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Abstract

In the past decade, feedforward artificial neural networks have stormed the field of
artificial intelligence and shown impressive results in many domains. Nevertheless, one
of the challenges in artificial intelligence is connecting the differentiable feature space
in deep learning to the rich world of object-based, symbolic knowledge. For example,
in computer vision, images consist of different features, such as edges and curves at a
lower level, while at a higher level, they include objects and relations. Even though it is
not feasible to describe the low-level features using the natural language, the attributes
and relations between objects can be represented by symbols and are well-documented
throughout human literature. Therefore, developing novel and effective architectures
that can learn and utilize symbolic knowledge within the differentiable deep learning
framework is essential. To this end, in this dissertation we argue for methods that map
symbols to image-grounded representations such that they share the same representation
space as images.

Furthermore, we discuss the key role of top-down processes in utilizing object-level
knowledge; top-down signals have been shown to play a significant role in the human brain
for overcoming challenges such as occlusion. For example, even though there might not
be enough pixels from a truck’s wheel in an image, after detecting the truck itself within
the top layers of a neural network, we can use the higher-level knowledge to recognize a
small area in a corner that corresponds to the wheel. Nevertheless, current feedforward
neural networks lack effective inductive biases for top-down processing. We show that
grounding symbols in images and employing top-down mechanisms not only improves the
scene understanding but also allows us to benefit from the massive pool of human-written
symbolic knowledge in addition to image annotations.

In summary, this dissertation introduces significant advances in the artificial intelligence
domain, particularly computer vision and modeling commonsense. We propose models
that utilize (1) structured knowledge, (2) unstructured text, and (3) 3d information to
improve scene understanding, and through large-scale experiments, we show that our
models significantly improve state-of-the-art results.
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Zusammenfassung

In den letzten zehn Jahren haben künstliche neuronale Feedforward-Netzwerke das Feld
der künstlichen Intelligenz gestürmt und in vielen Bereichen beeindruckende Ergebnisse
gezeigt. Dennoch besteht eine der Herausforderungen im Bereich der künstlichen Intel-
ligenz darin, den differenzierbaren Merkmalsraum des Deep Learning mit der reichen
Welt des objektbasierten, symbolischen Wissens zu verbinden. In der Computer Vision
beispielsweise bestehen Bilder aus verschiedenen Merkmalen, wie Kanten und Kurven auf
einer niedrigeren Ebene, während sie auf einer höheren Ebene Objekte und Beziehungen
enthalten. Auch wenn es nicht möglich ist, die Merkmale der unteren Ebene mit Hilfe
der natürlichen Sprache zu beschreiben, können die Attribute und Beziehungen zwischen
Objekten durch Symbole dargestellt werden und sind in der menschlichen Literatur
gut dokumentiert. Daher ist die Entwicklung neuartiger und effektiver Architekturen,
die symbolisches Wissen im Rahmen des differenzierbaren Deep Learning erlernen und
nutzen können, von entscheidender Bedeutung. Zu diesem Zweck plädieren wir für Meth-
oden, die Symbole auf bildbasierte Repräsentationen abbilden, so dass sie denselben
Repräsentationsraum wie Bilder teilen.

Darüber hinaus erörtern wir die Schlüsselrolle von Top-Down-Prozessen bei der Nutzung
von Wissen auf Objektebene; es hat sich gezeigt, dass Top-Down-Signale im menschlichen
Gehirn eine wichtige Rolle bei der Bewältigung von Herausforderungen wie Verdeckungen
spielen. Auch wenn beispielsweise nicht genügend Pixel eines LKW-Rads in einem Bild
vorhanden sind, können wir nach der Erkennung des LKWs in den obersten Schichten
eines neuronalen Netzwerks das Wissen auf höherer Ebene nutzen, um einen kleinen
Bereich in der Ecke zu erkennen, der dem Rad entspricht. Allerdings fehlt es den aktuellen
neuronalen Feedforward-Netzen an effektiven induktiven Vorspannungen für die Top-
down-Verarbeitung. Wir zeigen, dass die Verankerung von Symbolen in Bildern und der
Einsatz von Top-Down-Mechanismen nicht nur das Verständnis der Szene verbessert,
sondern es uns auch ermöglicht, zusätzlich zu den Bildannotationen von dem riesigen
Fundus an von Menschen geschriebenem symbolischem Wissen zu profitieren.

Zusammenfassend lässt sich sagen, dass diese Dissertation bedeutende Fortschritte im
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Zusammenfassung

Bereich der künstlichen Intelligenz, insbesondere im Bereich des Computersehens und der
Modellierung des gesunden Menschenverstandes, vorstellt. Wir schlagen Modelle vor, die
(1) strukturiertes Wissen, (2) unstrukturierten Text und (3) 3D-Informationen nutzen, um
das Verstehen von Szenen zu verbessern, und durch groß angelegte Experimente zeigen
wir, dass unsere Modelle den Stand der Technik deutlich verbessern.
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1 Introduction

1.1 Prologue

The reality we can put into words is
never reality itself.

Werner Heisenberg

Words only give us descriptions, or “models” of the world, as Heisenberg points out.
Models quench our thirst for understanding and, perhaps more importantly, help us
predict the unknown. We first tried to model our world by describing it with simple
words or “symbols”. Our symbols evolved as the phenomena we sought to explain became
more complex and high-dimensional. We went further away from our natural language
and used mathematical symbols and equations to write and reason more efficiently. We
modeled gravity, electromagnetism, and nuclear forces. We modeled chemistry, society,
and economy. The further we went, the harder it became to find the relations between
symbols in our models. When describing a simple daily phenomenon such as “what a
cat looks like,” we could no longer put the symbols together ourselves. When explaining
the underlying behavior of cancer cells, our symbols fell short. We needed something
that could describe indescribable, non-linear, and complex phenomena. Thus, we created
Machine Learning.

Machine Learning has shown promising results in modeling complex and high-dimensional
data. In particular, Deep Learning [LeCun et al., 2015] has fueled an acceleration in
Artificial Intelligence research in the past decade. In computer vision, deep convolutional
neural networks (CNNs), long-short term memories [Hochreiter and Schmidhuber, 1997],
and Transformers [Vaswani et al., 2017] often surpass not only classical approaches in
image understanding but also human performance. Artificial neural networks still use
symbols and rules, i.e., vectors and operations, but their power is in their scalability,
continuity, and differentiability; layers of matrices can adapt freely based on the gradient
signals they receive from higher layers. We only need to define an objective and feed the
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1 Introduction

input. The difference between the predictions of the artificial neural networks and the
targets gives us a signal to update our layers of matrices. As a result, we managed to
build predictive models without manually dictating the symbolic rules 1.

Relying on gradient descent to find the model rules comes with costs; for example, we
overlook that high-level symbol representations, although hidden, still emerge within layers
of an artificial neural network. Acknowledging this fact can help us interpret the internal
mechanisms of the learned models, design more effective neural network architectures
(e.g., networks that are encouraged to create disentangled representations [Higgins et al.,
2016] or image-grounded symbol representations [Sharifzadeh et al., 2021]), and bridge
the gap between the two worlds of differentiable matrices in deep learning frameworks
and the human written symbols [Sharifzadeh et al., 2022]. For example, we have created
a massive library of knowledge over the past centuries. Scientists and engineers have
documented the results of their costly, time-consuming, and sometimes unrepeatable
experiments by putting them into words. We can benefit significantly by bridging the
gap between human-written symbols and learnable matrices.

In this dissertation, we focus on two main concepts to help us design more effective
architectures that acknowledge the presence of symbol representations and close the gap
to symbolic knowledge. First is the role of top-down connections in the network, and
second is the importance of grounding symbols in images. In particular, we study the
role of these two concepts in classifying objects and their relations in images, a computer
vision task known as scene graph classification. In this setting, we argue for architectures
consisting of two major components: a feature extraction backbone, often modeled by
a CNN that takes images as inputs and gives out object-based representations, and a
relational reasoning module, often modeled with message propagation functions such as
Graph Neural Networks that work with object-based representations as input. While
modern representation learning techniques such as self-supervised methods [Chen et al.,
2020a,b, Grill et al., 2020, Chen and He, 2021] allow us to train effective extractors
of low-level image features without the need for human labels, there is a lot that we
can learn about higher-level object relations by reading literature. As will be discussed,
the relational reasoning module can work with different forms of object representations,

1In the classic AI, symbols mainly refer to high-level, human-comprehensible signs or words. However,
symbols are any mark, sign, or word that represents an idea, object, or relationship. This includes any
words or even math symbols. Therefore, here we use the term “symbol” in its general form to discuss
how humans started building models by putting together the symbols, and now deep learning continues
to do the same. Later, when we talk about the symbol grounding problem, we use the term “symbol”
in its classic AI sense. We clarify this using adjectives such as “high-level” or “human-readable”.

2



1.1 Prologue

including image-grounded symbol representations. In what follows, we briefly introduce
each of the mentioned concepts.

1.1.1 Top-down Connections

Feedforward artificial neural networks often fail under challenging scenarios in computer
vision, such as occlusions or variations in lighting conditions, viewpoints, and object
pose. Solving challenges such as occlusion seem to involve recurrent processes in the
human brain [Johnson and Olshausen, 2005, Wyatte et al., 2014, Tang et al., 2014]; in
contrast to computer vision models, where the inputs are an instant blink of pixels with
no context, for humans, the visual experience is a continuous flow of sensory inputs where
inferences on previous inputs recurrently affect the inferences on upcoming ones. In fact,
according to anatomical and functional data, object recognition in humans is significantly
influenced by feedback connections [Spoerer et al., 2017], and feedback connections in
the ventral visual pathway have been shown to have similar densities as feedforward
connections [Felleman and Van Essen, 1991, Sporns and Zwi, 2004, Markov et al., 2014].
From a cognitive perspective on an object level, recurrent connections can, for example,
help us make better sense of the scene: as we look at an object in a scene, our working
memory is already filled with the impression of neighboring objects that we saw a few
moments ago, and through feedback processes, it is loaded with recollections of relevant
past experiences and knowledge [Tresp et al., 2019, 2020]. However, the most popular
architectures for modeling computer vision tasks are feedforward neural networks that
either lack recurrent processing completely or apply it only in one direction where the
future predictions never influence the predictions in the past.

This thesis argues for novel inductive biases required to implement feedback processes
within artificial neural network-based frameworks. In particular, we model top-down and
lateral connectivities using graph transformers and attention functions [Sharifzadeh et al.,
2021]. From a computational perspective, the lateral connections between several objects
in a scene, e.g., using Graph Convolutional Neural Networks [Kipf and Welling, 2016] or
LSTMs [Hochreiter and Schmidhuber, 1997], can contextualize the signals while top-down
connections allow us to exploit higher-level information. For example, let us consider an
image of a bowl full of fruits where the bowl has very few visible pixels, and therefore, a
typical feedforward model fails to classify it. However, once we detect the neighboring
objects such as fruits, our prior knowledge can tell us that “fruits typically go in bowls.”
The prior knowledge might also tell us that “fruits typically grow on trees.” To use this

3



1 Introduction

top-down information and infer correctly, we must recurrently combine the bottom-up
visual cues with top-down signals while propagating these signals laterally between all
the neighboring objects.

We evaluate our models and test our hypotheses by running large-scale experiments on
Visual Genome [Krishna et al., 2017], a dataset with thousands of images annotated with
their scene graphs (a set of triples that describe the objects and their relations in images).
We show that our proposed architecture can accurately learn commonsense relational
knowledge and that the top-down injection of this knowledge to scene representations
leads to significantly higher classification performance [Sharifzadeh et al., 2021].

Other than exploiting top-down and object-level relational information in [Sharifzadeh
et al., 2021], we study the effect of object-level 3D-information on visual relation detection
in Sharifzadeh et al. [2020]. To this end, we use a pre-trained network [Laina et al., 2016]
capable of generating depth maps from RGB images as our model of “3D commonsense”.
Again, through bottom-up, top-down, and lateral connections, we infer and propagate the
3D information throughout the image and demonstrate its essential role in scene graph
classification. Additionally, we release a new dataset of synthetically generated depth
maps from Visual Genome [Sharifzadeh et al., 2020].

1.1.2 Symbol Grounding

One of the characteristics of human intelligence is that we can improve our scene un-
derstanding through reading books or communicating. This is related to the problem
of symbol grounding, which explores the question “Where do symbols get their mean-
ings? ” [Harnad, 1990]. Mental representation for objects and concepts is widely discussed
in epistemology [Pitt, 2020], and there are different opinions on how these representations
come to be [Kant, 1787]. For example, what do we imagine when thinking of an entity
such as a “bird ” or an action such as “two people playing basketball ”? In the Theory of
Forms, Plato proposes “Forms” as the unchanging and absolute representation of each
entity from the realm of forms that are independent of our experiences in this world. On
the other hand, in the theory of cognitive development, Piaget suggests that we acquire
knowledge representations from our prior observations and calls them schemata [Piaget,
1923]. According to Piaget, when an object is being perceived, the mind assigns it to a
schema (a process called assimilation). By relational reasoning over schemata, assimilation
helps to predict the facts surrounding the observation [Arbib, 1992]. If an observation
contradicts prior schemata, we alter our schemata to accommodate the new fact. Similar
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1.1 Prologue

ideas have also been discussed in other fields, such as embodied representations in cognitive
linguistics [Evans, 2006]. Grounding symbols in perceptions is one of the main focuses
of this thesis. We borrow the terms schemata, assimilation, and accommodation from
Piaget and often discuss them in the following chapters.

From a computational perspective, grounding symbol representations into perceptions
leads to better model generalization [Sharifzadeh et al., 2021]. For example, as soon as
we see an imaginary animal, such as a Bantha, we guess that we can ride it, even if we
have never heard of or read about Banthas. This is because we can generalize from our
prior perceptual knowledge of similar animals, such as horses.

Other than more generalization, when grounding meets top-down processing, it can
enable multi-modal knowledge acquisition [Sharifzadeh et al., 2020, 2021, 2022]. For
example, consider teaching a kid about zebras by describing them as striped horses [Harnad,
1990]; when we read or hear about novel facts, we can combine our existing symbol
representations to compose an embedding for the new fact. Even though we have
never perceived this new fact and cannot ground it in visual observation, we can create
a synthetic grounded representation for this symbol by composing it from previously
grounded representations. In fact, a study by St-Louis et al. [2008] showed that when the
participants in a visual pattern recognition study are told the pattern’s rules verbally,
not only do they learn to categorize the patterns correctly, but their perception seems
to change such that they can see the members and the non-members of the category as
looking more different.

Computationally, this form of learning can be initiated by a top-down process since it
activates the representations through the communicated symbolic knowledge rather than
the bottom-up visual inputs. The perception then needs to adapt to accommodate this
new visual rule. Therefore, the new representation’s top-down signal has to go through
the path of a bottom-up signal such that we can adapt and fine-tune our perceptual
understanding as if the knowledge came from an actual sensory experience. In other
words, top-down processing and grounding go hand in hand, which is the reason to study
them both together in this dissertation.

Our experiments on the Visual Genome dataset show that with this form of learning,
we can learn to recognize novel objects and relations without using annotated training
images and, instead, using curated facts in the form of Knowledge Graphs [Sharifzadeh
et al., 2021] or using textual descriptions [Sharifzadeh et al., 2022]. In fact, we can achieve
similar accuracy in relation detection with only 1% of the annotated images and instead
use textual descriptions.

5



1 Introduction

1.2 Overview of Contributions

Here we give an overview of the thesis and the positions of the included publications.
We organize the research works in order of importance rather than the chronological order.

• Section 1.3 gives an overview of the broader research area. It reviews and orders
existing work and introduces concepts and formalisms commonly employed in the
subsequent chapters. It provides a detailed overview of representation learning,
scene graphs models, models of commonsense including knowledge graphs and
language models, visual language models, and the symbol grounding problem.

• Chapter 2 addresses top-down processes and their connection to symbol grounding.
In particular, in this chapter, we introduce schemata, a form of image-grounded
vector representations that model the visual-relational commonsense of each class.
We define classification as an attention layer between the bottom-up image-based
representations and the symbol-based representations (schemata). We show that
schemata learn to capture commonsense knowledge accurately and that the iterative,
top-down injection of this knowledge to scene representations leads to significantly
higher classification performance. Additionally, grounding schemata in images, and
having a top-down approach to inject them into the classification pipeline, enables
us to introduce a new learning mechanism. In this mechanism, instead of using
annotated images, we can improve the classification pipeline using purely symbolic,
relational data from knowledge graphs by employing their image-grounded symbol
representations (schemata). Combined with a self-supervised backbone and with 1%
of annotated images only, this gives more than 36% accuracy in predicate prediction,
3% in object classification, and 26% in scene graph classification accuracy.

• Chapter 3 introduces texema, an architecture for scene graph classification that can
be fine-tuned from scene descriptions in natural language instead manually crafted
knowledge graphs (such as those in the previous chapter) or annotated images.
Texema relies on a transformer-based model that can convert the unstructured
natural language into the structured form of knowledge graphs. The generated
knowledge graphs can then be mapped to image-based representations using the
pre-trained class prototypes (schemata), and treated as if they come from an
actual image. We use these synthetic image-based representations to fine-tune
the classification pipeline. We show that this process leads to 8x more accurate
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1.2 Overview of Contributions

results in scene graph classification, 3x in object classification, and 1.5x in predicate
classification, compared to the supervised baselines with only 1% of the annotated
images.

• Chapter 4 studies the effect of synthetically generated depth maps in visual relation
detection. While most visual relation detection approaches rely on object information
extracted from RGB images, such as 2D bounding boxes, feature maps, and predicted
class probabilities, in this chapter, we argue for the importance of 3D information
provided by depth maps. In order to obtain depth maps, one does not need to rely on
specific equipment since they can be generated synthetically from RGB images in a
bottom-up process and using a pre-trained convolutional neural network. The depth
information can then be fused with the RGB image information before classifying the
relations. To enable this study, we release a new dataset of synthetically generated
depth maps, VG-Depth, as an extension to Visual Genome (VG). Additionally,
we introduce a novel metric better suited for reflecting the experimental results,
specially given the imbalanced distribution of VG annotations.

• Chapter 5 analyzes the close link between human perception and memory. In this
chapter, we propose a biologically plausible, computational cognitive model to
capture the interaction between episodic memory, semantic memory, and working
memory. Our experiments on the Stanford Visual Relation Data (VRD) demonstrate
that semantic memory can evolve from perception as a distinguishable functional
module. There is a close link between the cognitive model introduced in this chapter
and the model in Chapter 2.

• Chapter 6 proposes the first unsupervised architecture for text-to-graph (semantic
parsing) and graph-to-text (text generation). Unlike previous works, this model
does not require parallel graph-text training data and does not need to rely on
domain adaptation techniques to transfer well to different domains. We evaluate our
approach on the WebNLG and a new benchmark we create from the scene graphs
of Visual Genome. Our system outperforms strong baselines for both conversion
tasks without manual adaptation from one dataset to the other. In additional
experiments, we investigate the impact of using different unsupervised objectives.
The findings of this chapter were influential in designing the supervised text to
graph model that we introduced in Chapter 3.

In summary, we believe this work significantly advances the field of scene understanding,
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particularly scene graph classification, where the results of our proposed models are among
the state-of-the-art to this date. As a result of this work, we can now model commonsense
directly from images instead of handcrafting it and take a step towards artificial general
intelligence (AGI) by enabling embodied knowledge acquisition. Furthermore, we improve
the perception models by introducing iterative feedback signals from the commonsense
representations to the vision pipeline. Moreover, by lifting the burden of extensive labor for
image annotation and using textual knowledge transfer, we can now fine-tune scene graph
classification models in an economically and computationally more viable way. Finally,
by creating an external dataset of synthetic depth maps, we show the importance of 3D
information in scene understanding and pave the way for future research in multimodal
scene graph classification.

As reproducible science is of the highest importance to us, we provide open-sourced
implementations for most of the work presented and explicitly reference them in each
chapter.

1.3 Background

This chapter introduces the central concepts of the thesis in greater detail than a single
paper allows. It also reviews existing works to contextualize the thesis’ contributions
better. We begin by introducing general notation in Section 1.3.1. We then discuss
Representation Learning and its variations, particularly recent advancements in self-
supervised learning in Section 1.3.2. Scene Graphs are introduced in Section 1.3.3
including different detection approaches, evaluation tasks, metrics, and datasets. We then
define commonsense in Section 1.3.4 and introduce structured and unstructured methods
of modeling commonsense using knowledge graphs embeddings models (Section 1.3.4)
and language models (Section 1.3.4). Section 1.3.5 briefly introduces the recent Visual
Language Models. Finally, Section 1.3.6 discusses the symbol grounding problem and
motivates the upcoming works in this dissertation.

1.3.1 Notation

In this section, we introduce the notation used throughout the remainder of this chapter.
The notation introduced here is also mostly consistent with the individual publications in
the other chapters. In general, we use lower-case Greek letters, e.g., α, to denote scalar
values, lower-case bold-font letters, e.g., x, to denote vectors, upper-case bold-font, e.g.,
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X, to denote matrices or higher-order tensors. We denote real and complex numbers
by R by C. If not noted otherwise, we assume each variable to be real. With log we
refer to the natural logarithm (ln) if not stated otherwise. By ⟨x,y⟩ we denote the inner
product between x,y ∈ Rd. If not noted otherwise, we use the standard inner product
⟨x,y⟩ = xTy. By ∥x∥ we denote the norm of x, and by ∥x∥p = (

∑︁d
i=1 |xi|p)

1/p
the p

norm specifically.
We commonly use the following activation functions. When applied to vectors, matrices,

or tensors, we realize them as elementwise operations.

• The Rectified Linear Unit (ReLU)

ReLU(α) = max{0, α}

• The Leaky ReLU [Maas et al., 2013]:

LeakyReLU(α) =

⎧
⎨
⎩
α if α > 0

β · α otherwise

where β = 10−2 if not specified differently.

• The (logistic) sigmoid function

σ(α) =
1

1 + exp(−α)

• The softmax
(softmax(x))i =

exp(xi)∑︁
j exp(xj)

With slight abuse of notation, we use the same function symbol with an additional
argument to denote the vectorized softmax operation applied to the rows/columns
of a matrix. The second argument denotes the axis along which the normalization
is applied, e.g., softmax(X, 1) denotes the row-wise softmax.

1.3.2 Representation Learning

There are many ways to represent information. Depending on the representation of the
information, some tasks can be simple or very difficult [Goodfellow et al., 2016]. For
example, finding the direction from location A to location B is much easier for us, given
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the city map rather than looking at a graph with nodes representing streets and edges
representing their connection. One of the challenges in deep learning is learning effective
representations from data such that we can solve the downstream tasks. In supervised
learning, the tasks are given explicitly, and the representations are shaped to handle the
supervised task. As a result, the representation highly depends on the annotated training
data and may lack sufficient generalization that allows us to transfer them to new tasks.
On the other hand, unsupervised or self-supervised learning approaches aim to extract
representations without any labels. As a result, they generalize better to downstream
tasks and allow us to utilize the massive set of available unlabeled data without the
need for human labor. In humans, the sparse supervisory signals from the environment
appear to have also led to the development of self-supervised learning methods in the
brain. Since most of the work in this dissertation relies on self-supervised representation
learning methods, in the following, we discuss some of the most recent advancements in
self-supervised learning for images and also for symbolic data.

Self-supervised Learning for Images

Most self-supervised approaches rely either on a generative or a discriminative objec-
tive [Chen et al., 2020a]. In generative approaches, the goal is to learn representations
that can reconstruct the inputs. This approach is widely used in modern language
models where the inputs are sentences, and the targets are a masked version of the same
input. Similarly, in computer vision, generative self-supervised methods, also known
as unsupervised methods, try to reconstruct a given image input [Hinton et al., 2006,
Kingma and Welling, 2013, Goodfellow et al., 2014]. However, as Chen et al. [2020a]
argues, pixel-level generation is computationally expensive and may not be necessary for
learning representations that can be used for other downstream tasks such as classification.
Discriminative approaches on the other hand, rely on pretext tasks such that the learning
objective is similar to those of supervised learning. Some of the most promising approaches
in discriminative self-supervised learning are based on contrastive learning in the latent
space [Hadsell et al., 2006, Dosovitskiy et al., 2014, Oord et al., 2018, Bachman et al.,
2019, Chen et al., 2020a].

