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Abstract

Factor graphs provide a unified framework for the discussion of constraint satisfaction problems (CSPs)
like boolean satisfiability or graph coloring, communication through noisy channels using e.g. LDPC
or LDGM codes, statistical inference tasks like community detection, and spin glasses such as the
Potts or the p-spin model. However, their most intriguing feature is that these objects are both
versatile and conceptually simple.

Intuitively, a factor graph G is a bipartite graph. The nodes are given by variables and factors,
and each factor is equipped with a weight function, whose arity agrees with the factor degree. Values
assigned to the variables of G are communicated through the edges of the graph to the factors, which
then allows to evaluate the weights. The total weight ψG(σ) of an assignment σ is then the product
of the individual weights over all factors.

Variants of factor graphs were developed and studied independently in mathematics, physics and
computer science since the 1960’s, up until the discovery of similarities in the model and problem
descriptions in the 1990’s. Subsequently, the fusion of the available methods, both rigorous and
non-rigorous, and of the established approaches led to major breakthroughs in the field.

We study phase transitions in random factor graph models, that is we specify a distribution on
(factor) graphs with n variables, such that the (expected) factor to variable ratio has the desired
asymptotic behavior as n grows large. Then, we analyze the limiting behavior of quantities derived
from the random graph as functions of the factor to variable ratio. For a given ratio, a phase transition
occurs whenever the limiting behavior significantly changes at this point (e.g. a discontinuity).

We exclusively consider graphs with weight functions of constant arity, or equivalently k-wise
interactions for fixed k, and finite constant variable domains, so all weight functions are of the form
{1, . . . , q}k → R≥0. Further, we only discuss the arguably most widespread models, the (binomial
or uniform) Erdős–Rényi and the (uniformly) random regular factor graph. The key quantity of our
discussion is the partition function Z(G) = ∑

σ ψG(σ), i.e. the sum of the total weights ψG(σ) over
all assignments σ ∈ {1, . . . , q}n to the n variables under the factor graph G.

In the first part of this thesis we consider the Erdős–Rényi model at positive temperature, meaning
that all weights are strictly positive. Under mild assumptions on this model, denoted by G, we estab-
lish the location of the condensation threshold αc ∈ R≥0, that is for all (limiting) factor to variable
ratios α ∈ [0, αc] below the threshold, the unruly quenched free entropy (density) coincides with the
very accessible annealed free entropy (density), i.e. limn→∞ E[ 1

n ln(Z(G))] = limn→∞
1
n ln(E[Z(G)]),

while for ratios α > αc above the threshold the quenched free entropy is strictly smaller than the
annealed counterpart. We establish this result by proving that the quenched free entropy of the
planted model converges to the supremum of the corresponding Bethe free entropy, which with some
additional effort further allows to establish the limiting mutual information (for graphical channels)
and the information-theoretic threshold (for community detection). Due to significantly weaker as-
sumptions and stronger (quantified uniform) results, this part is devoted to a direct generalization
and strengthening of the results by Coja-Oghlan, Krzakala, Perkins and Zdeborová in 2018.

The location of the condensation threshold in this generality is still an open problem if the weights
may vanish, specifically for CSPs, where the weights only take values in {0, 1}. In this context, the
condensation threshold is conjectured to be responsible for the easy to hard transition, that is below the
threshold solutions can be found easily, using local search methods, while finding solutions efficiently
above the threshold may not be possible at all or require advanced techniques like survey propagation.
In the remainder of this thesis, we turn to the satisfiability thresholds of CSPs, that is below the
threshold there exist solutions (with high probability) and hence they can be found in exponential
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time, while above the threshold the solution space is empty, hence no algorithm finds solutions in
this regime. Deriving general results for these thresholds is very ambitious, so we confine ourselves to
specific problems. In the second part of the thesis we discuss implications of the satisfiability threshold
for perfect matchings in hypergraphs, which has been established by Kahn in 2022. Moreover, Kahn
showed that this threshold coincides with the threshold for the existence of isolated vertices in a
very strong sense, that is, in the standard hypergraph process formulation the hitting time for the
disappearance of the last isolated vertex coincides with the hitting time for the existence of a perfect
matching (and the bounds on the hitting time yield the location of both thresholds). Riordan,
extended by Heckel in 2021, used an ingenious coupling to derive the threshold for k-clique factors,
that is a set of disjoint cliques of size k in the graph such that every vertex appears in exactly one
clique, from the perfect matching threshold. We use Kahn’s hitting time result to strengthen Riordan’s
and Heckel’s result, by establishing that the hitting time for the k-clique factor coincides with the
hitting time for the k-clique cover, i.e. a set of k-cliques in the graph such that every vertex appears
in at least one clique. These results are not only of interest in their own right, they also illustrate
how closely thresholds may be related and that very involved problems can possibly be reduced to
significantly simpler problems, e.g. by checking for necessary conditions.

In the last part of this thesis we turn to an extension of the perfect matching threshold for random
regular k-uniform hypergraphs. This threshold has been established by Cooper, Frieze, Molloy and
Reed in 1998. Both this problem and the existence of exact covers, studied by Moore in 2016, are
equivalent to the 1-in-k occupation problem, i.e. a selection of vertices such that each hyperedge
contains exactly one selected vertex. We discuss the 2-in-k occupation problem and show that the
first moment bound (the root of the annealed free entropy) is tight for all k. In the proof we exploit
the connection of an associated optimization problem regarding the overlap of satisfying assignments
to a fixed point problem inspired by belief propagation, a message passing algorithm developed for
solving such CSPs.
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Zusammenfassung
Faktorgraphen bieten eine einheitliche Modellierungsgrundlage für Constraint Satisfaction Problems
(CSPs, auch Bedingungserfüllungsprobleme) wie das Erfüllbarkeitsproblem der Aussagenlogik oder
Graphenfärbung, für die Kommunikation über einen gestörten Übertragungskanal, zum Beispiel mit-
tels LDPC oder LDGM Codes, für statistische Inferenz-Probleme wie die Gemeinschaftserkennung
und für Spin-Gläser wie das Potts- oder das p-Spin-Modell. Insbesondere zeichnen sich diese Objekte
jedoch dadurch aus, dass sie sowohl vielfältig einsetzbar als auch konzeptionell einfach sind.

Unter einem Faktorgraphen G kann man sich einen bipartiten Graphen vorstellen. Die zwei
Knotenmengen sind Variablen und Faktoren, und jeder Faktor ist mit einer Gewichtsfunktion aus-
gestattet, deren Stelligkeit mit dem Faktorgrad übereinstimmt. Den Variablen zugewiesene Werte
werden über die Kanten des Graphen den Faktoren kommuniziert, wo dann die zugehörigen Gewichte
bestimmt werden. Das Gesamtgewicht ψG(σ) einer Belegung σ ist schließlich das Produkt der indi-
viduellen Gewichte über alle Faktoren.

Varianten von Faktorgraphen wurden seit den 1960er Jahren unabhängig in der Mathematik, der
Physik und der Informatik entwickelt und untersucht, bis in den 1990er Jahren Ähnlichkeiten bei den
Modellen und Fragestellungen bemerkt wurden. Daraufhin führte die Zusammenführung bekannter
Verfahren, ob rigoros oder nicht, und etablierter Ansätze zu bedeutenden Durchbrüchen.

Wir untersuchen Phasenübergänge in zufälligen Faktorgraphmodellen, das heißt wir legen eine
Verteilung auf (Faktor-)Graphen mit n Variablen fest, sodass das (erwartete) Verhältnis von Faktoren
zu Variablen mit wachsendem n das gewünschte asymptotische Verhalten zeigt. Dann analysieren
wir das Grenzverhalten von aus dem Zufallsgraphen abgeleiteten Größen als Funktionen des Faktor-
Variablen-Verhältnisses. Für ein gegebenes Verhältnis findet ein Phasenübergang statt, wenn sich das
Grenzverhalten an diesem Punkt maßgeblich ändert (zum Beispiel eine Unstetigkeitsstelle).

Wir betrachten ausschließlich Graphen mit fester Stelligkeit, anders ausgedrückt k-weise Interak-
tionen mit festem k, und endlichem festen Wertebereich für die Variablen, das heißt alle Gewichtsfunk-
tionen sind von der Form {1, . . . , q}k → R≥0. Außerdem besprechen wir nur die wohl am weitesten
verbreiteten Modelle, den (binomialen oder gleichverteilten) Erdős–Rényi- und den (gleichverteil-
ten) zufälligen regulären Faktorgraphen. Unsere besondere Aufmerksamkeit gilt der Zustandssumme
Z(G) = ∑

σ ψG(σ), also der Summe der Gesamtgewichte ψG(σ) über alle Belegungen σ ∈ {1, . . . , q}n
der n Variablen im Faktorgraphen G.

Im ersten Teil der Dissertation widmen wir uns dem Erdős–Rényi-Modell bei positiver Tem-
peratur, was bedeutet, dass alle Gewichte strikt positiv sind. Unter sehr schwachen Modellan-
nahmen bestimmen wir den Kondensationspunkt αc ∈ R≥0, das heißt, für alle Faktor-Variablen-
Verhältnisse α ∈ [0, αc] unter dem Schwellwert stimmt die eigensinnige Quenched Free Entropy (Den-
sity) mit der sehr zugänglichen Annealed Free Entropy des zufälligen Faktorgraphen G überein,
also limn→∞ E[ 1

n ln(Z(G))] = limn→∞
1
n ln(E[Z(G)]), während für Verhältnisse α > αc über dem

Schwellenwert die Quenched Free Entropy strikt kleiner ist als die Annealed Free Entropy. Wir
überzeugen uns von diesem Ergebnis, indem wir beweisen, dass die Quenched Free Entropy eines
verwandten, gewichteten, Modells gegen das Supremum des entsprechenden Bethe-Funktionals kon-
vergiert, was mit etwas zusätzlichem Aufwand die Bestimmung des Grenzwertes der gegenseitigen
Information (für eine Klasse von gestörten Übertragungskanälen) und des informationstheoretischen
Schwellenwertes (für Gemeinschaftserkennung) ermöglicht. Wegen wesentlich schwächerer Annahmen
und stärkeren (quantifizierten, gleichmäßigen) Ergebnissen, widmet sich der erste Teil also der direkten
Verallgemeinerung der Resultate von Coja-Oghlan, Krzakala, Perkins und Zdeborová aus 2018.

Für nichtnegative Gewichte ist der Wert des Kondensationspunktes in dieser Allgemeinheit weit-
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erhin unbekannt und damit insbesondere für CSPs, bei denen die Gewichte nur die Werte {0, 1}
annehmen. In diesem Zusammenhang wird vermutet, dass der Kondensationspunkt für den Über-
gang von einfachen zu schweren Instanzen verantwortlich ist, das heißt, unterhalb des Schwellen-
wertes können Lösungen, mithilfe lokaler Verfahren, einfach und effizient bestimmt werden, während
die effiziente Berechnung von Lösungen überhalb des Schwellenwertes aussichtslos, oder zumindest
auf konzeptionell anspruchsvollere Methoden wie Survey Propagation angewiesen ist. Im weiteren
Verlauf dieser Dissertation befassen wir uns mit dem Schwellenwert für Erfüllbarkeit von CSPs.
Unter dem Schwellenwert existieren also (mit hoher Wahrscheinlichkeit) Lösungen und können in
exponentieller Laufzeit bestimmt werden, während der Lösungsraum über dem Schwellenwert leer ist
und dementsprechend kein Algorithmus Lösungen berechnen kann. Allgemeine Ergebnisse für solche
kritischen Werte zu beweisen, ist sehr ambitioniert und daher beschränken wir uns auf spezifische
Probleme. Im zweiten Teil dieser Dissertation besprechen wir Implikationen der Schwellenwerte für
perfekte Matchings in Hypergraphen, die letztes Jahr von Kahn bestimmt wurden. Darüber hinaus
zeigte Kahn, dass der Zusammenhang dieser Schwellenwerte mit den Schwellenwerten für die Existenz
von isolierten Knoten sehr tiefgehender Natur ist, nämlich dass die entsprechenden Übergangszeiten
im gewöhnlichen Hypergraphenprozess übereinstimmen (und die Schranken an die Übergangszeiten
die Schwellenwerte implizieren). Riordan, ergänzt durch Heckel im Jahr 2021, benutzte ein brilliantes
Coupling, um aus Kahn’s Schwellenwert für perfekte Matchings den Schwellenwert für k-Cliquen-
Faktoren abzuleiten, also eine Menge von disjunkten Cliquen der Größe k im binomialen Zufalls-
graphen, sodass jeder Knoten in genau einer Clique enthalten ist. Wir verwenden Kahn’s Ergebnis
für die Übergangszeiten, um Riordans und Heckels Ergebnis zu verstärken, indem wir zeigen, dass
im gewöhnlichen Graphenprozess die Übergangszeit für k-Cliquen-Faktoren mit der Übergangszeit
für die Existenz einer k-Cliquen-Überdeckung übereinstimmt, also einer Menge von k-Cliquen im Zu-
fallsgraphen, so dass jeder Knoten in mindestens einer Clique enthalten ist. Diese Ergebnisse zeigen
also insbesondere auf, dass solche kritischen Werte sehr eng miteinander verbunden sein können und
dass sehr komplizierte Probleme unter Umständen auf sehr viel einfachere Probleme reduziert werden
können, zum Beispiel durch das Überprüfen von notwendigen Bedingungen.

Im letzten Teil dieser Dissertation wenden wir uns der Verallgemeinerung der Schwellenwertergeb-
nisse für perfekte Matchings im zufälligen regulären k-uniformen Hypergraphen zu. Dieser kritische
Wert wurde von Cooper, Frieze, Molloy und Reed im Jahr 1998 bestimmt. Sowohl dieses Problem
als auch die von Moore im Jahr 2016 untersuchten exakten Überdeckungen sind äquivalent zum 1-
in-k Occupation-Problem, also eine Auswahl von Knoten, sodass jede Hyperkante genau einen dieser
Knoten enthält. Wir besprechen das 2-in-k Occupation-Problem und zeigen, dass die durch die er-
wartete Anzahl von Lösungen gegebene Schranke (die Nullstelle der Annealed Free Entropy) scharf ist,
für alle k. Unser Beweis erfordert die Lösung eines Optimierungsproblems bezüglich der Überlappung
von zwei Lösungen des Occupation-Problems, welches wir auf ein Fixpunktproblem reduzieren, das
von Belief Propagation inspiriert ist, ein für die Lösung solcher CSPs entwickelter Message-Passing-
Algorithmus.
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1 Introduction
We motivate and prepare the upcoming formal discussion, and define central notions, including con-
straint satisfaction problems, phase transitions, satisfiability thresholds and factor graphs. Next to
illustrating the broad scope of applicability, the presented examples introduce the relevant models
and existing results that are extended in this work.

1.1 Constraint Satisfaction Problems

Right from the definition, it will be obvious that constraint satisfaction problems (CSPs) are both
conceptually simple and immensely useful in practice. An instance C of a CSP is given by n variables
[n] = {1, . . . , n} taking one of q values [q] on the one hand, and m constraints [m] on the other, where
each constraint a ∈ [m] is equipped with a set Va ⊆ [n] of involved variables and a set Sa ⊆ [q]Va

of satisfying assignments. An assignment σ ∈ [q]n is a solution of C if for all a ∈ [m] we have
(σi)i∈Va ∈ Sa, i.e. the assignment σ satisfies each constraint a.

Given C, there is a number of associated problems. First and foremost, we have the problem
of identifying a solution, and the closely related decision problem if a solution even exists. On a
more granular level, we may attempt to determine the entire solution space, and in particular the
number of solutions. Whether solutions exist or not, we may ask for one (or all or the number of)
assignments that satisfy the maximum number (or at least a specified number) of constraints. All
of these problems, including the decision, the enumeration and the optimization version, are NP-
complete in general, meaning that we assume that it will take exponentially long (in terms of n) to
solve any of these for some instance.

We illustrate these concepts using a well-known problem from graph theory, namely coloring. To be
specific, we consider the decision problem q-COL if a given graph with n vertices and m edges admits a
proper coloring with q colors. An instance of q-COL is just a graphG, which is, formally, equipped with
an (irrelevant) order (ea)a∈[m] of the edges, the involved variables being the edge ea = {ia, ja} ⊆ [n],
and the satisfying assignments being Sa = {τ ∈ [q]ea : τia ̸= τja}. Now, the solutions of G in the sense
above are exactly the proper colorings of G. Thus, the decision problem asks if G is q-colorable, the
enumeration problem asks for the number of such colorings and the optimization problem asks for a
not necessarily proper q-coloring of G with as few monochromatic edges as possible. We know that
also the subclass q-COL of all CSPs is NP-complete for q ≥ 3. Another classic NP-complete example
is the exact cover problem in hypergraphs. Recall that the hyperedges of a k-uniform hypergraph
H = ([n], E) with |E| = m are k-subsets E ⊆

([n]
k

)
, where

([n]
k

)
= {E ⊆ [n] : |E| = k}. A solution of the

exact cover problem is a subset V ⊆ [n] of the vertices such that each hyperedge E ∈ E is incident to
exactly one vertex in V. In the CSP version of this problem we choose q = 2 over the values {0, 1},
i.e. a binary CSP. Then, we associate the constraints with the hyperedges E ∈ E as for q-COL, thus
the involved variables are E, and the satisfying assignments are {τ ∈ {0, 1}E : ∥τ∥1 = 1}, where ∥ · ∥r
for r ∈ [1,∞] is the r-norm on Rd. Clearly, the solutions σ ∈ {0, 1}n of H are exactly the indicators
of the solutions V = σ−1(1) ⊆ [n].

However, CSPs and subclasses thereof are not only present in graph theory. A detailed overview
of both CSPs and their applications in discrete mathematics, complexity theory, physics, artificial
intelligence, image processing, mechanical engineering, transportation, scheduling, natural language
processing, robotics, biology and more can be found in [85, 118, 81, 124] and references therein.
Since these problems appear in so many disciplines, but are so hard to tackle in both theory and
practice, a great amount of research over the last centuries and in particular the last four decades is
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devoted to separating easy from hard instances, respectively to identifying structural properties that
are responsible for this hardness. One approach is to systematically identify subclasses of CSPs and
instances for which the decision problem can be solved, say hypergraphs with maximum degree 1 for
the exact cover problem, or the enumeration and optimization versions are tractable.

1.2 Random CSPs, Phase Transitions and Satisfiability Thresholds

We follow another line of research, where we equip the instances of (a subclass of) CSPs with proba-
bility distributions, usually for fixed n. For example, this allows to determine whether solutions exist
for most instances in a rigorous manner, or to determine the average number of solutions. The cer-
tainty that CSPs over a small number n of variables can be eventually dealt with using computational
power, combined with the simplifications that arise from the restriction to asymptotics, steers our
focus towards large n. Now, a fairly weak version of the decision problem asks if most instances are
satisfiable, in the sense that the probability that a solution exists tends to 1 as n increases.

This approach was introduced by Erdős and Rényi in their seminal paper [47], where they discussed
the decision problem if a giant component exists. To be specific, consider the (uniform) Erdős-Rényi
graph Gn,m which is obtained by choosing a set of m edges from

([n]
2
)

uniformly at random. For a
given average degree d ∈ R≥0 let Pd(n) be the probability that there exists a (connected) component
in Gn,m, where m = ⌊dn/2⌋ = maxZ≤dn/2, of size at least

√
n. The results of [47, 57] suggest that

there exists a sharp phase transition at d = 1, that is, for d > 1 there exists a component of size at
least

√
n with high probability (whp), meaning limn→∞ Pd(n) = 1, and for d < 1 there exists no such

component whp, meaning limn→∞ Pd(n) = 0.
Ever since, such phase transitions have been established for various problems, a rather recent

prominent example being the satisfiability threshold for random k-SAT for large k [40]. Not only the
existence, but also the location of the satisfiability threshold for q-COL, that is, a critical average
degree dc ∈ R>0 such that Gn,m is q-colorable whp for d < dc and Gn,m is not q-colorable whp for
d > dc, are conjectured for decades, but still outstanding [14].

Moreover, such results have not only been extended to other problems, but to other models as well.
Both the uniform and the closely related binomial Erdős-Rényi graph have been discussed since the
50s, and have subsequently been generalized to the uniformly random k-uniform hypergraph, where
a set of m hyperedges in

([n]
k

)
is drawn uniformly at random, and the binomial k-uniform hypergraph,

where each hyperedge in
([n]
k

)
is included independently with the same probability. The third standard

model is the random d-regular k-uniform hypergraph, which is chosen uniformly at random from the
set of all d-regular k-uniform hypergraphs, i.e. hypergraphs with hyperedges in

([n]
k

)
such that each

vertex is incident to exactly d hyperedges. As opposed to the other two closely related models, this
model is far more rigid and usually requires additional or different arguments. However, also for this
model, methods have been developed that allowed to rigorously locate satisfiability thresholds, one
example being the exact cover [96, 36] introduced above.

1.3 Factor Graphs

Now, we turn to the representation of CSPs using factor graphs. For this purpose, fix the number q
of values, the total number n of variables as before, and further let m be the number of factors, which
can be thought of as generalized constraints. Each factor a ∈ [m] is equipped with an arity ka, an
ordered neighborhood va ∈ [n]ka and a weight function ψa : [q]ka → R≥0. This determines the factor
graph G = (va, ψa)a, where we keep the number n of variables implicit. Depending on the context,
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a1 a2 a3 a4

i1 i2 i3 i4 i5

(a) Factor Graph Visualization

a1 a2 a3 a4

i1 i2 i3 i4 i5

1 2 3 1 2 3 1 2 3 1 2 3

(b) Factor Graph With Ordered Neighborhoods

Figure 1: On the left, we see a factor graph for k = 3, where the rectangles and circles depict the
factors and variables respectively. The weights and the neighborhood orders are kept implicit. The
figure on the right shows the same factor graph, with explicitly modeled ordered neighborhoods.

the factor graph G can be thought of as a bipartite graph (cf. Figure 1), with the vertices given by
the variables [n] and the factors [m], or as a hypergraph, with variables as vertices and factors as
(labeled) hyperedges. The weight of an assignment σ ∈ [q]n under G is

ψG(σ) =
∏
a∈[m]

ψa (σva) , σv =
(
σv(h)

)
h∈[k]

, v ∈ [n]k.

Assuming that for all a the weight function ψa : [q]ka → {0, 1} is an indicator, we recover an instance
of a CSP where the constraint a ∈ [m] involves the variables Va = {va(h) : h ∈ [ka]} and is satisfied
by Sa = {τ ∈ [q]Va : ψa((τva(h))h∈[k]) = 1}. Usually, here we also consider ka distinct variables Va,
so the arity ka = |Va| is the number of involved vertices. Notice that the weight ψG(σ) ∈ {0, 1} of
σ ∈ [q]n indicates if σ is a solution to the CSP, so the solution space is simply ψ−1

G (1).
The values [q] are also referred to as spins or colors, the variables [n] as particles and the as-

signments σ ∈ [q]n as (spin) configurations or spins. Another key quantity is the partition function
Z(G) = ∑

σ∈[q]n ψG(σ), or the number of solutions in the context of CSPs. If the partition function
is positive, the Gibbs measure or Boltzmann distribution µG : [q]n → R≥0, σ 7→ ψG(σ)

Z(G) , is closely
related to structural properties of the solution space in the context of CSPs. Hence, this simple model
captures all relevant aspects of CSPs regarding the problems in Section 1.1.

For example, to model q-COL we let ka = 2, further let the involved variables Va ̸= Vb be distinct,
and let the two variables va = (va(1), va(2)) be distinct, to ensure that G reflects a simple graph,
where va ∈ [n]2 represents an edge. The appropriate weight ψa(τ) = 1{τ1 ̸= τ2} indicates if the colors
of the endpoints are distinct, further ψG(σ) indicates if σ ∈ [q]n is a proper coloring and Z(G) is the
number of proper q-colorings of G viewed as a graph.

We proceed similarly for the exact cover, using q = 2, colors {0, 1}, and ψa(τ) = 1{∥τ∥1 = 1}.
However, for this example there are two prominent ways to map the factor graph to a hypergraph. As
above, we may map the variables to the vertices and the factors to the hyperedges, enforcing distinct
involved variables Va ̸= Vb and distinct neighbors (va(1), . . . , va(k)). Then, a solution σ ∈ ψ−1

G (1)
corresponds to an exact vertex cover σ−1(1) ⊆ [n], i.e. each hyperedge Va is incident to exactly one
vertex in σ−1(1). On the other hand, we may map the variables to the hyperedges and the factors
to the vertices, so here we would enforce distinct neighborhoods Fi = {a ∈ [m] : i ∈ va([k])} and
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unique neighbors, i.e. |v−1
a (i)| = 1 for a ∈ Fi. Now, a solution σ ∈ ψ−1

G (1) corresponds to a set
M = {Fi : i ∈ σ−1(1)} of hyperedges, such that each vertex a ∈ [m] is incident to exactly one
hyperedge in M – thus, the solutions are perfect matchings.

1.4 Factor Graph Models and Applications

Analogously to the discussion in Section 1.2, we introduce some well-known distributions on general
factor graphs in Section 1.4.1. The related teacher-student model is introduced in Section 1.4.2, where
the random graph prefers a large weight on a specific assignment. In Section 1.4.3 we discuss phase
transitions and thresholds, like the satisfiability threshold in Section 1.2, for general factor graph
models. Then we introduce several applications of factor graphs, to motivate the generalization. In
Section 1.4.4 we introduce spin glass models from physics, and the stochastic block model in Section
1.4.5, which is prominent in statistics, machine learning and network science. In Section 1.4.6 we
discuss examples from coding theory.

1.4.1 Random Factor Graph Models. As for (hyper-) graphs and as motivated above, we also
consider random factor graphs. The uniform Erdős-Rényi model is given by the following parameters.
• The number q ≥ 1 of colors.
• The arity k ≥ 1.
• A random weight function ψ : [q]k → R≥0 with law p.
• The number n > 0 of variables.
• The number m ≥ 0 of constraints.
The uniformly random factor graph Gn,m = (va,ψa)a∈[m] is obtained by choosing all neighborhoods
va ∈ [n]k uniformly at random, and ψa from p, all mutually independent. The closely related binomial
factor graph Gn,π for π ∈ [0, 1] is obtained by including each neighborhood v ∈ [n]k with probability
π and a weight function ψv from p for each (included) neighborhood, all mutually independent. For
CSPs, we would usually replace [n]k by the subset of pairwise distinct variables, or even by unordered
neighborhoods

([n]
k

)
, depending on the context. Moreover, as discussed above, we would usually

enforce that the neighborhoods are distinct. These restrictions can be achieved by conditioning on
the respective events and lead to the desired standard models. However, for the sake of brevity we only
consider possibly duplicate neighborhoods [n]k unless stated otherwise and postpone the extension to
the other models. Finally, for a degree d > 0, the random regular factor graph Gn,d (with possibly
duplicate neighborhoods) is obtained from the uniform factor graph Gn,m over

([n]
k

)
by conditioning

on the event that all variable degrees |{a ∈ [m] : i ∈ va}| for i ∈ [n] are equal to d, or alternatively
by choosing a (d, k)-biregular graph uniformly at random and equipping it with weights as above (if
this is well-defined).

1.4.2 The Teacher-Student Model. The three factor graph models introduced so far are unbiased,
in the sense that there is no preference of certain neighborhoods or weights inherent to the model,
relative to the law p. While these are the most prominent distributions for random CSPs, other
relevant distributions have emerged over the decades. A particularly prominent family is the planted
model, where we consider the random factor graph conditional to the event that a specific assignment
σ ∈ [q]n is a solution. In this context, the three unbiased random factor graphs introduced so far are
the null models, while the planted models generalized from CSPs, where the weights are indicators,
to general factor graphs are given as follows.

For an assignment σ ∈ [q]n, the ground truth, and the uniform null model Gn,m, whenever the
weight is positive with positive probability P(ψGn,m(σ) > 0) > 0, the teacher-student model, or
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planted model, G∗
n,m(σ) is given by the Radon-Nikodym derivative G 7→ ψG(σ)/E[ψGn,m(σ)] with

respect to Gn,m. The planted model for the regular null model Gn,d is defined analogously. For the
binomial null model Gn,π, we take a slightly different approach to maintain independence. Let (v,ψ)
be independent, with v uniform from [n]k and ψ from p. If we have E[ψ(σv)] > 0, then the planted
model G∗

n,π(σ) is obtained by independently including each neighborhood v ∈ [n]k with probability
E[ψ(σv)]
E[ψ(σv)]π and the weight is given by the Radon-Nikodym derivative ψ 7→ ψ(σv)/E[ψ(σv)] with respect
to ψ. Notice that the expected number of factors in both the binomial null model and planted model
is nkπ, which is the motivation for the scaling with E[ψ(σv)] in the definition.

Finally, we consider the uniformly random ground truth σ∗ ∈ [q]n, independent of anything else,
for the same reason that we consider random CSPs, as detailed in Section 1.2. Further, we choose the
uniform distribution for σ∗ because in most assignments all colors appear roughly the same number
of times, and because this is consistent with the partition function Z(G) = ∑

σ ψG(σ) = qnE[ψG(σ∗)].
The planted model has already been mentioned in the seminal paper [47] by Erdős and Rényi,

and has accompanied the null model ever since. In the context of CSPs, the planted model serves as
a tool to focus on (typical) factor graphs that admit a specific solution, to analyze their structural
particularities, their solution spaces, to compare them to factor graphs admitting a different solution,
and to compare them to factor graphs from the null model. Inspired by the cavity method from physics
and based on rigorous results for a large class of CSPs [32], for CSPs that are not biased towards
specific colors we assume that (σ∗,G∗

n,m(σ∗)) and (σGn,m ,Gn,m), where σG with probability mass
function µG are the Gibbs spins, are very similar for sufficiently small constraint densities, mutually
contiguous to be precise, that the partition functions Z(Gn,m) and Z(G∗

n,m(σ∗)) are comparable and
tightly concentrated, amongst other properties – in a nutshell, the planted model with the ground
truth can be used to analyze the null model and its solution space through the Gibbs spins. For
larger constraint densities, the planted model significantly differs from the null model. The reason
is that factor graphs with many solutions are preferred in the planted model since any such solution
can serve as ground truth, and the impact of this bias is significant for larger densities. The same
reasoning holds for general factor graphs [30, 32].

1.4.3 Phase Transitions. Next to the very intuitive satisfiability threshold in Section 1.2, based
on the discussion in Section 1.4.2, we assume that another phase transition occurs, in general factor
graphs, at the condensation threshold. A formal definition, discussion and rigorous results can be
found in [30, 33, 32]. Also further phase transitions are conjectured, for example at the clustering,
rigidity and freezing threshold. An excellent overview can be found in [58, 94].

Proving the existence, let alone the location, of phase transitions in factor graph models is highly
non-trivial even for fairly simple specific problems. Celebrated contributions establishing such tran-
sitions and the behavior of related quantities, include the quenched free entropy (density) for the
Sherrington-Kirkpatrick model [123], inspired by the replica method [106], verifications of physics
predictions [79, 78, 60] for channel coding, results [3, 43] for the limiting mutual information in the
stochastic block model (SBM), the freezing threshold [88] and the condensation threshold [18] for
q-COL, for large enough q, as well as the satisfiability thresholds for k-NAESAT [35] and k-SAT [40],
for large enough k, and all inspired by the cavity method. Next to such problem specific discus-
sions, also problem independent results were derived. However, a truly general theory is non-existent,
certain cases still have to be distinguished. We focus on the (almost) sparse regime, that is, the
number of (hyper-)edges is (almost) linear in the number of vertices. Within this regime, we focus on
Erdős-Rényi type and regular factor graphs as introduced in Section 1.4.1.

The seminal paper [54] proves the existence of certain phase transitions. The results in [33]
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establish not only the existence [4], but also the exact limit of the mutual information, the closely
related quenched free entropy, moreover the limit of a certain relative entropy and the (standard)
quenched free entropy up to the condensation threshold, and also a qualitative description beyond the
threshold, all at positive temperature. These results were subsequently extended and improved under
partially weaker, partially stronger, and other assumptions in [30], to determine limiting distributions,
to compare and characterize thresholds and bounds, and establish mutual contiguity of models, which
is highly useful for a number of applications. The contribution [32] further extends these results to
zero temperature, which is e.g. crucial for CSPs.

Rigorous results for satisfiability thresholds at zero temperature for CSPs do not exist for larger
classes of models, but a few specific thresholds have been established [85]. A rather recent result
is the perfect matching threshold for the Erdős-Rényi hypergraph [71]. In fact, the result is even
stronger in that it establishes that the hitting time for the existence of a perfect matching coincides
with the hitting time for the existence of a hyperedge cover whp, in the corresponding hypergraph
process. The location of this threshold was successfully translated to the threshold for the existence
of a k-clique factor in the Erdős-Rényi graph using an ingenious coupling [113, 63].

Satisfiability threshold results for the regular hypergraph also include the perfect matching thresh-
old [36], or equivalently the exact cover threshold [96], amongst others [89, 17, 73, 29, 41, 42].

1.4.4 Spin Glasses. A very influential concept that fueled the intuition for a plethora of results and
gave rise to countless conjectures, is the cavity method and the closely related replica theory from
physics, the foundation of spin glass theory [87, 85, 77]. For simplicity, we focus on spin glasses that
correspond to the uniformly random factor graph from Section 1.4.1 for now.

Let e : [q]k → R be the random energy for given spins τ ∈ [q]k, then the Hamiltonian E :
[q]n → R is the energy E(σ) = ∑

a∈[m] ea(σva) of the spin configuration σ ∈ [q]n, where Gn,m =
(va, ea)a∈[m] is obtained by independently choosing va uniformly from [n]k and ea from e. For a
given inverse temperature β ∈ R≥0 the weight of σ ∈ [q]n is ψGn,m,β(σ) = e−βE(σ), the partition
function is ZGn,m(β) = ∑

σ ψGn,m,β(σ) and µGn,m,β(σ) = ψGn,m,β(σ)/ZGn,m(β) defines the Boltzmann
distribution. Hence, for given e and β, this model is equivalent to the factor graph model given
by ψ(τ) = e−βe(τ) ∈ R>0. This defines a diluted mean-field spin glass model, that is, we do not
(necessarily) consider all possible combinations [n]k, and all neighborhoods are equally likely to be
considered. We further focus on the sparse case as before, where the number of factors is linear in
the number of particles, and fix m = ⌊dn/k⌋ for given d ∈ R≥0. This model represents microscopic
variables (e.g. atoms or electrons) and their interactions, but in this context we are mostly interested
in macroscopic properties (e.g. locations of glass transitions). Hence, similarly to CSPs we focus on
the thermodynamic limit, that is, the asymptotics in n for fixed β and d. As opposed to CSPs, for
the definition of phase transitions we usually keep d fixed and consider a variation of β.

Here, the two limiting cases β = 0 and β → ∞ deserves special attention. The infinite-temperature
limit β = 0 corresponds to total chaos, meaning that there is no interaction between the particles
[n], or formally, that the contributions βea ≡ 0 are trivial. On the other hand, the zero temperature
limit β → ∞ mimics the case that the weight ψ(τ) = e−βe(τ) may vanish. While this does establish a
connection to the previously discussed CSPs, which is used in applications (e.g. simulated annealing),
it is highly non-trivial to determine whether the limit β → ∞ can be used to analyze the model at
zero temperature, i.e. the model for β = ∞.

To illustrate the phase transitions and the zero-temperature limit in spin glasses, we consider
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the arguably most studied quantity, the free entropy (density) ϕn,m(β) = 1
n ln(ZGn,m(β)).1 The

conceptually simple example e ∈ {0, 1} almost surely is not only typically used to approximate CSPs,
but also serves as a reasonable base case, for which we notice that ϕn,m(β) ∈ [ln(q) − βm

n , ln(q)]
almost surely, i.e. this quantity remains bounded in the thermodynamic limit. In general and under
weak assumptions, the free entropy is self-averaging, that is, it concentrates around the quenched free
entropy ϕq,n,m(β) = E[ϕn,m(β)]. Here and in the following we restrict to spin glasses for which the
discussed quantities are well-defined and finite. In particular, we also assume that this holds for the
annealed free entropy ϕa,n,m(β) = 1

n ln(E[ZGn,m(β)]), as well as the limits ϕq,d(β) = limn→∞ ϕq,n,m(β)
and ϕa,d(β) = limn→∞ ϕa,n,m(β).2 Similar to the discussion in Section 1.4.2, for sufficiently high
temperatures we expect the partition function to be sharply concentrated (we even have ZGn,m(0) = qn

almost surely), and in particular that ϕq,d(β) = ϕa,d(β). The latter is very convenient since the
annealed free entropy can be easily computed. For sufficiently small average degrees d, say no factors,
the quenched and annealed averages even coincide for all temperatures. However, as before, we expect
that this ceases to be true for larger densities, and that a phase transition occurs. For this purpose,
as indicated in Section 1.4.2, we consider the teacher-student model G∗

n,m(σ∗) using the established
representation of the spin glass as a factor graph, and let ϕ∗

q,d(β) = limn→∞ E[ 1
n ln(ZG∗

n,m(σ∗)(β))].
For not too small d we expect the condensation threshold βc(d) = inf{β ∈ R≥0 : ϕa,d(β) < ϕ∗

q,d(β)} to
be in R>0, further ϕq,d(β) = ϕa,d(β) = ϕ∗

q,d(β) for β ∈ [0, βc(d)] and ϕq,d(β) < ϕa,d(β) < ϕ∗
q,d(β) for

β > βc(d). For sufficiently well-behaved spin glasses, we expect the following picture. Consider the
threshold dc = inf{d ∈ R≥0 : βc(d) < ∞} at zero temperature. For d ≤ dc we expect to have βc(d) =
∞, and for d > dc the curve βc(d) ∈ R>0 is continuous and non-increasing, thereby separating the
replica-symmetric regime on the bottom-left from the condensation regime on the top-right. Further,
next to the accessible annealed free entropy ϕa,d(β), also the limit ϕ∗

q,d(β) has been established for a
large class of models [33, 30], which facilitates the computation of βc(d). Usually for e ∈ {0, 1} almost
surely, we also consider the spin glass at zero temperature, i.e. β = ∞, which is a CSP. Using minor
modifications3, we may consider the free entropies ϕq,d(∞), ϕa,d(∞) and ϕ∗

q,d(∞). For a large class
of models, it has been established that these are the limits of the positive temperature free entropies
and that the threshold dc is the condensation threshold dc = inf{d : ϕa,d(∞) < ϕq,d(∞)}[32]. So,
next to the importance of the free entropy for spin glasses, where it is e.g. crucial for the analysis
of the Boltzmann distribution and the identification of ground states, meaning minimum energy
configurations, the free entropy at positive temperature can also be used as an approximation of the
free entropy at zero temperature, i.e. a rough estimate for the size of the solution space.

1.4.5 Stochastic Block Model. Community detection in the stochastic block model (SBM) re-
ceived considerable attention over the last decades [1, 97], in particular since the seminal paper [38].
The problem is stated as follows. For fixed weights w = (w0, w1) ∈ R2

≥0 and a fixed ground truth
σ ∈ [q]n, we choose a graph G∗

n,w(σ) on n ≥ ∥w∥∞ vertices by including each edge {u, v} indepen-
dently with probability w0

n if σu = σv and probability w1
n otherwise. Now, a teacher samples a ground

truth σ∗ uniformly from [q]n, then the graph G∗
n,w(σ∗), and reveals the graph to a student who is

tasked to recover (as much information as possible about) the ground truth from the graph (knowing
the model parameters). This recovery problem is usually subdivided into the following types: exact

1The free energy − 1
β
ϕn,m(β) is more common than the free entropy introduced in [85].

2Establishing merely the existence of the limiting quenched free entropy is already highly non-trivial [62, 53, 4] and
still open in many cases.

3The free entropy may not be finite, so we replace 1
n

ln(Z) by related quantities like 1
n

ln(Z +1) or Z1/n [32], or avoid
the expectation and consider ϕm,n(∞) directly [33].
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recovery, almost exact recovery, partial recovery and weak recovery [1]. Another problem which is
closely related to weak recovery, is the distinguishability problem. Here, the teacher flips a fair coin
c ∈ {0, 1} and then chooses a graph from G∗

n,w(σ∗) for c = 1, and the standard binomial graph Gn,p

for c = 0, where each edge is included with probability p = w0
qn + (q−1)w1

qn . Now, the student has to
guess the value of c from the observed graph, with high probability.

This model can be (asymptotically) captured by the binomial factor graph from Section 1.4.1 with
arity k = 2 over neighborhoods

([n]
2
)
, where the null model takes the role of the reference distribution

Gn,π and the teacher-student model G∗
n,π(σ∗) the role of the stochastic block model. Recall the

discussion in Section 1.4.1. There, we argued that for sufficiently small average degrees d the planted
model can be used to approximate the null model. Here, this means that the student cannot distinguish
the models. To further deepen the connection using the CSP perspective, corresponding to w0 = 0,
for small average degrees the solution space covers almost all of [q]n in almost all graphs (in both
models since they are similar), and any such solution might be the ground truth, equally likely, so
we cannot extract any significant information about the ground truth. On the other hand, for large
average degrees, as argued before, the null model and the planted model cease to be similar due
to the fluctuation of the number of solutions. Further, the smaller solution spaces shatter into not
too large (symmetric) clusters, which allows the student to make a guess that performs better than
an entirely random guess. Thus, the replica-symmetric regime which is desirable for CSPs and spin
glasses, is catastrophic in terms of statistical inference, since in this region both weak recovery and
distinguishability are information-theoretically impossible. While this picture is still non-rigorous in
general, the distinguishability threshold, the weak recovery threshold and their equivalence to the
condensation threshold were rigorously established in [33, 30, 32] for the disassortative case, that is,
for the case where w1 ≥ w0.

1.4.6 Coding Theory. First, we focus on the following example from channel coding, namely
low-density generator matrix (LDGM) encoded communication through a binary symmetric channel
(BSC). A priori, we choose the generator matrix M ∈ {0, 1}m×n by choosing k positions for the
1’s uniformly at random from [n], independently for each row. Then, guided by a reasoning similar
to Section 1.2 and Section 1.4.2, we consider a stream of independent uniform input bits for the
communication, which we partition into blocks of size n for the encoding process, a strategy commonly
used for block codes. Let x ∈ {0, 1}n be one such input message, drawn uniformly at random.
Encoding the message x amounts to matrix multiplication with M , over the field F2, resulting in the
codeword y = Mx ∈ {0, 1}m. Now, the encoded bits y are communicated through the noisy BSC,
which means that each bit is flipped independently with probability ε ∈ (0, 1/2) (given y), and results
in the scrambled output z ∈ {0, 1}m.

Clearly, the purpose of communication is to convey as much information as possible. Here, a widely
used and reasonable measure is the conditional mutual information I(x, z|M) of x and z given the
generator matrix M . Using the data processing inequality, the chain rule for the conditional mutual
information and independence, we obtain the upper bound mc, where c = 1 − H(ε)/H(1/2) is the
capacity of the BSC and H(ε) = −ε ln(ε) − (1 − ε) ln(1 − ε) is the entropy. In fact, this upper bound
is tight if and only if y ∈ {0, 1}m (given M) is uniform. This is indeed the case, whp over M ,
for sequences m = m(n) = o(

√
n). Now, we fix an average degree d ∈ R≥0 and let m = ⌊dn/k⌋,

as before. In this sparse regime, the bound mc is out of reach due to the arising dependencies.
However, we may still hope that the normalized mutual information 1

mI(x, z|M) converges to c for
small d. Indeed, there does exist a threshold dc such that limn→∞

1
mI(x, z|M) = c for d ≤ dc, and

limn→∞
1
mI(x, z|M) < c for d > dc [33].
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Clearly, the choice of M is reminiscent of the choice of the neighborhoods (in
([n]
k

)
) for the null

model, however, it is not immediate how this model relates to the discussed factor graph models. As
it turns out, we can choose the weight ψ such that, with the other parameters unchanged, the mutual
information I(x, z|M) = I(σ∗,G∗

n,m(σ∗)) coincides with the mutual information of the ground truth
and the teacher-student model. Details can e.g. be found in [33] or further below.

While this model is certainly oversimplified4 from an application perspective, it does allow to
focus on the highly non-trivial discussion of the limiting mutual information, without requiring the
additional, highly non-trivial treatment of desirable degree sequences – thus, since the former is
already involved enough as is, we circumvent the latter. The extension to general degree sequences
can be found in [31].

Next to this somewhat indirect example from channel coding, planted models are also proposed as
one-way functions in cryptography, and used as benchmark tests for SAT solvers. An example for the
former is parity-majority in [32], an example of the latter and the ties to cryptography is discussed in
[19]. Another prominent example is k− LIN(η) [33, 10, 12, 51], and both planted XORSAT and SAT
models are thoroughly discussed in [51].

2 Main Results
Now, we turn to the new contributions established in this work, respectively in the underlying papers
[102, 64, 103]. In Section 2.1, we extend the results in [33] for the uniform ground truth with applica-
tions in Section 1.4.4, Section 1.4.5 and Section 1.4.6 to the biased case, which manifests as external
fields in spin glasses, as a community size bias in the (generalized) SBM, and as a biased distribution
of the input bits for the LDGM-BAC pair, where the binary asymmetric channel (BAC) covers the
BSC as a special case. The proofs and further discussion can be found in Section 3.

After this discussion of general Erdős-Rényi factor graphs with strictly positive weights, the posi-
tive temperature case, we turn to a very specific example of the zero temperature case in Section 2.2,
namely perfect matchings in 3-uniform hypergraphs. To be specific, we pinpoint the location of the
hitting time for a triangle factor in the standard graph process, i.e. the 2-uniform hypergraph, and
relate it to the hitting time for a triangle cover. This result is not only of interest in its own right, the
embedding of the model and the problem into the general framework also gives an interesting perspec-
tive. In particular, next to the practical requirements of the LDGM-BAC pair, also the embedding
of this graph-theoretical model and problem into the general factor graph framework highlights the
importance of further generalizations and the discussion of seemingly unintuitive distributions. The
proofs and further discussion with respect to this result can be found in Section 4.

In Section 2.3, we leave the realm of Erdős-Rényi hypergraphs entirely and move to regular hyper-
graphs, where we extend the existing results for the perfect matching satisfiability threshold [36, 96],
viewed as 1-in-k occupation problem, to the 2-in-k occupation problem. As opposed to the hitting
time result, the embedding of this problem into the general framework is canonical and simultaneously
covers two equivalent problems on hypergraphs. On the other hand, as opposed to the Erdős-Rényi
hypergraph, the rigid structure of the regular hypergraph requires different arguments, that typically
pave the way to the treatment of more complex prescribed degree distributions. Further details and
the proofs for the occupation problems are postponed to Section 5.

4In the relevant sparse regime a linear number of columns in M is likely to be trivial, so a linear number of input
bits are discarded in the encoding.
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2.1 Mutual Information, Entropy and Condensation at Positive Temperature

The results in this section have been established in [102] and are based on the cavity method [86]
from statistical mechanics, which is closely related to the powerful belief propagation [59, 107] and
survey propagation [25, 83] algorithms as well as the Bethe free entropy [21, 126].

In Section 2.1.1, we motivate the results and present extensions of the applications in Section 1.4.
Then, we extend the models from Section 1.4 and discuss the main results in Section 2.1.2.

2.1.1 Motivation and Applications. In Section 2.1.1.1, we briefly explain the extension of the
unbiased models (without external fields) in Section 1.4 to biased models (with external fields). In
Section 2.1.1.2 we propose a significant extension of the SBM from Section 1.4.5 as an application,
and in Section 2.1.1.3 we present the LDGM-BAC pair as another application.
2.1.1.1 Biased Ground Truths. As indicated in Section 1.4, a common assumption in essentially all
previous related works is that the ground truth σ∗ is uniform. To build some intuition on why this
choice is so convenient, we slightly extend the SBM from Section 1.4.5 for two colors as follows. Now,
we choose σ∗ = (σ∗

i )i ∈ {0, 1}n independently with success probability pc ∈ (0, 1). Then, edges within
community ‘0’ are chosen with probability p0, within community ‘1’ with p1, and in between the two
with p01. As discussed in Section 1.4.5, we are interested in weak recovery, knowing pc, p0, p1, p01. To
this end, a simple idea is to compute the expected community sizes n0, n1 and the expected vertex
degrees d0, d1. For d0 < d1 we may put the n0 vertices with smaller degrees into community ‘0’, and
the remainder into the other. However, if the instance is balanced, meaning that d0 = d1, we might
not be able to beat a completely random guess. Certainly, the most simple such case occurs when
p0 = p1 and pc = 1/2, which is exactly the symmetric SBM on two colors from Section 1.4.5. However,
the instance may be ‘difficult’, that is, balanced, even if pc ̸= 1/2, and thus recovery may be highly
non-trivial. On the other hand, the assumption that the two communities are symmetric seems overly
restrictive. Similarly, for the LDGM codes from Section 1.4.6, the assumptions that the input bits
are uniformly distributed and that the distortion of individual bits is symmetric certainly reflect the
most relevant case, but understanding biased inputs and asymmetric distortions is clearly also highly
desirable. Such symmetry assumptions are omnipresent and necessary in previous works; the absence
of symmetry is not just a technical inconvenience, but introduces fundamentally new phenomena and
requires a different analysis.

Our main contribution here is the development of a general and readily applicable theory for sparse
and not necessarily symmetric factor graph models. Under certain assumptions, we study asymptoti-
cally several key observables that enable us to obtain a fine-grained understanding of important phase
transitions in these models. Specifically, as in [33], we perform a thorough study and determine for-
mulas for central quantities, like the mutual information, the quenched free entropy and the relative
entropy. Additionally, we provide convergence guarantees that are polynomial in the system size,
and uniformly so, under a variation of the model parameters. We further locate the condensation
threshold and derive strong bounds for the quenched free entropy above the threshold. Including
these, our contributions are as follows:
• We cover all reasonable, meaning balanced, pairs of model and ground truth that satisfy our

assumptions (which are significantly weaker than in previous work).
• Both verifying and refuting one of the model assumptions is very hard, since it amounts to the

solution of an infinite dimensional optimization problem. In the spirit of [105], we present a
broader than ever, and in particular explicit class of models that satisfies this assumption. To our
knowledge, this class covers all models from all contributions that worked with similar assumptions,
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and many, many more. We provide a comprehensive list in Section 3.1.1.
• In previous work, limits have been established. We do not only establish limits, we give convergence

guarantees, and the order of convergence is polynomial. Moreover, we provide error bounds that
are uniform over all model parameters, that is, the expected degree, the ground truth and the
weight distribution. As mentioned above, we further strengthen comparable results.

Before we proceed with the general exposition in the following section, we demonstrate the applicabil-
ity of our results by discussing in more detail two fundamental specific models, whose treatment was
out of reach with current methods. We keep the discussion of the applications as casual as possible
to build intuition for the upcoming formal treatment. Details for the SBM (on hypergraphs) can be
found in Section 3.5.9, and in Section 3.5.11 for the LDGM-BAC and more general channels.
2.1.1.2 The Stochastic Block Model. The symmetric SBM in Section 1.4.5 is a special case of the
following general SBM, where we replace the weights w by a symmetric matrix ψ ∈ Rq×q≥0 of weights.
Further, fix a ground truth distribution γ ∈ P([q]), where P([q]) is the set of all probability measures
over [q]. For a fixed parameter d ∈ R≥0, a given number n ∈ Z≥d∥ψ∥∞ of vertices [n] and a ground truth
σ ∈ [q]n we obtain the graphG∗(σ) by including each edge {i, j} ∈

([n]
2
)

independently with probability
d
nψ(σi, σj). The coordinates of the random ground truth σ∗ ∈ [q]n are identically independently
distributed (iid), with distribution γ, which we denote by σ∗ ∼ γ⊗n. The random graph G∗(σ∗) is
the stochastic block model (SBM).

We can easily check if (ψ, γ) is balanced, meaning, check if all vertices in G∗(σ) have the ‘same’
expected degree for likely σ. Assuming the model is balanced, we focus on two accessible types, the
assortative and disassortative SBMs, defined as follows. First, we introduce a hierarchy on the colors
[q], to model how similar they are. A hierarchy with L ∈ Z>0 levels is given by partition refinements
C = (Cℓ)ℓ, where Cℓ : [q] → [q] is the color class on level 0 ≤ ℓ ≤ L, such that all colors σ ∈ [q] on
level 0 are in the parent class C0(σ) = 1, and colors on level L are separated, i.e. CL(σ) = σ. Partition
refinement means that for each level ℓ ∈ [L] and class c ∈ Cℓ−1([q]) on the lower level, the classes
C = {Cℓ(σ) : σ ∈ C−1

ℓ−1(c)} on the higher level refine c, i.e. ⋃c′∈C C
−1
ℓ (c′) = C−1

ℓ−1(c). Now, we assign a
weight w(ℓ, c) ∈ R to each class c ∈ [q] on each level ℓ, and let

ψ(σ) =
L∑
ℓ=0

1{Cℓ(σ1) = Cℓ(σ2)}w(ℓ, Cℓ(σ1)), σ ∈ [q]2.

This is well-defined if ψ ≥ 0 (componentwise), and then ψ defines a (hierarchical) SBM. The SBM is
assortative if w(ℓ, c) ≥ 0 for all ℓ and c ∈ [q], and disassortative if w(ℓ, c) ≤ 0 for all ℓ ≥ 1 and c ∈ [q].
For both types, it’s not only easy to check if (ψ, γ) is balanced, it is easy to exactly determine all
balanced (ψ, γ) (thanks to nice convexity properties).

The highly non-trivial study of these models received an enormous amount of attention in the
last decade. Driven by the conjectures in the seminal paper [38], a long line [84, 99, 4, 16, 7, 8, 9] of
research iteratively improved the results. A major success was the localization of the thresholds for the
binary balanced symmetric two-part SBM in [100], followed by the celebrated localization of the weak
recovery threshold for the balanced symmetric disassortative two-part SBM in [33], for all q ∈ Z>1,
and the distinguishability threshold in [30]. Both thresholds coincide with the condensation threshold
dcond, and the crucial step in [33] was to establish dcond using the limit of the mutual information
1
nI(σ∗,G∗(σ∗)) of the SBM and the ground truth, a measure of how much information on σ∗ is
captured by G∗(σ∗).

Regarding the general balanced disassortative SBM, where the number of parts is almost arbitrary,
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and the ground truth γ is not the uniform distribution, much less is known. This general case can
be readily treated with our results, and we provide a detailed picture. In particular, we establish the
limit of 1

nI(σ∗,G∗(σ∗)) of the mutual information and the condensation threshold dcond(ψ). We also
obtain the limit of the relative entropy 1

nDKL(σ∗,G∗(σ∗)∥σG,G), where σG is the posterior given a
graph G (our guess what σ is, given G) and G is the corresponding null model, that is the binomial
graph with the edge probability chosen such that the average degrees in both models coincide. Finally,
we show that the convergence to the limits is polynomially fast, and uniformly over d, γ, ψ.
2.1.1.3 LDGM Codes. We extend the LDGM-BSC pair from Section 1.4.6 as follows. The input
message is x ∼ γ⊗n for some distribution γ ∈ P({0, 1}) and n ∈ Z>0; we say that the input is binary
and memoryless. The parameters for the code are the arity k ∈ Z≥2 and the block length m ∈ Z≥k,
and the parameters for the noisy channel are the error probabilities 0 < δ ≤ ε ≤ 1

2 . Given the
parameters, we randomly choose a generator matrix M ∈ {0, 1}m×n by choosing the positions for the
1’s in each row independently and uniformly from

([n]
k

)
as in Section 1.4.6. Also, as before, we obtain

the codeword y = Mx ∈ {0, 1}m using matrix multiplication over F2. Finally, we transmit y through
the BAC, that is, given y, each bit is transmitted independently, flipped with probability δ if it is 0,
and otherwise flipped with probability ε. Let z ∈ {0, 1}m be the produced output message.

Similar to Section 1.4.6, for sequences m = m(n) = o(
√
n) and whp over M , the bits of the

codeword y = (ya)a∈[m] are conditionally iid given M . So, if we let b = (bh)h ∈ {0, 1}k be iid with
law γ, further let the sum y◦ = ∑k

h=1 bh ∈ {0, 1} over F2 be the input to the BAC with output z◦,
then whp the law of (ya, za)a given M is (y◦, z◦)⊗m. Hence, in this case, the mutual information of x
and z given M is exactly mI(y◦, z◦). Since it’s very likely that M is of this form, this also holds for
the expectation of the mutual information of x and z given M , which is nothing but the conditional
mutual information I(x, z|M).

This reasoning naturally raises the question: Up to which point can we expect this to be true,
i.e. up to what block length m are the dependencies in the generation of y so weak that we do
have 1

mI(x, z|M) ≈ I(y◦, z◦)? Phrased asymptotically, and in terms of the rate n
m as is common,

the question is: What is the value of R∗(γ) = inf{R : limn→∞
1
mI(x, z|M) = I(y◦, z◦)}, where

m = m(R,n) > 0 is such that limn→∞
n
m = R?

Motivated by a conjecture in [80] and based on [91], where bounds and concentration were estab-
lished, this question was studied for uniform γ and the binary symmetric channel, i.e. δ = ε, in [4],
where the existence of the limit was established, and in [33], where the conjecture was settled. The
mutual information limit was explicitly determined and it was shown that R∗(γ) is the condensation
threshold. Crucially, these contributions paved the way for follow-up work [[31] that extends the
results to more general degree distributions, since the Poisson ensemble is not suitable for encoding
due to the non-vanishing fraction of trivial columns in M .

Our results directly yield the mutual information limit and R∗(γ) for any γ, be it uniform or
not. More importantly, not only for the binary symmetric channel, i.e. for δ = ε, but for any binary
asymmetric channel, i.e. for any δ ≤ ε, for any choice of γ, and for even k the mutual information
limit and R∗(γ) are also directly implied. A noteworthy special case in the above is when I(y◦, z◦)
is the channel capacity of the BAC. In particular, this is the case for uniform γ and δ = ε, since
the XOR of k uniform bits is uniform, which is the capacity achieving distribution for the BAC with
δ = ε. For the BAC with δ < ε and even k we have explicitly computed the two possible choices for
the distribution of the input bits such that the normalized mutual information reaches capacity for
sufficiently large rates, and thereby completed the picture for the general case.
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2.1.2 Free Entropies, Divergence and the Mutual Information. We turn to the main results.
First, we extend and adjust the notions from Section 1.4, then we discuss the required assumptions
in general and for a more accessible class of models. Subsequently, we present the results for the
planted model quenched free entropy, the relative entropy, the condensation threshold and the mutual
information. Related results in the literature, extensions of the results in this section, their proofs
and their connection to the applications in Section 2.1.1 can be found in Section 3.
2.1.2.1 Factor Graphs. In this section, we introduce an adjusted version of the factor graphs in Section
1.3 and Section 1.4.1. In particular, we manipulate the partition function and the Gibbs measure to
take the bias into account. As before, fix a number q ∈ Z≥1 of colors and a factor degree k ∈ Z≥1
throughout. Further, we fix a small lower bound ψ↓ ∈ (0, 1) for the weights and let ψ↑ = ψ−1

↓ be the
upper bound. We also fix a large upper bound d↑ ∈ R>0 for the expected variable degree.

Now, for a given distribution γ∗ ∈ P([q]), a number n ∈ Z>0 of variables and a number m ∈ Z≥0
of factors, a factor graph G = (va, ψa)a∈[m] is given by the ordered neighborhoods va ∈ [n]k and the
weight functions ψa : [q]k → [ψ↓, ψ↑]. For an assignment σ ∈ [q]n and v ∈ [n]k we use the shorthand
σv = (σ(vh))h∈[k] ∈ [q]k. The weight ψG(σ) of σ and the Gibbs measure µγ∗,G(σ) are given by

ψG(σ) =
∏
a∈[m]

ψa(σva), µγ∗,G(σ) = γ∗⊗n(σ)ψG(σ)
Zγ∗(G) , Zγ∗(G) =

∑
σ∈[q]n

γ∗⊗n(σ)ψG(σ). (1)

Further, let ϕγ∗(G) = 1
n ln(Zγ∗(G)) be the free entropy. For the random factor graphs, fix a random

weight ψ : [q]k → [ψ↓, ψ↑] with distribution p. Then the null model is the random factor graph
Gn,m,p ∼ (u([n]k) ⊗ p)⊗m, where u([n]k) is the uniform distribution, as before. The teacher-student
modelG∗

n,m,p(σ) for a fixed ground truth σ ∈ [q]n, is still given by the Radon-Nikodym (RN) derivative
G 7→ ψG(σ)/E[ψGn,m,p(σ)] with respect to Gn,m,p.

As opposed to the previous models and applications, we work with random factor counts for
convenience in the following. Thus, for given d ∈ [0, d↑] we let (σ∗

γ∗,n,md,n) ∼ γ∗⊗n⊗Po(dn/k) be the
ground truth and factor count pair, where Po(λ) is the Poisson distribution. Random factor counts
other than m are discussed in Section 3.1.3. In the following we suppress dependencies, so e.g. we
abbreviate G = Gn,m,p, Gm = Gn,m,p, G∗(σ) = G∗

n,m,p(σ) and G∗
m(σ∗) = G∗

n,m,p(σ∗).
2.1.2.2 The Assumptions. Next to the assumption ψ↓ ≤ ψ ≤ ψ↑, we assume that the following two
properties hold for the pair (p, γ∗). Let P2([q]) = P(P([q])) be the set of probability distributions
over the simplex P([q]) ⊆ Rq, and P2

∗,γ∗([q]) = {π ∈ P2([q]) : E[γπ] = γ∗}, where γπ ∼ π.
BAL: For Z f : P([q]) → R>0, γ 7→

∑
σ E[ψ(σ)]∏k

h=1 γ(σh), and ξp = ∥Z f∥∞ we have Z f(γ∗) = ξp.
POS: For all π1, π2 ∈ P2

∗,γ∗([q]) and using Λ(x) = x ln(x), (ψ,γ1,γ2) ∼ p⊗ π⊗k
1 ⊗ π⊗k

2 , we have

E
[
Λ(Zf(ψ,γ1)) + (k − 1)Λ(Zf(ψ,γ2)) −

k∑
h=1

Λ(Zfm(ψ, h,γ))
]

≥ 0,

where

Zf(ψ, γ) =
∑
σ

ψ(σ)
k∏

h=1
γh(σh), Zfm(ψ, h, γ) =

∑
σ

ψ(σ)γ1,h(σh)
∏
h′ ̸=h

γ2,h′(σh′).

The assumption BAL does not only ensure that the model is balanced, it also requires that the
expected weight E[ψG(σ)] is maximized by assignments σ with color frequencies close to γ∗. The



14 2.1. Mutual Information, Entropy and Condensation at Positive Temperature

assumption POS originated as a convexity assumption [4] that ensured subadditivity of the planted
model quenched free entropy. Notice that BAL requires the solution ξ = ∥Z f∥∞ of a (q − 1)-
dimensional optimization problem. Depending on the problem, this may already be intractable,
but POS requires to solve an optimization problem over P2

∗,γ∗([q]). Thus, in order to facilitate the
application of the main results, we introduce the following natural and explicit classes of random
weights, that turn out to satisfy POS.
1. Let a ∈ R≥0 and b,fh,i(σ) ∈ R for σ ∈ [q], i ∈ Z>0 and h ∈ [k]. Let ∑σ

∑
i |
∏
h fh,i(σh)| < ∞ al-

most surely, ∆(σ) = ∑
σ

∑
i

∏
h fh,i(σh) and |b|∥∆∥∞ ≤ 1 almost surely. Let (a, b) and (fh,i(σ))h,i,σ

be independent, and let the k sequences (f1,i(σ))i,σ, . . . , (fk,i(σ))i,σ be iid. Let E[|ab|ℓ],E[∥∆∥ℓ∞] <
∞ and E[abℓ] ≥ 0 for all ℓ ∈ 2Z>0 + 1. Assume that ψ(σ) = a(1 − b∆(σ)).

2. Assume that ψ is of Type 1, that fh,i(σ) = 0 for i > 1, σ ∈ [q], and E[abℓ] = 0 for ℓ ∈ 2Z>0 + 1.
3. Assume that ψ is of Type 1 and that fh,i(σ) ≥ 0 for h, i and σ.
4. Assume that ψ(σ) = ∏

h fh(σh) for f ∈ (Rq≥0)k, possibly dependent.
For even k, let P be the union of Type 1 and 4. For odd k, let P be the union of Type 2, 3 and 4.
Finally, let A be the set of all pairs (p, γ∗) that satisfy BAL and POS.

Proposition 2.1. We have {(p, γ∗) ∈ P × P([q]) : Z f(γ∗) = ξp} ⊆ A.

We will prove Proposition 2.1 under weaker assumptions. We will further show that the set A is
closed with respect to dozens of operations, and that it is convex (cf. Section 3.5.5).
2.1.2.3 Uniform Convergence. In the following, all bounds only depend on g = (q, k, ψ↓, d↑), i.e. they
are uniform in p, γ∗ and d. For this purpose let f(n) = Ou(g(n)) if there exists n◦(g) ∈ Z>0 and
c(g) ∈ R>0 such that |f(n)| ≤ cg(n) for n ≥ n◦.
2.1.2.4 The Quenched Free Entropy of the Planted Ensemble. Our first main result yields the limit of
the teacher-student model quenched free entropy. Recall Λ, Zf , P2([q]), P2

∗,γ∗([q]) from the assumption
POS. For d′ ∈ Z≥0 and (ψ, h, γ) ∈ (R[q]k

>0 × [k] × P([q])k)Z>0 let

Zv,γ∗(d′, ψ, h, γ) =
∑
σ∈[q]

γ∗(σ)
∏
a∈[d′]

 ∑
τ∈[q]k

1 {τ (ha) = σ}ψ(τ)
∏
h′ ̸=ha

γa,h′(τ(h′))

 .
Let π ∈ P2([q]), (d,ψ,h,γ) ∼ Po(d) ⊗ (p⊗ u([k]) ⊗ π⊗k)⊗Z>0 , (ψ◦,γ◦) ∼ p⊗ π⊗k, further let

Bp,γ∗,d(π) = E
[

1
ξdp

Λ (Zv,γ∗(d,ψ,h,γ))
]

− d(k − 1)
kξp

E [Λ (Zf(ψ◦,γ◦))]

be the (limiting) Bethe free entropy (for G∗
m(σ∗)), and B↑,p,γ∗(d) = supπ∈P2

∗,γ∗ ([q])Bp,γ∗,d(π).

Theorem 2.2. There exists ρ(g) ∈ R>0 such that for (p, γ∗) ∈ A we have

E [ϕγ∗(G∗
m(σ∗))] = E

[
n−1 ln(Zγ∗

(
G∗
m(σ∗))

)]
= B↑(d) + Ou(n−ρ).

This result establishes that the Bethe functional is the limit of the planted model quenched free en-
tropy density and thereby rigorously establishes the predictions from physics using the cavity method.
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2.1.2.5 The Information-Theoretic Threshold. The second main result addresses the relative entropy
of (σ∗,G∗

m(σ∗)) with respect to (σγ∗,Gm ,Gm), where σγ∗,G ∼ µγ∗,G are the Gibbs spins from Equa-
tion (1). If a has a RN derivative r with respect to b, let DKL(a∥b) = E[ln(r(a))] and DKL(a∥b) = ∞
otherwise. Further, let ϕa(d) = ϕa,p(d) = d

k ln(ξp).

Theorem 2.3. With ρ from Theorem 2.2 and for (p, γ∗) ∈ A we have

1
n
DKL(σ∗,G∗

m(σ∗)∥σγ∗,Gm ,Gm) = B↑(d) − ϕa(d) + Ou(n−ρ).

Intuitively, Theorem 2.3 states that the teacher-student and the null model are similar in the
replica symmetric regime Pr = {(p, γ∗, d) ∈ P : B↑(d) = ϕa(d)}, P = A × [0, d↑], while they are
significantly distinct in the condensation regime Pc = P \ Pr = {(p, γ∗, d) ∈ P : B↑(d) > ϕa(d)}.
Hence this result establishes that for some rough approximations we can sample from (σ∗,G∗

m(σ∗))
instead of (σγ∗,Gm ,Gm) (cf. Section 1.4.2 and Section 1.4.5).
2.1.2.6 The Condensation Threshold. We confirmed that the replica symmetric and the condensation
regime govern the behavior of the relative entropy. Next, we ensure that the quenched free entropy
for the null model indeed behaves as expected. For this purpose let

ϕq↑,p,γ∗(d) = lim sup
n→∞

E[ϕγ∗(Gm)], ϕq↓,p,γ∗(d) = lim inf
n→∞

E[ϕγ∗(Gm)].

Further, let dcond(p, γ∗) = inf{d ∈ R>0 : B↑(d) − ϕa(d) > 0} be the condensation threshold.

Theorem 2.4. Recall ρ from Theorem 2.2.
a) We have E[ϕγ∗(Gm)] = ϕa(d) + Ou(n−ρ/2) for (p, γ∗, d) ∈ Pr.
b) There exists c(g) ∈ R>0 such that for (p, γ∗, d) ∈ P we have

ϕa(d) − ϕq↑(d) ≥ c sup
d′∈[0,d]

(B↑(d′) − ϕq↓(d′))2.

c) We have Pr = [0, dcond] and Pc = (dcond,∞).

Theorem 2.4b) allows to establish upper bounds for ϕq↑(d), the simplest by considering d′ = d and
solving the quadratic inequality, i.e. (since c is such that δ∗(d) ≤ 1/(4c))

ϕa(d) − ϕq↑(d) ≥ δ̃(d) −
√
δ̃(d)2 − δ∗(d)2, δ̃(d) = 1

2c − δ∗(d), δ∗(d) = B↑(d) − ϕa(d).

Again, this result rigorously establishes the behavior predicted by the cavity method, and discussed in
Section 1.4.4. Theorem 2.3 provides a finite size interpretation of the condensation threshold, and the
combination of these results establishes the asymptotic relationship of the planted model quenched
free entropy, the annealed free entropy, the relative entropy, and the null model quenched free entropy
(below the threshold).
2.1.2.7 The Mutual Information. We turn to the fourth and last main result, regarding the limit of
the mutual information. In general the mutual information is given by I(a, b) = DKL(a, b∥a⊗ b).

Theorem 2.5. With ρ from Theorem 2.2 and for (p, γ∗, d) ∈ P we have

1
n
I (σ∗,G∗

m(σ∗)) = d

kξp
E [Λ (ψ(σ))] −B↑(d) + O(n−ρ), (ψ,σ) ∼ p⊗ γ∗⊗k.
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This result establishes the asymptotic relationship of the mutual information with the other key
quantities. Moreover, the phase transition for B↑(d) at dcond corresponds to a phase transition for
the mutual information, since we can replace B↑ by ϕa below dcond. Regarding the applications, we
obtain the desired limiting mutual information for the LDGM codes (cf. Section 1.4.6 and Section
2.1.1.3), and the expected phase transition occurs exactly at dcond. Further, this mutual information
is also a key quantity in the analysis of SBMs (cf. Section 1.4.5 and Section 2.1.1.2).

2.2 Triangle Factors in the Graph Process

The main result in this section has been established in [64] and is based on the hitting time results for
hypergraphs in [71] as well as the translation of the binomial hypergraph threshold to the binomial
graph via the ingenious coupling in [113, 63]. Instead of discussing these results in full generality, we
focus on triangles in simple graphs, the most demanding case, and only briefly sketch the extension
to larger cliques and cliques in hypergraphs.

In Section 2.2.1 we discuss the satisfiability thresholds for hyperedge covers and perfect matchings
in the binomial hypergraph, as well as the hitting time version [49, 120, 23, 71]. In Section 2.2.2
we discuss the satisfiability thresholds for k-clique covers and k-clique factors in the binomial graph
[68, 113, 63]. Then we turn to the main result, namely the hitting time version, in Section 2.2.3, and
in Section 2.2.4 we briefly discuss how the problems can be modeled as random CSPs.

2.2.1 Covers and Matchings. Recently, Jeff Kahn [71] answered a question by Schmidt and Shamir
[50, 120] – a well-studied problem that has been open for four decades – and in particular showed that
the threshold for the existence of a perfect matching coincides with the threshold for the existence
of a hyperedge cover. To be precise, let k ∈ Z≥2 and π ∈ [0, 1]. As in Section 1.2, Section 1.4.1,
Section 1.4.5 and Section 2.1.1.2 we consider the binomial k-uniform hypergraphHk(n, π) with vertices
[n] where each hyperedge is included independently with probability π. A hyperedge cover C of
Hk(n, p) = ([n],H) is a subset C ⊆ H of the hyperedges such that ⋃E∈C E = [n], and a perfect
matching, or 1-factor, is a hyperedge cover composed of vertex disjoint hyperedges. Let

π± = ln(n) ± g(n)(n−1
k−1
) ,

where g : Z>0 → R≥0 is any sufficiently slowly increasing function with limn→ g(n) = ∞. Erdős and
Rényi [49] established for the special case k = 2 that there are no hyperedge covers (and hence no
perfect matchings) in Hk(n, π−) whp, and on the other hand that there exists a perfect matching
(and hence a cover) in Hk(n, π+) whp. Twenty years later, Schmidt and Shamir [50, 120] asked if a
similar bound exists for k ≥ 3. Forty years later and after extensive research, Jeff Kahn [71] finally
extended the result by Erdős and Rényi for k = 2 to arbitrary k-uniform hypergraphs.

However, Jeff Kahn established a significantly stronger and more instructive result, namely that the
hitting times for the existence of hyperedge covers and perfect matchings in the k-uniform hypergraph
process coincide whp, which yields the answer to the question by Schmidt and Shamir as an immediate
corollary. To be specific, let Hk,n = (Hk,n(S))S be the standard k-uniform hypergraph process, where
Hk,n(0) = ([n], ∅) is empty and we obtain Hk,n(S+1) from Hk,n(S) by adding one hyperedge, chosen
uniformly at random from all hyperedges that are not present inHk,n(S). Let Sc be the minimum step
S ∈ [

(n
k

)
] such that a hyperedge cover exists inHk,n(S), and let Sf be the minimum step S ∈ [

(n
k

)
] such

that a perfect matching exists in Hk,n(S). Further, let (S−,S+) be independent of Hk,n, where S+ is
binomial with parameters

(n
k

)
and π+, and S− given S+ is binomial with parameters S+ and π−/π+
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(for sufficiently large n). Bollobás and Thomason [23] established for k = 2 that S− ≤ Sc = Sf ≤ S+
whp, i.e. they showed that the appearance of an edge cover coincides with the appearance of a perfect
matching whp. Jeff Kahn [71] extended this result to k ≥ 3 (using the bounds from [39]).

Theorem 2.6. For k ∈ Z≥2 we have S− ≤ Sc ≤ S+ whp, and Sf = Sc whp over n ∈ kZ>0.

Notice that Sf is finite if and only if n ∈ kZ>0 since the size of a perfect matching has to be n/k.

2.2.2 Covers and Factors. Oliver Riordan [113] and Annika Heckel [63] devised ingenious couplings
to derive k-clique factor thresholds for the binomial graph from Theorem 2.6. To be precise, let
G(n, p) = H2(n, p) for p ∈ [0, 1] be the binomial graph. For k ∈ Z≥2, recall that a clique E of size k,
or k-clique, in G(n, p) = ([n],G) is a set E ∈

([n]
k

)
such that

(E
2
)

⊆ G. A k-clique cover C of G(n, p) is
a set C ⊆

([n]
k

)
of k-cliques in G(n, p) such that ⋃E∈C E = [n], and a k-clique factor is a k-clique cover

composed of vertex disjoint cliques. Using g from Section 2.2.1, consider the critical window

p± = ln(n)1/(k
2) ± g(n)(n−1
k−1
) .

It is well-known [68] that whp there is no k-clique cover in G(n, p−), and that whp there is a k-clique
cover in G(n, p+). For the k-clique factor threshold, notice that the case k = 2 follows from Theorem
2.6 since these are perfect matchings. The k-clique factor threshold for k ≥ 4 was established by
Oliver Riordan [113], and by Annika Heckel [63] for k = 3.

Theorem 2.7. For k ∈ Z≥2 there exists no k-clique cover (and hence no k-clique factor) in G(n, p−)
whp, and there exists a k-clique factor (and hence a k-clique cover) in G(n, p+) whp, over n ∈ kZ>0.

The result for k-clique covers holds over n ∈ Z>0, only for k-clique factors we need n ∈ kZ>0.

2.2.3 Clique Factor Hitting Time. Our contribution [64] is the hitting time version of Theorem
2.7, i.e. the analogue to Theorem 2.6 for k-clique covers and k-clique factors. To be specific, let
Gn = (Gn(s))s be the standard graph process, where Gn(0) = ([n], ∅) is empty and we obtain
Gn(s + 1) from Gn(s) by adding an edge, chosen uniformly at random from all edges that are not
present in Gn(s). Let sc be the minimum step s ∈ [

(n
2
)
] such that a k-clique cover exists in Gn(s),

and let sf be the minimum step s ∈ [
(n

2
)
] such that a k-clique factor exists in Gn(S). Further, let

(s−, s+) be independent of Gn, where s+ is binomial with parameters
(n

2
)

and p+, and s− given s+
is binomial with parameters s+ and p−/p+ (for sufficiently large n).

As before, the case k = 2 reduces to perfect matchings, i.e. sc = sf whp was already established
in [23]. In [64], we establish sc = sf whp for all k ≥ 3 and further extend this result to k-clique covers
and factors in hypergraphs. Here, we exclusively focus on the case k = 3.

Theorem 2.8. For k = 3 we have s− ≤ sc ≤ s+ whp, and sf = sc whp over n ∈ 3Z>0.

The case k = 3 is a special case which requires special attention, as can be seen in both [113, 63]
and [64]. While the treatment of overlaps is slightly simpler (two triangles can only overlap in zero to
three vertices), we typically have to deal with about ln(n)3 copies of a certain subgraph, coined clean
3-cycle, which significantly complicate matters compared to the case k ≥ 4. Moreover, the discussion
of the graph case is more involved compared to the hypergraph case, since in the former we have to
deal with non-trivial overlaps. Thus, we choose to thoroughly discuss the most demanding case, and
in turn refrain from establishing the general result, for the sake of accessibility. For the general case,
we refer the reader to [64].
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2.2.4 Matchings, Factors and CSPs. Finally, we address the question how Theorem 2.6, Theorem
2.7 and Theorem 2.8 can be embedded into the framework presented in Section 1. For this purpose
we first discuss how perfect matchings in hypergraphs can be modeled as solutions of a CSP. So, given
a hypergraph H = ([n],H) let the factor graph F = (V,F , v, ψ) be given by the variables V = H, the
factors F = [n], the unordered neighborhoods v = (va)a∈[n] with va = {E ∈ H : a ∈ E} for a ∈ [n], and
the weights ψ = (ψa)a∈[n] with ψa : {0, 1}va → {0, 1}, τ 7→ 1{∥τ∥1 = 1}. An assignment σ ∈ {0, 1}V to
the variables V = H, i.e. to the hyperedges, is nothing but a selection σ−1(1) ⊆ H of the hyperedges.
If this selection is such that ψF (σ) = ∏

a ψa(σva) = 1, then all constraints a ∈ F = [n], i.e. all
vertices, are satisfied, meaning that each vertex is incident to exactly one hyperedge in σ−1(1) and
hence σ−1(1) is a perfect matching. For the cover we only have to relax the weights to 1{∥τ∥1 > 0}.

Turning to the binomial hypergraph Hk(n, π) = ([n],H), it is obvious that the corresponding
factor graph significantly differs from the models in Section 1.4.1. The reason is that we consider
a fixed number n of factors, but a random number |H| of variables, and neighborhoods of varying
arity, while the variable degrees are constant and equal to k. So, although we consider the arguably
simplest, most widespread hypergraph model Hk(n, π), due to the non-standard mapping of vertices
to factors, we need a completely different model in terms of factor graphs. Next to the LDGM code
example in Section 1.4.6 and Section 2.1.1.3, this application also stresses the necessity of extensions
of the factor graph model to more general distributions on both the variable and the factor side.

Modeling k-clique covers and k-clique factors in the binomial graph G(n, p) = ([n],G) further
stresses the necessity to consider more general distributions. For a graph G = ([n],G) the associated
factor graph F = (V,F , v, ψ) is given by the variables V = H, where H = {E ∈

([n]
k

)
:
(E

2
)

⊆ G} are the
cliques in G, by the factors F = [n], the neighborhoods v = (va)a with va = {E ∈ H : a ∈ E}, and the
weights ψ = (ψa)a with ψa(τ) = 1{∥τ∥1 = 1} for k-clique factors, respectively ψa(τ) = 1{∥τ∥1 > 0}
for k-clique covers, as before.

Turning to the binomial graph G(n, p), we proceed as above. However, for hypergraphs it would
have been sufficient to draw the variables independently as suggested above, while here we have to
deal with dependencies for the distribution of the k-cliques and thus for the variables. This advanced
example showcases that next to the models from Section 1.4.1 even much more elaborate models [31]
are still not even close to cover all conceptually simple applications.

Notice that the standard hypergraph process Hk.n can be canonically extended to factor graphs.
In this example, with unordered unique neighborhoods, we would choose one new neighborhood
va ∈

([n]
k

)
uniformly in each step a, where the step a is nothing but the factor. Independently, we

would choose a weight ψa from the reference distribution. This process further canonically extends to
other versions, e.g. neighborhoods in [n]k chosen with repetition. However, due to the identification
of vertices with factors and hyperedges with variables, this and related processes are not suitable for
an embedding of Theorem 2.6 and Theorem 2.8.

Thus, the results in this section demonstrate how far the general theory for factor graph models
is from capturing even the simplest models. So, while it is undoubtedly most valuable to further
develop the general theory, a case by case analysis of random factor graphs will still be indispensable
for decades to come.

2.3 Satisfiability Thresholds for Regular Occupation Problems

In this section, we present the results established in [103], which are based on the results for the
one-dimensional problem in [36] and [96].

In Section 2.3.1 we introduce the specific type of occupation problem under consideration. Then,
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(a) Solution of the 2-occupation problem
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(b) A 2-factor in a hypergraph

Figure 2: On the left we see a solution of the 4-regular 2-in-3 occupation problem on a 4-regular
3-factor graph, where the rectangles and circles depict the constraints (factors) and variables (filled
if they take the value one in the solution). The figure on the right shows a 2-factor in a 3-regular
4-uniform hypergraph, where the circles, solid and dashed shapes represent the vertices, hyperedges
in the 2-factor and the other hyperedges respectively.

in Section 2.3.2 we discuss the existing results. In Section 2.3.3 we establish the main result of this
part.

2.3.1 Occupation Problems. Let k, d ∈ Z>1 and r ∈ [k − 1] be fixed. Additionally, we are given
non-empty sets [n] of variables and constraints [m]. An instance G of the d-regular r-in-k occupation
problem is given by a sequence G = (va)a∈[m] of subsets va ∈

([n]
k

)
such that each of the n variables is

contained in d of the subsets. The instance G has a natural interpretation as a (d, k)-biregular graph
(or d-regular k-factor graph) with node sets [n], [m] and edges {i, a} ∈ E if i ∈ va. By the handshaking
lemma, such objects only exist if dn = km, which we assume in the following.

Given an instance G as just described, an assignment x ∈ {0, 1}n satisfies a constraint a ∈ [m] if∑
i∈va

xi = r, otherwise x violates a. If x satisfies all constraints a ∈ [m], then x is a solution of G.
Notice that d times the number of 1’s in x matches the total number rm = rdn/k of 1’s observed on
the factor side, so k has to divide rn, which we also assume in the following. We write Z(G) for the
number of solutions of G. Figure 2a shows an example of a 4-regular 2-in-3 occupation problem.

Further, for given m, n ∈ Z>0 let G = Gk,d,n,m denote the set of all instances G with variables
[n] and constraints [m]. If G is not empty, then G ∼ u(G) is the random d-regular r-in-k occupation
problem and Z = Z(G) its number of solutions. The random CSP above is given byGn,d from Section
1.4.1 equipped with the weights 1{∥xva∥1 = r}, where xva = (xi)i∈va ∈ {0, 1}va for x ∈ {0, 1}n. The
graph G from above is just Gn,d without the weights, since these are given by the problem definition.

2.3.2 Perfect Matchings. Notice that for r = 0 and r = k we always have Z > 0 almost surely since
the all-0, respectively the all-1, assignment is a solution. Also, notice that the r-in-k and the (k−r)-in-
k problems are equivalent, by switching 0 and 1, so we may restrict to k ≥ 2r > 0. For the case r = 1,
the existence and the location of the satisfiability threshold for the regular r-in-k occupation problem
have been rigorously established in [36, 96]. Recall the entropy H(p) = −p ln(p) − (1 − p) ln(1 − p)
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for p ∈ [0, 1] and let

d∗
r(k) = kH(w∗

1)
kH(w∗

1) + ln(w∗
2) ∈ R>0, w∗

1 = r

k
, w∗

2 =
(
k

r

)−1

(2)

be the satisfiability threshold estimate obtained from the first moment method. Notice that kH(w∗
1)

is the entropy of k iid Bernoulli variables with success probability w∗
1 and − ln(w∗

2) is the entropy of
the uniform distribution on

([k]
r

)
.

Theorem 2.9. For r = 1 and k ∈ Z≥2 we have Z > 0 whp if d < d∗
r(k), and Z = 0 whp if d ≥ d∗

r(k).

Strictly speaking, Theorem 2.9 was established in [36, 96] for different models than the one con-
sidered here and only for the case k ≥ 3. Perfect matchings were studied in [36] on hypergraphs,
as opposed to the biregular graphs from Section 2.3.1. On the other hand, in [96] the result was
established for the exact cover, also on hypergraphs. However, using standard arguments that are
explained in the following, and the proof in [96], we verified that Theorem 2.9 holds for all models
and extends to the case k = 2 as pointed out in [96].

2.3.3 Extension to 2-Factors. In the context of (hyper-) graphs (cf. [36]), perfect matchings, or 1-
factors, can be generalized to r-factors, a collection of (hyper-) edges such that each vertex is incident
to exactly r hyperedges. The exact cover problem (cf.[96]) can be generalized analogously, and both
problems on regular uniform hypergraphs are variants of the d-regular r-in-k occupation problem (on
biregular graphs) as defined in Section 2.3.1. The discussion in [103] covers the case r = 2, which is
the main result of this section.

Theorem 2.10. Let k ∈ Z≥4, d ∈ Z≥2, and let Z be the number of solutions from Section 2.3.1.
There exists a sharp satisfiability threshold at d∗, i.e. for any increasing sequence (ni)i∈Z>0 ⊆ N =
{n : dn, 2n ∈ kZ>0} and mi = dni/k we have

lim
i→∞

P(Z > 0) =
{

1 , d < d∗

0 , d ≥ d∗ .

We provide a self-contained proof for Theorem 2.10 using the first and second moment method
with small subgraph conditioning for Z. In particular, a main technical contribution in proving
Theorem 2.10 is the optimization of a certain multivariate function that appears in the computation
of the second moment, which encodes the interplay between the ‘similarity’ of various assignments and
the change in the corresponding probability of being satisfying that they induce. A direct corollary of
this optimization step at the threshold d∗ is the confirmation of the conjecture by the authors in [101].
Among other things, at the core of our contribution we take a novel and rather different approach to
tackle the optimization, inspired by [114] and [126] as well as other works relating the fixed points of
belief propagation to the stationary points of the Bethe free entropy, respectively to the computation
of the annealed free entropy density; see Section 5.5.6 for details. Finally, we show that d∗ is not an
integer in Lemma 5.9 below, so as opposed to the case r = 1 [96], for r = 2 there is no need for a
dedicated analysis at criticality.
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3 Condensation Threshold
This section is devoted to the proofs of the results in Section 2.1. Moreover, we discuss significant
extensions of the results, thoroughly discuss applications and their embedding into the general frame-
work, related work and open problems. A more detailed overview of the contents and the structure
is presented in Section 3.1.

3.1 Preliminaries

We start with the discussion of related work to put the results into context, in Section 3.1.1. Our proof
strategy is presented in Section 3.1.2, to provide an overview of the required steps to establish the
main results on a high level. In Section 3.1.3, we address several extensions of the main results that we
establish as well, but chose to omit in the introduction for brevity and simplicity. The terminology and
notions with respect to uniform bounds are clarified in Section 3.1.4 Then, we explain the structure
of the following discussion in Section 3.1.5. In Section 3.1.6 we introduce some basic notation and
results from the literature.

3.1.1 Related Work. Not only the symmetric SBM has received a great deal of attention [1, 97],
also the general (asymmetric) SBM is discussed algorithmically [5, 6, 7, 9, 61], and in particular using
the cavity method [38, 130, 93, 112]. Partial threshold results where the Kesten-Stigum bound is tight,
and general bounds for the binary asymmetric SBM can be found in [26]. The mutual information
limit under weak convexity assumptions in the dense regime can be found in [111]. We are not aware
of a discussion of the general (dis-) assortative SBM in the literature, however, conceptually similar
examples like the q1 + q2 SBM in [112] have been analyzed. The mutual information of the ground
truth and the planted model was established in [33] for the symmetric disassortative case, which we
extend here to the general disassortative case. The binary assortative case was recently discussed in
[3] and [43].

The existence of the mutual information limit for graphical channels was established in [4], and the
limit was determined in [33] under similar assumptions, in both cases for uniform input messages. We
extend the class of channels for which it is known that the results are applicable (BISO and SAT-type
channels) two-fold via direct extension and via closure properties, and further determine the limit for
any binary memoryless source, uniform or not. As a special case, we obtain the mutual information
limit for the BAC (and even k). We also extend a generalized version of Gallager’s mapping (cf. [90])
to factor graphs (cf. Section 3.5.5.8). The uniform convergence results in this work combined with
the continuity of the limit give a theoretical justification for such approximations in the large n limit.

The results in this work rely on a convexity-like assumption, based on Hypothesis H in [4] with
respect to channels. Intuitively, such channels have the property that more information can be
transmitted reliably using a single code of block length n1 + n1, rather than a code of block length
n1 and a code of block length n2. Techniques that do not rely on this assumption were used in
[3], the spatial coupling in [60], and proofs based on convex relaxation hierarchies [66]. Bounds on
the Chi-squared mutual information and connection to percolation probabilities were obtained in [2].
More general factor graphs have also been discussed [24, 31], under stronger assumptions.

The contributions [30, 32] address more general weights, and stronger results below the threshold
are derived, namely for the partition function, and the result for the relative entropy is strengthened to
mutual contiguity, next to additional results. However, both contributions rely on other assumptions,
in particular on MIN. Conversely, previous work [30, 33, 32, 31] benefits from the discussion of
POS in Section 3.5.5, and in particular from the models in Section 2.1.2.2 (inspired by [105]), which
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extends the scope both theoretically and application-wise. We did verify that these models cover k-
SAT, k-NAESAT, k-XORSAT, the k-spin model, k-COL, the Potts model, and the binary memoryless
symmetric channels (covering BISO, BSC and BEC), which were discussed in [33, 33, 32, 31, 4, 3].
We use the weakened assumption POS (cf. [30]), which is (conceptually) significantly weaker than
Hypothesis H. In particular, this is why we do not only cover all examples, but also the counterexample
(the 3-XORSAT) in [4]. The issue with the parity of k is discussed in Remark 3.128. Our discussion
of the closure properties also implies that permutation invariance assumptions for weights [30] are not
required (cf. [31]). The absence of SYM and the uniform prior allows to naturally cover all products
ψ = ∏

hψh, which is desirable from a theoretical viewpoint.
The strengthened results required an improvement and a generalization of the pinning lemma.

This amounts to explicit bounds on the probability for given parameters, and not only for two, but
for any number of coordinates. We derived a proof based on [33, 92], a similar result has been
established independently in [66]. A general theory is discussed in [13].

We adapt the strategy in [33] to establish the main results. Thus, we combine the pinning lemma
with the Aizenman-Sims-Starr scheme and the interpolation method to obtain the limit for the planted
model quenched free entropy. As noted in [32] and [31], this strategy compresses the (compressed) 85
pages of proofs in [33] into one sentence. Explaining all modifications, tweaks and boosts is equivalent
to explaining the proof, so we present an arbitrary selection. We modify every second argument to
avoid using SYM, mostly by constructing more subtle couplings. Accommodating general ground
truth distributions is canonical at times, on other occasions the model complexity (e.g. interpolation
method), the proof complexity (e.g. Gibbs marginal distributions) and generalizing definitions requires
a deep understanding of the interplay of the objects involved. Establishing uniform convergence mostly
requires explicit bounds and dedicated bookkeeping, the polynomial convergence guarantee on the
other hand required fundamental changes and improvements, say, the resolution of the double limit
into a single limit, which requires to increase the pinning probabilities and thereby an adjustment of
the couplings, or boosting the concentration of the posterior from o(1) to subgaussian concentration.
The improved condensation threshold bound and connection to applications is self-evident.

