion of the semi infinite strip
(ℏω/(ΛJ0) = 1.0) we still find a chiral edge mode in the π-gap and additionally states located
in the 0-gap, which are however not topological, for the zigzag and armchair terminated
system. The states in the 0-gap exhibit a vanishing group velocity when integrated over the
entire Brillouin zone. Alternatively one can count the number of crossings of theses states at
a given energy level in the gap, if the number is odd, the edge mode is topological, otherwise
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Figure 5.16 | Dispersion and exemplary edge states in the Haldane-like regime. a, Dispersion for a

system terminated with a zigzag edge. b, Dispersion for a system terminated with an armchair edge. c,

Dispersion for a system terminated with a barbed edge. d, Exemplary state located in the 0-gap on the

zigzag edge at the edge of the Brillouin zone (left, downfacing triangle in a) and edge state in the π-gap

located at ky = 0 (right, upfacing triangle in a) e, Exemplary state on the armchair edge in the 0-gap

located at ky = 0 (left, downfacing triangle in b) and edge state in the π-gap at ky = 0 (right, upfacing

triangle in b). f, Lowest energy state on the barbed edge above the 0-gap (left, downfacing triangle in c)

and edge state in the π-gap (right, upfacing triangle in c). For the left plot not the entire population is

shown, there is also population in the bulk but none on the opposite edge. The two states plotted in the

bottom rows are highlighted by the up- (π-gap, right) and downfacing (0-gap, left) triangle in the upper

row. The population, indicated by the shading of the arrows, is normalized to the maximum population

on a single site for the depicted state with the arrows’ orientations indicating its complex phase. The

shading of the spectra corresponds to the overlap of the system with a region excluding the left numerical

edge to only show on one edge mode.

the states are trivial [57]. The edge modes in the 0-gap belong to the latter. As these states
are still to a very large fraction located on the edge we also show these states in Figure 5.16.

For all three terminations we find the edge state located at ky = 0 and exhibiting a
gradient of phase within the unit cell but the mainly occupied states still exhibit the same
phase (cf. right plots in Figure 5.16d,e,f). The trivial states located in the gap in the zigzag
geometry are still fully located on the edge, similar to the edge mode in the Haldane regime
(cf. Figure 5.14d). However, these states do not belong to a chiral edge mode as they do not
bridge the 0-gap. All states connected to the shown state are localized on the right edge.
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In the armchair geometry we find two trivial states located in the 0-gap, again both states
are localized on the right edge and are not part of the bulk. On the barbed edge we find no
trivial state in the gap (cf. Figure 5.16c), but the lowest energy state of the upper band (left
plot in Figure 5.16f) is still localized to a large fraction on the right edge, yet it also has a
significant weight in the bulk which is not shown, but no contribution on the opposite edge.

Currently the observation of these trivial states is not straight forward as we do not
have means to distinguish propagating states from stationary states as the observation time
so far is not long enough. We also want to note, that one could create a false edge mode
experimentally by engineering a wave packet that only occupies the states in the gap at the
edge of the Brillouin zone with positive slope, cf.e.g. Figure 5.16a. If there is negligible
population in other states, one would still observe a state, at least initially, propagating
on the edge. It would be interesting to see if there is a regime of modulation parameters,
where a similar state emerges but the rest of the system is topologically trivial in contrast
to the system here, where the bulk has a Chern number C− = −1.

5.1.7 Effect of the micromotion

The sub-cycle evolution during the Floquet drive is commonly referred to as micromo-
tion [88, 92, 93]. In our experiment the effect of the micromotion should be negligible
for observation at integer multiples of the drive cycle and a slow ramp-up of the modu-
lation [92]. Numerically we calculate the evolution operator for one cycle of the drive to
obtain the Floquet-Hamiltonian (see Section 2.3.2), therefore eigenstates of the Floquet-
Hamiltonian carry information about the initial phase used to calculate the evolution
operator. In the step wise tunneling modulation the evolution operator easily separates
into the three parts of the period:

Û(T , 0) = Û(T , 2T/3) · Û(2T/3, T/3) · Û(T/3, 0) (5.4)

= Û3 · Û2 · Û1, (5.5)

where the Ui correspond to the part of the cycle, where the modulation along bond i is
enhanced. From this decomposition we immediately see that the kick operator connecting
one initial phase to another for a fixed chirality is simply given by the evolution operator
during one third of the period. This analysis in principle holds for all modulation protocols
as long as the evolution operators can be smoothly connected. If we restrict the initial
phase to be one of the three presented above we have for the same chirality the three
evolution operators with different initial phases:

Û3 · Û2 · Û1, (5.6)

Û2 · Û1 · Û3, (5.7)

Û1 · Û3 · Û2. (5.8)

For this stepwise drive investigating the initial phase of the drive is equivalent to considering
different times within the modulation cycle. The application of one of the Ui on any of
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Figure 5.17 | Effect of the micro motion in the anomalous phase on the armchair edge. a, Dispersion

in the anomalous phase (m = 0.25,ω/(2π) = 7 kHz), where the tunneling amplitudes are close to the

implementation in the experiment. b, Dispersion for the step modulated lattice (Λ = 10, h̄ω/(ΛJ0) = 1.5).

c, Dispersion for the sinusoidal modulation (Λ = 10, h̄ω/(ΛJ0) = 2) of the tunneling amplitude. d,

Exemplary wave functions for the edge modes in the 0- (left, downfacing triangle in a) and π-gap (right,

upfacing triangle in a) for different initial phase varying by 2π/3 per row in the experiment modulation

scheme. e, Exemplary wave functions for the edge modes in the 0- (left, downfacing triangle in b) and

π-gap (right, upfacing triangle in b) for different initial phase varying by 2π/3 per row in the stepwise

modulated lattice. The weight on the sublattices changes between the different realizations, being mainly

the A-, then the B-sublattice and eventually an equal mixture. f, Exemplary wave functions for the edge

modes in the 0- (left, downfacing triangle in c) and π-gap (right, upfacing triangle in c) for different initial

phase varying by 2π/3 per row for the sinusoidal modulation. The weight on the sublattices changes

similar to e, but since the bands are more dispersive, the attribution is not as clear. The states plotted

in the bottom rows are highlighted by the up- (π-gap, right) and downfacing (0-gap, left) triangle in the

upper panels. The population, indicated by the shading of the arrows, is normalized to the maximum

population on a single site for the depicted state with the arrows’ orientations indicating its complex

phase. The shading of the spectra corresponds to the overlap of the system with a region excluding the

left numerical edge to only show on one edge mode.