Recent methods in discriminative self-supervised learning achieve comparable or su-
perior results to supervised learning on ImageNet [Deng et al., 2009]. For example,
SimCLR [Chen et al., 2020a] and SimCLR-v2 [Chen et al., 2020b] augment the input
images, feed them through the same convolutional neural network (a siamese neural
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network architecture), and applies a contrastive loss such that the output of the original
image, and its augmentation, are as similar as possible. In order to prevent the neural
network to collapse (such that it learns to “cheat” by outputting a constant representation
for all possible inputs), they use negative sampling; given two different augmentations a
and b of an input image, and a different image c, the extracted representations from a
compared to b, should be as similar as possible while the extracted representations from
a and b, compared to c should be as dissimilar as possible. In an upcoming work, Grill
et al. [2020] proposed an approach called BYOL (Bootstrap Your Own Latent) that
does not require the expensive step required for sampling and training with negative data
points. Instead, they used a momentum encoder. In a momentum encoder, the second
positive sample (b) is fed into a frozen and offline version of the network that the first
image (a) is fed into. The offline network is only updated every few steps such that it is
always slightly different than the online network. Later, SimSiam [Chen and He, 2021]
showed that BYOL works even without the momentum encoder, and the crucial step
for BYOL is having the stop-gradients for the second network. VICReg [Bardes et al.,
2021] challenged the previous works by showing that in order to prevent collapse, we only
need two regularization terms: a term that maintains the variance of each embedding
dimension above a threshold and a term that decorrelates each pair of variables. Other
than the works that focus on approaches to prevent collapse, some focus on different
aspects such as how to make more effective data augmentations or create better negative
samples. In this dissertation, we often use self-supervised methods, in particular BYOL.

Self-supervised Learning for Symbols

In addition to the recent advancements in computer vision, self-supervised learning
approaches are also often used for training language and knowledge graph models. In this
scenario, the goal is to find representations for words (symbols). In Section 1.3.4, we will
introduce knowledge graphs and languages as forms of modeling commonsense knowledge
and briefly describe the self-supervised approaches in training knowledge graphs and
language models.

1.3.3 Scene Graphs

A scene graph is a structured, symbolic description of an image [Krishna et al., 2017]. A
scene graph can be represented as a set of triples defined as follows:

Definition 1.3.1 (Scene Graph). A Scene Graph (SG) is a 3-tuple SG = (E ,R, T ) with

11



1 Introduction

a set of entities E, relations R, and triples T ⊆ (E ×R× E).

Each triple (h, r, t) ∈ T with head h, relation r, and tail entity t, represent a fact that
is present in an image. For example, given an image of a man riding a horse on a grass
field, we can define a scene graph as the set of triples (Man, rides, Horse) and (Horse,
on, Grass). This representation is dual to a multi-relational graph view, where the heads
and tails are nodes, and relations are directed edges from the head to the tail entity.
In practice, when dealing with machine learning models for scene graph representation,
instead of working directly with string values, e.g., “Man”, an integer-valued index is often
assigned as the symbolic representation of the entities and relations, i.e., E = {1, . . . , |E|},
or R = {1, . . . , |R|}. This enables us to work with vectorized operations directly.

Scene Graph Detection

One of the fundamental tasks in Computer Vision is to take an image as input and
generate its corresponding scene graph. This task is commonly known as scene graph
generation or scene graph detection (SGD) [Krishna et al., 2017]. Extracting scene graphs
from images can have many applications in downstream computer vision tasks such as
image captioning, Visual Question Answering (VQA), image manipulation [Johnson et al.,
2018], etc. Notably, it is possible to have end-to-end architectures that take images as
input and solve the mentioned tasks. However, having an intermediate stage where we
first extract symbolic scene graphs from an image before performing the downstream tasks
has many advantages, including (a) contributing to the interpretability of the models, (b)
creating a shared space where any data modalities such as images, sounds, or videos, can
be mapped to, (c) creating a bridge to human language and the vast source of knowledge
that it holds, and (d) creating a bridge to symbols and therefore, enabling logical reasoning
operations, i.e., neuro-symbolic methods [Mao et al., 2019].

Approaches

The scene graph detection methods are often two-staged (e.g. Zellers et al. [2018], Lu et al.
[2016], Sharifzadeh et al. [2021]), meaning that first a set of objects are detected from
the image, and then the objects and their pairwise relations are classified, or sometimes
single-staged [Liu et al., 2021, Cong et al., 2022, Shit et al., 2022], where the detection
and classification are all together. The methods that we employ in this dissertation all
have a two-staged approach.
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Most state-of-the-art models for two-staged scene graph detection rely on the Faster
R-CNN [Ren et al., 2015] framework that detects objects and extracts image-based
object representations from the objects in each image. The Faster R-CNN is mainly
equipped with a VGG-16 [Simonyan and Zisserman, 2014] or sometimes a ResNet-50 [He
et al., 2016] backbone. It has been shown that using different forms of message passing
between the extracted object representations in an image, e.g., RNNs [Xu et al., 2017],
LSTMs [Zellers et al., 2018], Graph Convolutional Neural Networks [Yang et al., 2018], and
Graph Transformers [Sharifzadeh et al., 2021], contributes to getting higher performance
in classifying objects and relations.

Evaluation Tasks

In general, scene graph models are evaluated under three different settings: (1) scene
graph detection (SGDet), where only the images are given, and the location, class, and
size of objects are unknown, (2) scene graph classification (SGCls), where the location
and size of objects in images are given as bounding boxes, and the goal is to find the
suitable class for the objects and relations, (3) predicate classification (PredCls) where
the location, size and class label of objects are given, and the goal is to detect and classify
the relations (also known as predicates) between them.

Datasets

Stanford’s Visual Relation [Lu et al., 2016] was one of the earliest image datasets with
scene graphs annotations. Later, Visual Genome [Krishna et al., 2017] (VG) provided a
larger dataset consisting of around 57k training images and their corresponding scene
graphs as well as scene descriptions (in natural language). One of the most popular splits
of Visual Genome that is also often used in this thesis is provided by Xu et al. [2017] and
contains 150 of the most frequent objects in VG and 50 predicate classes, with an average
of 11.5 objects and 6.2 predicates in each image.

Metrics

R@K The most commonly used metric for evaluating the experimental results of different
scene graph classification models is Recall@K (R@K). In R@K, given each image and its
predicted scene graphs, the predictions should first be sorted according to the prediction
scores. Then, the ratio of ground truth labels that appear in the top-K scores are
calculated. The final R@K measure is the mean accuracy among all images.
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mR@K The distribution of labeled relations is often highly imbalanced. For example,
in the Visual Genome test set, the predicate wearing appears 20,148 times, whereas the
predicate walking on appears only 648 times [Sharifzadeh et al., 2020]. Therefore, if
a model proposes a method to improve the prediction of walking on, the R@K cannot
effectively reflect this improvement. In order to alleviate this problem, one can calculate
the Macro Recall [Chen et al., 2019, Sharifzadeh et al., 2020] (mR@K). In this setting, the
overall recall is computed by taking the mean over recall per predicate. Therefore, if the
R@K of a specific predicate is largely improved, it will improve the metric significantly.
In summary, mR@K is defined as

Macro Recall@K =
∑︂

(s,p,o)∈Tp

Micro R@K(p)

|Tp|
(1.1)

1.3.4 Commonsense

While scene graphs or image captions describe what is in a specific image, commonsense or
semantic knowledge is about what can be in an image (or the world in general) regardless of
a given input. Note that commonsense could also refer to procedural and non-declarative
forms of knowledge (e.g., how to drive a car [Sharifzadeh et al., 2016]) but the focus of
this dissertation is on semantic knowledge that can be described by symbols 2 Symbolic
knowledge can be represented in a structured form such as those in knowledge graphs
(KGs) or unstructured such as the human language (e.g., encyclopedia, books, etc.).
Since our language or knowledge graphs often have gaps in the information they contain,
creating models of knowledge graphs or language is beneficial. Language and knowledge
graph embedding models can generalize to new facts and help us predict the missing
information, a task known as link prediction. We will briefly describe knowledge graph
embeddings models and then discuss some recent language models.

Knowledge Graphs

Knowledge Graphs (KGs) are a data structure to store factual knowledge. A KG can be
described as the following:

Definition 1.3.2 (Knowledge Graph). A Knowledge Graph (KG) is a 3-tuple K =

(E ,R, T ) with a set of entities E, a set of relations R, and a set of triples T ⊆ (E ×R×E).
2Here, we use the term symbol, as one would do in the GOFAI (good old-fashioned artificial intelligence)

methods instead of considering every possible continuous vector as a symbol.
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Each triple (h, r, t) ∈ T with head h, relation r, and tail entity t, represent a fact that
is present in our source of knowledge.

Knowledge Graphs vs. Scene Graphs

Note that knowledge graphs are defined the same as the scene graphs. The only difference
is that SGs describe images, whereas KG can contain knowledge obtained from any
modality or inferred through reasoning. Therefore, one can consider a set of several SGs
as a single KG containing visual knowledge. The relation between KGs and SGs can help
us define an interaction between them: (1) KGs can be built from SGs, and (2) SGs that
are predicted from an image, can be directly compared with KGs; a predicted SG can be
noisy or incomplete, because objects occlude each other or there are variations in lighting
conditions, viewpoints, object poses, etc. As a result, vision models cannot correctly
capture all the objects in the scene. However, KGs contain a more robust, general world
structure and can fill in the missing gaps or correct errors. For example, if the back wheel
of a car is not present in its image, the SG will not have it, but the KG can predict it.

Knowledge Graph Embedding Models

Knowledge Graphs are often incomplete or noisy since it is impossible to access all possible
relations in the world. For example, a KG might contain a fact about giraffes having
four legs, but not about giraffe calves having four legs. Knowledge Graph Embedding
(KGE) models [Nickel et al., 2016] provide an efficient approach to infer these missing
links (a task known as link prediction). KGE models assign a vector representation to
each symbolic entity in the knowledge graph such that the interaction between the vector
embeddings for head, tail, and predicate in a relation, can predict whether this fact is
true or not. This can be considered a form of self-supervised learning where the input
is a noisy graph (with dropped edges), and the goal is to reconstruct the graph. Once
we train a knowledge graph embedding model, we can evaluate the generalization power
of this model compared to the original symbolic KG. In our previous example, since a
giraffe calf and its calf appear in similar relations in a KG, they will be given embeddings
similar to each other but dissimilar to other entities. We can now predict the missing
relations that a giraffe or its baby can have through the vector interactions. Therefore,
instead of querying a knowledge graph for a symbolic fact, one can query a knowledge
graph embedding by evaluating the composition of vector representations assigned to
each symbol.
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To find the embedding for each symbol in the knowledge graphs, the first knowledge
graph embedding model, RESCAL [Nickel et al., 2011] proposed a method based on
the expectation maximization algorithm [Dempster et al., 1977]. Nowadays, most link
prediction methods, including variations of RESCAL, use artificial neural networks and
gradient-based learning. There are several different KGE models; the main difference is in
how they define the interaction function between vectors. Given the embeddings for head,
predicate, and tail, the interaction function predicts whether this relation exists or not,
such that it output is 1 for true relations and 0 otherwise. For example, RESCAL [Nickel
et al., 2011] defines each relation as an affine transformation in the embedding space of
entities. Therefore, the interaction function f is

f(xh,Xr,xt) = xT
hXrxt

with Xr ∈ Rd×d as the d-dimensional matrix, representing relation r, xh ∈ Rde as the
embedding for head entity and xt ∈ Rde as the embedding for the tail entity.

TransE [Bordes et al., 2013] defines the relation as a simple translation in space with
the interaction function

f(xh,xr,xt) = −∥xh + xr − xt∥

where xr ∈ Rdr represents relation r. Compared to RESCAL, TransE has fewer parameters
but cannot model symmetric relations.

DistMult [Yang et al., 2014] considers each relation as a vector, minimizes the trilinear
dot product of subject, predicate, and object vector, and can be thought of as a form of
RESCAL, where the transformation matrix is diagonal such that

f(xh,xr,xt) = ⟨xh,xr,xt⟩

where ⟨·, ·, ·⟩ denotes the tri-linear dot product.

ComplEx [Trouillon et al., 2016] is similar to DistMult, but in the complex space,
therefore the interaction function is

f(xh,xr,xt) = ℜ (⟨xh,xr,xt⟩)

where xh,xr,xt ∈ Cd, ℜ denotes the operation which retrieves the real part of a complex
number, and the complex conjugate.
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RotatE [Sun et al., 2019] models the relations as rotations in the complex space as

f(xh,xr,xt) = −∥xh ⊙ xr − xt∥2

with xh,xr,xt ∈ Cd, the relation representation being element-wise normalized to unit
length |(xr)i| = 1.

Triple-input [Dong et al., 2014] multilayer perceptron (MLP) architectures extends
these methods to non-linear transformations with the interaction function

f(xh,xr,xt) = MLP([xh;xr;xt]),

where MLP is a trained 2-layer Multi-Layer Perceptron (MLP).
Dual-input MLP used in Sharifzadeh et al. [2020] slightly modifies the previous interac-

tion model and proposes the interaction function

f(xh,xr,xt) = xT
t MLP([xh;xr]).

For an extensive review and study on different KG models, refer to [Nickel et al., 2016,
Ali et al., 2020, 2021].

Language Models

Human language is a vast source of knowledge; the sentences communicated orally between
humans or those written down, describe facts that are observed directly in the world
or inferred through reasoning. Therefore, similar to KGs, language can give us a more
general knowledge of the world that can help to correct the errors of a vision model.
However, compared to the knowledge graphs, language is unstructured; there are symbols
in the language that do not carry any information (e.g. “a”), or some entities that are
referred to using different symbols (e.g. “Obama” became the president. “He” moved to
the White House.). This makes it hard to query texts directly (e.g., Where is Obama?).
On the other hand, unstructured texts are much more widely available worldwide than
structured KGs, and exploiting this knowledge can be quite valuable.

Similar to how KGEs model knowledge graphs, one can model the language using
language models (LMs). Given the words {w1, w2, ..., , wn} in a sentence of length n,
a language model assigns a probability distribution P (w1, w2, ..., , wn) to the sentence.
While modeling languages has a long history in computational linguistics with various
methods, we focus on modern language models based on artificial neural networks, specially
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transformers [Vaswani et al., 2017], such as BERT [Devlin et al., 2018], T5 [Raffel et al.,
2019], GPT-3 [Brown et al., 2020], and Chinchilla [Hoffmann et al., 2022] with strong
capabilities in modeling languages. These methods often rely on self-supervised training
objectives such that their goal is to predict a the next tokens given previous ones, or a
randomly masked version of the input. Similar to KGs, the knowledge stored in texts can
be incomplete, and language models can enable us to infer unseen facts.

Language models have shown strong capabilities in many tasks such as translation,
reasoning, etc. In this dissertation, we show that a pre-trained large language model (T5)
can also be used to convert unstructured texts into knowledge graphs which can then be
used in scene graph classification.

Since most of the modern language models are based on transformers, and we also use
transformers on the graph structures in this dissertation, we briefly describe the graph
transformers.

Transformers Bahdanau et al. [2014] proposed an attention mechanism originally for
machine translation and to allow the model to automatically (soft-)search for parts of
a source sentence that are relevant to predicting a target word. Later, Vaswani et al.
[2017] proposed multi-headed self-attentions in the transformer architecture to encode
a sequence of tokens where each token considers the representation of itself and all the
other neighbors. While the original transformers focus on sequences of sentences, one
can apply transformers in a more general form, similar to graph convolutions [Kipf and
Welling, 2016], that propagates messages between nodes and edges in a graph. In this
work, we often use transformers in the more general graphical form that can be applied
to objects and relations from images. To give a broad overview, consider an initial node
embeddings z

(0)
i of node i in the first layer of a transformer; we compute z

(l)
i of the l-th

transformer layer by computing and propagating messages.

m
N (i)
i =

1

K

K∑︂

k=1

∑︂

j∈N (i)

α
(l,k)
ij W(l,k)z

(l)
j (1.2)

z′(l)i = LN(z
(l)
i +m

Nin(i)
i +m

Nout(i)
i ) (1.3)
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z
(l+1)
i = LN(z′(l)i + f(z′(l)i )), (1.4)

where LN is the layer norm [Ba et al., 2016], K is the number of attentional heads and
W(l,k) is the weight matrix of the k-th head in layer l. N (i) represent the set of neighbors,
which are either incoming Nin(i) or outgoing Nout(i). f(.) is a two-layered feedforward
neural network with Leaky ReLU non-linearities between each layer. α

(l,k)
ij denotes the

attention coefficients in each head and is defined as

e
(l,k)
ij = σ(h(l,k) · [z(l)i ||W(l,k)z

(l)
j ]) (1.5)

α
(l,k)
ij =

exp(e
(l,k)
ij )

∑︁
q∈N (i) exp(e

(l,k)
iq )

(1.6)

with h(l,k) as a learnable weight vector and || denoting concatenation. σ is the Leaky
ReLU with the slope of 0.2.

In the original transformers, a positional encoding is added to each embedding so that
the model can consider the order of the words in a sentence. In our methods, we also use
a form of spatial vector to encode the location of each node (object) in an image. In the
end, the output of the final transformer layer is used for the task at hand, e.g., node or
edge classification.

1.3.5 Visual Language Models

As discussed in the previous section, most language models take the input words
{w1, w2, ..., , wn} and assign it a probability distribution P (w1, w2, ..., , wn). Visual lan-
guage models (VLM) function similarly, except that the input can be a combination
of word tokens ({w1, w2, ..., , wn}) from the sentence and visual tokens ({v1, v2, ..., , vn})
from image(s) or videos. This allows the visual language models to do different tasks,
including visual question answering and captioning. In one of the most recent VLMs,
Frozen [Tsimpoukelli et al., 2021], the penultimate layer of a convolutional neural network
is directly fed into a pre-trained and frozen language model such that it generates captions
for the given image inputs by modeling P (v1, v2, ..., vn, w1, w2, ..., wn). This way, Frozen
reduces the burden of modeling the language itself, and instead, the training can focus
on learning to extract the most relevant visual features. Another benefit of having a
pre-trained language model is that the generated captions become very rich in details,
considering that the language model can already generate highly complex sentences.

More recently, in Flamingo [Alayrac et al., 2022] we showed that one could combine
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pre-trained, frozen “vision-only” and “language-only” models and train a few adaptation
layers only. This way, we need much less parallel text-image data to train the VLMs.
Flamingo also showed that it can handle arbitrarily interleaved visual and textual data
sequences by modeling P (v1, w2, ..., vn, w1, v5, ..., wn). As a result, a user can communicate
with the model in a multimodal way at test time. As shown in Sharifzadeh et al. [2021]
and Sharifzadeh et al. [2022], combining knowledge graphs with scene graphs has similar
benefits as modern VLMs for incorporating commonsense knowledge with vision models,
albeit with structured outputs rather than texts.

1.3.6 The Symbol Grounding Problem

As discussed in the introduction, the symbol grounding problem is one of the core topics
in this dissertation. According to Harnad [Harnad, 1990], the symbol grounding problem
explores the question “Where do symbols get their meanings?”. However, why is it
crucial to study the symbol grounding problem? In order to understand the importance
of grounding symbols from a computational perspective, let us consider the example
of knowledge graphs as a representation of structured symbolic facts. As discussed
earlier, knowledge graphs consist of triples indicating the relation between symbols, and a
knowledge graph embedding (KGE) model assigns high-dimensional vector representations
to each symbol. It might be tempting to consider this process of assigning an embedding
to a symbol as a form of grounding by arguing that the relational structure of a graph
gives rise to the meaning of symbols. However, while KGEs can help predict novel facts,
they are still merely a generalization from symbols, and their embedding does not ground
us in the real world. Harnad expresses this well in his example of the Chinese/Chinese
Dictionary-Go-Round Problem [Harnad, 1990]: “Suppose you had to learn Chinese as
a second language and the only source of information you had was a Chinese/Chinese
dictionary. The trip through the dictionary would amount to a merry-go-round, passing
endlessly from one meaningless symbol or symbol-string (the definientes) to another (the
definienda), never coming to a halt on what anything meant”.

The human brain seems to circumvent this issue by grounding symbols in percep-
tions [Piaget, 1923]. This gives rise not only to meaning but also to more substantial
generalization; let us say that we have triples describing the relations between Man,
Woman, and Horse. However, none of these triples can adequately describe the visual
appearances of these entities. Therefore, these models fall short of predicting some
relations. For example, assume that a man has seen and rode on horses in his life. Since
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a horse and a donkey look similar, when he sees a donkey for the first time, it is quite
straightforward for him to guess that he can also ride the donkey. However, the KGEs
cannot predict this relation since they do not have access to any perceptual input and
can only generalize within declarative relations. In order to include that in our model,
we should also include higher-dimensional attributes, connecting the node of horse and
donkey to their observed images (note that this image can be already in an embedding
space rather than the original input space). This will ground the symbols not just in the
relational structure of the symbolic graph but also in visual attributes.

Later in this dissertation, we show that grounding symbol representations into percep-
tions not only leads to better model generalization but also enables multimodal knowledge
acquisition [Sharifzadeh et al., 2021, 2022].
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2 Classification by attention: Scene
graph classification with prior
knowledge

This chapter comprises the publication

Sharifzadeh et al. [2021]

and the code is available at

https://github.com/sharifza/schemata
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Abstract

A major challenge in scene graph classification is that the ap-
pearance of objects and relations can be significantly different
from one image to another. Previous works have addressed
this by relational reasoning over all objects in an image or
incorporating prior knowledge into classification. Unlike pre-
vious works, we do not consider separate models for per-
ception and prior knowledge. Instead, we take a multi-task
learning approach by introducing schema representations and
implementing the classification as an attention layer between
image-based representations and the schemata. This allows
for the prior knowledge to emerge and propagate within the
perception model. By enforcing the model also to represent
the prior, we achieve a strong inductive bias. We show that
our model can accurately generate commonsense knowledge
and that the iterative injection of this knowledge to scene rep-
resentations, as a top-down mechanism, leads to significantly
higher classification performance. Additionally, our model can
be fine-tuned on external knowledge given as triples. When
combined with self-supervised learning and with 1% of anno-
tated images only, this gives more than 3% improvement in
object classification, 26% in scene graph classification, and
36% in predicate prediction accuracy.

Introduction
Classifying objects and their relations in images, also known
as scene graph classification, is a fundamental task in scene
understanding and can play an essential role in applications
such as recommender systems, visual question answering and
decision making. Scene graph (SG) classification methods
typically have a perception model that takes an image as input
and generates a graph that describes the given image as a col-
lection of (head, predicate, tail). One of the main
challenges that current models face is diverse appearances
of objects and relations across different images. This can be
due to variations in lighting conditions, viewpoints, object
poses, occlusions, etc. For example, the Bowl in Figure 1
is highly occluded and has very few image-based features.
Therefore, a typical perception model fails to classify it. One
approach to tackle this problem is to collect supportive evi-
dence from the neighbors before classifying an entity. This

*S.M. Baharlou contributed to this project while he was a visiting
researcher at the Ludwig Maximilian University of Munich.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: An example of scene graph classification where
the Bowl lacks sufficient visual input. The top right is the
initially predicted graph from the visual inputs only. The
bottom left is the prediction of our model after considering
both image-based representations and the prior knowledge
about Fruits and Oranges (schemata). The long arrow near
the bottom indicates recursion.

can be done, for example, by message passing between all the
image-based object representations in an image, using graph
convolutional neural networks (GCN) (Kipf and Welling
2016) or LSTMs (Hochreiter and Schmidhuber 1997). The
main issue with this approach is the combinatorial explosion
of all possible image-based neighbor representations1.

A current theory in cognitive psychology states that hu-
mans solve this challenge by reasoning over the pre-existing
representations of neighboring objects instead of relying on
the perceptual inputs only (Piaget 1923); philosophers often
argue that humans have a form of mental representation for
objects and concepts (Kant 1787). These representations do
not depend on a given image but are rather symbol-based.
There are different opinions on how these representations
come to be. Piaget called these representations schema (plu-

1For a more detailed probabilistic analysis of this issue, refer to
the section GCN vs. Prior Model: A matter of inductive biases.
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ral schemata) and suggested that we acquire them in our
earlier perceptions. When an object is being perceived, the
mind assigns it to a schema in a process called assimilation.
By relational reasoning over schemata, assimilation helps to
predict the facts surrounding the observation (Arbib 1992)2.

