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Zusammenfassung 
 

Chronische Krankheiten, wie die koronare Herzkrankheit, Krebs, Demenz und Diabetes, gehören 

weltweit zu den häufigsten, folgenreichsten und wirtschaftlich bedeutendsten 

Gesundheitsproblemen. Auf globaler Ebene zählen chronische Erkrankungen, auch bekannt als nicht 

übertragbare Krankheiten (non-communicable diseases, NCD), zu 7 von 10 der häufigsten 

Todesursachen. Sie sind verantwortlich für 74 % aller Todesfälle pro Jahr (ca. 41 Millionen Todesfälle) 

und betreffen Menschen aller Altersgruppen, Regionen und Länder. Der zunehmende Anteil der an 

NCDs leidenden Menschen ist besorgniserregend, da diese Erkrankungen irreversibel sind und eine 

lebenslange ärztliche Betreuung erfordern, die Aktivitäten des täglichen Lebens einschränken und mit 

erheblich höheren Gesundheitskosten verbunden sind. Folglich sind die epidemiologische Forschung 

und die statistische Modellierung chronischer Krankheitsdynamiken, beispielsweise im Hinblick auf 

deren Prävalenz und Inzidenz, persistente Themen, die immer wichtiger und dringlicher werden. Die 

Literatur bietet einen umfangreichen statistischen „Werkzeugkasten“, der verschiedene Modelle 

chronischer Krankheiten umfasst. Diese Vielfalt bietet Chancen, kann jedoch die Wahl eines 

geeigneten Ansatzes erschweren. Alle Methoden haben ihre Vor- und Nachteile und sind daher für 

bestimmte Forschungsfragen mehr oder weniger geeignet. Unterschiedliche Modelle benötigen 

unterschiedliche Eingabefaktoren, basieren auf parametrischen oder nicht-parametrischen Annahmen 

und erfordern möglicherweise Individualdaten, während in anderen Fällen aggregierte Daten 

ausreichen. Die Implementierung kann einfach oder anspruchsvoll sein, ein Modell und seine 

Ergebnisse können leicht verständlich oder komplex und kompliziert zu interpretieren sein, ebenso 

können sich die Methoden hinsichtlich der Recheneffizienz unterscheiden. Das Ziel dieser kumulativen 

Dissertation besteht darin, das statistische Instrumentarium der Modellierung chronischer 

Krankheiten zu ergänzen, es zugänglicher und verständlicher zu machen und eine Anleitung für die 

Auswahl geeigneter statistischer Ansätze zu geben. Die Entwicklung, Anwendung und Bewertung 

statistischer Ansätze zur Quantifizierung und Prognose der Belastung durch chronische Krankheiten 

spielen in den fünf Beiträgen eine entscheidende Rolle. Um Verfügbarkeit und Transparenz zu 

maximieren, sind die Quellcodes aller beitragenden Artikel öffentlich abrufbar.  

Der erste Teil dieser Dissertation befasst sich mit epidemiologischen Vorhersagemodellen. Der erste 

Beitrag vergleicht dazu drei Projektionsmethoden. Dabei liegt ein besonderer methodischer 

Schwerpunkt auf der Anwendung partieller Differentialgleichungen (PDE), die Prävalenz, Inzidenz und 

Mortalität in Beziehung setzen und das Illness-Death Modell (IDM) beschreiben. Der Vergleich zeigt, 

dass sich die Ergebnisse der Methoden erheblich unterscheiden. Die Verwendung sehr simpler 

Methoden, die zeitliche Trends bei Inzidenz und Mortalität außer Acht lassen, führt zu einer 

erheblichen Unterschätzung der künftigen Zahl von Menschen mit chronischen Krankheiten. Der 

zweite und dritte Beitrag schätzen die Inzidenz und prognostizieren künftige Fallzahlen von Diabetes 

in Deutschland, sowie damit verbundene wirtschaftliche Folgen. Beide Anwendungen unterstreichen 

das Potenzial des IDMs und der zugehörigen PDE für die epidemiologische Modellierung.  

Der zweite Teil dieser Arbeit befasst sich mit der Ereigniszeitanalyse. In den letzten Jahren wurden 

nicht- und semiparametrische Modelle und Hazard Ratios als ihr primäres Ergebnis immer wieder 

hinsichtlich Interpretation, technischer Umsetzung und Flexibilität kritisiert. Als Abhilfe wird im vierten 

Artikel ein neues parametrisches additives Modell vorgestellt und dessen Einsatz und 

Leistungsfähigkeit in einer beispielhaften Anwendung und einer Simulationsstudie demonstriert. Per 

Definition überwindet das vorgeschlagene Modell die oben genannten Einschränkungen und kann als 

leistungsstarkes Werkzeug zur Ereigniszeitanalyse dienen. 
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Der letzte Teil ist dem Bereich von Simulationsstudien zum Vergleich verschiedener Modelle 

gewidmet, um dem Mangel an Leitlinien für geeignete methodische Entscheidungen in der 

medizinischen Forschung entgegenzuwirken. Ungeeignete statistische Methoden können zu 

ungenauen Ergebnissen und irreführenden Schlussfolgerungen führen, die die Qualität der 

Wissenschaft, der Evidenz und letztendlich die Qualität der Patientenversorgung gefährden können. 

Im Hinblick darauf können vergleichende Simulationsstudien Abhilfe schaffen. Solche Studien 

ermöglichen es, die Leistung und Eigenschaften statistischer Methoden in einem Umfeld zu verstehen, 

zu bewerten und zu vergleichen, in dem die „Grundwahrheit“ bekannt ist. Der fünfte Beitrag zielt 

darauf ab, den Status neutraler Vergleichsstudien zu stärken. Dabei wird zudem ein Beitrag zur 

medizinischen Forschung geleistet, indem drei frequentistische Ansätze zur Meta-Analyse von 

Diagnosestudien in verschiedenen Szenarien systematisch verglichen werden. 
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Abstract 
 

Chronic diseases, such as coronary heart disease, cancer, dementia, and diabetes, are among the most 

common, consequential and economically important health problems worldwide. At a global level, 7 

out of 10 leading causes of death are chronic conditions, also known as non-communicable diseases 

(NCD). They account for 74% of all deaths each year (approx. 41 million deaths), affecting people of all 

ages, regions and countries. The increasing proportion of people suffering from NCDs is worrying as 

these conditions are irreversible and necessitate ongoing, lifelong medical attention, constrain 

activities of daily living and are associated with considerably higher healthcare expenses. 

Consequently, epidemiological research that addresses NCDs and statistical modelling of disease 

dynamics in terms of, for example, prevalence and incidence, are persistent topics that continue to 

become greater in importance and urgency. Literature provides a large statistical “toolkit” that 

encompasses various chronic disease models. This variety provides opportunity, but may complicate 

the choice of an appropriate approach. All methods come with their advantages and disadvantages, 

and therefore are more or less suitable for certain research question. Different models rely on different 

input factors, they may require individual data while in other cases aggregated data is sufficient, 

approaches may be based on parametric or nonparametric assumptions, their implementation may be 

rather simple or challenging, a model and its results might be easily understandable or more complex 

and complicated to interpret, and the methods will presumably differ in terms of computational 

efficiency. The aim of this cumulative dissertation is to complement the statistical toolkit of chronic 

disease modelling, to make it more accessible and comprehensible, and to provide guidance for 

selecting suitable statistical approaches. The development, application and evaluation of statistical 

approaches to quantify and project chronic disease burden play a crucial role in the five contributing 

articles. To make the methodology accessible and to maximise transparency, the source codes of all 

contributing articles are publicly available.  

The first part of this dissertation deals with epidemiological projections. The first contribution 

compares three projection methods, with a particular methodological focus on the application of 

partial differential equations (PDE) that relate prevalence, incidence and mortality and describe the 

illness-death model (IDM). The comparison shows that the methods’ results differ substantially. It 

appears that using too simplistic methods which ignore temporal trends in incidence and mortality 

leads to severe underestimation of the future number of people with chronic diseases. The second and 

third contribution estimate the incidence and project the future number of people with diabetes in 

Germany and its related economic consequences. The two applications underline the potential of the 

IDM and its associated PDE for epidemiological modelling.  

The second part of this thesis addresses the analysis of time-to-event outcomes. In recent years, non- 

and semi-parametric models and hazard ratios as their primary outcome have continuously been 

criticized in terms of interpretation, technical implementation, and flexibility. As a remedy, the fourth 

article proposes a new parametric additive hazard model and demonstrates its use and performance 

in an exemplary application and a simulation study. By definition, the proposed model overcomes the 

above-mentioned limitations and may serve as a powerful tool for analysing time-to-event outcomes.   

The last part is devoted to the field of comparison studies to counteract the lack of guidance on suitable 

methodological choices in medical research. Inappropriate statistical methods may lead to inaccurate 

results and misleading conclusions which could jeopardise the quality of science, evidence, and 

ultimately, the quality of care given to patients. This is addressed by comparative simulation studies. 

Such studies allow to understand, evaluate and compare the performance and properties of statistical 

methods in a setting where the "ground truth" is known. The fifth article aims to reinforce the status 
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of neutral comparison studies and contributes to medical research by systematically comparing three 

frequentist approaches for the meta-analysis of diagnostic test accuracy studies in various scenarios.  
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1 Introduction  

“The major factors that brought health to mankind were epidemiology, sanitation, 

vaccination, refrigeration, and screen windows.“ 1 

(Richard Lamm) 

While infectious diseases have an essential impact on the health of people worldwide, chronic 

conditions have evolved to a major global health threat. Chronic diseases, also called non-

communicable diseases (NCD), such as coronary heart disease, cancer, dementia, and diabetes, impose 

great burden on humanity 2. NCDs are among the most common, consequential and economically 

important health problems worldwide 3,4. They are particularly worrying as these diseases are 

irreversible, require lifelong medical care, restrict activities of everyday living, and are related to 

remarkably higher healthcare costs. Globally, NCDs belong to 7 of the top 10 causes of death 5. They 

affect people of all ages, regions and countries and account for 74% of all deaths (about 41 million 

deaths) per year 2,3,5. By 2030, the number of deaths related to NCDs are estimated to reach 52 million 

per year. Further, according to the World Health Organization (WHO), costs for treating the worldwide 

NCD epidemic are projected to increase to $30 trillion by 2030 4. However, epidemiologic studies 

provide evidence that up to 80% of all cases associated with NCDs such as diabetes, heart diseases and 

strokes, as well as 40% of all cancer diagnoses are attributable to a number of known and, above all, 

preventable risk factors 4. Thus, further research and the promotion to modify major risk factors such 

as smoking, high cholesterol alcohol use, poor diet, high blood pressure, obesity and physical inactivity, 

would likely result in reducing a considerable proportion of the burden caused by NCDs.  

Overall, the rising proportion of people suffering from NCDs and the associated, ever-increasing 

healthcare costs require more knowledge about diseases and forecasting of future chronic disease 

burden in order to initiate preventive measures and estimate expected requirements. Consequently, 

epidemiological research that inherently focuses on statistical modelling of chronic disease dynamics 

is a persistent topic of great importance and urgency. The main purpose of this cumulative dissertation 

is to advance statistical modelling in the context of chronic diseases, as well as to make it more 

accessible and comprehensible. To achieve this, the thesis is made up of three distinct parts, each with 

a different focus, which underline the relevance and usefulness of statistical approaches for chronic 

disease modelling. The five contributing articles that accompany the three parts focus on the 

development, application and evaluation of statistical methods to quantify and project chronic disease 

burden.  

Part I - Epidemiological Projection Models  

Epidemiology is the study of the distribution and determinants of diseases in human populations and 

focuses on the description of health-related states, rates, events and trends. Compared to clinical 

research, which primarily works at the level of individual patient data, epidemiology concentrates on 

research questions at the population level6. The essential aim is to inform health professionals and the 

public at large, ultimately improving general health situations. For instance, epidemiologists study 

chronic and long-duration diseases (e.g., asthma) as well as infectious diseases (e.g., cholera) which 

may be derived from the idea of an “epidemic” (i.e., the appearance of a particular disease in a large 

proportion of people in a particular region, community, or population at the same time)6. Since even 

in the developing world, chronic diseases are among the most common causes of death, the 

importance and amount of epidemiological research that focuses on the context of chronic conditions 
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increases. With the constant rise of chronic disease burden over the past decades, epidemiological 

measures continue to become more relevant and popular6. Being two of the fundamental measures, 

the incidence and prevalence of diseases are commonly reported7. The incidence rate refers to the 

number of new cases with a condition of interest within a specified period of time, while the 

prevalence summarises the proportion of existing cases versus the considered population number at 

a particular point in time6,8. Further, projections of measures that quantify disease frequency and 

anticipating future demands play a central role in disease surveillance and management as well as in 

the guidance of future healthcare resources and policies. For this aim, statistical projection models are 

powerful tools but obviously, different models may vary in their outcomes and closeness to reality. In 

the context of chronic disease projections, several methodological approaches have been advocated9. 

Among these statistical techniques, a common approach simply combines the previously estimated 

prevalence of the disease of interest and future population numbers to project case numbers10. This 

method requires little data and statistical knowledge. However, it might be too simplistic to fully 

capture the complex nature of chronic diseases. As an alternative, multistate models, also called 

compartment models, are able to incorporate underlying disease-specific transition rates and have 

proven to more accurately mirror reality10,11. The illness-death model (IDM) is a typical compartment 

model in the epidemiology of chronic diseases that considers the three states healthy, diseased and 

dead and that represents the transition rates from one state to another as continuous-time stochastic 

processes9. The theoretical background of the IDM allows to derive differential equations that relate 

prevalence, incidence and mortality12,13. As there remains considerable debate about the appropriate 

methodological approach for chronic disease projections, this thesis derives, employs and critically 

discusses selected methodologies. By assessing the strengths and limitations of the different 

techniques, this dissertation aims to help researchers to refine estimations of future chronic disease 

burden. As one of the PDE approaches shows particular potential in the context of chronic disease 

epidemiology, this thesis illustrates the method using aggregated and routinely collected data to 

estimate and project epidemiological and economic measures of diabetes in Germany.  

Part II - Time-to-Event Models  

Survival analysis, or more generally time-to-event analysis, refers to a set of statistical procedures for 

analysing the time which elapses until some event occurs. In health care research, the time period and 

the well-defined endpoint of interest could be the diagnosis of a disease, relapse from remission, or 

recovery, as for instance, the time period between a confirmed response versus the first relapse and 

recurrence of cancer, the cessation of breast feeding, the time between fertilization and conception 

or the discharge from hospital after surgical treatment of a distal radius fracture 14,15. Often in medical 

research and as indicated by the term "survival analysis", the endpoint considers the death of a person. 

Such survival or time-to-event outcomes are mostly analysed by the Cox Proportional Hazards (PH) 

model, which is an essentially non-parametric method 16. As a result of the Cox regression model, it is 

common practice to report the hazard ratio (HR), i.e. the ratio of hazard rates in e.g. an exposed versus 

non-exposed group. Conveniently, the estimated HR summarizes the treatment effect over the entire 

length of the trial in a single number whereas other measures such as median survival only compare 

survival time at one point. Recently however, the Cox model and the HR have been criticized for a 

number of reasons. Most relevant points of concern were (i) that the HR must be interpreted 

judiciously and that it is often mistaken as relative risk 17, (ii) its inherent selection bias or left truncation 

bias even in randomized trials 18 and (iii) its non-collapsibility, i.e. conditioning on a covariate that is 

related to the event generally changes the HR, even if this covariate is unrelated to the exposure 19. 

Despite these disadvantages, the Cox model and the HR remain one of the most used statistical models 

and conventional effect measure in time‐to‐event analysis. This gives rise to the question why 

parametric survival models are not preferred over the Cox model, particularly when knowing that in 
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regression models for continuous, binary, nominal, or ordinal outcomes typically rely on parametric 

modelling. Parametric methods have been developed long before the Cox model, they are easier to 

estimate, interpret and communicate 20,21. This thesis addresses this controversy and, as a remedy, 

proposes a new parametric additive hazard model that does not suffer from the disadvantages 

mentioned. The exemplary application using data from a study investigating medical care to lung 

cancer patients shows that the approach works well in practice. 

Part III - Comparison and Benchmark Studies  

In many scientific fields, there are strong incentives to devote to the development of new methods. 

New methods are expected to “improve our world”, be it by simplifying processes or bringing results 

of statistical analyses closer to the truth. For authors, it seems appealing to entail new analytical 

approaches in their research as it is one of the most straightforward ways for a work to be considered 

as novel and innovative, a prerequisite for publication22. Consequently, the development of methods 

is an active area of research in statistics. This situation is a double-edged sword: it provides opportunity 

but at the same time it is a serious challenge as the choice of a method may considerably affect 

results23. With the constant introduction of new algorithms and models, it is becoming increasingly 

difficult to remain informed and to select the most appropriate approach. This problem is addressed 

by comparison and benchmark studies which aim to systematically analyse and compare several 

methods in an unbiased manner23. Using simulated or real data sets and by assessing the methods in 

different conditions, they provide guidance for suitable method choices depending on the respective 

study setting, hypothesis or research question. This dissertation aims to contribute to the 

improvement of research practices and methods by (i) reinforcing the status of neutral comparison 

studies and (ii) contributing to medical research by conducting a comparison of three frequentist 

approaches for the meta-analysis of diagnostic test accuracy (DTA) studies. 

Outline  

Section 2.1 is devoted to statistical projections methods for epidemiological research. It introduces 

and compares different approaches for estimating and projecting common epidemiological measures, 

i.e., the incidence, prevalence and case number of people with a specific disease, as well as disease-

related healthcare expenses. Section 2.2 deals with statistical methods used for time-to-event analysis. 

It critically discusses commonly used approaches as well as the most popular effect measure in that 

field, the HR. Building on this background, the main focus of section 2.2 is to introduce a new 

parametric additive hazard model. Section 2.3 gives a brief introduction to the background and 

relevance of comparison and benchmark studies. Further, the section provides information on three 

recently published frequentist methods for the meta-analysis of DTA studies that are then 

systematically compared in a simulation study. Chapter 3 provides a short overview of the software 

used to implement the statistical models. Further, it specifies whether and how the data and code that 

support the results of the studies can be accessed. Finally, Chapter 4 concludes with a general 

discussion of the main findings and implications.  

Contributing articles  

Each of the sections 2.1, 2.2 and 2.3 encompasses at least one contributing article which has been 

either published in a scientific journal, has been accepted or is currently under review for publication. 

In the latter case, the latest version of the submitted article is included. Alongside the articles, a 

specification of the contributions of all authors involved in creating each of the manuscripts is 

provided.  
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2.1 Epidemiological Projection Methods  

“It is far better to foresee even without certainty than not to foresee at all.“ 24 

(Henri Poincare) 

One of the main purposes of epidemiology is to study the patterns, causes and effects of health and 

disease on population level, as well as to describe the frequency and distribution of a disease in a 

specified population 8. In order to understand the epidemiology of a disease, it is essential to 

continuously and systematically collect, analyse and interpret health data. This ongoing collection of 

information and monitoring of a disease is known as surveillance 8. It is among the main goals of disease 

surveillance systems to determine the need for public health actions, support information-based 

decision making in healthcare, and contribute to planning, implementing and evaluating public health 

practice, policies, prevention activities and disease management programs. Further, epidemiological 

research and disease surveillance aim at informing about temporal changes of a health problem and 

potential future burden caused by the surveyed disease 8.  

In order to reach the goals of epidemiology and disease surveillance, various quantitative measures, 

e.g., incidence, prevalence, disease-related complications and mortality, are estimated and projected. 

Particularly the incidence and prevalence are among the central concepts and are commonly 

encountered in epidemiology 8,25. The prevalence represents the proportion of people in a population 

having a disease 8. By that, this measure of disease status may also function as indicator on the burden 

of a disease in a certain population in terms of monetary costs, quality of life, life expectancy or 

morbidity 25. Such knowledge is often crucial for decision makers to determine where investments in 

health care should be targeted. While the prevalence reflects on the existing cases of a disease, the 

incidence refers to the number of new disease cases within a certain period 25. The incidence rate is an 

important measure for assessing the risk and burden of a disease on the population, for the economy 

and the health sector. Insights on the incidence rate are key for instance for decision making about 

future public health interventions and policies, as well as for planning and evaluating prevention 

activities 8,25. 

Knowing that the proportion of people suffering from chronic diseases is continuously increasing and 

that disease management activities have shown the potential to reduce the risk of acute complications, 

premature mortality and the general suffering caused by chronic diseases, epidemiological research 

and disease surveillance are of utmost importance in the context of chronic diseases 26,27. Though, 

effective responses to any chronic disease require accurate estimates of current and future chronic 

disease burden to tailor healthcare activities. Consequently, projections of epidemiological measures 

are central for planning and anticipating future need of health care resources, for evaluating 

prevention activities as well as for identifying potential risk factors or high-risk groups 11,28. However, 

in order to be of use, information from disease surveillance must be representative, timely and 

efficient. This can be achieved by using mathematical models and the best available, i.e., most 

representative, comprehensive and up-to-date, data allowing to compile reasonable projections under 

certain assumptions 11,28. Thereby, statistical projection models can be valuable tools to speculate on 

future distribution of diseased and non-diseased. 

With regards to statistical projection methods of chronic diseases, there remains considerable debate 

about methodological approaches. Obviously, different models may vary in their assumptions, 

outcomes and closeness to reality 28. Further, projection methods are inherently limited by the 

availability of epidemiological and demographic data. In the context of projecting chronic disease case 
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numbers, one ‘status quo approach’ is most often used which relies on a simple application of the 

observed prevalence from a base year to population projections 29-31. Precisely, the age- and sex-

specific prevalence 𝑝(𝑡, 𝑎) at time 𝑡 can be obtained from  

𝑝(𝑡, 𝑎) =
𝐼(𝑡, 𝑎)

𝐻(𝑡, 𝑎) + 𝐼(𝑡, 𝑎)
 

 

(1) 

Where 𝐼(𝑡, 𝑎) and 𝐻(𝑡, 𝑎) denote the number of people with and without a disease, respectively. To 

project the number of age- and sex-specific future cases 𝐼(𝑡, 𝑎), the estimated prevalence �̂�(𝑡, 𝑎) is 

then applied to the age-, sex- and time-dependent future population number 𝑁(𝑡, 𝑎) as in 

𝐼(𝑡, 𝑎) =  �̂�(𝑡, 𝑎) × 𝑁(𝑡, 𝑎) 
 

(2) 

Other epidemiological factors, such as the incidence, are only incorporated implicitly in the prevalence. 

