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1 Introduction and Background 
Fractionated radiotherapy (RT), along with surgery, chemotherapy and hormonal or 

targeted therapy is one of the four modern classes of treatment of patients suffering 

from cancer. Today the majority of patients is treated with photons, and selected 

challenging cases with proton and carbon ion RT (the latter two are denoted as 

particle RT). The goal of RT is to treat the tumor with a therapeutic dose, while 

simultaneously sparing organs-at-risk (OARs) from radiation. Falling short of this 

objective may have severe consequences for the patient; thus treatment related 

uncertainties are a major concern in RT. Potential sources of uncertainty can be 

subdivided into two groups: 

General RT (both photon and particle RT) (van Herk 2004, Hodapp 2012): 

 inter-fractional anatomical changes of the patient (e.g. due to weight loss or
tumor shrinkage)

 intra-fractional anatomical changes of the patient (moving of organs due to
e.g. breathing)

 inter-fractional motion (uncertainty in the patient setup)

 delineation inaccuracies of targets as well as OARs (e.g. inter-observer
variability (IOV))

Particle RT specific (Lomax 2008, Yang et al 2012, Paganetti 2014): 

 range uncertainties (calibration curve for relative stopping power)

 predictions of spatially varying relative biological effectiveness (RBE)
compared to photons

Keeping these uncertainties in mind, modern RT relies on margin-based target 

concepts (Hodapp 2012). The gross-tumor volume (GTV) is the gross visible extent 

of a tumor. Due to the high density of the cancer cells in the GTV, an adequate dose 

must be delivered to the whole GTV. It is extended by a margin to a clinical target 

volume (CTV), which may additionally contain microscopic, subclinical extensions of 

the tumor, which are not readily visible with medical imaging. In practice, to ensure 

that the CTV receives a dose that does not deviate significantly from the prescribed 

and planned doses, additional margins must be applied to the CTV accounting for 

internal changes of the patient, as well as for variations in patient position and beam 

geometries, both intra-fractionally and inter-fractionally. This leads to the concept of 

planning target volume (PTV). In clinical practice photon PTV margins are often 

isotropic extensions of the CTV. In contrast to this, due to the physical properties of 

charged particles, particle RT margin concepts are typically dependent on e.g. beam 

angle and geometry (Hodapp 2012, Schuemann et al 2014). 

Substantial effort is invested to minimize the effect of the above listed uncertainties 

and hence to improve accuracy and reliability in RT. For example image-guided RT 

(IGRT) workflows using cone-beam computed tomography (CBCT) imaging at the 

treatment table are clinical standard for photon RT and are installed in an increasing 

number of particle RT centers worldwide. Currently these CBCT images are solely 

used to position the patient based on the visible anatomy. The CBCT images 
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themselves are not suitable for dose calculation and a (daily or online) treatment 

adaption on them is hence not feasible. In the scope of this habilitation an intensity 

correction for CBCT images, allowing for proton and photon dose calculation, was 

established and used to calculate the dose on the patient geometry of the day. The 

feasibility of a dose-guided patient positioning as an intermediate step to online 

adaptive RT (ART) was shown.  

Recently, integrated magnetic resonance-linear accelerators (MR-Linacs, (Lagendijk 

et al 2014b)) became clinically available. The superior soft-tissue contrast allows for 

accurate visualization of targets and OARs at no imaging dose before and during the 

treatment. The vendors of the two certified MR-Linacs (ViewRay MRIdian (Mutic and 

Dempsey 2014) and Elekta Unity (Lagendijk et al 2014a)) provide online ART 

workflows (e.g. (Acharya et al 2016)) based on a pre-treatment MR images. 

Additionally it is possible to continuously image the patient during irradiation: 2D cine 

imaging allows tracking of the tumor with a very high temporal resolution. Even gated 

treatments are possible based on these cine MR images, meaning that the tumor is 

only irradiated while it is in a predefined location. This is especially of interest for 

intra-fractionally moving tumors located in e.g. lung or liver. In the scope of this 

habilitation, an approach to generate pseudo computed tomography images from MR 

images was evaluated. This is crucial since a direct dose calculation is not possible 

on MR images. The electron density of the different voxels has to be superimposed in 

a fast and reliable way in the online ART workflow. Additionally research was 

performed on repeated 4D-MR imaging, which was used to generate probability-of-

presence (POP) maps for lung tumors. In a subsequent step the POP maps were 

compared to 4D CT based clinical target volume concepts. 

In particle RT new developments such as range verification and improved computed 

tomography (CT) imaging for treatment planning (particle CT (Arbor et al 2015)), dual 

energy CT (van Elmpt et al 2016)) aim at minimizing residual range uncertainties. In 

terms of particle RT treatment planning, robust optimization (Unkelbach et al 2018) 

has brought a major improvement. Conceptually, robust optimization was so far only 

introduced for setup and range uncertainties, whereas uncertainties in RBE 

prediction and interplay between range, setup and RBE uncertainties have not been 

included yet. In order to fill this gap a variance-based statistical uncertainty and 

sensitivity approach (Saltelli 2007) was applied to particle RT in the scope of this 

habilitation. Global variance-based uncertainty and sensitivity analyses (abbreviated 

as UA and SA, respectively) can be used to assess the impact of uncertain input 

parameters on a model output. By assigning suitable probability distributions to the 

inputs and by a subsequent frequent recalculation of the model with inputs randomly 

and independently sampled from their corresponding distributions, a comprehensive 

UA and SA were achieved. Note that the model can be any analytical or numerical 

function (e.g. dose distributions, dose-volume histograms (DVHs) or any dose 

statistics) and that any probability density function can be employed in the random 

sampling to model the uncertainties. This includes the common normal, uniform or 

beta distributions but also discretized decisions between different scenarios. This 

statistical and computational flexibility was adapted to particle RT in order to offer 
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new treatment plan evaluation possibilities with the eventual goal to include UA and 

SA comprehensively in treatment plan optimization. 

The above mentioned technical developments and improvements in accuracy 

eventually aim at reducing needed margin size. This reduction is the most efficient 

way to spare OARs, since a smaller tissue volume has to be irradiated at prescribed 

dose levels. To summarize, the research performed in the scope of this habilitation 

intents to pave the way towards new approaches to improve treatment planning in 

photon and particle RT by quantifying, accounting and minimizing the different 

uncertainties. To this aim, the following aspects have been addressed 

1. Sensitivity and uncertainty analysis for particle RT treatment planning (section
2.1)

2. CBCT intensity correction to facilitate dose calculation on the patient geometry
of the treatment day (section 2.2)

3. MR-based RT for brain tumor and moving lung tumors (section 2.3)

In the following chapters the selected peer-reviewed publications as first or last 

author in the scope of this habilitation are presented in more detail. Facsimiles of 

these publications can be found in chapter 8. 
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2 Own scientific contributions 

2.1 Projects on sensitivity and uncertainty analysis in particle therapy  
In order to account for, quantify and evaluate the above mentioned uncertainties in 

particle therapy a statistical calculation framework was developed and implemented 

in the last years. The core is a Monte Carlo derived, variance-based uncertainty and 

sensitivity analysis (UA and SA) to quantify the impact of different biological and 

physical uncertainties on particle therapy treatment plans. The UA and SA framework 

was added to the particle RT extension (Schell and Wilkens 2010) of the research 

treatment planning system CERR (a Computational Environment for Radiotherapy 

Research) (Deasy et al 2003).  

The underlying principle is the repeated evaluation of a function (here an RBE-

weighted dose (RWD) distribution or a RBE-weighted DVH (RW-DVH) of a treatment 

plan) for up to 105 times. For each of those runs all potentially uncertain inputs (e.g. 

the dose, isocenter position and biological modeling parameters) are simultaneously 

sampled randomly from their assigned distributions. This facilitates a ranking of the 

input parameter/uncertainty pairs according to their impact on the uncertainty of the 

result using variance-based statistics.  

In the last years this SA approach has been successfully applied to proton and 

carbon ion RT.  

2.1.1 Hofmaier J, Dedes G, Carlson DJ, Parodi K, Belka C, Kamp F. Variance-

based sensitivity analysis for uncertainties in proton therapy: A framework to 

assess the effect of simultaneous uncertainties in range, positioning and RBE 

model predictions on RBE-weighted dose distributions. Med Phys. 2020 Nov 

19 

The variance-based SA requires a large number (104-105) of RWD calculations. 

Based on a particle RT extension of the research treatment planning system CERR a 

fast, graphics processing unit (GPU) accelerated pencil beam modeling of patient 

and range shifts was implemented. In addition to the setup and range uncertainties 

proton therapy is affected by uncertainties in RBE prediction. While to date a 

constant RBE of 1.1 is commonly assumed clinically, the actual RBE is known to 

increase towards the distal end of the spread-out Bragg peak. Several models for 

variable RBE predictions exist. In this study two biological models were included: The 

mechanistic repair-misrepair-fixation (RMF) model (Carlson et al 2008), A2) and the 

phenomenological Wedenberg model (Wedenberg et al 2013). Here, the input 

parameters (patient position, proton range, RBE model parameters) were sampled 

simultaneously from their assumed probability distributions. Statistical formalisms 

rank the input parameters according to their influence on the overall uncertainty of 

RW-DVH quantiles and the RWD in every voxel, resulting in relative normalized 

sensitivity indices (“S=0: non influential input”; “S=1: the only influential input”). 

Results were visualized as RW-DVHs with uncertainty bars and sensitivity maps 

(figure 1).  
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The approach was demonstrated for two representative brain tumor cases and a 

prostate case. The full SA including ~2.8*104 RWD calculations took 39, 11 and 55 

minutes, respectively. Range uncertainty was an important contributor to the overall 

uncertainty at the distal end of the target region. The smaller uncertainty inside the 

target itself was governed by the impact of biological uncertainties. Consequently, the 

uncertainty of the RW-DVH quantile D98% for target was dominated by range 

uncertainty while the uncertainty of the mean target dose was caused predominantly 

by the uncertainty in biological parameters. It was shown that the SA framework is a 

powerful and flexible tool to evaluate uncertainty in RWD distributions and DVH 

quantiles, taking into account physical and RBE uncertainties and their interplay. The 

Figure 1 : A) RWD distribution, B) local standard deviation, C) LET distribution and sensitivity maps (D-
K)for an exemplary patient and the RMF model in the calculation with 𝛼𝑋 / 𝛽𝑋= 2 Gy with a standard 
deviation of 10 %. Figure adapted from [1].
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additionally gained information will have implications for future approaches to 

biologically robust planning and optimization. 

2.1.2 Hofmaier J, Walter F, Hadi I, Rottler M, von Bestenbostel R, Dedes G, Parodi 

K, Niyazi M, Belka C, Kamp F. Combining inter-observer variability, range and 

setup uncertainty in a variance-based sensitivity analysis for proton therapy. 

Phys Imaging Radiat Oncol. 2021 Dec 2;20:117-120. 

In this project the UA and SA of the previous chapter was extended to uncertain 

CTVs. Due to IOV (Hellebust et al 2013, Lobefalo et al 2013, Eminowicz et al 2016, 

Vinod et al 2016) the target structure in RT is inherently uncertain. The feasibility to 

extend the UA and SA by sampling over discrete scenarios (different CTVs) in one 

UA and SA was shown successfully. The presented framework is based on the 

particle extension (Schell and Wilkens 2010) of CERR (Deasy et al 2003) combined 

with the fast GPU-based pencil beam RWD calculation algorithm. In order to 

demonstrate the combined impact of IOV, setup and range uncertainty in a variance-

based SA ten patients with skull base meningioma were evaluated. For each patient, 

four clinicians independently delineated the GTV taking into account all imaging 

modalities. A consensus GTV was created using the simultaneous truth and 

performance level estimation (STAPLE) algorithm (Warfield et al 2004). Following 

current guidelines no margin was added to create the CTVs (i.e. CTV = GTV). The 

mean calculation time to perform the SA including 1.6 * 104 RWD recalculations was 

59 min. For two patients in this dataset, IOV had a relevant impact on the estimated 

CTV D95% uncertainty. 

In this project an important additional source of uncertainty was included in the 

analysis and evaluated in the context of several uncertain parameters. From a more 

technical point of view the feasibility to add the sampling over discrete IOV scenarios 

to the SA was shown. This is an important step to comprehensively simulate and 

evaluate all major sources of uncertainty in (particle therapy) treatment planning and 

plan evaluation. 

2.1.3 Kamp F, Wilkens JJ. Application of variance-based uncertainty and sensitivity 

analysis to biological modeling in carbon ion treatment plans. Med Phys. 2019 

Feb;46(2):437-447. 

In carbon ion therapy the RBE itself as well as the impact of biological uncertainties 

on RBE predictions is higher than in proton therapy. The variance-based UA and SA 

was implemented to quantify and hence access the impact of these biological 

uncertainties on RWD distributions in carbon ion therapy treatment planning.  

Based on an exemplary astrocytoma patient case, the application of variance-based 

SA for biological measures was demonstrated and applied to a two-field spot 

scanning carbon ion treatment plan for two commonly used biological models (Scholz 

et al 1997, Carlson et al 2008), A2, A3) and two representative tissue parameter sets. 

A voxel-wise calculation for 2.9*105 voxels took ~6 h. A structure-based SA, which 

adds an uncertainty band to a RW-DVH and shows how to decrease the overall 
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uncertainty in the most effective way, can be calculated in 0.1–1.5 h (depending on 

the size of the structure). The uncertainties in RBE, RWD or RW-DVH were broken 

down to the contributions of different uncertainties in the (biological) model input. 

Biological uncertainties have a higher impact on the resulting RBE and RWD than 

uncertainties in the physical dose. Excluding the physical dose from the SA only 

slightly decreased the overall uncertainty, emphasizing the necessity to 

comprehensively include biological uncertainties into treatment plan evaluation. 

The way to this study was paved by two preliminary studies (A2, A3). Within the first 

study, RMF model predictions were combined with fragmentation spectra to perform 

carbon ion treatment planning including RBE model predictions (A2). The second 

publication was a technical note that demonstrated the decoupling of physical beam 

properties and biological input in the frame of the RMF-model, facilitating very fast 

RBE model predictions and, even more important, very fast changes of biological 

tissue properties as input to the RBE prediction (A3). 

The method was presented and discussed based on an exemplary patient case. 

Future applications include sensitivity-based, biologically robust, treatment plan 

optimization using the newly accessible, patient-specific uncertainty and sensitivity 

information. 

2.1.4 Further publications related to sensitivity and uncertainty analysis and 

modeling of the relative biological effectiveness 

A1. Zvereva A, Kamp F, Schlattl H, Zankl M, Parodi K. Impact of interpatient 
variability on organ dose estimates according to MIRD schema: Uncertainty and 
variance-based sensitivity analysis. Med Phys. 2018 Jul;45(7):3391-3403. 

A2. Kamp F, Cabal G, Mairani A, Parodi K, Wilkens JJ, Carlson DJ. Fast Biological 
Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic 
Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. Int J Radiat 
Oncol Biol Phys. 2015 Nov 1;93(3):557-68. 

A3. Kamp F, Carlson DJ, Wilkens JJ. Rapid implementation of the repair-misrepair-
fixation (RMF) model facilitating online adaption of radiosensitivity parameters in 
ion therapy. Phys Med Biol. 2017 Jul 7;62(13):N285-N296. 

A4. Kamp F, Brüningk S, Cabal G, Mairani A, Parodi K, Wilkens JJ. Variance-based 
sensitivity analysis of biological uncertainties in carbon ion therapy. Phys Med. 
2014 Jul;30(5):583-7.  

A5. Meschini G, Kamp F, Hofmaier J, Reiner M, Sharp G, Paganetti H, Belka C, 
Wilkens JJ, Carlson DJ, Parodi K, Baroni G, Riboldi M. Modeling RBE-weighted 
dose variations in irregularly moving abdominal targets treated with carbon ion 
beams. Med Phys. 2020 Jul;47(7):2768-2778. 

A6. Resch AF, Landry G, Kamp F, Cabal G, Belka C, Wilkens JJ, Parodi K, Dedes 
G. Quantification of the uncertainties of a biological model and their impact on
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variable RBE proton treatment plan optimization. Phys Med. 2017 Apr;36:91-
102.  

2.2 CBCT based adaptive radiotherapy for photon and proton radiotherapy 

treatment 
In the last years a method for CBCT intensity correction was established at the LMU 

in Munich. In close cooperation with the Medical Physics chair of the LMU physics 

faculty, a method to correct CBCT intensity was implemented and evaluated. This 

allows reliable and accurate photon as well as proton dose calculation on the patient 

geometry of the day based on the CBCT.  

The CBCT images are corrected for typical CBCT artefacts and converted to 

planning CT (pCT) equivalent Hounsfield unit (HU) numbers by using the method 

proposed by (Park et al 2015). Briefly, the method makes use of a virtual CT (vCT) 

obtained by deformable image registration (DIR) of the pCT to a CBCT image. The 

vCT is used to generate idealized projections which allow estimation and correction 

of non-idealities in the original CBCT projections. This approach has been 

extensively evaluated in terms of HU as well as photon and proton RT dose 

calculations (Park et al 2015)([4],B1,B2,B3) and used as input for several 

publications about artificial intelligence approaches for CBCT intensity correction 

(B4,B5,B7). The process eventually yields an intensity corrected CBCT image, 

CBCTcor, reconstructed from the corrected projections. An example of the method is 

shown in figure 2. CBCTcor displays the patient geometry of the day (as does the 

CBCT) but with CT values comparable to the pCT, allowing reliable dose calculations 

for both proton and photon RT. The generation of one CBCTcor takes about 5-10 min 

with few manual steps in the process. The usage of a DIR and resulting vector field 

has the advantage that contoured structures of the pCT can be warped to the daily 

CBCT geometry. This provides an automated contour suggestion as starting point for 

the review by a physician. 

2.2.1 Hofmaier J, Haehnle J, Kurz C, Landry G, Maihoefer C, Schüttrumpf L, Süss 

P, Teichert K, Söhn M, Spahr N, Brachmann C, Weiler F, Thieke C, Küfer KH, 

Belka C, Parodi K, Kamp F. Multi-criterial patient positioning based on dose 

recalculation on scatter-corrected CBCT images. Radiother Oncol. 2017 

Dec;125(3):464-469.  

In this project the CBCTcor was used to evaluate the feasibility and potential 
advantages of dose-guided patient positioning based on dose recalculation on the 
patient geometry of the day based on CBCT. The dose-guided patient positioning is a 
multi-criteria approach previously introduced by Haehnle et al. (B9). In the conducted 
project the scatter correction approach has been employed to facilitate precise 
photon dose calculations on daily CBCT images. The proposed tool for interactive 
multi-criterial dose-guided patient positioning which uses interpolation between pre-
calculated sample doses has been utilized. The workflow was retrospectively 
evaluated for two head and neck patients with a total of 39 CBCTs.  
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DVH parameters were compared to rigid image registration based isocenter 
corrections, mimicking the clinical scenario. The accuracy of the dose interpolation 
was successfully compared against Monte Carlo dose calculation facilitating the 
implementation of dose guided patient positioning. Compared to the clinical scenario, 
the mean dose to the parotid glands could be improved for 2 out of 5 fractions for the 
first patient while other parameters were preserved. For the second patient, the mean 
coverage over all fractions of the high dose PTV could be improved by 4%. For this 
patient, dose coverage improvements had to be traded against OAR doses within 
their clinical tolerance limits. In conclusion, it was shown that dose guided patient 
positioning for photon RT is feasible and offers increased control over target dose 
coverage and doses to OARs. The presented dose-guided patient positioning 
approach has advantages over online ART workflows, since the treatment plan is not 
re-optimized and hence has not to be approved again by a clinician and a medical 
physicist. Note that the concept of dose-guided patient positioning has also been 
tested for proton RT (B10). 

2.2.2 Neppl S, Kurz C, Köpl D, Yohannes I, Schneider M, Bondesson D, Rabe M, 

Belka C, Dietrich O, Landry G, Parodi K, Kamp F. Measurement-based range 

evaluation for quality assurance of CBCT-based dose calculations in adaptive 

proton therapy. Med Phys. 2021 Aug;48(8):4148-4159 

Adaptive proton RT based on volumetric in-room imaging requires commissioning 

and quality assurances measures for the employed imaging. This is especially crucial 

in case of online adaptive scenarios. In this publication a quality assurance method 

for 3D range verification in CBCTcor based dose calculations was introduced using 

dosimetry gel and films in 3D printed head phantoms. The aim was to explicitly 

Figure 2: The vCT approach fails to properly deform the pCT to match the CBCT, as seen in the region 
indicated by the white circle for a prostate patient case. The scatter corrected CBCT (CBCTcor) shows 
similar image quality as the pCT and the correct anatomy when compared to the CBCT. The same 
window and level has been used for displaying. Figure adapted from (B1). 
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account for the impact of the treatment plan re-optimization process. Patient specific 

3D printed head phantoms based on the clinical pCT were available for three patient 

cases. For these patients single field uniform dose pencil beam scanning proton 

plans were created on both pCT and CBCTcor, respectively. Here the same target 

volumes and optimization constraints were used for pCT and CBCTcor. The resulting 

treatment plans and their respective forward recalculations on pCT or CBCTcor were 

compared in terms of proton range differences (80% distal fall-off). The two treatment 

plans per patient were additionally irradiated and the resulting dose distribution 

measured using film and gel dosimetry inside the 3D printed head phantoms. In order 

to extract the impact of the imaging, the simulated as well as the measured range 

differences were corrected for range differences originating from the initial plans.  

The results indicate that a CBCTcor based online adaptive proton therapy workflow for 

head irradiations is feasible. The here introduced measurement- and simulation-

based method was equivalent to the standard recalculation approach commonly 

found in the literature. The advantage is that it additionally has the capability to catch 

effects of image differences on the optimization step of the workflow. The observed 

uncertainties could be kept within those of the image registration and positioning. The 

proposed validation approach is transferable to other potential in-room imaging 

modalities, e.g. to MR-based pseudoCTs. 

2.2.3 Further publications related to CBCT based adaptive radiotherapy for photon 

and proton radiotherapy treatment and dose-guided patient positioning 

B1. Kurz C, Kamp F, Park YK, Zöllner C, Rit S, Hansen D, Podesta M, Sharp GC, 
Li M, Reiner M, Hofmaier J, Neppl S, Thieke C, Nijhuis R, Ganswindt U, Belka 
C, Winey BA, Parodi K, Landry G. Investigating deformable image registration 
and scatter correction for CBCT-based dose calculation in adaptive IMPT. 
Med Phys. 2016 Oct;43(10):5635. 

B2. Schmitz H, Rabe M, Janssens G, Bondesson D, Rit S, Parodi K, Belka C, 
Dinkel J, Kurz C, Kamp F*, Landry G*. Validation of proton dose calculation 
on scatter corrected 4D cone beam computed tomography using a porcine 
lung phantom. Phys Med Biol. 2021 Aug 30;66(17). *Both authors contributed 
equally 

B3. Bondesson D, Meijers A, Janssens G, Rit S, Rabe M, Kamp F, Niepel K, Otter 
LAD, Both S, Brousmiche S, Dinkel J, Belka C, Parodi K, Knopf A, Kurz C, 
Landry G. Anthropomorphic lung phantom based validation of in-room proton 
therapy 4D-CBCT image correction for dose calculation. Z Med Phys. 2020 
Nov 25:S0939-3889(20)30099-4 

B4. Kurz C, Maspero M, Savenije MHF, Landry G, Kamp F, Pinto M, Li M, Parodi 
K, Belka C, Van den Berg CAT. CBCT correction using a cycle-consistent 
generative adversarial network and unpaired training to enable photon and 
proton dose calculation. Phys Med Biol. 2019 Nov 15;64(22):225004 
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B5. Landry G, Hansen D, Kamp F, Li M, Hoyle B, Weller J, Parodi K, Belka C, 
Kurz C. Comparing Unet training with three different datasets to correct CBCT 
images for prostate radiotherapy dose calculations. Phys Med Biol. 2019 Jan 
24;64(3):035011.  

B6. Niepel K, Kamp F, Kurz C, Hansen D, Rit S, Neppl S, Hofmaier J, Bondesson 
D, Thieke C, Dinkel J, Belka C, Parodi K, Landry G. Feasibility of 4DCBCT-
based proton dose calculation: An ex vivo porcine lung phantom study. Z Med 
Phys. 2019 Aug;29(3):249-261. 

B7. Hansen DC, Landry G, Kamp F, Li M, Belka C, Parodi K, Kurz C. ScatterNet: 
A convolutional neural network for cone-beam CT intensity correction. Med 
Phys. 2018 Nov;45(11):4916-4926. 

B8. Zöllner C, Rit S, Kurz C, Vilches-Freixas G, Kamp F, Dedes G, Belka C, 
Parodi K, Landry G, Decomposing a prior-CT-based cone-beam CT projection 
correction algorithm into scatter and beam hardening components, Phys. 
Imag. Radiat. Oncol. (phiRO) 3, 49-52. 

B9. Haehnle J, Süss P, Landry G, Teichert K, Hille L, Hofmaier J, Nowak D, Kamp 
F, Reiner M, Thieke C, Ganswindt U, Belka C, Parodi K, Küfer KH, Kurz C. A 
novel method for interactive multi-objective dose-guided patient positioning. 
Phys Med Biol. 2017 Jan 7;62(1):165-185 

B10. Kurz C, Süss P, Arnsmeyer C, Haehnle J, Teichert K, Landry G, Hofmaier J, 
Exner F, Hille L, Kamp F, Thieke C, Ganswindt U, Valentini C, Hölscher T, 
Troost E, Krause M, Belka C, Küfer KH, Parodi K, Richter C. Dose-guided 
patient positioning in proton radiotherapy using multicriteria-optimization. Z 
Med Phys. 2019 Aug;29(3):216-228.  

2.3 Application of magnetic resonance imaging in treatment planning 

2.3.1  Neppl S, Landry G, Kurz C, Hansen DC, Hoyle B, Stöcklein S, Seidensticker 

M, Weller J, Belka C, Parodi K, Kamp F. Evaluation of proton and photon 

dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from 

T1-weighted MR head scans. Acta Oncol. 2019 Oct;58(10):1429-1434.  

In a subsequent step the ScatterNet employed for CBCT intensity correction (e.g. B7) 

of the previous chapter has been extended to generate pseudoCTs from cranial MR 

image. The underlying clinical scenario is either a so-called MR-only workflow or an 

MR-guided RT workflow. In order to perform dose calculations, in both workflows it is 

necessary to convert MR images to pseudoCT images, since the electron density 

information is required for dose calculations.  
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Recently several groups performed this pseudoCT generation using artificial 

intelligence (Han 2017, Dinkla et al 2018, Jin et al 2019). These studies as well as 

the project of this habilitaton were motivated by a need of fast and reliableconversion 

of MR images to X-ray CT images, especially in the scope of recent developments of 

MR based adaptive strategies for photon and, potentially for proton RT. As stated 

above, precise CT values are needed for photon and proton dose calculation. A 

major step compared to the ScatterNet introduced by Hansen et al. (B7) was the 

achieved extension to 3D to reduce inter-slice discontinuities seen in its 2D 

application. Consequently two U-shaped convolutional neural networks (Unet) were 

implemented. The results of the so-called Unet2D as well as the Unet3D pseudoCT 

generation were compared against each other. A database of 89 T1-weighted MR 

head scans with about 100 slices each, including rigidly registered CTs, was created. 

Twenty-eight validation patient datasets were randomly sampled, and four patient 

datasets were selected for application. The remaining patient datasets were used to 

train both Unet2D as well as Unet3D. A stack size of 32 slices was used for 3D 

training. For all application dataset cases, volumetric modulated arc RT photon and 

single-field uniform dose pencil-beam scanning proton plans at four different gantry 

Figure 3: Sagittal views for an exemplary patient of the application set of the CT (upper left) and the MR 
(upper right). The corresponding slices of the 2D trained pseudoCT Unet2D (middle left), and the 3D 
trained pseudoCT Unet3D (lower left) are displayed. The difference plots “pseudoCT Unet2D – original 
CT” (middle right) and “pseudoCT Unet3D – original CT” (lower right) are also shown. Figure adapted 
from [6]. It can be seen that slice discontinuities are reduced in the 3D case at the cost of sharpness.  
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angles were optimized for a generic target on the CT and recalculated on 2D and 3D 

Unet-based pseudoCTs. Mean (absolute) error (MAE/ME) and a gradient sharpness 

estimate were used to quantify the image quality. Three-dimensional gamma and 

dose difference analyses were performed for photon (gamma criteria: 1%, 1mm) and 

proton dose distributions (gamma criteria: 2%, 2mm). Range (80% fall off) differences 

for beam’s eye view profiles were evaluated for protons. Training 36 h for 1000 

epochs in 3D or 6 h for 200 epochs in 2D yielded a maximum MAE of 147 HU and 

135 HU, respectively, for the application patient datasets. An exemplary result 

adopted from this publication [6] is shown in figure 3. Except for one patient gamma 

pass rates for photon and proton dose distributions were above 96% for both Unets. 

Slice discontinuities were reduced for 3D training at the cost of sharpness. Image 

analysis revealed a slight advantage of 2D Unets compared to 3D Unets. Similar 

dose calculation performance was reached for the 2D and 3D network. Overall, good 

accuracy was found for both proton and for photon dose calculation and a considered 

cohort of brain tumor patients.  

2.3.2 Rabe M, Thieke C, Düsberg M, Neppl S, Gerum S, Reiner M, Nicolay NH, 

Schlemmer HP, Debus J, Dinkel J, Landry G, Parodi K, Belka C, Kurz C*, 

Kamp F*. Real-time 4DMRI-based internal target volume definition for moving 

lung tumors. Med Phys. 2020 Apr;47(4):1431-1442. *Both authors contributed 

equally  

A further promising application of MR imaging in RT is the possibility to show moving 

patient geometries in 4D. Since MR imaging does not deposit dose in the patient (in 

contrast to e.g. CBCT) it can be repeatedly used to image e.g. the respiratory 

induced tumor movement over time. In clinical practice respiratory-induced target 

motion can be accounted for by internal target volumes (ITV) (Hodapp 2012) or mid-

ventilation target volumes (midV) (Wolthaus et al 2006) defined on the basis of a 4D-

CT. Intrinsic limitations of these approaches can result in target volumes that are not 

representative for the GTV motion over the course of treatment. To address these 

limitations, a novel patient-specific ITV definition method based on real-time 4D 

magnetic resonance imaging (rt-4DMRI) was proposed. The method was evaluated 

based on three lung cancer patients who underwent weekly rt-4DMRI scans. A total 

of 24 datasets were included in this retrospective study. The GTV was contoured on 

breath-hold MR images and propagated to all rt-4DMRI images by deformable image 

registration. Different targets were created for the first (reference) imaging sessions: 

ITVs encompassing all GTV positions over the complete (ITV80s) or partial acquisition 

time (ITV10s), ITVs including only voxels with a GTV probability-of-presence (POP) of 

at least 5% (ITV5%) or 10% (ITV10%), and the mid-ventilation GTV position. An 

exemplary POP distribution on top of an rt-4DMRI is shown in figure 4. Reference 

planning target volumes (PTVr) were created by adding margins around the ITVs and 

midV target volumes. The geometrical overlap of the PTVr with ITVn
5% from the six to

eight subsequent imaging sessions on days n was quantified in terms of the Dice 

similarity coefficient (DSC), sensitivity (SE: (PTVr / ITVn
5%) / ITVn

5% ) and precision

(PRE: (PTVr / ITVn
5%) / PTVr) as surrogates for target coverage and normal tissue

sparing.  
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The results can be summarized as follows: patient-specific analysis yielded a high 

variance of the overlap values of PTVr
10s, when different periods within the reference

imaging session were sampled. The mid-ventilation-based PTVs were smaller than 

the ITV-based PTVs. Whereas the SE was high for patients with small breathing 

pattern variations, changes of the median breathing amplitudes in different imaging 

sessions led to inferior SE values for the mid-ventilation PTV for one patient. In 

contrast, PTVr
5% and PTVr

10% showed higher SE values with a higher robustness

against inter-fractional changes, at the cost of larger target volumes. In conclusion, 

the results indicate that rt-4DMRI could be valuable for the definition of target 

volumes based on the GTV POP to achieve a higher robustness against inter-

fractional changes than feasible with today’s 4D-CT-based target definition concepts.  

2.3.3 Further publications related to MR in radiotherapy 

C1. Rabe M, Paganelli C, Riboldi M, Bondesson D, Schneider MJ, Chmielewski T, 
Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F*, Kurz C*. 
Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal 

Figure 4: Three-dimensional probability-of-presence (POP) distribution displayed on top of the MR 
images of an exemplary patient. The POP is color-encoded and superimposed on four-dimensional-
magnetic resonance imaging (MRI). The crosshairs indicate the slice positions in the respective axial, 
coronal, and sagittal views. Figure adapted from [7]. 

16



Habilitation Dr. rer. nat. Florian Kamp 

cine imaging for low-field MR-Linacs. Phys Med Biol. 2020 Nov 10. *Both 
authors contributed equally 

C2. Kurz C, Buizza G, Landry G, Kamp F, Rabe M, Paganelli C, Baroni G, Reiner 
M, Keall PJ, van den Berg CAT, Riboldi M. Medical physics challenges in 
clinical MR-guided radiotherapy. Radiat Oncol. 2020 May 5;15(1):93. 

