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Summary 
Stress-related disorders have complex etiologies and high incidences, with 

mood disorders expected to become the leading cause of disability in the coming 
years. The mechanisms leading to resilience or susceptibility are not well 
understood and involve both genetic and environmental aspects, especially 
exposure to stress and adversity, integrated in the form of epigenetic changes 
such as DNA methylation or histone modification. In recent years, next generation 
sequencing (NGS) has become a powerful tool for epigenetic profiling. This thesis 
aims to improve on existing, as well as designing new NGS methods with 
increased sensitivity and accuracy for improved detection of small epigenetic 
changes even in composite tissues such as blood. We apply these methods to 
study DNA methylation changes in the context of stress by genotype interaction 
within the FKBP5 gene locus. 

In the scope of minimizing the bias and maximizing the sensitivity of NGS 
technology, the first part of this work represents an in-depth characterization and 
reduction of GC bias on the SOLiD sequencers relative to the currently dominant 
Illumina sequencing technology.  

Subsequently, we present a new method, termed HAM-TBS, which enables 
highly sensitive assessment of methylation levels of a target set of CpG sites in 
studies with cohort-level sample sizes. Using HAM-TBS, we can tailor the set of 
CpGs to fit the biological question at hand. To our knowledge, this is the most 
sensitive method to detect methylation levels in NGS data to date allowing us to 
resolve small changes. With it, we supply a fully tested panel of amplicons 
targeting selected CpGs in functionally relevant regions within the FKBP5 locus 
including glucocorticoid receptor elements, CTCF binding sites, topologically 
associating domain boundaries and the transcription start site.   

Finally, we apply HAM-TBS using the established amplicon panel to assess 
dynamic methylation changes in the FKBP5 gene locus following a stress 
challenge. We expose a cohort of healthy individuals to dexamethasone (DEX), a 
synthetic glucocorticoid activating the stress reactive hypothalamic-pituitary-
adrenal axis. We found dynamic and lasting methylation changes in blood as well 
as a genotype-dependent response following DEX exposure.  

This work demonstrates the potential of NGS technologies to aid in 
improving our understanding of epigenetics in the context of the stress response 
system.  
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Introduction 

Epigenetics   
The human genome comprises roughly 3 billion base pairs of 

deoxyribonucleic acid (DNA) harboring estimated 30.000 genes forming an 
average of 3 proteins each (“NIH National Human Genome Research Institute,” 
n.d.; Piovesan et al., 2019). Almost every cell in our bodies is equipped with the 
same genetic blueprint, yet presents with vastly different morphologies and 
functions. This is enabled by tailored differences in gene activity and expression 
modulated by epigenetic mechanisms. The term “epigenetics” was first 
introduced in the 1940s by developmental biologist C. H. Waddington as “the  
branch of  biology  which  studies  the  causal interactions  between  genes  and  
their products,  which  bring  the  phenotype into  being”  (Goldberg, Allis, & 
Bernstein, 2007; Waddington, 2012).  

Epigenetic modifications to the DNA can influence gene expression and 
the phenotype without altering the underlying genetic sequence. Such dynamic 
epigenetic regulatory mechanisms involve, among others, DNA methylation and 
post-translational modification of histones by e.g. methylation or acetylation. 
However, it important to note that multiple epigenetic mechanisms can often act 
simultaneously in a coordinated fashion (Moore, Le, & Fan, 2013). 

Histone modification  

In the cell, DNA is packaged in chromosomes made of chromatin (Figure 
1). Chromatin refers to the complex of nucleosomal subunits, each consisting of 
a histone octamer core with 147bp of DNA wrapped around it (Luger, Mäder, 
Richmond, Sargent, & Richmond, 1997). A histone octamer consists of 4 different 
histone proteins, namely H2A, H2B, H3 and H4 each represented by 2 copies. 
Chromatin can be more or less condensed with the extreme states named 
euchromatin (open) and heterochromatin (closed). By regulating access to the 
packaged DNA the present state of chromatin can repress or permit the 
transcription of the respective genes. Hence, histone modification provides a 
mechanism of regulation that does not require a change to the underlying 
sequence. Post-translational histone modifications occur at specific amino acid 
residues on the N-terminal tails and are often transient and reversible. They 
comprise – among others – acetylation and methylation primarily appearing on 
specific lysins of H3 and H4 (Renthal & Nestler, 2008). Most of the specific 
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modifications are either associated with open (active transcription) or closed 
(silenced transcription) chromatin (Kouzarides, 2007). Of note, while histone 
acetylation is usually connected to open chromatin, the majority of histone 
methylation marks are associated with repression of transcription. The enzymatic 
machinery to modify specific marks is provided by histone lysine deacetylases 
(HDAC and sirtuines), acetyltransferases,  methyltransferases and lastly 
demethylases.  

 

 
 
Figure 1 – Visualization of genomic organizational makeup. Created with 
BioRender.com 

DNA methylation 

DNA methylation is the covalent addition of a methyl group to a cytosine 
nucleotide referred to as 5-methylcytosine (5mC) (Figure 1). This is a chemically 
stable mark occurring almost exclusively in cytosine-guanine (CpG) context 
(Lister et al., 2009) with 70-80% in methylated state (Bird, 2002). Roughly 28 
million CpG sites are present in the human genome (Babenko, Chadaeva, & Orlov, 
2017) mostly randomly distributed with less than 10% located in clusters of high 
CpG density called CpG islands (Smith & Meissner, 2013). They are associated 
with approximately 70% of proximal promoters and predominantly uniformly 
unmethylated facilitating transcription. Moreover, even CpG islands not located in 
proximity to known promotors are associated with transcriptional activation. 
Silencing their strong promotor activity requires dense CpG methylation or 
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polycomb recruitment (Deaton & Bird, 2011). However, methylation levels are 
higher within the gene body and in intergenic regions outside of CpG islands. 

5mC has a long been exclusively associated with transcriptional repression 
due to its role in processes like genomic imprinting and X chromosome 
inactivation in females (Bird, 2002; Edwards, Yarychkivska, Boulard, & Bestor, 
2017). The inhibitory function of DNA methylation on gene expression is facilitated 
by two main mechanisms. First, DNA methylation can simply obstruct sequence 
recognition and binding of transcription factors to the DNA and therefore hinder 
their enhancer activity. And second, 5mC is recognized by both methyl-CpG-
binding proteins that draw on co-repressor molecules like histone deacetylases 
to modify the surrounding chromatin state as well as some zinc-finger domain 
proteins binding methylated CpG sites and thereby silencing transcription (Klose 
& Bird, 2006; Moore et al., 2013). However, in some instances the opposite, a 
transcription enhancing effect of DNA methylation, has also been observed and 
emphasizes the complex nature of epigenetic modifications (Ball et al., 2009; 
Harris et al., 2018).  

 

Epigenetic regulation and the brain   

 Epigenetics enable cell type diversity, however the importance of a plastic 
epigenome extends far beyond that. Throughout life, we are exposed to a plethora 
of environmental factors. Among these are our lifestyle choices, exercise, diet, 
and socioeconomic status. A lifetime of positive, negative or even traumatic 
experiences leave a footprint on the epigenome. Epigenetic mechanisms supply 
a tool to our organism to adapt by dynamically encoding and integrating 
information from these environmental exposures to facilitate changes in gene 
expression.  

This is particularly important in the context of the brain. Neuroplasticity or 
brain plasticity refers to the brain's ability to change and adapt in response to 
changes in the environment or the body. It can form new neural pathways, modify 
existing connections, and even reorganize its structure. Brain plasticity is at its 
highest during childhood, when the brain is still developing, and decreases with 
age. However, the brain remains capable of plasticity throughout adulthood, 
which is essential for normal functioning including learning and memory as well 
as the regulation of mood, emotion, and behavior (O’Donnell & Meaney, 2020). 
Much of this plasticity is made possible by epigenetics.  
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A further complication is the interaction of epigenetic processes and 
genomic status. This is enabled by single nucleotide polymorphisms (SNPs) 
where the substitution of a single nucleotide is giving rise to more than one 
phenotype. Depending on an individual’s genotype, the possibility for epigenetic 
encoding following an environmental cue may differ as e.g. CpG sites may be 
disrupted or transcription factor binding sites modified. Therefore, the same 
environmental cue may have a different epigenetic manifestation and have 
different consequences for gene regulation. This interplay between different 
genotypes affecting gene expression and the environment is termed gene by 
environment (GxE) interaction.  

Environmental factors such as exposure to stressful events early in life 
interact with genetic factors to shape the risk for developing stress-related 
psychiatric disorders (Caspi, Hariri, Holmes, Uher, & Moffitt, 2010; Caspi & Moffitt, 
2006; Heim et al., 2009; Xie et al., 2010). However, it is not well understood how 
such differences in the psychiatric risk profile are reflected in individual 
physiology. A relevant point of focus is the hypothalamic–pituitary–adrenal (HPA) 
axis - an essential part of the body’s neuroendocrine response to stress. 

Hypothalamic–pituitary–adrenal axis 

Our dynamic environments 
create the need for continuous 
adaptation throughout life. 
Environmental perturbations may be 
thought of as stressors and the 
reaction to them as the organism’s 
stress response – a series of 
biological reactions with the aim to 
restore homeostasis.  

To this end, our bodies draw 
on a set of complex physical, 
emotional and behavioral 
mechanisms.  At the core of the 
stress response system sits the 
hypothalamic–pituitary–adrenal axis, a neuroendocrine system known as the HPA 
axis (Figure 2).  

Figure 2 - Scematic depiction of the 
HPA axis.   Created with BioRender.com 
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In brief, the HPA axis is a physiological cascade with broad involvement in  
e.g. circadian rhythm, exercise and stress. It is activated when neurons of the 
paraventricular nucleus (PVN) of the hypothalamus secrete the neuropeptide 
corticotrophin releasing factor (CRF). This stimulates the anterior pituitary to 
release adrenocorticotropic hormones (ACTH) reaching the adrenal cortex via the 
blood stream. The resulting secretion of glucocorticoids (cortisol in humans and 
corticosterone in rodents) provides negative feedback to the HPA axis via both 
the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) expressed 
in the brain and peripheral tissues (Dick & Provencal, 2018). For example, neurons 
in the hippocampal formation can act on CRF-positive cells in the PVN to reduce 
overall HPA tone (Cole, Montgomery, Bale, & Thompson, 2022). 

The negative feedback property of the HPA axis via the GR is crucial for a 
healthy stress response. The underlying molecular mechanism (Figure 3) involves, 
among others, FKBP51 encoded by the FKBP5 gene. It is a co-chaperone that 
binds to the GR complex, inhibiting GR translocation from the cytoplasm to the 
nucleus. In the presence of cortisol, FKBP51 is exchanged for FKBP52, and 
together with other co-chaperones facilitates GR translocation. This enables GR 
to directly repress or enhance transcription, modulate transcription by interaction 
with other transcription factors and importantly, inhibit the HPA axis (Zannas, 
Wiechmann, Gassen, & Binder, 2016). FKBP5 expression is regulated by GR 
directly, forming an ultra-short negative feedback loop in addition to changes in 
FKBP51 levels impacting several other molecular pathways (e.g., NF-kB signaling 
and autophagy).  

In the context of the stress-response system, GxE interactions have been 
identified for some key players of the HPA axis as CRH and CRHR1, but foremost 
and importantly, the FKBP5 gene (Binder et al., 2008; Buttenschøn et al., 2017; 
Gerritsen et al., 2017; Z. Liu et al., 2013; Zimmermann et al., 2011). 
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Figure 3 - Ultrashort negative feedback loop. FKBP51 bound to the glucocorticoid 
receptor complex reduces glucocorticoid binding to the GR and inhibits translocation 
to the nucleus. Upon glucocorticoid binding FKBP51 is exchanged for FKBP52 
(Misiak et al., 2020)facilitating translocation. In the nucleus, among other functions, 
GR acts as transcription factor activating the transcription of FKBP5. Higher amounts 
of FKBP5 are translated and can occupy the glucocorticoid complex. Translocation 
is delayed. 
Created with BioRender.com  
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FKBP5 

FK506-binding proteins (FKBPs) are a family of immunophilins found in 
many organisms, in humans, at least 15 FKBPs have been identified thus far 
(Rulten et al., 2006; Somarelli, Lee, Skolnick, & Herrera, 2008). Among them is 
FKBP51, encoded by the FKBP5 gene, an approximately 180 kilobase pair long 
region on chromosome 6 with a total of 13 exons. It is expressed in many tissues 
of the human body with moderate expression levels across brain regions (Figure 
). While FKBP5 plays a role in association with some somatic diseases as e.g. 
cancer (Romano et al., 2013), here, the focus will be on the involvement in the 
field of psychiatry. 

 

 
Figure 4 - GTEX (release V8) FKBP5 expression data across tissues. Brain tissue 
highlight in yellow.  
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FKBP5 regulation 
FKBP5 expression levels are tightly coupled to glucocorticoid signaling 

and exposure in humans.  
Firstly, FKBP5 is directly regulated by the GR in its capacity as transcription 

factor via glucocorticoid response elements (GREs). These elements occur 
genome-wide, are 15 base pairs long and allow for direct binding of homo- or 
heterodimers of GR to the DNA (Mifsud & Reul, 2016). FKBP5 harbors GREs 
located both in distal intronic regions (2, 5 and 7) as well as upstream of the 
promotor (Paakinaho, Makkonen, Jääskeläinen, & Palvimo, 2010). Upon GR 
binding to the GREs, the DNA forms a three-dimensional loop structure with the 
core promotor site and directly influences FKBP5 transcription. The interplay of 
FKBP5/FKBP51 and the GR is bi-directional and forms a ultra-short negative 
feedback loop. In turn to GR promoting the expression of FKBP5, FKBP51 
presence and binding to the GR complex inhibits its translocation to the nucleus. 
This mechanism facilitates the termination of the stress response and therefore is 
crucial to the regulation of the HPA axis. 

In addition, a haplotype comprising up to 18 SNPs spans the entire FKBP5 
locus. It is often tagged by the functional SNP rs1360780 located close to a GRE 
in intron 2 of the gene body. This variant has been investigated in several studies 
and found to be associated with elevated FKBP5 expression levels, higher risk for 
stress-related psychiatric disorders and faster response to antidepressant 
treatment (Binder et al., 2008, 2004; Zannas et al., 2016). The SNP presents with 
2 alleles, the T and the C allele with 35% of people carrying the risk associated T 
allele (Siva, 2008). In deciphering the molecular mechanism, Klengel and 
colleagues showed that the regulatory three-dimensional loop structure is 
influenced by this polymorphism with the T allele better supporting a loop 
structure connecting the GRE and the TSS and facilitating the expression of 
FKBP5 as opposed to the C allele.  

Lastly, a SNP can moderate the occurrence of epigenetic marks in its 
proximity. This has been shown for rs1360780 with regard to the interaction with 
early life stress on adult PTSD (Binder et al., 2008; Klengel et al., 2013). 

FKBP5 in psychopathology 
Studies consistently indicate a connection between FKBP5 genotype and 
aberrant expression levels in human stress-related psychopathology (Binder et 
al., 2008, 2004; Koenen et al., 2005; Matosin, Halldorsdottir, & Binder, 2018). In 
addition, preclinical work in mice has associated FKBP5 expression  with HPA 
reactivity (Häusl et al., 2021), stress coping behavior, and anxiety-like behavior, 
especially in the amygdala and hippocampus (Zannas et al., 2016). However, 
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even in healthy individuals FKBP5 levels are not constant. Expression is regulated 
during development and consistently increases throughout life (Blair et al., 2013; 
Matosin et al., 2021; Weickert, Webster, Boerrigter, & Sinclair, 2016). Altered 
expression trajectories across the lifespan are not well understood and it is 
conceivable that multiple genetic and epigenetic factors accumulate in some 
individuals. Given the involvement of FKBP5 in HPA axis regulation, the gene is a 
likely medium for converting adverse life events into increased susceptibility to 
stress-related disorders later on. In fact, studies on early life stress have shown 
FKBP5 haplotype-dependent (rs1360780 functional polymorphism) interactions of 
ELS on adult PTSD, suicide, and major depressive disorder (Appel et al., 2011; 
Binder et al., 2008; Koenen et al., 2005; Roy, Gorodetsky, Yuan, Goldman, & 
Enoch, 2010). The presence of a vulnerable phase suggest an epigenetic 
regulatory mechanism which (Klengel et al., 2013) interrogated. In line with 
studies showing long-lasting DNA methylation changes following early life stress 
(McGowan et al., 2009; Murgatroyd et al., 2009), childhood trauma-induced 
demethylation was found in one GRE of FKBP5 specific to carriers of the risk allele 
regarding rs1360780.  

This body of work leaves many open questions regarding the role of 
dynamic methylation at the FKBP5 gene and its dependence on haplotype and 
stress. 
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Next generation sequencing 

The evolution of NGS 

The structure of deoxyribonucleic acid (DNA) was famously discovered in 
the 1950’s, less than 70 years ago, by the physical chemist Rosalind Franklin and 
the molecular biologists Watson and Crick (Watson & Crick, 1953). This lay 
grounds for a burst of technological developments enabling great advancements 
in the understanding of our genetic makeup and the complex involvement of 
genetics in health and disease.  

The act of reading the genetic code, the sequence of bases it is made up 
of, A (adenine), C (cytosine), G (guanine) and T (thymine), is known as 
sequencing. First methods were introduced in the 1970’s (Maxam & Gilbert, 1977; 
Sanger et al., 1977) incorporating different approaches allowing for single base 
pair (bp) resolution of 100-1000 bp sequences by displaying the information via 
gel electrophoresis. Among these methods is Sanger sequencing, a rather 
laborious method that led to the first fully sequenced genome belonging to a 
bacteriophage at a length of ~5000 nucleotides. The next big step toward higher 
scalability and the sequencing of larger genomes was taken with the development 
of the shotgun sequencing approach where a longer sequence is fragmented, 
sequenced, and reconstructed from the resulting reads. The combination of 
Sanger and shotgun-sequencing was sufficient to initiate and carry out the next 
big milestone - the Human Genome Project. The undertaking started in 1990 as 
an international research project with the aim of assembling the full sequence of 
the human genome within 15 years funded with 3 billion dollars. The project was 
completed after 13 years, delivering 3.1 giga bp of assembled genomic 
sequence. Since then, a significant amount of development has gone into 
sequencing technology, for instance enabling the 1000 genomes project (Siva, 
2008) that was started in 2008. The aim was to build an extensive catalogue of 
genetic variation by sequencing over 1000 genomes from donors around the 
world. By then, the throughput had increased and cost per genome had dropped 
to approximately 100.000 dollars (“NIH National Human Genome Research 
Institute,” n.d.). Today, it is possible to sequence a complete genome at under 
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1.000 dollars, opening the door to a completely different scale of data generation 
and knowledge discovery. 

The technology in NGS 

To date, several approaches have been developed to perform sequencing. 
Two aspects are particularly important to measure and compare by. First, the read 
length that can be sequenced. The majority of NGS data produced today still uses 
the shotgun sequencing technique and has a rather short read length of around 
100 - 300 bp. While for many applications this is sufficient, it can be of great 
advantage to produce longer reads especially in regard to e.g. novel genome 
assembly or gene isoform detection. Second, the production of multiple 
sequences in parallel, increasing sequencing depth. While for smaller genomes, 
e.g. microbial genomes, lower read numbers can be sufficient, when working with 
genomes of the size of the human or mouse genome at 3.1 and 2.7 giga bp 
respectively, a higher throughput may be needed in order to achieve sufficient 
coverage. Both aspects of length and throughput are still hard to combine and 
machines are typically forced to specialize in one over the other. While long-read 
approaches like nanopore sequencing by Oxford Nanopore Technologies or 
Single-Molecule Real-Time Sequencing by Pacific Biosciences do exist and may 
play the bigger role in the future, the largest research market share today is held 
by short-read sequencing technologies, which are also the methods used in the 
work described in the following.  

 

Illumina sequencing  
Over time, Illumina established themselves as the leader in the field of 

sequencing technology. This is in part attributed to the fact that their machines 
produce the highest yield, meaning the most bp and reads in the shortest time, 
which led to the high number of sequencers in circulation. For instance, their 
newest machine is able to produce up to 3000 Gb in ~44 hours. This is more than 
80 times the amount of data produced by the Human Genome Project over a time 
period of 13 years. This level of throughput can be achieved by high parallelization 
as Illumina machines produce millions to billions of reads simultaneously. Briefly, 
there are some important steps in the process of constructing an Illumina 
sequencing library and ultimately sequencing it on one of their machines (Figure 
5). First, still following the principle of shotgun sequencing, Illumina requires the 
input material of interest to be provided in small fragments usually around 200-
300 bp. Second, each fragment is equipped with adapter sequences providing 
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compatibility with the Illumina technology for sequencing. Parallelization is 
achieved by binding millions of fragments on a solid surface called a flow cell. 
Here, the adapter sequences find complementary oligos to bind to on the surface. 
Next, the bridge polymerase chain reaction (PCR) is used to locally amplify each 
fragment to form small clusters. This is used to enhance the fluorescent signal 
each fragment is emitting during the subsequent sequencing. Illumina uses a 
sequencing-by-synthesis approach, performing a PCR incorporating nucleotides 
with base-specific fluorescent markers and subsequent imaging during each 
cycle. The sequence of each read can be deciphered by the colors emitted by 
the clusters for all cluster / fragments in parallel.   
 