the eigenstate results in the eigenstate of the modulation with initial phase i, under the
assumption that the chirality is maintained, i.e., the micromotion is equivalently described
by considering different initial phases.
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The model presented in Section 2.5.1 can be intuitively used to understand the role of
the micromotion, i.e., the evolution within one modulation cycle. Whenever the tunneling
is enabled along one of the three nearest neighbor tunneling bonds, the atom tunnels
along this bond. In the bulk of the system this leads to particles encircling the plaquette.
Applying only one of the three modulation operators would only move the particles along
one of the bonds. By that the sub-cycle evolution moves the particles along the bonds of
the plaquette and transfers atoms from one sublattice to the other. When going away from
this fine-tuned case, the exact transfer between the sublattices is no longer true but we
can expect to still observe a shift of the mean weight between the sublattices. Depending
on the initial phase of the modulation we can for example expect the wave function to
be mainly located on A-sites, while a shift of the initial phase by 2π/3 would result on
the wave function being mainly located on B-sites.

Figure 5.17a and d show the effect of a varying initial phase, i.e., micro motion of
the drive for a modulation close to the experimental implementation (cf. Section 4.1).
While the dispersion of the system is unchanged, the resulting eigenstates are varying
and the shift from sublattice A to B is visible as the initial phase is changed. The bands
in this implementation are dispersive and therefore the attribution to a single sublattice
is incomplete. The step modulated lattice results in less dispersive bands as shown in
Figure 5.17b, the resulting edge states (Figure 5.17e) for different initial phases of the
drive are essentially fully located on either the A- or B-sublattice or exactly balanced
between the two depending on the initial phase of the drive. For the cosine modulation
(Figure 5.17c and f), which is closer to the experiment than the step modulated lattice
as it also implements a continuous modulation of the tunneling, we observe a similar
trend as in the implementation close to the experiment. The eigenstates are only partially
localized to either of the two sublattices.

In the experiment we do currently not have the means to investigate the population
on individual lattice sites, we can therefore not directly observe the exact instance of the
edge mode in the experiment. Nevertheless we experimentally compared the evolution in
the bulk for different initial phases and chiralities in order to verify the performance of the
experiment and that the initial phase does not influence the evolution of bulk states.

As we have argued above, a smooth ramp connecting the static and the modulated
system should result in a smooth transformation of the states between the two regimes
and prevent strong effects of the initial phase. We therefore expect the system to evolve
equivalently independent of the initial phase, furthermore in the bulk we expect to see no
effect of the chirality of the drive. Figure 5.18 shows the expansion after t = 2.5ms in the
Haldane regime (m = 0.25, ω/(2π) = 16 kHz, green marker in Figure 5.1a) for the three
possible initial phases (columns) of the drive and the two chiralities (rows) of the drive. We
observe no difference in the bulk expansion for the different initial phases and chiralities as
shown by the differential images in the bottom row of Figure 5.18. From the expansion
images we can also deduce that system evolves coherently. We observe the characteristic
hexagonal shape and interference fringes within the hexagon after the expansion.
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Figure 5.18 | Effect of the initial phase in the bulk expansion in the Haldane regime. Expansion after

t = 2.5 ms in the Haldane regime (m = 0.25,ω/(2π) = 16 kHz, green marker in Figure 5.1a) for different

initial phases and opposing chirality. a, Expansion with initial phase 0 after ramping the modulation up

for 5T . The top row is for chiraltiy κ = 1, while the second row is κ = −1. The bottom row shows the

difference between the two chiralities. b, same as a but with initial phase 2π/3. c, same as a but with

initial phase 4π/3.

5.2 Changing the properties of the edge
The properties of the edge strongly influence the dynamics of the edge mode [100, 308, 318].
The unique control over the applied potential allows us to tune the width and height of
the applied optical potential. We observe how edge modes emerge on the interface as we
increase the height of the potential and how their velocity changes. Varying the width of
the edge we show how the edge modes slow down for increasing width of the step potential.

5.2.1 Extracting the velocity of the edge mode
From the differential images we can qualitatively identify if an edge mode is present or not.
However we cannot quantify how e.g. parameters of the potential step affect the resulting
edge mode. One possible parameter to investigate the behavior of the edge mode is its
velocity. We measure the velocity of the edge mode by first maximizing the spatial overlap
of the initial cloud and the edge mode. To this end, the initial position of the tweezer
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Figure 5.19 | Determination of the edge mode velocity. a, In situ images of atoms in the optical tweezer.

The position of the tweezer is varied from top to bottom by steps of 0.48 µm in the x direction (perpendicu-

lar to the orientation of the edge), as emphasized by the vertical dashed line. The pictures are an average

of five individual experimental realizations, performed without the edge potential in order to better see

the displacement of the tweezer. The scale bar corresponds to 10a. b-c, Evolution of the cloud for the

two chiralities. The first line shows the average of the absorption images after an increasing evolution

time, displayed with the same colorscale. The second line shows the result of the Gaussian fit that is

performed on the averaged images. On these fits, the center of the Gaussian is indicated as a black dot.