C3. Nierer L, Kamp F, Reiner M, Corradini S, Rabe M, Dietrich O, Parodi K, Belka 
C, Kurz C, Landry G. Evaluation of an anthropomorphic ion chamber and 3D 
gel dosimetry head phantom at a 0.35 T MR-linac using separate 1.5 T MR-
scanners for gel readout. Z Med Phys. 2022 Mar 16:S0939-3889(22)00006-X. 

C4. Da Silva Mendes V, Nierer L, Li M, Corradini S, Reiner M, Kamp F, Niyazi M, 
Kurz C, Landry G, Belka C. Dosimetric comparison of MR-linac-based IMRT 
and conventional VMAT treatment plans for prostate cancer. Radiat Oncol. 
2021 Jul 21;16(1):133. 

C5. Kroll C, Dietrich O, Bortfeldt J, Kamp F, Neppl S, Belka C, Parodi K, Baroni G, 
Paganelli C, Riboldi M. Integration of Spatial Distortion Effects in a 4D 
Computational Phantom for Simulation Studies in Extra-Cranial MRI-guided 
Radiation Therapy: Initial Results. Med Phys. 2020 Nov 21. 

C6. Kroll C, Dietrich O, Bortfeldt J, Paganelli C, Baroni G, Kamp F, Neppl S, Belka 
C, Parodi K, Opel M, Riboldi M. Improving the modelling of susceptibility-
induced spatial distortions in MRI-guided extra-cranial radiotherapy. Phys Med 
Biol. 2019 Oct 10;64(20):205006.  

C7. Dumlu HS, Meschini G, Kurz C, Kamp F, Baroni G, Belka C, Paganelli C, 
Riboldi M. Dosimetric impact of geometric distortions in an MRI-only proton 
therapy workflow for lung, liver and pancreas. Z Med Phys. 2020 Nov 
6:S0939-3889(20)30104-5. 
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3 Conclusions and outlook 
In the scope of this habilitation, studies on several aspects of treatment planning and 

treatment plan evaluation for radiotherapy with photons and particles have been 

conducted. These, on the one hand, focused on methods how to model, propagate 

and interpret uncertainties in the treatment planning process and, on the other hand, 

aimed at providing new insight to methods and techniques useful for ART.  

In the scope of this habilitation it was possible to show the power of the very flexible 

variance-based UA and SA approach. Future research will extend the present work in 

several directions. First, the method can be applied to photon RT, comprehensively 

modeling the impact of setup uncertainties, IOV and potentially also inter-fractional 

changes due to varying geometry of a patient during the course of a fractionated 

radiotherapy treatment. Here the intensity corrected CBCT images of the second part 

of the habilitation could be used. Second, the newly derived information on UA and 

SA could be included into the treatment plan optimization itself to achieve additional 

robustness in particle treatment plans, allowing accounting for uncertainties in setup, 

range and RBE prediction as well as IOV in the target definition. In order to achieve 

this, an optimization cost function including the UA and SA measures could be 

implemented in a research treatment planning platform. The framework can be used 

to evaluate and quantify the impact of improvements in terms of e.g. smaller range 

uncertainties coming with new technologies, e.g. dual energy CT or particle CT. 

The discussion and outlook in terms of methods and steps towards ART has to be 

subdivided between photon and particle therapy. In the case of photons, online ART 

has become available in clinic with the introduction of MR-Linacs and the CBCT-

based Ethos System by Varian. Although these machines provide the possibility of 

online ART, the processes are still fairly time consuming and require an approval of 

the adapted treatment plan by a clinician and a medical physicist. Since the initial 

treatment plan remains unchanged, the dose-guided patient positioning workflow 

evaluated in the scope of this habilitation does not require these approvals and could 

serve as an intermediate adaption step, ensuring an optimized reliable workflow. In 

cases where the dose-guided positioning is not sufficient, the online ART workflow 

can still be triggered using the same images.  

A fast and reliable conversion of MR images to pseudoCTs is crucial for dose 

calculation on MR images. The presented Unet based conversion is hence of interest 

for clinics equipped with MR-Linacs as well as those using MR only workflows. Future 

research will be focused on a broader applicability in terms of further tumor locations 

as well as MR imaging sequences e.g. those used in clinical routine at MR-Linacs. 

Currently, due to technical reasons and the often smaller B-fields, the fast rt-4DMRI 

exploited in section 2.3.2. cannot be acquired on the MR-Linac machines. MR-Linacs 

though offer the possibility to provide tumor tracking based on online available cine 

slices acquired with a comparably high temporal resolution of e.g. 8 Hz in 

combination with gating of the beam delivery. The developed POP method could be 

used to optimize gating windows and hence to reduce overall treatment time per 

fraction. 
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In the case of proton therapy, image guided (online) adaption could be based on 

intensity corrected CBCTs, acquired prior to the treatment. In the scope of this 

habilitation a necessary QA procedure for (online) ART based on these images has 

been demonstrated. Future development will need to provide the necessary 

improvements in terms of speed and reliability of the workflow. Measures of artificial 

intelligence for CBCT intensity correction are currently exploited in this respect. 

To conclude, the research conducted in the scope of this habilitation addressed 

various aspects of ART and uncertainty and sensitivity measures to further improve 

treatment planning and treatment plan adaption in radiotherapy with photons, protons 

and carbon ions paving the way towards a potential clinical adoption of the presented 

new techniques. 
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4 List of abbreviations  
ART Adaptive radiotherapy 

CBCT Cone-beam computed tomography 

CERR  Computational environment for radiotherapy research 

CT Computed tomography 

CTV Clinical target volume 

DIR Deformable image registration 

DSC Dice similarity coefficient 

DVH Dose volume histogram 

GPU Graphics processing unit 

GTV Gross tumor volume 

HU Hounsfield unit 

IGRT Image-guided radiotherapy 

IOV Inter-observer variability 

ITV Internal target volume 

M(A)E  Mean (absolute) error  

MR Magnetic resonance  

MR-Linac Magnetic resonance-linear accelerator 

midV Mid-ventilation target volume 

OAR Organ-at-risk 

pCT Planning CT 

POP Probability-of-presence 

PRE precision PRE = (PTVr / ITVn
5%) / PTVr

PTV Planning target volume 

RBE Relative biological effectiveness 

RMF Repair-misrepair-fixation 

RT Radiotherapy 

rt-4DMRI Real-time 4D magnetic resonance imaging 

RWD RBE-weighted dose 

RW-DVH RBE-weighted dose volume histogram 

SA Sensitivity analysis 

SE Sensitivity SE = (PTVr / ITVn
5%) / ITVn

5%

STAPLE Simultaneous truth and performance level estimation 

UA Uncertainty analysis 

Unet U-shaped convolutional neural network

vCT Virtual CT 
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Purpose: Treatment plans in proton therapy are more sensitive to uncertainties than in conventional
photon therapy. In addition to setup uncertainties, proton therapy is affected by uncertainties in pro-
ton range and relative biological effectiveness (RBE). While to date a constant RBE of 1.1 is com-
monly assumed, the actual RBE is known to increase toward the distal end of the spread-out Bragg
peak. Several models for variable RBE predictions exist. We present a framework to evaluate the
combined impact and interactions of setup, range, and RBE uncertainties in a comprehensive, vari-
ance-based sensitivity analysis (SA).
Material and methods: The variance-based SA requires a large number (104–105) of RBE-weighted
dose (RWD) calculations. Based on a particle therapy extension of the research treatment planning
system CERR we implemented a fast, graphics processing unit (GPU) accelerated pencil beam mod-
eling of patient and range shifts. For RBE predictions, two biological models were included: The
mechanistic repair-misrepair-fixation (RMF) model and the phenomenological Wedenberg model.
All input parameters (patient position, proton range, RBE model parameters) are sampled simultane-
ously within their assumed probability distributions. Statistical formalisms rank the input parameters
according to their influence on the overall uncertainty of RBE-weighted dose–volume histogram
(RW-DVH) quantiles and the RWD in every voxel, resulting in relative, normalized sensitivity
indices (S = 0: noninfluential input, S = 1: only influential input). Results are visualized as RW-
DVHs with error bars and sensitivity maps.
Results and conclusions: The approach is demonstrated for two representative brain tumor cases
and a prostate case. The full SA including ∼ 3�104 RWD calculations took 39, 11, and 55 min,
respectively. Range uncertainty was an important contribution to overall uncertainty at the distal end
of the target, while the relatively smaller uncertainty inside the target was governed by biological
uncertainties. Consequently, the uncertainty of the RW-DVH quantile D98 for the target was governed
by range uncertainty while the uncertainty of the mean target dose was dominated by the biological
parameters. The SA framework is a powerful and flexible tool to evaluate uncertainty in RWD distri-
butions and DVH quantiles, taking into account physical and RBE uncertainties and their interac-
tions. The additional information might help to prioritize research efforts to reduce physical and RBE
uncertainties and could also have implications for future approaches to biologically robust planning
and optimization. © 2020 The Authors. Medical Physics published by Wiley Periodicals LLC on
behalf of American Association of Physicists in Medicine. [https://doi.org/10.1002/mp.14596]

Key words: proton therapy, range uncertainty, relative biological effectiveness, sensitivity analysis,
uncertainty analysis
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1. INTRODUCTION

Treatment plans in proton therapy are more prone to
uncertainties than in photon therapy. In addition to setup
uncertainty, which is also relevant for treatment with pho-
tons, proton beams are affected by range uncertainties.
Furthermore, the relative biological effectiveness (RBE)
of proton beams needs to be taken into account and
additional sources of uncertainty are introduced through
the conversion of physical to RBE-weighted dose (RWD).
Since uncertainties in the actually delivered RWD may
give rise to unexpected normal tissue toxicities or local
treatment failure and may impede the intercomparability
of different radiation modalities (photons, protons, heavier
ions) in clinical studies, a well-founded understanding of
the magnitude of the overall uncertainty and the impact
and interactions of the different sources of uncertainty is
crucial. To enable the comparison of different planning
strategies (e.g., beam arrangements) with regard to these
quantities, a systematic way to estimate them for an indi-
vidual treatment plan is desirable. While there are many
studies assessing the impact of physical1–4 or biological
uncertainties,5–7 no method for the systematic assessment
of the combined impact and interactions of setup, range,
and biological uncertainties has been presented so far.
When multiple sources of uncertainty are combined, the
analysis is typically restricted to range and motion.8,9 A
possible way to deal with these uncertainties in intensity-
modulated proton therapy (IMPT) is robust optimization.
Up to now, robustness approaches are also mostly
restricted to setup and range uncertainties and do not
explicitly consider biological modeling. If at all, linear
energy transfer (LET) is considered as a surrogate of bio-
logical effect.10,11 Therefore, a better understanding of
uncertainty in biological modeling in combination with
setup and range uncertainties is needed to enable biologi-
cally robust planning. Furthermore, quantifying the rela-
tive impact of setup, range and RBE uncertainty on the
overall uncertainty of clinically relevant dose metrics
could help to prioritize research efforts aiming at reduc-
ing the individual uncertainties and improve cost-effec-
tiveness in radiotherapy. The technique of global,
variance-based sensitivity analysis (SA) is a method to
evaluate the influence of the uncertainty in various input
factors on the output of a quantitative model.12 Compared
to local methods, such as derivative-based approaches,
regression analysis, or the isolated treatment of the differ-
ent input factors (one factor at a time approaches), this
technique has the advantage of exploring the entire input
space by varying all input factors simultaneously, which
allows to take into account also interactions between mul-
tiple input factors.13 While the alternative techniques
mentioned have their limitations in the case of nonlinear
models, global, variance-based SA is a model-independent
approach and is applicable for any probability distribution
of the input factors. In the field of medical physics, this
technique has so far only been applied to RBE modeling

of carbon ion therapy, excluding range and setup uncer-
tainties14,15 and to nuclear medicine, in order to assess
the impact of interpatient variability on organ dose esti-
mates.16 In this feasibility study, we present a framework
to apply the technique of global, variance-based SA to
uncertainties in proton therapy, explicitly modeling RBE,
range, and setup errors.

2. MATERIALS AND METHODS

2.A. Global variance-based sensitivity analysis

Global variance-based SA is a method to estimate the rela-
tive influence of the k input factors X¼ x1,x2⋯,xkð Þ on the
output Y of a model f :

Y ¼ f Xð Þ (1)

The function f can be decomposed into terms of increas-
ing dimensionality whose mean is zero, that is17

f ¼ f 0þ∑
k

l
f l xlð Þþ∑

k

l¼1
∑
k

m>l
f lm xl,xmð Þþ . . .þ f 12...k x1,x2, . . .,xkð Þ

(2)

where for all p¼ 1, . . .,sZ
f 1...s x1, . . .,xsð Þdxp ¼ 0 (3)

Sobol proved that then all summands in equation (2) are
orthogonal.17 The variance in Y can be decomposed12

V Yð Þ¼ ∑
k

l¼1
Vlþ∑

k

l¼1
∑
k

m>l
V lmþ . . .þV1,...,k (4)

where

Vl ¼V f lð Þ¼V E YjXlð Þ½ � (5)

The expectation value EðYjXlÞ is hereby calculated over
all possible values of all input factors except for Xl, which is
kept fixed. The higher order terms are

Vlm ¼V f lmð Þ¼V E Y jXl,Xmð Þ½ ��Vl�Vm (6)

and so on. The first- and second-order sensitivity indices
introduced by Sobol’ are defined as12:

Sl ¼ Vl

V Yð Þ (7)

Slm ¼ Vlm

V Yð Þ (8)

Higher order terms are defined in an analogous fashion.
Monte Carlo estimates for all sensitivity indices can be calcu-
lated without the need to know an explicit form of f or any of
the terms in the expansion in Eq. (2). Due to the normalization
to the overall variance, the Sobol’ indices are normalized to 1.
Since the number of sensitivity indices is ð2k�1Þ for k input
factors, making interpretation of the results very difficult, total
effects STl are introduced.18 For the input factor l they are
defined as the sum of all terms of any order containing l:
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STl ¼ Slþ ∑
k

m≠l
Slmþ . . .þS1,...,k (9)

when only first order and total effects for each input factor
are considered, the number of indices is reduced to 2k. First
order and total effects allow for an intuitive interpretation: Sl
is the average fraction by which the overall variance would be
reduced if input factor l could be fixed anywhere in its range,
STl is the average fraction of the overall variance that would
remain if all input factors except for l could be fixed within
their respective range. STl = 0 is the necessary and sufficient
condition for input l being noninfluential. By examining the
difference, (STl�Sl), the impact of interaction terms involv-
ing input factor l can be characterized. If STl�Slð Þ¼ 0, inter-
actions with input factor l do not contribute to overall
variance.

Saltelli19 proposed an efficient method for direct Monte
Carlo calculation of Sl and STl, without the need to calculate
all the interaction terms, which has also been used in this
paper.

In this approach, Sl and STl are estimated via:

Sl ¼
1
N∑

N
m¼1 f Bð Þm � f A lð Þ� �

m� f Að Þm
� �
V Yð Þ (10)

STl ¼
1
2N∑

N
m¼1 f Að Þm� f A lð Þ� �

m

� �2
V Yð Þ (11)

where A and B are independently sampled input matrices of
N input vectors (size:N� k). The matrix A lð Þ is equal to
matrix A, except for column l, which is taken from B. Að Þm
and Bð Þm are the m-th rows of A and B, respectively. The total
number of model evaluations in this approach is N � kþ2ð Þ.
N has to be chosen sufficiently large for Eqs. (10) and (11) to
converge.

A faster convergence of Eqs. (10) and (11) is achieved
when the input parameters are sampled from quasi-random,
low-discrepancy sequences.19 In our implementation, we used
the Sobol’ sequence20,21 as suggested by Saltelli.

In our application of the concept, the model f will corre-
spond to an RWD distribution calculation including a calcu-
lation of RBE-weighted dose volume histograms (RW-
DVHs), the input vector X will contain isocenter shifts in
three spatial dimensions, relative and absolute range shifts as
well as biological model parameters. The output Y will
include the dose in every voxel and RW-DVH quantiles for
structures of interest. Since for the variance-based SA the
model needs to be evaluated approximately 104−105 times, a
fast RWD calculation for any set of X from the input space is
required. To achieve this, a GPU-based RWD calculation was
implemented based on a particle extension of the research
treatment planning system CERR.22–26 To model the physical
uncertainties, the following approximations were made: The
proton beams were assumed to be nondivergent, and patient
deformations and rotations were excluded. Range uncertainty
was modeled as a relative and an absolute range shift, which
was applied to all spots of the same beam equally. A detailed

description of the implementation can be found in Appen-
dices A and B.

In clinical routine, a constant RBE of 1.1 is commonly
assumed. However, there is evidence from in vitro experi-
ments that RBE is dependent on dose, biological endpoint,
and proton energy and there is an ongoing debate if the cur-
rent clinical practice needs to be revised.5–7,27,28 For variable
RBE prediction, two biological models are currently imple-
mented: the mechanistic repair-misrepair-fixation (RMF)
model,29,30 which uses double strand break (DSB) yields
from a Monte Carlo Damage simulation (MCDS)31 and the
phenomenological Wedenberg model.32 Both models provide
a method to calculate radiosensitivity parameters of the linear
quadratic (LQ) model, αP and βP and have the advantage that
they can be executed very fast for changed model and x-ray
reference radiosensitivity parameters. For the RMF model,
the DSB yield Σ and the x-ray reference parameters αX=βX
were treated as uncertain; details on the implementation can
be found in Appendix C.1. For the Wedenberg model, x-ray
reference parameters αX=βX , the fit parameter q and the
model assumption βP ¼ βX were treated as uncertain. Details
on the implementation can be found in Appendix C.2.

2.B. Application to patient cases

The framework was applied to two brain tumor patient
cases. The evaluation of an additional prostate case can be
found in the supplementary material S1. In both brain
tumor cases the clinical target volume (CTV) was overlap-
ping with the optic nerve and in close proximity to the
brain stem. For patient 1, the CTV partially overlapped
with the optic chiasm while for patient 2 the chiasm was
almost completely within the CTV. The CTV of patient 1
had a larger volume with a size of 15.2 cm3, for patient 2
it was 4.7 cm3. Planning target volumes were created
using an isotropic CTV-to-PTV margin of 3 mm. The plan
for patient 1 consisted of two PBS beams from 60° and
135°, the plan for patient 2 of two opposing PBS beams
from 90° and 270°. Both plans were optimized for a frac-
tion RWD of 1.8 Gy (RBE), where a constant RBE of 1.1
was assumed. The total prescribed RWD was 54 Gy
(RBE) in both cases. In the plan optimization, the total
D2% for adjacent and overlapping OARs (chiasm, optic
nerves, brain stem) was constrained to be smaller or equal
to 54 Gy (RBE). In each plan, the two beams were opti-
mized independently to deliver a homogeneous dose distri-
bution to the target (single field uniform dose (SFUD)
concept). Sensitivity analyses of the resulting plans were
performed using the RMF and the Wedenberg model. All
input parameter uncertainties were assumed to follow nor-
mal distributions truncated to two standard deviations ðσ).
The following σ were used:

• 1 mm for patient shifts in X, Y, and Z direction33

• 3% for relative range uncertainty1ðRrelÞ
• 1 mm absolute range uncertainty1ðR1abs, R2abs for

beam numbers 1,2,. . .)
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• 10% for the x-ray reference radiosensitivity parame-
ters αX=βXð Þ

• 15% for the parameterq of the Wedenberg model32

• 10% forβP in the Wedenberg model
• 5% for the DSB yield Σ used in the RMF model

These assumptions are not definitive and might differ
between tumor sites (e.g., in the abdomen a larger setup error
than 1 mm might be adequate) or CT acquisition (e.g., in case
a dual-energy CT is used for stopping power determination a
smaller relative range uncertainty might be reasonable34). To
model a possible higher uncertainty in the x-ray reference
sensitivity parameters in organs at risk (e. g., the chiasm), an
additional calculation was performed where αX=βX was
assumed to be uniformly distributed over the interval 1.5 to
10 Gy. All other input uncertainties remained unchanged. For
the CTV and the chiasm, the overall uncertainty of all RW-
DVH quantiles was visualized by plotting the RW-DVH with
its respective 95% and 68% confidence intervals. For selected
quantiles of (CTV D98%, CTV D50%, brain stem D2%, optic
nerve D2%, and chiasm D2%), first order and total effect sensi-
tivity indices were calculated. Additionally, the first-order
sensitivity for the RBE-weighted dose was calculated on a
voxelwise basis and visualized as sensitivity map.

To demonstrate the application of the framework to a pros-
tate case, an additional evaluation of a such a plan can be
found in supplementary material S1.

3. RESULTS

A fast modeling of patient shifts, range shifts and changes
in biological parameters was implemented which allows the
calculation of RWD distributions for arbitrary sets of these
input parameters from the input space. The simultaneous
variation of all input parameters allows to model interactions
of different sources of uncertainty and to perform a global,
variance-based SA. Here the results for the two brain tumor
cases are shown, the results for the prostate case can be found
in the supplementary material S1.

On a computer with 16 CPU cores (Intel Xeon E5-2690 @
2.90 GHz), 192 GB RAM and two Nvidia Tesla K80 GPUs
the full SA including ∼ 3�104 RWD calculations was per-
formed in 39 min for patient 1 and 11 min for patient 2.

Figure 1 shows the convergence of the first-order indices
and total effects for selected DVH quantiles, a representative
voxel at the center of the PTV and a representative voxel in
the high LET region for patient 1. N refers to the number of
rows of the input matrices used for the Saltelli estimator for
Si and STi described above, the actual number of RWD calcu-
lations performed is N � kþ2ð Þ, with the number of input fac-
tors k.

3.A. DVH quantiles

Figures 2 and 3 show the RW-DVH of the CTV and the
chiasm for patients 1 and 2, respectively. The proton treat-
ment plan was optimized on 1.8 Gy(RBE) in tumor assuming

a constant RBE of 1.1. Then the SA was performed with both
biological models assuming a spatially constant
αX=βX = 2 Gy (αX = 0.1 Gy−1 and βX = 0.05 Gy−2).35 For
each model, the treatment plans were recalculated ∼ 3�104

times, randomly varying patient position, proton range and
RBE model parameters within their assumed uncertainties.
To quantify the overall uncertainty, 95% and 68% confidence
intervals were calculated empirically from the resulting RW-
DVHs and visualized in Figs. 2 and 3. As expected, a higher
RBE than 1.1 is predicted for both biological models. The
same calculation was in addition also applied to an RWD cal-
culation assuming a constant RBE of 1.1., including only
range and setup uncertainties. The resulting RW-DVH is plot-
ted for comparison. For both patients, a larger overall uncer-
tainty was observed for the variable RBE models with their
respective uncertainties included. For example, the expecta-
tion value for the mean RWD to the CTV for patient 1 was
2:04þ0:19

�0:19 Gy(RBE), 2:03þ0:14
�0:14 Gy(RBE) and 1:77þ0:04

�0:11 Gy
(RBE) for the RMF model, the Wedenberg model and a con-
stant RBE of 1.1, respectively (the reported ranges are the
95% confidence intervals.). For patient 2, the mean RWD to
the CTV was 2:01þ0:21

�0:22 Gy(RBE), 2:00þ0:16
�0:17 Gy(RBE) and

1:75þ0:04
�0:14 Gy(RBE) for the RMF model, the Wedenberg

model and a constant RBE of 1.1, respectively. For the chi-
asm, the D2 for patient 1 was 2:23þ0:23

�0:23 Gy(RBE) and
2:17þ0:18

�0:18 for the RMF model and the Wedenberg model,
respectively, when an αX=βX = 2 Gy with a standard devia-
tion of 10% was assumed. In the calculation with the large
αX=βX variation it was 2:09þ0:28

�0:23 Gy(RBE) (RMF) and
1:98þ0:28

�0:20 Gy(RBE) (Wedenberg). For patient 2, a chiasm D2

of 2:12þ0:25
�0:24 Gy(RBE) and 2:09þ0:19

�0:17 Gy(RBE) was observed
for RMF and Wedenberg, respectively, when an
αX=βX = 2 Gy with a standard deviation of 10% was
assumed. 2:01þ0:26

�0:24 Gy(RBE) (RMF) and 1:93þ0:24
�0:16 Gy(RBE)

(Wedenberg) was found for the D2 in the calculation with the
large αX=βX variation.

For selected clinically relevant RW-DVH quantiles, the
confidence intervals in Figs. 2 and 3 are broken down to the
impact of the different uncertainties in terms of Sl and STl in
Fig. 4. All plots show results of the calculation with
αX=βX ¼ 2 Gy and a standard deviation of 10%. SA results
are color-coded for both patients and both RBE models. For
most quantiles, the differences between the Sl and STl are
small, indicating a low impact of interaction terms on the
overall uncertainty. For range uncertainty, however, interac-
tions often do play a role. For example, for the D2 of the right
optic nerve for patient 2 [Figs. 4(c) and 4(d)] STl is consider-
ably larger than Sl both for the relative range uncertainty
(Rrel) for both biological models (STRrel ¼ 0:56, SRrel ¼ 0:26
for the RMF model and STRrel ¼ 0:54, SRrel ¼ 0:28 for the
Wedenberg model, respectively) and for shifts in Y and Z
direction (SY ¼ 0:03, SZ ¼ 0:18, STY ¼ 0:25, STZ ¼ 0:45 for
the RMF model and SY ¼ 0:07, SZ ¼ 0:20, STY ¼ 0:26,
STZ ¼ 0:44 for the Wedenberg model, respectively). This
suggests that, in this plan, a relevant fraction of the overall D2

uncertainty for the right optic nerve is attributable to interac-
tion between setup and range uncertainty. Biological
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uncertainty generally was driven by DSBΣ for the RMF
model and by q and βP for the Wedenberg model and the
most important contribution to the CTV D50(e.g., for patient
2: SDSBΣ ¼ 0:75, STDSBΣ ¼ 0:77 for the RMF model and
Sq ¼ 0:42, SβP ¼ 0:23, STq ¼ 0:43, STβP ¼ 0:23 for the
Wedenberg model, respectively). In both models, the relative
impact of the x-ray reference parameters αX=βX was very low
in comparison (e.g., for the CTV D50 for patient 2:
Sðα=βÞX<0:01, STðα=βÞX<0:01 for the RMF model and
Sðα=βÞX ¼ 0:02, ST ðα=βÞX ¼ 0:02 the Wedenberg model, respec-
tively). Biological uncertainty was also the most important
contribution to the chiasm D2 for patient 1 (SDSBΣ ¼ 0:78 for
the RMF model and Sq ¼ 0:41 and SβP ¼ 0:14 for the Weden-
berg model). The relative range uncertainty Rrel was an
important input factor for many investigated DHV quantiles
with the exception of the D50 of the CTV and the D2 of the
brain stem for patient two, which due to its position lateral to
the two opposing beams from 90° and 270° was not affected
by range shifts. For this parameter, the most relevant contri-
bution to overall uncertainty is observable for a patient shift
in Y direction (SY ¼ 0:71 for the RMF model and SY ¼ 0:69
for the Wedenberg model, respectively).

3.B. Voxelwise SA

The result of the voxel-based SA assuming
αX=βX = 2 Gy with a standard deviation of 10 % for
patient 1 is shown in Fig. 5 for the RMF model and in
Fig. 6 for the Wedenberg model. Nominal RWD

distribution, the local standard deviation as a measure of
local uncertainty and the dose-weighted LET distribution
are shown in the first row. SA maps report the contribution
of the input uncertainties to the local variance for every
voxel, indicating the spatial changes of the impact of differ-
ent uncertainties. The largest uncertainties are observed at
the distal end of the beams, were they are governed by Rrel.
The impact of the absolute range uncertainties R1abs and
R2abs is small in comparison, as well as the uncertainty in
the x-ray reference parameters αX=βX . In the CTV and in
the entrance plateaus, the biological input factors βP for the
Wedenberg and DSB Σ for the RMF model are the most
important contributions, where the overall uncertainty is
generally lower than at the distal ends of the beams.

4. DISCUSSION

The presented framework is, to the best of our knowl-
edge, the first implementation of a tool for variance-based
sensitivity analysis of the combined impact of setup, range
and RBE uncertainties in proton therapy, including also
their interactions. Additionally to the numerical calculation
of confidence intervals for the RBE-weighted dose in
every voxel and RW-DVH quantiles, it allows to break
down the overall uncertainty to the impact of the different
sources of uncertainty. This complimentary sensitivity
information has not yet been reported or used in proton
therapy. The computation times were below 40 min which
is extremely fast given the recalculation of ∼ 3�104

FIG. 1. Convergence of first-order sensitivity indices and total effects with sample size N for selected RW-DVH quantiles and two representative voxels for
patient 1. [Color figure can be viewed at wileyonlinelibrary.com]
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(corresponding to N = 2560 in the Saltelli formalism)
treatment plans per SA execution for patient 1. For patient
2, which has a considerably smaller CTV the simulation
time was even shorter. This was expected, since both the
number of treated voxels (due to the restriction to the
2 cm expansion of the target volume) and the number of
PBS spots increase with the target volume and therefore
the number of entries in the ij-matrices increase. The quick
convergence of the sensitivity indices suggests that actually
a much smaller number of about N = 500 would already
be sufficient. Since the calculation time scales linearly
with the number of dose calculations, this would mean a
reduction by 80%, to well below 10 minutes for patient 1
and to less than 2 and a half minutes for patient 2. The
SA was performed for RW-DVH quantiles and the RWD
in every voxel of interest. Further plan quality metrics
based on the RWD distribution such as equivalent uniform
dose, homogeneity index, conformity index, tumor control,
and normal-tissue complication probabilities and others
could be included at very little extra computational cost.
An alternative approach to modeling uncertainties was pro-
posed by Bangert et al.,8 who introduced analytical proba-
bilistic modeling (APM), a technique to propagate setup
and range uncertainties through a pencil beam dose calcu-
lation via analytical integration to calculate expectation

values and variances for dose distribution and other plan
quality indicators. Wieser et al.36 used APM to investigate
the influence of setup and range uncertainties on RWD
distributions, however, uncertainties in the biological mod-
eling itself were not considered in their work. Note that
both works do not include the possibility to determine sen-
sitivity values. Perkó et al.9 used an alternative approach
to sensitivity analysis using polynomial chaos expansion,
but also did not consider uncertainties in RBE modeling.

4.A. Potential applications

The current performance of the SA framework is sufficient
to be forward calculated for the clinical evaluation of proton
treatment plans. In such a setting, the additional uncertainty
and sensitivity information could support the decision for or
against a treatment plan and help to find the optimal compro-
mise. Forward calculation of the SA could also be used in
planning studies for the systematic assessment of the impact
of setup, range, and RBE uncertainty on clinically relevant
dosimetric parameters in proton therapy. The information
which type of uncertainty is dominating the overall uncer-
tainty could help to prioritize research attempts to reduce the
uncertainties. In this regard, higher cost effectiveness could
be achieved by concentrating on the dominant contributions
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FIG. 2. RW-DVHs for the clinical target volume and the chiasm for a plan optimized for a constant RBE of 1.1 for patient 1. The uncertainty analysis was per-
formed by recalculating the dose using the RMF (a and d) and the Wedenberg model (b and e) including range, setup, and RBE uncertainty. Panels (c) and (f)
show the RW-DVHs for a constant RBE of 1.1 including only range and setup uncertainty. Panels (g) and (h) show the variation of the RW-DVH of the chiasm
including range, setup and RBE uncertainty when αX=βX is varied over the larger interval from 1.5 to 10 Gy for comparison. 68% and 95% confidence intervals
of the RW-DVHs are visualized by the shaded areas. “Nominal” refers to a forward calculation in the respective model with all input factors fixed to their nominal
value. The solid line shows the expectation value of the DVH. [Color figure can be viewed at wileyonlinelibrary.com]
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(G) chiasm (RMF model - /  = 1.5-10 Gy)
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(b) CTV (Wedenberg model - /  = 2 Gy,  = 10 %)
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95% CI
68% CI

0 0.5 1 1.5 2 2.5 3

(e) chiasm (Wedenberg model - /  = 2 Gy,  = 10 %)

mean
nominal
95% CI
68% CI
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RBE-weighted dose / Gy(RBE)

(h) chiasm (Wedenberg model - /  = 1.5-10 Gy)

0 0.5 1 1.5 2 2.5 3

(c) CTV (RBE 1.1)

0 0.5 1 1.5 2 2.5 3

RBE-weighted dose / Gy(RBE)

(f) chiasm (RBE 1.1)

FIG. 3. RW-DVHs for the CTVand the chiasm for a plan optimized for a constant RBE of 1.1 for patient 2. The uncertainty analysis was performed by recalculat-
ing the dose using the RMF (a and d) and the Wedenberg model (b and e) including range, setup, and RBE uncertainty. Panels (c) and (F) show the RW-DVHs
for a constant RBE of 1.1 including only range and setup uncertainty. Panels (g) and (h) show the variation of the RW-DVH of the chiasm including range, setup,
and RBE uncertainty when αX=βX is varied over the larger interval from 1.5 to 10 Gy for comparison. 68% and 95% confidence intervals of the RW-DVHs are
visualized by the shaded areas. “Nominal” refers to a forward calculation in the respective model with all input factors fixed to their nominal value. The solid line
shows the expectation value of the DVH. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. First-order sensitivities and total effects for selected DVH quantiles of the CTV, brain stem, the optic nerves, and the chiasm for both patients and both
RBE models in the calculation with αX=βX = 2 Gy with a standard deviation of 10%. The empirical standard deviations of the respective quantile are also
reported. [Color figure can be viewed at wileyonlinelibrary.com]
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to overall uncertainty. Another possible application of the SA
framework could be the systematic comparison of proton
treatment plans to evaluate, for example, different robust
planning concepts.10,11 This would allow to determine the
residual uncertainty of RW-DVH quantiles of interest for
these plans and analyze the sources of this uncertainty using
the sensitivity indices.