Nevertheless, learning and utilizing prior knowledge is still
a significant challenge in AI research. Recently, Zellers et al.
(2018) and Chen et al. (2019c,b) proposed to correct the SG
prediction errors by comparing them to the co-occurrence
statistics of triples in the training dataset or an external source.
The statistics can, for example, suggest that it is common to
see (Fruits, in, Bowls). Furthermore, instead of re-
lying on simple co-occurrence statistics, one can create a prior
model with knowledge graph embeddings (KGE) (Nickel
et al. 2016) that can generalize beyond the given triples (Baier,
Ma, and Tresp 2017, 2018; Hou et al. 2019). KGEs typically
consist of an embedding matrix, that assigns a vector rep-
resentation to each entity, and an interaction function that
predicts the probability of a triple given the embeddings of
its head, predicate, and tail. This allows KGE models to gen-
eralize to unseen relations. For example, Man and Woman
will be given similar embeddings since they appear in sim-
ilar relations during the training. As a result, if the model
observes (Woman, rides, Horse), it can generalize,
for example, to (Man, rides, Camel).

However, in the described approaches, unlike Piaget’s
schemata, the perception and the prior are treated naively
as independent components; they are trained separately and
from different inputs (either from images or from triples), and
their predictions are typically fused in the probability space,
e.g., by multiplication. Other than requiring redundant param-
eters and computations, this makes the prior model agnostic
to the image-based knowledge and the perception model ag-
nostic to the prior knowledge. For example, the collection
of triples might contain (Woman, rides, Horse) but
have no triples regarding a Donkey. While the images can
represent the visual similarities of a Horse to a Donkey,
the triples lack this information. If we train a prior model
purely based on the triples, the model fails to generalize. We
can avoid this by training the prior model from a combination
of triples and images. As for another example, in Figure 1, the
prior model might suggest (Fruits, in, Bowl) but it
might also suggest (Fruits, areOn, Trees). To de-
cide between the two, one should still consider the visual
cues from the given image.

To address these shortcomings, we entangle the perception
and prior in a single model with shared parameters trained
by multi-task learning. Therefore, instead of training a sep-
arate embedding matrix for a prior model, we exploit the
perception model’s classification layer; when we train a clas-
sification layer on top of contextualized image-based repre-
sentations, the classification weights capture both relational
and image-based class embeddings (Refer to Figure 2). Un-
fortunately, the classification’s common realization as a fully
connected layer does not allow us to feed these network
weights to an interaction function. To this end, we employ
a more general formulation of classification as an attention

2We leave out the discussion on the schemata in Kant’s view.

Figure 2: t-SNE visualization of the object classification
weights that have been trained on top of contextualized image-
based representations. Entities that appear similar to each
other, or participate in similar relations, have a closer seman-
tic affinity. This enables link prediction similar to Knowledge
Graph Embeddings, and leads to generalization.

layer instead. In this layer, the extracted image-based and con-
textually enriched representations attend to trainable schema
embeddings of all classes such that (a) the attention coeffi-
cients are the classification scores (we enforce this by apply-
ing a classification loss on the attention outputs), and (b) the
attention values carry the prior knowledge that is injected into
the image-based representations (a top-down mechanism).

Furthermore, instead of training a separate interaction func-
tion for the prior model, we exploit the message passing
function that we already have available in the perception
model; after fusing the schemata and the image-based object-
representations, we contextualize and classify the representa-
tions again. Other than computational efficiency, this has the
advantage that the image-based object representations and
the schemata are combined in the embedding space rather
than the probability space.

We train the schemata using the Visual Genome (Krishna
et al. 2017) dataset. We show that our model can accurately
generate the captured commonsense knowledge and that iter-
ative injection of this knowledge, as a top-down signal, leads
to significantly higher classification accuracy. Additionally,
we draw from the recent advancements in self-supervised
learning and show that the schemata can be trained with only
a fraction of labeled images. This allows us to fine-tune the
perception model without any additional images; instead, we
can use a knowledge base of hand-crafted or external triples
and train with their mental images (schemata). As a result,
compared to the self-supervised baseline, and with 1% of the
training data, our model achieves more than 3% improvement
in object classification, 26% in scene graph classification, and
36% in predicate prediction; an accuracy that is almost equal
to when using 100% of the labeled images.

Related Works
While the concept of schemata can be applied to any form
of perceptual processing, and there are recent deep learning
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models of action schemata (Kansky et al. 2017), we focus
on the figurative schemata in the visual scene understanding
domain. There has also been a body of related research on
relational reasoning outside the scene graph domain (Wu,
Lenz, and Saxena 2014; Deng et al. 2014; Hu et al. 2016,
2017; Santoro et al. 2017; Sabour, Frosst, and Hinton 2017).
Nevertheless, research in this field was largely accelerated
after the release of Visual Relation Detection (VRD) (Lu et al.
2016) and the Visual Genome (Krishna et al. 2017) datasets.
Baier, Ma, and Tresp (2017, 2018) proposed the first KG-
based model of prior knowledge that improves SG classi-
fication. VTransE (Zhang et al. 2017) proposed to capture
relations by applying the KGE model of TransE (Bordes et al.
2013) on the visual embeddings. Yu et al. (2017) employed
a teacher-student model to distill external language knowl-
edge. Iterative Message Passing (Xu et al. 2017), Neural
Motifs (Zellers et al. 2018) (NM), and Graph R-CNN (Yang
et al. 2018) used RNNs and graph convolutions to propagate
image context. Tang et al. (2019) exploited dynamic tree
structures and Chen et al. (2019a) proposed a method based
on multi-agent policy gradients. Sharifzadeh et al. (2019)
employed the predicted pseudo depth maps in addition to
the 2D information. In general, scene graph classification
methods are closely related to KGE models (Nickel, Tresp,
and Kriegel 2011; Nickel et al. 2016). For an extensive dis-
cussion on the connection between perception, KGEs, and
cognition, refer to (Tresp, Sharifzadeh, and Konopatzki 2019;
Tresp et al. 2020). The link prediction in KGEs arises from
the compositionality of the trained embeddings. Some other
forms of compositionality in neural networks are discussed
in (Montufar et al. 2014). In this work, we introduce as-
similation, which strengthens the representations within the
neural network’s causal structure, addressing an issue raised
by Fodor, Pylyshyn et al. (1988). Some of the issues that
we address in this work have also been recently discussed
by Bengio (2017); Goyal et al. (2019); Mittal et al. (2020).

Methods
In summary, after an initial classification step, we combine
the image-based representations with the schemata of pre-
dicted classes. We then collect supportive evidence from the
neighbors before re-classifying each entity (Ref. Figure 1). In
what follows, bold lower case letters denote vectors, bold up-
per case letters denote matrices, and the letters denote scalar
quantities or random variables. Subscripts and superscripts
denote variables and calligraphic upper case letters for sets.

Definitions
Let us consider a given image I and a set of n bounding
boxes B = {bi}ni=1, bi = [bxi , b

y
i , b

w
i , b

h
i ], such that [bxi , b

y
i ]

are the coordinates of bi and [bwi , b
h
i ] are its width and height.

We build a Scene Representation Graph, SRG = {V, E}
as a structured presentation of the objects and predicates
in I. X o = {xoi }ni=1, xoi ∈ Rd denote the features of ob-
ject nodes and X p = {xpi }mi=1, xpi ∈ Rd denote the fea-
tures of predicate nodes3. Each xoi is initialized by a pooled

3Similar to (Yang et al. 2018; Koncel-Kedziorski et al. 2019),
we consider each object node as direct neighbors with its predicate

image-based object representation, extracted by applying
VGG16 (Simonyan and Zisserman 2014) or ResNet-50 (He
et al. 2016) on the image contents of bi. Each xpi is ini-
tialized by applying a two layered fully connected network
on the relational position vector t between a head i and a
tail j where t = [tx, ty, tw, th], tx = (bxi − bxj )/bwi j , ty =

(byi − byj )/bhj , tw = log(bwi /b
w
j ), th = log(bhi /b

h
j ). The im-

plementation details of the networks are provided in the Sup-
plementary.

Scene graph classification is the mapping of each node in
scene representation graph to a label where each object node
is from the label set Co and each predicate node from Cp. The
resulting labeled graph is a set of triples referred to as the
Scene Graph. We also define a Probabilistic Knowledge
Graph (PKG) as a graph where the weight of a triple is the
expected value of observing that relation given the head and
tail classes and regardless of any given images4. Later we will
show that our model can accurately generate the PKG, i.e.,
the commonsense that is captured from perceptions during
training.

In what comes next, xoi and xpi are treated identically ex-
cept for classification with respect to Co or Cp. Therefore, for
a better readability, we only write xi.

Contextualized Scene Representation Graph
We obtain contextualized object representations zi by ap-
plying a graph convolutional neural network, on SRG. We
also refer to this module as our interaction function. We
use a Graph Transformer as a variant of the Graph Network
Block (Battaglia et al. 2018; Koncel-Kedziorski et al. 2019)
with multi-headed attentions as

m
N (i)
i =

1

K

K∑

k=1

∑

j∈N (i)

α
(l,k)
ij W(l,k)z

(l,t)
j (1)

z′
(l)
i = LN(z

(l,t)
i + m

Nin(i)
i + m

Nout(i)
i ) (2)

z
(l+1,t)
i = LN(z′

(l)
i + f(z′

(l)
i )), (3)

where z
(l,t)
i is the embedding of node i in the l-th graph

convolution layer and t-th assimilation. In the first layer
z
(0,t)
i = xi. LN is the layer norm (Ba, Kiros, and Hinton

2016), K is the number of attentional heads and W(l,k) is
the weight matrix of the k-th head in layer l. N (i) represent
the set of neighbors, which are either incoming Nin(i) or
outgoing Nout(i). f(.) is a two layered feed-forward neural
network with Leaky ReLU non-linearities between each layer.
α

(l,k)
ij denotes the attention coefficients in each head and is

defined as
e
(l,k)
ij = σ(h(l,k) · [z(l)

i ||W(l,k)z
(l)
j ]) (4)

α
(l,k)
ij =

exp(e
(l,k)
ij )

∑
q∈N (i) exp(e

(l,k)
iq )

(5)

nodes and each predicate node as direct neighbors with its head and
tail object nodes.

4Note that while typical knowledge graphs such as Freebase are
based on object instances, given the nature of our image dataset, we
focus on classes.
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Figure 3: We formulate the classification as attention layer between object and schema representations. Contextualizing image-
based object representations before classification encourages the schemata to learn image-based relational prior knowledge. As a
result, the attention values that are injected from the schemata to scene representations and then propagated. In this way, they
enrich the image-based representations with prior knowledge. Additionally, the interactions between schemata can reconstruct
the probabilistic knowledge graph (right).

with h(l,k) as a learnable weight vector and || denoting con-
catenation. σ is the Leaky ReLU with the slope of 0.2.

Schemata
We define the schema of a class c as an embedding vec-
tor sc. We realize object and predicate classification by an
attention layer between the contextualized representations
and the schemata such that the classification outputs α′ic are
computed as the attention coefficients between zi and sc as

α′ic = softmax(a(z
(L,t)
i , sc)) (6)

where, a(.) is the attention function that we implement as
the dot-product between the input vectors, and z

(L,t)
i is the

output from the last (L-th) layer of the Graph Transformer.
The attention values δi capture the schemata messages as

δi =
∑

c∈C
α′icsc (7)

and we inject them back to update the scene representations
as

ui = LN(xi + δi) (8)

z
(0,t+1)
i = LN(ui + g(ui)) (9)

where g(.) is a two-layered feed-forward network with Leaky
ReLU non-linearities. Note that we compute ui by fusing the
attention values with the original image features xi. There-
fore, the outputs from previous Graph Transformer layers will
not be accumulated, and the original image-based features
will not vanish.

We define assimilation as the set of computations from
z
(L,t)
i to z

(L,t+1)
i . This includes the initial classification step

(Eq. 6), fusion of schemata with image-based vectors (Eq. 9)
and the application of the interaction function on the updated
embeddings (Eq. 3). We expect to get refined object repre-
sentations after the assimilation. Therefore, we assimilate
several times such that after each update of the classifica-
tion results, the priors are also updated accordingly. During
training, and for each step of assimilation, we employ a super-
vised attention loss, i.e. categorical cross entropy, between
the one-hot encoded ground truth labels and α′ic. This indi-
cates a multi-task learning strategy where one task (for the
first assimilation) is to optimize for P (yq|x1, ..., xθ), with xq
as a random variable representing the image-based features
of q, yq as the label, and θ = m+ n. The other set of tasks
is to optimize for P (yt+1

q |xt1, ..., xtθ, yt1, ..., ytθ). We refer to
the first task as IC, for Image-based Classification and to the
second set of tasks as ICP for Image-based Classification
with Prior knowledge. We train the second task using teacher
forcing and by setting the labels to their ground truth val-
ues. Therefore, in order to prevent collapse, we set the edge
schemata to zero. This resembles link prediction, such that
we denoise an incomplete input graph. Note that even when
no images are available, we can still train for the ICP from
a collection of external or hand-crafted triples by directly
assigning z

(0,t+1)
i = δi such that α′ic = onehot(ci).

GCN vs. Prior Model: A matter of inductive biases
Typical GCNs, such as the Graph Transformer, take the fea-
tures derived from each bounding box as input, apply non-
linear transformations and propagate them to the neighbors
in the following layers. Each GCN layer consists of fully
connected neural networks. Therefore, theoretically they can
also model and propagate prior knowledge that is not visible
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Figure 4: The results of our ablation studies. We study the
effect of each assimilation in scene graph classification. Note
that the model has been trained for only 4 assimilations yet it
can generalize.

in bounding boxes. However, experimental results of previ-
ous works (and also this work) confirm that explicit modeling
and propagation of prior knowledge (ICP) can still improve
the classification accuracy. Why is that the case?

Let us consider the following. According to the the uni-
versal approximation theorem (Csáji et al. 2001), when we
solve for IC as P (yk|x1, ..., xo), our model might learn to
capture a desired form of P (yk|x1, ..., xo, y1, ..., yo). How-
ever, in practice, the learning algorithm does not always find
the best function. Therefore, we require appropriate inductive
biases to guide us through the learning process. As Caruana
(1997) puts: “Multitask Learning is an approach to inductive
transfer that improves generalization by using the domain
information contained in the training signals of related tasks
as an inductive bias. It does this by learning tasks in parallel
while using a shared representation; what is learned for each
task can help other tasks be learned better”. For example,
in the encoder-decoder models for machine translation, e.g.
Transformers (Vaswani et al. 2017), the prediction is often
explicitly conditioned not just on the encoded inputs but also
on the decoded outputs from the previous tokens. Therefore,
the decoding in each step can be interpreted as computing
P (yk|x1, ..., xo, y1, ..., yk−1). Note that the previous predic-
tions such as y1, cannot benefit from the future predictions
{y2, ..., yo}. However, in our model, we provide an explicit
bias towards utilizing predictions in all indices. In fact, our
model can be interpreted as an encoder-decoder network,
where the decoder consists of multiple decoders. Therefore,
the decoding depends not just on the encoded image features
but also on the previously decoded outputs. In other words, by
injecting schema embeddings, as embeddings that are trained
over all images, we impose the bias to propagate what is not
visible in the bounding box. As will be shown later, we can
train for ICP and IC even with smaller splits of annotated
images, which can lead to competitive results with fewer
labels. Additionally, assimilation enables us to quantify the
propagated prior knowledge. This interpretability is another
advantage that GCNs alone do not have.

Settings We train our models on the common split of Vi-
sual Genome (Krishna et al. 2017) dataset containing images
labeled with their scene graphs (Xu et al. 2017). This split

Method SGCls PredCls Mean
@50 @100 @50 @100

U
nc

on
st

ra
in

ed IMP+ (Xu et al. 2017) 12.1 16.9 20.3 28.9 19.5
FREQ (Zellers et al. 2018) 13.5 19.6 24.8 37.3 23.8
SMN (Zellers et al. 2018) 15.4 20.6 27.5 37.9 25.3
KERN(Chen et al. 2019c) 19.8 26.2 36.3 49.0 32.8

Schemata 21.4 28.8 40.1 54.9 36.3

C
on

st
ra

in
ed

IMP (Xu et al. 2017) 3.1 3.8 6.1 8.0 5.2
IMP+ (Xu et al. 2017) 5.8 6.0 9.8 10.5 8.0

FREQ (Zellers et al. 2018) 6.8 7.8 13.3 15.8 10.9
SMN (Zellers et al. 2018) 7.1 7.6 13.3 14.4 10.6
KERN(Chen et al. 2019c) 9.4 10.0 17.7 19.2 14.0
VCTree(Tang et al. 2019) 10.1 10.8 17.9 19.4 14.5

Schemata 10.1 10.9 19.1 20.7 15.2
Schemata - PKG –.- –.- 8.2 9.4 –.-

Table 1: Comparison of the mR@50 and mR@100, with and
without graph constraints for SGCls and PredCls.

takes the most frequent 150 object and 50 predicate classes
in total, with an average of 11.5 objects and 6.2 predicates in
each image. We report the experimental results on the test set,
under two standard classification settings of predicate classifi-
cation (PredCls): predicting predicate labels given a ground
truth set of object boxes and object labels, and scene graph
classification (SGCls): predicting object and predicate labels,
given the set of object boxes. Another popular setting is the
scene graph detection (SGDet), where the network should
also detect the bounding boxes. Since the focus of our study
is not on improving the object detector backbone and our
improvements in SGDet were similar to the improvements in
SGCls, we do not report them here. For those results, please
refer to our official code repository. We report all the results
under constrained and unconstrained setups (Yu et al. 2017).
In the unconstrained setup, we allow for multiple predicate
labels, whereas in the constrained setup, we only take the
top-1 predicted predicate label.

Metrics We use Recall@K (R@K) as the standard metric.
R@K computes the mean prediction accuracy in each image
given the topK predictions. In VG, the distribution of labeled
relations is highly imbalanced. Therefore, we additionally
report Macro Recall (Sharifzadeh et al. 2019; Chen et al.
2019c) (mR@K) to reflect the improvements in the long
tail of the distribution. In this setting, the overall recall is
computed by taking the mean over recall per predicate.

Experiments The goal of our experiments is (A) to study
whether injecting prior knowledge into scene representations
can improve the classification and (B) to study the common-
sense knowledge that is captured in our model. In what fol-
lows, backbone refers to VGG16/ResNet-50 that generates
the SRG, and main model refers to part of the network that
applies contextualization and assimilation. The backbone can
be trained from a set of labeled images (in a supervised man-
ner), unlabeled images (in a self-supervised manner), or a
combination of the two. The main model can be trained from
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Figure 5: Qualitative examples of improved scene graph classification results (Recall@50) through assimilations of our model.
From left to right is after each assimilation. Green and gray colors indicate true positives and false negatives concluded by the
model. For example consider the middle image, where the sidewalk was initially misclassified as a street. After seeing a biker in
the image and a man sitting on a chair, a reasonable inference is that this should be a sidewalk.

Training SGCls R@100 PredCls R@100 Object Classification
1% 10% 100% 1% 10% 100% 1% 10% 100%

Sup - IC 1.84 ±0.26 13.90 ±0.97 33.6 40.61 ±0.84 52.51 ±1.19 62.0 14.38 ±0.57 38.45 ±1.21 64.2

Self-Sup - IC 12.12 ±0.47 26.14 ±0.77 36.8 48.10 ±0.54 58.14 ±0.35 63.4 40.75 ±0.48 56.97 ±0.76 68.0
Self-Sup - IC & ICP 15.36 ±0.38 27.37 ±0.47 37.1 65.68 ±0.12 65.42 ±0.19 65.7 42.09 ±0.65 58.60 ±0.56 68.4

Table 2: Comparison of R@100 for SGCls, PredCls and Object Classification tasks on smaller splits of the VG dataset.

a set of labeled images (the IC task), a prior knowledge base
(ICP) or a combination of the two. For (A), we conduct the
following studies:

1. We train both the backbone and the main model from all
the labeled images and for both tasks. We use the VGG-16
backbone as trained by Zellers et al. (2018). This allows
us to compare the results with the related works directly.
We evaluate the classification accuracy for 8 assimilations
(until the changes are not significant anymore). Table 1
compares the performance of our model to the state-of-
the-art under mR@K (for the R@K results refer to the
supplementary). As shown, our model exceeds the others
on average and under most settings. supplementary. Figure
4 shows our ablation study, indicating that the accuracy is
improved after each assimilation.

2. To qualitatively examine these results, we present some of
the images and their scene graphs after two assimilations,
in Figure 5. For example in the right image, while the
wheel is almost fully occluded, we can still classify it once
we classify other objects and employ commonsense (e.g.,
trucks have wheels). Another interesting example is the
middle image, where the sidewalk is initially misclassified
as a street. After seeing a biker in the image and a man
sitting on a chair, a reasonable inference is that this should
be a sidewalk! Similarly, in the left image, the man is
facing away from the camera, and his pose makes it hard
to classify him unless we utilize our prior knowledge about
the arm, pants, shirt, and skateboard.

3. Figure 7 shows the improvements per each predicate

class. The results indicate that most improvements oc-
cur in under-represented classes. This means that we have
achieved a generalization performance that is beyond the
simple reflection of the dataset’s statistical bias.

4. To understand the importance of prior knowledge com-
pared to having a large set of labeled images, we conduct
the following study: we uniformly sample two splits with
1% and 10% of VG. The images in each split are con-
sidered as labeled. We ignore the labels of the remaining
images and consider them as unlabeled5. Instead, we treat
the set of ignored labels as a form of external/hand-crafted
knowledge in the form of triples. For each split, we train
the full model (I) with a backbone that has been trained in
a supervised fashion with the respective split and no pre-
training, and the main model that has been trained for IC
(without commonsense) with the respective split, (II) with
a backbone that has been pre-trained on ImageNet (Deng
et al. 2009) and fine-tuned on the Visual Genome (in a
self-supervised fashion with BYOL (Grill et al. 2020)) and
fine-tuned on the respective split of the visual genome (in
a supervised fashion) and the main model that has been
trained for IC with the respective split, and (III) Similar to
2, except that we include the ICP and train the main model
by assimilating the entire prior knowledge base including

5Note that these splits are different from the recently proposed
few-shot learning set by Chen et al. (2019d). In (Chen et al. 2019d),
the goal is to study the few-shot learning of predicates only. How-
ever, we explore a more competitive setting, where only a fraction
of both objects and predicates are labeled.
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Figure 6: t-SNE visualization of object representations.

the external triples. We discard their image-based features
(xi) for the triples outside a split. Also, to treat all triples
equally when injecting the prior knowledge, we discard all
image-based features and directly feed the δi to the graph
transformer. To prevent collapse, we randomly drop some
of the δis. Since BYOL is based on ResNet-50, for a fair
comparison, we train all models in this experiment with
ResNet-50 (including another model that we train with
100% of the data). In the Scene Graph Classification com-
munity, the results are often reported under an arbitrary
random seed, and previous works have not reported the
summary statistics over several runs before. To allow for a
fair comparison of our model to those works (on the 100%
set), we followed the same procedure in the study A1. How-
ever, to encourage a statistically more stable comparison
of future models in this experiment, we report the sum-
mary statistics (arithmetic mean and standard deviation)
over five random fractions (1% and 10%) of VG training
set6. As shown in Table 2, utilizing prior knowledge allows
to achieve almost the same predicate prediction accuracy
with 1% of the data only. Also, we largely improve object
classification and scene graph classification.

Evaluation
For B we consider the following studies:

1. We visualize the semantic affinity of schema representa-
tions by employing t-SNE (Maaten and Hinton 2008). As
we can see in Figure 2, the schema representations of enti-
ties that are visually or relationally similar are the closest
to each other.

2. We inspect the semantic affinity of object representations
by employing t-SNE (I) before contextualization, (II) after
contextualization and (III) after injecting prior knowledge.
The results are represented in Figure 6. Each color repre-
sents a different object class. This investigation confirms
that object representations will get into more separable
clusters after injecting prior knowledge.

3. Finally, we evaluate our model’s accuracy in link predic-
tion. The goal is to quantitatively evaluate our model’s
understanding of relational commonsense, i.e., relational
structure of the probabilistic knowledge graph. Similar to
a KGE link prediction, we predict the predicate given head
and tail of a relation. In other words, we feed our model
6The splits are available at: https://github.com/sharifza/schemata

Figure 7: The top shows the per-predicate classification accu-
racy improvement after injecting prior knowledge, in SGCls
R@100. The bottom shows the distribution of sample propor-
tion for the predicates in the VG.

with the schema of head and tail, together with a zero-
vector for the image-based representations. As we can see
in Table 1, in Schemata - PKG, even if we do not provide
any image-based information, our model can still guess
the expected predicates similar to a KGE model. While
this guess is not as accurate as when we present it with an
image, the accuracy is still remarkable.