3.1.2 Outline of the Proof. Without further mention, assume that (p, γ∗, d) ∈ P, i.e. (p, γ∗) satisfy
BAL and POS, and d ≤ d↑. The bounds in the following results only depend on g = (q, k, ψ↓, d↑).
We obtain Proposition 2.1 by direct verification for the the trivial weights, and otherwise using a
Taylor series expansion, similar to POS in [33]. Then we use a new twist to show that the resulting
contributions are non-negative. The proofs of all main results rely on the properties of the Nishimori
ground truth σ̂p,γ∗,n,m ∈ [q]n. We present the details in Section 3.1.2.1. Next, we derive two crucial
properties of the free entropies in the main results: concentration and Lipschitz continuity of the
conditional expectations. Details can be found in Section 3.1.2.2.

The proof of Theorem 2.2 relies on the pinning lemma discussed in Section 3.1.2.3. In Section
3.1.2.4 we explain its application and the steps required to obtain Theorem 2.2. Theorem 2.3 follows
from Theorem 2.2 using the properties of σ̂m. The result is immediate for DKL(G∗

m(σ̂m)∥Gm), only
the discussion of the conditional relative entropy requires some care. The proof of Theorem 2.4 is
also rather short, but relies on two clever ideas. Compared to the preceding two results, for the proof
of Theorem 2.5 it is rather cumbersome to decompose the mutual information into the ground truth
weight and the free entropy, and to derive the asymptotics of the former using σ̂m.
3.1.2.1 The Nishimori Ground Truth. As explained in Section 2.1.2.5, we need to consider Gibbs
measures µγ∗,G that are consistent with σ∗. In order to control both µγ∗,G and σ∗ given G∗

m(σ∗), we
recover the Bayes optimal case and hence ensure that the Nishimori condition holds (Section 1.2.2 in
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[129]), by introducing the Nishimori ground truth σ̂m, given by the RN derivative

r̂p,γ∗,n,m : [q]n → R>0, σ 7→
E[ψG(m)(σ)]
E[Zγ∗(G(m)]

with respect to σ∗. Let m↑ = 2d↑n/k, and let ∥a − b∥tv = supE |µ(E) − ν(E)| be the total variation
distance of a, b with laws µ, ν respectively. Let γn,σ(τ) = 1

n |{i ∈ [n] : σ(i) = τ}|, τ ∈ [q], be the color
frequencies of σ ∈ [q]n.

Proposition 3.1. Let m ∈ Z≥0 with m ≤ m↑.
a) There exists c ∈ R>0 with r̂m ≤ c.
b) There exists c ∈ R>0 such that r̂m(σ) ≥ exp(−c∥γn,σ − γ∗∥2

tvn).
c) The ground truths σ∗ given γn,σ∗ and σ̂m given γn,σ̂m have the same law.
d) We have (σ̂m,G∗

m(σ̂m)) ∼ (σγ∗,G∗(m,σ̂(m)),G
∗
m(σ̂m)).

3.1.2.2 Concentration and Continuity. Before we turn to the proof of Theorem 2.2, we establish
concentration (self-averaging) and continuity of the free entropies.

Proposition 3.2. Let m ∈ Z≥0, σ ∈ [q]n and G◦ ∈ {Gm,G
∗
m(σ),G∗

m(σ∗),G∗
m(σ̂m)}.

a) There exists c ∈ R>0 such that |ϕγ∗(G◦)| ≤ ckm/n almost surely.
b) There exists c ∈ R2

>0 such that P(|ϕγ∗(G◦) − E[ϕγ∗(G◦)]| ≥ r) ≤ c2e
−c1r2n for m ≤ m↑ and

r ∈ R≥0.
c) For γn,σ ≥ ψ↓/2 and m ≤ m↑, σ′ ∈ [q]n, m′ ∈ Z≥0 and m◦ ∈ Z2

≥0 we have

|E[ϕγ∗(G∗
m(σ)] − E[ϕγ∗(G∗

m′(σ′)]| ≤ L

(
∥γn,σ − γn,σ′∥tv +

∣∣∣∣kmn − km′

n

∣∣∣∣) ,
|E[ϕγ∗(G(m◦

1)] − E[ϕγ∗(G(m◦
2)]| ≤ L

∣∣∣∣km◦
1

n
− km◦

2
n

∣∣∣∣ .
Proposition 3.2a), with the concentration of m around its expectation dn/k, suggests that we can

restrict the expectations accordingly, and Proposition 3.2c) ensures that the conditional expectations
asymptotically coincide close to the expectation dn/k. Regarding the ground truths, we recall that
P(∥γn,σ∗ − γ∗∥tv ≥ r) ≤ c′ exp(−cr2n) for suitable c, c′, and hence we can restrict to converging color
frequencies (since the free entropies are uniformly bounded for m ≤ m↑). Proposition 3.2c) then
ensures that the conditional expected free entropies asymptotically coincide.
3.1.2.3 The Pinning Lemma. Proposition 3.1 and Proposition 3.2 establish that the quenched free
entropy (densities) for σ∗, σ̂m asymptotically coincide. The following pinning lemma illustrates why
working with σ̂m is desirable. Recall that the product measure α = ⊗

a,h γa,h of the marginals γ is used
in the definition of Zf , Zv for the Bethe free entropy. The law α corresponds to the joint distribution
of µγ∗,G∗

m(σ∗) on a random number of variables in the finite size case. One of the main obstacles is
to show that these joint distributions indeed asymptotically factorize, and this is exactly where the
pinning lemma comes into play. For σ ∈ [q]n with law µ, ℓ ∈ Z>0 and v ∈ [n]ℓ let µ|v be the law of
σv ∈ [q]ℓ. For ℓ = 1 we use the shorthand µ|v(1) = µ|v. Further, let ι◦(µ, v) = DKL(µ|v∥

⊗
h µ|v(h))

and ιℓ(µ) = E[ι◦(µ,v)] with v ∼ u([n]ℓ). For σ̌ ∈ [q]n and U ⊆ [n] let [µ]↓U ,σ̌ ∈ P([q]n) be the
law of σ|(σ(i))i∈U = (σ̌(i))i∈U , if this is defined. The next result generalizes Lemma 3.5 in [33],
corresponding to ℓ = 2, and states a stronger version that addresses the conditional relative entropy
directly.
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Lemma 3.3. For n ∈ Z>0, µ ∈ P([q]n), ℓ ∈ Z>0 and Θ↓ ∈ (0, n] the following holds. Let θ ∼
u([0,Θ↓]), further iid Bernoulli ǔ ∈ {0, 1}n with success probability θ/n ∈ [0, 1], U = ǔ−1(1) and
σ ∼ µ with (σ,U) ∼ σ ⊗ U . Then we have E[ι([µ]↓U ,σ)] ≤

(ℓ
2
)

ln(q)/Θ↓.

3.1.2.4 The Planted Model Quenched Free Entropy. We use the interpolation method to obtain the
lower bound in Theorem 2.2.

Proposition 3.4. We have E[ϕγ∗(G∗
m(σ∗))] ≥ B↑(d) − Ou(n−1/4).

We use the Aizenman-Sims-Starr scheme to obtain the upper bound in Theorem 2.2.

Proposition 3.5. There exists ρ ∈ R>0 such that E[ϕγ∗(G∗
m(σ∗))] ≤ B↑(d) + Ou(n−ρ).

Both methods require that m ∼ Po(dn/k) is Poisson distributed. Further, we need the pinning
lemma in both cases. For this purpose we decorate the graphs with an additional type of factors, say
pins, to turn µγ∗,G into [µγ∗,G]↓U ,σ̌, which then ensures asymptotic independence. A careful calibration
of the parameters ensures that the effect of this pinning procedure on the quenched free entropy is
asymptotically negligible, while breaking dependencies sufficiently fast.

For the interpolation method we need an additional type of factors, say interpolators, to morph the
decoupled model, underlying the Bethe functional, into the graph. The derivative of this transition
is (almost) the map in POS, so this assumption yields the lower bound in the end.

The Aizenman-Sims-Starr scheme only relies on the standard factors and pins (and external fields).
Here, we use that the quenched free entropy density can be rewritten as the average difference of the
quenched free entropies for n+ 1 and n. Hence, deriving the limit of the difference yields the limit of
the quenched free entropy density. This limit is asymptotically equal to the expectation of the Bethe
free entropy over a certain distribution πn ∈ P2

∗,γ∗([q]).
So, in a nutshell, the first part of the proof clarifies how exactly we can utilize the pinning lemma

and justifies the application. In the second part we implement the interpolation method using the
fully decorated graphs, followed by the implementation of the Aizenman-Sims-Starr scheme with the
slightly simpler graphs in the third part.

3.1.3 Extensions and Remarks. For the sake of brevity we did not present our main results in
their full generality. In the following, we discuss the actual scope and strength of our results, further
implications and related work.

The main results hold for more general (m∗
n)n. To be specific, let εm, δm : Z>0 → R>0 with

limn→∞ εm(n) = limn→∞ δm(n) = 0 and d∗ = lim supn→∞ E[m∗
n]. Then the results hold for m

replaced by m∗
n and d replaced by d∗ if P(|d∗

n − d∗| > δm(n)) ≤ εm(n), E[1{|d∗
n − d∗| > δm(n)}d∗

n] ≤
εm(n) for all n ∈ Z>0 and d∗ ≤ d↑, where d∗

n = km∗
n/n. Also uniform convergence holds, i.e. the

results hold for g = (q, k, p, γ∗, d↑, δm, εm).
The results cover maximizers γ∗ ∈ P([q]) with any support (cf. Section 3.5.1), but uniformly over

fixed support. We also establish the results for all standard Erdős-Rényi type models in Section 3.5.7.
Results for graphs with external fields are discussed in Section 3.5.2. We also establish convergence
in probability for the conditional expectations given m∗ in Section 3.5.4.

3.1.4 Global Parameters and Uniform Convergence. Let q, k ∈ Z>0, ψ↓ ∈ (0, 1/q), ψ↑ = 1/ψ↓
and d↑ ∈ R>0 (cf. Section 2.1.2.1 and Section 2.1.2.3). Further, let δm, εm : Z>0 → R>0 with
limn→∞ δm(n) = 0, limn→∞ εm(n) = 0 be the bounds for m∗ from Section 3.1.3. Hence, the global
parameters are g = (q, k, ψ↓, d↑, δm, εm). We keep g fixed throughout the remainder and do not track
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dependencies on g. Thus, all values depending on g, meaning all functions of g, and only such values,
are considered to be constant. Still, we may write cg to stress that c only depends on g.

Without loss of generality we may assume that ψ↓ is arbitrarily small and that d↑ is arbitrarily large
since this only increases the set of model parameters. We further assume without loss of generality
that εm and δm are non-increasing. After we restricted to the δm-ball around d, the largest average
degree to be considered is d+ δm(n) ≤ d↑ + δm(1). Without loss of generality we take δm(1) = d↑, so
m↑,n = 2d↑n/k from Section 3.1.2.1 is the desired maximal factor count.

We use the Bachmann-Landau notation O(f(n)), o(f(n)),Ω(f(n)), ω(f(n)),Θ(f(n)) only with
constants, as disussed in Section 2.1.2.3 (but without subscripts).

3.1.5 A Roadmap to the Proofs. Throughout the remainder we assume without loss of generality
that q, k ≥ 2, except for Section 3.5.1, where we justify this assumption. In Section 3.2 we derive basic
results. Specifically, in Section 3.2.1 we introduce decorated graphs and establish basic properties.
In Section 3.2.2 we discuss basic properties of the Nishimori ground truth σ̂, including the proof of
Proposition 3.1. In Section 3.2.3 we establish boundedness, continuity and concentration for the free
entropy, including the proof of Proposition 3.2.

Section 3.3 is devoted to the proof of Theorem 2.2. Specifically, in Section 3.3.1 we discuss
the Gibbs measures of decorated graphs, establish the pinning lemma 3.3 and apply it to the graphs,
establish a result for reweighted marginal distributions of general measures and apply it to the graphs,
and finally discuss projections of P2([q]) onto P2

∗ ([q]). In Section 3.3.2 we turn to the interpolation
method including the proof of Proposition 3.4. The discussion in Section 3.3.3 addresses the Aizenman-
Sims-Starr scheme including the proof of Proposition 3.5, where we also establish Theorem 2.2.

In Section 3.4 we present the proofs of the remaining main results. We establish Theorem 2.3 in
Section 3.4.1, followed by the proof of Theorem 2.4 in Section 3.4.2, and conclude the proof of the
main results with Theorem 2.5 in Section 3.4.3.

The remainder is discussed in Section 3.5, where we in particular formalize the statements and
prove the claims in Section 3.1.3, discuss the assumptions A and prove Proposition 2.1, and finally
formalize the statements and prove the claims in Section 2.1.1.2 and Section 2.1.1.3.

3.1.6 Notions, Notation and Results from the Literature. We consider a sufficiently rich
probability space (Ω,F ,P). Random quantities (variables, vectors) are measurable maps a : Ω → A
and denoted in bold. An event E ∈ F holds (almost surely) if P(E) = 1. The (a, b)-derivative is
the Radon-Nikodym derivative of a with respect to b. Further, we use A ∪̇ B for the disjoint union,
[n] = Z ∩ [1, n], 2S for the power set of S,

(A
a

)
⊆ 2S for the a-subsets B ⊆ A with |B| = a, AB for

the maps f : B → A, and AB = {f ∈ AB : ∀a ∈ A |f−1(a)| ≤ 1} for the injections, with An = A[n],
An = A[n]. We consider spaces equipped with their canonical structure unless mentioned otherwise,
mostly subspaces of Ra. We use ≤ for componentwise inequalities and ≡ for componentwise equality.
We use ∼ for equality in distribution. A space A is a copy of a space B if it carries the same structure
under some bijection, in which case we identify A with B. We identify µ ∈ P(Z) with its probability
mass function µ : Z → [0, 1]. We further use similar identifications to focus on the relevant arguments
while avoiding technical routine discussions.

We (partially) suppress dependencies for brevity, e.g. fa(x) = fa = f . Clearly, this leads to ambi-
guities, e.g. G∗ may refer to G∗(m,σ∗), G∗(m,σ) or any other combination. Hence, when we omit
a dependency, the dependency is the same quantity as in the definition and thereby uniquely identi-
fied. Further, we keep the notation consistent to earn this degree of flexibility. Finally, we may use
fa,x = fa(x) = f(a, x) interchangeably, for readability or to indicate the distinction between variables
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and parameters. Similarly, we use mixed notation for random quantities x and their distributions
(laws) x ∼ µ, e.g. DKL(x1∥x2) = DKL(µ1∥µ2).

We extend (σi)i∈[n] ∈ [q]n to maps, i.e. for v ∈ [n]k let σv = (σv(h))h , and let µ|v be the law of σv
with σ ∼ µ, as in Section 3.1.2. If v is the enumeration of V ⊆ [n], i.e. the unique strictly increasing
map v : [|V|] → V, we use the shorthands σV = σv and µ|V = µ|v and in particular σi = σ{i},
µ|i = µ{i}. Further, let µ|∗ = ∑

i
1
nµ|i ∈ P([q]) be the law of σi ∈ [q], with (σ, i) ∼ µ ⊗ u([n]). We

denote the total variation distance by ∥µ− ν∥tv = supE |µ(E) − ν(E)| and let Γ(µ1, µ2) ⊆ P(X1 × X2)
be the couplings of µ1 ∈ P(X1) and µ2 ∈ P(X2), i.e. for ν ∈ Γ(µ1, µ2) we have ν|1 = µ1 and ν|2 = µ2.

Observation 3.6. Notice that the following holds.
a) For µ ∈ P([q])2 we have ∥µ1 − µ2∥tv = 1

2∥µ1 − µ2∥1.
b) For µ ∈ (P([q])n)2 we have ∥

⊗
i µ1,i −

⊗
i µ2,i∥tv ≤

∑
i ∥µ1,i − µ2,i∥tv.

c) For x,x′ ∈ [q] and y(x) ∈ [q′], x ∈ [q], we have ∥(x,y(x)) − (x′,y(x′))∥tv = ∥x− x′∥tv.
d) For ℓ ∈ Z2

>0 with ℓ1 ≤ ℓ2, further vi ∈ [n]ℓ(i), i ∈ [2], with v1 = v2,[ℓ(1)], and µ ∈ P([q]n)2 we have
∥µ1|v1 − µ2|v1∥tv ≤ ∥µ1|v2 − µ2|v2∥tv and ∥µ1|∗ − µ2|∗∥tv ≤ E[∥µ1|i − µ2|i∥tv].

e) For a coupling y of x1, x2 ∈ [q] we have ∥x1 − x2∥tv ≤ P(y1 ̸= y2) and there exists y ∈ Γ(x1,x2)
with ∥x1 − x2∥tv = P(y1 ̸= y2).

f) For x1, x2 ∈ [q] we have ∥x1 − x2∥tv ≤
√

1
2DKL(x1∥x2).

g) For a measurable set X , P(X ) equipped with ∥ · ∥tv and the Borel algebra, and for p ∈ P(X ), the
pair (p,xp) is well-defined, where xp ∼ p for p ∈ P(X ).

Proof. Part 3.6a) can be found on page 153 in [68], Part 3.6e) on page 10 in [125], Part 3.6f) is
Pinsker’s inequality, e.g. Equation (2.8) in [33]. For Part 3.6b) we have

2∥µ1 ⊗ µ2 − ν1 ⊗ ν2∥tv =
∑
x

|µ1(x1)µ2(x2) − ν1(x1)ν2(x2)|

≤
∑
x

µ1(x1)|µ2(x2) − ν2(x2)| +
∑
x

ν2(x2)|µ1(x1) − ν1(x1)|,

so the assertion holds for n = 2. The general case follows by induction analogous to the above. Part
3.6c) follows similarly, using Part 3.6a), distributivity and normalization of the conditional laws. For
Part 3.6d) notice that

∥f(x1) − f(x2)∥tv ≤ ∥x1 − x2∥tv

holds in general and specifically for restrictions. The second part of the assertion follows from Part
3.6a) and the triangle inequality. For Part 3.6g) let Σ be the σ-algebra of X , and κ : Σ × P(X ) → R,
(E , p) 7→ p(E). Clearly, E 7→ κ(E , p) is p ∈ P(X ), and p 7→ κ(E , p) is 1-Lipschitz since |p(E) − p′(E)| ≤
∥p− p′∥tv by the definition of ∥ · ∥tv, for all E ∈ Σ, so κ is a kernel. Thus, for given p we recover the
composition p⊗ κ ∈ P(X × P(X )).

We use the Poisson distribution Po(λ), the binomial distribution Bin(n, p), the uniform distribution
u(S)) and the one-point mass µ•,S,s ∈ P(S) on s ∈ S.

Observation 3.7. Let m ∈ R≥0 and m ∼ Po(m).
a) We have P(m = m)m = mP(m = m− 1).
b) Let k ∈ Z>0 and p ∈ P([k]). Further, let n ∼

⊗
i∈[k] Po(pkm), and let n(m) ∈ Zk≥0 be multinomial

with parameters m and p, then we have (∑ini,n) ∼ (m,n(m)).
c) For m′ ∈ R>0, m′ ∼ Po(m′) we have DKL(m∥m′) = m′ −m+m ln(m/m′).
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d) There exist c, c′ ∈ R>0 with P(|m−m| ≥ r) ≤ c′ exp(− cr2

m+r ) for r ∈ R≥0.
e) Let p ∈ P([K]), and let x ∼ p⊗N be multinoulli. Let m ∈ ZK≥0 be multinomial with N and p, and
Um ∼ u({x ∈ [K]N : (|x−1(y)|)y = m}). Then we have x ∼ Um.

Proof. The first three parts can be easily verified directly, the last part follows from Theorem 2.1 with
Remark 2.6 in [68] and c = 1/2, c′ = 2, where we notice that for m = r = 0 the exponent is 0. The
last part follows by direct computation.

For x ∈ R let ⌈x⌉ = minZ≥x and ⌊x⌋ = maxZ≤x. For n, k ∈ Z≥0 let nk = ∏k−1
h=0(n− h) = |[n]k|.

3.2 Preparations

Decorated factor graphs, the central objects in the proof of Theorem 2.2, are introduced in Section
3.2.1. The Nishimori ground truth is discussed in Section 3.2.2. The we turn to the concentration of
the free entropy and the Lipschitz continuity of the conditional expectations in Section 3.2.3.

3.2.1 Decorated Factor Graphs. Let DΨ = [ψ↓, ψ↑][q]k be the domain of the weights and let
Gn,m = ([n]k × DΨ)m be the domain of the graphs without external fields.
3.2.1.1 Random Decorated Graphs. The decorated factor graphs are given by
• a weight function ψ◦ ∈ DΨ with law µΨ and expectation ψ◦ = E[ψ◦],
• a ground truth distribution γ∗ ∈ P([q]) with γ∗ ≥ ψ↓,
• an average degree d̄ ∈ [0, d↑] such that (µΨ, γ

∗, d̄) ∈ P = A × [0, d↑],
• a Gibbs marginal distribution π ∈ P2

∗,γ∗([q]),
• an interpolation time t↔ ∈ [0, 1],
• a pinning bound Θ↓ ∈ R≥0,
• a number n ∈ Z>Θ↓ of variables,
• a number m ∈ Z≥0 of factors,
• a ground truth σ ∈ [q]n,
• interpolator counts m↔ ∈ Zn≥0 with A↔

m↔ = {i, h) : i ∈ [n], h ∈ [m↔
i ]},

• pins U ⊆ [n] and
• a pinning assignment σ̌ ∈ [q]n,
which we will keep fixed throughout the remainder. For G = (v, ψ) ∈ G let [G]Γγ∗ = G′ = (v′

a, ψ
′
a)a∈A

be given by A = [m] ∪̇ [n], G′
[m] = G and (v′

a, ψ
′
a) = (a, γ∗) for a ∈ [n], i.e. we attach the unary weight

γ∗ to each variable. Similarly, for ψ↔ ∈ D↔A↔
Ψ , D↔

Ψ = [ψ↓, ψ↑]q, let [G]↔m↔,ψ↔ = G′ = (v′
a, ψ

′
a)a∈A

be given by A = [m] ∪̇ A↔, G′
[m] = G and (v′

a, ψ
′
a) = (i, ψ↔

i,h) for a = (i, h) ∈ A↔, i.e. to each
variable i ∈ [n] we attach m↔

i unary interpolation weights ψ↔
i,h, h ∈ [m↔

i ]. Finally, the pinned graph
is [G]↓U ,σ̌ = G′ = (v′

a, ψ
′
a)a∈A given by A = [m] ∪̇ U , G′

[m] = G and the unary wires-weight pairs
(i, µ•,[q],σ̌(i)) for i ∈ U .

For G′ = [G]Γ we let [G′]↔ be the graph obtained from G′ by attaching interpolators analogously to
the above, and also define other combinations analogously. Further, we define the combined operators
analogously, e.g. [G]Γ↓ attaches external fields and pins.

For the interpolation weight in the null model let (ψ◦,h,γ) ∼ µΨ ⊗ u([k]) ⊗ π⊗k and

ψ↔
◦,µΨ,γ∗,π : [q] → [ψ↓, ψ↑], σ 7→

∑
τ∈[q]k

1{τh = σ}ψ◦(τ)
∏
h̸=h

γ(τh). (3)
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With p = (µΨ, γ
∗, π, n,m,m↔,U) the null model Gp = [w]Γ↔↓

ψ↔,σ̌ is given by (w,ψ↔, σ̌) ∼ w⊗ψ↔ ⊗σ̌,
wµΨ,n,m = (vn,m,ψµΨ,m) ∼ w⊗m

◦ , w◦,µΨ,n = (v◦,n,ψ◦,µΨ) ∼ u([n]k) ⊗ µΨ, ψ↔
µΨ,γ∗,π,n,m↔ ∼ ψ↔⊗A↔

◦
and σ̌n ∼ u([q]n). The standard weight, Gibbs measure, partition function and free entropy density
of G = (v′, ψ′) = [(v, ψ)]Γ↔↓ are

ψg,G(σ) =
∏
a∈A

ψ′
a(σv′

a
) = γ∗⊗n(σ)1{σU = σ̌U}

∏
a∈[m]

ψa(σv(a))
∏

(i,h)∈A↔

ψ↔
i,h(σi),

µg,G(σ) = ψg,G(σ)
Zg(G) , σg,G ∼ µg,G, Zg(G) =

∑
σ∈[q]n

ψg,G(σ), ϕg(G) = 1
n

ln(Zg(G)).

Let ψ◦,µΨ(σ) = E[ψ◦(σ)], ψm,p(σ) = E[ψg,G(σ)], Zm,p = E[Zg(G)] and ϕm,p = E[ϕg(G)], and let
G∗

p(σ) be the teacher-student model given by the (G∗(σ),G)-derivative G 7→ ψg,G(σ)/ψm(σ).
Now, let θΘ↓ ∼ u([0,Θ↓]), for θ ∈ R≥0 let ǔt◦,θ,n ∈ {0, 1} be Bernoulli with success probability

p̌t,θ,n = θ/n ∈ [0, 1], ǔt,θ,n ∼ ǔ⊗n
t◦ and UΘ↓,n = ǔ−1

t,θ(1). Letmd̄,t↔,n ∼ Po(t↔d̄n/k),m↔
◦,d̄,t↔ ∼ Po((1−

t↔)d̄), m↔
d̄,t↔,n

∼ m↔⊗n
◦ , and let the joint distribution be given by (m,m↔,U) ∼ m⊗m↔ ⊗ U . Let

d̄d̄,t↔,n = km/n be the average degree (with respect to the standard factors) and d̄↔
d̄,t↔,n

= ∥m↔∥1/n

be the average degree with respect to the interpolators. Finally, we consider σ∗
γ∗,n to be independent

of (m,m↔,U).

Remark 3.8. As discussed in Section 3.1.6, the change in notation is required due to the complexity.
The expected average degree d̄ corresponds to the expected degree d in Section 2.1.2.1 and to the
limit d∗ for m∗ in Section 3.1.3, hence we let d̄ = d = d∗ in the remainder without further mention.
Similarly, the law µΨ is clearly p from Section 2.1.2.1, so we let p = µΨ in the remainder without
further mention.

3.2.1.2 Factor Assignment Distribution. Recall Z f,µΨ and ξµΨ from Section 2.1.2.2. For γ ∈ P([q])
and τ ∈ [q]k let µT|Γ,µΨ,γ ∈ P([q]k) be given by

µT|Γ,γ(τ) = 1
Z f(γ)

ψ◦(τ)
∏
h∈[k]

γ(τh). (4)

We will see that µT|Γ is the law of the assignment to a factor induced by σ under G∗(σ). Further, it
is clearly closely related to ψ↔

◦ .

Observation 3.9. Let γ ∈ P([q]) and notice that the following holds.
a) We have ψ↓ ≤ ψ◦, ψ◦, Z f , ξ ≤ ψ↑.
b) The map Z f is a q-variate polynomial of degree k on a compact set and hence attains ξ.
c) There exists Lg ∈ R>0 such that Z f is L-Lipschitz.
d) There exists cg ∈ R>0 such that Z f(γ) ≥ ξ − c∥γ − γ∗∥2

tv.
e) There exists Lg ∈ R>0 such that µT|Γ : P([q]) → P([q]k) is L-Lipschitz.
f) There exists cg ∈ R>0 such that c ≤ r ≤ c−1 for the (µT|Γ,γ , γ

⊗k)-derivative rγ.
g) There exists Lg ∈ R>0 such that r : P([q]) → R[q]k

>0 , γ 7→ rγ, is L-Lipschitz.
h) There exists cg ∈ R>0 such that c ≤ r∗ ≤ c−1 for the (µT|Γ,γ |∗, γ)-derivative r∗,γ.
i) There exists Lg ∈ R>0 such that r∗ : P([q]) → Rq>0, γ 7→ r∗,γ, is L-Lipschitz.
j) We have µT|Γ,γ∗ |∗ = γ∗ and hence r∗,γ∗ ≡ 1.
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Proof. Recall that ψ◦ ∈ DΨ, ψ◦ = E[ψ◦], Z f(γ) = E[ψ◦(σ∗
γ,k)] and ξ = supγ Z f(γ) for Part 3.9a). For

Part 3.9b) notice that Z f is the restriction of f : Rq → R, x 7→
∑
τ ψ◦(τ)∏h xτ(h) to P([q]) ⊆ Rq.

Since we need the derivatives anyway, notice that the τ -th partial derivative fτ (x) of f for τ ∈ [q] at
x ∈ Rq, using the product rule, is given by

fτ (x) =
∑
h

∑
τ ′

ψ◦(τ ′)1{τ ′
h = τ}

∏
h′ ̸=h

xτ ′(h′), (5)

so kψ↓ ≤ fτ (γ) ≤ kψ↑ for γ ∈ P([q]). Now, the (one-dimensional) fundamental theorem of calculus
ensures that

|Z f(γ1) − Z f(γ2)| ≤ kψ↑∥γ1 − γ2∥1 = 2kψ↑∥γ1 − γ2∥tv

for γ ∈ P([q])2. For Part 3.9d) we compute the Hessian

Hx,τ =
∑
h∈[k]2

∑
τ ′

ψ◦(τ ′)1{τ ′
h = τ}

∏
h′ ̸∈{h1,h2}

xh′ , τ ∈ [q]2.

This yields k(k − 1)ψ↓ ≤ Hγ ≤ k(k − 1)ψ↑. So, using that Z f(γ∗) = ξ is the maximum for γ∗ in the
interior, i.e. the first derivative vanishes, yields the assertion using the first order Taylor approximation
with the Lagrange form of the remainder and c = 2k(k − 1)ψ↑.

For Part 3.9e) we use the triangle inequality, boundedness and Lipschitz continuity of Z f and
Observation 3.6 to obtain

∥µT|Γ,γ1 − µT|Γ,γ2∥tv ≤ 1
2

∣∣∣∣∣1 − Z f(γ1)
Z f(γ2)

∣∣∣∣∣+ ψ2
↑∥γ⊗k

1 − γ⊗k
1 ∥tv ≤ 2kψ2

↑∥γ1 − γ2∥tv.

Part 3.9f) follows from Part 3.9a) with c = ψ2
↑, Part 3.9g) from Part 3.9a) and Part 3.9c) since

∥rγ2 − rγ1∥1 =
∑
τ

ψ◦(τ)
Z f(γ1)Z f(γ2)

|Z f(γ1) − Z f(γ2)| ≤ 2kqkψ4
↑∥γ2 − γ1∥tv, γ ∈ P([q]).

Part 3.9h) follows from Part 3.9f) and γ⊗k|∗ = γ. For Part 3.9i) we use the triangle inequality and
Part 3.9a) to get

∥r∗,γ2 − r∗,γ1∥1 ≤
∑
τ,h

ψ↑
k

∑
τ ′∈[q]k

1{τ ′
h = τ}

∣∣∣∣∣∣
γ

⊗[k]\{h}
2

(
τ ′

[k]\{h}

)
Z f(γ2)

−
γ

⊗[k]\{h}
1

(
τ ′

[k]\{h}

)
Z f(γ1)

∣∣∣∣∣∣ .
Relabeling, the triangle inequality and Observation 3.6b) yield

∥r∗,γ2 − r∗,γ1∥1 ≤ qψ↑
(
ψ↑(k − 1)∥γ2 − γ1∥tv + ψ2

↑

∣∣∣Z f(γ1) − Z f(γ2)
∣∣∣) ,

so Part 3.9c) completes the proof. Finally, for Part 3.9j) we recall the partial derivative fτ (γ∗) =
kZ f(γ∗)µT|Γ,γ∗ |∗(τ)/γ∗(τ) = kZ f(γ∗)r∗,γ∗(τ) from Equation (5) and that γ∗ is a maximizer, so the
derivatives in the directions µ•,[q],τ −µ•,[q],q, τ ∈ [q− 1], vanish and hence r∗,γ∗(τ) = r∗,γ∗(q) for all τ ,
which completes the proof.

Remark 3.10. Let γ ∈ P([q]) be a stationary point of Z f if and only if γ is a stationary point of
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the restriction Z f : P(γ−1(R>0)) → R>0, γ′ 7→ Z f(γ′), or |γ−1(R>0)| = 1. In the proof of Observation
3.9j), we have actually proven that µT|Γ,γ∗ |∗ = γ∗ if and only if γ∗ is a stationary point of Z f .

3.2.1.3 Expectations and Bounds. We derive naive bounds and compute the expectations, which
ensures that the teacher-student model is well-defined since ψm > 0 and ϕg, µg are well-defined since
Zg > 0.
Observation 3.11. Let M = m+ ∥m↔∥1.
a) We have E[ψ↔

◦ ] ≡ ξ and ψ↓ ≤ ψ↔
◦ ≤ ψ↑.

b) We have ψM↓ 1{σU = σ̌U}γ∗⊗n(σ) ≤ ψg,G(σ) ≤ ψM↑ 1{σU = σ̌U}γ∗⊗n(σ) for G ∈ [G]Γ↔↓.
c) We have ψM↓ γ∗⊗U (σ̌U ) ≤ Zg(G) ≤ ψM↑ γ∗⊗U (σ̌U ) for G ∈ [G]Γ↔↓.
d) We have ψ2M

↓ P(σ∗ = σ|σ∗
U = σ̌U ) ≤ µg,G(σ) ≤ ψ2M

↑ P(σ∗ = σ|σ∗
U = σ̌U ) for G ∈ [G]Γ↔↓.

e) We have ψm(σ) = q−|U|ξ∥m↔∥1γ∗⊗n(σ)Z f(γn,σ)m.
f) We have Zm = q−|U|ξ∥m↔∥1E[Z f(γn,σ∗)m].
Proof. For Part 3.11a) we use independence, further π ∈ P2

∗,γ∗([q]) for the expectations, Z f(γ∗) = ξ
for the normalization and Observation 3.9j) to obtain

E[ψ↔
◦ (τ)] =

∑
h

1
k

∑
τ ′

1{τ ′
h = τ}ψ◦(τ ′)

∏
h′ ̸=h

γ∗(τ ′
h′) = ξr∗,γ∗(τ) = ξ, τ ∈ [q],

while ψ↔
◦ ∈ D↔

Ψ is immediate from Observation 3.9a). Part 3.11b) follows with Part 3.11a) and
Observation 3.9a), Part 3.11c) follows with Part 3.11b), Part 3.11d) follows with Part 3.11b) and
Part 3.11c). Part 3.11e) follows with independence, Part 3.11a) and

E[ψg,w(σ)] = E[ψ◦(σv◦)]m =
(∑

τ

ψ◦(τ)
∑
v

1
nk
1{σv = τ}

)m
= Z f(γn,σ)m.

Part 3.11f) follows from Part 3.11e) by summing over σ.

Next, we notice that m∗ (cf. Section 3.1.3) can be chosen to be m, for very restrictive bounds.
Corollary 3.12. Let r ∈ R≥0, B◦ = (t↔d̄− r, t↔d̄+ r) and B↔ = ((1 − t↔)d̄− r, (1 − t↔)d̄+ r). We
have ∥m↔∥1 ∼ Po((1 − t↔)d̄n). Further, there exists cg ∈ R2

>0 such that

P(d̄ ̸∈ B◦), P(d̄↔ ̸∈ B↔), E[1{d̄ ̸∈ B◦}d̄], E[1{d̄↔ ̸∈ B↔}d̄↔] ≤ c2 exp
(

−c1r
2n

1 + r

)
.

Proof. We have ∥m↔∥1 ∼ Po((1 − t↔)d̄n) by Observation 3.7b). Further, we have

P(|d̄− t↔d̄| ≥ r) = P
(∣∣∣∣∣m− t↔d̄n

k

∣∣∣∣∣ ≥ rn

k

)
≤ c2 exp

(
− c1nr

2

k(t↔d̄+ r)

)

with c ∈ R2
>0 from Observation 3.7d), and hence the first part follows with c1/(kd↑), using t↔ ≤ 1

and d↑ ≥ 1. For the third part, fix some large ρ ∈ R>0. For r ≤ ρ/
√
n, c1 > 0 notice that

exp(−c1r
2n/(1 + r)) ≥ e−c1ρ2 , so for c2 ≥ d↑e

c1ρ2 we have

E[1{|d̄− t↔d̄| ≥ r}d̄] ≤ E[d̄] = t↔d̄ ≤ d↑ ≤ c2 exp
(

−c1r
2n

1 + r

)
.
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So, let r ≥ ρ/
√
n. Using Observation 3.7a) and the triangle inequality yields

E[1{|d̄− t↔d̄| ≥ r}d̄] = t↔d̄P
(∣∣∣∣∣m+ 1 − t↔d̄n

k

∣∣∣∣∣ ≥ rn

k

)
≤ d↑P

(∣∣∣∣∣m− t↔d̄n

k

∣∣∣∣∣ ≥ rn− k

k

)

and rn− k ≥ 1
2rn+ 1

2ρ− k ≥ 1
2rn using n ≥ 1, so the first part completes the proof, since the results

for d̄↔ follow analogously.

3.2.1.4 Independent Factors. Let γ = γn,σ. Further, let the teacher-student model wires-weight pair
w∗

◦,µΨ,n,σ be given by the (w∗
◦,w◦)-derivative (v, ψ) 7→ ψ(σv)/Z f(γ). For τ ∈ [q] the interpolation

weight ψ∗↔
◦,µΨ,γ∗,π,τ is given by the (ψ∗↔

◦ ,ψ↔
◦ )-derivative ψ 7→ ψ(τ)/ξ. Finally, let

(w∗
µΨ,n,m,σ,ψ

∗↔
µΨ,γ∗,π,n,m↔,σ) ∼ w∗⊗m

◦ ⊗
⊗
i∈[n]

ψ
∗↔⊗m↔

i

◦,σ(i) .

Observation 3.13. We have G∗(σ) ∼ [w∗
σ]Γ↔↓
a with a = (ψ∗↔

σ ,U , σ).

Proof. Let γ = γn,σ and r(v, ψ) = ψ(σv)/Z f(γ), r↔
τ (ψ) = ψ(τ)/ξ denote the derivatives. Observation

3.11e) shows that γ∗⊗n(σ) cancels out in the (G∗(σ),G)-derivative and further

P(G∗(σ) ∈ E) = E

q|U|
1{σU = σ̌U}

∏
a

r(wa)
∏
i,h

r↔
σ(i)(ψ↔

i,h)1
{

[w]Γ↔↓
ψ↔,U ,σ̌ ∈ E

} .
Recall that [·]↓U ,σ̌ only depends on σ̌ through the values σ̌U to be pinned, so on the event σU = σ̌U

we have [w]Γ↔↓
ψ↔,U ,σ̌ = [w]Γ↔↓

ψ↔,U ,σ. After this substitution we can take the expectation over σ̌ due to
independence, i.e. E[q|U|

1{σU = σ̌U}] = 1. This completes the proof, due to independence.

Remark 3.14. Observation 3.13 allows to discuss the standard graph w∗, the interpolators ψ∗↔
σ

and the pins separately in most situations. We will make use of this convenient feature to reduce the
(notational) complexity and increase the transparency. For example, in the following we will discuss
the law of the standard graph, further notions and properties. This discussion directly applies to w∗

and in this sense to G∗(σ).

3.2.1.5 Factor Side Assignments. For G = (v, ψ) ∈ G let τg,G,σ = (σv(a))a∈[m] be the assignment to
the factors induced by σ under G, and τ ∗

µΨ,n,m,σ = τg,G∗(σ),σ = τg,w∗(σ),σ the induced ground truth
factor assignment. Using γ = γn,σ, let DΓ,γ = γ−1(R>0) ⊆ [q] and notice that τg,G,σ ∈ (Dk

Γ,γ)m.
On the other hand, let τ ∗

◦,µΨ,γ ∼ µT|Γ,γ with µT|Γ,γ from Section 3.2.1.2 and notice that the
support of τ ∗

◦,γ is Dk
Γ,γ by Observation 3.9f). For τ ∈ Dk

Γ,γ let w⋆
◦,µΨ,n,σ,τ = (v⋆◦,ψ⋆◦) ∼ v⋆◦ ⊗ψ⋆◦, where

v⋆◦,n,σ,τ ∼
⊗

h u(σ−1(τh)) and ψ⋆◦,µΨ,τ is given by the (ψ⋆◦,ψ◦)-derivative ψ 7→ ψ(τ)/ψ◦(τ). Finally, for
τ ∈ (Dk

Γ,γ)m let w⋆
µΨ,n,m(σ, τ) ∼

⊗
a∈[m]w

⋆
◦,τ(a).

Observation 3.15. We have (τ ∗
σ ,w

∗(σ)) ∼ (τ ,w⋆(σ, τ )), τ ∼ τ ∗⊗m
◦,γ , γ = γn,σ.

Proof. We restrict to (τ ∗
◦ ,w

⋆
◦,τ∗

◦
) and (σv∗

◦ ,w
∗
◦) using independence. Now, the assertion holds since

P((τ ∗
◦ ,w

⋆
◦(τ ∗

◦ )) ∈ E) =
∑
τ,v

1{σv = τ}
Z f(γ)nk

E [ψ◦(τ)1{(τ, v,ψ◦) ∈ E}] = P((σv∗
◦ ,w

∗
◦) ∈ E).
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In words, the law of τ ∗(σ) factorizes and w∗(σ) conditional to τ ∗(σ) = τ is given by w⋆(σ, τ).
Let G⋆(σ, τ) be given by the law of G∗(σ)|τ ∗

σ = τ .
3.2.1.6 Variable Degrees. For τ ∈ ([q]k)m and τ ′ ∈ [q]k let

αm,τ (τ ′) = |τ−1(τ ′)|
m

= 1
m

∣∣{a ∈ [m] : τa = τ ′}∣∣ . (6)

Notice that αm is not well-defined for m = 0, but mαm is. We reserve the preimage notation τ−1(τ ′)
for τ ′ ∈ [q]k (as opposed to τ ′ ∈ [q]). For G = (v, ψ) ∈ G let Av,G(i) = {a ∈ [m] : i ∈ va([k])} be the
(factor) neighborhood of i ∈ [n] and df,G(i) = |Av,G(i)| the (factor) degree.

Similarly, let Hv,G(i) = {(a, h) : va(h) = i} be the (wire) neighborhood of i and dw,G(i) = |Hv,G(i)|
the (wire) degree. Finally, let pd,µΨ,n,σ(σi) = P(i ∈ v∗

◦,σ([k])).

Observation 3.16. Let i ∈ [n], γ = γn,σ, µ = µT|Γ,γ and η = E[|v∗−1
◦,σ (i)|].

a) We have pd = 1 if n = 1 and pd ∈ (0, 1) otherwise.
b) We have η = kµ|∗(σi)

nγ(σi) .
c) There exists cg ∈ R>0 with 1

cn ≤ pd(σi) ≤ η ≤ c
n and pd(σi) ≥ η − c

n2 .

Proof. With Observation 3.15 we obtain pd and η, i.e.

pd = P(i ∈ v⋆◦,τ∗
◦
([k])) = P(∃h ∈ [k] τ ∗

◦,h = σi,v
⋆
◦,τ∗

◦
(h) = i) = P(τ ∗

◦ ̸∈ ([q] \ {σi})k)
nγ(σi)

,

η =
∑
h

P(v∗
◦,h = i) =

∑
h

P(v⋆◦,τ∗
◦ ,h

= i) = kµ|∗(σi)
nγ(σi)

.

With the union bound we have pd(σi) ≤ η and with c from Observation 3.9h) further η ≤ kc/n. For
n = 1 we clearly have pd = 1, η = k and hence both lower bounds hold for c ≥ k − 1. For n > 1 we
have n− 1 ≥ n/2 and hence

pd = E
[
ψ◦(σv◦)
Z f(γ)

1 {i ∈ v◦([k])}
]

≥ ψ2
↓

(
1 − (n− 1)k

nk

)
=
ψ2

↓
nk

k−1∑
ℓ=0

(
k

ℓ

)
(n− 1)ℓ

≥
kψ2

↓(n− 1)k−1

nk
≥

kψ2
↓

2k−1n
.

This also shows that pd ∈ (0, 1) for n > 1. The upper bound on the derivative gives

η − pd(σi) ≤ ψ2
↑E
[
|v−1

◦ (i)| − 1{i ∈ v◦([k])}
]

=
ψ2

↑
nk

(
knk−1 − (nk − (n− 1)k)

)
=
ψ2

↑
nk

(
k
k−1∑
ℓ=0

(
k − 1
ℓ

)
(n− 1)ℓ −

k−1∑
ℓ=0

(
k

ℓ

)
(n− 1)ℓ

)

=
ψ2

↑
nk

k−1∑
ℓ=0

(k − ℓ− 1)
(
k

ℓ

)
(n− 1)ℓ ≤

ψ2
↑
n2

k−2∑
ℓ=0

(k − ℓ− 1)
(
k

ℓ

)
.
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Next, we apply the bounds for the success probabilities to the degrees. Let d⋆w,n,m,σ,τ (i) ∼
Bin(kmαm,τ |∗(σi), 1

nγn,σ(σi)) and d∗
f,µΨ,n,m,σ

(i) = Bin(m, pd(σi)). Notice that both degrees only depend
on i through σi.

Observation 3.17. Notice that the following holds for i ∈ [n].
a) We have dw,w⋆(σ,τ)(i) ∼ d⋆w(i) and E[dw,w∗(σ)(i)] = mE[|v∗−1

◦,σ (i)|].
b) We have df,w∗(σ)(i) ∼ d∗

f (i) and E[df,w∗(σ)(i)] = mpd,σ(σi).

Proof. Notice that

kmαm,τ |∗(σi) =
∑
h

∑
τ ′

1{τ ′
h = σi}

∑
a

1{τa = τ ′} = |{(a, h) : τa,h = σi}|.

Hence, Part 3.17a) and Part 3.17b) follow from Observation 3.15 and Observation 3.13.

By an abuse of notation we use the shorthands d⋆w(i) = dw,w⋆(σ,τ)(i) and d∗
f (i) = df,w∗(σ)(i).

Combining these observations does not only yield uniform bounds (also in the choice of σ!), we also
obtain the law of the degrees and bounds under the Poisson number of factors, and uniform Lipschitz
continuity of the degree in σ.

Corollary 3.18. Let i ∈ [n], γ = γn,σ, µ = µT|Γ,γ, mα = mαm,τ and m = t↔d̄n/k.
a) We have d∗

f ≤ d∗
w. Further, there exists cg ∈ R>0 such that km

cn ≤ E[d∗
f ] ≤ E[d∗

w] ≤ ckm
n and

E[d∗
w] − E[d∗

f ] ≤ ckm
n2 .

b) We have (d∗
f,m,m− d∗

f,m) ∼ Po(pdm, (1 − pd)m). Further, there exists cg ∈ R>0 such that t↔d̄
c ≤

E[d∗
f,m] ≤ E[d∗

w,m] ≤ ct↔d̄ and E[d∗
w,m] − E[d∗

f,m] ≤ ct↔d̄
n .

c) Using δ = ∥γn,σ − γ∗∥tv, there exists cg ∈ R>0 such that∣∣∣∣E[d∗
w,m] − km

n

∣∣∣∣ ≤ ckm

n
δ,
∣∣∣E[d∗

w,m] − t↔d̄
∣∣∣ ≤ ct↔d̄δ,∣∣∣∣E[d∗

f,m] − km

n

∣∣∣∣ ≤ ckm

n

(
δ + 1

n

)
,
∣∣∣E[d∗

f,m] − t↔d̄
∣∣∣ ≤ ct↔d̄

(
δ + 1

n

)
.

Proof. Using w∗ = (v∗,ψ∗) and η = E[|v∗−1
◦ (i)|], for Part 3.18a) we have

d∗
f =

∑
a∈[m]

1{∃h ∈ [k]v∗
a,h = i} ≤

∑
a∈[m]

∣∣∣v∗−1
a (i)

∣∣∣ ,= d∗
w,

further we have E[d∗
f ] = mpd and E[d∗

w] = mη from Observation 3.17, hence the bounds follow from
Observation 3.16 by rescaling with k ≥ 2. The law in Part 3.18b) follows from Observation 3.17b)
and Observation 3.7b). The bounds are obtained by taking expectations in Part 3.18a). For Part
3.18c) we use Observation 3.16b), Observation 3.9j) and Observation 3.9i) to obtain∣∣∣∣E[d∗

w,m] − km

n

∣∣∣∣ = km

n

∣∣∣∣∣µT|Γ,γn,σ
|∗(σi)

γn,σ(σi)
−
µT|Γ,γ∗ |∗(σi)

γ∗(σi)

∣∣∣∣∣ ≤ ckm

n
δ.

The remainder is now immediate from Jensen’s inequality and Part 3.18a).

3.2.1.7 Neighborhood Decomposition. Let D− = ([n] \ {i})k be the factor neighborhoods excluding i
and D+ = [n]k \ D− the neighborhoods covering i. For n > 1 let w−◦,µΨ,n,i = (v−◦,n,i,ψ−◦,µΨ) ∼
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u(D−) ⊗ µΨ and let w∗
−◦,µΨ,n,i,σ

be given by the (w∗
−◦,w−◦)-derivative (v, ψ) 7→ ψ(σv)/E[ψ−◦(σv−◦)].

Let w+◦,µΨ,n,i = (v+◦,n,i,ψ+◦,µΨ) ∼ u(D+) ⊗ µΨ and let w∗
+◦,µΨ,n,i,σ

be given by the (w∗
+◦,w+◦)-

derivative (v, ψ) 7→ ψ(σv)/E[ψ+◦(σv+◦)]. For given d ∈ Z ∩ [0,m] let

(w∗
−,µΨ,n,m−d,i,σ,w

∗
+,µΨ,n,d,i,σ) ∼ w

∗⊗(m−d)
−◦ ⊗w∗⊗d

+◦ .

For given A ∈
([m]
d

)
let α+ : [d] → A, α− : [m − d] → [m] \ A be the enumerations, and let

w∗
a,A = (w∗

a,A(a))a∈[m] be given by w∗
a,A(a) = w∗

+(α−1
+ (a)) for a ∈ A and w∗

a,A(a) = w∗
−(α−1

− (a)) for
a ∈ [m] \ A. Finally, let Ad,m,d = u(

([m]
d

)
) and w∗

d,µΨ,n,m,i,d,σ
= w∗

a,Ad
.

Observation 3.19. We have w∗
d(i,d∗

f (i), σ) ∼ w∗(σ).

Proof. With w∗ = (v∗,ψ∗), A∗ = {a ∈ [m] : i ∈ v∗
a([k])} and b∗ = (1{a ∈ A∗})a we have b∗ ∼ b∗⊗m

◦ ,
where b∗

◦ ∈ {0, 1} is given by the success probability pd(σi). So, for b ∈ {0, 1}m using pa = P(b∗
◦ = ba),

w = (v,ψ) from Section 3.2.1.1 and b = (1{i ∈ va([k])})a we have

P(w∗ ∈ E|A = A) = E
[∏
a

ψa(σv(a))1{ba = ba}
Z f(γn,σ)pa

1{w ∈ E}
]
.

Now, the (w−◦,w◦)-derivative is (v, ψ) 7→ 1{i ̸∈ v([k])}/P(i ̸∈ v◦([k])), so the (w∗
−◦,w◦)-derivative is

(v, ψ) 7→ 1{i ̸∈ v([k])}ψ(σv)/E[1{i ̸∈ v◦([k])}ψ◦(σv◦)]. But for any a ∈ b−1(0) we have

Z f(γn,σ)pa = Z f(γn,σ)E
[
ψ◦(σv◦)
Z f(γn,σ)

1{i ̸∈ v◦([k])}
]

= E[1{i ̸∈ v◦([k])}ψ◦(σv◦)].

Similarly, the (w+◦,w◦)-derivative is (v, ψ) 7→ 1{i ∈ v([k])}ψ(σv)/E[1{i ∈ v◦([k])}ψ◦(σv◦)] and
Z f(γn,σ)pa = E[1{i ∈ v◦([k])}ψ◦(σv◦)] for a ∈ b−1(1). So, w∗|A∗ = A and w∗

a,A have the same law.
Next, notice that w∗ ∼ w∗ ◦ α for any permutation α ∈ [m]m of the factors, which yields A∗ ∼

α(A∗), hence that A∗||A∗| = d is uniform and thereby has the same law as Ad. This shows that
w∗||A∗| = d has the same law as w∗

d and thereby completes the proof.

Remark 3.20. Notice that w∗
◦,−◦ does not depend on σi due to the definition of v−◦.

3.2.1.8 Standard Graphs. In this section we discuss the relation of the decorated factor graphs from
Section 3.2.1.1 and the standard factor graphs from Section 2.1.2.1. For this purpose let Gd, G∗

d
denote the decorated graphs and Gs, G∗

s the standard graphs.

Observation 3.21. Let Θ↓ = 0 and t↔ = 1. Let Gd = Gd,m,m↔,U , G∗
d = G∗

d,m,m↔,U , Gs =
Gs,m and G∗

s = G∗
s,m. Then we have Gd ∼ [Gs]Γ, G∗

d(σ) ∼ [G∗
s (σ)]Γ, ψg,Gd(σ) ∼ γ∗⊗n(σ)ψGs(σ),

Zg(Gd) ∼ Zγ∗(Gs), Zg(G∗
d(σ)) ∼ Zγ∗(G∗

s (σ)) and µg,Gd ∼ µγ∗,Gs, µg,G∗
d(σ) ∼ µγ∗,G∗

s (σ).

Proof. Notice that m↔ ≡ 0 and U = ∅. Further, we have Gd ∼ [Gs]Γ by definition, hence ψg,Gd(σ) ∼
γ∗⊗n(σ)ψGs(σ) and E[ψg,Gd(σ)|m] = γ∗⊗n(σ)E[ψGs(σ)|m], so as for Observation 3.13 γ∗⊗n(σ) cancels
out in the (G∗(σ),G)-derivative and thereby G∗

d(σ) ∼ [G∗
s (σ)]Γ. Finally, notice that Zγ∗(G) =∑

σ γ
∗⊗n(σ)ψG(σ) = ∑

σ ψ[G]Γ(σ) = Zg([G]Γ). The remainder follows analogously.

Notice that the result for ϕg, ϕ is implied. Thus, the standard graphs follow as a special case.
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3.2.2 The Nishimori Ground Truth. In this section we discuss the Nishimori ground truth σ̂
from Section 3.1.2.1 and its relation to σ∗. In Section 3.2.2.1 we show that σ̂ satisfies the Nishimori
condition for the decorated graph and prove Proposition 3.1d). In Section 3.2.2.2 we discuss the
color frequencies γ∗

γ∗,n = γn,σ∗ , γ̂µΨ,γ∗,n,m = γn,σ̂ and the conditional laws σ∗|γ∗, σ̂|γ̂, including the
proof of Proposition 3.1c), the upper bound in Proposition 3.1a) and the lower bound in Proposition
3.1b). Finally, in Section 3.2.2.3 we bound the total variation distance of Nishimori ground truths for
different values of m.
3.2.2.1 Decorated Graphs. Recall the (σ̂,σ∗)-derivative r̂µΨ,γ∗,n,m from Section 3.1.2.1.

Observation 3.22. Notice that the following holds.
a) We have P(σ̂ = σ) = ψm(σ)/Zm and r̂(σ) = Z f(γn,σ)m/E[Z f(γn,σ∗)m].
b) The Radon-Nikodym derivative of (σ̂,G∗(σ̂)) with respect to σ∗ ⊗G is

(σ,G) 7→ ψg,G(σ)
γ∗⊗n(σ)Zm

.

c) The (G∗(σ̂),G)-derivative is G 7→ Zg(G)/Zm.
d) We have (σ̂,G∗(σ̂)) ∼ (σg,G∗(σ̂),G

∗(σ̂)).

Proof. With Gs denoting the standard graph and using Observation 3.21 we have

P(σ̂ = σ) = γ∗⊗n(σ)E[ψGs(σ)]
E[Zγ∗(Gs)]

=
E[ψg,[Gs]Γ(σ)]
E[Zg([Gs]Γ)] ,

i.e. the ratio of the expectations for the decorated factor graph without interpolators and pins. But
with Observation 3.11e) and Observation 3.11f) this gives

P(σ̂ = σ) = γ∗⊗n(σ)Z f(γn,σ)m

E[Z f(γn,σ∗)m]
= ψm(σ)

Zm
.

Using Part 3.22a), (σ∗,G) ∼ σ∗ ⊗G and for an event E we have

P((σ̂,G∗(σ̂)) ∈ E) = E
[

ψm(σ∗)
γ∗⊗n(σ∗)Zm

ψg,G(σ∗)
ψm(σ∗)

1{(σ∗,G) ∈ E}
]
.

This shows that the (G∗(σ̂),G)-derivative is ∑σ γ
∗⊗n(σ) ψg,G(σ)

γ∗⊗n(σ)Zm
= Zg(G)

Zm
. This also shows Part

3.22d) since the joint derivative is the product of the individual derivatives.

Since µg,[G]Γ = µγ∗,G and G 7→ [G]Γ is a bijection, Proposition 3.1d) follows with Observation 3.21
and Observation 3.22d).
3.2.2.2 Ground Truths. Since both ground truths σ∗, σ̂ are invariant to decorations we assume that
m↔ ≡ 0 and U = ∅ in this section. Using γ = γn,σ let S = {σ′ ∈ [q]n : γn,σ′ = γ} and σΓ,n,γ ∼ u(S).

Observation 3.23. Notice that the following holds.
a) We have (γ∗,σ∗) ∼ (γ∗,σΓ,γ∗).
b) There exist cg ∈ R2

>0 with P(∥γ∗ − γ∗∥tv ≥ r) ≤ c2e
−c1r2n for r ∈ R≥0.

c) There exists c ∈ R>0 such that E[∥γ∗ − γ∗∥tv] ≤ c/
√
n.

d) There exists c ∈ R>0 such that E[∥γ∗ − γ∗∥2
tv] ≤ c/n.
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Proof. The first part is clear, further the union bound with Hoeffding’s inequality yields

P(∥γ∗ − γ∗∥tv ≥ r) ≤ P(∃τ ∈ [q]|γ∗(τ) − γ∗(τ)| ≥ 2r/q) ≤ 2q exp
(

− 8
q2 r

2n

)
.

For the next part we have E[∥γ∗ − γ∗∥tv] ≤
∫∞

0 c2e
−c1r2ndr = c2

√
π

2√
c1n

. Similarly, for the last part we
have E[∥γ∗ − γ∗∥2

tv] ≤
∫∞

0 c2e
−c1rndr = c2

c1n
.

Next, we establish the bounds for ψm and Zm.

Lemma 3.24. Notice that the following holds for m ≤ m↑.
a) There exists cg ∈ R>0 such that cξm ≤ Zm ≤ ξm.
b) There exists cg ∈ R>0 with exp(−c∥γn,σ − γ∗∥2

tvn)ξmγ∗⊗n(σ) ≤ ψm(σ) ≤ ξmγ∗⊗n(σ).

Proof. Observation 3.11e) yields ψm(σ) = γ∗⊗n(σ)Z f(γ)m ≤ γ∗⊗n(σ)ξm, so Zm ≤ ξm, where γ = γn,σ.
Next, with c̃ from Observation 3.9d) let cg = 8d↑c̃Λ(ψ↑)/k and δ = ∥γn,σ − γ∗∥tv. For δ2 ≥ 1/(2c̃ψ↑)
we have

ψm(σ)
γ∗⊗n(σ)ξm ≥

(
ψ↓
ψ↑

)m↑

= ψ
−4d↑n/k
↑ = exp

(
− c

2c̃ψ↑
n

)
≥ e−cδ2n.

For δ2 ≤ 1/(2c̃ψ↑) we have Zf(γ)
ξ ≥ 1 − c̃δ2

ψ↓
≥ 1

2 . For t ∈ R≥1/2 we have ln(t) ≥ (2t − 3)(1 − t) and
thereby

ln
(
Z f(γ)
ξ

)
≥ −

(
1 + 2c̃δ2

ψ↓

)
c̃δ2

ψ↓
≥ −2c̃δ2

ψ↓
,

ψm(σ)
ξmγ∗⊗n(σ) ≥ exp

(
−2m↑c̃δ

2

ψ↓

)
≥ e−cδ2n.

So, by Jensen’s inequality and with c̃ from Observation 3.23d) we have

Zm
ξm

≥ E
[
exp

(
−c∥γ∗ − γ∗∥2

tvn
)]

≥ exp
(
−cE[∥γ∗ − γ∗∥2

tv]n
)

≥ exp(−cc̃).

Now, we prove the remainder of Proposition 3.1 and translate Observation 3.23 to σ̂.

Corollary 3.25. Notice that the following holds for m ≤ m↑.
a) There exists cg ∈ R>0 such that r̂ ≤ c.
b) There exists cg ∈ R>0 such that r̂(σ) ≥ exp(−c∥γn,σ − γ∗∥2

tvn).
c) We have (γ̂, σ̂) ∼ (γ̂,σΓ,γ̂).
d) There exist cg ∈ R2

>0 with P(∥γ̂ − γ∗∥tv ≥ r) ≤ c2e
−c1r2n for r ∈ R≥0.

e) There exists c ∈ R>0 such that E[∥γ̂ − γ∗∥tv] ≤ c/
√
n.

f) There exists c ∈ R>0 such that E[∥γ̂ − γ∗∥2
tv] ≤ c/n.

Proof. With Observation 3.22a), c̃ from Lemma 3.24a) and Lemma 3.24b) we have r̂ ≤ c̃−1. With
c from Lemma 3.24b) and Lemma 3.24a) we have r̂(σ) ≥ exp(−c∥γn,σ − γ∗∥2

tvn). The next part
is immediate from the result for r̂ in Observation 3.22a), which also shows that ψm is invariant to
permutations of σ. The last parts follow from Part 3.25a) applied to Observation 3.23.
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3.2.2.3 Coupling Nishimori Ground Truths. Since σ̂ is invariant to decorations we assume that m↔ ≡
0 and U = ∅. In this section we derive a bound for ∥σ̂m+1 − σ̂m∥tv, which then extends to any σ̂m,
σ̂m̃ using the triangle inequality.

Observation 3.26. Notice that the following holds for m ≤ m↑.
a) There exists cg ∈ R>0 with 1 − c∥γn,σ − γ∗∥2

tv ≤ r(σ) ≤ 1 + c
n for the (σ̂m+1, σ̂m)-derivative r.

b) There exists cg ∈ R>0 such that ∥σ̂m+1 − σ̂m∥tv ≤ c/n.

Proof. With Observation 3.11e) and c′ from Observation 3.9d) we obtain

ψm,m+1(σ)
ψm,m(σ)

= Z f(γn,σ) ∈ [ξ − c′∥γn,σ − γ∗∥2
tv, ξ].

This equality and c′′ from Corollary 3.25f) further yield

Zm,m+1

Zm,m
= E

[
Z f(γ̂m)

]
≥ ξ − c′E

[
∥γ̂ − γ∗∥2

tv

]
≥ ξ − c′c′′

n

and the upper bound ξ. Hence, we have

P(σ̂m+1 = σ)
P(σ̂m = σ) ≥ 1 − c′

ξ
∥γn,σ − γ∗∥2

tv ≥ 1 − c′

ψ↑
∥γn,σ − γ∗∥2

tv.

For n ≤ n◦ with n◦ = 2c′c′′/ξ ≤ 2c′c′′ψ↑ we use Observation 3.22a) to obtain

P(σ̂m+1 = σ)
P(σ̂m = σ) ≤ ψ

2m↑
↑ ≤ 1 +

n◦ψ
4d↑n◦/k
↑
n

≤ 1 +
2c′c′′ exp(1 + 8

kc
′c′′Λ(ψ↑)d↑)

n
.

For n ≥ n◦ we use the bounds above and 1/(1 − t) ≤ 1 + 2t for t ∈ [0, 1/2] to obtain

P(σ̂m+1 = σ)
P(σ̂m = σ) ≤ 1

1 − c′c′′

ξn

≤ 1 + 2c′c′′

ξn
≤ 1 + 2c′c′′ψ↑

n
,

which completes the proof of Part 3.26a). Combining this result with Observation 3.6a) gives

∥σ̂m+1 − σ̂m∥tv = 1
2E [|r(σ̂m) − 1|] ≤ c

2

(
E
[
∥γ̂ − γ∗∥2

tv

]
+ 1
n

)
,

which completes the proof using Corollary 3.25f).

This completes the discussion of the Nishimori ground truth σ̂.
3.2.2.4 Ground Truth Given the Graph. In this section we consider arbitrary choices of m↔ and U .
Due to the Nishimori condition 3.22d) the Nishimori ground truth σ̂ conditional to G∗(σ̂) has the
same distribution as the Gibbs spins σ. Hence, we only need to discuss the kernel for σ∗ givenG∗(σ∗).
For this purpose let rg,σ(G) = ψg,G(σ)/ψm(σ) be the (G∗(σ),G)-derivative, r∗

g(G) = E[rg,σ∗(G)] and
for G ∈ [G]Γ↔↓ let σ∗

g,G ∈ [q]n be given by the (σ∗
g,G,σ

∗)-derivative rs,G(σ) = rg,σ(G)/r∗
g(G).

Observation 3.27. Let G∗ = G∗(σ∗) and M = m+ ∥m↔∥1.
a) The (G∗,G)-derivative is r∗

g with ψ2M
↓ (qψ↓)|U| ≤ r∗

g ≤ ψ2M
↑ q|U|.
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b) We have (σ∗,G∗) ∼ (σ∗
g,G∗ ,G∗).

Proof. For G = [(v, ψ)]Γ↔↓ and using Observation 3.11 we have

r∗
g(G) = E

∏
a

ψa(σ∗
v(a))

Z f(γ∗)
∏

(i,h)∈A↔

ψ↔
i,h(σi)
ξ

∏
i∈U

1{σ∗
i = σ̌i}
q−1

 ≥ ψ2M
↓ (qψ↓)|U|

using γ∗⊗U (σ̌U ) ≥ ψ
|U|
↓ and the upper bound follows analogously with γ∗⊗U (σ̌U ) ≤ 1. For the second

part with (σ∗,G) ∼ σ∗ ⊗G we have

P
(
(σ∗

g,G∗ ,G∗) ∈ E
)

= E
[
r∗

g(G)rs,G(σ∗)1 {(σ∗,G) ∈ E}
]

= P ((σ∗,G∗) ∈ E) .

3.2.2.5 Gibbs Spins. In this section we consider arbitrary choices of m↔ and U . Due to the Nishimori
condition 3.22d) we have σ̂ ∼ σg,G∗(σ̂). Hence, we only need to discuss σg,G∗(σ∗).

Observation 3.28. Let γ = γn,σ with σ = σg,G∗(σ∗) and m ≤ m↑.
a) There exists cg ∈ R2

>0 such that P(∥γ − γ∗∥tv ≥ r) ≤ c2e
−c1r2n.

b) There exists cg ∈ R>0 such that E[∥γ − γ∗∥tv] ≤ c/
√
n.

c) There exists cg ∈ R>0 such that E[∥γ − γ∗∥2
tv] ≤ c/n.

Proof. Let c∗ ∈ R2
>0 be from Observation 3.23b), ĉ ∈ R2

>0 be from Corollary 3.25d) and c′ ∈ R>0

from Corollary 3.25b). With r∗ =
√

ĉ1
2c′ r we have

P (∥γ − γ∗∥tv ≥ r) ≤ ec
′r∗2nP (∥γ̂ − γ∗∥tv ≥ r, ∥γ̂ − γ∗∥tv < r∗) + c∗

2e
−c∗

1r
∗2n

≤ exp
(1

2 ĉ1r
2n

)
ĉ2e

−ĉ1r2n + c∗
2 exp

(
−c∗

1ĉ1
2c′ r

2n

)
,

which completes the proof with c2 = ĉ2 + c∗
2 and c1 = min(ĉ1/2, c∗

1ĉ1/(2c′)). The remainder is
completely analogous to the proof of Observation 3.23.

3.2.2.6 Relative Entropies. We compare the various assignments using relative entropies.

Observation 3.29. Let G∗ = G∗(σ∗) and m ≤ m↑.
a) There exists cg ∈ R>0 with DKL(σ̂∥σ∗) ≤ c.
b) There exists cg ∈ R>0 with DKL(σ∗∥σ̂) ≤ c.
c) There exists cg ∈ R>0 such that E[E[DKL(σ∗

g,G∗∥σg,G∗)|G∗]] ≤ c.

Proof. With c′ from Corollary 3.25a) we have DKL(σ̂∥σ∗) = E[ln(r̂(σ̂))] ≤ ln(c′). With c′ from
Corollary 3.25b) and c′′ from Observation 3.23d) we have

DKL(σ∗∥σ̂) = E
[
ln
(
r̂(σ∗)−1

)]
≤ c′nE

[
∥γ∗ − γ∗∥2

tv

]
≤ c′c′′.

Using the definitions, the (σg,G∗ ,σ∗
g,G∗)-derivative rs,G can be composed of

rs,G(σ) =
ψm(σ)r∗

g(G)
ψg,G(σ) · ψg,G(σ)

γ∗⊗n(σ)Zg(G) = E
[

r̂(σ)
r̂(σg,G)

]
.
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Now, with c′ from Corollary 3.25a), c′′ from Corollary 3.25b) and γg,G = γn,σg,G we have

rs,G(σ) ≥ exp
(
−c′′∥γn,σ − γ∗∥2

tvn
)
/c′.

Hence, with the tower property, Observation 3.27 and c′′′ from Observation 3.23d) we have

E[E[DKL(σ∗
g,G∗∥σg,G∗)|G∗]] = E[− ln(rs,G∗(σ∗))] ≤ ln(c′) + c′′c′′′.

3.2.3 Concentration and Continuity. In this section we prove Proposition 3.2 and related results.
In Section 3.2.3.1 we establish boundedness and Lipschitz continuity of the free entropy on the factor
graph level for general decorated graphs, yielding Proposition 3.2a).

In Section 3.2.3.2 we establish Lipschitz continuity of E[ϕg(G)] for m↔ ≡ 0 and U = ∅. Then we es-
tablish Lipschitz continuity for E[ϕg(G⋆

m,m↔,U (σ, τ))] and E[ϕg(G∗
m,m↔,U (σ))] in Section 3.2.3.3, yield-

ing Proposition 3.2c). In Section 3.2.3.4 and for m↔ ≡ 0 and U = ∅ we show that E[ϕg(G∗
m(σ̂m))] =

E[ϕg(G∗
m(σ∗))] + o(1) which explains why using σ̂ for Proposition 3.4 is reasonable, and we further

show that E[ϕg(G∗
m∗(σ∗))] = E[ϕg(G∗

m(σ∗))] + o(1), which supports the corresponding claim in Sec-
tion 3.1.3 regarding m∗ and Theorem 2.2. Based on these results we then establish concentration for
m↔ ≡ 0, U = ∅ in Section 3.2.3.5, yielding Proposition 3.2b).
3.2.3.1 The Free Entropy. Let G = [w]Γ↔↓

m↔,ψ↔,U ,σ with w = (v, ψ) ∈ Gn,m and G̃ = [w̃]Γ↔↓
m̃↔,ψ̃↔,Ũ ,σ̃ with

w̃ = (ṽ, ψ̃) ∈ Gn,m̃. Let V↓
1 = [n] \ (U ∪ Ũ) be the unpinned variables, V↓

2 = {i ∈ U ∩ Ũ : σi = σ̃i}
the variables pinned to the same value, and V↓ = V↓

1 ∪ V↓
2 . Further, let m∩ = min(m, m̃), m↔

∩ =
(min(m↔

i , m̃
↔
i ))i, A↔

∩ = {(i, h) : i ∈ [n], h ∈ [m∩,i]} and

A= =
{
a ∈ [m∩] : wa = w̃a, va([k]) ⊆ V↓

}
, A↔

= =
{

(i, h) ∈ A↔
∩ : ψ↔

i,h = ψ̃↔
i,h, i ∈ V↓

}
.

Now, let D = m − m∩ + ∑
i(m↔

i − m↔
∩,i), D̃ = m̃ − m∩ + ∑

i(m̃↔
i − m↔

∩,i) be the excess factors,
D∩ = m∩ − |A=| + |A↔

∩ \ A↔
= | the bad factors and let dg(G, G̃) = D + D̃ + 2D∩ + n − |V↓| be the

distance of G and G̃.

Observation 3.30. There exists cg ∈ R>0 such that |ϕg(G) − ϕg(G̃)| ≤ c
ndg(G, G̃) and |ϕg(G)| ≤

c
n(m+ ∥m↔∥1 + |U|).

Proof. Let G, G̃ be as in the definition of dg. First, we get rid of the excess factor and the bad factors,
i.e.

Zg(G) ≥ ψD+D∩
↓ E

1{σ∗
U\V↓

2
= σU\V↓

2
,σ∗

V↓
2

= σV↓
2
}
∏
a∈A=

ψa(σ∗
va

)
∏

(i,h)∈A↔
=

ψ↔
i,h(σ∗

i )

 .
Now, all but the first part of the indicator only depends on σ∗

V↓ , so we can use independence, γ∗ ≥ ψ↓
and further transition to G̃, i.e.

Zg(G) ≥ ψ
D+D∩+|U\V↓

2 |
↓ E

1{σ∗
V↓

2
= σ̃V↓

2
}
∏
a∈A=

ψ̃a(σ∗
ṽa

)
∏

(i,h)∈A↔
=

ψ̃↔
i,h(σ∗

i )

 .
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This clearly gives ϕg(G) ≥ − ln(ψ↑)
n dg(G, G̃) + ϕg(G̃), the upper bound follows analogously and hence

the first part of the assertion holds with c = ln(ψ↑). The second part holds due to Observation 3.11c)
and γ∗ ≥ ψ↓.

Proposition 3.2a) follows from Observation 3.21 applied to Observation 3.30.
3.2.3.2 Continuity for the Null Model. In this section we establish Proposition 3.2c) for the null
model, implied by the following result for the decorated graph version. Recall ϕm = E[ϕg(Gm)] from
Section 3.2.1.1.

Lemma 3.31. There exists Lg ∈ R>0 such that |ϕm(m1) − ϕm(m2)| ≤ L|km1
n − km2

n | for m ∈ Z2
≥0,

m↔ ≡ 0 and U = ∅.

Proof. For m↔ ≡ 0 and U = ∅ we have dg(G, G̃) = m + m̃ − 2|A=| in Section 3.2.3.1. Assume
without loss of generality that m1 ≤ m2 and consider the canonical coupling of G(m1) = [wm1 ]Γ
and G(m2) = [wm2 ]Γ, i.e. wm1 = wm2,[m1]. Under this coupling we have A= = [m1] and hence
dg(G(m1),G(m2)) = m2 −m1, so Jensen’s inequality and Observation 3.30 yield

|ϕm(m1) − ϕm(m2)| ≤ E [|ϕg(G(m1)) − ϕg(G(m2))|] ≤ c′

n
(m2 −m1) = L

∣∣∣∣km1
n

− km2
n

∣∣∣∣
with L = c′/k, and thereby complete the proof.

Proposition 3.2c) for the null model follows from Observation 3.21 applied to Lemma 3.31.
3.2.3.3 Continuity for the Teacher-Student Model. In this section we establish a version of Proposition
3.2c) for the expected free entropy ϕ⋆(m,σ, τ) = E[ϕg(G⋆

m,m↔,U (σ, τ))] over the two-sided planted
model and the more general decorated graphs. The result for the teacher-student model then follows
as a corollary.

Lemma 3.32. Let γn,σ ≥ 1
2ψ↓, m ≤ m↑, further m̃ ∈ Z≥0, σ̃ ∈ [q]n and τ̃ ∈ (Dk

Γ,γ̃)m̃. There exists
Lg ∈ R>0 such that

|ϕ⋆(m,σ, τ) − ϕ⋆(m̃, σ̃, τ̃)| ≤ L

n
(∥nγn,σ − nγn,σ̃∥1 + ∥mαm,τ − m̃αm,τ̃∥1) .

Proof. Let γ = γn,σ, γ̃ = γn,σ̃, α = αm,τ and α̃ = αm,τ̃ . First, we show that ϕ⋆(m,σ, τ) = ϕ⋆(m̃, σ̃, τ̃)
for the special case that m̃ = m, γ̃ = γ and α̃ = α, i.e. there exist permutations ν ∈ [n]n and
µ ∈ [m]m such that σ̃ ◦ ν = σ and τ̃ ◦ µ = τ . Similar to the proof of Observation 3.19 we consider a
permutation µ of the factors, and moreover a permutation ν of the variables. For given (v, ψ) ∈ G let
f(v, ψ) = (ṽ, ψ̃) ∈ G be given by ṽµ(a),h = ν(va,h) and ψ̃µ(a) = ψa. Notice that w⋆(σ̃, τ̃) ∼ f(w⋆(σ, τ))
since f is a simple relabeling of variables and factors. Further, let f↔(ψ↔) = ψ̃↔ with ψ̃↔

ν(i),h = ψ↔
i,h

and notice that ψ∗↔
σ̃ ∼ f↔(ψ∗↔

σ ). Finally, using m̃↔ ◦ ν = m↔ and Ũ = ν(U) we have

ϕg
(
[(v, ψ)]Γ↔↓

m↔,ψ↔,U ,σ

)
= ϕg

(
[(ṽ, ψ̃)]Γ↔↓

m̃↔,ψ̃↔,Ũ ,σ̃

)
,

i.e. the free entropy is invariant to a relabeling of factors and variables. This shows that

ϕg
(
G⋆
m,m̃↔,Ũ (σ̃, τ̃)

)
∼ ϕg

(
[f(w⋆(σ, τ))]Γ↔↓

m̃↔,f↔(ψ∗↔
σ ),Ũ ,σ̃

)
= ϕg

(
G⋆
m,m↔,U (σ, τ)

)
.
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Since both m↔ and U = ǔ−1
t,θ(1) are obtained from i.d.d. random variables (given θ), we have

G⋆
m,m↔◦ν,ν(U)(σ̃, τ̃) ∼ G⋆

m,m↔,U (σ̃, τ̃) and thereby ϕ⋆(m,σ, τ) = ϕ⋆(m, σ̃, τ̃). This completes the
proof of the special case and in particular shows that ϕ⋆(m,nγ,mα) = ϕ⋆(m,σ, τ) is well-defined.

Hence, for the general case we assume without loss of generality that m ≤ m̃ and that σ, τ , σ̃
and τ̃ are ordered as follows. Let n∩Γ = (min(nγ(τ ′), nγ̃(τ ′)))τ ′∈[q] and n∩ = ∥n∩Γ∥1. Analogously,
let m∩A = (min(mα(τ ′), m̃α̃(τ ′)))τ ′∈[q]k and m∩ = ∥m∩A∥1. We assume that σ[n∩] = σ̃[n∩] and
τ[m∩] = τ̃[m∩].

Next, we consider the following union. Let n∪ = n+(n−n∩) and σ∪ = (σ, σ̃[n]\[n∩]). Analogously,
let m∪ = m + (m̃ − m∩) and τ∪ = (τ, τ̃[m̃]\[m∩]). Let ν1 : [n] → [n] be the identity, ν2 : [n] →
[n∩] ∪ ([n∪] \ [n]) the enumeration, µ1 : [m] → [m] the identity and µ2 : [m̃] → [m∩] ∪ ([m∪] \ [m]) the
enumeration. The union graph G∪ = [w∪]Γ↔↓

m↔
∪ ,ψ∗↔

∪ ,U∪,σ∪
is given by

(w∪,m
↔
∪ ,ψ

∗↔
∪ ,U∪) ∼ w∪ ⊗ (m↔

∪ ,ψ
∗↔
∪ ) ⊗ U∪,

wherew∪ ∼ w⋆
m∪(σ∪, τ∪) and the remainder is given as follows. The interpolator countsm↔

∪ are given
by m↔

∪,[n] ∼ m↔
n and m↔

∪ ◦ ν2 = m↔
∪ ◦ ν1, i.e. we copy the values to the remaining positions. Given

m↔
∪ we have ψ∗↔

∪ ∼ ψ∗
n∪,σ∪ for the interpolation weights. Similarly, for the pins let ǔt∪,θ ∈ {0, 1}n∪

be given by ǔt∪,θ,[n] ∼ ǔt,n,θ and ǔt∪,θ ◦ν2 = ǔt∪,θ ◦ν1. Further, let U = ǔ−1
t∪,θn

(1) with θn ∼ u([0,Θ↓])
from Section 3.2.1.1. In words, we obtain m↔

∪ and U∪ by choosing the correct distribution on [n] and
copying the values to the remainder (yielding the correct distribution there), and then take the law
G⋆(σ∪, τ∪).

Given a graph G∪ = [(v∪, ψ∪)]Γ↔↓
m↔

∪ ,ψ↔
∪ ,U∪,σ∪

from G∪ and i ∈ [2], let Gi(G∪) = [(v, ψ)]Γ↔↓
m↔,ψ↔,U ,σ

be given by m↔ = m↔
∪ ◦ νi, ψ↔ = ψ↔

∪ ◦ νi, U = ν−1
i (U∪), ψ = ψ∪ ◦ µi, v(a, h) = ν−1

i (v∪(µ(a), h))
if v∪(µ(a), h) ∈ νi([n]) and otherwise v(a, h) ∼ u(Si) independent of everything else, where Si =
ν−1
i (S∪) and S∪ = σ−1

∪ (τ∪(µi(a), h)). Notice that τ∪(µ1(a), h) = τ(a, h) and further S1 = σ−1(τa,h).
Analogously, we obtain S2 = σ̃−1(τ̃a,h).

Now, we claim that G1(G∪) ∼ G⋆
m,m↔,U (σ, τ) and G2(G∪) ∼ G⋆

m̃,m↔,U (σ̃, τ̃). Due to the absence
of dependencies and by construction it is straightforward to see that the pinning indicators (sets), the
interpolator counts, the interpolation weights and the standard weights have the correct distribution,
which leaves us with the (standard) neighborhoods. But using G∪ = [(v∪,ψ∪)]Γ↔↓, G1(G∪) =
[(v,ψ)]Γ↔↓, for a ∈ [m], h ∈ [k] and i ∈ σ−1(τa,h) we have

P(v(a, h) = i) = P(v∪(a, h) = i) + P(v∪(a, h) ̸∈ σ−1(τa,h),v(a, h) = i)

= 1
|σ−1

∪ (τa,h)|
+ |σ−1

∪ (τa,h)| − |σ−1(τa,h)|
|σ−1

∪ (τa,h)|
· 1

|σ−1(τa,h)| = 1
|σ−1(τa,h)| ,

and thereby also v(a, h) ∼ u(σ−1(τa,h)) has the correct distribution. This shows that G1(G∪) ∼
G⋆
m,m↔,U (σ, τ), and we obtain G2(G∪) ∼ G⋆

m̃,m↔,U (σ̃, τ̃) analogously.
In the next step we want to apply Observation 3.30, hence we have to bound dg(G1,G2) using

Gi = Gi(G∪) = [(vi,ψi)]Γ↔↓
m↔

i ,ψ∗
i ,U i,σ∪◦νi

. By construction we have m↔ = m↔
1 = m↔

2 and U = U1 =
U2 (almost surely), so V↓

1 = [n]\U , V↓
2 = U ∩ [n∩], V↓ = ([n]\U)∪ [n∩], min(m, m̃) = m, m↔

∩ = m↔,
A↔

∩ = A↔
m↔ , D = 0, D̃ = m̃−m, D∩ = m−|A=|+|A↔

∩ \A↔
= | and dg(G1,G2) = m̃−m+2D∩+|U\[n∩]|.

Notice that A◦
= ⊆ A= with

A◦
= = {a ∈ [m∩] : v∪,a([k]) ⊆ [n∩]}
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and {(i, h) : i ∈ [n∩], h ∈ [m↔
i ]} ⊆ A↔

= by construction, so

D∩ ≤ m−m∩ + |{a ∈ [m∩] : ∃h ∈ [k]v∪(a, h) > n∩}| +
n∑

i=n∩+1
m↔

i .

Hence, we can upper bound the number of factors by the number of wires, which is then the total
degree of the variables [n∪] \ [n∩] with respect to the factors [m∩], i.e.

D∩ ≤ m−m∩ + |{(a, h) ∈ [m∩] × [k] : v∪(a, h) > n∩}| +
n∑

i=n∩+1
m↔

i

= m−m∩ +
n∪∑

i=n∩+1
d(i) +

n∑
i=n∩+1

m↔
i ,

d(i) = |{(a, h) ∈ [m∩] × [k] : v∪(a, h) = i}|.

Notice that d(i) is exactly the (wire) degree of i ∈ [n∪] in w⋆
m∩(σ∪, τ∪,[m∩]), so the discussion in

Section 3.2.1.6 applies. Further, notice that

dg(G1,G2) ≤ m̃+m− 2m∩ +
n∪∑

i=n∩+1
d(i) +

n∑
i=n∩+1

m↔
i .

Now, taking the expectation, using the coupling, Jensen’s inequality and c from Observation 3.30
yields

|ϕ⋆(m,σ, τ) − ϕ⋆(m̃, σ̃, τ̃)| ≤ c

n

m̃+m− 2m∩ +
n∪∑

i=n∩+1
E[d(i)] +

n∑
i=n∩+1

E[m↔
i ]

 .
By definition we have E[m↔

i ] = (1 − t↔)d̄ ≤ d↑, and by Observation 3.17a) we have d(i) ∼
Bin(|H|, 1/|σ−1

∪ (σ′)|) for i ∈ [n∪] \ [n∩], with σ′ = σ∪(i) and H = {(a, h) ∈ [m∩] × [k] : τ∪(a, h) = σ′}
from the proof of Observation 3.17a). This gives

E[d(i)] = |H|
|σ−1

∪ (σ′)|
≤ km∩

|σ−1(σ′)| ≤ km↑
nψ↓/2

= 4d↑ψ↑.

Using ∥nγ − nγ̃∥1 = 2(n− n∩) = n∪ − n∩ and ∥mα− m̃α̃∥1 = m+ m̃− 2m∩ yields

|ϕ⋆(m,σ, τ) − ϕ⋆(m̃, σ̃, τ̃)| ≤ c

n
(∥mα− m̃α̃∥1 + (4d↑ψ↑ + d↑)∥nγ − nγ̃∥1) ,

and completes the proof with L = cd↑(4ψ↑ + 1).

Remark 3.33. In preparation of the upcoming Aizenman-Sims-Starr scheme, notice that the coupling
construction works because we consider fixed t↔, d̄, Θ↓ and n, i.e. we have the same type of decorations
for G1(G∪), G2(G∪).

Now, we obtain the result for ϕ∗(m,σ) = E[ϕg(G∗
m,m↔,U (σ))] as a corollary.
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Corollary 3.34. Let γn,σ ≥ 1
2ψ↓, m ≤ m↑, m̃ ∈ Z≥0 and σ̃ ∈ [q]n. For some Lg ∈ R>0 we have

|ϕ∗(m,σ) − ϕ∗(m̃, σ̃)| ≤ L

(
∥γn,σ − γn,σ̃∥1 +

∣∣∣∣kmn − km̃

n

∣∣∣∣) .
Proof. Let γ = γn,σ, γ̃ = γnσ̃ and assume without loss of generality that m ≤ m̃. Using the coupling
lemma 3.6e), fix a coupling µ of µT|Γ,γ and µT|Γγ̃ and let τ ∼ µ⊗m̃. With Observation 3.15 we have

G∗
m,m↔,U (σ) ∼ G⋆

m,m↔,U (σ, τ1,[m]), G∗
m̃,m↔,U (σ) ∼ G⋆

m̃,m↔,U (σ̃, τ2).

With the tower property of the expectation, Jensen’s inequality and L⋆ from Lemma 3.32 we have

|ϕ∗(m,σ) − ϕ∗(m̃, σ̃)| ≤ L⋆

n
E [∥nγ − nγ̃∥1 + ∥mα− m̃α̃∥1]

with α = αm,τ1,[m] and α̃ = αm,τ2 . The triangle inequality gives

∥mα− m̃α̃∥1 ≤
∑
τ ′

 ∑
a∈[m]

∣∣1{τ1,a = τ ′} − 1{τ2,a = τ ′}
∣∣+ m̃∑

a=m+1
1{τ2,a = τ ′}


and hence E[∥mα − m̃α̃∥1] ≤ 2mP(τ1,1 ̸= τ2,1) + m̃ − m = 2m∥µT|Γ,γ − µT|Γ,γ̃∥tv + m̃ − m, so with
L′ from Observation 3.9e) we have

|ϕ∗(m,σ) − ϕ∗(m̃, σ̃)| ≤ 2L⋆∥γ − γ̃∥tv + 2L′L⋆

k

km

n
∥γ − γ̃∥1 + L⋆

k

(
km̃

n
− km

n

)
,

so the assertion holds with L = 2L⋆

k (k + 2L′d↑).

Observation 3.21 and Lemma 3.34 yield Proposition 3.2c) for the planted model.
3.2.3.4 Teacher-Student Model Asymptotics. Throughout this section we assume that m↔ ≡ 0 and
U = ∅ for convenience. We discuss the behavior of the expected free entropies under random factor
counts and random ground truths. For this purpose let Γ+ = (⌈nγ∗(τ)⌉)τ , Γ− = (⌊nγ∗(τ)⌋)τ , further
let Γ ∈ Zq≥0 be such that Γ− ≤ Γ ≤ Γ+ and ∥Γ∥1 = n, so for γ◦ = 1

nΓ we have γ◦ ∈ P([q]) and
∥γ◦ − γ∗∥∞ ≤ 1/n. Let σ◦ ∈ [q]n be the non-decreasing assignment with γn,σ◦ = γ◦. Finally, let
m◦ = ⌊d̄n/k⌋ and recall m∗, εm, δm from the introduction to Section 3.2.

Corollary 3.35. Let m ≤ m↑, m↔ ≡ 0, U = ∅ and ϕ∗
m(σ) = E[ϕg(G∗(σ))].

a) For some cg ∈ R>0 we have |E[ϕ∗
m(σ∗)] − ϕ∗

m(σ◦)| ≤ c/
√
n, also for σ∗ replaced by σ̂.

b) We have E[ϕ∗
m(σ∗)] = ϕ∗

m◦(σ◦) + O(εm + δm + n−1/2) and the same holds for σ∗ replaced by σ̂m.
Further, this statement also holds for m replaced by m∗.

Proof. For n ≥ 2ψ↑ we have γ◦ ≥ ψ↓/2. Hence, with Jensen’s inequality, L from Corollary 3.34 and
c∗ from Observation 3.23c) we have

|E[ϕ∗
m(σ∗)] − ϕ∗

m(σ◦)| ≤ LE[∥γ∗ − γ◦∥tv] ≤ c′/
√
n

with c′ = Lc∗, and the same holds for σ∗ replaced by σ̂ and c′ = Lĉ with ĉ from Corollary 3.25e), so
Part 3.35a) holds with c = Lmax(c∗, ĉ) = Lĉ for n ≥ 2ψ↑. For n ≤ 2ψ↑ we take c′ from Observation
3.30 to obtain |E[ϕ∗

m(σ∗)] − ϕ∗
m(σ◦)| ≤ 2c′m/n ≤ 4c′d↑/k ≤ c/

√
n with c =

√
2ψ↑4c′d↑/k.
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For δm, εm sufficiently large and using Corollary 3.12 we may consider m to be a special case of
m∗. With c from Observation 3.30 notice that

E = |E[ϕ∗
m∗(σ̂m∗)] − ϕ∗

m◦(σ◦)| ≤ E
[
cm∗

n

]
+ cm◦

n
≤ c

k
εm + 2cd↑

k
+ cd↑

k

is uniformly bounded for all n. For n ≥ 2ψ↑ recall that γ◦ ≥ ψ↓/2 and m◦ ≤ m↑. Using Jensen’s
inequality, L as above, ĉ from Corollary 3.25e), d◦ = km◦/n and the triangle inequality we obtain
E ≤ LE1 + LE2 with

E1 = E[∥γ̂m∗ − γ◦∥tv] ≤ E[∥γ̂m∗ − γ∗∥tv] + q

2n
≤ E[1{|d∗ − d̄| ≤ δm}∥γ̂m∗ − γ∗∥tv] + εm + q

2n ≤ ĉ√
n

+ εm + q

2n,

E2 = E[|d∗ − d◦|] ≤ E[|d∗ − d̄|] + k

n

≤ δm + E[1{|d∗ − d̄| > δm}d∗] + d̄P(|d∗ − d̄| > δm) + k

n
≤ δm + εm + d↑εm + k

n
.

The result for σ∗ follows analogously with ĉ replaced by c∗ from Observation 3.23c).

3.2.3.5 Concentration. Throughout this section we assume that m↔ ≡ 0 and U = ∅ for convenience.
First, we establish concentration for the models over iid factors.

Lemma 3.36. Let m↔ ≡ 0, U = ∅ and m ≤ m↑. There exists cg ∈ R2
>0 such that

P (|ϕg(G) − E[ϕg(G)]| ≥ r) ≤ c2e
−c1r2n

for r ∈ R≥0 and the same holds for G replaced by G⋆(σ, τ) and G∗(σ).

Proof. Recall the proof of Lemma 3.31. For m̃ = m in Section 3.2.3.1 we have

dg(G, G̃) = 2m− 2|A=| = 2|{a ∈ [m] : (va, ψa) ̸= (ṽa, ψ̃a)}|.