However, this method disregards the fact that prevalence is a consequence of incidence and mortality 

and ignores any other epidemiological determinant. Hence, it is questionable whether this method is 

able to accurately mirror reality. Vice versa, statistical methods that reflect on underlying disease-

specific transition rates, i.e., incidence and mortality, may better mirror the complex nature of chronic 

diseases. Therefore, some (more advanced) studies rely on multistate models that relate disease-

specific transition rates. These include for instance time-discrete Markov models 11,28, Poisson 

regression to model disease-specific transition rates 32,33 or  differential equations 12,13,34.  

Overall, further developing and spreading the knowledge about accurate projection methods is 

essential to counteract the ever-worsening chronic disease situation. For that aim, the part on 

epidemiological projection models is structured as follows: Section 2.1.1 introduces the theoretical 

background of multistate models and specifically, the illness-death model (IDM) as one popular 

example of multistate models in epidemiology. Section 2.1.2 focuses on the projection of case numbers 

via a set of two partial differential equations (PDE). Section 2.1.3 relates the prevalence, incidence and 

mortality of a chronic disease in a single PDE. The purpose of Section 2.1.4 is to give a practical example 

of how to model the future epidemiological and economic burden of diabetes mellitus in Germany. 

The overall section 2.1 serves as basis for the first three contributing articles which are all devoted to 

projections of the current and future burden of type 1 and type 2 diabetes (T1D, T2D) in terms of case 

numbers, prevalence, incidence and a variety of healthcare cost measures.  

2.1.1 The Illness-Death Model  
Most generally, a multistate model represents a stochastic process 𝑋(𝑡) with a set of two or more 

discrete and disjunct states which determines the state space 𝑆. Depending on the context, multistate 

models are also referred to as compartment or state models. It is assumed that all individuals of a 

population are in one of the states. As implied by the function of 𝑡, multistate models are dynamic in 

the way that the number of individuals in each compartment may fluctuate in the course of time. The 

progression from one state to another is described by probabilities to occupy one of the different 

states and the intensities for the transitions.  

Multistate models are most often built around deterministic differential equations 9. Such 

deterministic models produce consistent outcomes for a given set of inputs, i.e., each problem belongs 

to one set of specified values and only one solution. Its mathematical characteristics are known, none 

of them is random and from deterministic perspective, there is no allowance of error. Deterministic 

models have the advantage of being both, relatively easy in terms of implementation and conceptually 

simple. However, they lack stochasticity which may be a relevant feature in the context of modelling 

of chronic conditions. In contrast to deterministic models, stochastic methods are able to incorporate 

this random element at some level by integrating unknown components into the model. Essentially, 



23 
 

compartment models can also be used with a stochastic (random) framework 9,35,36. In some cases, 

representing disease onset or disease-related mortality in a human population may be more 

realistically represented by a stochastic process that comprises a certain level of randomness 35. In that 

view, a stochastic framework may sometimes be more suitable and more realistic for epidemiological 

modelling, although it may be more complex to analyse. 

Compartmental models are a general modelling technique and nowadays, a common tool for 

mathematical modelling of infectious and chronic diseases. For example, they are valuable statistical 

tools for predicting how a disease spreads within a certain population, for estimating or projecting the 

total number of diseased, to model the duration of an epidemic or pandemic, or to computing various 

other epidemiological measures such as the incidence, reproduction number or years of life lost (YLL) 

as a measure of premature mortality. The origin of such models dates back a long time to the early 

20th century where they have first appeared in the context of infectious diseases in pioneering works 

of Ross (1916) 37, Ross and Hudson (1917) 38, Kermack and McKendrick (1927) 39 and Kendall (1956) 40. 

In chronic disease epidemiology, compartment models have appeared later and gained more attention 

since the 1950th 41.  In epidemiology, a well-known compartment model is the competing risks model 

(Figure 1)42. Most generally, competing risks are events which preclude the occurrence of a primary 

event or outcome of interest or modify the risk of the considered outcome43,44. In medical context, one 

common example of competing risks may refer to disease relapse and death in remission43,44. For 

instance, a competing risks model may consider different causes of death, and the final state “death” 

is divided into two or more states (see Figure 1)42. Two special cases of the competing risk model that 

are commonly applied in epidemiology, are the susceptible-infected-removed model (SIR model) 

(Figure 2) and the IDM (Figure 3). The SIR model originates in infectious disease modelling. In this work, 

the focus is on the IDM (Figure 3) as it has been proven valuable in reflecting on the complex interplay 

of three basic epidemiological parameters, namely, the incidence, prevalence and mortality of a 

chronic disease 13,35. 

 

Figure 1: Exemplary competing risk model. The model consists one state “Alive” (A) and three states “Dead” that represent 
different causes of death (D1, D2, D3). 
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Figure 2: SIR model. The state S denotes the number of susceptibles, i.e., individuals that may infect with a specific disease. 
State I represents the number of infectives which may transmit the disease to other susceptibles. State R refers to the 

number of recovered people who return back to state S, who remain in state R with immunity or who died. 

 

Figure 3: Illness-Death-Model of a chronic disease. All people in a population are assumed to be in one of the three states: 
Healthy, Diseased, or Dead. H(t,a) and I(t,a) denote the number of people without and with the disease of interest, 
respectively. It is assumed that at birth, all people start in the healthy state. Depending on time t and age a of each 

respective person, they will then transition to another state which is described by the incidence IR, the mortality of the non-
diseased m0, and the mortality of the diseased m1. 

The IDM is a multistate model that represents a Markov process in continuous time {𝑋𝑡; 0 ≤ 𝑡 < ∞}. 

In the context of chronic diseases, the IDM can be restricted to modelling three states, i.e., a state 

space 𝑆 = {1, 2, 3}, as depicted by the IDM (Figure 3). More specifically, it consists of the three states 

"Healthy" (with regards to the chronic disease of interest), “Ill” and “Dead” and it is assumed that each 

individual of a population is in one of the relevant disease states. Therein, 𝐻(𝑡, 𝑎)  depicts the number 

of non-diseased aged 𝑎 at time 𝑡, the disease state "Ill" comprises the number of ill people depicted 

by 𝐼(𝑡, 𝑎) and the death state indicating the number of deaths. It is assumed that at birth all individuals 

begin in the healthy state. From there on, they can either be diagnosed with a chronic disease and 

then die at some point in time, or they can transition directly to death state (without ever contracting 

the disease under consideration). The arrows in Figure 3 indicate the possible progressions between 

the states. These are modelled by transition rates which are all functions of calendar time 𝑡 and age 𝑎. 

The transition rates are given by the incidence rate 𝐼𝑅(𝑡, 𝑎) the mortality of the non-diseased 𝑚0(𝑡, 𝑎) 

and the mortality of diseased people 𝑚1(𝑡, 𝑎). Reflecting on chronic conditions, there is no remission 

from the diseased back to the healthy state. 

2.1.2 Projecting Case Numbers via a Two-Dimensional Set of Partial Differential Equations 
Building upon the theoretical background of the IDM and assuming its transition rates as constant in 

the short term (e.g., for the time period of a year) 45, Murray et al. 45-47 showed that the relation 

between prevalence, incidence and mortality can be expressed in terms of a set of ordinary differential 

equations (ODEs) 13. An ODE is a differential equation dependent on only one single independent 

variable 48, which is, in the framework of Murray et al. 46,47, age 𝑎. Hence, the age variable 𝑎 describes 

the (only) temporal progression. In the so-called incidence-prevalence model, Murray et al. 46,47 

describe the evolution of the susceptible, i.e., healthy, population and infected or ill subpopulations. 

A system similar to the one presented by Murray et al. 46,47 is given by  
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d𝐻

d𝑎
= −[𝐼𝑅(𝑎) +  𝑚0(𝑎)]  ×  𝐻(𝑎) 

 

(3) 

d𝐼

d𝑎
= 𝐼𝑅(𝑎) × 𝐻(𝑎) − 𝑚1(𝑎) × 𝐼(𝑎) 

 

(4) 

where 
d𝐻

d𝑎
 and 

d𝐼

d𝑎
 denote the change in the number of people without and with the disease under 

consideration, respectively. 𝐼𝑅(𝑎) denotes the incidence rate, while 𝑚0(𝑎) and 𝑚1(𝑎) represent the 

mortality rate of the non-diseased and diseased, which are all dependent on age 𝑎. The set of ODEs 

presented in (3) and (4) is linear and of first order 49. It assumes time-homogeneity, i.e., time 

dependence only with regards to temporal changes of age 𝑎, and that the transition rates (i.e., the 

incidence 𝐼𝑅(𝑎)  and mortality rates 𝑚0(𝑎) and 𝑚1(𝑎)) are non-negative and sufficiently smooth 7,49. 

The system of ODEs implies that the population is stationary and closed (i.e., no migration for instance), 

and that the birth rate is constant. The age-specific prevalence 𝑝(𝑎) is defined as  

𝑝(𝑎) ∶=
𝐼(𝑎)

𝐼(𝑎) + 𝐻(𝑎)
. 

 

(5) 

The analytical solution of the corresponding initial value problem with initial conditions 𝐻(0) = 𝐻0 ≥

0, 𝐼(0) = 𝐼0 ≥ 0 and 𝐻0 + 𝐼0 > 0 can be formulated as in 49 

𝐻(𝑎) = 𝐻𝑜 × exp (− ∫ 𝐼𝑅(𝜏) +
𝑎

0

𝑚0(𝜏)𝑑𝜏) 
(6) 

𝐼(𝑎) = exp (− ∫ 𝑚1(𝜏)𝑑𝑡
𝑎

0

) × (𝐼𝑜 + ∫ 𝐼𝑅(𝜏)𝐻(𝜏) exp (∫ 𝑚1(𝑡)𝑑𝑡𝑑𝜏
𝜏

0

)
𝑎

0

) 

 

(7) 

In reality however, the assumption of time-homogeneity is doubtworthy, and the dynamics of the IDM 
are more likely to depend on multiple time scales, such as age, calendar time and duration of a disease 
13. Apart from the age 𝑎, disease rates commonly also depend on the calendar time 𝑡. For instance, 
disease patterns of asthma and chronic obstructive pulmonary disease (e.g. in terms of prevalence and  
symptoms) were found to vary by season50. The dependence of the parameters on the two time scales 
of age 𝑎 and calendar time 𝑡 in the IDM can be illustrated in a Lexis diagram (Figure 4).  
 

 
Figure 4: Lexis diagram of birth, onset of disease and death: birth •, healthy - - - -, diseased -------, death |. Each line in the 

diagram represents the lifeline of one individual.  

The lines depicted in the Lexis diagram represent the life course of individuals along the two time scales 
35. The end of such a life line indicates the point in time where the respective individual has left the 
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population under consideration, e.g., due to death or emigration 35. As age 𝑎 and calendar time 𝑡 grow 
at the same pace, all life lines have a slope equal to 1. Assuming that the transition rates depend on 
more than one time scale, i.e., they are affected by changes in age 𝑎 and calendar time 𝑡, Brunet et al. 
51 have shown that and (3) and (4) can be rewritten as a two-dimensional system of PDEs 12,13,51. In 
contrast to the ODEs defined above, a PDE is defined as equation that depends on partial derivatives 
of a multivariable function, i.e., one with two or more independent variables 48. The rates 
𝑚0(𝑡, 𝑎), 𝑚1(𝑡, 𝑎) and 𝐼𝑅(𝑡, 𝑎) henceforth depend on age 𝑎 and calendar time 𝑡. The following system 
of PDEs describes the population flows of the IDM in the context of chronic diseases at any time 𝑡 and 
age 𝑎: 

𝜕𝐻(𝑡, 𝑎) = −[𝐼𝑅(𝑡, 𝑎) +  𝑚0(𝑡, 𝑎)]  ×  𝐻(𝑡, 𝑎) 
 

(8) 

𝜕𝐼(𝑡, 𝑎) =  𝐼𝑅(𝑡, 𝑎) × 𝐻(𝑡, 𝑎) −  𝑚1(𝑡, 𝑎) ×  𝐼(𝑡, 𝑎). 
 

(9) 

𝜕𝐻(𝑡, 𝑎) indicates age-, sex- and time-specific changes in the number of people without the disease of 

interest, while 𝜕𝐼(𝑡, 𝑎) represents changes in the number of diseased. Equations (8) and (9) are now 

classified as PDEs, as they govern partial derivatives with respect to the two variables age 𝑎 and 

calendar time 𝑡, instead of only one variable. As such, they describe the temporal changes of the 

number of diseased and non-diseased along the life lines in the Lexis diagram.  

In epidemiology, it is typically the case that 𝑚0(𝑡, 𝑎) and/or 𝑚1(𝑡, 𝑎) are unknown 49. However, the 

general mortality rate 𝑚(𝑡, 𝑎) of the overall population of interest (i.e., a convex combination of the 

mortality of diseased and non-diseased) is commonly observed and reported in life tables. As a 

remedy, it has been shown mathematically equivalent to incorporate the general mortality 𝑚(𝑡, 𝑎) 

and the mortality rate ratio (MRR), that is, the ratio of the mortality rates of people with versus without 

the disease under consideration (𝑀𝑅𝑅(𝑡, 𝑎) =  
𝑚1(𝑡,𝑎) 

𝑚0(𝑡,𝑎) 
) 34.  

The general mortality can be computed from 

𝑚(𝑡, 𝑎) = 𝑝(𝑡, 𝑎) × 𝑚1(𝑡, 𝑎) + (1 − 𝑝(𝑡, 𝑎)) × 𝑚0(𝑡, 𝑎) 
 

(10) 

= 𝑚0(t, a) × [𝑝 × 𝑀𝑅𝑅 − 1) + 1]. 
 

(11) 

Implementing the prevalence 𝑝(𝑡, 𝑎), the general mortality (𝑚𝑡, 𝑎) and the 𝑀𝑅𝑅(𝑡, 𝑎) in 

𝑚0(𝑡, 𝑎) =  
𝑚(𝑡, 𝑎)

(1 + 𝑝(𝑡, 𝑎) × (𝑀𝑅𝑅(𝑡, 𝑎) − 1))
 

(12) 

  

and  

𝑚1(𝑡, 𝑎) = 𝑚0(𝑡, 𝑎) × 𝑀𝑅𝑅(𝑡, 𝑎) 
 

(13) 

it is possible to derive 𝑚0(𝑡, 𝑎) and 𝑚1(𝑡, 𝑎). The estimates of the two mortality rates can then be 

used as input data to apply the two-dimensional set of PDEs shown in (8) and (9). 

To derive and project the number of cases of a chronic disease via the two-dimensional set of PDE 

shown in Equation (8) and (9) in a practical example, the proposed approach requires disease-specific 

and demographic input data. The method relies on input values on the age- and sex-specific 

prevalence, the age- and sex-specific MRR and the age- and sex-specific general mortality for a base 

year. Aggregated data are sufficient. The latter are used to estimate the mortality of the non-diseased 

and the mortality of diseased people. Further, if in a projection it is of interest to model temporal 

trends in the incidence and/or mortality rate, this would require additional information on the rate 



27 
 

development over time. Projection results would be independent from future population estimates 

beyond the year used to determine initial values of 𝑚0(𝑡, 𝑎) and 𝑚1(𝑡, 𝑎).  

2.1.3 Relating Prevalence, Incidence and Mortality in a Single Partial Differential Equation  
In epidemiology, the prevalence is a fundamental measure to quantify disease frequency. Defined as 

the proportion of a specified population found to be affected by a (medical) condition at a certain point 

or period of time, it is often the preferred measure over absolute case numbers. Consequently, it is of 

interest and of great practical value to express (8) and (9) in terms of the age-specific prevalence 

instead of explicitly modelling the numbers of diseased and non-diseased. In 1999, and building upon 

the theoretical framework of the IDM in the context of chronic conditions, Brunet et al. 51 were among 

the first to present a differential equation that describes the relation of the prevalence odds and the 

incidence and mortality rates of the chronic disease under consideration. Their approach has been 

generalised, extended and reformulated, for instance to the context of infectious disease 

epidemiology, to allow for modelling remission rates or migration 7,9,13. The following section shows 

how to derive the age-specific prevalence as solution of a PDE. For that means, it is possible to relate 

the theory of stochastic processes and (deterministic) differential equations 9.  

 

Figure 5: Theoretical Illness-Death Model expressed as Markov chain in continuous time. The boxes represent the states and 
the arrows depict possible transitions from one state into another. 

Precisely, to derive the formulation of the prevalence in terms of a PDE, the IDM from Figure 3 is now 

considered in a more theoretical setting and expressed as Markov chain in continuous time {𝑋𝑡; 0 ≤

𝑡 < ∞} (see Figure 5). This continuous-time stochastic process consists of a mathematical system that 

describes a sequence of possible transitions from one state into another in which the probability of 

each event depends only on the state attained in the previous period. In the context of chronic diseases 

and the IDM (Figure 3), the system is restricted to three states, i.e., a state space 𝑆 = {1, 2, 3}. States 

are changed according to the probabilities of a stochastic matrix 𝑄(𝑡) ∶= (𝑞𝑗𝑘(𝑡))𝑗,𝑘∈𝑆 ≥ 0. The arrows 

in Figure 5 indicate the possible transitions from one state into another. The rate matrix, also-called 

intensity matrix, 𝑄(𝑡) comprises the rates or intensity functions 𝑞𝑗𝑘(𝑡) which denote the transitions 

from state 𝑗 to a subsequent state 𝑘 where 𝑗, 𝑘𝜖𝑆, 𝑗 ≠ 𝑘. Generally, the terms intensity and rate are 

used synonymously. The concrete associated intensity matrix to the current setting is  

𝑄(𝑡) =  [

𝑞00 𝑞01 𝑞02

𝑞10 𝑞11 𝑞12

𝑞20 𝑞21 𝑞22

] = [
−(𝑞01 + 𝑞02) 𝑞01 𝑞02

0 −𝑞12 𝑞12

0 0 0

] 

 

(14) 

with 𝑞10 = 𝑞20 = 𝑞21 = 𝑞22 = 0. With regards to the rates,  

∑ 𝑞𝑗𝑘(𝑡) = 0

𝑘

 (15) 

which implies that  
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𝑞𝑗𝑗(𝑡) = − ∑ 𝑞𝑗𝑘(𝑡)

𝑗≠𝑘

     ∀𝑗 ∈ 𝑆. 

 

(16) 

The elements 𝑞𝑗𝑘  are non-negative for 𝑗 ≠ 𝑘. Rates are chosen such that each row of the intensity 

matrix 𝑄(𝑡) sum to zero. As usual in the theory of Markov models, the process is assumed time 

homogeneous, i.e., transition probabilities 𝑃𝑗𝑘(𝑠, 𝑡) are independent of 𝑡. For an individual in state 𝑗 

at time 𝑠 which transitions to state 𝑘 at time 𝑡 with 𝑗, 𝑘 ∈ 𝑆 and 0 ≤ 𝑠 < 𝑡 < ∞, the transition 

probabilities 𝑃𝑗𝑘(𝑠, 𝑡) equal 

𝑃𝑗𝑘(𝑠, 𝑡) = 𝑃(𝑋𝑡 = 𝑘 | 𝑋𝑠 = 𝑗). 

 

(17) 

Using Kolmogorow’s forward differential equations to define the temporal change of the probability 

that a continuous-time Markov process is in a certain state, the transition probabilities are given by   

d

d𝑡
𝑃𝑗𝑘(𝑠, 𝑡) = ∑ 𝑃𝑗𝑘(𝑠, 𝑡) × 𝑞𝑗𝑘 .

𝑘

 

 

(18) 

With (18) and for the present context, all relevant probabilities and their corresponding solutions can 

be defined as in the following ODEs: 

d

d𝑡
𝑃00(𝑠, 𝑡) 

= −(𝑞01(𝑡) + 𝑞02(𝑡)) × 𝑃00(𝑠, 𝑡) (19) 

𝑃00(𝑠, 𝑡) 
= exp (− ∫ 𝑞01(𝑢) + 𝑞21(𝑢)𝑑𝑢

𝑡

𝑠

) 

 

(20) 

d

d𝑡
𝑃11(𝑠, 𝑡) = −𝑞12(𝑡) × 𝑃11(𝑠, 𝑡) 

(21) 

𝑃11(𝑠, 𝑡) 
=  𝑒xp (− ∫ 𝑞12(𝑢)𝑑𝑢

𝑡

𝑠

) 

 

(22) 

d

d𝑡
𝑃12(𝑠, 𝑡) = 𝑞12(𝑡) × 𝑃11(𝑠, 𝑡) 

(23) 

   
𝑃12(𝑠, 𝑡) = 1 −  𝑃11(𝑠, 𝑡) (24) 

   
 

= 1 −  𝑒xp (− ∫ 𝑞12(𝑢)𝑑𝑢
𝑡

𝑠

) 

 

(25) 

d

d𝑡
𝑃01(𝑠, 𝑡) = 𝑞01(𝑡) × 𝑃00(𝑠, 𝑡) − 𝑞12(𝑡) × 𝑃01(𝑠, 𝑡) 

(26) 

 

𝑃01(𝑠, 𝑡) =  exp (− ∫ 𝑞12(𝑢)𝑑𝑢
𝑡

𝑠

) ∫ 𝑞01(𝑢) × 𝑃00(𝑠, 𝑢)𝑑𝑢 ×
𝑡

𝑠

exp (∫ 𝑞12(𝑣)𝑑𝑣
𝑢

𝑠

) 𝑑𝑢 
(27) 

 
= ∫ 𝑃00(𝑠, 𝑢)

𝑡

𝑠

× 𝑞01(𝑢) × exp (∫ 𝑞12(𝑣)𝑑𝑣
𝑡

𝑢

) 𝑑𝑢 
(28) 

 
= ∫ 𝑃00(𝑠, 𝑢)

𝑡

𝑠

× 𝑞01(𝑢) × 𝑃11(𝑢, 𝑡)𝑑𝑢 

 

(29) 

d

d𝑡
𝑃02(𝑠, 𝑡) 

= 𝑞02(𝑡) × 𝑃00(𝑠, 𝑡) + 𝑞12(𝑡) × 𝑃01(𝑠, 𝑡) (30) 
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𝑃02(𝑠, 𝑡) =  1 − 𝑃00(𝑠, 𝑡) − 𝑃01(𝑠, 𝑡). 
 