Sequencing by Oligonucleotide Ligation and Detection (SOLiD) sequencing 
The main competitor to Illumina’s high-throughput short-read sequencing 

technologies was developed by Life Technologies in 2006 and eventually 
discontinued in 2016. The SOLiD 5500xl sequencer was able to produce up to 45 
Gb of short-reads a day, and has contributed a substantial amount of data to 
science since its development. The workflows of SOLiD and Illumina sequencing 
differ in some noteworthy points (Figure 5), though both approaches achieve 
parallelization by incorporation of the shotgun sequencing and subsequently 
adding adapter sequences for amplification and machine compatibility. 
Complementary to the bridge PCR, the SOLiD system implements a PCR 
performed in an emulsion where each droplet ideally contains one bead and one 
fragment which is then amplified on the bead surface. These beads are then 
transferred to a flow cell and ready for sequencing. Hence, each bead 
corresponds to one Illumina generated cluster. SOLiD sequencing relies on 
sequencing-by-ligation, with a 2-nucleotide encoding system.  

It is of high value to understand the effects the separate steps have on the 
data generation as well as the individual strengths and weaknesses of the 
approaches. This aids to advance the development of sequencing technology as 
well as to choose the best suited environment to run an experiment and 
interpreting the generated data in this regard. While some work is published on 
the assessment of specific sequencing machines and their performance, this is 
usually restricted to Illumina. To aid in this task, in one arm of this thesis the 
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performance of the SOLiD is evaluated and compared to the Illumina sequencing 
approach with a focus on the GC bias.  

 

 
Figure 2 - Side by side depiction of amplification step for both the Illumina and 
Life Technologies sequencing approaches. Created with BioRender.com 

 

The applications of NGS 

NGS is a versatile and scalable set of methods with countless applications. 
It is rapidly developing and can be flexibly tailored to a wide variety of scientific 
questions. This is owed to the fact that practically any sufficiently numbered set 
of short fragments of DNA or ribonucleic acid (RNA) can be turned into a library 
ready for sequencing. In consequence, among numerous other things, NGS can 
be used to interrogate the expression of genes (RNA sequencing) as much as 
binding sites of proteins to DNA (chromatin immunoprecipitation (ChIP) 
sequencing), methylation states (methylated DNA immunoprecipitation 
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sequencing, bisulfite sequencing), microRNA expression, whole genome 
resequencing and targeted amplicon-based approaches. 

There are several potential ways to structure or categorize applications. For 
instance, the vast majority can be divided in either count-based or sequence-
based. Count-based applications describe approaches where the information is 
contained on a per-read basis as e.g. ChIP sequencing or RNA sequencing. More 
specifically, e.g. in RNA sequencing, reads originate from the messenger RNA of 
genes and expression levels are quantified by analyzing the number of reads 
produced by each detected gene. Sequencing depth for this kind of application 
is counted in the number of reads produced by the sequencer. In contrast, 
sequence-based applications are focused on the actual base content and can 
benefit from longer reads as each individual base may hold information. 
Sequencing depth can be measured in bases for these applications. Broadly 
used applications of the latter type are genome resequencing, exome 
resequencing, genome assembly or whole genome bisulfite sequencing (WGBS). 
In the context of this thesis, some  applications will be discussed in more detail. 

ChIP sequencing 
Briefly, this is a method to determine the interaction sites between proteins 

and DNA, e.g. the binding sites of a transcription factor or the location or presence 
of a specific histone modification. In most but not all cases, these protein-DNA 
interactions are first preserved by fixation with formaldehyde. While at this point 
part of the input sample is commonly kept as the input control, the 
immunoprecipitation is performed with a specific antibody targeting a protein of 
interest and isolating the attached DNA to it. This DNA and the input control are 
eventually converted into a DNA library and sequenced. Lastly, the sequencing 
reads can be mapped back to the reference genome and by comparison of the 
enriched sites of IP sample over the input control give indication on the genomic 
position that the protein of interest was bound to. Noteworthy but in the context of 
this thesis not discussed in more detail, antibodies exist that can recognize DNA 
methylation. An IP performed in this way is a special case of ChIP sequencing 
termed methylated DNA immunoprecipitation (MeDIP) sequencing and allows to 
estimate genome wide methylation profiles. 

Bisulfite sequencing 
There are multiple methods to assess methylation levels both genome wide 

and/or at single base resolution. A long-standing low throughput approach is 
pyrosequencing, allowing for quantification of any CpG site of interest. However, 
the current genome-wide gold standard is the Illumina Infinium MethylationEPIC 
array (EPIC array) which is able to quantify the methylation of ~850,000 CpGs 
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(Zhou, Laird, & Shen, 2017) of the roughly 28 million CpGs present in the human 
genome (Lövkvist, Dodd, Sneppen, & Haerter, 2016). While the EPIC array-based 
method has high accuracy, it is restricted by a preselected set of target CpG sites 
that may not be sufficient depending on the scientific question at hand. NGS offers 
alternative approaches to measure methylation profiles and CpGs genome wide 
or of a individually selected set via amplicon approaches.  

To measure methylation via the EPIC array and NGS alike, when offering 
single base resolution an initial conversion step is used. Briefly, the DNA is treated 
with bisulfite, leading to a conversion of cytosines to uracil in unmethylated state 
– methylated cytosines (both 5mC and 5hmC) are protected from this conversion. 
The EPIC array provides two alternative oligo probes depending on the 
methylation state for each CpG site and extracts the ratio of binding by emitted 
light signal reflecting the percentage of methylation. In NGS, the process is 
significantly different. A converted uracil will be read as a thymine and when 
compared to the reference genome will present as a mutation in contrast to the 
known cytosine. Hence, the methylation ratio is inferred by comparing the number 
of mutated thymines versus cytosines at the location of the CpG. Therefore, the 
readout in NGS is not directly a ratio it needs to be calculated from the individual 
reads. Importantly, the number of reads underlying the quantification of each site 
influences the resolution and accuracy at which methylation can be measured. A 
site that was covered by e.g. 4 reads indicating methylated and 1 read indicating 
unmethylated state would result in a readout of 80% methylation level but the 
resolution by only 5 reads is very low. A site quantified by e.g. 1000 reads showing 
80% methylation has to be evaluated accordingly as resolution and accuracy here 
are much higher. In short, the readout in NGS consist of both the methylation ratio 
as well as the coverage that was used to infer it. This aspect is regarded during 
the processing and analysis of bisulfite converted NGS data.   

The choice of technology largely depends on purpose and cost. While 
WGBS at high coverage would be ideal and useful in a broad variety of studies, it 
is remains cost intensive – even more so when applied to large sample sizes – 
and therefore rarely realizable. For instance, the cost of running an EPIC array 
versus a shallow WGBS at an average coverage of 10 is still more than 3 fold 
(price can vary per lab / conditions). Currently, WGBS approaches can often 
require coverages around 5x to 15x or higher depending on the aim (Ziller, 
Hansen, Meissner, & Aryee, 2015). To increase robustness of the methylation 
assessment, in WGBS the differential analysis is often spanned across regions 
classified as differentially methylated regions (DMRs) at the expense of single 
CpG resolution. This method can detect larger changes in methylation it lacks the 
resolution to reliably detect minor changes of methylation in the range of only few 
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percent (~1-5%). Importantly, this can be a crucial aspect when working with cell 
type specific effects measured in bulk tissue. This is of particular relevance to 
psychiatric research where, due to the limitation in access to brain tissue, blood 
is often used as proxy.  

Another recent advancement in the analysis of cell type specific effects are 
single-cell sequencing technologies. Most commonly they enable quantification 
of gene expression in single cells, but ATAC sequencing and DNA methylation 
sequencing are also promising applications. While this new technology is 
tremendously valuable and key to numerous successful approaches requiring cell 
type specificity (H. Liu et al., 2021), it has clear limitations in scalability (Nichols 
et al., 2022). Firstly, each sample can comprise thousands of cells and data 
acquisition needs to match this demand as each cell usually requires thousands 
reads. Hence, this method is very expensive per sample with respect to single-
cell library preparation and sequencing demands, rendering a study design using 
cohort data largely impractical. In addition, these methods start from very little 
input material and rely on excessive amplification. This leads to rather low 
sensitivity of the per cell data, e.g. in RNA sequencing lowly expressed genes will 
not be detectable below a certain expression level. However, power is increased 
by the number of cells available per cell type which is advantageous when 
working with common cell types.  In single-cell DNA methylation sequencing 
single CpG resolution is possible. However, since each cell only has 3 states per 
CpG site (both alleles methylated, both alleles unmethylated, or one allele 
methylated) sensitivity and number of covered CpGs depends even more on the 
number of cells per cell type. Hence, regional aggregation of the data is common. 

 Overall, amplicon approaches are indispensable for assessing CpGs at 
high resolution and in contexts not covered by the EPIC array. These approaches 
restrict data generation to a set of selected target regions <500 bp in size, hence, 
making it both feasible and affordable to sequence these regions at very high 
coverage (> 1000 reads per CpG) in larger sample sizes and allow for an in-depth 
analysis resolving methylation changes of only small magnitude.  

 Only a handful of approaches exist today that aid in the task to measure 
methylation in sites specifically selected to match the biological question at hand 
with high sensitivity (Bernstein, Kameswaran, Lay, Sheaffer, & Kaestner, 2015; 
Masser, Berg, & Freeman, 2013; Masser, Stanford, & Freeman, 2015). All perform 
bisulfite conversion, amplify the target regions via PCR followed by an NGS library 
preparation. However, several steps differ and can affect accuracy, e.g. the 
bisulfite conversion, throughput and the specifics of the implemented library 
preparation methods. In this thesis, we present a cost-effective, medium to high- 
throughput target approach optimized to achieve – to our knowledge - the highest 
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accuracy to measure methylation levels in NGS data available to date, termed 
HAM-TBS. With this we provide a valuable tool to be able to decipher methylation 
changes as low as 1%, a resolution necessary when resolving cell type specific 
effects from complex tissues like blood. In addition, we provides a highly useful 
and thoroughly tested amplicon panel targeting key regions within the FKBP5 
gene. This gene is of high interest in field of psychiatric research today.  
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ABSTRACT
Different types of sequencing biases have been described and subsequently improved for a
variety of sequencing systems, mostly focusing on the widely used Illumina systems. Similar
studies are missing for the SOLiD 5500xl system, a sequencer which produced many data sets
available to researchers today. Describing and understanding the bias is important to accurately
interpret and integrate these published data in various ongoing research projects. We report a
particularly strong GC bias for this sequencing system when analyzing a defined gDNA mix of 5
microbes with a wide range of different GC contents (20–72%) when comparing to the
expected distribution and Illumina MiSeq data from the same DNA pool. Since we observed this
bias already under PCR-free conditions, changing the PCR conditions during library preparation
– a common strategy to handle bias in the Illumina system - was not relevant. Source of the
bias appeared to be an uneven heat distribution during the SOLiD emulsion PCR (ePCR) - for
enrichment of libraries prior loading – since ePCR in either small pouches or in 96-well plates
improved the GC bias.

Sequencing of chromatin immunoprecipitated DNA (ChIP-seq) is a common approach in
epigenetics. ChIP-seq of the mixed source histone mark H3K9ac (acetyl Histone H3 lysine 9),
typically found on promoter regions and on gene bodies, including CpG islands, performed on a
SOLiD 5500xl machine, resulted in major loss of reads at GC rich loci (GC content ! 62%), not
explained by low sequencing depth. This was improved with adaptations of the ePCR.

KEYWORDS
chromatin
immunoprecipitation (ChIP);
CpG island; emulsion
polymerase chain reaction
(ePCR); GC bias; H3K9ac;
microbial genomic DNA; next
generation sequencing
(NGS); PCR-free library
preparation; sequencing
depth; upscale PCR

Introduction

Next Generation Sequencing (NGS) techniques have
become increasingly popular methods, since they
are powerful tools for genomics and epigenomics
research.1,2 Several different NGS systems have
emerged in parallel using various approaches of
library generation and performing of the actual
sequencing procedure. Besides the currently most
popular Illumina sequencing technology, the SOLiD
System (Applied Biosystems) has been among the
most frequently used NGS platforms. Data generated
by both approaches is a highly valuable source for
meta-analyses of any type. However, the specific
weaknesses and strengths of the sequencing technique
used, have to be taken into account for meaningful
interpretation of the data.

One of the common problems of NGS techniques is
the under- or over-representation of GC or AT rich
sequences.3-5 These biases are often generated during
library preparation, mostly when libraries undergo an
upscale polymerase chain reaction (PCR), while
PCR-free libraries are believed to be sequenced with
significantly less to almost no bias.6,7 However, often
an upscale PCR cannot be avoided for many applica-
tions from single cell sequencing to ChIP-seq (sequenc-
ing of DNA obtained from chromatin immuno-
precipitation), due to low amounts of starting mate-
rial.3,8 Obviously, concerning each specific application,
the weakness of a particular NGS technology might
have important consequences on the quality of particu-
lar data sets. For example, among the most frequently
used techniques in epigenetics is genome-wide ChIP-
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Figure 1. Characterization and improvement strategy of the GC sequencing bias on SOLiD 5500xl machines. (A) Theoretical distribution
of reads (increasing GC content from left to right, visualized in a light-gray to dark-gray color gradient) overlaid with the actual (experi-
mental) number of reads in the entire microbial gDNA mixture in relation to %GC content per fragment under different ePCR conditions,
i.e., E80 ePCR pouch (dark-blue line), E20 ePCR pouch (medium-blue line), 96 well plate (contents of an E20 ePCR pouch distributed into
96 well plates, light-blue line), in comparison to an Illumina library (orange line). (B) % of shift of genomic content for the different
microbes, plotted in relation to ePCR conditions and compared with Illumina sequencing results, Plasmodium falciparum (20% GC, violet
line), Pictrophilus torridus (36% GC, light-blue line), Escherichia coli (51% GC, cyan line), Pseudomonas putida (62% GC, light-green line)
and Micrococcus luteus (70% GC, dark-green line). (C-F) GC sequencing bias for the individual microbes. Panel shows theoretical (black
lines) and experimental (colored lines) read frequencies for each of the microbes under the different sequencing conditions. (From left
to right) highest to lowest GC content: M. luteus (dark green), P. putida (light green), E. coli (cyan), P. torridus (light blue) and
P. falciparum (violet). (From top to bottom) (C) SOLiD E80 ePCR pouch (blue), (D) SOLiD E20 ePCR pouch (cyan), (E) SOLiD 96 well plate
(light blue) and (F) Illumina MiSeq (orange).
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seq of transcription factors or histone marks. Histone
modifications are present in a wide range of genomic
regions, depending on the particular modification and
on the investigated cell type.9,10 The range from point
source, via broad source to mixed source distributions
among histone marks is associated with a distribution
over a vast range of genomic elements that can be
potentially challenging for sequencing.9 Especially, for
ChIP-seq data or DNA methylation studies, quality
depends on the amount of bias introduced during
library preparation or sequencing, since both types of
marks have been reported to be associated with chal-
lenging GC rich CpG islands.11,12

So far, GC and AT biases have been well addressed
and successfully reduced for the Illumina technologies
by adapting PCR protocols, including changes to
denaturation times and ramp rates, and using opti-
mized polymerases for library amplification.3,13 In
contrast, comparable approaches are missing for the
SOLiD system. Thus, we were interested to investigate
how strong the sequencing bias in the SOLiD system
might be and to which extend this would affect ChIP-
seq data. With the idea to characterize and improve
the potential bias for the SOLiD machine and make it
more suitable for applications such as ChIP-seq, we
initially tested PCR-free library preparations for
potential GC and other biases on this system.

In the present study, we observed a very strong GC
bias in SOLiD sequencing data that exceeded previous
estimations of the tentative sequencing bias in this sys-
tem. We identified the emulsion PCR (ePCR) of the
SOLiD sequencing system as the major source of GC
bias. In response to that, we show approaches to
reduce this bias by changing the ePCR conditions
accordingly. Likewise, ChIP-seq of acetylated Histone
H3 lysine 9 (H3K9ac), a mixed source histone mark,
on a SOLiD 5500xl machine resulted in data almost
void of reads at GC rich loci (GC content higher than
62%) while these regions were well covered by an Illu-
mina sequencing system. ChIP-seq data on H3K9ac
on the SOLiD was improved by optimized ePCR con-
ditions and sufficient sequencing depth.

Results

Characterization of GC bias on the SOLiD 5500xl
system

First, we aimed to characterize and potentially
improve the sequencing bias of the SOLiD 5500xl

machine. While there are several previous studies on
how to counteract sequencing biases for the Illumina
system, i.e. mostly by adaptions to the library con-
struction protocols, no such attempts have been
reported for the SOLiD library preparation workflow.
Typically, these studies utilize mixes of small micro-
bial genomes (1.5 to 24 MB, as opposed to human
3.2 GB3,6,13). Such microbial gDNA mixes contain
microorganisms with different GC content covering
the whole spectrum of high, low and medium genomic
GC content, allowing the characterization of the full
range of bias of a protocol and its potential improve-
ment through applied modifications.

In this study, we mixed 5 microbes with genomic
GC contents of 20%, 36%, 51%, 62% and 72% that
would allow for a good characterization of the
sequencing performance. We build a PCR-free library
from this gDNA mixture using the standard protocol
and chemistry. Against the general view that the
sequencing bias in a library should be minimized in
the absence of an upscale PCR, but in line with our
hypothesis, a strong bias was already present in the
PCR-free library. Both, regions with very high AT
content and to an even stronger extent those with
high GC content were underrepresented in the
PCR-free SOLiD sequencing data (Fig. 1A–C). Com-
paring our SOLiD data to the expected GC distribu-
tion (calculated based on genomic sequence of the
pooled microbes), we observed a shift in distribution
for all microorganisms – with the strongest shifts for
organisms with high GC and high AT and moderate
to negligible shifts in organisms with moderate
GC/AT content (see Table 1). Subsequently, the exact
same microbial gDNA mixture was used to build a
PCR-free library for the Illumina sequencing system
(i.e., MiSeq) using standard Illumina reagents. Indeed,
this library had a reduced sequencing bias when com-
pared with the expected GC distribution and to the
data of the PCR-free library sequenced on the SOLiD

Table 1. Summary of shift for the different microbes and ePCR
conditions and for Illumina bridge PCR.

Microbe
GC

content
SOLiD
E80!

SOLiD
E20! SOLiD 96! Illumina

Plasmodium falciparum 20% 46% 39% 38% 21%
Picrophilus torridus 36% 2% 1% 1% 15%
Escherichia coli 51% 24% 18% 17% 16%
Pseudomonas putida 62% 66% 34% 25% 22%
Micrococcus luteus 72% 96% 86% 74% 23%

!ePCR performed in an E80 or E20 pouch or in 96 well plates.
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5500xl system (Fig. 1A, B and F). The shift for the
same gDNA mix, sequenced on the Illumina MiSeq,
was comparable low to moderate for all microbe
genomes (Table 1). Interestingly, for Picrophilus tor-
ridus (with a moderate to low GC content of 36%),
sequencing bias was significantly lower in the SOLiD
library than for the Illumina library (2% versus 15%
shift, Fig. 1A–C and F).

Since the SOLiD PCR-free library already presented
with a strong bias, attempts to improve it by changing
the upscale PCR (PCR protocol or polymerase) did
not seem useful. The data rather suggested that the
sequencing bias is largely introduced during the
SOLiD emulsion PCR (ePCR), the equivalent to the
Illumina bridge PCR (needed for cluster generation).
Thus, we aimed to address this hypothesis by chang-
ing the ePCR conditions.

Improving the SOLiD GC bias with modifications to
the emulsion PCR (ePCR)

Typically, the ePCR is performed in pouches of differ-
ent volumes (from 10 mL to 120 mL, depending on
the amount of libraries to be sequenced) in a bead
amplifier, before loading the libraries onto the
sequencer. Since we initially used a larger pouch of
80 mL for cluster generation/amplification of the
libraries from the microbial gDNA mix, we hypothe-
sized that a potentially uneven heat distribution in the
pouch may have contributed to the observed bias.

To test this, we performed the emulsion PCR of the
exact same microbial gDNA mix library, used
throughout this study, in a 20 mL pouch and in 96
well plates. Indeed, both approaches improved the
sequencing quality (Fig. 1A, B and D, E). Sequencing
data with prior ePCR in a 20 mL pouch showed a
reduction of the shift for all genomes compared with
the 80 mL pouch ePCR condition, with most pro-
nounced improvements for the GC rich genomes. The
96 well plate condition improved the SOLiD sequenc-
ing data further. We observed a reduction of the shift
for all genomes compared with the 80 mL and 20 mL
(except for the well represented Picrophilus torridus
genome) pouch ePCR conditions (Fig. 1A–E, Table 1).

H3K9ac ChIP-seq on the SOLiD 5500xl sequencer is
prone to GC bias

To determine to what extent this bias may hamper
typical applications such as histone ChIP-seq, we first

sequenced H3K9ac ChIP-DNA under standard condi-
tions (ePCR in a 80 mL pouch). We deliberately
selected a mixed source histone mark to get a better
idea on how the bias might affect different genomic
elements.