4.B. Limitations

Current limitations of our SA framework include the
restriction to rigid patient shifts, excluding rotations. Defor-
mations are not explicitly modeled, either, although some
nonrigid changes (such as weight loss and filling of air cavi-
ties with fluid) are modeled by the employed heuristic model

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

FIG. 5. RWD distribution, local standard deviation, LET distribution, and sensitivity maps for patient 1 and the RMF model in the calculation with range, setup,
and RBE uncertainties included. For αX=βX, a nominal value of 2 Gy and a standard deviation of 10% was assumed. [Color figure can be viewed at wileyonline
library.com]
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of absolute range uncertainties. However, considerable defor-
mations of the patients’ anatomy cannot be modeled. Further-
more, the method does not yet cover all possible types of
uncertainties. Additional uncertainties exist in radiotherapy
planning and delivery, which are not included in our
approach, for example, inter- and intraobserver delineation
variability. In this work, a pencil beam algorithm based on

precalculated Geant4 simulated data in water was used.
Although Monte Carlo algorithms are known to be more
accurate than pencil beam algorithms, the necessary high
number of RWD calculations cannot be achieved with a
Monte Carlo algorithm in reasonable time. The accuracy of
pencil beam algorithms is known to decrease in regions with
high tissue heterogeneity, therefore, results obtained with the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 6. RWD distribution, local standard deviation, LET distribution, and sensitivity maps for patient 1 and the Wedenberg model in the calculation with range,
setup, and RBE uncertainties included. For αX=βX,a nominal value of 2 Gy and a standard deviation of 10% was assumed. [Color figure can be viewed at wileyon
linelibrary.com]
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SA framework using the current pencil beam algorithm will
be less reliable in such cases.

Having a good assumption of the underlying uncertainties
in the input factors is crucial for the execution of the SA.
Unfortunately, these uncertainties can be difficult to esti-
mate, in particular for the biological parameters. For exam-
ple, a 95% confidence interval of about �18% was reported
for q as a fit parameter over various in-vitro experiments,32

which corresponds to standard deviation of 9% for normal
distributed data. To account for additional uncertainties
related to the transfer from in-vitro data to the clinic, a stan-
dard deviation of 15% was assumed for q. The 5% standard
deviation for DSB Σ in the RMF model was based on rea-
soning about the underlying Monte Carlo simulation of DSB
induction.37 However, these should be considered rather
rough estimates of the actual uncertainty. Therefore, we did
not aim at comparing the RBE prediction uncertainties of
the two models. The objective is to show the flexibility of
the approach with regard to the used biological model. It
should also be kept in mind that the variance-based SA gives
information about the variability, that is, the precision of the
output, but does not give any information about the accuracy
of a model. This means, for instance, that a higher robust-
ness of an RBE model against uncertainties in its input
parameters does not imply a higher accuracy.

In our analysis, the impact of the x-ray reference parameter
αX=βX on the overall RWD variability was low compared to
the other biological parameters when the RWD of a single
fraction was calculated, even when αX=βX was varied over the
large interval from 1.5 to 10 Gy. This means that the used
RBE models are rather robust against αX=βX variability. It
should be stressed, however, that this does not include frac-
tionation effects.

4.C. Outlook

In this first analysis we applied the SA framework to pro-
ton therapy. The application to other charged particle types,
such as helium or carbon ions could be achieved in the same
way. Given that for these heavier ions the RBE is generally
expected to be higher than for protons, a systematic assess-
ment of uncertainty might be even more important in these
cases.

Given the present performance of our SA framework, also
future applications in robust plan optimization itself are
imaginable if the execution of the variance-based SA can be
further accelerated. While the framework is currently limited
to the forward evaluation of proton treatment plans since the
code still takes too long to be executed during optimization
(for our patient cases from a few minutes to more than half an
hour), the quick convergence of the sensitivity indices sug-
gests that a considerable reduction of the number of model
evaluations is feasible. In addition, the sensitivity analysis
could be restricted to regions of interest with respect to plan
robustness. The use of multiple, high-end GPUs with more
memory for this highly parallelizable code is also expected to
significantly improve the performance. All this might

accelerate the estimation of the sensitivity indices to a point
where they can be evaluated during optimization. To date,
most robust optimization approaches do not include RBE
variability.10 If at all, RBE is only considered indirectly
using LET as a surrogate. While it is in theory possible to
fully compensate for setup and range uncertainty (although
at the cost of additional dose to normal tissue), this is not
the case for RBE uncertainty. Although RBE uncertainty
can be reduced by avoiding excessive LET hot spots, it can-
not be fully eliminated by shaping the physical dose distri-
bution. Explicit inclusion of RBE uncertainty would
therefore lead to an inevitably larger overall uncertainty, ren-
dering current robust optimization approaches insufficient.
The complimentary sensitivity information has the potential
to overcome these limitations since it allows introducing
additional SA-based cost functions into the optimization.
For example, one could use SA-based cost functions ensur-
ing, for example, STX,Y ,Z D95%,CTVð Þ<5% and
STRabs,Rrel D95%,CTVð Þ<5% while allowing for larger sensitiv-
ity values in the biological inputs. By using the total effects
also interactions between physical and RBE uncertainties
are taken into account. Once the necessary performance for
the execution of the variance-based SA during inverse plan-
ning is achieved, this will allow a systematic approach to
physically and biologically robust IMPT planning. The con-
secutive step should then be followed by an evaluation of
clinically relevant scenarios with focus on achievable
improvements in proton therapy planning.

5. CONCLUSIONS

A framework for global, variance-based sensitivity analy-
sis of proton therapy treatment plans has been implemented
and demonstrated for two different variable RBE models. It is
a powerful and flexible tool to assess the combined impact
and interactions of positioning, range, and RBE uncertainties.
Besides resulting overall uncertainties, the method provides
quantitative information on the relative impact of the different
input factors, which might have implications for future bio-
logically robust IMPT planning.
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APPENDIX A

The following paragraphs describe how the individual
sources of uncertainty are modeled.

Medical Physics, 48 (2), February 2021

814 Hofmaier et al.: Sensitivity analysis for proton therapy 814

 24734209, 2021, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.14596 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

35



A. MODELING OF PATIENT SHIFTS

In the particle extension of CERR, the dose calculation is
performed as follows:

Dij ¼PDDEj RDij
� � � 1

2π �σ2Ej
RDij
� � � exp � r2ij

2 �σ2E j
RDij
� �

!

(A1)

where PDDEj and σ2Ej
are precalculated look-up tables for the

depth-dose-curve and the lateral dose spread in water for inci-
dent proton energy Ej in water, RDij denotes the radiological
depth on the central beam axis of the j-th spot at the depth of
the i-th voxel, and rij is the distance of the i-th voxel to the cen-
tral beam axis of the j-th spot. The lookup tables PDDEj and
σ2Ej

were precalculated in water using the Monte Carlo algo-
rithm Geant4 for all relevant incident energies (50 to 260 MeV
in steps of 1 MeV) assuming generic, mono-energetic beams.

Once the Dij matrix is obtained, the dose in the i-th voxel
can be calculated as:

di ¼∑
j
Dijω j (A2)

With a vector containing the pencil beam scanning
(PBS) spot weights ω. Therefore, the full dose vector can
be obtained by a matrix-vector multiplication. In the par-
ticle extension of CERR, this is used for treatment plan
optimization: Eq. (A2) is evaluated repeatedly to find the
optimal weight vector. Throughout the entire optimization,
Dij, which contains all geometric information, is kept
constant.

In order to recalculate treatment plans for a changed
geometry, a fast way to generate the changed influence matrix
is required. To achieve this, the following approximations are
made: First, nondivergent beams are assumed, which is
equivalent to assuming that the source is far away from the
patient. The second approximation is that no patient deforma-
tions occur and the third that only rigid translations (isocenter
shifts) are modeled, excluding rotations.

Then, rij and RDij in Eq. (A1) have to be replaced in
order to reflect a patient shift. When rij is expressed in
a two-dimensional Cartesian coordinate with axes perpen-
dicular to the beam (i.e., a beams-eye-view (BEV) coor-
dinate system):

r2ij ¼ x2ijþ y2ij (A3)

The changes to the lateral offsets xij and yij caused by a
rigid patient shift are then, in the approximation of nondiver-
gent beams, the projection of the shift onto these axis:

x0ij ¼ xijþΔx φnð Þ (A4)

y0ij ¼ yijþΔy φnð Þ (A5)

where x0ij and y0ij denote the updated lateral offsets, which, for
a given patient shift and in the approximation of nondivergent
beams, only depend on the gantry angle φn of the beam n,
making the computation very efficient for large ij-matrices,

since all entries belonging to the same beam can be treated in
the same manner.

RDij can be updated quickly by precalculating a set of
neighboring raytracings of the original beam axis. Those
raytracings are performed parallel to the original beam
axis. The positions are defined on a 2D regular grid in
the BEV coordinate system. During dose calculation, the
algorithm has to select the correct neighbor raytracing
RD∗

ij to replace RDij based on the lateral offsets Δx and
Δy from Eqs. (A4) and (A5). This method is similar to
the “virtual beamlets” approach proposed by Unkelbach
et al.,38 with the difference, that in our approach only the
raytracing is approximated by the neighbor which is clos-
est to the patient shift, while the lateral part in Eq. (A1)
is modeled exactly according to Eqs. (A4) and (A5). The
approach to keep precalculated neighboring raytracings for
every PBS spot is memory intensive, however, since only
small setup errors are expected and need to be treated in
the SA, sets of only a few shifts of up to a few millime-
ters are sufficient. In our calculations, we used a 5 by 5
grid of raytracings (where the raytracing at the center cor-
responded to the nominal case without setup error) with a
grid constant of 2 mm, therefore setup errors of up to
about 4 mm can be handled. Since in our patient cases
described below we assumed the setup error to be normal
distributed in all three spatial dimensions with standard
deviation 1 mm, this is sufficient for our purposes. If nec-
essary, additional grid points can be included to support
larger shifts at the cost of an increased memory usage.

B. MODELING OF RANGE UNCERTAINTY

Range uncertainty is modeled by applying a further trans-
formation to the radiological depth:

RDij ¼ 1þΔRDrelð Þ �RD∗
ijþΔRDabs (A6)

where RD∗
ij is the “neighbor raytracing” from the last

paragraph, ΔRDrel is the relative error mostly associated
with imperfect CT number to stopping power conversion
and ΔRDabs is an absolute offset suited to model patient
changes in the beam path (e.g., weight loss, filling of the
paranasal sinus with liquid etc.).1,39 In this approximation,
the absolute range shift applied in one RWD calculation
is the same for all PBS spots in one beam, therefore,
perturbations only affecting parts of the beam cannot be
modeled. The relative range shift is the same for all
beams. This coupling between different beam directions
is justified by the fact that the relative range shift is
assumed to originate primarily in imperfect CT to stop-
ping power conversion.

C. MODELING OF RBE UNCERTAINTY

Currently, two models for variable RBE predictions are
supported: the mechanistic RMF and the phenomenological
Wedenberg model.

Medical Physics, 48 (2), February 2021

815 Hofmaier et al.: Sensitivity analysis for proton therapy 815

 24734209, 2021, 2, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.14596 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [07/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

36



C.1. RMF model

The repair-misrepair-fixation (RMF) model was intro-
duced by Carlson et al.29 In our implementation, it uses esti-
mates from a Monte Carlo damage simulation (MCDS)31 to
link αP and βP to double strand break (DSB) yields.30 For a
given particle type and energy, these are calculated as:

αP ¼ Σ
ΣX

αX þ2
βX
ΣX

Σ ��zF�ΣX ��zF,Xð Þ
� �

(A7)

ffiffiffiffiffi
βP

p
¼

ffiffiffiffiffi
βX

p
� Σ
ΣX

(A8)

where αX and βX are the reference x-ray reference
radiosensitivity parameters, Σ and ΣX are the DSB yields
for the particle (defined as the initial number of DSB
per Gray per giga base pair Gy−1 Gbp−1) and reference
radiation of a Co-60 source, respectively; and �zF and �zF,X
denote the frequency-mean specific energy. The default
RMF model settings were used for the predictions. The
model does not require any fit to experimental data. The
MCDS software version 3.10A31 with default settings (cell
nucleus diameter 5 µm) was used to calculate DSB yields
and the frequency-mean specific energy for all relevant
proton energies. The DSB yields and frequency-mean
specific energy were used as inputs for the RMF model
as previously demonstrated by Carlson et al.,29 Frese
et al.30 and Kamp et al.25

A rapid implementation25,26 of this model in the ij-formal-
ism for carbon ions has already been used for a variance-
based SA of biological uncertainties by Kamp et al.15 and for
RWD optimization by Guan et al.40. We use a similar
approach. To obtain αP,ij and βP,ij (the radiosensitivity param-
eters for the dose contribution of the j-th spot to the i-th
voxel), Eqs. (A7) and (A8) need to be integrated against the
fluence spectrum ϕij and the stopping power SP, which are
both a function of the particle energy E. By simulating the
fluence spectra using Geant4 as described above, precalcu-
lated, tabulated data for the resulting integrals can be
obtained.

Integration of Eqs. (A7) and (A8) against the fluence
spectrum Φij and the stopping power SP Eð Þ yields:

αP,ij ¼ αx,i

R∞
0

ΣðEÞ
ΣX

�ΦijðEÞ �SPðEÞdER∞
0 ΦijðEÞ �SPðEÞdE

þ
R∞
0 2βX,i � ΣðEÞ

ΣX

h i2
� �ZFðEÞ �ΦijðEÞ �SPðEÞdER∞

0 ΦijðEÞ �SPðEÞdE

�
R∞
0 2βX,i �

ΣðEÞ
ΣX

� �ZF,X �ΦijðEÞ �SPðEÞdER∞
0 ΦijðEÞ �SPðEÞdE

(A9)

ffiffiffiffiffiffiffiffi
βP,ij

q
¼ ffiffiffiffiffiffiffi

βX,i
p �

R∞
0

ΣðEÞ
ΣX

�ΦijðEÞ �SPðEÞdER∞
0 ΦijðEÞ �SPðEÞdE

(A10)

By introducing precalculated constants for the integrals:R∞
0

ΣðEÞ
ΣX

�ΦijðEÞ �SP Eð ÞdER∞
0 ΦijðEÞ �SPðEÞdE

¼C1,ij (A11)

R∞
0 2 � ΣðEÞ

ΣX

h i2
� �ZFðEÞ �ΦijðEÞ �SPðEÞdER∞

0 ΦijðEÞ �SPðEÞdE
¼C∗

2,ij (A12)

equations (A9) and (A10) can be written as:

αP,ij ¼ αX,i �C1,ijþβX,i �C∗
2,ij�2βX,i ��zF,X �C1,ij

¼ αX,i�2βX,i ��zF,X
� � �C1,ijþβX,i �C∗

2,ij

(A13)

ffiffiffiffiffiffiffiffi
βP,ij

q
¼ ffiffiffiffiffiffiffi

βX,i
p �C1,ij (A14)

This reparametrization is very closely related to the one
used by Kamp et al.,26 who used the two reparametrization
constants C1,ij and C2,ij. While in our case C1,ij is defined in
exactly the same way, note that our C∗

2,ij is related to C2,ij via:

C2,ij ¼C∗
2,ij�2 ��zF,X �C1,ij�� (A15)

The precalculated tables C1 and C∗
2 are referenced with

the radiological depth and the corresponding incident proton
energy to obtain C1,ij and C�

2,ij:

C1,ij ¼C1,E j RDij
� �

(A16)

C∗
2,ij ¼C∗

2,E j
RDij
� �

(A17)

To model biological uncertainty in the RMF model, we
will treat Σ as uncertain and apply a relative variation ΔΣ

Σ

� �
.

Under the assumption, that this variation is independent of
the energy, C1,ij depends linearly on ΔΣ

Σ

� �
. For C∗

2,ij, there is a
quadratic dependence. Therefore, Eqs. (A13) and (A14)
become:

α0p,ij
ΔΣ
Σ

	 

¼ αX,i�2βX,i�zF,X
� � �C1,ij � 1þΔΣ

Σ

	 

þ

βX,i �C∗
2,ij � 1þΔΣ

Σ

� �2 (A18)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0P,ij

ΔΣ
Σ

	 
s
¼ ffiffiffiffiffiffiffi

βX,i
p �C1,ij � 1þΔΣ

Σ

	 

(A19)

C.2. Wedenberg model

In the Wedenberg model,32αP is assumed to depend on the
x-ray reference radiosensitivity parameter and increase lin-
early with the linear energy transfer (LET)::

αP,ij
αX,i

¼ 1þq �LETij

α=βð ÞX,i
(A20)

where q¼ 0:434Gy μm
keV is obtained from a fit to in-vitro cell

survival data and LETij is the LET contribution of the j-th
PBS spot to the i-th voxel. It is obtained by referencing pre-
calculated depth-LET tables for the incident proton energies
Ej with the radiological depth RDij:
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LETij ¼ LETEj RDij
� �

(A21)

where LETEj contains MC calculated data for the dose-
weighted LET in water simulated using Geant4 as described
above. βP is assumed to be equal to the reference value:

βP,ij
βX,i

¼ 1 (A22)

To include uncertainty in this model, both q and βP,ij were
treated as uncertain:

q0 ¼ q � 1þΔq
q

	 

(A23)

β0P,ij ¼ βP,ij � 1þΔβP
βP,ij

!
(A24)

For both RBE models, αP,i and
ffiffiffiffiffiffiffi
βP,i

p
for the i-th voxel

can then be calculated as dose-weighted sums in the ij-for-
malism41:

αP,i ¼ 1
di
∑
j
αP,ij �Dij �ω j (A25)

ffiffiffiffiffiffiffi
βP,i

p ¼ 1
di
∑
j

ffiffiffiffiffiffiffiffi
βP,ij

q
�Dij �ω j (A26)

Then, the RBE is calculated using the formula:

RBEi αX,i,βX,i,αP,i,βP,i,d
� �¼�αX,iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2X,iþ4βXdi � αP,iþβP,idi

� �q
2βX,idi

(A27)

RBEi αX,i,βX,i,αP,i,βP,i,d
� �

reduces to RBEi αX,i=βX,i,LETi,
�

q,dÞ for the Wedenberg model and to RBEi αX,i=βX,i,
�

C1,i,C∗
2,i,dÞ for the RMF model, therefore the uncertainty in

the x-ray reference parameters can be treated by varying one
parameter, the fraction αX,i=βX,i.

A convenient property of the ij-formalism is that the RWD
calculation can be restricted to arbitrary subgroups regions of
interest to reduce memory usage. In our calculations we typi-
cally restricted the RWD calculation to a 2 cm expansion of
the CTV and all OARs for whom the DVH quantiles were
included in the SA (optic nerves, chiasm, brain stem).

a)Author to whom correspondence should be addressed. Electronic mail:
jan.hofmaier@med.uni-muenchen.de; Telephone: 004989440076744.
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Data S1. Application of the SA framework to an additional
prostate case.
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Combining inter-observer variability, range and setup uncertainty in a 
variance-based sensitivity analysis for proton therapy 
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A B S T R A C T

Margin concepts in proton therapy aim to ensure full dose coverage of the clinical target volume (CTV) in 
presence of setup and range uncertainty. Due to inter-observer variability (IOV), the CTV itself is uncertain. We 
present a framework to evaluate the combined impact of IOV, setup and range uncertainty in a variance-based 
sensitivity analysis (SA). For ten patients with skull base meningioma, the mean calculation time to perform the 
SA including 1.6 × 104 dose recalculations was 59 min. For two patients in this dataset, IOV had a relevant 
impact on the estimated CTV D95% uncertainty.   

1. Introduction

Treatment plans in proton therapy are affected by range and setup
uncertainties. These are typically compensated through margin concepts 
or robust planning approaches. Margin concepts aim at covering the 
clinical target volume (CTV) in presence of range and setup uncertainty 
[1]. However, due to inter-observer variability (IOV), the CTV itself is 
uncertain. While there are many studies assessing IOV, only few studies 
have investigated dosimetric consequences of IOV [2], e.g Lobefalo et al. 
[3] who investigated the dosimetric impact of IOV in three-dimensional
conformal radiotherapy (3D-CRT) and volumetric modulated arc ther
apy for rectal tumours, Hellebust et. al. [4] who assessed the dosimetric
impact of IOV in brachytherapy for cervical cancer and Eminowicz et al.
[5], who studied the dosimetric impact of IOV in VMAT for cervical
cancer. To the best of our knowledge, there is no study assessing the
combined and relative impact of range, setup uncertainty and IOV in
proton therapy in a quantitative way. The statistical method of variance- 
based sensitivity analysis (SA) is suited for this, since it can be used to
assess the impact of uncertainty of multiple input parameters on the
output of a quantitative model [6]. In the context of patient dose
calculation in medical physics, the technique has been previously
applied to relative biological effectiveness (RBE) uncertainties in carbon
ion therapy [7,8] and to estimate the impact of interpatient variability

on organ dose estimates in nuclear medicine [9]. Recently, a framework 
to evaluate the combined impact of range, setup and RBE uncertainty in 
a variance-based SA has been presented by our group [10]. In this 
technical note, an extension of the framework to include IOV is shown. 
The feasibility of the approach was demonstrated by using it to inves
tigate the relative impact of IOV, range and setup uncertainty on proton 
plans for a dataset with ten patients with skull base meningioma. 

2. Materials and methods

2.1. Variance-based sensitivity analysis

In the Monte Carlo method of global variance-based SA, the output of 
a model Y = f(X) with k input factors X = (x1, x2,…, xk) which are 
subject to uncertainty is recalculated many times while simultaneously 
and randomly varying the input factors within their assumed distribu
tions. In our particular case, the model f(X) corresponded to a dose 
calculation followed by a dose volume histogram (DVH) calculation. The 
output Y corresponded to DVH parameters of interest. The input factors 
(x1, x2…xk) included patient shifts in three spatial dimensions, absolute 
and relative range shifts as well as IOV, resulting in k = 6 input factors. 
The resulting variance V(Y) is decomposed as [6]: 
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V(Y) =
∑k

l=1
Vl +

∑k

l=1

∑k

m>l
Vlm +

∑k

l=1

∑k

m>l

∑k

n>m
Vlmn +…+V1…k (1)  

resulting in (2k − 1) terms. The first order terms are 

Vl = V[E(Y|Xl)] (2) 

The expectation value E(Y|Xl) is hereby calculated over all possible 
values of all input factors except for Xl, which is kept fixed. The second 
order terms, which are representing the interaction between the inputs 
Xl and Xm, are 

Vlm = V[E(Y|Xl,Xm)] − Vl − Vm (3) 

Higher order terms are defined in an analoguous fashion. Sensitivity 
indices are defined by normalising to the overall variance 

Sl =
Vl

V(Y)
(4)  

Slm =
Vlm

V(Y)
(5)  

and so on. Total effect indices are defined by summing all terms of any 
order containing l: 

STl = Sl +
∑k

m∕=l

Slm +…+ S1…k (6) 

Like in a previous study from our group [10], the efficient Monte 
Carlo method proposed by Saltelli [6] was used for direct calculation of 
Sl and STl, and sampling from low-discrepancy quasi-random sequences 
was employed to improve convergence. This method requires N(k+2)
model evaluations, where N is typically of the order of 103. In our study, 
as described above, we had k = 6 input factors. We set N = 2048, which 
resulted in approximately 1.6⋅104 model evaluations. The sensitivity 
analysis framework was extended to include IOV. Additionally to the 
fast, graphics processing unit (GPU) based pencil beam algorithm 
capable of modeling setup and range variations described in the previ
ous publication from our group [10], the possibility to include multiple 
treatment plans and to switch randomly between them was added. 

2.2. Clinical dataset 

Datasets of ten patients with benign (WHO grade I) meningioma of 
the skull base were included in this study. For all patients, contrast 
enhanced magnetic resonance imaging (MRI) and DOTATATE positron 
emission tomography (PET) images were available in addition to a 
planning computed tomography (CT). 

2.3. Target delineation and treatment planning 

A rigid image registration of MRI, PET and planning CT images was 
performed. For each patient, four clinicians independently delineated 
the gross tumor volume (GTV) taking into account all imaging modal
ities (GTVobserver). A consensus GTV (GTVSTAPLE) was created using the 
simultaneous truth and performance level estimation (STAPLE) algo
rithm [11] in the research treatment planning system computational 
environment for radiological research (CERR) [12]. This implementa
tion of an expectation-maximization algorithm generates a probabilistic 
estimate of the true volume based on the volumes delineated by multiple 
observers. The GTVSTAPLE was used as the ”ground truth” GTV. As an 
example, the four GTVobserver and the GTVSTAPLE contours for patient 
number 1 are shown in the supplementary material. The CTVobserver and 
the CTVSTAPLE were defined as the respective GTV without any margins 
applied (i.e. GTV = CTV), as suggested in a current guideline [13]. To 
obtain the planning target volumes (PTVs), gantry-angle specific mar
gins were applied. To compensate for proton range uncertainty, larger 

margins were applied in beam direction than laterally. The applied 
margins were 6, 5 and 3 mm in distal, proximal and lateral directions, 
respectively. For a typical margin receipe of 3.5% + 3 mm, the distal 
margin of 6 mm would correspond to a radiological target depth of 
approximately 9 cm. Since all tumours were at the skull base and 
therefore at similar depths, the same absolute margins were applied to 
all patients for simplicity. For each CTVobserver a PTVobserver was created. 
For each PTVobserver of each patient a spot scanning proton treatment 
plan with one beam was generated using non-robust optimization, 
resulting in a total number of 40 treatment plans (four treatment plans 
for each of the ten patients). The gantry angle was chosen individually 
for each patient. The proton plans were optimized to deliver 1.8 Gy 
(RBE) per fraction to the PTVobserver. A spatially constant RBE of 1.1 was 
assumed. 

2.4. Application of the SA framework 

Like in the previous study from our group [10], the variance-based 
SA was performed assuming the following uncertainty distributions 
for the input factors mentioned in Section 2.1: For patient shifts in X,Y 
and Z directions, a normal distribution with standard deviation σX,Y,Z =

1 mm truncated to 2σX,Y,Z was assumed. For relative range shifts the 
probability density was set to a normal distribution with standard de
viation σr,rel = 3 % truncated to 2σr,rel. Additionally, absolute range shifts 
following a normal distribution with standard deviation σr,abs = 1 mm 
truncated to 2σr,abs were assumed. For IOV, an equal probability of p  =
0.25 for each of the four observer treatment plans was chosen. To 
perform the SA, the dose distribution was re-calculated approximately 
1.6⋅104 times (corresponding to N = 2048 and k = 6 in the Saltelli 
formalism, as described in Section 2.1) while simultaneously sampling 
from the above uncertainty distributions. An Nvidia Quadro RTX 8000 
GPU with 48 gigabytes of memory was used. For the resulting dose 
distributions, DVHs were calculated for the CTVSTAPLE. Confidence in
tervals (CIs) and sensitivity indices for the dose level enclosing 95% of 
the CTVSTAPLE (D95%) were calculated. Convergence plots of the sensi
tivity indices were created. The obtained total effect indices ST were 
converted to SIIOV, the sum of all interaction terms with involvement of 
IOV and SIother, the sum of all interaction terms without involvement of 
IOV. By definition is 

SIIOV = STIOV − SIOV (7)  

and due to normalization 

SIother = 1 − Ssetup − Srange − STIOV (8)  

3. Results

The mean calculation time to perform the 1.6⋅104 dose calculations
was 59 min. Large differences were observed for the calculation times 
for different patients, which ranged from 11 min to 195 min. Conver
gence plots for Sl and STl for an exemplary patient are shown in panels A 
and B of Fig. 1. By visual inspection of the convergence plots it becomes 
evident that a sufficient convergence was achieved well below N =

2048. 
Results for the D95% are presented in Table 1. For six patients, the 

width of the CI95% for the D95% was below 0.18 Gy (10% of the pre
scribed dose of 1.8 Gy). Uncertainties of more than 10 % were observed 
for patients 2, 3, 7 and 9. Here the widths of the CI95% for the D95% were 
0.57, 0.24, 0.28 and 0.48 Gy, respectively. Plots of the DVHs for the 
CTVSTAPLE for these four patients with their corresponding 95 % and 68 
% CIs are shown in panels C to F of Fig. 1. For two of these patients, the 
overall influence of IOV was negligible (SIOV + SIIOV < 0.05 for patients 
7 and 9). In both cases, range uncertainty was the most important 
contribution to overall uncertainty (Srange was 0.53 and 0.70 for patients 
7 and 9, respectively). For patients 2 and 3, however, IOV played a major 
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role for overall uncertainty (SIOV + SIIOV was 0.43 and 0.63 for patients 2 
and 3, respectively). 

4. Discussion

A framework for the variance-based SA of setup, range and IOV has
been presented. To the best of our knowledge, this study is the first to 
assess the relative dosimetric impact of setup uncertainty, range un
certainty and IOV in a variance-based SA. In a first analysis of ten pa
tients, calculation times were of the order of a few minutes to a few 
hours. These calculation times are fast enough for offline plan evalua
tion. Although this was not investigated in this study, it can be assumed 
that the differences in calculation time were caused by differences in the 
sizes and depths of the target volumes. The convergence plots in Fig. 1 
suggest that actually less than N = 2048 would have been sufficient to 
achieve convergence, therefore the calculation times could be reduced 
by stopping the calculation after reaching a predefined convergence 
criterion. While for the majority of patients, the overall uncertainties in 
CTV coverage were small, in some cases the coverage was deteriorated. 
The dominating contributions to overall uncertainty were either range 

uncertainty or IOV. This suggests that IOV might have a relevant effect 
on target coverage in some patients. 

In this work, the analysis was restricted to skull base meningioma, 
since the framework does not support organ motion at the moment. 
Furthermore, a pencil beam algorithm was used, whose accuracy is 
known to decrease in regions of high heterogeneity. The framework 
would be applicable without modification to other tumour sites for 
which these limitations are acceptable. The possibility to model motion 
could be included by extending the framework to use multiple CT ge
ometries (e.g. phases of a 4D-CT to model breathing motion), at the cost 
of an increased memory usage and longer calculation times. In the 
previous publication from our group [10], uncertainties in variable RBE 
models were evaluated in combination with setup and range uncer
tainty. In this study, since the focus was on IOV, RBE uncertainty was not 
taken into account and a constant RBE of 1.1 was assumed. However, the 
combined evaluation of all four types of uncertainty could in principle 
also be included in the framework. This could be used in future studies to 
assess the combined impact of range, setup and RBE uncertainty and 
IOV. The evaluation of the CTV D95% in presence of IOV required a 
”ground truth” CTV. Unfortunately, this volume is not known. In this 

Fig. 1. Convergence plots for Sl and STl for one patient (panels A and B) and DVHs for CTVSTAPLE for the four patients with the largest overall D95% uncertainties 
(panels C to F). The variability of the DVH in presence of setup uncertainty, range uncertainty and IOV is visualized by the shaded areas (68% and 95% CIs). The solid 
line indicates the mean value over all simulated error scenarios. 

Table 1 
Uncertainty and sensitivity analysis results for the D95% for (CTV)STAPLE. For each patient, the mean value and 95% and the 68% CIs have been calculated. The relative 
contribution to the overall uncertainty is broken down to first order indices Ssetup, Srange and SIOV, higher order indices with involvement of IOV (SIIOV) and higher order 
indices without involvement of IOV (SIother).  

pat. mean [Gy] CI95% [Gy] CI68% [Gy] Ssetup Srange SIOV SIIOV SIother 

1 1.71 1.62–1.74 1.69–1.73 0.21 0.29 0.11 0.10 0.29 
2 1.56 1.16–1.73 1.35–1.72 0.12 0.35 0.34 0.09 0.10 
3 1.66 1.49–1.73 1.59–1.71 0.14 0.11 0.62 0.01 0.12 
4 1.70 1.59–1.73 1.68–1.72 0.19 0.14 0.10 0.12 0.45 
5 1.73 1.71–1.74 1.72–1.74 0.37 0.31 0.00 0.14 0.18 
6 1.73 1.70–1.74 1.72–1.73 0.20 0.29 0.03 0.04 0.44 
7 1.67 1.45–1.73 1.61–1.73 0.25 0.53 0.00 0.02 0.20 
8 1.69 1.58–1.74 1.65–1.73 0.23 0.49 0.04 0.05 0.19 
9 1.62 1.25–1.73 1.48–1.71 0.13 0.70 0.01 0.00 0.16 
10 1.73 1.70–1.74 1.72–1.74 0.26 0.24 0.02 0.06 0.42  
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work, the consensus target volume created with the STAPLE algorithm 
was used to define a ”ground truth” target volume, as has been done 
previously [14]. Since this algorithm provides a maximum likelyhood 
estimate for the actual CTV based on the observer CTVs themselves, this 
approach is well suited to capture the variability within a group of ob
servers. However, it cannot correct systematic deviations from the 
ground truth CTV within the observer group. Furthermore, in this study 
only data from four observers was available, which was considered 
sufficient to show the feasibility of the approach. However, outlier 
contours could have considerable effect on the evaluation. For this 
reason, both the number of patients and the number of observers needs 
to be increased for future systematic evaluations of the impact of IOV in 
combination with setup and range uncertainties. Another limitation is 
that in our study simple proton plans with only one beam direction were 
used. More clinically realistic plans with multiple beam directions are 
supported by the framework without modifications, but have higher 
memory requirements and will lead to longer calculation times. 