(31) 

The probabilities 𝑃00 and 𝑃01 are unique solutions with initial conditions 𝑃00(𝑠, 𝑠) = 1 and  𝑃01(𝑠, 𝑠) =

0. Shown by Yang 52 and Brinks et al. 9, the prevalence 𝑝(𝑡) at time 𝑡 ≥ 0, the intensity functions 𝑞𝑗𝑘  

and transition probabilities 𝑃𝑗𝑘(𝑠, 𝑡) can be related as in  

𝑝(𝑡) =
𝑃01(0, 𝑡)

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
. 

 

(32) 

𝑝(𝑡) is mathematically well-defined as it holds that 𝑃00(0, 𝑡) + 𝑃01(0, 𝑡) > 0 for all 𝑡 ≥ 0. Since 

𝑃01(0, 𝑡) = 0 it follows that 𝑝(𝑡) = 0 and 𝑃01(0, 𝑡) > 0 implies that 𝑝(𝑡) =
1

1+
𝑃00(0,𝑡)

𝑃01(0,𝑡)

 where 
𝑃00(0,𝑡)

𝑃01(0,𝑡)
≥

0. Thus, 𝑝(𝑡) ∈ [0,1] for all 𝑡 ≥ 0. Further, (32) can be rearranged to  

1 − 𝑝(𝑡) =
𝑃00(0, 𝑡)

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
. 

 

(33) 

The temporal change of the prevalence with initial condition 𝑝(0) = 0 is given by 

d

d𝑡
𝑝(𝑡) =

d
d𝑡

𝑃01(0, 𝑡)[𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)] − 𝑃01(0, 𝑡)
d
d𝑡

[𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)]

[𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)]2
 

 

(34) 

This equation can be reformulated using Equation (32) and (33) as 

d

d𝑡
𝑝(𝑡) =

(1 − 𝑝(𝑡))
d
d𝑡

𝑃01(0, 𝑡) − 𝑝(𝑡)
d
d𝑡

𝑃00(0, 𝑡)

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
 

 

(35) 

 

=

d
d𝑡

𝑃01(0, 𝑡) − 𝑝(𝑡) [
d
d𝑡

𝑃00(0, 𝑡) +
d
d𝑡

𝑃01(0, 𝑡)]

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
. 

 

(36) 

Using Equation (20) and (29), we get 

d

d𝑡
𝑝(𝑡)

=
(𝑞

01
(0, 𝑡)𝑃00(0, 𝑡) + 𝑞

11
(0, 𝑡)𝑃01(0, 𝑡))  − 𝑝(𝑡)[𝑃00(0, 𝑡){𝑞

00
(0, 𝑡) + 𝑞

01
(0, 𝑡)} + 𝑃01(0, 𝑡){𝑞

10
(0, 𝑡) + 𝑞

11
(0, 𝑡)]

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
 

 (37) 
 

=
(1 − 𝑝(𝑡))𝑃00(0, 𝑡)𝑞00(0, 𝑡) + (1 − 𝑝(𝑡))𝑃01(0, 𝑡)𝑞11(0, 𝑡) − 𝑝(𝑡)(𝑃00(0, 𝑡)𝑞00(0, 𝑡) + 𝑃01(0, 𝑡)𝑞10(0, 𝑡))

𝑃00(0, 𝑡) + 𝑃01(0, 𝑡)
 

 (38) 
= (1 − 𝑝(𝑡))2𝑞01(0, 𝑡) + 𝑝(𝑡)(1 − 𝑝(𝑡))[𝑞11(0, 𝑡) − 𝑞00(0, 𝑡)] − 𝑝(𝑡)2𝑞10(0, 𝑡) 
 

(39) 

which can be rearranged using the properties 𝑞11(0, 𝑡) = −𝑞10(0, 𝑡) − 𝑞12(0, 𝑡) and 

𝑞00(0, 𝑡) = −𝑞01(0, 𝑡) − 𝑞02(0, 𝑡) to 

= (1 − 𝑝(𝑡))2𝑞01(0, 𝑡) + 𝑝(𝑡)(1 − 𝑝(𝑡))[−𝑞10(0, 𝑡) − 𝑞12(0, 𝑡) + 𝑞01(0, 𝑡)+𝑞02(0, 𝑡)] − 𝑝(𝑡)2𝑞10(0, 𝑡) 

 (40) 
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such that finally the temporal change in the prevalence can be defined as 

= (1 − 𝑝(𝑡))𝑞01(0, 𝑡) − 𝑝(𝑡)𝑞10(0, 𝑡) − 𝑝(𝑡)(1 − 𝑝(𝑡))[𝑞12(0, 𝑡) − 𝑞02(0, 𝑡)]. 
 

(41) 

For the context under consideration (see Figure 5), it is known that 𝑞10(0, 𝑡) = 0, and thus (41) can be 

simplified to  

d

d𝑡
𝑝(𝑡) = (1 − 𝑝(𝑡))𝑞01(0, 𝑡) − 𝑝(𝑡)(1 − 𝑝(𝑡))[𝑞12(0, 𝑡) − 𝑞02(0, 𝑡)]. 

 

(42) 

Overall, this shows that the temporal change of the prevalence can be found as solution of the 

Kolmogorov equations (20) and (29). As discussed by Brinks et al. 9, the theory of ODEs proves that 

there exists a unique function to equation (42) that fulfils the initial condition 𝑝(0) = 0.  

In the epidemiological context of chronic diseases and considering the IDM (Figure 3), Equation (42) 

can be rewritten to a more intuitive formulation. Henceforth, the parameter 𝑡 is interpreted as time 

and the states 𝑆 = {1, 2, 3} denote the conditions “Healthy”, “Ill” and “Dead”. As discussed in section 

2.1.2, it is more realistic to reflect on more than one time-scale. Consequently, in a practice, all states 

and transitions are considered as sex-specific functions of age 𝑎 and calendar time 𝑡. The time scales 

of age 𝑎 and calendar time 𝑡 will however be omitted in the following equations for the purpose of 

better readability. It is assumed that all individuals begin in the healthy state at birth, hence, the initial 

conditions 𝑃00(𝑠, 𝑠) = 1 and  𝑃01(𝑠, 𝑠) = 0 are met. Thereafter, they can either be diagnosed with a 

chronic disease and die at a certain point of time, or they die without the disease of interest. Since 

death is considered the final state, it holds that 𝑃22(𝑠, 𝑠) = 1. Modelling a chronic disease with no 

remission, the process is irreversible which implies that 𝑃𝑗𝑘(𝑠, 𝑡) = 0 for 𝑗 > 𝑘. Referring to the 

notation introduced in sections 2.1.1 and 2.1.2, 𝐻(𝑡, 𝑎) represents the number of healthy people, i.e., 

those without a specific disease in state “Healthy”, and 𝐼(𝑡, 𝑎) represents the number of ill people, i.e., 

those in state “Ill”, who have contracted the disease of interest. The transitions between the states are 

given by 𝑚0(𝑡, 𝑎) and 𝑚1(𝑡, 𝑎), that is, the mortality of the non-diseased and diseased, respectively, 

and the incidence rate 𝐼𝑅(𝑡, 𝑎). In this setting, the age- and time-specific prevalence is defined as 

𝑝 =
𝐼

𝐼 + 𝐻
. 

 

(43) 

Since the states and rates depend on two time scales, the ODE defined in (42) becomes a PDE to 

express the change in the prevalence over time: 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑝 = (1 − 𝑝) × [𝐼𝑅 − 𝑝(𝑚1 − 𝑚0)]. 

 

(44) 

As discussed, for the majority of diseases, the mortality of people without a disease of interest 𝑚0 is 

commonly unknown. However, it is possible to incorporate the general mortality 𝑚(𝑡, 𝑎) as defined in 

(10) and the MRR, defined as mortality ratio of the diseased versus non-diseased. In that case, (44) can 

be reformulated to 

(
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑝 = (1 − 𝑝) × [𝐼𝑅 −

𝑝 × (𝑀𝑅𝑅 − 1) × 𝑚

𝑝 × (𝑀𝑅𝑅 − 1) + 1)
]. 

(45) 

Integration of the PDE shown in (45) yields the estimated age-, sex- and calendar time-specific 

prevalence �̂�(𝑡, 𝑎).  

Practical application requires disease-specific and demographic input data. Precisely, the PDE 

presented in this section relies on sex-, age- and calendar time-specific information on mortality, 
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prevalence, and incidence rates as well as input information on the population structure, i.e., sex-, age- 

and calendar time-specific population numbers. The PDE reflects on the complex interplay of the 

incidence and mortality rates, and thus, in a projection allows for incorporating temporal trends of 

these rates. Consequently, if the latter is of interest, it is necessary to provide information on the 

temporal development of the incidence and/or mortality.  

The PDE is flexible enough to allow for possible extensions, other areas of application and 

reformulations that may be valuable for epidemiological research. With regards to potential 

extensions of the PDE, it is possible, for example, to include the duration of the disease 12, to transfer 

the PDE to a context of reversible diseases and model remission from a disease 9, or including a phase 

of undetected disease preceding the diagnosed stage 53. Alternatively to estimating the prevalence, it 

may be of interest to estimate and/or project case numbers of a disease as discussed in Section 2.1.2 

and shown in contribution 1. This can be achieved by firstly estimating the prevalence using the PDE. 

In a second step, the estimated prevalence is multiplied with the population counts which yields the 

number of people with a disease (e.g., diabetes or dementia) in the respective population 13,34,54. 

Another area of application might be to reformulate the PDE and express it in terms of the incidence 

(see contribution 1 and 2). In epidemiology, it is typically more complicated to compute incidence of a 

disease compared to calculating the prevalence. The PDE offers a valuable and efficient approach for 

that purpose. Using information on the age-specific prevalence for two points in time, the general 

mortality of the population, as well as information on the MRR of the populations with and without 

the disease, it is possible to estimate the age- and sex-specific incidence of a chronic disease using the 

following equation:  

𝐼𝑅(𝑎, 𝑡) = (
𝜕

𝜕𝑡
+

𝜕

𝜕𝑎
) 𝑝(𝑎, 𝑡) + 𝑀𝑅𝑅(𝑎, 𝑡)  ×

𝑝(𝑎, 𝑡) × (𝑚(𝑎, 𝑡) − 1)

𝑝(𝑎, 𝑡) × 𝑚(𝑎, 𝑡) + (1 − 𝑝(𝑎, 𝑡))
 

 

(46) 

For practical application see e.g. contribution 2 or Hoyer et al. 55, who estimated the age-, sex-, and 

race/ethnicity-specific incidence of diabetes. Another application domain would be to estimate the 

relative mortality of a chronic disease. As discussed by Brinks et al. 9 and Egeberg et al. 56, this may be 

valuable in cases where information on the prevalence and incidence of the disease are registered but 

not followed-up for mortality. Furthermore, in view of the considerable increase in the number of 

people with chronic conditions and its associated costs, another context of application would be to use 

the PDE for estimating and projecting cost of illness information (see contribution 3). Cost of illness 

estimates are relevant from economic, medical and political point of view, and are necessary for 

effective healthcare management, resource planning, meeting future medical needs and evaluating 

measures for prevention and intervention 11,26. In combination with healthcare cost data, the PDE 

allows to project age- and sex-specific healthcare expenses of chronic diseases considering future 

demographic, disease-specific and cost trends. To achieve this, per capita healthcare cost data are 

combined together with the demographic structure of the population under consideration, the disease 

prevalence, incidence and mortality. As a result, direct per capita costs, total annual costs, cost ratios 

for diseased versus non-diseased and attributable costs can be estimated and projected to the future. 

The proposed method is able to reflect on temporal trends in epidemiological, demographic and cost 

dynamics simultaneously. At the same time, the approach remains transparent, clear and 

understandable in its application. Further, the statistical method can be easily applied to other 

countries and chronic diseases and are flexible enough to anticipate impacts of alternative policy 

scenarios. 

2.1.4 Future Epidemiological and Economic Burden of Diabetes Mellitus in Germany 
For illustration purposes, the following section shows the practical application of the approaches 

presented in Section 2.1.2 and 2.1.3. First, this chapter provides background information on the global 
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diabetes epidemic, in order to illustrate the public health relevance of the disease and the resulting 

need for diabetes surveillance. Following, Section 2.1.4 briefly describes the employment of the 

statistical methods to quantify current and future epidemiological and economic measures in the 

context of the chronic disease diabetes in Germany.  

Worldwide, diabetes mellitus is one of the most common chronic diseases, and hence, is a disease with 

high public health relevance 57-59. In 2021, the global diabetes prevalence was estimated 10.5% among 

adults (20-79 years), i.e. 537 million people, and caused healthcare costs of at least $966 billion 60. 

Most generally, diabetes refers to a disorder of carbohydrate metabolism 58. As such, it comprises a 

group of diseases that are characterised by impaired ability of the body to produce or respond to 

insulin which in turn manifests in an incapability of the body to maintain proper levels of sugar, i.e., 

glucose, in the blood 58. Therefore, the disease requires a structured self-management plan, 

monitoring blood glucose level, physical activity, diet and daily insulin treatment 57,58. The increasing 

proportion of people suffering from diabetes is peculiarly worrying as the condition constrains 

activities of daily living, necessitates ongoing medical attention and hence, causes remarkably higher 

costs and healthcare expenses. Besides severe late complications, the disease is associated with 

considerably higher mortality and is estimated to lead to 1.5 to 4.4 times higher health-care costs 

compared to people without diabetes 26. Diabetes has many subclassifications, including for instance 

T1D, T2D, maturity-onset diabetes of the young (MODY), gestational diabetes, neonatal diabetes or 

late onset (or latent) autoimmune diabetes in adults (LADA). Overall, diabetes is considered a chronic 

condition, with the exception of prediabetes and gestational diabetes which are potentially reversible 

diabetes conditions 58.  

T1D and T2D are the major subtypes of the disease, however, the onset, pathogenesis and symptoms 

of T1D and T2D are considerably different 58,61. Therefore, each type has its own risk factors, 

pathophysiology, presentations, aetiologies, and treatments. T1D usually arises in children and young 

adolescents, thus sometimes referred to as juvenile-onset diabetes 62. Vice versa, T2D usually occurs 

after age 40 and becomes more common with increasing age and most often, is a result of poor lifestyle 

and dietary choices. T2D is far more prevalent than T1D, accounting for about 90% of all diabetes cases. 

Current T2D prevalence is estimated with 7.4% among men and 7.0% among women in Germany aged 

40 years or older 34,63. In 2009 in Germany, estimates of the prevalence of T1D was 0.17% for girls and 

0.19% for boys younger than 19 years 64. The prevalence among women and men (aged between 20 

to 79 years) was estimated between 0.28% to 0.39% and among the elderly population (80+ years) 

between 0.47% and 0.50% 63,64. The total number of people with T1D in Germany ranges from 256,000 

to 373,000 in 2009 and 2016, while for T2D, more than 9 million people of the German population are 

estimated to be positively diagnosed 63,64. As observed over the past decades, the incidence and 

prevalence of T1D and T2D are expected to rise further 34,58. 

However, little is known about diabetes-related economic consequences and future healthcare 

expenses in Germany 57,64. Further, the few studies investigating the current and future population 

with T1D or T2D in Germany as well as associated healthcare expenses are limited to certain ages or 

demographic cohorts, they ignore temporal trends in disease-related rates and/ or do not distinguish 

the diabetes types 11,34,65. As a remedy, this thesis shows that using the statistical approaches presented 

in Section 2.1.2 and 2.1.3, it is possible to compute nationally representative estimates of the age- and 

sex-specific incidence, prevalence and the number of people diagnosed with T1D and T2D in Germany 

in 2010 until 2040. Further, this work shows that there exists a projection method that is capable of 

reflecting the complex interplay of future demographic, disease-specific and cost trends 

simultaneously to project diabetes-related healthcare expenses. Specifically, the approach enables to 

project sex-, age-, year- and diabetes-type specific per capita costs, total excess costs and cost ratios 
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of people with and without T1D and T2D, as well as attributable costs in Germany from 2010 until 

2040. 

The projection of the diabetes burden and its related healthcare costs in Germany requires several 

demographic, epidemiological and economic input data. All applications rely on anonymised, 

aggregated data, i.e., no individual data was required and data on population level is sufficient. In the 

best case, input information was obtained in differentiated manner with regards to age, sex and the 

specific disease, the data should comprise the time period considered in the estimation (or should at 

least be relatively recent or close to the time period of interest) and should be as reliable and 

representative as possible for the target population. Necessary input information may be obtained 

from secondary data which is commonly more resource saving compared to collecting primary data 

(e.g., with regards to time and costs). Further, the proposed methodologies allow for estimating and 

projecting the disease burden based on data derived from cross-sectional studies, i.e., collecting data 

from lengthy and costly longitudinal studies may be dispensable. Depending on the field of application 

and the concrete context, the required input data may be provided by governments, insurances or 

disease-specific registries, sometimes even publicly.  

First, demographic input data in form of the observed and expected age- and sex-specific population 

distribution and the mortality of the general population in Germany for each year from 2010 to 2040 

and all ages from 0 to 100 years are provided in the official population projection of the German 

Federal Statistical Office (FSO) 66. The FSO focuses on demographic change in Germany and releases 

several variants wherein they assume different future birth rates, life expectancies at birth, and 

migration. For projection purposes, it may be recommendable to consider several variants to account 

for uncertainty in future demographic developments.  

Second, epidemiological input information, i.e., starting values for the prevalence and incidence, were 

derived from claims data that have been used in previous projections of diabetes prevalence 63,67. The 

data is taken from 65 million insures from all German statutory health insurances (SHI). Covering about 

80% of the total population, the data set is considered representative for Germany 26,34,63. As relevant 

information, the data set provides information on age, sex and diabetes diagnoses in 2010. To define 

T1D and T2D, the International Classification of Diseases (ICD) coding is used which is provided in the 

underlying claims data 26,34,58,61. The ICD-codes E10.- to E14.- specify the different types of diabetes, 

with E10.- comprising all possible T1D diagnoses and E11.- denoting T2D. Information on the mortality 

of people with versus without T1D or T2D is lacking in Germany. As workaround, it is possible to use 

data on the age- and sex-specific MRR of people with versus without T1D or T2D. For T2D, Schmidt et 

al. 27 report nationally representative estimates of the MRR in Germany in 2014. Due to unavailability 

of the T1D-related MRR in Germany, the age- and sex-specific MRR from Denmark estimated by 

Carstensen et al. 32,33 were used to approximate the MRR of T1D in Germany. This is suggested by 

previous studies since the two countries’ MRRs are claimed highly comparable 33,34,63,68. 

Lastly, economic input values in terms of average per capita healthcare costs for people with and 

without T1D or T2D were obtained from aggregated claims data 63,67. The claims data consists of a 6.8% 

random sample of all German people with statutory health insurance (SHI) (which covers almost 90% 

of the German population). Due to regulations on data protection, routine SHI data were provided in 

an anonymous and aggregated form. The cost data included direct per capita costs for physicians, 

dentists, pharmacies, hospitals, sick benefits and others in 2010 in Germany from payer perspective. 

Further, it contained ICD-10 codes which allowed to differentiate between costs associated with the 

respective type of diabetes. These data were used as starting values of per capita costs, cost ratios for 

people with versus without T1D and T2D as well as attributable costs in 2010. 
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Contribution 1 presents a detailed comparison of three different projection methods and their 

practical employment to project sex- and age-specific case numbers of people with diagnosed T2D for 

Germany between 2010 and 2040. The second contributing article first estimates the age- and sex-

specific incidence and prevalence of T1D in Germany in 2010 using data from 65 million insurees of the 

German SHI and then projects the prevalence of type 1 diabetes until 2040 assuming several scenarios 

of the incidence and mortality. For the precise estimation methodology and projection results of future 

age- and sex-specific direct medical costs related to diagnosed T1D and T2D in Germany between 2010 

and 2040, see contributing article 3. The freely available software R (R Core Team, 2021 69) was used 

for implementation of the analyses related to contribution 1, 2 and 3. The complete R-codes and 

relevant data sets for reproducing the analyses are publicly available.  
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2.2 Time-to-Event Analysis 

“Don’t know, really. In the light of some of the further results one knows since, I think I would 

normally want to tackle problems parametrically, so I would take the underlying hazard to be 

a Weibull or something. I’m not keen on nonparametric formulations usually.“ 20  

(David Cox) 

Time-to-event analysis is a branch of statistics that allows appropriate handling of data where the 

variable under investigation involves times to some event of interest. It is commonly used to model 

the expected duration of time until an event occurs, to approximate transition rates or intensities from 

one state to another in a stochastic process with countably many states, or to estimate the effect of 

prognostic factors. The area of application for time-to-event models is diverse 70, ranging from e.g. 

finance (estimating companies survival in financial crisis or time to default in credit scoring), marketing 

(the probability of a customer leaving the company in the next months or the time until a customer 

makes a repeat purchase), engineering (component failures in machines or the reliability of a gas 

turbine), psychology (predictors of and time to potential criminal recidivism), logistics (lead times for 

metallic components in the aerospace industry) and, most commonly, healthcare. In medical research, 

the particular endpoint is commonly the time until occurrence of a particular disease, relapse from 

remission, recovery or the time until death. For this reason, the term “survival analysis” is often used 

synonymously for time-to-event analysis (or “failure time analysis” and “reliability analysis” in 

engineering).  

When modelling time-to-event data, the response variable of interest usually measures the time until 

a specific endpoint. In its simplest form, time-to-event data consists of two tightly linked components, 

that is, an event indicator and a time variable that indicates the relevant points in time.  Time-to-event 

data, i.e., data on the time between a starting point and an endpoint that refer to certain kind of 

events, are often affected by a peculiar kind of “partial missingness” 14,71. This is due to truncation and 

censoring, which are two distinct phenomena that cause incompleteness in data samples. In the case 

of right-censoring, subjects do not experience the event of interest during the follow-up time. For 

example, if death is of interest, patients may not die during the overall study period. Vice versa, in left-

censoring, the event has occurred before the data is collected or study has started, i.e., only the upper 

bound of time is known 21. Truncation may arise due to a systematic selection process inherent to the 

study design. It occurs if a value below (left truncation) or above (right truncation) a certain truncation 

point is not recorded at all, one speaks of truncation. For instance, this may happen in cohort studies, 

in which study participants must not have the disease of interest at the start of the study. Knowing 

that traditional regression methods are not equipped to handle such data and that censoring and 

truncation mechanisms may affect the response, survival analysis requires special techniques to 

analyse the data properly and avoid biased estimates as well as incorrect conclusions.  

The remaining part on modelling time-to-event data is structured as follows: Section 2.2.1 introduces 

a clinical data set from a real-world study which serves as practical example for the remaining chapter. 

Section 2.2.2 introduces basic mathematical terminology and notation used in time-to-event analysis. 