Conclusion

We discussed schemata as mental representations that enable
compositionality and reasoning. To model schemata in a deep
learning framework, we introduced them as representations
that encode image-based and relational prior knowledge of
objects and predicates in each class. By defining classifica-
tion as an attention layer instead of a fully connected layer,
we introduced an inductive bias that enabled the propagation
of prior knowledge. Our experiments on the Visual Genome
dataset confirmed the effectiveness of assimilation through
qualitative and quantitative measures. Our model achieved
higher accuracy under most settings and could also accu-
rately predict the commonsense knowledge. Additionally, we
showed that our model could be fine-tuned from external
sources of knowledge in the form of triples. When combined
with pre-trained schemata in a self-supervised setting, this
leads to a predicate prediction accuracy that is almost equal
to the full model. Also, it gives significant improvements
in the scene graph and object classification tasks. We hope
that this work will open new research directions in utilizing
commonsense to learn from little annotations.
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3 Improving Scene Graph Classification
by Exploiting Knowledge from Texts

This chapter comprises the publication

Sharifzadeh et al. [2022]

and the code is available at

https://github.com/mnschmit/unsupervised-graph-text-conversion

https://github.com/sharifza/schemata
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Abstract

Training scene graph classification models requires a large
amount of annotated image data. Meanwhile, scene graphs
represent relational knowledge that can be modeled with sym-
bolic data from texts or knowledge graphs. While image anno-
tation demands extensive labor, collecting textual descriptions
of natural scenes requires less effort. In this work, we inves-
tigate whether textual scene descriptions can substitute for
annotated image data. To this end, we employ a scene graph
classification framework that is trained not only from anno-
tated images but also from symbolic data. In our architecture,
the symbolic entities are first mapped to their correspondent
image-grounded representations and then fed into the rela-
tional reasoning pipeline. Even though a structured form of
knowledge, such as the form in knowledge graphs, is not al-
ways available, we can generate it from unstructured texts
using a transformer-based language model. We show that by
fine-tuning the classification pipeline with the extracted knowl-
edge from texts, we can achieve ∼8x more accurate results
in scene graph classification, ∼3x in object classification, and
∼1.5x in predicate classification, compared to the supervised
baselines with only 1% of the annotated images.

Introduction
Relational reasoning is one of the essential components of
intelligence; humans explore their environment by grasping
the entire context of a scene rather than studying each item
in isolation from the others. Furthermore, we expand our
understanding of the world by educating ourselves about
novel facts through reading or listening. For example, we
might have never seen a “cow wearing a dress” but might
have read about Hindu traditions of decorating cows. While
we already have a robust visual system that can extract basic
visual features such as edges and curves from a scene, the
description of a “cow wearing a dress” refines our visual
understanding of relations on an object level and enables us
to recognize a dressed cow when seeing it.

Relational reasoning is gaining growing popularity in the
Computer Vision community and especially in the form of

*These authors contributed equally.
†S. M. Baharlou contributed to this project while he was a visit-

ing researcher at the Ludwig Maximilian University of Munich.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

scene graph (SG) classification. The goal of SG classification
is to classify objects and their relations in an image. One of
the challenges in SG classification is collecting annotated im-
age data. Most approaches in this domain rely on thousands
of manually labeled and curated images. In this paper, we
investigate whether the SG classification models can be fine-
tuned from textual scene descriptions (similar to the “dressed
cow” example above).

We consider a classification pipeline with two major parts:
a feature extraction backbone, and a relational reasoning
component (Figure 1). The backbone is typically a convolu-
tional neural network (CNN) that detects objects and extracts
an image-based representation for each. On the other hand,
the relational reasoning component can be a variant of a re-
current neural network [Xu et al. 2017, Zellers et al. 2018] or
graph convolutional networks [Yang et al. 2018, Sharifzadeh,
Baharlou, and Tresp 2021]. This component operates on an
object level by taking the latent representations of all the
objects in the image and propagating them in the graph.

Note that, unlike the feature extraction backbone that re-
quires images as input, the relational reasoning component
operates on graphs with the nodes representing objects and
the edges representing relations. The distinction between
the input to the backbone (images) and the relational rea-
soning component (graphs) is often overlooked. Instead, the
scene graph classification pipeline is treated as a network
that takes only images as inputs. However, one can also train
or fine-tune the relational reasoning component directly by
injecting it with relational knowledge. For example, Knowl-
edge Graphs (KGs) contain curated facts that indicate the
relations between a head object and a tail object in the
form of (head, predicate, tail) e.g., (Person,
Rides, Horse). The facts in KGs are represented by
symbols whereas the inputs to the relational reasoning com-
ponent are image-based embeddings. In this work, we map
the triples to image-grounded embeddings as if they are com-
ing from an image. We then use these embeddings to fine-
tune the relational reasoning component through a denoising
graph autoencoder scheme.

Note that the factual knowledge is not always available
in a well-structured form, specially in domains where the
knowledge is not stored in the machine-accessible form of
KGs. In fact, most of the collective human knowledge is only
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Figure 1: Top: we initially train a scene graph classification pipeline from images and their corresponding SGs. Bottom: we
then use a text-to-graph module to extract structured knowledge from unstructured texts. The extracted graph is embedded by
image-grounded vectors, masked, and then fed to the relational reasoning module to predict the missing relations and thus,
encourage the network to learn the new relations from texts. The lock sign indicates pre-trained and frozen parts of the network.

available in the unstructured form of texts and documents.
Exploiting this form of knowledge, in addition to structured
knowledge, can be significantly beneficial. To this end, we
employ a transformer-based model to generate structured
graphs from textual input and utilize them to improve the
relational reasoning module.

In summary, we propose Texema, a scene graph classifi-
cation pipeline that can be trained from the large corpora of
unstructured knowledge. We evaluate our approach on the
Visual Genome dataset. In particular, we show that we can
fine-tune the reasoning component using textual scene de-
scriptions instead of thousands of images. As a result, when
using as little as ∼500 images (1% of the VG training data),
we can achieve ∼3x more accurate results in object classifica-
tion, ∼8x in scene graph classification and ∼1.5x in predicate
classification compared to the supervised baselines. Addition-
ally, in our ablation studies, we evaluate the performance of
using different rule-based, LSTM-based, and transformed-
based text-to-graph models.

Related Works
Scene Graph Classification: There is an extensive body of
work on visual reasoning in general that includes different
forms of reasoning [Wu, Lenz, and Saxena 2014, Deng et al.
2014, Hu et al. 2016, 2017, Santoro et al. 2017, Zellers et al.
2019]. Here, we mainly review the works that are focused
on scene graph classification. Visual Relation Detection

(VRD) [Lu et al. 2016] and the Visual Genome [Krishna
et al. 2017] are the main datasets for this task. While the
original papers on VRD and VG provide the baselines for
scene graph classification by treating objects independently,
several follow-up works contextualize the entities before
classification. Iterative Message Passing (IMP) [Xu et al.
2017], Neural Motifs [Zellers et al. 2018] (NM), Graph
R-CNN [Yang et al. 2018], and Schemata [Sharifzadeh,
Baharlou, and Tresp 2021] proposed to propagate the image
context using basic RNNs, LSTMs, graph convolutions, and
graph transformers respectively. On the other hand, authors
of VTransE [Zhang et al. 2017] proposed to capture relations
by applying TransE [Bordes et al. 2013], a knowledge
graph embedding model, on the visual embeddings, Tang
et al. [2019] exploited dynamic tree structures to place the
object in an image into a visual context. Chen et al. [2019a]
proposed a multi-agent policy gradient method that frames
objects into cooperative agents and then directly maximizes
a graph-level metric as the reward. In tangent to those works,
Sharifzadeh et al. [2021] proposed to enrich the input domain
in scene graph classification by employing the predicted
pseudo depth maps of VG images that were released as an
extension called VG-Depth.

Commonsense in Scene Understanding: Several recent
works have proposed to employ external or internal sources
of knowledge to improve visual understanding [Wang, Ye,
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Input man standing with child on ski slope

Reference (child, on, ski slope) (man, on, ski slope)
Graph (RG) (man, standing with, child)

Rtext→graph (man, standing, child)

SSGP (standing, with, child) (standing, on, slope)

CopyNet (1%) (man, standing with, child)

T5 (1%) (man, standing with, child)

CopyNet (10%) (man, standing with, child) (child, on, slope)

T5 (10%) (man, standing with, child)
(child, on, ski slope)

Table 1: An example of extracted triples from a given text
input in VG, using different methods. Bold: correct (∈ RG).
Italic: incorrect (/∈ RG). The results are computed using the
respective official code bases of the related works.

and Gupta 2018, Jiang et al. 2018, Singh et al. 2018, Kato, Li,
and Gupta 2018]. In the scene graph classification domain,
some of the works have proposed to correct the SG predic-
tion errors by merely comparing them to the co-occurrence
statistics of internal triples as a form of commonsense knowl-
edge [Chen et al. 2019c,b, Zellers et al. 2018]. Earlier, Baier,
Ma, and Tresp [2017, 2018] proposed the first scene graph
classification model that employed prior knowledge in the
form of Knowledge Graph Embeddings (KGEs) that gen-
eralize beyond the given co-occurrence statistics. Zareian,
Karaman, and Chang [2020], Zareian et al. [2020] followed
this approach by extending it to models that are based on
graph convolutional networks. More recently, Sharifzadeh,
Baharlou, and Tresp [2021] proposed Schemata as a gener-
alized form of a KGE model that is learned directly from
the images rather than triples. In general, scene graph clas-
sification methods are closely related to the KGE models.
Therefore, we refer the interested readers to [Nickel et al.
2016, Ali et al. 2020a,b] for a review and large-scale study on
the KG models, and to [Tresp, Sharifzadeh, and Konopatzki
2019, Tresp et al. 2020] for an extensive investigation of the
connection between perception, KG models, and cognition.

Nevertheless, to the best of our knowledge, the described
methods have employed curated knowledge in the form of
triples, and none of them have directly exploited the textual
knowledge. In this direction, the closest work to ours is by Yu
et al. [2017], proposing to distill the external language knowl-
edge using a teacher-student model. However, this work does
not include a relational reasoning component and only refines
the final predictions. Also, as shown in the experiments, our
knowledge extraction module performs two times better than
the SG Parser used in that work.
Knowledge Extraction from Text: Knowledge extraction
from text has been studied for a long time [Chinchor 1991].
Previous work ranges from pattern-based approaches [Hearst
1992] to supervised neural approaches with specialized archi-
tectures [Gupta et al. 2019, Yaghoobzadeh, Adel, and Schütze
2017]. Recently, Schmitt et al. [2020] successfully applied
a general sequence-to-sequence architecture to graph↔text

Figure 2: The t-SNE representation of the eis (diamonds)
and image-based representations X s (dots) where each color
represents the ground-truth class of the dot.

conversion. With the recent rise of transfer learning in NLP,
an increasing number of approaches are based on large lan-
guage models, pre-trained in a self-supervised manner on
massive amounts of texts [Devlin et al. 2019]. Inspired from
previous work that explores transfer learning for graph-to-text
conversion [Ribeiro et al. 2020], we base our text-to-graph
model on a pre-trained T5 model [Raffel et al. 2019].

Methods
In this section, we first describe the backbone and relational
reasoning components. We then describe our approach for
fine-tuning the network from texts. We have three possible
forms of data: Images (IM), Scene Graphs (SG) and Textual
Scene Descriptions (TXT). We consider having two sets of
data: one is the parallel set, which is the set of IM with their
corresponding SG and TXT, and another is the text set which
is a set of additional TXT that come without any images or
scene graphs. These two sets have no elements in common.

We initially train our backbone and relational reasoning
component from IM and SG, and our text-to-graph model
from the TXT and SG in the parallel set. We then show that
we can fine-tune the pipeline using the text set and without
using any additional images.

Backbone (Algorithm 1.1)
The feature-extraction backbone is a convolutional neural
network (ResNet-50) that has been pre-trained in a self-
supervised manner [Grill et al. 2020] from unlabeled images
of ImageNet [Deng et al. 2009] and Visual Genome [Kr-
ishna et al. 2017]. Given an image I with several objects
in bounding boxes B = {bi}ni=1, bi = [bx

i , by
i , bw

i , bh
i ],

we apply the ResNet-50 to extract pooled object features
X o = {xo

i }ni=1, xo
i ∈ Rd. Here [bx

i , by
i ] are the coordi-

nates of bi and [bw
i , bh

i ] are its width and height, and d
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Algorithm 1: Classify objects/predicates from images

1. Extract image features (Backbone):

Input: Images and object bounding boxes (I,B : {bi}ni=1).
Output: Object embeddings X o : {xoi }ni=1 and predicate em-

beddings X p : {xpi }mi=1.
Trainable params: λ.

X o = ResNet50(I,B)

X p = {MLPλ(t(bi,bj)) | ∀bi,bj ∈ B}
2. Contextualize and Classify (Relational Reasoning):

Input: Object embeddings X o : {xoi }ni=1, Predicate embed-
dings X p : {xpi }mi=1 and ground truth classes Co and Cp.

Output: Predicted object class distribution Ĉo : {ĉoi }ni=1 and
predicted predicate class distribution Ĉp : {ĉpi }mi=1.

Trainable params: γ, Wo,Wp.

Zo,Zp = GraphTransformerγ(X o,X p)
Ĉo = {softmax(Wo · zo) | ∀zo ∈ Zo}
Ĉp = {softmax(Wp · zp) | ∀zp ∈ Zp}

3. Apply Loss (Cross-Entropy):

lo = − 1
n

∑n
i=1

∑‖co
i ‖

j=1 coi,j .log(ĉ
o
i,j)

lp = − 1
m

∑m
i=1

∑‖cp
i ‖

j=1 cpi,j .log(ĉ
p
i,j)

are the vector dimensions. Following [Zellers et al. 2018],
we define X p = {xp

i }mi=1, xp
i ∈ Rd as the relational fea-

tures between each pair of objects. Each xp
i is initialized

by applying a two layered fully connected network on the
relational position vector t between a head i and a tail
j where t = [tx, ty, tw, th], tx = (bx

i − bx
j )/bw

i j , ty =

(by
i−by

j )/bh
j , tw = log(bw

i /bw
j ), th = log(bh

i /bh
j ). The imple-

mentation and pre-training details of the layers are provided
in the Evaluation. X o and X p form a structured presentation
of the objects and predicates in the image also known as
Scene Representation Graph (SRG) [Sharifzadeh, Bahar-
lou, and Tresp 2021]. SRG is a fully connected graph with
each node representing either an object or a predicate, where
each object node is a direct neighbor to predicate nodes and
each predicate node is a direct neighbor with its head and tail
object nodes.

Relational Reasoning (Algorithm 1.2)
The relational reasoning component updates the initial SRG
representations through Graph Transformer layers [Koncel-
Kedziorski et al. 2019]. The outputs of these layers are Zo =
{zo

i }ni=1, zo
i ∈ Rd and Zp = {zp

i }mi=1, zp
i ∈ Rd with equal

dimensions as X s. From here on, we drop the superscripts
of o and p for brevity. We apply a linear classification layer
W to classify the contextualized representations Z such that
ĉ = softmax(W ·zi), with cross-entropy as the loss function.

Fine-tuning from Texts (Algorithm 2)
Let us assume that we have already trained the backbone
and relational reasoning components from IM and SG in the
parallel set. Now, we want to fine-tune the weights in the

Algorithm 2: Fine-tune the relational reasoning component
from textual triples using a denoising auto-encoder paradigm

1. Learn image-grounded representations E for each symbol
through classification (without Graph Transformer):

Input: Object embeddings X o : {xoi }ni=1, predicate embed-
dings X p : {xpi }mi=1 and their corresponding ground truth
classes Co and Cp.

Output: Predicted object class distribution Ĉo : {ĉoi }ni=1 and
predicted predicate class distribution Ĉp : {ĉpi }mi=1.

Trainable params: Eo,Ep.

Ĉo = {softmax(Eo · xo) | ∀xo ∈ X o}
Ĉp = {softmax(Ep · xp) | ∀xp ∈ X p}

2. Apply Loss (Cross Entropy):

lo = − 1
n

∑n
i=1

∑‖co
i ‖

j=1 coi,j .log(ĉ
o
i,j)

lp = − 1
m

∑m
i=1

∑‖cp
i ‖

j=1 cpi,j .log(ĉ
p
i,j)

3. Fine-tune the relational reasoning component given the ex-
tra triples (Denoising Graph Autoencoder):

Input: Symbolic triples S : {(hi, pi, ti)}ki=1 and canonical
object/predicate representations Eo/Ep.

Output: Embedded representations E : {(ehi , epi , eti)}ki=1.
Trainable params: γ,Wo,Wp.

• Build E : {(ehi , epi , eti)}ki=1 where for each (hi, pi, ti):
ehi = onehot(hi) ·Eo
epi = onehot(pi) ·Ep
eti = onehot(ti) ·Eo

• Randomly set 20% of the nodes and edges in E to zero.
• Set X o = Eh ∪ Et and X p = Ep and run Algorithm 1.2 to

fine-tune γ,Wo,Wp, with Eh, Et and Ep as the set of all
heads, tails, and predicates in E .

relational reasoning component given the additional text set.
The relational reasoning component takes graphs as input,
therefore, we first need to convert TXT to SG:

Text-to-graph: This model is trained from the SG and
TXT in the parallel set, and then used to generate SG
from the text set. Let us consider an unstructured text
such as “man standing with child on ski slope” (Ta-
ble 1 - Input). A structured form of this sentence is a
graph with unique nodes and edges for each entity or
predicate. For example, the reference graph for this sen-
tence contains the triples (child, on, ski slope),
(man, standing with, child) and (man, on,
ski slope) (Table 1 - RG).

In order to learn this mapping, we employ a transformer-
based [Vaswani et al. 2017] sequence-to-sequence T5small
model [Raffel et al. 2019] and adapt it for the task of ex-
tracting graphs from texts. T5 consists of an encoder with
several layers of self-attention (like BERT, Devlin et al. 2019)
and a decoder with autoregressive self-attention (like GPT-3,
Brown et al. 2020). In order to use a T5 model with graphs,
we need to represent the graphs as a sequence. To this end,
we serialize the graphs by writing out their facts separated
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Method
Precision Recall F1

1% 10% 1% 10% 1% 10%

Rtext→graph 1.92± 0.00 1.86± 0.01 1.87± 0.00 1.81± 0.01 1.89± 0.00 1.84± 0.01

SSGP 14.86± 0.01 14.52± 0.02 18.47± 0.01 18.05± 0.02 16.47± 0.01 16.09± 0.02

CopyNet 29.20± 0.13 30.77± 0.49 27.19± 0.28 29.79± 0.29 28.16± 0.21 30.27± 0.34

T5 33.37± 0.11 33.81± 0.08 31.06± 0.18 32.45± 0.33 32.17± 0.13 33.12± 0.16

Table 2: The mean and standard deviation of Precision, Recall, and F1 scores of the predicted facts from the texts on four random
splits. The results are computed using the respective official code bases of the related works and evaluated on VG.

by end-of-fact symbols (EOF), and separate the elements of
each fact with SEP symbols [Schmitt et al. 2020], e.g. “child
SEP on SEP ski slope EOF” (Fig. 1). To adapt the multi-task
setting from T5’s pretraining, we use the task prefix “make
graph: ” to mark our text-to-graph task. Table 1 shows an
example text and the extracted graphs using T5 and other
previous methods (see Evaluation for details).

Map to embeddings: Note that the predicted graphs are a
sequence of symbols for heads, predicates, and tails where
each symbol represents a class c ∈ C. However, the inputs to
the relational reasoning component are image-based vectors
X . Thus, before feeding the symbols to the relational rea-
soning component, we need to map them to a corresponding
embedding from the space of X as if we are feeding it with
image-based embeddings. In order to do that, we train a map-
ping from symbols to X s using the IM and SG of the parallel
set. This is simply done by training a linear classification
layer E given X s from the parallel set (Algorithm 2.1). Un-
like the classification layer in Algorithm 1, here we classify
X s instead of Zs and the goal is not to use the classification
output but to train image-grounded, canonical representations
for each class: each row ei in the classification layer becomes
a cluster center for X s from class i (Figure 2). Therefore,
instead of the extracted symbolic ci from the text set, we can
feed its canonical image-grounded representation ei to the
graph transformer (Algorithm 2.3).

Denoising Graph Autoencoder: To fine-tune the rela-
tional reasoning given this data, we treat the relational reason-
ing component as a denoising autoencoder where the input
is an incomplete (noisy) graph that comes from the text and
the output is the denoised graph. If we do not apply a denois-
ing autoencoder paradigm, the function will collapse to an
identity map. We create the noisy graph by randomly setting
some of the input nodes and edges to zero during the training
(Algorithm 2.3). The goal is to encourage the graph trans-
former to predict the missing links and therefore, learn the
relational structure.

Evaluation
We first compare the performance of different rule-based and
embedding-based text-to-graphs models on our data. We then
evaluate the performance of our entire pipeline in classifying
objects and relations in images. In particular, we show that
the extracted knowledge from the texts can largely substitute
annotated images as well as ground-truth graphs.

Dataset: We use the sanitized version [Xu et al. 2017] of
Visual Genome (VG) dataset [Krishna et al. 2017] including
images and their annotations, i.e., bounding boxes, scene
graphs, and scene descriptions. Our goal is to design an ex-
periment that evaluates whether we can substitute annotated
images with textual scene descriptions. Therefore, instead of
using external textual datasets with unbounded information,
we use Visual Genome itself by dividing it into different splits
of parallel (with IM, SG and TXT) and text data (with only
TXT). To this end, we assume only a random proportion (1%
or 10%) of training images are annotated (parallel set contain-
ing IM with corresponding SG and TXT). We consider the
remaining data (99% or 90%) as our text set and discard their
IM and SG. We aim to see whether employing TXT from the
text set, can substitute the discarded IM and SG from this set.
We use four different random splits [Sharifzadeh, Baharlou,
and Tresp 2021] to avoid a sampling bias. For more detail on
the datasets refer to the supplementary materials.

Note that the scene graphs and the scene descriptions
from the VG are collected separately and by crowd-sourcing.
Therefore, even though the graphs and the scene descriptions
refer to the same image region, they are disjoint and contain
complementary knowledge.

Graphs from Texts
The goal of this experiment is to study the effectiveness
of the text-to-graph model. We fine-tune the pre-trained T5
model on parallel TXT and SG, and apply it on the text
set to predict their corresponding SG. We also implement
the following rule-based and embedding-based baselines to
compare their performance using our splits: (1) Rtext→graph

is a simple rule-based system introduced by Schmitt et al.
[2020] for general knowledge graph generation from text.
(2) The Stanford Scene Graph Parser (SSGP) [Schuster et al.
2015] is another rule-based approach that is more adapted to
the scene graph domain. Even though this approach was not
specifically designed to match the scene graphs from the Vi-
sual Genome dataset, it was still engineered to cover typical
idiosyncrasies of textual image descriptions and correspond-
ing scene graphs. (3) CopyNet [Gu et al. 2016] is an LSTM
sequence-to-sequence model with a dedicated copy mecha-
nism, which allows copying text elements directly into the
graph output sequence. It was used for unsupervised text-to-
graph generation by Schmitt et al. [2020]. However, we train
it on the supervised data of our parallel sets. We use a vocab-
ulary of around 70k tokens extracted from the VG-graph-text
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Figure 3: Qualitative examples of improved classification results (Recall@100) before and after (from left to right) fine-tuning
the model using the knowledge in texts. Green and gray colors indicate true positives and false negatives concluded by the model.

Method
R@50 R@100

1% 10% 1% 10%

SGCls

Rtext→graph 10.90± 0.12 24.96± 0.15 11.80± 0.11 26.09± 0.15

SSGP 14.35± 0.15 26.11± 0.19 15.14± 0.17 27.12± 0.22

CopyNet 14.46± 0.31 26.05± 0.29 15.19± 0.24 27.08± 0.26

TXM - T5 14.53± 0.34 26.16± 0.32 15.28± 0.38 27.22± 0.28

GT 14.72± 0.38 26.33± 0.45 15.36± 0.38 27.37± 0.47

PredCls

Rtext→graph 23.34± 0.10 49.99± 0.12 26.83± 0.15 54.40± 0.12

SSGP 54.65± 0.14 55.65± 0.15 59.33± 0.18 59.67± 0.20

CopyNet 56.24± 0.31 59.27± 0.28 60.35± 0.20 63.28± 0.25

TXM - T5 58.64± 0.34 59.31± 0.30 63.07± 0.37 63.32± 0.24

GT 62.02± 0.10 61.71± 0.19 65.68± 0.12 65.42± 0.19

Table 3: SGCls and PredCls results using different text-to-graph modules. We have substituted the missing 99% and 90% of
annotated images with the textual knowledge extracted from their scene descriptions.

benchmark and, otherwise, also adopt the hyperparameters
from [Schmitt et al. 2020]. Table 1 shows sample predictions
from these models. Table 2 compares precision, recall, and
F1 measures. and T5 outperforms others by a large margin.