Sequencing of H3K9ac ChIP-DNA (prepared from
adult mouse hippocampus) on the SOLiD 5500xl
sequencer showed a strong enrichment compared
with input controls (Fig. 2A, blue vs. gray tracks),
indicative of reliable performance of the ChIP proce-
dure. In line with published data on H3K9ac ChIP-
seq, in e.g. embryonic stem cell (ESC) nuclei,14 we
find H3K9ac signals not only restricted to the tran-
scription start site (TSS) of genes (Fig. 2B), which is
typical for mixed source distribution marks.9 We
observed H3K9ac occupancies mostly on intronic
regions, followed by intergenic regions, exons and
promoter regions. In addition, we found occupancies
in 50UTRs, CpG islands, 30UTRs and down-stream of
the TSS.

Yet, as expected, we observed the strong GC bias
in H3K9ac ChIP-seq as well. Similar to the GC
bias present in our data from the microbial mix
gDNA, respective regions with high and low GC
content were most strongly affected. We noticed a
complete absence of coverage for some loci, such
as CpG islands with >62% GC content. Specifically,
we observed a good coverage and highly elevated
ChIP signal for the shore regions of CpG islands
and a sudden decrease or complete loss of coverage
for the islands themselves which typically have a
higher GC content than their shores. These loci
missing in the ChIP-seq data had no coverage in
the input samples, strongly indicative of a sequence
and not histone-mark dependent loss of coverage
(Fig. 2A and D).

The peaks with the loss of coverage on the SOLiD
sequencer were much better preserved when
sequenced with the Illumina system MiSeq (Fig. 2A
and D, orange tracks). Overall, compared with the
H3K9ac ChIP-seq data generated with the Illumina
sequencing technology, the data from the SOLiD
5500xl showed a loss of reads at several genomic ele-
ments, including exons and 50UTRs. Specifically, CpG
islands had a much lower coverage which is explained
by the fact that loci with high GC contents (above
62%) were extremely underrepresented when
sequenced on a SOLiD 5500xl system. In contrast,
promoters, introns, 30UTRs, and the shores of CpG
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Figure 2. H3K9ac ChIP-seq on SOLiD 5500xl vs. Illumina MiSeq. (A) Representative UCSC genome browser screenshots from
H3K9ac ChIP-DNA sequenced on a SOLiD 5500xl (blue tracks) and an Illumina MiSeq (orange tracks). Note enrichment of
ChIP-DNA tracks over input controls (gray tracks). Light blue boxes indicate gaps in the SOLiD 5500xl sequencing tracks, as com-
pared with the Illumina sequencing tracks, typically, over CpG islands (green bars). (B) (Left) graph shows genomic elements
with occupancy with the H3K9ac mark, plotted with corresponding number of peaks. (Right) dotted grid displays distribution of
peaks over these genomic elements, including the information if peaks cover multiple genomic elements. (C) (Left side of the
panel) Cartoon of experimental design for H3K9ac ChIP-seq with ePCR in 80 mL and 20 mL pouches (SOLiD) and with bridge
PCR (Illumina). (Right side of the panel) Box-plots show sequencing coverage for H3K9ac on the SOLiD 5500xl (20 mL pouch,
cyan and 80 mL pouch, blue) and on an Illumina platform (MiSeq, orange) for promoters, exons, introns, 30UTRs, and 50UTRs.
(D) CpG island plots showcase coverage for the island and its shores, continuously 2kb up and downstream from the CpG island.
Coverage is expressed in reads per million (RPM).
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islands were covered to comparable extent by both
sequencing systems (Fig. 2C, D).

Next, we were interested if our observation was
common and generalizable. Therefore, we re-analyzed
publically available H3K9ac ChIP-seq data (i.e., on
mouse ESCs) from both sequencers. As expected, the
Illumina and SOLiD sequencing data differed in their
coverage comparable to our results. Likewise, we
observed a loss of reads for promotors, exons, 50UTRs,
and the most pronounced loss of coverage for GpG
islands (Fig. S1), suggesting that this underrepresenta-
tion, likely due to the GC bias in the SOLiD 5500xl
system, can be generalized for data sets generated with
this method.

Improving H3K9ac ChIP-seq data

Given that our modifications to the SOLiD ePCR
improved the GC sequencing bias for the microbial
gDNA mixture, we tested whether this would suffi-
ciently improve our data on H3K9ac ChIP-DNA.
Indeed, compared with the library, processed for
ePCR in a big E80 pouch (80 mL), using a smaller E20
pouch (20 mL) in this enrichment step improved the
data significantly. We primarily gained reads for the
previously severely underrepresented GpG islands
(Fig. 2D).

Consideration on sequencing depth for H3K9ac

Finally, we wondered if the lack of coverage could be
partially attributed to insufficient sequencing depth
which is also relevant for the interpretation of other
published H3K9ac-seq data sets generated on the
SOLiD 5500xl. In particular, this question is of high
interest when sequencing or analyzing a histone mark
with mixed source distribution such as H3K9ac which
requires a higher sequencing depth than point source
marks such as H3K4me3 to reach sufficient coverage.9

In the present study we sequenced with a depth of
40 Million reads per H3K9ac sample which exceeds
the recommendation by ENCODE and those com-
monly found in the literature.9,15 Our sequencing
depth reached saturation, indicating that we were
sequencing in a sufficient range (Fig. S2B).

To test to which extent lower read numbers would
affect H3K9ac data we applied first an in silico random
down-sampling approach. Read numbers of the
H3K9ac sequencing track were randomly removed,
down to 20 Million, 10 Million and 5 Million reads.

As expected, with every down-sampling step we lost
actual coverage, affecting even the highly covered pro-
moter regions at a sequencing depth as low as 5 Mil-
lion reads. Also, signals on the gene body were lost
with 20 Million reads. To evaluate this finding experi-
mentally, we specifically tested latter loci that lost their
coverage from 20 Million reads on by qPCR for their
relative level of occupancy. These regions were com-
pared with loci on the same gene that had H3K9ac sig-
nals under all levels of coverage, for a positive control,
and to loci on the gene body and intergenic loci (in
proximity to this gene) which did not show occupan-
cies with 40 Million reads, as putative ‘negative’ con-
trols. As predicted, amplification for the target loci
was comparable to the positive control (Hap1) or even
exceeded the value of the positive control locus
(Meis2), suggesting that a sequencing depth of below
40 Million reads/per sample for H3K9ac ChIP-seq
will lead to significant loss of data. Furthermore, we
detected moderate qPCR signals for loci on the gene
body and to some extend in intergenic regions (e.g.,
for Hap1), clearly indicating that H3K9ac ChIP-seq
can benefit from increasing the sequencing depth
beyond 40 Million reads per library (Fig. S2C). These
intergenic regions might be highly relevant for studies
into genetic and epigenetic mechanisms of neuropsy-
chiatric disease mechanisms, since e.g., relevant
GWAS risk loci often map to intergenic regions.16

Discussion

This study provides an in-depth characterization of
the sequencing bias of the SOLiD 5500xl sequencer
that was previously not well described and delivers
profound insights into addressing biases in this
system. We report that data generated on the SOLiD
5500xl sequencer is strongly impacted by an extensive
GC bias. In contrast to theoretical assumptions, this
bias was present in a PCR-free protocol and thus can-
not be improved by changing the library preparation
conditions such as changing the PCR-polymerase or
the ramp rate of the thermocycler during upscale PCR
as previously applied with good success for Illumina
libraries.3,13

The presence of the bias in the PCR-free protocol
led us to identify the emulsion-PCR step (ePCR, the
SOLiD equivalent to the Illumina bridge PCR,
required for cluster generation) as the major source of
GC bias. In fact, even heat distribution in the emulsion
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reaction cocktail has been reported as essential for
ePCR applications.17 Thus, we aimed to improve the
GC under-representation by changing the ePCR con-
ditions. And indeed, both ways to improve the unifor-
mity of thermal conditions, i.e., using a smaller
ePCR-pouch and distributing the contents of a small
ePCR-pouch into 96 well plates for running the ePCR
reduced the GC bias significantly. Yet, our attempts to
improve the sequencing performance for GC rich loci
did not reach the level of on an Illumina machine, par-
ticularly at very high GC contents. The difference
between the Illumina library and the SOLiD library
enriched in an E20-pouch and a 96 well plate, respec-
tively, was 12% and 3% for the Pseudomonas putida
(62% GC content) genome, but 63% and 51% for
Micrococcus luteus (72% GC content). It is notewor-
thy though that the observed bias was minimal for the
P.torridus microbe (GC content of 36%) under all
sequencing conditions on the SOLiD platform and far
better than the shift observed on the Illumina system,
suggesting the SOLiD as the ideal platform of choice
for researchers dealing with organisms in a similar
range of GC content.

It is conceivable that other factors than the even-
ness of heat distribution may be additional sources of
the observed GC bias in the ePCR, such as the poly-
merase used or the ePCR protocol itself. While we
already reduced the number of cycles in the ePCR by
one third and a further reduction may lead to an
incomplete enrichment of beads, additional
approaches might consist of changes to ramp rate,
denaturation and annealing length and time and tem-
peratures, and the polymerase used for ePCR.

In a next step we demonstrate to which extent
actual common sequencing applications are affected
by the SOLiD sequencing bias and if they can be res-
cued sufficiently. We chose histone ChIP-seq for the
mixed source distribution mark H3K9ac (Fig. S2A), as
an example of an application that requires good cover-
age of multiple genomic elements such as introns,
exons, promoter regions and CpG islands. We
observed that H3K9ac ChIP-seq on a SOLiD 5500xl
machine led to an extensive loss of coverage in regions
with high GC content (> 62%) in comparison with
samples run on an Illumina sequencer. In line with
our data on the microbial gDNA mix, this bias was
again most pronounced in GC rich loci. The bias was
not due to an overall bad sequencing quality of
H3K9ac ChIP-seq, which actually exceeded ENCODE

standards and recommendations by recent literature
(of 20–40 Million reads for ChIP-seq) in sequencing
depth.9,15 Notably, sequencing depth reached satura-
tion (Fig. S2B), and thus our experiments were clearly
performed with bona fide sequencing depth for a
mixed source distribution histone mark such as
H3K9ac. Moreover, the bias was not associated with
bad quality of our ChIP-DNA, e.g., caused by failure
of the ChIP procedure or over-shearing of DNA, since
our tracks showed strong enrichment of histone acety-
lation signals, the GC bias occurred in the input sam-
ples as well (Fig. 2A), and the phenomenon was also
present in published data sets of other groups
(Fig. S1,14). Interestingly, the latter data sets presented
with a significant, but less pronounced bias than our
ChIP-seq data. This might be due to the wider distri-
bution of H3K9ac in adult brain (our study), e.g., we
observed broader and higher peaks than in embryonic
stem cells. Notwithstanding, our bias may be exceed-
ingly strong, because we sequenced sufficiently deep
and thus more peaks (on the Illumina sequencer) or
the absence of them (in the SOLiD system) were
detected. This view is supported by our down-sam-
pling data in conjunction with ChIP-qPCR, indicating
that 5 million reads hardly suffice to detect even all
major reads at the promoter regions and a sequencing
depth of 20 million reads may still miss loci with
H3K9ac signal on the gene body.

In conclusion, Illumina platforms seem to be better
suited for applications that require sequencing of GC
rich loci such as histone ChIP-seq and presumable
DNA methylation studies with focus on CpG islands.
Comparable sequencing coverage in the Illumina and
SOLiD systems can be reached at balanced levels of
GC content (e.g., E. coli, GC content 51%), and better
coverage in the SOLiD sequencing libraries can be
obtained for lower GC contents (e.g., P. torridus, GC
content 36%), with and without improved ePCR.

Above all, it is essential to know the extent of the
GC bias in the SOLiD 5500xl system for better inter-
pretation of data previously generated on this
machine. These data can still be valuable for diverse
meta-analysis and may be improved by pooling sam-
ples during analysis to reach higher coverage and
detect all potential peaks in ChIP samples. Findings
from this study are also relevant for the interpretation
of data, obtained with other sequencing systems such
as Polony Sequencing, Roche 454 or Ion Torrent using
ePCR for enrichment.
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Material and methods

gDNA isolation and preparation (microbial gDNA)

All microbes were grown in appropriate media under
specific conditions required for each of the organisms
and thereafter pelleted and stored at ¡20!C until use.
gDNA was isolated using Tris-HCl lysis buffer
(1% SDS; pH 8.0) and TE-buffered Roti-Phenol/Chlo-
roform/Isoamyl alcohol (25:24:1, pH 7.5–8.0, Carl
Roth, #A156.2). Samples were precipitated with etha-
nol and purified with QIAquick spin columns (Qia-
gen, #28104). Contaminating RNA (which could
interfere with the quantification of gDNA) was
digested with RNAse A. Aliquots of each sample were
run on an agarose gel to check size and purity of the
respective gDNA. Concentration of samples was mea-
sured with the Qubit Fluorometer (Life Technologies,
#Q33216). Thereafter, the 5 different microbes were
pooled in the following proportion: Picrophilus tor-
ridus: 100%, Plasmodium falciparum: 140%, Pseudo-
monas putida: 60%, Escherichia coli: 80% and
Micrococcus luteus: 100%. Samples were then sheared
to a size of 150 bps using a water bath Covaris ultraso-
nicator (#S220).

Library preparation and sequencing

1/ Library preparation for SOLiD sequencing
Libraries were built from ChIP DNA, input DNA or
gDNA (microbial gDNA mixture) using the fragment
library preparation kit for 5500 series SOLiD systems
(Applied Biosystems by Life Technologies, #4464412)
according to the manufacturer’s instructions. ChIP
and input libraries were amplified on a Gene Amp
PCR System 9700 (Applied Biosystems, #N8050200)
with standard settings (ramp rate 5!C/s) and SOLiD
standard reagents (AmpliTaq Gold polymerase,
Applied Biosystems, #N8080241). The library from
microbial gDNA was prepared amplification free. All
libraries were quantified on a Qubit Fluorometer and
checked for expected size on a Bioanalyzer (Agilent
Technologies, #G2939AA).

For bead emulsion PCR (ePCR) the SOLiD EZ
Bead E80 System (Applied Biosystems #4472999) was
initially used. Alternatively, E20 System pouches
(Applied Biosystems, #4453094) were used instead.
Pre-set cycling conditions, used on the bead amplifier
(ePCR, Applied Biosystems, #4448419) were as
follows: 95!C for 350 sec, 60!C for 60 sec and 75!C

for 75 sec, followed by 60 cycles of 96!C for 65 sec,
60!C for 60 sec and 75!C for 75 sec, and a final step of
75!C for 420 sec, 50!C for 120 sec and 30!C for 12
sec, each. In a third approach the content of a E20 bag
was distributed to 96 well plates and run on a thermo-
cycler (ABI 9700) using the following conditions: ini-
tial denaturation (95!C for 5 min), followed by 40
cycles of denaturation (93!C for 15 sec), annealing
(62!C for 30 sec) and extension (72!C for 75 sec), fol-
lowed by final heating (72!C for 7 min). ePCR was
cleaned up and enriched to a concentration of approx-
imately 1.5 million beads/mL, according to the color
scale provided in the manufactures manual. Thereafter
samples were loaded onto the SOLiD 5500 xl machine
(Applied Biosystems, # 4460730).

2/ Library preparation for Illumina sequencing
Libraries were prepared using either the Illumina
TruSeq ChIP Sample Preparation kit for ChIP librar-
ies (Illumina, #IP-202–1012) or the TruSeq DNA
PCR-free sample preparation kit (Illumina, #FC-121–
3001) for library preparation from the microbial
gDNA mixture. The ChIP DNA library was amplified
by PCR (Biorad T100 Thermal Cycler, #1861096).
The following PCR conditions were used: denatur-
ation for 1 min at 95!C, 15 cycles of denaturation (at
95!C for 50 sec), annealing (at 65!C for 1 min) and
extension (at 72!C for 30 sec), followed by final heat-
ing (72!C for 10 min). Amplified libraries were size
selected on a 2% agarose gel and purified using the
QIAquick Gel Extraction Kit (Qiagen). Libraries were
quantified on a Qubit fluorometer and checked for
correct size distribution on a Bioanalyzer. Samples
were diluted to a concentration of 4 nM, denatured in
1 N NaOH and 16 pM library, with 5% PhiX control
(Illumina, #FC-110–3001) spiked in, were loaded on a
MiSeq machine (Illumina, #SY-410–1003) equipped
with MiSeq Reagent Kit v3 (Illumina, #MS-102–3001)
sequencing chemistry.

Chromatin immunoprecipitation (ChIP)

One mouse hippocampus per ChIP reaction was
dounced in 400 mL MNase digestion/ nuclei permea-
bilization buffer and digested with MNase (Sigma
Aldrich, #N3755) to obtain mononucleosomal DNA
(»150 bps). ChIP was performed with 4 mL anti
H3K9ac polyclonal rabbit antibody (Millipore,
#ABE18). DNA from input was extracted in parallel.
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A small aliquot of the input samples was checked on
agarose gels for size distribution of sheared
chromatin.18

ChIP qPCR

For quantification by qPCR H3K9ac ChIP DNA was
diluted 1:5 with elution buffer (Qiagen) and amplified
on a Light Cycler 2.0 (Roche diagnostics,
#03531414001) using QuantiFast SYBR Green Kit
Master Mix (Qiagen, #204054). The following primers
were used: Meis2 (NC_000068.7), positive control
locus (present under all sequencing depth settings),
fwd 50-TCGGTCAATATGCGTGTGGT-30, rev 50-
CTGCCCCATGCTTGTGTTTC-30, target locus
(present only in the deepest sequencing condition),
fwd 50-GGGCTCTTCAGAATGGCACT-30 rev 50-
CAAAATGAATGGGGTGGGGG-30, negative control
locus on gene body (present in none of the sequencing
conditions), fwd 50-AAATGTCACCCAGGGACACC-
30, rev 50-AACCTTTGCAGGCTGGAGTT-30 and a
negative control in an intergenic locus (present in
none of the sequencing conditions), fwd 50-AA-
CAGTGGGGTCTGCTGATG-30, rev 50-GGACAG-
CAAACGCTAGACCT-30; Hap1, (NC_000077.6)
positive control locus, fwd 50-GGGGTGACCGTT
GATCAGTT-30, rev 50-CCTATCTCGTCACCA-
CTGGC-30, target locus, fwd 50-GGTGGTGGA
AAGGTGGAACT-30, rev 50-TCCCGCATTGGG-
CACTATTT-30, locus on gene body, fwd 50-CGCA
GGGTCAGTGATGAACT-30, rev 50-TGTTGGGG-
TGGAATGTCTC-30, and intergenic locus, fwd 50-
ATTGTTGTGCTAGCCAGCCT-30, rev 50-TACCTG-
GACCCAGGATGGTG-30. PCR reactions (10 mL final
volume) were run in duplicates with of 1.5 mM of spe-
cific primers and 2 mL of ChIP-DNA or input DNA,
respectively. ChIP Cts for each sample and primer
were normalized by the Ct for the input DNA. Ampli-
fication levels are presented relative to the levels for
the positive control locus which was set to 1.

Bioinformatic analysis

Read quality was checked using FastQC tool.19 Adapt-
ers were trimmed using cutadapt.20 SOLiD reads were
processed with in house scripts for compatibility with
the aligner. The alignment to mm9 and the microbial
mix genomes was done using either BFAST v0.7.0a21

for color space alignment, or BWA.aln v.0.7.1022 for
nucleotide space with standard parameters. Only

uniquely mapping reads were accepted. To estimate
fragment size in each library, we used MaSC.23 Reads
were elongated to the estimated size using BEADS.24

To calculate the GC distribution, BEADS was used
again. Power calculation for H3K9ac was performed
with ChIP-Seq Statistical Power (CSSP) analysis in R
using the standard settings with two- and fourfold
enrichment as parameters.25

Construction of the theoretical GC distribution

For the construction of the theoretical GC distribution
of the microbial genome pool, we used the reference
genomes (M. luteus NCTC2665, P. putida KT2440, E.
coli K12-DH10B, P. torridus DSM 9790 and P.
falciparum Pf3D7_v2.1.5), shredded them to 75 bp to
match our sequencing reads using BEADS, and aligned
them against themselves to account for mappability
issues. The resulting alignment was elongated to 150 bp
(to match the shearing of our library) and the GC dis-
tribution was calculated again using BEADS.

The estimation of the shift between the theoretical
and actually observed GC distribution is made possible
by excluding any amplification procedures in our
library preparation (before the emulsion PCR). In this
type of library, each fragment of the original gDNA
mix can either be sequenced once or fail to cluster and
drop out. Therefore, we know that the resulting GC
distribution after sequencing will not surmount the
theoretical distribution at any GC level and we can fit
it within using the loess function in R.26 To calculate
the shift between the fitted observed GC distribution
and the theoretical distribution, we subtracted the areas
under the curve (AUC_theoretical -- AUC_observedAUC_theoretical ) using R.

This shift between the 2 distributions is used as a
proxy for the magnitude of the bias in the analysis.

Accession numbers

gDNA and ChIP-seq data have been deposited in the
Sequence Read Archive (SRA) under the BioProject
accession number PRJNA380045.
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METHODOLOGY

HAM-TBS: high-accuracy methylation 
measurements via targeted bisul"te sequencing
Simone Roeh1†, Tobias Wiechmann1†, Susann Sauer1, Maik Ködel1, Elisabeth B. Binder1,2 
and Nadine Provençal1,3,4*

Abstract 
Background: The ability to accurately and efficiently measure DNA methylation is critical to advance the under-
standing of this epigenetic mechanism and its contribution to common diseases. Here, we present a highly accurate 
method to measure methylation using bisulfite sequencing (termed HAM-TBS). This novel method is able to assess 
DNA methylation in multiple samples with high accuracy in a cost-effective manner. We developed this assay for the 
FKBP5 locus, an important gene in the regulation of the stress system and previously linked to stress-related disorders, 
but the method is applicable to any locus of interest.