Section 2.2.3 is devoted to Cox’s Proportional Hazards (PH) model and its generic effect estimate the 

HR. Section 2.2.4 describes alternative semi-parametric additive hazard models. The focus of Section 

2.2.5 is on parametric additive modelling of time-to-event data and briefly derives the new approach. 

Building on Section 2.2, the fourth contributing article makes use of the relations and the background 

introduced and proposes a new parametric additive hazard model with time-independent covariates. 
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2.2.1 Survival of Non-Small-Cell Lung Cancer Patients  
For illustration purposes, the subsequent sections consider an example based on a data set from the 

Halle Lung Cancer (HALLUCA) study 72. The population-based multi-centre study investigated 

treatment options for non-small cell lung cancer patients in the region of Halle (Saale) in the eastern 

part of Germany between 1996 and 1999. In the HALLUCA study, the authors investigated the survival 

of 1,696 lung cancer patients depending on several prognostic factors. Thereof, 1,183 patients were 

diagnosed with non-small-cell lung cancer. 188 were in clinical stages I–IIIb (15.9%) and were treated 

with radiation therapy alone. 1,349 patients of the sample (79.5%) died until the end of follow-up. 

Minimal follow-up was 12 months, the median follow-up time 33 months. Survival time was defined 

as starting from the day of diagnosis of lung cancer. The end of survival time was either death or the 

end of the observation period planned for data collection in the HALLUCA study. The observed median 

survival time of all patients was 10.2 months with a 2-year overall survival of 15.8%. Besides tumour 

stage, radiation dose was found the most important prognostic factor for survival of patients after 

primary radiation therapy.  

Generally, lung cancer belongs to the leading causes of cancer mortality, with about 2.1 million new 

cases and 1.8 million deaths in 2018 worldwide 73. Non-small-cell carcinoma or non-small-cell lung 

cancer (NSCLC) comprises a heterogeneous class of tumours that represents approximately 80 - 85% 

of all lung cancers 74. The disease is associated with a notably high proliferation, strong predilection for 

early metastasis and poor prognosis particularly in later stages 73. It is confirmed that NSCLC has a 

strong epidemiological link to tobacco, as its prevalence seems to reflect the smoking prevalence with 

a lag time of about 30 years 75. Internationally, NSCLC is grouped into five stages (stage 0 to IV) using 

the tumour-node-metastasis (TNM) classification 72. The lower the staging, the less the cancer has 

spread with advanced disease represented by stage IV. Treatment and prognosis differ by stage. In the 

past decade, treatment options have improved markedly with wider lung cancer screening, improved 

radiation techniques, and treatment advances 73,74. 

For the latter analysis, a dichotomized version of the TNM-scale was adapted for the classification of 

malignant tumours as a predictor of survival. 739 patients had a TNM-scale of III or smaller (TNM < IV), 

and 621 patients had a TNM-scale of IV (TNM IV). For the 336 remaining patients no TNM-scale was 

reported, and they were therefore excluded from the analysis. We are thus considering a problem that 

involves a binary covariate 𝑥 (i.e., TNM IV versus TNM < IV, with TNM < IV as the reference) for each 

study participant 𝑖 as predictor of observed survival time 𝑡.  

2.2.2 Mathematical Relations in Survival Analysis 
Let 𝑇 ≥ 0 be a random variable representing the time of the event under consideration, i.e., death in 

the HALLUCA study. Further referring to the data example of the HALLUCA study, the TNM 

classification of each respective patient (i.e., TNM < IV versus TNM IV) acts as predictor variable of a 

patient’s survival time included in a covariate vector 𝑥. The probability of survival of a single individual 

with covariate vector 𝑥 beyond time 𝑡 can be modelled via the survival function 𝑆𝑥(𝑡)  by  

𝑆𝑥(𝑡) = ℙ(𝑇 > 𝑡),                   0 < 𝑡 < ∞. (47) 
 

This can also be expressed as  

𝑆𝑥(𝑡) = 1 − 𝐹𝑥(𝑡), (48) 
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with 𝐹𝑥(𝑡) =  ℙ(𝑇 ≤ 𝑡) denoting the cumulative distribution function (CDF) which describes the 

probability of having experienced the outcome of interest before or exactly at time 𝑡. The probability 

density function (PDF) 𝑓𝑥(𝑡) describes the probability of the event occurring at exactly time 𝑡, given by 

𝑓𝑥(𝑡) = lim
∆𝑡→0

ℙ(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡)

∆𝑡
 

(49) 

 

The PDF can be ascertained from the CDF 71,76 by 

𝑓𝑥(𝑡) =  
𝜕𝐹(𝑡𝑥)

𝜕𝑡
 

(50) 

or vice versa it holds that 

𝐹(𝑡𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
. (51) 

 

Integrating the PDF 𝑓𝑥(𝑡)  from time t to +∞ yields the survival function 76, i.e., 𝑆𝑥(𝑡) can be related 

to 𝑓𝑥(𝑡) as in  

𝑆(𝑡𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
+∞

𝑡

 
(52) 

with 

𝑓(𝑡𝑥) = −
𝜕𝑆(𝑡𝑥)

𝜕𝑡
 

(53) 

 

as equivalent expression. Once the survival function and the PDF are specified, the corresponding 

hazard function ℎ𝑥(𝑡) can be determined.  

Most often in time-to-event analysis, it is the aim of modelling the instantaneous potential (or risk, 

with regards to death being the event) of having an event at a time 𝑡, given survival up to that time 
71. The hazard function ℎ𝑥(𝑡) describes this instantaneous rate 76 and is defined as  

ℎ𝑥(𝑡) = lim
∆𝑡→0+

ℙ(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡 )

∆𝑡
 

(54) 

 

or, expressed in terms of the survival function 𝑆(𝑡)  and PDF 𝑓𝑥(𝑡), as 

ℎ𝑥(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

−𝜕𝑆(𝑡𝑥)/𝜕𝑡

𝑆(𝑡)
. 

(55) 

 

Building on the example of the HALLUCA study, the relations between hazard, density, CDF and survival 

can be depicted as shown in Figure 6. 
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Figure 6: Relations between hazard, density, CDF and survival function shown for the example of the HALLUCA study. Using 
the Kaplan-Meier method, the plot top left depicts an estimate of the survival curve for the HALLUCA data, while the plot top 

right plots the cumulative event probability. The hazard function (bottom left) is modelled via the function bszahard() in R 
which estimates the hazard function non-parametrically from a survival object. The depicted smoothed estimate is based on 

B-splines. The plot bottom right visualises the distribution of the survival variable in the HALLUCA data, using 
geom_density() (a function from the ggplot2 package) that creates smooth density estimate plots. 

2.2.3 Cox Proportional Hazards Model and the Hazard Ratio 
Often, one of the objectives of time-to-event analysis is to specify the potential effect of covariates 

(such as sex, age, treatment, diagnosis) on event times 76. This can be solved using special regression 

techniques such as the popular Cox PH regression model. In order to assess the effect of multiple 

covariates on failure time of a system, Cox introduced his PH model in 1972 16. Precisely, Cox proposed 

that the hazard takes the form of 

ℎ(𝑡𝑥) = ℎ0(𝑡)exp (𝛽′𝑥) (56) 
 

where ℎ0(𝑡) is the baseline hazard, 𝑥 is a set of observed covariates and 𝛽 is a vector of regression 

coefficients to be estimated, measuring the influence of each respective covariate 𝑥 on the outcome 
16. In other words, the model decomposes the hazard into two distinct parts that act multiplicatively: 

First, into an arbitrary and unspecified, non-parametric baseline hazard that is shared across all 

individuals and dependent on time only and second, a linear predictor that consist of a functional term 

that is basically independent of time and that describes the effect that covariates have on the hazard. 

By that, Cox regression relies on the background assumptions of linearity and additivity of predictor 

variables. The model is essentially non-parametric as the functional form of the baseline hazard ℎ0(𝑡) 

remains unspecified 77,78. However, the implicit PH assumption is an important feature of the model 

and implies that the HR, which measures the effect of the predictor, is constant over time for any two 

individuals or strata compared. In order to be correctly specified, it must satisfy that the baseline 

hazard is a function of time but does not involve the covariates 70,71,79,80.  
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The model’s generic effect estimate, the HR, is defined as ratio of two distinct hazard rates and is used 

extensively as conventional effect measure in time-to-event analyses 79. In medical research for 

instance, the HR is typically reported to evaluate treatment effects or other safety and efficacy 

outcomes of clinical trials comparing a treatment group and a control group 76. Assuming PH, the 

hazard ratio for given values of a single binary covariate 𝑥𝑇𝑁𝑀 (with referral to the HALLUCA study this 

may be the TNM classification) is given by 80 

ℎ(𝑡|𝑥𝑇𝑁𝑀𝐼𝑉=1)

ℎ(𝑡|𝑥𝑇𝑁𝑀𝐼𝑉=0)
= exp (𝛽). 

(57) 

 

In the context of time-to-event data, the Cox PH regression model has become one of the most popular 

and widely-used regression techniques 77,81. From its introduction, it has generated a great amount of 

interest and has become one of the most used and cited statistical models in applied research (the 

original article ranks among the top 100 papers in terms of citation frequency). Its predominance and 

popularity stem from several decades of application, together with the facts that (i) it allows for 

censored observations, (ii) it is possible to estimate survival curves, (iii) it guarantees interpretable 

hazard ratios as effect measures, (iv) it is implemented in standard statistical software, (v) it is a robust 

model and (vi) it is essentially distribution-free as it does not require the investigator to assume any 

underlying distribution of the baseline hazard function 76,77. Despite these key strengths of the model, 

it does introduce some limitations. One inherent and overly strict assumption imposed by the Cox 

model, the PH assumption, is that the hazard functions of all individuals are strictly proportional and 

that the HR is thus constant over time 70. In practice however, this very restrictive condition inhibits 

the model’s usefulness 77. In case of violation or misspecification, the Cox model may result in biased, 

potentially misleading estimates and false inference 80. Considering the complexity of medical or 

biological relations and associations, this assumption can rarely be justified. Instead, hazards may vary 

because the susceptibility of a disease differs between patients or because a new treatment might 

change the pattern of mortality over time, rather than the overall mortality rate. Another example 

would be the decision between surgery and radiation treatments: the surgery might have a higher 

initial risk, but a better long-term prognosis while this is inversed for radiation therapy.  

In addition, the frequent use of the Cox model is surprising because the HR, its generic effect estimate, 

has been repeatedly criticized in recent years 79. Although the HR, may seem convenient, e.g., it is 

easily estimated and summarizes the treatment effect into a single number 79, it does continuously fall 

in disgrace in terms of interpretation, technical implementation, and flexibility. For instance, the HR 

may be hard to interpret (causally) and is commonly mistaken as relative risk although essentially, the 

HR is a ratio of rates, and not one of risks 17,79,80. Another common point of critique is that even in 

randomized trials, the HR has a built-in selection bias because it is estimated conditionally on the 

survival of the set of observations which is still under risk 18,79,80. This bias is even more severe in case 

of misspecification, e.g. in terms of an omitted variable that affects the outcome of interest. Recalling 

that the HR for a given value of a single binary covariate is given by (57) and now assuming an omitted 

covariate 𝑥𝑂𝑉, the true conditional model would be correctly specified by 

ℎ(𝑡|𝑥) = ℎ0(𝑡)exp(𝛽𝑇𝑁𝑀𝐼𝑉𝑥𝑇𝑁𝑀𝐼𝑉,𝑖 + 𝛽𝑂𝑉𝑥𝑂𝑉). 

 

(58) 

As the covariate 𝑥𝑂𝑉 represents an omitted prognostic input factor, only the marginal population-

averaged HR ℎ(𝑡|𝑥𝑇𝑁𝑀𝐼𝑉,𝑖) would be estimated, which is unequal to the true conditional and subject-

specific treatment effect 80. Though, it must be noted here that the presence of bias would only occur 

in the presence of large treatment effects together with an omitted covariate that largely impacts the 

outcome 80. In case of a weak effect of treatment on survival and/ or weak impact of the omitted 
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covariate, the imbalance in treatment estimates is negligible. More virulent is that the HR suffers from 

non-collapsibility, i.e., adjusting for a covariate that is associated with the event will generally change 

the HR, even if the covariate is not related to the exposure 19,82. Supposing that 𝑡 denotes the survival 

time of interest and assuming a binary exposure variable 𝑥 and third variable 𝑧, the hazard function is 

given by  

ℎ(𝑡) = (𝑡|𝑋 = 𝑥, 𝑍 = 𝑧) =  ℎ0(𝑡)exp (𝛽𝑥 + 𝛽𝑧). (59) 
It follows that the marginal hazard function is equal to  

ℎ(𝑡|𝑥) =  ℎ0(𝑡)𝑒𝛽𝑥𝑗{𝑥, 𝜃(𝑡)} with 𝑗{𝑥, 𝜃(𝑡)} =
𝐸[𝑆1{𝑥,𝜃(𝑡);𝑧}|𝑋=𝑥]

𝐸[𝑆0{𝑥,𝜃(𝑡);𝑧}|𝑋=𝑥]
 (60) 

where 𝑆0{𝑥, 𝜃(𝑡); 𝑧} = exp (−Λ0(𝑡) exp(𝛽𝑥 + 𝛽𝑧)), 𝑆1{𝑥, 𝜃(𝑡); 𝑧} = 𝑆0{𝑥, 𝜃(𝑡); 𝑧}exp (𝛽𝑧) and  

𝜃(𝑡) = {𝛽𝑥 , 𝛽𝑧, Λ0(𝑡)}′ with Λ as cumulative hazard function. That being the case, the causal hazard 

function is then denoted by  

ℎ(𝑡|�̂� = 𝑥) =  ℎ0(𝑡)exp (𝛽𝑧)ℎ{𝑥, 𝜃(𝑡)} where ℎ{𝑥, 𝜃(𝑡)} =  
𝐸[𝑆1{𝑥,𝜃(𝑡);𝑧]

𝐸[𝑆0{𝑥,𝜃(𝑡);𝑧]
. 

 

(61) 

From there, the marginal exposure effect 𝜏(𝑡) becomes 

𝜏(𝑡) = 𝛽𝑥 +  𝑙𝑜𝑔 [
ℎ{1,𝜃(𝑡)}

ℎ{0,𝜃(𝑡)}
]. 

 

(62) 

Generally, if the marginal exposure effect differs from the marginal association, i.e., 𝜏(𝑡) ≠ 𝛽𝑥, there 

is confounding. Hence, in the given case, and even when 𝑧 is independent, non-linearity (or as 

commonly referred to, non-collapsibility) is present 82.  

2.2.4 Semi-Parametric Additive Hazard Models 
As the PH assumption may not always be true (for example, the effect of a treatment may change over 

time) and in response to the disadvantages of the HR, alternative additive frameworks which allow 

non-proportional hazards (i.e., time-varying covariate effects) have been proposed 83. As indicated by 

the name, in additive hazards regression models, covariates act additively on the baseline hazard. 

Unlike the PH model which estimates HRs, additive models estimate the difference in hazards 84. 

Therefore, additive approaches are noteworthy because they do not suffer from the beforementioned 

issues and instead offer additional pleasurable properties 83. First, when defined in continuous settings, 

results do not suffer from non-collapsibility. Second, compared to HRs, hazard differences are more 

comprehensible and can be more easily interpreted 79. For instance, additive measures provide 

information about a population’s base rates of the outcome of interest which in turn, can inform 

clinical and policy decision-making 85. Thus, hazard differences are useful in assessing risks without 

requiring additional data to estimate the baseline rates 86. Third, results from additive hazard models 

can be translated to a relative survival scale. Relative survival quantifies the cumulative effect of 

covariates on the relative survival probability and thus incorporates information about the strength of 

the investigated association 85. This can be nicely interpreted as the observed survival probability of 

the population studied, divided by the expected survival probability if the population was free of the 

disease of interest. Knowing that absolute and relative results may generate diverging evidence, 

proper interpretation of the effect of an exposure or treatment on survival times may require reporting 

both effect measures. Supported by the reporting guidelines from the Consolidated Standards of 

Reporting Trials (CONSORT) and Strengthening the Reporting of Observational Studies in Epidemiology 

(STROBE), it is advocated to report both, absolute and relative measures, because the complementary 

findings provide a more comprehensive risk picture 87,88. Though it must be noted that the choice of 

the measure and whether to provide a combination of measures is still an ongoing debate in literature. 

An overview of potentially useful measures is provided in Table 1. In view of that, additive hazard 
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models may appear as preferable alternative to multiplicative models which only capture relative 

hazards 85.  

Table 1: Overview of relative and absolute effect measures, together with their definition, interpretation, disadvantages and 
advantages. 

Effect measure Definition Interpretation Disadvantages Advantages 

Relative Measures 

Hazard ratio 
(HR) 89 

ℎ(𝑡|𝑋1)

ℎ(𝑡|𝑋0)
 

Hazard that the event time 
of a treated group exceeds 
the event time of a control 
group conditional on the 
other covariates 

- Potentially misleading  
- May exaggerate effects 

- Directly estimable from 
Cox regression model  

- Easy to compute 

Odds ratio 
(OR) 89,90 

𝐹1(𝑡)
1 − 𝐹1(𝑡)

𝐹0(𝑡)
1 − 𝐹0(𝑡)

 

Ratio between the odds of 
the treated vs. the odds of 
the control group 

- Frequently mislabelled or 
misused as RR 

- Hard to comprehend 
- May exaggerate effects 

- Directly estimable from 
a logistic model and 
regardless of the study 
design (follow-up, case-
control, cross sectional) 

Relative risk/ 
Risk ratio (RR) 
89-91 

𝐹0(𝑡)

𝐹1(𝑡)
 

Ratio of risks of the treated 
group vs. a control group 

- The RR can be the same 
for very different clinical 
situations 

- Potentially misleading  
- May exaggerate effects 

- Easy to compute  
- Easy to interpret  
- Included in standard 

statistical software 

Relative risk 
reduction 
(RRR) 91 

1 − 𝑅𝑅 Relative decrease in risk of 
an adverse event in a 
treated vs. a control group 

- Potentially misleading  - Easy to compute  

Absolute Measures 

Risk difference 
(RD)/ Absolute 
risk reduction 
(ARR)/ 
Absolute risk 
increase (ARI) 
90,91 

𝐹0(𝑡)
−  𝐹1(𝑡) 

Difference between the risk 
of an event in a control 
group and the risk of an 
event in a treated group 

- Difference in risk may 
have greater importance 
when risks are close to 0 
or 1 than when near the 
middle of the range 

- Easy to compute 
- Easy to interpret  
- Clear meaning 
- Reflects both, the 

underlying risk without 
and with treatment 

Number 
needed to 
treat (NNT) 89-

91 

1

𝑅𝐷

=
1

𝐴𝑅𝑅
 

Number of patients to be 
treated to achieve the 
desired outcome in one 
patient who would not have 
benefited otherwise 

- NNT should be positive, 
only defined if RD > 0 

- Its confidence interval 
does not include the 
point estimator 

- Easily understood 
- Addresses statistical and 

clinical significance in a 
way that is easily 
interpreted 

Number 
needed to 
harm (NNH) 89 

1

𝐴𝑅𝐼
 

Number of patients needed 
to treat to experience a 
particular adverse outcome 
(e.g. a significant side 
effect) 

  

 

The first introduced and most known additive hazards model was proposed by Aalen in 1980 92. 

Thereafter, the approach of modelling time-to-event outcomes in an additive manner has been 

considered by numerous other authors (e.g., Aalen (1980, 1989, 1993), Breslow and Day (1980, 1987); 

Buckley (1984); Cox and Oakes (1984); Thomas (1986); Huffer and McKeague (1991); Andersen et al. 

(1993)) 93. In his model from 1989, Aalen assumed that covariates act in an additive manner on an 

unknown baseline hazard rate 94. Precisely, he proposed that the hazard function associated with a set 

of time-independent covariates is the sum, rather than the product, of the baseline hazard function 

and the regression function of covariates as in   

ℎ(𝑡; 𝑋𝑖𝑗) = ℎ0(𝑡) + 𝛽1(𝑡)𝑥𝑗1(𝑡)+ . . . + 𝛽𝑝(𝑡)𝑥𝑗𝑝(𝑡) 94. (63) 

 

Therein, ℎ0(𝑡) represents the baseline hazard, 𝑋𝑖 denotes the set of covariates and 𝛽𝑖(𝑡) the 

regression coefficients which are dependent on time t 83. The estimated hazard differences can be 
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interpreted by plotting cumulative hazards over time. The unknown risk coefficients are allowed to be 

functions of time, so that the effect of a covariate can easily be detected at each distinct survival time. 

While this is a main advantage of the model, it also introduces its major drawback in terms of 

application and interpretation. With regards to application, the Aalen approach gives large flexibility 

in modelling, but this complicates parameter estimation considerably. Concerning interpretation, the 

time-dependence of covariate effects renders their description more complex 95. As the model 

coefficients may change repeatedly over time (see Figure 7), they may be more complicated to 

understand and no single quantifiable effect size can be offered 96.  

 

Figure 7: Estimated cumulative regression function based on the dataset “lung” contained in the R library “survival” and 
plotted using the function plot.aareg(). 

As a partial remedy, Lin and Ying 97 proposed an additive hazard model for time-independent 

covariates as a special case of Aalen’s model 93. Their semi-parametric model allows to reduce effects 

that are time-invariant to a parametric form which results in a simpler description to those effects 95. 

Precisely, in addition to assuming the linearity of continuous covariates, Lin and Ying suggested that all 

regression functions, i.e., all covariate effects, except the baseline hazard are constant over time 97. 

Thus, for a given subject i, the hazard is written as 

ℎ(𝑡; 𝑋𝑖𝑗) = ℎ0(𝑡) + 𝛽1𝑥𝑗1(𝑡)+ . . . + 𝛽𝑝𝑥𝑗𝑝(𝑡)98. (64) 

 

In view of the discussed properties, additive hazards regression models could take priority over the 

popular Cox PH model if the absolute difference in hazard is of primary interest instead of modelling 

the HR, or if the proportionality assumption cannot be justified 84,93. Additive approaches are said to 

provide a better fit for survival data and to be more useful to assess underlying biological interactions 
86,99. Though, it is important to recognize that these approaches are not new and despite their coverage 

in the literature, they are rarely applied in the routine analysis and reporting of medical data 84,100. One 

reason for this is that using a semi-parametric hazard may require long computation times in certain 

contexts. Thus, they may be complicated in terms of implementation and interpretation. Another 

drawback is that some additive methods are not yet widely implemented and available in commonly 

used software 93.  