In this technical note, no metrics of contour similarity such as Dice 
coefficients or Hausdorff distances were evaluated. The presented 
framework might be used in future studies to investigate the correlation 
of these metrics with dosimetric parameters. It could also have potential 
applications in the investigation of the implications of uncertainty 
reduction. If technical advances such as dual energy computed tomog
raphy (DECT), proton CT and improved image guidance reduce range 
and setup uncertainty, the relative impact of IOV on overall uncertainty 
becomes larger. The SA framework could complement studies such as 
[15–17], who have investigated the impact of range and setup margin 
reduction. By also including IOV into the analysis, questions such as how 
far the overall uncertainty can be reduced by reduction of setup and 
range uncertainty before IOV becomes the limiting factor could be 
comprehensively investigated in future studies. Similarly, the following 
question could be assessed: Although not explicitly accounted for in the 
PTV concept, it can be assumed that IOV is compensated by the margins 
(or, in an analogous manner in the case of robust optimization, the plan 
robustness settings) to a certain extent. The SA framework could help to 
investigate whether a CTV-to-PTV margin reduction (or reduction of 
plan robustness settings) justified by reduced range and setup un
certainties would lead to an unexpected increase in uncertainty of CTV 
coverage caused by IOV. 

In conclusion, a previously presented framework for variance-based 
sensitivity analysis has been extended to include IOV. The approach is 
feasible and enables the evaluation of the combined impact of setup and 
range uncertainty and IOV. In a first analysis of ten patients, IOV had a 
relevant impact on the CTV D95% for two of these patients. This suggests 
that IOV could have a deteriorating effect on CTV coverage in some 
cases. 
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Purpose: In ion beam therapy, biological models to estimate the relative biological effectiveness
(RBE) and subsequently the RBE-weighted dose (RWD) are needed in treatment planning and plan
evaluation. The required biological parameters as well as their dependency on ion species and ion
energy can typically not be determined directly in experiments for in vivo situations. For that reason
they are often derived from in vitro data and biological modeling and subject to large uncertainties.
We present a model-independent Monte Carlo (variance-) based uncertainty and Sensitivity Analysis
(SA) approach to quantify the impact of different input uncertainties on a simulated carbon ion treat-
ment plan.
Method: The influences of different input uncertainties are examined by variance-based SA meth-
ods. In this Monte Carlo approach, a function is evaluated 103–105 times. For each of those runs, all
inputs are changed simultaneously, using random numbers according to their associated uncertain-
ties. Variance-based statistic formalisms then rank the input parameter/uncertainty pairs according to
their impact on the result of the function. The method of SA includes an uncertainty analysis and was
applied to a two-field spot scanning carbon ion treatment plan for two commonly used biological
models and two representative tissue parameter sets.
Results: Based on an exemplary patient case, the application of variance-based SA for biological
measures, relevant in (carbon) ion therapy, is demonstrated. A voxel-wise calculation for 2.9 � 105
voxels takes ~6 h. A structure-based SA, which adds an uncertainty band to a RWD-volume
histogram (RW-DVH) and shows how to decrease the uncertainty in the most effective way, can be
calculated in 0.1–1.5 h (depending on the size of the structure). The uncertainties in RBE, RWD or
RW-DVH are broken down to the impact of different uncertainties in the (biological) model input.
Biological uncertainties have a higher impact on the resulting RBE and RWD than uncertainties in
the physical dose. Excluding the physical dose from the SA only slightly decreased the overall uncer-
tainty, emphasizing the necessity to include biological uncertainties into treatment plan evaluation.
Conclusion: Variance-based SA is a powerful tool to evaluate the impact of uncertainties in (carbon)
ion therapy. The number of input parameters that can be examined at once is only limited by compu-
tation time. A Monte Carlo-derived, comprehensive uncertainty quantification and a corresponding
sensitivity analysis are implemented and provide new information for treatment plan evaluation. A
possible future application is a SA-based biologically robust treatment plan optimization using the
additional uncertainty information as presented here. © 2018 American Association of Physicists in
Medicine [https://doi.org/10.1002/mp.13306]

Key words: carbon ion radiotherapy, relative biological effectiveness (RBE), uncertainty and sensi-
tivity analysis, uncertainty propagation

1. INTRODUCTION

In ion beam therapy, biological models to estimate the rela-
tive biological effectiveness (RBE) are frequently used in
treatment planning and plan evaluation. In the context of the
linear-quadratic (LQ) model,1 the RBE depends on biological
parameters (ap and bp) for particles/ions as well as for the

reference x-ray radiation (ax and bx) and the dose per fraction
(d). The needed biological parameters as well as their depen-
dency on ion species and ion energy typically cannot be
determined directly in experiments for in vivo situations.
They are often derived from in vitro data in combination with
biological modeling and are subject to large uncertainties.
For a comprehensive treatment plan evaluation and
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optimization, it is therefore necessary to estimate the result-
ing uncertainties in e.g., RBE or RBE-weighted dose (RWD)
caused by the uncertainties of the relevant input parameters.
In general RBE and hence also uncertainties in RBE predic-
tions are more important in carbon ion therapy than in proton
therapy. Typical RBE values inside the planning target vol-
ume (PTV) range between 3 and 5 for carbon ion therapy and
1.1 for proton therapy.

Currently, a lot of effort is invested into the quantification
and subsequent minimization of dose-related uncertainties
for proton and ion therapy.2–4 This includes both the quantifi-
cation of these physical uncertainties5–9 and how to account
for them in the optimization process.10–16 Little is known
about the actual size and influence of uncertainties in RBE
predictions. The problem is that the data for estimating uncer-
tainties of RWD in the clinics is scarce, ambiguous, and con-
tains biases (e.g., in vitro vs in vivo differences). Therefore,
clinical decisions are commonly only based on an opinion of
an expert (and are usually not systematic and quantitative).

Computationally simple sensitivity analysis approaches
have already been used in ion beam therapy, especially to
address the biological effects of carbon ion beams (e.g., Refs.
[17–19]). The authors reported significant variations due to
systematic changes in individual parameters of the Local
Effect Model as well as ax and bx. These earlier sensitivity
analysis approaches used for biological model predictions in
(carbon) ion therapy were carried out thoroughly by changing
one or two input parameters at a time by up to �50%. The
authors reported proportionally lower changes in the RBE
compared to the changed input and that uncertainties in gen-
eral decrease in Spread-out Bragg Peaks (SOBP) compared
to monoenergetic beams. Changing one factor at a time is a
commonly used, computational inexpensive method to quan-
tify the effect of uncertain inputs to models. The method
itself is limited as it comes without the possibility to quantify
an overall uncertainty considering all input parameters at
once and is hence potentially ignoring interplay effects
between different inputs. In order to overcome these limita-
tions, Kamp et al.20 showed a first application of variance-
based SA for carbon ion therapy. This proof-of-concept study
was limited to a simplified one-dimensional (1D) SOBP set-
ting without a repeated full execution of the biological mod-
eling process. In this study, variations in RBE and RWD
were computed assigning uncertainties to three parameters:
ap; bp and d (whereas ax and bx had to be kept constant).

It becomes obvious that for both, comprehensive treatment
plan evaluation and their biologically robust optimization,
two main challenges need to be addressed. First, a compre-
hensive uncertainty quantification is needed, considering as
many input uncertainties as feasible at once as well as their
potential interplay. Second, a sensitivity measure is needed to
provide additional information on the relative impact of dif-
ferent input uncertainties on the resulting comprehensive
uncertainty.

We employed a statistical method called variance-based
SA in order to quantify uncertainties of RBE and RWD dis-
tributions. The employed variance-based approach randomly

varies all input parameters at once. In this Monte Carlo
approach, a comprehensive uncertainty in RBE or RWD is
modeled which includes all specified input uncertainties as
well as their interplay effects. With a statistical ranking, the
so-called SA, the simulated variance in the result can be bro-
ken down into the impact of the different input uncertainties.

This means that the work of Kamp et al.20 was extended
from a 1D SOBP in water to a 3D carbon ion treatment plan
of a real patient case. In addition, a very fast biological model
was implemented. This facilitates the extension of the analy-
ses to changes in all input parameters of RBE predictions.
The step from 1D to 3D is accompanied by the possibility to
evaluate structure-based measures as, e.g., dose–volume his-
tograms and RWD-quantiles. To cover a broader range of
possible ax=bx ratios, two representative values (ax=bx ¼ 2
and 9.2 Gy) are chosen in this manuscript (in Kamp et al.20

only one ax=bx = 6.4 Gy was used).

2. MATERIALS AND METHODS

2.A. Research treatment planning system

We added a carbon ion treatment planning extension to the
Computational Environment for Radiation Research platform
(CERR).21–24 This extension includes 3D, voxel-wise dose cal-
culation, treatment plan optimization based on the biological
effect and the calculation of RBE, RWD, dose-weighted LET,
as well as dose-weighted ap and bp. The reference radiosensi-
tivity parameters ax and bx can be specified for every voxel.
The implemented multi-field optimization uses either squared
differences in the biological effect25 or the concept of equiva-
lent uniform effect as reported by Br€uningk et al.23

The calculations are based on a pencil beam, spot scanning
algorithm. The necessary fragmentation spectra were simu-
lated according to Parodi et al.26 for a clinically representative
beam line and tabulated. This includes spectra of the fully
ionized elements with atomic numbers Zion ¼ 1 to 6.

2.B. Prediction of RBE

In the framework of the LQ model, isoeffective RBE can
be calculated as a function of five input parameters.

RBEðap; bp; ax; bx; dÞ
¼ 1

2bxd
�ax þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ 4bxðapd þ bpd2Þ

q� � (1)

In order to predict ap and bp for a given set of x-ray refer-
ence parameters (ax and bx) biological model predictions
were implemented into CERR. In this work, we used the
repair-misrepair-fixation (RMF) model24 and the Local Effect
Model 1 (LEM1).27

2.B.1. Repair-misrepair-fixation (RMF) model

The mechanistic RMF model was developed by Carlson
et al.28 here it is implemented based on double-strand break
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(DSB) inductions from the Monte Carlo damage simulation
(MCDS).29–31 The RMF model was implemented based on
MCDS version 3.10 and a default cell nuclear diameter of
5 lm.

The RMF model predictions for ion therapy have been
shown and discussed in several publications.24,28,32–34 We
focus here on the properties of the RMF model that are favor-
able for the presented variance-based SA. Kamp et al.33

introduced a decoupling approach for the RMF model. The
dose-weighted ap and bp in every voxel i can be expressed as

ap;i ¼ ax;i � c1;i þ bx;i � c2;i (2)

bp;i ¼ bx;i � ðc1;iÞ2 (3)

with c1;i and c2;i as introduced by Kamp et al.33 c1;i and c2;i
combine physical and biological beam properties, such as
particle type and spectra, stopping power, frequency-mean
specific energy, and the simulated DSB induction to two val-
ues for every voxel. c1;i and c2;i are explicitly decoupled from
the reference radiosensitivity parameters ax;i and bx;i.

Practically this means that within the framework of the
RMF model, predictions can be adapted very fast for changes
in ax and bx. The influence of a random change of ax;i and
bx;i can be calculated extremely fast for all voxels as it is a
simple vector multiplication and summation. In the frame-
work of the RMF model, RBE reduces to a function of the
frequently used ax=bx ratio and c1, c2, and d.

RBERMF
ax
bx

; c1; c2; d

� �

¼ 1
2d

� ax
bx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax
bx

� �2

þ 4d c1
ax
bx

þ c2 þ c21d

� �s0
@

1
A (4)

This equation is derived by combining Eq. (1) with
Eqs. (2) and (3) as shown by Kamp et al.33

2.B.2. Local effect model 1 (LEM1)

For comparison, we implemented the LEM127 predictions
to the prescribed extension of CERR. LEM1 is currently used
for the clinical treatment planning of patients.35 Tabulated
dependencies of ap and bp on particle type and energy are
taken from the LEM1 implementations on the INFN/I-SEE
homepage (http://totlxl.to.infn.it/lem/, accessed 2015, cur-
rently not available). Note that a fast recalculation, compara-
ble to the c1–c2 formalism above, is not possible using LEM.
Every time ax or bx are changed, LEM1 needs to be rerun to
simulate a new set of corresponding ap and bp.

2.C. Sensitivity analysis

We adopted the Factor Prioritization approach as
described by Saltelli et al.36 for carbon ion treatment plan
evaluation for 3D patient cases. This SA approach ranks
uncertainties of different inputs according to their influence
on an uncertainty in the result. The Factor Prioritization is

achieved by a Monte Carlo approach, followed by a variance-
based ranking of the influence of different input.

2.C.1. Variance-based sensitivity analysis

The Factor Prioritization approach by Saltelli et al.,36

combines a Monte Carlo sampling for the uncertainties of
the inputs with a variance-based evaluation. This means
that a function is evaluated nrun times, each time with a dif-
ferent set of randomly changed input parameters. The input
is changed randomly according to the individually assigned
random number distributions, accounting for the associated
uncertainties. A variance-based statistic ranks the uncer-
tainty in the different inputs according to their impact on
the result. The sensitivity Sk on the k-th input parameter Xk

is calculated as

Sk ¼ var meanðYjXk � constÞð Þ
varðYÞ ; (5)

with Y being the result vector of nrun function evaluations.
Following the description in Kamp et al.,20 the numerator is
calculated by first sorting the Xk; Yð Þ pairs by increasing Xk.
The sorted pairs are then divided into npar partitions, each
containing nrun=npar entries with increasing Xk . The mean
values are taken over these partitions, the variance then from
the npar mean values. Extensive testing showed that for
the here discussed study the combination of nrun ¼
131 072 ¼ 217 and npar ¼ 256 ¼ 28 was numerically stable.
The implemented approach provides not only an uncertainty
of the result (standard deviation rY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var Yð Þp
) but also the

corresponding sensitivity information. These first-order sen-
sitivity values range from S ¼ 1 (only influential input) to
S ¼ 0 (no influence). If

P
k Sk ¼ 1, it can be inferred that no

higher order sensitivity values (cross terms of two or more
inputs) are present.36

2.C.2. Adaption to carbon ion therapy treatment
planning

Computation time and memory are the most crucial fac-
tors for the implementation of the SA. For instance, the RBE
and RWD of the presented patient case with 2.9 � 105 rele-
vant voxels need to be evaluated nrun ¼ 131 072 times in
every voxel, then sorted and inserted into Eq. (5). In order to
achieve reasonable computation times with optimal memory
usage, several parallelization steps are implemented.

The first step is to use the same relative random numbers
for all voxels. This means, the relative changes are randomly
sampled for every input but the same in all voxels. For exam-
ple, can nrun changes of ax;i be derived by a simple multipli-
cation ax;i � Dax for all voxels i. Here Dk are vectors of length
nrun with relative changes (Dk ¼ 1 is equal to the unchanged
value). Note that all Dk are explicitly independent of the voxel
i. This not only ensures spatially continuous values in every
run but also reduces the amount of sorting needed for the SA
to the absolute minimum. In this way, the random numbers
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need to be sorted only once per input and the sorting indices
can be applied to all voxels.

For the second parallelization step, two different
approaches need to be considered. The first can be applied to
voxel-based measures as for instance spatial distribution of
RWDi, RBEi, ap;i, or bp;i. The second is applied for structure-
based measures as, e.g., RWD50%, RWD2%, or RWD98%

where RWDX% denotes the minimal RBE-weighted dose
received by X% of the structure’s volume.

Voxel-based measures are calculated for nvox in parallel to
optimize memory usage and to speed up the calculation. Typ-
ical values for nvox lie between 102 and 104 and scale with
n�1
run. The resulting uncertainty (rY ;i) and sensitivity (Sk;i)

maps can be displayed similar to dose maps, as colorwash
overlay on the CT image of the patient.

Structure-based measures need the information in all vox-
els of the structure at once. They can be calculated in parallel
for a subgroup of runs nsub. Typical values for the size of
these subgroups lie between 102 and 103 and are inverse pro-
portional to the number of voxels in a structure. The result is
one sensitivity value per structure and input parameter com-
bination.

2.C.3. Used SA settings and assigned random
number distributions

The presented SAs were done based on nrun ¼ 131 072
subdivided into npar ¼ 256 partitions. Table I summarizes
the evaluated measures, their dependencies, and the relative
uncertainty assigned to the different inputs. The table shows
relative standard deviations rk which are used to generate
normally distributed random numbers with an expectation
value of 0. The relative changes Dk are obtained by adding
+1 to the resulting random numbers. We chose normally dis-
tributed random numbers, as this distribution is commonly
used to report uncertainties. The relative standard deviations
were chosen following the values reported by Weyrather
et al.35 and Friedrich et al.37 for the biological parameters.
The uncertainty in the dose is a rough estimation of the
achieved relative uncertainty considering clinical dose deliv-
ery. The SA itself can in general be executed with any distri-
bution, whichever describes the uncertainty in the input best.
Note that the comprehensive SA of columns 1–3 in Table I
can only be done for RMF model predictions at the moment.
The reduced SA, mentioned in the fourth column, can be
done for LEM1 as well. This SA is reduced, as ap ax; bxð Þ and
bp ax; bxð Þ are not changed accordingly. The reduced SA
needed to be introduced as the current database does not sup-
port arbitrary changes in the LEM1 input (ax and bx). Any
change in ax and bx in the LEM1 would require a new model
execution to simulate ap and bp. For the implemented SA,
this would mean nrun ¼ 131 072 LEM1 executions which are
computationally not feasible.

Note that instead of RBE ap; bp; d
� �

as reported in Kamp
et al.20, we simulate RBEðax; bx; dÞ in the reduced SA. Due
to the involved sorting in the calculation of Sk , the SA cannot
be executed for correlated or dependent input. As ap and bp

are dependent on the same variables, a reduced SA modeling
RBE ax; bx; dð Þ is better suited for comparisons with the com-
prehensive SA.

3. RESULTS

We demonstrate and discuss the presented SA on the basis
of an astrocytoma patient previously treated with photons.
The nominal treatment planning result is obtained by a simul-
taneous multi-field optimization. Spatially constant ax and bx
were assigned throughout the patient. Two representative tis-
sue parameter sets were chosen. One with a small
ax=bx ¼ 2Gy (ax ¼ 0:1Gy�1 and bx ¼ 0:05Gy�2, repre-
senting chordomas of the scull base38) and one with a large
ax=bx ¼ 9:2Gy (ax ¼ 0:184Gy�1 and bx ¼ 0:02Gy�2, for
Chinese hamster fibroblasts V7939). The treatment plan was
optimized on a RWD of 3 Gy(RBE) in the PTV. The later
discussed Figs. 1 and 2 display different quantities for the
same RMF model-based carbon ion treatment plan calculated
with the smaller ax=bx ¼ 2Gy.

All simulations were performed in a computational envi-
ronment equipped with 8 cores (2.66 GHz) and 32 GB ran-
dom-access memory within the Matlab 2014a (The
MathWorks, Inc., Natick, MA) software package.

In the following, the different uncertainty and SA results
are reported. A common result is that, even though several
inputs are changed simultaneously with r ¼ 5%� 15%, the
relative change in the examined RBE and RWD is smaller
than 10%.

3.A. Sensitivity maps for RMF model predictions

Figure 1 shows the resulting sensitivity maps for
ap ax; bx; c1; c2ð Þ and bp bx; c1ð Þ modeled for a spatially con-
stant ax=bx ¼ 2Gy (ax ¼ 0:1Gy�1 and bx ¼ 0:05Gy�2).
The modeled, unchanged distributions of ap and bp are shown
in panels a and b. Both increase with increasing LET. The spa-
tial distribution of LET is shown in panel c. The resulting
standard deviations of ap and bp (panels d and e, respectively)
show the same behavior as ap (panel a) and bp (panel b),
respectively. Their relative standard deviation (derived by “di-
viding panel d by panel a” or “panel e by panel b”) ranges
from 10.1% to 12.4% for ap and is spatially constant at 22.6%

TABLE I. Evaluated functions and the assigned uncertainties in their inputs.
The uncertainties are modeled with normal distributions. *rax=bx ¼ 15% is
an approximated uncertainty in ax/bx, assuming rax ¼ 10% and rbx ¼ 10%.
#0.001% represents a very small uncertainty in the dose.

ap(ax, bx, c1, c2) bp(bx, c1)

RBERMF

(ax/bx, c1, c2, d)
RWDRMF

(ax/bx, c1, c2, d)

RBERMF/LEM

(ax, bx, d)
RWDRMF/LEM

(ax, bx, d)

rax ¼ 10% rbx ¼ 10% rax=bx ¼ 15%* rax ¼ 10%

rbx ¼ 10% rc1 ¼ 10% rc1 ¼ 10% rbx ¼ 10%

rc1 ¼ 10% rc2 ¼ 10% rd ¼ 5%

rc2 ¼ 10% rd ¼ 5% and 0.001%#
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for bp. Panels g, h, j, and k show the corresponding sensitivity
maps for ap. SapðaxÞ ¼ Sapðc1Þ and SapðbxÞ ¼ Sapðc2Þ while
the spatial distribution of Sap axð Þ and Sap c1ð Þ are different to
Sap bxð Þ and Sap c2ð Þ. ap is more dependent on changes in ax
and c1 for voxels with lower LET, while uncertainties in bx
and c2 have a higher impact for high LET regions. The sensi-
tivity maps for bp are shown in panels i and l. Sbp bxð Þ � 0:20
and Sbp c1ð Þ � 0:80 are spatially constant. The uncertainty in
c1 has a higher impact on bp than the uncertainty in bx.

Figure 2 displays the resulting sensitivity maps for
RWDRMF ax=bx; c1; c2; dð Þ. The plan was optimized on 3 Gy
(RBE) in the PTV using a spatially constant ax=bx ¼ 2Gy.
The optimized RWD (panels a) is displayed together with its
uncertainty (panel d). The LET (panel b) and the beam
geometry (panel e) are shown together with the four
unchanged input parameter maps (panel c, g–i). The four cor-
responding sensitivity maps are shown in panel f, j–l. The
shown voxel-wise SA for 2.9 � 105 voxels (Figs. 1 and 2 and
Fig. S1) took 6 h in total.

Several relations can be observed. The impact of changing
d is almost constant spatially SRWDðdÞ � 0:3. The
SRWDðax=bxÞ is small throughout the patient except in the

region 1 to 2.5 cm distal to the PTV. In this region,
SRWDðax=bxÞ reaches values up to 0.5. This means that the
uncertainty in ax=bxð Þ has the greatest impact on the uncer-
tainty in RWD in this region. The sensitivity maps of the two
biological modeling parameters c1 and c2 show opposite
behavior: SRWDðc1Þ is up to 0.7 in the PTV and in the frag-
mentation tail far from the PTV. In the region 1 to 2.5 cm dis-
tal to the PTV it drops to very small values SRWDðc1Þ� 0:05,
whereas SRWDðc2Þ is small everywhere except in the PTV
SRWDðc2Þ � 0:15 and the mentioned region from 0 to 2.5 cm
distal to the PTV SRWDðc2Þ � 0:4ð Þ. The high values in
SRWDðax=bxÞ and SRWDðc2Þ and the corresponding small val-
ues of SRWDðc1Þ are located in voxels with high LET.

For the sake of completeness the sensitivity maps for
RBERMF ax=bx; c1; c2; dð Þ are shown in the supplementary
material, available online (Fig. S1).

3.B. Structure-based sensitivity analysis for RMF
model predictions

Figure 3 displays RW-DVHs together with the uncertainty
information for the two representative ax=bx, modeled with
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and without an uncertainty in d. The uncertainty is added to
the plots, using the variation in the nrun RW-DVHs from the
SA. Table II summarizes resulting RWD98%, RWD50%, and
RWD2% representing the low, median, and high RWD,
respectively. Together with their uncertainty (rRWDX%

), the
results of the SA are reported. The sensitivity values break
down the uncertainty for a relative volume in the RW-DVH
into the different input uncertainties. The RW-DVHs of the
treatment plan simulated with ax=bx = 2 Gy and
ax=bx = 9.2 Gy are very similar. The resulting uncertainty is
larger for ax=bx = 9.2 Gy. Assigning a very small uncertainty
to d, decreases the uncertainty by 0.03–0.04 Gy for the PTV
and by 0.00–0.03 Gy for the left optical nerve.

Comparing the sensitivity values for the PTV in Table II,
it can be observed that c1 becomes more important for
ax=bx = 9.2 Gy, whereas the uncertainty of c2 is less impor-
tant. Comparison of the SX% values for the PTV and the left
optic nerve demonstrates that different structures can have
very different SA results. Depending on the location of the
structure, different input parameter uncertainties have a dif-
ferent impact. ax=bx and c2 are more important for the left

optic nerve than for the PTV. For c1 and d, it is the other way.
This is valid for both cell lines and was already observed in
the axial slices of the 3D sensitivity maps in Fig. 2.
SX%ðax=bxÞ þ SX%ðdÞ þ SX%ðc1Þ þ SX%ðc2Þ � 1 for all
shown structures, cell lines, and evaluated RWDX%. The com-
putation time was 0.1 h for the left optic nerve (102 voxels,
representing a very small structure <1 cm3) and 1.5 h for the
PTV (3.5 � 105) voxels, representing a large structure
� 270 cm3).

3.C. Reduced SA for different biological models

Table III summarizes the SA results for the reduced
SA. Here RWD was calculated as a function of ax, bx,
and d, whereas ap and bp were kept constant. Indepen-
dent of the chosen ax=bx, the RMF model as well as the
LEM1 based RWD are very similar in the PTV. The
LEM1 predicts slightly increased RWDX% for the left
optical nerve. The corresponding uncertainties rRWDX%

in
PTV and optical nerve are almost identical for the differ-
ent biological models. For both biological models, the
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uncertainty rRWDX%
is larger for the larger ax=bx. Fig-

ure S2 shows the corresponding RW-DVHs plotted analog
to Fig. 3.

For both evaluated ax=bx values and for both structures,
SRMF
X% dð Þ was greater than SLEM1

X% dð Þ, indicating that an uncer-
tainty in the dose has a higher impact on the resulting

FIG. 3. RW-DVH for the PTV and the left optic nerve for two representative ax/bx: 2 Gy panels (a) and (c) and 9.2 Gy panels (b) and (d). Panels (a) and (b) dis-
play the result of a SA with a modeled uncertainty in the physical dose (rd = 5%), for the results in panels (c) and (d) the uncertainty in the dose was neglected
(rd = 0.001%). The black RW-DVH lines denote the result of the unchanged optimization result. The uncertainties in the RW-DVH are indicated as � r (68.3%
probability to lie inside the dark area) and � 2r (95.4% probability to lie inside the light and dark area). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. RWD2%, RWD50% and RWD98%, and their uncertainties (rRWDX% ). The result of the sensitivity analysis is reported for the PTV and left optic nerve,
with and without a simulated uncertainty in the physical dose d. Two representative ax/bx values were evaluated. The corresponding RW-DVHs are displayed in
Fig. 3.

ax/bx = 2 Gy
PTV, rd = 5%

ax/bx = 9.2 Gy
PTV, rd = 5%

RWDX% � rRWDX%
½GyðRBEÞ� ax

bx
d c1 c2 RWDX% � rRWDX%

[Gy (RBE)] ax
bx

d c1 c2

RWD2% = 3.04 � 0.21 S2% 0.04 0.31 0.43 0.21 RWD2% = 3.03 � 0.27 S2% 0.06 0.27 0.62 0.06

RWD50% = 2.99 � 0.21 S50% 0.03 0.31 0.49 0.17 RWD50% = 2.99 � 0.28 S50% 0.04 0.26 0.66 0.04

RWD98% = 2.92 � 0.20 S98% 0.05 0.31 0.42 0.23 RWD98% = 2.93 � 0.26 S98% 0.05 0.26 0.63 0.06

PTV, rd = 0.001% PTV, rd = 0.001%

RWD2% = 3.04 � 0.17 S2% 0.06 0.00 0.63 0.30 RWD2% = 3.04 � 0.23 S2% 0.08 0.00 0.84 0.08

RWD50% = 2.99 � 0.18 S50% 0.04 0.00 0.72 0.24 RWD50% = 3.00 � 0.24 S50% 0.05 0.00 0.90 0.06

RWD98% = 2.92 � 0.17 S98% 0.06 0.00 0.61 0.32 RWD98% = 2.93 � 0.23 S98
% 0.07 0.00 0.86 0.08

ax/bx = 2 Gy
Optic nerve, rd = 5%

ax/bx = 9.2 Gy
Optic nerve, rd = 5%

RWDX% � rRWDX%
[Gy (RBE)] ax

bx
d c1 c2 RWDX% � rRWDX%

[Gy (RBE)] ax
bx

d c1 c2

RWD2% = 2.19 � 0.15 S2% 0.14 0.28 0.17 0.42 RWD2% = 2.10 � 0.19 S2% 0.15 0.27 0.47 0.12

RWD50% = 1.20 � 0.10 S50% 0.29 0.22 0.08 0.42 RWD50% = 1.07 � 0.10 S50% 0.25 0.25 0.37 0.14

RWD98% = 0.18 � 0.02 S98% 0.49 0.16 0.09 0.25 RWD98% = 0.15 � 0.02 S98% 0.19 0.23 0.47 0.08

Optic nerve, rd ¼ 0:001% Optic nerve, rd ¼ 0:001%

RWD2% = 2.19 � 0.13 S2% 0.19 0.00 0.23 0.58 RWD2% = 2.10 � 0.16 S2% 0.20 0.00 0.64 0.16

RWD50% = 1.20 � 0.09 S50% 0.36 0.00 0.11 0.53 RWD50% = 1.07 � 0.09 S50% 0.32 0.00 0.49 0.19

RWD98% = 0.18 � 0.02 S98% 0.58 0.00 0.10 0.30 RWD98% = 0.15 � 0.01 S98% 0.24 0.00 0.62 0.10
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variance in the RWD predictions. For both biological models

and both structures, it can be found that S2GyX% aXð Þ\
S9:2GyX% aXð Þ and S2GyX% bXð Þ[ S9:2GyX% bXð Þ. In general, SPTVX% bXð Þ
[ SopticX% bXð Þ:

For the RMF model, a comparison of the reduced uncer-
tainty analysis results (Table III) to the comprehensive uncer-
tainty results in Table II shows that the comprehensive
rRWDX%

is larger than the reduced rRWDX%
. The reduced uncer-

tainty analysis can serve as a lower limit to the comprehen-
sive uncertainty analysis.

4. DISCUSSION

4.A. Implementation

We showed the feasibility of variance-based SA for
RBE and RWD calculations in carbon ion therapy. Due
to the Monte Carlo approach, an uncertainty as well as
a SA was retrieved. This can be implemented for any
relevant value used for treatment plan assessment (e.g.,
dose maps, DVHs, equivalent uniform dose, or RWDX

%). The needed computation time and used memory are
the biggest challenge for a convenient application in
treatment planning. They can be reduced in several
ways: reduced number of evaluated voxels or necessary
runs and improved hardware and dedicated implementa-
tions.

Several improvements are hence conceivable: The SA can
be only performed for a specified region of interest (e.g., in
the PTV or a suitable extension of the PTV), reducing the

number of evaluated voxels. The use of low discrepancy
quasi random numbers (e.g., Sobols’ sequence36,40) for the
Monte Carlo sampling potentially reduces the necessary nrun.
The computational problem itself is parallelizable to a very
high degree, meaning that doubled computational power runs
twice as fast. In terms of hardware upgrades, also the use of
dedicated high-end GPUs is promising, as the necessary
operations are fairly simple, just need to be executed very
often.

A future application of the presented approach is in the
field of robust optimization. The Monte Carlo approach nec-
essary for a variance-based SA provides an uncertainty of the
examined result which can be used for the optimization. A
first possible scenario how to use the SA for a new robust
optimization procedure can be found in Table II: RWD pre-
diction are far more sensitive to c2 for ax=bx = 2 Gy than it
is the case for ax=bx = 9.2 Gy. This means that in the corre-
sponding robust optimization, the main objective is a beam
arrangement minimizing the impact of uncertainties in c2.
Similar conclusions can be drawn for different OARs,
depending on their proximity to the PTV.

Besides this also an optimization of SA values themselves
can be foreseen, e.g., optimizing a treatment plan in a way
that for example an unavoidable uncertainty in the ax=bx has
a minimal Sk value, indicating that the treatment plan is the
least vulnerable to it. Note that the computational perfor-
mance of the SA needs to be improved for this kind of SA
optimization, as it has to be executed several times in every
optimization step.