Graphs from Images
The goal of this experiment is to evaluate scene graph classifi-
cation after fine-tuning the pipeline using textual knowledge.
We evaluate our models for object classification, predicate
classification (PredCls - predicting predicate labels given a
ground truth set of object boxes and object labels) and scene
graph classification (SGCls - predicting object and predicate
labels, given the set of object boxes) on the test sets. Our
ablation study concerns the following configurations:
• SPB: In this setting, both the backbone and the relational

reasoning component are trained by supervised learning
on the IM and SGs (1% or 10%) from the parallel set.

• SCH: Here, the backbone is trained by self-supervised
learning on all VG images (without labels), and the rela-
tional reasoning component is trained on the IM and SGs
(1% or 10%) from the parallel set.

• TXM: Here, the backbone is trained by self-supervised
learning on all VG images (without labels), and the rela-
tional reasoning component is trained on the IM and SGs
(1% or 10%) from the parallel set and fine-tuned from the
SGs predicted from the text set (99% or 90%) using the
text-to-graph module.

• GT: Here, the backbone is trained by self-supervised learn-
ing on all VG images (without labels), and the relational
reasoning component is trained on the IM and SGs (1% or
10%) from the parallel set, and fine-tuned from the ground
truth graphs (99% or 90%), instead of the text-to-graph
predictions.
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Figure 4: Fine-tuning with the textual knowledge (TXM)
significantly improves the results in all settings of PredCls
(top), SGCls (middle), and object classification (bottom).

• FSPB: Here, both the backbone and the relational reason-
ing component are trained by supervised learning on 100%
of the VG annotated images. Meaning that we have rede-
fined the parallel set to include 100% of the VG training
data and we do not need to substitute the images with the
text set anymore. The goal of this setting is to compute the
maximum accuracy that our model achieves, when we have
all the annotated images with ground truth SGs, instead of
using their textual scene descriptions. The results of this
settings are written above each table so that the other bars
maintain a meaningful scale.

Figure 4 presents the results of the ablation study. We use
the Recall@K (R@K) as metric. which computes the mean
prediction accuracy in each image given the top K predic-
tions. For more results (mR@K metric and unconstrained
setups) refer to the supplementary materials. As shown, fine-
tuning with textual scene descriptions (TXM) improves the
classification results under all settings, substituting a large

Method
SGCls PredCls

R@50 R@100 R@50 R@100

VRD [Lu et al. 2016] 11.8 14.1 27.9 35.0

IMP+ [Xu et al. 2017] 34.6 35.4 59.3 61.3

SMN [Zellers et al. 2018] 35.8 36.5 65.2 67.1

KERN [Chen et al. 2019c] 36.7 37.4 65.8 67.6

VCTree [Tang et al. 2019] 38.1 38.8 66.4 68.1

CMAT [Chen et al. 2019a] 39.0 39.8 66.4 68.1

SIG [Wang et al. 2020] 36.6 37.3 66.3 68.1

GB-Net [Zareian et al. 2020] 38.0 38.8 66.6 68.2

TXM 39.0 39.9 66.7 68.3

Table 4: Comparing the general performance of the architec-
ture to some other methods under the VG test set.

proportion of the omitted images. Furthermore, the results
even outperform FSPB under PredCls (recall that the scene
descriptions are sometimes complementary to image annota-
tions and contain additional information).

Table 3 presents additional results also using different
text-to-graph baselines. We can see that fine-tuning with the
predicted graphs using T5, is as effective as fine-tuning with
the crowd-sourced ground truth graphs (GT), and in some set-
tings even better (object classification with 1%). Notice that
compared to the self-supervised baseline, we gained up to
∼5% relative improvement in object classification, more than
∼26% in scene graph classification, and ∼31% in predicate
prediction accuracy. As expected, the choice of text-to-graph
module has a larger effect on the PredCls compared to the
SGCls and ObjCls, due to the fact that SGCls and ObjCls rely
heavily on the image-based features, whereas PredCls has a
strong dependency to relational knowledge. In supplementary
materials we also provide additional results on the improve-
ments per object class after fine-tuning the model with the
textual knowledge (From SCH to TXM) and show that most
improvements occur in under-represented classes. Figure 3
provides some qualitative examples of the predicted scene
graphs before and after fine-tuning with the texts. Finally,
to provide an intuition on our general performance, Table 4
present the results of our architecture using a VGG-16 [Si-
monyan and Zisserman 2014] backbone trained with 100%
of the annotations, instead of the self-supervised BYOL.

Conclusion
In this work, we proposed the first relational image-based
classification pipeline that can be fine-tuned directly from the
large corpora of unstructured knowledge available in texts.
We generated structured graphs from textual input using dif-
ferent rule-based or embedding-based approaches. We then
fine-tuned the relational reasoning component of our classifi-
cation pipeline by employing the canonical representations of
each entity in the generated graphs. We showed that we gain
a significant improvement in all settings after employing the
inferred knowledge within the classification pipeline. In most
cases, the accuracy was similar to when using the ground
truth graphs that are manually annotated by crowd-sourcing.

2195



Acknowledgments
We would like to thank Masoud Jalili Sabet for the fruitful
discussions, and the anonymous reviewers for their helpful
feedback on the manuscript. This work has been funded by
the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A.

References
Ali, M.; Berrendorf, M.; Hoyt, C. T.; Vermue, L.; Galkin,
M.; Sharifzadeh, S.; Fischer, A.; Tresp, V.; and Lehmann, J.
2020a. Bringing light into the dark: A large-scale evalua-
tion of knowledge graph embedding models under a unified
framework. arXiv preprint arXiv:2006.13365.

Ali, M.; Berrendorf, M.; Hoyt, C. T.; Vermue, L.; Sharifzadeh,
S.; Tresp, V.; and Lehmann, J. 2020b. Pykeen 1.0: A python
library for training and evaluating knowledge graph emebd-
dings. arXiv preprint arXiv:2007.14175.

Baier, S.; Ma, Y.; and Tresp, V. 2017. Improving visual
relationship detection using semantic modeling of scene de-
scriptions. In International Semantic Web Conference, 53–68.
Springer.

Baier, S.; Ma, Y.; and Tresp, V. 2018. Improving information
extraction from images with learned semantic models. In
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 5214–5218. AAAI Press.

Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In Advances in neural information
processing systems, 2787–2795.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. Computing Research Repository,
arXiv:2005.14165.

Chen, L.; Zhang, H.; Xiao, J.; He, X.; Pu, S.; and Chang, S.-F.
2019a. Counterfactual critic multi-agent training for scene
graph generation. In Proceedings of the IEEE International
Conference on Computer Vision, 4613–4623.

Chen, T.; Xu, M.; Hui, X.; Wu, H.; and Lin, L. 2019b. Learn-
ing semantic-specific graph representation for multi-label
image recognition. In Proceedings of the IEEE International
Conference on Computer Vision, 522–531.

Chen, T.; Yu, W.; Chen, R.; and Lin, L. 2019c. Knowledge-
embedded routing network for scene graph generation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 6163–6171.

Chinchor, N. 1991. MUC-3 Linguistic Phenomena Test Ex-
periment. In Third Message Uunderstanding Conference
(MUC-3): Proceedings of a Conference Held in San Diego,
California, May 21-23, 1991.

Deng, J.; Ding, N.; Jia, Y.; Frome, A.; Murphy, K.; Bengio,
S.; Li, Y.; Neven, H.; and Adam, H. 2014. Large-scale ob-
ject classification using label relation graphs. In European
conference on computer vision, 48–64. Springer.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapolis,
Minnesota: Association for Computational Linguistics.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P. H.;
Buchatskaya, E.; Doersch, C.; Pires, B. A.; Guo, Z. D.;
Azar, M. G.; et al. 2020. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733.
Gu, J.; Lu, Z.; Li, H.; and Li, V. O. 2016. Incorporating Copy-
ing Mechanism in Sequence-to-Sequence Learning. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1631–
1640. Berlin, Germany: Association for Computational Lin-
guistics.
Gupta, P.; Rajaram, S.; Schütze, H.; and Runkler, T. A.
2019. Neural Relation Extraction within and across Sen-
tence Boundaries. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, 6513–6520.
Hearst, M. A. 1992. Automatic Acquisition of Hyponyms
from Large Text Corpora. In COLING 1992 Volume 2: The
15th International Conference on Computational Linguistics.
Hu, H.; Deng, Z.; Zhou, G.-T.; Sha, F.; and Mori, G. 2017.
Labelbank: Revisiting global perspectives for semantic seg-
mentation. arXiv preprint arXiv:1703.09891.
Hu, H.; Zhou, G.-T.; Deng, Z.; Liao, Z.; and Mori, G. 2016.
Learning structured inference neural networks with label re-
lations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2960–2968.
Jiang, C.; Xu, H.; Liang, X.; and Lin, L. 2018. Hybrid
knowledge routed modules for large-scale object detection.
arXiv preprint arXiv:1810.12681.
Kato, K.; Li, Y.; and Gupta, A. 2018. Compositional learning
for human object interaction. In Proceedings of the European
Conference on Computer Vision (ECCV), 234–251.
Koncel-Kedziorski, R.; Bekal, D.; Luan, Y.; Lapata, M.; and
Hajishirzi, H. 2019. Text generation from knowledge graphs
with graph transformers. arXiv preprint arXiv:1904.02342.
Krishna, R.; Zhu, Y.; Groth, O.; Johnson, J.; Hata, K.; Kravitz,
J.; Chen, S.; Kalantidis, Y.; Li, L.-J.; Shamma, D. A.; et al.

2196



2017. Visual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. International
Journal of Computer Vision, 123(1): 32–73.
Lu, C.; Krishna, R.; Bernstein, M.; and Fei-Fei, L. 2016. Vi-
sual relationship detection with language priors. In European
Conference on Computer Vision, 852–869. Springer.
Nickel, M.; Murphy, K.; Tresp, V.; and Gabrilovich, E.
2016. A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104(1): 11–33.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2019. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.
Ribeiro, L. F. R.; Schmitt, M.; Schütze, H.; and Gurevych,
I. 2020. Investigating Pretrained Language Models for
Graph-to-Text Generation. Computing Research Repository,
arXiv:2007.08426.
Santoro, A.; Raposo, D.; Barrett, D. G.; Malinowski, M.;
Pascanu, R.; Battaglia, P.; and Lillicrap, T. 2017. A simple
neural network module for relational reasoning. In Advances
in neural information processing systems, 4967–4976.
Schmitt, M.; Sharifzadeh, S.; Tresp, V.; and Schütze, H. 2020.
An unsupervised joint system for text generation from knowl-
edge graphs and semantic parsing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 7117–7130.
Schuster, S.; Krishna, R.; Chang, A.; Fei-Fei, L.; and Man-
ning, C. D. 2015. Generating semantically precise scene
graphs from textual descriptions for improved image retrieval.
In Proceedings of the fourth workshop on vision and lan-
guage, 70–80.
Sharifzadeh, S.; Baharlou, S. M.; Berrendorf, M.; Koner, R.;
and Tresp, V. 2021. Improving Visual Relation Detection
using Depth Maps. In 2020 25th International Conference
on Pattern Recognition (ICPR), 3597–3604.
Sharifzadeh, S.; Baharlou, S. M.; and Tresp, V. 2021. Classi-
fication by Attention: Scene Graph Classification with Prior
Knowledge. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 35, 5025–5033.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Singh, K. K.; Divvala, S.; Farhadi, A.; and Lee, Y. J.
2018. Dock: Detecting objects by transferring common-sense
knowledge. In Proceedings of the European Conference on
Computer Vision (ECCV), 492–508.
Tang, K.; Zhang, H.; Wu, B.; Luo, W.; and Liu, W. 2019.
Learning to compose dynamic tree structures for visual con-
texts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 6619–6628.
Tresp, V.; Sharifzadeh, S.; and Konopatzki, D. 2019. A
Model for Perception and Memory. Conference on Cognitive
Computational Neuroscience.
Tresp, V.; Sharifzadeh, S.; Konopatzki, D.; and Ma, Y. 2020.
The Tensor Brain: Semantic Decoding for Perception and
Memory. arXiv preprint arXiv:2001.11027.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.
Wang, W.; Wang, R.; Shan, S.; and Chen, X. 2020. Sketching
image gist: Human-mimetic hierarchical scene graph gen-
eration. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XIII 16, 222–239. Springer.
Wang, X.; Ye, Y.; and Gupta, A. 2018. Zero-shot recognition
via semantic embeddings and knowledge graphs. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 6857–6866.
Wu, C.; Lenz, I.; and Saxena, A. 2014. Hierarchical Semantic
Labeling for Task-Relevant RGB-D Perception. In Robotics:
Science and systems.
Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene
graph generation by iterative message passing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 5410–5419.
Yaghoobzadeh, Y.; Adel, H.; and Schütze, H. 2017. Noise
Mitigation for Neural Entity Typing and Relation Extraction.
In Proceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics: Volume
1, Long Papers, 1183–1194. Valencia, Spain: Association for
Computational Linguistics.
Yang, J.; Lu, J.; Lee, S.; Batra, D.; and Parikh, D. 2018.
Graph r-cnn for scene graph generation. In Proceedings
of the European Conference on Computer Vision (ECCV),
670–685.
Yu, R.; Li, A.; Morariu, V. I.; and Davis, L. S. 2017. Visual
relationship detection with internal and external linguistic
knowledge distillation. In IEEE International Conference on
Computer Vision (ICCV).
Zareian, A.; Karaman, S.; and Chang, S.-F. 2020. Bridging
knowledge graphs to generate scene graphs. In European
Conference on Computer Vision, 606–623. Springer.
Zareian, A.; You, H.; Wang, Z.; and Chang, S.-F. 2020. Learn-
ing Visual Commonsense for Robust Scene Graph Genera-
tion. arXiv preprint arXiv:2006.09623.
Zellers, R.; Bisk, Y.; Farhadi, A.; and Choi, Y. 2019. From
recognition to cognition: Visual commonsense reasoning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 6720–6731.
Zellers, R.; Yatskar, M.; Thomson, S.; and Choi, Y. 2018.
Neural motifs: Scene graph parsing with global context. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 5831–5840.
Zhang, H.; Kyaw, Z.; Chang, S.; and Chua, T. 2017. Visual
Translation Embedding Network for Visual Relation Detec-
tion. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017, 3107–3115. IEEE Computer Society. ISBN
978-1-5386-0457-1.

2197



4 Improving visual relation detection
using depth maps

This chapter comprises the publication

Sharifzadeh et al. [2020]

and the code is available at

https://github.com/Sina-Baharlou/Depth-VRD

Declaration of Authorship The research idea was proposed by Sahand Sharifzadeh and
discussed with Max Berrendorf. Sahand Sharifzadeh did the main implementation and
conducted experiments; Sina Moayed Baharlou contributed to parts of the code, Max
Berrendorf and Rajat Koner contributed smaller parts of the code. The final manuscript
was mainly written by Sahand Sharifzadeh and revised by all authors.

• In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of LMU’s products or services. Internal or personal
use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to http: // www. ieee. org/

publications_ standards/ publications/ rights/ rights_ link. html to learn
how to obtain a License from RightsLink. If applicable, University Microfilms
and/or ProQuest Library, or the Archives of Canada may supply single copies of
the dissertation.

43

https://github.com/Sina-Baharlou/Depth-VRD
 http://www.ieee.org/publications_standards/publications/rights/rights_link.html
 http://www.ieee.org/publications_standards/publications/rights/rights_link.html


Improving Visual Relation Detection
using Depth Maps

Sahand Sharifzadeh
Ludwig Maximilian University of Munich

sharifzadeh@dbs.ifi.lmu.de

Sina Moayed Baharlou
Sapienza University of Rome

baharlou@dis.uniroma1.it

Max Berrendorf
Ludwig Maximilian University of Munich

berrendorf@dbs.ifi.lmu.de

Rajat Koner
Ludwig Maximilian University of Munich

koner@dbs.ifi.lmu.de

Volker Tresp
Ludwig Maximilian University of Munich

& Siemens AG
volker.tresp@siemens.com

Abstract—Visual relation detection methods rely on object
information extracted from RGB images such as 2D bounding
boxes, feature maps, and predicted class probabilities. We argue
that depth maps can additionally provide valuable information on
object relations, e.g. helping to detect not only spatial relations,
such as standing behind, but also non-spatial relations, such
as holding. In this work, we study the effect of using different
object features with a focus on depth maps. To enable this study,
we release a new synthetic dataset of depth maps, VG-Depth, as
an extension to Visual Genome (VG). We also note that given
the highly imbalanced distribution of relations in VG, typical
evaluation metrics for visual relation detection cannot reveal
improvements of under-represented relations. To address this
problem, we propose using an additional metric, calling it Macro
Recall@K, and demonstrate its remarkable performance on VG.
Finally, our experiments confirm that by effective utilization of
depth maps within a simple, yet competitive framework, the
performance of visual relation detection can be improved by a
margin of up to 8%.

Index Terms—scene graph, visual relation detection, depth
maps

I. INTRODUCTION

Scene Graph Generation, i.e. detecting objects and their
relations in images in form of (subject, predicate,
object), is a fundamental task in scene understanding
and can play an important role in recommender systems,
visual question answering, decision making, etc. For example,
detecting whether a man is on a bike or next to a bike
is a crucial challenge in autonomous driving. Most works
in this area rely on image-based object information such as
class labels, bounding boxes and RGB features. We argue
that depth maps can additionally provide valuable information
about an object’s relations as they provide the objects’ distance
from the camera. This information can help to distinguish
between many relations such as behind, in front of
and even improve detection in situations where the objects are
nearby such as covered in. Figure 1 shows a successfully
detected example of the relation (fence, behind, dog)
after employing its depth map, and using our model. The goal
of this work is to study the effect of using different object
features on visual relation detection, with a focus on depth
maps.

dog-1

tail-1

paw-1

chair-1

nose-1

leg-1

head-1

ear-1

ear-2

fence-1

dog-1

tail-1

paw-1

chair-1

nose-1

leg-1

head-1

ear-1

ear-2

fence-1

Fig. 1. An image from the VG dataset (left), and the corresponding
synthetically generated depth map from VG-Depth dataset (right), annotated
by the scene graph. Bright colors in the depth map indicate a larger distance to
the camera. Utilizing depth maps allows us to successfully predict the relation
(fence-1, behind, dog-1).(© 2020 IEEE)

Unfortunately, most available image datasets, specifically
the ones with relational annotations such as Visual Relation
Detection (VRD) [2] and Visual Genome (VG) [3], do not
provide depth maps, because the acquisition of depth maps
is a cumbersome task requiring specialized hardware. We
tackle this issue by synthetically generating the corresponding
pseudo depth maps from 2D images of Visual Genome. This
is possible thanks to the large corpora of available RGB-
D pairs, i.e. NYU-Depth-v2 [4] dataset. Using RGB-D pairs
in NYU-Depth-v2 and a fully convolutional neural network,
allow us to learn the mapping function of RGB images to their
corresponding depth maps. We can then apply this network
to the images from VG, generating their corresponding depth
maps. We release the depth maps that are generated from
VG, as an extention to it, calling it VG-Depth1. The object
information extracted from depth maps and RGB images, i.e.
class labels, location vectors, RGB and depth features, are
the basis for relation detection in our simple yet effected
framework.

Additionally, we note that the typically employed Recall@K
metric (Micro Recall@K), cannot properly reveal the improve-
ments of under-represented relations in highly imbalanced
datasets such as VG. This might be an issue in applications
such as autonomous driving where it is important to ensure

1The dataset and our framework are publicly available at https://github.com/
Sina-Baharlou/Depth-VRD.



that the model is capable of predicting also important but less
represented predicates such as walking on (648 in VG test
set) and not just wearing (20,148 in VG test set). We address
this issue by proposing to employ Macro Recall@K, where
we compute the mean over Micro Recall@K per predicate,
thereby eliminating the effect that over-represented classes
have in Micro Recall@K setting.

In summary, our contributions are as follows:
1) We perform an extensive study on the effect of using

different sources of object information in visual relation
detection. We show in our empirical evaluations using
the VG dataset, that our model can outperform compet-
ing methods by a margin of up to 8% points, even those
using external language sources or contextualization.

2) We release a new synthetic dataset VG-Depth, to com-
pensate for the lack of depth maps in Visual Genome.

3) We propose Macro Recall@K as a competitive metric
for evaluating the visual relation detection performance
in highly imbalanced datasets such as Visual Genome.

II. RELATED WORKS

a) Knowledge Graph (KG) Modeling: In Knowledge
Graph modeling, the aim is typically to find embeddings
or latent representations for entities and predicates, which
then can serve to predict the probability of unseen triples.
These methods mostly differ in how they model relations. In
RESCAL [5] each relation is defined as a transformation in
the embedding space of entities, producing a triple probability.
TransE [6] employs a similar idea but limits each relation
to a translation. In comparison to RESCAL, it has fewer
parameters; as a disadvantage, it cannot model symmetric
relations. DistMult [7] considers each relation as a vector,
similar to TransE, but minimizes the trilinear dot product
of subject, predicate and object vector. DistMult can be
understood as a form of RESCAL, where the transformation
matrix is diagonal. ComplEx [8] extends DistMult to complex-
valued vectors of embeddings. A multilayer perceptron (MLP)
architecture [9] extends these methods to non-linear transfor-
mations and has shown to be competitive to the other discussed
approaches on most benchmarks [10], [11]. For an extensive
review and study on different KG models refer to [10], [12],
[13].

b) Scene Graph (SG) Generation: SG Generation started
with the release of Visual Relation Detection (VRD) [2]
and the VG [3]. In VRD, Word2Vec representations of the
subject, object, and the predicate were used to train a model
jointly with the corresponding image region that describes
the predicate. In particular, they consider the joint bounding
box of subject and object as the image representation for the
predicate. Follow-up work achieved improved performance by
incorporating a knowledge graph, constructed from the image
annotations [14]. Later, VTransE employed TransE [15] to
model visual relations. More recently, Yu et al. [16] proposed
a teacher-student model to distill external language knowledge
to improve visual relation detection. Iterative Message Pass-
ing [17], Neural Motifs [18] (NM) and Graph R-CNN [19]

incorporate context within each prediction using RNNs and
graph convolutions respectively. For an extensive discussion
on the connection between scene graphs and knowledge graphs
refer to [20], [21].

c) Depth Maps: While several works have leveraged
depth maps to improve object detection [22]–[24], the idea of
using depth maps in the relation detection task has only been
explored recently: Yang et al. [25] employ a basic framework
for visual relation detection, with handcrafted depth map
features, i.e. the mean and mode over pixel values of each
depth map. They have a limited experimental setting, where
they consider only human-centered relations. In this work, we
explore the usability of depth maps in a larger domain and
using a convolutional neural network for feature extraction.
Furthermore, we provide a more extensive study, release a
relevant dataset, and propose a more suitable metric.

III. FRAMEWORK

In this section, we introduce the framework that we em-
ployed for this study. Let E = {e1, e2, ..., en} be the set of
all entities, including subjects (s) and objects (o), and P =
{p1, p2, ..., pm} the set of all predicates. Each entity ei can
appear in images within a bounding box bbi = [xi, yi, wi, hi],
from an image I, where [xi, yi] are the coordinates of the
bounding box and [wi, hi] are its width and height. In this
work we apply Faster R-CNN [26], on each image I to extract
a feature map fmapI, together with object proposals as a set
of bounding boxes bb and class probability distributions c.
For each RGB image, we generate a depth map D where
the same bounding box areas encompass the entities’ distance
from the camera. In the next section, we first describe the
synthetic generation of Ds and then the feature extraction from
generated depth maps. In the end, we describe the relation
detection module, where the pairwise features are fused and
then employed for relation detection.

A. Depth Maps for Relation Detection

1) Generation: We incorporate an RGB-to-Depth model
within our visual relation detection framework. As shown
in Figure 2, this is a fully convolutional neural network
(CNN) that takes an RGB image as input and generates its
predicted depth map. This model can be pre-trained on any
datasets containing pairs of RGB and depth maps regardless
of having the class annotations for objects or predicates. This
enables us to work with the already available visual relation
detection datasets without requiring to collect additional data,
and also mitigates the need for specialized hardware in real-
world applications. The architectural details are explained
in Section IV and the generated depth maps from VG are
separately released as a dataset called VG-Depth.