2.2.5 A new Parametric Additive Hazard Model 
An alternative branch of time-to-event analysis that bypasses many of the discussed shortcomings of 

non- and semi-parametric approaches, is fully parametric modelling. With parametric models, the 

outcome of interest (e.g. survival time) is postulated to follow a particular distributional form. Thus, 

the PDF 𝑓𝑥𝑖
(𝑡𝑖) can be expressed in terms of unknown parameters. Once the PDF is specified, the 

corresponding survival and hazard functions can be determined. Many parametric models are 

accelerated failure time (AFT) models in which survival time is modelled as a function of predictor 
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variables. Whereas a PH model assumes a multiplicative effect of covariates on the hazard, an AFT 

model suggests that the effect of covariate is multiplicative, i.e., proportional, with respect to survival 

time.  

Given that the parametric form is correctly specified, parametric models for time-to-event modelling 

were reported to be simpler, more informative, more robust, to have more validity and higher accuracy 

in parameter estimates 101. Further, they allow to extrapolate beyond the available range of the data 

and estimated survival curves are smoother. Another strength of parametric models is that estimation 

is simplified using the maximum likelihood principle to estimate the parameters 102. Further appeal of 

parametric approaches lies in the ease of interpreting the results: they have absolute effect measures 

and hazard function readily available, and fitted values from the model provide estimates of survival 

time, as well as the estimated coefficients or suitable transformations thereof function as clinically 

meaningful estimates of the investigated effects 103. Albeit these numerous favourable properties, it 

remains a phenomenon that parametric survival models are rather underutilised in medical 

applications while semi- or non-parametric modelling persist being the more popular choice 104. 

One aim of this dissertation is to show that it is possible to exploit both, the advantages of additive 

approaches as well as the advantages of parametric survival analysis. Evidently, the model assumes 

that the hazard ℎ𝑥(𝑡) at time 𝑡 is modelled additively as in  

ℎ𝑥(𝑡) =  ℎ0,θ(𝑡) + 𝑥𝛽 . 

 

(65) 

The parameters 𝛽 are the regression coefficients that measure the impact of the covariates 𝑥 and  

ℎ0,θ(𝑡) denotes the parametric baseline hazard function which is independent of the covariates. The 

parameter θ denotes the distribution parameters. Depending on the choice of the baseline 

distribution, θ may differ in terms of number and commonly used notation. Using the relations 

between PDF, hazard and survival function (see Section 2.2.2) and reformulating (55) to 𝑓𝑥(𝑡) =

ℎ𝑥(𝑥)𝑆(𝑡), the PDF associated to the new model can be expressed as  

𝑓𝑥(𝑡) = (
𝑓0(𝑡)

𝑆0,θ(𝑡)
+ 𝑥𝛽 ) 𝑆𝑥(𝑡). 

 

(66) 

Substituting 𝑆𝑥(𝑡), this becomes  

𝑓𝑥(𝑡) = (
𝑓0(𝑡)

𝑆0,θ(𝑡)
+ 𝑥𝛽 ) exp (−𝐻𝑥(𝑡)) 

(67) 

And thus  

𝑓𝑥(𝑡) = (
𝑓0(𝑡)

𝑆0,θ(𝑡)
+ 𝑥𝛽 ) exp (− ∫ ℎ𝑥(𝑢)𝑑𝑢

𝑡

0

) 

 

(68) 

Using Equation (65), the last part can be replaced by  

𝑓𝑡(𝑡) = (
𝑓0(𝑡)

𝑆0,θ(𝑡)
+ 𝑥𝛽 ) exp (− ∫ ℎ0,θ(𝑢)𝑑𝑢

𝑡

0

− ∫ 𝑥𝛽𝑑𝑢
𝑡

0

) 

 

(69) 

which is equal to  

𝑓𝑥(𝑡) = (
𝑓0(𝑡)

𝑆0,θ(𝑡)
+ 𝑥𝛽 )

exp (− ∫ ℎ0,θ(𝑢)𝑑𝑢)
𝑡

0

exp (∫ 𝑥𝛽𝑑𝑢
𝑡

0
)

. 

 

(70) 

Replacing the numerator by 𝑆0,θ(𝑡) and further solving the equation, (70) can be rewritten to   
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𝑓𝑥(𝑡) =
𝑓0(𝑡)

exp (𝑡𝑥𝛽)
+

𝑆0,θ(𝑡)

exp (𝑡𝑥𝛽)
 

(71) 

Finally yielding  

𝑓𝑥(𝑡) =
𝑓0(𝑡) + 𝑥𝛽 𝑆0,θ(𝑡𝑖  )

exp (𝑡𝑥𝛽)
 

 

(72) 

with the corresponding survival function 𝑆𝑥(𝑡) given by  

𝑆𝑥(𝑡) =  
𝑆0,θ(𝑡)

exp (𝑡𝑥𝛽)
= 1 − 𝐹𝑥(𝑡) 

 

(73) 

where 𝐹𝑥(𝑡) depicts the model’s CDF. Estimation is straightforward via maximising Equation (74) with 

respect to the unknown regression coefficients 𝛽 and the parameters of the assumed baseline 

distribution using any software that allows maximising a hand-coded log-likelihood function. Precisely, 

the log-likelihood function of the model for a single observation 𝑖 at time 𝑡𝑖  and covariate vector 𝑥𝑖  is 

given by  

ℓ𝑖 = (1 − 𝛿𝑖) log (𝑓𝑥𝑖
(𝑡𝑖)) + 𝛿𝑖 log (𝑆𝑥𝑖

(𝑡𝑖)). 

 

(74) 

Plugging in the derived expressions for 𝑓𝑥𝑖
(𝑡𝑖  ) and 𝑆𝑥𝑖

(𝑡𝑖  ) in Equation (66) and (73), respectively, 

finally this becomes  

ℓ𝑖 = (1 − 𝛿𝑖)(log (𝑓0(𝑡𝑖) + 𝑥𝑖𝛽𝑆0,θ(𝑡𝑖)) − 𝑡𝑖𝑥𝑖𝛽) + 𝛿𝑖 (log (𝑆0,θ(𝑡𝑖)) − 𝑡𝑖𝑥𝑖𝛽). 

 

(75) 

with 𝛿𝑖 as censoring indicator being 𝛿𝑖 = 0 for observed events and 𝛿𝑖 = 1 if an observation is 

censored. For practical application, it is possible to assume a wide range of baseline distributions 

whereby their fit is comparable via model selection criteria. In addition to the parameters of main 

interest, i.e., the regression coefficients 𝛽, the distribution parameters and more intuitive 

transformations thereof, the method is able to returns for instance relative survival or absolute 

measures such as the number needed to treat (NNT). Referring to the binary covariate 𝑋𝑇𝑁𝑀 from the 

HALLUCA example and using the information from Table 1, the latter can be obtained via  

𝑁𝑁𝑇 =
1

𝑅𝐷
=

1

𝐹0(𝑡)−𝐹1(𝑡) 
=

1

𝑆1(𝑡)−𝑆0,θ(𝑡)
. 

 

(76) 

Knowing that for 𝑋𝑇𝑁𝑀 = 1 the survival function 𝑆1 (𝑡) is given by 
𝑆0,θ(𝑡)

exp(𝑡𝛽)
 , this can be rewritten as 

𝑁𝑁𝑇 =
1

𝑆0(𝑡)
exp(𝑡𝛽)

− 𝑆0,θ(𝑡) 
=

exp(𝑡𝛽)

𝑆0,θ(𝑡)(1 − exp(𝑡𝛽)
 

 

(77) 

for the proposed additive hazard model.  
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2.3 Neutral Comparison Studies 

“Statisticians, like artists, have the bad habit of falling in love with their models.“ 105 

(Brad Efron) 

In its broadest sense, statistical modelling refers to the analysis, approximation, depiction and 

prediction of real-world events and dynamics in a formal and theoretical manner using mathematical 

relationships and statistical assumptions. In fields such as computational science, bioinformatics and 

medical research, the development of statistical models has always been a vivid research area 22,23,106. 

New methods, i.e., approaches and procedures for analysing data, are expected to “improve the 

world”, be it by simplifying processes or bringing results of statistical analyses closer to the truth. While 

the motivation for this phenomenon should be the aim for continuous scientific progress and 

improvement, it may also partly be attributable to pressuring publications policies and the prevailing 

publish-or-perish-culture 107. In that regards it seems only logical that nowadays, most published 

articles are devoted to the development of new methods, as it is one of the most straightforward ways 

for a work to be considered as novel and innovative, a prerequisite for publication 22,23,106,108. 

Consequently, new statistical methods are currently flooding fields, resulting in a quickly evolving 

situation with an ever-growing conglomeration of available models to be used.  

When first presenting a new method, authors commonly perform comparative studies (i.e., the new 

versus established models or versus a gold standard method) as part of the introductory paper 23. This 

is usually done with the (unconscious or deliberate) intention of demonstrating the dominance of the 

new method compared to existing ones. In the past, such original research articles presenting new 

methods have often been found to be biased in favour of the newly proposed method and over-

optimistic, stressing the superiority of the new method 22,108. Based on anecdotal evidence, statistician 

Efron claims that “new methods always look better than old ones. […] In fact it is very […] easy to 

inadvertently cheat by choosing favourable examples, or by not putting as much effort into optimizing 

the dull old standard as the exciting new challenger” 109. Into the bargain, there is substantial empirical 

evidence that selective reporting, publication and optimistic biases are prevalent in diverse domains 

of science and that it is comparably easy to make a method appear better than it actually is 23,110. 

Doubtlessly, this overoptimistic bias could become apparent without any intent to be fraudulent 111. 

Nevertheless, it may arise through means of intentional bad scientific practice, such as “HARKing” 

(Hypothesizing after the Results are Known) 112, p-hacking 113, fishing for significance 114,115, data 

dredging 116, selective reporting 117, or “SOTA” (State of the Art) hacking 118. Further, literature confirms 

that the author's level of expertise in the field of application and alternative statistical models, the 

optimisation and overfitting of new algorithms to the data sets considered during the development 

and introduction phase, the selection of favourable datasets and settings, a profitable choice of 

competing methods, optimal parameter tuning for the preferred method, post-hoc modification of 

specific design and/or analysis components, as well as selective reporting of method variants and 

analysis settings play a crucial role 108,110. With trust in science, it may be important to note here that 

the superiority of a new method may obviously not necessarily be wrong and overt fraud is probably 

rare 23,111. However, referring to Nuzzo who claims that “even an honest person is a master of self-

deception” 119, one must acknowledge that everyone is at risk of (consciously or unconsciously) 

engaging in such questionable research practices 111,114. The recurrent character of such claims of 

superiority may seem somewhat suspicious, also because it is not systematically assessed and 

validated from a neutral perspective.  
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As concern over the use of problematic research practices in academia has increased in the past 

decade, it is of interest to identify root causes of such behaviour. Cognitive biases (such as 

confirmation, experimenter or hindsight bias) are considered as risk factors, but it is foremost claimed 

that institutional and career-oriented incentives may encourage the use of bad scientific practices 120. 

The pressure to publish novel and positive results combined with low requirements from journals (e.g., 

with regards to code sharing, documentation and guidance on designing a comparison study) may 

prompt researchers to being susceptible to engage in questionable research practices in comparison, 

benchmark and simulation studies 121. Further, studies that focus on the review, evaluation, validation 

and comparison of only existing methods and that are written by neutral authors are generally 

appreciated by readers, but are given poor consideration by many journals, editors and researchers 
23,108. This is in strong contrast to clinical research where most published medical papers do not suggest 

new measures 22. Instead, the vast majority focuses on many other types of clinical research projects 

such as large validation studies, phase IV clinical trials, or meta-analyses 22. Vice versa in other fields, 

replication and comparison studies are often implicitly excluded from the journals’ scopes, not 

deserving publication owing to lacking innovation and novelty 121. 

This prevailing situation combined with publication, over-optimism and other reporting biases gives 

rise to several dilemmas: Firstly, over-optimism may largely detriment the credibility and value of 

research evidence in case subsequent comparison studies by independent authors fail to reproduce 

the superior performance of the method of interest 22,23,106,108,110,111. Secondly, it seems that authors 

have been afraid in the past of not being published when reporting balanced (and thus potentially less 

exciting) results from comparison studies of existing studies without introducing any new features or 

models. The little acceptance, tolerance or interest from the sides of editors and reviewers in such 

studies results in a challenge for researchers as it remains open to debate on how to "properly" 

compare methods and make recommendations 23,122. In recent years, pioneering works have put 

forward some general guidelines, frameworks and recommendation on how to conduct comparison 

studies 23,106,108,123-125. Though, little thereof is put into practice, and despite this latest general advice, 

for many issues relevant for practical application in reality no concrete guidance or methodology can 

be found. Hence, researchers face a multiplicity of design and analysis options when conducting 

benchmarking and comparison studies 23. Thirdly, the overload of available methods together with a 

lack of neutral guidance results in a challenge for practitioners with regards to an appropriate choice 

and correct application of a method. Often, it remains open to debate which method to use, or when 

and how to apply a method. Consequent inappropriate applications of statistical methods may return 

false and misleading, inaccurate or exaggerated findings 114. Altogether, these issues combined with 

the publish-or-perish-attitude mentioned above contribute to an estimated waste of 85% of research 

resources and ultimately 114, perpetuate the ongoing methodological replication crisis which centres 

around problematic failures to replicate 22.  

On this account and given the large set of publications in which researchers struggle with presenting 

fair comparisons, some scholars have made a plea for neutral comparison studies in computational 

sciences as possible solution 22. Having shown the potential to make the establishment of standards 

more objective and to give fair chances to all methods, the need for and interest in studies that focus 

solely on neutral and fair comparisons seems to deserve more attention in the scientific community. 

Section 2.3 is divided into the following subsections: The purpose of Section 2.3.1 and 2.3.2 is to define 

neutral comparison studies. Section 2.3.3 introduces DTA studies in general and gives information on 

the tasks and particular characteristics of meta-analysis of DTA studies. Section 2.3.4 provides a brief 

description of three different frequentist approaches previously proposed for the meta-analysis of ROC 

curves from DTA studies. As the field presented in Section 2.3.3 currently lacks guidance on the 

methodological choice, Section 2.3.5 describes the steps involved in generating a neutral comparison 
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study for the methods introduced in Section 2.3.4. Using the methodological knowledge and 

background information discussed in the overall Section 2.3, the fifth and final contribution follows the 

“plea for neutral comparison studies”, and aims to neutrally and systematically compare three 

frequentist approaches for the meta-analysis of receiver-operating-characteristics (ROC) curves in a 

simulation study. 

2.3.1 Neutral Comparison Studies  

Neutral comparison studies are broadly defined and characterised by three main components which 

make them essentially unbiased 22:  

i. The primary research goal of a neutral comparison study is to conduct a comparison of 

methodological approaches proposed elsewhere instead of introducing a novel method 22.  

ii. Neutral comparison studies should be performed by reasonably neutral authors, as non-

neutrality of the authors may induce a bias in general. Further, the authors should be equally 

experienced with all methods under investigation and relevant in the field of application 
22,23,126. 

iii. Neutral comparison studies should be designed, analysed and reported in a systematic and 

rational way. That is, the selection of the dataset(s), methods, and evaluation criteria should 

be based on strictly pre-defined inclusion criteria 22,23,106,115.  

Analogous to clinical research in drug development, the development stage of a method can be 

structured in four subsequent phases 120. Whereas the first phases of methodological development 

focus on explorative, method-demonstrating and illustrative comparisons, later phases should consist 

of confirmative, neutral comparison studies. The framework consists four subsequent phases of 

methodological research defined as 120:  

Phase I: Initial introduction of a new methodological idea based on logical reasoning, proofs and 

the assessment of asymptotic properties. 

Phase II: Provision of empirical evidence in a narrow target setting, i.e., an application to data from 

real-world practice.  

Phase III: Extensive investigation of the method and its assumptions in a wide range of settings, 

across several data sets and for various outcomes demonstrating a method’s validity and 

relative performance. 

Phase IV: Examinations showing that a method itself, as well as its strengths and limitations are 

sufficiently understood. 

This entails that comparison studies become important only after early phases of method introduction. 

Their aim is to firstly, validate and ensure the proper functionality of existing methods in concrete 

settings and secondly, provide recommendations and guidance to applied and methodological 

researchers 120,122. The purpose here is to enable researchers, i.e., "method users", to find the 

“optimal” method for her or his application. At the same time, it may provide evidence-based guidance 

for "developers" by identifying potential limitations of existing methods and thus, shed light on the 

need for development of extensions or new approaches 122.  

Regarding terminology, there is a plethora of related expressions in the context of methodological 

research and statistical reporting terms are used inconsistently in the literature. Generally, the main 

emphasis in method comparison studies rests on a direct comparison of alternative methods, their 

properties and performances. Often, the question of interest is whether the methods are comparable 

to the extent that one method is superior to other ones, i.e., results in sufficient accuracy for a certain 

research purpose. The overall heading of comparison studies includes different approaches, such as 

benchmarking experiments or simulation studies. Essentially, benchmarking and simulation studies 
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provide different approaches to a similar problem: using real or simulated data for evaluating the 

performance of several alternative methods 122. Benchmark experiments or benchmark studies are 

defined as a “systematic comparison between computational methods, in which all of them are applied 

to a gold standard data set and the success of their [...] predictions are summarized in terms of 

quantitative metrics [...]” 127. They can be described as data example demonstrating the application of 

proposed methods to real-world data. Thereby, benchmark studies allow for assessing of whether the 

choice of methods matters in practice. As benchmarking studies are based on practical data examples, 

they are likely to adequately reflect properties of real-world data and therefore allow for 

generalisation of results 122. The term “benchmarking” originates from computer sciences 128 and in 

the context of e.g. artificial intelligence, machine learning and bioinformatics, scholars commonly refer 

to “benchmarking" 108,122,127. Less often used terms are “empirical study” 129, “empirical evaluation” 130, 

or “empirical comparison” 131. The main difference is that while benchmarking studies present a data-

driven approach, simulation studies follow a theoretic approach. Simulation studies are a common 

statistical tool to complement the theoretical derivation of a statistical model. It is assumed that the 

underlying statistical model and some theoretical concepts of the data-generating process are known. 

The main advantage in simulation studies is that the “ground truth” is known which enables an 

accurate investigation of the methods as the underlying true values are known by design 122. In contrast 

to analyses using real-world data, simulation studies impose almost no restrictions on sample size. 

Simulation studies are particularly useful when the aim is to (i) compare existing models' performances 

in a given setting, (ii) assess small sample properties and asymptotic results of a method, (iii) 

investigate a model's robustness in case of violated assumptions and (iv) study the model in contexts 

of complex study designs (such as adaptive designs). 

2.3.2 Guidance and Practical Recommendations for Conducting Neutral Comparison Studies  

Ideally, neutral method comparisons should essentially guarantee a fair and systematic comparison of 

existing methods across different scenarios. Although the three characteristics by Boulesteix et al. 22 

provide a clear formal definition of neutral comparison studies, these requirements may sometimes 

be challenging to fulfil in practice. Moreover, as these requirements are relatively broad and leave 

room for interpretation, several scholars have proposed concrete guidelines and recommendations for 

the implementation of neutral comparison studies.  

Condition (ii) of the definition of Boulesteix et al. 22 necessitates that the authors of a neutral study (at 

least as a collective) do not have any method preferences as well as they should be experienced with 

the methods of interest and their fields of application. In case of potential non-neutrality and 

consequential potential to exploit the multiplicity of possible scientific options, strategies inspired 

from blinding in clinical trials could present a remedy. For instance, in case simulated data is used for 

the comparison, researchers could be blinded to the data generating process, that is, an independent 

researcher would generate the data. This would render it substantially difficult if not impossible to 

tune the parameters of preferred methods according to the known ground truth 23,132. Alternatively, 

blinding could be achieved by labelling the methods under investigation with non-informative names 

during the analysis and evaluation processes 23,133. With regards to experience, it has been noted 

decades ago that the performance of some methods is inherently tied to the skill of the analyst who 

applies them 126. There is substantial evidence that a low level of expertise is one of the mechanisms 

leading to deteriorating performances in subsequent papers 110. An option to avoid such distorted 

effects is to involve the initial authors of the method as co-authors, letting them each implement their 

method themselves 133-135. Alternatively, and potentially more easily feasible, another possibility would 

be to contact the authors or well-known experts with substantial knowledge in the field of application 

and who are familiar with the methods considered and ask for assurance that all methods are correctly 

implemented 110.  
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With regards to systematic and rational structure of a neutral comparison study stated in requirement 

(iii) by Boulesteix et al. 22, i.e., ensuring an adequate design, data choice, analysis and proper reporting 

of results, researchers encounter a multiplicity of choices. In recent years, the available literature has 

increased and now provides a modest foundation of guidelines on how to conduct comparison studies 
106,133, statistical frameworks 106,123-125 (all focused on the field of supervised learning) as well as 

strategies to prevent over-optimistic result and avoid common pitfalls 23,110,135,136, only to name a few. 

In pioneering works for instance, Boulesteix 22 published ten rules for the development and testing of 

new computational methods in methodological research to alleviate the considerable influence of 

over-optimism in practice. These rules promote to assess the methods in a suitable context (Rule 1) 

and comparing a new method to the best existing methods (Rule 2) in an appropriate manner (Rule 8). 

With regards to data, Boulesteix recommends to consider several independent, reasonably chosen 

datasets for evaluation and validation (Rule 3, 4, 7). In terms of reporting, Boulesteix urges to reporting 

all information related to the methods and study itself (Rule 9), discuss several performance measures 

instead of only single objective performance criterion (Rule 6) and particularly, clearly document any 

limitation that may become apparent (Rule 5). 

For concrete information on the choices of design and analysis options faced in a neutral comparison 

study, see for example Nießl et al. 23. They developed a framework that (i) gives a detailed overview of 

design and analysis options, (ii) shows how using alternative options for a specific choice affects the 

results and (iii) give effective strategies to prevent over-optimistic interpretations and biased 

conclusions. They found that particularly the choice of performance measure and data sets causes 

major variability in the methods’ performances and that therefore, any related choice should be made 

with caution. They refer to Hoffmann et al. 137 for further strategies to prevent over-optimistic results. 