So, for |A=| = m − 1 and c′ from Observation 3.30 we have |ϕg(G) − ϕg(G̃)| ≤ 2c′

n . Since ϕg(G) =
ϕg([w]Γ) is a function of m iid pairs McDiarmid’s inequality yields

P (|ϕg(G) − E[ϕg(G)]| ≥ r) ≤ 2 exp

− 2r2

m
(

2c′

n

)2

 ≤ c2e
−c1r2n

with c2 = 2 and c1 = k
4c′2d↑

. Using Observation 3.13 and Observation 3.15, the proofs for G∗(σ) and
G⋆(σ, τ) are completely analogous, with the same constants.

Remark 3.37. This proof extends to any fixed U (and σ̌) since this determines the pinning weights
due to fixed σ, and to not too large ∥m↔∥1 analogously to the standard factors.

Next, we establish concentration for random ground truths.
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Lemma 3.38. Let m↔ ≡ 0, U = ∅ and m ≤ m↑. There exists cg ∈ R2
>0 such that

P (|ϕg(G∗(σ∗)) − E[ϕg(G∗(σ∗))]| ≥ r) ≤ c2e
−c1r2n

for r ∈ R≥0 and the same holds for σ∗ replaced by σ̂.

Proof. Let ϕ∗(σ) = E[ϕg(G∗(σ))] and ϕ̄∗ = E[ϕ∗(σ∗)]. With c◦ from Corollary 3.35 let ρ = 3c◦, and
with L from Corollary 3.34 let n◦ = max(2ψ↑, (3qL/ρ)2). In the following we consider the case n ≥ n◦
and r ≥ ρ/

√
n, then the case n ≤ n◦, and finally the case r ≤ ρ/

√
n.

For n ≥ n◦ and r ≥ ρ/
√
n the following holds. Using ∥γ◦ −γ∗∥∞ ≤ 1/n ≤ 1/n◦ we have γ◦ ≥ ψ↓/2

and hence Corollary 3.34 applies and yields |ϕ∗(σ∗) − ϕ∗(σ◦)| ≤ L∥γ∗ − γ◦∥tv. Notice that γ◦ is also
sufficiently close to γ∗ relative to r, to be precise we have ∥γ◦ − γ∗∥tv ≤ q

2n ≤ qρ
6qL

√
n

≤ r
6L . The

same holds for the expected free entropy, i.e. |ϕ∗(σ◦) − ϕ̄∗| ≤ c◦
√
n

= ρ
3
√
n

≤ 1
3r. So, using the triangle

inequalities suggested by the above yields

|ϕg(G∗(σ∗)) − ϕ̄∗| ≤ |ϕg(G∗(σ∗)) − ϕ∗(σ∗)| + L

(
∥γ∗ − γ∗∥tv + r

6L

)
+ 1

3r.

On |ϕg(G∗(σ∗)) − ϕ̄∗| ≥ r we have ∥γ∗ − γ∗∥tv ≥ r/(6L) or |ϕg(G∗(σ∗)) − ϕ∗(σ∗)| ≥ r/3, so with c∗
Γ

from Observation 3.23b) and cm from Lemma 3.36 we have

P = P (|ϕg(G∗(σ∗)) − E[ϕg(G∗(σ∗))]| ≥ r)

≤ cΓ,2 exp
(

− cΓ,1
36L2 r

2n

)
+ cm,2 exp

(
−cm,1

9 r2n

)
≤ c′

2e
−c1r2n

with c′
2 = cΓ,2 + cm,2 and c1 = min( cΓ,1

36L2 ,
cm,1

9 ). For n ≤ n◦ with c↑ from Observation 3.30 we have
|ϕg(G∗(σ∗)) − ϕ̄∗| ≤ c↑m↑/n = r↑ with r↑ = 2c↑d↑/k. For r ≤ r↑ we have

P ≤ 1 = c′′
2 exp

(
−c1r

2
↑n◦

)
≤ c′′

2e
−c1r2n

with c′′
2 = exp(c1r

2
↑n◦), but for r > r↑ we have P = 0 ≤ c′′

2e
−c1r2n. For r ≤ ρ/

√
n we have

P ≤ 1 = ec1r2ne−c1r2n ≤ c′′′
2 e

−c1r2n

with c′′′
2 = ec1ρ2 . Choosing c2 = max(c′

2, c
′′
2, c

′′′
2 ) completes the proof, since c∗

Γ replaced by ĉΓ from
Corollary 3.25d) yields the analogous result for σ̂.

Observation 3.21, Lemma 3.36 and Lemma 3.38 yield Proposition 3.2b).

3.3 The Planted Model Quenched Free Entropy

We turn to the proof of Theorem 2.2. In Section 3.3.1 we prove Lemma 3.3, apply it to G∗(σ̂), G∗(σ∗)
and show that the pinning does not alter the quenched free entropy too much.

In Section 3.3.2 we use the interpolation method to prove Proposition 3.4. Then, we can finally
discard the interpolators. In Section 3.3.3 we use the Aizenman-Sims-Starr scheme for the simplified
model. Finally, in Section 3.3.3.18 we complete the proof.
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3.3.1 Pinned Measures and Their Marginal Distributions. This section is composed of four
parts. First, we prove Lemma 3.3, based on [33], [92], in Sections 3.3.1.1 to 3.3.1.4. Then, we discuss
the pinning of Gibbs measures in Section 3.3.1.5 and Section 3.3.1.6. In the third part, Section
3.3.1.7, we discuss the marginal distributions of (pinned) measures and prove another proposition for
general (pinned) measures. In the last part, Sections 3.3.1.8 and 3.3.1.9, we apply this proposition to
decorated graphs and discuss projections onto P2

∗ ([q]).
In Section 3.3.1.1 we discuss the underlying model, the erasure channel, and the conditional entropy

of the assignment. In Section 3.3.1.2 we take the derivative of the conditional entropy with respect to
the pinning probability, yielding the crucial connection to the mutual information. In Section 3.3.1.3
we introduce the total correlation, and then establish Lemma 3.3 in Section 3.3.1.4.

In Section 3.3.1.5 we apply Lemma 3.3 to Gibbs measures µg of decorated graphs. In Section 3.3.1.6
we show that pinning does not alter the quenched free entropy too much for Θ↓ = Θ↓(n) = o(n).

Next, we introduce empirical marginal distributions in Section 3.3.1.7, further conditional and
reweighted versions of the marginal distribution, and show that these asymptotically coincide if the
empirical color frequencies concentrate and the measure is ε-symmetric, e.g. most pinned measures.

In Section 3.3.1.8 we show that the empirical color frequencies of the Gibbs spins concentrate and
hence in particular the proposition for general measures applies to the Gibbs measure induced by the
graph. Finally, in Section 3.3.1.9 we introduce a projection of P2([q]) onto P2

∗ ([q]), and then show
that the distance of the Gibbs marginal distribution to its projection vanishes.
3.3.1.1 The Erasure Channel, Conditional Entropy and Random Conditioning. For q ∈ Z≥2 and
(x,y, z) ∈ [q]3, the cross entropy, the entropy and the relative entropy are

H(x∥y) =
∑
x

−P(x = x) ln(P(y = x)), H(x) = H(x∥x), DKL(x∥y) = H(x∥y) −H(x)

respectively. Notice that the definition of the relative entropy is consistent with the general case from
Section 2.1.2.5, and in particular both the cross entropy and the relative entropy are finite if and only
if x is absolutely continuous with respect to y. The conditional cross entropy, the conditional entropy
and the conditional relative entropy are

H(x∥y|z) = E[E[H(x∥y)|z]], H(x|z) = H(x∥x|z), DKL(x∥y|z) = E[E[DKL(x∥y)|z]].

The conditional mutual information is I(x,y|z) = DKL(x,y∥x ⊗ y|z). For now, we focus on the
following conditional entropy.

Let n ∈ Z>0, µ ∈ P([q]n) and xµ ∼ µ a random vector of values. Further, let p ∈ [0, 1]n and let
r ∈ {0, 1}n be the revealment given by r ∼

⊗
i ri and Bernoulli variables ri with success probability

pi. Using the joint distribution (x, r) ∼ x⊗r let χ = (rixi)i ∈ [q]n◦ with [q]◦ = [q]∪{0} be the partial
observation. This approach reflects [92].

Fix values x ∈ [q]n, revealments r ∈ {0, 1}n and let χ = (rixi)i be the partial observation, and
R = r−1(1) = χ−1([q]) the revealed coordinates. Further, fix known coordinates K ⊆ [n], tested
coordinates T ⊆ [n] and selected coordinates S ⊆ [n]. Now, let

ηn,µ,p(S, xK, χT ) = H(xS |xK = xK,χT = χT ),
ηn,µ,p(S,K, T ) = H(xS |xK,χT ) = E [η(S,xK,χT )]

be the (pointwise) entropy and the conditional entropy respectively. As already indicated by the
definition of v in Section 3.1.2.3 we consider selections with repetition. Hence, we establish that the
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definition above is indeed sufficient for our purposes and further derive a few useful basic properties.

Observation 3.39. Notice that the following holds.
a) We have η(S, x∅, χT ) = H(xS |χT = χT ), η(S, xK, χ∅) = H(xS |xK = xK) and η(∅, ·, ·) = 0.
b) Let s, k, t ∈ Z≥0, σ ∈ [n]s, κ ∈ [n]k and τ ∈ [n]t such that σ([s]) = S, κ([k]) = K and τ([t]) = T .

Then we have H(xσ|xκ = xκ,χτ = χτ ) = η(S, xK, χT ).
c) We have η(S, xK, χT ) = η(S \ K, xK, χT \K) = η(S \ K∗, xK∗ , χ∅) with K∗ = K ∪ (T ∩ R).
d) For S = S1 ∪̇ S2 we have

η(S,K, T ) = η(S1 \ K,K, T \ K) + η(S2 \ K,K ∪ S1, T \ K).

Proof. Recall well-known properties of the conditional entropy, in particular that H(a|b) = 0 if and
only if a is determined by b, and the chain rule. Further, notice that the conditional entropy is
exclusively a function of the laws, and that

P(a = a,a = a, b = b, c1 = c1|b = b, b = b, c2 = c2) = P(a = a|b = b)

whenever c1 = c1, c2 = c2 almost surely. This shows Part 3.39a) and Part 3.39b). Notice that

η(S, xK, χT ) = H(xS |xK = xK,χT = χT )
= H(xS |xK = xK,xT ∩R = xT ∩R, rT = rT ) = H(xS\K∗ |xK∗ = xK∗)
= η(S \ K∗, xK∗ , χ∅)

using (x, r) = x ⊗ r, so Part 3.39c) holds since this also holds for S◦ = S \ K, T ◦ = T \ K, and
K∗ = K ∪ (T ◦ ∩ R) and S \ K∗ = S◦ \ K∗. With S◦

1 = S1 \ K, S◦
2 = S2 \ K, S◦ = S◦

1 ∪̇ S◦
2 , Part 3.39c)

and the chain rule for the conditional entropy we have

η(S,K, T ) = η(S◦,K, T ◦) = H(xS◦
1
|xK,χT ◦) +H(xS◦

2
|xK∪S◦

1
,χT ◦),

which completes the proof of Part 3.39d).

Based on Observation 3.39 we assume that S ∩ K = ∅ and T ∩ K = ∅. Notice that Observation
3.39c) using R = T ∩ r−1(1) yields the minimal form

η(S,K, T ) = E [η (S \ R,xK∪R,χ∅)] = E
[
E
[
H(xS\R|xK∪R)

∣∣∣R]]
.

This representation reflects the approach in [33].
3.3.1.2 The Conditional Entropy Derivative. Let S ∩K = ∅ and T ∩K = ∅ in this section. Let ∂

∂xi
f(x)

denote the i-th partial derivative of f at x.

Lemma 3.40. For i ∈ [n] we have ∂
∂pi
ηp(S,K, T ) = −1{i ∈ T }I(xS ,xi|xK,χT \{i}).

Proof. With Observation 3.39 and R = T ∩ r−1(1) we have

η(S,K, T ) = E
[
E
[
H(xS\R|xK∪R)

∣∣∣R]]
=

∑
r∈{0,1}T

∏
i∈T

P(ri = ri)H(xS\r−1(1)|xK∪r−1(1)).
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This shows that ∂
∂pi
η(S,K, T ) = 0 for i ∈ [n] \ T . For i ∈ T let T ◦ = T \ {i}. Then we have

∂

∂pi
η(S,K, T ) =

∑
r∈{0,1}T

P(rT ◦ = rT ◦)H(xS\r−1(1)|xK∪r−1(1))(ri − (1 − ri))

= η(S \ {i},K ∪ {i}, T ◦) − η(S,K, T ◦)
= η(S,K ∪ {i}, T ◦) − η(S,K, T ◦) = −I(xS ,xi|xK,χT ◦)

since I(a, b|c) = H(b|c) −H(b|a, c).

3.3.1.3 Mutual Information, Relative Entropy and the Product of the Marginals. The last sections
were dedicated to the conditional entropy. Now, we turn to the following relative entropy. The
(generalized conditional) mutual information (total correlation) for (a, b) = ((ah)h∈H, b) is

I(a|b) = DKL

a
∥∥∥∥∥∥
⊗
h∈H

ah

∣∣∣∣∣∣b
 = H

a
∥∥∥∥∥∥
⊗
h∈H

ah

∣∣∣∣∣∣b
−H(a|b) =

∑
h∈H

H(ah|b) −H(a|b).

For a = (a1,a2), this notion of I(a|b) coincides with I(a1,a2|b) from Section 3.3.1.1.

Observation 3.41. Let (a, b) ∈ Am × Bn with m,n ∈ Z≥0 and A,B ≠ ∅. Further, let k, ℓ ∈ Z≥0,
v ∈ [m]k, w ∈ [n]ℓ, V = v([k]) and W = w([ℓ]).
a) For ℓ′ ∈ Z≥0, w′ ∈ [m]ℓ′ with w′([ℓ′]) ⊆ W we have

I(av, bw′ |bw) = I(av|bW) =
∑
i∈[m]

|v−1(i)|H(ai|bW) −H(aV |bW).

b) For j ∈ Z≥0 and
⋃̇
i∈[j]Ki = [k] with v′(i) = vKi we have

I(av|bw) =
∑
i∈[j]

I(av′(i)|bW) + I((av′(i))i∈[j]|bW).

Proof. Part 3.41a) is immediate from the properties of the conditional entropy since

I(av, bw′ |bw) =
∑
h∈[k]

H(av(h)|bw) +
∑
h∈[ℓ′]

H(bw′(h)|bw) −H(av, bw′ |bw)

=
∑
i∈[m]

|v−1(i)|H(ai|bW) −H(aV |bW).

The second part is also immediate from the conditional entropy representation since

I(av|bw) =
∑
h∈[k]

H(av(h)|bW) −H(av|bW)

=
∑
i∈[j]

I(av′(i)|bW) +
∑
i∈[j]

H(av′(i)|bW) −H(aV |bW)

=
∑
i∈[j]

I(av′(i)|bW) + I((av′(i))i∈[j]|bW).
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As for the conditional entropy, Observation 3.41a) yields a normalized form, and Observation
3.41b) is a partitioning property of the mutual information.

Fix known coordinates K ⊆ [n], tested coordinates T ⊆ [n], further s ∈ Z≥0, a selection σ ∈ [n]s
and let S = σ([s]). In the following we discuss the mutual information given by

ιn,µ,p(σ, xK, χT ) = I(xσ|xK = xK,χT = χT ),
ιn,µ,p(σ,K, T ) = I(xσ|xK,χT ) = E[ι(σ,xK,χT )].

Observation 3.41a) ensures that it is sufficient to consider sets K, T . Next, we establish basic properties
and build the connection to the conditional entropy.
Observation 3.42. Let D = σ−1(S \ K), σ◦ = σD and T ◦ = T \ K.
a) Let K∗ = K ∪ (T ∩ R), D∗ = σ−1(S \ K∗) and σ∗ = σD∗. Then we have

ι(σ, xK, χT ) = ι(σ◦, xK, χT ◦) = ι(σ◦, xK∗ , χ∅) = ι(σ∗, xK∗ , χ∅).

Further, we have ι(σ, xK, χT ) = ∑
h η({σ(h)}, xK, χT ) − η(S, xK, χT ).

b) We have ι(σ,K, T ) = ι(σ◦,K, T ◦) and ι(σ,K, T ) = ∑
h η({σ(h)},K, T ) − η(S,K, T ).

Proof. Observation 3.41a) implies ι(σ, xK, χT ) = ∑
h η({σ(h)}, xK, χT ) − η(S, xK, χT ), and further

Observation 3.39c) yields

ι(σ, xK, χT ) =
∑
i∈S\K

|σ◦−1(i)|η({i}, xK, χT ◦) − η(S \ K, xK, χT ◦)

=
∑

i∈S\K∗

|σ∗−1(i)|η({i}, xK∗ , χ∅) − η(S \ K∗, xK∗ , χ∅),

which establishes the remainder of Part 3.42a), and Part 3.42b) follows by taking expectations.

Based on Observation 3.42 we assume that S ∩ K = ∅ and T ∩ K = ∅. Notice that Observation
3.42a) using R = T ∩ r−1(1) yields the minimal form

ι(σ,K, T ) = E [ι (σ,xK∪R,χ∅)] = E [ι (σ∗,xK∪R,χ∅)] = E [E [I(xσ∗ |xK∪R)|R]] ,

where σ∗ = σD with D = σ−1(S \ R). This representation reflects the approach in [33].
Remark 3.43. In the proof of Lemma 3.40 we have already seen a recursive structure. Further,
Observation 3.42b) yields a representation of ι as a linear combination of η-terms, while Observation
3.41b) applied to Lemma 3.40 yields a representation of the derivative as a linear combination of
ι-terms (and hence η-terms). This is one way to obtain all higher derivatives of η and ι.

3.3.1.4 The Pinning Lemma. In this section we prove Lemma 3.3. Recall the pinning operation [µ]↓U ,σ̌
from Section 3.1.2.3 and let µn,µ,p = [µ]↓r−1(1),x.

Lemma 3.44. We have ι(σ, ∅, [n]) = E[E[I(xµ,σ)|µ]].

Proof. Notice that ι(σ, xK, χ∅) = I(xµ,σ|xK = xK) = I(x[µ]↓K,x,σ
), since by definition [µ]↓K,x is the law of

xµ|xµ,K = xK. Now, the assertion follows from Observation 3.42a) since ι(σ, ∅, [n]) = E[ι(σ,xR,χ∅)] =
E[E[I(xµ,σ)|µ]].
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Fix ℓ ∈ Z>0 and p ∈ [0, 1]. Let p/ = (p)i∈[n], vn,ℓ ∼ u([n]ℓ), η∗
n,µ,ℓ(p) = E[ηp/

(v([ℓ]), ∅, [n])],
ι∗n,µ,ℓ(p) = E[ιp/

(v, ∅, [n])] and δ∗
n,µ,ℓ(p) = ι∗n,µ,ℓ+1(p) − ι∗n,µ,ℓ(p).

Lemma 3.45. Let ℓ ∈ Z>0 and v = vn,ℓ+1 ∈ [n]ℓ+1.
a) We have δ∗(p) = I(xv[ℓ] ,xµ,vℓ+1 |χp/

,v).
b) We have ∂

∂pη
∗(p) = − n

1−pδ
∗(p).

Proof. Notice that v[ℓ] ∼ v◦ with v◦ = vn,ℓ ∈ [n]ℓ, let χ = χp/
and a = (χp/

,v). We have

δ∗(p) = I(xv|a) − I(xv[ℓ] |a) = I(xv|a) − I(xv[ℓ] |a) − I(xvℓ+1 |a) = I(xv[ℓ] ,xµ,vℓ+1 |a),

with Observation 3.41b), since I(b|a) = DKL(b∥b|a) = 0 for b ∈ B1. For Part 3.45b) we have

∂

∂p
η∗(p) =

∑
i∈[n]

E
[
∂

∂pi
ηp/

(v([ℓ]), ∅, [n])
]

= −
∑
i∈[n]

I
(
xv([ℓ]),xi|χ[n]\{i},v

)
= −nI

(
xv([ℓ]),xvℓ+1 |χ[n]\{vℓ+1},v

)
= −nI

(
xv[ℓ] ,xvℓ+1 |χ[n]\{vℓ+1},v

)
,

using Lemma 3.40 and the chain rule. For given v and χ with i = vℓ+1 we have

ιv(χ) = I(xv[ℓ] ,xi|χ = χ) = (1 − ri)I(xv[ℓ] ,xi|xR\{i} = xR\{i})
= (1 − ri)I(xv[ℓ] ,xi|χ[n]\{i} = χ[n]\{i}).

Due to independence this gives I(xv[ℓ] ,xi|χ) = E[ιv(χ)] = (1 − p)I(xv[ℓ] ,xi|χ[n]\{i}). This completes
the proof by taking the expectation over v and using the first part.

An immediate consequence of Lemma 3.45 is a uniform bound for the integral over ι∗.

Corollary 3.46. For ℓ ∈ Z>0 we have
∫ 1

0 ι
∗(p)dp ≤

(ℓ
2
)

ln(q)/n.

Proof. With ι∗ ≡ 0 for ℓ = 1, a telescoping sum and Lemma 3.45b) we have

∫ 1

0
ι∗(p)dp =

∫ 1

0

ℓ−1∑
ℓ′=1

δ∗(p)dp ≤
∫ 1

0

ℓ−1∑
ℓ′=1

δ∗(p)
1 − p

dp = 1
n

ℓ−1∑
ℓ′=1

(η∗
ℓ′(0) − η∗

ℓ′(1))

= 1
n

ℓ−1∑
ℓ′=1

H(xvℓ′ |vℓ′) ≤ 1
n

ℓ−1∑
ℓ′=1

ln(qℓ′) = ln(q)
n

(
ℓ

2

)
.

With µ∗ = [µ]↓U ,σ as defined in Lemma 3.3 we have µ∗ ∼ µp/
with p/ = (p)i∈[n] and p ∼ u([0, P ]),

P = Θ↓/n, so with Lemma 3.44, Corollary 3.46 and (µ∗,vℓ) ∼ µ∗ ⊗ vℓ we get

E[E[I(xµ∗,vℓ
)|µ∗,vℓ]] =

∫ P

0

n

Θ↓E[E[I(xµ,vℓ
)|µp/

,vℓ]]dp = n

Θ↓

∫ P

0
E[ιp/

(v, ∅, [n])]dp

= n

Θ↓

∫ P

0
ι∗(p)dp ≤ n

Θ↓

∫ 1

0
ι∗(p)dp ≤

(ℓ
2
)

ln(q)
Θ↓ .
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3.3.1.5 Asymptotic Independence of Gibbs Spins. We start with a few basic results.

Observation 3.47. Let Θ↓ ≤ n and θ ≤ Θ↓. We have |ǔ−1
t (1)| ∼ Bin(n, θ/n), E[θ] = Θ↓/2,

E[ǔt◦] = Θ↓/(2n) and E[|U |] = Θ↓/2.

Proof. The proof is left as an exercise to the reader.

The following result is one of the main reasons to work with the Nishimori ground truth. Recall
the notions from Section 3.1.2.3, in particular ι◦, ι and v for ℓ ∈ Z≥0. Notice that ι◦ ≡ 0 for ℓ ≤ 1.

Proposition 3.48. Let G∗(σ) = G∗
U (σ), µ̂ = µg,G∗(σ̂), µ∗ = µg,G∗(σ∗) and ℓ ∈ Z≥0.

a) We have E[ι(µ̂)],E[ι(µ̂m,m↔)] ≤
(ℓ

2
)

ln(q)/Θ↓.
b) There exists Cg ∈ (0, 1) × R>0 such that for c ∈ (0, C1] and m ≤ m↑ we have

E[ι(µ∗)],E[ι(µ∗
m,m↔)] ≤ C2(ℓ− 1)

(
ℓ

Θ↓

)c
.

Proof. Notice that for any G we have µg,[G]↓U,σ
= [µg,G]↓U ,σ and that U as defined in Section 3.2.1.1

coincides with U from Lemma 3.3, so with (U ,σg,G) ∼ U ⊗σg,G, G(G) = [G]↓U ,σg,G
we have µg,G(G) =

[µg,G]↓U ,σg,G
and hence Lemma 3.3 yields E[ι(µg,G(G))] ≤

(ℓ
2
)

ln(q)/Θ↓. Since this holds for any G, the
expectation for the unpinned graph G◦(σ) = [w∗(σ)]Γ↔

m↔,ψ∗↔ is also bounded by E[ι(µg,G(G◦(σ)))] ≤(ℓ
2
)

ln(q)/Θ↓. Notice that by Observation 3.13 the graphs G∗(σ) and G(G◦(σ)) differ exactly in the
choice of the pinning assignment, i.e. σ for the former and σg,G◦(σ) for the latter. Since this bound
holds for any σ, it holds for σ̂. But with Observation 3.22d) (for U = ∅) we have (σg,G◦(σ̂),G

◦(σ̂)) ∼
(σ̂,G◦(σ̂)) and using Observation 3.13 further

G(G◦(σ̂)) = [G◦(σ̂)]↓U ,σg,G◦(σ̂)
∼ [G◦(σ̂)]↓U ,σ̂ ∼ G∗(σ̂).

Thus, we have E[ι(µ̂)] ≤
(ℓ

2
)

ln(q)/Θ↓, and E[ι(µ̂m,m↔)] ≤
(ℓ

2
)

ln(q)/Θ↓ by taking expectations.
Now, let r ∈ R>0, cm ∈ R2

>0 from Corollary 3.12, c∗ ∈ R2
>0 from Observation 3.23b) and ĉ ∈ R>0

from Corollary 3.25b). Then for ℓ > 0 we have

ι◦(µ, v) =
∑
h

H(µ|v(h)) −H(µ|v) =
∑
h>1

H(µ|v(h)) −H(µ|v|µ|v(1)) ≤ (ℓ− 1) ln(q),

so we have ι(µ) ≤ (ℓ − 1) ln(q). Hence, for E1 = E[ι(µ∗)], E2 = E[ι(µ∗
m,m↔)] and ℓ ≥ Θ↓ we have

E1, E2 ≤ c2(ℓ− 1)(ℓ/Θ↓)c1 for c ∈ R>0 × R≥ln(q). Otherwise, we have

E1 ≤ eĉr
2
E
[
1{∥γ̂ − γ∗∥tv < r/

√
n}ι(µ̂)

]
+ δ,

E2 ≤ eĉr
2
E
[
1{∥γ̂ − γ∗∥tv < r/

√
n,m ≤ m↑}ι(µ̂m,m↔)

]
+ δ,

with δ = (ℓ − 1) ln(q)(c∗
2e

−c∗
1r

2 + cm,2e
−c̃n) and c̃ = cm,1d

2
↑/(1 + d↑) obtained by choosing r = d↑ in

Corollary 3.12 to enforce d̄ ≤ t↔d̄+ d↑ ≤ 2d↑. With Part 3.48a) and i ∈ [2] we have

Ei ≤ eĉr
2 ln(q)

Θ↓

(
ℓ

2

)
+ δ = (ℓ− 1) ln(q)

(
ℓeĉr

2

2Θ↓ + c∗
2e

−c∗
1r

2 + cm,2e
−c̃n

)
.
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In order to compensate the last contribution notice that ℓ/Θ↓ ≥ 1/n, eĉr2 ≥ 1 and hence

Ei ≤ (ℓ− 1) ln(q)
(
c′ ℓe

ĉr2

Θ↓ + c∗
2e

−c∗
1r

2
)
, c′ = 1

2 + cm,2 max
n>0

ne−c̃n.

So, with C2 = 2 ln(q) max(c′, c∗
2), r =

√
1

ĉ+c∗
1

ln(Θ↓

ℓ ) > 0, C1 = c∗
1

ĉ+c∗
1

and for ℓ > 0, c ∈ (0, C1] we have

Ei ≤ c2(ℓ− 1)(ℓ/Θ↓)c, and Part 3.48b) holds since the assertion is trivial for ℓ = 0.

Remark 3.49. The relative entropy in Section 3.1.2.3 can be extended to general f -divergences, in
particular to the total variation. Thus, let ν◦(µ, v) = ∥µ|v −

⊗
h µ|v(h)∥tv and νℓ(µ) = E[ν◦(µ,v)]. For

ε ∈ R≥0 let Es,n,ε,ℓ = {µ ∈ P([q]n) : ν(µ) ≤ ε} be the (ε, ℓ)-symmetric measures. Pinsker’s inequality
3.6f) yields ν◦(µ, v) ≤

√
ι◦(µ, v)/2 and hence ν(µ) ≤

√
ι(µ)/2 using Jensen’s inequality.

3.3.1.6 Pinning Impact on the Quenched Free Entropy. We bound the distance of the pinned and the
unpinned quenched free entropy.

Proposition 3.50. There exists cg ∈ R>0 such that

0 ≤ E[ϕg(G∗
m,m↔,∅(σ∗))] − E[ϕg(G∗

m,m↔,U (σ∗))] ≤ cΘ↓

n

and the same result holds for σ∗ replaced by σ̂m.

Proof. LetG∗ = G∗
m,m↔,∅(σ∗) andG↓ = G∗

m,m↔,U (σ∗). Recall thatG↓ ∼ [G∗]↓U ,σ∗ from Observation
3.13, so given (σ∗,G∗) we can obtain G↓ by choosing U , which means that G↓ and G∗ then exactly
differ in the pins. Hence, using this coupling we have ϕg(G↓) ≤ ϕg(G∗) and using the notions from
Section 3.2.3.1 with G∗ = (v∗,ψ∗) further

dg(G∗,G↓) = 2

|{a ∈ [m] : v∗
a([k]) ∩ U ̸= ∅}| +

∑
i∈U

m↔
i

 .
Bounding dg, using the sum over the (factor) degrees of i ∈ U and c′ from Corollary 3.18a), yields

E
[
dg(G∗,G↓)

]
≤ 2E

[(
c′km

n
+ (1 − t↔)d̄

)
|U |
]

=
(
t↔c′ + 1 − t↔

)
d̄Θ↓,

using Observation 3.47. With c′′ from Observation 3.30 we have |E[ϕg(G∗)] − E[ϕg(G↓)]| ≤ cΘ↓

n for
c = c′′(c′ + 1)d↑, and the result for σ̂ follows analogously.

3.3.1.7 Reweighted Marginal Distributions. Recall the set P2([q]) from Section 2.1.2.2. In the following
we use Observation 3.6 implicitly when working with random measures, if required. The empirical
marginal distribution πµ ∈ P2([q]) of µ ∈ P([q]n) is given by

π(E) = 1
n

|{i ∈ [n] : µ|i ∈ E}|
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for an event E ⊆ P([q]). Let σµ ∼ µ, γπ ∼ π and γπ = E[γ]. For τ ∈ [q] we have

γ(τ) =
∑
i∈[n]

1
n
µ|i(τ) = µ|∗(τ) = E [γn,σ(τ)] . (7)

For σ ∈ [q]n and τ ∈ σ([n]) let π̌µ,σ,τ ∈ P2([q]) be given by

π̌(E) = 1
|σ−1(τ)| |{i ∈ [n] : σi = τ, µ|i ∈ E}.

For τ ∈ γ−1(R>0) let π̂µ,τ ∈ P2([q]) be given by the (π̂, π)-derivative γ 7→ γ(τ)/γ(τ). Recall the
couplings Γ(π̌, π̂) from Section 3.1.6 and for σ ∈ [q]n, τ ∈ σ([n]) ∩ γ−1(R>0) let

dw(π̌, π̂) = inf
ρ∈Γ(π̌,π̂)

E[∥γρ,1 − γρ,2∥tv], γρ ∼ ρ,

be the Wasserstein distance of π̌ and π̂. Recall Es,ε,ℓ from Remark 3.49.

Proposition 3.51. Let δ, ε, εs ∈ R>0 and µ ∈ P([q]n) be such that γ ≥ ψ↓/2, µ ∈ Es,εs,2 and
P(∥γn,σ − γ∥tv > δ) ≤ ε. Then there exists cg ∈ R>0 such that

E

 ∑
τ∈σ([n])

dw(π̌σ,τ , π̂τ )

 ≤ c(δ + ε+ ε1/(2q+1)
s ).

Proof. If max(δ, ε, εs) ≥ 1, then the assertion holds with c ≥ q since the left hand side is at most q,
so let δ, ε, εs ∈ (0, 1]. Notice that γ−1(R>0) = ⋃

σ∈µ−1(R>0) σ([n]), let σ ∈ µ−1(R>0) and τ ∈ σ([n]).
Let a ∈ Z>0, B∗ = (a−1Z)q−1, Q◦ = [−1/(2a), 1/(2a))q−1 and Qb = b+ Q◦ for b ∈ B∗, then (Qb)b∈B∗

is a partition of Rq−1. This induces a partition (Qb)b∈B of P([q]), where

B = {(b∗, 1 − ∥b∗∥1) : b∗ ∈ B∗} ∩ P([q]),
Qb = {(b∗, 1 − ∥b∗∥1) : b∗ ∈ Q∗

b[q−1]
}, b ∈ B.

Notice that |B| ≤ (a + 1)q−1 = |B∗ ∩ [0, 1]q−1|. For γ ∈ Qb we have γ̃ ∈ Qb̃, where γ̃ = γ[q−1] and
b̃ = b[q−1], hence

∥γ − b∥tv = 1
2∥γ̃ − b̃∥1 + 1

2 |1 − ∥γ̃∥1 − (1 − ∥b̃∥1)| ≤ ∥γ̃ − b̃∥1 ≤ q − 1
2a .

Next, let Ib = {i ∈ [n] : µ|i ∈ Qb} and Ǐσ,τ,b = {i ∈ [n] : σi = τ, µ|i ∈ Qb}. Then we have

π(Qb) = |Ib|
n
, π̌(Qb) = |Ǐσ,τ,b|

|σ−1(τ)| .

The expectation Īτ,b = E[|Ǐσ,τ,b|] is given by

Īτ,b =
∑
i

1{µ|i ∈ Qb}P(σi = τ) =
∑
i

1{µ|i ∈ Qb}µ|i(τ) = nγ(τ)π̂(Qb).
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The variances, using µ ∈ Es,n,εs,2, are given by

V =
∑
b,τ

Var(|Ǐσ,τ,b|) =
∑
b,τ

(
E
[
|Ǐσ,τ,b|2

]
− E

[
|Ǐσ,τ,b|

]2)
=
∑
b,τ

∑
v∈[n]2

1

{
µ|v(1), µ|v(2) ∈ Qb

}(
P (σ|v = (τ, τ)) − P

(
σ|v(1) = τ

)
P
(
σ|v(2) = τ

))
≤

∑
v∈[n]2

∑
τ∈[q]2

∣∣∣P (σ|v = τ) − P
(
σ|v(1) = τ1

)
P
(
σ|v(2) = τ2

)∣∣∣
= 2

∑
v∈[n]2

∥∥∥µ|v − µ|v(1) ⊗ µ|v(2)

∥∥∥
tv

≤ 2n2εs,

where in the extension of the summation region b is determined by µ|v(1), i.e. the unique point b
with µ|v(1) ∈ Qb, while we drop the restriction µ|v(2) ∈ Qb. With the union bound and Chebyshev’s
inequality we have

P

∑
b,τ

∣∣∣|Ǐσ,τ,b| − Īτ,b
∣∣∣ ≥ rn

 ≤
∑
b,τ

P
(∣∣∣|Ǐσ,τ,b| − Īτ,b

∣∣∣ ≥ rn

q|B|

)
≤ V q2|B|2

r2n2 ≤ 2q2|B|2εs
r2

for r = ε
1/(1+2q)
s . Next, we recall that the color frequencies concentrate and let

S =

σ ∈ [q]n : ∥γn,σ − γ∥tv ≤ δ,
∑
b,τ

∣∣∣|Ǐσ,τ,b| − Īτ,b
∣∣∣ < rn

 .
Further, notice that dw(π̌, π̂) ∈ [0, 1] since ∥ · ∥tv ∈ [0, 1], so

E

 ∑
τ∈σ([n])

dw (π̌σ,τ , π̂τ )

 ≤ E

1{σ ∈ S}
∑

τ∈σ([n])
dw (π̌σ,τ , π̂τ )

+ qε+ 2q3|B|2εs
r2 .

For σ ∈ S, τ ∈ σ([n]) and b ∈ B we have

∆σ,τ (b) = |π̌(Qb) − π̂(Qb)| ≤
∣∣∣∣∣ |Ǐ|
|σ−1(τ)| − |Ǐ|

nγ(τ)

∣∣∣∣∣+
∣∣∣∣∣ |Ǐ|
nγ(τ) − Ī

nγ(τ)

∣∣∣∣∣
= 1
γ(τ)

(
|Ǐ|

|σ−1(τ)| |γ(τ) − γn,σ(τ)| + 1
n

∣∣∣|Ǐ| − Ī
∣∣∣) .

With ∑b Ǐb = |σ−1(τ)|, γ ≥ ψ↓/2 and ∥γn,σ − γ∥1 = 2∥γn,σ − γ∥tv ≤ 2δ we have

∑
b,τ

∆σ,τ (b) <
4δ + 2r
ψ↓

.

Now, let γ̌ ∼ π̌ and γ̂ ∼ π̂. For γ ∈ P([q]) let b(γ) ∈ B be the unique index with γ ∈ Qb. Then
we have ∑b ∆σ,τ (b) = 2∥b(γ̌) − b(γ̂)∥tv. With the coupling lemma we obtain a coupling of b(γ̌) and
b(γ̂) that extends to a coupling of γ̌ and γ̂ via (γ̌|b(γ̌) = b̌) ⊗ (γ̂|b(γ̂) = b̂) given (b(γ̌), b(γ̂)) = (b̌, b̂)
(by an abuse of notation in that we use the same notation for the coupling). The triangle inequality
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yields ∥γ̌ − γ̂∥tv ≤ q−1
a + ∥b(γ̌) − b(γ̂)∥tv and hence

P
(

∥γ̌ − γ̂∥tv >
q − 1
a

)
≤ P(b(γ̌) ̸= b(γ̂)) = ∥b(γ̌) − b(γ̂)∥tv = 1

2
∑
b

∆σ,τ (b) <
2δ + r

ψ↓
.

Using that ∥ · ∥tv ≤ 1 this gives

dw(π̌, π̂) ≤ E [∥γ̌ − γ̂∥tv] ≤ q − 1
a

+ 2δ + r

ψ↓
.

Hence, combining the results for σ ∈ S and σ ̸∈ S yields

E

 ∑
τ∈σ([n])

dw (π̌σ,τ , π̂τ )

 ≤ q

(
q − 1
a

+ 2δ + r

ψ↓

)
+ qε+ 2q3(a+ 1)2(q−1)εs

r2 .

Now, let a = ⌊r−1⌋. With r = ε
1/(2q+1)
s ≤ 1 we have a ∈ Z≥1, hence a + 1 ≤ 2a, a ≥ 1

2(a + 1) ≥ 1
2r

and further

E

 ∑
τ∈σ([n])

dw (π̌σ,τ , π̂τ )

 ≤ q

(
2(q − 1) + 1

ψ↓
+ 22q−1q2

)
r + 2q

ψ↓
δ + qε.

3.3.1.8 Reweighted Gibbs Marginal Distribution. Using the notions from Section 3.3.1.7 and for a
decorated factor graph G with Gibbs measure µ = µg,G let πg,G = πµ, γg,G = γµ, π̌g,G,σ,τ = π̌µ,σ,τ
and π̂g,G,τ = π̂µ,τ . First, we focus on the expected Gibbs marginal γg under various versions of the
teacher-student model, and start with G∗(σ̂).

Lemma 3.52. Let m ≤ m↑, γ = γG∗, γ = γn,σg with σg = σg,G∗, G∗ = G∗(σ), σ = σ∗ or σ = σ̂.
a) There exists c ∈ R2

>0 such that P(∥γ − γ∗∥tv ≥ r) ≤ c2e
−c1r2n.

b) There exists c ∈ R2
>0 such that P(∥γ − γ∥tv ≥ r) ≤ c2e

−c1r2n.
c) There exists c ∈ R>0 such that E[∥γ − γ∗∥tv] ≤ c/

√
n.

d) There exists c ∈ R>0 such that E[∥γ − γ∗∥2
tv] ≤ c/n.

Proof. Let D(G) = ∥γg,G − γ∗∥tv and D(G) = ∥γn,σg,G − γ∗∥tv. With Equation (7) and Jensen’s
inequality we have

D(G)x = ∥E[γn,σg,G ] − γ∗∥xtv ≤ E[D(G)x], eyD(G)2 ≤ E
[
eyD(G)2]

for x ∈ R≥1 and y ∈ R≥0, so E[D(G∗))x] ≤ E[D(G∗)x] and E[eyD(G∗)2 ] ≤ E[eyD(G∗)2 ]. With Obser-
vation 3.22d) we have D(G∗(σ̂)) ∼ ∥γ̂ − γ∗∥tv, so Corollary 3.25 applies, and we have D(G∗(σ∗)) =
∥γ − γ∗∥tv with γ from Observation 3.28. So, for some c ∈ R2

>0 we have

P(D(G∗) ≥ r) ≤ c2e
−c1r2n, E[D(G∗)] ≤ c2/

√
n, E[D(G∗)2] ≤ c2/n,

in both cases. Notice that D(G∗) = ∥γ − γ∗∥tv and recall that E[D(G∗)x] ≤ E[D(G∗)x], so Part
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3.52c) follows for x = 1 and Part 3.52d) follows for x = 2. Further, notice that

E
[
exp

(
c1
2 D(G∗)2n

)]
=
∫ ∞

0
P
(

exp
(
c1
2 D(G∗)2n

)
> r

)
dr

= 1 +
∫ ∞

1
P

D(G∗) >
√

2 ln(r)
c1n

dr

≤ 1 + c2

∫ ∞

1
e−2 ln(r)dr = 1 + c2

∫ ∞

1

1
r2 dr = 1 + c2.

So, the bound above for y = c1n/2 and Markov’s inequality yield

P
(
D(G∗) ≥ r

)
= P

(
exp

(
c1
2 D(G∗)2n

)
≥ exp

(
c1
2 r

2n

))
≤ (1 + c2) exp

(
−c1

2 r
2n

)
.

This establishes Part 3.52a). Let c′ ∈ R2
>0 be the constants from Part 3.52a). Then the triangle

inequality and the union bound yields

P(∥γ − γ∥tv ≥ r) ≤ P(D(G∗) ≥ r/2) + P(D(G∗) ≥ r/2) ≤ c2e
−c1r2n/4 + c′

2e
−c′

1r
2n/4,

so Part 3.52b) holds with c′
1/4 and c2 + c′

2.

Remark 3.53. Similar to ι(µ) and ν(µ) in Remark 3.49, quantifying the ℓ-wise dependencies of µ,
we may consider Pµ : [0, 1] → [0, 1], r 7→ P(∥γn,σµ − γµ∥tv ≥ r) to quantify the concentration of the
color frequencies. As for Proposition 3.48, Lemma 3.52b) suggests that E[P (µ, r)] ≤ c2e

−c1r2n for
both µ = µ∗ and µ = µ̂.

Lemma 3.52 facilitates the application of Proposition 3.51. For this purpose let

D(σ, µ) =
∑

τ∈σ([n])
dw(π̌µ,σ,τ , π̂µ,τ )

for µ ∈ P([q]n) using the notions from Proposition 3.51.

Corollary 3.54. Let m ≤ m↑, µ̂ = µg,G∗(σ̂), µ∗ = µg,G∗(σ∗) and σµ ∼ µ. Denote the constants from
Proposition 3.48b) by Cg ∈ (0, 1) × R>0. There exists cg ∈ R>0 such that the following holds.
a) We have E[D(σ̂, µ̂)],E[D(σµ̂, µ̂)] ≤ c/Θ↓.
b) We have E[D(σ∗,µ∗)] ≤ c/Θ↓c′ for c′ ∈ (0, C1], and E[D(σµ∗ ,µ∗)] ≤ c/Θ↓c′ for c′ ∈ (0, C1/3].

Proof. For Θ↓ ≤ 1 and c ∈ R≥0 × R≥q we have E[D(·)] ≤ q ≤ c2Θ↓−c1 . Otherwise, notice that n > 1,
let δ = ε = ln(n)/

√
n, εs ∈ R>0 and

M =
{
µ ∈ P([q]n) : ∥γµ − γ∗∥tv ≤ ψ↓

4 , ι2(µ) ≤ εs, P (µ, δ) ≤ ε

}
with P from Remark 3.53. For µ ∈ M we have ∥γµ −γ∗∥∞ ≤ ψ↓/2, so γµ ≥ ψ↓/2, and E[D(σµ, µ)] ≤
cd(δ + ε+

√
εs/2) with cd ∈ R>0 from Proposition 3.51, using Remark 3.49. With cc ∈ R2

>0 for both
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Lemma 3.52a) and Lemma 3.52b), Proposition 3.48a) and Markov’s inequality we have

P(µ̂ ̸∈ M) ≤ cc,2 exp
(

−
cc,1ψ

2
↓

16 n

)
+ ln(q)
εsΘ↓ + cc,2

ε
e−cc,1δ2n

≤ c̃e−n/c̃ + c̃

Θ↓1/3 + c̃
√
n

ln(n)e
− ln(n)2/c̃ ≤ c′

Θ↓1/3 ,

where c̃ is the implied maximum, εs = Θ↓−2/3, c′ = c̃c′′
1 + c̃ + c̃c′′

2, c′′
1 = maxn>1 n

1/3e−n/c̃ and
c′′

2 = maxn>1 n
5/6e− ln(n)2/c̃/ ln(n) using Θ↓ ≤ n. Using D(·) ≤ q gives

E
[
D
(
σµ̂, µ̂

)]
≤ 2cd ln(n)√

n
+ cd√

2Θ↓1/3 + qc′

Θ↓1/3 ≤ c

Θ↓1/3

with c = max(cd + qc′ + 2cd maxn>1 ln(n)/n1/6, q), so E[D(σµ̂, µ̂)] ≤ c/Θ↓1/3 holds for all Θ↓ ≥ 0.
The Nishimori condition 3.22d) completes the proof of Part 3.54a). With C from Proposition 3.48b),
branching off in the discussion above yields

P(µ∗ ̸∈ M) ≤ cc,2 exp
(

−
cc,1ψ

2
↓

16 n

)
+ C22C1

εsΘ↓C1
+ cc,2

ε
e−cc,1δ2n ≤ c′

Θ↓C1/3

with εs = Θ↓−2C1/3 and c′ obtained analogously to the above. Repeating the remaining steps yields
cg ∈ R>0 with E[D(σµ∗ ,µ∗)] ≤ c/Θ↓C1/3. For the second part of Corollary 3.54b) and Θ↓ > 1 let ĉ
from Corollary 3.25b), c∗ from Observation 3.23b), c′ from Part 3.54a) and r =

√
ln(Θ↓)/((c∗

1 + ĉ)n),
then we have

E[D(σ∗,µ∗)] ≤ eĉr
2n c

′

Θ↓ + qc∗
2e

−c∗
1r

2n = c

Θ↓ρ

with c = c′ + qc∗
2 and ρ = c∗

1/(c∗
1 + ĉ). Recall from the proof of Proposition 3.48 that ρ = C1.

3.3.1.9 Gibbs Marginal Distribution Projection. Let G∗ = G∗(σ) with σ = σ∗ or σ = σ̂. Recall
that γg,G∗ is defined as the expected law under the empirical marginal distribution π = πg,G∗ , given
π. Lemma 3.52a) ensures that γG∗ is close to γ∗, but this is not sufficient for POS and B↑, being
extremal only on P2

∗ ([q]), meaning that the expectation has to be exactly γ∗.
Hence, we map π ∈ P2([q]) to some π◦ ∈ P2

∗ ([q]) such that the Wasserstein distance dw(π,π◦)
vanishes, which is sufficient because both the map in POS and B will turn out to be Lipschitz
continuous. First, we identify a suitable counterweight to γ.

Let αg : P([q]) → [0, 1] and fg : P([q]) → P([q]), γ 7→ [γ]c, be given as follows. Let ℓ◦ = ℓ−1
c (ψ↓)

with ℓc : [0, 1) → R≥0, ℓ 7→ −(1 + Λ(ℓ))/ ln(ℓ) and ℓ(γ) = ∥γ − γ∗∥2 for γ ∈ P([q]). For ℓ(γ) = 0 let
[γ]c = γ∗ and α(γ) = 0. For ℓ(γ) ∈ (0, ℓ◦] let [γ]c = γ∗ + ℓc(ℓ(γ))

ℓ(γ) (γ∗ − γ) and α(γ) = −Λ(ℓ(γ)). For
ℓ(γ) ≥ ℓ◦ let [γ]c = γ∗ + ψ↓

ℓ(γ)(γ∗ − γ) and α(γ) = ℓ(γ)/(ℓ(γ) + ψ↓).

Observation 3.55. The maps α and f are continuous with α(γ)[γ]c+(1−α(γ))γ = γ∗ for γ ∈ P([q]).
With c = (e− 1)/e we have ℓ◦ ∈ [e−ψ↑ , e−cψ↑ ] and α is increasing in ℓ(γ).

Proof. Clearly, the maps ℓ and ℓc are continuous. Further, ℓc is strictly increasing with ℓc(0) = 0
and ℓc(1) = ∞, so ℓ◦ ∈ (0, 1) is well-defined. Hence, we have [γ]c = γ∗ + s(γ)(γ∗ − γ) with s(γ) =
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min(ψ↓, ℓc(ℓ(γ)))/ℓ(γ) and thereby

∥[γ]c − γ∗∥∞ ≤ ∥[γ]c − γ∗∥2 = min(ψ↓, ℓc(ℓ(γ))) ≤ ψ↓,

so [γ]c ≥ 0 and thereby [γ]c ∈ P([q]). The map s is clearly continuous for γ ̸= γ∗. For ℓ(γ) ≤ ℓ◦
we further have ∥[γ]c − γ∗∥2 = ℓc(ℓ(γ)) and hence f is continuous. Notice that ℓc(ℓ◦) = ψ↓ implies
−Λ(ℓ◦) = ℓ◦/(ℓ◦ +ψ↓) and hence α is clearly continuous for γ ̸= γ∗, while continuity for γ = γ∗ follows
from −Λ(ℓ(γ∗)) = 0. We have α(γ)[γ]c + (1 − α(γ))γ = γ∗ by construction. With ℓc(ℓ) ≤ −1/ ln(ℓ)
we have ℓ◦ ≥ e−ψ↑ , while the upper bound follows with ℓc(ℓ) ≥ −c/ ln(ℓ). With ψ↓ ≤ 1/q ≤ 1/2 we
have cψ↑ > 1, so α is increasing since Λ takes its unique minimum at e−1.

So, with the notation from Section 3.3.1.7 for the general case let

π◦
µ = (1 − αµ)πµ + αµπ•

with π• = µ•,P([q]),γ , γ = [γµ]c, and αµ = α(∥γµ − γ∗∥2). For a decorated graph G let π◦
g,G = π◦

µg,G
be

the projection of πg,G onto P2
∗ ([q]).

Lemma 3.56. Let m ≤ m↑ and G∗ = G∗(σ) with σ = σ∗ or σ = σ̂.
a) For µ ∈ P([q]n) we have π◦

µ ∈ P2
∗ ([q]) and dw(πµ, π◦

µ) ≤ αµ.
b) There exists cg ∈ R>0 such that E[dw(πg,G∗ , π◦

g,G∗)] ≤ c
√

ln(n+ 1)3/n.

Proof. With (b,γ0,γ1) ∼ Bin(1, αµ) ⊗ πµ ⊗ π• we have γb ∼ π◦
µ and

E[γb] = E[1{b = 0}γ0] + E[1{b = 1}γ1] = (1 − αµ)γµ + αµ[γµ]c = γ∗,

so π◦
µ ∈ P2

∗ ([q]). Further, we have

dw(πµ, π◦
µ) ≤ E[∥γb − γ0∥tv] = αµE[∥γ1 − γ0∥tv] ≤ αµ.

With c′ ∈ (0, 1] × R≥1 from Lemma 3.52a) let r =
√

ln(n)/(2c′
1n) and let n◦,g ∈ Z≥3 be such that

2r ≤ ℓ◦ if n ≥ n◦. For n ≤ n0 we have

E[dw(πg,G∗ , π◦
g,G∗)] ≤ q ≤

√
q2n◦

ln(2)3

√
ln(n+ 1)3

n
.

Otherwise, with dw(·) ≤ 1, the first part and γ = γg,G∗ we have

E[dw(πg,G∗ , π◦
g,G∗)] ≤ E [1{∥γ − γ∗∥2 < 2r}α(∥γ − γ∗∥2)] + P(∥γ − γ∗∥2 ≥ 2r).

With ∥γ − γ∗∥2 ≤ 2∥γ − γ∗∥tv and Observation 3.55 we have

E[dw(πg,G∗ , π◦
g,G∗)] ≤ α(2r) + c′

2e
−c′

1r
2n = −Λ(2r) + c′

2√
n
.

Hence, for any sufficiently large c̃ we have

E[dw(πg,G∗ , π◦
g,G∗)] ≤ c̃

√
ln(n)
n

ln
(

n

ln(n)

)
+ c̃

√
ln(n+ 1)3

n
≤ 2c̃

√
ln(n+ 1)3

n
.
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3.3.2 The Interpolation Method. Let Θ↓
g : Z>0 → R>0 with Θ↓ = ω(1) and Θ↓ ≤ n, so depen-

dencies on Θ↓ change to dependencies on n. Assume that d̄ > 0. Recall the map in POS, i.e.

∇ : P2([q]) → R, π 7→ E
[
Λ(Zf(ψ,γ1)) + (k − 1)Λ(Zf(ψ,γ2)) −

k∑
h=1

Λ(Zfm(ψ, h,γ))
]
.

3.3.2.1 Overview. Recall the Bethe free entropy in Section 2.1.2.4 and the related notions, in particular
(ψ◦,γ◦). The interpolation method relies on the derivative of the function

ϕ↔
µΨ,γ∗,d̄,π,n(t↔) = E

[
ϕg(Ĝ)

]
+ t↔ϕ◦, ϕ◦ = d̄(k − 1)

ξk
E [Λ (Zf(ψ◦,γ◦)] ,

using the shorthand Ĝ = G∗
m,m↔,U (σ̂m). If the derivative is (asymptotically) non-negative, then we

have ϕ↔(0) ≤ ϕ↔(1), and realignment yields Proposition 3.4. Hence, we determine the asymptotics of
the derivative. Recall πg,G from Section 3.3.1.8 and its projection π◦

g,G ∈ P2
∗ ([q]) from Section 3.3.1.9.

Proposition 3.57. We have ∂
∂t↔ϕ

↔(t↔) = d̄
ξkE[∇(π◦

g,Ĝ, π)] + O(Θ↓−1/3).

In order to establish Proposition 3.57, we first compute the derivative of ϕ↔.

Lemma 3.58. We have ∂
∂t↔ϕ

↔(t↔) = d̄
k∆◦ + ϕ◦ − d̄∆↔, where

∆◦ = E[nϕg(G∗
m+1,m↔,U (σ̂m+1))] − E[nϕg(G∗

m,m↔,U (σ̂m))],

∆↔ =
∑
i∈[n]

1
n

(
E[nϕg(G∗

m,m↔+µ•,[n],i,U (σ̂m))] − E[nϕg(G∗
m,m↔,U (σ̂m))]

)
.

Proof. We consider n+1 independent Poisson variablesm, m↔ depending on t↔, while the remainder
does not. Hence, we use the product rule, which amounts to taking each derivative individually using
Observation 3.30 and Corollary 3.12. But for x ∼ Po(at+ b) we have

∂

∂t
E[f(x)] =

∑
x

f(x) ∂
∂t

P(x = x) = −aE[f(x)] + aE[f(x+ 1)].

The second contribution ϕ◦ in Lemma 3.58 is exactly what we need. For the other contributions
recall (ψ,h,γπ) from the definition of ∇ and let π = (πg,Ĝ, π).

Lemma 3.59. We have ξ∆↔ = E[Λ(Zfm(ψ,h,γπ))].

The proof of Lemma 3.59 is presented in Section 3.3.2.2. The first contribution is demanding,
since the joint Gibbs law is not a product measure. This is where Proposition 3.48 comes into play.

Lemma 3.60. We have ξ∆◦ = E[Λ(Zf(ψ,γπ,1))] + O(Θ↓−1/3).

The proof of Lemma 3.60 is presented in Section 3.3.2.3. Proposition 3.57 now follows by estab-
lishing Lipschitz continuity of ∇ and thereby justifying the transition to the projection π◦

g,Ĝ. The
proof is presented in Section 3.3.2.4. The proof of Proposition 3.4 and the respective version for
graphs with external fields over random factor counts m∗ is presented in Section 3.3.2.5.
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3.3.2.2 Adding an Interpolator. Fix the variable i ∈ [n] with the additional interpolator and let

∆↔
v (i) = E[nϕg(G∗

m,m↔+µ•,[n],i,U (σ̂m))] − E[nϕg(G∗
m,m↔,U (σ̂m))].

Lemma 3.61. With (G′,ψ↔) ∼ Ĝ⊗ψ↔
◦ we have

∆↔
v (i) = 1

ξ
E

Λ

∑
τ∈[q]

µg,G′ |i(τ)ψ↔(τ)

 .
Proof. Using independence due to Observation 3.13, we have a coupling (G−,G+) of G∗

m,m↔,U (σ̂m)
and G∗

m,m↔+µ•,[n],i,U (σ̂m), i.e. given σ̂m and G− we attach the factor (m↔
i + 1) to i equipped with

a weight given by ψ∗↔
◦,σ(i) to obtain G+. Explicitly introducing the conditional expectation gives

∆↔
v (i) = E

[
∆↔

vms,i(m,m↔,U , σ̂m)
]
, ∆↔

vms,i(m,m↔,U , σ) = E[nϕg(G+) − nϕg(G−)].

With δ(G,G′) = nϕg(G′) − nϕg(G) we have δ(G,G′) = ln(Zg(G′)/Zg(G)), and further Zg(G′) =∑
σ ψg,G′(σ). If G′ is an extension of G as above, i.e. obtained by adding factors A+ with wire-weight

pairs w = (va, ψa)a∈A+ , then we have ψg,G′(σ) = ψg,G(σ)∏a∈A+ ψa(σva). This gives δ(G,G′) =
ln(ψw|g,G(w)) with

ψw|g,G(w) =
∑
σ

µg,G(σ)
∏
a∈A+

ψa(σv(a)) = E

 ∏
a∈A+

ψa
(
σg,G,v(a)

) , (8)

so the difference of the free entropies is the logarithm of the expected weight of the additional factors
of G′, under the Gibbs measure of the (smaller) base graph G. So, using (G′′(σ),ψ∗↔,ψ↔) ∼
G∗(σ) ⊗ψ∗↔

◦,σ(i) ⊗ψ↔
◦ for brevity, we have

∆↔
vms = E

[
ln
(
ψw|g,G′′(σ) (i,ψ∗↔)

)]
= E

[
ψ↔(σi)

ξ
ln
(
ψw|g,G′′(σ)(i,ψ↔)

)]
.

Taking the expectation over σ̂, using G = G′′(σ̂) and the Nishimori condition 3.22d) yields

E[∆↔
vms(σ̂)] = E

[
ψ↔(σ̂i)

ξ
ln
(
ψw|g,G(i,ψ↔)

)]
= E

[
ψ↔(σg,G,i)

ξ
ln
(
ψw|g,G(i,ψ↔)

)]
.

For the leading coefficient we take the conditional expectation given G and ψ↔, i.e. the expectation
over the Gibbs spins σg,G only, which exactly matches the definition of ψw|g and hence

E[∆↔
vms(σ̂)] = 1

ξ
E
[
Λ
(
ψw|g,G(i,ψ↔)

)]
, ψw|g,G(i,ψ↔) =

∑
τ∈[q]

µg,G|i(τ)ψ↔(τ).

Now, recall that we have ∆↔ = E[∆↔
v (i)] for i ∼ u([n]) and that µg,G|i ∼ πg,G. Further, recall
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(ψ◦,h,γ) and the definition of ψ↔ ∼ ψ↔
◦ from Equation (3), which gives∑

τ∈[q]
µg,G|i(τ)ψ↔(τ) ∼

∑
τ∈[q]

µg,G|i(τ)
∑
τ ′

1{τ ′
h = τ}ψ◦(τ ′)

∏
h̸=h

γh(τ ′
h) ∼ Zfm(ψ,h,γπ′)

with π′ = (πg,G, π), (i,ψ↔) ∼ i ⊗ ψ↔ and (ψ,h,γπ′) from the assertion in Lemma 3.59. This
completes the proof by considering the conditional expectation given G′ in ∆↔.
3.3.2.3 Adding a Factor. Using the shorthand ϕ∗

m(σ) = E[ϕg(G∗
m,m↔,U (σ))] we may rewrite ∆◦ =

E
[
nϕ∗

m+1(σ̂m+1)] − E[nϕ∗
m(σ̂m)

]
. In the first step we align the ground truths, i.e. we replace σ̂m+1

by σ̂m, and introduce the following typical event. With r(n) = ln(n)/
√
n and B◦ from Corollary 3.12

for r, let BΓ = {σ ∈ [q]n : ∥γn,σ − γ∗∥tv < r} and further E = {d̄ ∈ B◦, σ̂m ∈ BΓ}.

Lemma 3.62. We have ∆◦ = nE
[
1E(ϕ∗

m+1(σ̂m) − ϕ∗
m(σ̂m))

]
+ O(r(n)).

Proof. Let (σ̂−
m, σ̂

+
m) be a coupling of σ̂m, σ̂m+1 from the coupling lemma 3.6e) and further E ′ = {d̄ ∈

B◦, σ̂−
m ∈ BΓ, σ̂+

m ∈ BΓ}. With Φ+ = nϕ∗
m+1(σ̂+

m), Φ− = nϕ∗
m(σ̂−

m), cΦ from Observation 3.30, c◦

from Corollary 3.12, Observation 3.47, ln(n)/
√
n ≤ 2/e, n ≥ 1 and Θ↓ ≤ n we obtain

|E[1{d̄ ̸∈ B◦}Φ+]| ≤ E
[
1

{
d̄ ̸∈ B◦

}
cΦ

(
d̄n

k
+ 1 + (1 − t↔)d̄n+ Θ↓

2

)]
≤ c′

2ne
−c′

1 ln(n)2
,

c′
1 = c◦

1
2 , c

′
2 = cΦ

(1
k

+ 1 + d↑ + 1
2

)
c◦

2,

and we obtain the same bound for Φ−. On the event d̄ ∈ B◦ we have m + 1 ≤ m↑ since d↑ is large.
But then with ĉ from Corollary 3.25d) we obtain

|E[1{d̄ ∈ B◦, σ̂+
m ̸∈ BΓ}Φ+]| ≤ cΦĉ2

(
d↑n

k
+ 1 + d↑n+ Θ↓

2

)
e−ĉ1 ln(n)2 ≤ c′′

2ne
−c′′

1 ln(n)2
,

c′′
1 = ĉ1, c

′′
2 = cΦĉ2

(
d↑
k

+ 1 + d↑ + 1
2

)
.

The bound for σ̂−
m is the same, and the same bounds also follow for Φ−. This shows that

∆◦ = nE
[
1E ′(ϕ∗

m+1(σ̂+
m) − ϕ∗

m(σ̂−
m))

]
+ O

(
ne−c̃ ln(n)2)

for c̃ = min(c′
1, c

′′
1). Since (σ̂−, σ̂+) is a coupling from the coupling lemma 3.6e), we can use c from

Corollary 3.26b) on E ′. With n◦,g such that ln(n)/
√
n ≤ ψ↓/4 for n ≥ n◦, we have γn,σ̂−

m
≥ ψ↓/2 on

E ′ if n ≥ n◦, so using c′ from Corollary 3.34 and ∥γn,σ̂+
m

− γn,σ̂−
m

∥tv ≤ 2r(n) on E ′ we obtain

|nE
[
1E ′

1{σ̂+
m ̸= σ̂−

m}(ϕ∗
m+1(σ̂+

m) − ϕ∗
m(σ̂−

m))
]

| ≤ cc′
(

2r(n) + k

n

)
= O

( ln(n)√
n

)
.

Now, we substitute σ̂+
m and then drop 1{σ̂+

m = σ̂−
m, σ̂

+
m ∈ BΓ} at expense O(1/n).

With Lemma 3.62 we obtain G∗
m+1,m↔,U (σ̂m) from Ĝ given (σ̂m, Ĝ) by attaching a single addi-

tional standard factor m+ 1, since the ground truths coincide, as do the decorations. So, we consider
Ĝ⊗w∗

◦,σ̂m
, follow the steps in Section 3.3.2.2 to reduce this to (Ĝ,v,ψ) ∼ Ĝ⊗w◦ and thereby, using
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γ̂m = γn,σ̂, obtain

∆◦ = E
[

1E
Z f(γ̂m)

ψ(σ̂m,v) ln
(
ψw|g,Ĝ(v,ψ)

)]
+ O(r(n)).

Now, recall that E covers σ̂m ∈ BΓ, so with c from Observation 3.9d) and Observation 3.9a) we have
1 − ψ↑cr(n)2 ≤ Z f(γ̂m)/ξ ≤ 1, which yields Z f(γ̂m)/ξ = 1 + O(r(n)2) and

∆◦ = (1 + O(r(n)2))E
[
1E
ξ
ψ(σ̂m,v) ln

(
ψw|g,Ĝ(v,ψ)

)]
+ O(r(n)).

With |ψ(σ̂m,v) ln(ψw|g,Ĝ(v,ψ))/ξ| ≤ ψ2
↑ ln(ψ↑) and the Nishimori condition 3.22d), analogously to

Section 3.3.2.2, we obtain

∆◦ = E
[
1E
ξ

Λ
(
ψw|g,Ĝ(v,ψ)

)]
+ O(r(n)).

We can drop the restriction to E due to the uniform bound ψ2
↑ ln(ψ↑) on the argument of the ex-

pectation at expense O(e−c̃ ln(n)2) with c̃ from the proof of Lemma 3.62. Finally, we turn to the
application of Proposition 3.48. With ι◦ from Section 3.3.1.5 and µ̂ from Proposition 3.48 notice
that E[ι◦(µ̂m,m↔ ,v)] = E[ιℓ(µ̂m,m↔)] for ℓ = k and hence we can use Proposition 3.48a), Markov’s
inequality and the bound ψ2

↑ ln(ψ↑) on the argument of the expectation with δ = Θ↓−2/3 to obtain

∆◦ = E
[
1E
ξ

Λ
(
ψw|g,Ĝ(v,ψ)

)]
+ O

(
r(n) + Θ↓−1/3

)
, E = {ι◦(µ̂m,m↔ ,v) < δ} .

With ν◦ from Remark 3.49 and by Observation 3.6e) there exists a coupling (τ , τ ′) of µ|v and⊗h µ|v(h)
such that P(τ ̸= τ ∗) ≤ ν◦(µ, v) and hence |E[ψ(τ ) − ψ(τ ′)]| ≤ 2ψ↑ν◦(µ, v), ψ ∈ DΨ. So, with
ζ = ∑

τ ψ(τ)∏h µg,Ĝ|v(h)(τh) we have |ψw|g,Ĝ(v,ψ) − ζ| ≤ 2ψ↑ν◦(µ̂m,m↔ ,v). Now, we can use
Lipschitz continuity of Λ on [ψ↓, ψ↑] since both arguments live in this interval, i.e. we obtain Lg such
that |Λ(ψw|g,Ĝ(v,ψ)) − Λ(ζ)| ≤ 2Lψ↑ν◦(µ̂m,m↔ ,v). With Remark 3.49 we have |Λ(ψw|g,Ĝ(v,ψ)) −

Λ(ζ)| ≤
√

2Lψ↑
√
ι◦(µ̂m,m↔ ,v) ≤

√
2Lψ↑

√
δ on E . Then we drop the restriction to E and notice that

(µg,Ĝ|v(h))h ∼ π⊗k
g,Ĝ since v is uniform, so

ξ∆◦ = E[Λ(Zf(ψ,γπ,1))] + O
(
r(n) + Θ↓−1/3

)
.

This completes the proof since Θ↓ ≤ n and hence Θ↓−1/3 = ω(r(n)).
3.3.2.4 Proof of Proposition 3.57. Combining Lemma 3.58, Lemma 3.59 and Lemma 3.60 gives

∂

∂t↔
ϕ↔(t↔) = d̄

kξ
E[Λ(Zf(ψ,γπ,1))] + O

(
Θ↓−1/3

)
+ ϕ◦ − d̄

ξ
E[Λ(Zfm(ψ,h,γπ))]

= d̄

ξk
E[∇(π)] + O

(
Θ↓−1/3

)
using d̄ ∈ [0, d↑] and ψ↓ ≤ ξ ≤ ψ↑ from Observation 3.9a).

Lemma 3.63. For some Lg ∈ R>0 we have |∇(π1, π3) − ∇(π2, π3)| ≤ Ldw(π1, π2), π ∈ P2([q])3.
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Proof. Let ℓg ∈ R>0 be such that |Λ(t1) − Λ(t2)| ≤ ℓ|t1 − t2| for t ∈ [ψ↓, ψ↑]2. For a coupling
ρ ∈ Γ(π1, π2) let (ψ,h,γ) ∼ µΨ ⊗u([k])⊗ (ρ⊗k⊗π⊗k

3 ) with γ ∈ (P([q])k)3, so with Jensen’s inequality
and the triangle inequality we have

δ = |∇(π1, π3) − ∇(π2, π3)|
≤ ℓE[|Zf(ψ,γ1) − Zf(ψ,γ2)|] + kℓE[|Zfm(ψ,h, (γ1,γ3)) − Zfm(ψ,h, (γ2,γ3))|].

Expanding the definitions, using the triangle inequality, ψ ≤ ψ↑ and Observation 3.6b)yields

δ ≤ ℓψ↑E

∥∥∥∥∥⊗
h

γ1,h −
⊗
h

γ1,h

∥∥∥∥∥
tv

+ kψ↑E [∥γ1,h − γ2,h∥tv] ≤ LE [∥γ1,1 − γ2,1∥tv]

with L = 2kℓψ↑, which completes the proof since this holds uniformly for all couplings ρ.

Now, Proposition 3.57 follows from Lemma 3.63 with Lemma 3.56b), |∇| ≤ 2kΛ(ψ↑), further
Corollary 3.12 and 1/Θ↓ = Ω(1/n).
3.3.2.5 Proof of Proposition 3.4. First, we derive the result for graphs with pins and external fields,
but without interpolators.

Lemma 3.64. For t↔ = 1 we have E[ϕg(Ĝ)] ≥ B↑ + O( 1
Θ↓1/3 + Θ↓

n ).

Proof. From Proposition 3.57 we obtain cg ∈ R>0 such that

∂

∂t↔
ϕ↔(t↔) ≥ ∇↓ − c

Θ↓1/3 ≥ − c

Θ↓1/3

since ∇↓ ≥ 0 by assumption, so integration yields ϕ↔(1) − ϕ↔(0) ≥ −c/Θ↓1/3. But for t↔ = 0 with
ψ̌i denoting the pin, i.e. ψ̌i ≡ 1 for i ̸∈ U and ψ̌i(τ) = 1{τ = σ̂m} otherwise, and using the notions
from Observation 3.13 we have

ϕ↔(0) = 1
n
E

ln

∏
i

∑
τ

γ∗(τ)ψ̌i(τ)
∏

h∈[m↔
i ]
ψ∗↔
i,h (τ)


=
∑
i

1
n
E

ln

∑
τ

γ∗(τ)ψ̌i(τ)
∏

h∈[m↔
i ]
ψ∗↔
i,h (τ)


Notice that σ̂0 ∼ σ∗ and m↔

i ∼ Po(d̄), so

ϕ↔(0) = E

ln

∑
τ

γ∗(τ)ψ̌1(τ)
∏

h∈[m↔
1 ]
ψ∗↔

1,h (τ)

 .
Notice that the argument of the logarithm is in [ψm

↔
1 +1

↓ , ψm
↔

↑ ] and the probability of ψ̌1 ≡ 1 is
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1 − E[θ/n] = 1 − Θ↓/(2n), so we have

ϕ↔(0) =
(

1 − Θ↓

2n

)
E

ln

∑
τ

γ∗(τ)
∏

h∈[m↔
1 ]
ψ∗↔

1,h (τ)

+ (d̄+ 1) ln(ψ↑)O
(

Θ↓

n

)

= E

ln

∑
τ

γ∗(τ)
∏

h∈[m↔
1 ]
ψ∗↔

1,h (τ)

+ O
(

Θ↓

n

)
.

We recover the first contribution to the Bethe functional with the (ψ∗↔
1,h ,ψ

↔
◦ )-derivatives, so

E
[
ϕg(Ĝ)

]
≥ B(π) + O

(
1

Θ↓1/3 + Θ↓

n

)
.

With Lemma 3.64 we restrict to t↔ = 1, m↔ ≡ 0 in the remainder, where we also discuss all
d̄ ∈ [0, d↑]. First, we turn to graphs with external fields. Recall m◦ and σ◦ from Proposition c).

Proposition 3.65. Let m↔ ≡ 0 and U = ∅.
a) We have E[ϕg(G∗

m(σ∗))] ≥ B↑ + O(n−1/4).
b) For d = km/n ≤ d↑ we have E[ϕg(G∗(σ∗))] ≥ B↑(d) + O(n−1/4).
c) We have E[ϕg(G∗

m∗(σ∗))] ≥ B↑ + O(n−1/4 + δm + εm).

Proof. With Lemma 3.64 and Proposition 3.50 we have

E [ϕg(G∗
m(σ̂m))] ≥ B↑ + O

(
1

Θ↓1/3 + Θ↓

n

)
.

This yields E[ϕg(G∗
m(σ̂m))] ≥ B↑+O(n−1/4) for Θ↓(n) = n3/4 ∈ (0, n] and d̄ ∈ (0, d↑]. For d̄ = 0 notice

that ϕg(G∗
m(σ̂m)) = 0 and B ≡ 0. Without loss of generality let δm ≥ δ◦

m with δ◦
m = ln(n)/

√
n ≤ 1

and εm ≥ ε◦
m with ε◦

m = c2e
−c1 ln(n)2/2 and c, c2 large, from Corollary 3.12 since this does not affect

the assertions. Hence, we may take m∗ = m, and then Corollary 3.35b) applied to m∗ and to m
yields

E[ϕg(G∗
m∗(σ∗))] = E[ϕg(G∗

m◦(σ◦))] + O(εm + δm + n−1/2)
= E[ϕg(G∗

m(σ̂m))] + O(εm + δm + n−1/2)
≥ B↑ + O(εm + δm + n−1/4),

which establishes Part 3.65c). Now, consider the special case δm = δ◦
m = o(n−1/4) and εm = ε◦

m =
o(n−1/4), then Part 3.65a) follows as a special case from Part 3.65c). But also Part 3.65b) now follows
as a special case from Part 3.65c) by further considering d̄ = d and m∗

n′ = m◦
n′ for n′ ∈ Z>0, which in

particular gives m∗ = m.

Observation 3.21 yields the results for graphs without external fields, so Proposition 3.4 follows.

3.3.3 The Aizenman-Sims-Starr Scheme. This section is dedicated to the proof of Proposition
3.5, and hence Theorem 2.2. Fix t↔ = 1, m↔ ≡ 0 in the remainder, which resolves dependencies on π,
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ψ↔ and ψ↔. With C1 ∈ (0, 1) from Proposition 3.48b) let c = C1/3, ρ = c/(1+ c) and Θ↓(n) = n1−ρ.
Notice that ρ ∈ (0, 1/4) and Θ↓ ∈ [0, n]. Let d̄ > 0 for now.
3.3.3.1 Overview. We avoided the introduction of the projected Gibbs marginal distribution π◦

g,G
from Section 3.3.1.9 in Section 3.1.2.4, but now we can state the stronger version.

Proposition 3.66. We have E[ϕg(G∗)] = E[B(π◦
g,G∗)] + O(n−ρ) with G∗ = G∗

m,U (σ∗).

We use the Aizenman-Sims-Starr scheme for Proposition 3.66, where the quenched free entropy
density is understood as the average change of the quenched free entropies, meaning

E
[
ϕg(G∗

n,m,U (σ∗))
]

=
n−1∑
n′=0

1
n

Φ∆,n′ , Φ∆,n′ = E
[
(n′ + 1)ϕg

(
G+,n′

)]
− E

[
n′ϕg

(
G−,n′

)]
,

G+,n = G∗
n+1,mn+1,Un+1(σ∗

n+1), G−,n = G∗
n,mn,Un

(σ∗
n),

using E[n′ϕg(G−,n′)] = 0 for n′ = 0. Intuitively, we observe that if Φ∆,n converges, so does the
quenched free entropy density, with the same limit. Hence, the main focus of this section is to
establish the following result.

Lemma 3.67. We have Φ∆,n = E[B(π◦
g,G∗)] + O(n−ρ) with G∗ = G∗

m,U (σ∗).

Similar to Section 3.3.2 and Section 3.2.3 we will control the difference Φ∆ of the expectations by
introducing a coupling of G− and G+, say (G−,G+). However, as opposed to the previous sections
we now have to deal with an additional variable. Since the average degree is d̄, i.e. we expect the new
variable to wire to d̄ factors, but the expected difference in the number of factors is only d̄/k, we will
have to rewire factors – like in Section 3.2.3. But as opposed to Section 3.2.3 we cannot afford rough
estimates, and have to control the behavior on a very granular level instead.

We can partially recover the convenient situation in Section 3.3.2 by taking the intersection graph,
or base graph, as a starting point and then enrich this graph to obtain G− and G+ each, say a triplet
(G∩,G

−,G+). The expectations give d̄n/k factors for G−, d̄(n+ 1)/k factors for G+, with roughly
d̄ wired to i = n + 1. So, we can hope for d̄(n+1)

k − d̄ = d̄n
k − d̄(k+1)

k factors in G∩ and attaching the
remaining factors to obtain G− and G+ respectively. This coupling allows to rewrite

Φ∆(n) = E
[
ln
(
Zg(G+)
Zg(G∩)

)]
− E

[
ln
(
Zg(G−)
Zg(G∩)

)]
.

Since the coupling is fairly involved, we present it in three parts. In Section 3.3.3.2 we use the
discussion in Section 3.2.1.7 to couple the standard factor graphs. Then we couple the factor counts
using Observation 3.7. Finally, we turn to the pins in Section 3.3.3.4 and combine the three parts.
In Section 3.3.3.5 we show that the law of G∩ is close to G−, which allows to recycle our results
for the teacher-student model. Then, in Section 3.3.3.6 we show that our rough estimates for the
expectations are asymptotically correct.

Next, we discuss the asymptotics of the two contributions to Φ∆(n) separately. We start with the
easier G−-contribution, since only factors are added, which is covered by Sections 3.3.3.7 to 3.3.3.11.
Then we discuss the G+-contribution in Sections 3.3.3.12 to 3.3.3.16.

While the discussion of the G−-contribution is conceptually similar to the discussion in Section
3.3.2.3, there are several additional obstacles. In Section 3.3.3.7 we discuss the restriction to typical
instances. In Section 3.3.3.8 we introduce an approximation of the joint distribution to resolve de-
pendencies. In Section 3.3.3.9 we use Proposition 3.48 to transition to independent Gibbs marginals.
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In Section 3.3.3.10 we use Proposition 3.54 to resolve the dependencies of the Gibbs marginals on
the ground truth. Finally, in Section 3.3.3.11 we discuss the remaining asymptotics, followed by the
Lipschitz continuity of the factor contribution to the Bethe free entropy, which allows to transition to
the projected Gibbs marginal distributions from Section 3.3.1.9.

Sections 3.3.3.12 to 3.3.3.16 are devoted to the respective steps for the G+-contribution, approach-
ing the variable contribution to the Bethe free entropy. Finally, in Section 3.3.3.17 we establish Lemma
3.67, Proposition 3.66, Proposition 3.5 and the respective version for graphs with (normalized) ex-
ternal fields over general factor counts m∗. In Section 3.3.3.18 we derive Theorem 2.2 for graphs
with (normalized) external fields over general factor counts m∗, and thereby complete the proof of
Theorem 2.2.
3.3.3.2 Coupling Standard Graphs. For the sake of readability we suppress dependencies in the
following sections unless required. Fix a ground truth σ+ ∈ [q]n+1 with σ− = σ+

[n] and ma =
(m∩,m

−
∆,m

+
∆−,m

+
∆+) ∈ Z4

≥0, meaning m∩ factors in the base graph with variables [n], additional
m−

∆ factors in G−, additional m+
∆− factors in G+ that do not wire to the variable i = n+ 1 and m+

∆+
factors that do wire to i. From these atoms we obtain the derived factor counts, namely

m− = m∩ +m−
∆, m

+
− = m∩ +m+

∆−, m
+
∆ = m+

∆− +m+
∆+,m

+ = m∩ +m+
∆.

Recall the discussion in Section 3.2.1.7. We consider the wires-weight pairs

(w∩,w
−
∆,w

+
∆−,w

+
∆+) ∼ w∗⊗m∩

−◦,n+1,i,σ− ⊗w∗⊗m−
∆

−◦,n+1,i,σ− ⊗w
∗⊗m+

∆−
−◦,n+1,i,σ− ⊗w

∗⊗m+
∆+

+◦,n+1,i,σ+ .

This yields the graph w− = (w∩,w
−
∆) on n variables. Mimicking Section 3.2.1.7 for n + 1 variables,

m+ factors, i = n + 1 and d = m+
∆, let w+

− = (w∩,w
+
∆−) be the pairs not connected to i and

w+
+ = w+

∆+ the pairs connected to i. For A ∈
([m+]

d

)
let w+

a,A be the corresponding relabeling of
(w+

−,w
+
+) and let w+

d = w+
a,A with A ∼ u(

([m+]
d

)
). Further, recall the degree d+

m+ ∼ Bin(m+, p+
d )

with success probability p+
d = pd,n+1,σ+(σ+

i ) from Section 3.2.1.6, w∗ from Observation 3.13 and w∗
d

from Observation 3.19.

Lemma 3.68. Let i = n+ 1 and d = m+
∆+.

a) We have w∩,n,m∩(σ−) ∼ w∗
n,m∩(σ−) and w−

n,m−(σ−) ∼ w∗
n,m−(σ−).

b) We have w+
d,n,m+,d(σ

+) ∼ w∗
d,n+1,m+,i,d(σ+).

c) Let (m∩,m
−
∆−,m

+
∆−,d) ∈ Z4

≥0, m+ = m∩ +m+
∆− + d and w+

n (σ+) = w+
d,n,m+,d(σ+). Then we

have w+
n (σ+) ∼ w∗

n+1,m+(σ+) if (m+,d) ∼ (m+,d+
m+).

Proof. Recall from the proof of Observation 3.19 that the (w∗
−◦,w◦)-derivative is given by (v, ψ) 7→

1{i ̸∈ v([k])}ψ(σv)/E[1{i ̸∈ v◦([k])}ψ◦(σv◦)], which yields w∗
−◦,n+1,i,σ− ∼ w∗

◦,n,σ− since clearly
v◦,n+1|i ̸∈ v◦,n+1([k]) ∼ v◦,n, and thereby completes the proof of Part 3.68a). Part 3.68b) holds
by construction since we explicitly mimicked the construction in Section 3.2.1.7. Part 3.68c) follows
directly from Part 3.68b) and Observation 3.19.

Remark 3.69. Notice that the coupling of the graphs does not require Poisson counts, but they
are very convenient to avoid case distinctions, as mentioned below. In particular, we could take
m+ = m+, m− = m− and let m∩ = min(m−,m+ − d+

m+).
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3.3.3.3 Coupling Factor Counts. In this section we introduce a coupling of mn and mn+1 that meets
the requirements of Lemma 3.68c). For this purpose recall the Poisson parameter mn = d̄n/k of mn,
let m−

n = mn and m+
n = mn+1. Guided by Lemma 3.68c) and Observation 3.7b) let m+

∆+ = p+
d m

+

and m+
− = (1 − p+

d )m+. Inspired by Remark 3.69, let m∩ = min(m−,m+
−), and denote the gaps by

m−
∆ = m− −m∩ and m+

∆− = m+
− −m∩. So, the basic Poisson counts are

(m∩,m
−
∆,m

+
∆−,m

+
∆+) ∼ Po(m∩) ⊗ Po(m−

∆) ⊗ Po(m+
∆−) ⊗ Po(m+

∆+).

Let m− = m∩ +m−
∆, m+ = m∩ +m+

∆− +m+
∆+ and w∩, w−, w+ from Lemma 3.68.

Lemma 3.70. We have w∩,n,m∩(σ+)(σ−) ∼ w∗
n,m∩(σ+)(σ−), w−

n,m−(σ−) ∼ w∗
n,m−(σ−), w+

n (σ+) ∼
w∗
n+1,m+(σ+), further m− ∼ mn and m+ ∼ mn+1.

Proof. With Observation 3.7b) we have m− ∼ Po(m−) since m− = m∩ + m−
∆, further m+

− =
m∩ + m+

∆− ∼ Po(m+
−) since m+

− = m∩ + m+
∆− and m+ ∼ Po(m+) since m+ = m+

− + m+
∆+.

Hence, Observation 3.7b) further yields that (m+,m+
∆+) ∼ (m+,d+

m+), so Lemma 3.68c) applies,
and completes the proof with Lemma 3.68a). Notice that m+

− depends on σ+ through p+
d and hence

m∩ = m∩(σ+) depends on σ+.

Remark 3.71. The notation for w∩, w− and w+ is inconsistent, so we change it as follows.
Let Wp(σ+) = (w∩,m∩(σ+)(σ−),w−

m−(σ−),w+(σ+)) and Wm,M (σ−) = (Wp|(m∩,m
−,m+) = M)

be the pairs for random and given counts respectively. Let (w∩,m∩(σ−),w−
m−(σ−),w+

m+(σ+)) =
Wm,(m∩,m−,m+)(σ+) and Wp(σ+) ∼ (w∩,m∩(σ+)(σ−),w−

m−(σ−),w+
m+(σ+)).

Also in the new notation we let m+
∆+ ∼ Po(m+

∆+) be the factor degree of i = n+ 1 in w+
m+(σ+),

so m+
− = m+ −m+

∆− ∼ Po(m+
−) factors are not wired to i in w+

m+(σ+). Similarly, we e.g. still have
w−
m−,[m∩(σ+)](σ

−) = w∩,m∩(σ+)(σ−).

3.3.3.4 Coupling Pins. Notice that Θ↓
n+1 − Θ↓

n > 0. Let θ+
n ∼ u([0,Θ↓

n+1]) and let θ−
n = θ−

n,θ+ be
given by θ−

θ = θ for θ ∈ [0,Θ↓
n] and θ−

θ ∼ u([0,Θ↓
n]) otherwise. Recall θ from Section 3.2.1.1.

Lemma 3.72. We have θ− ≤ θ+, θ−
n ∼ θn and θ+

n ∼ θn+1.

Proof. By construction we have θ+
n ∼ θn+1 and θ− ≤ θ+. Further, for an event E ⊆ [0,Θ↓

n] and with
(u,θ+) ∼ u⊗ θ+, u ∼ u([0,Θ↓

n]), I =
∫
1{t ∈ E}dt we have

P(θ− ∈ E) = P(θ+ ∈ E) + P(θ+ > Θ↓
n, ,u ∈ E) = I

Θ↓
n+1

+
(Θ↓

n+1 − Θ↓
n)I

Θ↓
n+1Θ↓

n

= P(θn ∈ E).

For given θ− ∈ [0, n], θ+ ∈ [0, n+ 1] with θ− ≤ θ+ we consider the success probabilities

p∩ = θ−

n+ 1 , p
−
∆ = θ−

n(n+ 1) − nθ− , p
+
∆ = θ+ − θ−

n+ 1 − θ− .
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Let ǔ∩◦, ǔ
−
∆◦, ǔ

+
∆◦ ∈ {0, 1} be given by the success probabilities p∩, p

−
∆, p

+
∆ respectively, ǔ×t,θ−,θ+ =

(ǔ∩◦ ⊗ ǔ−
∆◦ ⊗ ǔ+

∆◦)⊗(n+1), ǔ×,n = (ǔ∩, ǔ
−
∆, ǔ

+
∆) = ǔ×t,θ−,θ+ and

U∩ = {i ∈ [n] : ǔ∩(i) > 0}, U− = {i ∈ [n] : ǔ∩(i) + ǔ−
∆(i) > 0},

U+ = {i ∈ [n+ 1] : ǔ∩(i) + ǔ+
∆(i) > 0}.

Recall the pinning set Un from Section 3.2.1.1.

Lemma 3.73. We have U− ∼ Un and U+ ∼ Un+1.

Proof. Recall ǔt◦ with success probability θ/n from Section 3.2.1.1. For given θ− ∈ [0, n], θ+ ∈
[0, n+ 1] with θ− ≤ θ+ let (ǔ∩◦, ǔ

−
∆◦, ǔ

+
∆◦) = ǔ∩◦ ⊗ ǔ−

∆◦ ⊗ ǔ+
∆◦ and notice that

P(ǔ∩◦ + ǔ−
∆◦ > 0) = p∩ + (1 − p∩)p−

∆ = θ−

n
= P(ǔt◦,θ−,n = 1),

P(ǔ∩◦ + ǔ+
∆◦ > 0) = p∩ + (1 − p∩)p+

∆ = θ+

n+ 1 = P(ǔt◦,θ+,n+1 = 1).

Now, let n− = n, n+ = n + 1 and ǔ×t = (ǔ∩t, ǔ
−
∆t, ǔ

+
∆t). Then the above shows that ǔ±

θ± =
(min(1, ǔ∩t,i + ǔ±

∆t,i))i∈[n±] ∼ ǔ⊗n±

t◦,θ±,n± , so Lemma 3.72 yields U± = ǔ±−1
θ± (1) ∼ Un± .

Finally, we complete the coupling with σ+ ∼ σ∗
n+1 and σ− = σ+

[n]. In order to clarify the depen-
dency structure recall Wp,n(σ+) from Remark 3.71 and that it determines the factor counts. On the
other hand we have Un = (θ−,θ+, ǔ×) which determines U∩,U−,U+. The joint distribution is now
given by (σ+,Wp(σ+),U) ∼ (σ+,Wp(σ+))⊗U . Now, the graphs are G±(σ±) = [w±

n,m±(σ±
n )]Γ↓

U±
n ,σ

±
n

and G∩ = [w∩,m∩(σ+)(σ−)]Γ↓
U∩,σ− .

Proposition 3.74. We have G∩ ∼ G∗
m∩(σ+),U∩

(σ−), further (σ−,G−(σ−)) ∼ (σ∗,G∗
m,U (σ∗)) and

(σ+,G+(σ+)) ∼ (σ∗
n+1,G

∗
n+1,mn+1,Un+1

(σ∗
n+1)).

Proof. The result is immediate from Lemma 3.70, Lemma 3.73 and Observation 3.13.

Notice that G−(σ−) and G+(σ+) are conditionally independent given (θ−,θ+,σ+,G∩) and ob-
tained as follows. For G−(σ−) we choose m−

∆(σ+) and the additional standard factors iid from
w∗

◦,n,σ− . Further, we perform a second sweep of pinning with probability p−
∆,θ− , i.e. pinning each

(unpinned) variable i ∈ [n] to σ−(i) independently with probability p−
∆,θ− .

For G+(σ+) we choose m+
∆−(σ+) and the corresponding additional standard factors iid from

w∗
◦,n,σ− . Further, we choose m+

∆+(σ+) and the corresponding additional standard factors indepen-
dently from w∗

+◦,n+1,i,σ+ . Formally, we also have to randomly relabel all factors. Finally, we perform
a second sweep of pinning with probability p+

∆,θ−,θ+ for the variables [n] and pin i = n + 1 with
probability θ+/(n+ 1).

Since both G−(σ−) and G+(σ+) are obtained from G∩ exclusively by adding factors, the ratios
in Φ∆(n) = Φv(n) − Φf(n) with

Φv(n) = E
[
ln
(
Zg(G+(σ+))
Zg(G∩)

)]
, Φf(n) = E

[
ln
(
Zg(G−(σ+))
Zg(G∩)

)]
, (9)
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can be understood as the expected additional weight caused by the new factors under the Gibbs spins
σg,G∩ , as in Section 3.3.2.2 and Section 3.3.2.3.
3.3.3.5 The Base Graph. We define a coupling for the pairs (σ−,G∩) and (σ∗

n,G
∗
n,mn,Un

(σ∗
n)). For

this purpose we start with a coupling of (σ−,m∩(σ+),U∩) and (σ∗
n,mn,Un). For σ ∈ [q]n+1 let

(m′
∩,σ,m

′
σ) be a coupling of m∩(σ) and m−

n from the coupling lemma 3.6e). This conditional law and
(σ′

+,U ′
∩,U ′) ∼ (σ+,U∩,U−) induce a = (σ′

+,m
′
∩(σ′

+),m′(σ′
+),U ′

∩,U ′), which further determines
σ′

∩ = σ′ = σ′
+,[n]. For given a = (σ+,m∩,m,U∩,U) with σ = σ+,[n] we obtain the graphs as

follows. For m∩ = m and U∩ = U let G′
∩(a) = G′(a) ∼ G∗

m,U (σ), otherwise let (G′
∩(a),G′(a)) ∼

G∗
m∩,U∩(σ) ⊗G∗

m,U (σ).