Results: HAM-TBS enables multiplexed analyses of up to 96 samples and regions spanning 10 kb using the Illumina 
MiSeq. It incorporates a triplicate bisulfite conversion step, pooled target enrichment via PCR, PCR-free library prepa-
ration and a minimum coverage of 1000×. TBS was able to resolve DNA methylation levels with a mean accuracy of 
0.72%. Using this method, we designed and validated a targeted panel to specifically assess regulatory regions within 
the FKBP5 locus that are not covered in commercially available DNA methylation arrays.

Conclusions: HAM-TBS represents a highly accurate, medium-throughput sequencing approach for robust detection 
of DNA methylation changes in specific target regions.

Keywords: Targeted bisulfite sequencing, DNA methylation, Next-generation sequencing, 5-methylcytosine, FKBP5

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
DNA methylation is the covalent addition of a methyl 
group at the 5-carbon ring of cytosine, resulting in 
5-methylcytosine (5mC). In the mammalian genome, 
this occurs predominantly in the context of CpG dinu-
cleotides. It is one of several epigenetic marks influenc-
ing gene expression and serving multiple other purposes 
such as genomic imprinting, X chromosome inactivation 
and maintenance of genomic stability [1, 2]. Aberrant 
regulation of the establishment, maintenance, erasure 
or recognition of DNA methylation has been associ-
ated with a range of disease phenotypes [3, 4]. In addi-
tion, lasting effects of environmental risk factors may be 
reflected by changes in DNA methylation [5]. "e need 

to measure DNA methylation in large human cohorts in 
a cost-effective manner is therefore of increasing interest 
for research in epidemiology and medicine [6].

Assessing DNA modifications with high accuracy and 
sensitivity in candidate loci would increase the power 
to detect and replicate such effects as well as to perform 
time course experiments in large numbers of samples to 
understand the stability of the environmentally induced 
changes during development. In addition, changes 
related to specific environmental exposure may only be 
present in specific cell types, although most studies rely 
on more complex tissues such as postmortem brain or 
blood samples. Assessing these effects in mixed tissues 
requires high accuracy in order to detect small changes 
emerging from a small number of cells. DNA bisulfite 
treatment followed by next-generation sequencing ena-
bled the quantification of DNA methylation marks at 
single-base resolution. However, genome-wide bisulfite 
sequencing, although the best approach to identify DNA 
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modifications, is still too cost intensive to be applied to 
large human cohorts at the coverage needed (> 60×) to 
detect differentially methylated sites [6]. Another set of 
accurate and cost-efficient measurement methods for 
DNA methylation at single CpG level are Illumina DNA 
methylation arrays. However, the ones currently available 
lack coverage in key enhancer regions that are important 
for environmentally driven changes and have a relatively 
small number of probes (~ 10–13) covering each site. 
Targeted bisulfite sequencing (TBS) offers a candidate 
approach to perform such studies with high resolution 
by increasing depth of read coverage per CpG to detect 
small changes in DNA methylation in a cost-efficient 
manner. Recently, few applications of TBS have been 
developed with differences in accuracy, throughput and 
library preparation [7–10]. Our TBS approach focuses on 
the FKBP5 gene, which encodes the FK506-binding pro-
tein (FKBP51), a co-chaperone tightly involved in stress 
regulation. Genetic and epigenetic factors have repeat-
edly been shown to increase the activity of this gene and 
associated with increased stress-reactivity and psychi-
atric disorders [11]. We have previously reported allele-
specific demethylation of CpG sites located in intronic 
enhancer regions of FKBP5 specific to posttraumatic 
stress disorder (PTSD) in patients who had experienced 
child abuse [12]. #ese gene × environment interac-
tions (GxE) may be mediated by differential susceptibil-
ity to adversity-induced changes in DNA methylation in 
specific enhancers. Current methods do not cover the 
relevant enhancer regions of FKBP5 affected by stress 
exposure. A highly accurate, cost- and time-efficient 
method to investigate FKBP5 DNA methylation in a large 
number of samples is thus critical to gain more insight 
into how DNA methylation changes may mediate these 
GxE. In this manuscript, we present a cost-effective, high-
accuracy methylation measurement TBS (HAM-TBS) 
method to assess the regulatory regions of the FKBP5 
locus. Incorporating a triplicate bisulfite conversion step, 
PCR-free library preparation and rigorous quality control 
(validation of PCR target sites, > 95% bisulfite conver-
sion efficiency and 1000× coverage minimum) ensures 
that our method is extremely robust (Fig.  1). Medium 
throughput and handling accuracy of up to 96 samples 
spanning approximately 10 kb is facilitated by embedding 
the Hamilton pipetting robot and TapeStation with the 
Illumina MiSeq sequencer.

Results
QC, validation and optimization of the HAM-TBS method
TBS is based on bisulfite conversion coupled with tar-
geted enrichment via PCR, library preparation for 

sequencing and subsequent quantification of methyla-
tion levels. All steps are necessary and may influence 
the outcome by introducing bias to the assessment of 
methylation levels or by insufficient quality control of 
the data. #e standard approach to minimize potential 
biases before sequencing is to produce replicates and 
assess the mean methylation levels during the analysis. 
In order to design a highly accurate yet cost-effective 
approach that is amenable to multiplexing, we assess at 
which step (bisulfite conversion or amplification) and to 
what extent technical variability would be introduced, 
as well as which quality control steps need to be per-
formed on the sequencing data to ensure a robust anal-
ysis. To this end, we assessed the methylation level of 0, 
25, 50, 75, 100% in vitro methylated bacterial artificial 
chromosome (BAC) control DNA for 3 different combi-
nations of pooling strategies during the bisulfite treat-
ment and PCR amplification (Fig. 2). Condition 1 (C1) 
assessed the methylation levels of control DNA using 
triplicate bisulfite treatments and PCR amplification for 
each replicate. C1 was considered the standard refer-
ence condition since each step was performed in tripli-
cates. In condition 2 (C2), triplicate bisulfite treatments 
were pooled to perform one PCR amplification reduc-
ing the costs by approximately 64%. Finally, in condi-
tion 3 (C3) one bisulfite treatment of the control DNAs 
was performed followed by 3 separate PCR amplifica-
tions to assess the extent of the target enrichment bias. 
A smaller panel of 11 different PCRs (Fig. 3) within the 
FKBP5 locus (see table in Additional file  1) served as 
basis for this analysis. Before comparing the three con-
ditions, the collected sequencing data were subjected 
to three quality control steps in order to ensure accu-
rate assessment of minimal methylation levels as well as 
small changes between samples.

Bisulfite conversion in triplicates

Pooling of bisulfite converted triplicates

Target enrichment (PCR)

reduces costs by ca. 64%

validated PCR panel to exclude 

Pooling of amplicons by Hamilton 

facilitates higher loading factor
eliminates handling error

captures variance of bisulfite treatment

HAM-TBS
w
orkflow

Fig. 1 Workflow of the HAM-TBS method, depicting important 
processing steps and their advantages
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1. Bisulfite conversion rate > 95%. We assessed the 
bisulfite conversion rate per sample and per amplicon 
and excluded rates lower than 95% from the analysis.

2. Removal of PCR artefacts During the target ampli-
fication, the PCR occasionally introduces artefacts 
presenting non-existent CpG sequences in the tar-
get region. !ey present at very low coverage and 
extreme levels of methylation (~ 0 or ~ 100%). In 
order to not exclude potential SNPs giving rise to 
CpGs, we removed artefacts on this basis rather than 
limiting the analysis to known CpGs according to the 
reference genome.

3. Minimum coverage of 1000 ×Higher sequencing 
depth and coverage of the CpGs yields higher accu-
racy of the methylation quantification. In order 
to determine the right balance between sequenc-
ing depth and thereby cost and sufficient accuracy, 
we took random subsamples of varying sequenc-
ing depth of an in silico created library represent-
ing methylation levels from 0 to 100% and assessed 
the standard deviation for each level of methylation 
with respect to coverage (Fig. 4a). To find a meaning-
ful cutoff for coverage, we considered the trade-off 
between sum of the average standard deviation per 
amplicon (cost) present in various levels of coverage 
(Fig. 4b). In accordance with previous findings [7], we 
identified 1000× coverage as a useful cutoff for our 
analysis, as the gain in accuracy with increasing cov-
erage above this threshold is low and 1000× is rea-

sonable to achieve for a larger locus, e.g., 9 kb in the 
FKBP5 panel.

All PCRs for our validation experiment showed 
bisulfite conversion levels > 99%. After QC, a total of 40 
CpG spread across 7 amplicons remained in our analysis 
(1 PCR failed due to coverage < 1000×, 1 showed nonlin-
ear amplification and coverage < 1000×, 2 showed non-
linear amplification). Methylation levels were very similar 
between all 3 conditions with an average error of < 1% 
when comparing absolute methylation levels of C2 and 
C3 versus C1 (Fig.  5b). We calculated the R2 values for 
each assessed CpG across the titration levels and used 
the mean per amplicon to compare the 3 conditions. R2 
is a measure for assessing linearity of amplification of 
the methylation signal, which is crucial when quantify-
ing methylation changes in, e.g., cohort studies. Again, all 
conditions showed very high mean R2 values above 0.99 
(Fig.  5a). "is confirms that all conditions are suitable 
for high-accuracy methylation detection. "e introduced 
biases in our workflow, based on the control DNA, are 
minimal and enable very accurate methylation quantifi-
cation even without including triplicates for the bisulfite 
conversion or target amplification. However, opposed to 
the target amplification, we cannot exclude slightly ele-
vated variance of the bisulfite conversion on non-in vitro 
methylated DNA from, e.g., patients. "erefore, we chose 
to use C2 for our HAM-TBS method. While it still main-
tains a triplicate bisulfite conversion step, it is the most 
cost-effective of the tested conditions, an important fac-
tor when processing many samples from cohort studies.

Comparison of the technical accuracy of pyrosequencing 
to TBS
Next, we aimed to compare TBS to pyrosequencing, the 
reference method used for targeted DNA methylation 
analysis. We assessed the methylation levels of 5 CpGs 
within PCR_5 and PCR_11 measured by pyrosequenc-
ing as well as using HAM-TBS with the C1 protocol. 
"e methylation analysis using pyrosequencing showed 
a high mean standard deviation of 4.68% with a maxi-
mum  SD of 14.56%. "e analysis using next-generation 
sequencing with C1 showed a much lower mean stand-
ard deviation of 0.72% with a maximum SD of 1.83%. "is 
demonstrates a significantly lower technical variation 
and therefore higher accuracy when assessing methyla-
tion levels using a TBS approach.

Development of an extensive HAM-TBS FKBP5 panel 
covering relevant regulatory sites
FKBP5 is an important gene in the field of psychiatry. "e 
gene is larger than 100  kb rendering the assessment of 
the full locus including the adjacent up- and downstream 

C1 C2 C3

PCR-free library 

bisulfite treatment
C U

PCR

genomic DNA 

Fig. 2 Setup of the TBS validation approach with the control 
conditions C1, C2 and C3. C1 is the reference condition with 
replicates in the bisulfite treatment and target enrichment step. 
C2 and C3 are more cost-effective versions dropping the replicate 
bisulfite treatment or target enrichment, respectively
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regions unfeasible and too cost intensive for TBS meth-
ods. We thus restricted our analysis to functionally 
relevant sites of interest to ensure compatibility with tar-
geted measurement methods and enable the assessment 
in large cohorts. To this end, we designed and validated 
a comprehensive amplicon panel (Fig.  6) including the 
TSS, TAD boundaries, intergenic and proximal enhanc-
ers as well as GR and CTCF binding sites (see methods 
for further details). "e resulting HAM-TBS FKBP5 
panel is composed of 29 amplicons passing our QC’s 
threshold (described above) and covering 315 CpGs 
across the locus. "e sequencing data showed sufficient 
bisulfite conversion for all amplicons when performed 
on control DNA using C2. In total, 27 of the amplicons 
included in the panel presented good linearity (see fig-
ure in Additional file 2) across the assessed methylation 
levels. Two amplicons located near the TSS showed a 
mild PCR bias, where methylation levels were lower than 
expected for the 50% and 75% controls (PCR_7, PCR_9). 

"ese amplicons have a very high CpG content of > 25%; 
hence, CpGs in the primer could not be avoided. It has 
been previously shown that methylation levels in this 
region are very low (< 5%) across tissues [12], so that 
any bias at higher methylation levels would not impair 
accurate quantification of this region. We thus incorpo-
rated sites located in this region in the panel, but they 
should be used with caution if higher methylation levels 
are observed. PCR_26 of the HAM-TBS FKBP5 panel 
is located in the H19 locus [13] which is an imprinted 
gene and serves as an internal positive control with an 
expected methylation level ~ 50%.

Application and costs
"e HAM-TBS method can be multiplexed up to 96 
samples in a medium-throughput manner. To demon-
strate the applicability of our approach, quality control 
statistics of data derived from an experiment contain-
ing 95 blood samples from patients and the full FKBP5 
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Fig. 3 Methylation quantification of the control DNA used to evaluate the technical variability. Linear regression line (purple), Loess fit line (green). 
PCR_3 was excluded due to low coverage, PCR_47 was excluded due to low coverage and nonlinear amplification, and PCR_43 and PCR_45 were 
excluded due to nonlinear amplification
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panel of 29 amplicons are described here. After reads 
mapping and methylation calling, we identified PCR 
artefacts comprising ~ 1% of the methylation sites and 
removed them from the data, and 9 samples in 1 PCR 
showed insufficient bisulfite conversion rates (< 95%) 
and were also removed. Two loci were identified as 
SNPs giving rise to a CpG sites in patients. In total, 
91% of sample x amplicon data passed our filtering cri-
teria. 27 amplicons passed QC with sufficient coverage 
and quality in > 75% of samples, while two amplicons 
were dropped due to < 1000× coverage (Additional 
file  3A, B). #e control amplicon spanning the H19 
imprinted locus for which methylation level is known 
to be ~ 50% [14] shows the expected methylation profile 

in all samples (Additional file 3C). HAM-TBS approach 
allowed the quantification of 276 methylation sites for 
95 samples in one single MiSeq run.

An assessment of the relative costs for each of the main 
reagents for this experiment containing 96 samples (95 
patients and unmethylated control) with increasing num-
ber of amplicons assessed is depicted in Additional file 4. 
#e quantifications using TapeStation and the PCR-free 
library preparation are the two most cost-intensive steps. 
#e proportion of costs for the amplicon quantification 
using the TapeStation increases with the higher amount 
of amplicons investigated, while relative costs for the 
library preparation and sequencing chemistry decrease 
with the inclusion of more amplicons.
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Discussion
We developed a targeted medium-throughput approach 
for measuring DNA methylation levels in multiple sam-
ples in parallel. !is method enables cost-efficient high-
resolution methylation measurements of target loci in 
cohorts of patients and probands at the FKBP5 gene, a 
locus with large interest in the psychiatric and psycholog-
ical community [11]. !is cost-efficient, accurate method 
to determine FKBP5 methylation levels would thus serve 
a large number of researchers. Our method is positioned 
between whole genome bisulfite sequencing and tar-
geted approaches as pyrosequencing. !e first is expen-
sive and yields lower coverage and accuracy of single 
CpGs; the latter only allows to assess very small regions 
at a time and can generate significant variance between 

replicates. HAM-TBS enables the analysis of a targeted 
but larger region (~ 10  kb) at high resolution and low 
costs. DNA methylation studies in large cohorts, inves-
tigating the impact of environment or association with 
disease status in mixed tissues, necessitate high accuracy 
at single-site resolution. In fact, TBS was able to resolve 
methylation levels with a mean accuracy of 0.72%. A high 
level of accuracy was maintained in more cost-efficient 
approaches using only one PCR amplification round. 
By pooling triplicate bisulfite treatments prior to PCR 
amplification, we can account for variance introduced by 
the bisulfite treatment but also reduce costs and hands-
on time during the target amplification.

!e accuracy of the method benefits from a PCR-free 
library preparation and rigorous quality control (prior 
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evaluation of linear PCR amplification of the target site, 
bisulfite conversion efficiency > 95% and read cover-
age minimum of 1000×). Nonetheless, a proper assess-
ment of possible amplification biases due to the choice 
of amplicon location in the design step is critical. Some 
loci can show nonlinear amplification curves, which 
renders them inappropriate for methylation quantifica-
tion. Adjustment of primer design and PCR conditions 
may help solve this issue, but for some loci optimiza-
tion may not be possible. For instance, in CpG islands 
with high CpG density, we observed that amplification 
curves were not linear, revealing a bias which became 
more pronounced as the level of methylation increased. 
Differential methylation results from these sites should 
be interpreted with caution and perhaps require addi-
tional replication. Besides validating each ampli-
con prior to usage, including controls such as in  vitro 
unmethylated DNA, water and endogenous hemimeth-
ylated region, the H19 locus, during each HAM-TBS 
experiment is important and enables quality checks for 
each step of the protocol.

Additionally, reaching 1000× coverage is an impor-
tant step to provide high resolution on methylation 
changes [8]. However, accurate quantification and pool-
ing of many amplicons across multiple samples while 
reaching sufficient coverage of all regions has limita-
tions. In theory, even though the MiSeq can handle a 
much higher loading factor (amplicons x samples) of 
almost 20,000 (disregarding uneven pooling of libraries, 
filtering of reads due to low quality or high amounts of 
PhiX), a maximum of 2500–3000 has proven to be feasi-
ble with minimal dropout rates. Assuming multiplexing 
of 96 samples and 25 amplicons at an average length of 
400 bp, a region of approximately 10 kb can be comfort-
ably covered with this approach. Notably, we streamlined 
the method to handle loading factors > 2000 by imple-
mentation of Agilent’s TapeStation and a pipetting robot 
for quantification and pooling of amplicons. Besides the 
throughput, this improves the robustness of the work-
flow. Our approach is designed to match the specifica-
tions of the Illumina MiSeq with its ability to run for 600 
cycles resulting in 300  bp-long paired-end reads. $is 
enables full-length coverage of amplicons up to a length 
of 600 bp. While our approach can be applied to differ-
ent sequencers, such as the Illumina HiSeq for exam-
ple, it would be necessary to design shorter amplicons 
due to the current limits of the sequencing chemistry. 
Using another sequencer, it is important to mention the 
index hopping phenomenon on the Illumina platforms 
[15]. It is less present on the MiSeq compared to other 
machines with pattern flow cells as our data show con-
sistent levels of methylation close to 0% across all in vitro 
unmethylated control samples indicating no issue with 

this specific bias. Nonetheless, it should be kept in mind 
that approaches like unique dual indexes when available 
or Illumina’s Free Adapter Blocking Reagent are recom-
mendable and gain importance, especially when using a 
different Illumina sequencer.

In the past years, only few TBS methods have been 
developed [8–10] with different methodological foci. 
$us far, Bernstein et  al. [10] allows a panel of 48 indi-
ces, while the approach by Chen et al. [9] could allow for 
a multiplexing rate of 1536 samples due to custom-made 
barcodes, but in practice only 478 have been used to 
date. In the latter method, the high multiplexing capacity 
comes at the cost of an additional PCR step potentially 
introducing additional bias. Moreover, increasing the 
number of samples needs to be weighed against the size 
of the target region in order to ensure sufficient cover-
age. We identified 1000× coverage as an optimal cutoff in 
terms of accuracy and cost in agreement with a publica-
tion by Masser et al. [8]. In the above-described study by 
Chen et al. [9], 100× was used as minimum cutoff. Based 
on our in silico analysis (Fig. 4a), this would lead to less 
accurate quantification of methylation levels. Besides the 
number of samples that can be processed, the size of the 
region of interest is also an important factor to be con-
sidered. $e method by Masser et al. [8] has been applied 
to 2 amplicons (233 and 320 bp), while Chen et al. enable 
the assessment of larger loci around 10 kb—comparable 
to our HAM-TBS approach. Lastly, amplification-based 
library preparation methods have been adapted by most 
TBS approaches. At this point, HAM-TBS utilizes a PCR-
free library preparation to avoid adding amplification 
biases.

Finally, using the optimized HAM-TBS workflow, we 
designed a panel comprising 29 amplicons to accurately 
assess methylation within the FKBP5 locus using HAM-
TBS. $is panel covers ~ 9  kb and targets important 
regulatory regions of the FKBP5 gene including the TSS, 
intergenic and proximal enhancers and TAD boundaries 
including CTCF binding sites. $e HAM-TBS method 
and the FKBP5 panel present valuable tools for epigenetic 
studies in which a highly accurate assessment of meth-
ylation levels is critical such as GxE studies in psychiatric 
research. It allows cost-efficient quantification of methyl-
ation in larger cohorts with optimized hands-on time due 
to automatization.

Conclusion
$e presented method HAM-TBS offers a robust and 
low-cost method for researchers interested in DNA 
methylation measurements of specific target regions. In 
addition, we supply a validated panel of 29 amplicons to 
assess methylation levels of important regulatory regions 
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in the FKBP5 locus, a gene of great interest in the field of 
psychiatry.