The error bar, which stems from a bootstrap analysis, is smaller than the marker. d, The absolute distance

∆r between the center-of-mass positions of the time-evolved clouds with the two different chiralities

is plotted as a function of the time. The five different markers correspond to the five initial positions,

and the corresponding solid lines are linear fits. e, The slope of the fit is divided by a factor of two to

obtain the average velocity of the edge mode. The measured velocity is plotted as a function of the initial

position, and the final value that is selected is the maximum value of these points. The markers are the

same as d. For the leftmost tweezer position the error bar is very large: the atoms are released on top of

the potential step and no reliable velocity can be extracted.

is varied with respect to the edge by steps of approximately 0.5µm. Figure 5.19a shows
the five different initial position of the tweezer used to optimize the overlap between the
initial state and the edge mode. In this measurement the wall potential is off such that
the position of the wave packet directly reflects the position of the tweezer trap and is
not additionally influenced by the repulsive edge. To extract the velocity we release the
cloud from the tweezer and observe its subsequent evolution for various durations, and
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for the two opposite chiralities of the modulation scheme. The top rows of Figure 5.19b
and c show the evolution for the two chiralities in the anomalous regime and with an edge
height of V0 = h × 19.0(3) kHz, where each picture is the average of Nim experimental
images. The position of the center of mass of these observed clouds are evaluated by fitting
the averaged images with a Gaussian function with its center, its amplitude, its two sizes,
its offset and the orientation of its eigenaxes as free parameters. The error bars of these
fitted parameters are estimated with a bootstrap method: Among the Nim experimental
images, a random draw with replacement of Nim of these images is performed. The chosen
images (with possible repetition) are averaged and the resulting image is fitted with the
same Gaussian function. This random drawing, averaging and fitting procedure is repeated
20 times, thus providing as many estimates for the parameters of the Gaussian. The error
bar for the fitted parameters is given by the standard deviation of these obtained values.

Figure 5.19d shows the distance ∆r between the center of mass of the wavepacket for
the two chiralities plotted as a function of the time of evolution. The separation of the
two clouds is linear with time: with one chirality of the modulation the cloud moves with
average velocity +v in the y-direction, and for the other chirality it moves with velocity
−v. The slope of ∆r as a function of evolution time is extracted by a linear fit, and is
divided by a factor of two to obtain the average velocity of the edge mode. The error
is estimated by taking the error of the linear fit. This velocity is extracted for all the
initial positions of the tweezer with respect to the edge, as shown in Figure 5.19e, and
displays a maximum when the overlap of the initial wave packet with the edge mode is
maximized. The observable that is reported in the following is thus the maximal velocity
that has been measured, along with its error bar.

5.2.2 Emergence of edge modes on a topological interface

In our experimental setup the topological interface is generated by a potential step. An
edge mode arises whenever two topologically different systems are brought into contact and
form an interface, e.g. a sample with C− = 1 having an interface to topologically trivial
vacuum. A similar interface can be realized with a potential step, if the energetic difference
between the two subsystems is large enough to completely decouple the two systems, then
even though both systems might be topological an edge mode emerges. A more intuitive
scenario would consist of a topologically non-trivial system without any gradient connected
to a the same system with an adjustable gradient, i.e., a flat lattice connected to a tilted
one. Upon increasing the tilt the individual sites located in the region with the tilt will
be decoupled parallel to the tilt for a critical energy difference between the sites and the
system will undergo a transition to a topologically trivial regime in the tilted area. We
will now find an edge mode at the interface between the two systems. Experimentally
we cannot engineer a region with and without tilt but create a potential comparable to
a combination of the two scenarios described before. We create a low potential region, a
few sites are located on the edge with a gradient and a region at high potential energy.
In order to understand the characteristic energy scale of the potential needed for an edge



5.2 Changing the properties of the edge 131

0 1
V0 (ħω)

0

1

2

3

4

v m
ax

 (a
/m

s)

a

2 4

Haldane

Anomalous

Haldane-like

−0.25

0.00

0.25

ε(
ħω

)

b

−0.50

−0.25

0.00

0.25

0.50

ε(
ħω

)

−1 0 1
ky (π/L)

−0.50

−0.25

0.00

0.25

0.50
ε(
ħω

)

−1 0 1
ky (π/L)

−1 0 1
ky (π/L)

−1 0 1
ky (π/L)

−1 0 1
ky (π/L)

Figure 5.20 | Emergence of edge modes with increasing potential height V0. a, Measured maximum

edge mode velocity vmax. The modulation parameters for the three distinct topological regimes are

indicated in Figure 5.1a. Each data point is the average of three data sets that have been taken on different

days, and the error bars are calculated from their standard deviation and the uncertainty due to the

evaluation of the edge mode velocity. b, Numerical simulations of the quasienergy spectrum using a

step-wise modulated tight-binding model on a semi-infinite system for the three topological regimes:

Haldane (top row), anomalous (middle row) and Haldane-like (bottom row). In the finite direction, an

infinitely sharp potential step of height V0 is applied in the middle of the system. The spectra show the

eigenenergies whose eigenstates have a significant overlap with this low-potential region. The potential

height is increased from the left to the right with V0/(̄hω) = {0.05, 0.1, 0.5, 1.5, 2.5}. The spectra where

the edge modes are clearly visible are highlighted with a bold black frame.

mode to emerge at the interface, we investigate the maximum velocity vmax of the edge
mode as a function of the height of the potential V0.

We study the three topological regimes indicated by the colored hexagons in Figure 5.1:
the Haldane regime with the edge mode in the 0-gap, the anomalous regime with edge
modes in both the 0- and π-gap, and the Haldane-like regime where the topological edge
mode is located in the π-gap.

In all three topological regimes we find that the group velocity of the atoms starts to
increase as we increase the height of the potential (Figure 5.20a). In the Haldane regime the
maximum velocity is reached for a potential on the order of ≈ 0.14ℏω, which matches the
characteristic energy scale of the tunneling in the modulated lattice. For larger potential
depths the velocity starts to gradually decrease. Intuitively, one may expect a saturation of
the velocity as soon as the edge mode is established at the interface. We attribute the gradual
slowing down observed in our experiment to potential corrugations and a smaller slope of
the potential edge near the bottom of the potential, which becomes more significant as we
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increase its height. The general trend observed in the anomalous and Haldane-like regime is
similar, but distinctly different from the Haldane regime in terms of absolute values. Here,
we find that the characteristic energy scale for the potential needed to reach the maximum
group velocity is on the order of ≈ ℏω. For larger values we observe a saturation behavior.

To support the experimental results, we numerically investigate the semi-infinite strip
geometry, where the potential energy of one half of the strip in the finite direction is
increased by V0, cf. Section 2.5.6. In order to visualize the appearance of the topological
interface, we show the eigenenergies in the low-potential region in Figure 5.20b by projecting
onto the low energy region of the system excluding the numerical edge. Similar to our
experimental results we find that in the Haldane regime, the edge mode in the 0-gap
emerges at a characteristic energy scale given by the largest tunneling during the period,
which is about five times smaller than ℏω. For the same potential height there are no clear
signatures of edge modes in the anomalous and the Haldane-like regimes in any of the two
gaps. Instead we find a characteristic energy scale on the order of ℏω for them to appear.
In Figure 5.20b we highlight all spectra where we believe that edge modes can clearly be
identified. This behavior is qualitatively consistent with our observations.