Lemma 3.75. We have (σ′
∩,G

′
∩(a)) ∼ (σ−,G∩) and (σ′,G′(a)) ∼ (σ∗,G∗

m,U (σ∗)). Further, we
have P((σ′

∩,G
′
∩(a)) ̸= (σ′,G′(a))) = O(n−ρ).

Proof. We have (σ′
+,σ

′
∩,U ′

∩,G
′
∩(a)) ∼ (σ+,σ−,U∩,G

∗
m∩(σ+),U∩

(σ−)) by definition, and further
(σ′,U ′,G′(a)) ∼ (σ−,U−,G∗

m−,U−(σ−)), so the first two assertions hold by Proposition 3.74. Since
the graphs coincide if the counts do, we have P((σ′

∩,G
′
∩(a)) ̸= (σ′,G′(a))) ≤ P((m′

∩,σ+ ,U ′
∩) ̸=

(m′
σ+ ,U ′)) ≤ P(m′

∩,σ+ ̸= m′
σ+) + P(U ′

∩ ̸= U ′). For the latter we have P(U ′
∩ ̸= U ′) ≤ P(|ǔ−−1

∆ (1)| >
0), and further P(|ǔ−−1

∆ (1)| > 0) ≤ E[|ǔ−−1
∆ (1)|] by Markov’s inequality, where

E[|ǔ−−1
∆ (1)|] = nE[p−

∆(θ−)] ≤ nΘ↓
n

n(n+ 1) − nΘ↓
n

= (1 + o(1))Θ↓
n

n
. (10)

For the factor counts we use the definition, i.e. the coupling lemma 3.6e), Pinsker’s inequality 3.6f)
and Observation 3.7c) to obtain

P(m′
∩,σ+ ̸= m′

σ+) = E
[
∥m∩(σ+) −mn∥tv

]
≤ E

[
E
[√

1
2DKL (m∩(σ+)∥mn)

∣∣∣∣∣σ+
]]

= 1√
2
E

√mn −m∩(σ+) +m∩(σ+) ln
(
m∩(σ+)
mn

) .
The argument of the expectation vanishes for m∩(σ+) = m− = mn. Otherwise, we have m∩(σ+) =
m+ −m+

∆+(σ+) < m−, or ∆ > 0 with ∆ = m+
∆+(σ+) − d̄/k, and using ln(1 − t) ≤ −t further

P(m∩(σ+) ̸= mn) ≤ 1√
2
E
[
1 {∆ > 0}

√
∆ −m∩(σ+) ∆

mn

]

= 1√
2
E
[
1 {∆ > 0}

√
∆ −

(
1 − ∆

mn

)
∆
]

= E[1{∆ > 0}∆]√
2mn

.

With c̃ from Corollary 3.18b) we have ∆ ≤ c̃d̄− d̄
k , hence

P(m∩(σ+) ̸= mn) ≤
(
c̃− 1

k

) √
kd̄√
2d̄n

≤
(
c̃− 1

k

) √
kd↑√
2n

.

This completes the proof since Θ↓/n = n−ρ = ω(n−1/4).
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3.3.3.6 Factor Count Asymptotics. Let cr,g ∈ R>0 be large, r(n) = cr
√

ln(n)/n and BΓ
+ = {σ+ ∈

[q]n+1 : ∥γn,σ+ − γ∗∥tv ≤ r(n)}. In this section we show that for typical spins BΓ
+ and for sufficiently

large n the coupling of the graphs simplifies.
Lemma 3.76. Let σ ∈ BΓ

+. There exists cg ∈ R>0 such that m±
∆(σ) ≤ c. Further, there exists

n◦,g ∈ Z>0 such that for n ≥ n◦ we have m+
∆−(σ) = 0 and

∣∣∣m+
∆+(σ) − d̄

∣∣∣ , ∣∣∣∣∣m−
∆(σ) − d̄(k − 1)

k

∣∣∣∣∣ ≤ cr(n).

Proof. With c̃ from Corollary 3.18c) and with d∗
f,m ∼ Po(pdm) from Corollary 3.18b) we have |m+

∆+ −
d̄| ≤ c̃d̄(∥γn,σ+ − γ∗∥tv + n−1) ≤ c̃d̄(r(n) + n−1). Using k ≥ 2 fix

n◦ = min
{
n0 ∈ Z≥3 : sup

n≥n0
c̃

(
r(n) + 1

n

)
<
k − 1
k

}
.

For n ≤ n◦ we have m±
∆ ≤ m+ ≤ d↑(n◦ + 1)/k. For n ≥ n◦ we have |m+

∆+ − d̄| < d̄(k − 1)/k and
|m+

∆+ − d̄| ≤ 2c̃d↑r(n) ≤ 2c̃d↑cr/
√
e. The former yields m+

− = m+ − m+
∆+ < m+ − d̄

k = m−, so
m+

∆− = 0. Finally, notice that∣∣∣∣∣m−
∆ − d̄(k − 1)

k

∣∣∣∣∣ =
∣∣∣∣∣m− −m+

− − d̄(k − 1)
k

∣∣∣∣∣ =
∣∣∣m+

∆+ − d̄
∣∣∣ .

3.3.3.7 Typical Events for the Factor Contribution. Analogously to the ball BΓ
+ on (n+ 1) variables,

let BΓ
− = {σ ∈ [q]n : ∥γn,σ − γ∗∥tv ≤ r(n)}, and B◦ = (d̄ − r(n), d̄ + r(n)) for the average degree.

Further, let Φf(n) = E[Φ] with Φ = ln(Zg(G−(σ−))/Zg(G∩)) and d̄− = km−/n.
Lemma 3.77. We have Φf(n) = E[1{σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
− ∈ B◦}Φ] + o(n−1).

Proof. With E = {σ+ ∈ BΓ
+,σ

− ∈ BΓ
−, d̄

− ∈ B◦} we have Φf(n) = E[1EΦ] + ε with

ε(n) = E
[
1¬EΦ

]
, Φ = E

[
Φ
∣∣∣m∩(σ+),σ+,σ−, d̄−

]
.

With Jensen’s inequality we can consider the atypical events separately, i.e.

|ε(n)| ≤ E[1{d̄− ̸∈ B◦}|Φ|] + E[1{σ+ ̸∈ BΓ
+}|Φ|] + E[1{σ− ̸∈ BΓ

−}|Φ|].

With Φ = nϕg(Zg(G−(σ−))) − nϕg(Zg(G∩)), Jensen’s inequality, the triangle inequality, c̃ from
Observation 3.30, Lemma 3.73, Lemma 3.72 and Observation 3.47 we have

|Φ| ≤ c̃

(
m− + Θ↓

n

2 +m∩(σ+) + nΘ↓
n

(n+ 1)2

)
≤ c̃(2m− + n).

So, with Lemma 3.70 and c from Corollary 3.12 we have

E[1{d̄− ̸∈ B◦}|Φ|] ≤ 2c̃n
k

E[1{d̄ ̸∈ B◦}d̄] + c̃nP(d̄ ̸∈ B◦) ≤ c′n exp
(

−c1r
2n

1 + r

)
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with c′ = c̃c2(2 + k)/k. With r = o(1) and c2
r > 2/c1 we get

E[1{d̄− ̸∈ B◦}|Φ|] ≤ c′n exp
(
−(1 + o(1))c1c

2
r ln(n)

)
= c′n−(1+o(1))c1c2

r +1 = o(n−1).

With c from Observation 3.23b), independence and c2
r > 2/c1 we have

E[1{σ+ ̸∈ BΓ
+}|Φ|] ≤ c̃

(2d↑
k

+ 1
)
c2ne

−c1r2(n+1) = Θ
(
n1−c1c2

r
)

= o(n−1),

and E[1{σ− ̸∈ BΓ
−}|Φ|] = o(n−1) follows analogously.

The following result further restricts the very typical event in Lemma 3.77 to the typical event
that no variables are pinned in the second sweep.

Lemma 3.78. We have

Φf(n) = E[1{σ+ ∈ BΓ
+,σ

− ∈ BΓ
−, d̄

− ∈ B◦,U− = U∩}Φ] + O(n−ρ).

Proof. With Lemma 3.77 it is sufficient to consider E[1E|Φ|], where

E =
{
σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
− ∈ B◦,U− ̸= U∩

}
.

With c̃ from Observation 3.30 we have E[1E|Φ|] ≤ c̃E[1Edg(G∩,G
−(σ−))]. With the notions in

Section 3.2.3.1 we have V↓
1 = [n] \ U−, V↓

2 = U∩, V↓ = [n] \ U∆ with U∆ = U− \ U∩, further
m∩ = m∩(σ+), A= = [m∩(σ+)] \ A ̸=,

A̸= = {a ∈ [m∩(σ+)] : v∩,a([k]) ∩ U∆ ̸= ∅},

where v∩ are the neighborhoods of G∩, so D = 0, D̃ = m− −m∩(σ+) = m−
∆(σ+), D∩ = |A ̸=| and

hence dg(G∩,G
−(σ−)) = m−

∆(σ+) + 2|A ̸=| + |U∆|. Recall that

|A̸=| ≤
∑
i∈U∆

df,w∩(i) ≤
∑
i∈U∆

df,w−(i)

with w∩ = w∩,m∩(σ+)(σ−), w− = w−
m−(σ−) and df,G(i) from Section 3.2.1.6. With c from Corollary

3.18a) this gives

E
[
dg(G∩,G

−(σ−))
∣∣∣σ+,m∩(σ+),m−,U∩,U−

]
≤ m−

∆(σ+) + 2|U∆|cd̄− + |U∆|.

On E we further have d̄ ≤ d↑ + r(n). With this bound, standard bounds, and taking conditional
expectations we obtain E[1E|Φ|] ≤ c̃E1 + c̃(2c(d↑ + r(n)) + 1)E2, where

E1 = E[1{σ+ ∈ BΓ
+,U− ̸= U∩}m−

∆(σ+)], E2 = E[|U∆|].

With c′ from Lemma 3.76 we have m−
∆(σ+) ≤ c′, so as in the proof of Lemma 3.75 we have

E1 ≤ c′P(U− ̸= U∩) ≤ (1 + o(1))c′ Θ↓
n

n
, E2 ≤ (1 + o(1))Θ↓

n

n
.
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This completes the proof since Θ↓/n = n−ρ = ω(n−1).

3.3.3.8 Normalization Step for the Factor Contribution. In Section 3.3.3.7 we restricted the expecta-
tion over the coupled graphs to typical events, now we change the underlying law. In particular, we
replace G∩ by G∗(σ) = G∗

m,U (σ) and m−
∆(σ+) by a Poisson variable m∆ ∼ Po(d̄(k− 1)/k). Clearly,

we obtain the additional wires-weight pairs given σ∗ from Observation 3.13, i.e. we consider

(G∗(σ),m∆,w
∗(σ)) ∼ G∗(σ) ⊗m∆ ⊗w∗⊗Z>0

◦,σ . (11)

Further, let Φ = ln(ψw|g,G∗(σ∗)(w∗
σ∗,[m∆])) with ψw|g from Equation (8).

Lemma 3.79. We have Φf(n) = E[1{σ∗ ∈ BΓ
−}Φ] + O(n−ρ).

Proof. Let Φ′ = ln(Zg(G−(σ−))/Zg(G∩)), and let (G∩,m∆,w
∗(σ−)) be conditionally independent

given σ+. As explained in Section 3.3.3.4 and analogously to Section 3.3.2.3 on

E =
{
σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
− ∈ B◦,U− = U∩

}
we have Φ′ ∼ ln(ψw|g,G∩(w∗

σ−,[m−
∆(σ+)])), i.e. there are no additional pins, the additional factors are

independent of the remainder and iid from the teacher-student model for the given ground truth. For
given σ+ ∈ [q]n+1 let δ(σ+) ∼ Po(|m−

∆(σ+) −m∆|) with m∆ = d̄(k−1)
k . For m−

∆(σ+) ≥ m∆ and using
Observation 3.7b) we consider the coupling m−

∆(σ+) = m∆ + δ(σ+), and m∆ = m−
∆(σ+) + δ(σ+)

otherwise. This gives∣∣∣∣ln(ψw|g,G∩

(
w∗
σ−,[m−

∆(σ+)]

))
− ln

(
ψw|g,G∩

(
w∗
σ−,[m∆]

))∣∣∣∣ ≤ δ(σ+) ln(ψ↑).

With Lemma 3.76 we can bound E[δ(σ+)] on E , so with Lemma 3.78 we have

Φf(n) = E
[
1E ln

(
ψw|g,G∩

(
w∗
σ−,[m∆]

))]
+ O

(
r(n) + n−ρ) .

Due to the independence of m∆ from the remainder we can use the upper bound m∆ ln(ψ) on the
argument of the expectation and then take the expectation with respect to m∆ to obtain the upper
bound c = m∆ ln(ψ↑) ≤ d↑ ln(ψ↑)(k − 1)/k given the rest. This shows that reducing E to {σ− ∈ BΓ

−}
causes an error of O(n−ρ). Also, with the coupling from Lemma 3.75 we then get

Φf(n) = E
[
1{σ∗ ∈ BΓ

−} ln
(
ψw|g,G∗(σ∗)

(
w∗
σ∗,[m∆]

))]
+ O

(
n−ρ)

since n−ρ = ω(r(n)), which completes the proof.

3.3.3.9 Gibbs Marginal Product for the Factor Contribution. Now, it is time to apply Proposition
3.48. Using the distribution (11) let

Φ = ln

∑
τ

 ⊗
(a,h)∈[m∆]×[k]

γa,h

 (τ)
∏

a∈[m∆]
ψ∗
a(τa)

 =
∑

a∈[m∆]
ln (Zf(ψ∗

a,γa)) ,

where γ = (µg,G∗(σ∗)|v∗(a,h))a,h, (v∗,ψ∗) = w∗(σ∗), and Zf from the Bethe functional.

Lemma 3.80. We have Φf(n) = E[1{σ∗ ∈ BΓ
−}Φ] + O(n−ρ).
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Proof. Resolving the Radon-Nikodym derivative of the additional pairs in Lemma 3.79 yields Φf(n) =
E[1{σ∗ ∈ BΓ

−}Φ∗] + O(n−ρ) with w = (v,ψ) ∼ (u([n]k) ⊗ µΨ)⊗Z>0 and

Φ∗ =
∏

a∈[m∆]

ψa(σ∗
v(a))

Z f(γ∗)
ln
(
ψw|g,G∗(σ∗)(w[m∆])

)
.

Recall that for v′ = v[m∆] and α∗ = µ∗|v′ with µ∗ = µg,G∗(σ∗) we have

ψw|g,G∗(σ∗)(w[m∆]) =
∑

τ∈([q]k)m∆

α∗(τ)
∏

a∈[m∆]
ψa(τa).

Let C from Proposition 3.48b), ε = C1/3 and δ = Θ↓−2ε. Using ι◦ from Section 3.3.1.5 let E =
{σ∗ ∈ BΓ

−, ι◦(µ∗,v′) ≤ δ} and notice that ι◦(µ∗,v′) = 0 < δ on m∆ = 0. Hence, the bound
|Φ∗| ≤ ln(ψm∆

↑ )ψ2m∆
↑ ≤ ψ3m∆

↑ and Markov’s inequality conditional to m∆ give ∆ ≤ ε′ + O(n−ρ),
where ∆ = |Φf − E[1EΦ∗]| and

ε′ = E
[
1{m∆ > 0}C2(km∆ − 1)

δ

(
km∆
Θ↓

)C1

ψ3m∆
↑

]
.

Standard bounds imply ε′ ≤ c̃E[exp(c̃m∆)]/Θ↓ε for some c̃ ∈ R>0. The canonical coupling of m∆ ∼
Po(d̄(k − 1)/k) and m∆↑ ∼ Po(d↑(k − 1)/k) from Observation 3.7b) gives m∆ ≤ m∆↑ and hence
ε′ ≤ c̃E[exp(c̃m∆↑)]/Θ↓ε. Finally, the moment generating function of the Poisson distribution gives
ε′ = O(Θ↓−ε). But ρ = ε/(1 + ε) and Θ↓ = n1−ρ yields Θ↓ε = nρ, thereby δ = n−2ρ and ε′,∆ =
O(n−ρ). Now, with α = ⊗

(a,h)∈[m∆]×[k]µ
∗|v′(a,h) and

Φ =
∏

a∈[m∆]

ψa(σ∗
v(a))

Z f(γ∗)
ln

 ∑
τ∈([q]k)m∆

α(τ)
∏

a∈[m∆]
ψa(τa)

 ,
notice that the arguments of the logarithm for both Φ∗ and Φ are in [ψm∆

↓ , ψm∆
↑ ] and that the

logarithm is ψm∆
↑ -Lipschitz on this domain, so

|Φ∗ − Φ| ≤ ψ3m∆
↑

∣∣∣∣∣∣
∑

τ∈([q]k)m∆

α∗(τ)
∏

a∈[m∆]
ψa(τa) −

∑
τ∈([q]k)m∆

α(τ)
∏

a∈[m∆]
ψa(τa)

∣∣∣∣∣∣ .
This yields |Φ∗ − Φ| ≤ 2ψ4m∆

↑ ∥α∗ − α∥tv = 2ψ4m∆
↑ ν◦(µ∗,v′) ≤

√
2ψ4m∆

↑
√
ι◦(µ∗,v′) with standard

bounds and Remark 3.49. Since we have the same bound |Φ| ≤ ψ3m∆
↑ , we can spare another ε′ from

above to obtain

Φf(n) = E[1EΦ] + O
(√

δ + n−ρ
)

= E[1{σ∗ ∈ BΓ
−}Φ] + O

(
n−ρ) .

The assertion follows by reintroducing w∗ using the Radon-Nikodym derivative in Φ.
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With (ψ∗
a,γa)a being iid given σ∗ and E[m∆] = d̄(k − 1)/k, Lemma 3.80 yields

Φf(n) = d̄(k − 1)
k

E
[
1{σ∗ ∈ BΓ

−} ln(Zf(ψ∗,γ))
]

+ O
(
n−ρ) ,

with w∗ = (v∗,ψ∗) ∼ w∗
◦,σ∗ , γ = (µg,G∗(σ∗)|v∗(h))h∈[k] and (w∗,G∗(σ∗)) conditionally independent

given σ∗.
3.3.3.10 Marginal Distribution for the Factor Contribution. Now, we work towards the discussion
in Section 3.3.1.8. Let γ = γn,σ, G∗(σ) = G∗

m,U (σ) and w⋆
◦, τ ∗

◦ , DΓ from Section 3.2.1.5. Let
(v⋆σ,τ ,ψ⋆τ ,γσ,τ ) ∼ w⋆

◦,σ,τ ⊗
⊗

h∈[k] π̌g,G∗(σ),σ,τ(h) for τ ∈ Dk
Γ,γ , further (τ ∗(σ),G∗(σ)) ∼ τ ∗

◦,σ ⊗ G∗(σ)
and τ ∗ = τ ∗(σ∗).

Lemma 3.81. We have Φf(n) = d̄(k−1)
k E[1{σ∗ ∈ BΓ

−} ln(Zf(ψ⋆τ∗ ,γσ∗,τ∗))] + O(n−ρ).

Proof. With Lemma 3.80, Observation 3.15, independence and µ∗
σ = µg,G∗(σ) we have

Φf(n) = d̄(k − 1)
k

E
[
1{σ∗ ∈ BΓ

−}E(σ∗, τ ∗)
]

+ O(n−ρ),

E(σ, τ) = E
[
ln
(
Zf

(
ψ⋆τ ,

(
µ∗
σ|v⋆

σ,τ (h)
)
h∈[k]

))]
, τ ∈ Dk

Γ,γ , γ = γn,σ.

Next, we use independence, expand the definition of v⋆σ,τ and obtain

E(σ, τ) = E

∑
v

∏
h∈[k]

1{σv(h) = τh}
|σ−1(τh)| ln

(
Zf

(
ψ⋆τ ,

(
µ∗
σ|v(h)

)
h∈[k]

)) .
The definition of π̌g,G,σ,τ(h) completes the proof.

Now, we can combine Lemma 3.81 with Corollary 3.54. Hence, we introduce the reweighted
marginals (v⋆σ,τ ,ψ⋆τ , γ̂σ,τ ) ∼ w⋆

◦,σ,τ ⊗
⊗

h∈[k] π̂g,G∗(σ),τ(h).

Lemma 3.82. We have Φf(n) = d̄(k−1)
k E[1{σ∗ ∈ BΓ

−} ln(Zf(ψ⋆τ∗ , γ̂σ∗,τ∗))] + O(n−ρ).

Proof. Fix σ, τ , G = [w]Γ↓
U ,σ with w ∈ G and ψ ∈ DΨ. Let Ě(σ, τ,G, ψ) = E[ln(Zf(ψ,γ))],

where γ ∼
⊗

h π̌g,G,σ,τ(h), and Ê(σ, τ,G, ψ) = E[ln(Zf(ψ,γ))], where γ ∼
⊗

h π̂g,G,τ(h). Let πh ∈
Γ(π̌g,G,σ,τ(h), π̂g,G,τ(h)) be a coupling for h ∈ [k] and (γ̌, γ̂) ∼

⊗
h πh with γ̌, γ̂ ∈ P([q])k. We have

Zf(ψ, γ̌), Zf(ψ, γ̂) ∈ [ψ↓, ψ↑], so the logarithm is ψ↑-Lipschitz on this domain, and thereby using
Observation 3.6b) we obtain

∆(σ, τ,G, ψ) =
∣∣∣Ě − Ê

∣∣∣ ≤ ψ↑E
[∑
τ ′

ψ(τ ′)
∣∣∣∣∣∏
h

γ̌h(τ ′
h) −

∏
h

γ̂h(τ ′
h)
∣∣∣∣∣
]

≤ 2ψ2
↑
∑
h

∥γ̌h − γ̂h∥tv.

Since this holds for any choice of coupling we have ∆ ≤ 2ψ2
↑
∑
h dw(π̌g,G,σ,τ(h), π̂g,G,τ(h)). With τ ∈

σ([n])k andD(σ, µ) from Corollary 3.54 this yields ∆ ≤ 2kψ2
↑D(σ, µg,G). Hence, taking the expectation
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and using c, C1 from Corollary 3.54b) with γσ,τ from Lemma 3.81 gives

∆ =
∣∣∣E[1{σ∗ ∈ BΓ

−} ln(Zf(ψ⋆τ∗ ,γσ∗,τ∗))] − E[1{σ∗ ∈ BΓ
−} ln(Zf(ψ⋆τ∗ , γ̂σ∗,τ∗))]

∣∣∣
≤ 2kψ2

↑E [D(σ∗,G∗(σ∗))] ≤ 2kψ↑

(
c

Θ↓C1
+ qP(m > m↑)

)
.

Recall that P(m > m↑) = o(1/n), Θ↓ = n1−ρ with ρ = c/(1 + c), c = C1/3, and notice that
(1 − ρ)C1 = 3ρ > ρ, so ∆ = o(n−ρ) and hence the assertion holds with Lemma 3.81.

3.3.3.11 The Factor Contribution. Now, we complete the discussion of Φf . First, we resolve the
reweighting, and then project onto P2

∗ ([q]). Let (ψ,γ) ∼ µΨ ⊗ π⊗k
g,G∗(σ∗) with G∗(σ∗) = G∗

m,U (σ∗).

Lemma 3.83. We have Φf(n) = d̄(k−1)
kξ E[Λ(Zf(ψ,γ))] + O(n−ρ).

Proof. Let γ∗ = γn,σ∗ and γ = γg,G∗(σ∗). With c from Lemma 3.52a) we have

P(∥γ − γ∗∥tv ≥ r) ≤ c2e
−c1cr ln(n) + P(m > m↑) = o(1/n)

since cr > 1/c1 is large. Lemma 3.82, using that the argument to the logarithm is in [ψ↓, ψ↑] (and the
leading coefficient in [0, d↑]), with E = {σ∗ ∈ BΓ

−, ∥γ − γ∗∥tv ≤ r} yields

Φf(n) = d̄(k − 1)
k

E[1E ln(Zf(ψ⋆τ∗ , γ̂σ∗,τ∗))] + O(n−ρ).

Resolving the Radon-Nikodym derivatives gives Φf(n) = d̄(k−1)
k E[1EΦ] + O(n−ρ) with

Φ =
∑
τ

ψ◦(τ)∏h γ
∗(τh)

Z f(γ∗)
· ψ(τ)
ψ◦(τ)

·
∏
h

γh(τh)
γ(τh) ln(Zf(ψ,γ))

=
∑
τ

ψ(τ)∏h γh(τh)∏h γ
∗(τh)

Z f(γ∗)∏h γ(τh)
ln(Zf(ψ,γ)).

On E we have γ∗(τh)/γ∗(τh) ≤ 1 + ψ↑∥γ∗ − γ∗∥∞, which with the corresponding lower bound yields
γ∗(τh)/γ∗(τh) = 1+O(r). With Observation 3.9d) and Observation 3.9a) we further have Z f(γ∗)/ξ =
1 + O(r2). Analogously to γ∗ we get γ(τh)/γ∗(τh) = 1 + O(r), so

Φ = (1 + O(r))
∑
τ

ψ(τ)∏h γh(τh)∏h γ
∗(τh)

ξ
∏
h γ

∗(τh) ln(Zf(ψ,γ)) = (1 + O(r))Λ(Zf(ψ,γ))
ξ

.

With |Φ| ≤ ψ2
↑ ln(ψ↑) and r = o(n−ρ) we have Φf(n) = d̄(k−1)

kξ E[1EΛ(Zf(ψ,γ))] + O(n−ρ). Since the
argument is still uniformly bounded, resolving E comes at a cost o(1/n).

Next, we show that we can replace πg,G∗(σ∗) by its projection π◦
g,G∗(σ∗) by using Lemma 3.56. For

this purpose we show that the factor contribution

Bf : P2([q]) → R, π 7→ d̄(k − 1)
kξ

E [Λ (Zf(ψ,γπ))] , (ψ,γπ) ∼ µΨ ⊗ π⊗k,

to the Bethe functional is Lipschitz in π with respect to dw.
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Lemma 3.84. There exists Lg such that Bf is L-Lipschitz.
Proof. Let π◦ ∈ Γ(π1, π2) be a coupling of π ∈ P2([q])2 and (ψ,γ1,γ2) ∼ µΨ ⊗ π⊗k

◦ with γ1,γ2 ∈
P([q])k. Using that Λ is L′-Lipschitz on [ψ↓, ψ↑] with L′ = ln(ψ↑) + 1, we have

∆ = |Bf(π1) −Bf(π2)| ≤ d↑L
′(k − 1)
kψ↓

E [|Zf(ψ,γ1) − Zf(ψ,γ2)|] .

With the triangle inequality, ψ ≤ ψ↑ and Observation 3.6b) this gives

∆ ≤ 2d↑L
′ψ2

↑(k − 1)
∑
h

1
k
E[∥γ1,h − γ2,h∥tv] = 2d↑L

′ψ2
↑(k − 1)E[∥γ1,1 − γ2,1∥tv].

This completes the proof since π◦ ∈ Γ(π1, π2) was arbitrary.

Now, we are finally ready to establish the easier part of Lemma 3.67.
Lemma 3.85. We have Φf(n) = E[Bf(π◦

g,G∗)] + O(n−ρ) with G∗ = G∗
m,U (σ∗).

Proof. With Lemma 3.83 we have Φf(n) = E[Bf(πg,G∗)] + O(n−ρ). Lemma 3.84 and Lemma 3.56b)
complete the proof, since dw ≤ q and P(m > m↑) = o(1/n).

3.3.3.12 Typical Events for the Variable Contribution. For the variable contribution to the Bethe
functional, let Φ = ln(Zg(G+(σ+))/Zg(G∩)) for Φv(n) = E[Φ] from Equation (9). Recall r(n), BΓ

+
from Section 3.3.3.6, B◦ from Section 3.3.3.7 and let d̄+ = km+/n.
Lemma 3.86. We have Φv(n) = E[1{σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
+ ∈ B◦}Φ] + o(n−1).

Proof. With E = {σ+ ∈ BΓ
+,σ

− ∈ BΓ
−, d̄

+ ∈ B◦} we have Φv(n) = E[1EΦ] + ε with

ε(n) = E
[
1¬EΦ

]
, Φ = E

[
Φ
∣∣∣m∩(σ+),σ+,σ−, d̄+

]
.

With Jensen’s inequality we can consider the atypical events separately, i.e.

|ε(n)| ≤ E[1{d̄+ ̸∈ B◦}|Φ|] + E[1{σ+ ̸∈ BΓ
+}|Φ|] + E[1{σ− ̸∈ BΓ

−}|Φ|].

With Φ = (n+ 1)ϕg(Zg(G+(σ+))) −nϕg(Zg(G∩)), Jensen’s inequality, the triangle inequality, c̃ from
Observation 3.30, Lemma 3.73, Lemma 3.72 and Observation 3.47 we have

|Φ| ≤ c̃

(
m+ +

Θ↓
n+1
2 +m∩(σ+) + nΘ↓

n

(n+ 1)2

)
≤ c̃(2m+ + n+ 1).

So, with Lemma 3.70, c from Corollary 3.12 and n′ = n+ 1 we have

E[1{d̄+ ̸∈ B◦}|Φ|] ≤ 2c̃n′

k
E[1{d̄n′ ̸∈ B◦}d̄n′ ] + c̃n′P(d̄n′ ̸∈ B◦) ≤ c′n′ exp

(
−c1r

2n′

1 + r

)

with c′ = c̃c2(2+k)/k, so E[1{d̄+ ̸∈ B◦}|Φ|] = o(1/n). With c from Observation 3.23b), independence
and c2

r > 2/c1 we have

E[1{σ+ ̸∈ BΓ
+}|Φ|] ≤ c̃

(2d↑
k

+ 1
)
c2n

′e−c1r2n′ = o(n−1),
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and E[1{σ− ̸∈ BΓ
−}|Φ|] = o(n−1) follows analogously.

The following result further restricts the very typical event in Lemma 3.86 to the typical event
that no variables are pinned in the second sweep.

Lemma 3.87. We have

Φv(n) = E[1{σ+ ∈ BΓ
+,σ

− ∈ BΓ
−, d̄

+ ∈ B◦,U+ = U∩}Φ] + O(n−ρ).

Proof. With Lemma 3.86 it is sufficient to consider E[1E|Φ|], where

E =
{
σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
+ ∈ B◦,U+ ̸= U∩

}
.

As opposed to the proof of Lemma 3.78 we cannot use Observation 3.30 since now the numbers of
variables do not coincide. Let A∩ ∪̇ A+ = [m+] be the partition of the standard factors of G+(σ+)
such that A∩ is the relabeling of the standard factors [m∩] in G∩. Further, let V↓ = U+ \ U∩ be the
additional pins and A↓ = {a ∈ A∩ : v+

a ([k]) ∩ V↓ ̸= ∅} with v+ being the neighborhoods in G+(σ+).
The bounds from the proof of Observation 3.30 and normalization of the external field for the last
variable give

Zg(G+(σ+)) ≤ ψ
|A+|
↑ Zg(G∩), Zg(G+(σ+)) ≥ ψ

|A+|+2|A↓|+|V↓|
↓ Zg(G∩).

This shows that |Φ| ≤ ln(ψ↑)(m+
∆ + 2|A↓| + |V↓|). Bounding |A↓| by the sum of the degrees of

i ∈ V↓ ∩ [n] in G∩ and taking the conditional expectation as in the proof of Lemma 3.78 gives the
bound ln(ψ↑)(m+

∆ + 2ckm∩
n |V↓ ∩ [n]| + |V↓|) with c from Corollary 3.18a). With c′ from Lemma 3.76

we get the bound ln(ψ↑)(c′ + 2cn+1
n (d̄+ r)|V↓ ∩ [n]| + |V↓|) on E , so for some cg ∈ R>0 we have

E[1E|Φ|] ≤ cP(U+ ̸= U) + cE[1{U+ ̸= U}|U+ \ U |] ≤ 2cE[|U+ \ U |].

As in the proof of Lemma 3.78, we trace this back to the indicators ǔ+
∆ for the variables [n], and

pinning probability θn+1/(n+ 1) for i = n+ 1. This yields

E[1E|Φ|] ≤ 2cE
[
np+

∆(θ−,θ+) + θ+

n+ 1

]
≤ c

(
n(Θ↓

n+1 − Θ↓
n)

n+ 1 − Θ↓
n

+
Θ↓
n+1

n+ 1

)
.

With Θ↓(n) = n1−ρ we have Θ↓
n+1 − Θ↓

n = (1 − ρ)
∫ n+1
n t−ρdt ≤ n−ρ, and hence the assertion follows

since E[1E|Φ|] = O(n−ρ).

3.3.3.13 Normalization Step for the Variable Contribution. Now, we simplify the underlying law using
the typical behavior. As before, we replace G∩ by G∗(σ−) = G∗

m,U (σ−), and m+
∆(σ+) by a Poisson

variable d ∼ Po(d̄) reflecting the degree of i = n+ 1. Recalling Lemma 3.76, we obtain the additional
wires-weight pairs given σ+ from Observation 3.19, i.e. we consider

(G∗(σ−),d,w∗(σ+)) ∼ G∗(σ−) ⊗ d⊗w∗⊗Z>0
+◦,n+1,i,σ+ .
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Since we have an additional variable, we have to adjust the definition

ψw|g,G(v, ψ) = E

 ∏
a∈[d]

ψa(σv(a))

 , σ ∼ µg,G ⊗ γ∗, (v, ψ) ∈ ([n+ 1]k × DΨ)d,

from Equation (8), where G is still a decorated graph on n variables.

Lemma 3.88. We have Φv(n) = E[1{σ− ∈ BΓ
−} ln(ψw|g,G∗(σ−)(w∗

σ+,[d]))] + O(n−ρ).

Proof. Let d and w∗(σ+) be independent of anything else and

E =
{
σ+ ∈ BΓ

+,σ
− ∈ BΓ

−, d̄
+ ∈ B◦,U+ = U∩

}
.

For n ≥ n◦ with n◦ from Lemma 3.76 and on E , as explained in Section 3.3.3.4 and conditional to
σ+, G∩, U+ and d+ = m+

∆+(σ+), we obtain G+(σ+) from G∩ by adding the variable i = n+ 1 with
external field γ∗ and d+ standard factors with wires-weight pairs from (v∗,ψ∗) = w∗ = w∗

σ+,[d+].
Hence, on E we have

r = Zg(G+(σ+))
G∩

∼
∑
σ+

ψg,G∩(σ+
[n])

Zg(G∩) γ∗(σ+
i )

∏
a∈[d+]

ψ∗
a(σ+

v∗(a)) = ψw|g,G∩(w∗).

We couple d+ and d using δ(σ+) ∼ Po(|m+
∆+(σ+) − d̄|) as in the proof of Lemma 3.79 to obtain∣∣∣ln (ψw|g,G∩

(
w∗
σ+,[d+]

))
− ln

(
ψw|g,G∩

(
w∗
σ+,[d]

))∣∣∣ ≤ δ(σ+) ln(ψ↑).

With Lemma 3.76 we can bound E[δ(σ+)] on E , so with Lemma 3.87 we have

Φv(n) = E
[
1E ln

(
ψw|g,G∩

(
w∗
σ+,[d]

))]
+ O

(
r(n) + n−ρ) ,

since the expectations can be bounded by c′ ln(ψ↑) with c′ from Lemma 3.76 and ln(ψ↑)d̄ respectively
for n ≤ n◦. This also shows that reducing E to {σ− ∈ BΓ

−} causes an error of O(n−ρ), and that with
the coupling from Lemma 3.75 we get

Φv(n) = E
[
1{σ− ∈ BΓ

−} ln
(
ψw|g,G∗(σ−)

(
w∗
σ+,[d]

))]
+ O

(
n−ρ) .

In a second normalization step we simplify w∗
σ+,[d] by establishing that i = n+1 typically does not

wire more than once to the same factor. As seen in Section 3.3.3.10, it is reasonable to explicitly control
the factor assignments. With σ+ ∈ [q]n+1, σ− = σ+

[n], γ
− = γn,σ− and σ◦ = σ+

i let (τ+
◦,n,σ+ ,h

+
◦,n,σ+) ∈

[q]k × [k] be given by

P(τ+
◦ = τ,h+

◦ = h) = W (τ, h)
Z

+
f (σ◦, γ−)

, Z
+
f (σ◦, γ−) =

∑
τ,h

W (τ, h),

W (τ, h) = 1{τh = σ◦}1
k
ψ◦(τ)

∏
h′∈[k]\{h}

γ−(τh′).
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So, with T +
σ+ = {(τ, h) ∈ [q]k × [k] : τh = σ◦, τ([k] \ {h}) ⊆ σ−([n])} we have (τ+

◦ ,h
+
◦ ) ∈ T + almost

surely. Further, for σ◦ ∈ σ−([n]) we have Z+
f (σ◦, γ−) = Z f(γ−)µ|∗(σ◦)/γ−(σ◦) with µ = µT|Γ,γ− .

For (τ, h) ∈ T + let (v+
◦,σ−,τ,h,ψ

+
◦,τ ) ∼ u(V+) ⊗ ψ⋆◦,τ with ψ⋆◦ from Section 3.2.1.5 and V+

σ−,τ,h = {v ∈
[n+ 1]k : vh = n+ 1, ∀h′ ∈ [k] \ {h} v(h′) ∈ σ−−1(τh′)}.

For d ∈ Z≥0 and (τ, h) ∈ T d
σ+ let w+

σ−,d,τ,h ∼
⊗

a∈[d](v+
◦,σ−,τ(a),h(a),ψ

+
◦,τ(a)) and(

G∗
m,U (σ−),d, τ+

σ+ ,h
+
σ+

)
∼ G∗

m,U (σ−) ⊗ d⊗ (τ+
◦,σ+ ,h

+
◦,σ+)⊗Z>0 . (12)

Finally, let G∗(σ−) = G∗
m,U (σ−), τ+ = τ+

σ+,[d], h
+ = h+

σ+,[d] and w+ = w+
σ−,d,τ+,h+ .

Lemma 3.89. We have Φv(n) = E[1{σ− ∈ BΓ
−} ln(ψw|g,G∗(σ−)(w+))] + O(n−ρ).

Proof. Let n+ = n+ 1 and i = n+ 1. Further, let V0 = V1 ∪̇ V2 with

V1 = {v ∈ [n+]k : |v−1(i)| = 1}, V2 = {v ∈ [n+]k : |v−1(i)| > 1}.

For a ∈ {0, 1} let (v◦,a,ψ◦,a) ∼ u(Va) ⊗ µΨ and let (v∗
◦,a,ψ

∗
◦,a) be given by the Radon-Nikodym

derivative ra(v, ψ) = ψ(σ+
v )/za(σ+) with za(σ+) = E[ψ◦,a(σ+

v◦,a
)]. With (v,ψ) = (v◦,0,ψ◦,0), P◦ =

P(v ∈ V2), P = P(v∗
◦,0 ∈ V2), vu ∼ u([n+]k) and using ra ∈ [ψ2

↓, ψ
2
↑] we have

P ≤ ψ2
↑P◦ =

ψ2
↑P(vu ∈ V2)
P(vu ∈ V0) ≤

ψ2
↑P(vu ∈ V2)
P(vu ∈ V1) =

ψ2
↑(nk+ − nk − knk−1)

knk−1 ≤ c

n
, c =

ψ2
↑2k

k
,

as in the proof of Observation 3.16c). Since the (v◦,1,v)-derivative is rv(v) = 1{v ∈ V1}/P(v ∈ V1),
the Radon-Nikodym derivative of (v∗

◦,1,ψ
∗
◦,1) with respect to (v,ψ) is r(v, ψ) = r1(v, ψ)rv(v) = 1{v ∈

V1}ψ(σ+
v )/z◦

1(σ+) with z◦
1(σ+) = E[1{v ∈ V1}ψ(σ+

v )]. Clearly, we have z◦
1(σ+) ≤ z0(σ+), and on the

other hand

R(σ+) = z0(σ+)
z◦

1(σ+) = 1 + E[1{v ∈ V2}ψ0(σ+
v )]

z◦
1(σ+) ≤ 1 + ψ↑P◦

ψ↓P(v ∈ V1) = 1 +
ψ2

↑P(vu ∈ V2)
P(vu ∈ V1) ,

so the bound for P from above yields 1 ≤ R(σ+) ≤ 1 + c
n .

Now, we turn back to Φv. With Lemma 3.88 we have Φv(n) = E[1E◦Φ] + O(n−δ), where

Φ = fG(w∗), fG(w) = ln(ψw|g,G(w)), G = G∗(σ−), w∗ = w∗
σ+,[d].

Notice that |Φ| ≤ d ln(ψ↑), and that w∗ given σ+, d are d iid copies of (v∗
◦,0,ψ

∗
◦,0) from above.

Hence, the bound on Φ with the union bound yield ∆ = |E[1E◦
1¬EΦ]| ≤ ln(ψ↑)E[d2]P . Recall

that d ∼ Po(d̄), hence E[d2] = d̄ + d̄2 ≤ d↑(d↑ + 1), and that P ≤ c/n, so ∆ = O(1/n) and
Φv(n) = Φ◦

v(n) + O(n−δ) with Φ◦
v(n) = E[1E◦

1EΦ]. Now, let w = (v,ψ) ∼ (v◦,0,ψ◦,0)⊗Z>0 and
w∗
σ+ ∼ (v∗

◦,1,ψ
∗
◦,1)⊗Z>0 be independent of anything else. With the shorthand w∗ = w∗

σ+ we have

Φ◦
v(n) = E

1E◦ ∏
a∈[d]

(1{va ∈ V1}r0(wa))fG(w[d])

 = E
[
1E◦fG(w∗

[d])R(σ+)−d
]
.
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Using |fG(w∗
[d])| ≤ dc′, c′ = ln(ψ↑), and 1 ≤ R ≤ 1 + c

n with R = R(σ+) further gives

∆ =
∣∣∣Φ◦

v(n) − E
[
1E◦fG(w∗

[d])
]∣∣∣ ≤ c′E

[
d
(
1 −R−d

)]
≤ c′E

[
d

((
1 + c

n

)d
− 1

)]
.

With d↑ ∼ Po(d↑), the standard coupling of d and d↑, Lipschitz continuity (for d↑ > 0) and the
moment generating function of Po(d↑) we have

∆ ≤ c′c

n
E
[
d2

↑

(
1 + c

n

)d↑−1
]

≤ c′c

n
E
[
ed↑λ

]
= O(n−1), λ = 2 + ln

(
1 + c

n

)
≤ 2 + c

n
.

This shows that Φv(n) = E[1E◦fG(w∗
[d])] + O(n−ρ). Now, due to the conditional independence given

σ+ it suffices to show that w+ and w∗
[d] given σ+, d have the same law. Hence, for fixed σ+ we have

to show that (v+,ψ+) ∼ (v∗,ψ∗), where

(v+,ψ+) =
(
v+

◦,τ+
◦ ,h

+
◦
,ψ+

◦,τ+
◦

)
, (v∗,ψ∗) =

(
v∗

◦,1,ψ
∗
◦,1

)
.

First, notice that the normalization constants coincide, i.e.

z1 =
∑
v

1{v ∈ V1}
knk−1 ψ◦(σ+

v ) =
∑

(τ,h)∈T +

1
k
ψ◦(τ)

∑
v

1{v ∈ V+}
nk−1 = Z

+
f ,

similar to the discussion in Section 3.2.1.5. For v ∈ V1 let τ(v) = σ+
v and h(v) ∈ [k] uniquely

determined by v(h(v)) = i. Notice that we have τ+
◦ = τ(v+

◦ ) and h+
◦ = h(v+

◦ ) by definition, and
T + = {(τ(v), h(v)) : v ∈ V1}. So, for an event E and with ψ ∼ µΨ we have

P((v+,ψ+) ∈ E) = E

 ∑
(τ,h)∈T +

∑
v∈V+

τ,h

ψ◦(τ)∏h′ ̸=h γ
−(τh′)ψ(τ)

kZ
+
f
∏
h′ ̸=h(nγ−(τh′))ψ◦(τ)

1{(v,ψ) ∈ E}


= E

 ∑
(τ,h)∈T +

∑
v∈V+

τ,h

ψ(τ)
knk−1z1

1{(v,ψ) ∈ E}


= E [r1(v◦,1,ψ◦,1)1{(v◦,1,ψ◦,1) ∈ E}] = P((v∗,ψ∗) ∈ E).

3.3.3.14 Gibbs Marginal Product for the Variable Contribution. We are ready to apply Proposition
3.48. Using the distribution (12) and the corresponding shorthands let (v+,ψ+) = w+, γ+ =
(µg,G∗(σ−)|v+(a,h))a∈[d],h̸=h+(a), recall Zv from Section 2.1.2.4 and let Φ = ln

(
Zv
(
d,ψ+,h+,γ+)),

where we dropped the redundant dependencies on γa,h(a) in the definition of Zv.

Lemma 3.90. We have Φv(n) = E[1{σ− ∈ BΓ
−}Φ] + O(n−ρ).

Proof. Recall n+, i, V1, (v◦,1,ψ◦,1), (v∗
◦,1,ψ

∗
◦,1), r1, E◦ from the proof of Lemma 3.89, and that

(v+
◦,τ+

◦ ,h
+
◦
,ψ+

◦,τ+
◦

) ∼ (v∗
◦,1,ψ

∗
◦,1), all for given σ+. First, we resolve the reweighting, i.e. we consider

(σ+,G∗(σ−),d,w) ∼ (σ+,G∗(σ−))⊗d⊗ (v◦,1,ψ◦,1)⊗Z>0 , and Lemma 3.89 yields Φv = Φ◦
v +O(n−ρ)
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with Φ◦
v = E[1E◦∏

a∈[d] r1 (wa) ln(ψw|g,G∗(σ−)(w[d]))]. Next, notice that V : [k] × [n]k−1 → V1 is a
bijection, where v′ = V (h, v) is given by v′

h = n+1 and v′ ◦η = v, with η : [k−1] → [k]\{h} denoting
the enumeration. Notice that v◦,1 ∼ V (h,v) with (h,v) ∼ u([k]) ⊗ u([n]k−1). So, with(

σ+,G∗(σ−),d,h,v,ψ
)

∼ (σ+,G∗(σ−)) ⊗ d⊗
(
u([k]) ⊗ u([n]k−1) ⊗ µΨ

)⊗Z>0

we have Φ◦
v = E[1E◦Φ∗], where Φ∗ = ∏

a∈[d] r1 (wa) ln(Z∗), w = (V (ha,va),ψa)a,

Z∗ = ψw|g,G∗(σ−)(w[d]) =
∑
σ◦
γ∗(σ◦)

∑
τ

α∗(τ)
∏
a∈[d]

ψa(t(τa, σ◦,ha)),

further α∗ = µ∗|v′ , v′ = v[d] ∈ ([n]k−1)d, µ∗ = µg,G∗(σ−), and τ ′ = t(τ, σ◦, h) ∈ [q]k given by τ ′
h = σ◦

and τ ′ ◦ η = τ using the enumeration η : [k − 1] → [k] \ {h}. Now, regarding α∗, the situation is
very similar to the proof of Lemma 3.80, in particular given d we have (µ∗,v′) ∼ µ∗ ⊗ u([n])⊗(k−1)d.
Hence, let C from Proposition 3.48b), ε = C1/3 and δ = Θ↓−2ε. Using ι◦ from Section 3.3.1.5 let
E = {σ− ∈ BΓ

−, ι◦(µ∗,v′) ≤ δ}. Hence, the bound |Φ∗| ≤ ln(ψd↑ )ψ2d
↑ ≤ ψ3d

↑ and Markov’s inequality
conditional to d give ∆ ≤ ε′ + O(n−ρ), where ∆ = |Φv − E[1EΦ]| and

ε′ = E
[
1{d > 0}C2((k − 1)d− 1)

δ

((k − 1)d
Θ↓

)C1

ψ3d
↑

]
.

Standard bounds imply ε′ ≤ c̃E[exp(c̃d)]/Θ↓ε for some c̃ ∈ R>0. The canonical coupling of d ∼ Po(d̄)
and Po(d↑) gives ε′ = O(Θ↓−ε). Recall that δ = n−2ρ and ε′,∆ = O(n−ρ) as in the proof of Lemma
3.80. Now, with α = ⊗

(a,h)∈[d]×[k−1]µ
∗|v′(a,h), further

Z =
∑
σ◦
γ∗(σ◦)

∑
τ

α(τ)
∏
a∈[d]

ψa(t(τa, σ◦,ha)),

and Φ = ∏
a∈[d] r1 (wa) ln(Z), notice that Z∗,Z ∈ [ψd↓ , ψd↑ ], so Lipschitz continuity of the logarithm

gives |Φ∗ −Φ| ≤ ψ3d
↑ |Z∗ −Z| ≤ 2ψ4d

↑ ∥α∗ −α∥tv. Remark 3.49 yields |Φ∗ −Φ| ≤
√

2ψ4d
↑
√
ι◦(µ∗,v′) ≤√

2ψ4d
↑

√
δ on E and hence

Φv = E[1EΦ] + O
(√

δ + n−ρ
)

= E[1{σ− ∈ BΓ
−}Φ] + O

(
n−ρ) .

The assertion follows by reintroducing w+ using the Radon-Nikodym derivative in Φ.

3.3.3.15 Marginal Distribution for the Variable Contribution. Now, we work towards the discus-
sion in Section 3.3.1.8. Using the distribution (12) and for σ+, d, τ , h let (w+,γσ−,d,τ,h) ∼ w+ ⊗⊗

a∈[d],h′∈[k]\{h(a)} π̌g,G∗(σ−),σ−,τ(a,h′), let γ = γσ−,d,τ+,h+ and (v+,ψ+) = w+.

Lemma 3.91. We have Φv(n) = E[1{σ− ∈ BΓ
−} ln(Zv(d,ψ+,h+,γ))] + O(n−ρ).

Proof. As for Lemma 3.81, the assertion is immediate using the definition of v+ and π̌g.

Let (w+, γ̂σ−,d,τ,h) ∼ w+ ⊗
⊗

a∈[d],h′∈[k]\{h(a)} π̂g,G∗(σ−),τ(a,h′), and γ̂ = γ̂σ−,d,τ+,h+ .

Lemma 3.92. We have Φv(n) = E[1{σ− ∈ BΓ
−} ln(Zv(d,ψ+,h+, γ̂))] + O(n−ρ).
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Proof. As for Lemma 3.82, let ∆ = |Ě − Ê| be the difference of Ě = E[ln(Zv(d, ψ, h,γ))], where
γ ∼

⊗
a,h′ ̸=h(a) π̌g,G,σ−,τ(a,h′), and Ê = E[ln(Zv(d, ψ, h,γ))], where γ ∼

⊗
a,h′ ̸=h(a) π̂g,G,τ(a,h′). For

couplings πa,h′ ∈ Γ(π̌g,G,σ−,τ(a,h′), π̂g,G,τ(a,h′)) with h′ ̸= h(a) we define (γ̌, γ̂) ∼
⊗

a,h′ ̸=h(a) πa,h′ anal-
ogously. With ψd↓ ≤ Zv(d, ψ, h, ·) ≤ ψd↑ and Observation 3.6b) we get

∆ ≤ ψ2d
↑
∑
σ◦
γ∗(σ◦)E

∑
τ

∣∣∣∣∣∣
∏

a,h′ ̸=h(a)
γ̌a,h′(τa,h′) −

∏
a,h′ ̸=h(a)

γ̂a,h′(τa,h′)

∣∣∣∣∣∣


≤ 2ψ2d
↑

∑
a,h′ ̸=h(a)

E
[
∥γ̌a,h′ − γ̂a,h′∥tv

]
.

Hence, we have ∆ ≤ 2ψ2d
↑
∑
a,h′ ̸=h(a) dw(π̌g,G,σ−,τ(a,h′), π̂g,G,τ(a,h′)), so with D(σ, µ) from Corollary 3.54

this yields ∆ ≤ 2d(k − 1)ψ2d
↑ D(σ−, µg,G). Taking the expectation and using Corollary 3.54b) with γ

from Lemma 3.91 gives

∆ =
∣∣∣E[1{σ− ∈ BΓ

−} ln(Zv(d,ψ+,h+,γ))] − E[1{σ− ∈ BΓ
−} ln(Zv(d,ψ+,h+, γ̂))]

∣∣∣
≤ E[2d(k − 1)ψ2d

↑ ]E
[
D(σ−,G∗(σ−))

]
= o(n−ρ)

as in the proof of Lemma 3.82 by coupling d, Po(d̄), so Lemma 3.91 yields the assertion.

3.3.3.16 The Variable Contribution. In this section we complete the discussion of Φv. First, we resolve
the reweighting, then we turn to the projection onto P2

∗ ([q]). Similar to Section 2.1.2.4 let

(d,ψ,h,γ) ∼ Po(d̄) ⊗ (µΨ ⊗ u([k]) ⊗ π⊗k
g,G∗(σ∗))

⊗Z>0

with G∗(σ∗) = G∗
m,U (σ∗), ψ = ψ[d], h = h[d] and γ = γ[d] by an abuse of notation.

Lemma 3.93. We have Φv(n) = E[ξ−dΛ(Zv(d,ψ,h,γ))] + O(n−ρ).

Proof. Let i = n + 1, γ− = γn,σ− , σ◦ = σ+
i and γ = γg,G∗(σ−). With Lemma 3.52a) we have

P(∥γ − γ∗∥tv ≥ r) = o(1/n). Lemma 3.92 with E = {σ− ∈ BΓ
−, ∥γ − γ∗∥tv ≤ r} yields

Φv(n) = E[1EΦ] + O(n−ρ), Φ = ln(Zv(d,ψ+,h+, γ̂)),

using |Φ| ≤ d ln(ψ↑) and independence. Using (d,ψ,h,γ) with σ∗ replaced by σ−, resolving the
Radon-Nikodym derivatives and reusing the terms 1/k to introduce h gives Φv(n) = E[1EΦ]+O(n−ρ),
where Φ = r ln(Zv(d,ψ,h,γ)) and

r =
∏
a∈[d]

∑
τ

1{τh(a) = σ◦}ψ◦(τ)∏h̸=h(a) γ
−(τh)

Z
+
f (σ◦,γ−)

· ψa(τ)
ψ◦(τ)

·
∏

h̸=h(a)

γa,h(τh)
γ(τh)

=
∏
a∈[d]

∑
τ

1{τh(a) = σ◦}ψa(τ)∏h̸=h(a) γa,h(τh)∏h̸=h(a) γ
−(τh)

Z
+
f (σ◦,γ−)∏h̸=h(a) γ(τh)

.

As in the proof of Lemma 3.83 we have γ−(τh)/γ∗(τh) = 1 + O(r) and γ(τh)/γ∗(τh) = 1 + O(r) on E .
For r(n) < ψ↓/2 we have γ− > 0 and hence Z+

f (σ◦,γ−) = Z f(γ−)µ|∗(σ◦)/γ−(σ◦) with µ = µT|Γ,γ−

as pointed out after the definition of Z+
f , above Equation (12). As in the proof of Lemma 3.83 with
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Observation 3.9i) and Observation 3.9j) this yields Z+
f (σ◦,γ−)/ξ = (1+O(r2))(1+O(r)) = 1+O(r).

Hence, there exists cg ∈ R>0 such that r ≤ (1 + cr)dr◦ and r◦ ≤ (1 + cr)dr, where

r◦ =
∏
a∈[d]

∑
τ

1{τh(a) = σ◦}ψa(τ)∏h̸=h(a) γa,h(τh)
ξ

.

Now, with Φ◦ = r◦ ln(Zv(d,ψ,h,γ)) and |Φ◦| ≤ ln(ψ↑)dψ2d
↑ we get

|E[1EΦ] − E[1EΦ◦]| ≤ E
[
ln(ψ↑)dψ2d

↑

(
(1 + cr)d − (1 + cr)−d

)]
= O(r).

Since ln(Zv(d,ψ,h,γ)) does not depend on σ◦, the sum over σ◦ with σ− ∼ σ∗ yields the assertion.

Next, we show that we can replace πg,G∗(σ∗) by its projection π◦
g,G∗(σ∗) by using Lemma 3.56. For

this purpose we show that the variable contribution

Bv : P2([q]) → R, π 7→ E
[
ξ−dΛ (Zv(d,ψ,h,γπ))

]
,

(d,ψ,h,γπ) ∼ Po(d̄) ⊗ (µΨ ⊗ u([k]) ⊗ π⊗k)⊗Z>0 ,

to the Bethe functional is Lipschitz in π with respect to dw.

Lemma 3.94. There exists Lg such that Bv is L-Lipschitz.

Proof. Let π◦ ∈ Γ(π1, π2) be a coupling of π ∈ P2([q])2. Further, let (γ1,γ2) ∼ (π⊗k
◦ )⊗Z>0 with

γ1,γ2 ∈ (P([q])k)Z>0 . With (d,ψ,h) from the definition of Bv let (d,ψ,h,γ1,γ2) ∼ d ⊗ ψ ⊗ h ⊗
(γ1,γ2). With the Lipschitz continuity of Λ yields

∆ = |Bv(π1) −Bv(π2)| ≤ E
[
ψd↑ (d ln(ψ↑) + 1) |Zv(d,ψ,h,γ1) − Zv(d,ψ,h,γ2)|

]
.

With the triangle inequality, ψ ≤ ψ↑ and Observation 3.6b) this gives

∆ ≤ E

ψ2d
↑ (d ln(ψ↑) + 1)

∑
a∈[d]

∑
h′ ̸=h(a)

∥γ1,a,h′ − γ2,a,h′∥tv


= E

[
ψ2d

↑ (d ln(ψ↑) + 1)d(k − 1)]E[∥γ1,1,1 − γ2,1,1∥tv
]
.

This completes the proof since π◦ ∈ Γ(π1, π2) was arbitrary.

Now, we finally obtain the asymptotics of Φv.

Lemma 3.95. We have Φv(n) = E[Bv(π◦
g,G∗)] + O(n−ρ) with G∗ = G∗

m,U (σ∗).

Proof. With Lemma 3.93 we have Φv(n) = E[Bv(πg,G∗)] + O(n−ρ). Lemma 3.94 and Lemma 3.56b)
complete the proof, since dw ≤ q and P(m > m↑) = o(1/n).

3.3.3.17 Proof of Proposition 3.5. First, we establish Lemma 3.67 and Proposition 3.66. Then, we
establish a stronger version of Proposition 3.5 for graphs with external fields.

Proof of Lemma 3.67. Lemma 3.67 follows from Lemma 3.85 and Lemma 3.95 with Equation (9).
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Proof of Proposition 3.66. With G∗ = G∗
m,U (σ∗) let cg ∈ R>0 be such that |Φ∆,n − E[B(π◦

g,G∗)]| ≤
cn−ρ. Recall that |E[nϕg(G∗

n)]| ≤ c′(d↑n
k + 1

2n
1−ρ) with c′ from Observation 3.30 using Observation

3.47, and notice that Φ∆,0 = E[nϕg(G∗
n)] for n = 1. With |B| ≤ E[ψd↑ Λ(ψd↑ )]+ d̄ψ↑Λ(ψ↑) ≤ c′ for some

c′
g ∈ R>0 the telescoping sum with the triangle inequality yields

|E[ϕg(G∗)] − E[B(π◦
g,G∗)]| ≤ O(n−1) + c

n

n−1∑
n′=2

n′−ρ = O(n−1) + c

n

∫ n−1

1
⌈t−ρ⌉dt

≤ O(n−1) + c

n

∫ n−1

1
t−ρdt = O(n−1) + c((n− 1)1−ρ − 1)

(1 − ρ)n ,

which shows that E[ϕg(G∗)] = E[B(π◦
g,G∗)] + O(n−ρ) and thereby completes the proof.

In the remainder we let π = π◦
g,G∗

m,U (σ∗) ∈ P2
∗ ([q]) be the projected marginal distributions including

pins. On the other hand, we let U = ∅ in the remainder, where we also cover the case d̄ = 0. Now,
we turn to Proposition 3.5 for graphs with external fields.
Proposition 3.96. Notice that the following holds.
a) We have E[ϕg(G∗

m(σ∗))] = E[B(π)] + O(n−ρ).
b) For d = km/n ≤ d↑ we have E[ϕg(G∗

m(σ∗))] = E[Bd(π)] + O(n−ρ).
c) We have E[ϕg(G∗

m∗(σ∗))] = E[B(π)] + O(δm + εm + n−ρ).
Proof. Proposition 3.66, Proposition 3.50 and Θ↓ = n1−ρ yield E[ϕg(G∗

m(σ∗))] = E[B(π)] + O(n−ρ)
for d̄ > 0. Recall from the proof of Proposition 3.65 that ϕg(G∗

m(σ∗)) = ϕg(G∗
m(σ̂m)) = 0 and B ≡ 0

for d̄ = 0, so Part 3.96a) holds. The remainder follows similar to the proof of Proposition 3.65, but
easier since the transition from σ̂ to σ∗ is not required.

Observation 3.21 yields the corresponding results for graphs without external fields and thereby
completes the proof of Proposition 3.5.
3.3.3.18 Proof of Theorem 2.2. The following result for graphs with external fields implies Theorem
2.2. Recall ρ from Section 3.3.3 and that m↔ ≡ 0, U = ∅, t↔ = 1 and Θ↓ = 0, i.e. we consider
standard graphs with external fields only.
Theorem 3.97. Notice that the following holds.
a) We have E[ϕg(G∗

m(σ∗))] = B↑(d̄) + O(n−ρ).
b) For d = km/n ≤ d↑ we have E[ϕg(G∗

m(σ∗))] = B↑(d) + O(n−ρ).
c) We have E[ϕg(G∗

m∗(σ∗))] = B↑(d̄) + O(δm + εm + n−ρ).
Proof. The assertion follows from Proposition 3.65, Proposition 3.96, Bd ≤ B↑(d), and ρ ∈ (0, 1/4) as
discussed in the introduction of Section 3.3.3.

Observation 3.21 yields the corresponding results for graphs without external fields and thereby
completes the proof of Theorem 2.2.

3.4 Relative Entropy, Condensation and Mutual Information

In this section we derive Theorem 2.3, Theorem 2.4 and Theorem 2.5 from Theorem 3.97, for both
graphs with and without external fields over more general factor counts m∗. We also establish
Lipschitz continuity in the average degree for all key quantities, i.e. the corresponding versions of
Proposition 3.2c). Let m↔ ≡ 0, U = ∅ and ρ from Section 3.3.3.
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3.4.1 The Relative Entropy. We first discuss the annealed free entropy in Section 3.4.1.1, and
then turn to the proof of Theorem 2.3 in Section 3.4.1.2.
3.4.1.1 The Annealed Free Entropy. In this section we briefly discuss the properties of the annealed
free entropy. For this purpose recall ϕa(d) = d

k ln(ξ) from Section 2.1.2.5.

Observation 3.98. Let ϕ(m) = 1
n ln(E[Zg(G)]).

a) There exists cg ∈ R>0 such that ϕ is kc/n-Lipschitz and |ϕ(m)| ≤ ckm/n.
b) We have ϕ(m) = ϕa(km/n) + O(1/n) for m ≤ m↑.
c) We have E[ϕ(m∗)] = ϕa(d̄) + O(εm + δm + n−1), so E[ϕ(m)] = ϕa(d̄) + O(

√
ln(n)/n).

Proof. With the proofs of Observation 3.30 and Lemma 3.31 we get |ϕ(m)| ≤ cm
n and |ϕ(m′

1) −
ϕ(m′

2)| ≤ c
n |m′

1 −m′
2| for m′ ∈ Z2

≥0 and c = ln(ψ↑). With Lemma 3.24a) we have ϕ(m) = ϕa(km/n)+
O(1/n) for m ≤ m↑. With Part 3.98a) and the expectation bound we have E[ϕ(m∗)] = E[1{|d̄∗ − d̄| ≤
δm}ϕ(m∗)] + O(εm), so e.g. with Part 3.98b) and the probability bound we get E[ϕ(m∗)] = ϕa(d̄) +
O(εm + δm + n−1). The result for m then follows with Corollary 3.12 and r = c′√ln(n)/n for large
c′.

3.4.1.2 Proof of Theorem 2.3. The Nishimori ground truth establishes a finite size connection between
the quenched free entropies, the annealed free entropy and the relative entropies.

Observation 3.99. With ϕ(m) = 1
n ln(E[Zg(G)]) we have

E[ϕg(G∗(σ̂))] = ϕ(m) +DKL(G∗(σ̂)∥G) ≥ ϕ(m) −DKL(G∥G∗(σ̂)) = E[ϕg(G)].

Proof. Notice that Observation 3.22c) yields both DKL(G∗(σ̂)∥G) = E[ϕg(G∗(σ̂))] − ϕ(m) and
DKL(G∥G∗(σ̂)) = ϕ(m) − E[ϕg(G)].

The asymptotics from Theorem 3.97 using Corollary 3.35 and from Observation 3.98 with the first
equality in Observation 3.99 yield the asymptotics of DKL(G∗(σ̂)∥G). Now, we obtain Theorem 2.3
for graphs with external fields using the results of Section 3.2.2.

Theorem 3.100. Let δ(m) = 1
nDKL(σ∗,G∗(σ∗)∥σg,G,G) and δ∗(d) = B↑(d) − ϕa(d).

a) We have δ(m) = δ∗(km/n) + O(n−ρ) for km/n ≤ d↑.
b) We have E[δ(m∗)] = δ∗(d̄) + O(εm + δm + n−ρ), so E[δ(m)] = δ∗(d̄) + O(n−ρ).

Proof. The Radon-Nikodym derivative of (σ∗,G∗(σ∗)) with respect to (σg,G,G) is

(σ,G) 7→ γ∗⊗n(σ)ψg,G(σ)Zg(G)
ψm(σ)ψg,G(σ)

= Zg(G)
r̂(σ)Zm

,

and thereby δ(m) = ϕ∗(m) − m
n E[ln(Z f(γ∗))] = ϕ∗(m) − ϕ(m) + δ′(m) using Observation 3.11e) and

with ϕ∗(m) = E[ϕg(G∗(σ∗))], ϕ(m) = 1
n ln(Zm) and δ′(m) = 1

nDKL(σ∗∥σ̂). For Part 3.100a) we
combine Theorem 3.97b) with Observation 3.98b) and Observation 3.29b). For Part 3.100b) we use
Observation 3.29b), Observation 3.11e) and 3.11f) to obtain

0 ≤ E[δ′(m∗)] ≤ c

n
+ E

[
1{m∗ > m↑}2 ln(ψ↑)m∗

n

]
= O

( 1
n

+ εm

)
.

Now, the assertion follows with Theorem 3.97c), Observation 3.98c) and Corollary 3.12.
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Let G◦,m, G∗
◦,m(σ∗) ∈ G be the graphs without external fields from Section 2.1.2.1. We use

G = Gm∗ , G◦ = G◦,m∗ , G∗(σ∗) = G∗
m∗(σ∗) and G∗

◦(σ∗) = G∗
◦,m∗(σ∗). Recall Zγ∗(G) from Section

2.1.2.1 and σγ∗,G from Section 2.1.2.5 for G ∈ G. The expectation in Theorem 3.100b) recovers

nE[δ(m∗)] = DKL(σ∗,G∗(σ∗)∥σg,G,G|m∗) = DKL(σ∗,G∗(σ∗)∥σg,G,G).

Let r(σ, [G]Γ) = Zg(G)/(r̂(σ)Zm) be the Radon-Nikodym derivative of (σ∗,G∗(σ∗)) with respect to
(σg,G,G) from the proof of Theorem 3.100. Further, let

r◦(σ,G) = γ∗⊗n(σ)ψg,G(σ)Zγ∗(G)
E[ψg,G◦(m)(σ)]γ∗⊗n(σ)ψg,G(σ) = γ∗⊗n(σ)Zg([G]Γ)

ψm(σ)
= r(σ, [G]Γ)

be the Radon-Nikodym derivative of (σ∗,G∗
◦(σ∗)) with respect to (σγ∗,G◦ ,G◦). Combining this with

Observation 3.21 completes the proof of Theorem 2.3 since

DKL(σ∗,G∗(σ∗)∥σg,G,G) = E
[
ln
(
r
(
σ∗, [G∗

◦(σ∗)]Γ
))]

= E [ln (r◦ (σ∗,G∗
◦(σ∗)))]

= DKL(σ∗,G∗
◦(σ∗)∥σγ∗,G◦ ,G◦).

3.4.2 The Condensation Threshold. In this section we establish Theorem 2.4. First, we show
Theorem 2.4a) in Section 3.4.2.1, followed by the proof of Theorem 2.4b) in Section 3.4.2.2.
3.4.2.1 The Replica Symmetric Regime. Recall that (µΨ, γ

∗, d̄) ∈ Pr means that B↑(d̄) = ϕa(d̄).

Lemma 3.101. Assume that B↑(d̄) = ϕa(d̄) and let ϕ(m) = E[ϕg(G)].
a) We have ϕ(m) = ϕa(d̄) + O(n−ρ/2) if d̄ = km/n.
b) We have E[ϕ(m∗)] = ϕa(d̄) + O(δm + εm + n−ρ/2), so E[ϕ(m)] = ϕa(d̄) + O(n−ρ/2).

Proof. Using Theorem 3.97b), Corollary 3.35a) and B↑(d̄) = ϕa(d̄) let cg ∈ R>0 be such that |ϕ̂(m) −
ϕa(d̄)| ≤ r, where ϕ̂(m) = E[ϕg(G∗(σ̂))] and r = cn−ρ. With ĉ from Lemma 3.38 and Ê = {|G∗(σ̂) −
ϕ̂(m)| < r} we have P(¬Ê) ≤ ĉ2 exp(−ĉ1n

1−2ρ). Further, with

n◦,g =
( ln(2ĉ2)

ĉ1

)1/(1−2ρ)

we have P(Ê) ≥ 1/2 for n ≥ n◦ (for n ≤ n◦ we use |ϕ(m)−ϕa(d̄)| ≤ 1
k ln(ψ↑)d↑n

ρ/2
◦ n−ρ/2). Notice that

Êa = {|G∗(σ̂)−ϕa(d̄)| < 2r} holds on Ê by the triangle inequality, so with Ea = {|ϕg(G)−ϕa(d̄)| < 2r},
Z = Zg(G)1Ea and Z = E[Z] Observation 3.22c) yields

Z = ZmE
[
Zg(G)
Zm

1Ea

]
= ZmP(Êa) ≥ 1

2Zm.

Further, we have Z2 = exp(2nϕg(G))1Ea ≤ exp(2nϕa(d̄)+2rn) = e2rnZ
2
m, using Ea and the definition

of ϕa. Now, the Paley-Zygmund inequality yields

P
(
Z ≥ 1

2Z
)

≥ Z
2

4E[Z2] ≥ Z
2
m

16Z2
m
e−2rn > 0.
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Using Z ≤ Zg(G) and Z ≥ 1
2Zm gives Zg(G) ≥ 1

4Zm on Z ≥ 1
2Z, so

P = P
(
ϕg(G) ≥ ϕa(d̄) − ln(4)

n

)
= P

(
Zg(G) ≥ 1

4Zm

)
≥ Z

2
m

16Z2
m
e−2rn 1

16e
−2rn > 0.

Now, with c◦ from Lemma 3.36 and r◦ =
√

1
c◦

1n
ln(2c◦

2
P ) we have

P
(
ϕg(G) ≥ ϕa(d̄) − ln(4)

n
, |ϕg(G) − ϕ(m)| < r◦

)
≥ P − c◦

2e
−c◦

1r
2
◦n = 1

2P > 0.

On this event we have ϕ(m) ≥ ϕa(d̄) − r◦ − ln(4)
n , which establishes Part 3.101a) since ϕa(d̄) ≥ ϕ(m)

by Observation 3.99 and Lemma 3.24a), and further

r◦ + ln(4)
n

=
√

2
c◦

1
r + ln(32c◦

2)
c◦

1n
+ ln(4)

n
≤ c′n−ρ/2, c′ =

√
2c+ ln(32c◦

2)
c◦

1
+ ln(4).

Observation 3.30 and Lemma 3.31 give E[ϕ(m∗)] = ϕ(⌊d̄n/k⌋) + O(δm + εm + n−1), so Part 3.101a)
completes the proof.

Observation 3.21 establishes Theorem 2.4a).
3.4.2.2 The Condensation Regime. As opposed to all other results, Theorem 2.4b) does not address
asymptotics, only limits, so we don’t discuss finite size approximations like Lemma 3.101a). Let

ϕq↑(d̄) = lim sup
n→∞

E[ϕg(Gm∗)], ϕq↓(d̄) = lim inf
n→∞

E[ϕg(Gm∗)].

Lemma 3.102. There exists cg ∈ R>0 such that for d ∈ [0, d↑] we have

ϕa(d) − ϕq↑(d) ≥ c sup
d′∈[0,d]

(B↑(d′) − ϕq↓(d′))2.

Proof. Observation 3.99, Observation 3.98c), Theorem 3.97c) and Corollary 3.35b) yield

B↑(d) ≥ ϕa(d) ≥ ϕq↑(d) ≥ ϕq↓(d).

For d′ ∈ [0, d] with δ∗(d′) = 0, where δ∗(d) = B↑(d) − ϕa(d), we have ϕq↓(d′) = ϕq↑(d′) = ϕa(d′) =
B↑(d′) by Lemma 3.101b), and hence ϕa(d)−ϕq↑(d) ≥ c(B↑(d′)−ϕq↓(d′))2 for all c ∈ R. Hence, assume
that δ∗(d′) > 0, let m′

n = ⌊d′n/k⌋ and mn = ⌊dn/k⌋. Notice that m′
n ≤ mn ≤ d↑n/k. Fix ε ∈ (0, 1)

with ε < δ∗(d)/2 and let δ′(n) = ϕ∗(m′) − ϕ(m′) with ϕ∗(m) = E[ϕg(G∗(σ∗))] and ϕ(m) = E[ϕg(G)].
With c̃g satisfying both Theorem 3.97c) and Observation 3.98c) for any small δm ≥ k/n, εm ≥ 0 and
using n−ρ, let n◦(ε) = (ε/c̃)−ρ, so for n ≥ n◦(ε) we have |ϕ∗(m′)−B↑(d′)| ≤ ε and |ϕ̄(m′)−ϕa(d′)| ≤ ε,
where ϕ̄(m) = 1

n ln(Zm). This yields δ′(n) > 0 since

ϕ∗(m′) ≥ B↑(d′) − ε > ϕa(d′) + ε ≥ ϕ̄(m′) ≥ ϕ(m′).

With c◦ from Lemma 3.36, c∗ from Lemma 3.38, ĉ from Corollary 3.25a) and the canonical coupling
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(G,G′) of Gm and Gm′ , meaning G′ = R(G) with R([w]Γ) = [w[m′]]Γ, we have

P (n) = P(ϕg(G′) ≤ ϕ(m′) + εδ′)
≤ c◦

2e
−c◦

1ε
2n + P

(
ϕg(G′) ≤ ϕ(m′) + εδ′, |ϕg(G) − ϕ(m)| < ε

)
≤ c◦

2e
−c◦

1ε
2n + E

[
Zg(G)

exp(n(ϕ(m) − ε))1{ϕg(G′) ≤ ϕ(m′) + εδ′}
]

= c◦
2e

−c◦
1ε

2n + en(ϕ̄(m)−ϕ(m)+ε)P
(
ϕg(R(G∗(σ̂))) ≤ ϕ(m′) + εδ′) ,

where we used Observation 3.22c). Observation 3.13 yields R(G∗(σ∗)) ∼ G∗
m′(σ∗), so Corollary

3.25a) with Lemma 3.38 yields

P ≤ c◦
2e

−c◦
1ε

2n + ĉen(ϕ̄(m)−ϕ(m)+ε)P
(
ϕg(G∗

m′(σ∗))) ≤ ϕ(m′) + εδ′)
≤ c◦

2e
−c◦

1ε
2n + ĉc∗

2 exp(nβε(n)), βε(n) = ϕ̄(m) − ϕ(m) + ε− c∗
1(1 − ε)2δ′2,

where we used that ϕ(m′) + εδ′ = ϕ∗(m′) − (1 − ε)δ′. For β(ε) = lim infn→∞ βε(n) taking the
limits yields β(ε) = ϕa(d) − ϕq↑(d) − c∗

1(1 − ε)2(B↑(d′) − ϕq↓(d′))2 + ε. On the other hand, Lemma
3.36 yields P ≥ 1 − c◦

2 exp(−nβ′
ε(n)) with β′

ε(n) = c◦
1ε

2δ′2. Since we assume δ∗(d) > 0, we have
β′(ε) = lim infn→∞ β′

ε(n) = c◦
1ε

2(B↑(d′) − ϕq↑(d′))2 > 0. This shows that limn→∞ P (n) = 1, which in
turn yields β(ε) ≥ 0. Since β is a quadratic polynomial in ε, and in particular continuous, we have
β(0) ≥ 0, so the assertion holds with c∗

1.

Observation 3.21 establishes Theorem 2.4b).
3.4.2.3 The Condensation Threshold. Recall from Theorem 2.3 that δ∗(d) = B↑(d) − ϕa(d) ≥ 0.
Theorem 2.4b) implies that δ↑(d) = ϕa(d) − ϕq↑(d) ≥ 0, so in particular δ↓(d) = ϕa(d) − ϕq↓(d) ≥
δ↑(d) ≥ 0. Now, looking at Theorem 2.4b) through the eyes of the annealed free entropy gives

δ↑(d) ≥ c sup
d′∈[0,d]

(δ∗(d′) + δ↓(d′))2 ≥ c sup
d′∈[0,d]

(δ∗(d′) + δ↑(d′))2.

With Theorem 2.4a) suggests that ϕq↓(d) = ϕq↑(d) = ϕa(d) = B↑(d) for d ∈ [0, dcond), since δ∗(d) = 0,
and in particular (p, γ∗, d) ∈ Pr. For d ∈ (dcond,∞) there exists d′ ∈ [dcond, d) such that δ∗(d′) > 0,
so Theorem 2.4b) suggests that δ↑(d) > 0. But then Theorem 2.4a) requires that δ∗(d) > 0 and thus
(p, γ∗, d) ∈ Pc. Since δ∗(0) = 0 and δ∗ is Lipschitz, we have (p, γ∗, dcond) ∈ Pr.

3.4.3 The Mutual Information. We turn to the proof of the last main result. We show that the
mutual information for graphs with external fields converges to ι∗(d) = d

kξE[Λ(ψ(σ))] − B↑(d) from
Theorem 2.5, and then obtain Theorem 2.5 as a corollary.

Theorem 3.103. Let ι(m) = 1
nI(σ∗,G∗(σ∗)).

a) We have ι(m) = ι∗(km/n) + O(n−ρ) for km/n ≤ d↑.
b) We have E[ι(m∗)] = ι∗(d̄) + O(εm + δm + n−ρ), so E[ι(m)] = ι∗(d̄) + O(n−ρ).

We prove Theorem 3.103 in three parts. For this purpose recall the notions from Section 3.3.1.1 and
σ∗

g from Section 3.2.2.4. First, we split ι into three contributions, the ground truth entropy H(γ∗), the
conditional cross entropy η(m) = E[E[H(σ∗

g,G∗(σ∗)∥σg,G∗(σ∗))|G∗(σ∗)]] and the conditional relative
entropy δ(m) = E[E[DKL(σ∗

g,G∗(σ∗)∥σg,G∗(σ∗))|G∗(σ∗)]].
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Lemma 3.104. We have ι(m) = H(γ∗) − η(m) + δ(m).

The proof is presented in Section 3.4.3.1. Then we determine the limit of η.

Lemma 3.105. Notice that the following holds.
a) We have η(m) = H(γ∗) − ι∗(km/n) + O(n−ρ) for km/n ≤ d↑.
b) We have E[η(m∗)] = H(γ∗) − ι∗(d̄) + O(εm + δm + n−ρ).

The proof is presented in Section 3.4.3.2. Finally, we complete the proof of Theorem 3.103 in
Section 3.4.3.3, where we also establish Theorem 2.5.
3.4.3.1 The Entropy Decomposition. Using G∗ = G∗(σ∗), recall that (σ∗,G∗) ∼ (σ∗

g,G∗ ,G∗) from
Observation 3.27b), so we have nι(m) = DKL(σ∗

g,G∗∥σ|G∗), using (σ,G∗) ∼ σ∗ ⊗G∗, by the chain
rule of the relative entropy. The decomposition into the (conditional) cross entropy and the entropy
gives nι(m) = H(σ∗

g,G∗∥σ|G∗) − H(σ∗
g,G∗ |G∗). Using linearity of the cross entropy in the first

component and independence, we can take the expectation over G∗ to obtain H(σ∗
g,G∗∥σ|G∗) =

H(σ∗) since σ∗
g,G∗ ∼ σ∗. We split the latter entropy into the cross entropy and the relative entropy

with respect to σg, yielding H(σ∗
g,G∗ |G∗) = H(σ∗

g,G∗∥σg,G∗ |G∗) −DKL(σ∗
g,G∗∥σg,G∗ |G∗), and hence

ι(m) = H(γ∗) − η(m) + δ(m).
3.4.3.2 The Cross Entropy Contribution. By the definition of the cross entropy and σg,G we have
H(σ∗

g,G∥σg,G) = E[− ln(ψg,G(σ∗
g,G)/Zg(G))], so Observation 3.27b) yields

η(m) = E [ϕg(G∗)] − E
[ 1
n

ln
(
ψg,G∗(σ∗)

)]
.

Unlike the partition function Zg, the weight ψg,G∗(σ)(σ) ∼ γ∗⊗n(σ)∏a∈[m]ψ
∗
a(σv∗(a)) factorizes, where

(v∗,ψ∗) ∼ w∗⊗m
◦,σ , and hence η(m) = E[ϕg(G∗)] +H(γ∗) − m

n E[ln(ψ∗(σ∗
v∗))], where (v∗,ψ∗) ∼ w∗

◦,σ∗ .
Resolving the Radon-Nikodym derivative yields

η(m) = E[ϕg(G∗)] +H(γ∗) − m

n
E
[

Λ(ψ(σ∗
v))

Z f(γ∗)

]

with (σ∗,v,ψ) ∼ γ∗⊗n⊗u([n]k)⊗µΨ. Hence, with Observation 3.9d), Observation 3.23b) and Theorem
3.97b) we obtain Part 3.105a), since σ∗

v ∼ σ. For Part 3.105b) we notice that |E[d̄∗]− d̄| ≤ δm +d↑εm,
hence Observation 3.9d), Observation 3.23b) and Theorem 3.97c) complete the proof.
3.4.3.3 Proof of Theorem 2.5. Part 3.103a) is immediate from Lemma 3.104, Lemma 3.105a) and
Observation 3.29c). Part 3.103b) follows from Lemma 3.104, Lemma 3.105b), Observation 3.29c)
and the expectation bound for the relative entropy and m∗ > m↑, since the proof of Observation
3.29 reveals that the (σg,G,σ

∗
g,G)-derivative is rG(σ) = ψg,G(σ)/(γ∗⊗n(σ)Zg(G)), thereby establishing

| ln(rG(σ))| ≤ 2m ln(ψ↑) and further DKL(σ∗
g,G∥σg,G) ≤ 2m ln(ψ↑) for G ∈ G. This completes the

proof of Theorem 3.103. Theorem 2.5 follows with Observation 3.21 and analogously to the derivation
of Theorem 2.3 from Theorem 3.100.

3.5 Additional Discussion

In Section 3.5.1 we discuss the remaining cases k = 1 and q = 1, as well the treatment of ground truths
that are not fully supported. In Section 3.5.2 we translate the main results to graphs with external
fields. Different representations of B and ∇ (cf. Section 3.3.2) are discussed in Section 3.5.3 that
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are both instructive and of formal importance. Lipschitz continuity, boundedness and convergence in
probability for the target quantities is discussed in Section 3.5.4. The closure properties for POS are
discussed in Section 3.5.5, followed by the proof of Proposition 2.1 in Section 3.5.6. In Section 3.5.7,
we translate the main results to all related standard models, that is, various versions of the uniform
and the binomial model. There, we also discuss (un-) balanced problems for the general case. The
SBM is then discussed in Section 3.5.9, the spin glass version in Section 3.5.10, and graphical channels
are treated in Section 3.5.11. Finally, we discuss some open problems in Section 3.5.12.

3.5.1 Embeddings and Projections. In this section we argue that k, q ∈ Z>0 can be chosen
arbitrarily large, which in particular covers the case q = 1, and the case k = 1.

Observation 3.106. We may choose k and q arbitrarily large and assume that γ∗ is fully supported
without loss of generality.

Proof. These transformations with respect to the assumptions will be discussed in Section 3.5.1 in
greater detail. Details on why it is sufficient to consider the weights ψg for the finite size models can
be found in Section 3.5.7. For a given model (µΨ, γ

∗) such that the support of γ∗ is [q′] with q′ ≤ q
consider the model given by the restriction ψ′ : [q′]k → R>0, σ 7→ ψ(σ), with law µ′

Ψ, suggesting that
the restriction γ∗ ∈ P([q′]) is now fully supported. Notice that the partition functions and Gibbs
measures of both the null model and teacher-student model are not affected because [q]n \ [q′]n is
a null set under γ∗⊗n, hence the left hand sides in the results are not affected. We observe that
the limiting quantities, i.e. the Bethe functional, the annealed free entropy density and the limiting
mutual information are also invariant to this restriction.

For k′ ≥ k, q′ ≥ q let the projection f : [q′] → [q] be given by f(σ) = σ for σ ∈ [q] and f(σ) = q
otherwise. Further, let ψ′ : [q′]k′ → R>0, σ 7→ ψ((f(σh))h∈[k]), so ψ′ does not depend on the additional
coordinates, and only depends on the color class C = {σ :∈ [q′] : σ ≥ q}. Let γ′ ∈ P([q′]) be given
by γ′(σ) = γ∗(σ) for σ < q and by γ′(σ) = γ∗(q)/(q′ − q + 1) for σ ≥ q. It is sufficient to observe
that the weights do not depend on the additional coordinates, thus its distribution is the same under
both null models, hence the reweighting for the teacher-student model is not affected, and thereby
the teacher-student model weight function is not affected. The coefficient for the Poisson factor count
m changes, which results in the consideration of the average degree kd̄/k′. This exactly corresponds
to the rescaling of the limiting quantities.

3.5.2 External Fields. In this section we follow up on the discussion of graphs with external fields in
Section 3.1.3. For η : [q] → R>0 and G = (v, ψ) ∈ G let [G]Γη = G′ = (v′

a, ψ
′
a)a∈A with A = [m] ∪̇ [n] be

given by G′
[m] = G, G′

a = (a, η) for a ∈ [n], i.e. a graph with fixed external fields. Let Ge = [w]Γη with
w from Section 3.2.1.1 and letG∗

e(σ) be given by the (G∗
e(σ),Ge)-derivative G 7→ ψg,G(σ)/E[ψg,Ge(σ)].

Let Pe = {(µΨ, γ
∗, d, cγ∗) : (µΨ, γ

∗, d) ∈ P, c ∈ R>0} be the parameters including external fields. We
reduce the general case to normalized external fields via ϕ◦

g([G]Γη ) = ϕg([G]Γη ) − ln(∥η∥1).

Corollary 3.107. Theorem 3.97, Theorem 3.100, Lemma 3.101, Lemma 3.102 and Theorem 3.103
hold for G, G∗, ϕg replaced by Ge, G∗

e, ϕ◦
g and (µΨ, γ

∗, d, η) ∈ Pe.

Proof. We have ∥cγ∗∥1 = c and hence ϕ◦
g([G]Γcγ∗) = 1

n ln(cnZg([G]Γγ∗)) − ln(c) = ϕg([G]Γγ∗). Similarly,
notice that ψg,[G]Γ

cγ∗
(σ) = cnψg,[G]Γ

γ∗
(σ), so the Radon-Nikodym derivatives coincide in this sense and

analogously to Observation 3.21, and thereby G∗
e(σ) ∼ [w∗(σ)]Γcγ∗ . The remainder is analogous to the

translation of the results to graphs without external fields. Notice that the results are uniform over
c ∈ R>0.
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3.5.3 Reweighting and Relative Entropies. In this section we build some context for ∇ from
Section 2.1.2.2 and B from Section 2.1.2.4. As opposed to the proofs, for the theory in this section
we exclusively consider the restrictions to P2

∗ ([q]) with Z f(γ∗) = ξ for γ∗ ∈ P([q]), i.e. we require γ∗

to be a maximizer of Z f .
Let rf : DΨ × P([q])k → R>0, (ψ, γ) 7→ Zf(ψ, γ)/ξ. Further, for σ ∈ [q] and π ∈ P2

∗ ([q]) with
R = {(ψ, h, γ) : ψ ∈ DΨ, h ∈ [k], γ ∈ P([q])[k]\{h}} let

rv,σ : R → R>0, (ψ, h, γ) 7→ 1
ξ

∑
τ

1{τh = σ}ψ(τ)
∏
h′ ̸=h

γh′(τh′).

For π ∈ P2
∗ ([q])2 let xi ∼ µΨ ⊗ π⊗k

i , i ∈ [2], further h ∼ u([k]) and for h ∈ [k] let x3,h ∼ µΨ ⊗⊗
h′∈[k] π3,h′ with π3,h = π1 and π3,h′ = π2 for h′ ∈ [k] \ {h}. Let x∗

1, x∗
2, x∗

3,h be given by the
Radon-Nikodym derivative rf with respect to x1, x2, x3,h respectively, and

∇2(π1, π2) = ξ(E[ln(Zf(x∗
1))] + (k − 1)E[ln(Zf(x∗

2))] − kE[ln(Zf(x∗
3,h))]),

∇3(π1, π2) = ξ(DKL(x∗
1∥x1) + (k − 1)DKL(x∗

2∥x2) − kDKL(x∗
3,h∥x3,h|h)).

For π ∈ P2
∗ ([q]) let xf ∼ µΨ⊗π⊗k, xv,◦ = (ψ,h,γ[k]\{h}), where (ψ,h,γ) ∼ µΨ⊗u([k])⊗π⊗k, let x∗

f be
given by the Radon-Nikodym derivative rf , and let x∗

v,◦,σ be given by the Radon-Nikodym derivative
rv,σ for σ ∈ [q]. Further, let (d,xv) ∼ Po(d)⊗x⊗Z>0

v,◦ , x∗
v,σ ∼ x∗⊗Z>0

v,◦,σ and σ∗ ∼ γ∗ with (d,σ∗,x∗
v,σ∗) ∼

d⊗(σ∗,x∗
v,σ∗). Finally, letXv = xv,[d],X∗

v = x∗
v,σ∗,[d], Zv(ψ[d], h[d], (γa,h′)a∈[d],h′ ̸=h(a)) = Zv(d, ψ, h, γ)

and

B2,d(π) = E [ln (Zv(X∗
v))] − d(k − 1)

k
E[[ln (Zf(x∗

f ))] ,

B3,d(π) = ϕa(d) +DKL(X∗
v∥Xv) − d(k − 1)

k
DKL(x∗

f ∥xf).

Lemma 3.108. We have ∇ = ∇2 = ∇3 and B = B2 = B3.

Proof. For π ∈ P2
∗ ([q])k and (ψ,γ) ∼ µΨ ⊗

⊗
h πh we have E[Zf(ψ,γ)] = Z f(γ∗) = ξ, which shows

that x∗
1, x∗

2, x∗
3,h for ∇ and x∗

f for B are well-defined. Let C = γ∗−1(R>0) be the support of γ∗

and µ = µT|Γ,γ∗ from Section 3.2.1.2. For |C| = 1 we have µ|∗ = γ∗ since both are necessarily
one-point masses on the only element of C, otherwise we have µ|∗ = γ∗ by Observation 3.9j) (since
γ∗ is a fully supported stationary point of Z f on P(C)). Hence, for π ∈ P2

∗ ([q])k and σ ∈ [q] with
(ψ,h,γ) ∼ µΨ ⊗ u([k]) ⊗

⊗
h πh we have

E
[
rv,σ

(
ψ,h,γ[k]\{h}

)]
= 1
ξ

∑
h

1
k

∑
τ

1{τh = σ}ψ◦(τ)
∏
h′ ̸=h

γ∗(τh′) = µ|∗(σ)
γ∗(σ) = 1.

This shows that X∗
v is well-defined, and hence the assertion clearly holds.

3.5.4 Lipschitz Continuity and Boundedness. In this section we stress the relevant properties
that allow to extend the main results to m∗ and the equivalence of various modes of convergence.

Let ϕ̄n(m) = E[ϕg(Gm)], ϕ∗
σ,n(m) = E[ϕg(G∗

m(σ))] and ϕ̄∗
n(m) = E[ϕg(G∗

m(σ∗))].

Lemma 3.109. Notice that the following holds.
a) There exists cg ∈ R>0 such that |ϕ̄(m)| ≤ ckmn . The same holds for ϕ̄ replaced by ϕ∗

σ, ϕ̄
∗.
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b) There exists Lg ∈ R>0 such that |ϕ̄(m1) − ϕ̄(m2)| ≤ L
∣∣∣km1
n − km2

n

∣∣∣ for m ∈ Z2
≥0. The same holds

for ϕ̄ replaced by ϕ∗
σ, ϕ̄

∗.