Methods
Generation of in vitro methylated control DNA
All primers designed for bisulfite PCR were first tested 
on in vitro methylated DNA to assess amplification effi-
ciency and bias. For PCRs within the FKBP5 gene, an 
in  vitro methylated BAC (RP11-282I23, BACPAC) was 
used to generate control DNA. For PCRs outside the 
FKBP5 locus (PCR_26, PCR_34, PCR_35), genomic DNA 
extracted from whole blood was amplified using the 
REPLI-g Mini Kit (QIAGEN GmbH, Hilden, Germany) to 
generate unmethylated DNA. 100% methylated DNA was 
achieved using in  vitro methylation with M.SssI meth-
yltransferase. After a first incubation (3  µg DNA, 0.5  µl 
SAM (32 mM), 1 µl M.SssI (20 U/µl, 40 µl NEB buffer 2 
[10×], diluted with ddH2O up to 400 µl) of 4 h at 37C, 
1 µl of M.SssI (20 U/µl) and 1 µl of SAM (32 mM) were 
added, and a second 4-h incubation was performed. Sub-
sequently, the reaction was purified using the nucleotide 
removal kit (QIAGEN GmbH, Hilden, Germany). In vitro 
methylation was repeated with the eluted DNA for a sec-
ond time. 25, 50 and 75% methylated control DNA was 
obtained by mixing 0 and 100% DNAs. In vitro methyla-
tion of control DNA was checked via pyrosequencing.

Bisul"te treatment of DNA
We used the EZ DNA Methylation Kit (Zymo Research, 
Irvine, CA) in column and plate format depending on 
the amount of DNA and throughput needed. Between 
200 and 500  ng was used as input DNA and processed 
according to the manufacturer’s instructions. DNA was 
eluted twice in 10 µl elution buffer which recovered over 
90% of the input DNA after bisulfite conversion when 
using the column format. In order to quantify bisulfite 
treated DNA, we use a spectrophotometer with RNA 
quantification settings.

Target enrichment and amplicon pooling
$e amplification of target locations from converted 
DNA (20  ng per amplicon) was achieved using the 
TaKaRa EpiTaq HS Polymerase (Clontech, Mountain 
View, CA; final concentration: 0.025 U/l), bisulfite-spe-
cific primers (final concentration of each primer: 0.4 M) 
and a touchdown cycling protocol with 49 cycles [for 
more details (see table in Additional file  5 and section 
HAM-TBS FKBP5 panel). $e amplicons of all PCR reac-
tions were quantified using the Agilent 2200 TapeStation 
(Agilent Technologies, Waldbronn, Germany] and equi-
molar pooled with the Hamilton pipetting robot. After 
speed-vacuum and resuspension in 50  µl, a double-size 
selection was applied using Agencourt AMPure XP beads 

(Beckman Coulter GmbH, Krefeld, Germany) to remove 
excess of primers and genomic DNA.

Control samples
For every TBS run, we included three different controls. 
First, up to three water controls in order to monitor 
cross-contamination with DNA and detect if the plate 
was accidentally rotated. Second, an unmethylated con-
trol DNA as a positive control and to detect failed steps 
throughout the workflow. And third, the H19 locus which 
is an imprinted region and presents with methylation 
levels ~ 50% as a positive control for bisulfite conversion 
in genomic DNA and detect outliers in patient samples. 
An amplicon located at this locus is incorporated in the 
FKBP5 panel.

Library preparation and sequencing
For library generation, Illumina TruSeq DNA PCR-Free 
HT Library Prep Kit (Illumina, San Diego, CA) was used 
according to the manufacturer’s standard protocol and 
obtained high-quality libraries using 500  ng of start-
ing material (during optimization, input amounts as low 
as 100 ng were tested and showed no loss of quality on 
the QC level). Qubit 1.0 ($ermo Fisher Scientific Inc., 
Schwerte, Germany) was used for quantification, Agi-
lent’s 2100 Bioanalyzer (Agilent Technologies, Wald-
bronn, Germany) for quality assessment and Kapa 
HIFI Library quantification kit (Kapa Biosystems Inc., 
Wilmington, MA) for final quantification before pool-
ing. Libraries were pooled equimolarly. Sequencing of 
the libraries was performed on an Illumina MiSeq using 
Reagent Kit v3 (Illumina, San Diego, CA; 600 cycles) in 
paired-end mode, with 30% PhiX added.

Sequencing data processing
First, read quality was verified using FastQC [16]. Adapter 
sequences were trimmed using cutadapt v.1.9.1 [17]. For 
alignment to a restricted reference of hg19 based on the 
PCR locations, Bismark v.0.15.0 [18] was used. Due to 
the 600-cycle sequencing chemistry, PCRs shorter than 
600  bp produce overlapping paired-end reads. Using an 
in-house developed Perl script, we trimmed low-quality 
overlapping ends. Quantification of methylation levels in 
CpG and CHH context was performed using the R pack-
age methylKit [19] with a minimum quality score of 20. 
$e methylation calls were subjected to 3 quality control 
steps. First, we considered CHH levels for each sample 
and excluded samples if the conversion was less than 95% 
efficient. Second, we filtered PCR artefacts introduced 
by PCR amplification errors giving rise to CpG sites in 
some reads. As we do not restrict the analysis to known 
CpG sites, every read indicating the presence of a CpG 
will be considered and the information extracted. $ese 
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artefacts mostly present at very low levels of coverage 
and 0 or 100% methylation. Lastly, according to our cov-
erage cutoff, we excluded CpG sites supported by less 
than 1000 reads. Subsequent analysis comparing meth-
ylation levels from the conditions C1, C2 and C3 as well 
as data from pyrosequencing was performed in R.

Coverage considerations
When performing a sequencing experiment, one will 
usually sequence part of the generated library and quan-
tify the methylation levels on this basis rather than 
sequence the whole library to see the true level within. 
"erefore, each sequencing experiment corresponds to 
drawing a random subset of a certain size (sequencing 
depth) of the whole library and can be viewed as a sub-
sampling problem. Depending on the sequencing depth, 
this will yield a different level of accuracy of the meth-
ylation levels. We created a dataset simulating CpGs 
methylated at levels from 0 to 100% supported by 100,000 
“fragments” each. "erefore, e.g., for 10% methylation 
level, a set 10,000 Cs and 90,000 Ts was created. Accord-
ingly, sets for 0–100% methylation were created. Using a 
bootstrapping approach, we drew 1000 random subsets 
of varying sequencing coverage (100, 200, 400, …, 2000, 
3000, 4000, 5000) from each set representing a certain 
level of methylation and the standard deviation (SD) was 
calculated. As a proxy for the increase in accuracy ver-
sus increase in sequencing depth (costs), the combined 
SD was divided by the sequencing depth. Of note, this 
is in concordance with results from the same analysis on 
highly covered amplicon data from our laboratory (data 
not shown).

Pyrosequencing
Methylation analysis by pyrosequencing of 5 CpGs cov-
ered within PCR_5 (CpG 35607969, CpG 35608022) and 
PCR_11 (CpG 35690280, CpG 35690318, CpG 35690365) 
was performed in triplicates on BAC control DNA. 
Bisulfite conversion of in vitro methylated control DNA 
was applied as described above. Target enrichment by 
PCR was achieved with a biotinylated reverse primer but 
otherwise performed as described above. Pre-treatment 
of PCR amplicons was facilitated with the PyroMark Q96 
Vacuum Workstation (QIAGEN GmbH, Hilden, Ger-
many). Sequencing of FKBP5 CpGs was performed on a 
PyroMark Q96 ID system using PyroMark Gold Q96 rea-
gents (QIAGEN GmbH, Hilden, Germany) and sequenc-
ing primers according to Klengel et al. [12]: P4 S1 (TTT 
GGA GTA GTA GGT TAA A) GRE3 S1 MPI (GGG AAT 
TAT GAG GTTG). "e PyroMark Q96 ID Software 2.5 

(QIAGEN GmbH, Hilden, Germany) was used for data 
analyses.

HAM-TBS FKBP5 panel
We designed 29 primer pairs (see table in Additional 
file  5) using BiSearch [20, 21] targeting the FKBP5 
locus. Initially, 32 PCRs were included, but 3 PCRs 
were not selected for the panel due to QC failure. "e 
excluded amplicons showed nonlinear amplification 
due to an elevated GC content in the region. Positions 
of amplicons covering glucocorticoid response ele-
ments (GREs) were selected from Klengel et  al. [12] 
and the GR ChIP-Seq from the ENCODE project [22]. 
Amplicons covering CTCF binding sites were selected 
using HI-C peaks [23], CTCF-ChIA-Pet interac-
tions from a lymphoblastoid cell line (GM12878, Tang 
et  al. [24]) and CTCF ChIP-Seq information from the 
ENCODE project [22]. Lastly, amplicons located near 
the TSS were included in the panel. Only primers 
without CpGs in their sequence were chosen, with the 
exception of 2 amplicons close to the TSS where this 
could not be avoided due to the high CpG content of 
the region. "e selected amplicons ranged from 200 to 
450 bp in length.
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Identification of dynamic glucocorticoid-
induced methylation changes at the FKBP5
locus
Tobias Wiechmann1 , Simone Röh1, Susann Sauer1, Darina Czamara1, Janine Arloth1,7, Maik Ködel1,
Madita Beintner1, Lisanne Knop1, Andreas Menke2,3, Elisabeth B. Binder1,4* and Nadine Provençal1,5,6*

Abstract

Background: Epigenetic mechanisms may play a major role in the biological embedding of early-life stress (ELS).
One proposed mechanism is that glucocorticoid (GC) release following ELS exposure induces long-lasting
alterations in DNA methylation (DNAm) of important regulatory genes of the stress response. Here, we investigate
the dynamics of GC-dependent methylation changes in key regulatory regions of the FKBP5 locus in which ELS-
associated DNAm changes have been reported.

Results: We repeatedly measured DNAm in human peripheral blood samples from 2 independent cohorts exposed
to the GC agonist dexamethasone (DEX) using a targeted bisulfite sequencing approach, complemented by data
from Illumina 450K arrays. We detected differentially methylated CpGs in enhancers co-localizing with GC receptor
binding sites after acute DEX treatment (1 h, 3 h, 6 h), which returned to baseline levels within 23 h. These changes
withstood correction for immune cell count differences. While we observed main effects of sex, age, body mass
index, smoking, and depression symptoms on FKBP5 methylation levels, only the functional FKBP5 SNP (rs1360780)
moderated the dynamic changes following DEX. This genotype effect was observed in both cohorts and included
sites previously shown to be associated with ELS.

Conclusion: Our study highlights that DNAm levels within regulatory regions of the FKBP5 locus show dynamic
changes following a GC challenge and suggest that factors influencing the dynamics of this regulation may
contribute to the previously reported alterations in DNAm associated with current and past ELS exposure.

Keywords: DNA methylation, FKBP5, Glucocorticoid receptor, Early-life stress, Targeted bisulfite sequencing,
Dexamethasone

Background
Epidemiological studies indicate a combined contribu-
tion of genetic and environmental factors in the risk for
psychiatric diseases, which converge to alter gene regula-
tion and consequently cell function [1]. Evidence sug-
gests that epigenetic mechanisms play a major role in
embedding environmental risk, including early-life ad-
versity, but our understanding of the underlying mecha-
nisms is limited. Epigenetic mechanisms encompass
post-translational modifications of histone proteins and

chemical modifications of single nucleotides (most com-
monly in the form of methylation at cytosine guanine di-
nucleotides (CpGs)), which alter chromatin structure, and
thus accessibility of the DNA to transcriptional regulators.
Even DNA methylation (DNAm), a stable chemical

modification, undergoes highly dynamic regulation in
post-mitotic cells. This property makes DNAm a suitable
molecular mechanism to encode the impact of environ-
mental cues in post-mitotic tissue [2, 3]. A mechanism
that likely contributes to such dynamic, environmentally
triggered DNAm changes is transcription factor-mediated
DNA demethylation [4]. One example is local demethyla-
tion of glucocorticoid response elements (GREs) following
activation of the glucocorticoid receptor (GR), a nuclear
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transcription factor [5]. The GR is activated by the gluco-
corticoid (GC) cortisol, a major mediator of the stress
response.
Stress, especially in the form of early adverse life

trauma, is a major environmental risk factor for psychi-
atric disorders [1, 6, 7]. Excessive GC release after stress
exposure may induce long-lasting DNAm changes,
thereby contributing to the biological embedding of risk
trajectories. The mechanism of GR-induced local de-
methylation is not fully understood, but activation of
DNA repair machinery is implicated. Demethylation of
GREs facilitates the transcriptional effects of the GR on
the target gene [8, 9].
FKBP5 is a stress-responsive gene and co-chaperone

protein of GR. Increased activation of this gene by gen-
etic or epigenetic factors has been repeatedly associated
with increased stress-sensitivity and risk for psychiatric
disorders in both animal and human studies (see [10, 11]
for review). We have previously reported on GR-sensi-
tive CpGs in GREs of the FKBP5 locus. These are lo-
cated in a functional GRE in intron 7 of the gene.
Chromatin conformation capture experiments confirmed
an interaction of this intronic enhancer with the tran-
scription start site (TSS) of FKBP5. Reporter gene assays
also demonstrated that higher DNAm of this enhancer
region was associated with lower transcriptional activa-
tion of FKBP5 by GCs [12]. Relative reduction of DNAm
in this region has been reported both in peripheral blood
and buccal cells of adults as well as children exposed to
childhood trauma and in a hippocampal neuronal pro-
genitor cell (HPC) line following exposure to GCs [12–
16]. Changes in DNAm following exposure to child
abuse seemed to be accentuated in individuals carrying
the minor allele of a functional genetic variant in this
locus (rs1360780). This variant, located in close proxim-
ity to a GRE in intron 2, alters the 3D conformation of
the locus. The minor allele generates a TATA-box bind-
ing site which allows binding of this intron enhancer to
the transcription start site. This is also associated with
higher FKBP5 induction following GR activation. We
and others have shown that increased FKBP5 leads to re-
duced GR sensitivity and impaired negative feedback
regulation of the stress hormone axis [17, 18]. In fact,
minor allele carriers have repeatedly been shown to have
prolonged cortisol release following stress exposure [11].
Finally, this functional allele has consistently been shown
to increase risk for a range of psychiatric disorders with
exposure to early adversity [11, 19–21], suggesting that
gene x environment interactions at the level of epigen-
etic regulation may contribute to disease risk.
These studies suggest that the CpGs associated with

early trauma exposure may also be responsive to GCs
and that increased GR activation with trauma may lead
to DNAm changes of the sites. However, direct evidence

for this is so far missing. Furthermore, due to the limita-
tion of the previously used pyrosequencing-based
DNAm assessment of these enhancers, only a small
number of CpGs had been investigated. Transcriptional
regulatory sites of FKBP5 are distributed throughout the
locus and include several upstream, downstream, and in-
tronic enhancer regions with GREs [22] as well as
CCCTC-binding factor (CTCF) sites in addition to the
TSS. CTCF creates boundaries between topologically as-
sociating domains (TADs) in chromosomes, and within
these domains, CTCF facilitates interactions between
transcription regulatory sequences [23, 24]. The extent
of GR-associated DNAm changes in different categories
of regulatory elements within the FKBP5 locus has not
yet been explored.
Here, we investigate the changes of DNAm following

exposure to the selective GR agonist dexamethasone
(DEX) in peripheral blood cells over 24 h and in relation
to rs1360780 genotype, in two independent cohorts.
DNAm levels were assessed using a high-accuracy
methylation measurements via targeted bisulfite sequen-
cing (HAM-TBS) approach [25], which extensively
covers CpG sites located in the different categories of
regulatory elements in the FKBP5 locus. The changes
are also compared to data generated by the widely used
Illumina methylation arrays.

Results
DEX-induced dynamic changes at the FKBP5 locus in
human peripheral blood (study 1)
In order to test if GR activation is associated with
changes in DNAm in vivo, we first analyzed serial blood
samples from 19 subjects exposed to a single oral dose
(1.5 mg) of DEX (see Table 1 for demographic details).

DEX-induced changes in ACTH, cortisol, and FKBP5 mRNA
levels
Analysis of serum adrenocorticotropin (ACTH) and cor-
tisol levels showed the expected suppression following

Table 1 Description of study 1 and 2 subjects

Study 1 Study 2

Samples 19 89

Male 19 67

Female 0 22

rs1360780 genotype CC = 6; CT = 6; TT = 7 CC = 50; CT = 30; TT = 9

Time points of blood draw
after DEX

0 h, 1 h, 3 h, 6 h, 23 h 0 h, 3 h, 18–24 h

Age (mean ± SD) 25.4 ± 2.9 41.6 ± 14.0

BMI (mean ± SD) N/A 25.1 ± 3.8

Smoking score (mean ± SD) N/A − 0.6 ± 4.9

Major depressive disorder 0 59 (M = 38; F = 21)
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DEX administration with maximal effects observed at 3
and 6 h post-treatment. In addition, DEX induced a 4.2-
and 4.0-fold increase in FKBP5 mRNA levels after 3 and
6 h of treatment, respectively, and returned to baseline
level after 23 h (Fig. 1a).

DEX-induced transient DNAm changes—dynamics
DNAm was analyzed using our HAM-TBS technique
[25], where a total of 25 amplicons covering 228 CpGs
at 5 time points from baseline (0 h) to 1, 3, 6, and 23 h
following DEX administration passed QC. Three ampli-
cons located in the proximal enhancer did not pass QC
due to increased CHH methylation levels (PCR18) or
low coverage (PCR 28 and PCR29; < 1000 reads, Add-
itional file 6: Table S1). DNAm analysis across the loci at
baseline revealed low methylation at the TSS and higher
methylation within the gene body and 3′ and 5′ flanking
regions (Fig. 1b “% Methylation baseline” track).
Following an acute dose of DEX, 44 CpG sites showed

significant changes in DNAm over all time points
(FDR ≤ 0.05 and absolute delta methylation (Ti-base-
line) ≥ |1%|; Fig. 1b “Max. ∆ % methylation” track,
shaded regions; Additional file 7: Table S2). Significant
DEX-induced differential DNAm was seen as early as 1
h after treatment (n = 17 sites, mean absolute ∆ methyla-
tion = |2.4%|), and the largest effects were observed after
3 and 6 h (n = 40 sites, mean absolute ∆ methylation
= |4.4%| and |5.4%|, respectively) with a range from − 17
to + 0%. Seventy-four percent of the sites, however,
showed decreases in DNAm levels following DEX treat-
ment ranging from − 17 to − 1% compared to baseline.
For the majority of the sites, DNAm levels returned to
baseline after 23 h of treatment while only 8 sites
remained differentially methylated at FDR < 0.05 with a
small change compared to baseline (mean absolute ∆
methylation = |1.8%|).

DEX-induced transient DNAm changes—localization
DEX-induced differentially methylated CpG sites
(DMCs) were found in the proximal and intronic en-
hancers and co-localized with ENCODE GR binding
sites and those located at the chromatin interaction
blocks overlapped with ENCODE CTCF binding sites
(examples are shown in Fig. 1c). Within the 82 CpGs an-
alyzed surrounding the TSS, no DMCs were observed.
Out of the 129 CpGs located in GR binding sites, 36
(28%) showed DEX-induced changes whereas only 8
(10%) out of 83 sites located in CTCF binding sites
showed changes after DEX. Most of the DMCs located
in GR binding sites (n = 30) showed reduction of DNAm
following DEX (mean ∆ methylation − 3.8 ± 3.3%) with
the exception of 6 sites located in the proximal enhancer
(n = 4), intron 5 (n = 1) and intron 2 (n = 1) showing in-
creased DNAm (mean ∆ methylation + 2.9 ± 1.3%).

DMCs within CTCF binding sites located in TAD
boundaries and intron 3 showed increase in DNAm (n =
5 sites, mean ∆ methylation + 3.6 ± 3.3%) whereas those
located in the proximal enhancer showed decrease in
DNAm (n = 3 sites; mean ∆ methylation − 3.0 ± 1.1%).
Demethylated CpGs in the proximal enhancer overlap
with both GR and CTCF binding sites (see Fig. 1c).
To assess whether changes in DNAm might directly

affect binding of GR and CTCF to DNA, we mapped the
changes to their relative distance to GR and CTCF con-
sensus binding motifs. DNAm of CpG sites within these
motifs has previously shown to impair or decrease tran-
scription factor binding [27, 28]. We used predicted
DNA binding motif locations for GR and CTCF from
[29] (http://compbio.mit.edu/encode-motifs/). Selecting
CpGs within ± 50 bp of the consensus motif sequences
(n = 16 for GR and n = 9 for CTCF), we observed that
CpG sites directly in CTCF motifs consistently displayed
very low DNAm levels (0.57 ± 0.10%) whereas those in
NR3C1 motifs showed intermediate levels at baseline
with a high variation (39.98 ± 18.43%; Fig. 2a). For CTCF
motif regions, higher DNAm was observed at more dis-
tal sites at the edges of the motif. DEX-induced DMCs
were found directly in GR motifs (n = 4) whereas none
were observed within CTCF motif but at the edges of
this motif (n = 2, Fig. 2b).
Increases in FKBP5 mRNA levels occurred in parallel

with the decrease of DNAm for 10 DMCs located within
50 bp of GR binding motifs (Fig. 2c and Additional file 6:
Table S1).