This measurement illustrates the stark contrast between the two regimes: The Haldane
regime where the relevant parameters are related to the effective Hamiltonian, i.e., the edge
mode emerges once the potential difference between the regions V0 becomes comparable
to the strongest effective tunneling. In the anomalous and Haldane-like regime, where the
edge modes in the π-gap exist due to the modulation with a frequency smaller than the
bandwidth of the system, the relevant energy scale for the edge modes to emerge is not
related to the tunneling, which is the same as in the Haldane regime, but to the modulation
frequency. This finding underlines the out of equilibrium nature of the latter two phases,
as the relevant energy scale is related to the drive.

The two regions in the lattice exhibit an energy gap introduced by the potential step, in
principle a resonant process such as the modulation might be able to couple the two. Fine
tuning of the modulation frequency and properties of the potential step result in such a
coupling and an annihilation of the edge mode. Numerically we find for an infinitely sharp
edge, that the edge mode becomes trivial, i.e., it no longer cross the gap between the bands,
whenever a frequency component of the modulation is strong enough and resonant with the
potential energy difference V0. We numerically find this phenomenon occurring for both the
edge mode in the 0- and π-gap, i.e., independent of the topological regime we investigate.
As this effect occurs only in the limit of an infinitely sharp edge and very select potential
heights, we believe to not be able to observe it experimentally as also illustrated further
below. Figure 5.21 shows the annihilation of the edge mode in the Haldane regime for three
different modulation schemes: 1) the modulation close to the experimental implementation
(cf. Section 4.1), 2) a step wise modulation of the nearest neighbor tunneling and 3) a
sinusoidal modulation of the nearest neighbor tunneling as introduced in Section 2.4. The
spectra in Figure 5.21 are again plotted with the overlap P of the respective eigenstate with
the low energy region excluding the numerical edge. The edge is centered in the middle of
the strip in the finite direction, a fully delocalized state will therefore have an overlap with
the select region of P ≈ 0.5. As expected in the absence of a wall we find no edge mode and
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Figure 5.21 | Annihilation of the edge mode for V0 = h̄ω. a, Resulting dispersion for different V0 being an

integer multiple of the modulation frequency for the modulation similar to the experiment (m = 0.25,

ω/(2π) = 16 kHz). The shading of the spectrum corresponds to the overlap with the region in the low

energy region of the potential. In the absence of a potential barrier in the center we observe no edge

mode and the states are delocalized over the full sample. Even though we observe an edge mode for

V0 < h̄ω it is absent at V0 = h̄ω and the states are also delocalized. For larger V0/̄hω the effects become

smaller and the system is full localized in the low energy region. b, same as a but for the step modulated

drive (Λ = 10, h̄ω/(ΛJ0) = 4.5). We observe an annihilation of the edge mode for all but V0/(̄hω) = 3, as

expected from the Fourier components of the drive. c, same as a but for the sinusoidal modulation of the

tunneling amplitudes (Λ = 10, h̄ω/(ΛJ0) = 6). As the drive contains only a single frequency component

ω, we only observe a coupling there and none for all others.

the states are delocalized over the entire strip as shown by the shading of the spectrum. We
find an edge mode in the Haldane regime for V0 < ℏω as long as the potential is higher than
the largest tunneling in the lattice V0 > ΛJ0 (cf. Figure 5.20b). For V0 = ℏω in the infinitely
sharp edge case ℓ = 0, we find that the system again is to a large fraction delocalized over
the entire strip and the edge mode is not longer crossing the 0-gap. The delocalization
of the eigenstates across the entire system depicted as the shading of the dispersion and
the edge mode not crossing the energy gap are closely linked. We observe this behavior
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for all three modulation types. The Fourier decompositon of the sinusoidal modulation
consists of a single tone at ω, we therefore observe no further resonance in the spectra (cf.
Figure 5.20c). For the case of modulation similar to the experiment (cf. Section 4.1) we
also find frequency components at multiples of the fundamental frequency with weights
proportional to the modified Bessel functions of the first kind, leading to a significantly
weaker coupling for V0/(ℏω) = 2. The case of the step modulated tunnel coupling provides a
very clear picture for the coupling at different multiples of the drive frequency. Considering
one of the three tunnel couplings we can write the modulation as a Fourier series. As we
are only interested in the amplitude of the respective components we can shift the drive
to enhance the coupling along the considered bond in the time −T/6 ≤ t < T/6 and for
the period of the drive we take the window [−T/2, T/2). For the Fourier series

J(t) =
a0

2
+

∞∑
l=1

al cos
(
l2πt
T

)
+

∞∑
l=1

bn sin
(
l2πt
T

)
(5.9)

we find the components

a0 =
J0

3
(2 + Λ), (5.10)

al =
ΛJ0

lπ
sin
(
l2π

T

3

)
(5.11)

bl = 0. (5.12)

We immediately find that for l = 3 there is no Fourier component explaining the absence of
the coupling for V0/(ℏω) = 3, this holds true for all resonances n× 3ℏω, n ∈ N of the drive
frequency. This also shows that the coupling strength is decreasing ∝ n−1, which we also
observe by the reducing gap at the edge of the Brillouin zone for higher harmonics of the drive.

5.2.3 Changing the width of the potential

The role of the microscopic shape of the edge potential is very intricate when combined
with the electronic interactions of electrons and part of active research for both the integer
and fractional quantum Hall effect [100–103, 324]. In the non-interacting limit the finite
width of the potential edge has a large impact on the group velocity of the particles in the
edge modes, as the dispersion of the edge mode hybridizes with the bulk modes, resulting
in a significant reduction of the velocity [120, 308, 318].