A potential limitation that needs to be considered is the
necessity to assign distributions to the input factors. Often

TABLE III. RWD2%, RWD50%, and RWD98% and their uncertainties (rRWDX%
). The result of the sensitivity analysis is reported for the PTV and left optic nerve.

Two representative ax/bx values were evaluated with the RMF model and the LEM1, respectively. The uncertainty and sensitivity analysis was done for RWD sam-
pling input uncertainties for ax, bx, and d, whereas ap and bp were kept constant. The corresponding RW-DVHs are displayed in Fig. S2.

ax/bx = 2 Gy
PTV, RMF

ax/bx = 9.2 Gy
PTV, RMF

RWDX% � rRWDX%
[Gy (RBE)] ax bx d RWDX% � rRWDx%

[Gy (RBE)] ax bx d

RWD2% = 3.02 � 0.18 S2% 0.18 0.41 0.42 RWD2% = 3.03 � 0.24 S2% 0.59 0.07 0.34

RWD50% = 3.00 � 0.18 S50% 0.17 0.40 0.43 RWD50% = 3.00 � 0.24 S50% 0.59 0.07 0.35

RWD98% = 2.94 � 0.18 S98% 0.18 0.40 0.42 RWD98% = 2.94 � 0.23 S98% 0.60 0.06 0.34

PTV, LEM1 PTV, LEM1

RWD2% = 3.02 � 0.17 S2% 0.20 0.47 0.34 RWD2% = 3.02 � 0.23 S2% 0.63 0.07 0.30

RWD50% = 3.00 � 0.17 S50% 0.20 0.46 0.34 RWD50% = 3.00 � 0.23 S50% 0.63 0.07 0.30

RWD98% = 2.94 � 0.17 S98% 0.21 0.46 0.34 RWD98% = 2.94 � 0.23 S98% 0.64 0.07 0.30

ax/bx = 2 Gy
Optic nerve, RMF

ax/bx = 9.2 Gy
Optic nerve, RMF

RWDX% � rRWDX% [Gy (RBE)] ax bx d RWDX% � rRWDX% [Gy (RBE)] ax bx d

RWD2% = 2.19 � 0.13 S2% 0.28 0.34 0.38 RWD2% = 2.10 � 0.18 S2% 0.67 0.04 0.29

RWD50% = 1.20 � 0.08 S50% 0.49 0.18 0.33 RWD50% = 1.07 � 0.10 S50% 0.75 0.01 0.24

RWD98% = 0.18 � 0.02 S98% 0.75 0.01 0.22 RWD98% = 0.15 � 0.02 S98% 0.78 0.00 0.19

Optic nerve, LEM1 Optic nerve, LEM1

RWD2% = 2.25 � 0.13 S2% 0.29 0.38 0.34 RWD2% = 2.15 � 0.17 S2% 0.69 0.04 0.27

RWD50% = 1.31 � 0.08 S50% 0.47 0.21 0.32 RWD50% = 1.11 � 0.11 S50% 0.75 0.01 0.23

RWD98% = 0.28 � 0.03 S98% 0.74 0.02 0.24 RWD98% = 0.17 � 0.02 S98% 0.79 0.00 0.20
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exact values might not be available. Further studies are neces-
sary to evaluate the impact of potentially errors in the
assigned distributions. In a first simulation, all Sk and their
relative trends stayed constant within 1% when changing
input distributions from normal to uniform (�45% for ax=bx,
�15% for d, �30% for c1, and c2). This is consistent with the
results reported by Kamp et al.20 and might indicate that the
actual (unknown) shape of the uncertainty distributions is
less relevant.

A main limitation of the used SA approach is that it is not
suitable for correlated input uncertainties. The mathematical
definition of Sk breaks down for correlated inputs. Even
though the uncertainty analysis could still be carried out with
correlated input sampling, the SA itself can only be executed
with uncorrelated and independent input parameter sampling.

A more general limitation of the presented SA approach is
that it relies in the LQ model approximations for RBE predic-
tions. The simulated RWD variations are only derived in the
framework of this commonly used model. In this respect also
systematic differences in the in vivo and in vitro data are not
explicitly modeled and were hence not included in the SA.
Nonetheless, the SA adds and analyses systematic uncertain-
ties to RBE and RWD predictions. The mentioned shortcom-
ings do also adhere to clinical treatment plans which are
currently based on RBE predictions in the LQ framework.

Besides the uncertainties in the RBE modeling process,
carbon ion treatment planning has to take uncertainties in
patient setup and range into account. In contrast to the bio-
logical uncertainties, patient setup and range uncertainties
can be accounted for by margin concepts in clinical practice.
In the presented first patient case potential range and setup
uncertainties are summarized in a 5% uncertainty in the phys-
ical dose. The variance-based sensitivity approach is in gen-
eral suitable to evaluate more complex scenarios, e.g.,
explicitly including these mentioned range and setup uncer-
tainties.

4.B. Sensitivity maps for RMF model predictions

The result that SapðaxÞ ¼ Sapðc1Þ and SapðbxÞ ¼ Sapðc2Þ is
direct consequence of the assigned relative standard devia-
tions and the calculation of ap in Eq. (2). For example, con-
sidering the first term of the sum, a relative change of +10%
in either ax or c1 results in the same multiplication by 1.1.
The spatial distribution in the sensitivity maps is different for
panels g and j (or h and k) of Fig. 1. ap is more dependent on
changes in ax and c1 in voxels with lower LET. For high LET
regions, uncertainties in bx and c2 have a higher impact. This
can be explained by the strong dependence of c2 on LET
(compare to panel b and i of Fig. 2). The spatially constant
Sbp bxð Þ and Sbp c1ð Þ result from Eq. (3) and the relative defi-
nition of the uncertainties.

The comprehensive SA for RWDRMF ax=bx; c1; c2; dð Þ
are shown in Fig. 2. The high values in SRWDðax=bxÞ
and SRWDðc2Þ and the corresponding low SRWDðc1Þ are in
regions of high LET. A strong LET dependency can
already be seen for the unchanged c1 and c2 (panels h

and i). This dependency on LET in combination with
the changing sensitivity is of interest, especially if an
organ at risk (OAR) lies in this region. In the presented
patient case the left optic nerve, marked in green in the
panels, is located in the region of high LET. The uncer-
tainty in ax=bx is more crucial for this OAR than for
the PTV. The part of the biological modeling repre-
sented by c1 on the other hand shows the highest impact
on the uncertainty of RWD in the PTV but only a small
impact on the uncertainty of RWD in the left optic
nerve.

The sensitivity values in the fragmentation tail, distant
from the PTV can be verified analytically. For small d, RBE
reduces to RBEa � ap=ax ¼ c1 þ c2 � bx=ax. The contribution
of c2 can be neglected in the fragmentation tail. Hence,
SRBEðc1Þ[ 0:9 (compare to panel k of Fig. S1. RWD in this
region is calculated by multiplying RBEa with d, resulting in
SRWDðc1Þ � 0:68 and SRWDðdÞ � 0:24 (panel f and k in
Fig. 2), showing that c1 and d are the only influencing factors
SRWDðc2Þ � 0:02 and SRWDðax=bxÞ � 0:02ð Þ.

4.C. Structure-based sensitivity analysis for RMF
model predictions

The result of the optimized RWD distribution is very simi-
lar for the two considered ax=bx. A comparison of the differ-
ent ax=bx revealed different sensitivity values for c1 and c2.
This shows the potential of a variance-based SA. The most
influential input uncertainties are revealed, meaning that a
robust optimization scenario could optimize the influence of
different model parameters for different ax=bx.

The SA of RWDX% in Table II for ax=bx = 2 Gy combine
the 3D results in the sensitivity maps in Fig. 2. The trends
observed in the axial slices can also be seen here: Sðc1Þ are
higher in low–medium LET region of the PTV and Sðax=bxÞ
and Sðc2Þ are higher in high LET regions (optic nerve).

SX%ðax=bxÞ þ SX%ðdÞ þ SX%ðc1Þ þ SX%ðc2Þ � 1 for all
shown structures and cell lines. This means there are no rele-
vant cross terms and hence interplay effects between the four
inputs.

Removing the 5% uncertainty in d only has limited effect
on rRWDX%

. This means that even if the physical dose is deliv-
ered exactly as planned, a large uncertainty remains which is
associated with the uncertainty in the biological modeling.
This effect becomes more dramatic considering that a rd was
set rather large, whereas an uncertainty of 10% in the biologi-
cal parameters (ax, bx, c1, and c2) can be considered rather
small.

4.D. Reduced SA for different biological models

The reduced uncertainty analysis is a computational inex-
pensive lower estimate for the comprehensive uncertainty.
This lower uncertainty estimate might be a good candidate
for a SA triggered robust optimization, which can in a first
step be based “only” a reduced but fast SA. Further studies
are needed to show how to use this in, e.g., multistage robust
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optimization, consisting of a first stage based on the reduced
SA and a second on a comprehensive SA.

Compared to the decoupled implementation of the
RMF model,33 the calculations and simulations needed for
the LEM1 are in general more complex18 and a compre-
hensive SA, including all LEM1 parameters was not yet
computationally feasible. The reduced SA presented here
shows a first step in the direction of a comprehensive SA
for different biological models. In such a comprehensive
SA, it can be expected that for different biological models
different parameters have different effect on rRWDX%

. An
example for this is the finding that SRMF

X% dð Þ[ SLEM1
X% dð Þ

which can be directly observed from Eq. (1) where d is
multiplied with bp. Considering that LEM1 predictions of
bp decrease with increasing LET37, whereas RMF model
predictions increase with increasing LET28,32 the influence
of uncertainty in d on rRWDX%

will be higher for RMF
model predictions.

5. CONCLUSION

A variance-based SA including an uncertainty analysis
for carbon ion treatment plans is feasible. The proposed
approach provides new insight into robustness of treat-
ment plans. Both evaluated biological models showed
similar uncertainty bands in the reduced SA when aX ,
bX , and d were subject to uncertainties. In general, it
can be concluded that input parameter sensitivity varies
depending on the spatial location in the treatment plan.
Due to the high computational effort resulting from the
necessary Monte Carlo sampling, a comprehensive SA is
currently only possible using the RMF model. The
described SA analysis provides two new sources of
information: Monte Carlo-derived uncertainty and vari-
ance-based sensitivity information, breaking down the
uncertainty to the different input parameters. The main
potential applications are seen in manual treatment plan
evaluation and in biologically robust treatment plan
optimization.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. Sensitivity maps for RBERMF ax=bx; c1; c2; dð Þ. The
RBE (panel a) is displayed together with its uncertainty
(panel d). The LET (panel b) and the beam geometry (panel
e) are shown together with the four unchanged input parame-
ter maps (panels c, g–i). The four sensitivity maps are shown
in Panels (f), (j)–(l). The planning target (PTV) volume is
marked in red, the left optical nerve in green together with
the left eyeball (orange), and the left lens (brown). The under-
lying treatment plan optimized for a RWD of 3 Gy(RBE) can
be seen in Fig. 2.
Fig. S2. RW-DVH for the PTV and the left optic nerve for
two representative ax/bx: 2 Gy (panels a and c) and 9.2 Gy
(panels b and d). Panels (a) and (b) display the result using
the RMF model — panels (c) and (d) the result for LEM1
predictions. The black RW-DVH lines denote the result of the
unchanged optimization result. The uncertainties in the RW-
DVH are indicated as �r (68.3% probability to lie inside the
dark area) and �2r (95.4% probability to lie inside the light
and dark area). The uncertainty and sensitivity analysis was
done for RWD being a function of ax, bx, and d, whereas ap
and bp were kept constant. Table III summarizes the main
sensitivity values corresponding to this figure.
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Background and purpose: Our aim was to evaluate the feasibility and potential advantages of dose guided
patient positioning based on dose recalculation on scatter corrected cone beam computed tomography
(CBCT) image data.
Material and methods: A scatter correction approach has been employed to enable dose calculations on
CBCT images. A recently proposed tool for interactive multicriterial dose-guided patient positioning which
uses interpolation between pre-calculated sample doses has been utilized. The workflow was retrospec-
tively evaluated for two head and neck patients with a total of 39 CBCTs. Dose–volume histogram (DVH)
parameters were compared to rigid image registration based isocenter corrections (clinical scenario).
Results: The accuracy of the dose interpolation was found sufficient, facilitating the implementation of
dose guided patient positioning. Compared to the clinical scenario, the mean dose to the parotid glands
could be improved for 2 out of 5 fractions for the first patient while other parameters were preserved.
For the second patient, the mean coverage over all fractions of the high dose PTV could be improved by
4%. For this patient, coverage improvements had to be traded against organ at risk (OAR) doses within their
clinical tolerance limits.
Conclusions: Dose guided patient positioning using in-room CBCT data is feasible and offers increased
control over target coverage and doses to OARs.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 125 (2017) 464–469
In modern intensity-modulated radiotherapy (IMRT), a treat-
ment plan is optimized in order to cover the target volume with
the prescribed dose while optimally sparing adjacent healthy
structures. The optimization takes the individual patient geometry
into account, which is imaged before the beginning of the treat-
ment course by a computed tomography (CT) scan. To ensure that
the delivered dose is in agreement with the calculated dose in the
treatment planning system, the patient needs to be positioned and
aligned to the treatment unit in a reproducible and accurate way.
Typically, this is performed using in-room imaging equipment such
as cone-beam computed tomography (CBCT) [1]. A rigid registra-
tion with 6 or 3 degrees of freedom between planning CT (pCT)
and CBCT is performed, and the patient table is moved accordingly
to account for set-up errors [2]. The rigid registration is typically
based on anatomical landmarks close to the tumor (e.g. bones) or
implanted fiducial markers [3]. However, during the course of
treatment, considerable non-rigid changes may occur, such as
tumor shrinkage or weight-loss [4,5]. In this case, the actual dose
distribution might differ substantially from the one calculated on
the pCT [6], and determining the clinically favorable rigid isocenter
correction is not obvious. This could possibly result in both a clin-
ically relevant underdosage of the tumor and an overdosage of rel-
evant organs at risk (OAR), thus risking reduced tumor control and
increasing toxicity. Due to the high scatter contribution, CT num-
bers of CBCTs are not sufficiently accurate for dose calculation.
However, lately there has been a lot of progress in intensity correc-
tion strategies for CBCT to enable photon and proton dose calcula-
tion on these images [7–9], and it seems therefore reasonable to
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base the isocenter correction on a dose recalculation on the image
of the day rather than on the clinically used rigid image registra-
tion between pCT and CBCT. This has first been suggested for pro-
ton therapy [6,10]. Recently, an interactive, multicriterial approach
to dose-guided patient positioning has been presented and evalu-
ated for re-planning CTs of head and neck (H&N) and prostate
patients treated with photon IMRT [11]. In the present work, we
evaluate the potential of the method using dose recalculation on
scatter corrected CBCT (scCBCT) images.

Methods

Fig. 1 gives an overview of the overall workflow. The three main
features are a scatter correction method for CBCTs, a propagation of
contours from the pCT to the scCBCT and an interactive, pareto
optimal dose-based isocenter correction, balancing dose–volume
histogram (DVH) objectives. The workflow has been evaluated for
two H&N patient cases with a total of 39 CBCTs.
Imaging and rigid registration based isocenter correction

The pCTs were acquired with a Toshiba Acquilion CT scanner.
The CBCT images were acquired with the integrated scanner in
the Elekta Axesse system. The clinical rigid registration between
CBCT and pCT was applied using a bony match in the Elekta XVI
software. Isocenter position corrections were restricted to 3
degrees of freedom, i.e. only translational corrections.
Scatter correction and CBCT contouring

After the CBCT acquisition, a scatter correction of the CBCT is
performed. Our implementation of scatter correction closely
followed [8,9]. Virtual CTs (vCTs) obtained by deformable image
registration (DIR) are used as a prior to estimate the scatter contri-
bution in the CBCT projections.
Fig. 1. Overview of the applied dose guided positioning workflow. The deformable
image registration is performed both for the scatter correction and to obtain
deformed contours, which are used as a starting point for the contouring of the
CBCTs. To avoid any interpolation errors in the evaluation, a final dose calculation
was added once a satisfying isocenter correction was found.
The workflow of the scatter correction is as follows (as also
highlighted in Fig. 1):

1. DIR of the pCT to the CBCT to obtain a vCT ‘‘of the day”. The vec-
tor field is also used to propagate the contours from the pCT to
the vCT.

2. Forward projection of the vCT according to the cone beam
geometry.

3. Application of a correction factor (CF) to the CBCT projections to
match the intensities to the vCT forward projections. Following
[8], we used CF = 25.6.

4. Estimation of scatter by subtraction of the vCT forward projec-
tions from the CBCT projections and a smoothing operation (a
2D median filter with 25-by-25 pixels width, followed by a
Gaussian filter of 1.5 pixels standard deviation).

5. Subtraction of scatter from the CBCT projections.
6. Reconstruction of the scCBCT.

The advantage of this approach over using the vCT itself for dose
calculation is that it is insensitive to small errors in the DIR and
contrast of the CBCT is not altered by the scatter-correction [7,8].

In our workflow, a variational approach is used for DIR and aims
for image similarity and deformation regularity. Image similarity is
measured by Normalized Gradient Fields (NGF) [12] and deforma-
tion regularity is modeled by curvature regularization [13]. The
resulting optimization problem is solved in a discretize-then-
optimize scheme using a quasi-Newton L-BFGS optimizer.

Due to the limited field of view (FOV) of the CBCT and hence the
scCBCT, the corresponding regions of the pCT outside the FOV were
stitched to the scCBCT. This was necessary to account for beam
attenuation when irradiating through the shoulders of the patients,
which were not covered by the CBCT FOV. A comparison of the dif-
ferent types of CTs can be found in Supplemental Fig. 1.

The propagated contours of organs at risk (OARs) were adapted
by a trained clinical expert. The PTV contours were adapted by
senior physicians.
Dose calculation and interpolation

The dose distribution of the original clinical plan on the scCBCT
was calculated using a Monte Carlo (MC) algorithm on a 3 � 3 � 3
mm3 dose grid. The used dose engine was MCverify v2.44, a script-
able research version of the same algorithm used in Elekta Monaco
5.1. Clinical treatment plans of the evaluated patients were deliv-
ered with an Elekta Axesse LINAC. For every scCBCT, the dose
was calculated for 13 sample isocenter positions: the central posi-
tion, based on a rigid alignment of the CBCT to the pCT, and shifts
of ±3 mm and ±6 mm along every axis. For each fraction, the clin-
ically delivered plan was used for the dose calculations on the
scCBCTs (also in case of a clinical re-planning). As described in
more detail in [11], linear combinations of the sample dose distri-
butions are used to estimate dose distributions in a continuous
space of possible isocenter shifts. To avoid errors in our evaluation
of DVH parameters, which might be introduced by inaccuracies in
the dose interpolation, also a final dose calculation was performed
once a satisfying isocenter correction was found. Reported DVH
parameters were therefore always determined from a dose calcula-
tion for the final isocenter position without interpolation involved.
Interpolated doses were only used during the multicriterial opti-
mization described below to find that isocenter position. The inter-
polation accuracy was evaluated by interpolating dose cubes for
random 3D isocenter shifts within the accessible range of the inter-
polation and comparing them to the respective forward calculation
using a 2% dose difference criterion and a 2%/2 mm gamma crite-
rion. 100 random shifts for each scCBCT of patient 1 and 30 random
shifts for each scCBCT of patient 2 were evaluated.
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Multicriterial interactive radiotherapy assistant

The multicriterial interactive radiotherapy assistant (MIRA) is a
research treatment planning system for IMRT. The interface gives
the user the possibility to browse pareto-optimal plan candidates
interactively [14–16]. The recently implemented multicriterial
isocenter optimization in MIRA has been described in [11]. Pre-
calculated sample doses for a set of isocenter shifts and interpola-
tion between them are used to enable interactive navigation in
real-time. The multicriterial approach is DVH based, meaning that
the user doesn’t manipulate the isocenter directly. Instead, the tool
offers sliders corresponding to DVH deviation cost functions for the
structures of interest. These cost functions compare a DVH on the
pCT with the respective DVH on the scCBCT for a possible isocenter
position. For OARs, they are defined as follows:

qOARðdc;scCBCT
;dpCTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX100
i¼0

max ð0;Dc;scCBCT
i � DpCT

i Þ2
vuut

where c denotes a possible isocenter shift, d denotes the respec-
tive dose distributions on pCT and scCBCT and D0...100 are the dose
quantiles of the corresponding cumulative DVH. It is a one-sided
cost function, which penalizes any of the DscCBCT

i being larger than

the respective DpCT
i .

For target structures the cost function is defined analogously:

qTargetðdc;scCBCT
;dpCT Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX49
i¼0

maxð0;Dc;scCBCT
i �DpCT

i Þ2þ
X100
i¼50

maxð0;DpCT
i �Dc;scCBCT

i Þ2
vuut

This cost function penalizes any increase of the dose quantiles
D0...49 and any decrease of the dose quantiles D50...100, therefore it
maximizes target coverage while still minimizing overdosage.

The multicriterial optimization restricts the accessible isocen-
ters to the subset of pareto-optimal solutions – therefore, no
DVH objective can be improved without worsening another. When
the user manipulates the sliders, he immediately gets the result of
this trade-off. The tool is up to now restricted to translational shifts
in 3 dimensions and does not yet support rotational adjustments.
Application to patient data

Clinical datasets of two patients who had received curative-
intended radiotherapy for head and neck cancer have been retro-
spectively evaluated. Their characteristics are shown in Table 1.
Patients were positioned in supine position and immobilized with
a thermoplastic mask. The clinical step-and-shoot IMRT (ssIMRT)
treatment plan for patient 1 was generated with Hyperion V2.42,
a research version of the treatment planning system (TPS) Elekta
Monaco. For validation, the plan was re-calculated in the TPS
Oncentra Masterplan. The clinical VMAT plans for patient 2 were
optimized in Monaco itself. Both patients were treated with a
simultaneous integrated boost (SIB) concept. All calculated values
for particular fractions were scaled to the total plan dose. Our eval-
uation focused on the trade-off between PTV coverage and dose to
the parotid glands, which is of interest due to its association with
xerostomia [17]. For patient 2, the left parotid gland was inside of
the target volume, therefore, only the parotid gland on the right
hand side was considered. For the other OARs, it was always
Table 1
Evaluated patient cases.

No. Prescription Site of primary
tumor

Technique Sparing o
parotid gl

1 66 Gy/60 Gy/54 Gy Oral cavity ssIMRT bilateral
2 70 Gy/56 Gy Left cheek VMAT Only righ
assured that the clinical constraints in Table 2 were met for the
final dose guided isocenter shift.

Results

Interpolation accuracy

The median pass-rate for the 2% dose difference criterion over
all 1520 calculated shifts was 92.8% (range 86.8–100.0%). Failing
points were located predominantly at the patient surface, where
the interpolation cannot be accurate. For a 2%/2 mm gamma crite-
rion, median pass-rate was 99.0% (range 96.6–100.0%).
DVH parameters

Table 3 showsmean values of relevant DVH parameters for both
patients. For patient 1 the mean dose to both parotid glands could
be improved compared to the clinical, rigid registration based
shifts (31.0 to 30.2 Gy and 26.4 to 25.3 Gy, respectively). Other
parameters were unchanged, except for a very small decrease in
target coverage for the boost PTVs. Fig. 2 shows DVHs for one
exemplary fraction of this patient. In this particular fraction, the
mean dose to the left parotid gland improved from 30.6 to 26.1
Gy, the mean dose to the right parotid showed a small increase
from 30.2 to 30.6 Gy. The coverage of the high dose PTV with the
95% isodose was slightly decreased. Isodose lines of a representa-
tive dose distribution for this patient can be found in Supplemental
Fig. 2.

Fig. 3 shows the change of DVH parameters for patient 2 over
time. For this patient, the mean coverage of the high dose PTV with
the 95% isodose improved from 77% to 81% using dose guided posi-
tioning. The dose to the spared right parotid gland remained stable
for this patient (mean value over all fractions of Dmean was 26.1 Gy
both for the rigid registration based and dose guided isocenter cor-
rections). A decrease in coverage occurs both for clinical as well as
dose guided shifts around fraction 7, when large anatomical
changes occurred due to necrotic degradation of the tumor (this
is also visible in the plot of PTV size, Fig. 3f). This patient under-
went offline-re-planning during his treatment course. The cover-
age is restored in fraction 18, when the original plan is replaced
by the new one. After re-planning, the dose guided shifts perform
better in preserving the coverage than the rigid image registration
based shifts. However, improvements in coverage had to be traded
against additional dose to the spinal cord (Fig. 2d and Table 3: the
mean D2% increased from 37.4 to 38.3) and the brain stem (Table 3:
mean D2% increased from 40.1 to 41.2).

The average Euclidean distance between the clinical and the
optimized isocenter corrections for all available fractions was 1.8
mm (range 0.8–3.2 mm) for patient 1 and 2.0 mm (range 0.0–3.5
mm) for patient 2. A detailed plot of the difference between rigid
registration based and dose guided isocenters can be found in Sup-
plemental Fig. 3.

Discussion

A recently proposed tool for dose guided patient positioning has
been evaluated with in-room CBCT imaging data for the first time.
The dose interpolation necessary for a fast multicriterial optimiza-
f
ands

Fractions
with CBCT

Clinical
re-planning

Primary tumor PTV
volume change

5/30 No Stable (+4.8%)
t side 34/35 Yes, after 17 fractions Pronounced (�54.8%)
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Table 2
OAR constraints that were always respected in the final
dose isocenter shift.

Structure Constraint

Spinal cord D2% � 45 Gy
Optic chiasm D2% � 54 Gy
Optic nerve D2% � 54 Gy
Brain stem D2% � 54 Gy
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tion based on 13 sample isocenter positions was found accurate. In
principle, the accuracy of the interpolation could be further
improved with the inclusion of further sample points. A final for-
ward calculation of the plan with the chosen isocenter shift was
added for verification. A scatter correction approach was used to
facilitate dose calculation on CBCTs. This approach was up to
now only used and validated for proton dose calculation. A proton
range agreement of less than 2 mm for more than 80% of the BEV
profiles and a gamma passrate of more than 96% using a 2%/2
mm criterion for the proton dose distribution was reported com-
paring scCBCT and conventional CT [9]. Since photons are less
prone to CT number inaccuracies than protons, it is safe to use
scCBCTs for photon dose calculations. The validation in [9] was
performed using the Elekta XVI system, which was also used in
our study. Applying the scatter correction approach using other
CBCT scanners might require a similar initial validation first. Also
in [9], it was shown that the scatter correction approach can over-
come small inaccuracies in the DIR, due to the smoothing function
[8] applied to the scatter map. Due to the limited FOV of the
scCBCT, regions of the pCT outside of the scCBCT FOV were stitched
to the scCBCT to account for beam attenuation in these regions. The
dosimetric uncertainty introduced by this approach is expected to
be minimal, since head and neck are always fully covered by the
FOV and in this region only the treatment table and patient immo-
bilization devices are added, which are not subject to changes. In
addition, the shoulders are added below the neck. Due to the treat-
ment being coplanar, the uncertainty which might be introduced
by an unprecise stitching affects only the lowest slices of the low
dose PTV (lymphatic drainage area).

For patient 1, the mean dose to the parotid glands was
improved compared to the clinical standard rigid anatomy based
isocenter corrections, while other DVH parameters could be kept
stable, except for a very small reduction in target coverage for
the boost PTVs. For patient 2, coverage improvements had to be
traded against OAR doses. For the affected OARs, spinal cord and
brain stem, DVH parameters could be kept well below clinical con-
straints. The large maximum doses for the high dose PTV during
the first days of treatment (Fig. 3e) are explained by the fact that
this tumor was exulcerated and its volume had still increased by
8% between pCT (day 0 in Fig. 3f) and the first treatment fraction,
which was delivered 7 days later. In order to improve the target
Table 3
Mean values of DVH statistics over all available fractions. The bold values indicate improv
parotid glands was improved. For patient 2, the target coverage of the high dose PTV was

Parameter High dose
PTV V95%

Intermediate
dose PTV V95%

Low dose
PTV V95%

Parotid R
Dmean [Gy]

Parotid
Dmean [G

Patient 1
-planning CT 90.7% 90.7% 91.0% 29.8 29.8
-rigid reg. 90.4% 89.5% 91.6% 31.0 26.4
-dose guided 89.9% 89.1% 91.4% 30.2 25.3

Patient 2
-planning CT 90% 97% 25.9 57.5
-rigid reg. 77% n.a. 96% 26.1 57.7
-dose guided 81% 96% 26.1 58.1
coverage at the surface of the tumor, the clinical treatment plan
had high fluence tangentially to the tumor surface. The ‘‘auto flash
margin” feature in Monaco, which opens the fields at the PTV bor-
ders when these are located at the patient surface, had then
extended the high fluence regions beyond the patient surface.
The tumor had grown into these fluence regions. In this particular
case, this rather non-robust plan had been accepted, since the dose
elevation only affected the exulcerated tumor and no healthy tis-
sue was at risk. After the tumor volume decreased because parts
of the tumor disappeared due to necrotic degradation around frac-
tion 7, the maximum dose decreased to normal and the coverage of
the PTV70 deteriorated. This also shows the limitations of this
workflow: In the presence of such major anatomical changes, both
rigid registration based and dose guided approach fail to restore an
acceptable coverage of the target. At this time, clearly an adaptive
online re-planning would have been beneficial. However, after the
offline re-planning on day 18, the dose guided positioning
approach performs considerably better than the rigid registration
based approach in preserving target coverage in the presence of
the smaller volume changes occurring during the rest of the treat-
ment course.

In the presented implementation the isocenter corrections are
limited to 3 translational degrees of freedom (d.o.f). In principle,
the approach might be extended to 6 d.o.f. in future implementa-
tions, allowing also for rotational adjustments.

A drawback of the presented approach compared to the rigid
registration based alignment is the need for contours on the daily
image. In the presented workflow, contours are propagated from
the pCT to the scCBCT using DIR. However, these contours need
to be revised by physicians before a clinical decision can be made
using them. In a future online implementation of the workflow,
this will probably be the most time-consuming step. Besides the
time needed for the contour adaption and their review also intra
and inter observer variability remains a challenge for all studies
and clinical workflows that require (re-) contouring. Other steps
of the workflow, which in our current implementation take a few
minutes (DIR and scatter correction) or an hour (the MC dose cal-
culations), might be brought down to a few minutes altogether
using fast GPU implementations, e.g. [18,19], on a single integrated
platform. In such an environment, the dose calculation might also
run in the background while the contours are revised to further
speed up the process. Since the interactive step to find the optimal
shift is very fast (less than a minute) we estimate a time benefit
compared to a full adaptive re-planning, as has been discussed in
[11]. Under this assumption, the dose guided approach might also
have its place in integrated systems alongside with online re-
planning capability. Such a workflow might look as follows:

� Acquire CBCT images
� Perform scatter correction
� Stitch pCT regions outside of scCBCT FOV to scCBCT
ements compared to the rigid registration based shifts. For patient 1, the dose to the
increased.

L
y]

Spinal Cord
D2% [Gy]

Brain stem
D2% [Gy]

Opt. nerve l
D2% [Gy]

Opt. nerve
r D2% [Gy]

Opt. chiasm
D2% [Gy]

36.7
38.6 n. a. n. a. n.a. n.a.
38.1

36.2 39.7 48.1 29.9 39.8
37.4 40.1 49.2 29.4 39.2
38.3 41.2 49.2 30.0 39.8
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Fig. 2. DVHs for one fraction of patient 1. The DVHs are scaled to the total plan
dose. Compared to the rigid image registration based shifts, the dose guided
approach showed comparable DVHs for PTV66Gy, PTV60Gy, PTV54Gy and the
spinal cord. The dose to the left parotid gland was decreased; the dose to the right
parotid gland showed a small increase.

Fig. 3. Evolution over time of selected DVH parameters (a–e) and PTV volumes (f) for p
scCBCT, scaled to the total plan dose. The dashed vertical line indicates the re-planning. T
and day 18. PTV volumes are normalized to their volumes on the planning CT.

468 Dose guided patient positioning using CBCTs
� Revise contours
� Perform dose guided alignment
� In case a satisfactory isocenter correction is found, apply
treatment

� If not, trigger adaptive re-planning (including revision/approval
of the adapted plan and QA)

Dose guided positioning could have the potential to reduce the
mean time per fraction compared to a daily re-planning, while still
preserving DVH objectives. In clinical practice, one might also
think about monitoring DVH parameters during the fractions only
using dose guided positioning, and making the decision for adap-
tive re-planning before the next fraction as soon as parameters of
interest come close to pre-defined thresholds. Methods to identify
patients who benefit the most from adaptive radiotherapy might
also help guiding decision making [20,21]. As already discussed
in [11], a potential advantage of the proposed workflow over a full
adaptive re-planning is that no new plan is created, which would
always require the approval of a senior physician and a physicist.
The approach has therefore the potential to reduce the required
manpower during patient treatment. Furthermore, there is no need
for quality assurance of a new plan. To date it is unclear how many
full re-plannings for H&N patients are actually beneficial, but there
atient 2. The calculated values are the values for the corresponding fraction and on
he planning CT is included as day 0, the re-planning CT is included between day 17
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are data suggesting that for many patients only 3 adaptive re-
plannings might be sufficient [22].