Validation of DEX-induced DNAm changes in blood in an
independent sample (n = 89, study 2)
Using study 2, see Table 1 for demographic details, we
replicated the findings in an independent sample. Similar
to study 1 and has been reported previously [30], DEX
treatment induced a significant decrease in CORT and
ACTH levels as well as an increase in FKBP5 mRNA
levels (Fig. 3a).
Ten amplicons covering 50 CpG sites (including 25

with significant DEX effect in study 1) were selected. Of
these 50 sites, 21 showed significant changes (FDR ≤
0.05 and absolute ∆ methylation ≥ |1%|) in DNAm after
DEX treatment validating 19 sites from the first study
(Fig. 3b). Similar to the effects observed in the first
study, DNAm changes were seen after 3 h of treatment
(mean absolute ∆ methylation = |4.3%|), and for most
sites (n = 13), DNAm returned to baseline after 24 h.
Eight DMCs remained significant after 24 h of treatment
but showed a much smaller effect (mean absolute ∆
methylation = |1.8%|). As observed before, the majority
of sites (76%) show decrease in DNAm levels following
DEX treatment with a range from − 10 to − 1% com-
pared to baseline.
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Fig. 1 Dexamethasone (DEX)-induced transient changes in hormonal, FKBP5 mRNA and methylation levels in blood. a Serum adrenocorticotropin
(ACTH) and cortisol (CORT) levels as well as whole blood FKBP5 mRNA levels after an oral dose of DEX in 19 healthy male subjects are shown.
Peripheral blood was drawn just before administration of DEX (time = 0) as well as 1, 3, 6, and 23 h thereafter. The mean and SEM are presented for
each time point. Linear mixed models showed a significant effect across time for ACTH (p value = 1.26e−23), CORT (p value = 1.18e−24), and FKBP5
mRNA (p value < 2.2e−16) levels. p values of linear mixed models for each time point are indicated as follows: *≤ 0.05, **≤ 0.01, ***≤ 0.001. b Genome
browser shot illustrating FKBP5 regulatory elements and DEX-induced methylation changes across the locus (hg19/chr6:35487554-35718452). Genes,
genes located within the locus; CTCF-ChIA-PET, locations of CTCF factor-mediated chromatin interactions determined by Chromatin Interaction
Analysis with Paired-End Tag (ChIA-PET) data extracted from lymphoblastoid cell line (GM12878, [26]). Chromatin interactions are represented by PET
blocks connected with an horizontal line. CTCF-ChIP-seq and GR-Chip-seq, regions of transcription factor binding derived from chromatin
immunoprecipitation (ChIP) experiments in multiple cell lines from the ENCODE project; TBS amplicons, locations of targeted bisulfite sequencing (TBS)
amplicons; % methylation baseline, methylation levels across TBS amplicons at baseline; Max. ∆ % methylation, maximum methylation difference
(delta) between any time points after DEX treatment and baseline for each TBS amplicons. Color-shaded regions highlight the main regulatory
elements in the locus. c Example of CpG sites showing DEX-induced methylation changes. Boxplots represent the methylation levels per time point of
CpGs located in the intronic enhancers (top), proximal enhancer (bottom left), and topologically associating domain (TAD) boundaries (bottom right).
Methylations of individual CpG sites are shown except for the proximal enhancer plots where the mean methylation per amplicon is shown since this
region covers 94 CpG sites. X axes indicate the coordinate of each site or region represented. Shaded boxes indicate sites where significant DEX effects
were observed at FDR≤ 0.05 and absolute delta methylation (Ti-baseline)≥ 1% in at least one time point
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Inter-individual variability influencing DEX-induced
methylation changes
Changes in DNA methylation in peripheral blood may re-
flect changes in immune cell composition. In study 2, we
had data on blood cell counts (BCCs) as well as estimated
immunes cell types from the Illumina 450K array data.
BCCs changed over time followingDEX (see Additional file 1:
Figure S1A) and lymphocyte counts significantly correlated
with 9 DMCs (Additional file 8: Table S3). However, when
we corrected for lymphocyte counts in the models testing
DEX effects on DNAm across time, all 9 sites remained sig-
nificant (FDR ≤ 0.05, Additional file 8: Table S3). Since both
DNAm and lymphocytes change over time with DEX, we
next assessed how much of the variance in DNAm may still
be explained by differences in BCCs. Comparing the stan-
dardized coefficients of lymphocyte counts change to the
time changes in DNAm in a linear mixed model (LMM), we
observed a significantly larger absolute coefficient at the 3-h
time point (> 2.8 times larger) for all the associated sites for
the changes in DNAm vs. the changes in lymphocytes
(Additional file 8: Table S3 and Additional file 1: Figure S1B

showing the residuals of the null model correcting for
lymphocyte count). Using estimated cell types from the Illu-
mina 450K array data, we did not observe any effects of
DEX on differential cell proportions (see Additional file 1:
Figure S1C). Together, these analyses suggest that change in
immune cell counts with DEX are likely not a major con-
founder of our results. In addition to immune cell counts,
we also assessed the effects of other possible confounders
including sex, age, ethnicity, body mass index (BMI), smok-
ing, and depression symptoms. We observed significant
main effects of age (7 sites), sex (5 sites), smoking (6 sites),
BMI (8 sites), and major depressive disorder (MDD) (4 sites)
on methylation but no significant interactions with DEX
(Additional file 6: Table S1 and see Additional file 2: Figure
S2A–C for examples). For MDD associations with DNAm,
only men were included in the analysis (n = 67). We have
previously reported no change at baseline for FKBP5 mRNA
levels between MDD patients and controls in a sub-sample
of men from study 2 (29 cases and 31 controls, [30]). For
the larger sample used here to test associations with MDD
status in men (38 cases and 29 controls), there is also no

A

B

C

Fig. 2 Dexamethasone (DEX)-induced DNA methylation changes (DMCs) within glucocorticoid receptor (GR) and CTCF consensus binding motifs. a
Blood methylation levels at baseline across CpGs located within ± 50 bp of GR (left) and CTCF (right) consensus binding motifs. Line plots represent
mean and SEM for each CpGs within the region. b Histogram representing counts of CpGs located within 50 bp of motifs (n = 16 for GR (left) and n =
9 for CTCF (right)) where DEX-induced DMC counts are shown in black. c Fold change FKBP5 mRNA expression and ∆ methylation (%) in DMCs
located within motifs are shown. The left panel illustrates average ∆ methylation (%) of all DMCs located within GR motifs (n = 4) where each of them
is significant after 3 h and 6 h of DEX treatment. The right panel shows ∆ methylation (%) for the 2 DMCs located within CTCF motifs where 1 shows
DEX effect after 3 h and 6 h (located at + 24 bp) and the other one only after 23 h (located at + 34 bp). Plots represent mean and SEM
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difference in FKBP5 mRNA at baseline (p value > 0.05 and
fold change ≥ 1.15). In contrast to the mRNA levels, out
of the four FKBP5 CpG sites associated with MDD over
the three time points, three sites show a difference at
baseline (p value ≤ 0.05 and absolute delta methylation
(cases-controls) ≥ |1%|) with less DNAm observed in cases
(range from − 1.4 to − 2.2%, Additional file 6: Table S1).
Furthermore, we performed stepwise regression analyses

using the Akaike Information Criterion (AIC) to select the
main covariates influencing DNA methylation changes
after DEX. This analysis was performed for the 17 CpG
sites for which significant associations with DNA methyla-
tion were observed. Based on the AICs as well as the esti-
mates of DNA methylation change after 3 h, correcting
for smoking score gave the best models for all CpG sites
(AIC smaller and largest variance explained). Sixteen out
of seventeen sites remained significant (FDR < 0.05) after
correcting for smoking (Additional file 10: Table S5). Add-
ing the other covariates did not affect the significance of
these 16 sites but increased AIC for most of them.

Effects of FKBP5 genotype
We and others have previously described allele-specific
DNAm changes (lower methylation) in intron 7 of the

FKBP5 gene in peripheral blood cells associated with ex-
posure to child abuse only in carriers of the minor/risk T
allele of rs1360780 [11]. Therefore, we investigated
whether rs1360780 genotype (CC compared to CT/TT =
high mRNA induction and disease risk) had an effect on
the observed significant DEX-associated methylation
changes in both studies. Genotype effect on DEX-induced
methylation changes over time was tested using a model
testing both additive as well as interactive effects. In the
first study, we observed 17 CpGs showing significant
interaction (n = 13) or additive effects (n = 6) on DNAm
changes over time (Additional file 6: Table S1). Despite
the different timelines, 2 CpGs showed significant
genotype-dependent dynamic differences in both studies,
cg35558710 located in intron 7 GRE and cg35570224 lo-
cated in intron 5 next to the GRE (see Additional file 3:
Figure S3). We next tested whether the direction of effects
in the two different genotype conformations (CC vs CT/
TT) was the same in study 1 and 2. When investigating all
50 CpGs common to both studies, 27 showed the same
direction of effect for genotype x DEX at time point 3 h in
study 2 as compared to the effect observed overall time
points in study 1, which is more than expected by chance.
This was not the case for effects of genotype on DNAm

A

B

Fig. 3 Dexamethasone (DEX)-induced transient changes in hormonal, FKBP5 mRNA and methylation levels in an independent study. a Serum
adrenocorticotropin (ACTH) and cortisol (CORT) levels as well as whole blood FKBP5 mRNA levels after an oral dose of DEX in 89 subjects are
shown. Peripheral blood was drawn just before administration of DEX (time = 0) as well as 3 and 20–24 h thereafter. The mean and SEM are
presented for each time point. As observed in study 1, significant effect across time for ACTH (p value < 2.2e−16) and CORT (p value < 2.2e−16)
levels as well as FKBP5 mRNA levels at 3 h (p value < 2.2e−16) are observed. b Boxplots of CpG methylation levels for amplicons located in the
intronic enhancers (top), proximal enhancer (bottom left), and topologically associating domain (TAD) boundaries (bottom right) showing
replication of DEX-induced methylation changes. X axes indicate the coordinate of each site or region represented. Shaded boxes indicate sites
where significant DEX effects were observed at FDR≤ 0.05 and absolute delta methylation (Ti-baseline)≥ 1% in at least one time point
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differences at the time point 24 h in study 2. We then sub-
divided this analysis by regulatory regions. For CpGs
within intronic and proximal enhancer GREs (n = 30), we
observed a concordance of the direction of effects for geno-
type x time interaction between the two studies significantly
more than expected chance (p = 0.049), but this was not
the case for the 20 CpGs annotated to TADs. Overall, T
carriers displayed more methylation changes over time,
with differences to CC genotype carriers ranging from 5.01
to 0.01%. This analysis supports that FKBP5 rs1360780 ge-
notypes associate with a differential DNAm sensitivity to
GR activation within GREs but not in TADs.

Usefulness of Illumina methylation array for assessing DEX-
induced DNA methylation changes in FKBP5
Most studies investigating DNA methylation in periph-
eral blood in large cohorts use Illumina methylation ar-
rays. Overlapping Illumina 450K methylation data were
available at baseline and 3 h post-DEX administration in
study 2 (n = 106 subjects, [30]) allowing to assess the ex-
tent of coverage of DEX-reactive CpGs on these arrays.
The 450K array covers 56 CpGs in the FKBP5 locus
(hg19/chr6:35487554-35718452, see Additional file 4:
Figure S4 and Additional file 6: Table S1 for further de-
tails) which are located mainly around the TSS (n = 12)
and the proximal enhancer (n = 15) with 12 CpGs in
TAD boundaries and only sparse coverage within the
gene body (11 CpGs) and 3′ end (6 CpGs). None of the
intronic GREs showing the biggest change in response
to DEX are covered by the array. Analysis of 450K CpG
sites that passed QC (52 sites) identified 13 DMCs fol-
lowing DEX (FDR ≤ 0.05 and absolute ∆ methylation ≥
|1%|) identifying 9 additional DMCs not covered by
HAM-TBS. Overlapping sites between TBS and 450K
displayed high correlation in both datasets (17 CpGs
with 0.96 mean correlation) where similar DNAm
changes following DEX were observed (Additional file 4:
Figure S4).

DEX-reactive sites reside in enhancer regions with cross-
tissue relevance
To understand whether the observed changes could have
cross-tissue relevance, as initially shown for the GRE in
intron 7 [12], we compared the chromatin state segmenta-
tions from the Roadmap Consortium (http://www.road-
mapepigenomics.org/) for blood/immune cells (n = 29
tissues), brain cells (n = 10), and fibroblasts (n = 5 tissues)
(Additional file 5: Figure S5A) for the investigated regions
within the FKBP5 locus. Common active TSS marks at the
TSS and marks indicating active transcription over the
gene body support the well-documented active transcrip-
tion of FKBP5 across these tissues. Focusing on the re-
gions in FKBP5 that showed the most prominent effects
of DEX on DNAm (GRE in intron 7, intron 5, and the

proximal enhancer), we observe that most of these regula-
tory elements show similar chromatin states, suggesting
the comparable regulatory impact of these regions across
these tissues (see Additional file 5: Figure S5B).

Discussion
Here, we investigated DNAm changes in response to GR
activation in the FKBP5 locus, a gene in which DNAm
changes have been shown in association with exposure to
childhood trauma in both children and adults [12, 14–16].
We here show that FKBP5 DNAm in specific enhancers is
highly responsive to GR activation by DEX. We observe
dynamic methylation changes over time in longitudinal
samples from two independent human studies. Significant
effects of DEX exposure were detected as early as 1 h fol-
lowing oral ingestion of DEX, with maximal effects 3–6 h
later. Most changes returned to baseline within 23 h.
These effects remained significant when correcting for im-
mune cell types as well as additional covariates such as
age, sex, BMI, and depression status.
The sites dynamically responsive to an acute DEX

challenge in blood overlap with sites correlating with
30-day cortisol load in healthy subjects [31] as well as
CpGs differentially methylated in Cushing’s syndrome
patients, a disorder characterized by excess secretion of
cortisol. This has been shown for CpGs within intronic
GREs, especially the intron 2 and 7 GREs, for which dif-
ferences were observed not only between patients with
active Cushing’s syndrome and controls but also in pa-
tients with cured Cushing’s syndrome [32]. A second
study using 450K data reported cg25114611, located in a
GRE of the proximal enhancer, to show significantly
lower methylation in patients with long-term remission
of Cushing’s syndrome [33]. In our study, this site
showed lower methylation following DEX in blood that
remained significant after 23 h. Such overlap suggests
that GR activation may—under specific circumstances—
result in lasting DNAm marks. In the above studies, pa-
tients had been in remission for 7–13 years [32, 33].
Such factors contributing to more lasting changes could
be the level and duration of GR activation as well as de-
velopmental timing. We have previously reported that
lasting changes in DNAm following DEX treatment in
hippocampal progenitor cells were observed when cells
were treated during proliferation and differentiation but
not when they were treated post-differentiation [12].
The DEX-responsive sites also overlap with those re-

ported to be demethylated in both children and adults
exposed to early trauma [11]. Although these sites do
not show durable demethylation after 23 h, the overlap
suggests that these adversity-related epigenetic changes
in FKBP5 GREs could be mediated via GR-dependent ef-
fects through prolonged exposure to GCs, as observed
in children exposed to trauma [13].
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Our results give new insight into the previously described
allele-specific methylation changes of intron 7 GRE CpGs
that may contribute to the FKBP5 x early trauma associa-
tions with risk for a number of psychiatric disorders ([10],
for review). Several studies report that lower methylation of
FKBP5 GRE intron 7 is more pronounced in child
abuse-exposed individuals carrying haplotypes tagged by
the T allele of rs1360780 [12, 15, 34]. This functional allele
has been associated with increased transcriptional activa-
tion of FKBP5 by GR [12, 35]. Here, we show that healthy
individuals carrying this allele have a different dynamic of
DNAm changes following GR activation in GREs of FKBP5.
Such a difference in epigenetic dynamics may also contrib-
ute to the fact that environmental risk factors linked to
stress hormone activation, such as early adversity, could
have more lasting effects in individuals carrying this specific
allele. Such allele-specific differences in the dynamics of
DNAm change may relate to the reported allele-specific dif-
ferences in gene transcription. As illustrated in Fig. 2c, dy-
namic DNAm changes in FKBP5 GREs inversely correlate
with changes in RNA expression.
As expected from the literature, methylation levels of

CTCF binding sites at the FKBP5 locus were low (0.57 ±
0.10%). In general, it has been shown that CTCF occu-
pancy is inversely correlated with DNA methylation and
that DNA methylation at CpGs located directly in the
core binding motif can inhibit CTCF binding [27, 36–
40]. A gain of methylation directly at CTCF binding sites
can lead to loss of CTCF binding and therefore disrup-
tion of chromatin interactions which can lead to a dys-
regulated gene expression [37]. DEX-induced DMCs
were not found directly at the core motif of the CTCF
binding sites but at close distance and show small
changes (< |2%|, Fig. 2B). The upstream and downstream
flanking regions around the CTCF core motif have been
implicated in influencing CTCF binding stability [41].
However, how such a small change in DNA methylation
at these flanking regions influences CTCF occupancy
has not yet been experimentally addressed so that their
exact role remains unknown. Overall, our data suggests
that the DEX-induced methylation effects concentrate
on GR and not CTCF binding sites. These changes in
DNA methylation may thus alter enhancer function (as
shown in reporter gene assays [12]) but will not likely
result in more profound 3D chromatin changes, such as
loop disruptions.
In addition to genetically induced altered dynamics of

DEX responsivity, other factors may also contribute to
long-term effects on FKBP5 methylation in the context of
early adversity. Factors associated with child abuse such as
smoking, BMI, and depression all had main effects on
FKBP5 methylation, including in dynamically responsive
sites (see Additional file 6: Table S1 and Additional file 2:
Figure S2). In addition, age also had a main effect on some

CpGs. The limited age range of our cohorts, however, pro-
hibits to analyze the influence of age, including childhood
and adolescence, in more depth. Whether such differences
in baseline methylation contribute to the long-term effect
of early adversity on FKBP5 methylation needs to be in-
vestigated in more detail in longitudinal cohorts. A limita-
tion of this study is the lack of information on early or
more recent adversity. Future studies will need to address
the influence of these environmental factors on
GR-induced DNA methylation dynamics.
Overall, the effects of DEX on FKBP5 methylation

were mostly in the direction of lower methylation fol-
lowing GR activation. In fact, the observation that DEX
can induce DNA methylation changes is not unique to
the FKBP5 locus and has been observed at different gen-
omic loci [42]. Several mechanisms could contribute to
differences in DNAm. One is a change in cell type com-
position, favoring cell types with no methylation at these
sites within mixed tissues. While this is a possible ex-
planation for the changes observed, the fact that these
effects withstand correction for changes in cell compos-
ition over time (see Additional file 1: Figure S1B and
Additional file 8: Table S3) and that DEX has no signifi-
cant effect on specific immune cell types estimated from
the genome-wide DNAm data suggests that at least
some of these effects likely happen within specific cells.
Re-assessing our results in sorted cells would give more
information into which cell types or cell characteristics
are associated with the highest epigenetic reactivity in
humans. A study in mice, using genome-wide bisulfite
sequencing after cell sorting, observed GC-induced
methylation changes primarily in blood T cells [43]. On
the other hand, mapping of enhancers across many tis-
sues, including different immune cells (see Additional file 5:
Figure S5), suggests that most of the GR-responsive en-
hancers exert a shared function and may thus show simi-
lar epigenetic responses to GR activation across different
cell types and tissues.
A reduction in DNA methylation following GR activa-

tion could also be mediated via a transcription factor
binding-mediated DNA demethylation which has been
reported for GR binding to GREs [5]. The mechanisms
for this targeted DNA demethylation are not fully under-
stood, but mechanisms involving DNA repair have been
proposed [9]. Similar to the GR-induced transient
changes observed here in blood, rapid cyclical pattern of
DNAm in response to estrogen stimulation in breast
cancer cells has been reported. The ERα-responsive gene
pS2 undergoes rapid demethylation and remethylation
cycles following activation of transcription with estrogen
[44]. The authors [44] implicated a coordinated binding
of DNA methyltransferases, glycosylase, and base exci-
sion repair proteins in these processes. The process of
demethylation of the pS2 promoter investigated in the

Wiechmann et al. Clinical Epigenetics           (2019) 11:83 Page 8 of 14



 

  
 

above paper is thought to involve Dnmt3a/b that is able
to deaminate 5mC. The resulting abasic site (AP site) of
this deamination is subsequently repaired by recruiting
p68, TDG, and BER proteins (AP endonuclease, DNA
polymerase β, and DNA ligase I). The rapid GR-induced
demethylation followed by remethylation within 23 h ob-
served here in blood cells may occur via similar mecha-
nisms given the reported kinetics of this enzymatic
process. In addition, when aggregating data from our
study for all GREs and mapping DNAm changes to the
distance from the consensus GR binding site, we observe
high levels of methylation within the consensus binding
site and these central CpGs are also the ones with dy-
namic reduction following GR activation (see Fig. 2a).
These observations would support GRE-centric active
DNA demethylation. The mechanisms that would then
associate with the more lasting changes in remitted
Cushing’s patients and in individuals exposed to child-
hood trauma could relate to different actions of
DNA-methyl binding proteins such as MeCP2 and poly-
comb complexes that would interfere with DNA-driven
demethylation/remethylation [45].