We investigate this behavior by tuning the width of the potential edge in the Haldane
regime (Figure 5.22a). The width of the edge is controlled by varying the diameter d of
an iris placed in the Fourier plane of the imaging system that is used to project the DMD
potential into the atomic plane (cf. Figure 3.7). Because of the incoherent illumination
closing the iris leads to a reduction of the potential height. This is compensated by an
increase of the total power of the beam to ensure the same potential height V0 for all
measurements. The width of the edge is measured by imaging the pattern in an intermediate
plane, fitting the edge profile with an error function and extracting the characteristic length
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Figure 5.22 | Edge mode velocity for varying edge width. a, Measured edge mode velocity as the Fourier

plane iris is closed for a repulsive potential with height V0/h = 1.10(2) kHz in the Haldane regime for

J0 = 1.1(1) kHz,ωtw/(2π) = 2.0(1) kHz and a phase gradient of 0.43(1)π/a. The data points are averages

of three individual datasets, and the error bars are evaluated from their standard deviation and the

uncertainty of the evaluation of the velocity for each dataset. b, Estimated edge width of the pattern as a

function of the diameter d of the iris in the Fourier plane. The dashed line corresponds to the theoretical

resolution limit of the microscope objective. The edge width measured for an iris that is fully open

(rightmost data point) is thus limited by the finite resolution of the objective. c, Floquet spectra simulated

with the step-wise modulated tight-binding model in the Haldane regime (table in methods). The color

indicates the overlap with a region covering the low-potential region. The height of the edge is fixed at

V0/(̄hω) = 1.5, and its width is varied from left to right: ℓ/a = {6, 4, 2, 1, 0.1}.

of this fit1. This length is then multiplied by the magnification between the intermediary
plane and the atoms, which was calibrated independently to be 29.9 in this measurement.
Figure 5.22b shows the resulting width as a function of the iris diameter. Note that the
actual experimental value of the edge width at the atom position is most likely further
increased by imperfect alignment and residual aberrations. The width of the wall is lower
bounded by the resolution limit of the objective as indicated by the dashed horizontal
line in Figure 5.22b, data points below this line are at least as wide as this value. We
find that a smoothened edge leads to a significant reduction of the edge mode velocity,
as expected [120, 308, 318]. This is further confirmed by numerical simulations using the

1ℓ encodes the width of the edge, defined as the length from 8% to 92% of the height of the edge.
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Figure 5.23 | Spectrum in the Haldane phase for ℓ = 10a and V0 = 2̄hω/3. a, Spectrum weighted by

the state being localized up to 10a away from the edge. The state highlighted by the down facing gray

triangle at ky = ±π/L is depicted in b, the state at ky = 0 indicated by the up facing grey triangle is

plotted in c. b, Wave function of the state located at ky = 0 in the gap between the bulk bands. The wave

function is still very localized and not very spread out. Yet is still shows the same signatures as the states

located at a infinitely sharp edge. c, Wave function of the state located at ky = ±π/L the state is located

closer to the edge compared to b and more spread out. The population, indicated by the shading of the

arrows, is normalized to the maximum population on a single site for the depicted state with the arrows’

orientations indicating its complex phase.

step-wise modulated tight-binding model (Figure 5.22c). We introduce an edge of variable
width ℓ into the center of the system. The edge is aligned such that it cuts the system along
a zigzag edge for ℓ = 0. Upon widening of the edge we observe the edge mode changing its
properties. In the case of a very narrow wall we observe the edge mode connecting across
the edge of the Brillouin zone between the Dirac points. For a wall of width ℓ = 2a the
edge mode no longer crosses the edge of the Brillouin zone but traverses the Brillouin zone
inside. The edge mode behaves similar to the barbed edge case (cf. Figure 5.14c). For
the widest investigated wall we then observe several modes crossing the energy gap with
significantly smaller average group velocity compared to the previous scenarios showing
the same qualitative behavior we also observe in the experiment.

In Figure 5.23 we show the resulting dispersion for a system with an edge shaped as
an error function with a width of 10a. The energy difference between the low and high
potential regions in the system is V0 = 2ℏω/3. The center of the edge at V0/2 is highlighted
by the vertical dark gray line in Figure 5.23b and c. We find several modes in the gap of the
spectrum, where each state is weighted with its overlap with a region 10a from the center
of the edge. This procedure reduces the visibility of the bulk in the low energy region and
entirely masks the edge states resulting from the numerical edges and the bulk states located
in the high energy region. Figure 5.23b and c show exemplary edge states located within the
0-gap at ky = 0 and ky = ±π/L. The position of the edge modes compared to the infinitely
sharp edge is significantly shifted and their position corresponds to the energetic order
with higher lying states being located closer to the wall. We find a state with wider spread
perpendicular to the wall in the region with larger slope of the potential, however this
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might be an effect of the chosen edge shape and might vary strongly for a different shape.
Nevertheless also these results are consistent with the experimentally observed results,
where an increasing number of modes bridges the gap leading to a significantly reduced
velocity of the resulting edge mode and the overall width of the edge mode i.e., the width
of the region with sites that participate to this edge mode is also increased Experimentally
we have not investigated the behavior of the anomalous and Haldane-like regime, as we are
not able to generate a sufficiently high wall upon reducing the iris diameter.

5.3 Atom number and lifetime in the edge mode

We calibrate the observed number of atoms in the edge mode by estimating the Thomas-
Fermi radius of a small BEC in the optical dipole trap in two ways. The first one is to
fit the density profile of the cloud with an inverted parabola, and the second one is to
calculate it via the Thomas-Fermi formula [313]:

RTF =

(
15Natasℏ2ωz

m2
Kω

3
r

)1/5

, (5.13)

where as is the s-wave scattering length of the atoms, mK is the mass of a potassium atom,
and ωz (resp. ωr) is the vertical (resp. radial) frequency of the optical dipole trap. In
this formula, the number of atoms Nat is replaced by σscOD, where σsc is the scattering
cross-section of the imaging process, and OD is the summed optical density of the cloud.
The exact value of σsc is unknown due to the proximity of the 2P3/2 states during the
imaging, and the comparison between the two values obtained for the Thomas-Fermi radius
allows to calibrate this quantity, and therefore provide the proportionality factor between
the optical density and the number of atoms.

We take a series of pictures of a small BEC in the optical dipole trap, and for each
picture evaluate the Thomas-Fermi radius with the two methods above. Figure 5.24a shows
the results, where the horizontal axis is rescaled by adjusting the value of σsc such that the
Thomas-Fermi radii of the least dense clouds obtained with the two methods match: the
solid line has a slope of one. We obtain a scattering cross-section of σsc = 0.085× 3λ2

0/(2π),
where λ0 = 767nm is the wavelength of the imaging light. This value is then used to
estimate the number of atoms that are loaded in the edge modes.