Hoffmann et al. 137 outlined six steps to increase the replicability and credibility of one's own 

methodological research. Essentially, the steps proposed by Hoffmann et al. 137 include that 

researchers should (i) be conscious of the flexibility and multiplicity of analysis options, (ii) reduce 

uncertainty, (iii) include uncertainty, (iv) report uncertainty, (v) acknowledge uncertainty and (vi) make 

all source code, data and research material publicly available. In a subsequent work, Nießl et al. 110 

presented further strategies to prevent over-optimistic result and avoid common pitfalls in the 

development and initial introduction of a new method. For instance, they suggest to involve the 

authors of the investigated methods to overcome different and potentially insufficient levels of 

expertise. Most importantly, they advocate maximum transparency and comprehensibility with 

regards to documentation of (i) a method’s properties, field of application, limitations and the like, as 

well as transparent reporting of (ii) the planning and execution of a method comparison.  

With regards to the use of simulated or real-world data, advice can be found in a variety of works. See 

Friedrich et al. 122 for an extensive discussion of the advantages and disadvantages of real versus 

simulated data sets. They conclude that ideally, a combination of both approaches should be used for 

method evaluation wherever possible. In addition, they suggest to establish infrastructure, databases 

and gold standards to enable large-scale benchmarking and comparison studies, and encourage the 

conduct and publication of comparison studies. Pawel et al. 135 provide a wide body of 

recommendations involving various stakeholders in the research community to increase the number 

of well-designed simulation studies. Researchers should adopt pre-registered simulation protocols and 

good computational practices in terms of code review, packaging and unit-tests. Further, researchers 

are asked to maximise transparent reporting, and archive, time-stamp and share all code, data, 

documentation and materials. To disclose multiplicity and bias, Pawel et al. 135 recommend that 

researchers perform simulations in a blinded manner, assess uncertainty of results via sensitivity 

analyses and collaborate with other research groups. Further, they advise researchers to engage in 

teaching simulation study methodology in statistics (post)graduate courses. With regards to editors 
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and reviewers, Pawel et al. 135 put forward that they should encourage (neutral) method comparisons 

and (pre-registered) simulation protocols, as well as they should provide enough space for description 

of simulation methodology. Journals and funding bodies should provide incentives and funding for 

assessing and comparing methods in simulation studies. In addition, Pawel et al. 135 suggest that 

journals and funders should promote standardized reporting, require code and data and adopt 

reproducibility checks. Into the bargain, Morris et al. 134 published a tutorial that contains a wealth of 

guidance and advice on how to run simulation studies and how to use simulation studies to evaluate 

statistical methods. They introduced a structured approach (abbreviated as "ADEMP") which involves 

defining aims ("A"), data-generating mechanisms ("D"), estimands ("E"), methods ("M"), and 

performance measures (“P”). Beyond that, in a 16-point list with illustrating examples, Morris et al. 136 

offer advice on how to check a simulation study for potential errors, and how to optimally design and 

conduct a simulation study to give results that are easier to check. For instance, they suggest to 

carefully examine for outliers and failed estimation, and inspect surprising results against Monte Carlo 

errors.  

With respect to the evaluation of methods, Strobl et al. 121 argue that comparison studies should be 

enriched by shifting the focus away from finding an overall winner towards more differentiated results. 

They refer to the principle of “meta-learning” (or more specifically “algorithm recommendation”) 

taken from the field of machine learning. In the spirit of meta-learning, comparison studies should aim 

to predict which algorithm performs best on a specific data set based on its characteristics. They stress 

the importance of scholars to accept that there is no universally best method and strongly argue 

against the “one method fits all data sets” philosophy. Rather, Strobl et al. 121 advise to pursue the 

objective of offering comprehensive information about concrete method properties and about which 

methods performs well in which particular kind of data situation and choice of performance measures. 

Ultimately, this could lower the pressure inherent in the publication process by reducing the 

“necessity” to tweak parameters or cherry-pick data sets.  

Lastly, there is general agreement that transparent and clear documentation is key 111,134,136. While the 

mechanisms discussed above would reduce any deterioration of performance, there is no tradition of 

explicit neutral comparison or replication studies. In other words, despite some general advice on the 

design and analysis of neutral comparison and benchmark studies provided in recent literature, there 

remains a lack of concrete guidance for several issues faced in reality. Hence, the conduct of such 

studies still equals what statistician Gelman calls a "garden of forking paths" 138 and the researcher’s 

degree of freedom remains inherent in the scientific execution of comparison studies 113. This stresses 

the importance of clear, precise and comprehensive documentation of any preliminary actions, and all 

choices made throughout and post-hoc to the execution of a study. Maximum transparency and 

availability, also with regards to sharing of data, protocols, materials, and software, are crucial to 

impede biased interpretations of results, over-optimistic conclusions and failures of validation or 

replication 110,134,135. 

2.3.3 Meta-Analysis of Diagnostic Test Accuracy Trials 

With the attempt to gather all available empirical evidence to obtain answers to a specific question, 

systematic reviews are a centrepiece of evidence-based medicine 139. In the form of a meta-analysis, 

the results of all studies comprised in a certain systematic review can be combined into an overall 

result. Such meta-analyses offer the opportunity to combine and critically and systematically evaluate 

results of comparable studies 140. Among other benefits, the statistical combination of results from two 

or more separate studies increases the numbers of observations, improves the statistical power and 

achieves higher certainty in estimates of the effect sizes of an association or intervention 140. Meta-

analyses continue to become increasingly popular and with regards to interventional studies, there is 

a range of well-established statistical methods combining the results from different studies 141. 
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Contrarily, the development of methods for meta-analysis of DTA studies is still an ongoing, vivid area 

of research 139,141. This is particularly attributable to the increased complexity of the bivariate outcome 

of DTA studies 139,141. Generally, the aim of DTA studies is to assess how accurate and well a diagnostic 

test (e.g., a score, a biomarker, or an imaging parameter) is able to detect or exclude a target condition 

of interest (i.e., in medical research this is often a disease of interest) at varying diagnostic thresholds 
140,142. This results in a bivariate outcome, i.e., two measures of probability, usually reported in terms 

of sensitivity and specificity 142. Sensitivity refers to a test's ability to correctly appoint a diseased 

individual as positive. Vice versa, specificity quantifies the test's ability to correctly identify a non-

diseased individual as negative. Meta-analyses in this context may even further be complicated, as 

each DTA study reports several pairs of sensitivity and specificity which all belong to a different 

diagnostic threshold 141. ROC curves are frequently used to graphically show the connection or trade-

off between sensitivity and specificity for different possible thresholds. Albeit there is a range of well-

known and routinely used methods for single pairs of sensitivity and specificity, there is a lack of 

guidance on the methodological choice when meta-analysing ROC curves 139. 

Among the most well-known methods for bivariate meta-analyses of DTA studies are the hierarchical 

summary receiver operating characteristic curve model proposed by Rutter and Gatsonis 143 and the 

bivariate model proposed by Reitsma et al. 144 and Chu and Cole 145 139,141. These approaches take 

heterogeneity and correlation between individual studies arising from different threshold values 

across studies into account, but do not explicitly consider study-specific threshold values. Further, they 

do not allow considering several and different thresholds per study. Though, accommodating only 

sensitivity and specificity from a single threshold from each study may result in heavy information loss 
139. In addition, as they do not use the actual numerical values of the thresholds, it remains unknown 

what threshold value any pooled estimate (or point on the summary ROC curve) corresponds to. To 

counteract these issues it has been suggested in the past to either use standard meta-analysis 

methodology and select only one pair of sensitivity and specificity or to perform several independent 

meta-analyses based on the same studies to estimate summary sensitivity and specificity at each 

threshold 146. However, this is far from optimal, potentially resulting in neglected correlations between 

several thresholds, loss of knowledge due to ignorance of the full information from single studies and 

unreliable estimates 139. Literature provides more advanced and specialized statistical approaches that 

are able to handle the full information in a unified analysis. Yet, they come with relevant limitations, 

as for instance, the requirement of identical thresholds across studies, overoptimistic findings or the 

ignorance of precise threshold values which turns inference on sensitivity and specificity at given 

thresholds impossible 139. Other drawbacks are the assumption of fixed-effects, i.e., identical true 

underlying values for sensitivity and specificity across studies or that methods are inapplicable in 

extreme situations, e.g., with values of 100% for sensitivity or specificity (see 139 for a detailed 

discussion).  

Recently, some advanced approaches with desirable properties have been proposed 141. These allow 

handling data from multiple thresholds in a unified analysis and do not suffer from the 

beforementioned issues 141. Three of the methods have been shown to work well in practice, and have 

been discussed as promising additions to the toolbox of meta-analysis of DTA studies. Precisely, the 

three frequentist approaches have been proposed by Steinhauser et al. 147, Hoyer et al. 139, and Frömke 

et al. 148 and are presented in the following Section 2.3.4. 

2.3.4 Methods for Meta-Analysis of Diagnostic Test Accuracy Studies with Multiple Thresholds  

The method proposed by Frömke et al. 148 is essentially non-parametric, i.e., does not assume a certain 

distribution. In contrast, the two other approaches that are introduced in this section assume that each 

study to be included in a meta-analysis returns test results that differ in their distribution for diseased 

and non-diseased. As outcome, the approaches model suitable transformed diagnostic test values of 
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the diseased and the non-diseased, providing summary sensitivities and specificities for the respective 

threshold values. In terms of notation and model definition, the following Sections 2.3.3 and 2.3.4 are 

aligned with Zapf et al. 141. 

𝑘 = 1, … , 𝑁 denotes the studies included in a meta-analysis. The true disease state is captured by 𝑑 =

0 (individuals without the target condition, i.e., non-diseased individuals) and 𝑑 = 1 (individuals with 

the target condition, i.e., here diseased individuals). The total number of diseased and non-diseased 

individuals in study 𝑘 is denoted by 𝑛𝑘𝑑, while each individual study participant is indexed by 𝑠 =

1, … , 𝑛𝑘𝑑. For each individual 𝑠, the actual result of the continuous diagnostic test in disease state 𝑑 

and study 𝑘 is labelled 𝑋𝑘𝑑𝑠. The different thresholds at which data are available in each single study 

𝑘 are indexed by 𝑖 = 1, … , 𝑡𝑘. The corresponding numerical threshold values to these indices are 

labelled 𝑐𝑘𝑖. The two measures sensitivity 𝑠𝑒 and specificity 𝑠𝑝 are used for final evaluation of the 

diagnostic test. The sensitivity 𝑠𝑒 is defined as equivalent to the true positive fraction 𝑡𝑝𝑓, while the 

specificity 𝑠𝑝 equals the true negative fraction 𝑡𝑛. Accordingly, 1 − 𝑠𝑝 yields the false positive fraction 

𝑓𝑝𝑓. Lastly,  

logit(𝑥) = log(𝑥) − log(1 − 𝑥)  
 

(78) 

is used for logit-transformation of the threshold values.  

The Random Effects Model by Steinhauser et al. (2016) 

The approach proposed by Steinhauser et al. 147 relies on a two-stage random effects model. The model 

assumes that at study level and for each value of the threshold, the observed true and false negative 

fraction (i.e., 𝑠𝑝 and 1 − 𝑠𝑒, respectively) are transformed via a suitable quantile function 𝑓. Log-

transformation was used for the threshold value and the logit-function defined in (78) was used for 𝑓. 

At meta-analysis level, Steinhauser et al. 147 apply a linear mixed model to fit the resulting values across 

studies. Aligning with the assumption of the underlying Log-Logistic distributions for 𝑋𝑘0𝑠 and 𝑋𝑘1𝑠, 

this model is given by  

logit( 𝑠𝑝𝑘𝑖) = 𝛼0 + 𝑎0𝑘 + (𝛽0 + 𝑏0𝑘) log(𝑐𝑘𝑖) + 휀𝑘𝑖 (79) 
 

logit(1 − 𝑠𝑒𝑘𝑖) = 𝛼1 + 𝑎1𝑘 + (𝛽1 + 𝑏1𝑘) log(𝑐𝑘𝑖) + 𝛿𝑘𝑖 . 
 

(80) 

𝑠𝑝𝑘𝑖̂  and 𝑠𝑒𝑘𝑖̂  denote the crude estimates of specificity 𝑠𝑝 and sensitivity 1 − 𝑠𝑒 at threshold 𝑐𝑘𝑖 in 

study 𝑘. 𝛼0 and 𝛼1 are fixed intercepts, while 𝛽0 and 𝛽1 represent fixed slopes for the non-diseased 

and diseased individuals, respectively. Random intercepts and slopes are denoted by 𝑎0𝑘, 𝑎1𝑘, 𝑏0𝑘 and 

𝑏1𝑘, which are assumed to follow a common four-dimensional normal distribution allowing for 

correlation across studies. 휀𝑘𝑖  and 𝛿𝑘𝑖  are the within-study error terms. Each data point is weighted 

using the inverse variance of the corresponding logit-transformed proportion. Model-based 

distribution functions for the non-diseased and diseased individuals are obtained by back-transforming 

the fixed effects. Finally, these distributions are used to obtain estimates of the summary ROC curve 

with pointwise confidence regions. The area under the curve (AUC) can be estimated by numerical 

integration based on the trapezoidal rule.  

The Steinhauser model was implemented in the R package diagmeta (version 0.5-0) 149 in the freely 

available software environment R (R Core Team, 2021 69). 

The Time-to-Event Model by Hoyer et al. (2018) 

The model proposed by Hoyer et al. 139 assumes that diagnostic test values can be seen as interval-

censored since it is only known if test values exceed or fall below a predefined threshold. To model 
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these interval-censored diagnostic test values, it is possible to choose from various distributions (e.g., 

Weibull, Log-Normal, Log-Logistic). In the context of DTA studies, and in line with time-to-event 

models, the “events” of interest are here to be tested positive in the population of diseased or negative 

in the population of non-diseased. Further, the “time” is here indicated by the diagnostic test value. 

The event probability in the diseased population is thus reflected by the sensitivity, and the event 

probability in the non-diseased population is represented by 1- specificity. The outcome, i.e., the 

diagnostic test values, are log-transformed which results in an accelerated failure time model with a 

unified linear predictor. Formally, the model equations are  

log(𝑥𝑘0) = 𝑏0 + 휀0 + 𝑢𝑘0  
 

(81) 

log(𝑥𝑘1) = 𝑏1 + 휀1 + 𝑢𝑘1  
 

(82) 

where 

(
𝑢𝑘0

𝑢𝑘1
) ~𝑁 [(

0
0

) , (
𝜎0

2 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎1
2 )]  

 

(83) 

and with 𝑏0 and 𝑏1denoting the location parameters after log-transformation of the outcome of 

interest. 휀0 and 휀1 depict error terms with distributions corresponding to the log-transformed 

diagnostic test values 𝑥𝑘0 and 𝑥𝑘1 in the population of non-diseased and diseased, respectively. 𝑢𝑘0 

and 𝑢𝑘1 are study-specific random effects which are assumed to be bivariate normally distributed with 

correlation parameter 𝜌 and variances 𝜎0
2 and 𝜎1

2. These random effects account for potential 

between-study heterogeneity and correlations and are added to the location parameters after log-

transformation of the outcome. Sensitivities and specificities are predicted at several thresholds based 

on the resulting survival function. The related AUC is obtained by use of the trapezoidal rule. 

The approach was implemented in SAS 9.3 (SAS Institute Inc., Cary, NC, USA) with the source code 

available in the original article of Hoyer et al. 139. 

The Non-Parametric Model by Frömke et al. (2020) 

Frömke et al. 148 extended the non-parametric method for diagnostic studies by Konietschke and 

Brunner 150 and transferred it to the context of meta-analysis of DTA studies with multiple thresholds. 

Their proposed model explicitly avoids the concrete parametric distribution assumption for the test 

values among the diseased and non-diseased. The approach proposes that the AUC equals the relative 

effect  

𝑝 = 𝑃(𝑋𝑘0𝑠 < 𝑋𝑘1𝑠) +
1

2
𝑃(𝑋𝑘0𝑠 = 𝑋𝑘1𝑠). 

(84) 

To estimate the AUC, all measurements 𝑋𝑘𝑑𝑠 are replaced by their global mid-ranks 𝑅𝑘𝑑𝑠 and for all 

individuals with disease status 𝑑 over all studies, the mean rank �̅�.𝑑. is calculated. Then, it holds that 

the AUC is estimated by 

𝐴𝑈�̂� =
1

2
+

1

𝑛
(�̅�.1. − �̅�.0.) 

 

(85) 

with 𝑛 = ∑ ∑ 𝑛𝑘𝑑𝑑∈[0,1]
𝑁
𝑘=1  as the total number of participants from all studies included. To calculate 

the ranks, this would require data on individual participant level 𝑋𝑘𝑑𝑠. Though, for diagnostic studies 

only aggregated data are available. Therefore, the number of diseased and non-diseased individuals 

with diagnostic test values below or greater than the study-specific thresholds 𝑐𝑘𝑖 is used to generate 

fictious data between the thresholds 𝑐𝑘𝑖  and 𝑐𝑘𝑖+1 from a one-point or uniform distribution. Precisely, 
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data are drawn uniformly distributed from the interval from the smallest and largest threshold that is 

included in the meta-analysis for values below and above the first and last threshold. Specificity and 

sensitivity are estimated by replacing the observations of the diseased and non-diseased, respectively, 

by a one-point distribution. By means of the asymptotic equivalence theorem, it holds that 

√𝑁(�̂� − 𝑝)~𝑁(0, 𝜎2). Wald confidence intervals for all estimates, i.e., AUC, specificity and sensitivity, 

can be derived. Applying logit transformation to the confidence interval ensures that the boundaries 

remain within the interval [0,1].  

The model was implemented in R (R Core Team, 2021 69).  

2.3.5 Neutral Comparison of Methods for Meta-Analysis of Diagnostic Test Accuracy Studies 

Yet, there is a lack of (neutral) guidance on the usage of the different methods presented in Section 

2.3.3 and it remains unclear which approach may be preferable in a given situation. This can be 

changed through means of a neutral comparison study and using simulated data to systematically 

compare the approaches and their respective performance in various scenarios when the ground truth 

is known. The following briefly outlines the carrying out of such a comparative simulation study (for 

details see Contribution 5). Incorporating the authors of the three approaches in the comparison study 

ensures neutrality (at least to a certain level) and guarantees the required expertise in each 

methodology and the field of application. Aligning the study with the guidelines provided by Morris et 

al.134, Boulesteix et al.22,106, Nießl et al.23,110, Friedrich et al.122 amongst others,  warrants that the 

analysis can be considered a valid basis for a fair and neutral comparison of the approaches. For 

maximum transparency and to allow for replication, all data and code are publicly available on 

Zenodo151.  

Design and Setting  

As means to combine simulations and benchmarking and thereby maximize the advantages and 

minimise the limitations of each type of data, Friedrich et al.122 recommend to simulate data based on 

a real data example. Therefore, a case study meta-analysis from the field of nephrology conducted by 

Haase-Fielitz et al.152 is used as an example to motivate the simulation setting. Haase-Fielitz et al.152 

aimed to evaluate the diagnostic accuracy of neutrophil gelatinase associated lipocalin (NGAL) as a 

biomarker for early prediction of acute kidney injury (AKI). The data has already been used as example 

in the practical benchmarking study by Zapf et al.141. It provides a suitable context for the 

implementation of the three methods and can be assumed representative for domain of interest as 

recommended by Boulesteix22 (“it is important to make a selection of data sets that is “as 

representative as possible” to cover the domain of interest”).  

With regards to software, SAS 9.4 (SAS Institute Inc., Cary, NC, USA) is used to generate data. 

Estimation is conducted in the software in which the models were initially implemented, i.e., SAS 9.4 

for the approach of Hoyer et al. (2018) and R153 for the models of Steinhauser et al. (2016) and Frömke 

et al. (2022). For a unified evaluation, the results of all methods are summarised and visualised in R (R 

Core Team, 2021 69). 

Data-Generating Mechanisms 

The approach of Hoyer et al. (2018) is used as parametric data generating model to simulate diagnostic 

values of the diseased and non-diseased study participants. The Weibull-, Log-Logistic, Log-Normal and 

Normal distribution are assumed as true underlying distributions. The latter is notable as it results in 

misspecification of all three methods. To assess the approaches in a wide range of settings (108 

different scenarios in total), several parameters are varied: The true underlying AUCs (0.7, 0.8 and 0.9), 

the true disease prevalence (0.02, 0.2 and 0.5) and the correlation between random effects to model 
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heterogeneity across studies (0.3, 0.6 and 0.9). Graphical and tabular representations are used to give 

precise information on how the model parameters were varied to mimic the true AUCs, to report the 

resulting true sensitivities and specificities for given values of thresholds at which the models are finally 

evaluated and to visualise the theoretical distribution curves of both populations per scenario. For 

each of the 108 scenarios, 1000 meta-analyses are generated. The uniform distribution is used and 

values are rounded to the nearest integer to sample the number of studies per meta-analysis (5 to 30), 

the number of participants per single study (30 to 300) and the number of thresholds per study (1 to 

10). The size of the diseased population is derived by multiplying the true underlying prevalence by 

the total number of study participants. The number of non-diseased can then be determined as 

difference between the total number and number of diseased. To identify true positives and negatives, 

individual diagnostic test values are compared to the generated thresholds. This information is used 

to create a final diagnostic contingency table that serves as input data for the simulation. 

Estimation Methods and Performance Measures  

Data from each meta-analysis was incorporated in each of the three models as follows. Parameter 

estimation for the approach of Hoyer et al. (2018) is implemented in SAS PROC NLMIXED with the 

default settings and assuming that the interval-censored diagnostic test values are Weibull distributed. 

Input values for the fixed and random effect parameters were derived from univariate models. The 

logit-function defined in (78) is used to log-transform the threshold values for application of the 

method proposed by Steinhauser et al. (2016). For the approach of Frömke et al. (2022), no distribution 

specification is needed.  

The performance of the three approaches is assessed by comparing the estimated sensitivities and 

specificities together with their 95% confidence intervals at the specified threshold values of 50, 100, 

130, 150 and 200. As recommended, several measures of interest are used for a comprehensive 

evaluation of the approaches 134. Precisely, the absolute bias, the mean squared error, the empirical 

coverage of the two-sided 95% confidence intervals and the model’s convergence are computed. The 

latter is used to evaluate the robustness in terms of number of converged simulation runs 134.   
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3 Availability and Aspects related to Data, Code and Software 
 

Without any doubt, the best statistical method is of little use if it cannot be used in practice and does 

not allow for application to an actual or simulated data set. Since one of the aims of this thesis is to 

make statistical modelling of chronic disease-related data more accessible and comprehensible, as well 

as to provide guidance for selecting and implementing suitable statistical approaches, all of the five 

contributions incorporate a practical application of the relevant statistical approaches.  