In principle, dose guided positioning might also be used in inte-
grated systems with magnetic resonance imaging (MRI) capability,
given that an accurate dose calculation on MRI is available, e.g. on
synthetic CTs [23,24].

An important issue regarding a potential clinical implementa-
tion of the approach is the overall uncertainty of the DVH param-
eters, which is generally difficult to address. While the scatter
correction approach can overcome uncertainties in the pCT to CBCT
DIR and has been successfully validated in [9], and the influence of
the pCT stitching to the uncertainty is considered negligible, as dis-
cussed above, the uncertainty of the updated contours depends
strongly on the individual physician re-contouring the scCBCTs.
Inter- and intra-observer variability in the contouring is difficult
to quantify and hence to include into the evaluation of feasibility
studies. Since all scCBCTs for a patient in this study have been con-
toured by the same physician, it is only influenced by the – poten-
tially smaller – intra-observer variability. However, since the
potential improvements of 3–5% have to be set in proportion to
the overall uncertainty, this issue currently remains a major hurdle
for a clinical implementation of the approach, as it is the case for
any procedure with the need for updated contours.

An aspect which was not evaluated in the present feasibility
study is the potential for margin reductions. In this study the cov-
erage of the PTV was evaluated. In case a CTV can be determined
with sufficient confidence based on the image of the day, it might
be more plausible to use the CTV coverage in the multicriterial
optimization, or a reduced PTV with smaller margins than the ones
used in rigid registration based workflows.

Conclusion

Dose guided patient positioning using scatter corrected CBCT
images is feasible and offers increased control over target coverage
and OAR dose compared to the clinical anatomy-based registration
approach. In an integrated workflow alongside with adaptive re-
planning, the approach could help reducing the number of full
re-plannings and therefore reduce treatment time and workload
compared to a daily re-planning scenario.
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Purpose: The implementation of volumetric in-room imaging for online adaptive radiotherapy
makes extensive testing of this image data for treatment planning necessary. Especially for proton
beams the higher sensitivity to stopping power properties of the tissue results in more stringent
requirements. Current approaches mainly focus on recalculation of the plans on the new image data,
lacking experimental verification, and ignoring the impact on the plan re-optimization process. The
aim of this study was to use gel and film dosimetry coupled with a three-dimensional (3D) printed
head phantom (based on the planning CT of the patient) for 3D range verification of intensity-
corrected cone beam computed tomography (CBCT) image data for adaptive proton therapy.
Methods: Single field uniform dose pencil beam scanning proton plans were optimized for three dif-
ferent patients on the patients’ planning CT (planCT) and the patients’ intensity-corrected CBCT
(scCBCT) for the same target volume using the same optimization constraints. The CBCTs were cor-
rected on projection level using the planCT as a prior. The dose optimized on planCT and recalcu-
lated on scCBCT was compared in terms of proton range differences (80% distal fall-off,
recalculation). Moreover, the dose distribution resulting from recalculation of the scCBCT-optimized
plan on the planCT and the original planCT dose distribution were compared (simulation). Finally,
the two plans of each patient were irradiated on the corresponding patient-specific 3D printed head
phantom using gel dosimetry inserts for one patient and film dosimetry for all three patients. Range
differences were extracted from the measured dose distributions. The measured and the simulated
range differences were corrected for range differences originating from the initial plans and evalu-
ated.
Results: The simulation approach showed high agreement with the standard recalculation approach.
The median values of the range differences of these two methods agreed within 0.1 mm and the
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interquartile ranges (IQRs) within 0.3 mm for all three patients. The range differences of the film
measurement were accurately matching with the simulation approach in the film plane. The median
values of these range differences deviated less than 0.1 mm and the IQRs less than 0.4 mm. For the
full 3D evaluation of the gel range differences, the median value and IQR matched those of the simu-
lation approach within 0.7 and 0.5 mm, respectively. scCBCT- and planCT-based dose distributions
were found to have a range agreement better than 3 mm (median and IQR) for all considered scenar-
ios (recalculation, simulation, and measurement).
Conclusions: The results of this initial study indicate that an online adaptive proton workflow based
on scatter-corrected CBCT image data for head irradiations is feasible. The novel presented
measurement- and simulation-based method was shown to be equivalent to the standard literature
recalculation approach. Additionally, it has the capability to catch effects of image differences on the
treatment plan optimization. This makes the measurement-based approach particularly interesting for
quality assurance of CBCT-based online adaptive proton therapy. The observed uncertainties could
be kept within those of the registration and positioning. The proposed validation could also be
applied for other alternative in-room images, e.g. for MR-based pseudoCTs. © 2021 The Authors.
Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists
in Medicine. [https://doi.org/10.1002/mp.14995]

Key words: adaptive proton therapy, gel dosimetry, range evaluation, scatter corrected CBCT

1. INTRODUCTION

Although the concept of adaptive radiotherapy was already
described for photons in 2008 by Di Yan et al.,1 real online
adaptive strategies started to be increasingly used in radiation
therapy clinics only in the last years. This was mainly trig-
gered by the recently commercially available integration of
magnetic resonance imaging in linear accelerators (MRI
linacs).2,3 However, the potential to increase dose delivery
accuracy, reduce treatment margins, increase treatment effi-
cacy, and enable new treatment concepts4 makes online adap-
tion an attractive option for conventional linac radiotherapy
as well as for proton therapy facilities. This entails making
use of on-board cone beam computed tomography (CBCT)
devices typically used for patient positioning.

Online replanning relies on volumetric image data
acquired in the treatment room. MRI, CBCT and x-ray com-
puted tomography (CT)-on-rails have the potential to fulfill
the necessary requirements. Except for the latter, these imag-
ing modalities do not have the intrinsic quality or information
to allow for sufficiently accurate dose calculation,5 especially
in the case of proton therapy. CBCT is widely used in photon
and proton radiotherapy departments, and the implementation
of a CBCT-based online adaptive workflow would largely
increase the availability of online adaptive radiotherapy. The
higher sensitivity of protons to inaccuracies in the planning
images compared to photons suggests that a measurement-
based analysis of the image data used for dose optimization
would increase confidence in the online adaptive process.

Compared to CT imaging, additional artifacts appear for
CBCT imaging. These are based on the cone beam diver-
gence, increased scatter contribution and the higher noise
level.6 To allow for accurate proton dose calculation, correc-
tions must be applied to the CBCT images and extensive test-
ing including experimental verification is necessary before
implementing CBCT for online adaptive proton therapy.

Several approaches have shown to allow proton dose calcula-
tions on CBCT.7–19 Dose-based quality assessment of CBCT
images is usually performed by comparing recalculations of
the initial plan on pairs of anatomically matched CT and cor-
rected CBCTs. For such an analysis the time delay between
the CT and the CBCT acquisition should be small compared
to the time scale of expected anatomical changes of the corre-
sponding treatment site. Therefore, in regions with small
anatomical changes like the brain, the planning CT may be
used, while in other regions a replanning CT or a CTwhich is
deformably registered to the CBCT, is needed to represent
the anatomy of the day. The dose distribution originating
from a forward calculation of the plan on the CBCT is then
compared to a dose calculation of the same plan on the
anatomically matched CT using dose difference or gamma
pass rates. Additionally, range differences in beam-eye-view
are typically analyzed.8–10,13,14,16

Methods to verify experimentally the results obtained by
recalculation are currently missing. The published studies
only evaluate the range differences based on an in-silico anal-
ysis, while this study makes the influence of the CBCT image
quality on the dose calculation measurable. For this, the
actual usage of the image data in an adaptive treatment work-
flow must be reproduced. Irradiation of two different plans
on a patient-specific phantom, one optimized on CT and the
other on CBCT images, allows for a measurement-based
range comparison. For this comparison, measurements of
two-dimensional (2D) or even three-dimensional (3D) dose
distributions with an adequate spatial resolution are neces-
sary. While film dosimetry allows for accurate 2D dose and
range determination,20 Hillbrand et al. showed that gel
dosimetry (using MR for readout) in combination with a 3D
printed head phantom can be used to determine proton range
in 3D accurately.21

In this contribution, we introduce a measurement-based
quality assurance tool to evaluate the use of corrected CBCT

Medical Physics, 48 (8), August 2021

4149 Neppl et al.: QA of CBCT-based adaptive proton therapy 4149

 24734209, 2021, 8, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.14995 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [15/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

62

https://doi.org/10.1002/mp.14995


image data for online adaptive proton treatment planning.
The tool is based on a range comparison of measured dose
distributions for single field uniform dose (SFUD) pencil
beam scanning proton plans. Three water-filled 3D-printed,
patient-derived head phantoms with inserts for polymer gel
and film dosimetry were used for measurements of 3D and
2D dose distributions respectively. To measure the impact of
CBCT image quality on dose optimization and calculation
without introducing additional anatomical variations between
the CBCT and the corresponding high-quality CT, we used
data from brain cancer cases in this study. Since no major
deformations are expected in the brain, the study design
allowed to focus on the pixel-wise mismatch of CT values
and reduce anatomical variations to a small uncertainty origi-
nating from a rigid registration. The measured and calculated
dose distributions are compared based on an evaluation of
range difference maps (3D) and range difference curves (2D).

2. MATERIALS AND METHODS

2.A. Data preparation

In preparation for the study, three patients were selected
who underwent photon radiation therapy and had a planning
CT scan with a voxel size of 1.074 × 1.074 × 1 mm3. Brain
cancer cases were selected in this project to avoid introducing
anatomical variations between CT and CBCT images. The
CT scans were acquired with a Toshiba Acquilion Large Bore
CT scanner (Canon Medical Systems, Japan) in a standard
radiation therapy setup, using a flat tabletop and an immobi-
lization mask. These initial planning CT scans are denoted by
planCT in the following. Additionally, CBCT images were
acquired as part of clinical routine with the standard clinical
head protocol (100 kV, 10 mA, 10 ms, 200°, 197–209
frames) using the XVI 5.0.4 on-board x-ray imager of an
Elekta Synergy linear accelerator (Elekta Ltd, Sweden). Plan-
ning CT scans and CBCT acquisitions were acquired at the
LMU University Hospital Munich, while treatment planning
and irradiations were performed at the Rinecker Proton Ther-
apy Center (RPTC) in Munich.

The CBCT images were corrected following the approach
used in Kurz et al.,10 which is based on the work of Park
et al.15 and Niu et al.22 and was shown to correct for scatter
and beam hardening.23 The calibration factor, which is used
to scale the primary projections, was set to 25.6. The cor-
rected CBCT images are denoted with scCBCT in the follow-
ing.

To account for differences in the Hounsfield unit (HU) cal-
ibration of the CT scanner used for patient data acquisition
and the Philips Brilliance 16 P CT scanner (Philips, Nether-
lands) used for treatment planning at RPTC, a mapping was
performed. For this, the Gammex CT Electron Density Phan-
tom (Sun Nuclear Corporation, United States) was used to
correlate the HU values of both scanners. A piecewise linear
conversion function was defined among the 13 data point
resulting from the different inserts with defined electron den-
sity in the phantom.

2.B. Phantom setup

Based on the bony structure and outer contour extracted
from the CT scans of the three selected patients, three differ-
ent head phantoms were 3D printed (individualized Prime
phantoms by RTSafe P.C., Greece). One printing material
was used as skin and bone surrogate. The printed head was
filled with water to mimic soft tissue. The head design was
changed compared to the one presented in Markis et al.24

allowing to insert different detectors into a circular opening
with a diameter of 80 mm at the caudal end of the heads. A
second smaller hole can be used to fill the phantom with
water (see Fig. 1). Due to limitations in the agreement
between the CT scan and the resulting 3D printed head phan-
tom, related to limitations of printing fine structures, one sin-
gle printing material and reproducibility, a study design using
one reference head per patient was preferred over printing
multiple heads for each patient. For this project, gel cylinders
(inner dimensions: 74 mm diameter, 140 mm height) filled
with an N-vinylpyrrolidone-based polymer dosimetry gel25

and a film holder equipped with pieces of Gafchromic EBT3
film (Ashland Inc., United States) were used as inserts. The
film holder was made of RW3 solid water. An exemplary
axial slice of the head phantom for patient 1 is presented with
the film holder in Fig. 2(c) and with the gel cylinder in
Fig. 2(d). Four nails connecting the two holding plates fix
the film. Then the two joined plates are pushed into the film
holder slot insert, which is fixed to the head with screws. This
design allows for quick changes of the film pieces without
having to refill water. The nails in the film holder enable a
landmark-based registration between the films and a CT scan
of the head phantom with the film holder. Additionally, four

(a) (b)

(c)

FIG. 1. Photo of a head phantom fixed with pillow and thermoplastic mask
(a). The film holder is mounted in the detector opening. Additionally, the
film holder (b) and an empty gel cylinder (c) are presented. [Color figure can
be viewed at wileyonlinelibrary.com]
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MR PinPoint® markers (Par Scientific A/S, Denmark) were
glued to each of the heads to simplify registrations with the
MR scans used for reading out the dosimetry gel.

The relative stopping power ratios (RSPs) for the film
holder and the gel were determined in a previous experiment
using ranges acquired with PTW PEAKFINDER (PTW, Ger-
many). For the film holder an RSP of 1.035 was calculated
using a measurement with and without the film holder in the
beam. For the gel, similar measurements were performed
with a box made of polymethyl methacrylate filled with water
or dosimetry gel. The resulting RSP was 1.025 � 0.001
(mean and one standard deviation testing three gel batches)
respectively. According to van Abbema et al.26 the uncer-
tainty in the determination of the RSP based on length and
range measurement is below 0.4%. Since no sample length
measurement is necessary for the RSP measurement of the
gel, the uncertainty is deemed even lower and 0.4% was
assumed as an upper limit. Since no dose calculations were
performed on phantom CT scans, the RSP determination of
the film holder and the gel was only needed to ensure that the
different setup did not lead to a range shift in the comparison
of gel and film measurements. The small observed deviation
of the RSP values of gel and film was considered to be

negligible for the range comparison between the two mea-
surement methods. Additionally, ranges were not compared
directly between gel and film measurements, but only as rela-
tive range differences (in the order of few mm).

The phantom heads were placed on positioning pillows
and fixed with thermoplastic masks. CT scans of the phan-
toms with fixation and without water filling were acquired
with the film holder and an empty gel cylinder for target defi-
nition and as a reference for registration of the patient CT and
CBCT scans.

2.C. Adaptive treatment planning

The initial treatment plan was created on the planCT (pa-
tient CT scans) for a cylindrical target volume with a diameter
of 30 and 20 mm minimum distance to the edges of the gel
cylinder (see Fig. 2) using the clinical treatment planning
software (TPS) XiO 4.80 (Elekta Ltd, Sweden). One SFUD
pencil beam scanning proton plan from one gantry angle was
created per patient. The isocenter was set to the center of the
target volume and the plan was optimized for one fraction of
8 Gy, which is recommended for the used dosimetry gel. The
dose grid size was set to 2 mm in all dimensions. For the

FIG. 2. Exemplary axial slice of patient 1 of the planCT (a), the scCBCT (b), the 3D printed head with film holder (c) and with gel cylinder (d). The target vol-
ume is drawn in all subfigures with a red line. In subfigures a and b the distal 80% fall-off is indicated by a green line for NPplanCT and RPscCBCT respectively. In
subfigure c, the film plane and beam direction are highlighted showing the angular deviation of ~6° in between. The water filling is shown in blue and the gel in
the PMMA cylinder is marked in olive-green (d). [Color figure can be viewed at wileyonlinelibrary.com]
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optimization, the peak width multiplier, which defines the
longitudinal spot spacing,27 was set to 1.2 and the lateral spot
spacing to 5 mm. Following the idea of Zhao et al.20 the gan-
try angle was chosen to have approximately 6° difference to
the angle of the film holder to avoid that the beam passes the
film holder through the gap between the two plates [see
Fig. 2(c)]. Maximum iterations for a single field were set to
300.

For adaptive replanning, the scCBCT images were manu-
ally rigidly registered to the planCT images using the con-
touring software CMS Focal 4.8 (Computerized Medical
Systems, United States), which was also used for contouring
on the planCT. The target contour was copied from planCT
to scCBCT after registration. Treatment planning was per-
formed using the same settings and optimization constraints
as for the initial treatment plan. Due to the HU calibration
(see Section 2.A) of the image sets, the standard TPS calibra-
tion curve could be used.

For the evaluation, additional recalculations of the radia-
tion therapy plans optimized on planCT (NP—nominal plan)
and on scCBCT (RP—reoptimized plan) with a 1 mm dose
grid were performed on scCBCT and planCT with the TPS
XiO. This means that RP and NP were optimized on the same
target using similar anatomical information, but with different
image quality (CTvs CBCT).

2.D. Plan delivery

In total, six plans were delivered on each of the three
heads. Per head, both NP and RP were irradiated on two dif-
ferent film pieces and for patient 1 on one gel cylinder. A gel
dosimetry measurement was only performed for the plans of
the first patient for financial and logistic reasons. Prior to
irradiation, the film holder was mounted in the phantom
head, which was in turn filled with water at treatment room
temperature and positioned on the treatment table with pillow
and mask. Positioning was verified with an orthogonal x-ray
imager mounted to the gantry and corrections were per-
formed according to manual registrations. After the irradia-
tion of both film pieces, the first gel cylinder was inserted in
the head phantom. Due to the design of the phantom, water
had to be refilled and x-ray positioning was necessary for
every gel cylinder change.

2.E. Dose readout

The 3D dose distribution in the gel was extracted with an
MR scanner. The readout of the gel cylinders (mounted in the
water-filled heads) was performed at a Magnetom Aera 1.5-
Tesla whole-body MR scanner with a 20-channel head-and-
neck coil (Siemens Healthineers, Germany) about 48 h after
irradiation. Four independent asymmetric spin echoes were
acquired after each excitation at echo times of TE = 36, 436,
835, 1230 ms with a multicontrast half-Fourier-acquired
single-shot turbo-spin-echo (HASTE) sequence. For more
details and other sequence parameters see Hillbrand et al.21

The acquired multiecho image data were converted to quanti-
tative R2 values (R2 ¼ 1=T2, transverse relaxation rate) in a
postprocessing step.21,28,29 The R2 values are proportional to
the delivered dose and therefore allow for range determina-
tion. MR scanning took about 40 min per gel cylinder for 75
slices with a slice thickness of 3 mm. Pixel spacing was set
to 0.68 � 0.68 mm² within the axial slices. The water tem-
perature in the head was measured at each cylinder replace-
ment to avoid an increase of the gel temperature above the
tolerances of the gel.

For the film readout, an Epson Expression 11000 XL Pro
(Epson, Japan) flatbed scanner was used. To reduce potential
influences of differences in illumination due to slightly differ-
ent position of the films, a cardboard template was used to
position the film on the scanner and removed before starting
the scanning process. All corrections were turned off in the
scanner software and the resolution was set to 150 dpi with a
bit depth of 48. Since the pixel size is much smaller for the
film compared to the other datasets, a 2D convolution with a
uniform filter of size 5 × 5 pixel was applied to reduce the
noise. For evaluation, the average of the two film scans per
plan was considered.

Since only relative dose values were required in the subse-
quent range analysis and due to limited availability of the pro-
ton beam, the film calibration was performed using a 6 MV
photon beam of the Synergy linear accelerator. A total of 20
pieces of film were irradiated with 12 dose levels between 0
and 11 Gy at the depth of maximum dose. The calibration
pieces were read out 44 h after irradiation and a calibration
curve was fitted following the triple channel approach of
Micke et al.30 The final set of films was also read out about
44 h after irradiation and the previously acquired calibration
curve was applied.

2.F. Dataset registration

For evaluation, a 2D and a 3D reference condition were
defined. The 3D reference (voxel size interpolated to
1 × 1 × 1 mm³) was given by a CT scan of the head phan-
tom with the film holder insert using the Toshiba Acquilion
Large Bore CT scanner. PlanCT and scCBCT were regis-
tered manually to the 3D reference based on the bony anat-
omy. These registrations were applied to the corresponding
planned dose distributions. The four MR markers were used
to supply landmarks for the 3D rigid registration of the gel
readout MR scans. The 2D reference (pixel size interpo-
lated to 1 × 1 mm²) was the film plane with the nail posi-
tions as landmarks for registration. All film pieces were
aligned based on the nail positions. A registration of the
nail positions in the 3D reference to the 2D reference pro-
vided the parameters needed for registration of the 3D dose
distributions to the film plane. VV version 1.431 was used
to generate manual registration matrices and for the defini-
tion of landmarks. The application of the registration and
generation of dose volume data was performed with plasti-
match version 1.7.4.32
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2.G. Data evaluation

Except for the registrations the evaluation of the data was
performed using MATLAB 2019a (The MathWorks, Inc.,
United States). The following dose distributions were avail-
able for the evaluation of the three patients (gel measure-
ments were performed only for patient 1):

• NPplanCT, the dose distribution originating from the ini-
tially optimized (i.e. nominal) plan (NP) on planCT,

• RPscCBCT, the dose distribution resulting from the adap-
tive replanning on scCBCT (RP) using the same opti-
mization constraints as for NP,

• NPscCBCT, the recalculation of NP on scCBCT,
• RPplanCT, the recalculation of RP on planCT,
• NPfilm and NPgel, the measured dose distributions
acquired when irradiating NP on the phantom with film
holder and gel cylinder, respectively,

• RPfilm and RPgel, the measured dose distributions
obtained when irradiating RP on the phantom with film
holder and gel cylinder, respectively.

The measured and calculated dose distributions were ana-
lyzed based on a range difference analysis. For the range
determination, the dose cubes were rotated and interpolated
so that the voxel rows point in beam direction. The subse-
quent range analysis could then be performed on the voxel
rows. The range was defined as the distance between the
patient outline and the 80% distal fall-off of the voxel rows in
beam’s eye view direction

R80 doseð Þ¼ x80% doseð Þ� xe doseð Þ, (1)

where x80% is the interpolated position of the 80% distal fall-
off and xe is the position of the first pixel belonging to the
patient outline structure of the evaluated pixel row. The
patient outline was created both on CT and scCBCT datasets
using an HU threshold of −600.

The range evaluation was performed only for profiles
intersecting the target volume. To limit the influence of the
3D printing quality on the evaluation, range differences were
only calculated from datasets obtained either from a measure-
ment on the same phantom and modality (film vs film or gel
vs gel) or from calculation. This means that for the compar-
ison between measurement and calculation only range differ-
ences were considered.

Three different evaluation approaches were considered in
this study:

1. The recalculation approach, where the dose distribu-
tions NPplanCT and NPscCBCT are compared.

2. The measurement approach uses the delivery of NP
and RP on a single phantom and subsequent compar-
ison of the resulting dose distributions.

3. The simulation approach mimics the measurement
approach by comparing NPplanCT and RPplanCT.

Since the latter two methods additionally include potential
differences in the distal edges of the two different optimized
dose distributions, which originate from the two independent
optimizations (see Fig. 2), a correction

ΔRopt ¼R80 RPscCBCTð Þ�R80 NPplanCT
� �

(2)

was considered. This could also correct for effects such as the
addition/removal of a pencil beam energy layer during re-
optimization due to slight water equivalent thickness differ-
ences between scCBCT and planCT.

The range differences needed for the evaluations are pre-
sented in Fig. 3. The recalculation approach corresponds to
the analysis performed in most studies8–10,13,14,16 to compare
the influence of different image sets on dose calculation. For
this, the range differences between NPplanCT and
NPscCBCT ΔRrecð Þ were determined (see Fig. 3). For better
comparability with the simulation and measurement
approach the sign of this range difference is changed:

ΔRrec ¼� R80 NPscCBCTð Þ�R80 NPplanCT
� �� �

: (3)

While a deviation in the HU directly affects the range in
recalculation, this deviation is considered in the plan opti-
mization for the simulation and measurement approach.
Therefore, the effect of a HU deviation on the range is oppo-
site for recalculation compared to simulation and measure-
ment, thus the negative sign.

The measurement approach is based on the range differ-
ences between the measured ranges of the dose distribution
originating from RP and NP evaluated in the beam’s eye view
projection of the target volume (see Fig. 3) for the film mea-
surement fΔRfilm ¼R80 RPfilmð Þ�R80 NPfilmð Þ (4)

and the gel measurement

fΔRgel ¼R80 RPgel
� ��R80 NPgel

� �
: (5)

These differences were subsequently corrected with ΔRopt,
which makes the latter two range differences comparable to
ΔRrec. The corrected measured range differences are obtained
by

ΔRgel=film ¼ fΔRgel=film�ΔRopt: (6)

While for the gel measurement the range is determined in
beam direction, the range analysis for the 2D measurements
is determined in the film plane, which has an angular devia-
tion of 6°. The corresponding deviation of the range differ-
ence is in the order of 1 � cos 6∘ð Þ ¼ 0:5 %. The resulting
deviations regarding the difference in the analyzed profile
should not affect the evaluation because only profiles in the
film plane were compared for the 2D evaluation.

The simulation approach, based on plan recalculations,
mimics the measurement approach using planCT as a virtual
phantom. This means RP was recalculated on planCT and the
range difference to the original dose distribution of NP was
determined (compare Fig. 3)
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fΔRsim ¼R80 RPplanCT
� ��R80 NPplanCT

� �
(7)

and corrected for range differences originating from the origi-
nally optimized dose distributions

ΔRsim ¼ fΔRsim�ΔRopt: (8)

fΔRsim and fΔRgel=film estimate the same range shift, origi-
nating from calculations on CT data and from measurements
on the phantoms, respectively. These include the differences
originating from differences in the optimized dose distribu-
tions when calculated on their respective image data (ΔRopt)
and differences which are based on the difference in HU val-
ues (and RSP) on the protons’ path to the target. ΔRrec is only
incorporating the latter since no reoptimization is needed
here. However, the way the optimization is affected by HU
deviations is opposite compared to recalculation. For exam-
ple, a lower HU (lower RSP) value in the protons’ path leads
to a higher range for recalculation, while in a reoptimized
plan this would be considered and lead to a plan with a lower

beam energy. Therefore, ΔRrec is the negative value of the

ΔRgel=film (with ΔRopt correction). After correction of fΔRsim

and fΔRgel=film with ΔRopt (range differences originating from
the optimization), all three measures are directly comparable.

A 3 mm range difference pass rate (PR3mm) was used to ana-
lyze the calculated range difference maps. It is defined as the
fraction of range differences (evaluated in beam’s eye view pro-
files) which are smaller than 3 mm. This metric was used to ana-
lyze the optimized dose distribution on planCT and scCBCT and
to compare the simulation and recalculation method.

3. RESULTS

3.A. Treatment plan comparison

For comparison of the dose distributions from the different
treatment plans (NPplanCT, NPscCBCT, and RPscCBCT), the dose
volume histogram (DVH) for the target volume of the three
patients is shown in Fig. 4. The differences are negligible for

FIG. 3. Overview of the evaluation. Starting from the image data (planCT and scCBCT), two plans were optimized for each patient. The resulting plans were
recalculated on the other image data and irradiated on film and dosimetry gel. The differences for ranges resulting from different plans (~ indicates uncorrected
range differences) were corrected for range differences, which were already present in the initially optimized plans. [Color figure can be viewed at wileyonline
library.com]
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the optimized plans (NPplanCT and RPscCBCT), while the recal-
culation (NPscCBCT) has a lower coverage for all three
patients. This observation is supported by the dose covering
98% of the target volume (D98%), which is presented for all
three patients in Table I. In Fig. 2 an exemplary axial slice of
patient 1 with the planCT [Fig. 2(a)] and the scCBCT
[Fig. 2(b)] including the 80% range fall-off of NPplanCT and
RPscCBCT respectively. The target structure of the respective
optimized plans is shown for comparison. Differences are vis-
ible between the R80 lines for planCT and scCBCT due to
differences in the optimization.

3.B. 2D analysis

Figure 5 presents the corrected range differences in the
film plane for all three patients. For patient 1 the corrected
range difference for the gel measurement was also evaluated
in the film plane for comparison. Simulation and film mea-
surement show a high agreement for all patients, with differ-
ences mainly appearing in the caudal part. The maximum
deviation at a given position of ΔRfilm and ΔRsim was 1 mm
for all three patients. The median values of ΔRfilm were 1.3
(1.1) mm, 1.0 (0.5) mm, and 1.9 (1.7) mm for patients 1, 2,
and 3 respectively. The median values of ΔRsim were 1.4 (1.0)
mm, 1.0 (0.5) mm, and 1.8 (1.3) mm for patients 1, 2, and 3
respectively. The gel measurement for patient 1 showed the
same trend as observed for film measurement and simulation.
The maximum deviation of 1.4 mm between gel measure-
ment and simulation was larger than for the film measure-
ment, and the median value of ΔRgel for patient 1 was 0.7
(1.0) mm.

3.C. 3D analysis

Table II presents PR3mm and the median and IQR of
ΔRsim and ΔRrec. The deviation between the pass rates is
below 2% for all patients for the two methods. For patient 1,
additionally the corresponding values of the gel measurement
are shown. While the median of the ΔRopt correction is

FIG. 4. Dose volume histogram comparison of the target structure for the nominal plan (NP) optimized on planCT and the reoptimized plan (RP) on scCBCT.
NP was calculated both on planCT and scCBCT.

TABLE I. D98% values of the target volume for the plans optimized on
planCT (NPplanCT), scCBCT (RPscCBCT) and the recalculated plan on the
scCBCT (NPscCBCT) are given in percent of the prescribed dose (8 Gy) for
all three patients.

Patient 1 Patient 2 Patient 3

NPplanCT 95.1% 94.1% 93.6%

RPscCBCT 93.8% 93.9% 94.9%

NPscCBCT 86.6% 87.0% 88.7%

FIG. 5. The corrected range differences for all three patients evaluated in the
film plane for the film measurement and simulation of the measurement on
the planCT. The range difference of the recalculation is shown for compari-
son. For patient 1 additionally the corrected range differences for the gel
measurement evaluated in the film plane are plotted.
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almost zero for patients 1 and 2, the correction for patient 3
indicates a slight systematic variation of more than 1 mm.

Figure 6 shows 2D maps of range differences for the three
evaluation approaches (recalculation, simulation, and gel
measurement). For the gel measurement and the simulation
approach the range differences were corrected for range dif-
ferences in the original plans. Additionally, a projection of
the head phantom in beam’s eye view highlighting the evalu-
ated area in red is presented. The three range maps show the
same trends. The shape of the ear, which is in the beam line
for patient 1, is visible in the corrected range maps for mea-
surement, simulation, and recalculation. The visibility of the
ear results from small differences in the deformation of the
ear for planCT and scCBCT. The main differences appear in
the caudal and posterior region of the target volume. A direct
comparison between the simulation and gel measurement
showed that 98.5% of the evaluated range differences of both
methods for patient 1 agreed within 2 mm.

A box plot of the corrected range differences evaluated for
the 3D dose distributions of patient 1 for gel measurement
(ΔRgel), simulation (ΔRsim), and recalculation (ΔRrec) is
shown in Fig. 7. For all three methods the values are symmet-
rically distributed. The box plot confirms, what was observed
in the range difference maps. All corrected range differences
show a slight positive trend and the median of ΔR was almost
the same for both simulation and recalculation (see Table II).
Only for patient 1 the IQRs differed with 1.7 mm and
1.4 mm for recalculation and simulation respectively. The
evaluation of the gel ranges resulted in a median value for
ΔRgel of 0.6 (1.9) mm.

4. DISCUSSION

A novel measurement-based evaluation approach for pro-
ton dose calculation accuracy on scCBCT images was pre-
sented, with the concept of online adaptive proton therapy in
mind. The presented quality assurance workflow allows the
evaluation of the accuracy and hence feasibility of scCBCT-
based online adaptive proton therapy. Range differences orig-
inating from optimization on the different image data were
calculated and compared to measured range differences with
gel and film dosimetry. The resulting range differences were
also compared to the recalculation-based standard evaluation
used by multiple groups for CBCT evaluation in proton

therapy.8–10,13,14,16 Although the method was only applied for
scCBCT it is in principle applicable for any in-room image
data potentially used for treatment adaptation, like, e.g., MR-
based pseudoCTs.

The DVH comparison of the two optimized treatment
plans NPplanCT and RPscCBCT showed only small differences
for all three patients, while the D98% of the recalculated dose
NPscCBCT was about 7 percentage points lower compared to
the optimized doses. The observed median range differences
in the order of 1 to 2 mm for the recalculation lead to a drop
of the D98%, which is very sensitive to range shifts espe-
cially for small volumes and highly conformal plans. This dif-
ference had to be compensated in the reoptimized plan (RP)
and was one part of the resulting measured range differences
between NPplanCT and RPscCBCT.

Although the deviations were small for the DVH parame-
ters, the ranges of the plans optimized on scCBCT and
planCT differed in some profiles by more than 3 mm. This
might originate from limitations in the clinical optimization
settings using a spot spacing in depth of about 5 mm, which
may cause a layer of pencil beams to be added or removed
during plan re-optimization on scCBCT. These settings
should be carefully considered in an online adaptive work-
flow. This, however, does not affect the main point of the
study, which is to verify that the method is sensitive to the
impact of the image data on the dose calculation.