We measure the lifetime of the atoms in the edge state by summing the optical density
of averaged pictures for various evolution times. We evaluate the error on this sum by
averaging different subsets of images and computing the summed optical density on these
averages, in a similar manner to the procedure described by a bootstrapping method (cf.
Section 5.2.1). The summed optical densities and their respective error bars are then
multiplied by the factor determined above to obtain the atom number. Figure 5.24b shows
the atom number as a function of hold time for two experiments, one in the Haldane
regime (green), and one in the anomalous regime (blue). We then fit each dataset with
an exponential decay to evaluate the characteristic lifetime. In the Haldane regime this
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Figure 5.24 | Atom number calibration and lifetime of atoms in the edge state. a, Atom number cali-

bration. Each data point corresponds to an experimental realization of a BEC in the dipole trap. The two

estimated radial sizes of the cloud are plotted on the horizontal and vertical axes. The horizontal axis

is rescaled in order to match the estimated size of the cloud in the dilute regime. The solid line has a

slope of one, the vertical error bars represent the error of the fit of the radius, and the horizontal error is

estimated from the background noise of the absorption image. b, Lifetime in the edge mode. The number

of atoms in the edge mode is measured in two regimes: Haldane (green) and anomalous (blue). The error

bars correspond to the standard deviation of the atom numbers obtained by the bootstrapping method

(see text). The points are fitted with an exponential decay (solid lines), from which a lifetime is extracted

as the only free parameter. The presented data is an average over 10-38 averages for the blue and 27-72

averages for the green data points, the number of averages is increasing for longer hold times.

lifetime is 5ms, and in the anomalous phase 17ms. For reference, the lifetime of a bulk
BEC in the modulated lattice without any edge potential is measured to be around 100ms.
The discrepancy of the bulk lifetime compared to the measurements of [111, 174] might be
explained by the different measurement techniques. We estimate the lifetime from a BEC
in the modulated lattice in situ, we are therefore not able to distinguish the population in
different bands. This method was chosen as we are not able to prepare the edge mode with
the small tweezer and image the cloud after time of flight. The measurements in [111, 174]
were taken after bandmapping and a long time of flight to exclude all populations in higher
bands. The reduced lifetime in the edge mode could be due to spurious dynamics in the
vertical direction: the Rayleigh length associated with the resolution of the potential edge
is around 3µm, which is smaller than the vertical extension of the atoms prepared in the
tweezer. As a result, only part of the atomic cloud may be prepared in the edge mode and
the observed loss rate would then be a combination of heating in the modulated lattice
and losses along the vertical direction. In contrast, the lifetime of the atomic cloud in the
modulated lattice is measured by preparing a large BEC in the combined potential formed
by the dipole trap and the honeycomb lattice, which does not suffer from any mismatch of
potentials in the vertical direction. The modulation frequency in the anomalous regime is
ω/(2π) = 7 kHz, in the Haldane regime ω/(2π) = 16 kHz, for both regimes the modulation
amplitude m = 0.25 and the tweezer trap frequency ωtw/(2π) = 2.0(1) kHz. The height
of the optical step potential is V0 = h × 16.7(3) kHz for the anomalous edge mode and
V0 = h × 5.6(1) kHz in the Haldane regime.
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Figure 5.25 | Expansion of a localized wave packet in the tunneling modulated lattice. a, Expansion in

the Haldane-like regime. b, Expansion in the anomalous regime. c, Expansion at the phase transition

between anomalous and Haldane phase, the initial width of the Gaussian wave packet in the simulation

is σ = 1.4a. d, Expansion in the Haldane regime. e, Expansion in the Haldane regime, but atω/(2π) =
18 kHz. The scale bar in the lower left of each image corresponds to 10 a, the modulation frequency in

each column is indicated on the top image. The time of expansion in all images is t = 3 ms. The upper row

is experimental data (modulation amplitude m = 0.25), the lower row represents a numerical simulation

of the drive in a two-band tight binding approximation of an initial Gaussian wave packet with width

0.35a except for c.

5.4 Bulk expansion in the modulated lattice

As discussed in Section 2.5, the band structure of the modulated system significantly
deviates from the static one. We can therefore assume to also find significantly different
group velocities resulting from the modified dispersion. In the anomalous regime the
dispersion exhibits a moat band, with a quasi degenerate ring surrounding Γ [178, 325].
Overall the bands in the Haldane-like and anomalous regime are significantly less dispersive
and we expect significantly smaller group velocities of the bands. Similar to the experiments
presented in Section 5.1.2 we perform a quantum walk in the modulated lattice. After
ramping up the lattice and modulation the cloud is released from a tweezer with ωtw =

1.3(1) kHz and evolving in the lattice for 3ms, when we take an absorption image of the cloud.

In the Haldane phase we observe a evolution similar to the static lattice: we observe
a hexagonal outline with interference fringes inside of it due to the coherent evolution
and the resulting interference of different paths.

The reduced group velocity in the anomalous and Haldane-like regime is directly reflected
by the reduced spread after the expansion compared to the Haldane regime. A large fraction
of the cloud barely spreads as shown in Figure 5.25a and b. Similar to the tight binding
simulation we also observe a faint star-like pattern in the Haldane-like and a standing
hexagon surrounding the central peak in the anomalous regime. The initial state in the
simulations is assumed to be Gaussian wave packet with a standard deviation σ = 0.35a.
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The evolution of the wave packet in the tight binding simulation in the vicinity of the
phase transition does not show the ringlike structure for the same narrow initial state.
By increasing the size of the wave packet to σ = 1.4a we can reproduce a ring structure
but additionally find a hexagonal shape surrounding the ring, which we do not observe
in the experiment. For even larger initial states in the simulations we can recover the
experimental observation, where we only find a ringlike pattern after the expansion. The
absence of zero group velocity states is consistent between theory and experiment: the
ringlike pattern emerges at the phase transition, where the bands touch and the dispersion
in the π-gap forms a cone in the vicinity of Γ. Potentially the tight binding simulation
produces a region with linear slope in momentum space that is significantly smaller than
the one implemented in the experiment.