Some of the analyses (related to contributing articles 4 and 5) were implemented in SAS (SAS Institute 

Inc., Cary, NC, USA). However, the open source software R (R Core Team, 2021 69) was used for the 

majority of the computational aspects related to perform the statistical analyses as well as for 

summarising and visualising the results. To make the methodology accessible, to maximise 

transparency and to allow for reproducing the analyses in the main articles and their supporting 

information, the source codes and underlying data sets of all contributing articles are publicly available 

on Zenodo or directly on the publisher’s website:  

Contribution 1 - https://doi.org/10.1371/journal.pone.0264739  

Contribution 2 - 10.5281/zenodo.6799292 

Contribution 3 - 10.5281/zenodo.8009685 

Contribution 4 - 10.5281/zenodo.7124988 

Contribution 5 - 10.5281/zenodo.7802089 

Data are available either in a public, open access repository or have been published in previous 

publications of other scholars as referenced in the code and in the according contributing article. Due 

to data regulations, some data was not allowed for publication. However, in these cases only relevant 

parts of the data are uploaded or a simulated data set is provided to being able to run the analyses. 

The software R consists of some core packages (known as “Base R”) which are already included when 

installing the software. The core language of R is extended by numerous packages that contain 

reusable code and documentation and which are published online. These additional packages 

comprise further functions for analysing data with regard to research questions from various different 

contexts. The following essential packages (besides “Base R) have been used for this dissertation: 

addhazard   functions for fitting additive hazard models for survival analysis  

deSolve   functions for numerical treatment and solving of differential equations 

diagmeta   functions for the meta-analysis of DTA studies with multiple thresholds  

dplyr   functions for data transformations, such as tools for mutating, rearranging or 

joining data. 

forcats    functions for manipulating data in the form of factors 

ggplot2   functions for visualisations and graphics 

gridExtra   functions for working with "grid" graphics, i.e., to arrange multiple grid- 

based plots on a page, and draw tables 

haven   enables R to read and write various data formats used by other statistical  

packages 

https://doi.org/10.1371/journal.pone.0264739
https://zenodo.org/doi/10.5281/zenodo.6799292
https://zenodo.org/doi/10.5281/zenodo.8009685
https://zenodo.org/doi/10.5281/zenodo.7124988
https://zenodo.org/doi/10.5281/zenodo.7802089
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matrixcalc   functions to support matrix calculations for probability, econometric and 

numerical analysis 

meta   functions for standard methods for meta-analysis 

numDeriv  functions for calculating (usually) accurate numerical first and second order 

derivatives 

optimx  general-purpose optimisation wrapper function that calls other R packages 

and functions for optimisation, such as the existing optim() function 

purrr    tools for working with functions and vectors 

readr   functions for importing data from different sources 

stringr   functions for manipulating data in the form of strings 

survival   functions for analysing survival data 

tibble   functionalities for data wrangling and storing data in a tidy form 

tidyr    functionalities for data wrangling and storing data in a tidy form 

tidyverse   set of packages which help to transform and better present data. It assists  

with data import, tidying, manipulation, and data visualisation. 
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4 Discussion  

“Statistics is the grammar of science.“ 154 

(Karl Pearson) 

Statistics can be defined as mathematical discipline that concerns the collection, organisation, analysis, 

interpretation, and presentation of data155. Nowadays, due to the growing amount of electronic 

medical records, intensified data sharing and access, the available data from health research grow 

faster than ever156. Further, particularly in medical research, evidence-based decision making 

increasingly shifts to the centre of attention as it supplies the body of content that can lead to viable 

decisions157. This, along with the fact that that scientific knowledge continuously evolves as a valued 

resource in our society, the role of statistics becomes more and more crucial. 

With regards to the increasing burden of chronic conditions, research on health and (chronic) diseases 

of a population, i.e., epidemiological research, continuously emerges as highly relevant scientific field3-

5. Epidemiology has always had centrality in producing evidence to improve population health, to 

advance the quality of life and to extend life expectancy, amongst others6. Epidemiological findings 

and insights intrinsically matter because they shed light on what ameliorates or worsens population 

health and suggest ways to improve well-being6.  

Therefore, the central aim of this thesis lies in highlighting the relevance and usefulness of statistical 

methods for epidemiological research in the context of chronic disease modelling. This is achieved by 

(i) developing and introducing new methods, (ii) by raising awareness of useful statistical approaches 

and showing how to implement them in practice, (iii) by (neutrally and systematically) comparing 

existing and new models to advance methodological research and (iv) by applying and assessing the 

proposed statistical approaches to various diseases and contexts of chronic disease research to answer 

potential research questions that may arise in these fields.  

Precisely, this dissertation investigated a variety of statistical modelling approaches from different 

areas of application in epidemiological research. The thesis is made up of three distinct parts that 

altogether highlight the importance and benefits of statistical methods for chronic disease modelling. 

Each part has a different focus and is accompanied by at least one contributed manuscript. Part I is 

devoted to epidemiological projections, e.g., projections of prevalence, case numbers or disease 

specific costs. Part II covers the analysis of time-to-event outcomes. It aims at justifying and motivating 

the need of a new statistical method. Precisely, its key contribution is to propose, implement and apply 

a new parametric additive hazard model. Part III focuses on the field of (neutral) comparison studies 

and provides guidance on suitable methodological choices by formally and systematically comparing 

three frequentist approaches for the meta-analysis of DTA studies in various scenarios.  

Part I - Epidemiological Projection Models 

Part I is concerned with statistical estimation and projection methods of epidemiological measures in 

the context of chronic diseases. Strengths and limitations of the different techniques are assessed and, 

for illustration purposes, the methods are applied in a practical example using aggregated and 

routinely collected data to estimate the current and future epidemiological and economic burden of 

diabetes in Germany. Overall, the findings of all contributing articles 1, 2 and 3 imply that Germany 

will possibly face greater demand for diabetes-related education, healthcare, and medical resources. 
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Altogether, the contributing articles highlight the need for urgent action to prepare for the potential 

development of diabetes and mitigate its consequences. 

The first contribution focuses on a comparative analysis of existing chronic disease projection methods 

and introduces a new statistical modelling approach. Three methods are critically reviewed and 

compared in a practical application with the aim of estimating the number of men with diagnosed T2D 

in Germany between 2010 and 2040. The “status quo” approach simply combines the sex- and age-

specific prevalence of T2D in 2010 with future population distributions11,54. Method 2) models the 

prevalence of T2D employing a scalar PDE (see Section 2.1.3) which incorporates incidence and 

mortality rates. Subsequently, the estimated prevalence is applied to the population projection of the 

FSO54. The newly proposed method 3) uses a two-dimensional system of PDEs which directly return 

future case numbers (see Section 2.1.2). The results of the three methods differ substantially: method 

1 projects an increase by 29% in the number of men with diagnosed T2D in Germany in 2040 compared 

to 2010 (3.6 million versus 2.8 million in 2010). Methods 2) and 3) project increases by +104% (5.9 

million men) and +116% (6.0 million men), respectively. It became evident that ignoring temporal 

trends in disease-specific rates, i.e., incidence and mortality, may result in misleading projections of 

future chronic disease numbers34,54.  

Contribution 2 provides estimates for the incidence, prevalence, and number of people with diagnosed 

type 1 diabetes for the whole German population between 2010 and 2040. Compared with 2010, the 

relative increase of the people with T1D ranges from 1% to 32% in 2040. A main driver of this 

considerable increase are temporal trends in the incidence. The work confirms that ignoring these 

trends, i.e., applying a constant prevalence to population projections, probably underestimates future 

chronic disease numbers. Further, the analysis showed that the peak of the age-specific prevalence is 

projected to shift toward older ages.  

Based on nationwide representative routine data from 2010 from the SHI in Germany (almost 90% of 

the population’s insurance)26,63, contribution 3 projected age- and sex-specific healthcare expenses 

separately for T1D and T2D considering future demographic, disease-specific and cost trends. 

Currently, diabetes imposes a large economic burden on Germany which is projected to increase 

substantially until 2040. Total annual expenses were projected to rise remarkably until 2040 (versus 

2010) by 1% to 281% for T1D (€1 to €4 billion) and by 8% to 364% for T2D (€30 to €131 billion). In 2040, 

and depending on annual cost growth (1% versus 5% p.a.), annual per capita costs were projected to 

rise to €6,581 to €12,057 for T1D and €5,245 to €8,999 for T2D. Temporal trends in the incidence and 

cost growth are main drivers of this increase. 

With regards to methodology, the first part of this work contributes to the field of chronic disease 

modeling by presenting several statistical approaches for estimating and projecting epidemiological 

measures and healthcare costs. This is important because appropriate planning of economic and 

health care resources and the development of effective disease management programs require 

appropriate quantifications of current and future burden11. In order to be of use, epidemiological 

measures need to be representative, available in a fast and timely manner, estimated in a transparent 

way and must be communicated understandably6. However, many of the statistical principles and 

techniques that may be used to solve epidemiological problems require individual data from primary 

studies whose collection is time consuming and costly9,49,158. For instance, conducting longitudinal 

observational studies to survey long periods of time is a difficult task, if not even infeasible in some 

contexts. Secondary data provides a pleasing alternative, as the data has already been collected albeit 

for another purpose. Yet, due to strict data protection and security regulations, access to secondary 

data from individuals for research purposes is often limited or fully prohibited. In contrast to traditional 

approaches which are commonly based on individual, primary data, the presented methodological 
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approaches in Section 2.1.2 and 2.1.3 and in the associated contributing articles 1, 2 and 3 bear the 

potential to survey chronic diseases more efficiently. No individual data are needed, i.e., data in 

aggregated form as for instance routinely documented secondary data, are sufficient. Using secondary 

instead of primary data, the approaches are inherently resource-saving. For instance, the proposed 

methodologies show large potential to reduce costs and to improve timeliness of a surveillance system. 

In addition, the quality of epidemiological estimates and projections could improve and may even be 

considered representative, as such aggregated and routinely documented secondary data often 

comprise large sample sizes and evenly reflect on all age groups and other demographic factors. In 

view of the little time and cost expenses required for the application of the proposed methods, it would 

also be possible for poorer countries to develop and maintain disease surveillance activities.  

Of course, in order to profit from the advantages of secondary data, it needs to be available for 

research purposes in a timely manner. Future valuable efforts should focus on collecting, integrating 

and archiving data in a standardised way and making it publicly available (or at least openly available 

for scientific research purposes). This is imperative for the data to be of actual use for surveillance 

purposes of diabetes or any other chronic disease. In Germany, there is room for improvement and it 

may be valuable to develop such collective systems and data bases. In countries such as Sweden, 

Denmark or Belgium, this is achieved through population-based registries that contain records for all 

individuals of a particular population diagnosed with a certain disease32,33. Such registries show high 

potential to enrich chronic disease surveillance activities. However, they are relatively costly to 

establish and maintain and as shown, the proposed PDE may actually serve as a valuable alternative 

to estimate, for instance, the incidence based on secondary data of a disease’s prevalence and 

mortality only. 

Unfortunately, the PDEs discussed are rarely used in epidemiology or public health contexts54. This 

infrequent use of such statistical models is in contrast to the high potential of compartment models, 

the use of mathematical relations and to the tremendous worldwide burden of chronic diseases9. One 

of the reasons may be that only a few researchers are aware of the equation and its potential. Further 

important avenues for future research would be to apply the proposed methods to other countries 

and/or other chronic diseases and to update previous epidemiological findings of chronic diseases as 

soon as more up-to-date data would be available, in order to raise awareness of these (more advanced) 

modelling approaches. Another advantage of the proposed mathematical relations is their flexibility, 

e.g. in terms of the possibility of simulating scenarios and assessing the effect of covariates or 

interventions on future case numbers. Future valuable efforts may concentrate on considering further 

reformulations or extensions that may be relevant in chronic disease modelling and epidemiology. 

Such investigations could yield valuable insights into the respective disease situations and could 

contribute for instance to future development of efficient disease management, appropriate resource 

planning, effective prevention activities or to the refinement of health policies.  

 
Part II - Time-to-Event Models 

The model presented in contribution 4 aims at providing an alternative statistical approach to already 

existing models used for time-to-event analyses. Implementing the new model in a practical 

application of a real-world example and a simulation study showed that the model works well in 

practice and yields valid results. The findings from the practical application to real-world data from the 

HALLUCA study investigating the survival of NSCLC patients indicate that per year, there are on an 

additional 84 deaths among cancer patients in TNM stage 4 per 100 person-years compared to those 

with a lower TNM-class, i.e., the increase in hazards is about 0.8. Particularly from a clinical point of 

view, it is key to being able to comprehensibly and clearly communicate results from any analysis. This 
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facilitated interpretation, for instance in terms of communicating outcomes on the original time scale 

and including time-independent covariates, is one of the model’s most convincing advantages. The 

implications for medical care of lung cancer, however, are not the primary focus here. Instead, the goal 

was to derive the new approach itself and thereby advance statistical modelling techniques in the 

context of time-to-event data. In principle, the model could also be used in any other subject than the 

medical field. 

The available source code implements the proposed parametric additive hazard model in a relatively 
simple setting. Though, the proposed approach is highly flexible and exciting direction for further 
research would be to focus on extending it and exploit all of its properties. Therefore, current work 
focuses on another application of the parametric additive hazard model with the ultimate aim of 
describing how to derive, compute and interpret the NNT. Furthermore, the method allows for 
instance for modelling correlated data by including random effects in the linear predictor or allows for 
specifying baseline distributions that have more than two parameters. Extending the algorithm in that 
terms would highly increase the flexibility in processing more complex time-to-event data and would 
contribute largely to further development and refinement of the model. Lastly, future valuable efforts 
could focus on creating and publishing an R-package for maximum user-friendliness and ease of 
practical application. 
 
Part III - Comparison and Benchmark Studies  

The goals of part III are twofold. The first aim was to fill the research gap indicated by Zapf et al.141 and 

systematically assess the advantages and limitations of three different, existing statistical approaches 

for meta-analyses of DTA trials with multiple-threshold information. Therefore, the fifth contribution 

conducted a simulation study for a joint evaluation to allow for a fair comparison of the methods. 

Depending on the simulation scenario (108 were assessed) all methods could be presented as best or 

worst. Overall, the approach by Hoyer et al. (2018) can be recommended for most cases, returning 

smallest bias and empirical coverages closest to the specified ones. The model of Steinhauser et al. 

(2016) can be considered a suitable alternative as it leads to satisfactory results in many settings. In 

case of non-convergence, the approach by Frömke et al. (2022) could be used as back-up strategy.  

The second aim was to further raise awareness and promote the conduct of neutral comparison studies 

to improve and support continuous innovation, development and improvement in methodological 

research22. In an ideal future world and in analogy to the concept of “evidence-based medicine”, 

statistics should establish standards and guidelines based on the results of well-done, neutral 

comparative studies and consensus from independent teams22,106. Though, currently, multiple biases 

such as over-optimism prevail in academia and produce inefficiency in knowledge building, and are 

likely to continue to do so in the future23. Of crucial note is that the problem of over-optimism is partly 

caused by the contemporary publication system22,23. Future valuable efforts may thus focus on how to 

change publication policies and the attitude of journals, editors, funding agencies, institutions, 

regulators, the public, referees or a combination thereof, and in the future, promote an efficient, self-

correcting research process135. For researchers, there are several additional possibilities to minimize 

the impact of biases in academia without disrupting innovation and instead maximise efficient 

development of a credible knowledge base and a reliable corpus of published research23,80,110,121,134-136. 

Most important is to be aware of the presence of such biases23,110. Further, an important avenue for 

future research is to focus on of neutral comparison studies of existing studies, rather than only on the 

proposition of new statistical approaches. Future works should integrate the strategies and potential 

correctives proposed by other scholars and ensure that more stringent requirements with regards to 

transparent documentation are met. Also, it should be discussed how to optimize the formation and 

efficient co-working of collaborative consortia of scholars.  
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5 Contributing Publications  
 

5.1 Statistical Modelling and Projections of Chronic Disease-Related Burden 

5.1.1 Contribution 1 – Future Prevalence of Type 2 Diabetes—A Comparative Analysis of 

Chronic Disease Projection Methods 
 

Contributing Article Voeltz, D., Tönnies, T., Brinks, R., & Hoyer, A. (2022). Future prevalence of type 2 

diabetes—A comparative analysis of chronic disease projection methods. Plos one, 17(3), e0264739. 

Copyright The authors. Published by PLOS ONE. This is an open access article under the terms of the 

Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 

permits use, distribution and reproduction in any medium, provided the original work is properly cited 

and is not used for commercial purposes. 

Code and Data https://doi.org/10.1371/journal.pone.0264739 

Supplementary Material https://doi.org/10.1371/journal.pone.0264739  

Author Contributions D.V. is the corresponding author of this work. D.V. performed the analytic 

calculations, i.e., implemented the methods, scenarios and analysed the data. Further, D.V. took the 

lead in writing the manuscript and, together with A.H., was in charge of overall direction and planning. 

T.T., R.B. and A.H. supported the derivation of the methodology. All co-authors verified the analytical 

methods, the results and the main conceptual ideas All authors provided critical feedback and helped 

shape the research, analysis and manuscript.  
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5.1.2 Contribution 2 – Future Number of People with diagnosed Type 1 Diabetes in Germany 

until 2040: An Analysis based on Claims Data 
 

Contributing Article 2. Voeltz, D., Brinks, R., Tönnies, T., Hoyer, A. Future number of people with 

diagnosed type 1 diabetes in Germany until 2040: an analysis based on claims data. BMJ Open Diabetes 

Research and Care. 2023; 11(2), e003156. 

Copyright The authors. Published by BMJ. Re-use permitted under CC BY-NC. No commercial re-use. 

Reuse is allowed pursuant to the terms of the Creative Commons Attribution-NonCommercial 4.0 

International (CC BY-NC 4.0) licence. 

Code and Data 10.5281/zenodo.6799292 

Supplementary Material https://drc.bmj.com/content/bmjdrc/11/2/e003156.full.pdf?with-ds=yes  

Author Contributions D.V. is the corresponding author of this work. As such, D.V. performed the 

analytic calculations, i.e., implemented the methods and scenarios and analysed the data. Further, D.V. 

took the lead in writing the manuscript and, together with A.H., was in charge of overall direction and 

planning. All co-authors verified the analytical methods, the results and the main conceptual ideas. All 

authors provided critical feedback and helped shape the research, analysis and manuscript. 

https://zenodo.org/doi/10.5281/zenodo.6799292
https://drc.bmj.com/content/bmjdrc/11/2/e003156.full.pdf?with-ds=yes
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5.1.3 Contribution 3 – Projecting the Economic Burden of Type 1 and Type 2 Diabetes Mellitus 

in Germany from 2010 until 2040 
 

Manuscript in Preparation Voeltz, D., Vetterer, M., Seidel-Jacobs, E., Brinks, R., Tönnies, T., Hoyer, A. 

Projecting the economic burden of type 1 and type 2 diabetes mellitus in Germany from 2010 until 

2040. Currently submitted at Population Health Metrics.   

Status Currently under review at Population Health Metrics. 

Code and Data 10.5281/zenodo.8009685 

Author Contributions D.V. is the guarantor and corresponding author of this work and, as such, had 

full access to all the data in the study and takes responsibility for the integrity of the data and the 

accuracy of the data analysis. D.V. researched data, derived the methodology, performed the formal 

analysis, and wrote the manuscript. A.H. supervised the study and, together with D.V., developed the 

theoretical concept of the present study. All authors discussed the results, reviewed and edited the 

manuscript and the statistical analyses. 

https://zenodo.org/doi/10.5281/zenodo.8009685
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Abstract  

Background: Our aim is to estimate age- and sex-specific direct medical costs related to diagnosed type 

1 and type 2 diabetes in Germany between 2010 and 2040. 

Methods: Based on nationwide representative routine data from 2010 from the statutory health 

insurance in Germany (almost 90% of the population’s insurance) we projected age- and sex-specific 

healthcare expenses for type 1 and 2 diabetes considering future demographic, disease-specific and 

cost trends. We combine per capita healthcare cost data together with the demographic structure of 

the German population, diabetes prevalence, incidence and mortality. Direct per capita costs, total 

annual costs, cost ratios for people with versus without diabetes and attributable costs were 

estimated. The source code for running the analysis is publicly available in the open-access repository 

Zenodo 159.  

Results: In 2010, total healthcare costs amounted to about €1.14 billion for type 1 and €28 billion for 

type 2 diabetes. Depending on the scenario, total annual expenses were projected to rise remarkably 

until 2040 compared to 2010, by 1% to 281% for type 1 (€1 to €4 billion) and by 8% to 364% for type 2 

diabetes (€30 to €131 billion). Depending on annual cost growth (1% vs. 5% p.a.), we estimated annual 

per capita costs of €6,581 to €12,057 for type 1 and €5,245 to €8,999 for type 2 diabetes in 2040.  

Conclusions: Diabetes imposes a large economic burden on Germany which is projected to increase 

substantially until 2040. Temporal trends in the incidence and cost growth are main drivers of this 

increase. This highlight the need for urgent action to prepare for the potential development and 

mitigate its consequences.  

 

Keywords: Cost analysis, Economic Burden of Disease, Epidemiology, Healthcare costs, Projection, 

Type 1 diabetes, Type 2 diabetes. 
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Introduction 

Worldwide, the number of people with diabetes and its associated costs have increased considerably59. 

In 2021, the global diabetes prevalence was estimated 10.5% among adults (20-79 years), i.e. 537 

million people, and caused healthcare costs of at least $966 billion 60. The absolute global economic 

burden is projected to grow to more than $2.1 trillion by 2030 160. In Germany, at least 7.2% of the 

population have diabetes, while this number is predicted to increase by up to 77% over the next 20 

years 161. This makes it a major health concern and challenge with regards to medical and economic 

resource planning. However, little is known about diabetes-related healthcare expenditures in 

Germany 11. Cost of illness estimates are relevant from economic, medical and political point of view, 

and are necessary for effective healthcare management, meeting future medical needs and evaluating 

measures for prevention and intervention.  