Proof. Part 3.109a) follows from Observation 3.30 and Observation 3.47. For Part 3.109b) assume
that m1 ≤ m2 and let G◦

m be Gm or G∗
m(σ). Under the canonical coupling (using Observation 3.13)

we obtain G◦(m2) from G◦(m1) given G◦(m1) by adding m2 −m1 factors with pairs drawn iid from
the underlying wires-weight pair distribution, then with c from Observation 3.30 we have∣∣E[ϕg(G◦

m2)] − E[ϕg(G◦
m1)]

∣∣ ≤ L |m2 −m1| , L = kc.

The result for ϕ̄∗ now follows from ϕ̄∗(m) = E[ϕ∗
σ∗(m)] and Jensen’s inequality.

On the finite size side let d̄n(m) = km/n. Lemma 3.109 suggests that e.g. |ϕ̄(m)| ≤ cd̄(m) and
|ϕ̄(m1) − ϕ̄(m2)| ≤ L|d̄(m1) − d̄(m2)|. Next, we show that in general under these two properties
convergence in probability, convergence of the expectation and pointwise convergence with respect to
m◦
n = ⌊d̄n/k⌋ coincide for m∗. Let F◦ = RZ>0×Z≥0 = {f : Z>0 × Z≥0 → R}, and for c ∈ R>0 let

Fc = Fb,c ∩ Fl,c with

Fb,c =
{
f ∈ F◦ : ∀n∀m |f(n,m)| ≤ cd̄n(m)

}
,

Fl,c =
{
f ∈ F◦ : ∀n∀m ≤ m↑ |f(n,m1) − f(n,m2)| ≤ c|d̄n(m1) − d̄n(m2)|

}
.

Lemma 3.110. For cg ∈ R>0, f ∈ Fc, f∗ : R≥0 → R and gg : Z>0 → R≥0 with g(n) = o(1) the
following statements are equivalent. Let ∆g(n) = g(n) + δm(n) + εm(n) + n−1.
a) We have |fn(m◦) − f∗(d̄)| = O(∆(n)).
b) There exists Cg ∈ R>0 such that P(|fn(m∗) − f∗(d̄)| > C∆(n)) ≤ εm(n).
c) We have |E[fn(m∗)] − f∗(d̄)| = O(∆(n)).
Proof. Using E(n) = E[fn(m∗)] we have

E(n) ≤ E[1{|d̄∗ − d̄| ≤ δm}f(m∗)] + cεm ≤ E[1{|d̄∗ − d̄| ≤ δm}f(m◦)] + cδm + cεm

≤ f(m◦) + cd̄(m◦)εm + cδm + cεm ≤ f(m◦) + 2cd↑∆

and analogously E(n) ≥ f(m◦) − 2cd↑∆, which shows that the statements 3.110a) and 3.110c) are
equivalent. Now, assume that 3.110a) holds and let C ′

g be such that |f(m◦) − f∗(d̄)| ≤ C ′∆. By the
triangle inequality we have |f(m) − f∗(d̄)| ≤ c′|d̄(m) − d̄(m◦)| +C ′∆ ≤ (ck+C ′)∆ if |d̄(m) − d̄| ≤ δm,
since then |d̄(m)−d̄(m◦)| ≤ δm + k

n ≤ k∆ by the triangle inequality, so 3.110b) holds with C = ck+C ′.
Conversely, let C ′ be the constant from 3.110b) and n◦,g such that εm < 1/2 for all n ≥ n◦. In this
case we have

P(|fn(m∗) − f∗(d̄)| ≤ C ′∆(n), |d̄∗ − d̄| ≤ δm) ≥ 1 − 2εm > 0,

so there exists m with |f(m) − f∗(d̄)| ≤ C ′∆(n) and |d̄(m) − d̄| ≤ δm. As above, the triangle
inequality and Lipschitz continuity give |f(m◦) − f∗(d̄)| ≤ C ′∆ + ck∆. By taking the limit this shows
that |f∗(d̄)| ≤ cd̄, so for n ≤ n◦ we have |f(m◦) − f∗(d̄)| ≤ 2cd̄ ≤ 2cd↑n◦∆ and thereby Part 3.110a)
holds with C = max(C ′ + ck, 2cd↑n◦).

We only verify that Lemma 3.110 holds for the target functions ϕ̄, ϕ̄∗, further ϕ̄a(m) = 1
n ln(Zm),

ι(m) = 1
nI(σ∗,G∗(σ∗)) and δ(m) = 1

nDKL(σ∗,G∗(σ∗)∥σg,G,G).
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Lemma 3.111. There exists cg ∈ R>0 such that ϕ̄, ϕ̄∗, ϕ̄a, ι, δ ∈ Fc.

Proof. The assertion for ϕ̄, ϕ̄∗ follows from Lemma 3.109. The assertion for ϕ̄a is Observation 3.98a).
For ι we recall that ι = 1

nDKL(σg,G∗∥σ|G∗) from Section 3.4.3.1 with (σ,G∗) ∼ σ∗ ⊗ G∗(σ∗) and
σg from Section 3.2.2.4 given by the (σg,G,σ)-derivative rs,G, so with Observation 3.27a) we have
ψ4m

↓ ≤ rs,G ≤ ψ4m
↑ for G ∈ G and thereby |ι| ≤ 4 ln(ψ↑)m/n. Further, for G ∈ Gm and an extension

G′ ∈ Gm+1 we have ψ4
↓rs,G ≤ rs,G′ ≤ ψ4

↑rs,G so |ι(m1) − ι(m2)| ≤ 4k ln(ψ↑)|d̄(m1) − d̄(m2)| using the
canonical coupling of G∗

m1(σ∗) and G∗
m2(σ∗) from the proof of Lemma 3.109. For δ we recall the

derivative r(G) = Zg(G)/(r̂(σ)Zm) = γ∗⊗n(σ)Zg(G)/ψm(σ) from the proof of Theorem 3.100, and
notice that ψ2

↓r(G) ≤ r(G′) ≤ ψ2
↑r(G) for an extension G′ ∈ Gm+1 of G ∈ Gm, so |δ(m1) − δ(m2)| ≤

2k ln(ψ↑)|d̄(m1) − d̄(m2)|, and |δ(m)| ≤ 2k ln(ψ↑)d̄(m).

Remark 3.112. The combination of Lemma 3.111 and Lemma 3.110 yields all main results for graphs
with and without external fields for the modes of convergence in Lemma 3.110.

For the limiting quantities, assuming Z f(γ∗) = ξ, let

Fc = {f : R≥0 → R : ∀d|f(d1) − f(d2)| ≤ c|d1 − d2|, f(0) = 0},

further ϕa(d) = d ln(ξ)/k, ι∗(d) from Section 3.4.3 and δ∗(d) = B↑(d) − ϕa(d).

Lemma 3.113. There exists cg ∈ R>0 such that Bπ, B↑, ϕa, ι
∗, δ∗ ∈ Fc.

Proof. With Lemma 3.108 we have

|Bd(π)| = |B2,d(π)| ≤ E[d̄ ln(ψ↑)] + d(k − 1)
k

ln(ψ↑) = d, c = (2k − 1) ln(ψ↑)
k

.

For d2 ≥ d1 we use the canoncial coupling of d̄i ∼ Po(di), i ∈ [2], to obtain

|B2,d1(π) −B2,d2(π)| ≤ (d2 − d1) ln(ψ↑) + (d2 − d1)k − 1
k

ln(ψ↑) = c|d2 − d1|.

This also yields |B↑(d)| ≤ cd and B↑(d1) −B↑(d2)| ≤ c|d1 − d2|, where the former is obvious and the
latter follows by considering maximizing sequences (π1,n)n, (π2,n)n to obtain

B↑(d1) = lim
n→∞

Bd1(π1,n) ≤ lim
n→∞

Bd2(π1,n) + c|d2 − d1| ≤ B↑(d2) + c|d2 − d1|

and the analogous result by switching 1 and 2 in the above. The result for ϕa is immediate, which
directly implies the result for δ∗. The result for ι∗ follows from the result for B↑ and the immediate
result dE[Λ(ψ(σ))]/(kξ) ∈ Fc for c = ln(ψ↑)/k using that (σ, ψ) 7→ ψ(σ)/ξ is a Radon-Nikodym
derivative for (σ,ψ) since E[ψ(σ)] = Z f(γ∗) = ξ.

Specifically for the Bethe functional we also recall the Lipschitz continuity in π.

Lemma 3.114. There exists Lg ∈ R>0 such that Bd : P2([q]) → R is L-Lipschitz if d ≤ d↑. Hence,
there exists π ∈ P2

∗ ([q]) such that Bd(π) = B↑(d).

Proof. Lipschitz continuity follows from Lemma 3.94 and Lemma 3.84. Recall from [33] that P2([q])
is a compact Polish space (Corollary 2.2.5, Theorem 2.2.7 and Proposition 2.2.8 in [104]), notice that
P2

∗ ([q]) ⊆ P2([q]) is closed and hence compact, so by the extreme value theorem the maximum is
attained.
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3.5.5 The Assumption POS. We discuss the difficult assumption POS in detail. Many of the
properties discussed below directly translate to other parts, say, from POS to BAL, from ∇ (cf. Sec-
tion 3.3.2) to B, or even to all quantities (cf. Observation 3.106).

3.5.5.1 Extended Definition. Equip P([q]) with ∥ · ∥tv, DΨ = R[q]k
≥0 with ∥ · ∥∞, and both with the

Borel algebra, which defines P2([q]) and P(DΨ). Fix γ∗ ∈ P([q]) throughout the remainder, recall
Zfm(ψ, h, γ) = ∑

y ψ(y)γ1,h(yh)∏h′ ̸=h γ2,h′(yh′) and Zf(ψ, γ1) = Zfm(ψ, h, (γ1, γ1)) for ψ ∈ DΨ, h ∈ [k]
and γ ∈ P([q])2×k. Notice that

∇◦ : DΨ × P([q])2×k → R, (ψ, γ) 7→ Λ(Zf(ψ, γ1)) + (k − 1)Λ(Zf(ψ, γ2)) −
k∑

h=1
Λ(Zfm(ψ, h, γ))

is well-defined and continuous. For fixed p ∈ P(DΨ), π ∈ P2([q]) let (ψ,γ) ∼ p⊗ π⊗k
1 ⊗ π⊗k

2 . Notice
that miny ψ(y) ≤ Zfm(ψ, ·, ·) ≤ ∥ψ∥∞ and that Λ ≥ −1/e, hence it is both sufficient and convenient
to consider

Dp = {p ∈ P(DΨ) : E [Λ(∥ψ∥∞)] < ∞} .

This does not only ensure that ∇ : Dp × P2([q])2 → R, (p, π) 7→ E[∇◦(ψ,γ)], is well-defined, but
also that the expectations of the contributions are. Using the tower property and independence
we have ∇(p, π) = E[∇•(ψ, π)] with ∇• : DΨ × P2([q])2 → R, (ψ, π) 7→ E[∇◦(ψ,γ)]. Finally, let
∇↓ : Dp × P([q]) → R, (p, γ) 7→ infπ∈P2

∗,γ([q])2 ∇(p, π), be our target function, and let A = ∇−1
↓ (R≥0)

be the pairs satisfying POS. Let P(γ∗) = {p : (p, γ∗) ∈ A} = {p ∈ Dp : ∇↓(p, γ∗) ≥ 0} be the weights
for γ∗. Throughout the remainder we fix p ∈ Dp, γ∗ ∈ P([q]) and π ∈ P2

∗,γ∗([q])2 unless mentioned
otherwise.
3.5.5.2 Basic Observations. In this section we draw easy conclusions that help to build some intuition,
to identify special cases and to get rid of pathological cases. Thus, let p0 ∈ Dp be the one-point mass
on the trivial weight, i.e. p0(E) = 1{(0)σ ∈ E}. For p ∈ Dp \ {p0} let p◦ ∈ P(DΨ) be given by
p◦(E) = p(E \ {(0)σ})/(1 − p({(0)σ})), i.e. the law of ψ|ψ ̸= (0)σ. Let D◦

p = {p ∈ Dp : p({(0)σ}) = 0}
and A◦ = {(p, γ∗) : p ∈ D◦

p,∇↓(p, γ∗) ≥ 0}.

Observation 3.115. Notice that the following holds.
a) We have (p0, γ

∗) ∈ A, and for p ∈ Dp \ {p0} we have P = P(∥ψ∥∞ > 0) > 0. Further, we have
E[Λ(ψ)] = PE[Λ(ψ)|∥ψ∥∞ > 0] and ∇(p, π) = P∇(p◦, π).

b) For ψ ∈ DΨ, γ ∈ P([q])k we have ∇◦(ψ, (γi)i) = 0, hence ∇•(ψ, (π, π)) = 0 for all π ∈ P2
∗,γ∗([q])

and thus ∇↓ ≤ 0.

Proof. For ψ = (0)σ all Zfm vanish, thus ∇◦ does, so ∇↓(p0, γ
∗) = 0 and hence (p0, γ

∗) ∈ A. For
p ̸= p0 we have E[Λ(ψ)] = E[1{∥ψ∥∞ > 0}Λ(ψ)] = P(∥ψ∥∞ > 0)E[Λ(ψ)|∥ψ∥∞ > 0], and of course
P(∥ψ∥∞ > 0) > 0, so the left hand side is finite iff the right hand side is. The same argumentation
for ∇ yields ∇(p, π) = P(∥ψ∥∞ > 0)∇(p◦, π), which completes the proof of the first part. For the
second part, notice that Zfm(ψ, h, γ) = Zf(ψ, γ2) if γ1,h = γ2,h, and the rest follows.

Now, we may restrict to A◦ and D◦
p, and know that A = ∇−1

↓ ({0}).

3.5.5.3 POS without POS and Products. In this section we establish the special role of product
weights, and provide pairs for which ∇ is trivially non-negative. Fix ψ ∈ DΨ, γ ∈ P([q])k and let
α = ⊗

h γh. If we have Z = Zf(ψ, γ) > 0, let ps ∈ P([q]k) be given by ps(σ) = α(σ)ψ(σ)/Z, and
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let σ ∼ ps. Let π◦
γ∗ ∈ P2

∗,γ∗([q]) be the measure supported on the one-point masses, i.e. given by
π◦
γ∗(E) = ∑

τ γ
∗(τ)1{δτ ∈ E}, where δτ ∈ P([q]) is given by δτ (τ) = 1. Further, let π•

γ∗ ∈ P2
∗,γ∗([q])

be the one-point mass on γ∗, i.e. π•
γ∗(E) = 1{γ∗ ∈ E}.

Observation 3.116. Let π′ ∈ P2
∗,γ∗([q]), π = (π◦

γ∗ , π′) and γ ∈ P([q])k.
a) We have E[∇◦(ψ,γ1, γ)] = Z(∑hH(σh) −H(σ)) ≥ 0 with equality if and only if σ ∼

⊗
h σh.

b) Let π′ = π•
γ∗. Then we have ∇(p, π) = 0 if and only if ψ is a product almost surely.

c) For all π ∈ P2
∗,γ∗([q]) we have ∇•(ψ, π) = 0 if ψ is a product.

Proof. For the first part we notice that

E[∇◦(ψ,γ1, γ)] =
∑
σ

α(σ)Λ(ψ(σ)) + (k − 1)Λ(Z) −
∑
h

∑
τ

γ∗(τ)Λ(ψh(τ)),

where ψh : [q] → R≥0, τ 7→ E[ψ(σ∗)|σ∗
h = τ ], and σ∗ ∼ α. Now, notice that if Z = 0, then

α(σ)ψ(σ) = 0 for all σ and hence the expectation is 0, which coincides with the right hand side. For
Z > 0 we expand the definition of Λ, the leading Z, ψh, and rearrange the sums to obtain

E[∇◦(ψ,γ1, γ)] =
∑
σ

α(σ)ψ(σ)
[
ln(ψ(σ)) + (k − 1) ln(Z) −

∑
h

ln(ψh(σh))
]
.

Notice that we can restrict to σ such that both α and ψ are non-trivial. Next, we distribute Z and
introduce appropriate masses to obtain

E[∇◦(ψ,γ1, γ)] = Z

[
DKL(σ∥σ∗) −

∑
h

DKL(σh∥σ∗
h)
]

= Z

[
H(σ∥σ∗) −

∑
h

H(σh∥σ∗
h) +

∑
h

H(σh) −H(σ)
]

= Z

[∑
h

H(σh) −H(σ)
]
.

Since the sum of the coordinate entropies is at least the entropy, with equality iff the coordinates
are independent, the result follows. For the second part we have ∇•(ψ, π) = E[∇◦(ψ,γ1, γ

∗)]. For
f ∈ (Rq≥0)k let [f ] : [q]k → R≥0, σ 7→

∏
h fh(σh) be the product. Since γ∗ is fully supported we

have ψ ≡ 0 if and only if Z = 0. For Z > 0 there exists f with ψ = [f ] if and only if σ ∼⊗
h σh, for the following reasons. If there exists f , then we have Z = ∏

h Zh, Zh = ∑
τ fh(τ)γ∗(τ),

and thus ps(σ) = ∏
h
γ∗(σh)fh(σh)

Zh
. Conversely, if the law factorizes into some (ph)h, then we have

ψ(σ)
Z

∏
h γ

∗(σh) = ∏
h ph(σh), so ψ(σ) = ∏

h
Z1/kph(σh)
γ∗(σh) factorizes, using that γ∗ is fully supported.

But we have σ ∼
⊗

h σh if and only if ∑hH(σh) − H(σ) = 0, so we can rewrite {∃fψ = [f ]} =
{∇•(ψ, π) = 0}. Since continuity is not abundantly clear, we may replace the entropy condition by
the total variation distance (half the 1-norm), in which case continuity in ψ essentially follows from
the definition. This shows that {∃f ψ = [f ]} is indeed an event, the event on which ∇• vanishes and
ψ factorizes, while otherwise ∇• is positive and ψ does not factorize. So, ∇(p, π) vanishes if and only
if P(∃f ψ = [f ]) = 1.

For ψ(σ) = ∏
h ψh(σh), we have Zfm(ψ, h, γ) = z(ψh, γ1,h)∏h′ ̸=h z(ψh′ , γ2,h′), where z(ψ′, γ′) =



96 3.5. Additional Discussion

∑
τ γ

′(τ)ψ′(τ). Using si,h = E[Λ(ψ, h,γi,1)], zh = z(ψh, γ∗) this yields

∇•(ψ, π) =
∑
h

s1,h
∏
h′ ̸=h

zh′ + (k − 1)
∑
h

s2,h
∏
h′ ̸=h

zh′ −
∑
h

s1,h
∏
h′ ̸=h

zh′ +
∑
h′ ̸=h

s2,h′zh
∏

h′′ ̸∈{h,h′}
zh′′


and thereby ∇•(ψ, π) = 0.

This result suggests that ∇(p, π) ≤ 0 for all π ∈ P2
∗,γ∗([q])2 is equivalent to ∇(p, π) = 0 for all π

(because of π = (π◦, π•)), which is also equivalent to ψ being a product.
Also, the conditional expectation vanishes on products, so ∇(p, π) = P(E)∇(p◦, π), where E is the

event that ψ is not a product and p◦(F) = p(F ∩ E)/p(E) is the law of ψ|E . Notice that p◦ ∈ Dp
whenever p is, so as for the trivial weight, we may now assume E almost surely. Finally, notice that
all weights for k = 1 are products.

Remark 3.117. Observation 3.116 can be extended. For γ ∈ P([q]) with E[γ] = γ∗ and a σ-algebra
F ′ ⊆ F (cf. Section 3.1.6) let γ ′ = E[γ|F ′] and notice that E[γ ′] = γ∗. It can be shown that
∇(p, π, π′) ≥ 0, where γ ∼ π and γ ′ ∼ π′.

3.5.5.4 Scaling Invariance. In this section we discuss aψ for given (a,ψ). Let

∆◦ : DΨ × P([q])2×k → R, (ψ, γ) 7→ Zf(ψ, γ1) + (k − 1)Zf(ψ, γ2) −
k∑

h=1
Zfm(ψ, h, γ).

Observation 3.118. Let a ∈ R≥0, (a,ψ) ∈ R≥0 × DΨ, ψ ∼ p ∈ Dp, aψ ∼ p′ ∈ Dp and E[a] < ∞.
a) We have ∇◦(aψ, γ) = a∇◦(ψ, γ) + ∆◦(ψ, γ)Λ(a) and ∇•(aψ, π) = a∇•(ψ, π).
b) We have ∇(p′, π) = E[a]∇(p′′, π), where p′′ ∈ Dp is given by the p′′-p derivative E[a|ψ]/E[a].

Proof. Notice that Λ(az) = aΛ(z) + zΛ(a), z ∈ R≥0, and Zfm(aψ, h, γ′) = aZfm(ψ, h, γ′), so the
first part follows. Linearity of the expectation yields ∇•(aψ, π) = a∇•(ψ, π) + ∆•(ψ, π)Λ(a) with
∆•(ψ, π) = E[∆◦(ψ,γ)]. This gives ∆•(ψ, π) = ∆◦(ψ, (E[γi,h])i,h) = ∆◦(ψ, (E[γ1,1])i,h) = 0 us-
ing linearity, the definition of γ and π ∈ P2

∗ ([q])2. Thus, taking the expectation gives ∇(p′, π) =
E[a∇•(ψ, π)] = E[E[a|ψ]∇•(ψ, π)], which establishes that ∇(p′, π) = E[a]∇(p′′, π) since for (a,ψ) ∼
a⊗ψ we have p′′ = p, and otherwise for ψ′′ ∼ p′′ we have p′′ ∈ Dp since

E[a]E[Λ(∥ψ′′∥∞)] = E[aΛ(∥ψ∥∞)] = E[Λ(∥aψ∥∞) − ∥ψ∥∞Λ(a)] < ∞.

3.5.5.5 Continuity. We equip P(DΨ) and P2([q]) with the Wasserstein distance dw (cf. Section
3.3.1.7), and P(DΨ) × P2([q])2 as well as P(DΨ) × P([q]) with the 1-product metric. For β ∈ R>0 let

D◦
p(β) = {p ∈ P(DΨ) : E[∥ψ∥1+β

∞ ] ≤ ψ↑},

Observation 3.119. The map ∇ is continuous on D◦
p(β) × P2([q])2, β ∈ R>0. For all p ∈ D◦

p(β)
there exists π ∈ P2

∗,γ∗([q]) such that ∇↓(p, γ∗) = ∇(p, π), and ∇↓ is continuous on D◦
p(β) × P([q]).

Proof. Let D◦
∇(β) = D◦

p(β) × P2([q])2 and L↑ = Λ(∥ψ∥∞). For β′ ∈ [0, β) there exists b ∈ R>0 such
that E[L1+β′

↑ ] ≤ ψ↑ + b for all (p, π) ∈ D◦
∇(β). Let Dz = DΨ × P([q])2×k ⊆ Rd, d = qk + (q − 1)2k,
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equipped with ∥ · ∥∞ and the Borel algebra. For Zfm,h : Dz → R≥0, (ψ, γ) 7→ Zfm(ψ, h, γ), we have

|Zfm,h(ψ, γ) − Zfm,h(ψ′, γ′)| ≤ ∥ψ − ψ′∥∞ + 2∥ψ′∥∞

∥γ1,h − γ′
1,h∥tv +

∑
h′ ̸=h

∥γ2,h′ − γ′
2,h′∥tv

 ,
using Observation 3.6, so Zfm,h is continuous, and thus Λz,h = Λ ◦ Zfm,h is continuous. We equip
D∗ = {P ∈ P(Dz) : E[∥ψ∥1+β

∞ ] ≤ ψ↑} ⊆ P(Rd) with dw, the topology of weak convergence, and let

Λ∗
z,h : D∗ → R, P 7→ E[Λz,h(ψ,γ)],

using (ψ,γ) ∼ P for P ∈ P(Dz), further Z = Zfm,h(ψ,γ) and L = Λz,h(ψ,γ). We turn to the
continuity. For this purpose let P ∈ D∗ and ε ∈ (0, 1) small. Fix L ∈ R>0 large, then we have

T (L,P ) = E[1{L↑ > L}L] ≤ LP(L↑ > L) +
∫ ∞

L
P(L↑ > t)dt ≤ ψ↑ + b

Lβ′ + ψ↑ + b

β′Lβ′ .

Consider the law P ∗ of (ψ,γ)|L↑ ≤ L and the following coupling. For (ψ2,γ2) ∼ P ∗ independent of
(ψ,γ), let (ψ∗,γ∗) = (ψ,γ) on {L↑ ≤ L} and (ψ∗,γ∗) = (ψ2,γ2) on {L↑ > L}. This yields

dw(P ∗, P ) = E[1E∥(ψ2,γ2) − (ψ,γ)∥∞] ≤ P(E)(E[∥ψ2∥∞] + 2) + E[1E∥ψ∥∞]

≤ P(E)
(

ψ↑
P(L↑ ≤ L) + 3

)
+ E[1EL↑] ≤

8ψ2
↑

L1+β′ + (1 + β′)(ψ↑ + b)
β′Lβ′ , E = {L↑ > L},

for ψ↑, L sufficiently large. Fix some small δ, ε′ ∈ (0, 1) and let P̂ ∈ D∗ with dw(P, P̂ ) < δ. Adapting
the notation above for P̂ , we have T (L,P ), T (L, P̂ ),dw(P ∗, P ),dw(P̂ ∗, P̂ ) < ε′ for L sufficiently large.
This gives dw(P ∗, P̂ ∗) < δ + 2ε′ and further

|E[L] − E[L̂]| ≤ 2ε′ + |E[1{L↑ ≤ L}L] − E[1{L̂↑ ≤ L}L̂]|.

Moving to the conditional expectation, we let L∗ = (L|L↑ ≤ L), adopt this for P̂ , and derive

|E[L] − E[L̂]| ≤ 2ε′ + LP(L↑ > L) + LP(L̂↑ > L) + |E[L∗] − E[L̂∗]|.

From the bound for T (L,P ) we obtain |E[L] − E[L̂]| ≤ 4ε′ + |E[L∗] − E[L̂∗]|. Now, let D◦ =
Λ−1

z,h([−1/e, L]) and notice that Λz,h : D◦ → [−1/e, L] is continuous and bounded. Thus, the Portman-
teau Theorem applies and offers δ′ such that if dw(P ∗, P̂ ∗) < δ′, then |E[L∗] − E[L̂∗]| < ε/2. Thus,
choosing δ and ε′ sufficiently small yields |E[L]−E[L̂]| < ε. This shows that Λ∗

z,h is continuous. Next,
notice that the map f : P(DΨ) × P2([q])2 → P(Dz), (p, π) 7→ p ⊗ π⊗k

1 ⊗ π⊗k
2 , is continuous, since

for couplings (ψ,ψ′), (γ◦,i,γ
′
◦,i), i ∈ [2], we take the canonical coupling in the image, in particular

(γi,γ ′
i) ∼

⊗
h(γ◦,i,γ

′
◦,i). This yields E[∥(ψ,γ) − (ψ′,γ ′)∥∞] ≤ E[∥ψ−ψ′∥∞] + 2E[∥γ − γ ′∥tv], which

shows that the map is 2k-Lipschitz using Observation 3.6. Hence, the map Lh : D◦
p(β)×P2([q])2 → R,

(p, π) 7→ E[Λ(Zfm(ψ, h,γ))], is continuous. This completes the proof, because ∇(p, π) = L1(p, π1, π1)+
(k − 1)L1(p, π2, π2) −

∑
h Lh(p, π). Recall from the proof of Lemma 3.114 that P2

∗,γ∗([q]) is compact,
so the infimum of ∇ over P2

∗,γ∗([q]) is attained, yielding π ∈ P2
∗,γ∗([q]) such that ∇(p, π) = ∇↓(p, γ∗).

Continuity of ∇↓ is left to the reader.

The fact that ∇↓ (over D◦
∇↓(β)) is continuous is very useful, since it suggests that the set A =
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∇−1
↓ (0) of pairs satisfying POS is closed, and thereby also limits of such pairs satisfy POS.

3.5.5.6 Convexity. Equip P(DΨ) with the Borel algebra for ∥·∥tv (so the metric dw for P(DΨ) and the
topology inducing the Borel algebra are not consistent, but that’s not a problem, just something to
be aware of), which defines P(P(DΨ)), and let p 7→ ψp be the kernel from Observation 3.6. Further,
let Dp↑ = {p ∈ Dp : E[Λ(∥ψ∥∞)] ≤ ψ↑} and P↑(γ∗) = P(γ∗) ∩ Dp↑ = {p ∈ Dp↑ : ∇↓(p, γ∗) ≥ 0}.

Observation 3.120. Let p ∈ P(DΨ), fix an event E ⊆ P(DΨ) with p ∈ E almost surely, and let p′

be given by ψp ∼ p′. Notice that the following holds
a) For |E| < ∞ we have p′ ∈ Dp if E ⊆ {p ∈ Dp}, and p′ ∈ P(γ∗) if E ⊆ {p ∈ P(γ∗)}.
b) We have p′ ∈ Dp↑ if E ⊆ {p ∈ Dp↑}, and p′ ∈ P↑(γ∗) if E ⊆ {p ∈ P↑(γ∗)}.

Proof. For E ⊆ {p ∈ Dp↑} we have E[Λ(∥ψp∥∞)] = E[1EΛ(∥ψp∥∞)] ≤ ψ↑ and hence p′ ∈ Dp↑.
For E ⊆ {p ∈ P(γ∗)} we have p′ ∈ Dp↑ by the above, and further ∇(p′, π) = E[1E∇(p, π)] ≥ 0,
π ∈ P2

∗,γ∗([q]), using the tower property and independence. This shows that ∇↓(p′, π) ≥ 0 and hence
p′ ∈ P(γ∗). The first part is shown analogously.

3.5.5.7 Permutation Invariance. For ψ ∈ DΨ and ι ∈ [k]! let [ψ]p,ι ∈ DΨ be given by [ψ]p,ι(σ) =
ψ(σ ◦ ι). Further, let [ψ] = {[ψ]p,ι : ι ∈ [k]!} be the equivalence class and [DΨ] = {[ψ] : ψ ∈ DΨ}
the quotient space, i.e. η : DΨ → [DΨ], ψ 7→ [ψ], is a quotient map, and equip [DΨ] with the Borel
algebra, so η is measurable. Let ηp : P(DΨ) → P([DΨ]) be given by η(ψ) ∼ ηp(p) for p ∈ P(DΨ),
using ψ ∼ p. Finally, let [p] = η−1

p (ηp(p)) ⊆ P(DΨ) be the equivalence class of p.

Fact 3.121. Notice that the following holds.
a) For ι ∈ [k]! we have ∇•([ψ]p,ι, π) = ∇•(ψ, π).
b) For p ∈ P(γ∗) we have [p] ⊆ P(γ∗).

Proof. Using γ′
i = γi ◦ ι, γ′ = (γ′

1, γ
′
2), and h′ = ι−1(h) we notice that

Zfm(ψ′, h, γ) =
∑
σ

ψ′(σ)γ1,h(σh)
∏
j ̸=h

γ2,j(σj) =
∑
σ

ψ(σ)γ′
1,h′(σh′)

∏
j ̸=h′

γ′
2,j(σj) = Zfm(ψ, h′, γ′).

Since h is only relevant for the negative contribution to ∇◦ where we sum over h, we obtain ∇◦(ψ′, γ) =
∇◦(ψ, γ′). Finally, since γi is exchangeable, we have (γ1 ◦ ι,γ2 ◦ ι) ∼ γ and thereby ∇•(ψ′, π) =
∇•(ψ, π). This shows that ∇•([ψ], π) = ∇•(ψ, π) is well-defined, which shows that ∇↓([p], γ∗) =
∇↓(p, γ∗) is well-defined and thereby completes the proof.

Thus, it doesn’t matter if we consider p, the symmetrized version [ψ]p,ι with (ψ, ι) ∼ p ⊗ u([k]!)
or versions with minimal support. Of course, we may also permute colors using ι ∈ [q]!, but obviously
for ψ and γ∗ consistently.
3.5.5.8 Embeddings and Projections. In this section we consider the product space embedding for an
increasing number of coordinates and the color projection for a decreasing number of colors. For the
first type fix ψ ∈ R[q]k

≥0 × R[q]k′

≥0 and let ψ1ψ2 : [q]k+k′ → R≥0, σ 7→ ψ1(σ[k])ψ2(σ[k′]), where we use

[k + k′] = [k] ∪̇ [k′]. For p ∈ P(R[q]k
≥0 ) × P(R[q]k′

≥0 ) this yields the embedding p1p2 ∈ P(R[q]k+k′

≥0 ), given
by ψ1ψ2 ∼ p1p2 with (ψ1,ψ2) ∼ p1 ⊗ p2. On the other hand, let [ψ]q : [q − 1]k → R≥0, σ 7→ ψ(σ) be
the restriction of ψ. For p ∈ P(DΨ) this yields the color restriction [p]q ∈ P(R[q−1]k

≥0 ) of p, given by
[ψ]q ∼ [p]q. Let A = A(k, q).

Observation 3.122. Notice that the following holds.
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a) For p ∈ P(R[q]k
≥0 ) × P(R[q]k′

≥0 ) with p1, p2 ∈ Dp we have (p1p2, γ
∗) ∈ A(k + k′, q) if and only if

(p1, γ
∗) ∈ A(k, q) and (p2, γ

∗) ∈ A(k′, q). In particular we have p∗ ∈ A(k + k′, q) if and only if
p ∈ A(k, q), where p∗ is the law of ψψ and ψ ≡ 1.

b) For γ∗(q) = 0 we have (p, γ∗) ∈ A(k, q) if and only if ([p]q, γ∗
[q−1]) ∈ A(k, q − 1).

Proof. For the first part, recall the proof of Observation 3.116 to obtain ∇(p1p2, π) = ∇1 + ∇2,

∇1 = E

Z21Λ(Z11) + (k + k′ − 1)Z22Λ(Z12) −
k+k′∑
h=1

Z23,hΛ(Z13,h)

 = Z2∇(p1, π),

similarly ∇2 = Z2∇(p2, π) and where Zij = Zf(ψi,γj,[ki]), Zi3,h = Zfm(ψi, h, (γ1,[ki],γ2,[ki])) for
h ∈ [ki] and Zi3,h = Zf(ψi,γ2,[ki]) otherwise, Zi = Zf(E[ψi], (γ∗)h∈[ki]), k1 = k and k2 = k′.

For γ∗(q) = 0 and π ∈ P2
∗,γ∗([q])2 we have γi,h(q) = 0 almost surely, since the γ ≥ 0 and

E[γi,h(q)] = 0. Hence, we have Zfm(ψ, h,γ) = Zfm([ψ]q, h, (γi,h,[q−1])i,h) almost surely.

The corresponding result for BAL is immediate, completing the pending part in the proof of
Observation 3.106. Next, we consider the following color embedding (inspired by Gallager’s mapping,
cf. [90]). Let q′ ∈ Z≥q and let ⋃̇τCτ = [q′] be a partition into color classes C = (Cτ )τ∈[q] such that
τ ∈ Cτ for all τ ∈ [q]. For τ ∈ [q′] let [τ ]C ∈ [q] be the unique representant with τ ∈ C[τ ]C . For ψ ∈ R[q]k

≥0

let [ψ]C : [q′]k → R≥0, σ 7→ ψ(([σh]C)h). For p ∈ P(R[q]k
≥0 ) let [p]C ∈ P(R[q′]k

≥0 ) be given by [ψ]C ∼ [p]C .
For γ ∈ P([q′]) let [γ]C ∈ P([q]) be given by [γ]C(τ) = γ(Cτ ).

Observation 3.123. For p ∈ Dp and γ∗ ∈ P([q′]) we have ([p]C , γ∗) ∈ A(k, q′) if and only if
(p, [γ∗]C) ∈ A(k, q).

Proof. First, notice that Zfm([ψ]C , h, γ) = Zfm(ψ, h, ([γi,h]C)i,h). Thus, for π ∈ P2
∗,γ∗([q′]) with γ ∼ π

and [π]C ∈ P2
∗,[γ∗]C ([q]) given by [γ]C ∼ [π]C we have ∇•([ψ]C , π) = ∇•(ψ, [π]C) and thereby ∇([p]C , π) =

∇(p, [π]C). Since P2
∗,γ∗([q′]) → P2

∗,[γ∗]C ([q]), π 7→ [π]C , is surjective, the result follows.

Next, we turn to a reweighting scheme in the flavor of Observation 3.118 that heavily generalizes
Gallager’s mapping. Recall q′ and C from above. Using Observation 3.122, let r : [q′] → R≥0 and
β∗ ∈ P([q′]) be such that ∑ρ∈Cτ

β∗(ρ)r(ρ) = β∗(Cτ ) > 0. For ρ ∈ [q′] let [ρ] ∈ [q] be the unique
element with ρ ∈ C[ρ] and let [σ] = ([σh])h for σ ∈ [q′]k. For ψ ∈ R[q]k

≥0 let [ψ] ∈ R[q′]k
≥0 be given by

[ψ](σ) = ∏
h r(σh)ψ([σ]), and let [p] ∈ P(R[q′]k

≥0 ) be given by [ψ] ∼ [p]. For β ∈ P([q′]) let [β] ∈ Rq≥0
be given by [β](τ) = ∑

ρ∈Cτ
r(ρ)β(ρ).

Observation 3.124. We have (p, [β∗]) ∈ A(k, q) if we have ([p], β∗) ∈ A(k, q′).

Proof. For τ ∈ [q] let βτ ∈ P([q′]) be given by βτ (ρ) = β∗(ρ)/β∗(Cτ ), ρ ∈ Cτ . Notice that the inverse
of the map β◦ : P([q]) → P([q′]), γ 7→

∑
τ γ(τ)βτ is γ : P([q′]) → Rq≥0, β 7→ [β], meaning that

β◦ : P([q]) → β◦(P([q])) is a bijection, and that β◦(γ∗) = β∗, where γ∗ = [β∗]. For π ∈ P2
∗,γ∗([q]) let

[π] ∈ P2
∗,β∗([q′]) be given by β◦(γ) ∼ [π], using γ ∼ π.

Next, notice that Zfm([ψ], h, γ) = Zfm(ψ, h, ([γi,h])i,h) which yields that ∇•([ψ], [π]) = ∇•(ψ, π)
for all π ∈ P2

∗,γ∗([q]), which suggests that ∇([p], [π]) = ∇(p, π) and hence ∇↓([p], β∗) ≤ ∇↓(p, γ∗).
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3.5.6 Valid Models. So far, we have discussed a plentitude of closure properties, but all models so
far are trivial in some sense. Let f : R2 → R, (x, y) 7→ xk + (k − 1)yk − kxyk−1 and S = f−1(R≥0).

Observation 3.125. We have R2
≥0 ⊆ S. For k ∈ 2Z>0 we have S = R2.

Proof. The first part holds because f(x, y) = (x − y)2∑k−2
ℓ=0 (ℓ + 1)xk−2−ℓyℓ. For the second part we

distinguish the following cases. First notice that f(x, 0) = xk ≥ 0 since k ∈ 2Z>0. For y ̸= 0 let
r = x/y and notice that f(x, y) = g(r)yk with g(r) = rk + (k − 1) − kr. Using g′(r) = krk−1 − k and
g′′(r) = k2rk−2 we notice that g is convex since k ∈ 2Z>0 and thus g′′ ≥ 0. Hence, the only stationary
point at r = 1 is the unique minimum, with g(1) = 0.

As simple as it seems, many proofs in the past twenty years relied on this result (cf. Remark 3.128)
For p ∈ P(T ), T = R≥0 × R × R[q]k , let (a, b,∆) ∼ p. The base class of functions is

Pb = {p ∈ P(T ) : E[Λ(a)] < ∞, P(|b∆| ≤ 1) = 1} .

For p ∈ Pb let ψ : [q]k → R, σ 7→ a(1 − b∆(σ)), and let [p] be given by ψ ∼ [p].

Observation 3.126. For p ∈ Pb we have ∇([p], π) = ∑∞
ℓ=2

1
ℓ(ℓ−1)E[abℓ∇◦(ℓ)],

∇◦(ℓ) = Zf(∆,γ1)ℓ + (k − 1)Zf(∆,γ2)ℓ −
∑
h

Zfm(∆, h,γ)ℓ.

Proof. Notice that ∥ψ∥∞ ≤ a(1 + ∥b∆∥∞) ≤ 2a almost surely, so [p] ∈ Dp and thus ∇([p], π) is
well-defined. Using Observation 3.118 we obtain ∇([p], π) = E[a∇•(ψ◦, π)] with ψ◦ : [q]k → R, σ 7→
1 − b∆(σ). Hence, we have ∇([p], π) = E[a∇◦(ψ◦,γ)]. Next, we use that Λ(1 − t) + t = ∑∞

ℓ=2
1

ℓ(ℓ−1) t
ℓ

for |t| ≤ 1. For this purpose we rewrite ∇([p], π) = E[a(∇◦(ψ◦,γ) +L) − aL] with

L = Zf(b∆,γ1) + (k − 1)Zf(b∆,γ2) −
∑
h

Zf(b∆, h,γ) ∈ [−k, k].

Using linearity we obtain ∇([p], π) = E[a(∇◦(ψ◦,γ) + L)] since E[aL] = 0, using that all color
distributions have the same expectation. Using the power series we obtain

∇([p], π) = E
[ ∞∑
ℓ=2

abℓ∇◦(ℓ)
ℓ(ℓ− 1)

]
=

∞∑
ℓ=2

E
[
abℓ∇◦(ℓ)
ℓ(ℓ− 1)

]
.

Now, we formally introduce the non-trivial models from Section 2.1.2.2. Recall that these models
are defined on T = R≥0 ×R× ((Rq)Z>0)k, ultimately still RZ, and thereby all of these spaces are Borel
(Definition 8.35 in [75]). Thus, we can work with Markov kernels without loss of generality. Further,
we can modify (a, b,f) as long as it does not affect ψ, since this consequently does not affect the
assertion in Proposition 2.1.

Let F be the σ-algebra from Section 3.1.6, Σc the σ-algebra of R≥0 × R, Σf the σ-algebra of
(Rq)Z>0 , and Σ× = Σc ⊗ Σ⊗k

f . The following triplets (a, b,f) ∈ T are of Type 1.
• There exists a sub-σ-algebra Σ ⊆ F and Markov kernels κc : Ω × Σc → [0, 1], κf : Ω × Σf → [0, 1]

with the following property. The product kernel κ : Ω×Σ× → [0, 1], i.e. κω = κc,ω⊗κ⊗k
f,ω for ω ∈ Ω,

is a regular conditional distribution for (a, b,f) given Σ.



3. Condensation Threshold 101

• We have ∑σ∈[q]k
∑∞
i=1

∣∣∣∏k
h=1 fh,i(σh)

∣∣∣ < ∞ almost surely. Redefine f by setting it 0 on the event
that the series diverges. Let ∆ : [q]k → R, σ 7→

∑
i

∏
h fh,i(σh).

• We have |b|∥∆∥∞ ≤ 1 almost surely.
• We have E[Λ(a)] < ∞.
• We have E[|abℓ|],E[∥∆∥ℓ∞] < ∞ for all ℓ ∈ Z>0.
• We have E[abℓ|Σ] ≥ 0 almost surely for ℓ ∈ 2Z>0 + 1.
Notice that redefining f on a null event does not change the distribution p of ψ. A triplet is of Type 2
if it is of Type 1, further f1,i ≡ 0, i ∈ Z>1, and E[abℓ|Σ] = 0, ℓ ∈ 2Z>0 + 1, almost surely. A triplet is
of Type 3 if it is of Type 1 and f1 ≥ 0 almost surely. For i ∈ [3] the distribution of σ 7→ a(1 −b∆(σ))
is of Type i if (a, b,f) is of Type i. Let Pi ⊆ Dp be the set of all distributions of Type i ∈ [3]. Let
P4 be the set of all distributions p of σ 7→

∏
h fh(σh) for f ∈ (Rq≥0)k with p ∈ Dp. For k ∈ 2Z let

P = P1 ∪ P4, otherwise let P = P2 ∪ P3 ∪ P4.

Proposition 3.127. We have P × P([q]) ⊆ A.

Proof. The set P4 was discussed in Observation 3.116. For p ∈ P1, Observation 3.126 applies, and
there exists a σ-algebra Σ ⊆ F that yields conditional independence. Then we have

∇(p, π) =
∞∑
ℓ=2

1
ℓ(ℓ− 1)E

[
E
[
abℓ

∣∣∣Σ]E [∇◦(ℓ)|Σ]
]
.

Now, we turn to the various cases. First, assume that k ∈ 2Z. Recall that we have E[abℓ|Σ] ≥ 0
almost surely for the leading factors, by assumption for ℓ ∈ 2Z>0 + 1, and for ℓ ∈ 2Z>0 because a ≥ 0
almost surely and bℓ ≥ 0 almost surely. Hence, we focus on

∇◦(ℓ) =
∞∑

M=1

∑
i∈IM

 ℓ∏
m=1

k∏
h=1

s1,im,h + (k − 1)
ℓ∏

m=1

k∏
h=1

s2,im,h −
∑
h

ℓ∏
m=1

s1,im,h
∏
h′ ̸=h

s2,im,h′


with IM = {i ∈ Zℓ>0 : ∑m im = M}, sj,i,h = ∑

σ γj,h(σ)fh,i(σ), using that the series underlying ∆
are absolutely convergent almost surely. Now, taking the conditional expectation yields

E[∇◦(ℓ)|Σ] =
∞∑

M=1

∑
i∈IM

(
Ski,1 + (k − 1)Ski,2 − kSi,1S

k−1
i,2

)
with Si,j = E[∏m sj,im,1|Σ] using conditional independence and identical laws along the coordinates.
With k ∈ 2Z>0 and Observation 3.125 we’re done. For p ∈ P3 we argue exactly as above, only in the
very last step we use that Si,j ≥ 0 almost surely. For the remaining case we use that E[abℓ|Σ] = 0
almost surely for odd ℓ, to restrict to ℓ ∈ 2Z>0. Since we only have a single contribution in this case, the
set IM is empty for M ̸= k, thus we only have to evaluate i = (1)m and thereby Si,j = E[sℓj,1,1|Σ] ≥ 0
almost surely, so Observation 3.125 applies as above.

Proposition 2.1 is a corollary to Proposition 3.127, for bounded weights. Recall that all previously
established closure properties apply on top of Proposition 3.127.

Remark 3.128. The issue with the parity of k has a long history. Maneva [95] noticed that the
restriction to even k in [53, 105] was not necessary, regarding the Type 2 models. Then, it was
pointed out in [33] that the restriction to even k in [4] was not necessary, again, regarding the Type
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2 models. The restriction to even k in this work stems from the Type 1 model, which is new, to our
knowledge.

3.5.7 Related Models. In this section we discuss closely related models, given by the following
parameters. The individual variable neighborhoods are U1 = [n]k or U2 = [n]k ⊆ U1. A weight
ψ : [q]k → R≥0 is permutation invariant if ψ(τ ◦ ι) = ψ(τ) for all τ ∈ [q]k and ι ∈ [k]!. If ψ◦ is
permutation invariant almost surely, let U3 = {u ∈ U2 : ∀h < k uh < uh+1} (which is

([n]
k

)
), and let

T3 = {τ ∈ [q]k : ∀h < k τh ≤ τh+1}.
Let Vr,1 = Um

r , Vr,2 = Um
r ⊆ Vr,1 and Vr,3 = {v ∈ Vr,2 : ∀a < mva < va+1} (using the lexicograph-

ical order, this is
(Ur

m

)
) be the joint variable neighborhoods. Null model and teacher-student model

pairs are uniform or binomial. Let n◦,g be sufficiently large, m◦,g,n = Θ(nk) sufficiently small, n ≥ n◦
and m ≤ m◦.
3.5.7.1 Model Definitions. Let wr,s,m = (vr,s,ψr,s) ∼ u(Vr,s) ⊗ µ⊗m

ψ , and let Gr,s,m = [w]Γγ∗ be the
graph with external fields. Let ψg,w(σ) = ∏

aψa(σva) and ψg,G(σ) = γ∗⊗n(σ)ψg,w(σ) be the weights,
and G∗

r,s,m(σ) given by G 7→ ψg,G(σ)/ψ(σ), where ψr,s,m = E[ψg,G(σ)].
For the binomial null model let ψ◦ = E[ψ◦], γσ = γn,σ, ατ = (|τ−1(ρ)|)ρ for τ ∈ [q]k, and

Z f,1(γσ) =
∑
τ

∏
h

γσ(τh)ψ◦(τ) =
∑
τ

1
nk

∏
ρ

(nγσ(ρ))ατ (ρ)ψ◦(τ),

Z f,2(γσ) =
∑
τ

1
nk

∏
ρ

(nγσ(ρ))ατ (ρ)ψ◦(τ) =
∑
τ

∏
ρ

(nγσ(ρ)
ατ (ρ)

)(n
k

) 1( k
ατ

)ψ◦(τ),

Z f,3(γσ) =
∑
τ∈T3

∏
ρ

(nγσ(ρ)
ατ (ρ)

)(n
k

) ψ◦(τ) = Z f,2(γσ).

Notice that each version is an expectation over ψ◦, with respect to a compatible law. Recall the
expected numberm = d̄n/k of factors. Let pb,r,d̄,n = m

|Ur| be the success probability. For the case5 s = 1
let vb ∼ Po(pb)⊗Ur , otherwise let vb ∼ Bin(1, pb)⊗Ur . Further, let ψb ∼ µ⊗Ur×Z>0

ψ , wb,r,s,d̄ = (vb,ψb)
and Gb,r,s,d̄ = [wb]Γγ∗ . Let p∗

b,r,s,d̄,σ(τ) = ψ◦(τ)
Zf,r(γσ)pb, further v∗

b,r,s,d̄,σ ∼
⊗

u∈Ur
Po(p∗

b(σu)) for s = 1 and

v∗
b ∼

⊗
u∈Ur

Bin(1, p∗
b(σu)) otherwise. Let ψ∗

b,σ ∼
⊗

u∈Ur
ψ∗⊗Z>0

◦,σu , where ψ∗
◦,τ is given by the Radon-

Nikodym derivative ψ 7→ ψ(τ)/ψ◦(τ), and let w∗
b,r,s,d̄,σ = (v∗

b,ψ
∗
b) ∼ v∗

b ⊗ ψ∗
b, G∗

b,r,s,d̄(σ) = [w∗]Γγ∗ .
For w = (v, ψ) from wb let ψg,w(σ) = ∏

u∈Ur

∏v(u)
a=1 ψu,a(σu) and ψg,[w]Γ

γ∗
(σ) = γ∗⊗n(σ)ψg,w(σ). We

identify w = (v, (ψu,a)a∈[v(u)]) with its restriction, and also (ψu,a)a∈[1] = ψu.

Remark 3.129. We defined the 18 model pairs as they appear in the literature, apart from minor
modifications (like the normalization constant for unconditional ‘binomial’ teacher-student model,
discussed later in more detail). The combination r = s = 1 is used in proofs, e.g. in this contribution,
and in software applications that tolerate repetitions, e.g. for performance reasons. The case r = 2
is used to prevent multiple occurrences of variables for weight functions that are not permutation
invariant (e.g. k-SAT). The case r = 3 is used for permutation invariant weights, especially on bipartite
or hypergraphs (e.g. occupation problems). The case s = 2 is used to enforce neighborhood uniqueness
with order (e.g. bipartite graphs, with r = 3). The case s = 3 is used to enforce neighborhood

5Notice that the name Poisson model would be more appropriate in this case.
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uniqueness without order (e.g. hypergraphs with r = 3). The binomial versions are used in proofs,
e.g. this contribution, and discussions of binomial bipartite or hypergraphs.

In the following we use main results to refer to Theorem 3.97, Theorem 3.100, Lemma 3.101,
Lemma 3.102 and Theorem 3.103, further to Observation 3.98 for completeness, and to Lemma
3.110, Lemma 3.111 for convergence in probability. With target functions we refer to the maps
ϕ̄a(m) = 1

n ln(E[Zg(G)]), ϕ̄(m) = E[ϕg(G)], ϕ̄∗(m) = E[ϕg(G∗(σ∗))], ϕ̄a(m) = 1
n ln(E[Zg(G)]),

ι(m) = 1
nI(σ∗,G∗(σ∗)) and δ(m) = 1

nDKL(σ∗,G∗(σ∗)∥σg,G,G) (cf. Section 3.5.4). These defini-
tions directly extend to the uniform model pair, for any r, s.

This covers convergence for m ∼ Po(d̄n/k), pointwise for m ≤ m↑, and for m∗, for ϕ̄a, ϕ̄∗,
δ(m), ι(m), and ϕ̄(m) if B↑ = ϕa(d̄), with respective order of convergence (recall ρ ∈ (0, 1/4). This
also covers bounds for the limits ϕq↑(d̄), ϕq↓(d̄), boundedness and Lipschitz continuity of the target
functions and convergence in probability.

The binomial models are defined for d̄, notm, thus the situation is slightly different. The definitions
ϕ̄b(d̄) = E[ 1

n ln(Zg(Gb))], ϕ̄∗
b(d̄) = E[ 1

n ln(Zg(G∗
b(σ)))], δb(d̄) = 1

nDKL(σ∗,G∗
b(σ∗)∥σg,Gb ,Gb) and

ιb(d̄) = 1
nI(σ∗,G∗

b(σ∗)) are consistent with the uniform models over random factor counts. The
annealed free entropy density for the binomial (null) model is ϕ̄ba(d̄) = E[ 1

n ln(E[Zg(Gb)|∥vb∥1])]. Let
mn,d̄ ∼ Po(m) for s = 1, and m ∼ Bin(|U|, ps) otherwise.

Observation 3.130. Notice that the following holds.
a) The main results hold for r = s = 1, and are invariant to factors labels.
b) We have Gm ∼ Gb for all r, s (up to factor labels).
c) For s = 1 and the uniform model, the case r = 2 covers r = 3.
d) The case s = 2 covers s = 3.

Proof. For Part 3.130a) we notice that r = s = 1 is indeed exactly the case that we discussed. For
w = (v, ψ) from w let Aw = {(va, ψa) : a ∈ [m]}, and Aw = {(u, ψu,a) : u ∈ U , a ∈ [v(u)]} for
w = (v, ψ) from wb. Then for any w from w or wb we have ψg,w(σ) = ∏

(u,ψ)∈Aw
ψ(σu). The

corresponding result for [w]Γγ∗ is immediate. Next, we show that the target functions only depend on
the graphs through the weights ψg. This holds for Zg([w]Γ) = ∑

σ ψg,[w]Γ(σ) and hence for ϕ̄a, ϕ̄ and
ϕ̄∗. The Radon-Nikodym derivative for δ is

r(σ,G) = γ∗⊗n(σ)Zg(G)
E[ψg,G(σ)] .

Hence, this also holds for δ(m) = 1
nE[ln(r(σ∗,G∗(σ∗)))]. The Radon-Nikodym derivative for ι(m) =

1
nDKL(σ∗,G∗(σ∗)∥σ∗ ⊗G∗(σ∗)) is

r(σ,G) = ψg,G(σ)/E[ψg,G(σ)]∑
σ∗ γ∗⊗n(σ∗)ψg,G(σ∗)/E[ψg,G(σ∗)] ,

so also ι(m) = 1
nE[ln(r(σ∗,G∗(σ∗)))] only depends on ψg. Thus, Part 3.130a) holds.

For Part 3.130b) let s = 1. With vb ∼ Po(pb)⊗U , with m ∼ Po(m), and with vm ∈ U being
iid multinoulli with law u(U), due to s = 1, the frequencies v′

m = (|v−1
m (u)|)u are multinomial with

parameters m and u(U), so the claim follows with Observation 3.7b). For s > 1 the neighborhoods
vb ∼ Bin(1, pb)⊗U are iid Bernoulli, m ∼ Bin(|U|, pb) is binomial, and vm ∼ u(V), so the result
follows with Observation 3.7e).
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For Part 3.130c) we recall that ψ◦ is permutation invariant almost surely for r = 3, and from Part
3.130a) that r = 3 is covered by r = 2 if ψg,G2,1 ∼ ψg,G3,1 and (σ∗, ψg,G∗

2,1(σ∗)) ∼ (σ∗, ψg,G∗
3,1(σ∗)). For

v◦ ∼ u(U2) we have v◦
◦ ∼ u(U3), where u◦ ∈ U3 is given by u◦([k]) = u([k]), and thereby

ψg,w2(σ) =
∏
a

ψa(σv◦
a
) ∼ ψg,w3(σ),

which shows that G∗
3(σ) is obtained from G∗

2(σ) via u 7→ u([k]) and thus ψg,G∗
2(σ) ∼ ψg,G∗

3(σ). For Part
3.130d) and w ∈ Vr,2×Dm

Ψ we let w◦ = (v◦, ψ◦) be given by the unique v◦ ∈ Vr,3 with v◦([m]) = v([m]),
and ψ◦ = (ψv−1(v◦(a)))a, and proceed analogously.

Since s = 3 is covered, we only work with labeled factors from here on.
3.5.7.2 Managing Expectations. In this section we focus on the expected weights ψ◦

r,s(σ) = E[ψg,w(σ)]
and ψr,s(σ) = E[ψg,G(σ)] = γ∗⊗nψ

◦(σ). Let w∗
r,1 = (v∗,ψ∗) ∼ w∗⊗m

◦ , where w∗
◦,r = (v∗

◦,ψ
∗
◦) is

given by the derivative (u, ψ) 7→ ψ(σu)/Zf(γσ) with respect to w◦,r = (v◦,ψ◦) ∼ u(U) ⊗ µΨ. Let
w∗
r,2 ∼ (w∗

r,1|v∗
r,1 ∈ V2).

Observation 3.131. Notice that the following holds.
a) We have ψ◦

r,1(σ) = Z f(γσ)m.
b) We have Z f,r(γσ) = E[ψ◦(σv◦,r )], so Z f,r(γσ) = P(v∗

◦,1∈Ur)
P(v◦,1∈Ur)Z f,1(γσ).

c) We have ψ◦
r,2(σ) = P(v∗

r,1∈V2)
P(vr,1∈V2)ψ

◦
r,1(σ).

d) We have w◦,r ∼ (w◦,1|v◦,1 ∈ Ur) and w∗
◦,r ∼ (w∗

◦,1|v∗
◦,1 ∈ Ur).

e) We have wr,1 ∼ (w◦,1|v◦,1 ∈ Ur)⊗m, G∗
r,1(σ) ∼ [w∗

r,1]Γ and w∗
r,1 ∼ (w∗

◦,1|v∗
◦,1 ∈ Ur)⊗m.

f) We have wr,2 ∼ (wr,1|vr,1 ∈ V2) and G∗
r,2(σ) ∼ [w∗

r,2]Γ.
g) We have G∗

b(σ) ∼ G∗
m(σ) for s = 1 (up to relabeling of factors).

Proof. The properties of the uniform distribution yield vr,1 ∼ u(Ur)⊗m, v◦,r ∼ (v◦,1|v◦,1 ∈ Ur) and
vr,2 ∼ (vr,1|vr,1 ∈ V2). Thus, independence gives w◦,r ∼ (w◦,1|v◦,1 ∈ Ur), wr,1 ∼ w⊗m

◦,r ∼ (w◦,1|v◦,1 ∈
Ur)⊗m and wr,2 ∼ (wr,1|vr,1 ∈ V2). We verify Z f,2 = E[ψ◦(σv◦,2)] analogous to Observation 3.11,
which implies the result for r = 3, analogous to the proof of Observation 3.130. This establishes Part
3.131a) and Part 3.131b) since

Z f,r(γσ) = E
[
ψ◦(σv◦,1)

∣∣∣v◦,1 ∈ Ur
]

=
Z f,1(γσ)E

[
ψ◦(σv◦,1 )
Zf,1(γσ) 1{v◦,1 ∈ Ur}

]
P(v◦,1 ∈ Ur)

=
Z f,1(γσ)P(v∗

◦,1 ∈ Ur)
P(v◦,1 ∈ Ur)

.

Part 3.131c) is obtained analogously. This also yields ψ(σv)1{v∈Ur}
Zf,r(γσ)P(v◦,1∈Ur) = ψ(σv)1{v∈Ur}

Zf,1(γσ)P(v∗
◦,1∈Ur) and thereby

Part 3.131d). With Part 3.131a) and analogously to Observation 3.13 we obtain G∗
r,1(σ) ∼ [w∗

r,1]Γ,
and thereby Part 3.131e). Part 3.131f) follows analogously to Part 3.131d).

Part 3.131g) holds due to Observation 3.7b), since v∗
b ∼

⊗
u Po(p∗

b(σu)), thus ∥v∗
b∥1 ∼ Po(m) since∑

u p
∗
b(σu) = mE[ψ◦(σv◦,r )]/Z f(γσ) = m, further since m ∼ Po(m), and since v∗

m ∈ U is multinoulli
with parameters m and v◦, i.e. probabilities ψ◦(σu)

Zf(γσ)|U| , thus (|v∗−1
m (u)|)u is multinomial with parameters

m and v◦ and thereby (|v∗−1
m (u)|)u ∼ vb.

Combining Observation 3.130 and Observation 3.131 yields the following. The main results hold
for both model pairs for r = s = 1, where the binomial model is exactly the model in Section 1. Thus,
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for s = 1 we only have to establish the results for the uniform model and r = 2, which covers the
binomial model for r = 2 as well as the uniform model for r = 3, which in turn covers the binomial
model for r = 3. Then, for each r and both model pairs, we are only left to derive s = 2 from s = 1,
since s = 3 is covered by s = 2.

Next, we establish bounds for the error terms given by Observation 3.131.

Observation 3.132. There exists cg ∈ R>0 such that the following holds.
a) We have P(v◦,1 ̸∈ U2),P(v∗

◦,1 ̸∈ U2), | ln(Zf,2(γσ)
Zf,1(γσ))| ≤ c/n.

b) We have exp(−c
(m

2
)
/|U|) ≤ P(vr,1 ∈ Um),P(v∗

r,1 ∈ Um) ≤ exp(−
(m

2
)
/(c|U|)).

Proof. The first claim holds since the (v∗
◦,v◦)-derivative is uniformly bounded. For the second claim

let P = P(v ∈ U2) and P ∗ = P(v∗ ∈ U2). Using that the (v∗,v)-derivative is uniformly bounded and
induction over m, we obtain ∏m−1

a=0 (1 −ψ2
↑
a

|U|) ≤ P, P ∗ ≤
∏m−1
a=0 (1 −ψ2

↓
a

|U|). Now, the assertion follows
with standard arguments.

3.5.7.3 Joint Distributions. In this section we establish joint distributions per model type over all
parameters. We start with the coupling of r = 1 and r = 2 for s = 1, which then completes the
discussion of s = 1. Then, we will couple s = 1 with s = 2 for each r and model type. For
w = (v, ψ) ∈ Gn,m, w′ = (v′, ψ′) ∈ Gn,m′ we recall the Hamming distance

d(w,w′) =
min(m,m′)∑

a=1
1{(va, ψa) ̸= (v′

a, ψ
′
a)} + |m−m′|.

Observation 3.133. There exist joint distributions (w1,1,w1,2,B), (w∗
1,1,w

∗
1,2,B) and cg ∈ R>0 such

that d(G1,1,G1,2) ≤ B almost surely, d(G∗
1,1(σ),G∗

1,2(σ)) ≤ B almost surely, and B ∼ Bin(m, c/n).

Proof. Let w′ = (v′,ψ′) and w′
r = (v′

r,ψ
′
r) be the null models for r = 2 and r = 1, or the corre-

sponding teacher-student models. We couple w′ and w′
r using rejection sampling, i.e. let (ṽ, ψ̃) ∼

(v′
r,◦,ψ

′
r,◦)⊗([m]×Z>0), then we have (v′

r,a,ψ
′
r,a)a ∼ (ṽa,1, ψ̃a,1)a and (v′

a,ψ
′
a)a ∼ (ṽa,b(a), ψ̃a,b(a))a,

where b(a) = inf{b ∈ Z>0 : ṽa,b ∈ [n]k}. We use this coupling to define the joint distribution of
w′ and w′

r. Let s = (1{b(a) = 1})a be the indicator of where the coupling succeeded and notice
that s ∼ Bin(m,P ′), where P ′ = P(v◦,1 ∈ U2) for the null models and P ′ = P(v∗

◦,1 ∈ U2) for the
teacher-student models. This gives d(G′,G′

r) ≤ B◦ with B◦ = (m− s(a))a ∼ Bin(m, 1 − P ′). Thus,
the maximal coupling of b◦ ∼ Bin(1, 1 − P ′)⊗m and b ∼ Bin(1, c/n)⊗m, using Observation 3.132,
completes the proof.

This defines a joint distribution for all null models (covering both uniform and binomial), and a
joint distribution for all planted models, for s = 1. Observation 3.7 shows that B ∼ Po(cm/n) is
Poisson with cm/n = cd̄/k for the binomial models. The next result provides joint distributions for
s = 1 and s = 2, for given r and model type.

Observation 3.134. There exist (wr,1,wr,2,B), (w∗
r,1,w

∗
r,2,B), (w∗

b,r,1,w
∗
b,r,2,B

′) and cg ∈ R>0
such that d(wr,1,wr,2) ≤ B, d(w∗

r,1,w
∗
r,2) ≤ B, d(w∗

b,r,1,w
∗
b,r,2) ≤ B′ almost surely, where B ∼

Bin(m, cm/|U|) and B′ ∼ Bin(|U|, cm2/|U|2).

Proof. We follow the proof of Observation 3.133. Hence, we introduce the rejection sampling (ṽ, ψ̃) ∼
(v′

r,◦,ψ
′
r,◦)⊗([m]×Z>0), notice that (v′

r,ψ
′
r) ∼ (ṽa,1, ψ̃a,1)a and that (v′,ψ′) ∼ (ṽa,b(a), ψ̃a,b(a))a, where
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b(a) = inf{b : ∀a′ ∈ [a − 1] ṽa,b ̸= ṽa′,b(a′)}. For B◦ = (1{b(a) > 1})a we obtain the bound
P(B◦(a) = 1) ≤ ψ2

↑m/|U|, thus we have a joint distribution (G′,G′
r,B) with B ∼ Bin(m,ψ2

↑m/|U|).
For G∗

b,1,2(σ) = (v′,ψ′) and G∗
b,1,1(σ) = (v′

r,ψ
′
r) we have P(v′

r(u) > 0) = 1 − e−p∗
b ≤ p∗

b =
P(v′(u) > 0) and thus the maximal coupling yields B◦ ∼

⊗
u Bin(1, p∗

b(σu) − (1 − ep
∗
b(σu))). Using

ex − 1 − x ≤ (e− 2)x2 on [0, 1] we obtain the bound (e− 2)ψ4
↑m

2/|U|2.

3.5.7.4 Main Results. We extend the main results to all related models.

Corollary 3.135. The main results apply for all r, s ∈ [3] and the uniform models.

Proof. For w ∈ Gn,m and w′ ∈ Gn,m′ we recall the bounds∣∣∣∣∣ln
(
ψg,w(σ)
ψg,w′(σ)

)∣∣∣∣∣ ,
∣∣∣∣∣ln
(
Zg([w]Γ)
Zg([w′]Γ)

)∣∣∣∣∣ ≤ 2 ln(ψ↑)d(w,w′),

|ln (ψg,w(σ))| ,
∣∣∣ln (Zg([w]Γ)

)∣∣∣ ≤ ln(ψ↑)m.

The latter also yield | ln(ψ◦
r,s(σ)|, | ln(Zr,s)| ≤ ln(ψ↑)m, using the shorthand Z = E[Zg(G)], and

thereby |ϕ̄a(m)|, |ϕ̄(m)|, |ϕ̄∗(m)| ≤ ln(ψ↑)m/n. Using the proof of Observation 3.130, also the bounds
|δ(m)| ≤ 2 ln(ψ↑)m/n, |ι(m)| ≤ 4 ln(ψ↑)m/n follow. This justifies the restriction to m ≤ m↑. Obser-
vation 3.131 and Observation 3.132 give∣∣∣∣∣ln

(
ψ

◦
r,s(σ)

ψ
◦
1,1(σ)

)∣∣∣∣∣ ,
∣∣∣∣∣ln
(
Zr,s

Z1,1

)∣∣∣∣∣ ≤ c

(
m2

|U|
+ m

n

)
≤ c

(
m2

↑(n
k

) + m↑
n

)
≤ C

for a sufficiently large constant Cg > 0. This directly yields |ϕ̄a(m) − ϕ̄a,1,1(m)| ≤ C/n, which
completes the discussion for ϕ̄a. With Observation 3.133 and Observation 3.134 we further get

∣∣∣ϕ̄(m) − ϕ̄1,1(m)
∣∣∣ , ∣∣∣ϕ̄∗(m) − ϕ̄∗

1,1(m)
∣∣∣ ≤ 2 ln(ψ↑)

n

(
cm

n
+ cm2

|U|

)
≤ C

n
,

which completes the discussion for the free entropies. The bound |δ(m) − δ1,1(m)| ≤ C/n follows
analogous to the above. The nominator for ι(m) follows analogously, for the denominator we use
that the bounds above for both the expected and the unexpected values are uniform, to recover
|ι(m) − ιr,s(m)| ≤ C/n.

Before we establish the main results for the binomial models, we derive some basic results for
the binomial teacher-student model for s = 2. Let mb = ∥vb∥1, m∗

b(σ) = ∥v∗
b∥1, d̄b = kmb/n and

d̄∗
b(σ) = km∗(σ)/n. For i ∈ [n] let d∗

b,σ(i) = |{u ∈ v∗−1
b (1) : i ∈ u([k])}|.

Observation 3.136. Notice that the following holds.
a) We have E[mb] = E[m∗

b(σ)] = m and E[d̄b] = E[d̄∗
b(σ)] = d̄.

b) There exists cg ∈ R>0 such that P(|d̄b − d̄| ≥ r),P(|d̄∗
b(σ) − d̄| ≥ r) ≤ c1 exp

(
− c2r2n

1+r

)
.

c) We have E[d∗
b,σ∗(i)] = (1 + O(1/

√
n))d̄ and P(|d̄∗

b,σ∗(i) − d̄| ≥ r) ≤ c1 exp
(
− c2r2n

1+r

)
.

Proof. For s = 1 we have mb(σ) ∼ mb ∼ m. For s = 2, using Observation 3.131 notice that
E[m∗

b(σ)] = ∑
u p

∗
b(σu) = m. Hence, with the Chernoff-Hoeffding Theorem we recover the bounds in
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Corollary 3.12 for both mb and m∗
b(σ) and thus d̄b, d̄∗

b(σ). For the second part, we have

E
[
d∗

b,σ(i)
]

= d̄
∑
τ

1
k

ψ◦(τ)
Z f(γσ)

n|{u ∈ U : i ∈ u([k]), σu = τ}|
|U|

.

in all cases. The case r = 3 reduces to r = 2, and we reduce r = 1 to r = 2 at the cost of the relative
error O(1/n). For r = 2 there exists a unique position with uh = i, hence we have

λσ(i) = E
[
d∗

b,σ(i)
]

= (1 + O(1/n))d̄
∑
h

1
k

∑
τ

ψ◦(τ)
Z f(γσ)

n|{u ∈ U : uh = i, σu = τ}|
|U|

.

Earning another O(1/n), we move back to r = 1 to obtain λσ(i) = (1 + O(1/n))d̄µγσ |∗(σi)
γσ(σi) , with µγσ

from Observation 3.9. Lipschitz continuity and Observation 3.23 yield the expectation result. For
s = 1 we have d∗

b,σ(i) ∼ Po(λσ(i)), while for s = 2 the degree d∗
b,σ(i) is a sum of independent Bernoullis

with average success probability λσ(i)/|U(i)|, where U(i) = {u ∈ U : i ∈ u([k])}. Bernstein’s inequality
gives P(|d∗

b,σ(i) − λσ(i)| ≥ r) ≤ c1 exp(−c′ r2

1+r)) for both cases, and cg ∈ R2
>0. The result follows with

Lipschitz continuity and standard methods.

This result implies that for any type of ground truth distribution, the average number of factors
and the average degree do not reveal any information about the chosen ground truth. It also shows
that for γ∗ the individual degrees do not reveal any information, in particular not on the color of
the vertex. Looking into the proof, the result is significantly stronger. We showed that the variable
degrees do not reveal any information if and only if γ∗ is a stationary point of Z f .
Corollary 3.137. All main results apply for the binomial model for s = 1. For s = 2 all main results
for ϕ̄a, ϕ̄, ϕ̄∗ hold. Further, we have ιr,2(d̄) = ιr,1(d̄) + O(1/nk−1) and δr,2(d̄) = δr,1(d̄) + O(1/nk−1),
thus all results hold except for the pointwise asymptotics.

Proof. Since we entirely focus on the binomial model in this proof, we discard the subscript b. Corol-
lary 3.135 with Observation 3.130 and Observation 3.131 establishes the main results for the binomial
model for s = 1, where we notice that all target functions for the binomial model are expectations
over ∥v∥1 ∼ m, as for the case r = s = 1 from Section 1.

The case s = 2 differs from all previous cases because ∥v∗∥1 and ∥v∥1 do not have the same law.
Still, Observation 3.130 shows that ϕ̄ and ϕ̄a are special cases of Corollary 3.135. Also, Observation
3.136 shows that m∗ is of the same quality as the Poisson distribution, so the pointwise results from
Corollary 3.135 imply the result for ϕ̄∗.

Thus, we turn to ι(d̄) = E[ 1
n ln(ri,σ∗(w∗

σ∗))], where (σ,w) 7→ ri,σ(w) is the (σ∗,w∗
r,2,σ∗) to σ∗ ⊗

w∗
r,2,σ∗ derivative. We approximate the binomial with the Poisson distribution to reduce the case

s = 2 to s = 1. Hence, we write ri,σ(w) = rσ(w)r◦
σ(w)/r̄(w) in terms of the (σ∗,w∗

r,2,σ) to (σ∗,w∗
r,1,σ)

derivative rσ(w), the (σ∗,w∗
r,1,σ) to σ∗ ⊗w∗

r,1,σ derivative r◦
σ(w), and the σ∗ ⊗w∗

r,2,σ to σ∗ ⊗w∗
r,1,σ

derivative r̄(w). With p∗
σ(τ) = ψ◦(τ)

Zf(γσ)p and ρσ(τ) = pσ(τ)ψu(τ)
ψ◦(τ) , we have

rσ(v, ψ) =
∏
u∈v−1(1) ρσ(σu)∏u∈v−1(0)(1 − p∗

σ(σu))∏
u∈v−1(1)(e−p∗

σ(σu)ρσ(σu))∏u∈v−1(0) e
−p∗

σ(σu) = exp (O(pm) + O(p)∥v∥1) ,

r̄(v, ψ) =
E
[∏

u∈v−1(1) ρσ∗(σ∗
u)∏u∈v−1(0)(1 − p∗

σ∗(σ∗
u))
]

E
[∏

u∈v−1(1)(e−p∗
σ∗ (σ∗

u)ρσ∗(σ∗
u))∏u∈v−1(0) e

−p∗
σ∗ (σ∗

u)
] = exp (O(pm) + O(p)∥v∥1) .
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Recall that we take the logarithm and the expectation to obtain ι, so Observation 3.136 yields

ιr,2(d̄) = E
[ 1
n

ln
(
r◦
σ∗

(
w∗
r,2,σ∗

))]
+ O

(
pm

n

)
= E

[ 1
n

ln
(
r◦
σ∗

(
w∗
r,2,σ∗

))]
+ O

( 1
nk−1

)
.

Now, we recovered the the target function for s = 1, that is, the log-density

ι◦σ(v, ψ) = 1
n

ln (r◦
σ(v, ψ)) = 1

n
ln


∏
u

∏v(u)
a=1

ψu,a(σu)
Zf(γσ)

E
[∏

u

∏v(u)
a=1

ψu,a(σ∗
u)

Zf(γσ∗ )

]
 .

Recall the distance from Section 3.5.7.3 and notice that |ι◦σ(w)−ι◦σ(w′)| ≤ c
nd(w,w′) for some cg ∈ R>0,

same as for the log-densities of all preceding derivatives. Hence, we couple w∗
r,2,σ and w∗

r,1,σ, which
amounts to coupling Bin(p∗

σ(τ)) and Po(p∗
σ(τ)), due to independence and since the weights have the

same law. We take P(x◦,σ,τ = x) = p(x) with

p(0, 0) = 1 − p∗, p(0, 1) = e−p∗ − (1 − p∗), p(a, 1) = e−p∗ p∗a

a! , a ∈ Z>0, p
∗ = p∗

σ(τ),

which gives x◦(1) ∼ Po(p∗) and x◦(2) ∼ Bin(1, p∗). This induces the coupling (xσ,ψ∗) ∼
⊗

u(x◦,σ,σu ⊗
ψ∗

◦,σu
), which bounds the distance with Dσ = ∑

u |xσ,u(2) − xσ,u(1)|, and thereby

ε(σ) =
∣∣∣E [ι◦σ(w∗

r,2,σ)
]

− E
[
ι◦σ(w∗

r,1,σ)
]∣∣∣ ≤ c

n
E[Dσ] = c|U|

n
E[D◦],

where for D◦ = |x◦(2) − x◦(1)| we have P(D◦ = D) = p(D) with p(0) = 1 − p∗ + e−p∗
p∗, p(1) =

e−p∗ − (1 − p)∗ + 1
2e

−p∗
p∗2 and p(D) = 1

(D+1)!e
−p∗

p∗(D+1) for D ∈ Z≥2. Notice that with D ≤ D + 1
we obtain Dp(D) ≤ p∗p(D − 1) = p∗P(x◦(1) = D) for D ≥ 2, and thereby

E[D◦] = p(1) + p∗P(x◦(1) ≥ 2) = e−p∗ − (1 − p∗) − p∗(e−p∗ − 1 + 1
2e

−p∗
p∗) ≤ cp2 = cm2

|U|2

for some cg ∈ R>0. This gives ε(σ) = O(1/nk−1), uniformly in σ, so taking the expectation over σ∗

and Jensen’s inequality yield |ιr,2(d̄) − ιr,1(d̄)| = O(1/nk−1).
The proof for δ(d̄) = E[ 1

n ln(rd,σ∗(w∗
σ∗))] over the (σ∗,w∗

σ∗) to (σg,[w]Γ ,w) derivative rd,σ(w) is
similar. With rσ(v, ψ) = O(pm) + O(p)∥v∥1 from above, further with the (wr,2,wr,1)-derivative

r′(v, ψ) = p∥v∥1(1 − p)|U|−∥v∥1

e−p∥v∥1p∥v∥1e−p(|U|−∥v∥1) = exp(O(pm) + O(p)∥v∥1),

and with the (σ∗,w∗
1(σ∗)) to (σg,[w1]Γ ,w1) derivative r◦

σ we obtain δr,2(d̄) = E[δ◦
σ(σ∗,w∗

r,2(σ∗))] +
O(1/nk+1), where

δ◦
σ(v, ψ) = 1

n
ln(r◦

σ(v, ψ)) = 1
n

ln

E
[∏

u

∏v(u)
a=1 ψu,a(σ∗

u)
]

Z f(γσ)∥v∥1

 .
Clearly, this map is Lipschitz, so we can reuse our coupling to establish the claim.
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Finally, we notice that replacing Z f(γσ) by ξ in the binomial teacher-student model has no impact
on the results.

Observation 3.138. Corollary 3.137 also holds with Z f(γσ) replaced by ξ.

Proof. We suppress the subscripts b for the binomial model. Notice that these models do not depend
on r, and that the results for ϕ̄a and ϕ̄ are not affected. Hence, let r = 1, s ∈ [2], and let f(d̄) =
E[f◦

σ∗(w∗)] be one of the remaining target functions from Corollary 3.137, i.e. f = ϕ̄∗ with f◦
σ(w) =

ϕg([w]Γ), f = ι with f◦
σ(w) = 1

n ln(ri(σ,w)), or f = δ with f◦
σ(w) = 1

n ln(rd(σ,w)). Let g, g◦ denote the
counterparts with Z f(γσ) replaced by ξ. In the following we bound |f◦ − g◦| and introduce a coupling
of the two corresponding planted models. For the latter, notice that the weights have the law given
by ψ(σu)/ψ◦(σu) with respect to µΨ in both models, so it is sufficient to couple the neighborhoods.

First, notice that f◦, g◦ are bounded and Lipschitz, in the sense that |f◦
σ(v, ψ)|, |g◦

σ(v, ψ)| ≤ c∥v∥1
n

and |f◦
σ(w)−f◦

σ(w′)|, |g◦
σ(w)−g◦

σ(w′)| ≤ c
nd(w,w′) for a constant cg > 0. Recall from Observation 3.131

that | ln(Z f(γσ)/Z f,1(γσ))| ≤ c/n. Recall that Z f,1 ≤ ξ, and from Observation 3.9 that Z f,1(γ)/ξ ≥
max(1 − c∥γ − γ∗∥2

tv, ψ
2
↓) for some other constant cg.

Let p∗
σ(τ) = ψ◦(τ)

Zf(γσ)p, p
•(τ) = ψ◦(τ)

ξ p ≤ p∗
σ(τ) be success probabilities, let v∗

1,σ ∼
⊗

u Po(p∗
σ(σu)),

v•
1,σ ∼

⊗
u Po(p•

σ(σu)) be neighborhoods for s = 1, and v∗
2,σ ∼

⊗
u Bin(p∗

σ(σu)), v•
2,σ ∼

⊗
u Bin(p•

σ(σu))
neighborhoods for s = 2. Notice that m∗

2(σ) = ∑
τm

⋆
σ(τ) is a sum of independent binomials m⋆ ∼⊗

τ Bin(|U∗
σ(τ)|, p∗

σ(τ)), where U∗
σ(τ) = {u ∈ U : σu = τ}. This does not only suggest that m∗

2 is
subpoissonian, i.e. E[em∗

2(σ)t] ≤ E[emt], it also suggests that for the reweighted counts m̂2, we have
m̂2 ∼ m∗

2(σ) + 1 and m̂1 ∼ m + 1, which holds for both sums of independent binomials, and for
Poisson distributions. Thus, this also holds for m′

i(σ) = ∥v•
i,σ∥1 and their reweighted counterparts

m̂′
i. Notice that due to the replacement we obtain E[m′

i(σ)] = Zf(γσ)
ξ m ≤ m = E[m] = E[m∗(σ)]

and E[m̂′
i] = Zf(γσ)

ξ m+ 1 ≤ m+ 1 = E[m̂i]. On the other hand, recall that Z f(γσ)/ξ ≥ ψ2
↓, thus the

ratio of the expectations is uniformly bounded. Using that f◦, g◦ ≤ c∥v∥1/n are bounded, the tail
expectation E[1{m∗ ≥ m↑}m∗] = E[m∗]P(m̂∗ ≥ m↑) = o(n−k) is negligible for any choice of factor
count m∗, and for m∗ < m↑ the tartget functions are f◦, g◦ ≤ cm↑/n ≤ cd↑/k are uniformly bounded.
Let Bg = C

√
ln(n)/n for some large Cg ∈ R>0, so that the probability bound in Observation 3.23 is

of order O(1/nk). Then we have

f(d̄) = E [1 {∥v∗∥1 < m↑, ∥γσ∗ − γ∗∥tv < B} f◦
σ∗(w∗)] + O

(
1/nk

)
and the corresponding result for g. Using p• ≤ p∗, we obtain the coupling v∗

1(u) = v•
1(u) + ε1(u) with

ε1 ∼
⊗

u Po(p∗(σu) − p•(σu)) and the coupling v∗
2(u) = v•

2(u) + ε2(u), where ε2 ∼
⊗

u ε2(u) ∈ {0, 1}U

is given by ε2(u) = 0 on v•
2(u) = 1 and (ε2(u)|v•

2(u) = 0) ∼ Bin(1, (p∗(σu) − p•(σu))/(1 − p•(σu))).
From the factor count discussion, we obtain E[∥εi∥1] =

(
1 − Zf(γσ)

ξ

)
m. With B we further obtain

the upper bound E[∥εi∥1] ≤ c ln(n) for some cg > 0. Now, Lipschitz continuity yields

f(d̄) = E [1 {∥v•∥1 < m↑, ∥γσ∗ − γ∗∥tv < B} f◦
σ∗(w•)] + O (ln(n)/n) ,

where (σ∗,w•) is the distribution of the weight-adjusted model, in particular w• = (v•,ψ•) with
ψ• ∼ ψ∗. This completes the proof for ϕ̄∗, since in this case f◦ = g◦. For the remaining four
functions ι◦i , δ◦

i we track the required replacements to replace f◦ by g◦. We only discuss ι, since
the discussion for δ is analogous, but simpler. For the binomial version s = 2 we have to take care
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of (Z f(γσ)/ξ)∥v∥1 and ((1 − p∗)/(1 − p•))|U|−∥v∥1 , in the nominator and denominator each. The log-
density of the first error is O(1)mn ln(1 + O(ln(n)/n)) = O(ln(n)/n), due to the discussion of the
factor count expectations above, and using B. The base of the second error can be rewritten as
1 − ξ−Zf(γσ)

(1−p•)Zf(γσ)ξψ◦(σu)p = 1 − O(ln(n)p/n), thus the log-density is once more of order O(ln(n)/n).
For the case s = 1 we also have to account for (Z f(γσ)/ξ)∥v∥1 , analogous to the above. However,
instead of the quotient we now have to introduce exp(Zf(γσ)

ξ m) to the nominator and the denominator
(the cooresponding terms em for f◦ cancel out), where the term in the denominator sits inside the
expectation. However, by rewriting the term as em exp((1− Zf(γσ)

ξ )m), the first part cancels out in the
nominator and the denominator, while the log-density of the latter is, again, of order O(ln(n)/n).

3.5.8 Degrees and Balance. In this section we discuss the special role of the stationary points from
Remark 3.10, in particular why inference problems can be easily solved whenever γ is not stationary.
We only present the discussion for the uniform model with r = s = 1 in Section 3.5.7.
3.5.8.1 Degree Distributions. In this section we prepare the discussion of unbalanced problems in
the next section by establishing convergence of the empirical degree distributions. Thus, we assume
neither POS nor BAL. First, we show convergence of the empirical distribution for iid discrete
integrable random variables. Then, we show convergence of the empirical degree distribution when
edges are drawn uniformly. This immediately yields the result for the null model. For the planted
model, we establish concentration of the ground truth and factor assignment frequencies, which then
allows to control the degree distribution also in this case.

For the first part let µn,n,x = ( 1
n |x−1(y)|)y∈Z be the empirical distribution of x ∈ (Zd)n.

Observation 3.139. For d ∈ Z>0, c ∈ R>0, δ : Z>0 → R>0, δ = ω(n−1/(3d+2)), there exists εd,c,δ =
o(1) such that the following holds. For x◦ ∈ Zd with E[∥x◦∥∞] ≤ c we have P(∥µn,x − µ∥tv ≥ δ) ≤ ε,
where x◦ ∼ µ and xn ∼ µ⊗n.

Proof. Let Y : Z>0 → R>0 with Y = o(n1/β), β = 3d + 2 be sufficiently large, η = 1/Y d+1, and
Y = {y ∈ Zd : ∥y∥∞ ≤ Y }. Let µ = µn,x and notice that nµ(y) = ∑

i 1{xi = y} ∼ Bin(n, µ(y)) for
all y ∈ Zd. For y ∈ Y, Chebyshev’s inequality yields

P (|nµ(y) − nµ(y)| ≥ nη) ≤ nµ(y)(1 − µ(y))
n2η2 <

1
nη2 .

This yields P(x ̸∈ X ) ≤ ε for X = {x ∈ Zn : ∀y ∈ Y |µn,x(y)−µ(y)| < η} with the union bound, where
ε = |Y|

nη2 . For x ∈ X we have µn,x(Y) > µ(Y)−|Y|η and thereby µn,x(Zd \Y) < µ(Zd \Y)+ |Y|η, which
gives ∥µn,x − µ∥1 < |Y|η + µn,x(Z \ Y) + µ(Z \ Y) < 2δ(n), where δ(n) = |Y|η + c

Y , using Markov’s
inequality. Finally, notice that |Y| = Θ(Y d), so ε = Θ(Y β) = o(1) and δ = Θ(n−1/β).

Better bounds can be derived from [20], in particular for the Poisson distribution. Now, we turn
to the empirical degree distribution. For a given total degree D ∈ Z≥0 let Vn,D ∼ u([n])⊗D. For
given v ∈ [n]D let dD,v = (|v−1(i)|)i be the degree sequence and µD,v = µn,dD,v

the empirical degree
distribution. Finally, let µD,n,D = µD,Vn,D

.

Observation 3.140. Let α ∈ R>0 and δD, εD : Z>0 → R>0 with δD, εD = o(1). There exists
δ = δ(α, δD, εD) and ε = ε(α, δD, εD) with δ, ε = o(1) such that the following holds. For D ∈ [0, αn]
and D ∈ Z≥0 such that P(|D −D| > δDn) ≤ εD we have P(∥µD,D − Po(Dn )∥tv > δ) ≤ ε.
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Proof. Fix some η = o(1), D∗ ≤ αn, let D∗ ∼ Po(D∗) and assume that δD, εD = o(1) are sufficiently
slowly decreasing, so D∗ is a choice for D. Let D = {D ∈ Z≥0 : |D −D∗| ≤ δDn}, then we have

P
(∥∥∥∥µD,D − Po

(
D∗

n

)∥∥∥∥
tv
> η

)
≤ P

(∥∥∥∥µD,D − Po
(
D∗

n

)∥∥∥∥
tv
> η,D ∈ D

)
+ εD.

Now, let U ∼ u([n])⊗Z>0 and redefine µD,D = µD,U[D] . Notice that adding an edge changes exactly
one degree, so we have ∥µD,D1 −µD,D2∥tv ≤ 1

n |D1 −D2| for all D ∈ Z2
≥0. With the triangle inequality

we have ∥µD,D1 − µD,D2∥tv ≤ 2δD for all D ∈ D2, so for (D,D∗) ∼ D ⊗D∗ we have

P
(∥∥∥∥µD,D − Po

(
D∗

n

)∥∥∥∥
tv
> η

)
≤ P

(∥∥∥∥µD,D∗ − Po
(
D∗

n

)∥∥∥∥
tv
> η − 2δD

)
+ 2εD.

Thus, we consider η = ω(δD) with η > 2δD. Now, notice that the degree sequence dD = dVD

is multinomial with D samples over the distribution u([n]), so Observation 3.7 yields that dD∗ ∼
Po(D∗

n )⊗n. Now, restricting η to η = ω(n−1/5), we summon Observation 3.139 with d = 1, c = α

and δ = η − 2δD = (1 + o(1))η = ω(n−1/5) to obtain ε′ = εc,δ = o(1). But for x◦ ∼ Po(D∗

n ) we have
E[x◦] = D∗/n ≤ α, and for x = dD∗ ∼ x⊗n

◦ we have µn,x = µD,D∗ , since µD,v = µn,dD,v
, so

P
(∥∥∥∥µD,D∗ − Po

(
D∗

n

)∥∥∥∥
tv
> η − 2δD

)
≤ ε′.

The choice δ = η and ε = ε′ + 2εD completes the proof.

Now, we immediately obtain the asymptotics for the null model G = (v,ψ). The variable degrees
are dm,m = (|v−1(i)|)i and their empirical distribution is δm = µn,dm .

Observation 3.141. There exist δg, εg = o(1) such that P(∥δm∗ − Po(d̄)∥tv > δ) < ε.

Proof. Let α = d↑, δD = δm and εD = εm, and summon Observation 3.140 to obtain δg, εg = o(1). For
D = d̄n, D = km∗ we have P(|D −D| > δDn) = P(|km∗

n − d̄| > δm) ≤ εm = εD, D = d̄n ≤ d↑n = αn
and vm∗ ∼ VD, so δm∗ ∼ µD,D, which directly yields P(∥δm∗ − Po(d̄)∥tv > δ) < ε.

The situation for the planted model is far more involved. The strategy is to recover uniformly
distributed edges using Observation 3.15, for fixed σ, m and τ . However, for this purpose we still
need concentration of τ ∗

m,σ. Clearly, we can restrict to

Md̄,n =
{
m ∈ Z≥0 :

∣∣∣∣kmn − d̄

∣∣∣∣ ≤ δm

}
, Sn,γ∗ =

{
σ ∈ [q]n : ∥γn,σ − γ∗∥tv ≤ ln(n)√

n

}
.

Let µγn,σ = µT|Γ,γn,σ
and recall that τ ∗

m,σ ∼ µ⊗m
γn,σ

. Let µT,m,σ = µn,m,τ∗
m,σ

for m > 0.

Observation 3.142. There exists δg, εg : Z>0 → R>0 with δ, ε = o(1) such that the following holds.
For d̄ ≥

√
δm + 1/ ln(n), m ∈ M and σ ∈ S we have P(∥µT,m,σ − µγn,σ ∥tv > δ) ≤ ε.

Proof. Observation 3.139 does not help in this case, thus we notice that µT(τ) ∼ Bin(m,µγn,σ (τ)).
But now, Hoeffding’s inequality completes the proof, since it implies that P(|µT(τ) −µγn,σ (τ)| ≥ δ) ≤
2 exp(−2δ2m) ≤ 2 exp(−2δ2(

√
δm + 1/ ln(n) − δm)n/k).
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We are finitely ready to derive the asymptotics of the planted model. For this purpose let d∗(τ) ∼
Po(d̄µγ∗ |∗(τ)

γ∗(τ) ), τ ∗ ∼ γ∗, and let µ∗ ∈ P(Z) be given by d∗(τ ∗) ∼ µ∗. Further, for the planted model
G∗
n,m(σ) = (v∗

m,σ,ψ
∗
m,σ) let d∗

m,m,σ = (|v∗−1(i)|)i and δ∗
m,σ = µn,d∗

m .