The presented method can detect combined variations
stemming from (a) the optimization and (b) the underlying
image data. The optimization differences would not be con-
sidered in the standard recalculation approach, which only
shows how the range of protons is affected by differences of
the image data. The simulation approach additionally
addresses the influence of image differences on the optimiza-
tion itself. Since the latter is affected, among others, by the
energy-layer spacing during the optimization process, the
measurement and simulation approach were corrected for the
differences originating from the original plans for improved
comparability with the standard recalculation approach.
While the ΔRopt-correction is very small (median values
below 0.3 mm) for patient 1 and 2, the median value of ΔRopt

is more than 1 mm for patient 3, which should not be
neglected. The equivalence of the corrected simulation and
recalculation approach was supported by the similarity in the
3 mm range difference pass rates (see Table II) and the 2D

TABLE II. Median, IQR, and pass rates for planCT vs scCBCT range differences of the beam’s eye view profiles exhibiting differences below 3 mm (PR3mm) for
the simulation (corrected for differences in the original plans), the recalculation approach and the gel measurement (only for patient 1). Additionally, the corre-
sponding values are shown for the ΔRopt correction for all three patients.

Patient 1 Patient 2 Patient 3

PR3mm Median IQR PR3mm Median IQR PR3mm Median IQR

Simulation ΔRsimð Þ 90.1% 1.3 mm 1.4 mm 98.0% 1.1 mm 0.8 mm 92.8% 2.0 mm 0.8 mm

Recalculation ΔRrecð Þ 88.3% 1.3 mm 1.7 mm 97.5% 1.1 mm 0.8 mm 92.6% 2.0 mm 0.8 mm

Gel measurement ΔRgel
� �

93.5% 0.6 mm 1.9 mm

Correction ΔRopt
� �

98.9% −0.2 mm 1.3 mm 100% 0.0 mm 0.4 mm 97.6% −1.4 mm 0.8 mm
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range difference maps in Fig. 6. Also, the reported median
values for the range differences showed high agreement for
the two methods for all three patients. The measurement

approach is a measurement-based implementation of the sim-
ulation approach using a dosimetry gel phantom. The good
agreement of the recalculation and the simulation approach
suggests that the measurement and the recalculation approach
are equivalent and their results can be compared for analyz-
ing CBCT correction accuracy. Taking the results of all three
approaches into account, the median values of the range dif-
ferences calculated from the dose distributions originating
from the CT and the scCBCT are within 0.6 and 2.0 mm.
This can be considered acceptable for dose calculation.

As a measurement-based evaluation has not been pub-
lished so far, only the results of the recalculation approach
could be compared to existing publications. The presented
3 mm range difference pass rates for the recalculation
approach of 88.3–97.5% are comparable to the pass rates of
91.9–96.1% reported by Kurz et al.10 using the same scatter
correction method for head and-neck patients. The assump-
tion of negligible anatomical changes, made in the presented
study, is not valid for the head and neck cases evaluated in
the study of Kurz et al., which were used for comparison.
Therefore, their results additionally include an uncertainty
due to anatomical variations. To decouple these two sources
of uncertainty a different phantom is necessary. In particular,
reproducible deformations, as e.g. reported by Niebuhr
et al.,33 need to be combined with the possibility to employ

FIG. 6. Corrected range difference maps for patient 1 of the gel measurement (a), simulation (b) and the range difference map of the recalculation (c). In the pro-
jection view of the three-dimensional printed head with the film holder in beam’s eye view, the evaluation area is marked in red (d). [Color figure can be viewed
at wileyonlinelibrary.com]

FIG. 7. Box plot of the corrected range differences of patient 1 for the gel
measurement (gel), the simulation of the measurement based on a recalcula-
tion of RTPscCBCT on planCT (sim) and range differences for the standard
recalculation approach (rec). The length of the whiskers was defined as 1.5
times the interquartile ranges.
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dosimetry gel for 3D dose measurements. Our study presents
a first step to evaluate the impact of image corrections on
dose calculation and optimization, but more effort is needed
to extend the evaluation for regions with anatomical changes.

High agreement was observed between the film measure-
ment and the simulation (see Fig. 5). Slight deviations were
only visible in the caudal region for patients 2 and 3, where
the amount of passed bony structure increases. Zhao et al.20

reported that film dosimetry in near-parallel configuration to
the beam is an adequate tool for proton range evaluations
with an uncertainty of 0.5 mm. This makes the film measure-
ment ideal for benchmarking the gel results and potential
clinical measurement-based quality assurance of in-room
CBCT images in adaptive proton therapy.

Although the film measurement matched the simulation
better than the gel measurement, the median of the range dif-
ferences for the gel measurement still showed a deviation to
the median of the simulated range differences of less than
1 mm. This is below the registration error estimated for the
manual registration and the range determination with gel,
both 1 mm.21 Additionally, the positioning accuracy of the
phantom on the treatment table is also in the order of this
uncertainty. Although, the good agreement of simulation and
measurement indicates that simulation and measurement pro-
vide similar information regarding the quality of the scCBCT,
an extension of the evaluation for more patients is necessary
to answer this question.

A drawback of the presented method is that only one
specific beam direction can be tested per gel cylinder or
film piece. Although the used phantom allows for easy gel
replacement in contrast to the previous phantom design
used by Makris et al.24 and Hillbrand et al.,21 testing mul-
tiple beam direction still requires considerable effort even
when the additional costs of separate gel cylinders per
beam direction are neglected. While in this work the num-
ber of possible beam angles was limited due to the fixed
orientation of the film holder, a TPS-based pre-study to
evaluate the most relevant beam angle, e.g. in terms of
expected deviations, could be considered in further projects
using gel alone.

The study design avoided a direct comparison between
measurement and calculation in order to remove the error
originating from differences between the patient CT and the
3D printed phantom. This made a consideration of a correc-
tion of the RSP values unnecessary. Therefore, comprehen-
sive end-to-end results, comparing measured and calculated
ranges of the same plan, cannot be provided in the presented
workflow.

A further limitation of the study is the use of CBCT image
data that were acquired with a photon linear accelerator-
mounted CBCT system instead of a dedicated proton CBCT
scanner. In addition, other treatment sites have a greater
potential for adaptive radiotherapy than the head region, due
to more pronounced changes in anatomy. Up to now only a
head phantom with the possibility to inserting a gel cylinder
was available. For further studies new phantoms for other
treatment sites would be desirable.

5. CONCLUSIONS

A novel measurement-based evaluation of a scatter cor-
rected CBCT workflow for online adaptive proton radiation
therapy was introduced. The evaluation of CBCT image data
for proton planning using gel dosimetry showed that the
observed range differences agreed well with the expected val-
ues from TPS recalculations and optimizations. It is thus an
interesting candidate for measurement-based quality assur-
ance of online adaptive proton therapy. The evaluated CBCT
correction method seems to be suitable for proton dose calcu-
lation. Film measurements provided an additional benchmark
in dedicated slices and supported the results obtained with
the gel measurements. 98.5% of the range differences
observed with the gel measurement agreed with the simula-
tion approach within 2 mm. Further studies are needed to
evaluate the measurement-based approach for more patients
and preselected beam directions. A development of a 3D
printed phantom for other body regions potentially including
anatomical variations would make the method applicable for
more treatment sites.
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Unet-generated pseudoCTs from T1-weighted MR head scans
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ABSTRACT
Introduction: The recent developments of magnetic resonance (MR) based adaptive strategies for
photon and, potentially for proton therapy, require a fast and reliable conversion of MR images to
X-ray computed tomography (CT) values. CT values are needed for photon and proton dose calcula-
tion. The improvement of conversion results employing a 3D deep learning approach is evaluated.
Material and methods: A database of 89 T1-weighted MR head scans with about 100 slices each, includ-
ing rigidly registered CTs, was created. Twenty-eight validation patients were randomly sampled, and four
patients were selected for application. The remaining patients were used to train a 2D and a 3D U-shaped
convolutional neural network (Unet). A stack size of 32 slices was used for 3D training. For all application
cases, volumetric modulated arc therapy photon and single-field uniform dose pencil-beam scanning pro-
ton plans at four different gantry angles were optimized for a generic target on the CT and recalculated
on 2D and 3D Unet-based pseudoCTs. Mean (absolute) error (MAE/ME) and a gradient sharpness estimate
were used to quantify the image quality. Three-dimensional gamma and dose difference analyses were
performed for photon (gamma criteria: 1%, 1mm) and proton dose distributions (gamma criteria: 2%,
2mm). Range (80% fall off) differences for beam’s eye view profiles were evaluated for protons.
Results: Training 36h for 1000 epochs in 3D (6 h for 200 epochs in 2D) yielded a maximum MAE of
147 HU (135 HU) for the application patients. Except for one patient gamma pass rates for photon
and proton dose distributions were above 96% for both Unets. Slice discontinuities were reduced for
3D training at the cost of sharpness.
Conclusions: Image analysis revealed a slight advantage of 2D Unets compared to 3D Unets. Similar
dose calculation performance was reached for the 2D and 3D network.
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Introduction

Magnetic resonance (MR) imaging is an important part of
modern radiation therapy treatment planning. In many cases,
MR is needed for improved delineation of the target vol-
umes, given the lower soft tissue contrast of X-ray computed
tomography (CT) [1,2]. Still, CT images are the basis for treat-
ment planning in terms of determination of electron den-
sities and for estimating relative stopping power ratios to
water for photon and proton dose calculation, respectively.
Recently, the use of adaptive strategies for photon therapy
has increased with the introduction of hybrid machines com-
bining linear accelerators with MR scanners [3,4]. Given that
advances in photon radiation therapy are typically

transferred to proton radiation therapy, there has been a
growing interest for MR-guided proton therapy research in
the last years [5–17]. For online adaptive radiation therapy,
replanning strategies have to be fast and reliable. Proton
dose calculations are much more sensitive to CT value errors,
and therefore require higher conversion accuracy from MR to
CT. These converted CTs are often called pseudoCTs or sub-
stitute/synthetic CTs. The main challenge for pseudoCT gen-
eration is the lack of a physical relationship between MR
intensities and electron densities [18].

Several conversion methods have been proposed so far,
which were summarized in two recent reviews [18,19]. Deep
learning based approaches are the most recent development
[20–22]. So far only few approaches directly address proton
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dose calculations [23–27]. As none of these approaches is
deep learning based, this is the first time a proton dose evalu-
ation is performed on deep learning based pseudoCTs. Deep
learning models are highly parallelizable and therefore trained
and applied using graphics processing units (GPUs). Due to
limitations of the GPU memory, most of the deep learning
approaches are trained on two-dimensional (2D) slices. Since
the loss functions of 2D models do not account for continuity
in the third dimension, slice discontinuities can be observed.
Training on three-dimensional (3D) image stacks is expected
to achieve a more homogeneous conversion result.

So far, no proton dose calculations were applied to
pseudoCTs generated from deep learning models. Our study
compared generated pseudoCTs with a U-shaped convolu-
tional neural network for 2D image slices (Unet2D) and a U-
shaped convolutional neural network for 3D image stacks
(Unet3D) from MR head scans. The comparison was per-
formed by means of image metrics and dose evaluations
(gamma and dose difference analysis) for photon and proton
dose calculations. For proton dose distributions, additionally,
a range analysis was performed.

Material and methods

Data description

For this study, CT and MR imaging data of 89 patients with
lesions in the brain treated with photon radiation therapy
were used. All MR images were acquired with a Magnetom
Aera MR scanner (Siemens Healthcare, Germany) with a voxel
size below 1� 1� 1 mm3 and a magnetic field strength of
1.5 T using a T1-weighted magnetization-prepared rapid gra-
dient echo (MP-RAGE) sequence (repetition time ¼ 2000ms,
echo time ¼ 3.02ms, flip angle ¼ 8

�
). Sizes of MR images’

axial slices varied between 136� 133 and 262� 262 pixels.
CT scans were from two different scanners, an Acquilion
Large Bore CT scanner (Canon Medical Systems, Japan) with
a voxel size of 1:074� 1:074� ð1 or 3Þ mm3 and a
Discovery positron emission tomography (PET)/CT 690 scan-
ner (GE Healthcare, USA) with a voxel size of 1:273� 1:273�
2:5 mm3: CT axial slices had a standard size of 512� 512
pixels. CT scans were dedicated for treatment planning and
therefore contained patient fixation devices while MR scans
were acquired for diagnostic purposes.

The dataset of preprocessed (see Supporting Information
for more details) MR and CT images was split into training
(57), validation (28) and application/test (4) patients. The net-
work was trained on the training set, while decisions for the
modification of the network, including the stopping point of
the training, were made according to the loss values of the
validation set. The application data, unseen by the network
before, was used to quantify the quality of the generated
images and for dose calculations and subsequent analysis.

Network design

The U-shaped convolutional neural network (Unet) [28] archi-
tecture was initially designed for Hounsfield unit (HU)

correction of cone beam computed tomography images
[29,30] and was slightly adapted for packages of 32 slices
(Unet3D) (see Supporting Information).

Dose calculation

To evaluate dosimetric properties of the generated CTs, a
single-arc volumetric modulated arc therapy (VMAT) plan
and single-field uniform dose (SFUD) pencil-beam scanning
(PBS) plans from four different gantry angles (45�, 135�, 225�,
315�) were optimized in a research version of the clinical
treatment planning software RayStation (version 6.99,
RaySearch Laboratories AB, Sweden). Photon dose calcula-
tions were performed using a collapsed-cone algorithm with
a beam model for a Synergy linear accelerator (Elekta,
Sweden) and a dose grid size of 3� 3� 3 mm3 on the CT.
The resulting plans were recalculated on the corresponding
pseudoCTs generated by the two Unets. In order to make
range analysis in axial slices for protons more accurate a
dose grid size of 1� 1� 3 mm3 was applied for the IBA
Dedicated beam model. A median dose of 60Gy in 30 frac-
tions was aimed for a generic target volume in all plans. For
all optimized dose distributions, the target volume fraction
receiving more than 95% of the prescribed dose (V95%) was
above 99%.

Data evaluation

The quality of the generated pseudoCTs was assessed by cal-
culating the mean and absolute error (MAE/ME), both given
in HUs within the outer contour of the patient. A sharpness
estimate was determined by a gradient-based measure (see
Supporting Information).

Dose distributions of the CTs were the references for dose
distributions on the pseudoCTs. For VMAT plans the dose
was evaluated by means of a 3D gamma analysis [31] with a
1mm distance and a global 1% dose criterion (C1%;1mm).
Additionally, a dose difference analysis with 1% passing cri-
terion (DD1%) was applied. For photon doses, an evaluation
dose threshold of 20% was used. For proton plans besides
C2%;2mm and DD2%; both with a dose threshold of 50%, a
range difference analysis of the beam’s eyes profiles was per-
formed. The application of the gamma and dose difference
analysis incorporated an interpolation of the dose to a 1 mm
dose grid. The range was defined as the distance
between the 80% dose fall-off and the respective proximal
patient outline in beam direction. Pass rates for the range
differences exceeding 2mm (RD2mm) and 3mm (RD3mm)
were calculated.

Results

Training

From 1000 epochs of 3D and 200 epochs of 2D training,
epochs 908 and 158 were selected for Unet3D and Unet2D,
respectively (see Supplementary material for more informa-
tion). Training duration was about 36 h for Unet3D and 6h
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for Unet2D. The conversion time per patient (�100 slices)
was lower than 2 s for Unet2D and 12 s for Unet3D.

Image analysis

Figure 1 shows a sagittal slice of the pseudoCT of one of the
application patients for both Unets, the respective CT scan
and the difference plots (generated pseudoCT - CT) with the
corresponding MR scan. The slice discontinuities which are
visible at tissue-air-interfaces for Unet2D, did not appear for
Unet3D, but the output of Unet3D compared to Unet2D is
clearly blurrier. This visual impression is supported by the
sharpness estimate, which yielded for the four application
patients (95%, 96%, 99%, 95%) and (85%, 88%, 98%, 93%)
for Unet2D and Unet3D, respectively. The increased blur of
the Unet3D results also reduced the capability to capture
fine bony structures. Large HU differences appeared mainly
in the regions next to bony structures, but positional shifts
were not observed (Figure 1).

Figure 2 presents the MAE and ME in HU for both Unets
for the whole patient set. The average MAE values over all
patients of the training set given with one standard devi-
ation were lower for Unet2D (55 ± 10 HU) compared to
Unet3D (90 ± 20 HU). Although this trend was also visible for
the validation set, the mean MAE values for the validation
set agreed within one standard deviation with 116 ± 26 HU
and 137± 32 HU for Unet2D and Unet3D, respectively. For
the application set, MAE values ranged from 82 HU to 135
HU for Unet2D and from 82 HU to 147 HU for Unet3D.

In terms of ME, Unet2D exhibited no clear systematic ME
deviation for the training patients and values up to ±15 HU
were observed. In contrast, Unet3D showed mainly positive
deviations up to 40 HU for the training set. Average ME val-
ues over the training (–1 ± 4 HU) and validation patient
group (2 ± 30 HU) were close to zero for Unet2D. Unet3D
showed a higher spread in ME values yielding 11 ± 9 HU and
31± 55 HU for training and validation set, respectively.

Dose analysis

Evaluation of the VMAT plans recalculated on the
pseudoCTs of Unet2D and Unet3D with C1%;1mm and DD1%

yielded for all application patients pass rates better than
95%. For 2% dose difference evaluation, the pass rates were
above 98%. Given these high values no further VMAT results
are presented.

For protons, an axial view of the dose distributions for the
315� SFUD plan of patient 50 and patient 60 (application set)
is illustrated in Figure 3. The dose distribution of the plan on
the CT is shown together with the recalculated dose distribu-
tions on the pseudoCTs generated by Unet2D and Unet3D.
Additionally, differences between the CT and MR patient out-
lines were plotted on top of the respective MR slices.
Considerable differences between the patient outlines and
between the target volume and the 95% isodose line were
observed for patient 60.

Table 1 presents C2%;2mm;DD2%; RD3mm and RD2mm of the
dose distributions for the proton plans of the application
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Figure 1. Sagittal views for patient 56 (application set) of the CT (upper left), the pseudoCT of Unet2D (middle left), the pseudoCT of Unet3D (lower left) and the
respective MR (upper right). The difference plots pseudoCT Unet2D – original CT (middle right) and pseudoCT Unet3D – original CT (lower right) are also shown.
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patients and the corresponding mean values over all proton
plans and application patients. C2%;2mm for the dose distribu-
tions recalculated on the pseudoCT of Unet2D and Unet3D
were all above 97%, except for patient 60 which had the
lowest pass rate for the plan from gantry angle 225

�
yielding

91.7% and 89.3% for Unet2D and Unet3D, respectively.
DD2% yielded around 5% lower pass rates than the gamma
evaluation. Low pass rates obtained for patient 60 by gamma

and dose difference calculations were even more pro-
nounced for the range differences. Range differences of
patient 60 were above 2mm for 44% of the profiles for gan-
try angle 315

�
; while less than 10.5% of the profiles of the

remaining application patients had range differences above
2mm. Three millimeter range differences were observed for
less than 5% of the profiles disregarding patient 60 for
both Unets.
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Figure 2. The MAE (left column) and ME (right column) values plotted for the three patient groups (training, validation and application) for Unet2D and Unet3D.

Figure 3. Axial view of the SFUD proton dose distributions for gantry angle 315
�
of patient 50 and patient 60 (application set) for the CT, the pseudoCT generated

by Unet2D and the pseudoCT generated by Unet3D. The generic target is indicated in red and the 95% isodose in green. The dose values were normalized to the
prescribed dose. The respective MR slices are shown to the left with the differences between CT and MR patient outlines marked in red.
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Discussion

PseudoCTs generated from a 2D and a 3D Unet were applied
to proton therapy for the first time. Both approaches were
compared in terms of their photon and proton dose calcula-
tion accuracy. The 3D patch size of 256� 256� 32 allowed
to feed complete slice stacks with a good image resolution
into the network. This helped to reduce slice discontinuities
observed for Unet2D (see Figure 1). Other groups
reported 3D patch sizes of e.g., 32� 32� 12 [32] not allow-
ing to feed in complete 2D image slices of a patient. In
terms of sharpness the resulting pseudoCTs of Unet3D were
blurrier than those of Unet2D, potentially due to a
reduced training sample size between 2D and 3D. This could
possibly be improved by increasing the number of
patient datasets.

Short application times are crucial for the acceptance of
the method for online adaptive replanning strategies. Our
reported application times of about 10 s for Unet3D are com-
parable to those reported in literature [20,21]. For Unet2D,
application time was more than a factor of five lower. Using
only the central slice of each image stack for application
increased the Unet3D application time because of a large
overlap of the stacks. The typically much longer training
times of several hours up to days are not an issue as they
only have to be performed once. Since the method only
relies on one MR sequence, the time the patient lies on the
table is reduced compared to strategies that need two or
more different MR sequences [33,34].

ME values of the training set were smaller and less biased
for Unet2D compared to Unet3D (see Figure 2). For Unet2D,
no bias was visible neither for the validation nor for the
application set. This means that for Unet3D average HU val-
ues are slightly higher compared to the CT. This trend is less
prominent for the validation set.

MAE values were much smaller for training than for valid-
ation and application set for both Unets. This could be an
indicator that the networks were overfitting the training
data. This assumption is not supported by the loss curves
(see Supporting Information, Figure S2), since no increase in

the validation loss curves was observed. Compared to the
range of MAE values achieved by other publications for brain
pseudoCT generation our calculated MAE maxima for the
two Unets over all application patients are in the range
reported for mean MAE values in the head region (85–230
HU) by the review of Edmund and Nyholm [18].

Nonetheless, dose evaluations for photons yielded very
good pass rates for both Unets. Proton dose calculation
yielded good pass rates for three out of four patients. The
gamma passing rates for the proton plans were above 89.3%
and hence in the range reported by Pillegi et al. [25],
although the values are not directly comparable as they only
perform the gamma analysis within the planning target vol-
ume (PTV) in the ten central slices of the dose cube. The
exception was patient 60 who had generally lower passing
rates. Range differences showed the same behavior. Low
pass rates for patient 60 can be explained by the information
shown in Figure 3. A difference in the patient outline
between CT and MR and an overestimation of the bone in
the upper part of the skull cause comparably large range dif-
ferences. A mismatch of the rigid registration was excluded
by visual inspection of a clinical expert. Changes in the
patient outline might be caused by the mask and the pillow,
which were not present in the MR. Since the differences
mainly appear in the upper part of the skull, where the size
of the patient outline strongly changes from slice to slice,
the interpolation from CT (3mm) to MR slice distance (1mm)
might be another influencing factor.

For proton therapy, a direct conversion from MR intensity
to relative stopping power ratio would be favorable. In this
work, a more clinically oriented approach was chosen. By
converting the MR intensities to CT values instead of relative
stopping power ratios, the same standard conversion routine
could be used.

In conclusion, our Unet-based approach yielded compar-
able results as previously reported pseudoCT generation
methods for proton dose calculations in the brain at consid-
erably lower application times in the 2D case. Image analysis
revealed a slight advantage of Unet2D, but for photon and
proton dose calculations similar accuracy was achieved.

Table 1. Pass rates in percent for 2%/2mm gamma (C2%;2mm), 2% dose difference (DD2%), 2mm range (RD2mm) and 3mm range difference analysis (RD3mm) for
both Unets (2D and 3D) and all proton dose distributions of the application patient set.

45
�

135
�

225
�

315
�

l6r

Type Patient 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D

C2%;2mm 50 99.4 99.2 99.3 99.1 98.0 98.3 99.2 98.0 98 ± 2 97 ± 3
56 98.5 97.2 98.8 99.1 98.4 99.1 98.2 97.1
60 98.4 96.1 95.0 91.4 91.7 89.3 93.6 90.8
71 99.5 99.3 99.6 99.4 99.1 99.0 98.9 99.2

DD2% 50 95.6 95.8 95.4 93.2 92.9 93.6 95.5 92.1 93 ± 3 92 ± 4
56 93.2 91.4 92.7 92.5 93.1 93.6 91.5 90.6
60 93.2 89.5 90.4 87.1 87.3 85.5 87.5 85.4
71 97.2 96.8 96.8 96.0 94.7 94.4 95.0 96.4

RD2mm 50 98.2 94.2 95.5 94.8 96.1 95.5 98.2 94.2 93 ± 4 90 ± 13
56 92.0 94.9 97.4 98.4 90.7 98.6 88.7 97.0
60 93.1 85.1 95.3 76.4 84.6 66.0 93.5 56.0
71 97.2 98.2 89.6 97.9 91.5 98.1 92.8 99.0

RD3mm 50 100 100 99.1 98.8 99.5 99.8 98.8 96.9 98 ± 2 96 ± 7
56 96.1 98.5 99.6 99.9 99.3 99.8 97.2 99.8
60 97.5 92.8 99.5 87.0 95.7 79.0 97.7 84.1
71 99.5 99.8 94.8 99.4 96.0 100 98.7 99.9

The mean and one standard deviation over all application patients and proton plans (l6r) is given for all evaluation types in the last two rows.
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Purpose: In photon radiotherapy, respiratory-induced target motion can be accounted for by internal
target volumes (ITV) or mid-ventilation target volumes (midV) defined on the basis of four-dimen-
sional computed tomography (4D-CT). Intrinsic limitations of these approaches can result in target
volumes that are not representative for the gross tumor volume (GTV) motion over the course of
treatment. To address these limitations, we propose a novel patient-specific ITV definition method
based on real-time 4D magnetic resonance imaging (rt-4DMRI).
Methods: Three lung cancer patients underwent weekly rt-4DMRI scans. A total of 24 datasets were
included in this retrospective study. The GTV was contoured on breath-hold MR images and propa-
gated to all rt-4DMRI images by deformable image registration. Different targets were created for the
first (reference) imaging sessions: ITVs encompassing all GTV positions over the complete (ITV80s)
or partial acquisition time (ITV10s), ITVs including only voxels with a GTV probability-of-presence
(POP) of at least 5% (ITV5%) or 10% (ITV10%), and the mid-ventilation GTV position. Reference
planning target volumes (PTVr) were created by adding margins around the ITVs and midV target
volumes. The geometrical overlap of the PTVr with ITV5%

n from the six to eight subsequent imaging
sessions on days n was quantified in terms of the Dice similarity coefficient (DSC), sensitivity [SE:
(PTVr \ ITV5%

n )/ITV5%
n ] and precision [PRE: (PTVr \ ITV5%

n )/PTVr] as surrogates for target cover-
age and normal tissue sparing.
Results: Patient-specific analysis yielded a high variance of the overlap values of PTV10s

r , when
different periods within the reference imaging session were sampled. The mid-ventilation-based
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PTVs were smaller than the ITV-based PTVs. While the SE was high for patients with small breath-
ing pattern variations, changes of the median breathing amplitudes in different imaging sessions led
to inferior SE values for the mid-ventilation PTV for one patient. In contrast, PTV5%

r and PTV10%
r

showed higher SE values with a higher robustness against interfractional changes, at the cost of larger
target volumes.
Conclusions: The results indicate that rt-4DMRI could be valuable for the definition of target vol-
umes based on the GTV POP to achieve a higher robustness against interfractional changes than fea-
sible with today’s 4D-CT-based target definition concepts. © 2020 The Authors. Medical Physics
published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
[https://doi.org/10.1002/mp.14023]

Key words: 4DMRI, interfractional changes, ITV, lung tumor, mid-ventilation, motion management

1. INTRODUCTION

In high-precision radiotherapy (RT) of lung tumors, target
motion due to respiration remains a predominant challenge.1

This motion can be substantial, is patient-specific, difficult to
predict, can be irregular and change from one day to
another.2–8 Intrafractional motion, defined as any motion
induced by physiological processes occurring within a treat-
ment session such as breathing, and interfractional changes
occurring between treatment sessions need to be accounted
for in the planning and delivery process.9

To address intrafractional changes, passive and active
motion management techniques have been developed over the
last decades.10 Passive methods include motion-encompassing
margins and abdominal compression. Active methods include
active breathing control (ABC), breath-hold techniques, gat-
ing, and tracking. While active approaches have a higher
potential in reducing the integral dose to the patient, they can
be invasive when fiducial markers are implanted, complex,
costly, time-consuming, require specialized equipment, or are
still in the research phase. The clinical benefit of many of these
methods remains to be proven.3,4 For these reasons, passive
motion-management (PMM) techniques are still primarily
used clinically, in particular for conventionally fractionated
RT.1,10 The use of internal target volumes (ITV) as a motion-
encompassing method is described in Report 83 of the Interna-
tional Commission on Radiation Units and Measurements
(ICRU).11 Assessment of the range of motion by four-dimen-
sional computed tomography (4D-CT) imaging has become
the clinical standard-of-care.4,12 The ITV is ideally obtained
from the union of all gross tumor volumes (GTVs) delineated
on the datasets at the different breathing phases.7 It ideally
includes all possible positions of the GTV throughout the
course of treatment.13 The ITV is then expanded by margins to
account for interfractional changes and patient setup
uncertainties to create the planning target volume (PTV). An
alternative PMM technique is based on the definition of the
mid-position14 or mid-ventilation target volume (midV),15,
where the average position of the GTV is reconstructed from
the 4D-CT and motion-dependent anisotropic margins are
added to account for the respiration-induced target motion.
The resulting PTVs are typically smaller than corresponding
ITVs.4,16 Although the midV concept has the potential to

reduce the integral dose to the lungs, its clinical implementa-
tion is typically limited to academic RTcenters.17

It is questionable whether the characterization of respira-
tory motion and the derivation of a corresponding PTV based
on a single pretreatment 4D-CT is representative and ade-
quate for treatment planning.13,18–21 4D-CT images are aver-
aged over only a few breathing cycles and the target volume
defined based on these images is therefore subject to random
uncertainties,22 since the breathing of the patient during this
short acquisition time might not be representative for the
patient’s breathing pattern during treatment. Clinically rele-
vant interfractional anatomical changes such as tumor shrink-
age, weight loss or normal tissue alterations like pleural
effusion, and onset or resolution of atelectasis are frequently
observed during RT of lung tumors.5,9,10 The patient’s breath-
ing pattern can change due to psychological factors, such as
an increase of relaxation of the patient over the course of
treatment.23 These changes are in general not predictable but
introduce systematic errors in the treatment that can compro-
mise the quality of the RT treatment due to reduced target
coverage or additional dose to organs at risk.1,24

Online-adaptive magnetic resonance imaging (MRI)-
guided RT may deliver highly conformal doses to the tumor by
adjusting the treatment plan just before the treatment session
if interfractional changes occurred.25 The equipment needed
for this method is, however, not widespread.26 Today, the
majority of clinics use daily volumetric imaging with three-di-
mensional cone-beam CT (CBCT) for positioning in image-
guided RT (IGRT) of lung cancer27 through which relevant
interfractional anatomical changes can be detected. Four-di-
mensional CBCT imaging can improve the accuracy of patient
positioning compared to 3D-CBCT28 and enables a motion
assessment directly before treatment. This motion assessment
is subject to random uncertainties related to the averaging of
motion due to the reconstruction of a single breathing cycle
from projections from several breathing cycles with potential
inter-cyclic variations.3 Therefore, the question whether the
4D-CT-based ITV used for treatment planning is still ade-
quately representing the target motion cannot be answered.

The introduction of MRI in the RT workflow29 has
spurred research that could potentially contribute to the solu-
tion of this problem. The movement of lung tumors has been
investigated with two-dimensional (2D) cine-MRI, which
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enables the repeated acquisition of temporally resolved
images of arbitrary duration with high soft tissue contrast
without delivering dose to the patient.5,6 Several studies have
investigated intrafractional and interfractional changes with
2D cine-MRI.6,30–35 Cai et al.36 showed that the characteriza-
tion of lung tumor motion with temporally resolved MRI is
more representative than with 4D-CT, mainly due to
improved statistics through longer acquisition times.22 Hence,
temporally resolved MRI can help to refine the ITV defini-
tion for treatment planning.

When 2D cine-MR images are used, the information about
the target motion is limited to 2D planes and only indirect
inferences of the out-of-plane motion of tumor and surround-
ing tissues can be drawn.37 The extension to four-dimensional
MRI (4DMRI) is therefore an active field of research,38,39

through which the 3D motion of the target and surrounding
tissues including translations, rotations and deformations can
be directly captured. As pointed out in a recent review on
4DMRI,39 research is mainly focused on respiratory-corre-
lated 4DMRI (rc-4DMRI) opposed to real-time 4DMRI (rt-
4DMRI).39–42 In contrast to 4D-CT imaging and rc-4DMRI,
no retrospective sorting of projections or 2D images from dif-
ferent breathing cycles based on a surrogate is needed for rt-
4DMRI. Fast 3D gradient echo (GRE) or steady-state free
precession (SSFP) sequences using parallel imaging tech-
niques and echo sharing are usually used for rt-4DMRI.42

The in-plane resolution is 3-4 mm and temporal resolution is
typically limited to 2 volumes per second, depending on the
spatial resolution.39 rt-4DMRI is not routinely used clinically
today, but a more widespread use due to the technological
advances in this area is expected in the near future.39

The purpose of this proof-of-concept study is to demon-
strate how rt-4DMRI could be used to reduce the random and
systematic uncertainties associated with today’s 4D-CT-based
ITV definition approach. We describe how a 4DMRI-based
ITV can be defined based on the probability-of-presence
(POP) of the GTV to reduce random uncertainties. Additional
PTV margins are added to reduce systematic uncertainties
and prospectively account for potential interfractional
changes. The new ITV definition concept is evaluated by ana-
lyzing the geometrical overlap of the obtained PTV with ITVs
based on the GTV motion on different days. The method is
compared to today’s PMM concepts including PTVs that
mimic a 4D-CT-based ITV definition and the mid-ventilation
approach. We show how systematic errors due to interfrac-
tional changes could be quantified with regular 4D-MR imag-
ing by metrics that are correlated to dosimetric quantities
such as target coverage and normal tissue sparing. The poten-
tial integration of the proposed novel ITV definition into clin-
ical practice is outlined and its limitations are discussed.