The only two available diabetes-related cost projections for Germany estimated an increase by 79% 

between 2010 and 2040 (from about €12 billion to €21 billion) 11, or healthcare expenditures of $30 to 

$56 billion in 2030 162. Though, the latter forecast lacks detailed country-specific input data, uses 

oversimplified methods and is based on a debatable assumption of constant diabetes prevalence over 

time. This also applies to international cost studies which are inherently limited by the methods applied 

11. For instance, they do not include an analysis of cost data or future cost trends such as inflation, 

ignore demographic changes, are limited to one sex, certain ages or other demographic input factors, 

do not differentiate the types of diabetes, or disregard the interplay of prevalence, incidence and 

mortality 10,11,63,161. However, with regards to diabetes, the incidence and mortality majorly impact 

disease dynamics and ignorance leads to severe underestimation of future prevalence, which is one of 

the input factors for cost analyses 10,161,163. Besides, the diabetes types are considerably different in 

their clinical representation, onset and progression 163. Demographic shifts such as the aging 

population is relevant for type 2 diabetes, as its prevalence peaks amongst the cost-intensive older age 

groups11. Consequently, accurate projection methods of future chronic disease-specific costs need to 

be capable of reflecting the complex interplay simultaneously and differentiate where appropriate.  
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In this study, we use nationally representative data and a comprehensive and transparent method to 

project the sex-, age-, year- and diabetes-type specific per capita costs, total excess costs and cost 

ratios of people with and without type 1 and type 2 diabetes, as well as attributable costs in Germany 

from 2010 until 2040.  

Methods 

Data 

We used the official population projection of the German Federal Statistical Office (FSO) 66, aggregated 

and published data on the incidence and mortality of individuals with versus without type 1 and 2 

diabetes 10,27,33,63,161,163, as well as information on healthcare expenditures of the general German 

population (see Additional Table 1 in Additional file 1) 26,67.  

Demographic inputs 

We obtained the expected age- and sex-specific population distribution and the mortality of the 

general population in Germany for each year from 2010 to 2040 and all ages from 0 to 100 years from 

the FSO 66. Six variants that represent rather realistic future developments instead of extreme 

assumptions 66 were considered to account for changes in migration, birth rates and population ageing. 

(see Additional Table 2 in Additional file 1). We used variant 2 (G2L2W2) as baseline, which assumes a 

birth rate (G2) of 1.55 children per woman, a life expectancy (L2) at birth in 2040 of 84.6 and 88.2 years 

for men and women, respectively, and a long-term net migration (W2) of annually 290,000 people. 

These assumptions align relatively well with values observed in Germany in 2020 and 2021 which 

include dynamics such as the COVID-19 pandemic or the Russo-Ukrainian war 164.  

Disease-specific epidemiological inputs 

Initial prevalence and incidence information were obtained from claims data that are considered 

representative for Germany and that were featured in recent projections of diabetes prevalence 

10,63,161,163. The data comprise information on the age and sex of 65 million insures in 2010 (about 80% 

of the total population) from all German statutory health insurances (SHI) and their diabetes diagnoses. 

We defined type 1 and type 2 diabetes based on the International Classification of Diseases-10 (ICD-
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10) codes E10–E14. In 2010, about 7.3% of the German population were diagnosed with type 2 and 

0.3% with type 1 diabetes. Regarding the age- and sex-specific mortality rate ratio (MRR) of people 

with versus without diabetes, we aligned with previous studies investigating diabetes in Germany 10,163 

and included nationally representative MRR estimates of type 2 diabetes from 2014 provided by 

Schmidt et al. 27 and estimates from Carstensen et al. 32,33 to approximate the MRR of type 1 diabetes 

in Germany 163.  

Cost inputs 

The average per capita healthcare costs for people with and without diabetes were obtained from 

aggregated claims data from a 6.8% random sample of all German people with SHI 26,67, i.e., of almost 

90% of the German population. The expenses include direct per capita costs for physicians, dentists, 

pharmacies, hospitals, sick benefits and others in 2010 in Germany from payer perspective. The 

included ICD-10 codes allowed to differentiate between costs related to type 1 or 2 diabetes. These 

data serve as starting values of per capita costs, cost ratios for people with versus without diabetes 

and attributable costs in 2010. Due to regulations on data protection, routine SHI data were provided 

in an anonymous and aggregated form (§5 Data Transparency Regulation, paragraph 4). 

Projection model 

As measures of interest, we modelled direct total and excess costs, cost ratios for people with versus 

without diabetes, and population attributable costs (see Additional Table 1 in Additional file 1) using 

the statistical software R, version 4.1.2 (R Foundation for Statistical Computing). The source code is 

published in the open-access repository Zenodo 159.  

Epidemiological development 

We first estimated the observed sex-specific prevalence of diagnosed type 1 and 2 diabetes in Germany 

in 2010 for all ages between 0 and 100 years. Second, we used a partial differential equation (PDE) 

that originates in the illness–death model (IDM) to project the age- and sex -specific prevalences until 

2040 10,158,161,163. Our PDE describes the relation between prevalence, incidence and mortality as a 

function of age and calendar time, and thereby allows to incorporate future trends in the incidence 
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and mortality. Applying the projected prevalence to population counts yielded the number of 

individuals with type 1 or type 2 diabetes in Germany from 2010 to 2040 by  

Cost projection  

Using the aggregated cost data, we computed the total costs for each age and sex stratum by 

multiplying the number of people with or without diabetes and the respective per capita costs in 2010. 

We added these costs across all strata to obtain the total costs depending on diabetes status, i.e., 

diagnosed type 1, type 2 or no diabetes. We obtained the average per capita costs in 2010 by dividing 

the total costs and the age- and sex-specific number of people with or without diabetes. We stratified 

the average per capita costs by sex and diabetes status and interpolated between the age groups to 

calculate average per capita costs for all ages from 0 to 100 years. Diabetes-related excess costs were 

defined as costs of a person with type 1 or 2 diabetes that go beyond the costs of people without 

diabetes. To project the excess costs until 2040, we multiplied the excess costs with a mean annual 

growth rate of 0%, 1% or 5% depending on the respective scenario.  

Total diabetes-related future costs from 2010 to 2040 were calculated as sum of the product of the 

projected population sizes, projected prevalence and projected average per capita costs for each year. 

Total annual excess costs are defined analogously, but include average per capita excess costs instead 

of average per capita costs. Using the projected cost data, we computed annual age- and sex-specific 

cost ratios (R) for people with type 1 or 2 diabetes relative to people without. The age- (a), sex- (s), 

diabetes type- (d) and time-specific (t) attributable costs (PAC) were defined as   

𝑃𝐴𝐶𝑎𝑠𝑑𝑡 =  
𝑝𝑎𝑠𝑑𝑡 × (𝑅𝑎𝑠𝑑𝑡 − 1)

1 + 𝑝𝑎𝑠𝑑𝑡 × (𝑅𝑎𝑠𝑑𝑡 − 1)
 

with p denoting the prevalence of the respective diabetes type 26. To extrapolate from the data of the 

random sample (6.8 %) to the whole German population, we divided the sum of the total costs by the 

sample size. The resulting year-specific quotient was multiplied with the respective population 

attributable costs for each year. 

Scenario analyses 
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To account for uncertainty, we modelled several demographic-, diabetes- and cost-related future 

dynamics. We constructed 16 scenarios motivated by previous papers from Waldeyer et al. 11, Tönnies 

et al. 161 and Voeltz et al. 10,163, who projected diabetes-related cost and prevalence in Germany for 

similar time horizons (details given in Table S2). Scenario 1 represents a base-case scenario. It assumes 

moderate demographic developments (variant G2L2W2) and is limited to an annual 2% decrease in 

the MRR with no changes made to any other cost or epidemiological input. Scenarios 2 to 8 account 

for potential epidemiological developments, scenarios 9 and 10 model the robustness of our results 

concerning changes in diabetes-related costs and scenarios 11 to 15 assess hypothetical demographic 

trends. Scenario 16 represents a most probable scenario assuming moderate demographic 

development, a mean annual cost inflation of 1%, an annual 1% increase in the incidence and a 

decrease of 2% in the MRR.  

Sensitivity analyses 

We reflect on potential error in the input values and future trends of the model parameters using the 

relatively extreme scenarios 6, 7, 8, and 10 which return upper and lower projection bounds. 

Results  

Per capita costs 

In the reference year 2010, average per capita healthcare expenses of people insured in the SHI in 

Germany amounted to €4,285 for men and €4,889 for women with type 1 diabetes, and €3,868 for 

men and €3,889 for women with diagnosed type 2 diabetes. Assuming a moderate cost growth of 1% 

per year as in scenario 9 and 16, annual per capita costs reached on average €6,581 for type 1 and 

€5,245 for type 2 diabetes in 2040 (Figure 1 and Additional Figure 1 in Additional file 1). Accordingly, 

the increase was markedly higher when assuming an annual cost growth rate of 5% (scenario 10) to 

approximately €12,057 for type 1 and €8,999 for type 2 diabetes.  

Total annual healthcare costs 

All scenarios with only one exception projected rising total annual healthcare expenses over time 

(Additional Table 3 and 4 in Additional file 1). In 2010, the observed total annual costs in Germany 
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amounted to €1.1 and €28.8 billion for type 1 and type 2 diabetes, respectively. In 2040 and depending 

on the scenario, costs were projected to exceed this by 1% to 281% for type 1 and by 8% to 364% for 

type 2 diabetes (Figure 2). Our baseline scenario 1 resulted in total annual costs of about €1.5 billion 

for type 1 and €60.4 billion for type 2 diabetes in 2040. The most probable scenario 16 returned total 

costs of €2.2 and €79.2 billion related to type 1 or type 2 diabetes in 2040, respectively.  

Cost ratio 

Most likely (scenario 16), annual healthcare expenses in 2040 will be 2.8- and 3.2-fold higher for men 

and women with type 1, and 3.8- and 3.3-fold higher for men and women with type 2 diabetes 

compared to an insured person without diabetes, respectively (Figure 3 and Additional Figure 2 in 

Additional file 1). Generally, cost ratios were largest among younger ages and decreased with 

increasing age. For people with type 1 diabetes aged between 0 and 10 years, the discrepancy is 

highest, results showed 7-fold higher costs in 2010 and up to 15-fold higher costs in 2040. Regarding 

type 2 diabetes, the cost imbalance between people with versus without diabetes is less high and peaks 

around the age of 20 to 30 years (about 3- to 4-fold higher in 2010 and 6-fold higher in 2040). 

Excess costs 

In 2010, diabetes caused total medical excess costs of €0.3 billion for men and €0.3 billion for women 

with type 1 diabetes, and €5.8 billion for men and €5.0 billion for women with type 2 diabetes 

(Additional Table 3 and 4 in Additional file 1). Our base-case scenario predicted an increase to a total 

of €0.8 billion for type 1 and €21.2 billion for type 2 diabetes in 2040, while scenario 16 projected 

excess costs of €1.5 and €40.1 billion, respectively.  

Population attributable costs and cost extrapolation  

In Germany in 2010, SHI expenses amounted to ~€160 billion. On average, 3.8% and 10.2% thereof are 

attributable to the medical care of type 1 and type 2 diabetes, respectively. For scenario 16 in 2040, 

attributable costs of type 1 diabetes will be 7.7%, and 26.3% of type 2 diabetes. Extrapolating from our 

sample to the whole population showed that this corresponds to total direct costs of €0.55 and €14.4 

billion for type 1 and type 2 diabetes in 2010 and €1.1 and €37.0 billion in 2040, respectively. 
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Attributable costs of type 2 versus type 1 diabetes are markedly higher (Figure 4). For type 1 diabetes, 

attributable costs are highest among younger ages. Vice versa, for type 2, these increase with 

increasing age. We projected slightly higher attributable costs for men compared to women with type 

2 diabetes.  

Discussion 

Principal findings 

In Germany in 2010, direct total annual healthcare costs amounted to about €1.14 billion for type 1 

and €28 billion for type 2 diabetes. Expenditures of SHI are projected to rise remarkably until 2040, to 

about €1 to €4 billion and €30 to €131 billion, respectively. Our results show that the future prevalence 

will increase strongest and peak around the ages of 20 to 40 years for type 1 and 60+ years for type 2 

diabetes, which each represents the costliest age groups for the corresponding diabetes type. The 

combination of these dynamics might explain a large part of the cost growth.  

Scenario comparison 

Forecasting is fraught with uncertainty as unexpected cultural, political, economic or medical shifts 

may prompt change and current trends develop differently than assumed. Therefore, we assessed 

several scenarios and can only speculate which scenario is most likely. Comparing all scenarios (Figure 

2) showed that the cost growth is mainly attributable to rising incidence and cost rates, with little 

impact of population ageing.  

Generally, demographic changes had little influence on the projection. With regards to migration, 

Germany reports a positive and rising migration balance since several decades making scenario 12 

(assuming high migration) likelier than scenario 11 (low migration) 164. Population ageing, analysed in 

scenario 14 versus 15, is related to an increased number of high-risk individuals and an increased life 

expectancy of people with diabetes and therefore, contributes to a higher number of diseased people. 

The combination of population ageing and per capita costs that increase with age might explain the 

observed minor impact on future cost growth.  
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The projected economic burden was highly sensitive to future cost growth rates. If direct medical per 

capita excess costs would inflate by 1% annually (scenario 9), the total costs of type and type 2 diabetes 

in Germany would increase by 100% for type 1 and 180% for type 2 diabetes. By contrast, assuming a 

cost growth of 5% (scenario 10), total annual costs in 2040 were projected to increase by 281% and 

364%, respectively. 

Another large part of the rising costs is possibly explained by the increase in prevalence attributable 

to future disease-specific dynamics 10,161,163. Scenario 8 assumes that the age-and sex-specific 

prevalence remains constant as in 2010 and results in an increase of total costs in 2040 compared to 

2010 of 1% and 29% for type 1 and 2 diabetes. Though, this probably severely underestimates the 

actual disease and cost burden 10,161,163. More realistically are changing incidence rates (as in scenario 

2 to 5), which resulted in increased annual costs by 28% to 41% for type 1 and by 109% to 128% for 

type 2 diabetes. Scenario 6 and 7, assuming a 5% annual increase or decrease in the incidence, account 

for extreme events such as the impact of the SARS-CoV-2 pandemic, which is associated with an 

increased risk of new-onset diabetes 10,163. In 2040 compared to 2010, these scenarios lead to changes 

of the total cost by -1% or 149% for type 1 and by 6% or 322% for type 2 diabetes. This variability 

highlights the consequences of future incidence trends on upcoming healthcare expenditures.  

Strengths and weaknesses  

While our analysis provides important information for chronic-disease related research, future 

diabetes healthcare and policy interventions, it does have limitations.  

Using mostly nationwide data, the risk of bias is considerably low. Though, one weakness of our data 

arises with the time that elapsed since the data collection in 2010. The current situation might differ 

and profound and unexpected shifts, such as the COVID-pandemic or the Russo-Ukrainian War, lead 

to discrepancy between current and past trends.  

In addition to direct medical costs, diabetes is associated with indirect social and productivity costs 

such as premature mortality, disability, and higher rates of lost work time 11. It is beyond the scope of 
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our study because precise information on the associated indirect costs is limited. The estimation of 

starting values for a projection requires additional methods and assumptions, for instance age 

restrictions because indirect costs only accrue from productivity losses arising from diabetes in 

working-age people 165. Resulting, uncertain estimates would render any projection intrinsically highly 

speculative. We recommend future research to investigate this knowledge gap. 

In spite of the high probability that costs for people without diabetes are likely to increase, they are 

kept constant in our analysis due to a lack of information on their precise development. The inclusion 

of doubtful cost trends might have impaired the trust in any cost estimate and its projection. Therefore, 

in line with Waldeyer et al. 11, we focused on an excess cost approach and limited the analysis to 

changes in costs of people with diabetes.  

Lastly, it might seem critical that for simplicity and due to data unavailability, we assumed the same 

prevalence for German inhabitants and migrants. Though, Waldeyer et al. 11 showed that the impact 

of migration is negligible even when varying the prevalence. 

Despite limitations, our study provides novel insights into the current and future economic burden of 

the two main types of diabetes in Germany. Although, type 1 and type 2 diabetes largely differ in their 

causes, symptoms, treatment and costs 166, previous studies rarely distinguished the types of diabetes 

65. For the first time, we projected type-specific direct medical cost, cost ratios and attributable costs 

related to the two main types of diabetes in Germany from 2010 until 2040 for both sex and all ages 

between 0 and 100 years based representative national routine data. Another advantage is the use of 

our forecasting model. Our method is able to reflect on temporal trends in epidemiological, 

demographic and cost dynamics simultaneously, but at the same time, remains transparent, clear and 

understandable in its application. Although our data and some assumptions may not be transferable, 

the statistical methods can be easily applied to other countries and chronic diseases and are flexible 

enough to anticipate impacts of alternative policy scenarios. 

Comparison with previous studies 
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Worldwide, studies of diabetes-related health expenditure report large disparities 58. The few existing 

studies of diabetes-related costs in Germany are consistent in estimating a large economic burden, but 

results are heterogeneous 11,26. For our base year 2010 in Germany, studies reported diabetes-related 

per capita costs of €2,761 or €5,239 167,168. Type-specific per capita healthcare costs associated with 

type 2 diabetes were estimated at €3,352, €4,377 and €5,146 26,169,170. Current per capita cost estimates 

issued by the International Diabetes Federation (IDF) amount to $6,661 for Germany in 2021 58. The 

studies differ largely with regards to their statistical methods, the cost components included, the 

inclusion criteria and encoding for diabetes diagnosis, the type of diabetes considered and the 

representativeness of their study population which renders comparison complicated if not impossible.  

For Germany, only two forecasts of diabetes-related costs are available 11. One reports total annual 

costs of $30–56 billion in 2030 for type 1 and 2 of diabetes 58. Due to lacking country-specific input 

data, an imbalanced ratio of individuals with versus without diabetes, the assumption of constant 

prevalence over time and the use of oversimplified methods, results may be overestimated. Using a 

time-discrete Markov model with locally limited data from the KORA (Cooperative Health Research in 

the Region of Augsburg) survey, Waldeyer et al. 11 projected total annual excess costs attributable to 

type 2 diabetes of €14,93 to €29.01 billion in 2040, with a baseline scenario yielding €21.1 billion. These 

findings are comparable to our baseline scenario, projecting excess costs of €21.9 billion for type 2 

diabetes in 2040.  

Implications  

We found that the incidence and cost growth rate majorly drive future healthcare costs. This highlights 

the importance of population-based prevention and the need for supporting investments and cost 

policies, for instance in health infrastructure, new medications and technologies such as e-health for 

increased cost-efficiency.  

In Germany, type 2 diabetes accounts for about 95% of all diabetes mellitus cases and in contrast to 

type 1 diabetes, can be prevented at little expense in the everyday life through cost effective and 
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structured interventions 171. To reduce the projected diabetes epidemic and its associated costs, the 

government, healthcare providers and institutions should put efforts to raise awareness and to 

intervene to prevent the onset of type 2 diabetes. This can be achieved through changing behaviour, 

norms and structures in order to support healthy living. Although these recommendations include 

upfront costs to the German government and healthcare system, we feel these investments are 

necessary.   

Conclusion  

In summary, by 2040, type 1 and 2 diabetes will likely pose an even larger economic burden to the 

individuals suffering from the disease, as well as to the German health system, its economy and with 

that, the whole German population. Projected healthcare costs are highly sensitive to variation in cost 

growth and the incidence. Better and more timely epidemiological and economic diabetes-related data 

are needed in order to improve forecasting, to advance efforts at public awareness, and to support 

effective management and coordinated action for preventing and preparing for this development.   



104 
 

Supporting Information 

The online version contains the following supplementary material provided in Additional File 1:  

Additional Table 1: Overview of input data, variables and outcome measures 

Additional Table 2: Overview of our projection scenarios 

Additional Figure 1: Projected average annual per capita costs  

Additional Figure 2: Projected cost ratios 

Additional Table 3: Annual projected total costs of type 1 diabetes in Germany from 2010 until 2040 

by sex (in millions) 

Additional Table 4: Annual projected total costs of type 2 diabetes in Germany from 2010 until 2040 

by sex (in millions) 

Additional Table 5: Annual projected excess costs of type 1 diabetes in Germany from 2010 until 

2040 by sex (in millions) 

Additional Table 6: Annual projected excess costs of type 1 diabetes in Germany from 2010 until 

2040 by sex (in millions) 

Availability of data and materials 

The statistical analysis was carried out using the free statistical software R, version 4.1.2 (R Foundation 

for Statistical Computing). The source code and most of the data for running the analysis of the current 

study are published in the open-access repository Zenodo 159. Due to regulations on data protection, 

routine SHI data were only available for our study and were provided in an anonymous and aggregated 

form (§5 Data Transparency Regulation, paragraph 4). Therefore, these data are not publicly available. 

An ethics committee approval was not required since no individual data on humans or animals were 

involved. 

Funding  



105 
 

The authors received no financial support for the research, authorship, and/or publication of this 

article. 

Competing interests 

The authors declare that there is no conflict of interest. 

Author contributions 

D.V. is the guarantor of this work and, as such, had full access to all the data in the study and takes 

responsibility for the integrity of the data and the accuracy of the data analysis. D.V. researched data, 

derived the methodology, performed the formal analysis, and wrote the manuscript. A.H. supervised 

the study and, together with D.V., developed the theoretical concept of the present study. All authors 

discussed the results, reviewed and edited the manuscript and approved the statistical analyses. 

Figures 

Figure 1: Projected average per capita costs 

Projected average per capita costs (in €) of people with type 1 or 2 diabetes in the statutory health 

insurance in Germany between 2010 and 2040 (stratified by sex) assuming annual cost growth rates 

of 1% or 5%. Panel A shows average per-capita costs of men with type 1 or 2 diabetes, panel B displays 

the projected per-capita costs for women, respectively. 

Figure 2: Projected annual total healthcare expenses 

Projected annual total healthcare expenses for people with diagnosed diabetes type 1 or type 2 from 

2010 until 2040 in Germany for different epidemiological, demographic or cost development scenarios. 

Results for type 1 diabetes are shown in panel A (epidemiological trends), B (demographic trends) and 

C (economic trends), while panel D (epidemiological trends), E (demographic trends) and F (economic 

trends) display results for type 2 diabetes.  

Figure 3: Projected age-specific cost ratios of the total healthcare expenses 

Age-specific cost ratios of the total healthcare expenses (in €) between men and women with 

diagnosed type 1 or 2 diabetes versus men and women without in the statutory health insurance in 
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Germany in 2010, 2020, 2030 and 2040. Panel A and B show results for men and women with type 1 

diabetes, panel C and D display the projected cost ratios for men and women with type 2 diabetes, 

respectively. 

Figure 4: Projected age- and sex-specific attributable costs 

Age- and sex-specific attributable costs (%) of diagnosed type 1 or 2 diabetes in the statutory health 

insurance in Germany in 2010, 2020, 2030 and 2040. Panel A and B show results for men and women 

with type 1 diabetes, panel C and D display the projected attributable costs for men and women with 

type 2 diabetes, respectively. 
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