Observation 3.143. There exists δg, εg = o(1) such that P(∥δ∗
m∗,σ∗ − µ∗∥tv > δ) < ε.

Proof. We will mostly consider the colors separately. Thus, recall from Observation 3.9 that ρ(τ ′) =
µγ∗ |∗(τ ′)/γ∗(τ ′) is uniformly bounded and let d∗(τ ′) ∼ µ∗

τ ′ = Po(d̄ρ(τ ′)). On the other hand, let
Iσ(τ ′) = {i ∈ [n] : σi = τ ′} and Aτ (τ ′) = {(a, h) : τa,h = τ ′}, for Observation 3.15. Let w⋆

m(σ, τ) =
(v⋆σ,τ ,ψ⋆σ,τ ) from Observation 3.15. Further, let v⋆σ,τ = (v⋆σ,τ,τ ′)τ ′ be the decomposition into the
independent components v⋆σ,τ,τ ′ ∼ u(I(τ ′))⊗A(τ ′). This induces the independent degree sequences
d⋆σ,τ,τ ′ = (|v⋆−1(i)|)i∈I(τ ′). Let Nσ(τ ′) = |Iσ(τ ′)| and Dτ (τ ′) = |Aτ (τ ′)|. In the following we use
Observation 3.23 to restrict to σ ∈ S and choose n sufficiently large such that γn,σ ≥ ψ↓/2, yielding
Iσ(τ ′) = Θ(n) and in particular N(τ ′) > 0. Thus, we have v⋆τ ′ ∼ VN(τ ′),D(τ ′), where VN,D = UN,[D]
and UN ∼ u([N ])⊗Z>0 , using the identifications I(τ ′) = [N(τ ′)] and A(τ ′) = [D(τ ′)], suggesting that
Observation 3.140 is applicable. Let dN,D = dD,VN,D

and µN,D = µD,N,VN,D
. LetDm,σ(τ ′) = Dτ∗

m,σ
(τ ′)

and D∗
σ(τ ′) = Dm∗(τ ′).

First, consider d̄ ≤ d− with d− =
√
δm + 1/ ln(n) = o(1). Let µ◦ ∈ P(Z) be given by µ◦(0) = 1.

Then we have ∥µ∗
τ ′ − µ◦∥tv = O(d−) and thus ∥µ∗ − µ◦∥tv = O(d−). On the other hand, we use

D(τ ′) ≤ km to obtain dN(τ ′),D(τ ′) ≤ dN(τ ′),km and thereby ∥µN(τ ′),D(τ ′) −µ◦∥tv ≤ ∥µN(τ ′),km −µ◦∥tv.
Now, consider Observation 3.140 with α = 1, δD = d− + δm = o(1) and εD = εm, to obtain δ′, ε′. For
D = 0 we have

P(|km∗ −D| > δDn) = P(km∗ > d−n+ δmn) ≤ P(km∗ > d̄n+ δmn) ≤ εm = εD.

This shows that P(∥µD,D∗(τ ′) − µ◦∥tv > δ′) ≤ P(∥µD,km∗ − µ◦∥tv > δ′) ≤ ε′.
Now, we turn to d̄ ≥ d−. We use δ′′, ε′′ from Observation 3.142 to restrict to m ∈ M and

τ ∈ ([q]k)m such that ∥µn,m,τ − µγn,σ ∥tv ≤ δ′′, whp with failure probability εm + ε′′. Using Lipschitz
continuity of µγ from Observation 3.9 and σ ∈ S, we obtain ∥µn,m,τ − µγ∗∥tv ≤ δ̃ for some δ̃g =
o(1). Thus, we have ∥µn,m,τ |∗ − µγ∗ |∗∥tv ≤ δ̃ and ∥µn,m,τ |∗ − µγ∗ |∗∥∞ ≤ 2δ̃. This shows that
|D(τ ′) − kmµγ∗ |∗(τ ′)| ≤ 2δ̃km. With Observation 3.9 we have µγ∗ |∗(τ ′) ≥ cγ∗(τ ′) ≥ cψ↓, so we have
D(τ ′) = (1 + O(δ̃))kmµγ∗ |∗(τ ′). With d̄ ≥ d− = ω(δm) we further have D(τ ′) = (1 + o(1))d̄µγ∗ |∗(τ ′)n.
On the other side, we clearly have N(τ ′) = (1+o(1))γ∗(τ ′)n. Now, for sufficiently large n, with d̄ ≤ d↑
and Observation 3.9 we obtain αg such that D(τ ′)/N(τ ′) ≤ α. Now, we summon Observation 3.140
with α and any δD, εD to obtain δ′′′, ε′′′. Then, for D = D = D(τ ′) and n replaced by N(τ ′) = Θ(n),
we have P(∥µD,D(τ ′) − Po(D(τ ′)

N(τ ′))∥tv > δ′′′(N(τ ′))) ≤ ε′′′(N(τ ′)). Since we have Nσ(τ ′) = Θ(n)
uniformly for all σ ∈ S and τ ′, this yields bounds in n. Finally, since we have uniform relative errors
for D(τ ′)

N(τ ′) = (1 + o(1))d̄ρ(τ ′), we obtain ∥ Po(D(τ ′)
N(τ ′)) − µ∗

τ ′∥tv = o(1). This yields bounds δ′′, ε′′ =
o(1) with P(∥µD,D∗(τ ′) − µ∗

τ ′∥tv > δ′′) ≤ ε′′. For δ◦ = max(δ′, δ′′) and ε◦ = max(ε′, ε′′) we have
P(∥µD,D∗(τ ′) − µ∗

τ ′∥tv > δ◦) ≤ ε◦ in any case. Thus, we have ∥µD,D∗(τ ′) − µ∗
τ ′∥tv ≤ δ◦ for all τ ′ jointly

with probability at least 1−qε◦ using the union bound. On this event we have ∥
∑
τ ′ γ∗(τ ′)µD,D∗(τ ′) −

µ∗∥tv ≤ δ◦, so we are left to bound the total variation distance ∥
∑
τ ′ γ∗(τ ′)µD,D∗(τ ′) − δ∗

m∗,σ∥tv =
∥
∑
τ ′ µD,D∗(τ ′)(γ∗(τ ′) − 1

nN(τ ′))∥tv ≤ ∥γ∗ − γn,σ∥tv = o(1). Thus, with the triangle inequality we
obtain the desired bound.

For a finite index set I ≠ ∅, a finite edge set A and a graph v ∈ IA let dv = (|v−1(i)|)i be the
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degree sequence of v, in particular dv ≡ 0 for A = ∅, and let δv = ( 1
n |d−1

v (d)|)d ∈ P(Z≥0) be the
degree distribution of v.

One of two crucial ingredients in the study of the degree distribution asymptotics is the empirical
distribution of iid Poisson variables.

Observation 3.144. Let εg, Dg ∈ R>0, d∗ ∈ [0, D] and I ⊆ [n] be such that |I| ≥ εn. For d ∼
Po(d∗)⊗I let δ = ( 1

|I| |d
−1(d)|)d, then there exist rg, ε′

g = o(1) with P(∥δ − Po(d∗)∥tv ≥ r) ≤ ε′.

Proof. Without loss of generality we assume that I = [N ]. Fix D+ = ω(1) slowly increasing. Notice
that Nδ(d) = ∑

i 1{d(i) = d} ∼ Bin(N,P (d)) for d ∈ Z≥0, where P (d) = P(d(1) = d). Hence,
Chebyshev’s inequality yields P(|δ(d)−P (d)| ≥ N−1/4) ≤ N−1/2, which yields the assertion combined
with the union bound for d < D+, with

r(n) = D+
(εn)1/4 + P(d1 ≥ D+), ε′(n) = D+

(εn)1/2 .

Now, we are ready to prove the main result of this section

Observation 3.145.

Proof. For the null model, recall vm ∼ u(([n]k)m). Let Un ∼ u([n])⊗Z>0 and Vn,M = U[M ] ∼ u([n]M ),
then we have vm ∼ Vkm. Now, let d ∼ Po(d̄)⊗n and D = ∥d∥1. Recall from Observation 3.7 that
d ∼ dvD

. So, Observation 3.144 applies to δvD
. Notice that for M,M ′ we have ∥δVM

− δVM′ ∥tv ≤
1
n |M−M ′|. Thus, for any D′ that concentrates around d̄n we recover Observation 3.144, in particular
for D′ = km∗. This completes the proof for the null model using that δ ∼ δVD′ .

For the planted model recall Observation 3.15. So, given m, σ and τ ∈ ([q]k)m we consider
vτ ′ ∼ u(Iσ(τ ′)Aτ (τ ′)) with Iσ(τ ′) = σ−1(τ ′) and Aτ (τ ′) = {(a, h) : τa,h = τ ′}. Using Iσ(τ ′) =
[|σ−1(τ ′)|] = [nγn,σ(τ ′)] and Aτ (τ ′) = [ατ (τ ′)], where ατ (τ ′) = |Aτ (τ ′)|, for simplified notation,
we thus have vτ ′ ∼ Vnγn,σ(τ ′),ατ (τ ′). For D−,g = o(1) slowly decreasing, in particular D− ≥ 2δm,
and d̄ ≤ D− we can restrict to m ≤ (δm + D−)n/k, so ατ (τ ′) ≤ km with the Lipschitz continuity
above yields that the total variation of δvτ ′ and the one-point mass on 0 is greater than δm +D− with
probability at most εm. For d̄ ≥ D− we have m∗ ≥ (D− −δm)n/k = Θ(D−n) with probability at least
1 − εm. With µγn,σ = µT|Γ,γn,σ

from Section 3.2.1.2, the assignment frequencies βm,σ = (|τ ∗−1
m,σ (τ)|)τ

for τ ∗ from Observation 3.15 are multinomial with m samples over the distribution µγn,σ . So, with the
bounds on m the Bretagnolle–Huber–Carol inequality yields P(∥ 1

mβσ,m−µγn,σ ∥tv ≥ ε) ≤ 2qk
e−2mε2 ≤

2qk
e−cD−nε2 . for some cg > 0 and n ≥ n◦,g. Notice that this bound is uniform in σ. Finally,

we also restrict σ using Observation 3.23. Using that D− is sufficiently slowly decreasing, we let
r(n) = ln(n)/

√
n, further βτ = ( 1

m |τ−1(τ ′))τ ′ , m > 0, and restrict to the whp event

T =
{

(m,σ, τ) :
∣∣∣∣∣m− d̄n

k

∣∣∣∣∣ ≤ δmn

k
, ∥γn,σ − γ∗∥tv ≤ r(n), ∥βτ − µγn,σ ∥tv ≤ r(n)

}
.

Now, we can use Lipschitz continuity of µγn,σ from Observation 3.9 to obtain ∥βτ−µγ∗∥tv ≤ (L+1)r(n).
This shows that ατ (τ ′) = (1 + o(1))d̄nµγ∗ |∗(τ ′) for τ ∈ T , using D− = ω(D−). On the other hand we
have nγn,σ(τ ′) = (1 + o(1))nγ∗(τ ′). Now, consider the degrees dτ ′ ∼ Po( ατ (τ ′)

nγn,σ(τ ′))⊗nγn,σ(τ ′).
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3.5.8.2 Balanced Problems. In this section, we extend the discussion of balance in Section 2.1.1.2 to
general factor graphs. Thus, we discuss the expected degree of a variable in the planted model for
a given ground truth. We do not explicitly distinguish the binomial model in Corollary 3.137 and
the model in Observation 3.138. Recall the degrees d∗

b,σ(i) from Observation 3.136. For the uniform
model, let G∗(σ) = (v∗,ψ∗) and d∗

m,σ(i) = {a ∈ [m] : ∃h ∈ [k]v∗
a,h = i}. Let d∗

b,σ(i) = E[d∗
b,σ(i)]

and d∗
m,σ(i) = E[d∗

m,σ(i)]. Further, let ∆(m,σ) = (d∗
m,σ(i) − d̄)i and ∆b(σ) = (d∗

b,σ(i) − d̄)i. Recall
Observation 3.9, let µγ = µT|Γ,γ and P(µΨ) = {γ ∈ P([q]) : µγ |∗ = γ}.

Observation 3.146. We have E[|∆(m∗,σ∗)1|] = o(1) if and only if d̄ = 0 or γ∗ ∈ P(µΨ). In this
case we have E[∥∆(m∗,σ∗)∥∞] = O(εm + δm + 1/

√
n), and ∥∆(m∗,σ∗)∥∞ ≤ cδm + ε whp for some

cg ∈ R>0 and all ε = ω(1/
√
n). The same holds for d∗ replaced by d∗

b.

Proof. Observation 3.130d) applies, so let s ∈ [2]. Next, notice that there exists cg ∈ R>0 such that
d∗
m,σ(i) = mP(∃h ∈ [k]v∗

r,s(1, h) = i) ≤ cm/n, using the union bound. This justifies the restriction to
m ≤ m↑. For s = 1, Observation 3.131e), Observation 3.132a) and the union bound yield

d∗
m,σ(i) = mP(∃h ∈ [k]v∗

◦,1(h) = i|v∗
◦,1 ∈ Ur) = (1 + O(1/n))km

n

∑
h

1
k
nP(v∗

◦,1(h) = i) + O(1/n)

= (1 + O(1/n))km
n

µγσ |∗(σi)
γσ(σi)

+ O(1/n) = km

n

µγσ |∗(σi)
γσ(σi)

+ O(1/n).

Now, we obtain E[|∆(m∗,σ∗)1|] = 2d̄∥µγ∗ |∗ − γ∗∥tv + O(εm + δm + 1/
√
n) using concentration of m∗,

Observation 3.23 and Observation 3.9. This establishes the first assertion, and the second part follows
analogously. For s = 2 we use the rejection sampling in the proof of Observation 3.134. The difference
of the degrees of i in the two models is bounded by the number of positions where we rejected twice
plus the positions where we rejected once and either the first or the second factor is adjacent to i.
Thus, the expected difference is O(n3/n2k+n/nk+n2/nk+1). So, we exactly recover the bound above.
For the binomial model, Observation 3.131 takes care of the case s = 1. The case s = 2 was discussed
in the proof of Observation 3.136, and we showed that E[d∗

b,σ(i)] = λσ(i) = (1 + O(1/n))d̄µγσ |∗(σi)
γσ(σi) ,

thus this case is simpler. The case for the constant normalization constant in Observation 3.138
follows with Observation 3.9 and Observation 3.23, we leave the details to the reader.

Since we focus on balanced problems, not on unbalanced problems, a brief, superficial discussion
of weak recovery and distinguishability in this case has to suffice. As we have seen in the proof,
the expected degrees d∗

m,σ(i), d∗
b,σ(i) given σ are essentially reweighted by µγ∗ |∗(σi)/γ∗(σi). Since

we also roughly know |σ∗−1(τ)| for τ ∈ [q] due to Observation 3.23, we use the order given by
τ 7→ µγ∗ |∗(τ)/γ∗(τ), and the order given by, say, (d∗

b,σ(i))i to construct the assignment to the variables,
starting with a minimizer τ of µγ∗ |∗(τ)/γ∗(τ), and the nγ∗(τ) variables with smallest degrees d∗

b,σ(i).
For unbalanced models, this algorithm should efficiently solve weak recovery.

For distinguishability, we look at the empirical degree distributions. This empirical measure
converges to Po(d̄) in the null model. For the planted model, the proof of Observation 3.146 suggests
that the empirical measure converges to a mixed Poisson with parameter λτ , where λτ = µγ∗ |∗(τ)

γ∗(τ)
and τ ∼ γ∗. Since these do not coincide in the unbalanced case, the degree distributions converge to
different limits. This should show why unbalanced models are not contiguous.

3.5.9 The Stochastic Block Model. In this section we discuss a generalized and normalized version
of the hierarchical SBMs in Section 2.1.1.2. We start with the definition of the weight function in
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Section 3.5.9.1, followed by the model definition in Section 3.5.9.2 and the results in Section 3.5.9.3
3.5.9.1 Weight Definition. In this section we rigorously discuss the SBM, on k-uniform hypergraphs
for any k ∈ Z≥2. The definition in Section 2.1.1.2 suffers from redundancies, e.g. since C−1

ℓ (c) =
C−1
ℓ−1(c′) is not only possible, but enforced, or w(ℓ, c) is redundant for c ∈ [q] \ Cℓ([q]). A clean

definition of the class hierarchy on [q] is given by the following family of subsets. For a set S ⊆ Z
let P(S) = {P ⊆ 2S \ {∅} : ∀P ∈ P2P1 ∩ P2 = ∅,

⋃
P∈P P = S} be the set of partitions of S. The

interior of S ⊆ 2S \ {∅} is I(S) = {T ∈ S : ∃T ′ ∈ S T ′ ⫋ T }, and L(S) = S \ I(S) are the leaves.
Let R0 = {{[q]}}, for n ∈ Z>0 let Rn = {S ∪ P : S ∈ Rn−1,S ∈ L(S),P ∈ P(S)}, and finally
let R = ⋃

nRn = limn→∞ Rn be the refinement schemes on [q]. For a refinement scheme R ∈ R
and S ∈ 2[q] \ {∅} let CR(S) = {S′ ∈ R : S ⊆ S′} be the chain for S in R. Further, for S ∈ R let
KR(S) = {S′ ∈ R : CR(S′) = CR(S) ∪ {S′}} be the children of S.

Let W(R) = {w ∈ RR : ∀S ∈ I(R) ∃K ∈ KR(S)w(K) ̸= 0} be the set of weights for a refinement
scheme, where the normalization property ensures that do not have redundant splits, i.e. the entire
partition of a subset is weighted with 0. For w ∈ W(R) let [w] : 2[q] \ {∅} → R, S 7→

∑
S′∈CR(S)w(S′),

be the accumulated weights. Let W = {(R, w) : R ∈ R, w ∈ W(R)} be the weighted refinement
schemes. Further, we restrict to non-negative and strictly positive accumulated weights, i.e. W≥0 =
{(R, w) ∈ W : [w] ≥ 0} and W>0 = {(R, w) ∈ W : [w] > 0}.

For (R, w) ∈ W≥0 let ψR,w : [q]k → R≥0, σ 7→ [w](σ([k])), be the accumulated weight of the
image of σ. The hierarchical SBMs on k-uniform hypergraphs are {ψR,w : (R, w) ∈ W≥0}, and
{ψx : x ∈ W>0} for soft constraints. This recovers the hierarchical SBMs in Section 2.1.1.2 for k = 2.
In this sense, we also refer to W≥0 as hierarchical SBMs. In the following, we focus on W≥0, the
restrictions to soft constraints will be obvious. The SBMs W+

≥0 = {(R, w) ∈ W≥0 : w ≥ 0} are
assortative, and the SBMs W−

≥0 = {(R, w) ∈ W≥0 : w ≤ 0} are disassortative.
3.5.9.2 Model Definition. Using the weight ψ from Section 3.5.9.1, we can define the SBM on any of
the models from Section 3.5.7. The most widespread model is arguably the binomial model for r = 3,
s = 2 with fixed normalization constant ξ, i.e. from Observation 3.138. As thoroughly discussed in
Section 3.5.7, all the models discussed therein are equivalent for our purposes. We prefer to work
with the binomial model using the flexible normalization with Z f(γσ) from Corollary 3.137, for its
conceptual beauty and, as explained in Observation 3.136, since it hides the ground truth from the
expected factor count, for all r, s ∈ [3], thus it is even harder then the more popular choice.
3.5.9.3 Results. Weak recovery and distinguishability for unbalanced problems have been discussed
in Section 3.5.8.2 for the general case. Recall from Remark 3.10 and from Observation 3.146 that a
model is balanced if and only if γ is a stationary point of Z f , or equivalently µT|Γ,γ∗ |∗ = γ∗ using the
notions from Section 3.2.1.2. Although this is very easy to verify, identifying all stationary points
of Z f is usually not. In this section, we establish all stationary points explicitly for the assortative
and disassortative SBM. Based on Section 3.5.1, it is sufficient to consider fully supported γ ∈ P([q]).
Since we have S ∈ CR(σ([k])) if and only if σ ∈ Sk, exchanging the sums yields

Z f(γ) =
∑
σ

[w](σ([k]))
∏
h

γ(σh) =
∑
S,σ

1{S ∈ C(σ([k]))}w(S)
∏
h

γ(σh)

= w([q]) + (−1)t
∑

S∈R\{[q]}
|w(S)|γ(S)k,

where t ∈ {0, 1} is 1 for the disassortative case. This shows that Z f is (concave) convex if the model
is (dis-) assortative. The (maximizers) minimizers are the minimizers of ∑S∈R\{[q]} |w(S)|γ(S)k, for
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both t ∈ {0, 1}, and can be computed recursively as follows. Let R◦ = R ∪
([q]

1
)

be the completion
of R, in case some minimal element in R does not have size 1. Let w◦ : R◦ →→ R be given by
w◦(S) = w(S) for S ∈ R and w◦(S) = 0 otherwise, so in the exceptional case that all children are
singletons, they may all have weight 0. Let R = R◦ and w = w◦ for brevity. We consider the canonical
projection P → P([q]), where

P =
∏

S∈I(R)
P(K(S))

are the conditional distributions. In detail, let AR,σ ∈ RI(σ), Iσ = Z ∩ [0, |C(σ)| − 1], be the
enumeration of C(σ), i.e. Aσ(Iσ) = C(σ) and Aσ(i) ⊆ Aσ(i − 1) for i ∈ Iσ \ {0}. Then we consider
the projection given by γ(σ) = ∏|Iσ |−1

i=0 γAσ(i)(Aσ(i+ 1)).
For S ∈ R let RS = R(S) = {S′ ∈ R : S′ ⊆ S} be the subtree rooted at S, further let SR(S) = S

be its root, and let K(R(S)) = KR(S)(S) = KR(S) be its children. Then, for γ ∈ P we have
Z f(γ) = w([q]) + (−1)tfR(γ), where fR′(γ′) = ∑

S∈K(R′)(|w(S)| + fR′(S)(γ′
I(R′(S))))γ′

SR′ (S)k. This
recursive description allows to compute the minimizers using the following, recursive algorithm.
• For S ∈ K(R′), let MS ⊆

∏
S′∈I(R′(S)) P(K(S′)) be the minimizers and fS ≥ 0 the minimum.

• Let N = {S′ ∈ K(R′) : |w(S′)| + fS′ = 0}.
– For N ̸= ∅ let M = {γ ∈

∏
S∈I(R′) P(K(S)) : γSR′ ∈ P(N ),∀S ∈ γ−1

SR′ (R>0) γI(R′(S)) ∈ MS} be
the minimizers and f = 0 the minimum.

– For N = ∅ let M = {γ ∈
∏
S∈I(R′) P(K(S)) : γSR′ = γ∗, ∀S ∈ K(R′) γI(R′(S)) ∈ MS} be the

minimizers and f = ∑
S∈K(R′)(|w(S)| + fS)γ∗(S)k the minimum, where γ∗ ∈ P(K(R′)) is given

by γ∗(S) = (|w(S)| + fS)−1/(k−1)/Z for S ∈ K(R′) and Z = ∑
S(|w(S)| + fS)−1/(k−1).

• Output the minimizers M and the minimum f .
This determines all (maximizers) minimizers of the (dis-) assortative SBM, thus all balanced (dis-
) assortative SBMs. The main results apply to the strictly positive balanced disassortative SBMs,
i.e. to W−

>0 with a maximizer γ∗, since this model is of type 3 in Section 2.1.2.2, where we can choose
w([q]) = 1 without loss of generality, thus a = 1, further b = 1 and fh,S(σ) = |w(S)|1/k1{σ ∈ S} for
S ∈ R, h ∈ [k], σ ∈ [q] (and 0 otherwise).

3.5.10 Potts Models. In this section, we discuss the spin glass version the hierarchical SBM.
3.5.10.1 Model Definition. Recall the notions from Section 3.5.9.1 and let (R, w) ∈ W. Following the
conventions in the context of spin glasses, we consider the energy E◦(σ) = [w](σ([k])) for σ ∈ [q]k,
which induces the weight ψ(σ) = exp(−E◦(σ)). Further, while this model may also be defined on any
of the versions in Section 3.5.7, it is typically defined on the binomial model, thus a diluted mean-field
model in physics jargon. We also make use of the external fields η from Section 3.5.2. Then, for a
fixed graph v ∈ {0, 1}([n]

k ), the Boltzmann distribution µv, as defined in Section 2.1.2, is given by the
weights ∏i∈[n] η(σi)

∏
u ψ(σu)v(u) = exp (−Ev(σ)), where

Ev(σ) =
∑
u

v(u)E◦(σu) +
∑
i∈[n]

η◦(σi), η◦(τ) = − ln(η(τ)),

is the Hamiltonian. In this context, we usually take r = 3, s = 2 in Section 3.5.7 (using permutation
invariance of ψ), thus v(u) ∈ {0, 1}, yielding the model on the binomial hypergraph. The model is
assortative/ferromagnetic if wS ≤ 0 for S ̸= [q], and it is disassortative/antiferromagnetic if wS ≥ 0
for S ̸= [q]. The sign change is due to the convention for the sign in the exponent of ψ, and w[q] can
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be chosen freely as before, since it only determines the scaling of the weight.
3.5.10.2 Discussion. First, we notice that ψ can be written in the additive form in Section 3.5.9.1,
and the definitions of (dis-) assortative models are consistent. Notice that we do not impose any
restrictions on the sign of the external field η◦, in particular since we can normalize the model and use
η = γ∗ as outlined in Section 3.5.2. Letting E = v−1(1) denoting the selected edges and expanding
the definitions for the Hamiltonian yields

Ev(σ) =
∑
u∈E

∑
S∈R

1{σu ⊆ S}w(S) +
∑
i

η◦(σi).

Since this form is fairly abstract, notice that for k = 2, w([q]) = 0, and for a single split, i.e. a partition
P of [q] = ⋃

T ∈P T with R = {[q]} ∪ P, there exists a unique type T (σ) for all σ ∈ [q], i.e. σ ∈ T (σ),
and we obtain Ev(σ) = ∑

{i,j} 1{T (σi) = T (σj)}w(T (σi)) +∑
i η◦(σi), which is still a generalization

of the Potts model, obtained for T (σ) = {σ}, w(σ) = c ∈ R≥0 and η◦ ≡ 0.

3.5.11 Graphical Channels. We start with a discussion of the channels in [4], then we look at
specific channels. In Section 3.5.11.1 we define graphical channels, in Section 3.5.11.2 we discuss
the connection to factor graphs, and complete the discussion of general channels with the results in
Section 3.5.11.3. We continue with a discussion of LDGM codes in Section 3.5.11.4 and the discussion
of the BAC in Section 3.5.11.5 After a discussion of general properties, we focus on LDGM codes.
Then we further consider the BAC specifically, and the BISO specifically.
3.5.11.1 Definition. Recall Ur ⊆ [q]k and Vr,s ⊆ Um

r from Section 3.5.7. A graphical channel is
given by q′ ∈ Z>0 and ν = (νy) ∈ P([q′])U . Without loss of generality we assume that there are no
redundant outputs, i.e. for all z ∈ [q′] there exists y ∈ U such that νy(z) > 0.

Fix the message length n ∈ Z>0 and the block length m ∈ Z≥0. For given v ∈ V, we use the block
code6 yv : [q]n → Um

r , x 7→ (xva)a∈[m]. For given x ∈ [q]n, let z(v, x) ∼
⊗

a∈[m] νyv,x(a) be the output
for the transmitted codeword yv,x. We choose the code uniformly at random, independently from the
discrete memoryless source given by γ∗ ∈ P([q]), i.e. we consider (v,x) ∼ u(V) ⊗ γ∗⊗n. Recall the
conditional mutual information, e.g. from Section 3.3.1.1. In this section we focus on the asymptotics
of I(x, z(v,x)|v).
3.5.11.2 Induced Factor Graphs. First, we discuss how the model in Section 3.5.11.1 is mapped onto
a factor graph model. For fully supported p∗ ∈ P([q′]) let z∗ ∼ p∗, for z ∈ [q′] let ψz : [q]k → R≥0,
σ 7→ νσ(z)/p∗(z), and finally let ψ◦ = ψz∗ .

Observation 3.147. We have E[ψ◦] ≡ 1, Z f ≡ 1, ξ = 1, and I(x, z(v,x)|v) = I(σ∗,G∗(σ∗)).

Proof. Unfortunately, we have to deal with a technical obstacle. Let Ψ = {ψz : z ∈ [q′]}, and for ψ ∈ Ψ
let Z(ψ) = {z ∈ [q′] : ψz = ψ}. Notice that µΨ(ψ) = ∑

z∈Z(ψ) p
∗(z). Thus, we can only distinguish the

equivalence classes Z(ψ). So, we introduce the auxiliary channel ν◦
σ(ψ) = νσ(Z(ψ)) = ∑

z∈Z(ψ) νσ(z)
and notice that µΨ(ψ)ψ(σ) = ν◦

σ(ψ). This directly yields E[ψ◦(σ)] = ∑
ψ ν

◦
σ(ψ) = 1 and Z f ≡ 1.

Using z◦(v, x) to denote the output for ν◦, we even have

P(σ∗ = σ,G∗(σ) = (v, ψ)) = γ∗⊗n(σ)
(nk)m

∏
a

(µΨ(ψa)ψa(σva)) = γ∗⊗n(σ)
(nk)m

∏
a

ν◦
σ(ψa)

= P (x = σ,v = v,z◦(v,x) = ψ) .
6This code is not injective, but it does serve the purpose of a code, as we will see shortly.
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This yields I(σ∗,G∗(σ∗)) = I(x, (v, z◦(v,x))) and builds the bridge from channel to factor graph.
In the next step, we resolve the technical obstacle and reduce the mutual information to the

conditional mutual information. First, we notice that (x,v, z◦(v,x)) ∼ (x,v, ψz(v,x)), and that

P(z(v,x) = z|v = v,x = x, ψz(v,x) = ψ) =
∏
a νxva

(za)∏
a νxva

(Z(ψa))
,

for v, x, ψ, z such that the probability is well-defined and positive, thus in particular za ∈ Z(ψa). But
now, choose a fixed representant z(ψ) ∈ Z(ψ) per ψ ∈ Ψ and notice that

νσ(z) = p∗(z)ψz(σ) = p∗(z)ψz(ψ)(σ) = p∗(z)
p∗(z(ψ))νσ(z(ψ)), z ∈ Z(ψ).

This suggests that νσ(Z(ψ)) = µΨ(ψ)
p∗(z(ψ))νσ(z(ψ)), hence the conditional probability simplifies to

P(z(v,x) = z|v = v,x = x, ψz(v,x) = ψ) =
∏
a

p∗(za)
µΨ(ψa)

,

which does not depend on v and x, yielding I(x, (v, z◦(v,x))) = I(x, (v, z(v,x))). Finally, we have
I(x, (v, z(v,x))) = I(x, z(v,x)|v) since v ∼ u(V) is independent of x.

Observation 3.147 explains why we can consider the planted model and further shows that BAL
holds for all γ∗ ∈ P([q]), which is the precise reason why we can compute the mutual information limit
for all discrete memoryless sources – well, which brings us to POS. Unfortunately, the assumption is
hard to check, but on the upside, we have the following result.

Observation 3.148. Fix γ∗ ∈ P([q]). If POS holds for some fully supported p∗ ∈ P([q]), then POS
holds for all fully supported p∗ ∈ P([q]).

Proof. Fix a fully supported measure p∗ ∈ P([q′]) with |Ψ∗| = q′, where Ψ∗ = {ψ∗
z : z ∈ [q′]} and

ψ∗
z = ψp∗,z. Let p ∈ P([q′]) be fully supported, ψz = ψp,z and Ψ = {ψz : z ∈ [q′]}. Let z∗ ∼ p∗, z ∼ p,
ψ∗ = ψ∗

z∗ and ψ◦ = ψz. Finally, let ψ∗ ∼ µ∗
Ψ, ψ◦ ∼ µΨ and assume that POS holds for µΨ.

Using that z 7→ ψ∗
z is a bijection, let µ′

Ψ(ψ∗
z) = p(z) and ψ′ ∼ µ′

Ψ. Further, let a(ψ∗
z) = p∗(z)/p(z)

and notice that a is the (µ∗
Ψ, µ

′
Ψ)-derivative. On the other hand, we have ψz = a(ψ∗

z)ψ∗
z , so we have

ψ ∼ a(ψ′)ψ′. Observation 3.118 yields ∇(µΨ, π) = ∇(µ∗
Ψ, π) since E[a(ψ′)] = 1. so POS holds for

p∗ if and only if it holds for p, which completes the proof using transitivity.

3.5.11.3 Results. Since we only built the bridge to the conditional mutual information7, in Observation
3.147, we focus on Theorem 2.5. Using ϕa from Theorem 2.3 and that a phase transition exists for
B↑(d) = ϕa(d), a conceptually reasonable way to rewrite the mutual information limit is

lim
n→

1
n
I(σ∗,G∗(σ∗)) = d

kξ
E[Λ(ψ(σ))] − ϕa(d) − (B↑(d) − ϕa(d)) = d

k

(
E[Λ(ψ(σ))] − k

d
B↑(d)

)
,

for d > 0, where we pulled out d/k since the normalization with m is reasonable for codes, as discussed
in Section 2.1.1.3, used that ϕa(d) = d

kΛ(ξ), and that ξ = 1 from Observation 3.147. For transparency,
7Recall from the proof of Observation 3.147 that the joint laws coincide, so this bridge is very solid.
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letm∗ = m be the sequence from Section 2.1.1.3, then for any channel ν > 0 and γ∗ ∈ P([q]) satisfying
POS (cf. Observation 3.148) we have limn→∞

1
mI(x, z(v,x)|v) = ι(d),

ι(d) = E[Λ(ψ(σ))] − k

d
(B↑(d) − ϕa(d)) = E[Λ(ψ(σ))] − k

d
B↑(d).

Of course, we still have to resolve the auxiliary construction (σ,ψ) ∼ γ∗⊗k ⊗ µΨ. Notice that

E[Λ(ψ(σ))] =
∑
σ,z

γ∗⊗k(σ)p∗(z)νσ(z)
p∗(z) ln

(
νσ(z)
p∗(z)

)
= DKL(z◦(y◦)∥z∗|y◦),

which is confusing, to say the least, because p∗ from the auxiliary construction is still present in the
limit. Formally, this is confusing because I(x, z(v,x)|v) does no depend on p∗, so neither does the
limit. The only possible explanation is that B↑(d) depends on p∗.

Before we continue this thread, we rewrite the relative entropy as

E[Λ(ψ(σ))] = H(z◦(y◦)∥z∗) −H(z◦(y◦)|y◦) = H(z◦(y◦)) +DKL(z◦(y◦)∥z∗) −H(z◦(y◦)|y◦)
= I(y◦, z◦(y◦)) +DKL(z◦(y◦)∥z∗),

using linearity of the cross entropy. So, if we choose p∗ to be p∗ = p◦, where z◦(y◦) ∼ p◦, which is
fully supported by assumption, then we have ι(d) = I(y◦, z◦(y◦)) − k

dB↑(d). Continuing the thread
above, we know that ι(d) does not depend on p∗, meaning that B◦(d) = k

dB↑(d) − DKL(z◦(y◦)∥z∗)
does not depend on p∗, which means that B↑(d) = B↑(d, p∗) = d

kB◦(d) + d
kDKL(z◦(y◦)∥z∗) is convex

in p∗ with unique minimizer p◦. For 0 < d ≤ dcond we have B↑(d) = ϕa(d) = 0, since ξ = 1, and on
the other hand B↑(d) > 0 for p∗ ̸= p◦, so dcond = 0 for p∗ ̸= p◦. Let p∗ = p◦ in the remainder.

Now, we have limn→∞
1
mI(x, z(v,x)|v) = I(y◦, z◦(y◦)) − B◦(d) with B◦(d) = 0 for d ≤ dcond

by the above, for (ν, γ∗) satisfying POS and ν > 0. The translation of degree into rate is given by
R = k/d, in particular R∗(γ∗) = k/dcond(γ∗). Of course, if POS can be verified for γ∗ such that γ∗⊗k

is a capacity achieving distribution for ν, then we can replace the mutual information by the capacity
in the above.
3.5.11.4 LDGM Codes. In this section we focus on LDGM codes. First, we discuss the connection to
graphical channels, and thus factor graphs. Then, we discuss the idealized mapping of the discrete
memoryless source onto the input distribution to the noisy channel.

The definition of LDGM codes in Section 2.1.1.3 requires r = 3 and s = 1 in Section 3.5.7. Let
ι : {−1, 1} → {0, 1}, x 7→ 1{x = −1}, then for y ∈ {−1, 1}k we have ι(∏h yh) = ⊕

h ι(yh). In the
following, we work with the product representation, i.e. with q = 2 over {−1, 1}. For a given channel
ν◦ ∈ P([q′]){−1,1} let ν ∈ P([q′]){−1,1}k be given by νy(z) = ν◦

b(y)(z), where b(y) = ∏
h yh. So, LDGM

encoded communication through a noisy channel ν◦ can be modeled as a graphical channel, and thus
as a planted model.

As explained in Section 2.1.1.3, the code used for the graphical channels in Section 3.5.11.1 pre-
serves8 the input distribution. So, for a success probability x ∈ [0, 1] let γx ∈ P({−1, 1}) be given by
γx(1) = x, and further let yx ∼ γ⊗k

x be our idealized input to the channel ν. For the analysis of the
second step, the XOR, let s : [0, 1] 7→ [0, 1], x 7→ P(b(yx) = 1).

Observation 3.149. We have s(x) = 1
2(1 + (2x − 1)k). The map s is an increasing bijection for

k ̸∈ 2Z. For k ∈ 2Z we have s(0) = 1, s(x) = s(1 − x) and the unique minimum 1
2 at x = 1

2 .
8This is obviously not true, but in the replica symmetric regime it is sufficiently true (cf. Section 3.5.11.3)
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Proof. We only show the first part, the remainder is obvious. But the binomial theorem yields

(x− (1 − x))k =
k∑
ℓ=0

(
k

ℓ

)
[−(1 − x)]ℓxk−ℓ = s(x) − (1 − s(x)).

Thus, for k ∈ 2Z the input distribution at ν◦ is necessarily biased towards 1 (meaning 0 ∈ {0, 1}).
Moreover, for any non-uniform input at ν◦ biased towards 1, there exist exactly two choices for the
discrete memoryless source.
3.5.11.5 The Binary Asymmetric Channel. We further restrict to q′ = 2, and thus arrive at the
LDGM-BAC pair from Section 2.1.1.3. So, let ν◦

1(−1) = δ ∈ [0, ε] and ν◦
−1(1) = ε ∈ [0, 1/2]. Let

c◦(δ, ε) = maxp∈P({−1,1}) I(xp,y(xp)) be the channel capacity, where xp ∼ p and y(x) ∼ ν◦
x. Notice

that c◦(1/2, 1/2) = 0 is trivial, so let (δ, ε) ̸= (1/2, 1/2) in the remainder.

Observation 3.150. Notice that the following holds.
a) The unique distributions pc, qc ∈ P({−1, 1}) with y(xpx) ∼ qc and c◦(δ, ε) = I(pc, qc) are

pc(1) = qc(1) − ε

1 − ε− δ
, qc(1) = a

1 + a
, a = exp

(
H(ε) −H(δ)

1 − ε− δ

)
.

b) We have pc(1) ≥ 1/2.

Proof. For p ∈ [0, 1] let pc, qc ∈ P({−1, 1}) be given by xp ∼ pc and y(xp) ∼ qc, i.e. pc(1) = p and
qc = E[ν◦

xp
]. Let ι : [0, 1] → R≥0, p 7→ I(xp,y(xp)) and notice that

ι(p) =
∑

x,y∈{−1,1}
pc(x)ν◦

x(y) ln
(
pc(x)ν◦

x(y)
pc(x)qc(y)

)
=

∑
x,y∈{−1,1}

pc(x)ν◦
x(y) ln

(
ν◦
x(y)
qc(y)

)
= H(qc) −

∑
x∈{−1,1}

pc(x)H(ν◦
x).

Using the chain rule with Λ′(t) = ln(t) + 1, qc(y)′ = ν◦
1(y) − ν◦

−1(y) and linearity yields

ι′(p) = −
∑
y

ln(qc(y))(ν◦
1(y) − ν◦

−1(y)) − (H(ν◦
1) −H(ν◦

−1))

= H(ν◦
1∥qc) −H(ν◦

−1∥qc) − (H(ν◦
1) −H(ν◦

−1)) = DKL(ν◦
1∥qc) −DKL(ν◦

−1∥qc).

The former relative entropy is strictly decreasing, while the latter is strictly increasing in p, so ι′

is strictly decreasing with ι′(0) = DKL(ν◦
1∥ν◦

−1) and ι′(1) = −DKL(ν◦
−1∥ν◦

1). Hence, the unique
maximizer p ∈ (0, 1) satisfies ι′(p) = 0 and thus

qc(1)ν◦
1 (1)−ν◦

−1(1)qc(−1)ν◦
1 (−1)−ν◦

−1(−1) = eH(ν◦
1 )−H(ν◦

−1) = a1−ε−δ.

We further obtain qc(1) ∈ (0, 1) since ν1 ̸= ν−1, so using ν◦
1(1) − ν◦

−1(1) = 1 − ε − δ we have
qc(1)/qc(−1) = a and thus qc(1) = a

1+a . Solving (1 − δ)p+ ε(1 − p) = qc(1) for p completes the proof
of the first part.

For the second part we notice that pc(1) ≥ 1/2 is equivalent to qc(0) ≤ m, where m = 1
2(ℓ + u)

with u = 1 − ε and ℓ = δ. This is equivalent to a ≥ 1−m
m , and by taking the logarithm on both sides
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we notice that this is equivalent to H(u) −H(ℓ) ≥ (u− ℓ)H ′(m). Now, we have

H ′(u) −H ′(ℓ) = (u− ℓ)H ′(m) −
∫ u

ℓ
H ′(m) −H ′(p)dp = (u− ℓ)H ′(m) −

∫ u

ℓ

∫ m

p
H ′′(q)dqdp

= (u− ℓ)H ′(m) −
∫ m

ℓ

∫ m

p
H ′′(q)dqdp+

∫ u

m

∫ p

m
H ′′(q)dqdp.

Notice that for q ∈ (ℓ,m) and r = 2m − q we have 1
2 − q = r − 1

2 + 1 − 2m, which shows that
|1
2 − q| > |1

2 − r|. So, the symmetry of H ′′(q) = −1
q(1−q) gives

H ′(u) −H ′(ℓ) ≥ (u− ℓ)H ′(m) −
∫ m

ℓ

∫ m

p
H ′′(2m− q)dqdp+

∫ u

m

∫ p

m
H ′′(q)dqdp = (u− ℓ)H ′(m).

Observation 3.150 shows that we can hope to reach capacity for k ∈ 2Z, as discussed in the last
section. It also shows that there are two capacity achieving distributions γ∗ ∈ P([q]) for δ ̸= ε, and
both are fully supported. Also, recall from Observation 3.147 that all γ∗ ∈ P([q]) satisfy BAL.

For POS, we use Observation 3.148 and uniformly distributed ψz(y) = 2νy(z) = 2ν◦
b(y)(z), i.e.

ψz(y) = (ν◦
1(z) + ν◦

−1(z)) + (ν◦
1(z) − ν◦

−1(z))
∏
h

yh, z ∈ {−1, 1}.

With az = ν◦
1(z) + ν◦

−1(z), bz = −(ν◦
1(z) − ν◦

−1(z))/az we have ψz(y) = az(1 − bz
∏
h yh), where

a1 = 1 − δ + ε, b1 = −1 − δ − ε

1 − δ + ε
, a−1 = 1 − ε+ δ, b−1 = 1 − δ − ε

1 − ε+ δ
.

For ε = δ we recover the binary symmetric channel, which has already been thoroughly discussed.
Verifying that this weight is of Type 1 in Section 2.1.2.2, amounts to the evaluation of

E[azbℓz] = 1
2(a1b

ℓ
1 + a−1b

ℓ
−1) = 1

2(1 − δ − ε)ℓ(a−(ℓ−1)
−1 − a

−(ℓ−1)
1 ), z ∼ u({−1, 1}), ℓ ∈ 2Z>0 + 1.

This shows that E[azbℓz] > 0 since δ < ε and thereby a−1 < 1 < a1, so BAL and POS holds for all
choices of 0 ≤ δ < ε ≤ 1

2 , γ∗ ∈ P({−1, 1}), in particular the two capacity achieving distributions.
3.5.11.6 Convex Combinations of Channels. We consider the BISO channels in [4], defined as follows.
Let q2 ∈ Z≥0, q1 ∈ Z≥0 be such that q′ = q2 + q1 > 0, and let the output alphabet Z = Z1 ∪ Z2
be given by Z2 = [q2] × {−1, 1} and Z1 = [q1] × {1}. Let ν◦ = (ν◦

1 , ν
◦
−1) be such that for each

i ∈ [q2] we have ν◦
1((i,−1)) = ν◦

−1((i, 1)) and ν◦
1((i, 1)) = ν◦

−1((i,−1)), while for i ∈ [q1] we have
ν◦

1((i, 1)) = ν◦
−1((i, 1)).

For i ∈ [q2] let α(i) = ν◦
1((i, 1)) + ν◦

1((i,−1)) = ν◦
−1((i, 1)) + ν◦

−1((i,−1)). Notice that we have
α(i) > 0, otherwise (i, s) would both be isolated. Let ν◦

i,s((i, s)) = ν◦
s ((i, s))/α(i), then ν◦ is a binary

symmetric channel (modulo the output symbols). Also for i ∈ [q1] we have α(i) = ν◦
1((i, 1)) =

ν◦
−1((i, 1)) > 0, and we let ν◦

i,s((i, 1)) = 1. This completes the channel decomposition.
Let ν = (ν◦

b(y))y and νi,y = ν◦
i,b(y) be the associated channels with LDGM frontend. Let ψ(i,s)(y) =

2νi,y((i, s)) for (i, s) ∈ Z2, ψ(i,s)(y) = νi,y((i, s)) for (i, s) ∈ Z1, p∗ ∈ P(Z) given by p∗(i, s) = 1
2α(i)

for (i, s) ∈ Z2 and p∗(i, s) = α(i) for (i, s) ∈ Z1, and let ψ ∼ ψz∗ for z∗ ∼ p∗ be the associated
weight. Let b ∼ u({−1, 1}), further ψi ∼ ψi,b for i ∈ [q2] and ψi = ψ(i,1) for i ∈ [q1]. Notice that the
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former are (scaled) binary symmetric channels and the latter deterministic constant functions (from
the product class), hence all pi, given by ψi ∼ pi, satisfy {pi} × P([q]) ⊆ A. On the other hand, the
law p given by ψ ∼ p is just the convex combination p = ∑

i α(i)pi and hence {p} × P([q]) ⊆ A, for
all k ∈ Z>0.

Using the probability space over the weight functions from Observation 3.120, this result directly
extends to the binary memoryless symmetric channels from Definition 1 in Appendix A of [3]. However,
notice that Observation 3.147 was only proven for finite output alphabets.

3.5.12 Open Problems. The extensions of [30, 32, 31] to other ground truths are highly desirable,
the first to e.g. establish weak recovery and distinguishability threshold results for the general dis-
assortative SBM, the second for the extension to CSPs and the last for the analysis of SBMs over
given degree sequences, and the efficiency analysis of LDGM codes that do not suffer from isolated
input bits. We further believe that the results in this work can be extended to arbitrary balanced
models subject to POS, i.e. ground truths that are stationary but not necessarily maximizers. This
should be achievable using a (possibly soft) truncation argument to keep the Nishimori model close
to the planted model. Since the Aizenman-Sims-Starr scheme does not rely on POS, this should be
sufficient to recover the bounds in [43].

The assumption POS is still poorly understood. To our knowledge, there is no proof of a violation
of POS, however, there are claims in [30, 31].Combined with the above, verifying POS for a single
binary assortative SBM would close the gap in [3]. Moreover, next to product weights, all models
known to satisfy POS are essentially sums of products of conditionally independent factors. An
extension of this class to other models is highly desirable, e.g. for cryptography [19].

Finally, for graphical channels the replica symmetric regime trivializes except for one specific
weight distribution. While we have extended this reweighting of weights without changing the mutual
information, the analysis and a deeper understanding of the impact on the Bethe functional and in
particular the condensation threshold remain open.

4 Triangle Factors in the Graph Process
This section is dedicated to the proof of Theorem 2.8. We continue to use the convention to suppress
dependencies for the sake of brevity and hence adjust the notation, e.g. to distinguish the binomial
graph and the graph process. In Section 4.1 we look at the relevant contributions, formally introduce
the notions using the adjusted notation, present a stronger result which yields Theorem 2.8 as a
corollary, and discuss the proof steps on a high level. In Section 4.2, we establish a few basics that are
required for the main steps of the proof. Then, we derive a stronger version of the main result in [63] in
Section 4.3. The core coupling of the hypergraph process and the graph process is executed in Section
4.4. Finally, we conclude the proof in Section 4.5, where we couple two copies of the hypergraph
process to deal with some exceptionally persistent hyperedges, and then harvest the insights of the
preceding parts to derive the main results.

4.1 Introduction

The research on hyperedge covers, perfect matchings, k-clique covers and k-clique factors is reviewed
in Section 4.1.1. The new notation for random hypergraphs is introduced in Section 4.1.2, while
triangle hypergraphs and the hitting times are defined in Section 4.1.3. Then we explicitly state the
relevant result from [71] in Section 4.1.4, followed by the main result of this part in Section 4.1.5.
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Then, we briefly discuss open problems in Section 4.1.6, before providing a high-level overview of the
proof in Section 4.1.7.

4.1.1 Related Work. Here and in the following, it is convenient to identify k-uniform hypergraphs
H with their indicator function H ∈ {0, 1}([n]

k ), keeping the vertex set [n] implicit. Recall that a
hyperedge cover C ⊆ H−1(1) is a set of hyperedges that covers the vertices, i.e. ⋃E∈C E = [n],
and that C is a perfect matching, or 1-factor, if the hyperedges are pairwise disjoint. For a graph
G ∈ {0, 1}([n]

2 ), recall that a k-clique E ∈
([n]
k

)
is a vertex set such that the complete graph on E is

contained in G, i.e.
(E

2
)

⊆ G−1(1), that a k-clique cover C ⊆
([n]
k

)
is a set of k-cliques E ∈ C that

covers the vertices, i.e. ⋃E∈C E = [n], and that C is a k-clique factor if the k-cliques are disjoint [68].
Since 2-cliques are edges, the notions of edge cover and 2-clique cover, as well as perfect matching

and 2-clique factor coincide for k = 2. The study of this case in general graphs dates back at least
to 1891 [108], and also in the context of random graphs the locations of the sharp thresholds for
the existence of edge covers (connectivity, component sizes) and perfect matchings have already been
established by Erdős and Rényi in the 1960’s [46, 47, 48, 49]. Finally, the hitting time result Theorem
2.8 for k = 2 was established two decades later by Bollobás and Thomason in 1985 [23].

The extension towards perfect matchings (and hyperedge covers) in k-uniform hypergraphs was
initiated by Schmidt and Shamir in 1979 [50], who derived the first bounds in 1983 [120]. These results
were subsequently improved in [55, 74, 69], until not only the threshold, but also the stronger hitting
time result was established by Jeff Kahn [70, 71]. The first time that this threshold was conjectured
was seemingly in [36], where the perfect matching threshold for regular uniform hypergraphs was
established.

As stated in [68, 69], the extension towards k-clique factors (and covers) was seemingly initiated
by Ruciński. First results were obtained in [121, 117, 11], yielding the cover threshold [68], which were
further improved in [76, 74, 69], until the location of the k-clique factor threshold was established by
Oliver Riordan [113] and Annika Heckel [63] using ingenious couplings.

The missing hitting time result for k-clique covers and k-clique factors, a problem stated by Erdős
and Spencer for k = 3 [28], was recently established in [64]. In the following, we will slightly strengthen
the result in [63] and present the result in [64] for the special case k = 3, i.e. for triangle covers and
triangle factors. In particular, we will obtain the cover threshold as a byproduct along the lines.

4.1.2 Random Graphs. We keep the number n ∈ Z≥12 of vertices arbitrary but fixed throughout.
For given π ∈ [0, 1] let Hb,n,π ∼ Bin(1, π)⊗([n]

3 ) be the binomial hypergraph, further Ep,n ∼ u(
([n]

3
)
!)

the hyperedge process with associated hypergraph process Hp,n = (Hp,n,S)S ∈ ({0, 1}([n]
3 ))(

n
3) given

by H−1
p,S(1) = Ep([S]), and for p ∈ [0, 1] let Gb,n,p ∼ Bin(1, p)⊗([n]

2 ), ep,n ∼ u(
([n]

2
)
!), and Gp,n =

(Gp,n,s)s ∈ ({0, 1}([n]
2 ))(

n
2) given by G−1

p,s(1) = ep([s]), be the corresponding notions for graphs.

4.1.3 Triangle Hypergraphs. Let G ∈ {0, 1}([n]
2 ) be a graph, and let Ht,G ∈ {0, 1}([n]

3 ) given by
H−1

t,G(1) = {E ∈
([n]

3
)

:
(E

2
)

⊆ G−1(1)} be the triangle hypergraph induced by G. There is a clear
one to one correspondence between the triangle covers (triangle factors) in G and the hyperedge
covers (1-factors) in Ht,G. Let Ht,n,p = Ht,Gb be the binomial triangle hypergraph, and let Htp,n =
(Htp,n,s)s = (Ht,Gp,s)s be the triangle hypergraph process. For the hitting times let Fn = {F ⊆

([n]
3
)

:
|F | = n/3,⋃E∈F E = [n]} be the set of all 1-factors (perfect matchings). Then the four hitting times
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are given by

Sc = inf

S ∈
[(
n

3

)]
:

⋃
E∈H−1

p,S(1)

E = [n]

 , Sf = inf
{
S ∈

[(
n

3

)]
: ∃F ∈ F F ⊆ H−1

p,S(1)
}
,

sc = inf

s ∈
[(
n

2

)]
:

⋃
E∈H−1

tp,s(1)

E = [n]

 , sf = inf
{
s ∈

[(
n

2

)]
: ∃F ∈ F F ⊆ H−1

tp,s(1)
}
.

For n ∈ 3Z we have 1
3n ≤ Sc ≤ Sf ≤

(n
3
)

almost surely, and n ≤ sc ≤ sf ≤
(n

2
)

almost surely. Now,
Sc is the hitting time for a hyperedge cover of the hypergraph process, and Sf is the hitting time for
a 1-factor in the hypergraph process. Analogously, sc is the hitting time for a triangle cover in the
graph process, and sf is the hitting time for a triangle factor in the graph process.

4.1.4 Perfect Matchings. Theorem 1.3 in [71] states that Sf and Sc coincide whp. The loca-
tion of Sc is also well-known, and is for example given by Lemma 5.1 in [39]. We combine these
results into a single theorem that summarizes the properties of these hitting times for the hyper-
graph process. For this purpose fix a function g : Z>0 → R≥0 with g(n) = ω(1), g(n) ≤ ln(n) and
g(n) = o( ln(n)

ln(ln(n))) throughout the remainder. Further, let π± = ln(n)±g(n)
(n−1

2 ) , and let (S−,S+) be given
by S+ ∼ Bin(

(n
3
)
, π+) and (S−|S+ = S+) ∼ Bin(S+, π−/π+), independent of Ep.

Theorem 4.1. We have S− ≤ Sc ≤ S+ whp. Further, we have Sf = Sc whp over n ∈ 3Z>0.

The location of the triangle cover hitting time sc is also well-known, and for example given
by Theorem 3.22 in [68]. Notice that we have sc ≤ sf since a factor is a cover. The ingenious
coupling underlying Theorem 2 in [63], which is based on [113], embeds a binomial hypergraph into
the triangle hypergraph. Theorem 4.5 below is a refined version of this result. This embedding ensures
the existence of a triangle factor, and thereby establishes a tight upper bound for sf .

4.1.5 Main Result. The main result states that the random process hypergraph at the hitting time
can be embedded into the random process triangle hypergraph at the cover hitting time, and hence
the triangle cover and the triangle factor hitting time coincide whp.

Theorem 4.2. There exists a coupling (ẽp, Ẽp) of ep and Ep such that H̃p,S̃c
≤ H̃tp,s̃c whp, using

the notions for (ẽp, Ẽp) corresponding to ep and Ep. In particular, this gives sf = sc whp, over
n ∈ 3Z>0.

For completeness, we combine all hitting time results for triangles into the following corollary.
Let p± = π

1/3
± , and let (s−, s+) be given by s+ ∼ Bin(

(n
2
)
, p+) and (s−|s+ = s+) ∼ Bin(s+, p−/p+),

independent of ep. Notice that this is Theorem 2.8.

Corollary 4.3. We have s− ≤ sc ≤ s+ whp. Further, we have sf = sc whp over n ∈ 3Z>0.

Finally, we consider the following extension of Theorem 2.6 and Corollary 4.3. For this purpose let
F∗
n = {F ⊆

([n]
3
)

: |F | = ⌈n/r⌉,
⋃
E∈F E = [n]} be the covers with the minimal number of hyperedges,

and notice that F∗ = F for n ∈ 3Z>0. The corresponding hitting times are

S∗
f = inf

{
S ∈

[(
n

3

)]
: ∃F ∈ F F ⊆ H−1

p,S(1)
}
, s∗

f = inf
{
s ∈

[(
n

2

)]
: ∃F ∈ F F ⊆ H−1

tp,s(1)
}
.
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Corollary 4.4. Notice that the following holds.
a) We have S− < Sc = S∗

f ≤ S+ whp.
b) We have s− < sc = s∗

f ≤ s+ whp.

4.1.6 Open Problems. Theorem 2.6 is an extension of the corresponding result in [23], and the
hitting time results for the connectivity thresholds were extended to hypergraphs in [110], thus we
know that the hitting times for minimum degree 1, connectivity and perfect matchings coincide. We
further know that the thresholds for minimum degree 2 and 2-connectivity coincide. Although there
was significant progress towards the threshold for loose Hamilton cycles [44, 45, 52, 109], both its exact
location and the hitting time version extending the corresponding result in [23] are still outstanding.

One may also consider 2-factors, i.e. 2-regular spanning subgraphs, and in particular connected
2-factors. As opposed to loose Hamilton cycles, where all but two 2-degree vertices in each hyperedge
have degree 1, all vertices in connected 2-factors have degree 2. Notice that this problem is also still
open for regular hypergraphs, as discussed in Section 2.3, respectively Section 5 and [101]. There, we
also establish that the exact cover is essentially equivalent, however the problems are different for the
binomial model, and locating the threshold for this problem is also still open [72]. For open problems
regarding the thresholds for more general F -factors, we refer the reader to [113], in particular the
strengthening of Theorem 9 therein for 1-balanced hypergraphs. Therein, Riordan also asks for the
constants for k ≥ 4, which we have determined in Theorem 4.5 for k = 3.

4.1.7 Outline of the Proof. We split the proof of Theorem 4.2 into the following three parts. First,
we prove a refined version of Theorem 2 in [63].

Theorem 4.5. For any p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−20/31) there exists c ∈ R>0 and ε = o(1)
such that the following holds. For all p ≤ p↑ and π ≤ max(0, (1 − cn7p11

↑ )p3) there exists a coupling
(G̃b, H̃b) of Gb and Hb such that H̃b ≤ Ht,G̃b

with probability at least 1 − ε.

We prove Theorem 4.5 in Section 4.3. Next, we use Theorem 4.5 to couple the hypergraph
process Hp and the graph process Gp. This coupling fails to completely embed the random process
hypergraph in the random process triangle hypergraph, but almost all hyperedges are embedded (all
but less than ln(n)2) and in particular a hyperedge cover can be embedded.

Proposition 4.6. There exists a coupling (ẽp, Ẽp) of ep and Ep such that
⋃
E∈HE = [n] whp, where

H = H̃−1
p,S̃c

(1) ∩ H̃−1
tp,s̃c(1), and using the notions for (ẽp, Ẽp) corresponding to ep and Ep.

We prove Proposition 4.6 in Section 4.4. In the third step we extend the coupling in Proposition
4.6 to deal with the excess hyperedges H = H̃−1

p,S̃c
(1) \ H̃−1

tp,s̃c(1). For this purpose, we couple Ẽp

from Proposition 4.6 with Ep, i.e. itself, such that the (standard) hypergraph at the cover hitting
time of the latter process is entirely contained in the hitting time hypergraph of the former process
with the excess hyperedges removed, i.e. in H̃−1

p,S̃c
(1) \ H. This extension of the coupling is discussed

in Section 4.5, where we also complete the proof of Theorem 4.2, and establish Corollary 4.3 as well
as Corollary 4.4.

4.2 Preparations

We keep the number n ∈ Z≥12 of vertices arbitrary but fixed throughout. For given p, π ∈ [0, 1], we
recall a few basics for the binomial hypergraph Hb,n,π ∼ Bin(1, π)⊗([n]

3 ), further for the hyperedge
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process Ep,n ∼ u(
([n]

3
)
!) with associated hypergraph process Hp,n = (Hp,n,S)S ∈ ({0, 1}([n]

3 ))(
n
3) given

by H−1
p,S(1) = Ep([S]), and the corresponding notions Gb,n,p ∼ Bin(1, p)⊗([n]

2 ), ep,n ∼ u(
([n]

2
)
!), and

Gp,n = (Gp,n,s)s ∈ ({0, 1}([n]
2 ))(

n
2) given by G−1

p,s(1) = ep([s]), for graphs.

4.2.1 Uniform Bounds. In order to derive bounds that do not depend on specific choices of se-
quences p(n), π(n) of (hyper-) edge probabilities (which is very restrictive and not required), we fix
π↑, p↑ : Z>0 → [0, 1], exclusively consider π ∈ [0, π↑], p ∈ [0, p↑], and use the Landau notation as
follows. We write f(n) = O(f∗(n)) if there exists cp↑,π↑ , n◦,p↑,π↑ ∈ R>0 such that for all n ∈ Z≥n◦

we have |f(n)| ≤ cf∗(n), i.e. the constants hidden in the notation only depend on p↑, π↑. We de-
fine o(f∗(n)),Ω(f∗(n)), ω(f∗(n)) and Θ(f∗(n)) analogously. Clearly, when we consider bounds for
π↑, p↑ say π↑ = ω(n−2), the constants hidden in the Landau notation are absolute. This also affects
whp statements, in that events En,p,π hold whp if and only if P(E) = 1 + o(1), i.e. whp uniformly in
p ∈ [0, p↑] and π ∈ [0, π↑].

4.2.2 Critical Window Coupling. In this section we discuss the basic coupling underlying the
proof of the main result. For this purpose fix the start π− ∈ [0, π] of the critical window. We
consider the joint distribution (Ep,S+,S−) ∼ Ep ⊗(S+,S−), where S+ ∼ Bin(

(n
3
)
, π) and (S−|S+) ∼

Bin(S+, π−/π), using 0
0 = 1. On the other hand, let (Hb,E) be given by (E|Hb) ∼ u(H−1

b (1)!), and
let (Hb,H−) be given by (H−|Hb) ∼

⊗
E Bin(1,Hb(E)π−/π), using 0

0 = 1, and where the product
is over E ∈

([n]
3
)
. Hence, we obtain H− by thinning out Hb, keeping each hyperedge with probability

π−/π. We define (Gp, s+, s−), (Gb, e), p− ∈ [0, p] and (Gb,G−) analogously.

Observation 4.7. Notice that the following holds.
a) We have (Hp,S+ ,Ep,[S+]) ∼ (Hb,E), (Hp,S+ ,Hp,S−) ∼ (Hb,H−) and H− ∼ Hb,π−.
b) We have (Gp,s+ , ep,[s+]) ∼ (Gb, e), (Gp,s+ ,Gp,s−) ∼ (Gb,G−) and G− ∼ Gb,p−.

Proof. Let H =
([n]

3
)
, S = S+, H = H−1

p,S(1), and notice that |H| = S. Let H′ = H−1
b (1) and

S′ = |H′|. Notice that S′ ∼ S, further that (H′|S′) ∼ u(HS′
) and that (H|S) ∼ u(HS), which

shows that Hp,S ∼ Hb. Using another symmetry argument, we have (Ep,[S]|H) ∼ u(H!), and using
(E|H′) ∼ u(H′!) thereby (Hp,S ,Ep,[S]) ∼ (Hb,E).

For the second part, let S′
− = |H−1

− (1)|, notice that |H−1
p,S−

(1)| = S−, further that (S′
−|Hb) ∼

Bin(S′, π−/π), and that (S−|Hp,S) ∼ Bin(S, π−/π). Let H− = H−1
p,S−

(1) and H′
− = H−1

− (1). Notice
that (H−|S−,Hp,S) ∼ u(

(H
S−

)
) and that (H′

−|S′
−,Hb) ∼ u(

(H′

S′
−

)
) using a symmetry argument, so

(Hp,S ,Hp,S−) ∼ (Hb,H−). Finally, we have H− ∼ Hb,π− since independence is preserved and each
hyperedge is present with probability π−. The results for graphs follow analogously.

In more detail, we may start with Hb, obtain H− by thinning out, order the hyperedges of H−
to obtain the process up to the start of the critical window, and then order the remaining hyperedges
H−1

b (1) \H−1
− (1) to obtain the process up to the end of the critical window.

4.2.3 Hypergraph Degrees. We discuss the vertex degrees for Hb. For H ∈ {0, 1}([n]
3 ) and v ∈ [n]

let DH(v) = |{E ∈
([n]

3
)

: v ∈ E}| be the degree of v in H and let ∆h(H) = maxvDH(v) be the
maximum degree. Define dG(v) = |{e ∈

([n]
2
)

: v ∈ e}| and ∆g(G) = maxv dG(v) for G ∈ {0, 1}([n]
2 )

analogously. Further, let ∆h,n,π = ∆h(Hb) and ∆g,n,p = ∆g(Gb). Let Dn,π = E[DHb(v)] and
d̄n,p = E[dGb(v)] denote the expected degrees.
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Observation 4.8. Let v ∈ [n], ∆h↑,n,π = Dπ + max(Dπ, 4 ln(n)), ∆g↑,n,p = d̄p + max(d̄p, 4 ln(n)).
a) We have DHb(v) ∼ Bin(

(n−1
2
)
, π) and dGb(v) ∼ Bin(n− 1, p).

b) We have P(∆h ≥ ∆h↑) ≤ n−1/3 and P(∆g ≥ ∆g↑) ≤ n−1/3.

Proof. Since DHb(v) = ∑
E∈HHb(E), H = {E ∈

([n]
3
)

: v ∈ E}, is a sum of iid Bernoulli variables,
we have DHb(v) ∼ Bin(

(n−1
2
)
, π). Thus, combining Observation 4.7 with the union bound and the

Chernoff bound, using δ = ∆↑h −Dπ = max(Dπ, 4 ln(n)), yields

P(∆h ≥ ∆h↑) ≤ n exp
(

− δ2

2Dπ + δ

)
≤ 1
n1/3 .

The claims for the graph follow analogously.

4.2.4 Avoidable Configurations. In the following, we will frequently discuss copies of some hyper-
graph in the random hypergraphs. Whenever no such copies exist whp, we can use this to significantly
simplify the discussion. In this section, we present this argument, which is closely related to the avoid-
able configurations in [113] and [63]. Fix a set H ⊆

(Z
3
)

of hyperedges. Let V = V(H) = ⋃
E∈HE be

the vertices, and for H ∈ {0, 1}([n]
3 ) let

Nhc,H(H) =
∣∣∣{{ι(E) : E ∈ H} ⊆ H−1(1) : ι ∈ [n]V

}∣∣∣
be the number of copies of H in H. Similarly, for G ⊆

(Z
2
)
, V = V(G), and G ∈ {0, 1}([n]

2 ) let
Ngc,G(G) = |{{ι(e) : e ∈ G} ⊆ G−1(1) : ι ∈ [n]V}| be the number of copies of G in G.

Observation 4.9. Notice that the following holds.
a) Let H ⊆

([n]
3
)

and V = |V(H)|. Then we have E[Nhc,Hb(H)] ≤ nV π|H| ≤ nV π
|H|
↑ .

b) Let G ⊆
([n]

2
)

and V ′ = |V(G)|. Then we have E[Ngc,Gb(G)] ≤ nV
′
p|G| ≤ nV

′
p

|G|
↑ .

Proof. Let H∗ ∈ {0, 1}([n]
3 ), H∗ ≡ 1, be the complete hypergraph and V = |V(H)|. Then we have

E[Nhc,Hb(H)] = Nhc,H∗(H)π|H| ≤ nV π|H|. The proof for graphs is analogous.

4.2.5 Induced Hyperedges. We describe the triangle hypergraphs Th = {Ht,G : G ∈ {0, 1}([n]
2 )},

in terms of triangle graphs and 3-cycles, given as follows. For H ∈ {0, 1}([n]
3 ) let Gt,H ∈ {0, 1}([n]

3 )
given by G−1

t,H(1) = ⋃
E∈H−1(1)

(E
2
)

be the triangle graph induced by H. This gives rise to the set
Tg = {Gt,H : H ∈ {0, 1}([n]

3 )} of all triangle graphs.
The 3-cycle CE,v ⊆

([n]
3
)

with interior E ∈
([n]

3
)

and outer corners v ∈ ([n] \ E)(
E
2) is given by

CE,v = {e ∪ {ve} : e ∈
(E

2
)
}. Let Cn = {CE,v : E ∈

([n]
3
)
, v ∈ ([n] \ E)(

E
2)} be the set of all 3-cycles.

For a hypergraph H ∈ {0, 1}([n]
3 ) let Ch(H) = {C ∈ C : C ⊆ H−1(1)} be the 3-cycles in H.

Observation 4.10. Let H ∈ {0, 1}([n]
3 ), G′ = Gt,H , further G ∈ {0, 1}([n]

2 ) and H ′ = Ht,G.
a) We have Gt,H′ ≤ G and H−1

t,G′(1) = H−1(1) ∪ {E ∈
([n]

3
)

: v ∈ ([n] \ E)(
E
2), CE,v ∈ Ch(H)}.

b) The map Tg → Th, G 7→ Ht,G, is a bijection with inverse H 7→ Gt,H .
c) We have Th = {H ∈ {0, 1}([n]

3 ) : Ht,Gt,H
= H}.
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Proof. We have Gt,H′ ≤ G because G̃ = Gt,H′ are exactly the triangles in G, that is, since we have
G̃−1(1) = {e ∈

(E
2
)

: E ∈
([n]

3
)
,
(E

2
)

⊆ G−1(1)}. Since G̃ are the triangles in G, we have Ht,G̃ = H ′, so
Th = {Ht,G : G ∈ Tg}. On the other hand, we have H ≤ Ht,G′ because H̃ = Ht,G′ is induced by the
triangles G′ given by H, i.e.

H̃−1(1) =
{
E ∈

(
[n]
3

)
: E′ ∈ (H−1(1))(

E
2),∀e ∈

(
E

2

)
e ⊆ E′

e

}
,

which gives H̃(E) = 1 for E ∈ H−1(1), by choosing E′ ≡ E. But we may also choose E′ ∈ Ch(H)
with interior E, which gives I(H) ⊆ H̃−1(1) for the induced hyperedges

I(H) =
{
E ∈

(
[n]
3

)
: v ∈ ([n] \ E)(

E
2), CE,v ∈ Ch(H)

}
.

Conversely, for any E ∈ H̃−1(1)\H−1(1) there exists E′ ∈ (H−1(1))(
E
2) such that e ⊆ E′

e for all e ∈
(E

2
)
,

i.e. E′
e = e∪{ve} for some ve ∈ [n]\e. With E ∈ H−1(0) we have E′

e ̸= E, hence v = (ve)e ∈ ([n]\E)(
E
2),

thereby CE,v ∈ Ch(H) and thus E ∈ I(H). This shows that H̃−1(1) = H−1(1) ∪ I(H). As before,
since H̃ are the (hyperedges corresponding to) triangles in G′, we have Gt,H̃ = G′, and hence Tg → Th,
G 7→ Ht,G, is a bijection with inverse H 7→ Gt,H . The last part is now immediate.

An implication of Observation 4.10 is that H ∈ Th if and only if all hyperedges E induced by
3-cycles CE,v ∈ Ch(H) in H are included in H, that is H(E) = 1.

We are particularly interested in the clean 3-cycles C◦
n = {CE,v : E ∈

([n]
3
)
, v ∈ ([n] \ E)(

E
2)},

i.e. 3-cycles with distinct outer corners, and the clean 3-cycles C◦(H) = C◦ ∩ Ch(H) in H ∈ {0, 1}([n]
3 ).

Notice that {(E, v) : E ∈
([n]

3
)
, v ∈ ([n] \ E)(

E
2)} → C◦, (E, v) 7→ CE,v, is a bijection. Hence, for

C◦ ∈ C◦ there exists a unique induced hyperedge Eci(C) ∈
([n]

3
)
. Among the clean 3-cycles, we are

particularly interested in the vertex disjoint clean 3-cycles. So, for a family S = {Hi : i ∈ [N ]} of
N ∈ Z≥0 sets Hi ⊆

([n]
3
)

of hyperedges let vdj(S) = 1{∀H ∈ S2 V(H1) ∩ V(H2) = ∅} indicate if the
hyperedge sets S are pairwise vertex disjoint, where V(H) = ⋃

E∈HE.
On the next level, not only triangles can be induced (by 3-cycles), but also 3-cycles can be induced

(by inducing one of their hyperedges using 3-cycles). We are particularly interested in induced clean
3-cycles, induced by vertex disjoint clean 3-cycles. In this constellation, two of the hyperedges of the
induced clean 3-cycle have to already be present, thus the pair of induced and inducing clean 3-cycle
is given by a total of five hyperedges. In this sense, the set of all induced clean 3-cycles is

C◦
i,n =

{
(C1 ∪ C2) \ {Eci(C2)} : C ∈ C◦2

, Eci(C2) ∈ C1
}
.

Finally, let Ci(H) = {C◦
i ∈ C◦

i : C◦
i ⊆ H−1(1)} be the induced clean 3-cycles in H ∈ {0, 1}([n]

3 ). For
the random instances we consider the 3-cycles Ch,n,π = C(Hb), the clean 3-cycles C◦

h,n,π = C◦(Hb),
C◦

t,n,p = C◦(Ht), and the induced clean 3-cycles C◦
hi = C◦

i (Hb).

Observation 4.11. Notice that the following holds.
a) We have P(Ch ̸= C◦

h),P(C◦
i ̸= ∅),P(vdj(C◦

h) = 0) = o(1) for π↑ = o(n−11/6).
b) We have P(vdj(C◦

t ) = 0) = o(1) for p↑ = o(n−7/11).
c) We have E[|C◦

h|] = 120
(n

6
)
π3 and E[|C◦

t |] = 120
(n

6
)
p9.
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d) We have Var(|C◦
h|) ≤ (1 + o(1))E[|C◦

h|] for π↑ = o(n−5/3).
e) We have Var(|C◦

t |) ≤ (1 + o(1))E[|C◦
t |] for p↑ = o(n−5/9).

Proof. For Part 4.11a) we use Observation 4.9. The set C \ C◦ consists of copies of H4 = {E1, E2, E3}
with E1 = {1, 2, 4}, E2 = {1, 3, 4}, E3 = {2, 3, 4}, and of copies of H5 = {E1, E2, E3} with E1 =
{1, 2, 4}, E2 = {1, 3, 4}, E3 = {2, 3, 5}, so the union bound yields

P(Ch ̸= C◦
h) ≤ P(Nc,Hb(H4) > 0) + P(Nc,Hb(H5) > 0) ≤ n4π3

↑ + n5π3
↑ ≤ 2n5π3

↑ = o(1).

We proceed similarly for P(C◦
i ̸= ∅). For C◦

i ∈ C◦
i we have |C◦

i | = 5 and |V(C◦
i )| ≤ 9, yielding

P(C◦
i ̸= ∅) ≤

(9
3
)5
n9π5

↑ = o(1) since there are
(9

3
)5 sets H ⊆

([9]
3
)

of hyperedges of size |H| = 5 in
total. Since the computations for vertex disjoint clean 3-cycles are lengthy and closely related to the
variance, we postpone the proof of the remainder.

For Part 4.11c), we reconcile the leading coefficient 120. Given six vertices, choose three for the
first triangle. For the second triangle, choose one of the vertices in the first triangle, and two of the
remaining three vertices. For the third triangle, choose one of the remaining two vertices in the first
triangle, and one of the remaining two in the second triangle. In total, this gives

(6
3
)(3

1
)(3

2
)(2

1
)2 = 6!,

and dividing by 6 to drop the order yields 5! = 120.
For the remainder, i.e. the remainder of Part 4.11a), for Part 4.11b), Part 4.11d) and Part 4.11e),

we consider pairs of clean 3-cycles. For r ∈ Z≥3 and s ∈ {0, 1} let

Ph,r,s =
{
C ∈ (C◦)2 : |C1 ∪ C2| = r, vdj({C1, C2}) = s

}
, Uh,r,s =

{
C1 ∪ C2 : C ∈ Ph,r,s

}
.

Let Uh,n,π,r,s = {U ∈ Uh,r,s : U ⊆ H−1
b (1)} and Ph,n,π,r,s = {C ∈ Ph,r,s : C1 ∪ C2 ⊆ H−1

b (1)}. Notice
that the sets are empty unless 3 ≤ r ≤ 5, s = 0, or r = 6, and that |Uh| ≤ |Ph| ≤

(r
3
)2|Uh|, by

selecting any pair of three hyperedges each. Let Ph,n,π,r,s = E[|Ph|], U ∈ Uh and V = ⋃
E∈U E.

Fix s = 0 for now. For r = 3 we have Ph = E[|C◦
h|]. For r = 4 we have V ≤ 7 and hence

Ph ≤
(4

3
)2(7

3
)4
n7π4 by Observation 4.9, analogous to the above. For r = 5 we have V ≤ 9 and thus

Ph ≤
(5

3
)2(9

3
)5
n9π5. For r = 6 we have V ≤ 11 since s = 0 and thereby Ph ≤

(6
3
)2(11

3
)6
n11π6. For r = 6

and s = 1 we have Ph = 1202( n
6,6,n−12

)
π6 ≤ E[|C◦

h|]2 using the proof of Part 4.11c), so

Ph,3 = E[|C◦
h|], Ph,4 ≤ cn7π4, Ph,5 ≤ cn9π5, Ph,6,0 ≤ cn11π6, Ph,6,1 ≤ E[|C◦

h|]2 (13)

for some c ∈ R>0. This gives P (vdj(C◦
h) = 0) ≤ Ph,4 + Ph,5 + Ph,6,0 = o(1), and further

Var(|C◦
h|) = E[|C◦

h|2] − E[|C◦
h|]2 ≤

6∑
r=3

Ph,r,0 ≤ E[|C◦
h|] + c(n7π4 + n9π5 + n11π6)

=
(
1 + (1 + O(n−1))6c(nπ + n3π2 + n5π3)

)
E[|C◦

h|].

Since we have Var(|C◦
h|) = E[|C◦

h|] = 0 for π = 0, this shows that Var(|C◦
h|) = (1 + o(1))E[|C◦

h|]. For
the triangle hypergraph we proceed analogously, but we have to count the edges in the union, not the
hyperedges. Hence, for H ⊆

([n]
3
)

let E(H) = ⋃
E∈H

(E
2
)

be the edges and further let

Pt,r,s =
{
C ∈ (C◦)2 : |E(C1) ∪ E(C2)| = r, vdj({C1, C2}) = s

}
, U t,r,s =

{
C1 ∪ C2 : C ∈ Pt,r,s

}
.

Notice that the sets are empty unless 9 ≤ r ≤ 17 and s = 0, or r = 18. Adjusting the definitions and
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following the argumentation above gives c ∈ R>0 such that

Pt,9 = E[|C◦
t |], Pt,10 = 0, Pt,r,0 ≤ cnvrpr, 11 ≤ r ≤ 18, Pt,18,1 ≤ E[|C◦

t |]2, (14)

where vr = ⌊1
2(r + 3)⌋ for 11 ≤ r ≤ 17 and v18 = 11. The remainder follows as above.

Taking into account π↑ ≤ p3
↑, we obtain p↑ = o(n−7/11) and π↑ = p3

↑ = o(n−21/11).

4.2.6 Diamonds. Let D = {{E,E′} ⊆
([n]

3
)

: |E∩E′| = 2} be the set of hyperedge pairs, or diamond
graphs (in the appropriate interpretation). For H ∈ {0, 1}([n]

3 ) let Dh(H) = {D ∈ D : D ⊆ H−1(1)},
and let Dh,n,π = Dh(Hb) be the set of diamonds in Hb.

Observation 4.12. Notice that the following holds.
a) We have E[|Dh|] = 6

(n
4
)
π2.

b) We have P(vdj(Dh ∪ C◦
h) = 0) = o(1) for π↑ = o(n−11/6).

c) We have Var(|Dh|) = (1 + O(n3π2
↑))E[|Dh|] + o(1) for π↑ = o(n−7/4).

Proof. The coefficient 6 is obtained by choosing two of the four vertices for the overlap edge. For the
next part we consider the split E = Ed ∪ Ec ∪ Er, where E = {vdj(Dh ∪ C◦

h) = 0}, Ed = {vdj(Dh) = 0}
are overlapping diamonds, Ec = {vdj(C◦

h) = 0} are overlapping clean 3-cycles, and Er = E \ (Ed ∪ Ec)
is the rest, suggesting that there exists a diamond overlapping with a clean 3-cycle. Analogous to the
proof of Observation 4.11, for Ed and the variance we consider a diamond overlap of 1 hyperedge on at
most 5 vertices, and the split for an overlap of 0 hyperedges with at most 7 vertices if the diamonds are
not vertex disjoint, and expectation (1 − δ(n))E[|Dh|]2 otherwise, where δ(n) = 1 −

(n−4
4
)
/
(n

4
)
. This

establishes the asymptotics for the variance and takes care of Ed, since the contribution by diamonds
with vertex overlap is O(n5π3 + n7π4) = o(1), while Ec is taken care of by Observation 4.11. For the
3-cycle diamond pairs, covering Er, we may have 4 hyperedges with up to 7 vertices or 5 hyperedges
with up to 9 vertices since they are not disjoint, yielding the bound O(n7π4

↑ + n9π5
↑) = o(1).

4.3 Binomial Graph Coupling

Now, we couple Gb,n,p ∼ Bin(1, p)⊗([n]
2 ) with Hb,n,π ∼ Bin(1, π)⊗([n]

3 ) and establish Theorem 4.5. We
continue to use the convention for the Landau notation from Section 4.2.1.

4.3.1 Overview. We establish Theorem 4.5 using the explicit coupling described in Figure 3, which
relies on the notions in Section 4.2.5 and on coupling orders E∗

n,C ∈
([n]

3
)
! for C ⊆ C◦ with vdj(C) = 1,

such that the hyperedges in the clean 3-cycles come first, i.e. E∗
C([|S|]) = S for S = {E ∈ C : C ∈ C},

followed by the induced hyperedges, i.e. E∗
C([|S ∪S ′|]\ [|S|]) = S ′ for S ′ = {Eci(C) : C ∈ C}. It further

relies on the conditional hyperedge inclusion probabilities

πt(E, C,Y,N ) = P
(
Ht(E) = 1|C◦

t = C,Y ⊆ H−1
t (1),N ⊆ H−1

t (0)
)
,

πh(E, C,Y,N ) = P
(
Hb(E) = 1|C◦

h = C,Y ⊆ H−1
b (1),N ⊆ H−1

b (0)
)
.

In order to establish Theorem 4.5, we show that the coupling is successful, i.e. that the event

E =
{

C̃◦
t = C̃◦

h, b̃h = 1, H̃b ≤ H̃t
}
, H̃t = Ht,G̃b

, (15)
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1. We use the following coupling (C̃◦
t , C̃

◦
h) of the clean 3-cycles C◦

t and C◦
h.

(a) Use a maximal coupling (ñt, ñh) to couple |C◦
t | and |C◦

h|.
(b) Given E = {(ñt, ñh) = (nt, nh)}, let (b̃t, b̃h) ∈ {0, 1}2 be conditionally independent with

(b̃t|E) ∼ (vdj(C◦
t )||C◦

t | = nt) and (b̃h|E) ∼ (vdj(C◦
h)||C◦

h| = nh).
(c) We define (C̃◦

t , C̃
◦
h) conditional to E = {(ñt, ñh, b̃t, b̃h) = (nt, nh, bt, bh)}.

i. Let (C̃◦
h|E) ∼ (C◦

h| vdj(C◦
h) = bh, |C◦

h| = nh).
ii. If the coupling succeeded, i.e. nt = nh and bt = bh = 1, set C̃◦

t = C̃◦
h almost surely.

iii. If not, let (C̃◦
t , C̃

◦
h) be conditionally independent with (C̃◦

t |E) ∼ (C◦
t | vdj(C◦

t ) = bt, |C◦
t | = nt).

2. We define (G̃b, H̃b) conditional to E = {(C̃◦
t , C̃

◦
h, b̃t, b̃h) = (Ct, Ch, bt, bh)}, by recursively defining

yes and no sets x = (Yt,i,Yh,i,N t,i,N h,i)i over i ∈ Z ∩ [0,
(n

3
)
], where ‘yes’ suggests inclusion.

(a) If Ct ̸= Ch or bh = 0, set xi ≡ ∅ for all i.
(b) Otherwise, we have Ct = Ch, bt = bh = 1, and set x0 ≡ ∅. For i ∈ [

(n
3
)
], conditional to previous

choices, xi only depends on E and xi−1. Hence, it is sufficient to define xi given E ∩{xi−1 = x},
with x = (Yt,Yh,Nt,Nh). Let πi = πt(E∗

i , Ct,Yt,Nt) and π′
i = πh(E∗

i , Ch,Yh,Nh).
i. In the case Yh ∩ Nt ̸= ∅ let xi = x, otherwise proceed as follows.
ii. For πi = π′

i = 0 let Yt,i = Yt, N t,i = Nt ∪ {E∗
i }, Yh,i = Yh, N h,i = Nh ∪ {E∗

i }.
iii. Otherwise, for πi ≥ π′

i let b ∼ Bin(1, π′
i/πi).

A. For b = 0 let Yt,i = Yt, N t,i = Nt and Yh,i = Yh, N h,i = Nh ∪ {E∗
i }.

B. Given b = 1 let b′ ∼ Bin(1, πi). For b′ = 1 let Yt,i = Yt ∪ {E∗
i }, N t,i = Nt and

Yh,i = Yh ∪ {E∗
i }, N h,i = Nh. For b′ = 0 let Yt,i = Yt, N t,i = Nt ∪ {E∗

i } and
Yh,i = Yh, N h,i = Nh ∪ {E∗

i }.
iv. For πi < π′

i let m ∈ {0, 1, 2} with P(m = m) = Pm, P2 = πi, P1 = π′
i − πi, P0 = 1 − π′

i.
A. For m = 2 let Yt,i = Yt ∪ {E∗

i }, N t,i = Nt and Yh,i = Yh ∪ {E∗
i }, N h,i = Nh.

B. For m = 1 let Yt,i = Yt, N t,i = Nt ∪ {E∗
i } and Yh,i = Yh ∪ {E∗

i }, N h,i = Nh.
C. For m = 0 let Yt,i = Yt, N t,i = Nt ∪ {E∗

i } and Yh,i = Yh, N h,i = Nh ∪ {E∗
i }.

(c) Conditional to a particular outcome of the experiment above, G̃b and H̃b are conditionally
independent and only depend on E and x(n

3). Hence, using E∗ = E ∩ {x(n
3) = (Yt,Yh,Nt,Nh)},

their distribution is determined by (G̃b|E∗) ∼ (Gb|C◦
t = Ct,Yt ⊆ H−1

t (1),Nt ⊆ H−1
t (0)) and

(H̃b|E∗) ∼ (Hb|C◦
h = Ch,Yh ⊆ H−1

b (1),Nh ⊆ H−1
b (0)).

Figure 3: The two main steps in the coupling of Gb and Hb are the coupling of their clean 3-cycles
C◦

t and C◦
h, followed by the coupling of Gb and Hb given C◦

t and C◦
h. In the first step we couple the

numbers of clean 3-cycles, then determine independently if they are pairwise vertex disjoint, and if
the coupling succeeds, i.e. if the numbers of cycles are equal and both are disjoint, then we can choose
the same cycles for both hypergraphs, otherwise we choose independently.
In the second step, we first iterate through all hyperedges, where xi depends on all past decisions only
through E and xi−1. Subject to the conditional inclusion probabilities πi, π′

i at hand, we use different
coupling strategies. When the coupling fails, i.e. the case Yh ∩ Nt ̸= ∅ where we marked a hyperedge
for inclusion in H̃b and for exclusion in Ht,G̃b

, we stop marking hyperedges. For πi ≥ π′
i and b = 0,

we do not make a decision for Ht,G̃b
and exclude E∗

i for H̃b, while for b = 1 we include or exclude
E∗
i in both hypergraphs depending on b′. For πi < π′

i we use a maximal coupling. Here, the coupling
fails if m = 1, and otherwise we include or exclude E∗

i in both hypergraphs depending on m.
In the last step, based on the marked hyperedges, we complete the graph G̃b by considering the
corresponding triangles, and the hypergraph H̃b independently.
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holds whp. We show this in three steps. First, we bound the probability for the first part.
Proposition 4.13. Let π↑ = o(n−11/6) and p↑ = o(n−7/11). Then we have P(C̃◦

t = C̃◦
h, b̃h = 1) ≥

1 − min(1, 1√
2E[|C◦

h|]
, 1√

2E[|C◦
t |]

)|E[|C◦
t |] − E[|C◦

h|]| + o(1).

We turn to the conditional probabilities πt and πh. The domain for πt is

Dt =
{

(E, C,Y,N ) : E ∈
(

[n]
3

)
,P
(
C◦

t = C,Y ⊆ H−1
t (1),N ⊆ H−1

t (1)
)
> 0

}
,

and Dh for πh is defined analogously using Hb. For X = (E, C,Y,N ) ∈ Dh let Y = Y ∪
⋃
C∈C C,

let H ∈ {0, 1}([n]
3 ) be given by H−1(1) = Y ∪ {E} and let ∆c(X) = ∆h(H) be the minimal maximal

degree for a hypergraph subject to X. Aiming towards Observation 4.8, we consider the restriction
D◦

t,n = {X ∈ Dt : ∆c(X) <
(n−1

2
)
p3

↑ + max(
(n−1

2
)
p3

↑, 4 ln(n))} be the restriction to bounded degrees.
Define D◦

h analogously. The first result addresses triangle hypergraphs.
Proposition 4.14. Let X = (E, C,Y,N ) ∈ Dt and Y = Y ∪

⋃
C∈C C.

a) For p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−7/11) there exists c ∈ R>0 such that the following holds. For
all X ∈ D◦

t with πt(X) > 0 we have πt(X) ≥ (1 − cn7p11
↑ ))p3.

b) We have πt(X) = 0 if p = 0, E ∈ N or C ⊆ Y ∪ {E} for some C ∈ C◦ \ C.
c) Assume that vdj(C) = 1, that πt(X) = 0 and that the assumptions in Part 4.14b) do not hold.

Then we have Ch(H) \ C◦
h(H) ̸= ∅ or C◦

i (H) ̸= ∅.

Now, we turn to the corresponding results for the binomial hypergraph.
Proposition 4.15. Let X = (E, C,Y,N ) ∈ Dh and Y = Y ∪

⋃
C∈C C.

a) For E ̸∈ Y we have πh(X) ≤ π.
b) For π↑ = Ω(ln(n)/n2), π↑ = o(n−3/2) there exists c ∈ R>0 such that the following holds. For all

X ∈ D◦
h with πh(X) > 0 we have πh(X) ≥ (1 − cn3π2

↑)π.
c) We have πh(X) = 0 if and only if π = 0, E ∈ N or C ⊆ Y ∪ {E} for some C ∈ C◦ \ C.

Notice that there is no reasonable upper bound for πt(X), in particular since the induced hyper-
edges given by C are definitely included. Also, notice that πh(X) = 0 implies that πt(X) = 0 (or
π = 0). Using these two results, it is immediate that the coupling is successful whp.
Corollary 4.16. Let p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−20/31) and c from Proposition 4.14a). Then
we have P(E) = 1 + o(1) uniformly for all p ∈ [0, p↑] and π = max(0, (1 − cn7p11

↑ )p3).
Notice that as opposed to Theorem 4.5, Corollary 4.16 relies on a very specific choice of π. We

show Proposition 4.13 in Section 4.3.2, Proposition 4.14 in Section 4.3.3, Proposition 4.15 in Section
4.3.4, Corollary 4.16 in Section 4.3.5 and Theorem 4.5 in Section 4.3.7.