Conclusions
Taken together, these data provide novel insight into pos-
sible mechanisms of stress and trauma-related changes in
DNAm and gene x stress interactions, suggesting a role of
GR-dependent methylation changes at least for a subset of
the effects. These effects are best investigated using targeted
approaches, such as HAM-TBS [25], as most of the reactive
enhancer CpGs are not covered on the current Illumina ar-
rays. The observed dynamics of these changes in peripheral
blood have consequences on epigenetic association studies
in humans, where controlling for cortisol plasma levels ap-
pears to be an important factor. Given that dynamic changes
in DNAm that can be induced by a single dose of DEX and
given their overlapping sites correlating with 30-day cortisol
load as well as with lasting changes observed in patients
with Cushing’s syndrome, critical questions arise for the
long-term epigenetic consequences of the therapeutic use of
GCs. Additional research in larger samples, with different
exposure lengths and intensity, different tissues, and differ-
ent developmental stages, will be necessary to better under-
stand this phenomenon on a genome-wide and organism-
wide level. Cataloging the moderation of these GR-induced
epigenetic effects by common gene variants may further
help in identifying genes contributing to risk and resilience
to stress-related psychiatric disorders.

Methods
Study samples
Study 1
Healthy male participants (n = 26, age 25.4 ± 2.9) were
given 1.5 mg of DEX orally at 12:00, see [46] for more

details on the study samples and [30, 47–50] for the
choice of dose. Peripheral blood was drawn just before ad-
ministration of DEX as well as 1, 3, 6, and 23 h thereafter.
Nineteen of the 26 samples were selected for TBS for a
balanced rs1360780 genotype distribution (7 subjects with
TT genotype, 6 with TC, and 6 with the CC genotype).

Study 2
The second sample consisted of 89 Caucasian subjects
and were also exposed to 1.5 mg of DEX orally as previ-
ously described in [42]. Here, DEX was administered at
6 pm and blood draws occurred immediately before the
dose of DEX and then 3 hours as well as ~ 18 hours
(from 17.5 to 21 h) later. The subset comprised of 30
healthy probands (female = 1; male = 29) and 59 inpa-
tients with depressive disorders (female = 21; male = 38)
with an age of 41.64 ± 13.96 (mean age ± SD).
The demographics of both studies are reported in

Table 1.

DNA and RNA extraction of study samples
For both studies, DNA was extracted from frozen EDTA
blood using the Elmer Chemagic 360 Instrument (Perki-
nElmer chemagen Technologie GmbH, Baesweiler,
Germany) in combination with the chemagic DNA
Blood Kit special 400 (PerkinElmer chemagen Technolo-
gie GmbH, Baesweiler, Germany). Thirty-three blood
samples of study 2 were only collected in PAXgene tubes
(PreAnalytiX GmbH, Hombrechtikon, Switzerland) for
the ~ 18 h time point. For these samples, DNA was ex-
tracted from PAXgene tubes using PAXgene Blood DNA
Kit (QIAGEN GmbH, Hilden, Germany). Blood for RNA
was stored in PAXgene tubes, and RNA was extracted
using the PAXgene Blood RNA Kit (QIAGEN GmbH,
Hilden, Germany). All samples had an RNA integrity
number of at least 7.0.

Genotyping
Study 1
All participants were genotyped for the rs1360780 allele
using hybridization probes (forward primer: CCTTATTC-
TATAGCTGCAAGTCCC, reverse primer: TCTGAATAT-
TACCAGGATGCTGAG, rs1360780_LC: Red640-AAAT
TCTTACTTGCTACTGCTGGCACAAGAGA-Phosphate,
rs1360780_FL: CAGAAGGCTTTCACATAAGCAAAGT-
TACACAAAAC-Fluorescein). Genomic DNA was ampli-
fied using the LightCycler 480 Genotyping Master mix
(Roche, Mannheim, Germany) with the following cycling
conditions: 95 °C, 10 s; 45× (95 °C, 1 s; 56 °C, 10 s; 72 °C,
10 s); 95 °C, 1min; and 40 °C, 1min, ramped up to 85 °C
using a ramp rate of 0.57 °C/s and one acquisition per °C
on a LightCycler480 II Instrument (Roche, Mannheim,
Germany).
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Study 2
Genotyping for this cohort is described in [47] and was
based on Illumina 660K genotyping arrays.

Assessment of endocrine and immune measures
Cortisol and ACTH levels were assessed as described in
[48, 51]. For the measurement of plasma cortisol con-
centrations, a radioimmunoassay kit was used (INC Bio-
medicals, Carlson, CA). Plasma ACTH concentrations
were assessed by automated electrochemiluminescence
immunoassay using Roche Cobas immunoassay analyzer
(Roche, Basel, Switzerland). In the second study, add-
itionally, plasma DEX levels were measured at the 3-h
and 20–24-h time point using mass spectrometry as de-
scribed in [48] and differential blood cell counts evalu-
ated at all three time points as reported in [51].

Gene expression analysis via quantitative real-time PCR
Study 1
FKBP5 mRNA expression levels in blood samples of the
first study were assessed as follows. The generation of
cDNA was achieved using SuperScript™ II reverse tran-
scriptase (Thermo Scientific Inc., Schwerte, Germany).
Subsequently, the cDNA was amplified in duplicates in a
LightCycler 480 Instrument II (Roche, Mannheim,
Germany) using the LightCycler 480 SYBR Green I Mas-
ter kit (Roche, Mannheim, Germany) and primer spanning
Exon 10-11 (forward primer: AAAAGGCCAAGGAGCA-
CAAC, reverse primer: TTGAGGAGGGGCCGAGTTC;
cycling conditions: 95 °C, 10 s; 45× (95°,10 s; 58 °C, 10 s;
72 °C, 10 s)). Ct values were used to calculate relative ex-
pression levels according to [52] normalized on YWHAZ
expression (Universal ProbeLibrary probe #77; cycling
conditions according to the manufacturer’s recommenda-
tions; Roche, Mannheim, Germany) for normalization and
mean assay efficiencies.

Study 2
RNA expression from study 2 was done using Illumina
HT12v4 arrays previously described in [48]. In this
study, blood RNA samples were only available for two
time points (baseline and 3 h after DEX exposure).

Assessment of DNA methylation in study samples
DNA methylation levels in both studies were analyzed
using the HAM-TBS approach, comprising an optimized
PCR panel of 28 amplicons in the FKBP5 locus [25].
These data were complemented by Illumina 450K
methylation arrays. An overview of the methylation data
obtained can be found in Additional file 6: Table S1.

Study 1
HAM-TBS [25] on the FKBP5 locus was run for all 28
amplicons on DNA from each blood sample (baseline, 1

h, 3 h, 6 h, and 23 h post-DEX administration) in a single
sequencing run with 302 CpG sites analyzed.

Study 2
FKBP5 locus DNAm levels were assessed using both
HAM-TBS [25] (10 amplicons covering 50 CpGs from
each blood sample (baseline, 3 h and 18 h post-DEX ad-
ministration)) and 450K methylation arrays (56 CpGs at
baseline and 3 h post-DEX administration).

Targeted bisulfite sequencing of the FKBP5 locus
This method has been described in detail in [25] and of-
fers good performance of amplicon bisulfite sequencing
assays in a technology comparison by the Blueprint con-
sortium [53].

Amplicon selection and amplification by PCR
We optimized the amplifications of 28 regions covering
302 CpGs within GR and/or CTCF binding sites as well
as the transcription start site of the FKBP5 locus (see
Additional file 9: Table S4 for primers and mapping of
the amplicons). In order to reduce cost and maximize
the number of samples per sequencing run, triplicate bi-
sulfite treatments were performed for each sample and
then pooled to run one PCR amplification per amplicon
[25]. Overall, 200 ng to 500 ng of DNA was used per
sample and bisulfite treated using the EZ DNA Methyla-
tion Kit (Zymo Research, Irvine, CA). Twenty nano-
grams of bisulfite-converted DNA was then used for
each PCR amplification employing Takara EpiTaq HS
Polymerase (Clontech, Saint-Germain-en-Laye, France)
and 49 amplification cycles. PCR amplicons were then
quantified with the Agilent 2200 TapeStation (Agilent
Technologies, Waldbronn, Germany) and pooled in
equimolar quantities for each sample. AMPure XP beads
(Beckman Coulter, Krefeld, Germany) were used for a
double size selection (200–500 bp) to remove primer di-
mers and high molecular DNA fragments.

Sequencing
Libraries were generated using the TruSeq DNA
PCR-Free HT Library Prep Kit (Illumina, San Diego,
CA) according to the manufacturer’s instructions. Each
library was quantified with the Qubit® 1.0 (Thermo
Fisher Scientific Inc., Schwerte, Germany), normalized
to 4 nM and pooled. Library concentration and fragment
sizes were checked via Agilent’s 2100 Bioanalyzer (Agi-
lent Technologies, Waldbronn, Germany) and quantita-
tive PCR using the Kapa HIFI Library quantification kit
(Kapa Biosystems, Wilmington, MA). Paired-end se-
quencing was performed on an Illumina MiSeq Instru-
ment (Illumina, San Diego, CA) with their MiSeq
Reagent Kit v3 (2× 300 cycles) with the addition of 30%
of PhiX Library.
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Sequencing data processing
The quality of the sequencing reads was checked with
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc), and Illumina adapter sequences were re-
moved using Cutadapt v.1.9.1. Bismark v.0.15.0 was used
for the alignment to a restricted reference limited to our
PCR targets. In order to stitch paired-end reads, an
in-house Perl script has been developed to remove the
low-quality ends of the paired-end reads if they over-
lapped. The methylation levels for all CpGs, CHGs, and
CHHs were quantified using the R package methylKit.
The resulting DNAm calls were submitted to a 3-step
quality control. First, PCR artifacts introducing false
CpGs of low coverage at 0 or 100% methylation level
were removed. Second, CHH methylation levels were
analyzed, and samples with insufficient bisulfite conver-
sion rate (< 95%) were removed. Finally, CpG sites with
a coverage lower than 1000 reads were excluded.

Illumina 450K methylation arrays
Study 2
Illumina 450K arrays were processed as described in
[42]. Smoking scores were predicted from DNAm data
as described in [54] as this information was not available
for all subjects. Blood cell ratios were estimated from
the DNAm data using the Houseman algorithm [55].
Normalized beta values of 52 CpG sites located within
the FKBP5 locus (hg19/chr6:35,487,554-35,718,452) were
extracted from the 425,883 probes that passed quality
control (QC).

Statistical analysis
DEX effects in study 1 and study 2
Linear mixed models (LMMs) were used to assess the
effects of DEX treatment over time on either ACTH,
cortisol, FKBP5 expression, or DNAm levels for each
CpG sites in both studies. All models were run adjusting
for intra-individual variability as random effect using the
“lmer” function of the Lme4 package in R [56]. p values
were calculated using the Wald chi-square test from the
Car package [57]. False discovery rate (FDR) was applied
to correct for multiple testing on methylation p values.
Post hoc analysis comparing each time point to baseline
was ran using LMMs for each site showing significant
results from above (FDR ≤ 0.05) to determine at which
time point the effect was observed. Differentially methyl-
ated CpG sites (DMCs) were called when FDR from the
mixed model was ≤ 0.05 and absolute mean methylation
differences between significant time points and baseline
(p value ≤ 0.05) were ≥ 1%.
The power to detect significant DNAm changes after

DEX administration was performed using the function
“powerSim” from the R package SIMR [56] with 100
simulations for each CpG sites profiled in both studies.

These analyses used a significance (alpha) level of 0.05
and minimum effect of absolute methylation difference
≥ 1% between 3 or 6 h and baseline for study 1 (delta
T3–T0 and T6–T0) and 3 hours and baseline for study 2
(delta T3–T0). In our discovery sample (study 1), an
average power of 96.6% (bootstrap 95% CI = (94.7, 97.9))
overall the 228 CpG sites was predicted to detect a mini-
mum difference of 1% in methylation after 3 and/or 6 h
of DEX administration. Over all the 50 CpG sites profiled
in the replication cohort (study 2), an average power of
88.8% (bootstrap 95% CI = (81.2, 93.4)) was predicted to de-
tect a minimum difference of 1% in methylation after 3 h of
DEX administration. These results indicate that both co-
horts have sufficient power (> 80%) to detect a minimum
difference of 1% in methylation after DEX administration
with our repeated measures design (5 sampling times in
study 1 and 3 in study 2). Although the power in both stud-
ies is sufficient to detect a 1% change in methylation, much
of the effect observed was larger than 3% (for 66% and 62%
of the total significant sites in study 1 and 2, respectively).
In addition, parametric bootstrap using the “bootMer”

function of the “lme4 package” in R using 100 simula-
tions, for the mixed models of the 50 CpG sites profiled
in study 2, was performed. The bootstrap results includ-
ing the measures of bias and standard error as well as
confidence intervals are given in Additional file 11: Table
S6. This analysis revealed that the results are stable as
the 95% confidence intervals from the 3-h and 24-h time
points indicate a change in DNA methylation for the all
sites identified with LMM (FDR ≤ 0.05 and absolute
delta methylation ≥ 1%).

Inter-individual factors influencing DEX-induced DNAm changes
To assess inter-individual factors influencing the ob-
served changes in DNAm following DEX administration,
each CpG site showing significant DEX effects in study
2 was tested (n = 21 CpGs). LMMs were used to assess
the association between DNAm change over time and
blood cell counts, age, sex, smoking, BMI, and MDD
status for each CpG sites. All models were run adjusting
for intra-individual variability as random effect using the
“lmer” function of the Lme4 package in R [56]. p values
were calculated using the Wald chi-square test from the
Car package [57]. Stepwise regression analysis was also
performed on 17 sites showing association with either
age, sex, smoking, BMI, or MDD status to select the
main confounding variables influencing DNAm change
over time. AICs and the DNAm estimates at 3 h of these
models were used to select the best model (Add-
itional file 10: Table S5).
FKBP5 genotype effect on DEX-induced methylation

changes over time was first assessed on 44 CpG sites in
study 1 and 21 sites in study 2 showing DNAm changes
at any time point post-administration of DEX. LMMs
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were used as described above. Methylation for each CpG
was regressed against the main effect of time (DEX) and
rs1360780 risk allele (CC or CT/TT) with and without
the interaction term of genotype * time point while
adjusting for intra-individual variability. p values of the
additive and interaction effects for each time points were
calculated using the Wald chi-square test.
We assessed if the direction of effects was concordant

across studies based on the binomial distribution. Assum-
ing that a CpG site shows the same direction of effect in
both studies by chance with a probability of 0.5, we deter-
mined the probability to observe the present or even a
higher number of CpG sites with concordant directions.

Additional files

Additional file 1: Figure S1. Change in blood cell counts after DEX
administration. A) Actual blood cell counts at baseline and after DEX
administration for granulocytes, monocytes, and lymphocytes in 54
subjects from study 2. B) Boxplot of DNAm residuals from a null model
correcting for associated variance in lymphocyte counts across time in 54
subjects from study 2. Post hoc analysis correcting for lymphocyte counts
revealed significant change in DNAm after 3 h of DEX for all sites (p value
< 0.1e−18). C) Predicted blood cell proportions from 450K methylation
data in study 2 using the Houseman algorithm [55]. (PDF 260 kb)

Additional file 2: Figure S2. DEX-induced changes in DNAm are also
influenced by factors associated with early life adversity. Examples of three
CpG sites were significant associations with fixed factors including age, sex,
BMI, smoking score, and major depression were observed. (PDF 150 kb)

Additional file 3: Figure S3. CpG sites with significant genotype-
dependent dynamic methylation differences in both studies. Effects of
rs1360780 genotype on DEX-induced DNA methylation changes in 2 sites
located in intron 7 and 5 enhancers. The % methylation levels for
rs1360780 risk allele carriers CT/TT and CC carriers following DEX expos-
ure are shown for each study. Methylation of CpG 35558710 shows sig-
nificant interaction effect at 23 h in study 1 (Χ2 = 5.69, p value = 0.02) and
additive effect at 3 h in study 2 (Χ2 = 4.15, p value = 0.04) with risk allele
genotype. Significant interactions between risk allele genotype and DEX
on methylation were observed for CpG 35570224 at 6 h and 23 h post-
treatment in study 1 (Χ2 = 7.59, p value = 0.006 and Χ2 = 6.0, p value =
0.01) and at 24 h in study 2 (Χ2 = 4.36, p value = 0.04). Points and error
bars represent mean and SEM for each genotype. (PDF 101 kb)

Additional file 4: Figure S4. Replication of dexamethasone (DEX)-
induced methylation changes (n = 106 subjects) analyzed by Illumina
450K arrays. A) Genome browser shot illustrating the location of TBS
amplicons assessed as well as the location of the 450K Illumina probes
within the FKBP5 locus (hg19/chr6:35487554-35718452). CTCF-ChIA-PET
-track indicating the locations of CTCF factor mediated chromatin
interactions determined by Chromatin Interaction Analysis with Paired-
End Tag (ChIA-PET) data extracted from lymphoblastoid cell line
(GM12878, [26]). Chromatin interactions are represented by PET blocks
connected with an horizontal line; CTCF-ChIP-seq and GR-Chip-
seq—regions of transcription factor binding derived from chromatin im-
munoprecipitation (ChIP) experiments in multiple cell lines from the EN-
CODE project; blood TBS amplicons—locations of targeted bisulfite
sequencing (TBS) amplicons assessed in blood of study 1; 450K probe
locations—locations of Illumina probes from the 450K array. B) Boxplot of
DNAm levels using TBS or Illumina 450K approach for the overlapping
CpG sites showing methylation changes after DEX using TBS. p values of
linear mixed models for each time point compared to baseline or vehicle
are indicated as follows: *≤ 0.05, **≤ 0.01, ***≤ 0.001. Note that although
cg125114611 show significant DEX effect using 450K array, this site has a
methylation change after DEX of − 0.4% which did not reach our thresh-
old of |1%|. (PDF 480 kb)

Additional file 5: Figure S5. Comparison of chromatin states in FKBP5
across brain, immune/blood, and fibroblasts. A) Genome browser shot
illustrating the chromatin states of the FKBP5 locus (hg19 /
chr6:35487554-35718452) across brain, immune/blood, and fibroblasts.
FKBP5 splicing variants—visualization of two splicing variants of FKBP5; TBS
amplicons—locations of targeted bisulfite sequencing (TBS) amplicons;
450K probe locations—locations of Illumina probes from the 450K array;
CTCF-ChIP-seq and GR-Chip-seq—regions of transcription factor binding
derived from chromatin immunoprecipitation (ChIP) experiments in
multiple cell lines from the ENCODE project; CTCF-ChIA-PET and PolII-
ChIA-PET—track indicating the locations of CTCF factor or PolII mediated
chromatin interactions determined by Chromatin Interaction Analysis
with Paired-End Tag (ChIA-PET) data extracted from lymphoblastoid cell
line (GM12878, [26]). Chromatin interactions are represented by PET
blocks connected with an horizontal line; Ensembl Reg Build—overview of
the Ensembl regulatory build which represents an annotation of regions
likely to be involved in gene regulation; ChroHMM—this track displays
the chromatin state segmentation of the FKBP5 locus for selected brain,
immune/blood, and fibroblast cells from the Roadmap Consortium. The
primary core marks segmentation has been used which visualize pre-
dicted functional elements as 15 states, which are displayed at the bot-
tom of the figure. B) Quantification of the 15 chromatin states at key
regulatory regions (transcription start site (TSS), topologically associating
domains (TAD), proximal Enhancer (proxE), and intronic GREs (iGRE)) of
the FKBP5 locus. Chromatin states were averaged over brain (n = 10), im-
mune/blood (n = 29), and fibroblasts (n = 5) cells. (PDF 390 kb)

Additional file 6: Table S1. Details on the CpG sites assessed in FKBP5
locus and summary of the results obtained using HAM-TBS and Illumina
450K array in both studies. (XLSX 78 kb)

Additional file 7: Table S2. Summary statistic from linear mixed models
testing the change in methylation after DEX for each CpG sites assessed
in study 1 (n = 228) including post-hoc analysis for each time point. In
bold are sites with significant DEX-induced methylation change. (XLSX
234 kb)

Additional file 8: Table S3. Summary statistic from linear mixed models
testing the change in methylation after DEX including lymphocyte cells
counts as covariate for each CpG sites associated with change in
lymphocyte counts (n = 9) in study 2. (XLSX 50 kb)

Additional file 9: Table S4. Location of HAM-TBS amplicons and primer
sequences used to analyze FKBP5 CpGs. (XLSX 15 kb)

Additional file 10: Table S5. Results from stepwise regression analyses
comparing the LMM models without covariate, with smoking score
alone, or with all the associated covariates performed on 17 CpG sites
showing association with either age, sex, smoking, BMI, or MDD status in
study 2. (XLSX 35 kb)

Additional file 11: Table S6. Summary statistic from the linear mixed
models testing the change in methylation after DEX for 50 CpG sites
profiled in study 2 as well as the measures of bias, standard error, and
confidence intervals using bootstraps with 100 simulations. (XLSX 46 kb)
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Discussion 

Sequencing on the SOLiD 5500xl System – in-depth 

characterization of the GC bias 

With the introduction of every kind of technology, it is important to assess 
its performance, to optimize it and put in the context of existing commonly used 
methods. With the advent of next generation sequencing, some competing 
technologies were introduced, most notably the SOLiD and Illumina platforms.  