2) Feature Extraction: Depth maps have been employed in
tasks such as object detection and segmentation [23], [27].
In these works, it is common to simply render a depth
map as an RGB image, and extract depth features using a
CNN, that has been pre-trained with RGB images (for object
detection). They argue that the edges in depth maps might
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Fig. 2. We study the effect of object information, i.e. class labels, location vectors, RGB and depth features in visual relation detection by employing
the simple yet effective framework presented in this figure. We generate depth maps synthetically using an RGB-to-Depth model, eliminating the need for
specialized hardware. On the left side, we see the RGB image and its generated depth map, fed into CNNs to extract feature maps from both modalities.
We create pairwise feature vectors dso (pooled from depth feature maps), lso (from bounding boxes), cso (from class labels) and vso (pooled from RGB
features) and feed them into a relation detection layer to infer the predicate (© 2020 IEEE).

yield better object contours than the edges in cluttered RGB
images and that one may combine edges from both RGB and
depth to obtain more information [27]. Therefore, they aim
to get similar, complementary features from both modalities.
However, the practice of employing a model pre-trained on
a particular source modality, e.g. RGB, and applying it on
a different target modality, e.g. depth map, is sub-optimal in
many applications (one should also keep in mind that even
fine-tuning some layers of a network does not change the
very early convolutional filters). Hence, unlike other works,
we train a feature extractor CNN directly on depth maps and
specifically for the task of relation detection. Given a depth
map D, this network generates a feature map fmapD. The
architectural details of this network is presented in Section
IV.

B. Relation Model

In the previous section, we described methods for the
extraction of fmapI, fmapD, c and bb. Here, we out-
line the model that infers relations using pairwise combi-
nations of these features. For each pair of detected objects
within an image, we create a scale-invariant location feature
ls = [tx, ty, tw, th] with: tx = (xs − xo)/wo, ty = (ys −
yo)/ho, tw = log(ws/wo), th = log(hs/ho) and similarly
lo. We then pool the corresponding features vs and vo from
fmapI and create a visual feature vector [vs;vo]. Similarly,
we create a depth feature vector [ds;do], by pooling features
from fmapD, within bbs and bbo. Additionally, we create
[cs; co] and [ls; lo]. Each of these vectors are fed into separate
fully connected layers, followed by ReLUs, yielding vso, lso,

cso and dso before being fed to the relation head which
projects them to the relation space such that:

ep = f(W[vso; lso; cso;dso]) (1)

Here, W describes a linear transformation and f(.) is a
non-linear function. We realize them as a fully connected layer
in a neural network with ReLU activations and dropout. ep is
an embedding vector of pairwise features. This simple relation
prediction model is inspired by the work of [9] to predict links
in knowledge graphs. Therefore, we call it ERMLP-E, short
for ERMLP-Extended. The input of their proposed model is
a triple and the output is a single Bernoulli variable, whereas
in our work the inputs are subject and object and we have
a Bernoulli variable for each predicate class in the output.
This gives us fewer parameters compared to that model, and
simplifies training by imposing an implicit negative sampling
through the cross-entropy loss.

As shown in earlier works, using more sophisticated models
for context propagation between objects with RNNs or graph
convolutions, can further improve the prediction accuracy.
However, the aim here is to study the effect of including depth
maps as additional object features in visual relation detection
and as will be shown later, even with this simple model, uti-
lizing depth maps can be more effective than e.g. propagating
context. Clearly, those other models can also further enrich
their understanding of object relations by employing depth
maps.

To learn the parameters, we consider each relation
(subject, predicate, object) with an associated
Bernoulli variable that takes 1 if the triple is observed and 0
otherwise, following a locally closed world assumption [10].



TABLE I
PREDICATE PREDICTION RECALL VALUES ON VG TEST SET. WHEN THE DEPTH MAPS ARE UTILIZED TOGETHER WITH ALL OTHER FEATURES

(Ours-l, c,v,d), WE GAIN A LARGE IMPROVEMENT COMPARED TO THE STATE-OF-THE-ART. ONE CAN ALSO SEE THAT EVEN REPLACING DEPTH MAPS
WITH VISUAL FEATURES (Ours-l, c,d COMPARED TO Ours-l, c,v) CAN YIELD BETTER RESULTS. ADDITIONALLY, COMPARING Ours-l, c,v TO VTransE

AND Neural Motifs REVEALS THE ADVANTAGE OF OUR SIMPLE MODEL REGARDLESS OF DEPTH MAPS. (© 2020 IEEE)

Strategy Macro Micro
Task Predicate Pred. Predicate Pred.
Metric R@100 R@50 R@20 R@100 R@50 R@20

m
od

el
s

VTransE [28] - - - 62.87 62.63 -
Yu’s-S [16] - - - 49.88 - -
Yu’s-S+T [16] - - - 55.89 - -
IMP [17] - - - 53.00 44.80 -
Graph R-CNN [19] - - - 59.10 54.20 -
NM [18] 14.39 13.20 10.25 67.10 65.20 58.50

ab
la

tio
ns

Ours - d 9.51 8.46 6.35 54.72 51.90 43.86
Ours - c 15.65 13.09 8.56 64.82 60.54 49.89
Ours - v 13.88 12.24 8.99 61.72 58.50 50.41
Ours - l 5.19 4.66 3.57 49.07 46.13 37.48
Ours - v, d 15.47 14.04 10.83 62.88 60.52 53.07
Ours - l, v, d 15.76 14.40 11.07 63.06 60.83 53.55
Ours - l, c, d 21.67 19.56 15.12 67.97 66.09 59.13
Ours - l, c, v 19.16 17.72 13.93 67.94 66.06 59.14
Ours - l, c, v, d 22.72 20.74 16.40 68.00 66.18 59.44

Given the set of observed triples T , the loss function is the
categorical cross entropy between the one-hot targets and the
distribution obtained by softmax over the network’s output
defined as:

L =
∑

(s,p,o)∈T
− log

exp (w′Tpep)∑
p′∈P exp (w′Tp′ep)

(2)

where w′p is the weight vector corresponding to p in the last
layer (linear classification layer).

IV. EVALUATION

In our study, we are interested to answer the following
questions:

1) If we are given only depth maps of some objects in a
scene (and not even object labels), how accurately can
we infer the distribution of possible pairwise relations?
How do other sources of object information compare to
it?

2) Current visual relation detection frameworks commonly
rely on extensive object information such as class labels,
bounding boxes, RGB features, contextual information,
etc. Do depth representations bring any additional infor-
mation or would they only contribute redundant scene
knowledge?

Additionally, we study whether Recall@K can sufficiently
reflect the improvements of under-represented relations within
a highly imbalanced dataset such as VG.

In what follows, we introduce the dataset, metrics, architec-
tural details and experiments to answer these questions.

A. Dataset

We test our approach on the Visual Genome [3] dataset. We
use the more commonly used subset of VG dataset proposed
by [17] which contains 150 object classes and 50 relations.

B. Metrics

a) Micro Recall@K: This metric is defined as the mean
prediction accuracy in each image given the top K predictions
and is typically called Recall@K. We assigned the Micro prefix
to its name to distinguish this metric with Macro Recall@K.
Recall@K is a popular choice in most of the visual relation
detection studies. The main reason is the incompleteness of
visual relation detection datasets, i.e. some relations might
not be annotated in the test set, while due to the model’s
generalization, they might get higher prediction values than the
annotated ones. This sensitivity is handled by the K parameter
in Recall@K.

b) Macro Recall@K: We define this metric as:

MACRO RECALL@K =
∑

(s,p,o)∈Tp

MICRO R@K(p)

|Tp|
(3)

where Tp ⊂ T is set of all relations with predicate p, and
MICRO R@K(p) is computed on Tp. The motivation behind
this metric is the highly imbalanced distribution of classes in
some datasets such as VG. In these datasets Micro Recall@K
score gets dominated by frequently labeled relations and might
not reflect the improvements in some important but under-
represented classes. However, in Macro R@K, the prediction
accuracy of under-represented classes can have a stronger
effect on the output. This metric is inspired from the Macro
F1 measure [29].
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Fig. 3. Some of the qualitative results from our model’s predictions. Green arrows indicate the successfully detected predicates (true positives), orange arrows
indicate the false negatives and gray arrows indicate predicted links which are not annotated in the ground truth. (© 2020 IEEE)

C. Architectures

a) RGB-to-Depth Network: We employ the RGB-to-
Depth architecture that has been introduced in [30]. The
model is a fully convolutional neural network built on ResNet-
50 [31], and trained in an end-to-end fashion on data from
NYU Depth Dataset v2 [4]. In our experiments, we also trained
the model from the outdoor images of Make3D dataset [32].
However, the model that was trained on this dataset, did not
show promising results for relation detection. This observation
is not surprising because unlike Visual Genome, Make3D
images contain mostly outdoor scenes with very few objects.

b) RGB Feature Extraction: To extract embeddings and
class probabilities of RGB images, we use the VGG-16
architecture [33] pre-trained on ImageNet [34] and fine-tuned
on VG by Zellers et al. [18].

c) Depth Map Feature Extraction: For depth map ex-
traction we use ResNet-18 proposed in [31]. We trained
this model from scratch following the earlier discussions in
Subsection III-A2. This network was trained separate from
other inputs and on a pure depth-based, relation detection task
using Adam [35], with a learning rate of 10−4 and batch size
of 32 for 30 epochs.

d) Relation Detection Network: In relation detection
head, each extracted feature pair goes to a separate, fully con-
nected hidden layer of 64 neurons (∼12K learnable weights)
for class probabilities, 512 for RGB feature maps (∼4M learn-
able weights), 4096 for depth feature maps (∼4M learnable
weights) and 20 for location features (160 learnable weights).
Each of them with a dropout rate of 0.1, 0.8, 0.6 and 0.1. The
concatenated outputs are then connected to a fully connected
hidden layer of 4096 neurons with 0.1 dropout and then to the
classification layer. We trained this network by Adam [35],
with a learning rate of 10−5. We used a batch size of 16 and

30 epochs of training. All of the layers were initialized with
Xavier weights [36].

D. Comparing Methods

We compare our results with VTransE [28] that takes
visual embeddings and projects them to relation space using
TransE. We also compare to the student network of [16] (Yu’s-
S), and their full model (Yu’s-S+T) that employs external
language data from Wikipedia. From the context propagating
methods, we report Neural Motifs [18], Graph R-CNN [19]
and IMP [17]. In an ablation study, we report our relation
prediction results under several settings in which different
combinations of object information are employed for predic-
tion.

E. Experiments

As our main goal is to investigate the role of depth maps
and other features in relation detection, we report predicate
prediction results. In this setting, the relation detection perfor-
mance is analyzed by isolating it from the object detector’s
error. Therefore, the goal is to evaluate the relation detection
accuracy given the objects in an image. We carried on our
experiments by training each model 8 times with different
random seeds. The maximum variance of the results was no
more than 0.01. The results are shown in Table I. In what
follows, we provide a discussion over the quantitative and
qualitative results.

The upper part of the table demonstrates the results directly
reported from other works while the lower part presents the
results from the ablation study on our model. For NM, we
have computed the Macro R@K results using their publicly
available code. We can see that our full model with depth
maps, achieves the highest accuracy in comparison to the
others in all settings. It is also interesting to note that when



Fig. 4. This plot shows the prediction changes per predicate, going from Ours-v to Ours-v, d. The classes with zero changes are omitted from the plot. The
darker shades indicate larger number of that class within the test set whereas the lighter shades are under-represented classes. An improvement in predicates
with more frequency has a larger effect on the Micro R@K whereas this effect is eliminated within Macro R@K. We can see that indeed the improvements
by using depth maps are mostly happening within the less-represented classes. (© 2020 IEEE)

using only depth maps we can already achieve a significant
accuracy in predicate prediction, emphasizing the value of
relational information that are stored within the depth maps
alone. By comparing Ours-v to Ours-v, d, we can observe
the improvements that depth maps bring. Also comparing
Ours-l, c, d to Ours-l, c, v is specially informative from two
aspects: (1) It shows that while some results are almost equal
in Micro settings, one can observe a significant difference
in the Macro setting, demonstrating the effectiveness of this
metric in presenting the improvements of under-represented
classes. (2) We observe that v alone has a higher R@K than d
alone. However, when we add them separately to c, l we can
see that d has more to offer. In other words, v brings more
redundant information to c, l compared to d. To get a better
intuition of the improvements that we gain after including
depth maps (Ours-v, d compared to Ours-v), we plotted the
changes in prediction accuracy for each predicate in Figure 4.
We used darker shades for over-represented classes and lighter
shades for under-represented ones. This helps to also gain a
better intuition of improvement versus frequency of data. For
example we can see that in general the accuracy of relations
including the predicates such as under, in front of and
behind has been improved. These predicates appear much
less often in the dataset than on or has, having less effect in
the computed Micro accuracy. Figure 5 presents some samples
of synthetically generated depth maps in VG-Depth dataset
including both high quality and faulty ones. Additionally, we
present some of the predicted relations by our model in Figure
3.

V. CONCLUSION

We employed an RGB-to-Depth network, trained on a
large corpus of data, to generate depth maps for Visual
Genome dataset, releasing a new extension called VG-Depth.
We provided a metric, Macro R@K for better evaluation
of relation detection in Visual Genome and other highly

imbalanced datasets. In extensive empirical evaluations, we
demonstrated the effect of different object features in visual
relation detection and showed that by using depth information,
we achieve significantly better performance compared to other
state-of-the-art methods.

VI. ACKNOWLEDGEMENTS

We thank Evgeniy Faerman, Vaheh Hatami, Alireza Ghazaei
and the anonymous reviewers for their fruitful comments. This
work was supported by the BMBF as part of the project
MLWin (01IS18050).

REFERENCES

[1] © 2020 IEEE. Reprinted, with permission, from S. Sharifadeh, S. Ba-
harlou, M. Berrendorf, R. Koner,V. Tresp, “Improving visual relation
detection using depth maps” in 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, 2021, pp. 3597–3604.

[2] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual relationship
detection with language priors,” in European Conference on Computer
Vision. Springer, 2016, pp. 852–869.

[3] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L.-J. Li, D. A. Shamma et al., “Visual genome: Connecting
language and vision using crowdsourced dense image annotations,”
International Journal of Computer Vision, vol. 123, no. 1, pp. 32–73,
2017.

[4] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmen-
tation and support inference from rgbd images,” in ECCV, 2012.

[5] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data.” in ICML, vol. 11, 2011, pp. 809–816.

[6] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-relational
data,” in Advances in Neural Information Processing Systems
26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013,
pp. 2787–2795. [Online]. Available: http://papers.nips.cc/paper/
5071-translating-embeddings-for-modeling-multi-relational-data.pdf

[7] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” arXiv preprint
arXiv:1412.6575, 2014.

[8] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Com-
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Abstract
We analyze the close link between perception and mem-
ory. Our main hypothesis is that some of the main mem-
ory systems of the human brain, e.g., the episodic mem-
ory, the semantic memory, and to some degree also the
working memory, are by-products of the need for humans
to gradually extract more meaningful and more complex
information from sensory inputs. Our model is an exten-
sion to the tensor memory approach. The key notions
are index representations for entities, concepts, relation-
ships and time instances, embeddings associated with
the indices, a working memory layer, and a sensory mem-
ory layer. Perception and memory are realized as an in-
terplay between the different layers. Our model is both
competitive to other technical solutions and, as we argue,
biologically plausible. Our experiments demonstrate that
semantic memory can evolve from perception as a distin-
guishable functional module.

Introduction
Perception has evolved from simple stimulus-reaction in lower
animals to the ability of a deep analysis of sensory input in
humans. An important capability, for example, is the compar-
ison to previous experiences: if a certain event is very similar
to a past event, and that past event triggered a certain ac-
tion, it makes sense that the current event should trigger the
same action. Another important function is the identification of
concepts and their relationships: “a child, located on a swing”
will trigger very different actions than “a child, running in front
of a car”. Clearly a more refined perception is tightly linked
to an improved understanding of the world, its schema, ob-
jects and their relationships, or as Goethe put it: “you only see
what you know”. In this paper we argue that episodic memory,
i.e., the faculty to recall and restore past events, and semantic
memory, i.e., knowledge about the world, are by-products of
an evolving perceptual system which developed to deal with
an increasingly complex world: our hypothesis is that episodic
memory and semantic memory did not initially evolve as sepa-
rate memory functions but instead repurposed faculties devel-
oped in perception for a semantic decoding of sensor stimuli.
Furthermore, working memory might have evolved out of the
need to store information to improve perceptual decoding.

The work in this paper is based on the tensor memory ap-
proach (Tresp et al., 2015; Tresp & Ma, 2016) which is an
extension to the hippocampal memory indexing theory (Teyler
& DiScenna, 1986). The key concepts of that approach are
sparse index representations for entities, relationships and
time instances. Each index has an associated distributed em-
bedding, and memory and perception are based on an inter-

play between both. Perception, episodic memory and seman-
tic memory might evoke sub-symbolic associations, but they
are also declarative, indicated by the abilities of humans to re-
port verbally about perception and memory contents. The se-
mantic decoding in the tensor memory has exactly that declar-
ative nature!

Here we significantly modify and extend that model. In the
tensor memory model, the calculations of conditional probabil-
ities required for decoding require marginalization operations
which are costly and might be difficult to realize with biological
wetware. Also, several indices and their embeddings needed
to be active at the same time, which might not be biologi-
cally plausible (binding problem) and the approach required
units to implement multiplication. Here, we propose a layered
approach, where the sensory information is processed by a
working memory layer, a representation layer and an index
layer. The operations can be described as a single recurrent
neural network where semantic memory evolves as an identi-
fiable functional module.

The remaining parts of the paper are organized as follows.
After we provide a brief review of the tensor memory approach
in the next section, we present our model and mathematical
operations performed by the model. Then follows a discussion
on the neural substrate and a presentation of experimental
results. The last section contains our conclusions.

Tensor Memories

Triple-based graphs have evolved into major data structures
for representing semantic information. Concrete examples
are knowledge graphs which store world facts (e.g., (Munich,
partOf, Bavaria)) and scene graphs for describing image con-
tent (e.g., in the actual image, (Dog, bites, Person)).1 The
graphs are based on (s, p, o)-triples where the subject s and
the object o are entities represented as the nodes in the graph,
and where a directed link, labeled by p, represents a pred-
icate. In the tensor memory approach, a graph was repre-
sented as a 3-way tensor, which was approximated by tensor
factorization involving latent embeddings as vectors of real
numbers: aes is the embedding associated with the subject,
aeo is the embedding associated with the object, ap is the em-
bedding associated with the predicate, and at is the embed-
ding associated with the time instance, or image, t. Note that
an entity has a unique representation, independent of its role
as a subject or object. The factorized models deliver estimates
for the probability that a triple is true at time t, given image in-
formation at time t, i.e., P(s, p,o|t), and P(s, p,o), which is the

1The nodes in the graph represent entities. In a knowledge graph,
the nodes are labeled by identifiers (Jack ), in scene graphs by con-
cept labels (Person).
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Figure 1: Our model architecture consists of four layers. Ex-
tracted representations from images are represented at the
bottom layer (sensory memory, g) which is connected to the
representation layer f. The top layer e contains the indices for
concepts, predicates, and time instances. The working mem-
ory h is an integration layer and g is the sensory layer.

prior probability for observing the triples (s, p,o).2

The tensor memory model has some technical shortcom-
ings when used in perception. For example, the semantic
memory was derived from a marginalization over time, which
is a computationally expensive operation that might not easily
be implemented in biological wetware and can only be exe-
cuted efficiently for some models (Tresp & Ma, 2016). Other
problems are the polynomial scaling with the rank of the tensor
model and the need for units that can perform multiplications.

A Model for Perception and Memory

A Layered Architecture: Figure 1 shows our model archi-
tecture. As in the tensor memory model, we assume an index
representation layer e for entities, predicates and time in-
stances, which is shown at the top of the figure. The indices
can activate the representation layer f via connection ma-
trix AT

c for the concepts, AT
p for the predicates, and AT

epi for
time instances. The embedding of concept ei is the vector aei ,
which is the transpose of the i-th row of Ac. Similar for the
predicates and the time instances. When index ei is active
and all other indices are inactive, then f = ai. We introduce
the working memory layer h. This layer has some internal
dynamics and receives inputs from the representation layer f.
In the following, we assume that we want to retrieve two con-
cepts and their relationships at time, or image, t. Let t be the
time constant of perception (on the order of hundreds of mil-
liseconds). The micro time-step τ is the time constant for the
decoding of the sensory input (τ << 100ms). We now discuss
the individual processing steps.

2More explicitly, P(s, p,o|t) stands for the probability of observ-
ing a subject entity and an object entity at time t, where the subject
belongs to concept s, the object belongs to concept o, and both are
related by predicate p.

Decoding the Subject: Consider that g(t) is the embedding
of the sensory input at time t. The activations of the working
memory become, with hin(t) = 0,

h(t) = sig(hin(t)+V Dg(t)).

The activations in the representation layer and the index layer
are calculated as

f(t) = Dg(t)+Wh(t) and e(t) = sig(Acf(t)).

Thus the activations of the indices are determined by the inner
product of their embeddings with the activation of the repre-
sentation layer. In training, e(t) is set to be a one-hot vector
indicating the index of the true subject. In testing, we proceed
with e(t).3 Finally, we set,

f(t)← AT
c e(t) = aes and hin(t + τ) = Bh(t)+V aes .

In training, f(t) is now set to be the embedding of the true
subject es, and in testing, it is an average, weighted by e(t);
hin(t +τ) is the input activation for the working memory in the
next time step. All weight matrices D,V,W,B and the matrices
containing the embeddings Ac,Ap,Aepi are learned in training.
Note that here, and in the following, there is a direct short
cut, not involving the potentially slower working memory, in
the form of e(t) = sig(AcDg(t)).

Decoding the Object: The object decoding is identical to
the subject decoding, if we replace t with t +τ, t +τ by t +2τ,
and aes by aeo .

Decoding the Predicate: The predicate decoding is identi-
cal to the subject decoding, if we replace t with t + 2τ, t + τ

by t + 3τ, aes by ap, and Ac by Ap. Note that the decoding
is asymmetrical and can distinguish between (Dog, bites, Per-
son) and (Person, bites, Dog). For a given image, the de-
coding can generate a large number of triples, which, in their
entirety, present a visual input as an ensemble scene graph.

Discussion
Sensory Memory Layer: g is the visual sensory memory,
maintaining visual information to be processed and analyzed.
g represents properties of the respective focus of attention (in
technical systems, these would be the bounding boxes). We
assume that sensor processing involves an attention mech-
anism, such that g(t) represents the subject bounding box,
g(t + τ) represents the object bounding box, and g(t + 2τ)
represents the predicate bounding box. The latter includes
the two previous bounding boxes and some surrounding im-
age area. In the brain, it is assumed that the sensory memory
layer involves the visuospatial sketchpad of the working mem-
ory, associated with the parietal-occipital region.

3In testing we could perform a sampling from a normalized ver-
sion of e(t); but this sampling introduces noise and would have to
be repeated many times; proceeding with e(t) can be considered an
approximation to the sampling.
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Index Layer: The index layer e consists of indices for con-
cepts, like Cat, and predicates like nextTo, and time instances.
Generally it is assumed that indices are formed in the hip-
pocampus and their long-term representation might involve
the pole of the temporal lobe. An index might be realized by
a small number of interacting neurons (Teyler & DiScenna,
1986; Quiroga, 2012). Over the path e→ f→ g, an index can
also excite a sensory impression. The indices (including the
indices for time instances) have a relational memory function
in the sense that they bind together different dimensions in the
representation layer.

Representation Layer: The representation layer is impor-
tant for the information path from g to e and it interacts with
the working memory h. If index ei is activated, the activation
of layer f reflects ai. Thus, whereas the sensory layer is pri-
marily visually grounded, the representation layer is primarily
concept grounded. If the concept “cat” is active in the index
layer, the representation layer would contain abstract repre-
sentations of the concept cat, without a reference to the actual
cat in the sensory input. In the brain, these representations
might involve the parietal lobe and the posterior region of the
temporal lobe.

Working Memory Layer: The working memory layer inte-
grates information from visual input and the decoding pro-
cess (subject, predicate, object), and eventually the complete
scene with its visual representations and decoded concepts
and predicates. Working memory might have initially been
developed biologically to support a more complex scene un-
derstanding and event processing. Its integrative functions
are typically associated with the prefrontal cortex (PFC) in the
frontal lobe and its interaction with the representation layer
might reflect the event-specific relational memory functions in
perception and memory recall. The PFC is profusely and re-
ciprocally connected with the hippocampus, and cortices of
association of the temporal and parietal lobes. Note that this
layer is the “intelligence on top”, since a simpler decoding
g→ f→ e would not involve the working memory layer.