2. MATERIALS AND METHODS

2.A. Patient data and imaging protocols

Three patients with tumors in the right lung were included
in this retrospective proof-of-concept study. The patients

underwent regular MR imaging in treatment position with a
1.5 Tscanner (Siemens Avanto) with 7-9 imaging sessions dis-
tributed over 11-12 weeks. A total of 24 datasets were
acquired for all patients accumulated. A 3D image in breath-
hold (3DMRI) was acquired with a balanced steady-state free
precession (bSSFP) sequence (TrueFISP; axial slices; slice
thickness: 4-5 mm; in-plane resolution: 0.88 9 0.88 mm2;
TR/TE: 380/1.16 ms; flip angle: 63�; field-of-view (FOV):
45 9 45 9 24 cm3; receiver bandwidth: 1030 Hz/px) using
parallel imaging (GRAPPA) at the beginning of each session.
The acquisition time for each axial slice was 400 ms, resulting
in a total acquisition time of 20-24 s for the whole 3D volume.
An rt-4DMRI dataset (4DMRI) was subsequently acquired. A
total of 157 3D volumes were collected over a period of 80 s
with a temporal resolution of 500 ms and the patient breathing
freely (TWIST; coronal slices; slice thickness: 10 mm; in-
plane resolution: 3.91 9 3.91 mm2; TR/TE: 1.47/0.61 ms;
flip angle: 5�; FOV: 50 9 50 9 36 cm3; receiver bandwidth:
1565 Hz/px). TWIST (Time-resolved angiographyWith Inter-
leaved Stochastic Trajectories)44 is a dynamic 3D GRE
sequence using view-sharing, where the center of k-space is
sampled more frequently than the periphery in a semi-random-
ized fashion. Parallel imaging (GRAPPA) and partial Fourier
imaging (sampling of 78% in frequency-encoding direction)
were used as additional acceleration techniques to further
shorten the image acquisition time. To account for geometrical
distortions, the manufacturer’s correction methods were
applied to 3DMRI and 4DMRI. The GTV was contoured on
3DMRI and approved by a trained radiation oncologist.

The first imaging session for each patient was defined as
the reference imaging session and taken as a surrogate for the
imaging that would be acquired for RT planning. The consec-
utive imaging sessions n 2 [2,. . .,N], where N is the total
number of MRI sessions for the patient, were taken as surro-
gates for the treatment sessions over the course of therapy.

2.B. Study workflow

To generate 4DMRI-based target volumes, the GTV posi-
tion at every point in time of 4DMRI is needed. An overview
of the overall workflow performed for this purpose and the
subsequent evaluation is given in Fig. 1. The main steps (indi-
cated by the corresponding numbers in Fig. 1) are:

1. Determination of the 3D dataset within 4DMRI that
closest resembles the breathing phase of 3DMRI,
labeled 4DMRIðt0Þ,

2. warping of the GTV from 3DMRI to 4DMRI(t0) by
deformable image registration (DIR),

3. propagation of the GTV to all 3D volumes within
4DMRI using DIR,

4. definition of 4DMRI-based ITVs and the midV,
5. creation of PTVs by expansion of the ITVs and midV,
6. creation of a time-averaged 4DMRI,
7. rigid registration (RR) focused on the tumor of time-av-

eraged MR images acquired on day n to the dataset
from the reference MRI session,
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8. geometrical overlap evaluation of PTVs from the refer-
ence day (PTVr) and ITVs from day n (ITVn).

The individual steps are described in more detail in the
following sections.

2.C. Definition of 4DMRI-based target volumes

2.C.1. Determination of breathing states

The superior-inferior (SI) diaphragm positions in each 3D
volume of 4DMRI and 3DMRI were determined as surro-
gates for the breathing state. A region of interest around the
transition between the lung and abdominal tissue in the
nontumor-bearing hemithorax was manually selected and
converted to a binary image by thresholding using Otsu’s
method.45 The thresholded image was summed over the ante-
rior-posterior (AP) and right-left (RL) image axes to create a
one-dimensional (1D) signal in SI direction. The diaphragm
position was defined at the SI position of the steepest gradi-
ent of the 1D signal. The point in time t0 was defined as the

time at which the difference of the absolute diaphragm posi-
tions of 3DMRI and any of the 3D images of 4DMRI was
minimal (step 1 in Fig. 1). The corresponding 3D image at t0

of 4DMRI, 4DMRI(t0), was used for all subsequent registra-
tion steps. This step was performed to find the image 4DMRI
(t0) that is as similar as possible to 3DMRI to reduce uncer-
tainties of the DIR in the following step.

2.C.2. Deformable image registration

3DMRI and 4DMRI were resampled to a grid with an iso-
tropic voxel size of 2 9 2 9 2 mm3 using linear 3D interpo-
lation for all subsequent registration steps. To obtain the
GTV on 4DMRI at t0 (GTV(t0)), 3DMRI was registered to
4DMRI(t0) (step 2 in Fig. 1) in a multi-level b-spline DIR
with mutual information as similarity metric using the soft-
ware Plastimatch.46 The DIR was focused on the GTV,
expanded by isotropic margins of a few centimeters. Lower
uncertainties were expected for the registration of images
acquired with the same sequence and therefore a similar con-
trast (4DMRI(t0) and 4DMRI(ti)) compared to a registration
of images acquired with two different sequences (3DMRI
and 4DMRI(ti)). Therefore, to determine the GTV at each
point in time ti in 4DMRI, GTV(ti), with i 2 [1,. . .,157],
4DMRI(t0) was registered to 4DMRI(ti), again using a multi-
level b-spline DIR focused on the GTV with mutual informa-
tion as similarity metric (step 3 in Fig. 1). The centroid
positions of GTV(ti) at all time steps ti were measured to
evaluate the motion amplitudes of the tumor in each breath-
ing cycle. The amplitudes were calculated relative to the
median exhale position of the GTV, since this position is
expected to have a lower variance than the inhale
position.4,23

2.C.3. Probability-of-presence ITV

The binary images GTV(ti) were summed over all ti and
divided by the total number of time steps for normalization.
The resulting 3D image has the same spatial resolution as the
resampled 4DMRI (2 9 2 9 2 mm3 voxel size). The voxel
values correspond to the percentage of time in which the
GTV was present at the voxels’ positions over the whole
acquisition time. If the acquisition time is long enough so that
the respiratory-induced motion during 4DMRI is representa-
tive for the motion on the given day, this percentage becomes
a POP. This 3D POP distribution was used to determine
4DMRI-based POP ITVs (step 4 in Fig. 1) for cutoffs of 5%
and 10% (ITV5% and ITV10%). All voxel values equal to or
greater than the cutoff were set to 1, while all other voxel val-
ues were set to 0.

2.C.4. Conventional ITV and midV

To compare ITV5% and ITV10% with conventional PMM
concepts, further target volumes were defined based on the
rt-4DMRI dataset (step 4 in Fig. 1). This step was only per-
formed for the reference imaging sessions:

4DMRI 3DMRI GTV

best match

4DMRI(t' )

GTV(t' )

DIR

DIR

4DMRIavg

avg

margin

PTV

PTVr

GTV

ITV

RR

4DMRIavg

ITVn

...

...

...

Day 1 (reference) Day n

overlap

2

3

1

5

6

7

8

midV

PMM
4

...
ITV

margin

PTV

5

FIG. 1. Overview of data processing and analysis workflow. The individual
steps, indicated by the numbers in this figure, are further described in Sec-
tions 2.C and 2.D. The dots in the field of day n indicate that the same work-
flow steps as shown for day 1 (reference) are performed. PTVr represents the
reference PTV and ITVn the ITV on day n. GTV: gross tumor volume; DIR:
deformable image registration; PMM: passive motion management; ITV:
internal target volume; PTV: planning target volume; RR: rigid registration.
[Color figure can be viewed at wileyonlinelibrary.com]
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1. An ITV encompassing all GTV positions over the
whole acquisition time of 80 s (ITV80s

r ), which corre-
sponds to a POP cutoff of 0%.

2. To mimic today’s standard 4D-CT-based ITV defini-
tion workflow, the whole acquisition time was subdi-
vided in eight 10 s periods. For each period,
resembling a single 4D-CT scan, an ITV was created
by including all GTV position within this period (ie, at
20 consecutive time points) to create eight ITV10s

r . A
similar approach was previously used by Thomas
et al.33

3. The midV was defined by determining the centroid of
the centroids of all 157 GTV positions and then select-
ing the GTV position at the point in time with the
smallest distance of its centroid to this point. This
method is equivalent to the approaches previously
applied by Ehrbar et al.47 and Thomas et al.48

2.C.5. PTV formation

For each patient, the ITVs and the midV of the reference
imaging session were expanded by margins to create PTVr

(step 5 in Fig. 1). An isotropic margin of 5 mm was used for
the expansion of the ITVs based on current clinical prac-
tice.27 For the midV, the van Herk formula43 was used to cal-
culate the margins Md in directions d (with d 2 [RL,SI,AP]):

Md ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
setup þ R2

BL þ R2
del

q
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2setup þ r2BL þ r2br;d þ r2p

q
� rp

� �
; (1)

including the systematic and random setup errors for patient
positioning with CBCT (Rsetup ¼ rsetup ¼ 0:8 mm49), uncer-
tainties due to baseline shifts over the course of treatment
(RBL ¼ 0:99 mm and rBL ¼ 1:08 mm50), delineation uncer-
tainties (Rdel ¼ 1:7 mm47), the standard deviation of the
breathing motion of the GTV in direction d (rbr;d) and the
Gaussian beam penumbra width in lung (rp ¼ 6:4 mm16).
The approximation rbr;d ¼ Ad

cen=3 was used, where Ad
cen is

the median motion amplitude of the GTV centroid on the ref-
erence day in SI, AP and LR direction.47 The values a=2.5
and b=1.64 were chosen to ensure a minimum of 95% of the
prescribed dose to the target for 90% of the patients.43 The
margins Md were rounded up to integer millimeter values.
The ITVs and the midV were expanded by the margins on a
1 9 1 9 1 mm3 isovoxel grid and then resampled to the
original 2 9 2 9 2 mm3 isovoxel grid. As a result of steps
1-5, 12 PTVr were created for the reference imaging session
of each patient: PTV5%

r , PTV10%
r , PTV80s

r , eight PTV10s
r and

PTVmidV
r .

2.C.6. Rigid registration (RR)

Time-averaged 4DMRI images (4DMRIavg) were calcu-
lated by averaging over the 3D volumes of all time steps ti
(step 6 in Fig. 1). To mimic patient positioning focused on

the moving target during IGRT treatment, which is inevitably
blurred on 3D-CBCT images,3 4DMRIn;avg from day n, was
rigidly registered to the reference image 4DMRIr;avg (step 7
in Fig. 1) also focused on the target region. The RR ITK
implementation in Plastimatch with mutual information as
similarity metric was used.

2.D. Quantification of target volume overlaps

To evaluate the ability of the different PTVs to correctly
predict the GTV positions during the course of treatment, a
geometrical volume overlap analysis was performed. The ref-
erence PTVs of the first MRI sessions (PTVr) were used as
surrogates for the target volumes that would be used for RT
treatment planning and the ITV of day n with a POP of 5%
(ITV5%

n ) as a surrogate for the real target position during
treatment on day n. A cutoff POP of 5% was chosen with the
goal to ensure a minimum dose of 95% to the GTV.43

2.D.1. Geometrical volume overlap analysis

The binary structures PTVr and ITV5%
n were compared on

a voxel-by-voxel basis. A PTVr voxel with a value of 1 is a
prediction that parts of the GTV will be present during RT
delivery at its position with a nonnegligible probability. An
ITV5%

n voxel with a value of 1 indicates that on day n, parts
of the GTV are present at its position during at least 5% of
the time. The total number of voxels that:

1. have a value of 1 in PTVr and ITV5%
n was labeled True

Positive (TP),
2. have a value of 1 in PTVr and a value of 0 in ITV5%

n
was labeled False Positive (FP) and

3. have a value of 0 in PTVr and a value of 1 in ITV5%
n

was labeled False Negative (FN).

This is illustrated in Fig. 2. The geometrical volume over-
lap of PTVr with ITV5%

n was quantified in terms of sensitivity
and precision, which are defined as following:

Sensitivity (SE; true positive rate):

SE ¼ TP
TPþ FN

¼ PTVr \ ITV5%
n

ITV5%
n

(2)

Precision (PRE; positive predictive value):

PRE ¼ TP
TPþ FP

¼ PTVr \ ITV5%
n

PTVr
(3)

The Dice similarity coefficient (DSC) can be expressed as
a function of SE and PRE:

DSC ¼ 2 � TP
2 � TPþ FPþ FN

¼ 2 � ðPTVr \ ITV5%
n Þ

PTVr þ ITV5%
n

¼ 2 � SE � PRE
SEþ PRE

(4)

In the context of RT, FN can be interpreted as the extent
of target miss, FP as the normal tissue damage and SE and
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PRE as the scalar measures of target coverage and normal tis-
sue sparing with respect to the target volume. In an ideal RT
treatment, SE and PRE would both be 100%. The general
goal of RT is to maximize SE (ie, the tumor coverage) while
keeping PRE (ie, the normal tissue sparing) at an acceptable
level. The margins around the ITVs and midV to create the
PTV increase the SE while PRE decreases. The (N�1) vol-
ume overlaps of each PTVr and ITV5%

n were evaluated in
terms of SE, PRE and DSC (step 8 in Fig. 1). For the PTV10s

r ,
the “best” PTV10s

r (highest SE) and “worst” PTV10s
r (lowest

SE) were determined for each patient.

3. RESULTS

3.A. Motion amplitudes

The median number of breathing cycles recorded in the
4DMRI sessions was 15.5 (range: [11.5, 24]) over an acquisi-
tion time of 80 s. This corresponds to a median breathing rate
of approximately 12 cycles per minute (range: [9, 18]). MRI
sessions with stable breathing amplitudes and frequency, as
well as sessions with irregular breathing, were observed for
all patients. Figure 3(a) shows the GTV centroid motion split
up into the SI, RL and AP components for one exemplary
MRI session. Figures 3(b)-3(d) depict the motion amplitudes
with respect to the median exhale position for all MRI ses-
sions for each patient. The median motion amplitudes are
reported in Table I. For all patients and MRI sessions com-
bined, the largest GTV centroid motion was observed in SI
direction with a median motion amplitude of 8.8 mm, fol-
lowed by RL direction (2.7 mm) and AP direction (2.2 mm).

3.B. Probability-of-presence ITV and midV

An exemplary POP distribution is shown in Fig. 4. The
gradient of the POP distribution is steep in directions with
small motion amplitudes (RL and AP) and shallow in the
direction of large motion amplitudes (SI). The median vol-
ume ratio of ITV80s to GTV is reported in Table I. Since
this value correlates with the motion amplitude, the largest
median value of ITV80s=GTV was obtained for Patient 2

(3.25), the lowest for Patient 1 (1.29). Averaged over all
patients, the mean 3D distance between the centroid of the
centroids of all 157 GTV positions and the midV centroid
was 0.5 mm.

3.C. PTV formation

All reference ITVs were expanded by isotropic 5 mm mar-
gins. For the reference midV, the direction-dependent term
rbr;d in the van Herk formula yielded anisotropic margins.
The median motion amplitudes during the reference imaging
session were 3.5, 0.7, and 2.5 mm in RL direction and 1.8,
0.8, and 3.2 mm in AP direction for Patients 1, 2, and 3,
respectively (cf. Fig. 3), which yielded 6 mm margins in both
directions. The median SI motion amplitudes of 5.5, 13.2,
and 15.7 mm for Patients 1, 2, and 3, respectively, yielded
PTV margins of 6, 8, and 9 mm in SI direction.

3.D. Geometrical volume overlap analysis

The results of the geometrical overlap analysis of the dif-
ferent PTVr with the ITV5%

n are depicted in Fig. 5. Table II
summarizes the results and includes the volumes of the PTVr

relative to the volume of PTV80s
r .

By definition, the volume of PTV80s
r was the largest, repre-

senting the most conservative motion management approach
of the analyzed PTVr, where also single extreme GTV posi-
tions are included in the ITV. Consequently, the SE values
were the largest (median SE between 98-100% for all
patients) and the PRE values the lowest of all analyzed PTVr.

The variance of the overlap values for the eight PTV10s
r of

the different 10 s periods depends on the regularity of the
breathing pattern during the reference imaging session. Since
regular breathing patterns were measured for Patients 1 and 3
[cf. Fig. 3(a)], the differences between the overlap values of
the best (highest SE) and worst (lowest SE) PTV10s

r were
small (≤2%). As the breathing pattern of Patient 2 was irregu-
lar during the reference imaging session, the variance of the
different PTV10s

r was larger. A difference of 19% between the
SE of the best and worst PTV10s

r was measured (99%
vs 80%). Compared to PTV80s

r , the same median SE values
(differences <1%) at higher PRE (+4-6%) due to the PTVr

volume reduction of up to 11% could be achieved for the best
PTV10s

r for all patients. The differences in SE between the
PTV80s

r and the worst PTV10s
r ranged from 0% (Patient 1) to

19% (Patient 2).
The volumes of PTVmidV

r were the smallest of all PTVr

with a volume reduction between 16% and 56% compared to
PTV80s

r which led to the highest observed median PRE values
(�67% for all patients) that were 10-25% higher than for
PTV80s

r . The median SE values for PTVmidV
r were the smallest

of all PTVr for the three patients, with the largest difference
for Patient 2, where a median SE of 68% was measured
(compared to 99% for PTV80s

r ).
For PTV5%

r , a median PTV volume reduction with respect
to PTV80s

r of 9-31% was achieved at a similar median SE for
Patients 1 and 3 (differences below 2%) but a reduced median

FIG. 2. Illustration of the overlap of PTVr and ITVn. The assignment of attri-
butes to the different regions is based on the inclusion or exclusion of these
regions in PTVr and ITVn. True positive (TP) areas are marked in dark green,
false positive (FP) areas in yellow and false negative (FN) areas in red. In the
right image, ITVr is expanded by an isotropic margin to obtain PTVr, indi-
cated by the dashed line, through which TP is increased and FN decreased
(light green area) at the cost of an increased FP (orange area). [Color figure
can be viewed at wileyonlinelibrary.com]
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SE for Patient 2 (90% compared to 99%). The SE values for
PTV5%

r were higher than for PTVmidV
r by up to 22% at the

cost of reduced PRE (ie, larger PTV volumes) by up to 11%.
The use of PTV10%

r instead of PTV5%
r showed only small

improvements of the PRE (≤4%) while the SE dropped by up
to 7%.

The behavior of SE and PRE over time is mainly influ-
enced by interfractional changes such as tumor shrinkage and
different breathing patterns. The absolute variance of the
median motion amplitudes for the different days n was low
for Patient 1 (standard deviation of median 3D centroid
motion amplitude was 1.3 mm) and the median motion
amplitudes were decreasing over time for Patient 3. In combi-
nation with the regression or stagnation of the GTV size over
time that was observed for these two patients, this led to a
stable SE for all days n and all PTVr (standard deviation of
SE values <4% for both patients and all PTVr).

In contrast, the interfractional variance of the SE of the
different PTVr for Patient 2 was considerably larger (up to

10% difference for PTVmidV
r ; cf. Fig. 6). This is a conse-

quence of the high absolute variance of the median motion
amplitudes for different days n [cf. Fig. 3(c)]. While the med-
ian GTV centroid motion amplitudes in the first and last MR
imaging session were equivalent (13 mm), the amplitudes in
the remaining imaging sessions were substantially larger (16-
20 mm). This led to markedly higher SE values for the last
compared to the other imaging sessions for most of the PTVr

(cf. Fig. 6). The PRE for Patient 2 was gradually decreasing
over time for all PTVr, which can be explained by the tumor
shrinkage that was observed for this patient.

4. DISCUSSION

The largest motion amplitudes were observed in SI direc-
tion. Considerably larger motion amplitudes were measured
for GTVs in the lower lobe (Patients 2 and 3) than in the mid-
dle lobe (Patient 1). These findings are consistent with obser-
vations described in literature.4,9,51,52

(a) (b)

(c) (d)

FIG. 3. Gross tumor volume centroid motion amplitudes. (a) Centroid position as a function of time for an exemplary magnetic resonance imaging (MRI) ses-
sion. The triangular markers indicate the detected maxima and minima for each breathing cycle that were used to calculate the motion amplitudes in right–left
(RL) (red), superior–inferior (SI) (blue), and anterior–posterior (AP) (green) directions. (b–d) Motion amplitudes in RL, SI and AP direction and in 3D for all
MRI sessions and patients. The whiskers of the boxplots indicate the 5th and 95th percentiles. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Motion parameters for all patients. Ad
cen is the median motion amplitude of the gross tumor volume (GTV) centroid of all four-dimensional magnetic res-

onance imaging (4DMRI) sessions in three-dimensional (3D), right–left, superior–inferior, and anterior–posterior direction.

Patient GTV position A3D
cen (mm) ARL

cen (mm) ASI
cen (mm) AAP

cen (mm) GTV (ml) ITV80s

GTV

1 Middle right lobe 6.0 3.3 4.4 2.1 273 1.29

2 Lower right lobe 17.2 1.2 18.4 2.0 16 3.25

3 Lower right lobe 12.1 3.4 11.5 3.0 190 1.58
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The PTV80s
r , as the most conservative PMM approach

investigated in this study, yielded the highest SE values at the
largest PTV volumes that might be unacceptably large for
clinical application.

The large difference of the SE between the best and worst
PTV10s

r that was observed for Patient 2 demonstrates the risk
of sampling the breathing motion over only a short time per-
iod. When an ITV is defined based on this motion sample—
as is done routinely today in the 4D-CT-based ITV workflow
—intrafractional uncertainties would directly translate to sys-
tematic errors impacting the whole RT treatment.

The SE values for Patient 1 were high for all PTVr and all
imaging sessions. This patient would likely benefit from
being treated with the mid-ventilation approach, as the
PTVmidV

r was smaller and hence the PRE was larger than for
the ITV-based PTVr. The low SE values of most PTVr for
Patient 2 indicate that the respiratory-induced GTV motion
captured on the reference day was not representative for the
motion of the GTV in the remaining imaging sessions. In par-
ticular, the SE of PTVmidV

r and ITV5%
n was as low as 68%. A

plausible explanation for this result can be inferred from
Fig. 3(c). The variance of the SI GTV centroid motion ampli-
tudes during the reference imaging session was high. The

breathing motion was considered as a random uncertainty in
the calculation of the PTV margin for the midV. However,
since only the median motion amplitude was used for the
margin determination, the rich information about the complex
GTV motion trajectory was lost in this simplification step.
Although large SI amplitudes of about twice the median value
were observed during the reference imaging session, this was
not appropriately accounted for by the PTV margins which in
turn led to the poor SE. The SE values for Patient 3 were
higher than 95% for all PTVr with the exception of PTVmidV

r
for which a SE of 90% was measured at a volume reduction
of 23% relative to PTV80s

r . Without a dosimetric analysis it
cannot be concluded whether a SE value of 90% would be
clinically acceptable.

The overall variance of the SE for all patients accumulated
was second lowest for PTV5%

r (after PTV80s
r ) at a high median

SE value, indicating a higher robustness of this approach
compared to PTV10s

r and PTVmidV
r (cf. Fig. 5). While the SE

for PTV5%
r was reduced for Patient 2, it was not as low as for

PTVmidV
r . By using the full information of the GTV motion

over the whole duration of the reference imaging session, ran-
dom uncertainties in the PTV definition could be reduced
through the use of ITV5%

r .

FIG. 4. Three-dimensional probability-of-presence (POP) distribution. The POP is color-encoded and superimposed on four-dimensional-magnetic resonance
imaging (MRI) (t0) for the reference MRI session of Patient 2. The crosshairs indicate the slice positions in the respective axial, coronal, and sagittal views.
[Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. Geometrical overlap analysis for different passive motion-management concepts. The overlap values are plotted for each of the three patients separately
and for all patients accumulated. Each boxplot contains the values for all follow-up imaging sessions. PTV10s

r (best/worst) are defined as the PTV10s
r with the

highest/lowest SE value. The whiskers of the boxplots indicate the 5th and 95th percentiles. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Summary of geometrical overlap analysis. The median overlap values over all follow-up imaging sessions are given in percent for the different PTVr

and patients. Vrel describes the volume of the different PTVr relative to the volume of PTV80s
r in percent.

Patient 1 Patient 2 Patient 3

DSC SE PRE Vrel DSC SE PRE Vrel DSC SE PRE Vrel

PTV80s
r 72 100 57 100 58 99 41 100 72 98 56 100

PTV10s
r (best) 76 100 63 90 63 99 46 89 75 97 60 93

PTV10s
r (worst) 75 100 61 94 60 80 49 67 74 95 60 92

PTVmidV
r 78 99 67 84 66 68 66 44 78 90 68 77

PTV5%
r 75 100 62 91 68 90 55 69 75 96 61 91

PTV10%
r 77 100 64 88 68 83 59 60 76 95 63 87

DSC, Dice similarity coefficient; SE, sensitivity; PRE, precision.
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Studies by Ehrbar et al.47 and Thomas et al.48 concluded
in their dosimetric analyses that the mid-ventilation approach
can reduce the dose to the lung with no or only slightly
reduced tumor coverage with respect to the ITV approach.
Both studies however, recalculated the dose on the same 4D-
CT images that were used for definition of the target volumes.
The results of the present study, however, suggest that the SE
could be strongly affected by interfractional changes and the
mid-ventilation concept could be less robust than the more
conservative ITV5%

r concept in these cases.
Keeping the volumetric effect in mind, setting a reason-

able POP cutoff can lead to an over-proportionate improve-
ment of PRE while the SE decreases less. However, setting
this cutoff higher bears the risk of creating underdosed
(“cold”) spots at the edges of the GTV. Finding an ideal POP
cutoff without an extensive dosimetric evaluation is not a
trivial task and the optimum is expected to be patient-spe-
cific. For the patients included in this study, the use of a POP
cutoff of 10% (PTV10%

r ) instead of 5% resulted in only a
slight improvement of PRE at a reduced SE. As a high SE
(surrogate for target coverage) is of higher importance than a
high PRE (surrogate for normal tissue sparing), the use of
PTV10%

r instead of PTV5%
r to improve the PRE would not be

justified in these cases.
For all patients, the differences of SE and PRE between

the analyzed PTVr were larger than for the DSC. Due to the
different importances of SE and PRE, the interpretation of

the overlap results based on the DSC alone was found not to
be sufficient to evaluate which PTVr represented the optimal
target volume.

Different gradients of the POP distribution in different
directions were observed depending on the motion ampli-
tudes in the respective directions. This information could be
used to create anisotropic safety margins around ITV5%

r in a
similar way as done for the margin expansion of the midV.
Under the assumption that adequate image guidance tech-
niques are used, this patient-specific margin could potentially
increase the PRE while keeping the SE and hence the risk of
underdosage of the GTV at a constant level.

A potential extension of the concepts presented in this
study could be to directly incorporate the POP information in
the treatment planning process. Following the work published
by Shusharina et al.,53 an “internal target distribution” based
on the voxel-individual POP values could be defined instead
of a binary ITV as input for a probabilistic treatment planning
approach.

The results for Patient 2 indicate that most PTVr were not
representative for the GTV motion in the following imaging
sessions, resulting in a reduced SE for sessions 2-7. With
regard to the use of SE and PRE in adaptive RT,5,6 if the over-
lap parameters showed a clear deviation or decrease over
time, this would indicate that the patient would benefit from
replanning. These findings are supported by the conclusions
drawn by St. James et al.19,24 who demonstrated that a low
SE (called “ITV coverage” in their study) could potentially
lead to substantial underdosage of the target.

The presented method could be adapted for the use of ret-
rospectively sorted rc-4DMRI instead of rt-4DMRI. rc-
4DMRI provides higher spatial resolution than rt-4DMRI,
but since only a single breathing cycle is reconstructed in rc-
4DMRI, weighting factors for the probability of occurrence
of the different breathing phases would have to be determined
to reconstruct a 3D POP distribution. Uncertainties associ-
ated with the retrospective sorting would have to be
accounted for. When 2D images are acquired in rc-4DMRI,
instead of 3D images as in rt-4DMRI, less motion informa-
tion per time is sampled. To achieve the same statistical
uncertainty level compared to rt-4DMRI, longer acquisition
times would be necessary.

A future workflow for the integration of the proposed
4DMRI-based POP ITV concept into clinical practice could
be based on the following steps:

1. Acquisition of a 4DMRI scan instead or in addition to
the 4D-CT scan at the planning stage,

2. definition of a 4DMRI-based ITV based on the POP of
the GTV by choosing a suitable cutoff probability to
overcome current limitations of a 4D-CT based ITV,

3. definition of additional margins around the ITV to
prospectively account for potential interfractional
changes,

4. use of image-guidance techniques for patient position-
ing (focused on the target region) and to detect relevant
interfractional changes during RT treatment,

FIG. 6. Geometrical overlap values over time. For Patient 2, the overlap val-
ues for the six different PTVr with ITV5%

n are plotted for all imaging sessions
on days n. [Color figure can be viewed at wileyonlinelibrary.com]
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5. regular repetition of the 4DMRI scan and subsequent
target volume overlap analysis with the parameters SE
and PRE over the course of the RT treatment to assess
interfractional changes in breathing motion and to ver-
ify the applied margin concept,

6. decision whether the original plan is still appropriate or
replanning is necessary based on the overlap analysis,
ideally in conjunction with a dosimetric evaluation.

This workflow would not necessarily replace the current
4D-CT-based workflow, but could be an enhancement for
increased treatment accuracy and quality assurance, espe-
cially for patients who experience substantial interfractional
changes.

In this proof-of-concept study, the patient cohort was
limited to three patients, but compared to other studies that
have evaluated lung tumor motion with MRI (cf. Table I in
the publication by Thomas et al.33), the number of MRI
sessions per patient is higher by a factor of 2-4. The acqui-
sition time of the 4DMRI was limited to 80 s due to tech-
nical reasons, which is shorter than 2D cine-MR imaging
studies reported in literature.33–35 However, the proposed
method could be easily extended to longer acquisition times
in the future to improve statistics to assure that the repre-
sentative target motion of the day is captured.22 The DIR
steps introduce uncertainties that are difficult to quantify
but that are expected to be counterbalanced by the higher
representativity of the target motion description compared
to a 4D-CT-based ITV definition. Potential geometrical
image distortions of the MR images have to be accounted
for. The proposed workflow is more labor-intensive than
today’s clinical routine workflow but has the potential to
reduce the integral dose to the patient and enhance target
coverage. A dosimetric evaluation of the effect of the
changing overlap values of the ITVs of different days was
beyond the scope of this study. The spatial and temporal
resolution of today’s rt-4DMRI sequences is limited,
including the sequence used in this study. A limited spatial
resolution affects the accuracy of the image registration and
the target delineation. To account for this, related errors
could be estimated and absorbed in the PTV margin calcu-
lation.47 Cai et al.22 showed that a frame rate of fewer than
two images per second could affect the reproducibility of
the POP. A limited temporal resolution can furthermore
lead to an apparent enlargement of moving structures and
an underestimation of the inhale and exhale positions.42

The former effect would lead to an overly conservative esti-
mation of the GTV POP and therefore decrease the PRE.
The latter effect could potentially lead to an underdosage
of the GTV edges (lower SE). Since on average ten 3D
images were acquired per breathing cycle, the underestima-
tion of the range of motion is estimated to be similar or
less pronounced compared to a 4D-CT scan that consists of
ten phases. However, this effect has to be considered for
patients with high breathing frequencies (>12 cycles/min).
Improvements of the spatial and temporal resolution of rt-
4DMRI are expected in the near future.39

5. CONCLUSIONS

We proposed and investigated a novel concept for ITV defi-
nition based on rt-4DMRI and pointed out its potentials and
limitations. This ITV definition is based on the POP of the tar-
get in 3D, which is expanded by a PTV margin to account for
interfractional anatomical and motion changes. In combination
with image guidance techniques, the proposed method has the
potential to reduce the statistical and systematic uncertainties
associated with today’s clinical standard-of-care workflow
based on ITVs or midV defined on 4D-CT scans. Hereby, an
improved target coverage, balanced against the dose to adjacent
normal tissues, could be achieved. While this study was focused
on the motion of lung tumors, the methods could be translated
to other tumor sites which are strongly affected by intrafrac-
tional and interfractional motion, such as the liver or pancreas.
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