4.3.2 Proof of Proposition 4.13. We follow the definition of the coupling and start with the
analysis of (ñt, ñh), a maximal coupling of |C◦

t | and |C◦
h|. Thus, the coupling lemma suggests that

P(ñt ̸= ñh) = ∥|C◦
t | − |C◦

h|∥tv. We bound the total variation distance using the limiting distributions
of |C◦

t | and |C◦
h|. For this purpose let nt = Po(E[|C◦

t |]) and nh = Po(E[|C◦
h|]), then we have

P(ñt ̸= ñh) ≤ ∥|C◦
t | − nt∥tv + ∥nt − nh∥tv + ∥|C◦

h| − nh∥tv.

Our first result will be that nt, nh are indeed the limiting distributions and that they asymptotically
coincide for our choices of p and π.
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Lemma 4.17. Notice that the following holds.
a) We have ∥|C◦

t | − nt∥tv = o(1) for p↑ = o(n−1/2).
b) We have ∥|C◦

h| − nh∥tv = o(1) for π↑ = o(n−3/2).
c) We have ∥nt − nh∥tv ≤ min(1, 1√

2E[|C◦
t |]
, 1√

2E[|C◦
h|]

)|E[|C◦
t |] − E[|C◦

h|]|.

Proof. For the first two parts we use Theorem 4.7 in [116]. For this purpose we notice that the cases
π = 0, p = 0 are trivial, and otherwise the bound yields

∥|C◦
h| − nh∥tv ≤ min

(
1, P−1

h,3

)
(π3Ph,3 + (1 + π2)Ph,4 + (1 + π)Ph,5) = o(1),

using Equation (13) in the proof of Observation 4.11. The result for the triangle hypergraph follows
with Equation (14). For the last part and π ≤ p3, we couple nt = nh + ∆ using (nh,∆) ∼
Po(E[|C◦

h|]) ⊗ Po(∆) and ∆ = |E[|C◦
t |] − E[|C◦

h|]|, and the corresponding coupling for π > p3 with
the coupling lemma gives ∥nt −nh∥tv = P(nt ̸= nh) = P(∆ > 0) = 1−e−∆ ≤ ∆. For π > 0, p ∈ [0, 1]
and using ln(1 + x) ≤ x, we have

DKL(nt∥nh) = E[nh] − E[nt] + E[nt] ln
(E[nt]
E[nh]

)
≤ (E[nh] − E[nt])2

E[nh] ,

so Pinsker’s inequality yields ∥nt − nh∥tv ≤ ∆√
2E[nh]

.

Now, notice that P(b̃t = b̃h = 1) = 1 + o(1) is an immediate consequence of Observation 4.11
since b̃t ∼ vdj(C◦

t ), b̃h ∼ vdj(C◦
h), p↑ = o(n−7/11) and π↑ = o(n−11/6). Finally, a symmetry argument

shows that (C◦
t | vdj(C◦

t ) = 1, |C◦
t | = N) ∼ u(S) and (C◦

h| vdj(C◦
h) = 1, |C◦

h| = N) ∼ u(S), where
S = {C ⊆ C◦ : |C| = N, vdj(C) = 1}.

4.3.3 Proof of Proposition 4.14. First, we briefly discuss the cases p = 0, p = 1 and p ∈ (0, 1).
For p = 0 we have Dt = {(E, ∅, ∅,N ) : E ∈

([n]
3
)
,N ⊆

([n]
3
)
} and πt ≡ 0 since Ht ≡ 0 almost surely.

For p = 1 we have Ht ≡ 1 almost surely, hence Dt = {(E, C◦
,Y, ∅) : E ∈

([n]
3
)
,Y ⊆

([n]
3
)
} and πt ≡ 1.

For p ∈ (0, 1) and using Th = {Ht(G) : G ∈ {0, 1}([n]
2 )} we have

Dt =
{

(E, Ch(H),Y,N ) : E ∈
(

[n]
3

)
, H ∈ Th,Y ⊆ H−1(1),N ⊆ H−1(0)

}
. (16)

We start with Part 4.14a) and let X = (E∗, C,Y,N ) ∈ Dt. Our first result will establish a refined
lower bound. For this purpose, let Y = Y ∪

⋃
C∈C C be all included hyperedges, let H± ∈ {0, 1}([n]

3 )
be given by H−1

− (1) = Y, H−1
+ (1) = Y ∪ {E∗}, and let G± = Gt(H±) be the triangle graphs. For

E ∈
([n]

3
)

let M±(E) =
(E

2
)

\G−1
± (1) be the missing edges, and let

Ne = {E ∈ N : M−(E∗) ∩ M−(E) ̸= ∅} , Nc =
{
C ∈ C◦ \ C : M−(E∗) ∩

⋃
E∈C

M−(E) ̸= ∅
}

be the excluded hyperedges and cycles that profit from the inclusion of E∗. For E ∈ Ne let m(E) =
|M+(E)|, for C ∈ Nc let m(C) = |

⋃
E∈C M+(E)|, and let Q = ∑

E∈Ne p
m(E) +∑

C∈Nc p
m(C).

Lemma 4.18. We have πt(X) ≥ (1 −Q)p3 for all p ∈ [0, 1] and X ∈ Dt.
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Proof. Let Ye = ⋃
E∈Y

(E
2
)

be the edges, G′ ∼ Bin(1, 1)⊗Ye ⊗Bin(1, p)⊗([n]
2 )\Ye the graphGb given that

Ye is included, and let H ′
t = Ht(G′) be its triangle hypergraph. Then we have πt(X) = P(U|D∩) =

P(U∩D∩)
P(D∩) , with U = {H ′

t(E∗) = 1},

D∩ =
{

C◦
h(H ′) ⊆ C,N ⊆ H ′−1

t (0)
}

=
{

C◦
h(H ′) ∩ (C◦ \ C) = ∅,H ′−1

t (1) ∩ N = ∅
}
.

Now, let N c
e = N \ Ne and N c

c = (C◦ \ C) \ Nc. Then we have D∩ = D0 ∩ D1 with the decomposition

D0 =
{

C◦
h(H ′) ∩ N c

c = ∅,H ′−1
t (1) ∩ N c

e = ∅
}
, D1 =

{
C◦

h(H ′) ∩ Nc = ∅,H ′−1
t (1) ∩ Ne = ∅

}
.

This gives πt(X) ≥ P(U∩D∩)
P(D0) = P(U ∩ D1|D0) = P(U) − P(U ∩ Dc

1|D0), using that U is independent of
D0, and Ec to denote the complement of an event E . Since U ∩ Dc

1 is an up-set and D0 is a down-set,
the Harris inequality gives πt(X) ≥ P(U) − P(U ∩ Dc

1) = (1 − P(Dc
1|U))P(U) for p > 0, which we may

assume. With P(U) = p|M−(E∗)| ≥ p3 we have πt(X) ≥ (1 − P(Dc
1|U))p3. The union bound with

Y+ = Ye ∪
(E∗

2
)
, G′′ ∼ Bin(1, 1)⊗Y+ ⊗ Bin(1, p)⊗([n]

2 )\Y+ and H ′′ = Ht(G′′) yields

P(Dc
1|U) = P

(
(C◦

h(H ′′) ∩ Nc) ∪ (H ′′−1(1) ∩ Ne) ̸= ∅
)

≤ Q,

since P(C ∈ C◦
h(H ′′)) = pm(C) for C ∈ Nc and P(H ′′(E) = 1) = pm(E) for E ∈ Ne. Substituting this

bound above yields πt(X) ≥ (1 −Q)p3 and thereby completes the proof.

Lemma 4.18 yields a lower bound which is valid in any case. Next, we turn to the cases for which
we have πt(X) = 0. Let N ◦

e = {E ∈ Ne : m(E) = 0} and N ◦
c = {C ∈ Nc : m(C) = 0}.

Lemma 4.19. For all p ∈ [0, 1] and X ∈ Dt the following holds. We have πt(X) = 0 if and only if
one of the following holds.
• We have p = 0.
• We have N ◦

e ̸= ∅.
• We have N ◦

c ̸= ∅.

Proof. We may assume p ∈ (0, 1). Assume that πt(X) > 0, i.e. there exists a graph G, H = Ht(G),
with H(E∗) = 1 that induces X in Dt as given by Equation (16). This gives G+ ≤ G. Thus, for
E ∈ Ne we have m(E) > 0, and m(C) > 0 for all C ∈ Nc. This shows that πt(X) = 0 if one of
the three conditions holds. For the other direction, let X be such that N ◦

e = ∅ and N ◦
c = ∅. Let G,

H = Ht,G be a graph that induces X, then we have G− ≤ G, H ′
− = Ht,G− ≤ H, and G− also induces

X. So, for E ∈ N we have M−(E) ̸= ∅ since H ′
−(E) = 0. For E ̸∈ Ne we have m(E) = |M−(E)| > 0

since G−1
+ (1) \ G−1

− (1) ⊆
(E∗

2
)
, and thereby H ′

+(E) = 0, where H ′
+ = Ht,G+ . For E ∈ Ne we have

H ′
+(E) = 0 because N ◦

e = ∅, and thereby N ⊆ H ′−1
+ (0). Similarly, let C ∈ C◦ \C. For C ̸∈ Nc we have

C ̸∈ C◦
h(H ′

+) because the edges missing in C under G− are also missing under G+. For C ∈ Nc we
have C ̸∈ C◦

h(H ′
+) because there are still edges missing since N ◦

c = ∅. This yields C◦
h(H ′

+) ⊆ C. Clearly,
we have Y ∪ {E∗} ⊆ H ′−1

+ (1) and thereby G+ induces X and covers H ′
+(E∗) = 1, so πt(X) > 0.

Intuitively, Lemma 4.19 just states that πt(X) = 0 if an excluded hyperedge or clean 3-cycle is
covered by including E∗, thus violating the condition. This shows that we have N ◦

e ,N ◦
c = ∅ whenever

πt(X) > 0. Hence, combining this with the next result establishes Proposition 4.14a).
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Lemma 4.20. For all p ∈ [0, 1], X ∈ Dt and an absolute constant c ∈ R>0 we have

0 ≤ Q ≤ |N ◦
e | + |N ◦

c | + c
8∑

m=1
∆g(G+)4−vmnvmpm, vm =

⌊
m

2

⌋
.

Proof. We consider the split Ne = ⋃
m Nm(m), Nm(m) = {E ∈ Ne : m(E) = m}, according to the

exponent, notice that Nm(m) = ∅ unless m ∈ Z∩ [0, 2] and that Nm(0) = N ◦
e . Hence, let m ∈ [2] and

notice that Nm(m) = {E ∈ N ∗
m(m) : E ∈ N }, where

N ∗
m(m) =

{
E ∈

(
[n]
3

)
: E ∩ E∗ ∈ G−1

+ (1),
∣∣∣∣∣
(
E

2

)
\G−1

+ (1)
∣∣∣∣∣ = m

}
.

We obtain an upper bound on |N ∗
m(1)| by choosing two distinct vertices u, v ∈ E∗, yielding a factor

6, and a neighbor w of u, yielding a factor ∆ = ∆g(G+), to obtain E∗ = {u, v, w}. This gives the
bound |N ∗

m(1)| ≤ 6∆. We obtain |N ∗
m(2)| ≤ 3n by choosing a pair in

(E∗

2
)

and a third vertex. This
gives the bound ∑E∈Ne p

m(E) ≤ |Ne| + 6∆p+ 3np2 for the first contribution to Q.
Let Nc = ⋃

m Nm(m), Nm(m) = {C ∈ Nc : m(C) = m} and notice that Nm(m) = ∅ unless
m ∈ Z ∩ [0, 8]. We proceed as above, and notice that we now always have at least two vertices
in E∗. For m = 8 we choose the remaining 4 vertices freely, say |Nm(8)| ≤ 3

(6
3
)3
n4. For m = 7,

we take two vertices in E∗, choose 3 vertices freely and a neighbor to one of the chosen vertices to
obtain |Nm(7)| ≤ 3 · 5 ·

(6
3
)3∆n3. For m = 6 we can close a triangle, thus we may still have 3 free

vertices. However, in this case the choice of the third edge is determined, which gives |Nm(6)| ≤
3 · 4 · 5

(6
3
)3∆2n2 + 3 · 2

(6
3
)3∆n3 ≤ c∆n3 using ∆ ≤ n and the implied constant c. Thus, we only need

the maximum number of isolated vertices in a subgraph of a clean 3-cycle with 9 − m edges. This
gives |Nm(m)| ≤ c∆4−vmnvm with vm = ⌊1

2m⌋ and for some large enough absolute constant c. Using
2 ≤ ∆ we combine the bounds above to obtain an absolute constant c ∈ R>0 and

Q ≤ |N ◦
e | + |N ◦

c | + c
8∑

m=1
∆4−vmnvmpm.

We summarize the last three results in a corollary before restricting the choices of p and X.

Corollary 4.21. For p ∈ [0, 1], X ∈ Dt and an absolute constant c ∈ R>0 we have

πt(X) ≥
(

1 − |N ◦
e | − |N ◦

c | − c
8∑

m=1
∆c(X)4−vmnvmpm

)
p3, vm =

⌊
m

2

⌋
.

Proof. The assertion follows from Lemma 4.18, Lemma 4.20 and ∆g(G+) ≤ 2∆h(H+) = 2∆c(X).

We turn to the proof of Proposition 4.14a). Hence, let p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−7/11),
further p ≤ p↑ and X ∈ D◦

t with πt(X) > 0. Let n◦ be sufficiently large, c◦ sufficiently small and in
particular such that p↑(n) ≥ c◦

ln(n)1/3

n2/3 for n ≥ n◦, yielding

∆c(X) ≤
(
n− 1

2

)
p3

↑ + max
((

n− 1
2

)
p3

↑, 4 ln(n)
)

≤ c′n2p3
↑, c

′ = 1
2 + 4

c3
◦
,
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since X ∈ D◦
t . With c̃ ∈ R>0 from Corollary 4.21 and Lemma 4.19 we obtain πt(X) ≥ (1 − ε)p3,

where ε(n) = c̃c′4∑8
m=1(n2p3

↑)4−vmnvmpm↑ ≤ 2c̃c′4(n8p13
↑ + ∑7

a=4 n
apa+4

↑ ), since the contribution for
m = 2ℓ + 1, ℓ ∈ [3], is bounded by the contribution for 2ℓ. This further yields ε ≤ 10c̃c′4n7p11

↑ .
Choosing c > 10c̃c′4 sufficiently large such that cn7p11

↑ > 1 for n ≤ n◦ completes the proof.
We turn to Part 4.14b) and Part 4.14c), which are immediate from the following, general result.

Lemma 4.22. Let p ∈ [0, 1] and X ∈ Dt. Then the following holds.
a) We have πt(X) = 0 if p = 0, E∗ ∈ N or C ⊆ Y ∪ {E∗} for some C ∈ C◦ \ C.
b) Assume that πt(X) = 0, vdj(C) = 1, p > 0, E∗ ̸∈ N , and C ̸⊆ Y ∪ {E∗} for all C ∈ C◦ \ C. Then

we have Ch(H+) \ C◦
h(H+) ̸= ∅ or Ci(H+) ̸= ∅.

Proof. Using Lemma 4.19 we can restrict to p ∈ (0, 1). The remaining two items in the first part
yield πt(X) = 0, since these directly violate the given event in πt. For the second part, we have
C◦

h(H+) = C. Using Lemma 4.19, we have N ◦
e ̸= ∅ or N ◦

c ̸= ∅. As in the proof of Lemma 4.19, for
any G inducing X in Dt we have G− ≤ G, and G− induces X. Also, for any G, H = Ht(G), with
H(E∗) = 1 inducing X in Dt we have G+ ≤ G, and G+ induces X. Let H ′

± = Ht,G± be the closures.
Now, assume that N ◦

e ̸= ∅ and let E ∈ N ◦
e . Then E ∈ N has to be induced by some C ∈ Ch(H+)

because H−(E) = H ′
−(E) = H+(E) = 0 and H ′

+(E) = 1. This shows that Ch(H+) \ C◦
h(H+) ̸= ∅.

Otherwise, we have N ◦
c ̸= ∅, so let C ∈ N ◦

c and assume that also Ch(H+) \ C◦
h(H+) = ∅, meaning

that Ch(H+) = C. Now, we have C ̸∈ C, C ̸⊆ Y ∪ {E∗}, but we do have C ∈ C◦
h(H ′

+). Hence, there
exists E ∈ C with H ′

−(E) = 0. Assume that we have H+(E) = 0, then there exists C ′ ∈ Ch(H+) = C
that induces E, but C ′ ∈ C = C◦

h(H ′
−) then suggests that H ′

−(E) = 1, a contradiction. Hence, we have
H+(E) = 1 and thereby E = E∗. This shows that E∗ ∈ C and that H ′

−(E) = 1 for E ∈ C\{E∗}. This
gives E∗ ̸∈ Y and H+(E) = 0 for some E ∈ C. But due to H ′

+(E) = 1 there exists C ′ ∈ Ch(H+) = C
with E = E◦(C ′). For the remaining hyperedge E′, i.e. C = {E∗, E,E′}, we cannot have H+(E′) = 0
since vdj(C) = 1, so we have E′ ∈ Y. This gives C ′ ∪ {E∗, E′} ∈ Ci(H+).

4.3.4 Proof of Proposition 4.15. For the binomial hypergraph, we start with the discussion of the
support for π = 0, π = 1 and π ∈ (0, 1). For π = 0 we have Dh = {(E, ∅, ∅,N ) : E ∈

([n]
3
)
,N ⊆

([n]
3
)
}

and πh ≡ 0 since Hb ≡ 0 almost surely. For π = 1 we have Dh = {(E, C◦
,Y, ∅) : E ∈

([n]
3
)
,Y ⊆

([n]
3
)
}

and πh ≡ 1 since Hb ≡ 1 almost surely. For π ∈ (0, 1) we have

Dh =
{

(E, Ch(H),Y,N ) : E ∈
(

[n]
3

)
, H ∈ {0, 1}([n]

3 ),Y ⊆ H−1(1),N ⊆ H−1(0)
}
. (17)

We turn to Part 4.15a) and let X = (E∗, C,Y,N ) ∈ Dh. As before, let Y = Y ∪
⋃
C∈C C and let

H± ∈ {0, 1}([n]
3 ) be given by H−1

− (1) = Y, H−1
+ (1) = Y ∪ {E∗}.

Lemma 4.23. For all π ∈ [0, 1] and X ∈ Dh with E∗ ̸∈ Y we have πh(X) ≤ π.

Proof. We may restrict to π ∈ (0, 1). Consider H ′ ∼ Bin(1, 1)⊗Y ⊗ Bin(1, π)⊗([n]
3 )\Y and notice that

πh(Xh) = P(H ′(E∗) = 1|C◦
h(H ′) ⊆ C,N ⊆ H ′−1(0)) ≤ P(H ′(E∗) = 1) by the Harris inequality.

Before we establish the lower bound, we discuss when the conditional probability vanishes.

Lemma 4.24. Let π ∈ [0, 1] and X ∈ Dh. We have πh(X) = 0 if and only if π = 0, E∗ ∈ N or
C ⊆ Y ∪ {E∗} for some C ∈ C◦ \ C.
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Proof. Since πh(X) is well-defined, the definition of conditional probability gives πh(X) = 0 if and
only if P(Hb(E∗) = 1,C◦

h ⊆ C,Y ⊆ H−1
b (1),N ⊆ H−1

b (0)) = 0. Hence, we have πh(X) = 0 if π = 0,
E∗ ∈ N or C ⊆ Y ∪ {E∗} for some C ∈ C◦ \ C. Conversely, for π > 0, E∗ ̸∈ N and C ̸⊆ Y ∪ {E∗} for
all C ∈ C◦ \ C, we have C◦

h(H+) ⊆ C as well as N ⊆ H−1
+ (0), thus πh(X) > 0.

This establishes Part 4.15c). Now, we turn to the remaining Part 4.15b).

Lemma 4.25. For π ∈ [0, 1] and X ∈ Dh such that πh(X) > 0 we have

πh(X) ≥ (1 − 12(∆c(X)nπ + n3π2))π.

Proof. Using Lemma 4.24 we may assume that π > 0, E∗ ̸∈ N and C◦
h(H+) = C. We may further

assume that πh(X) < 1 and in particular that π < 1, E∗ ̸∈ Y. Using the two shorthands E− =
{Y ⊆ H−1

b (1),N ⊆ H−1
b (0)} and E+ = E− ∩ {Hb(E∗) = 1} we have πh(X) = P(C◦

h⊆C|E+)
P(C◦

h⊆C|E−)π. Let
C◦

1 = {C ∈ C◦ \ C : E∗ ∈ C}, C◦
0 = (C◦ \ C) \ C◦

1 and C◦
s = C◦

h ∩ C◦
s for s ∈ {0, 1}. Then we

have P(C◦
h ⊆ C|E±) = P(C◦

1 = ∅|E ′
±)P(C◦

0 = ∅|E±), where E ′
± = {C◦

0 = ∅} ∩ E±. But since P(C◦
0 =

∅|E±) = P(C◦
0 = ∅|E−), the probabilities in the numerator and denominator cancel out, yielding

πh(X) = P(C◦
1=∅|E ′

+)
P(C◦

1=∅|E ′
−)π ≥ (1 −

∑
C∈C◦

1
P(C ∈ C◦

h|E ′
+))π. By assumption we have C ̸⊆ Y ∪ {E∗} for

all C ∈ C◦
1 and hence C◦

1 = X0 ∪ X1 with Xs = {C ∈ C◦
1 : |C ∩ Y| = s}. In order to obtain

C = {E∗, Y, E} ∈ X1 with Y ∈ Y, we first choose E∗ ∩ Y = {u}, then one of the remaining neighbors
of u in H+ to obtain Y , one of the remaining vertices E∗ ∩ E = {v} in E∗ \ {u} and Y ∩ E = {w}
in Y \ {u}, and finally any vertex to complete E, yielding |X1| ≤ 3(∆h(H+) − 1)4n ≤ 12∆c(X)n.
Looking at the auxiliary hypergraph with Y ∪ {E∗} present and applying the Harris inequality yields
P(C ∈ C◦

h|E ′
+) ≤ π. For C ∈ X0 we choose three vertices freely, yielding |X0| ≤ 12n3, and on the other

hand P(C ∈ C◦
h|E ′

+) ≤ π2 since none of the two remaining hyperedges is known to be present.

Now, Part 4.15b) is immediate.

4.3.5 Proof of Corollary 4.16. Though cumbersome, it is straightforward that the joint distribu-
tion (G̃b, H̃b) defined in Figure 3 is well-defined and indeed a coupling of Gb and Hb, for any choice
of p, π ∈ [0, 1]. In the following, we thoroughly discuss the ideas underlying the coupling and thus
establish stronger results, which immediately imply Corollary 4.16.

For p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−20/31), further π↑ = p3
↑, let c be from Proposition 4.14a), and

let n◦ ∈ Z≥12 be the minimum n such that p↑(n) ∈ (0, 1) and cn7p↑(n)11 < 1 for all n ≥ n◦. Aiming
towards Observation 4.8, Observation 4.11 and Observation 4.12, we consider the following typical
hypergraphs. Let D =

(n−1
2
)
p3

↑, ∆ = D + max
(
D, 4 ln(n)

)
and

T =
{
H ∈ {0, 1}([n]

3 ) : Ch(H) = C◦
h(H), vdj(Dh(H) ∪ C◦

h(H)) = 1, Ci(H) = ∅, ∆h(H) < ∆
}
. (18)

Thus, we restrict the maximal degree, we enforce that all 3-cycles are clean and no clean 3-cycles
can be induced, we further require that the clean 3-cycles are vertex disjoint, which we upgrade to
vdj(Dh(H) ∪ C◦

h(H)) = 1 for convenience. The upgrade only ensures that H(Eci(C)) = 0 for all
C ∈ C◦

h(H), i.e. that the induced hyperedges Eci(C) from Section 4.2.5 are not present in H.
Let E1 = {C̃◦

t = C̃◦
h, b̃h = 1} be the event that the first step is successful, and recall the event E

from Equation (15) that both steps are successful. Further, let Eh(H) = {C̃◦
t = C◦

h(H), H̃b = H} for
H ∈ T and Et = {C̃◦

t = C̃◦
h, H̃b ∈ T } = ⋃

H∈T Eh(H).
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Let M =
(n

3
)

be the number of steps. For a typical hypergraph H ∈ T and using C = C◦
h(H),

let E∗
h,H = E∗

C be the coupling order. For i ∈ [M ] ∪ {0} let Yh,H,i = {E∗
h,j ∈ H−1(1) : j ∈ [i]}

and Nh,H,i = {E∗
h,j ∈ H−1(0) : j ∈ [i]}. Let Ic,H = [3|C|] be the first steps dedicated to C, and

Ii,H = [4|C|] \ [3|C|] the steps dedicated to the induced hyperedges. We denote the trivial steps by
It,H = {i ∈ [M ] \ [4|C|] : ∃C ∈ C◦ \ C C ⊆ Yh,i−1 ∪ {E∗

h,i}}. Further, the inclusion steps are given by
I1,H = {i ∈ [M ] \ [4|C|] : E∗

h,i ∈ H−1(1)}. The remaining steps are given by I∗,H = {i ∈ [M ] \ [4|C|] :
E∗

h,i ∈ H−1(0)} \ It. For i ∈ [M ] ∪ {0} let

Xh,H,i = {(Yh,i,Yh,i, {E∗
h,j : j ∈ I ∩ [i]},Nh,i) : It ⊆ I ⊆ It ∪ I∗}.

On E1 let E∗ = E∗
C̃◦

h
, let πi = πt(E∗

i , C̃
◦
t ,Yt,i−1,N t,i−1), and let π′

i = πh(E∗
i , C̃

◦
h,Yh,i−1,N h,i−1) for

i ∈ [M ] ∪ {0} be the conditional inclusion probabilities. Further, for i ∈ [M ] let bi be the variable in
Step 2.2.3, b′

i the variable in Step 2.2.3.2, and mi the variable in Step 2.2.4.

Lemma 4.26. Let p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−20/31), n ≥ n◦, H ∈ T and p ∈ [0, p↑].
a) We have π = (1 − cn7p11

↑ )p3. Further, we have π = 0 if and only if p = 0.
b) We have P(E1) ≥ 1 − min(E[|C◦

t |],
√

1
2E[|C◦

t |])3cn7p11
↑ + o(1) and thus E1 holds whp.

c) For p = 0 we have G̃b ≡ 0, H̃b ≡ 0 and xM = (∅, ∅,
([n]

3
)
,
([n]

3
)
) almost surely.

d) For F = Yh,M ∩ N t,M we have Yh,M = Yt,M ∪ F , N t,M ⊆ N h,M ∪ F and |F | ≤ 1.
e) We have E = E1 ∩ {F = ∅} = {Yt,M = Yh,M = H̃−1

b (1),N t,N ⊆ N h,N = H̃−1
b (0)}.

f) On |F | = 1 the event E1 holds, and using F = {E∗
i } we have πi < π′

i ≤ π, mi = 1.
g) We have Et ⊆ E. Further, we have Et whp.
h) The sets Ic, Ii, It, I1 and I∗ are a partition of [M ].
i) For p > 0, i ∈ [M ] ∪ {0} we have {x : P(xi = x|Eh(H)) > 0} ⊆ Xh,i.
j) For p > 0, i ∈ Ic and on Eh(H) we have πi = π′

i = 1, bi = 1 and b′
i = 1.

k) For p > 0, i ∈ Ii and on Eh(H) we have πi = 1 > π′
i > 0 and bi = 0.

l) For p > 0, i ∈ It and on Eh(H) we have πi = π′
i = 0.

m)For p > 0, i ∈ I1 and on Eh(H) we have πi ≥ π ≥ π′
i > 0, bi = 1 and b′

i = 1.
n) For p > 0, i ∈ I∗ and on Eh(H) one of the following holds.

•We have πi ≥ π ≥ π′
i > 0 and bi = 0.

•We have πi ≥ π ≥ π′
i > 0 and bi = 1, b′

i = 0.
•We have πi = 0 < π′

i ≤ π and mi = 0.

Proof. Part 4.26a) follows from n ≥ n◦. Proposition 4.13 with 1 − (1 − q)3 ≤ 3q for q ∈ [0, 1] and
n ≥ n◦ yields P(E1) ≥ 1 − min(E[|C◦

t |],
√

1
2E[|C◦

t |])3cn7p11
↑ + o(1). For p ≤ pc = ( 1

240(n
6)

)1/9 we have

P(E1) ≥ 1−3
2n

7p11
↑ +o(1) = 1+o(1) and for p ∈ [pc, p↑] we have P(E1) ≥ 1−O(n10p

31/2
↑ )+o(1) = 1+o(1).

Part 4.26c) is immediate. For Part 4.26d), notice that if the first step fails, we have xM ≡ ∅, and notice
that F ̸= ∅ if and only if we entered Step 2.2.4.2 in Figure 3, and that then Step 2.2.1 ensures that
|F | = 1. The remainder is now immediate. For Part 4.26e), we clearly have E ⊆ E1∩{F = ∅} = E ′ ⊆ E
and thus equality, where

E ′ = {Yt,M = Yh,M = H̃−1
b (1),N t,N ⊆ N h,N = H̃−1

b (0)}.

For Part 4.26f), on |F | = 1 the event E1 holds since otherwise xM ≡ ∅, so E∗ is well-defined. Part
4.26d) suggests that there exists a unique i ∈ [M ] with F = {E∗

i }, and clearly we have πi < π′
i,

mi = 1. This gives p > 0, π > 0 by Part 4.26a), further πi < 1 and hence Proposition 4.15 shows
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that π′
i ≤ π. For Part 4.26g) let p > 0, yielding π > 0. Part 4.26b), Observation 4.8, Observation

4.11, and Observation 4.12 yield that Et holds whp. For Et ⊆ E , we use Part 4.26f) and show that
B ∩ Et = ∅, where B = E1 ∩ {F ̸= ∅}. On B we know that E1 holds, πi < π′

i ≤ π and mi = 1. By
the choice of π, Proposition 4.14 suggests that πi = 0 and Ch(H) \ C◦

h(H) ̸= ∅ or C◦
i (H) ̸= ∅ unless

X = (E∗
i , C̃

◦
t ,Yt,i−1,N t,i−1) ̸∈ D◦

t , where H is given by H−1(1) = Yt,i−1 ∪ {E∗
i }. However, in this

step we necessarily have Yt,i−1 = Yh,i−1, C̃◦
t = C̃◦

h and N t,i−1 ⊆ N h,i−1, so H is also the hypergraph
for (E∗

i , C̃
◦
h,Yh,i−1,N h,i−1). Since H̃b is chosen conditional to C̃◦

h and Yh,i−1 ⊆ H̃−1
b (1), this gives

B ⊆ {H̃b ̸∈ T }, and hence Et ⊆ E .
Now, let C = C◦

h(H) and E∗ = E∗
h,H . Part 4.26h) follows with H−1(1) = E∗(Ic ∪ I1) and

H−1(0) = E∗(Ii ∪ It ∪ I0 ∪ I∗). For the remainder, let p ∈ (0, p↑], and notice that P(Eh(H)) > 0. Let
x = (Yt,Yh,Nt,Nh) be such that P(xM = x|Eh(H)) > 0. By Part 4.26g) we have Eh(H) ⊆ Et ⊆ E , so
Yt = Yh = H−1(1) and Nt ⊆ Nh = H−1(0) = E∗(Ii ∪ It ∪ I0 ∪ I∗) by Part 4.26e). This shows that
Yt,i = Yh,i = Yh,i and N t,i ⊆ N h,i = Nh,i on Eh(H).

Part 4.26j) is immediate. For Part 4.26k) we have πi = 1 ≥ π′
i, and b = 0 since we have

H(E∗
i ) = 0, but on b = 1 we would habe b′ = 1, which also yields π′

i < 1. Part 4.26l) is trivial, since
on Eh(H) and for i ∈ It there exist E,E′ ∈ Yh,i−1 = Yh,i−1 = Yt,i−1 with {E,E′, E∗

i } ∈ C◦ \ C, and
thus πi = π′

i = 0 by Proposition 4.14 and Proposition 4.15. For Part 4.26m), using that on Eh(H) we
have Yt,i = Yh,i = Yh,i with E∗

i ∈ Yh,i, so using H ∈ T we have πi > 0 and further πi ≥ π ≥ π′
i > 0.

Since we have H(E∗
i ) = 1, this gives bi = b′

i = 1. For Part 4.26n), we start with πi > 0, which yields
πi ≥ π ≥ π′

i > 0 as before. Further, we have bi = 0 or bi = 1 and b′
i = 0 since H(E∗

i ) = 0. For πi = 0
we have π′

i > 0 since i ̸∈ It and mi = 0 since H(E∗
i ) = 0.

Now, Part 4.26k) implies that Nt ∩E∗(Ii) = ∅, Part 4.26l) yields E∗(It) ⊆ Nt, and hence we have
x ∈ Xh,M . This completes the proof of the remaining Part 4.26i).

Corollary 4.16 follows from Lemma 4.26g). Moreover, Lemma 4.26 provides information about
the coupling that can be extracted from the observed hypergraph H ∈ T (if we also know that the
first step was successful). Finally, notice that in Part 4.26n) the case distinction for πi = 0 depends
on the specific choice of N t,i−1, in particular if we chose to ignore or to exclude hyperedges for the
case πj > 0 in previous steps.

4.3.6 Additional Triangles. Under the assumptions of Corollary 4.16 and working towards Section
4.4, we discuss the additional triangles Ht,n,p,π = H̃−1

t (1) \ H̃−1
b (1). Let Hc,n,p,π = ⋃

E∈C̃◦
h
E be the

hyperedges in the clean 3-cycles. Now, we show that vertex sets that are typically not too large and
not incident to clean 3-cycles (in H̃b) are typically also not incident to additional triangles.

Lemma 4.27. Let p↑ = Ω(ln(n)1/3/n2/3), p↑ = o(n−20/31) and c from Proposition 4.14a). For
δ(n), V (n) : Z>0 → R≥0 with δ(n) = o(1) and V (n) = o(n−9p−14

↑ ) there exists ε(n) = o(1) such that
the following holds. For p ∈ [0, p↑], π = max(0, (1 − cn7p11

↑ )p) and V(H) ⊆ [n], H ∈ {0, 1}([n]
3 ), with

P(|V(H̃b)| ≤ V,V(H̃b) ∩
⋃
E∈Hc E = ∅) ≥ 1 − δ we have P(V(H̃b) ∩

⋃
E∈Ht E ̸= ∅) ≤ ε.

Proof. Fix p↑, π↑ = p3
↑, δ and V . As in Section 4.3.5, let n◦ ∈ Z≥12 be sufficiently large such that

p↑ ∈ (0, 1), cn7p11
↑ < 1 for n ≥ n◦. For n < n◦ let ε(n) = 1, and thus let n ≥ n◦ in the remainder, so

in particular π = (1 − cn7p11
↑ )p. For p = 0 we have π = 0, Ht = ∅ and thus the assertion is trivial, so

let p > 0 and thus π > 0 in the remainder.
Let T be the set from Equation (18), and Et, Eh(H), ε1 = o(1) from Lemma 4.26 such that



140 4.3. Binomial Graph Coupling

P(Et) ≥ 1 − ε1. Then we have P(Ev) ≥ 1 − δ − ε1, where Ev = {C̃◦
t = C̃◦

h, H̃b ∈ Tv} and

Tv,V,V =

H ∈ T : |V(H)| ≤ V,V(H) ∩
⋃

E∈Hc,H

E = ∅

 , Hc,H =
⋃

C∈C◦
h(H)

C.

Let V = V(H̃b), and N = |{(v,E) ∈ V × Ht : v ∈ E}| be the number of pairs of target vertices v
and additional triangles E that contain v ∈ E. Then we have

P

V ∩
⋃

E∈Ht

E ̸= ∅

 = P(N > 0) ≤ E
[
1EvE[N |Eh(H̃b)]

]
+ δ + ε1.

Let H ∈ Tv and C = C◦
h(H). With P = {(v, i) : v ∈ V(H) ∩ E∗

h,i, i ∈ Ii ∪ I∗}, Lemma 4.26 yields

E[N |Eh(H)] =
∑

(v,i)∈P
P(H̃t(E∗

h,i) = 1|Eh(H)).

Notice that P = {(v, i) : v ∈ V(H) ∩ E∗
h,i, i ∈ I∗} by the definition of Tv. Thus, let i ∈ I∗ with

v ∈ E∗
h,i. Lemma 4.26 yields P(H̃t(E∗

h,i) = 1|Eh(H)) = E[P(H̃t(E∗
h,i) = 1|xM )|Eh(H)] with M =

(n
3
)
,

and thereby E[N |Eh(H)] = ∑
v,i E[1{xM ∈ X }P(H̃t(E∗

h,i) = 1|xM )|Eh(H)], where X = {x : P(xM =
x|Eh(H)) > 0,P(H̃t(E∗

h,i) = 1|xM = x) > 0}. Next, let

π∗
H,i = P

(
H̃t(E∗

h,i) = 1
∣∣∣H−1(1) ⊆ H̃−1

t (1)
)

≥ p3. (19)

Then, for x = (Yt,Yh,Nt,Nh) ∈ X the Harris inequality for G̃b with the edges for Yt given yields

P
(
H̃t(E∗

h,i) = 1|xM = x
)

= P
(
H̃t(E∗

h,i) = 1|C◦
h(H̃t) ⊆ C,Yt ⊆ H̃−1

t (1),Nt ⊆ H̃−1
t (0)

)
≤ π∗,

using Lemma 4.26. Using that P(H̃t(E∗
h,i) = 1|xM = x) > 0 for x ∈ X , Lemma 4.26 further gives

E[N |Eh(H)] ≤
∑
v,i P(xM ∈ X |Eh(H))π∗ ≤

∑
v,i P(πi > π′

i, bi = 0|Eh(H))π∗. We also have

P(πi > π′
i, bi = 0|Eh(H)) = E

[
1{πi > π′

i}P(bi = 0|xi−1, Eh(H))
∣∣Eh(H)

]
= E

1{πi > π′
i}

1 − π′
i
πi

1 − π′
i

∣∣∣∣∣∣Eh(H)


since bi does not depend on the future decisions. Proposition 4.15 with c′ therein and Proposition
4.14 yield the bounds for (1 − c′n3π2

↑)π ≤ π′
i ≤ π since H ∈ Tv and πi > π′

i. For πi we use the
Harris inequality for G̃b given that the edges induced by Yt,i−1 = Yh,H,i−1 (from Lemma 4.26) are
present to eliminate the down-sets, and a second time to introduce the up-set that the edges given by
H−1(1) \ Yh,H,i−1 are present, yielding πi ≤ π∗ from Equation (19). Combining these bounds yields
P(πi > π′

i, bi = 0|Eh(H)) ≤ π∗−(1−c′n3π↑)π
π∗(1−π) and E[N |Eh(H)] ≤ 1

1−p3
↑
(S + S′), where

S =
∑

(v,i)∈P

(
π∗
i − p3

)
, S′ =

∑
(v,i)∈P

(
p3 − (1 − c′n3π2

↑)π
)
.
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Notice that |P| ≤ V
(n−1

2
)
, so π = (1 − cn7p11

↑ )p3 yields S′ ≤ (c′n3π2
↑ + cn7p11

↑ )p3|P| = O(n9p14
↑ V ).

For S, we notice that π∗
i = pr for some r ∈ Z ∩ [0, 3]. For r = 3 the contributions vanish, and r = 0

implies that all edges of E∗
h,i are already present in H, which is not possible since H ∈ Tv. This

gives S = ∑2
r=1Nr(pr − p3), where Nr = |{(v, i) ∈ P : π∗

i = pr}| ≤
∑
v∈V(H) |H(v)| is the number

of valid pairs and Hr(v) = {E ∈
([n]

3
)

: v ∈ E, |
(E

2
)

\ G−1(1)| = r}, G = Gt,H , are the hyperedges
adjacent to v with r edges missing. Notice that ∆ = Θ(n2p3

↑) in the definition of Tv and thus the
maximum degree of G is ∆g(G) = O(n2p3

↑), yielding |Hr(v)| = O(p9−3r
↑ n5−r), thereby S = O(n4p7

↑V )
and E[N |Eh(H)] = O(n9p14

↑ V ). Hence, we have E[N |Eh(H)] ≤ ε2 for some ε2 = o(1) and thus
P(N > 0) ≤ ε for ε = δ + ε1 + ε2 = o(1).

Thus, all vertex sets that are not too large do not meet additional triangles. Notice that n−9p−14
↑ =

ω(n1/31) for p↑ = o(n−20/31), so in any case V can be polynomial in n.

4.3.7 Proof of Theorem 4.5. The only difference between Theorem 4.5 and Corollary 4.16 is that
the equality in Corollary 4.16 is replaced by the inequality π ≤ π+ with π+ = max(0, (1 − cn7p11

↑ )p3).
Thus, combining the coupling of Gb and Hb,π+ from Corollary 4.16 with the coupling of Hb,π+ and
Hb,π from Observation 4.7 completes the proof.

4.4 The Cover Coupling

We turn to the proof of Proposition 4.6. As opposed to the previous sections, we use the Landau
notation in this section in the traditional sense, since we will only consider fixed choices of p and π.
Recall g(n), π± from Section 4.1.4. Let π↑ = 2 ln(n)/

(n−1
2
)
, p↑ = π

1/3
↑ and c from Theorem 4.5. Let

n◦ ∈ Z≥12 be such that 0 < π− < π+ < π↑ < p↑ < 1, 1 − cn7p11
↑ > 0 and p+ = ( π+

1−cn7p11
↑

)1/3 ∈ (0, p↑)

for all n ≥ n◦. Further, let p− = π
1/3
− ∈ (0, p+), H± = Hb,π± and G± = Gb,p± .

Section 4.4.1 is devoted to the discussion of the coupling underlying Proposition 4.6. The remainder
of the proof is discussed in Section 4.4.2.

4.4.1 The Union Process. We establish Proposition 4.6 using the explicit coupling described
in Figure 4. For the remainder of this section we let the joint distribution (G+,H+, ep,Ep) be
given by this coupling, for the sake of brevity, i.e. we do neither distinguish (ẽp, Ẽp) and (ep,Ep),
nor (G̃+, H̃+) and (G+,H+). Notice that all notions in Figure 3 and Figure 4 are determined by
J ′ = (x(n

3),G+,H+, e∪), where x(n
3) are the final yes and no decisions in the coupling (G+,H+)

in Figure 3. In particular, J ′ determines ep, Ep, Gp, Htp, Hp, sc, sf , Sc and Sf . Also, if we
have vdj(C◦

+) = 1 for the clean 3-cycles C◦
+ = C◦

h(H+), then these also determine the coupling order
E∗ = E∗

C◦
+

used when the first step in Figure 3 is successful. Let s+ = ∥G+∥1, S+ = ∥H+∥1 be the
ends of the critical windows, and notice that G+ = Gp,s+ and H+ = Hp,S+ , i.e. this further recovers
the corresponding joint distribution in Observation 4.7. Let J = (J ′,S−) with S− ∈ Z ∩ [0,S+]
depending on J ′ only through S+, given by (S−|S+ = S+) ∼ Bin(S+, π−/π+). Thus, this completely
defines the critical window in the hypergraph process. Let H− = Hp,S− .

With the joint distribution J in place, we discuss the coupling in Figure 4 in detail and introduce
further derived notions. Let Ht+ = Ht,G+ be the triangle hypergraph for G+, let Gt+ = Gt,H+ be the
triangle graph for H+ from Section 4.2.5, and let D± = Dh(H±) be the diamonds from Observation
4.12. Let Hp = {E : {E,E′} ∈ D+} be the partner hyperedges and Hs = H−1

+ (1) \ Hp the single
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1. Use the coupling (G̃+, H̃+) of G+ and H+ from Theorem 4.5.
(a) The first step is successful if the coupling in Theorem 4.5 is successful and vdj(Dh(H̃+)) = 1.
(b) Otherwise, the first step failed.

2. Next, the union edge set G∪ = Gg ∪ Gh and the hyperedges Ee : Gh → H̃−1
+ (1) are determined

conditional to E = {G̃+ = G+, H̃+ = H+}, and given as follows. The union edge process (e∪|E) ∼
u(G∪!) is uniform given E .
(a) If the first step failed, let Gg = G−1

+ (1), Gh = H−1
+ (1) × [3] and Ee(E, i) = E.

(b) If the first step was successful, let G = Gt,H+ . Consider the partition G−1
+ (1) = G∗ ∪ G1 ∪ G2

into G∗ = G−1
+ (1) \G−1(1), G2 = {E1 ∩E2 : E ∈ H−1

+ (1)2, |E1 ∩E2| = 2} and G1 = G−1(1) \ G2.
Let G′

2 be a copy of G2. For e ∈ G1 there exists a unique hyperedge Ee(e) ∈ H−1
+ (1) with

e ∈
(Ee(e)

2
)
, while for e ∈ G2 there exist two such hyperedges E,E′, without loss of generality

E = E∗
i and E′ = E∗

j with i < j. Let Ee(e) = E for e ∈ G2 and Ee(e) = E′ for e ∈ G′
2. Finally,

let Gg = G−1
+ (1) = G∗ ∪̇ G1 ∪̇ G2 and Gh = G1 ∪̇ G2 ∪̇ G′

2.
3. Let E = {Gg = Gg,Gh = Gh,Ee = Ee, e∪ = e∪}. The processes ẽp and Ẽp are conditionally

independent given E and obtained as follows. Let s+ = |Gg| and S+ = |Ee(Gh)|.
(a) Let e ∈ Gg! be the subsequence of e∪ obtained by the restriction to Gg. Then the law of ẽp|E

is the same as the law of ep|ep,[s+] = e.
(b) Let E ∈ Ee(Gh)! be the enumeration induced by s∪h(E) = max{e−1

∪ (e) : e ∈ E−1
e (E)}. Then

the law of Ẽp|E is the same as the law of Ep|Ep,[S+] = E.

Figure 4: The three main steps in the coupling (ẽp, Ẽp) of ep and Ep are the coupling of the binomial
hypergraphs at the end of the critical window, followed by the coupling of the orders of the hyperedges
and the edges, and finalized by the completions of the processes.
For the first step, recall that the coupling in Theorem 4.5 is successful if the event E from Equation
(15) holds. Further, recall the diamonds Dh(H) from Observation 4.12. The first step is successful if
the coupling of the binomial graph and hypergraph is successful, and the diamonds in the hypergraph
are vertex disjoint.
For the second step, recall the coupling order E∗ used in the coupling in Figure 3. If the first step
failed, we take the disjoint union of the edges in G+ and three edges per hypergedge in H+, and
impose these with the uniform order. If the first step was successful, we take the edges of G+ and
clone the overlap edges in the diamonds of H+. This gives the partition into edges G∗ that only appear
in G+, the edges G1 in the triangle graph G that belong to a unique hyperedge, the edges G2 of G+
that are the shared edges of diamonds in H+ and belong to the hyperedge with the lower index in the
coupling order by definition, and the clones G′

2 that belong to the hyperedge with the larger index.
Again, we choose the order uniformly.
In the third step, we extract the subsequence e relevant for the graph process, and complete the
process by adding the remaining edges uniformly at random. For the hyperedge process, we extract
the subsequence on Gh and notice that each hyperedge is represented by its own three edges, with the
uniform order imposed on the entire edge set. Intuitively, we consider the uniform order on the edges
of S+ vertex disjoint triangles. The index s∪h(E) is the step in which the triangle corresponding to
E is closed. Thus, the induced enumeration on Ee(Gh) is uniform. Finally, we complete the process
by adding the remaining hyperedges uniformly at random.
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hyperedges. Assuming the first step in Figure 4 is successful, we can further distinguish the good
partners Hg = {E∗

i : i < j, {E∗
i ,E

∗
j } ∈ D+} and the bad partners Hb = Hp \ Hg.

For now, we stick to the case that the first step is successful. Let G2 = {E1 ∩E2 : {E1, E2} ∈ D+}
be the shared edges, and let G1 = G−1

t+ (1) \ G2 be the exclusive edges. By the definition of Gt+,
for each e ∈ G−1

t+ (1) there exists a hyperedge E ∈ H−1
+ (1) that e belongs to, i.e. e ∈

(E
2
)
. Since

the first step was successful, an edge cannot be shared by more than two hyperedges, otherwise we
would get at least three overlapping diamonds by choosing two out of the at least three hyperedges.
This gives the partition G−1

t+ (1) = G1 ∪ G2 into edges e ∈ G1 that belong to exactly one hyperedge
Ee(e) ∈ H−1

+ (1), and edges e ∈ G2 that belong to two hyperedges, one good partner Ee(e) ∈ Hg and
one bad partner E ∈ Hb. To account for this missing edge due to sharing, we introduce clones G′

2 of
G2, and choose Ee(e′) = E ∈ Hb for the clone e′ ∈ G′

2 of e ∈ G2. Now, each hyperedge E ∈ H−1
+ (1)

is assigned three edges, i.e. |E−1
e (E)| = 3. To be specific, since the single hyperedges E ∈ Hs do not

share edges, all their edges are exclusive, i.e. E−1
e (E) ⊆ G1. The good partners E ∈ Hg still have two

exclusive edges, i.e. |E−1
e (E) ∩ G1| = 2, and further one shared edge in |E−1

e (E) ∩ G2| = 1. The bad
partners E ∈ Hb also have two exclusive edges, i.e. |E−1

e (E) ∩ G1| = 2, and have to make do with the
clone of the shared edge in |E−1

e (E) ∩ G′
2| = 1.

Since the first step is successful, we have Gg = G−1
+ (1) = G1 ∪G2 ∪G∗ with G∗ = G−1

+ (1)\G−1
t+ (1).

Hence, in this case we have a non-trivial intersection of Gg and Gh = G1 ∪G2 ∪G′
2 given by Gg ∩Gh =

G1 ∪G2. On the other hand, if the coupling failed, we have Gg ∩Gh = ∅ for the edge sets Gg = G−1
+ (1)

and Gh = H−1
+ (1) × [3]. However, in any case each edge in G+ is, trivially, represented by exactly

one edge in Gg, and each hyperedge in H+ is represented by its own exclusive three edges in Gh,
where Ee : Gh → H−1

+ (1) models the ‘belongs to’ relation. The fact that e∪ ∈ G∪! is uniform given
G∪, suggests that so are the restrictions e∪,Gg and e∪,Gh . Thus, the subsequence given by the former
exactly corresponds to ep,s+ as discussed in Observation 4.7. For the latter, we take a viewpoint
similar to the triangle hypergraph process Htp. That is, if we consider m triangles represented by
edges [m] × [3] that we order uniformly, i.e. x ∼ u([m] × [3]), and we extract the steps when triangles
were closed, i.e. i(t) = max{x−1(t, e) : e ∈ [3]} ∈ [3m] for t ∈ [m], then the enumeration t ∈ [m]!
induced by i is uniform. This explains why the joint distribution (ep,Ep) defined in Figure 4 is indeed
a coupling of ep and Ep.

Now, we introduce the graph and the hypergraph process to the shared timeline. Let Gg = (Gg,s)s
with Gg,s ∈ {0, 1}([n]

2 ) for s ∈ Z ∩ [0, |G∪|] be given by G−1
g,s(1) = e∪([s]) ∩ Gg. Clearly, the graph

process Gg is just a stretched version of the graph process Gp up to the end s+ of the critical window.
Formally, the steps e−1

∪ (Gg) ∪ {0} in the union process are in one to one correspondence with the
steps Z ∩ [0, s̃+] in the graph process, i.e. apart from the initially empty graph, these are exactly
the steps where an edge is added to the graph, and the edges as well as their order are the same in
both processes. Of course, this also gives rise to the triangle hypergraph Hg = (Hg,s)s in the union
process, with Hg,s = Ht,Gg,s . For the hypergraph process let Gh = (Gh,s)s with Gh,s ∈ {0, 1}([n]

2 )
for s ∈ Z ∩ [0, |G∪|] be given by G−1

h,s(1) = e∪([s]) ∩ Gh, i.e. we consider the graph composed of
the edges associated with the hyperedges. Now, the hypergraph process is Hh = (Hh,s)s given by
H−1

h,s(1) = {E ∈
([n]

3
)

: E−1
e (E) ⊆ Gh,s}, i.e. all edges belonging to E under Gh are present in Gh,s.

Now, there is a one to one correspondence between the steps {0} ∪ {s ∈ [|G∪|] : Hh,s ̸= Hh,s−1} in
which a hyperedge is added and the steps Z ∩ [0,S+] in the hypergraph process, i.e. apart from the
initially empty hypergraph, these are exactly the steps where a hyperedge is added to the hypergraph,
and the hyperedges as well as their order are the same in both processes.
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4.4.2 Overview. For the proof of Proposition 4.6, we first ensure that the coupling in Figure 4 does
not fail whp. We further state a key property of the coupling if the first step is successful. For this
purpose let sg(E) = min{s ∈ [|G∪|] : Hg,s(E) = 1} be the step where E ∈ H−1

t+ (1) is added, and let
sh(E) = min{s ∈ [|G∪|] : Hh,s(E) = 1} be the step where E ∈ H−1

+ (1) is added.

Lemma 4.28. Notice that the following holds.
a) The first step in Figure 4 is successful whp.
b) Given that the first step is successful, we have sg(E) = sh(E) for all E ∈ Hs ∪ Hg.
c) Given that the first step is successful, we have sg(E) ≤ max(sh(E), sh(E′)) for all E ∈ Hb, where

E′ ∈ Hg is such that {E,E′} ∈ D+.

This result suggests that we can assume that the first step is successful. It further ensures that
all hyperedges but the bad partners are added in the same step in both processes. Finally, it also
ensures that all diamonds that are present under the hypergraph process are also present under the
graph process. Next, we discuss isolated vertices in the critical window (Ep,S−,S+), which will yield
the whp bounds S− < Sc ≤ S+ in Theorem 2.6 as a byproduct. For this purpose let D± = DH± be
the vertex degrees from Observation 4.8. Further, let I± = {v ∈ [n] : D±(v) = 0} be the isolated
vertices and L± = {v ∈ [n] : D±(v) ≤ 6g(n)} the low-degree vertices.

Lemma 4.29. Notice that the following holds.
a) We have I− ̸= ∅ and I+ = ∅ whp, and thereby S− < Sc ≤ S+ whp.
b) We have E[|I−|] ≤ eg(n), |L+| < e7g(n) ln(ln(n)) = no(1) whp and I− ⊆ L+ whp.
c) We have L+ ∩

⋃
E∈Hp∪HE = ∅ whp, where H = ⋃

C∈C◦
+
C.

d) We have [n] \ I− ⊆
⋃
E∈HE whp, where H = H−1

− (1) \ {E : {E,E′} ∈ D−}.

Lemma 4.29 does not only show that our choice for the critical window is reasonable, it also
establishes typical properties of the binomial hypergraph regarding isolated (low-degree) vertices for
π− (π+). The next crucial observation is that also the additional triangles Ht = H−1

t+ (1) \H−1
+ (1)

do not interfere with the property of being isolated in the critical window.

Lemma 4.30. We have L+ ∩
⋃
E∈Ht E = ∅ whp.

Proof. The result follows from Lemma 4.29 and Lemma 4.27 for p+ and the vertex set L+.

Lemma 4.29 and Lemma 4.30 give sufficient control over the isolated vertices in the critical window.
Now, we translate Lemma 4.29 and Theorem 2.6 to the union process. For this purpose, let sh− =
min{s ∈ Z ∩ [0, |G∪|] : Hh,s = Hp,S−} be the start and sh+ = min{s ∈ Z ∩ [0, |G∪|] : Hh,s = Hp,S+}
the end of the critical window. Of course, we also introduce the hitting times

shc = inf{s ∈ Z ∩ [0, |G∪|] : Hh,s = Hp,Sc}, shf = inf{s ∈ Z ∩ [0, |G∪|] : Hh,s = Hp,Sf }

and notice that these are not necessarily finite since Sc,Sf > S+ is possible. For the graph, let

sgc = inf{s ∈ Z ∩ [0, |G∪|] : Hg,s = Htp,sc}, sgf = inf{s ∈ Z ∩ [0, |G∪|] : Hg,s = Htp,sf }.

As mentioned below Theorem 2.6, the location of sc is well-known. However, since the lower bound
is also almost immediate from our results, we let (J , s−) be such that s− depends on J only through
s+ and (s−|s+ = s+) ∼ Bin(s+, p−/p+). As for the hypergraph process, we also introduce sg− =
min{s ∈ Z ∩ [0, |G∪|] : Hg,s = Htp,s−} and sg+ = min{s ∈ Z ∩ [0, |G∪|] : Hg,s = Htp,s+}.
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Lemma 4.31. Notice that the following holds.
a) We have S− < Sc ≤ S+ whp, and Sc = Sf whp over n ∈ 3Z>0.
b) We have sh− < shc = sgc ≤ sh+ whp, and shc = shf whp over n ∈ 3Z>0.
c) We have sg− < shc = sgc ≤ sg+ whp, and shc = shf whp over n ∈ 3Z>0.
d) For H = Hs ∩H−1

h,shc
(1) we have H = Hs ∩H−1

g,sgc(1) and
⋃
E∈HE = [n] whp.

e) We have s− < sc ≤ s+ whp.
Proposition 4.6 is now immediate from Lemma 4.31, using Hp,Sc = Hh,shc on Sc ≤ S+ and

Htp,sc = Hg,sgc on sc ≤ s+. Lemma 4.28 is proved in Section 4.4.3, Lemma 4.29 is proved in Section
4.4.4, and Lemma 4.31 is proved in Section 4.4.5.

4.4.3 Proof of Lemma 4.28. Part 4.28a) is an immediate consequence of Theorem 4.5 and Obser-
vation 4.12. Part 4.28b) is immediate from the definition and the discussion in Section 4.4.1, since
these hyperedges are associated with the same underlying edges, thus they appear in the same step.
Part 4.28c) is also immediate from the definition and the discussion in Section 4.4.1, since the two
exclusive edges

(E
2
)
∩G1 belong to E under both Gg and Gh, and the third, shared edge

(E
2
)
∩G2 = {e}

belonging to E under Gg, belongs to the good partner E′ under Gh, so at the step max(sh(E), sh(E′))
where both partners are present, all of their edges are, thus all edges of E under Gg are present and
thereby Hg(E) = 1.

4.4.4 Proof of Lemma 4.29. Using Observation 4.8 we have E[|I±|] = n(1 − π±)(
n−1

2 ), which
gives 0 < E[|I±|] ≤ e∓g(n) and E[|I±|] = (1 + O(ln(n)2/n2))e∓g(n). The second factorial moment is
E[|I±|2] = n2(1 − π±)(

n−1
2 )+(n−2

2 ), and hence

ε± = Var(|I±|)
E[|I±|] − 1 = βn(1 − π±)(

n−2
2 ), β = 1 − (1 − π±)n−2 − 1

n
.

For β we have − 1
n ≤ β ≤ (n−2)π± = 2

n−1(ln(n)±g(n)) ≤ 4 ln(n)
n−1 using g(n) ≤ ln(n), and on the other

hand we have 0 ≤ n(1 − π±)(
n−2

2 ) ≤ n exp(−(ln(n) ± g(n))) ≤ eg(n). Combining these bounds gives
|ε±| ≤ 4 ln(n)

n−1 eg(n) = n−1+o(1) using g(n) = o(ln(n)). This shows that Var(|I±|) = (1 + o(1))E[|I±|].
Markov’s inequality gives P(I+ ̸= ∅) ≤ e−g(n) = o(1), and Chebyshev’s inequality gives P(I− = ∅) ≤
1+o(1)
E[|I−|] = (1 + o(1))e−g(n). This completes the proof of Part 4.29a) and the first part of Part 4.29b).

For the last part of Part 4.29b) let N = |I− \ L+| be the number of vertices that are isolated
in H− and not of low degree in H+. Using Observation 4.7, for a vertex known to be isolated
in H−, each adjacent hyperedge is present in H+ independently with probability π = π+−π−

1−π−
, so

with b ∼ Bin(
(n−1

2
)
, π) we have E[N ] = n(1 − π−)(

n−1
2 )P(b > 6g(n)) = E[|I−|]P(b > 6g(n)). With

E[|I−|] ≤ eg(n) and the Chernoff bound we obtain E[N ] ≤ exp(g(n) − (1 + O(π−))2g(n)) = o(1),
which shows that I− ⊆ L+ whp. Notice that E[|L+|] = nP(b ≤ 6g(n)) for b ∼ Bin(

(n−1
2
)
, π+), so the

Chernoff bound gives E[|L+|] ≤ exp(f(n)), where using π = 6g(n)/
(n−1

2
)

we have

f(n) = ln(n) −
(
n− 1

2

)
DKL(π∥π+) = (1 + o(1))6g(n) ln(ln(n)).

Markov’s inequality yields |L+| < e7g(n) ln(ln(n)) whp, and completes the proof of Part 4.29b).
For Part 4.29c), let N = |{(v,E,E′) : v ∈ L+ ∩ (E \ E′), {E,E′} ∈ D+}| be the number of

triplets where {E,E′} is a diamond and the outer corner v of E is of low degree. Analogously, let
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N ′ = |{(v,E,E′) : v ∈ L+ ∩ (E ∩E′), {E,E′} ∈ D+}| be the number of triplets where v is one of the
endpoints of the shared edge. The union bound and Markov’s inequality yield

P

L+ ∩
⋃

E∈Hp

E ̸= ∅

 ≤ E[N ] + E[N ′].

We have E[N ] =
(n

3
)(3

2
)(n−3

1
)
π2

+P(b ≤ 6g(n) − 1), where b ∼ Bin(
(n−1

2
)

− 1, π+). Since the leading
coefficient is only of order O(ln(n)2), proceeding analogous to the above yields E[N ] = n−1+o(1), and
further E[N ′] =

(n
3
)(3

2
)(n−3

1
)
π2

+
(2

1
)
P(b ≤ 6g(n) − 2) = n−1+o(1) for b ∼ Bin(

(n−1
2
)

− 2, π+). This shows
that L+ ∩

⋃
E∈Hp E = ∅ whp.

To complete Part 4.29c), let N = |{(v,E) ∈ L+ ×
([n]

3
)3 : {E1, E2, E3} ∈ C◦

+, v ∈ E1 \ (E2 ∪E3)}|
and N ′ = |{(v,E) ∈ L+ ×

([n]
3
)3 : {E1, E2, E3} ∈ C◦

+, E1 ∩E2 = {v}}| be the number of pairs of clean
3-cycles and corners, for outer and inner corners respectively. Then we have

P

L+ ∩
⋃
E∈H

E ̸= ∅

 ≤ E[N ] + E[N ′].

We have E[N ] =
(n

3
)(3

1
)(n−3

2
)(2

1
)2(n−5

1
)
π3

+P(b ≤ 6g(n) − 1) for b ∼ Bin(
(n−1

2
)

− 1, π+), yielding E[N ] =
n−1+o(1), and analogously E[N ′] = n−1+o(1).

For Part 4.29d), let N = |{(v,E,E′) : v ∈ E \ E′,D−(v) = 2, {E,E′} ∈ D−}| the number
of triplets of a diamond with an otherwise isolated outer corner, and N ′ = |{(v,E,E′) : v ∈ E ∩
E′,D−(v) = 1, {E,E′} ∈ D−}| the number of triplets of a diamond with an otherwise isolated inner
corner. The union bound and Markov’s inequality yield

P

([n] \ I−) \
⋃
E∈H

E ̸= ∅

 ≤ P (vdj(D−) = 0) + E[N ] + E[N ′]

Observation 4.12 yields P(vdj(D−) = 0) = o(1), we have E[N ] =
(n

3
)(3

2
)(n−3

1
)
π2

−(1 − π−)(
n−1

2 )−1 =
n−1+o(1) and we have E[N ′] =

(n
3
)(3

2
)(n−3

1
)
π2

−
(2

1
)
(1 − π−)(

n−1
2 )−2 = n−1+o(1).

4.4.5 Proof of Lemma 4.31. Part 4.31a) is Theorem 2.6, a combination of Lemma 4.29 and
Theorem 1.3 in [71]. For Part 4.31b), notice that we have {sh− < shc ≤ sh+} = {S− < Sc ≤ S+}
and {shf = shc ≤ sh+} = {Sf = Sc ≤ S+}, because Hp,[S+] is a subprocess of Hh. Lemma 4.28
yields that Hs ∩ H−1

g,s (1) = Hs ∩ H−1
h,s(1) for all s ∈ Z ∩ [0, |G∪|] on E2 = E ∩ {vdj(D+) = 1},

with E from Equation (15). Further, with Lemma 4.29 and the above it yields that whp E2 and
sh− < shc ≤ sh+ hold, and that for all v ∈ I− ⊆ L+ and s ∈ Z ∩ [sh−, sh+] we have N h(v, s) ⊆
Hs, where N h(v, s) = {E ∈ H−1

h,s(1) : v ∈ E}. This further gives N h(v, s) ⊆ N g(v, s) ∩ Hs,
where N g(v, s) = {E ∈ H−1

g,s (1) : v ∈ E}. We also obtain that whp for all v ∈ [n] \ I− we have
N h(v, s) ∩ Hs = N g(v, s) ∩ Hs ̸= ∅. This shows that sgc ≤ shc whp. Now, Lemma 4.30 yields
N h(v, s) = N g(v, s) ⊆ Hs for all v ∈ I−, s ∈ Z∩ [sh−, sh+] and thus sgc = shc whp. For Part 4.31d),
we have H = Hs ∩H−1

h,sgc
(1) and ⋃E∈HE = [n] by the above. For Part 4.31c), we have sgc ≤ sg+ on

sgc < ∞ and hence sgc = shc ≤ sg+ whp. For the lower bound, we use Theorem 4.5 to couple G−

with H ′
− = Hb,π′

−
, π′

− = (1 − cn7p11
↑ )p3

− > 0. Notice that π′
− = ln(n)−g′(n)

(n−1
2 ) with g′(n) = (1 + o(1))g(n)
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given by the above, so the results for H− also apply for H ′
−. Let I ′

− = {v ∈ [n] : DH ′
−

(v) = 0} be
the isolated vertices in H ′

−, and let H′
t = H−1

t− (1) \H ′−1
− (1) be the extra cliques in Ht− = Ht,G− .

Notice that by Lemma 4.29, Lemma 4.27 applies for I ′
− and H′

t and hence I ′
− ∩

⋃
E∈H′

t
E = ∅ whp.

This yields {v : DHt−(v) = 0} = I ′
− ̸= ∅ whp, so sc > s− whp. This completes the proof of Part

4.31c), and of Part 4.31e) analogously to the above.

4.5 Existence of a Perfect Matching

In this section we complete the proof of Theorem 4.2 based on the coupling from Proposition 4.6. As
in Section 4.4, we use the Landau notation in the traditional sense. As in Section 4.4, we continue to
define couplings of two (unrelated) random objects by defining a joint distribution for the pair.

4.5.1 Overview. Recall the notions from Section 4.4.1 and Section 4.4.2. With E from Equation
(15), let E2 = E ∩ {vdj(D+) = 1} be the event that the first step in Figure 4 was successful. Further,
let E3 = E2 ∩ {sgc = shc = shf ≤ sh+} be the whp event that the hitting times in the union process
coincide. On E3, let H◦ = H−1

h,shc
(1) \H−1

g,shc(1) be the excess hyperedges in Hh,shc and notice that
H◦ = H−1

p,Sc
(1) \H−1

tp,sc(1). Theorem 4.2 is immediate from the following result. Let Ẽp be a copy of
Ep, together with all derived notions, e.g. H̃p.

Proposition 4.32. There exists a coupling (J , Ẽp) such that H̃−1
p,S̃c

(1) ⊆ H−1
p,Sc

(1) \ H◦ whp.

The first obstacle in the proof of Proposition 4.32 is that H◦ heavily relies on the coupling in
Figure 4. But this can be easily remedied by considering the set

H =
{
E ∈ H−1

p,Sc
(1) : {E,E′} ∈ D+, E

′ ∈ H−1
p,Sc

(0)
}
.

Notice that H is determined by (Ep,S+), and thus does not involve our previous constructions.

Lemma 4.33. We have H◦ ⊆ H whp.

Thus, it is sufficient to establish a coupling (J , Ẽp) such that H̃−1
p,S̃c

(1) ⊆ H−1
p,Sc

(1) \ H whp by
Lemma 4.33, to obtain Proposition 4.32. But this only amounts to a coupling (Ep,S+, Ẽp), i.e. in the
remainder we can forget about Section 4.3 and Section 4.4 entirely, and only discuss a coupling of the
standard hyperedge process with itself. For this purpose, let (Êp, r) ∼ u(

([n]
3
)
!) ⊗ Bin(1, πr)(

n
3) and

Ĥ = {Êp(S) : S ∈ [Ŝc] ∩ r−1(1)}, using the derived notions for the copy Êp of Ep and πr = 18g(n)
n−1 .

Lemma 4.34. There exists a coupling (Ep,S+, Êp, r) such that H ⊆ Ĥ whp.

In the last step, we establish that the subprocess obtained from Êp by restricting to r−1(0) is
nothing but a standard hyperedge process, i.e. Ẽp,[|r−1(0)|], and that whp the hyperedge removal r
does not affect the hitting time.

Lemma 4.35. We have Ŝc = inf{S : ⋃E∈Êp([S]∩r−1(0))E = [n]} whp. Further, there exists a coupling
(Êp, r, Ẽp) with H̃−1

p,S̃c
(1) ⊆ Ĥ−1

p,Ŝc
(1) \ Ĥ.

At this point, Proposition 4.32 and Theorem 4.2 are almost immediate. We establish Lemma
4.33 in Section 4.5.2, Lemma 4.34 in Section 4.5.3, Lemma 4.35 in Section 4.5.4, Proposition 4.32 in
Section 4.5.5, Theorem 4.2 in Section 4.5.6, Corollary 4.3 in Section 4.5.7 and Corollary 4.4 in Section
4.5.8.
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4.5.2 Proof of Lemma 4.33. Lemma 4.28 and Lemma 4.29 show that E3 is a whp event. On E3
we have Hp,Sc = Hp,shc and H+ = Hp,S+ = Hh,sh+ , so Lemma 4.28 shows that

H◦ ⊆
{
E ∈ Hb ∩H−1

p,Sc
(1) : {E,E′} ∈ D+, E

′ ∈ H−1
p,Sc

(0)
}

⊆ H.

4.5.3 Proof of Lemma 4.34. We consider two additional hitting times. For this purpose, let

πw = 3g(n)(n−1
2
) , πu = ln(n) + 5g(n)(n−1

2
)

be the hyperedge inclusion probabilities for the partner window and for the upper bound. Consider
the joint distribution (Ep,S+,∆w,Su) ∼ (Ep,S+,∆w) ⊗ Su, where ∆w depends on (Ep,S+) only
through Sc and is thus determined by (∆w|Sc = S) ∼ Bin(

(n
3
)

− S, πw), and Su is determined by
Su ∼ Bin(

(n
3
)
, πu). Let Sw = Sc + ∆w be the end of the partner window, and further let Hc = Hp,Sc ,

Hw = Hp,Sw , Hu = Hp,Su be the hypergraphs corresponding to the hitting times. Let Dc = Dh(Hc),
Dw = Dh(Hw) and Du = Dh(Hu) be the diamonds. Analogously to the hyperedges H with partners
in (Sc,S+], let Hw = {E ∈ H−1

c (1) : {E,E′} ∈ Dw, E
′ ∈ H−1

c (0)} be the hyperedges with partners
in (Sc,Sw].

Lemma 4.36. Let f : Z>0 → R>0 with f = ω(1).
a) We have |S± − n

3 (ln(n) ± g(n))| ≤
√
f(n)n ln(n) whp.

b) We have n
3 (ln(n) − g(n)) −

√
f(n)n ln(n) ≤ Sc ≤ n

3 (ln(n) + g(n)) +
√
f(n)n ln(n) whp.

c) We have n
3 (ln(n) + 2g(n)) −

√
f(n)n ln(n) ≤ Sw ≤ n

3 (ln(n) + 4g(n)) +
√
f(n)n ln(n) and further

|∆w − ng(n)| ≤
√
f(n)ng(n) whp.

d) We have |Su − n
3 (ln(n) + 5g(n))| ≤

√
f(n)n ln(n) whp.

e) We have S− < Sc ≤ S+ ≤ Sw ≤ Su whp, Dc ⊆ D+ ⊆ Dw ⊆ Du and H ⊆ Hw whp.
f) We have vdj(Dc) = vdj(D+) = vdj(Dw) = vdj(Du) = 1 whp.

Proof. Let B(n) =
√
f(n)n ln(n) and b(n) =

√
f(n)ng(n) be the bounds. For Part 4.36a) we have

Var(S±) ≤ E[S±] = n
3 (ln(n) ± g(n)) ≤ 2

3n ln(n), P(|S± − E[S±]| ≥ B(n)) ≤ 2
3f(n) by Chebyshev’s

inequality. Part 4.36d) follows analogously. Lemma 4.29 gives S− < Sc ≤ S+ whp in Part 4.36e),
which yields Part 4.36b) using Part 4.36a). For Part 4.36c), let S ∈ Z∩ [E[S−] −B(n),E[S+] +B(n)]
and ∆ ∼ Bin(

(n
3
)
−S, πw), i.e. (∆w|Sc = S) ∼ ∆. Using Var(∆) ≤ E[∆] = ng(n)−Sπw, Chebyshev’s

inequality yields |∆ − E[∆]| ≤ b′(n) whp for any b′(n) = ω(
√
ng(n)) and hence |∆ − ng(n)| < b(n)

whp. This yields |∆w − ng(n)| ≤
√
f(n)ng(n) whp using Part 4.36b), and the remainder of Part

4.36c) follows with S− + ∆w < Sw ≤ S+ + ∆w whp. The remainder of Part 4.36e) is now immediate,
and Part 4.36f) then follows with Observation 4.12.

For S ∈ [Sc] let P(S) = {E′ ∈ H−1
c (0) : {Ep,S , E

′} ∈ D,∀E′′ ∈ H−1
c (1) \ {Ep,S} |E′ ∩ E′′| ≤ 1}

be the potential new exclusive partners of Ep,S , let P(S) = P(S) ∩ H−1
w (1) be the new exclusive

partners in Hw, and let R = (1{|P(S)| = 1})S∈[Sc] be the indicator for meeting exactly one new
exclusive partner. Let P = (|P(S)|πw(1−πw)|P(S)|−1)S∈[Sc] be the corresponding success probability.

Lemma 4.37. We have (R|Ep,[Sc]) ∼
⊗

s∈[Sc] Bin(1,P (s)).

Proof. Notice that P(S) ⊆ H−1
c (0), S ∈ [Sc], is determined by Ep,[Sc] and P(S1) ∩ P(S2) = ∅ for

S ∈ [Sc]2. Also notice that Hw given Ep,[Sc] has the law Bin(1, 1)⊗H−1
c (1) ⊗ Bin(1, πw)⊗H−1

c (0) and
hence (N |Ep,[Sc]) ∼

⊗
S∈[Sc] Bin(|P(S)|, πw), where N = (|P(S)|)S . This completes the proof.



4. Triangle Factors in the Graph Process 149

Now, let (Ep, Êp, r,S+) ∼ (Ep, Êp, r) ⊗ S+ be given as follows. First, choose Ep,[Sc] and set
Êp,[Sc] = Ep,[Sc]. Next, using Lemma 4.37 let (R, r[Sc])|Ep,[Sc] be given by the componentwise maximal
coupling, i.e. the pairs (R(s), r(s))s are independent with P(R(s) ̸= r(s)|Ep,[Sc]) = |P (s) − πr|.
Finally, let (Ep, Êp, r) be conditionally independent given (Ep,[Sc],R, r[Sc]).

Lemma 4.38. We have H ⊆ Hw = Ep(R−1(1)) ⊆ Êp(r−1(1)) whp.

Proof. Lemma 4.36 yields H ⊆ Hw = Ep(R−1(1)) whp. With |P(s)| ≤ 3(n−3) we have P ≤ πr.

Using H ⊆ H−1
c (1) and Sc = Ŝc gives H ⊆ Ĥ whp.

4.5.4 Proof of Lemma 4.35. Consider (Êp, r, Ŝ+, Ŝ−) ∼ (Êp, r) ⊗ (S+,S−), Ĥ± = Hp,Ŝ±
, the

removed hyperedges R+ = {Êp,S : S ∈ r−1(1) ∩ [Ŝ+]}, the isolated vertices Î± and the low-degree
vertices L̂± from Lemma 4.29 for Ĥ±.

Lemma 4.39. Notice that the following holds.
a) We have ∀E ∈ R2

+E1 ∩ E2 = ∅ whp.
b) We have L̂+ ∩

⋃
E∈R+ E = ∅ whp.

c) We have [n] \ Î− ⊆
⋃
E∈HE whp, where H = Ĥ−1

− (1) \ R+.
d) We have Ŝc = inf{S : ⋃E∈Êp([S]∩r−1(0))E = [n]} whp.

Proof. For Part 4.39a), we consider Nr = |{E ∈ R2
+ : |E1 ∩ E2| = r}| for r ∈ [2] and notice

that P(∃E ∈ R2
+E1 ∩ E2 ̸= ∅) ≤ E[N1] + E[N2] = O(ln(n)2g(n)2/n). For Part 4.39b), we have

P(L̂+ ∩
⋃
E∈R+ E ̸= ∅) ≤ E[N ] = 3

(n
3
)
π+πrP(b < 6g(n)), where b ∼ Bin(

(n−1
2
)

− 1, π+) and N =
|{(v,E) ∈ L̂+ × R+ : v ∈ E}|. As in the proof of Lemma 4.29 we obtain P(b < 6g(n)) ≤ n−1+o(1)

and thereby E[N ] ≤ n−1+o(1). For Part 4.39c), let V = ([n] \ Î−) \ (⋃E∈HE) and notice that by Part
4.39a) it holds whp that for all v ∈ V there exists exactly one E ∈ Ĥ−1

− (1) with v ∈ E, for which
we have E ∈ R−. So, with N = |{(v,E) ∈ [n] × R− : v ∈ E,DĤ−

(v) = 1}| and Part 4.39a) we
have P(V ̸= ∅) ≤ E[N ] + o(1) = o(1). Now, Part 4.39d) follows with Lemma 4.29, since whp for all
S ∈ Z ∩ [S−,S+] we have ⋃

E∈Ĥ−1
p,S(1)

E =
⋃

E∈Ĥ−1
p,S(1)\R+

E.

Now, given J = (Êp, r, Ŝ+, Ŝ−) let η be the enumeration of r−1(0), further let Ẽp,[|r−1(0)|] =
(Êp,η(S))S be the subprocess obtained from the restriction to r−1(0) and let Ẽp depend on J only
through Ẽp,[|r−1(0)|]. Lemma 4.39 suggests that η(S̃c) = Ŝc whp, which completes the proof.

4.5.5 Proof of Proposition 4.32. With Lemma 4.33, Lemma 4.34 and Lemma 4.35 we have
H◦ ⊆ H ⊆ Ĥ and H̃−1

p,S̃c
(1) ⊆ Ĥ−1

p,Ŝc
(1) \ Ĥ ⊆ Ĥ−1

p,Ŝc
(1) \ H◦ whp, by gluing the couplings.

4.5.6 Proof of Theorem 4.2. Theorem 4.2 is immediate from Lemma 4.31, Proposition 4.32 and
Theorem 2.6.

4.5.7 Proof of Corollary 4.3. This result follows from Theorem 4.2 with Lemma 4.31.
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4.5.8 Proof of Corollary 4.4. We obtain Part 4.4a) by reducing it to the case n ∈ 3Z>0 as follows.
Let n ∈ Z≥12, n◦ = 3⌊n⌋ and ∆ = n − n◦. let ∆ ∈ {1, 2}. Further, let (H+,E∗) ∼ Hb,π+ ⊗ u(

([n]
3
)
!)

and let H∗ ∈ {0, 1}([n]
3 ) be given by H−1

∗ (1) = H−1
+ (1) ∪ {E∗}.

Lemma 4.40. We have ∥H+ −H∗∥tv = o(1).

Proof. We have ∥H+ −H∗∥tv = 1
2
∑
H |π|H−1(1)|

+ (1 − π+)|H−1(0)| − |H−1(1)|
(n

3)
π

|H−1(1)|−1
+ (1 − π+)|H−1(0)||

and using Jensen’s inequality with M = |H−1
+ (1)| ∼ Bin(

(n
3
)
, π+) further

∥H+ −H∗∥tv = E[|E[M ] −M |]
2E[M ] ≤

√
Var(M)
2E[M ] ≤ 1

2
√
E[M ]

= O((n ln(n))−1/2).

For notational transparency let Ep be the process on the hypergraph with E∗ planted, given by
(Ep|H+,E∗) ∼ u(H−1

∗ (1)!) and let S∗ = |H−1
∗ (1)|. Further, let V∆ be given by (V∆|H+,E∗,Ep) ∼

u(
(E∗

∆
)
). Let V◦ = [n] \ V∆, enumerated by η◦

v, and let H◦ ∈ {0, 1}([n◦]
3 ) be given by

H−1
◦ (1) =

{
E ∈

(
[n◦]
3

)
: H∗(η◦

v(E)) = 1
}
,

that is, we obtain H◦ from H∗ by removing the ∆ vertices V∆ ⊆ E∗ (and all incident hyperedges)
and relabeling the remaining vertices. Notice that H∗,(V◦

3 ) ∼ Bin(1, π+)⊗(V◦
3 ) and hence H◦ ∼

Hb,n◦,π+,n . Further, notice that π+,n = ln(n◦)+g′(n◦)
(n◦−1

2 ) for some suitable g′. Let η◦
p be the enumeration

of E−1
p (H−1

◦ (1)) and E◦
p = Ep ◦ η◦

p, i.e. we consider the subprocess on the remaining hyperedges.
Notice that E◦

p ∼ Ẽp,[S̃] with (Ẽp, S̃) ∼ u(
([n◦]

3
)
!) ⊗ Bin(

(n◦

3
)
, π+,n) is a standard stopped process.

Thus, Theorem 2.6 yields that S◦
c = S◦

f ≤ S◦
+ whp, where S◦

+ = |H−1
◦ (1)| and using the notions for

E◦
p corresponding to Ep, e.g. the hitting times S◦

c , S◦
f . Further, we clearly have H◦

p,S ≤ Hp,η◦
p(S) and

hence Sc ≤ η◦
p(Sc). Now, let L∗ = {v ∈ [n] : DH∗(v) ≤ 6g(n)} be the low-degree vertices and let

H = {E ∈ H−1
∗ (1) : E ∩ V∆ ̸= ∅} be the hyperedges incident to V∆.

Lemma 4.41. Notice that the following holds.
a) We have L∗ ∩

⋃
E∈HE = ∅ whp.

b) We have Sc = S∗
f = η◦

p(Sc) whp.

Proof. For Part 4.41a), we consider N = |{(v,E) ∈ L∗ × H : v ∈ E \ E∗}|, then the union bound
yields P(L∗ ∩

⋃
E∈HE ̸= ∅) ≤ E[|L∗ ∩E∗|] +E[N ]. We have E[|L∗ ∩E∗|] = 3P(b < 6g(n)) = n−1+o(1)

with b ∼ Bin(
(n−1

2
)

− 1, π+), as in the proof of Lemma 4.29, Further, we have

E[N ] ≤
∆∑
r=1

(
∆
r

)(
n− ∆
3 − r

)
π+

(
3
1

)
P(b < 6g(n)) ≤ n−1+o(1)

and thereby Part 4.41a) holds. For Part 4.41b), let S+ = |H−1
+ (1)| and let S− be given by

(S−|H+,E∗,Ep,V∆) ∼ Bin(S+, π−/π+). Further, let H− ∈ {0, 1}([n]
3 ) be given by H−1

− (1) =
Ep([S− + 1]) \ {E∗} on the event {H+(E∗) = 0,E−1

p (E∗) ≤ S−}, and H−1
− (1) = Ep([S−]) oth-

erwise. Finally, let I− = {v ∈ [n] : DH−(v) = 0} be the isolated vertices. Notice that H− ∼ Hb,π− ,
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and thus the proof of Lemma 4.29 gives E[|I−|] = (1 + o(1))eg(n) and Var(|I−|) = (1 + o(1))E[|I−|].
Hence, Chebyshev’s inequality yields |I−| > 1

2e
g(n) = ω(1) whp, which shows that I ′ ̸= ∅ whp, where

I ′ = {v ∈ [n] : DH ′(v) = 0} = I− \E∗ and H ′ ∈ {0, 1}([n]
3 ) is given by H ′−1(1) = H−1

− (1) ∪ {E∗}.
Notice that Hp,S− ≤ H ′ and hence there exist isolated vertices in Hp,S− whp. Next, we show that
E = {H+(E∗) = 0,E−1

p (E∗) ≤ S−} whp. We have P(H+(E∗) = 1) = π+ and using Lemma 4.36
further

P(H+(E∗) = 0,E−1
p (E∗) ≤ S−) = E

[
1{H+(E∗) = 0}S−

S+ + 1

]
= E

[
1{H+(E∗) = 0}π−S+

π+(S+ + 1)

]
≥ π−
π+

− π+ − E
[ 1
S+ + 1

]
= 1 + o(1).

Thus, we know that H ′ = Hp,S−+1 whp. Analogously to Lemma 4.29 we obtain that I ′ ⊆ L∗ whp,
using E[1E|L∗ \ I ′|] = E[1E|I ′|]P(b > 6g(n)) ≤ E[|I−|]P(b > 6g(n)) with b ∼ Bin(

(n−1
2
)
, π+−π−

1−π−
).

With Part 4.41a) the last isolated vertices I ′ are not incident to H and hence Sc = η◦
p(S◦

c ) whp.
Finally, with S◦

f = S◦
c whp we have a perfect matching F◦ in H◦, which induces a matching F∗ ⊆

H−1
∗ (1) with ⋃E∈F∗ E = V◦, so for F = F∗ ∪ {E∗} we have |F | = ⌈n/3⌉ and ⋃E∈F E = [n].

Part 4.4a) follows from Lemma 4.40 combined with Lemma 4.41. This extends Theorem 2.6. Part
4.4b) is now immediate from Theorem 4.2, since we embed the hitting time hypergraph and thus
obtain the desired cover.

5 Occupation Problems on Regular Graphs
In this section we provide further context and the proofs for the results presented in Section 2.3. First,
we present applications of occupation problems, other contributions and open problems in Section
5.1, before we turn to the proofs. In Section 5.2 we give a detailed overview of our procedure. Before
we turn to the proof, we clarify some preliminaries, prepare arguments and discuss the translation to
different models in Section 5.3. Then, the first step is the first moment method, which we implement
in Section 5.4. The second step is the second moment method, which we implement in Section 5.5.
Crucially, this is the part where we establish the conjecture from [101]. In Section 5.6, we boost the
probability obtained using the second moment to 1 using small subgraph conditioning, based on the
proof of Lemma 5.8 in Section 5.7.

5.1 Applications, Results and Problems

We take a closer look at the examples from [36, 96] in Section 5.1.1, then we discuss related work in
Section 5.1.2 and open problems in Section 5.1.3.

5.1.1 Examples and Related Problems. A problem that is closely related and can be reduced
to the d-regular r-in-k occupation problem is the d-regular positive r-in-k SAT problem, a variant of
k-SAT introduced above. In this case, we consider a boolean formula

f =
∧
a∈F

ca, ca =
∨

i∈v(a)
i, a ∈ [m],
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in conjunctive normal form with m clauses over n variables i ∈ [n], such that no literal appears
negated (hence positive r-in-k SAT), and where each clause ca is the disjunction of k literals and
each variable appears in exactly d clauses (hence d-regular). The decision problem is to determine if
there exists an assignment x such that exactly r literals in each clause evaluate to true (hence r-in-k
SAT). In [96] the satisfiability threshold for this problem was determined for r = 1, i.e. the case where
exactly one literal in each clause evaluates to true. Our Theorem 2.10 solves this problem for r = 2
and k ∈ Z≥4.

Our second example deals with a prominent problem related to graph theory. A k-regular d-
uniform hypergraph H is a pair H = ([m], E) with vertices [m] and n = |E| (hyper-)edges such that
each edge contains d vertices and the degree of each vertex is k. An r-factor F ⊆ E is a subset of the
hyperedges such that each vertex a ∈ [m] is incident to r hyperedges ei ∈ F . In this case the problem
is to determine if H has an r-factor. For example, the case r = 1 is the well-known perfect matching
problem and the threshold was determined in [36]. An example of a 2-factor in a hypergraph is shown
in Figure 2b. Theorem 2.10 solves also this problem for r = 2 and k ∈ Z≥4.

There are several other problems in complexity and graph theory that are closely related to the
examples above. The satisfiability threshold in Theorem 2.10 also applies to a variant of the vertex
cover problem (or hitting set problem from set theory perspective), where we choose a subset of the
vertices (variables with value one) in a d-regular k-uniform hypergraph such that each hyperedge is
incident to exactly two vertices in the subset. Analogously, Theorem 2.10 also establishes the threshold
for a variant of the set cover problem in set theory corresponding to 2-factors in hypergraphs, i.e. given
a family of d-subsets (hyperedges) and a universe (vertices) with each element contained in k subsets,
the problem is to find a subfamily of the subsets such that each element of the universe is contained
in exactly two subsets of the subfamily. Further, Theorem 2.10 can e.g. also be used to give sufficient
conditions for the (asymptotic) existence of Euler families in regular uniform hypergraphs as discussed
in [15].

5.1.2 Related Work. The regular version of the random 1-in-k occupation problem (and related
problems) has been studied in [36, 96] using the first and second moment method with small subgraph
conditioning. The paper [114] shows that limi→∞ P(Z > 0) = 1 for d = 2 and k ∈ Z≥2 in the d-
regular 2-in-k occupation problem, i.e. the existence of 2-factors in k-regular simple graphs. A recent
discussion of 2-factors (and the related Euler families) that does not rely on the probabilistic method is
presented in [15]. Further, randomized polynomial time algorithms for the generation and approximate
counting of 2-factors in random regular graphs have been developed in [56].

The study of Erdős Rényi (hyper-)graphs was initiated by the groundbreaking paper [47] in 1960
and turned into a fruitful field of research with many applications, including early results on 1-factors
in simple graphs [49]. On the contrary, results for the random d-regular k-uniform (hyper-)graph
ensemble were rare before the introduction of the configuration (or pairing) model by Bollobás [22]
and the development of the small subgraph conditioning method [67, 68]. While the proof scheme
facilitated rigorous arguments to establish the existence and location of satisfiability thresholds of
random regular CSPs [89, 17, 73, 29, 34, 41, 42], the problems are treated on a case by case basis,
while results on entire classes of random regular CSPs are still outstanding.

One of the main reasons responsible for the complexity of a rigorous analysis of random (regular)
CSPs seems to be a conjectured structural change of the solution space for increasing densities. This
hypothesis has been put forward by physicists, verified in parts and mostly for ER ensembles, further
led to new rigorous proof techniques [40, 34, 30] and to randomized algorithms [25, 83] for NP-hard
problems that are not only of great value in practice, but can also be employed for precise numerical
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(though non-rigorous) estimates of satisfiability thresholds. An excellent introduction to this replica
theory can be found in [85, 77, 122]. Specifically, numerical results indicating the satisfiability thresh-
olds for d-regular r-in-k occupation problems (more general variants, and for ER type hypergraphs)
based on this conjecture were discussed in various publications [27, 37, 119, 58, 65, 128, 127], where
occupation problems were introduced for the first time in [98].

Another fundamental obstacle in the rigorous analysis is of a very technical nature and directly
related to the second moment method as discussed in detail in our current work. In the case of regular
2-in-k occupation problems (amongst others) this optimization problem can be solved by exploiting
a connection to the fixed points of belief propagation. This well-studied message passing algorithm is
thoroughly discussed in [85].

5.1.3 Open Problems. In this work we rigorously establish the threshold for r = 2 and k ∈ Z≥4
for the random regular r-in-k occupation problem. A rigorous proof for general r (and k) seems
to be involved, but further assumptions may significantly simplify the analysis. For example, as an
extension of the current work one may focus on r-in-2r occupation problems, where the constraints
are symmetric in the colors. As can be seen from our proof, this yields useful symmetry properties.
Further, as suggested by the literature [30, 33] such balanced problems [127, 128] are usually more
accessible to a rigorous study. On the other hand, the optimization usually also significantly simplifies
if only carried out for k ≥ k0(r) for some (large) k0(r).

Apart from the generalizations discussed above, results for the general r-in-k occupation prob-
lems are also still outstanding for Erdős-Rényi type CSPs, the only exception being the satisfiability
threshold for perfect matchings which was recently established by Kahn [71]. Further, there only exist
bounds for the exact cover problem [72] on 3-uniform hypergraphs, i.e. r = 1 and k = 3.

Outline of the Proofs. In Section 5.2 we present the proof strategy on a high level. Then, we
turn to the notation and do some groundwork, in particular the analysis of d∗(k), in Section 5.3.
The easy part of the main result is established in Section 5.4 using the first moment method. The
remainder is devoted to the proof that solutions exist below the threshold with probability tending to
one, starting with the second moment method in Section 5.5. Most of the twenty pages in this section
are devoted to the solution of the optimization problem and related conjecture from [101] using a
belief propagation inspired approach. Finally, we complete the small subgraph conditioning method
in Section 5.6, using the proof of Lemma 5.8 in Section 5.7 as a blueprint.