To date, existing attempts on evaluation, bias characterization and 
reduction largely focus on the upscale PCR during library construction, e.g. ramp 
rate of the thermocycler or the polymerase, specifically for the broadly Illumina 
sequencing technology (Aird et al., 2011; Oyola et al., 2012). In contrast, we 
revealed a strong GC bias specifically on the SOLiD system compared to the 
Illumina machine solely introduced post library preparation. An amplification-free 
library preparation of a microbial mixture of broad GC content and subsequent 
sequencing enabled the clear separation of library preparation and sequencing, 
hence allowing a much clearer identification of the source as well as the extent. 
The deviance of the sequenced GC distribution from the theoretical distribution 
based on the known genome sequence was measured and referred to as “shift”. 
Interestingly, the shift in GC content was much more pronounced in the high range 
on the SOLiD with 96% compared to 46% in the low range and reached best 
performance with a shift of 2% for the P. torridus at 36% mean GC content. The 
Illumina machine presented a more balanced and less extensive high/low bias at 
23% and 21%, respectively, also reaching a minimum of 15% shift for the 
P.torridus. 

Due to the absence of amplification in the library preparation, the emulsion 
PCR used by Life Technologies was identified as the main source of this bias – it 
prepares the readily made library for compatibility and subsequent loading on the 
flow cell and is the equivalent of Illumina’s bridge PCR. The uniformity of the heat 
distribution within an emulsion reaction cocktail has been shown to be crucial for 
proper enrichment in the past (Castellanos-Rizaldos, Milbury, & Makrigiorgos, 
2012), therefore, optimization of this aspect was chosen. First, reducing the 
volume of the default E80 pouch by the smaller E20 pouch yielded a significant 
decrease of the shift. We achieved a reduction of 12% in the high range and 7% 
in the low, with the maximum improvement of 34% for P.putida (62% mean GC 
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content). In conclusion, the reduction of the volume allowed for a better more even 
heat distribution that clearly significantly improved the outcome. To reduce the 
volume even further, the emulsion PCR was performed in a 96-well plate. Again, 
an improvement of the shift could clearly be observed, however, to a lesser extent. 
In the high range the overall maximum of 12% reduction of the shift was 
measurable compared to the E20 pouch, however, on the low end the gain was 
minimal at 1%.  

Overall, the optimization of the emulsion PCR heat distribution showed 
major improvement of the GC bias, both in the context of high and low GC content. 
While replacing the E80 pouch by the E20 can be recommended at as a default 
for preparation, the additional expense of handling time to use a 96-well plate 
needs to be carefully considered in terms of gained signal for the specific 
experiment. Of note, while the extent of the bias to the margins of the distribution 
was more pronounced on the SOLiD system, in the intermediate range of 
P.torridus (36% mean GC content) the SOLiD achieved a minimal shift of only 1% 
(E20 pouch) compared to 15% shift as the best result of the Illumina system. 
Sequencing approaches residing in this range, potentially spanning up to the E. 
coli range (around 51%) with comparable shifts between both systems of 18% 
and 16% respectively, may be an almost ideal fit for the SOLiD platform. A close 
assessment of the technology of choice may harbor real benefits in this context.  

The human genome has an average GC content of 40.9 % (Piovesan et al., 
2019), however, genomic elements like promotors or CpG islands easily have 
elevated CG content. To shed light on the impact of this bias on a broadly used 
experimental design, a H3K9 histone ChIP sequencing was performed using both 
E80 and E20 emulsion PCR settings as well as the Illumina sequencer. This mark 
was chosen due to its mixed source distribution spanning multiple genomic 
features as e.g. CpG islands, exons, introns as well as promotor regions with 
variable CpG contents. Well in line with the characterization of the balanced 
microbial mixture, the Illumina machine was either performing similarly (promotor 
regions / introns) or outperforming the SOLiD depending on the GC content to 
variable extent. The difference was pronounced in exonic regions and UTRs but 
most striking in CpG islands. Especially when looking to CpG islands with a CpG 
content above 62%, data generated by the SOLiD sequencer was almost entirely 
void of coverage. Due to the functional relevance of these regions the SOLiD 
sequencer should be used with caution, the Illumina machine will be the better 
choice. While the switch to the E20 pouch did provide improvement, the 
performance of the Illumina machine could not be matched and for the H3K9 
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acetylation ChIP sequencing the Illumina sequencer is identified as the most fitting 
sequencing machine.  

Additionally, checking publicly available SOLiD data on the same histone 
mark the same bias can be observed. The extent is variable depending on 
sequencing depth and tissue. While the machine itself is no longer in production, 
some laboratory still utilize it and awareness of its strength and weaknesses is 
imperative. Moreover, it is important to note that over the past years many data 
sets generated on the SOLiD sequencing system have been contributed to the 
scientific community. This data can still be used in a valuable way for various 
meta-analysis or validation approaches, hence, potential limitations need to be 
recognized.  

Lastly, while the SOLiD sequencing approach uses an emulsion PCR step 
it is not the only application of it. Sequencing systems as Roche 545 and Ion 
Torrent follow the same approach and can benefit from this evaluation as well. In 
fact, optimization of this PCR step is important but there are further approaches 
one could consider. For instance, the polymerase or ramp rates could be adjusted 
when using an emulsion PCR. This may be especially beneficial in the context of 
extreme GC contents as e.g. when working with CpG islands or methylation 
measurements from bisulfite converted samples specifically. However, if 
available, an Illumina machine will mostly be the preferred choice. 

 

HAM-TBS: high-accuracy methylation measurements via 

targeted bisulfite sequencing 

To date, working with methylation measurements by NGS still faces 
numerous limitations, foremost the high requirements regarding coverage to 
enable sufficient sensitivity. Despite rapid increase of throughput and the 
accompanied drop of price, NGS is still a cost intensive method to produce 
genome wide methylation measurements of low resolution compared to the EPIC 
array. Moreover, since single sample prices are high, larger sample sizes quickly 
become unfeasible. Alternative enrichment-based approaches such as MeDIP 
are cheaper but sacrifice single base pair resolution which can be crucial. 
Therefore, methods providing affordable methylation measurements of a target 
set of CpGs at high resolution and in moderate to high sample numbers fill an 
important experimental need.  

HAM-TBS enables the assessment of CpGs with a mean accuracy of 0.72% 
and within a genomic region of up to ~10 kb while remaining both affordable and 
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feasible to handle in the lab. This is achieved by introducing crucial steps both in 
the lab as well as during the extraction of the methylation signal from the data and 
the application exclusively to validated amplicons. Briefly, reduction of bias during 
the sample preparation was achieved by (1) introducing a triplicate bisulfite 
conversion step with subsequent pooling, (2) introduction of a pipetting robot and 
(3) and a PCR-free library preparation. 

By means of in vitro methylated control DNA with 0, 25, 50, 75 and 100 % 
methylation level, a thorough evaluation of the variance introduced by the bisulfite 
conversion and library preparation method was performed. Interestingly, we 
reached very high accuracy for all tested conditions with R2 values presenting 
amplification linearity across artificial methylation levels of >0.99 suggesting that 
our designed workflow is highly robust. Neither the bisulfite conversion nor the 
PCR-free library preparation introduced significant biases that would prevent 
robust and sensitive assessment of the methylation levels. However, when 
working with non-in vitro methylated samples from various tissues we cannot 
overall exclude higher variability during the bisulfite conversion step. Therefore, a 
triplicate bisulfite conversion step was installed and triplicates were subsequently 
pooled before proceeding to target enrichment. This maintained the cost 
efficiency by not inflating the sample numbers while increasing robustness 
against potential conversion issues due to different conditions in primary tissues. 
Next, the Agilent’s TapeStation and a pipetting robot were introduced to the 
workflow. This is enabling a higher throughput which can be quantified as the 
“loading factor” of the experiment. Briefly, each experimental instance is defined 
by the number of samples, 96 being the limit due to the Illumina PCR-free library 
preparation, and the amplicons, usually averaging around 400 bp each, which 
are assessed per sample. Assuming a symmetric design with loading factor = 
samples x amplicons a loading factor of >2000 for the HAM-TBS by increasing 
the atomization can comfortably be realized. Of note, the approach was designed 
to match the Illumina MiSeq capacity. In theory, the MiSeq can handle loading 
factors ranging up to 20.000, however, in practice pooling of amplicons and 
samples has limits in accuracy. A maximum loading factor as high as 2500-3000 
has turned out to be practicable. In addition to the increase of throughput, the 
introduction of the TapeStation and pipetting robot reduce potential variance and 
error introduced by manual handling of the high number of samples. It does, 
however, presume access to this technology which may be restricted depending 
on the setup of the individual lab. Lastly, a PCR-free library preparation method 
was integrated into the workflow. The amplification bias introduces a source of 
variance and bypassing it during library preparation contributes to the high 
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accuracy achieved by HAM-TBS further distinguishing it from the few other TBS 
approaches presented to date.  

To accurately extract the methylation measurements from the data, 
thorough quality control and rigorous filtering needs to be applied. Three steps 
were identified as crucial during data processing. First, bisulfite conversion rate 
is assessed for each sample and amplicon individually by extracting the 
conversion rate of cytosines in CHH context – meaning the cytosines is not 
followed by a guanine in the next two bases. Since cytosines in this context are 
largely unmethylated, a conversion rate close to 100 % is ideal. We installed a 
cutoff of 95 % to ensure proper bisulfite conversion has taken place, however, 
insufficient bisulfite conversion usually presents at much lower conversion rates. 
Second, we remove artefacts which present artificially introduced CpG sites. 
During the PCR to enrich the target region, errors can lead to artificial creation of 
CpG sites that are not present in the reference genome. However, limiting the 
analysis to the set of known CpG sites would remove to option to include SNPs in 
the analysis. Therefore, all CpG sites present in the data are quantified and 
filtering is applied afterwards. Artefacts commonly present with low coverage and 
extreme values of methylation of close to 0 or 100%. A heterogenous SNP will 
present with 50 % coverage compared to the average coverage across the full 
amplicon, hence, putting a threshold of e.g. 30 % coverage can be an appropriate 
choice. Lastly, the absolute coverage itself is to be considered. The aim of HAM-
TBS is to provide accurate yet cost-effective measurements. A minimum of 1000 
reads was identified as the threshold in agreement with others (Masser et al., 
2013) to be both sensitive while still remaining cost efficiency.   

The method was tailored to the Illumina MiSeq specifically. At the time, the 
longest sequencing read length was 300 bp paired-end available on this machine 
with 150 bp paired-end on other machines being the limit. Hence, the maximum 
size of amplicon to be covered in is 600 bp, however, sequencing quality drops 
with increasing length and shorter lengths can be of advantage. In addition, the 
library preparation limits the number of samples per batch to 96 since the kit is 
not able to multiplex higher. However, the HAM-TBS approach is designed to 
match the output capacity of the Illumina MiSeq and a maximum of 96 samples 
accommodates most medium-throughput experimental designs. Higher plexity 
would be of interest if CpGs on very few amplicons are being investigated, leaving 
capacity to increase sample number while not exceeding the maximum loading 
factor. By today, Illumina has introduced a sequencing kit for the NovaSeq6000 
which is able to sequence 250 bp paired-end and therefore of interest to TBS. The 
yield is >25 times higher than on the MiSeq with less than 2-fold increase of price 
of the sequencing itself. For experiments exceeding 96 samples or a MiSeq 
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compatible loading factor the switch to the sequencer with higher capacity would 
be of interest. However, there are some obstacles. Currently, no commercially 
available kits exist that enable a PCR-free library preparation of higher plexity, a 
custom solution would need to be developed. Alternatively, one could consider 
replacing the library preparation by a PCR based one as Illumina’s Nextera prep 
– however, this would be accompanied by a loss of accuracy. Additionally, 
Illumina sequencing technology suffers from an index hopping bias (Illumina, 
2017) which is lower on the MiSeq. During the development of the HAM-TBS 
method occurrence of this bias has not been observed. Nonetheless, caution 
should be maintained and it is recommendable to e.g. use Illumina’s Free Adapter 
Blocking Reagent or dual indexes whenever available.  
 In a second arm, the HAM-TBS publication releases a comprehensive 
panel targeting key regulatory regions of the FKBP5 gene and highlights the 
importance of validating each amplicon individually. This gene is of high 
relevance to researchers in the field of psychiatry and is targeted by a panel 
consisting of 29 amplicons, spanning ~9 kb and thereby covering 315 CpGs 
located in significant regulatory regions. More specifically, the transcription start 
site, TAD boundaries, GR and CTCF binding sites as well as enhancers regions 
are included. In order to accurately assess methylation changes between 
samples it is imperative that the amplification of the target region is linear and 
independent of the absolute methylation level. Proper optimization as e.g. cycling 
conditions and primer design are crucial and can influence the linearity. However, 
it is conceivable that sites exhibiting extreme CpG density as CpG islands can 
present with skewed amplification across different levels of methylation. Indeed, 
when assessing methylation levels within a CpG island present at the transcription 
start site of FKBP5 it was not possible to achieve linearity. The bias became more 
pronounced with increase in methylation level. However, two amplicons were 
included in the panel, it is important to interpret the results from these non-optimal 
amplicons with caution if measured methylation levels are high. Besides the 
evaluation of each amplicon, additional quality checks can be included. For 
instance, it may be useful to include samples containing unmethylated control 
DNA, a water control or an endogenous hemimethylated region as the H19 locus 
to control for index hopping, confirm orientation of the 96-well plate or as positive 
control.  
Taken together, the HAM-TBS method presents a framework enabling highly 
accurate methylation measurements with medium throughput tailored to the 
MiSeq. The approach is delivered already equipped with a fully validated panel 
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targeting the FKBP5 locus, hence, directly applicable to researchers in the field 
of psychiatry working with this gene.  

Identification of dynamic glucocorticoid-induced methylation 

changes at the FKBP5 locus 

Psychiatric disorders are complex diseases often resulting from an 
interplay of genetic and environmental factors. Epigenetic mechanisms can serve 
to embed environmental cues during an individual’s life time. The FKBP5 locus is 
an interesting target as studies in both children and adults measuring methylation 
changes in this locus have repeatedly identified it as reactive in response to 
childhood trauma (Klengel et al., 2013; Non et al., 2016; Tyrka et al., 2015; Yehuda 
et al., 2016). Therefore, understanding the dynamics of FKBP5 methylation in 
response to glucocorticoid exposure may provide valuable insight into underlying 
mechanisms embedding stress and gene x stress interactions. 

In this scope, methylation was measured in peripheral blood samples of 2 
independent cohorts across several timepoints following exposure to 
dexamethasone (DEX). This is a synthetic glucocorticoid with 
immunosuppressant and anti-inflammatory properties. In research, DEX is a 
powerful tool as it provides a way to stimulate the GR, setting the negative 
feedback loop in motion. Here, DEX was given to individuals with balanced alleles 
regarding the SNP rs1360780. This SNP has been associated with adult PTSD in 
individuals having experienced child abuse (Klengel et al., 2013).  In this scope, 
the FKBP5 panel and HAM-TBS method (Roeh et al., 2018) were key to interrogate 
samples from 19 (study 1) and 89 (study 2) individuals at baseline and 4 (study 
1) or 2 (study 2) further timepoints between 1h and 24h following DEX exposure. 
Additionally, data generated from the Illumina EPIC array was utilized and 
complemented this study. As expected, FKBP5 mRNA expression levels were 
significantly elevated at the 3h and 6h timepoints and returned to baseline after 
23h. The FKBP5 panel covers CpGs across multiple regulatory elements, 
however, DEX induced methylation changes (DMCs) were detected 
predominantly in proximal and intronic enhancers harboring GR and CTCF 
binding sites. However, methylation is low in CTCF binding sites in proximity but 
not directly at the binding site have been shown to obstruct CTCF binding (Bell & 
Felsenfeld, 2000; Wang et al., 2012) . The detected changes were rather small 
and not located directly at the binding site but rather in proximity. This has been 
implicated in reducing the stability of CTCF binding (Nakahashi et al., 2013), 
however, it is not yet sufficiently researched to which extent such a small change 
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may have an impact. Moreover, most of the detected DMCs were located within 
GREs suggesting an impact on enhancer function rather than on chromatin 
confirmation. CpGs located surrounding the TSS did not present with DMCs and 
displayed rather low methylation – as opposed to the higher levels measured 
within the gene body. Amongst the significant DMCs some occurred as early as 
one hour after DEX, they reached the maximum at 3h and 6h post admission and 
more than 80% returned to baseline by 23h. In line, the sites identified as DEX 
responsive overlapped with sites identified by a study in healthy subjects 
correlating methylation with 30-day cortisol load (Lee et al., 2018). The same 
applies to sites with differential methylation in Cushing’s syndrome (Resmini et al., 
2016), a disease exposing individuals to high levels of cortisol. Moreover, a study 
measuring methylation of patients in long-term remission identified a CpG located 
within a GRE the proximal enhancer of FKBP5 to be significantly demethylated 
(Glad et al., 2017). Our data supports this finding as this site remained significant 
after 23h and together indicates the presences of long lasting DNAm changes 
that may occur in response to GR activation.  

Another aspect of the study is the evaluation of the risk allele regarding 
rs1360780 associated with child abuse (Matosin et al., 2018). Overall, CpG sites 
shown to be demethylated in children and adults in response to childhood trauma 
(Matosin et al., 2018) do overlap with those identified in this study to be responsive 
to DEX. This indicates a mechanism potentially mediated by glucocorticoid 
exposure, and while the methylation levels returned to baseline after 23h, 
prolonged exposure may lead to more lasting effects. Allele-specific dynamics of 
methylation changes over time following DEX were assessed, both additive as 
well as interactive effects were considered. Both were detected in study 1, the 
majority being interactive (n=13) with some additive as well (n=6). The timelines 
of the studies differ, however, of the 17 CpGs 2 – located in intron 7 GRE and next 
to intron 5 GRE -  were also identified in study 2. Overall, the concordance of 
directionality of the genotype x DEX effect was assessed between both studies. 
While both studies showed higher than chance concordance of directionality for 
study 1 (all time points) and study 2 3h timepoint, this was not the case for the 
study 2 24h time point. Subsetting by regulatory region showed higher than 
chance concordance for GREs but not topologically associating domains (TAD) . 
Altogether, methylation changes displayed higher magnitude in GREs for carriers 
of the risk T allele indication an increased sensitivity to GR activation. This 
increased sensitivity to GR may also play a role in the potentially longer lasting 
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manifestation of environmental risk factors on methylation observed in carriers of 
the risk allele. 

Of note, the data was generated from a mixed tissue, therefore, a shift in 
blood cell counts and immune cell type proportions needed to be considered as 
a potential source of the signal. As expected, we did observe a shift in lymphocyte 
counts following DEX, DMCs withstood adjustment for the shift. While this suggest 
a true effect of DEX on methylation levels, a more detailed analysis using sorted 
cells could expand these findings. Besides BCC and immune cell type 
proportions, additional potential confounders were evaluated containing sex, age, 
ethnicity, BMI, smoking and MDD. While all but ethnicity showed some expected 
main effects on methylation levels, no significant interaction with DEX could be 
detected. Of note, some CpGs presented with a main effect of age, however, it 
was not possible to further investigate its influence. While more detailed analysis 
of early baseline differences and their contribution to the long-term effects of early 
adversity on the methylation levels of FKBP5 would be of interest, the narrow age 
range present in the cohorts prohibits this in the current study.  

The study was carried out in whole blood. However, it is important to note 
that FKBP5 chromatin states across various tissues (blood/immune cells, brain 
cells and fibroblasts) taken from the Roadmap Consortium (“Roadmap 
Consortium,” n.d.) suggest active transcription across tissues in conjunction with 
current literature. In addition, GRE sites within intron 5 and 7 present with 
consistent chromatin state across tissues. Taken together, this indicates observed 
effects of methylation changes on transcription are likely not unique to blood but 
relevant in multiple other tissues including the brain.  

Currently, the most widely used method to measure methylation in large 
sample sizes is the Illumina EPIC array. While it offers high resolution, it assesses 
a predefined set of CpGs only. Regarding the FKBP5 locus the array covers 
predominantly the TSS and proximal enhancer (>50 % of covered CpGs). Here, 
EPIC methylation measurements assessed in study 2 yielded 52 CpGs located in 
in the FKBP5 locus that could be analyzed and compared to 17 CpGs overlapping 
the HAM-TBS results. As expected, the high mean correlation of 0.96 between the 
two approaches confirmed consistency between the methods. Overall, the array 
data allowed for identification of 13 DMCs, 9 of which were not covered by the 
FKBP5 panel. However, it has to be noted that the highest DMCs located in the 
intronic GREs are entirely missing from the array data. This core finding was 
enabled by the HAM-TBS method and FKBP5 panel allowing for customization of 
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the region of interest while remaining feasibility at medium to high sample 
numbers.  
 

Conclusion 
Data generation is accelerating, constantly enabling the interrogation of 

countless biological questions. While the tools are powerful it is imperative to 
understand their individual strengths and weaknesses to draw the correct 
conclusions and, moreover, to be able to create customized tools to address 
specific queries. This thesis presents a full circle approach, opening with the 
thorough assessment of the SOLiD sequencing system itself and in regard to the 
broadly used Illumina technology. The relevance of this work in an experimental 
context is demonstrated using the example of a commonly used ChIP sequencing 
approach. Additionally, an optimized method termed HAM-TBS is introduced, 
enabling sensitive measurement of methylation of freely selected CpGs in a 
targeted fashion in medium to high sample sizes. We provide a validated panel of 
relevant target CpGs for the FKBP5 locus. This work lays the foundation for 
addressing the issue of dynamic methylation changes following DEX exposure in 
the FKBP5 locus with respect to a functional haplotype and sheds a little more 
light on this open field of research. 
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