Semantic Decoding, Schema, and Semantic Memory:
Whereas the restoration of an episodic memory trace is mostly
sub-symbolic and might lead to an autonoetic experience,
our model also contains a semantic decoding for percep-
tion and episodic memory. It produces a set of triples on a
symbolic level involving indices for concepts and predicates
and their embeddings, which are encoded as connection pat-
terns (Tresp et al., 2015). In the cognitive sciences, represen-
tations for concepts form what is called a schema, which aids
in the interpretation of events. Studies have shown that indi-
viduals can analyze perceptual information significantly more
easily when this information is related to an acquired schema.
According to our model, an improvement in the schema would
go hand in hand with a refined perception. (Moscovitch et al.,
2016) defines a schema as “adaptable associative networks of
knowledge extracted over multiple similar experiences”, which
is in agreement with our model. The same paper states that

“memories for recent events draw on interactions between
schemas, semantics, and perceptual aspects of an experi-
ence, mediated in part by different regions in the anterior and
posterior neocortex”, which we would interpret as the multi-
level processing in our model.

Early in evolution, it was important for individuals to rec-
ognize particular classes of objects (e.g., “tigers”, “snakes”);
object recognition then became the basis for a more mean-
ingful information extraction in form of semantic triples. Our
model requires a storage layer which maintains information
about already extracted concepts; as proposed already, this
storage might have been the initial motivation for the brain to
evolutionary develop a working memory in the PFC.

Another by-product in our approach is semantic memory.
In our model, semantic memory uses the same layered struc-
ture, ignoring the sensory input, and models the prior proba-
bility for observing a triple. Thus semantic memory involves
only the top three layers and is independent of the context
provided by the sensory input. Assume the index for Cat
is activated in the index layer by some internal or external
cue. Then, without any perceptual input, the decoding pro-
cess might generate, with some probability, that (Cat, sitsOn,
Stove). Mathematically, the semantic memory here models
P(p = sitsOn,o = Stove|s = Cat). In our model, the se-
mantic memory is implemented as the connection pattern be-
tween the index layer and the representation layer. In the
brain, semantic memory involves the anterior temporal cor-
tex (Moscovitch et al., 2016).

A scene graph describes entities and their relationships. So
far we focused on the concept attributes of the entities: (Dog,
bites, Person) and not identifier attributes as in (Sparky, bites,
Jack). Humans have an enormous capacity to represent a
large number of entities; but consider a less complex mammal
which needs to have only knowledge about a smaller number
of specific entities, such as the leader hierarchy in a pack.
We propose that, for significant entities, indices are formed
as well. So in the previous example, there would be indices
for Jack and Sparky, in addition to the indices for Person and
Dog.

Our model does not explicitly consider properties like large,
red, threatening. These can be treated as concepts in con-
junction with the predicate hasAttribute where the visual infor-
mation for subject and object originate from an identical image
region. Also the representations in the sensory layer and in
the representation layer might convey attribute information.

Episodic Memory: Most researchers consider temporal
coding to be a core function of the hippocampus and not a de-
rived property (Teyler & DiScenna, 1986; Eichenbaum, 2014;
Moscovitch et al., 2016). Our model agrees with this view and
we assume that an index for a time instance is formed for a
sensory input that is associated with an emotion or with nov-
elty (Figure 1). In its simplest form, the t-th row of the matrix
Aepi copies f. Biologically, time indices might involve a small
network of interacting neurons (Quiroga, 2012); together with
their connection patterns (in our model Aepi) they form mem-
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ory traces or engrams. It is assumed that the original purpose
of this index was to be able to compare the current event to
previously encountered events (familiarity) and their associ-
ated actions, supporting the individual in decision making. In
the course of evolution, this decision oriented process was re-
purposed and various cues were able to activate the indices
which, using bidirectional connections, are then able to restore
a past memory as a personal experience. Subsequently, this
function became more elaborate and enabled future-oriented
mental time travel to evaluate future consequences of actions.
Humans became able to mentally place themselves in the
past, in the future, or in counterfactual situations, a process
called autonoetic consciousness. Episodic memory traces
can also be used to train implicit memories in perceptual
and procedural memories or even train complex action pat-
terns (Kumaran, Hassabis, & McClelland, 2016). An episodic
memory experience is an active process that involves details
of the event and its location (Moscovitch et al., 2016). Some-
times the reconstruction is considered a Bayesian process of
reconstructing the past as accurately as possible based on the
engram information. According to the standard consolidation
theory, indices are consolidated in neocortex, whereas the
multiple trace theory proposes that the hippocampal represen-
tation maintains its function over long periods and a memory
trace is only partially consolidated in neocortex (Moscovitch et
al., 2016). In our model, consolidation would involve a reim-
plementation of an index and its connection pattern.

Experiments

We use the Stanford Visual Relationship data set, which is
the basis for many works on scene analysis, e.g., (Baier, Ma,
& Tresp, 2017). We used 100 concepts and 70 predicates
with 4000 images for training and 1000 for testing. The results
of our model are comparable to highly optimized models in
other works (Table 1). We also see that the working memory
is essential for obtaining good results. The dimensions for the
layers are g/4096, f/4096, h/500. For comparison, we report
results from (Baier et al., 2017).

We also did experiments where we removed the visual in-
puts and our model performed as a semantic memory. The ta-
ble shows that the performance of this derived model is worse
than a model optimized on semantic data (Baier) but much
better than random. The table also shows that by starting with
a perception model (trained on 10 epochs) and then adding (1
or 9) epochs, where we only use the semantic triples without
perceptual input, significantly improves the extracted semantic
model with only a small performance drop in perception.

Conclusion

We have presented a mathematical model for perception,
episodic memory and semantic memory, and related it to cog-
nitive models of the human brain. Our main hypothesis is that
episodic memory, semantic memory, and to some degree also
working memory, are by-products of the need for humans to
extract more meaningful and more complex information from

Table 1: ph stands for phrase detection and pr stands for pred-
icate detection. In phrase detection, a triple with its corre-
sponding bounding boxes is considered a success, if both the
triple and the bounding boxes are correctly detected. In pred-
icate detection, subject concept and object concept are given
and the task is to predict the predicate (Baier et al., 2017). For
z-s-ph/z-s-ph (zero shot), we only evaluate the test set perfor-
mance on triples that did not occur in training. The first row
(Model) shows results for our model. The fourth row (Baier)
shows the results from literature. Dir are results where we re-
moved the working memory. Our model gives better results
for the zero-shot experiments. The last two columns report re-
call results for only the semantic memory. The first row shows
results where the semantic memory was extracted from our
perceptual model. The result (82.46 and 53.53) are worse
than the result for Baier, where the latter was trained directly
on the triple data. S1 and S9 show results where we added
1 and 9 epochs of pure semantic training to the perception
model. We see that the semantic model improves significantly
with almost no degradation on perception.

Method ph z-s-ph pr z-s-pr @10 @1

Model 23.45 10.95 93.32 78.79 82.46 53.53
S1 23.32 10.44 93.17 80.07 93.46 67.55
S9 22.61 9.24 92.77 79.47 94.77 68.68
Baier 25.11 7.96 93.81 76.05 95.86 70.50
Dir 11.13 7.87 77.19 65.61 - -
Rand 0.01 0.00 18.53 16.51 0.08 0.01

sensory inputs. We could show experimentally that semantic
memory can evolve as a by-product of perception. The se-
mantic memory represents prior probabilities, which might be
an interesting basis for a Bayesian brain interpretation. We
propose that the model we presented is in a sense minimalist,
containing necessary perceptual components.
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Abstract

Knowledge graphs (KGs) can vary greatly
from one domain to another. Therefore su-
pervised approaches to both graph-to-text gen-
eration and text-to-graph knowledge extrac-
tion (semantic parsing) will always suffer from
a shortage of domain-specific parallel graph-
text data; at the same time, adapting a model
trained on a different domain is often impos-
sible due to little or no overlap in entities and
relations. This situation calls for an approach
that (1) does not need large amounts of anno-
tated data and thus (2) does not need to rely
on domain adaptation techniques to work well
in different domains. To this end, we present
the first approach to unsupervised text gener-
ation from KGs and show simultaneously how
it can be used for unsupervised semantic pars-
ing. We evaluate our approach on WebNLG
v2.1 and a new benchmark leveraging scene
graphs from Visual Genome. Our system out-
performs strong baselines for both text↔graph
conversion tasks without any manual adapta-
tion from one dataset to the other. In additional
experiments, we investigate the impact of us-
ing different unsupervised objectives.1

1 Introduction

Knowledge graphs (KGs) are a general-purpose
approach for storing information in a structured,
machine-accessible way (Van Harmelen et al.,
2008). They are used in various fields and domains
to model knowledge about topics as different as lex-
ical semantics (Fellbaum, 2005; van Assem et al.,
2006), common sense (Speer et al., 2017; Sap et al.,
2019), biomedical research (Wishart et al., 2018)
and visual relations in images (Lu et al., 2016).

This ubiquity of KGs necessitates interpretabil-
ity because diverse users – both experts and non-
experts – work with them. Even though, in prin-

1https://github.com/mnschmit/
unsupervised-graph-text-conversion

ciple, a KG is human-interpretable, non-experts
may have difficulty making sense of it. Thus, there
is a need for methods, such as automatic natural
language generation (“graph→text”), that support
them.

Semantic parsing, i.e., the conversion of a text to
a formal meaning representation, such as a KG,
(“text→graph”) is equally important because it
makes information that only exists in text form
accessible to machines, thus assisting knowledge
base engineers in KG creation and completion.

As KGs are so flexible in expressing various
kinds of knowledge, separately created KGs vary a
lot. This unavoidably leads to a shortage of training
data for both graph↔text tasks. We therefore pro-
pose an unsupervised model that (1) easily adapts
to new KG domains and (2) only requires unla-
beled (i.e., non-parallel) texts and graphs from the
target domain, together with a few fact extraction
heuristics, but no manual annotation.

To show the effectiveness of our approach, we
conduct experiments on the latest release (v2.1)
of the WebNLG corpus (Shimorina and Gardent,
2018) and on a new benchmark we derive from
Visual Genome (Krishna et al., 2016). While both
of these datasets contain enough annotations to
train supervised models, we evaluate our unsuper-
vised approach by ignoring these annotations. The
datasets are particularly well-suited for our evalua-
tion as both graphs and texts are completely human-
generated. Thus for both our tasks, models are eval-
uated with natural, i.e., human-generated targets.

Concretely, we make the following contribu-
tions: (1) We present the first unsupervised
non-template approach to text generation from KGs
(graph→text). (2) We jointly develop a new unsu-
pervised approach to semantic parsing that automat-
ically adjusts to a target KG schema (text→graph).
(3) In contrast to prior unsupervised graph→text
and text→graph work, our model does not re-
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quire manual adaptation to new domains or graph
schemas. (4) We provide a thorough analysis of the
impact of different unsupervised objectives, espe-
cially the ones we newly introduce for text↔graph
conversion. (5) We create a new large-scale dataset
for text↔graph transformation tasks in the visual
domain.

2 Related Work

graph→ text. Our work is the first attempt at fully
unsupervised text generation from KGs. In this re-
spect it is only comparable to traditional rule- or
template-based approaches (Kukich, 1983; McRoy
et al., 2000). However, in contrast to these ap-
proaches, which need to be manually adapted to
new domains and KG schemas, our method is gen-
erally applicable to all kinds of data without modi-
fication.

There is a large body of literature about super-
vised text generation from structured data, notably
about the creation of sports game summaries from
statistical records (Robin, 1995; Tanaka-Ishii et al.,
1998). Recent efforts make use of neural encoder-
decoder mechanisms (Wiseman et al., 2017; Pudup-
pully et al., 2019). Although text creation from
relational databases is related and our unsupervised
method is, in principle, also applicable to this do-
main, in our work we specifically address text cre-
ation from graph-like structures such as KGs.

One recent work on supervised text creation
from KGs is (Bhowmik and de Melo, 2018). They
generate a short description of an entity, i.e., a sin-
gle KG node, based on a set of facts about the
entity. We, however, generate a description of the
whole KG, which involves multiple entities and
their relations. Koncel-Kedziorski et al. (2019)
generate texts from whole KGs. They, however,
do not evaluate on human-generated KGs but au-
tomatically generated ones from the scientific in-
formation extraction tool SciIE (Luan et al., 2018).
Their supervised model is based on message pass-
ing through the topology of the incidence graph of
the KG input. Such graph neural networks (Kipf
and Welling, 2017; Veličković et al., 2018) have
been widely adopted in supervised graph-to-text
tasks (Beck et al., 2018; Damonte and Cohen, 2019;
Ribeiro et al., 2019, 2020).

Even though Marcheggiani and Perez-
Beltrachini (2018) report that graph neural
networks can make better use of graph input than
RNNs for supervised learning, for our unsuper-

vised approach we follow the line of research that
uses RNN-based sequence-to-sequence models
(Cho et al., 2014; Sutskever et al., 2014) operating
on serialized triple sets (Gardent et al., 2017b;
Trisedya et al., 2018; Gehrmann et al., 2018;
Castro Ferreira et al., 2019; Fan et al., 2019). We
make this choice because learning a common
semantic space for both texts and graphs by
means of a shared encoder and decoder is a
central component of our model. It is a nontrivial,
separate research question whether and how
encoder-decoder parameters can effectively be
shared for models working on both sequential and
non-sequential data. We thus leave the adaptation
of our approach to graph neural networks for
future work.

text → graph. Converting a text into a KG rep-
resentation, our method is an alternative to prior
work on open information extraction (Niklaus
et al., 2018) with the advantage that the extractions,
though trained without labeled data, automatically
adjust to the KGs used for training. It is therefore
also related to relation extraction in the unsuper-
vised (Yao et al., 2011; Marcheggiani and Titov,
2016; Simon et al., 2019) and distantly supervised
setting (Riedel et al., 2010; Parikh et al., 2015).
However, these systems merely predict a single
relation between two given entities in a single sen-
tence, while we translate a whole text into a KG
with potentially multiple facts.

Our text→graph task is therefore most closely re-
lated to semantic parsing (Kamath and Das, 2019),
but we convert statements into KG facts whereas se-
mantic parsing typically converts a question into a
KG or database query. Poon and Domingos (2009)
proposed the first unsupervised approach. They,
however, still need an additional KG alignment
step, i.e., are not able to directly adjust to the target
KG. Other approaches overcome this limitation but
only in exchange for the inflexibility of manually
created domain-specific lexicons (Popescu et al.,
2004; Goldwasser et al., 2011). Poon (2013)’s ap-
proach is more flexible but still relies on prepro-
cessing by a dependency parser, which generally
means that language-specific annotations to train
such a parser are needed. Our approach is end-
to-end, i.e., does not need any language-specific
preprocessing during inference and only depends
on a POS tagger used in the rule-based text→graph
system to bootstrap training.

Unsupervised sequence generation. Our unsu-
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pervised training regime for both text↔graph tasks
is inspired by (Lample et al., 2018b). They used
self-supervised pretraining and backtranslation for
unsupervised translation from one language to an-
other. We adapt these principles and their noise
model to our tasks, and introduce two new noise
functions specific to text↔graph conversion.

3 Preliminaries

3.1 Data structure

We formalize a KG as a labeled directed multigraph
(V,E, s, t, l) where entities are nodes V and edges
E represent relations between entities. The lookup
functions s, t : E → V assign to each edge its
source and target node. The labeling function l
assigns labels to nodes and edges where node la-
bels are entity names and edge labels come from a
predefined setR of relation types.

An equivalent representation of a KG is the set
of its facts. A fact is a triple consisting of an edge’s
source node (the subject), the edge itself (the predi-
cate), and its target node (the object). So the set of
facts F of a KG can be obtained from its edges:

F := { (s(e), e, t(e)) | e ∈ E } .

Applying l to all triple elements and writing out
F in an arbitrary order generates a serialization
that makes the KG accessible to sequence models
otherwise used only for text. This has the advantage
that we can train a sequence encoder to embed text
and KGs in the same semantic space. Specifically,
we serialize a KG by writing out its facts separated
with end-of-fact symbols (EOF) and elements of
each fact with special SEP symbols. We thus define
our task as a sequence-to-sequence (seq2seq) task.

3.2 Scene Graphs

The Visual Genome (VG) repository is a large col-
lection of images with associated manually anno-
tated scene graphs; see Fig. 1. A scene graph for-
mally describes image objects with their attributes,
e.g., (hydrant, attr, yellow), and their relations to
other image objects, e.g., (woman, in, shorts). Each
scene graph is organized into smaller subgraphs,
known as region graphs, representing a subpart of
a more complex larger picture that is interesting
on its own. Each region graph is associated with
an English text, the region description. Texts and
graphs were not automatically produced from each
other, but were collected from crowdworkers who

Figure 1: Region graphs and textual region descriptions
in Visual Genome (VG). Image regions serve as com-
mon reference for text and graph creation but are disre-
garded in our work. We solely focus on the pairs of cor-
responding texts and graphs. Illustration adapted from
(Krishna et al., 2016).

baby

wrapped in blanket small hat

baseball hat pink

attr
attr wearing

attr attr

Figure 2: Example graph in our new VG benchmark.

were presented an image region and then gener-
ated text and graph. So although the graphs were
not specifically designed to closely resemble the
texts, they describe the same image region. This
semantic correspondence makes scene graph↔text
conversion an interesting and challenging problem
because text and graph are not simple translations
of each other.

Scene graphs are formalized in the same way
as other KGs: V here contains image objects and
their attributes, andR contains all types of visual
relationships and the special label attr for edges
between attribute and non-attribute nodes. Fig. 2
shows an example.

VG scene graphs have been used before for tra-
ditional KG tasks, such as KG completion (Wan
et al., 2018), but we are the first to use them for a
text↔graph conversion dataset.

4 Approaches

4.1 Rule-based systems

We propose a rule-based system as unsupervised
baseline for each of the text↔graph tasks. Note
that they both assume that the texts are in English.
Rgraph→text. From a KG serialization, we remove
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noise function behavior

swap applies a random permutation σ of words or facts with
∀i ∈ {1, . . . , n} , |σ(i)− i| ≤ k; k = 3 for text, k = +∞ for knowledge graphs.

drop removes each fact/word with a probability of pdrop.

blank replaces each fact/word with a probability of pblank by a special symbol blanked.

repeat inserts repetitions with a probability of prepeat in a sequence of facts/words.

rule generates a noisy translation by applying Rgraph→text to a graph or Rtext→graph to a text.

Table 1: Noise functions and their behavior on graphs and texts.

Man wearing a colorful shirt and white pants

Man SEP wearing SEP colorful EOF
shirt SEP attr SEP colorful EOF
pants SEP attr SEP white EOF
pants SEP playing SEP tennis

pants SEP attr SEP white EOF
shirt SEP attr SEP colorful EOF
blanked

pants SEP attr SEP white EOF
shirt SEP attr SEP colorful EOF
shirt SEP attr SEP colorful EOF
blanked

rule

blank ◦ drop ◦ swap

repeat

Llm

Figure 3: Example noisy training instance for the
graph→text task in the composed noise setting. The
fact highlighted in red is removed by drop, the one in
blue is replaced with blanked by blank, the one in
orange is repeated by repeat.

SEP symbols and replace EOF symbols by the
word and. The special label attr is mapped to is.
This corresponds to a template-based enumeration
of all KG facts. See Table 5 for an example.
Rtext→graph. After preprocessing a text with NLTK’s
default POS tagger (Loper and Bird, 2004) and re-
moving stop words, we apply two simple heuristics
to extract facts: (1) Each verb becomes a predi-
cate; is creates facts with predicate attr. The
content words directly before and after such a pred-
icate word become subject and object. (2) Adjec-
tives a form attributes, i.e., build facts of the form
(X,attr, a) where X is filled with the first noun
after a. These heuristics are similar in nature to a
rudimentary parser. See Table 8 for an example.

4.2 Neural seq2seq systems

Our main system is a neural seq2seq architecture.
We equip the standard encoder-decoder model with
attention (Bahdanau et al., 2014) and copy mech-
anism (Gu et al., 2016). Allowing the model to

directly copy from the source to the target side
is beneficial in data to text generation (Wiseman
et al., 2017; Puduppully et al., 2019). The encoder
(resp. decoder) is a bidirectional (resp. unidirec-
tional) LSTM (Hochreiter and Schmidhuber, 1997).
Dropout (Hinton et al., 2012) is applied at the input
of both encoder and decoder (Britz et al., 2017). We
combine this model with the following concepts:
Multi-task model. In unsupervised machine trans-
lation, systems are trained for both translation
directions (Lample et al., 2018b). In the same
way, we train our system for both conversion tasks
text↔graph, sharing encoder and decoder. To tell
the decoder which type of output should be pro-
duced (text or graph), we initialize the cell state
of the decoder with an embedding of the desired
output type. The hidden state of the decoder is ini-
tialized with the last state of the encoder as usual.
Noisy source samples. Lample et al. (2018a) in-
troduced denoising auto-encoding as pretraining
and auxiliary task to train the decoder to produce
well-formed output and make the encoder robust to
noisy input. The training examples for this task con-
sist of a noisy version of a sentence as source and
the original sentence as target. We adapt this idea
and propose the following noise functions for the
domains of graphs and texts: swap, drop, blank,
repeat, rule. Table 1 describes their behavior.
swap, drop and blank are adapted from (Lample
et al., 2018a) with facts in graphs taking the role
of words in text. As order should be irrelevant in a
set of facts, we drop the locality constraint in the
swap permutation for graphs by setting k = +∞.

Denoising samples generated by repeat re-
quires the model to learn to remove redundant in-
formation in a set of facts. In the case of text,
repeat mimics a behavior often observed with in-
sufficiently trained neural models, i.e., repeating
words considered important.

Unlike the other noise functions, rule does not
“perturb” its input, but rather noisily backtranslates
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it. We will see in Section 7 that bootstrapping with
these noisy translations is essential.

We consider two fundamentally different noise
injection regimes: (1) The composed noise setting
is an adaptation of Lample et al. (2018a)’s noise
model (blank◦drop◦swap) where our newly intro-
duced noise functions rule and repeat are added
to the start and end of the pipeline, i.e., all data sam-
ples are treated equally with the same noise func-
tion Ccomp := repeat◦blank◦drop◦swap◦rule.
Figure 3 shows an example. (2) In the sampled
noise setting, we do not use all noise functions at
once but sample a single one per data instance.

4.3 Training regimes
We denote the sets of graphs and corresponding
texts by G and T . The set of available supervised
examples (x, y) ∈ G × T is called S ⊂ G × T .
Pg and Pt are probabilistic models that generate,
conditioned on any input, a graph (g) or a text (t).
Unsupervised training. We first obtain a language
model for both graphs and text by training one
epoch with the denoising auto-encoder objective:

Ldenoise = E
x∼G

[− logPg(x|C(x))] +

E
y∼T

[− logPt(y|C(y))]

where C ∈
{
Ccomp

}
for composed noise and C ∈

{swap, blank, drop, repeat, rule} for sampled
noise. In this pretraining epoch only, we use all pos-
sible noise functions individually on all available
data. As sampled noise incorporates five different
noise functions and composed noise only one, this
results in five times more pretraining samples for
sampled noise than for composed noise.

In subsequent epochs, we additionally consider
Lback as training signal:

Lback = E
x∼G

[− logPg(x|z∗(x))] +

E
y∼T

[− logPt(y|w∗(y))]

z∗(x) = argmax
z

Pt(z|x)

w∗(y) = argmax
w

Pg(w|y)

This means that, in each iteration, we apply the
current model to backtranslate a text (graph) to
obtain a potentially imperfect graph (text) that we
can use as noisy source with the clean original input
being the target. This gives us a pseudo-parallel
training instance for the next iteration – recall that

VG VGball WebNLG

train split size 2,412,253 151,790 34,338
val split size 323,478 21,541 4,313
test split size 324,664 20,569 4,222

#relation types 36,506 5,167 373
avg #facts in graph 2.7 2.5 3.0
avg #tokens in text 5.4 5.5 22.8

avg % text tokens in graph 49.3 50.6 49.4
avg % graph tokens in text 52.3 54.7 75.6

Table 2: Statistics of WebNLG v2.1 and our newly cre-
ated benchmark VG; VGball is a subset of VG represent-
ing images from ball sports events. Data split sizes are
given as number of graph-text pairs.

we address unsupervised generation, i.e., without
access to parallel data.