The larger initial state in the simulations does not match with the experiment in the
other regimes. The discrepancy between the experimental observation and the tight binding
simulation is currently not fully understood. In the Haldane regime we find a better match
between theory and experiment. However, the size of the wave packet after t = 3ms of
expansion is essentially unchanged in the simulation when comparing ω/(2π) = 16 kHz
and ω/(2π) = 18 kHz (Figure 5.25d and e), while we observe a significant increase in the
experimental realization. Potentially a weak admixture of the higher-lying p-bands of the
band structure via a 2-photon resonance is responsible for the discrepancy. The two-band
model does not account for this admixture. A more sophisticated survey of modulation
parameters should reveal a regime where this coupling is absent, or at least significantly
reduced. A straightforward approach would be to reduce the modulation amplitude which
would reduce any possible admixture via higher photon processes of the drive significantly
to identify the coupling to the p-bands as source of the varying size.



CHAPTER 6

Conclusions and outlook

The work presented in this thesis highlights the versatility of the intensity modulated
honeycomb lattice to probe the emerging topological features in momentum and real space.
The presented Floquet drive results in a chiral, periodic modulation of the tunnel coupling
in the lattice and opens up a rich phase diagram hosting conventional phases such as the
Haldane phase and genuine out of equilibrium phases such as the anomalous Floquet phase.

Using a spatially extended ultracold bosonic cloud in the optical honeycomb lattice
allowed for local measurements in momentum space. The narrow momentum space width
enabled direct measurement of the energy gaps in the Floquet Brillouin zone. Following
the behavior of the system from the high frequency limit as we decreased the modulation
frequency we directly identified the gap closings. By probing the Berry curvature of a single
band using deflection measurements we have fully reconstructed the topological invariants
of the system. For modulation frequencies smaller than the band width of the lowest two
bands we identified the anomalous Floquet phase, where the Chern number of the bulk
band vanishes but chiral edge modes exist at the edge of the system.

Utilizing an optical tweezer we have prepared states in the lattice that exhibit an extent
comparable to the lattice spacing. Such a localized cloud, in contrast to the bulk cloud
used for the characterization in momentum space, occupied almost the entire Brillouin zone.
Probing the expansion dynamics from the tweezer we additionally established the evolution
of the system to be coherent. We have implemented a spectral and spatial incoherent light
source to create programmable, low speckle binary potentials with high spatial resolution.
By combining the spatially localized cloud, the high resolution programmable potential
and the intensity modulated honeycomb lattice we have prepared the edge modes of
the topological system.

We showed how to prepare the edge mode in three topological regimes and revealed
the quasimomentum structure of the resulting edge modes. The observed results are
qualitatively consistent with a simple stepwise modulation resulting in the same topological
phases. We probed the emergence of edge modes on a topological interface as the height
of the potential edge was varied. We identified the relevant energy scales in the Haldane
regime to be related to the tunneling, while in the anomalous Floquet system edge modes
emerge on edges with a potential energy difference larger than the drive frequency. Varying
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the width of the optical step potential we showed that the edge mode slows down as the
edge becomes wider, which is in agreement with theoretical expectations.

The presented experiment establishes a versatile platform to probe the topological
nature of the systems in real and momentum space.

In the near future creating a quantum point contact where individual edge modes split
or merge can be readily implemented in the presented system. In solid state systems
the technique allows for the interference of edge modes [326, 327], direct determination
of the coherence length of the edge mode [328] and investigation of edge reconstruction,
i.e., induced quantum phase transitions at the edge due to electronic interactions [102].
Complications in the experiment might be preparing two wave packets with fixed phase
difference for every experimental repetition or alternatively extending the lifetime of the
state to enable coherent splitting and recombination.

With all necessary experimental tools implemented we want to also explore the interplay
of the topological system with disorder. The transport on the edge is immune to scattering
and disorder, however once all bulk states of conventional Chern insulators are localized
the edge mode will also not be conductive anymore [75]. In contrast the anomalous Floquet
insulator exhibits conductive edge modes even in the case where all bulk states have been
localized [94]. The resulting anomalous Floquet Anderson insulator might be within reach
for the experimental parameters [96].

Towards exploring a fully localized bulk, an experiment in a similar direction might
investigate a disorder-induced phase transition from the Haldane to the anomalous Floquet
phase [329]. The edge mode in the Haldane regime requires a kick to prepare a significant
edge fraction. If we prepare a slightly extended state without applying a kick in the Haldane
regime we observe no chiral signal as this initial state does not have a significant overlap
with the edge mode. A transition from the Haldane to the anomalous regime would be
accompanied by an edge mode in the π-gap, which requires no phase gradient. Thus
detecting a chiral signal with the slightly extended initial state could serve as a sensitive
probe to detect this phase transition. Similarly we can probe the robustness of the edge
mode in the Haldane and anomalous regime.

In the absence of disorder but by adding an energy offset between A- and B-sites,
the phase diagram of the intensity modulated lattice also hosts a phase with C = 2
where the winding numbers are W 0 = 1 W π = −1 [174, 323]. In contrast to a static
system with C− = 2, where both edge modes would necessarily be located in a single
gap and therefore have a slope with the same sign, the phase proposed here exhibits two
counter propagating edge modes on the same edge where each is located on one of the
two sublattices. Furthermore combining the preparation presented here with the detection
scheme presented in [330], we will be able to resolve the localization of the two edge
modes on their respective sublattice.

Additionally preparing the system with an A-B-offset in the modulated but topologically
trivial regime would allow for investigation of the transition from the trivial to the topological
Anderson insulator regime, or equivalently an Floquet-Anderson insulator regime by applying
disorder to the system [113, 253–255, 261, 262]. In contrast to the disorder induced
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transition from the Haldane to the anomalous phase the system here starts out in a
topologically trivial regime.

In the current experiments we cannot prepare states of the system at a chosen energy,
the proposed cold-atom elevator outlines a strategy to overcome this challenge [122]. By
preparing a reservoir with tunable potential energy compared to the adjacent system of
interest states with selected (quasi)energy can be launched into the system. Preparing an
additional wall potential separating the two systems allows for a controlled coupling between
the them by opening a few sites between the two. By tuning the energy difference between
the reservoir and system, the excitation of bulk and edge modes can be probed in an energy
selective manner and thus allows probing selectively e.g. the π- or 0-gap of the system.