The total loss in these epochs is Lback +Ldenoise,
where now Ldenoise only samples one possible type
of noise independently for each data instance.
Supervised training. Our intended application is
an unsupervised scenario. For our two datasets,
however, we have labeled data (i.e., a “parallel cor-
pus”) and so can also compare our model to its
supervised variant. Although supervised perfor-
mance is generally better, it serves as a reference
point and gives us an idea of the impact of supervi-
sion as opposed to factors like model architecture
and hyperparameters. The supervised loss is simply
defined as follows:

Lsup = E
(x,y)∼S

[− logPt(y|x)− logPg(x|y)]

5 Experiments

5.1 Data
For our experiments, we randomly split the VG
images 80/10/10 into train/val/test. We then re-
move all graphs from train that also occur in one
of the images in val or test. Finally, we unify
graph serialization duplicates with different texts
to single instances with multiple references for
graph→text and proceed analogously with text du-
plicates for text→graph. For WebNLG v2.1, we
use the data splits as provided. Following (Gardent
et al., 2017a), we resolve the camel case of relation
names and remove underscores from entity names
in a preprocessing step. For both datasets, the order
of facts in graph serializations corresponds to the
order of triples in the original dataset. Because
of VG’s enormous size and limited computation
power, we additionally create a closed-domain ball
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Visual Genome WebNLG

graph→ text BLEU METEOR CHRF++ BLEU METEOR CHRF++

val test val test val test val test val test val test

Rgraph→text 5.9 5.9 28.2 28.1 43.4 43.3 18.3 18.3 33.5 33.6 55.0 55.2
Ours w/ sampled noise 19.8 19.5 31.4 31.2 50.9 50.7 39.1 37.7 35.4 35.5 61.9 62.1
Ours w/ composed noise 23.2 23.2 33.0 32.9 53.7 53.6 30.8 30.5 30.2 30.0 53.1 52.8

Ours supervised 26.5 26.4 32.3 32.2 53.7 53.6 35.1 34.4 39.6 39.5 64.1 64.0

Table 3: Results for unsupervised and supervised text generation. Note that training a supervised model on millions
of labeled samples is usually not an option. Best unsupervised models are identified by best BLEU on V100. BLEU
and METEOR are computed with scripts from (Lin et al., 2018); the CHRF++ script is from (Popović, 2017b).

sports subset of VG, called VGball, which we can
use to quickly conduct additional experiments (see
Section 7). We identify all images where at least
one region graph contains at least one fact that men-
tions an object ending with ball and take all regions
from them (keeping data splits the same). In con-
trast to alternatives like random subsampling, we
consider this domain-focused construction more
realistic.

Table 2 shows relevant statistics for all datasets.
While VG and WebNLG have similar statistics,
VG is around 70 times larger than WebNLG, which
makes it an interesting benchmark for future re-
search, both supervised and unsupervised. Apart
from size, there are two important differences:
(1) The VG graph schema has been freely defined
by crowd workers and thus features a large variety
of different relations. (2) The percentage of graph
tokens occurring in the text, a measure important
for the text→graph task, is lower for VG than for
WebNLG. Thus, VG graphs contain more details
than their corresponding texts, which is a character-
istic feature of the domain of image captions: they
mainly describe the salient image parts.

5.2 Training details

We train all models with the Adam optimizer
(Kingma and Ba, 2015) for maximally 30 epochs.
We stop supervised models early when Lsup does
not decrease on val for 10 epochs. Unsupervised
models are stopped after 5 iterations on VG be-
cause of its big size and limited computational re-
sources. All hyperparameters and more details are
described in Appendices A and B. Our implemen-
tation is based on AllenNLP (Gardner et al., 2017).

In unsupervised training, input graphs and texts
are the same as in supervised training – only the
gold target sides are ignored. While it is an arti-
ficial setup to split paired data and treat them as

sampled noise composed noise

# U V100 val test U V100 val test

1 80.4 7.8 10.1 9.9 72.2 15.9 19.8 19.7
2 50.7 7.2 9.2 9.1 41.2 14.0 15.2 15.1
3 67.6 19.5 19.4 19.2 61.0 22.7 23.5 23.4
4 56.4 21.2 19.8 19.5 51.9 22.2 21.4 21.3
5 62.9 20.0 19.6 19.4 60.5 24.5 23.2 23.2

Table 4: BLEU scores on VG for our unsupervised
models evaluated for graph→text at different iterations.
U is calculated on all unlabeled data used for training.
V100 is a 100-size random sample from val. All results
are computed with scripts from (Lin et al., 2018).

unpaired, this not only makes the supervised and
unsupervised settings more directly comparable,
but also ensures that the text data resemble the eval-
uation texts in style and domain. For the purpose
of experiments on a benchmark, this seems appro-
priate to us. For a concrete use case, it would be an
important first step to find adequate texts that show-
case the desired language style and that are about a
similar topic as the KGs that are to be textualized.
As KGs are rarely the only means of storing in-
formation, e.g., in an industrial context, such texts
should not be hard to come by in practice.

6 Results and Discussion

6.1 Text generation from graphs

Model selection. Table 4 shows how performance
of our unsupervised model changes at every back-
translation iteration, measured in BLEU (Papineni
et al., 2002), a common metric for natural language
generation. For model selection, we adopt the two
methods proposed by Lample et al. (2018b), i.e.,
a small validation set (we take a 100-size random
subset of val, called V100) and a fully unsupervised
criterion (U) where BLEU compares an unlabeled
sample with its back-and-forth translation. We con-
firm their finding that U is not reliable for neural
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(a) Reference text a baseball cap on a baby’s head

(b) Rgraph→text baby is small and baby is
wrapped in blanket and hat is
pink and hat is baseball hat and
baby wearing hat

(c) Unsuperv. neural small baby wrapped in blanket
model with pink baseball hat

(d) Superv. neural model baby wearing a pink hat

Table 5: Texts generated from graph in Fig. 2.

text generation models whereas V100 correlates bet-
ter with performance on the larger test sets. We use
V100 for model selection in the rest of this paper.
Quantitative evaluation. Table 3 shows BLEU,
METEOR (Banerjee and Lavie, 2005) and
CHRF++ (Popović, 2017a) for our unsupervised
models and the rule baseline Rgraph→text, which is
in many cases, i.e., if parallel graph-text data are
scarce, the only alternative.

First, we observe that Rgraph→text performs much
better on WebNLG than VG, indicating that our
new benchmark poses a tougher challenge. Second,
our unsupervised models consistently outperform
this baseline on all metrics and on both datasets,
showing that our method produces textual descrip-
tions much closer to human-generated ones. Third,
noise composition, the general default in unsuper-
vised machine translation, does not always per-
form better than noise sampling. Thus, it is worth-
while to try different noise settings for new tasks
or datasets.

Surprisingly, supervised and unsupervised mod-
els perform nearly on par. Real supervision does
not seem to give much better guidance in train-
ing than our unsupervised regime, as measured by
our three metrics on two different datasets. Some
metric-dataset combinations even favor one of the
unsupervised models. Our qualitative observations
provide a possible explanation for that.
Qualitative observations. Taking a look at exam-
ple generations (Table 5), we also see qualitatively
how much easier it is to grasp the content of our nat-
ural language summarization than reading through
a simple enumeration of KG facts. We find that
the unsupervised model (c) seems to output the KG
information in a more complete manner than its su-
pervised counterpart (d). The supervision probably
introduces a bias present in the training data that
image captions focus on salient image parts and
therefore the supervised model is encouraged to
omit information. As it never sees a corresponding

sampled noise composed noise

# U V100 val test U V100 val test

1 19.1 1.0 1.2 1.2 17.0 2.0 2.2 2.2
2 71.0 21.7 19.1 18.8 49.3 22.1 22.1 21.7
3 58.2 19.3 18.6 18.3 45.9 18.7 19.7 19.4
4 62.3 18.3 19.1 18.8 54.4 19.9 20.8 20.5
5 63.7 19.8 19.0 18.7 49.0 18.8 19.0 18.8

Table 6: F1 scores on VG for our models from Table 4
evaluated on text→graph at different iterations.

text→ graph
VG WebNLG

val test val test

Rtext→graph 13.4 13.1 0.0 0.0
Stanford SG Parser 19.5 19.3 0.0 0.0
Ours w/ sampled noise 19.1 18.8 38.5 39.1
Ours w/ composed noise 22.1 21.7 32.5 33.1

Ours supervised 23.5 23.0 52.8 52.8

Table 7: F1 scores of facts extracted by our unsuper-
vised semantic parsing (text→graph) systems and our
model trained with supervision.

text-graph pair together, the unsupervised model
cannot draw such a conclusion.

6.2 Graph extraction from texts

We evaluate semantic parsing (text→graph) perfor-
mance by computing the micro-averaged F1 score
of extracted facts. If there are multiple reference
graphs (cf. Section 5.1), an extracted fact is con-
sidered correct if it occurs in at least one reference
graph. For the ground truth number of facts to be
extracted from a given text, we take the maximum
number of facts of all its reference graphs.
Model selection. Table 6 shows that (compared
to text generation quality) U is more reliable for
text→graph performance. For sampled noise, it cor-
rectly identifies the best iteration, whereas for com-
posed noise it chooses second best. In both noise
settings, V100 perfectly chooses the best model.
Quantitative observations. Table 7 shows a com-
parison of our unsupervised models with two
rule-based systems, our Rtext→graph and the highly
domain-specific Stanford Scene Graph Parser
(SSGP) by Schuster et al. (2015).

We choose these two baselines to adequately
represent the state of the art in the unsupervised set-
ting. Recall from Section 2 that the only previous
unsupervised works either cannot adapt to a target
graph schema (open information extraction), which
means their precision and recall of retrieved facts
is always 0, or have been created for SQL query
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Input sentence Man wearing a colorful shirt and white
pants playing tennis

Reference (RG) (shirt, attr, colorful)
(pants, attr, white)
(man, wearing, shirt)
(man, wearing, pants)

Rtext→graph (Man, wearing, colorful)

(shirt, attr, colorful)

(pants, attr, white)

(pants, playing, tennis)

Stanford Scene (shirt, play, tennis) ,

Graph Parser (pants, play, tennis) ,

(shirt, attr, colorful) ,

(pants, attr, white)

Unsuperv. model (pants, attr, colorful)

w/ composed noise (pants, attr, white)

(man, wearing, shirt)

(man, playing, tennis)

Supervised model (shirt, attr, colorful)

(pants, attr, white)

(Man, wearing, shirt)

(Man, wearing, pants)

Table 8: Example fact extractions and evaluation wrt
reference graph (RG). Green: correct (∈ RG). Yellow:
acceptable fact, but /∈ RG. Red: incorrect (/∈ RG).

generation from natural language questions (Poon,
2013), a related task that is yet so different that
an adaptation to triple set generation from natural
language statements is nontrivial. While rule-based
systems do not automatically adapt to new graph
schemas either, Rtext→graph and SSGP were at least
designed with the scene graph domain in mind.

Although SSGP was not optimized to match the
scene graphs from VG, its rules were still engi-
neered to cover typical idiosyncrasies of textual im-
age descriptions and corresponding scene graphs.
Besides, we evaluate it with lemmatized reference
graphs because it only predicts lemmata as predi-
cates. All this gives it a major advantage over the
other presented systems but it is nonetheless out-
performed by our best unsupervised model – even
on VG. This shows that our automatic method can
beat even hand-crafted domain-specific rules.

Both Rtext→graph and SSGP fail to predict any fact
from WebNLG. The DBpedia facts from WebNLG
often contain multi-token entities while Rtext→graph

only picks single tokens from the text. Likewise,
SSGP models multi-token entities as two nodes

VGball WebNLG

g→t t→g g→t t→g
BLEU F1 BLEU F1

No noise 0.9 0.0 14.8 0.0
sample all noise funs 19.9 17.3 39.1 38.5
compose all noise funs 19.6 19.0 30.8 32.5

use only rule 19.5 18.5 37.4 31.0
use only swap 0.9 0.0 13.1 0.0
use only drop 0.9 0.0 39.9 30.1
use only blank 0.9 0.0 14.9 0.0
use only repeat 1.1 0.0 15.7 0.0

sample all but rule 0.9 0.0 14.9 0.0
sample all but swap 19.2 17.0 39.6 37.3
sample all but drop 19.5 16.0 39.2 35.3
sample all but blank 19.9 17.5 41.0 37.0
sample all but repeat 20.4 16.6 36.7 37.1

comp. all but rule 0.9 0.0 13.5 0.0
comp. all but swap 20.2 16.3 35.9 40.8
comp. all but drop 21.5 18.6 36.4 41.1
comp. all but blank 20.2 16.3 34.8 40.4
comp. all but repeat 21.1 20.1 38.5 42.3

Table 9: Ablation study of our models on val of VGball
and WebNLG v2.1. Models selected based on V100.
Bold: best performance per column and block. Under-
lined: worse than corresponding rule-based system.

with an attr relation. This illustrates the impor-
tance of automatic adaptation to the target KG. Al-
though our system uses Rtext→graph during unsuper-
vised training and is similarly not adapted to the
WebNLG dataset, it performs significantly better.

Supervision helps more on WebNLG than on VG.
The poor performance of Rtext→graph on WebNLG is
probably a handicap for unsupervised learning.
Qualitative observations. Table 8 shows exam-
ple facts extracted by different systems. Rtext→graph

and SSGP are both fooled by the proximity of the
noun pants and the verb play whereas our model
correctly identifies man as the subject. It, however,
fails to identify shirt as an entity and associates the
two attributes colorful and white to pants. Only the
supervised model produces perfect output.

6.3 Noise and translation completeness

Sampled noise only creates training pairs that either
are complete rule-based translations or reconstruc-
tion pairs from a noisy graph to a complete graph
or a noisy text to a complete text. In contrast, com-
posed noise can introduce translations from a noisy
text to a complete graph or vice versa and thus
encourage a system to omit input information (cf.
Fig. 3). This difference is mirrored nicely in the
results of our unsupervised systems for both tasks:
composed noise performs better on VG where omit-
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ted information in an image caption is common and
sampled noise works better on WebNLG where the
texts describe their graphs completely.

7 Noise Ablation Study

Our unsupervised objectives are defined by differ-
ent types of noise models. Hence, we examine
their impact in a noise ablation study. Table 9
shows results for text→graph and graph→text on
the validation splits of VGball and WebNLG.

For both datasets and tasks, introducing varia-
tion via noise functions is crucial for the success
of unsupervised learning. The model without noise
(i.e., C(x) = x) fails completely as do all models
lacking rule as type of noise, the only exception
being the only-drop system on WebNLG. Even
though drop seems to work equally well in this one
case, the simple translations delivered by our rule-
based systems clearly provide the most useful in-
formation for the unsupervised models – notably in
combination with the other noise functions: remov-
ing rule and keeping all other types of noise (cf.
“sample all but rule” and “comp. all but rule”)
performs much worse than leaving out drop.

We hypothesize that our two rule systems
provide two important pieces of information:
(1) Rgraph→text helps distinguish data format tokens
from text tokens and (2) Rtext→graph helps find prob-
able candidate words in a text that form facts for
the data output. As opposed to machine translation,
where usually every word in a sentence is trans-
lated into a fluent sentence in the target language,
identifying words that probably form a fact is more
important in data-to/from-text generation.

We moreover observe that our unsupervised
models always improve on the rule-based sys-
tems even when rule is the only type of noise:
graph→text BLEU increases from 6.2/18.3 to
19.5/37.4 on VGball/WebNLG and text→graph F1
from 14.4/0.0 to 18.5/31.0.

Finally, our ablation study makes clear that there
is no best noise model for all datasets and tasks.
We therefore recommend experimenting with both
different sets of noise functions and noise injection
regimes (sampled vs. composed) for new data.

8 Conclusion

We presented the first fully unsupervised approach
to text generation from KGs and a novel ap-
proach to unsupervised semantic parsing that au-
tomatically adapts to a target KG. We showed

the effectiveness of our approach on two datasets,
WebNLG v2.1 and a new text↔graph benchmark
in the visual domain, derived from Visual Genome.
We quantitatively and qualitatively analyzed our
method on text↔graph conversion. We explored
the impact of different unsupervised objectives in
an ablation study and found that our newly in-
troduced unsupervised objective using rule-based
translations is essential for the success of unsuper-
vised learning.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Marco Damonte and Shay B. Cohen. 2019. Structural
neural encoders for AMR-to-text generation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3649–3658,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Angela Fan, Claire Gardent, Chloé Braud, and An-
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
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A Hyperparameters

We use the following settings for all our experi-
ments: learning rate of 10−4, word embeddings of
size 300, an LSTM hidden size of 250, a dropout
rate of 0.2 and a batch size of 10. Following Lam-
ple et al. (2018b), we set pblank = prepeat = 0.2,
pdrop = 0.1. For inference, we decode greedily
with a maximum number of 40 decoding steps. To
speed up unsupervised learning, we increase the
batch size to 64 when creating backtranslations.

B Model details

We train with homogeneous batches of one target
output type (text or graph) at a time. We use a
single GeForce GTX 1080 GPU for training and in-
ference. In this environment, pure training takes ap-
proximately 9 ms per instance and inference, which
also means backtranslation, takes approximately 21
ms per instance. This means that unsupervised
learning approximately needs 30 ms per instance.
WebNLG models use 10.6 million parameters, VG
models have 60.7 million parameters. The differ-
ence is due to a larger vocabulary size of 70,800
for VG compared to 8,171 for WebNLG.

C Results of all iterations on WebNLG

See Table 10 for all intermediate graph→text re-
sults of unsupervised training on WebNLG and
Table 11 for text→graph. We find similar trends as
for VG (Tables 4 and 6) except for U being a less
reliable performance indicator for text→graph in
the sampled noise setting.

sampled noise composed noise

# U V100 val U V100 val

1 91.7 12.8 13.0 23.0 15.9 15.5
2 94.0 14.7 15.8 53.2 22.2 20.7
3 85.2 25.5 26.0 71.0 23.2 22.8
4 65.9 27.7 28.8 75.2 25.3 26.2
5 65.5 31.4 30.7 69.2 25.9 27.2
6 58.1 31.5 31.0 71.5 27.6 27.7
7 48.0 31.3 32.3 79.2 29.0 27.7
8 48.3 32.8 33.4 52.5 28.1 27.5
9 37.5 33.2 34.0 57.1 30.5 30.0

10 42.1 32.8 33.4 52.4 30.6 29.9
11 38.7 34.7 34.8 59.9 32.0 31.6
12 38.7 36.4 36.2 42.1 30.4 30.8
13 39.3 33.5 35.1 50.0 30.7 30.7
14 40.5 36.9 36.6 46.7 30.9 30.7
15 41.8 36.5 37.5 48.2 31.1 30.3
16 43.2 36.9 38.0 43.7 30.3 29.6
17 39.1 35.6 36.6 43.1 29.0 29.7
18 38.5 37.5 38.3 31.1 29.7 29.8
19 38.8 37.8 38.4 39.5 29.0 29.8
20 37.5 37.2 38.6 36.2 31.3 29.8
21 36.4 36.8 38.4 35.2 30.0 30.8
22 44.8 36.3 39.7 37.6 32.4 30.7
23 40.8 35.8 38.2 39.6 31.4 30.3
24 35.8 39.2 39.6 39.6 32.4 30.3
25 40.6 38.5 39.5 37.0 33.2 30.9
26 36.8 38.9 40.3 41.3 32.3 30.2
27 44.1 39.7 40.6 37.3 33.0 30.4
28 39.3 36.9 38.9 39.0 34.7 30.8
29 36.1 37.6 38.6 41.5 31.0 30.6
30 38.7 40.7 39.1 42.9 30.6 30.0

Table 10: BLEU scores on WebNLG for our unsuper-
vised models evaluated for graph→text at different it-
erations. U is calculated on all unlabeled data used for
training. V100 is a 100-size random sample from val.
All results are computed with scripts from (Lin et al.,
2018).
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sampled noise composed noise

# U V100 val U V100 val

1 69.4 0.0 0.0 0.0 0.0 0.0
2 64.0 0.0 0.1 16.2 1.2 1.6
3 35.6 0.9 0.3 7.5 3.3 3.0
4 47.8 2.6 2.3 37.5 5.5 5.5
5 39.2 5.7 3.4 35.3 7.0 6.6
6 39.2 6.2 5.6 44.9 9.7 8.0
7 45.8 9.8 7.9 58.3 8.0 10.3
8 50.0 12.6 10.0 51.1 14.0 12.8
9 54.9 13.6 12.9 53.1 12.5 14.0

10 58.3 14.9 14.3 51.1 15.9 16.8
11 62.5 19.3 17.8 53.8 15.6 17.3
12 54.2 20.3 18.2 58.3 16.7 18.0
13 57.1 23.1 20.2 47.8 19.8 20.6
14 37.5 25.5 21.4 49.0 20.6 22.1
15 48.0 25.7 22.4 54.2 23.0 22.8
16 52.0 27.9 24.3 46.2 22.5 25.4
17 50.0 26.7 25.1 35.6 26.8 26.8
18 48.0 32.1 27.7 52.2 27.8 27.7
19 56.0 32.3 28.9 58.3 26.4 28.1
20 60.0 31.0 30.1 55.3 26.4 29.2
21 51.0 32.3 30.4 59.3 27.6 30.7
22 55.3 34.9 32.0 62.5 31.7 32.0
23 44.9 34.3 32.7 54.9 34.0 32.6
24 58.8 38.4 33.7 61.2 31.5 32.4
25 46.8 39.6 34.1 58.3 33.3 33.1
26 53.8 40.6 36.3 54.2 34.4 32.5
27 62.5 41.8 36.4 50.0 33.9 33.3
28 55.3 41.0 37.4 40.8 32.6 33.7
29 56.0 40.7 37.0 58.8 29.5 33.7
30 59.6 41.9 38.5 53.8 31.6 33.4

Table 11: F1 scores on WebNLG for our unsupervised
models evaluated for text→graph at different iterations.
U is calculated on all unlabeled data used for training.
V100 is a 100-size random sample from val.





7 Conclusion

In this thesis, we presented advances in the area of artificial intelligence, in particular, in
the tasks of scene graph classification through modeling and utilization of commonsense
knowledge. In the following, we summarize our primary contributions and outline
promising future research directions.

• In Chapter 2, we introduced image-grounded symbol representations called Schemata.
We proposed a deep learning-based architecture that could directly learn symbol
representations from very few images using a self-supervised backbone. We showed
that top-down injection of schema representations to images during test time could
largely improve scene graph classification. Furthermore, this framework enabled
us to design a novel approach for fine-tuning the perception pipeline from external
knowledge graphs instead of annotated images. We showed that in this way, we
could achieve similar accuracy in predicate classification, using 1% of the annotated
images, while obtaining competitive results in object classification and scene graph
classification.

• In Chapter 3, we proposed a transformer-based architecture that could exploit the
relational knowledge in texts and improve the scene graph classification. We used
a pre-trained T5 model that could convert any unstructured text to structured
knowledge graphs. We then mapped the extracted knowledge to pre-trained class
prototypes (schemata) and fine-tuned a graph transformer module in our perception
pipeline. We showed that this gives us 8x better scene graph classification, 3x better
object classification, and 1.5x better predicate classification compared to supervised
baselines with 1% of the annotated images.

• In Chapter 4, we argued that current methods for visual relation detection cannot
distinguish between some relations given the lack of 3D information. Therefore,
we created a dataset, VG-Depth, consisting of the predicted depth maps for more
than 60k images from Visual Genome [Krishna et al., 2017]. We introduced a
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convolutional neural network-based fusion method that, for the first time, utilizes
both the RGB and Depth images to solve the visual relation detection task. Through
extensive experiments using different features, we showed that using depth maps
in visual relation detection significantly improves state-of-the-art results in this
domain.

• In Chapter 5, we proposed a biologically plausible, computational cognitive model
that captures the connection between perception, semantic memory, and episodic
memory. To evaluate our model in a scene understanding scenario, we performed
experiments on the Stanford Visual Relation Detection (VRD) dataset and showed
that semantic memories could be learned directly from perception.

• In Chapter 6, we show that there is no need for parallel text-graph data to train
models for the tasks of text-to-graph and graph-to-text. Instead, we proposed an
unsupervised architecture inspired by back-translation. We showed that our models
outperform strong baselines for both tasks on WebNLG and our manually created
Visual Genome-based dataset without any manual adaptation between datasets.

In summary, we made contributions towards improving scene understanding using
top-down utilization of commonsense, either in the form of structured (Chapter 2) or
unstructured (Chapter 3, Chapter 6) visual-relational knowledge, or 3D (Chapter 4)
knowledge. We showed the biological and cognitive plausibility of our approaches (Chap-
ter 5).

Our publications and openly available code repositories make us confident that these
research directions will be successfully pursued in the future. In particular, in the future,
it will be interesting to explore further the capabilities of large visual language models in
modeling, utilizing, and manipulating structured knowledge as well as extending to tasks
such as visual reasoning and visual question answering.
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