One major challenge to overcome is the heating in driven systems, which in the long
time limit will heat to infinite temperature [331, 332]. Identifying regimes where the heating
is exponentially suppressed and therefore leads to a long-lived “prethermal” state [333–
346] could allow for observation of the system on intermediate time scales. Alternatively
careful engineering of the drive can also significantly reduce the amount of absorbed
photons from the drive [347].

In the presence of interactions realizing a many-body localized bulk in combination
with the Floquet drive [90, 348–351] while keeping the edge mobile [352] might prove as
a viable probe for topology in the strongly interacting regime.

If the heating can be controlled without disorder, investigating the bosonic Haldane
Hubbard model [353–357] might provide an interesting future direction. Local on-site
interactions significantly enrich the phase diagram and experiments could provide exper-
imental insights into the phase transition from a superfluid to a interaction dominated
plaquette Mott insulator or a chiral superfluid [354, 355]. The plaquette Mott insulator is
expected to host local chiral currents without long range order, which might be detectable
via the method proposed in [358]. Recent progress towards the realization of a chiral
superfluid [359] might indicate a possible preparation scheme which involves evaporatively
cooling the system towards the ground state.

Even though the parameters are experimentally challenging, [360] provides a pathway
to realize fractional quantum Hall states in a shaken optical honeycomb lattice. Probing
the edge states in this regime could provide new insights by directly observing if additional
co- and counter propagating or even neutral modes emerge [100–104]. The precise control
over the edge potential’s shape, width and height might provide new observables to tackle
the question of the so-called edge reconstruction.
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Figure A.1 | Effect of moving sublattice B. a, Motion of the sublattice B in the reference frame of sublattice

A. During one period, indicated by the color shading, the sites of sublattice B move on a circular path

around the original position, while sublattice A (black) remains fixed. The depicted path represents

|∆r| = 0.2a. b, Effect of the moving sites on the band structure. The solid lines show the result obtained

by Equation A.11, while the dashed lines are the result of a numerical integration of Equation A.2. The

parameters are t/J = 0.1, φ = 0, ∆AB/J = 0.

When periodically modulating the lattice intensity, the optical potential is continuously
varying. The varying potential landscape also leads to a motion of the A- and B-sites of
the optical lattice. In the laboratory frame both sites move on an egg-shaped trajectory.
Transforming to a frame, where the A-site is fixed in position and only the B-site is moving
relative to the A-site is convenient. We can calculate the effect of the motion of the sites
in a toy model where only the position is modulated while all other parameters are fixed.
Starting from the Haldane model we introduce a simple motion of the B-site sub-lattice.
For simplicity we approximate the motion as a circular motion of the B-site around its
original place. For any motion of the sites aj is not changing, but the δj are perturbed
by a small shift ∆r as illustrated in Figure A.1a.
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The shift in position is then given by:

∆r(t) = |∆r| (sin(ωt)e1 + cos(ωt)e2), (A.1)

where e1 and e2 are two orthogonal unit vectors in the plane of the lattice. The Haldane
Hamiltonian now reads:

Ĥ =
∆

2
σz +

3∑
j=1

(
2t cos (ϕ+ k · aj) Jeik·(δj+∆r(t))

Je−ik·(δj+∆r(t)) 2t cos (ϕ− k · aj)

)
(A.2)

Applying a time-dependent gauge transformation

Û(t) =

(
exp

(
− ik

2 · (δ1 +∆r(t))
)

0
0 exp

(
ik
2 · (δ1 +∆r(t))

)) (A.3)

to the Hamiltonian according to Ĥ ′ = ÛĤÛ † + iℏ ˙̂
UÛ † We find after the transformation

Ĥ ′ =

(
∆
2 +

∑3
j=1 2t cos (ϕ+ k · aj) J(1 + eik·(δ2−δ1) + eik·(δ3−δ1)

J(1 + e−ik·(δ2−δ1) + e−ik·(δ3−δ1)) −∆
2 +

∑3
j=1 2t cos (ϕ− k · aj)

)
+

ℏk
2

· ∆̇r(t)σz

(A.4)

We now find an additional term

V̂ (t) = σzℏk · ∆̇r(t)/2. (A.5)

Assuming this is a small correction at high frequency we can expand the Hamiltonian in
units of (ℏω)−1 [92, 162, 361–363]. The expansion for the effective Hamiltonian averaged
over one period is given by Equation 2.61, where Ĥ0 is the static part of Ĥ ′, and ˆV (j) are
defined via Equation 2.60. Rewriting Ĥ ′ as a sum of Pauli matrices σ0 = I2, σ1, σ2, σ3

Ĥ ′ = ασ0 + βσ1 + γσ2 + δσ3 (A.6)

with the coefficients

α =
3∑
j=1

2t cosϕ cos (k · aj) (A.7)

β = J [1 + cos(k · (δ2 − δ1)) + cos (k · (δ3 − δ1))] (A.8)

γ = J [sin (k · (δ2 − δ1)) + sin (k · (δ3 − δ1))] (A.9)

δ =

3∑
j=1

−2t sin (ϕ) sin (k · aj) +
∆

2
, (A.10)
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we immediately find that only the terms ∝ σ1, σ2 are affected by the motion of the B-sites,
since V̂ (t) commutes with the other terms. After evaluating Equation 2.61 up to second
order one finds the effective Hamiltonian

Heff = ασ0 +

(
β − |∆r|2 |k|2

4

)
σ1 +

(
γ − |∆r|2 |k|2

4

)
σ2 + δσ3, (A.11)

we immediately find, that the effect of the moving sites becomes larger for increasing quasi-
momenta k and increasing amplitude of the motion ∆r. The correction does not lead to a
gap opening but modifies the band curvature. To verify that the second order approximation
properly captures the dynamics, Figure A.1 shows the resulting band structure resulting
from Equation A.11 for varying amplitude of the position modulation together with the
effective Hamiltonian obtained by integrating Equation A.2 over one period. Even though
the B-sites are moving with respect to the A-sites the bands are not affected strongly by
the motion as is visible by the deviations shown in Figure A.1b. Typical amplitudes for
the modulation parameters used in the experiment are ∆r ≈ 0.2a, therefore the motion of
the lattice sites is not a significant modification of the band structure.
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