5.2 Proof Techniques

In this section we give a high-level overview of our proof. We make heavy use of the so-called
configuration model for the generation of random instances in the form used by Moore [96].

5.2.1 The Configuration Model. Working with the uniform distribution on d-regular k-uniform
hypergraphs directly is challenging. Instead, we show Theorem 2.10 for occupation problems on so-
called configurations. A d-regular k-configuration is a bijection G : [n] × [d] → [m] × [k], where the
v-edges (i, h′) ∈ [n] × [d] represent pairs of variables i ∈ [n] and so-called i-edges, i.e. half-edge indices
h′ ∈ [d]. The image (a, h) = G(i, h′) is an f-edge, i.e. a pair of a constraint (factor) a ∈ [m] and an
a-edge (or half-edge) h ∈ [k], indicating that the i-edge h′ of the variable i is wired to the a-edge h
of a and thereby suggesting that i is connected to a in the corresponding d-regular k-factor graph.
Notice that we can represent G by an equivalent, four-partite, graph with (disjoint) vertex sets given
by the variables [n], constraints (factors) [m], v-edges H′ = [n] × [d] and f-edges H = [m] × [k], where
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(a) occupation problem on configurations
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(b) 4-regular 2-in-3 vertex cover

Figure 5: The figure on the left shows the solution on a configuration corresponding to the solution
in Figure 2. We only denoted a-edges (small boxes, filled if they the a-edge takes the value one)
and i-edges (small circles, filled if the i-edge takes the value one) instead of f-edges and v-edges
for brevity (e.g. ha1,1 instead of (a1, ha1,1)). The figure on the right illustrates the corresponding
2-in-3 vertex cover (given by the filled circles).

each variable i ∈ [n] connects to all its v-edges (i, h′) ∈ H′, each constraint a ∈ [m] to all its f-edges
(a, h) ∈ H and a v-edge (i, h′) connects to an f-edge (a, h) if G(i, h′) = (a, h).

Let Gc = Gc,k,d,n,m be the set of all d-regular k-configurations on n variables, and notice that
|Gc| = ∅ iff dn ̸= km and |Gc| = (dn)! = (km)! for m = dn/k ∈ Z, which we assume from here
on. Further, the occupation problem on factor graphs directly translates to configurations, i.e. an
assignment x ∈ {0, 1}n is a solution of G ∈ Gc if for each constraint a ∈ [m] there exist exactly two
distinct a-edges h, h′ ∈ [k] such that xi(a,h) = xi(a,h′) = 1, where i(a, h) = (G−1(a, h))1 denotes the
h-th neighbor of a. Say, the occupation problem on a configuration corresponding to the example in
Figure 2a is shown in Figure 5a.

Let Z(G) be the number of solutions of G ∈ Gc, let Gc ∼ u(Gc) be the uniformly random config-
uration and Zc = Z(Gc). As before, Zc = 0 almost surely unless 2n ∈ kZ. Theorem 2.10 will be a
straightforward consequence of the following result.

Theorem 5.1. Theorem 2.10 also holds for Zc.

5.2.2 The First Moment Method. In the first step we apply the first moment method to the
occupation problem on configurations, yielding the following result.

Lemma 5.2. Let k ∈ Z≥4, d ∈ Z≥2. For n ∈ N tending to infinity

E[Zc] = (1 + o(1))
√
denϕ1 , where ϕ1 = d

k
ln
(
k

2

)
− (d− 1)H

(2
k

)
.

In particular, E[Zc] → ∞ for d < d∗ and E[Zc] → 0 for d > d∗ with d∗ as in (2). So, Markov’s
inequality implies P(Zc > 0) → 0 for d > d∗. The map ϕ1 is known as annealed free entropy density.

5.2.3 The Second Moment Method. Let k ∈ Z≥4 and d ∈ Z≥2. We denote the set of distributions
on a finite set S by P(S) and identify p ∈ P(S) with its probability mass function, meaning P(S) =
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{p ∈ [0, 1]S : ∑x∈S p(s) = 1}. Further, let Pℓ(S) = {p ∈ P(S) : ℓp ∈ ZS} be the empirical
distributions over ℓ ∈ Z>0 trials.

In order to apply the second moment method we will consider a (new) CSP with m factors on n
variables with the larger domain {0, 1}2, and where the constraint a ∈ [m] is satisfied by an assignment
x ∈ ({0, 1}2)n if ∑i∈v(a) xi,1 = ∑

i∈v(a) xi,2 = 2. Here, there are qualitatively three types of satisfying
assignments for the constraints, namely with 0, 1 or 2 overlapping ones. We will analyze the empirical
overlap distributions p ∈ Pm({0, 1, 2}) of assignments satisfying all constraints, which determine the
empirical distributions pe ∈ Pkm({0, 1}2) of the values {0, 1}2 over the km edges, given by

pe(11) = 1
k
p(1) + 2

k
p(2) and pe(10) = pe(01) = 1

k
p(1) + 2

k
p(0).

So, if p ∈ Pm({0, 1, 2}) is an achievable empirical overlap distribution on the m factors, then pe is
necessarily an empirical distribution on the n variables; thus the achievable overlap distributions are
contained in Pn =

{
p ∈ Pm({0, 1, 2}) : pe ∈ Pn({0, 1}2)

}
.

In the first – combinatorial – part we establish that the second moment for n ∈ N can be written
as a sum of contributions for fixed overlap distributions.

Lemma 5.3. For any n ∈ N we have

E[Z2
c ] =

∑
p∈Pn

E(p), where E(p) =
(
m

mp

) ∏
s∈{0,1,2}

(
k

s, 2 − s, 2 − s, k − 4 + s

)mp(s)(
n

npe

)(
dn

dnpe

)−1

.

Here, we use the notation
(m
mp

)
, p ∈ Pm({0, 1, 2}), for multinomial coefficients.

To study further the second moment in Lemma 5.3, we identify the maximal contributions. For
this purpose, let p∗ ∈ P({0, 1, 2}) be the hypergeometric distribution with

p∗(s) =
(2
s

)(k−2
2−s
)(k

2
) for s ∈ {0, 1, 2}, and p∗

e(1, 1) = 4
k2 , p

∗
e(1, 0) = 2(k − 2)

k2 . (20)

The overlap distribution p∗ is a natural candidate for maximizing E(p). Indeed, we obtain p∗ when
we consider two independent uniformly random assignments in {0, 1}k with 2 ones each, and p∗

e is
exactly the marginal probability if we jointly consider two independent uniformly random assignments
in {0, 1}n to the variables with 2n/k ones each. In the next step, we derive the limits of the log-densities
1
n ln(E(p)). Recall that the K(ullback)-L(eibler) divergence DKL(p∥q) of two distributions p, q ∈ P(S),
such that p is absolutely continuous with respect to q, is

DKL(p∥q) =
∑
x∈S

p(x) ln
(
p(x)
q(x)

)
.

Lemma 5.4. For a fully supported p ∈ P({0, 1, 2}) and a sequence (pn)n∈N ⊆ Pn with limn→∞ pn = p
we have limn→∞

1
n ln(E(pn)) = ϕ2(p), where

ϕ2(p) = 2ϕ1 − d

k
∆d(p) and ∆d(p) = DKL(p∥p∗) − (d− 1)k

d
DKL(pe∥p∗

e).

The following proposition is the main contribution of this work.
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Proposition 5.5. For k = 4 the global minimizers of ∆d∗(4) are p∗, p(0) given by p(0)(0) = 1 and p(2)

given by p(2)(2) = 1. For k ∈ Z≥5 the global minimizers of ∆d∗(k) are p∗ and p(2).
With Proposition 5.5, we easily verify that p∗ is the unique minimizer of ∆d for any d < d∗(k),

since the KL divergence is minimized by its unique root and (d − 1)k/d is increasing in d. This
conclusion then allows to compute the limit of the scaled second moment using Laplace’s method for
sums. Moreover, we confirm the authors’ conjecture in [101] as an immediate corollary, and further
obtain the Hirschfeld-Gebelein-Rényi maximal correlation for the same noisy channel with input p∗.
Proposition 5.6. For any k ∈ Z≥4 and d < d∗(k)

E[Z2
c ]

E[Zc]2
= (1 + o(1))

√
k − 1
k − d

, as n ∈ N tends to infinity.

Proposition 5.6 and the Paley-Zygmund inequality yield lim infn→∞ P(Zc > 0) ≥
√

k−d
k−1 . While

this bound suggests that a threshold exists, we need to show that the threshold at d∗ is sharp.

5.2.4 Small Subgraph Conditioning. We complete the proof of Theorem 5.1 using the small
subgraph conditioning method. For this purpose let ab = ∏b−1

c=0(a− c) denote the falling factorial.
Theorem 5.7 (Small Subgraph Conditioning, [96, Theorem 2]). Let Zn and Xn,1,Xn,2, . . . be non-
negative integer-valued random variables. Suppose that E[Zn] > 0 and that for each ℓ ∈ Z>0 there are
λℓ ∈ R>0, δℓ ∈ R>−1 such that for any L ∈ Z>0
a) the variables (Xn,ℓ)ℓ∈[L] are asymptotically independent and Poisson with E[Xn,ℓ] = (1 + o(1))λℓ,
b) for any sequence r1, . . . , rL of non-negative integers,

E
[
Zn

∏L
ℓ=1X

rℓ

n,ℓ

]
E[Zn] = (1 + o(1))

L∏
ℓ=1

[λℓ(1 + δℓ)]rℓ ,

c) we explain the variance, i.e.

E[Z2
n]

E[Zn]2 = (1 + o(1)) exp

∑
ℓ≥1

λℓδ
2
ℓ

 and
∑
ℓ≥1

λℓδ
2
ℓ < ∞.

Then limn→∞ P(Zn > 0) = 1.
We will apply Theorem 5.7 to the number Zc of solutions from Section 5.2.1 and the numbers Xℓ

of small cycles in the configuration Gc. In order to understand what a cycle in a configuration is, we
recall the representation of a configuration G as a four-partite graph from Section 5.2.1. Since we are
mostly interested in the factor graph associated with a configuration we divide lengths of paths by
three, e.g. what we call a cycle of length four in the bijection, is actually a cycle of length twelve in
its equivalent four-partite graph representation. Figures 2a and 5a show an example of a factor graph
and the corresponding configuration in its graph representation. Showing the following statement,
which establishes Assumption 5.7a), is rather routine.
Lemma 5.8. For ℓ ∈ Z>0 let Xℓ be the number of 2ℓ-cycles in Gc, and set

λℓ = [(k − 1)(d− 1)]ℓ
2ℓ .



5. Occupation Problems on Regular Graphs 157

Then (Xℓ)ℓ∈[L] are asymptotically independent and Poisson with E[Xℓ] = (1+o(1))λℓ for all L ∈ Z>0.

We give a self-contained proof of Lemma 5.8 in Section 5.7, which we build upon to argue that
Assumption 5.7b) in Theorem 5.7 holds. With Lemma 5.8 in place, we consider the base case in
Assumption 5.7b), i.e. for ℓ ∈ Z>0 we let rℓ = 1 and rℓ′ = 0 otherwise, to determine δℓ = (1 − k)−ℓ.
We easily verify that ∑ℓ≥1 λℓδ

2
ℓ = 1

2 ln(k−1
k−d) and thereby establish Assumption 5.7c) using Proposition

5.6. Finally, we follow the proof of Lemma 5.8 to complete the verification of Assumption 5.7b) and
thereby complete the proof of Theorem 2.10.

5.2.5 Translation of the Results. Before the proof of the main result, we translate the results
for configurations to factor graphs using Lemma 5.8, to obtain contiguity of the factor graph model
with respect to the configuration model. For completeness we then also provide self-contained proofs
to establish the applicability to hypergraphs (where the constraints may be attached to either the
vertices or to the hyperedges). This establishes our claims in Sections 5.1.1 and 2.3.3.

5.3 Preliminaries and Notation

After introducing notation in Section 5.3.1, we establish a few basic facts in Section 5.3.2. In Section
5.3.3 we derive Theorem 2.10 from the configuration version. Finally, in Section 5.3.4 we derive the
thresholds for the positive 2-in-k SAT and 2-factors from Theorem 2.10. Hence, this section primarily
addresses readers new to this field, treating established concepts, results and the corresponding subtle
technical difficulties.

5.3.1 Notation. We use the notation [n] = {1, . . . , n} and [n]0 = {0} ∪ [n] for n ∈ Z>0, denote the
falling factorial (or k-factorial) with nk for n, k ∈ Z≥0, k ≤ n, and multinomial coefficients with

(n
k

)
for n ∈ Z≥0 and k ∈ Zd≥0, d ∈ Z>1, such that ∑i∈[d] ki = n. Recall Stirling’s formula from [115], i.e.

√
2πn

(
n

e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(
n

e

)n
e

1
12n , n ∈ Z>0,

and in particular n! = (1 + o(1))
√

2πn(ne )n. If a random variable X has law p we write X ∼ p
and use Po(λ) to denote the Poisson distribution with parameter λ. Distributions p ∈ P(S) in
the convex polytope P(S) of distributions with finite support S are identified with their probability
mass functions p ∈ [0, 1]S . Further, Pn(S) = {p ∈ P(S) : np ∈ [n]0} denotes the set of empirical
distributions obtained from n ∈ Z≥1 trials. Let vt denote the transpose of a vector v. Finally, we use
‘iff’ for ‘if and only if’ and ‘whp’ for ‘with high probability’, i.e. limn→∞ P (En) = 1 for events En.

5.3.2 Basic Observations. We briefly establish the claims in Section 2.3.1 for the configuration
version, and the claim that d∗ is not an integer.

Lemma 5.9. The set Gc is empty iff dn ̸= km, so let dn = km. Then, we have Zc = 0 almost surely
if n1 = 2n/k ̸∈ Z. Finally, d∗ ∈ (1,∞) \ Z.

Proof. Since G ∈ Gc is a bijection G : [n] × [d] → [m] × [k], the set Gc is empty for dn ̸= km and
|Gc| = (dn)! = (km)! otherwise, which proves the first assertion. Next, we fix a solution x ∈ {0, 1}n
of g ∈ Gc with n′

1 ones. Then two a-edges h have to take the value one, i.e. xi(a,h) = 1, for each
a ∈ [m] and hence 2m f-edges (a, h) ∈ [m] × [k] in total. On the other hand, there are dn′

1 v-edges
(i, h) ∈ [n] × [d] that take the value one. Since G is a bijection, dn′

1 = 2m, so n1 = n′
1 ∈ Z.
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For the last assertion, we first focus on the denominator of d∗, i.e.

kH

(2
k

)
− ln

(
k

2

)
= − ln

((
k

2

)(2
k

)2 (k − 2
k

)k−2)
> 0,

so d∗ > 0 for k ∈ Z≥3. Next, notice that d∗ is a solution of f(d) = 1 with

f(d) = e(d−1)(kH(2/k)−ln (k
2))−ln (k

2) = 2
k(k − 1)

(
kk−1

2(k − 2)k−2(k − 1)

)d−1

,

which directly implies that d∗ > 1 and further, since gcd(k, k − 1) = 1, that d∗ ∈ (1,∞) \ Z.

5.3.3 From Configurations to Factor Graphs. In this section, we derive Theorem 2.10 from
Theorem 5.1. First, we notice that there are (k!)m(d!)n configurations Gc ∈ Gc corresponding to each
occupation problem G ∈ G due to the labeling of the half-edges for each variable and constraint (where
we consider G and Gc in their graph representations as illustrated in Figures 2a and 5a). Further,
a configuration Gc corresponding to an occupation problem G obviously cannot contain two-cycles,
so let Gc,1 ⊆ Gc denote the set of configurations without two-cycles. Then the uniformly random
Gc ∈ Gc conditional to Gc ∈ Gc,1 is uniform on Gc,1 and further Lemma 5.8 directly implies that
P(Gc ∈ Gc,1) → P(N = 0) > 0 with N ∼ Po(λ1), so the uniform distribution on Gc,1 is contiguous
with respect to the uniform distribution on Gc, i.e. for any sequence of events (En)n we have that
P(Gc ∈ En) → 0 implies P(Gc ∈ En|Gc ∈ Gc,1) → 0 as n tends to infinity. As explained above,
the uniform distribution on G is the pushforward of the uniform distribution on Gc,1, so since the
number Z(Gc) of solutions in Gc ∈ Gc,1 properly translates to Z(G), we can translate Theorem 5.1
to Theorem 2.10 using the contiguity result discussed above (while the translation of Lemma 5.9 is
obvious). Further, we notice that we can also derive a version of Lemma 5.8 for (d, k)-biregular graphs
(respectively d-regular k-factor graphs) using a similar argumentation.

5.3.4 Variants of the Occupation Problem. In this section we establish the thresholds for the
positive 2-in-k SAT and the 2-factors from Section 5.1.1. In the former example, uniqueness of the
clauses is guaranteed by the CNF representation, so instances of this problem are given by d-regular
k-uniform hypergraphs. For any such hypergraph H = ([n], E) there are m! factor graphs G ∈ G, that
map onto H via E = {va : a ∈ [m]}. Further, a factor graph G corresponding to H can obviously not
have redundant constraints, i.e. pairs {a, b} ⊆ [m] of two distinct constraints a, b such that va = vb.

Lemma 5.10. The number R of redundant constraints in G is zero whp.

Proof. We will apply the first moment method. For the number S of redundant constraints in Gc,
i.e. pairs {a, b} of distinct constraints a, b ∈ [m] such that va = vb and |va| = k (where va is the set of
adjacent variables i(a, h) for h ∈ [k]), the expectation is given by

E[S] = |E|
|Gc|

= 1
(dn)!

(
m

2

)
nkk!(d(d− 1))k(dn− 2k)!,

where E is the set of pairs (G, {a, b}) such that {a, b} is a pair of redundant constraints in G ∈ Gc,
and the terms on the right hand side are derived as follows. We choose two constraints a and b, the
k variables they connect to in the order that a connects to them, then choose the order in which b
connects to the k variables, further choose the edge that connects to a and to b respectively for each
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of the k variables and wire the rest. Computing the asymptotics yields E[S] = o(1). Then, Markov’s
inequality implies that P(S > 0) = P(S ≥ 1) ≤ E[S] → 0 for n → ∞. Using contiguity this yields
that we do not have redundant constraints in Gc|Gc ∈ Gc,1 whp and further no redundant constraints
in G whp because analogously to the previous examples S properly translates to R.

A direct consequence of this lemma is that the uniform distribution on G and the uniform distri-
bution on the set G1 of factor graphs with no redundant constraints are mutually contiguous. The
remaining steps to translate Theorem 2.10 to d-regular k-uniform hypergraphs with constraints on the
hyperedges are completely analogous to the translation of Theorem 5.1. In particular, this establishes
the satisfiability threshold for the d-regular 2-in-k SAT.

The proof that the number of redundant variables in G, i.e. pairs of distinct variables whose
neighborhoods coincide, equals zero whp is completely analogous for d > 2, while for the graph case
d = 2 the result follows analogously to Section 5.3.3 using Lemma 5.8 for 4-cycles. This shows that
Theorem 2.10 also applies to the existence of 2-factors in k-regular d-uniform hypergraphs, where the
variables are now mapped to the hyperedges, while the constraints are mapped to the vertices.

5.4 The First Moment Method – Proof of Lemma 5.2

This short section is dedicated to the proof of Lemma 5.2. We write the expectation in terms of the
number |E| of pairs (G, x) ∈ E such that x ∈ {0, 1}n satisfies G ∈ Gc, i.e.

E[Zc] = |E|
|Gc|

= 1
(dn)!

(
n

n1

)(
k

2

)m
(2m)!(dn− 2m)!,

with n1 = 2n/k and for the following reasons. First, we choose the n1 variables with value one
in x, then we choose the two a-edges for each constraint a ∈ [m] with value one, wire the v-edges
and f-edges with value one and finally wire the edges with value zero. In particular, this implies that
E[Zc] > 0 for all n ∈ N . Stirling’s formula yields after some straightforward but tedious manipulations
E[Zc] = (1 + o(1))

√
denϕ1 , as claimed.

5.5 The Second Moment Method

In this section we consider the case d < d∗. We prove Lemma 5.3, Lemma 5.4, Proposition 5.5 and
Proposition 5.6, the main contribution of this work.

5.5.1 How to Square a Constraint Satisfaction Problem. In order to facilitate the presentation
we introduce the squared d-regular 2-in-k occupation problem. As before, an instance of this problem
is given by a bijection G : [n] × [d] → [m] × [k]. Now, for an assignment x ∈ ({0, 1}2)n let yG,x =
(xi(a,h))a∈[m],h∈[k] be the corresponding f-edge assignment under G, where we recall from Section 5.2.1
that i(a, h) = (G−1(a, h))1 ∈ [n] is the variable i(a, h) wired to the f-edge (a, h) under G. A constraint
a ∈ [m] is satisfied by a constraint assignment x ∈ ({0, 1}2)k iff x ∈ S(2), where

S(2) =

x ∈ ({0, 1}2)k :
∑
h∈[k]

xh,1 =
∑
h∈[k]

xh,2 = 2

 .

An f-edge assignment x ∈ ({0, 1}2)m×k is satisfying if xa = (xa,h)h∈[k] satisfies a for all a ∈ [m].
Finally, an assignment x ∈ ({0, 1}2)n is a solution of G if yG,x is satisfying. Notice that the pairs of
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solutions x, x′ ∈ {0, 1}n of the standard problem on G are in one to one correspondence with the
solutions y ∈ ({0, 1}2)n of the squared problem on G via y = (xi, x′

i)i∈[n]. So, Z(2)(G) = Z(G)2 for
the number Z(2)(G) of solutions of the squared problem, hence Z(2)

c = Z2
c for Z(2)

c = Z(2)(Gc) and
in particular E[Z(2)

c ] = E[Z2
c ]. This equivalence allows us to entirely focus on the squared problem.

5.5.2 Proof of Lemma 5.3. As before, we can write E[Z(2)
c ] = 1

(dn)! |E|, where |E| is the number of
pairs (G, x) ∈ E such that x ∈ ({0, 1}2)n solves G. Set

Y =
{
y ∈ ({0, 1}2)m×k : ya ∈ S(2) for all a ∈ [m]

}
.

For y ∈ Y let the overlap distribution py ∈ Pm({0, 1, 2}) be given by

py(s) = 1
m

|{a ∈ [m] : |y−1
a (1, 1)| = s}|, s ∈ {0, 1, 2}.

Further, let the edge distribution qy ∈ Pkm({0, 1}2) be given by

qy(x) = 1
km

|{(a, h) ∈ [m] × [k] : ya,h = x}| = 1
km

|y−1(x)|, x ∈ {0, 1}2.

Using that |y−1
a (1, 0)| = |y−1

a (0, 1)| = 2 − |y−1
a (1, 1)| and hence |y−1(0, 0)| = k − 4 + |y−1(1, 1)| we

directly get

qy(1, 1) = 1
km

∑
a∈[m]

|y−1
a (1, 1)| = 1

km

∑
s∈{0,1,2}

s|{a ∈ [m] : |y−1
a (1, 1)| = s}| =

∑
s∈{0,1,2}

s

k
py(s),

qy(1, 0) = qy(0, 1) = 1
km

∑
s∈{0,1,2}

(2 − s)|{a ∈ [m] : |y−1
a (1, 1)| = s}| =

∑
s∈{0,1,2}

2 − s

k
py(s),

qy(0, 0) =
∑

s∈{0,1,2}

k − 4 + s

k
py(s).

Hence, let pe = Wp ∈ P({0, 1}2) denote the edge distribution of any (not necessarily empirical)
overlap distribution p ∈ P({0, 1, 2}), where W ∈ [0, 1]{0,1}2×{0,1,2} is given by

W11,s = s

k
, W10,s = W01,s = 2 − s

k
and W00,s = k − 4 + s

k
, s ∈ {0, 1, 2}. (21)

Now, notice that for any (G, x) ∈ E we have yG,x,a,h = xi(a,h) for all a ∈ [m], h ∈ [k], hence
G(x−1(z) × [d]) = y−1

G,x(z) and by that

qyG,x(z) =
|y−1
G,x(z)|
km

= d|x−1(z)|
km

= 1
n

|x−1(z)| = qx(z) for z ∈ {0, 1}2,

i.e. the relative frequencies of the values in the f-edge assignment yG,x coincide with the relative
frequencies qx ∈ Pn({0, 1}2) of the values in the variable assignment x. In particular, this shows that
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a satisfying f-edge assignment y ∈ Y is only attainable if qy ∈ Pn({0, 1}2), and thereby

E[Z(2)
c ] = 1

(dn)!
∑
p∈Pn

|{(G, x) ∈ E : pyG,x = p}|.

Now, fix an attainable satisfying f-edge assignment y ∈ Y and an assignment x ∈ ({0, 1}2)n with
qy = qx, i.e. |x−1(z) × [d]| = |y−1(z)| for all z ∈ {0, 1}2. Any bijection G with y = yG,x needs to
respect G(x−1(z) × [d]) = y−1

G,x(z) for z ∈ {0, 1}2 and can hence be uniquely decomposed into its
restrictions Gz : x−1(z) × [d] → y−1

G,x(z). On the other hand, any choice of such restrictions Gz gives
a bijection G with y = yG,x, and so

|Ex,y| =
∏

z∈{0,1}2

(dnqx(z))! =
∏

z∈{0,1}2

(dnpy,e(z))! , where Ex,y = {(G, x) ∈ E : yG,x = y}.

Notice that Ex,y ∩ Ex′,y′ = ∅ for any (x, y) ̸= (x′, y′), which is obvious for x ̸= x′, and also for y ̸= y′,
since yG,x = y ̸= y′ = yG′,x implies that G ̸= G′. But since |Ex,y| only depends on py (actually only
on py,e) this completes the proof, because for any fixed attainable overlap distribution p ∈ Pn, we can
now independently choose the satisfying f-edge assignment y and variable assignment x, subject to
qx = pe and py = p (which implies qy = qx). So we have E[Z(2)

c ] = ∑
pE(p) with p ∈ Pn and

E(p) = 1
(dn)!

(
n

npe

)(
m

mp

) ∏
s∈{0,1,2}

(
k

s, 2 − s, 2 − s, k − 4 + s

)mp(s) ∏
x∈{0,1}2

(dnpe(z))!,

where we choose a variable assignment x with qx = pe, an f-edge assignment y with py = p
by first choosing one of the

(m
mp

)
options for (|y−1

a (1, 1)|)a∈[m] and then independently one of the( k
s,2−s,2−s,k−4+s

)
satisfying constraint assignments for each of the mp(s) constraints with overlap

s ∈ {0, 1, 2}, and finally choosing a bijection G with (G, x) ∈ Ex,y.

5.5.3 Empirical Overlap Distributions. This section is dedicated to deriving properties of the
set Pn for n ∈ N . In the following we will use the canonical ascending order on {0, 1, 2} to denote
points in R{0,1,2} and the ascending lexicographical order on {0, 1}2 to denote points in R{0,1}2 . Recall
that p(s) ∈ P({0, 1, 2}) given by p(s)(s) = 1 for s ∈ {0, 1, 2} denote the corners of the convex polytope
P({0, 1, 2}) and further consider the vectors in R{0,1,2}

b1 = (−d, d, 0)t, b2 = (1,−2, 1)t. (22)

Finally, let
X =

{
x ∈ R2 : (b1, b2)x ≥ −p(0)

}
, Xn = X ∩ (m−1Z)2.

Lemma 5.11. The map ιn : Xn → Pn, x 7→ p(0) + (b1, b2)x is a bijection.

Proof. We use the shorthands 1{0,1,2} = (1)s∈{0,1,2} and

1⊥
{0,1,2} =

{
x ∈ R{0,1,2} : 1t

{0,1,2}x = 0
}

=

x ∈ R{0,1,2} :
∑

s∈{0,1,2}
xs = 0

 .
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Note that P({0, 1, 2}) ⊆ p(0) + 1⊥
{0,1,2} = {p(0) +x : x ∈ 1⊥

{0,1,2}}. On the other hand, (b1, b2) is a basis
of 1⊥

{0,1,2}, and hence
ι : R2 → p(0) + 1⊥

{0,1,2}, x 7→ p(0) + (b1, b2)x, (23)

is bijective. This gives that ι(X ) = P({0, 1, 2}) and that ιn is the restriction of ι to Xn, so ιn
is a bijection from Xn to P({0, 1, 2}) ∩ ι

(
(m−1Z)2). Consequently, it remains to show that Pn =

P({0, 1, 2}) ∩ ι
(
(m−1Z)2), where

ι
(
(m−1Z)2

)
=
{
p(0) + i1

m
b1 + i2

m
b2 : i ∈ Z2

}
is a grid anchored at p(0) and spanned by m−1b1 and m−1b2. Note that

p(0)
e =

(
k − 4
k

,
2
k
,

2
k
, 0
)t

,

so np(0)
e ∈ Z{0,1}2 since n ∈ N , and hence p(0) ∈ Pn by the definition of Pn. Next, we show that Pn is

on the grid, i.e. Pn ⊆ ι
(
(m−1Z)2). For this purpose fix p ∈ Pn and let x = ι−1(p), i.e. mp ∈ Z{0,1,2},

n(Wp) ∈ Z{0,1}2 and p = p(0) + x1b1 + x2b2. This directly gives mx2 = mp(2) ∈ Z. Further, we
notice that b2 is in the kernel of W from Equation (21), i.e. Wb2 = 0{0,1}2 , and Wb1 = d

kw with
w = (1,−1,−1, 1)t. This directly gives pe(1, 1) = 0 + d

kx1 + 0 and hence mx1 = npe(1, 1) ∈ Z,
i.e. x ∈ (m−1Z)2 and hence p = ι(x) ∈ ι

(
(m−1Z)2). Conversely, for any x ∈ Xn and with p = ι(x) we

have p ∈ P({0, 1, 2}) since x ∈ X , further mp = mp(0) + (b1, b2)(mx) ∈ Z{0,1,2} since mx ∈ Z2 and the
other terms on the right-hand side are integer valued by definition, and finally npe = np

(0)
e +mx1w ∈

Z{0,1}2 .

Using Lemma 5.11 we have E[Z(2)
c ] = ∑

x∈Xn
E(ιn(x)), where Xn ⊆ R2 may be considered as

a normalization of the grid Pn ⊆ p(0) + 1t
{0,1,2}. In order to prepare the upcoming asymptotics of

the second moment, we give a complete characterization of the convex polytope X and the image of
X under W (b1, b2), i.e. the image pe = Wp of p ∈ P({0, 1, 2}) under W from Equation (21). Let
w = (1,−1,−1, 1)t from the proof of Lemma 5.11, and set

W =
{
p(0)

e + yw : y ∈ [0, 2/k]
}

⊆ P({0, 1}2), Xp =
{
x ∈ X : x1 = k

d
p(1, 1)

}
for p ∈ W.

Moreover, recall the definition of p∗ from (20) and the bijection ι from (23), and let

x(0) =
(

0
0

)
, x(1) = d−1

(
1
0

)
, x(2) = d−1

(
2
d

)
∈ R2 and x∗ = ι−1(p∗).

Lemma 5.12. The set X is a two-dimensional convex polytope with corners x(0), x(1), x(2), and x∗ is
in the interior of X . The image of X under W (b1, b2) is the one-dimensional convex polytope W with
corners p(0)

e and p(2)
e . Further, the preimage of p ∈ W under W (b1, b2) is Xp, where X

p
(s)
e

= {p(s)} for
s ∈ {0, 2} and the intersection of Xp with the interior of X is non-empty otherwise.

Proof. Notice that ι(x(s)) = p(s) for s ∈ {0, 1, 2}, so since P({0, 1, 2}) is the convex hull of its corners
p(s), s ∈ {0, 1, 2}, we have that X is the convex hull of x(s), s ∈ {0, 1, 2}, i.e. a two-dimensional convex
polytope with corners x(s), since ι is an affine transformation. In particular this also directly yields
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that x∗ is in the interior of X . Further, this shows that for any x ∈ X we have x1 ≥ 0 with equality
iff x = x(0) and further x1 ≤ 2

d with equality iff x = x(2). Using Wb2 = 0{0,1}2 and Wb1 = d
kw from

the proof of Lemma 5.11 we directly get that

W (b1, b2)x = p(0)
e + d

k
x1w with d

k
x1 ∈ [0, 2/k],

hence the image of X under W (b1, b2) is a subset of W. Conversely, for y ∈ [0, 2/k] and x = k
2yx

(2) ∈ X
we have W (b1, b2)x = p

(0)
e + yw, which shows that W is the image of X under W (b1, b2). This also

shows that Xp is the preimage of p ∈ W, since for y ∈ [0, 2/k] and p = p
(0)
e + yw we have p(1, 1) = y.

This in turn directly yields that X
p

(s)
e

= {p(s)} for s ∈ {0, 2}. To see that Xp contains interior points
of X otherwise, we can consider non-trivial convex combinations of x∗ and x(0) for k

dp(1, 1) < x∗
1 and

non-trivial convex combinations of x∗ and x(2) for k
dp(1, 1) > x∗

1, which are points in the interior of
X .

Notice that in the two-dimensional case at hand, the proof of Lemma 5.12 is overly formal. The
set X is simply (the convex hull of) the triangle given by x(s), s ∈ {0, 1, 2}, with Xp given by the
vertical lines in X with x1 = d

kp(1, 1). Further, the set Xn is a canonical discretization of X in that
it is given by the points of the grid (m−1Z)2 contained in the triangle X .

5.5.4 Proof of Lemma 5.4. We derive Lemma 5.4 from the following stronger assertion.

Lemma 5.13. Let U ⊆ P({0, 1, 2}) be a subset with non-empty interior and such that the closure of
U is contained in the interior of P({0, 1, 2}). Then there exists a constant c = c(U) ∈ R>0 such that
for all n ∈ N and all p ∈ Pn ∩ U we have Ẽ(p)e−c/n ≤ E(p) ≤ Ẽ(p)ec/n, where

Ẽ(p) =
√

d3

(2π)2m2∏
s p(s)

enϕ2(p).

Proof. Let C denote the closure of U and πs : C → [0, 1], p 7→ p(s) the projection for s ∈ {0, 1, 2}. Since
C is compact, the continuous map πs attains its maximum p+(s) and its minimum p−(s), which directly
gives 0 < p−(s) < p+(s) < 1 since all p ∈ C are fully supported and the interior of C is non-empty (that
gives the second inequality). Using Lemma 5.12, the continuous map π : C → [0, 2/k], p 7→ pe(1, 1),
and the same reasoning as above we obtain the maximum pe,+(1, 1) and minimum pe,−(1, 1) of π with
0 < pe,−(1, 1) < pe,+(1, 1) < 2/k, which directly give the bounds pe,−(x), pe,+(x) > 0 for x ∈ {0, 1}2 as
functions of pe,+(1, 1) and pe,−(1, 1). Now, we can use these bounds with the Stirling bound to obtain
a constant c ∈ R>0 such that for all n ∈ N and p ∈ Pn ∩ C we have E′(p)e−c/n ≤ E(p) ≤ E′(p)ec/n,
where

E′(p) =
√

2πmd3∏
s(2πmp(s))

∏
s∈{0,1,2}

(
k

s, 2 − s, 2 − s, k − 4 + s

)mp(s)

emH(p)−(d−1)nH(pe)

=
√

d3

(2π)2m2∏
s p(s)

e2m ln (k
2)−mDKL(p∥p∗)−(d−1)nH(pe).

To see that E′(p) = Ẽ(p), we observe that DKL(pe∥p∗
e) = 2H(2/k) −H(pe), since H(p∗

e) = 2H(2/k),
pe(1, 0) = pe(0, 1), and pe(1, 1) + pe(1, 0) = 2/k for any p ∈ P({0, 1, 2}).
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Now, Lemma 5.4 is an immediate corollary. To see this, fix a fully supported overlap distribution
p ∈ P({0, 1, 2}) and a sequence (pn)n∈N ⊆ Pn converging to p, e.g. pn = ι(m−1⌊mx1⌋,m−1⌊mx2⌋)
with ι(x) = p and n sufficiently large. Further, fix a neighborhood U of p as described in Lemma 5.13,
which is possible since p is fully supported. Then we have pn ∈ U for sufficiently large n, hence with
the continuity of ϕ2 we have

lim
n→∞

1
n

ln(E(pn)) = lim
n→∞

1
n

ln(Ẽ(pn)) = lim
n→∞

ϕ2(pn) = ϕ2(p).

5.5.5 Proof of Proposition 5.6. We postpone the proof of Proposition 5.5 and continue with
Laplace’s method for sums using the result. We obtain that

E[Z2
c ]

E[Zc]2
=
∑
p

e(p), e(p) = E(p)
E[Zc]2

=
( 2n/k
npe(1,1)

)((k−2)n/k
npe(0,1)

)( dn
2dn/k

)(m
mp

)∏
s p

∗(s)mp(s)( 2dn/k
dnpe(1,1)

)((k−2)dn/k
dnpe(0,1)

)( n
2n/k

) ,

where the sum is over p ∈ Pn. First, we use Proposition 5.5 to show that Laplace’s method of sums is
applicable. While we have already established that ∆d∗ is non-negative, we still need to ensure that
p∗ is the unique minimizer of ∆d for d < d∗ and that the Hessian at p∗ is positive definite. We will
need the second order Taylor approximation of the KL divergence. To be specific, let µ∗ have finite
non-trivial support S and let f : P(S) → R≥0, µ 7→ DKL(µ∥µ∗), be the corresponding KL divergence.
Then

f (2) : P(S) → R≥0, µ 7→ 1
2Dχ2(µ∥µ∗) = 1

2
∑
s

(µ(s) − µ∗(s))2

µ∗(s) = 1
2(µ− µ∗)tD−1

µ∗ (µ− µ∗),

is the second order Taylor approximation of f at µ∗, where Dχ2(µ∥µ∗) denotes Pearson’s χ2 divergence,
Dµ∗ = (δi,jµ∗(i))i,j∈S the matrix with µ∗ on the diagonal, and δi,j = 1 if i = j and 0 otherwise; this
can be easily seen by considering the extension of f to RS

≥0. On the other hand, we would like to
consider ∆d as a function over the suitable domain X from Section 5.5.3, however relative to the base
point p∗. Hence, let X ∗ = {x − x∗ : x ∈ X } be the triangle X centered at x∗ instead of x(0), and
ι∗ : X ∗ → P({0, 1, 2}) the bijection given by

ι∗(x) = ι(x+ x∗) = p(0) + (b1, b2)x+ (b1, b2)x∗ = ι(x∗) + (b1, b2)x = p∗ + (b1, b2)x

for x ∈ X ∗, with b1, b2 from Equation (22). Now, let γd : X ∗ → R≥0, x 7→ ∆d(ι∗(x)), denote the
corresponding parametrization of ∆d. Then, using the chain rule for multivariate calculus as indicated
above for both (b1, b2) and W from (21), we derive the Hessian

Hd = (b1, b2)t
(
D−1
p∗ − (d− 1)k

d
W tD−1

p∗
e
W

)
(b1, b2) (24)

of γd at 0[2] ∈ R2, using the shorthand Dµ∗ = (δi,jµ∗(i))i,j . The properties of the KL divergence imply
that γd(0[2]) = 0 and γd has a stationary point at 0[2]. Now, the second order Taylor approximation
γ

(2)
d : X ∗ → R, x 7→ 1

2x
tHdx, of γd at 0[2] can be written as γ(2)

d = ∆(2)
d ◦ ι∗ with

∆(2)
d (p) = 1

2

[
Dχ2(p∥p∗) − (d− 1)k

d
Dχ2(pe∥p∗

e)
]
. (25)
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Further, for any neighborhood U of 0[2] such that the closure of U is contained in the interior of X ∗,
Taylor’s theorem yields a constant c ∈ R>0 such that

γ
(2)
d (x) − c∥x∥3

2 ≤ γd(x) ≤ γ
(2)
d (x) + c∥x∥3

2 (26)

for all x ∈ U . Since Hd is symmetric, let λ1, λ2 ∈ R with λ1 ≤ λ2 denote its eigenvalues and fix a
corresponding orthonormal basis of eigenvectors v1, v2 ∈ R2, i.e. Hdv1 = λ1v1 and Hdv2 = λ2v2.

Formally and analogously to the KL divergence we will take the liberty to identify ∆d and ∆(2)
d

with their extensions to the maximal domains D ⊆ R{0,1,2} and D(2) = R{0,1,2} respectively. In
particular, Lemma 5.12 shows that for any fully supported p ∈ P({0, 1, 2}) the edge distribution pe
also has full support, hence we can use the Lipschitz continuity of W on R{0,1,2} to find ε ∈ R>0 such
that both p′ > 0 and Wp′ > 0 for any p′ ∈ Bε(p) ⊆ R{0,1,2}

>0 and thereby ∆d is well-defined and smooth
on Bε(p).

Lemma 5.14. Let k ∈ Z≥4 and d ∈ (0, d∗). Then the unique minimizer of γd is 0[2] and Hd is positive
definite.

Proof. Using Proposition 5.5 we know that Hd∗ is positive semidefinite since 0[2] is a global minimum
of γd∗ . This in turn yields that γ(2)

d∗ ≥ 0 or equivalently ∆(2)
d∗ ≥ 0. Now, for any d < d∗ the unique

minimizer of ∆d is p∗ since ∆d(p∗) = 0, further ∆d(p) > 0 for any p ̸= p∗ with pe = p∗
e and

∆d(p) = DKL(p∥p∗) −
(

1 − 1
d

)
kDKL(pe∥p∗

e) > ∆d∗(p) ≥ 0

for any p with pe ̸= p∗
e . But the same argumentation shows that p∗ is the unique minimizer of ∆(2)

d ,
since Dχ2(µ∥µ∗) is also minimal with value 0 iff µ = µ∗. This in turn shows that γ(2)

d is uniquely
minimized at 0[2] and hence Hd is positive definite.

Let ηKL = supp ̸=p∗
DKL(pe∥p∗

e )
DKL(p∥p∗) denote the contraction coefficient with respect to the KL divergence.

Notice that by Proposition 5.5 we have d∗

(d∗−1)k ≥ DKL(pe∥p∗
e )

DKL(p∥p∗) for all p ̸= p∗ with equality for p = p(2),
hence ηKL = d∗

(d∗−1)k (so Proposition 5.5 indeed confirms the conjecture by the authors in [101]). Fur-

ther, let ηχ2 = supp̸=p∗
Dχ2 (pe∥p∗

e )
Dχ2 (p∥p∗) denote the contraction coefficient with respect to the χ2 divergence.

The proof of Lemma 5.14 suggests that ηχ2 ≤ ηKL, a result known from literature.
In the rest of this section we discuss the straightforward (but cumbersome) application of Laplace’s

method for sums. For convenience, we first show that the boundaries can be neglected and derive the
asymptotics of the sum on the interior using the uniform convergence established in Lemma 5.13.

Lemma 5.15. Let d ∈ (0, d∗) and let U be a neighborhood of p∗ such that its closure is contained in
the interior of P({0, 1, 2}). Then

E[Z2
c ]

E[Zc]2
=
∑
p∈Pn

e(p) = (1 + o(1))
∑

p∈Pn∩U

√
d

(2π)2m2∏
s p(s)

e−m∆d(p).

Proof. Let ∆min > 0 denote the global minimum of ∆ on P({0, 1, 2}) \ U . Now, we can use the well-
known bounds 1

a+1 exp(aH( ba)) ≤
(a
b

)
≤ exp(aH( ba)) for binomial coefficients and the corresponding
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upper bound for multinomial coefficients (using the entropy of the distribution determined by the
weights bi

a ) to derive

∑
p̸∈U

e(p) ≤ ρ(n)
∑
p ̸∈U

e−m∆d(p) ≤ ρ(n)e−m∆min |Pm({0, 1, 2})| = ρ(n)
(
m+ 1

2

)
e−m∆min , where

ρ(n) = (n+ 1)
(2dn

k
+ 1

)((k − 2)dn
k

+ 1
)

.

Here, we used the form of e(p) introduced at the beginning of this section and further notice that the
bounds used are tight for the log-densities, i.e. the exponent is ∆d(p) by the computations in Section
5.5.4. The right hand side vanishes for n tending to infinity, hence we have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

∑
p∈U

e(p).

Now, the result directly follows using Lemma 5.13 and Lemma 5.2.

Lemma 5.15 shows that the overlap distributions p with material contributions e(p) to the second
moment are concentrated around p∗. Hence, instead of considering a fixed neighborhood U of p∗ we
consider a sequence (Un)n∈N of decreasing neighborhoods. First, we choose a scaling that improves
the assertion of Lemma 5.15 and further allows to simplify the asymptotics of the right hand side,
in the sense that the leading factor collapses to a constant and γd(x) = ∆d(ι∗(x)) can be replaced
by its second order Taylor approximation γ

(2)
d (x) = ∆(2)

d (ι∗(x)) = 1
2x

tHdx from above (25). For this
purpose let U∗ ⊆ X ∗ be a sufficiently small neighborhood of 0[2] (in particular bounded away from
the boundary of X ∗), further

U∗
n =

{
x ∈ X ∗ : ∥x∥2 <

ln(m)√
m

}
and X ∗

n = {x− x∗ : x ∈ Xn} ∩ U∗
n for n ∈ N .

In the following we restrict to n ≥ n0 where n0 ∈ N is such that U∗
n0 ⊆ U∗.

Lemma 5.16. For d ∈ (0, d∗) we have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

√
d

(2π)2m2∏
s p

∗(s)
∑
x∈X ∗

n

e− m
2 x

tHdx.

Proof. First, notice that we can apply Lemma 5.15 to ι∗(U∗). So, we need to show that the sum over
U∗ \ U∗

n is negligible. Then we proceed to derive the asymptotics of the sum over U∗
n. Obviously, we

have γmin(n) → 0 for n → ∞ with γmin(n) = minx ̸∈U∗
n
γd(x) > 0, since γd(x) = ∆d(ι∗(x)) is continuous

and γd(0[2]) = 0. The main objective of the proof is to show that γmin(n) converges to zero sufficiently
slow. But with γ

(2)
d (x) = 1

2x
tHdx from above (25) and for any x ∈ R2 we have

γ
(2)
d ((v1, v2)x) = 1

2(λ1x
2
1 + λ2x

2
2) ≥ λ1

2 ∥x∥2
2 = λ1

2 ∥(v1, v2)x∥2
2

since (v1, v2) is an orthonormal basis, so γ(2)
d (x) ≥ λ1

2 ∥x∥2
2 for all x ∈ R2. Now, for any sufficiently

small ε ∈ (0, 1) let c ∈ R>0 be the constant for Bε(0[2]) from Taylor’s theorem applied to γd at 0[2],
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then for any x ∈ U∗ = Bε(0[2]) ∩ Bδ(0[2]), with δ = ελ1
2c , we have γd(x) ≥ (1 − ε)γ(2)

d (x) since

γd(x) − (1 − ε)γ(2)
d (x) ≥ εγ

(2)
d (x) − c∥x∥3

2 ≥
(
ελ1
2 − cδ

)
∥x∥2

2 = 0.

In combination we have γd(x) ≥ (1−ε)λ1
2 ∥x∥2

2 and using p = ι∗(x) hence

lim
n→∞

∑
x̸∈U∗

n

e(p) = lim
n→∞

∑
x∈U∗\U∗

n

√
d

(2π)2m2∏
s p(s)

e−mγd(x) ≤ lim
n→∞

Cme− (1−ε)λ1
2 ln(m)2 = 0,

by using (the proof of) Lemma 5.15 and some sufficiently large constant C. With this we have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

∑
x∈X ∗

n

e(ι∗(x)) = (1 + o(1))
√

d

(2π)2m2∏
s p

∗(s)
∑
x∈X ∗

n

e−mγ(2)
d

(x),

where the last equivalence follows from the fact that the leading factor converges to the respective
constant uniformly on U∗

n and by (26) on U∗.

Lemma 5.16 completes the analytical part of the proof. For the last, measure theoretic, part we
recall the bijection ιn from Lemma 5.11. The translation of the sum on the right-hand side of Lemma
5.16 into a Riemann sum and further into the integral

∫
g∞(x)dx, where

g∞ : R2 → R>0, y 7→
√

d

(2π)2∏
s p

∗(s) exp
(

−1
2y

tHdy

)
,

is essentially given by the grid Xn ⊆ (m−1Z)2 ⊆ R2. We make this rigorous in the following.

Lemma 5.17. We have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

∫
g∞(x)dx.

Proof. We start with the partition of R2 into the squares

Qn,x =
{
x+ α1

(
1
0

)
+ α2

(
0
1

)
: α ∈

[
− 1

2m,
1

2m

)2
}

, x ∈ (m−1Z)2.

Next, we need a suitable selection of squares to cover the disc

x∗ + U∗
n =

{
x∗ + x : x ∈ R2, ∥x∥2 <

ln(m)√
m

}
⊆ R2

corresponding to the disc U∗
n. For this purpose let xmin, xmax ∈ (m−1Z)2 be given by

xmin,1 = m−1
⌊
m

(
x∗

1 − ln(m)√
m

)⌋
, xmin,2 = m−1

⌊
m

(
x∗

2 − ln(m)√
m

)⌋
,

xmax,1 = m−1
⌈
m

(
x∗

1 + ln(m)√
m

)⌉
, xmax,2 = m−1

⌈
m

(
x∗

2 + ln(m)√
m

)⌉
.
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Further, let Gn = (m−1Z)2 ∩ ([xmin,1, xmax,1] × [xmin,2, xmax,2]). By the definition of xmin and xmax the
points on the boundary are not in x∗ + U∗

n, which ensures that x∗ + U∗
n ⊆ Qn with Qn = ⋃

x∈Gn
Qn,x.

Further, we have Q− ⊆ Qn ⊆ Q+ with

Q− =
{
x ∈ R2 : ∥x− x∗∥∞ ≤ ln(m)√

m

}
, Q+ =

{
x ∈ R2 : ∥x− x∗∥∞ ≤ ln(m)√

m
+ 3

2m

}
,

which ensures that Qn ⊆ X for n ∈ N sufficiently large. Now, we translate the notions back to X ∗

using the bijection τ : R2 → R2, x 7→ x − x∗, i.e. let G∗
n = τ(Gn), Q∗

n,x = τ(Qn,τ−1(x)) for x ∈ G∗
n,

Q∗
n = τ(Qn), Q∗

− = τ(Q−) and Q∗
+ = τ(Q+). This directly gives

Q∗
n,x =

{
x+ α1

(
1
0

)
+ α2

(
0
1

)
: α ∈

[
− 1

2m,
1

2m

)2
}

, x ∈ G∗
n, Q∗

n =
⋃
x∈G∗

n

Q∗
n,x,

Q∗
− =

{
x ∈ R2 : ∥x∥∞ ≤ ln(m)√

m

}
, Q∗

+ =
{
x ∈ R2 : ∥x∥∞ ≤ ln(m)√

m
+ 3

2m

}
,

and U∗
n ⊆ Q∗

− ⊆ Q∗
n ⊆ Q∗

+ ⊆ X ∗ for n ∈ N sufficiently large. Further, with Lemma 5.16 and the
definition of γ(2)

d we now have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

∑
x∈G∗

n

√
d

(2π)2m2∏
s p

∗(s) exp
(

−1
2mx

tHdx

)
.

Finally, we need to adjust the scaling to turn the sum on the right hand side into a Riemann sum.
For this purpose let σ : R2 → R2, x 7→

√
mx, further G′

n = σ(G∗
n), Q′

n,x = σ(Q∗
n,σ−1(x)) for x ∈ G′

n,
Q′
n = σ(Q∗

n), Q′
− = σ(Q∗

−) and Q′
+ = σ(Q∗

+). This directly gives

Q′
n,x =

{
x+ α1

(
1
0

)
+ α2

(
0
1

)
: α ∈

[
− 1

2
√
m
,

1
2
√
m

)2
}

, x ∈ G′
n, Q′

n =
⋃
x∈G′

n

Q′
n,x,

Q′
− =

{
x ∈ R2 : ∥x∥∞ ≤ ln(m)

}
, Q′

+ =
{
x ∈ R2 : ∥x∥∞ ≤ ln(m) + 3

2
√
m

}
,

and Q′
− ⊆ Q′

n ⊆ Q′
+. Using that mxtHdx = σ(x)tHdσ(x) for all x ∈ G∗

n and further that the area of
Q′
n,x is m−1 for all x ∈ G′

n we have

E[Z2
c ]

E[Zc]2
= (1 + o(1))

∑
x∈G′

n

√
d

(2π)2m2∏
s p

∗(s) exp
(

−1
2x

tHdx

)
= (1 + o(1))

∫
gn(y)dy,

gn(y) =
∑
x∈G′

n

1{y ∈ Q′
n,x}

√
d

(2π)2∏
s p

∗(s) exp
(

−1
2x

tHdx

)
, y ∈ R2.

In order to show that
∫
gn(y)dy converges to

∫
g∞(y)dy we recall from Lemma 5.14 that Hd is positive

definite, which ensures that
∫
g∞(y)dy exists and is finite. Now, using Taylor’s theorem with order

0 and the Lagrange form of the first order remainder with the fact that the absolutes of the first
derivatives of g∞ are bounded from above yields a constant c ∈ R>0 such that for all n ∈ N and all
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y ∈ Q′
n, with x ∈ G′

n such that y ∈ Q′
n,x, we have

∥g∞(y) − gn(y)∥∞ = ∥g∞(y) − g∞(x)∥∞ ≤ c√
m

.

This bound directly suggests that∣∣∣∣∫ 1{y ∈ Q′
n,x}g∞(y)dy −

∫
1{y ∈ Q′

n,x}gn(y)dy
∣∣∣∣ ≤ cm− 3

2 ,∣∣∣∣∫ 1{y ∈ Q′
n}g∞(y)dy −

∫
1{y ∈ Q′

n}gn(y)dy
∣∣∣∣ ≤ c√

m

(
2 ln(m) + 3√

m

)2
and∣∣∣∣∫ g∞(y)dy −

∫
gn(y)dy

∣∣∣∣ ≤ c√
m

(
2 ln(m) + 3√

m

)2
+
∫
1{y ̸∈ Q′

n}g∞(y)dy.

In particular the last bound suggests that
∫
gn(y)dy →

∫
g∞(y)dy since the error on the right-hand

side tends to zero as n tends to infinity.

The only remaining part of the proof is to compute
∫
g∞(x)dx. However, instead of computing the

main quantity det(Hd), i.e. the determinant of a two by two matrix, directly, we present an arguably
more insightful and in particular generalizable argument.

Lemma 5.18. We have
∫
g∞(x)dx =

√
k−1
k−d .

Proof. The Gaussian integral gives

∫
g∞(x)dx =

√
d

(2π)2∏
s p

∗(s)

√
(2π)2

det(Hd)
=
√

d

det(Hd)
∏
s p

∗(s) .

In order to compute det(Hd) we want to extract det(D−1
p∗ ) which in turn requires to split away

(b1, b2). Hence, we are ultimately interested in the decomposition Hd = (b1, b2)tD−1
p∗ M(b1, b2) with

M = I{0,1,2} − (d−1)k
d Dp∗W tD−1

p∗
e
W and I{0,1,2} = D1{0,1,2} denoting the identity matrix. First, in

order to extract (b1, b2) we add b0 = p∗. Recall that b1, b2 span 1⊥
{0,1,2}, hence B = (b0, b1, b2) ∈

R{0,1,2}×{0,1,2} is a basis of R{0,1,2}. Further, since p∗
e = Wp∗ and W is column stochastic, hence

W t is row stochastic, we have Mp∗ = λ0p
∗ with λ0 = 1 − (d−1)k

d and further D−1
p∗ Mp∗ = λ01{0,1,2},

so bt
0D

−1
p∗ Mb0 = λ0 since p∗ is normalized, and bt

sD
−1
p∗ Mb0 = bt

0D
−1
p∗ Mbs = 0 since bs ∈ 1⊥

{0,1,2} for
s ∈ {1, 2} and D−1

p∗ M is symmetric. Combined, this gives

BtD−1
p∗ MB =

(
λ0 0{0}×[2]

0[2]×{0} Hd

)
,

so det(BtD−1
p∗ MB) = λ0 det(Hd). Notice that for d ̸= k

k−1 (which is the case for all d ∈ Z>0) we have
λ0 ̸= 0. Next, we compute det(B) using Gaussian elimination. Stepwise, we let b̃1 = d−1b1 by right
multiplication of G1 ∈ R{0,1,2}×{0,1,2}, then b̃2 = b2 +2b̃1 by right multiplication of G2 ∈ R{0,1,2}×{0,1,2}

and finally b̃0 = b0 −p∗(1)b̃1 −p∗(2)b̃2 by right multiplication with G0 ∈ R{0,1,2}×{0,1,2}. Combined, we
have B̃ = (b̃0, b̃1, b̃2) = BG1G2G0, where B̃ is an upper triangular matrix with ones on the diagonal
due to the scaling of b1 and normalization of p∗ and hence det(B̃) = 1, further G1 is a diagonal matrix
with det(G1) = d−1, G2 is an upper triangular matrix with det(G2) = 1 and G0 is a lower triangular
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matrix with det(G0) = 1, so det(B) = d. This directly yields

det(Hd) = det(M)d2

λ0
∏
s p

∗(s) .

Recall that b0 = p∗ is an eigenvector of M with eigenvalue λ0, and further b2 is an eigenvector of M
with eigenvalue λ2 = 1 since Wb2 = 0. The remaining eigenvector is given by Lemma 5.12 as follows.
First, notice that W ′ = Dp∗W tD−1

p∗
e

∈ R{0,1,2}×{0,1}2 is given by W ′
s,x = Wx,sp∗(s)

p∗
e (x) for s ∈ {0, 1, 2} and

x ∈ {0, 1}2, so in particular W ′ is a column stochastic transition probability matrix.
Aside, the transition probabilities W and W ′ have a very intuitive interpretation. For this purpose

let X∗ be a uniformly random satisfying constraint assignment for the squared constraint satisfaction
problem introduced in Section 5.5.1, i.e. X∗ ∈ ({0, 1}2)k with ∑iX

∗
i,1 = ∑

iX
∗
i,2 = 2. Further, let

S∗ be the overlap of X∗, i.e. S∗ = |X∗−1(1, 1)| ∈ {0, 1, 2}, and let I ∈ [k] be the uniformly random
coordinate. Then P(S∗ = s,X∗

I = x) = Wx,sp
∗(s) for s ∈ {0, 1, 2} and x ∈ {0, 1}2, S∗ ∼ p∗, X∗

I ∼ p∗
e ,

further P(X∗
I = x|S∗ = s) = Wx,s and P(S∗ = s|X∗

I = x) = W ′
s,x. In particular, the columns of W ′

are hypergeometric distributions up to a shift of one for x = (1, 1).
Now, we easily verify that the Markov chain induced by W ′W has the stationary distribution

p∗ and the Markov chain induced by WW ′ has the stationary distribution p∗
e . For any distribution

p ∈ P({0, 1}2) we have W ′p ∈ P({0, 1, 2}) and hence WW ′p = p∗
e + αw for some α ∈ R by Lemma

5.12, so WW ′(p − p∗
e) = αw. Choosing p ∈ W directly yields that (p − p∗

e) is in the span of w and
hence w needs to be an eigenvector of WW ′. The corresponding eigenvalue λ′

1 = 1
k−1 , determined by

WW ′w = λ′
1w, can be thought of as the rate of convergence to the stationary distribution p∗

e . From
this we directly get the eigenvector v1 = W ′w for W ′W with eigenvalue λ′

1 and by that the eigenvector
v1 for M with eigenvalue λ1 = 1 − (d−1)k

d(k−1) = k−d
d(k−1) . Knowing all eigenvalues of M this gives

det(Hd) = λ1d
2∏

s p
∗(s) and hence

∫
g∞(x)dx =

√
1
dλ1

=
√
k − 1
k − d

.

Notice that a direct corollary of Lemma 5.18 is that ηχ2 = 1
k−1 or equivalentlyHd is positive definite

for d < k, e.g. since det(Hd) > 0 for d < k and Hd is positive definite for d = 1, hence no eigenvalue
can change sign using the continuity of Hd with respect to d. For d = k the determinant is zero (so
an eigenvalue is 0 and ∆(2)

d ≡ 0 along the direction of the eigenvector), hence ηχ2 = k
(k−1)k = 1

k−1 ,
which is the squared Hirschfeld-Gebelein-Rényi maximal correlation [82]. Finally, combining Lemma
5.17 with Lemma 5.18 completes the proof of Proposition 5.6.

5.5.6 Proof of Proposition 5.5. We start with a characterization of the stationary points of ∆d for
any d ∈ R>0. In order to determine these, we first determine the stationary points of the restriction
of ∆d to overlap distributions with the same fixed edge distribution. For this purpose, recall the line
W ⊆ P({0, 1}2) of attainable edge distributions and the lines Pq = ι(Xq) = {p ∈ P({0, 1, 2}) : pe = q}
of overlap distributions with fixed edge distribution q ∈ W from Lemma 5.12. Further, let ∆d,q :
Pq → R denote the restriction of ∆d to Pq. For x ∈ R>0 let px ∈ P({0, 1, 2}) be given by px(s) =
p∗(s)xs/∑s p

∗(s)xs, s ∈ {0, 1, 2}, further let p0 = p(0), p∞ = p(2), and Pmin = {px : x ∈ [0,∞]}.
Finally, let ιrp : [0,∞] → Pmin, x 7→ px, denote the induced map and ιpe : Pmin → W, p 7→ pe, the
corresponding edge distributions.
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Lemma 5.19. For all q ∈ W \ {p(0)
e , p

(2)
e } the map ∆d,q has a unique stationary point pq ∈ Pq that is

a global minimum. The unique global minimizer of ∆
d,p

(s)
e

is p
p

(s)
e

= p(s) for s ∈ {0, 2}. Further, we
have Pmin = {pq : q ∈ W} and the maps ιrp, ιpe are bijections.

Proof. Recall from Lemma 5.12 that Pq is one-dimensional for q ∈ W \ {p(0)
e , p

(2)
e }. Further, the

map ∆d,q is strictly convex since the KL divergence DKL(p∥p∗) (respectively x ln(x)) is and further
DKL(pe∥p∗

e) = DKL(q∥p∗
e) is constant. Now, fix an interior point p◦ ∈ Pq and let a boundary point

pb ∈ Pq be given. Then pb is not fully supported since it is on the boundary of P({0, 1, 2} and hence
the derivative of DKL(αp◦ + (1 −α)pb∥p∗) tends to −∞ as α tends to 0, which shows that ∆d,q is not
minimized on the boundary. Hence, we know that there exists exactly one stationary point pq ∈ Pq
and that ∆d,q(p) is minimal iff p = pq. As discussed in Lemma 5.12 we have Pq = {p(s)} for q = p

(s)
e

and s ∈ {0, 2}, so pq = p(s) is obviously the unique global minimizer of ∆d,q in this case and further
∆d,q has no stationary points (since Pq has empty interior). This shows that the map q 7→ pq for
q ∈ W is a bijection.

Further, for q in the interior of W the stationary point pq is fully supported and the unique root
of the first derivative of ∆d,q in the direction b2 from (22), i.e.

ln
(
pq(0)
p∗(0)

)
+ ln

(
pq(2)
p∗(2)

)
= 2 ln

(
pq(1)
p∗(1)

)
or equivalently pq(2)/p∗(2)

pq(1)/p∗(1) = pq(1)/p∗(1)
pq(0)/p∗(0) .

Let P ′
min denote the set of all fully supported p ∈ P({0, 1, 2}) satisfying p(2)/p∗(2)

p(1)/p∗(1) = p(1)/p∗(1)
p(0)/p∗(0) , i.e. our

set of candidates for stationary points. Now, for p ∈ P ′
min let q = pe, then we obviously have p ∈ Pq

and p is a root of the first derivative of ∆d,q in the direction b2, so p is the unique root and p = pq.
Hence, the map ι′pe : P ′

min → W, p 7→ pe, is a bijection (up to the corners of W) with inverse q 7→ pq.
Now, let ιpr : P ′

min → R>0, p 7→ xp, with xp = p(1)p∗(0)
p∗(1)p(0) . Notice that ιpr is surjective since for any

x ∈ R>0 we have

px(2)/p∗(2)
px(1)/p∗(1) = x2

x
= x = px(1)/p∗(1)

px(0)/p∗(0)

and hence px ∈ P ′
min. To show that ιpr is injective let p ∈ P ′

min and x = xp. Using the definition of
xp and the defining property of P ′

min we get

p(0) = p∗(0) p(0)
p∗(0) , p(1) = p∗(1)x p(0)

p∗(0) , p(2) = p∗(2)x p(1)
p∗(1) = p∗(2)x2 p(0)

p∗(0) , so

p(s) = p(s)
p(0) + p(1) + p(2) = p∗(s)xs∑

s p
∗(s)xs = px(s), s ∈ {0, 1, 2}.

This shows that Pmin = P ′
min ∪ {p0, p∞}, that ιrp is a bijection with inverse ιpr (canonically extended

to the endpoints), and finally that ιpe = ι′pe is a bijection as well.

Lemma 5.19 has a few immediate consequences. For one, the only minimizers of ∆d in the direction
b2, from (22), on the boundary are p(0) and p(2), while all other boundary points are maximizers in the
direction b2, hence if p is a global minimizer of ∆d on the boundary, we have p ∈ {p(0), p(2)}. Further,
all stationary points of ∆d are either local minima or saddle points. Finally, we have p ∈ Pmin for any
stationary point p ∈ P({0, 1, 2}) of ∆d since then also the derivative in the direction of b2 vanishes.
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For the upcoming characterization of the stationary points of ∆d let

ιrr : R>0 → R>0, ιrr(x) = ι∗rr(x)
d−1

d , ι∗rr(x) = px,e(1, 1)px,e(0, 0)
px,e(1, 0)px,e(0, 1) .

Notice that ιrr(x) ∈ R>0 for x ∈ R>0 since then px is fully supported and hence px,e is fully supported
by Lemma 5.12. Finally, let Xst = {x ∈ R>0 : ιrr(x) = x} denote the fixed points of ιrr and
Pst = {px : x ∈ Xst} the corresponding distributions. Notice that px = p∗ for x = 1 and further
ι∗rr(1) = 1, i.e. ιrr(1) = 1 for all d ∈ R>0, hence 1 ∈ Xst and p∗ ∈ Pst for all d ∈ R>0.

Lemma 5.20. The stationary points of ∆d are given by Pst.

Proof. Using Lemma 5.19, a fully supported distribution p ∈ P({0, 1, 2}) is a stationary point of ∆d

iff there exists x ∈ R>0 such that p = px and the derivative of ∆d at px in the direction b1 vanishes,
i.e. px is a solution of

0 =
((

ln
(
px(s)
p∗(s)

))t

s∈{0,1,2}
− (d− 1)k

d

(
ln
(
px,e(y)
p∗

e(y)

))t

y∈{0,1}2
W

)
b1,

where we used the chain rule for multivariate calculus, that W is column stochastic and that b1 ∈
1⊥

{0,1,2}. Recall from Section 5.5.3, e.g. from the proof of Lemma 5.11, that Wb1 = d
kw, hence

computing the dot product with b1 gives

0 = d ln(x) − (d− 1) ln
(
px,e(1, 1)px,e(0, 0)
px,e(1, 0)px,e(0, 1)

)
.

Obviously, equality holds if and only if x ∈ Xst, hence p is a stationary point of ∆d iff p ∈ Pst.

Lemma 5.20 does not only allow to translate the stationary points of ∆d into fixed points of ιrr,
it also allows to translate the types as follows.

Lemma 5.21. Fix x ∈ R>0. We have ιrr(x) < x iff (∆d ◦ ιrp)′(x) > 0, ιrr(x) > x iff (∆d ◦ ιrp)′(x) < 0,
and ιrr(x) = x iff (∆d ◦ ιrp)′(x) = 0.

Proof. Fix x ∈ R>0. The proof of Lemma 5.20 directly suggests that the first derivative of ∆d at px
in the direction b1 is strictly positive iff

0 < ln(x) − d− 1
d

ln(ι∗rr(x)),

which holds iff ιrr(x) < x. We’re left to establish that the direction of ιrp is consistent with b1.
Intuitively, using Lemma 5.12 and Lemma 5.19 we can argue that x 7→ px,e(1, 1) is a bijection and
hence either increasing or decreasing. Taking the limits x → 0 and x → ∞ suggests that it is
increasing, hence with c ∈ R2 given by ι′rp(x) = (b1, b2)c, we know that c1 ≥ 0.

Formally, we quantify the direction of ιrp. For this purpose we compute the derivative of ιrp at
x ∈ R>0, given by

ι′rp(x) =

sp∗(s)xs−1∑
s′∈{0,1,2} p

∗(s′)xs′ − p∗(s)xs∑s′∈{0,1,2} s
′p∗(s′)xs′−1(∑

s′∈{0,1,2} p
∗(s′)xs′

)2


s∈{0,1,2}

.
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Notice that v = ι′rp(x) ∈ 1⊥
{0,1,2}, since ιrp(R>0) ⊆ P({0, 1, 2}) or by computing ∑s vs = 0 directly.

Now, let c ∈ R2 be given by v = (b1, b2)c. This directly gives c2 = v2 and hence c1 = d−1(v1 + 2v2) =
d−1∑

s svs. Now, notice that

S = dxc1 =
∑

s,s′∈{0,1,2}
px(s)px(s′)s(s− s′)

=
∑
s>s′

px(s)px(s′)s(s− s′) −
∑
s>s′

px(s)px(s′)s′(s− s′) =
∑
s>s′

px(s)px(s′)(s− s′)2 > 0,

which directly gives c1 = S
dx ∈ R>0. Now, with ∇ =

(
∂∆d
∂p(s)(px)

)
s∈{0,1,2}

∈ R{0,1,2} denoting the partial
derivatives of ∆d at px and using the chain rule we have

(∆d ◦ ιrp)′(x) = ∇tι′rp(x) = c1∇tb1 + c2∇tb2 = c1∇tb1,

since the derivative ∇tb2 of ∆d at px in the direction b2 is zero, hence we have (∆d ◦ ιrp)′(x) > 0 iff the
derivative ∇tb1 of ∆d at px in the direction b1 is strictly positive, which is the case iff ιrr(x) < x.

Lemma 5.21 with Lemma 5.20 shows that control over ιrr gives complete control over the location
and characterization of the stationary points of ∆d. However, instead of solving the fixed point
equation given by ιrr directly, we use a slight modification inspired by the belief propagation algorithm
applied to the constraint satisfaction discussed in Section 5.5.1 and initialized with uniform messages.

For this purpose let N ∈ Z≥0, further N1, N2 ∈ [N ]0 and the hypergeometric distribution
pN,N1,N2 ∈ P(Z) be given by

pN,N1,N2(s) =
(N1
s

)(N−N1
N2−s

)(N
N2

) =
( N
N−N1−N2+s,N1−s,N2−s,s

)(N
N1

)(N
N2

) for s ∈ Z.

The latter form directly shows that pN,N1,N2 = pN,N2,N1 . Now, for y ∈ {0, 1}2 let p∗
y ∈ P({0, 1, 2}) be

given by p∗
(1,1)(s) = pk−1,1,1(s− 1), p∗

(1,0)(s) = pk−1,1,2(s), p∗
(0,1)(s) = pk−1,2,1(s), p∗

(0,0)(s) = pk−1,2,2(s)
for s ∈ {0, 1, 2}. Hence, p∗

y(s) gives the probability of seeing a certain overlap s ∈ {0, 1, 2} when
drawing two satisfying constraint assignments for the standard problem uniformly and independently,
but knowing the pair y of values of one (fixed or random) coordinate. In particular, this explains why
p∗

(1,1)(0) = 0. Further, notice that p∗
(1,0) = p∗

(0,1) and finally that the matrix W ′ in the proof of Lemma
5.18 is given by W ′ = (p∗

y)y∈{0,1}2 .
On the other hand, for y ∈ {0, 1}2 let p′

y ∈ P({0, 1, 2}) be given by p′
(1,1)(s) = pk−1,1,1(s) for

s ∈ {0, 1, 2} and further p′
y = p∗

y for y ∈ {0, 1}2 \ {(1, 1)}. Hence, knowing the value y of one
(fixed or random) coordinate, p′

y(s) gives the probability of seeing a certain overlap on the remaining
coordinates. This explains both why p′

(1,1)(s) = p∗
(1,1)(s− 1) and p′

y(s) = p∗
y(s) for y ̸= (1, 1). Finally,

for a distribution p ∈ P({0, 1, 2}) let fp : R≥0 → R≥0, x 7→
∑
s∈{0,1,2} p(s)xs, be its probability

generating function, and further ιBP : R>0 → R>0 given by

ιBP(x) = ι∗BP(x)d−1, ι∗BP(x) =
fp′

(1,1)
(x)fp′

(0,0)
(x)

fp′
(1,0)

(x)fp′
(0,1)

(x) , for x ∈ R>0.

Lemma 5.22. Fix x ∈ R>0. Then we have ιrr(x) < x iff ιBP(x) < x, ιrr(x) > x iff ιBP(x) > x, and
ιrr(x) = x iff ιBP(x) = x.



174 5.5. The Second Moment Method

Proof. First, notice that the normalization constant of px cancels out in ι∗rr, as does the normalization
constant

(k
2
)2 of p∗. Further, with v = (k− 4 + s, 2 − s, 2 − s, s)t ∈ R{0,1}2 we have Wy,s

(k
v

)
= vy

k

(k
v

)
=( k−1

v−(δy,z)z

)
for y ∈ {0, 1}2, s ∈ {0, 1, 2}, and thereby

ι∗rr(x) =

(∑
s

( k−1
k−4+s,2−s,2−s,s−1

)
xs
) (∑

s

( k−1
k−5+s,2−s,2−s,s

)
xs
)

(∑
s

( k−1
k−4+s,2−s,1−s,s

)
xs
) (∑

s

( k−1
k−4+s,1−s,2−s,s

)
xs
) for x ∈ R>0.

Now, since the normalization constants cancel out in total, this directly gives

ι∗rr(x) =
fp∗

(1,1)
(x)fp∗

(0,0)
(x)

fp∗
(1,0)

(x)fp∗
(0,1)

(x) = xι∗BP(x) for x ∈ R>0,

using that p∗
(1,1)(s) = p′

(1,1)(s− 1) for s ∈ {0, 1, 2}, hence fp∗
(1,1)

(x) = xfp′
(1,1)

(x), and p∗
y(s) = p′

y(s) for

y ̸= (1, 1). Now, we have x = ιrr(x) iff x = x
d−1

d ιBP(x) 1
d , which holds iff x

1
d = ιBP(x) 1

d , which then
again is equivalent to x = ιBP(x). Equivalence of the inequalities follows analogously.

The following part is dedicated to the identification of the fixed points of ιBP, and the only part
where we actually require r = 2 with the occupation number r as defined in Section 2.3.1. We start
with a discussion of ι∗BP. For this purpose let g∗

1, g∗
k : R≥1 → R≥1 be given by

g∗
1(x) = 1

k − 1(x− 1) + 1 and g∗
k(x) = 13k − 12

27(k − 1)(k − 2)(x− k) + 2(7k − 12)
9(k − 2) , x ∈ R≥1.

Lemma 5.23. For any k ∈ Z≥4 we have

lim
x→0

ι∗BP(x) = k − 4
k − 3 , ι∗BP(1) = 1 = g∗

1(1) and ι∗BP(k) = g∗
k(k).

For the first derivative ι∗′
BP we have

ι∗′
BP(1) = g∗′

1(1), ι∗′
BP(k) = g∗′

k(k) and lim
x→∞

ι∗′
BP(x) = 1

2(k − 2) .

Moreover, for the second derivative we have

ι∗′′
BP(x) < 0 for x ∈ (0, k), ι∗′′

BP(k) = 0, ι∗′′
BP(x) > 0 for x ∈ R>k.

For k = 4 and x ∈ R>0 we have ι∗BP(x−1) = (ι∗BP(x))−1.

Proof. Using fp(1) = 1 for the moment generating function of any finitely supported law p, we have
ι∗BP(1) = 1. Further, using that the first moment of a hypergeometric distribution pN,N1,N2 is N1N2

N and
that f ′

p(1) is the first moment of p, we have ι∗′
BP(1) = 1

k−1 + 4
k−1 −2 · 2

k−1 = 1
k−1 . The symmetry of ι∗BP

for the special case k = 4 can be seen as follows. First, recall that pN,N1,N2(s) = pN,N−N1,N2(N2 − s)
for any hypergeometric distribution pN,N1,N2 . For s ∈ {0, 1, 2} this gives

p′
(0,0)(s) = p3,2,2(s) = p3,1,2(2 − s) = p′

(1,0)(2 − s)
= p′

(0,1)(2 − s) = p3,2,1(2 − s) = p3,1,1(s− 1) = p′
(1,1)(s− 1).
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These relations can be directly translated to the moment generating functions, i.e.

fp′
(0,0)

(x) = x2fp′
(1,0)

(x−1) = x2fp′
(0,1)

(x−1) = xfp′
(1,1)

(x)

for x ∈ R>0. Using these transformations we have

ι∗BP(x−1) =
fp′

(1,1)
(x−1)fp′

(0,0)
(x−1)

fp′
(1,0)

(x−1)fp′
(0,1)

(x−1) =
x−1fp′

(1,0)
(x)x−2fp′

(0,1)
(x)

x−1fp′
(1,1)

(x)x−2fp′
(0,0)

(x) = (ι∗BP(x))−1 .

For k ∈ Z≥4 and x ∈ R>0 direct computation gives

ι∗BP(x) = 1
2(k − 2)x+ 2k − 5

2(k − 2) + (k − 1)(k − 3)(x− 1)
2(k − 2)(2x+ k − 3)2 ,

ι∗′
BP(x) = 1

2(k − 2) + (k − 1)(k − 3)(−2x+ k + 1)
2(k − 2)(2x+ k − 3)3 ,

ι∗′′
BP(x) = 4(k − 1)(k − 3)(x− k)

(k − 2)(2x+ k − 3)4 .

The remaining assertions follow immediately or with routine computations.

Lemma 5.23 has the following immediate consequences.

Corollary 5.24. For any d ∈ (0, 2] we have ι∗BP(x) ∈ (x, 1) for x ∈ (0, 1) and ι∗BP(x) ∈ (1, x) for
x ∈ R>1. In particular, p∗ is the unique minimizer of ∆d.

Proof. Using Lemma 5.23 we notice that ι∗′
BP(x) ∈ [ι∗′

BP(k), 1
k−1 ] ⊂ (0, 1) for x ∈ R≥1 and ι∗BP(x) = x

for x = 1, hence we have ι∗BP(x) ∈ (1, x) for x ∈ R>1. For k = 4 this gives ι∗BP(x) ∈ (x, 1) using
the symmetry result. For k ∈ Z>4 we have limx→0 ι

∗
BP(x) > 0, which gives x∗ = inf{x ∈ R>0 :

ι∗BP(x) ≤ x} ∈ (0, 1] using ι∗BP(1) = 1. Assume that x∗ < 1, then using the continuity of x− ι∗BP(x) we
directly get ι∗BP(x∗) = x∗, and further ι∗′

BP(x∗) ≤ 1 since ι∗BP(x) > x for x ∈ (0, x∗). But then, since
ι∗′′

BP(x) < 0 for x ∈ (0, k), this implies that ι∗′
BP(x) < 1 for x ∈ (x∗, 1] which yields that ι∗BP(1) < 1

and hence a contradiction. This shows that ι∗BP(x) ∈ (x, 1) for x ∈ (0, 1). Now, for any d ∈ (0, 2] we
have ιBP(x) ≥ ι∗BP(x) ∈ (x, 1) for x ∈ (0, 1) and ιBP(x) ≤ ι∗BP(x) ∈ (1, x) for x ∈ R>1. Hence, using
Lemma 5.21 and Lemma 5.22 we immediately get that p∗ = p1 is the unique minimizer of ∆d.

Corollary 5.24 covers the case of simple graphs that was discussed in [114]. On the other hand,
Corollary 5.24 suggests that Proposition 5.5 can only hold if d∗ > 2.

Corollary 5.25. For all k ∈ Z≥4 we have d∗ ∈ R>2.

Proof. For d ∈ R>0 let f(d) = (∆d ◦ ιrp)(∞) and notice that f(d) = k
dϕ1. Corollary 5.24 shows that

f(d) > 0 for all d ∈ (0, 2]. On the other hand, as derived in Section 5.4 we know that d∗ is the unique
root of f , which shows that d∗ > 2.

Based on Corollary 5.24 we can restrict to d ∈ R>2, while Corollary 5.25 motivates the discussion
of this interval. Further, the restriction d ∈ R>2 ensures that xd−1 is increasing and convex on
R>0. In the following we will consider the intervals R≥k, [x̄, k], [1, x̄] and (0, 1] independently, where
x̄ = 1

7(k + 6) ∈ (1, k) is the intersection of g1 and gk with g1(x̄) = gk(x̄) = 8
7 .
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Lemma 5.26. For d ∈ (2, dk), with dk = ln(k)
ln(ι∗BP(k)) + 1, there exists xmax ∈ R>k such that ιBP(x) < x

for x ∈ [k, xmax), ιBP(xmax) = xmax and ιBP(x) > x for x ∈ R>xmax.

Proof. Let f(d) = (ι∗BP(k))d−1 for d ∈ R≥2, i.e. f(d) = ιBP(k) is the value of ιBP at k under a variation
of d. We know from Lemma 5.23 that ι∗BP(k) ∈ R>1, hence f(d) is strictly increasing, and further
direct computation gives f(dk) = k, so we have ιBP(k) < k for any d ∈ (2, dk). Now, since ι∗BP is
strictly increasing and convex on R>k by Lemma 5.23 and further the function xd−1 is increasing and
convex for d ∈ (2, dk), we know that ιBP is convex and increasing on R>k, or formally

ι′BP(x) = (d− 1)ι∗BP(x)d−2ι∗′
BP(x) = (d− 1)ιBP(x) ι

∗′
BP(x)
ι∗BP(x) > 0,

ι′′BP(x) = (d− 1)ιBP(x)

(d− 2)
(
ι∗′

BP(x)
ι∗BP(x)

)2

+ ι∗′′
BP(x)
ι∗BP(x)

 > 0.

Using Lemma 5.23 and for x → ∞ we have ι∗BP(x) → ∞ since ι∗′
BP(x) → 1

2(k−2) and hence ι′BP(x) → ∞
by the above, i.e. ιBP(x)−x → ∞, which suggests the existence of xmax ∈ R>k with ιBP(xmax) = xmax
since ιBP(k) < k. Now, let x+ = inf{x ∈ R≥k : ιBP(x) ≥ x}, then we have x+ ∈ (k, xmax]. Since
ιBP(x) < x for x ∈ [k, x+) we need ι′BP(x+) ≥ 1, which gives ι′BP(x) > 1 for x > x+ since ι′′BP(x) > 0,
hence ιBP(x) > x, thereby x+ = xmax, and in summary ιBP(x) < x for x ∈ [k, xmax), ιBP(xmax) = xmax
and ιBP(x) > x for x ∈ R>xmax .

The proof of Lemma 5.26 serves as a blueprint for the next two cases, where we do not consider
ιBP directly since ι∗′′

BP(x) < 0 on (1, k), but work with gk(x) = g∗
k(x)d−1 and g1(x) = g∗

1(x)d−1 instead,
which are convex, increasing and upper bounds for ιBP on [1, k] since ι∗′′

BP(x) < 0 on (1, k). In the
spirit of Lemma 5.26 we continue to consider the maximal domain for d ∈ R>2. Let

dx̄ = ln(x̄)
ln (g1(x̄)) + 1 and dmax = min (dx̄, dk) .

We postpone the proof that d∗ ≤ dmax, instead we focus on the interval (1, k).

Lemma 5.27. For any d ∈ (2, dmax) ⊆ (2, k) and all x ∈ (1, k] we have ιBP(x) < x.

Proof. Fix d ∈ (2, dmax). Since ι∗′′
BP(x) < 0 for x ∈ [1, k), we know that ι∗BP(x) ≤ g∗

k(x) for x ∈ [x̄, k]
and ι∗BP(x) ≤ g∗

1(x) for x ∈ [1, x̄], so using that xd−1 is increasing we have that ιBP(x) ≤ gk(x)
for x ∈ [x̄, k] and ιBP(x) ≤ g1(x) for x ∈ [1, x̄]. Analogous to Lemma 5.26 we notice that gk(k) =
ιBP(k) < k since d < dk, that gk(x̄) = g1(x̄) < x̄ since d < dx̄ and that g1(1) = 1. Further, since
g∗

1, g∗
k are increasing and convex, using that xd−1 is increasing and convex yields that g1, gk are

increasing and convex. In particular, we can upper bound gk with the line lk : [x̄, k] → [gk(x̄), gk(k)]
connecting (x̄, gk(x̄)) and (k, gk(k)), which is entirely and strictly under the diagonal. Analogously,
we can upper bound g1 with the line l1 : [1, x̄] → [1, g1(x̄)] connecting (1, 1) and (x̄, g1(x̄)), which is
also entirely and strictly under the diagonal except for (1, 1) where the two lines intersect. In total,
ιBP(x) ≤ min(g1(x), gk(x)) ≤ min(l1(x), lk(x)) < x for all x ∈ (1, k]. Finally, another implication is
that d−1

k−1 = g′
1(1) ≤ l′1(1) < 1 since l1 is below the diagonal, which suggests that dmax ≤ k.

Combining Lemma 5.26 and Lemma 5.27 shows for any d ∈ (2, dmax) that ∆d ◦ ιrp has exactly one
stationary point xmax on R>1 which is the unique maximizer of ∆d◦ιrp on this interval. Further, since
dmax ≤ k and using ι′BP(1) = d−1

k−1 we also know that x = 1 is an isolated minimizer of ∆d ◦ ιrp. Aside,
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notice that this argumentation can be used to show that Hd as defined in Section 5.5.5 is positive
semi-definite for all d < k, hence with the arguments from the proof of Lemma 5.14 we see that Hd

is positive definite for all d < k and finally with Lemma 5.18 that ηχ2 = 1
k−1 .

For the low overlap region x ∈ (0, 1) we need a significantly different approach, since ι∗BP is
increasing and concave, but ιBP(x) < ι∗BP(x) and we need to show that ιBP(x) > x. This means that
first order approximations as used for (1, k) are useless since they are upper bounds to ι∗BP and there
are no immediate implications for ι′′BP as was the case for R>k. However, the symmetric case k = 4
can be discussed easily.

Corollary 5.28. For k = 4 and d ∈ (2, dmax) we have ιBP(x) < x for x ∈ (0, x−1
max), ιBP(x−1

max) = x−1
max,

and ιBP(x) > x for x ∈ (x−1
max, 1).

Proof. Combining Lemma 5.27 and Lemma 5.26 we have ιBP(x) < x for x ∈ (1, xmax) and ιBP(x) > x
for x ∈ (xmax,∞), hence using the symmetry from Lemma 5.23 directly gives the result.

Corollary 5.28 allows to restrict to k ∈ Z>4 in the remainder. Now, we basically reverse the
method used for the interval (1, k), i.e. instead of using tangents g∗

1, g∗
k to ι∗BP and scaling them with

(d − 1), we scale ι∗BP such that the diagonal is a tangent, meaning we consider ιk = ιBP for d = k
since ι′BP(1) = d−1

k−1 , and show that ιk is sufficiently convex to ensure ιk(x) > x for x ∈ (0, 1). The
next lemma ensures that this approach is applicable for all k ≥ 5.

Lemma 5.29. For any k ∈ Z≥5, d ∈ (2, k] and all x ∈ (0, 1) we have ιBP(x) > x.

Proof. Let k ∈ Z≥5. As derived in the proof of Lemma 5.27 we have ιk(1) = 1 and ι′k(1) = 1, i.e. the
diagonal is a tangent to ιk at x = 1. Further, as discussed in the proof of Lemma 5.26,

ι′′k(x) = (k − 1) ιk(x)
ι∗BP(x)2

[
(k − 2)ι∗′

BP(x)2 + ι∗BP(x)ι∗′′
BP(x)

]
for x ∈ (0, 1).

Since the leading factor is clearly strictly positive, we may focus on the term in the square brackets.
Further, using that moment generating functions are strictly positive for strictly positive real numbers
we can extract the strictly positive denominator of the term and normalize to get

f(x) =
ι∗BP(x)2

[
(k − 1)fp′

(1,0)
(x)
]6

(k − 2)2ι′′k(x)
(k − 1)ιk(x) =

∑
i∈[6]0

aix
i, where

a6 = 16(k − 2),
a5 = 48(k − 2)(k − 3),
a4 = 4(k − 3) [9(k − 2)(k − 3) + 4(k − 2)(k − 4) + 2(k − 1)] ,

a3 = 8(k − 3)
[
3(k − 2)3 + (k − 2)(k2 − 3k + 4) + 2(k − 1)(k − 4)

]
,

a2 = 4(k − 3)b2, b2 = (k − 2)2
[
(k − 4)2 + 3(k2 − 3k + 4)

]
− (k − 1)(k2 + 11k − 36),

a1 = 4(k − 3)2b1, b1 = (k − 2)(k − 4)(k2 − 3k + 4) − 2(k − 1)(2k2 − 3k − 4),
a0 = (k − 2)(k − 3)2b0, b0 = (k2 − 3k + 4)2 − 4k(k − 1)(k − 4).

We can easily verify that ai > 0 for i ∈ [6] \ [2] using that x2 − 3x+ 4 > 0 for all x ∈ R. Viewing the
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coefficients bi, i ∈ {0, 1, 2}, as polynomials bi(x), x ∈ R, of degree 4 and evaluated at x = k, we have

b′′
2(x) = 48x2 − 228x+ 254, b2(5) = 82, b′

2(5) = 225,

hence b′′
2(x) > 0 for x > x2 with x2 = 19

8 +
√

201
24 < 3 and by that b2(x) > 0 for all x ∈ R≥5, so in

particular b2 = b2(k) > 0 since k ∈ Z≥5 and thereby a2 > 0. Using the same technique for the degree
four polynomials b1(x) we obtain that b′′

1(x) > 0 for x > x1 with x1 = 13
4 +

√
561
12 < 6, b1(10) = 564,

b′
1(10) = 854, and hence that b1 > 0 if k ≥ 10. For b0(x) we have b′′

0(x) > 0 for x > x0 with
x0 = 5

2 +
√

3
6 < 3, b′

0(3) = 20, b0(3) = 40, so b0 > 0 for all k ∈ Z≥5.
Hence, for k ∈ Z≥10 we know that ai > 0 for all i ∈ [6]0, which directly implies that f(x) > 0 for

all x ∈ R>0, so ι′′k(x) > 0, further ι′k(x) < 1 for x ∈ (0, 1), ι′k(x) > 1 for x ∈ R>1 and thereby ιk(x) > x
for x ∈ R>0 \ {1}.

For 5 ≤ k ≤ 9 we still have ai > 0 for i ∈ [6]0 \ {1}. For 6 ≤ k ≤ 9 we consider the quadratic
function gk(x) = ∑

i∈{0,1,2} aix
i explicitly, given by

g6(x) = 6120x2 − 11664x+ 8784, g7(x) = 24960x2 − 25344x+ 41600,
g8(x) = 72560x2 − 34400x+ 156000, g9(x) = 172944x2 − 9504x+ 484848.

It turns out that gk(x) > 0 for all x ∈ R and 6 ≤ k ≤ 9, which in particular yields f(x) > 0 for all
x ∈ R>0. Using the same argumentation as for k ∈ Z≥10 shows that ιk(x) > x for all x ∈ R>0 \ {1}
and k ∈ Z≥6.

As opposed to the previous cases the function ιk is not convex for k = 5, and while this slightly
complicates the computation, we will show that this does not affect the overall picture. Now, we
consider the complete sixth order polynomial

f(x) = 48x6 + 288x5 + 592x4 + 1088x3 + 656x2 − 3296x+ 1392.

We notice that f ′′(x) > 0 for all x ∈ R≥0 since ai > 0 for i ∈ [6] \ {1}, hence f ′(x) is strictly
increasing for x ∈ R≥0, which shows the existence of a unique root xmin ∈ (0, 1), using f ′(0) < 0 and
f ′(1) > 0, i.e. xmin is the unique minimizer of f on R≥0. Computing f(x1−) > 0, f(x1+) < 0 and
f(1) > 0 with x1− = 0.581 and x1+ = 0.582 ensures the existence of exactly two roots x1 ∈ (x1−, x1+)
and x2 ∈ (x1+, 1) of f , hence ιk is convex on (0, x1), concave on (x1, x2) and convex on R>x2 . Let
g : R → R, x 7→ ι′k(x1−)(x−x1−)+ιk(x1−) denote the tangent of ιk at x1−. Since we can write both ιk
and ι′k as the ratio of polynomials with integer coefficients, we can compute ιk(x1−) ∈ (0.584, 0.585),
ι′k(x1−) ∈ (0.99, 0.991) and g(x1+) ∈ (0.585, 0.586) exactly. Using the convexity of ιk on (0, x1),
g′ = ι′k(x1−) < 1 and g(x1+) > x1+ immediately gives that ιk(x) ≥ g(x) > x for x ∈ (0, x1]. The
fact that ιk(x) > x for x ∈ [x2, 1) immediately follows from the convexity of ιk on (x2, 1) and that
the diagonal is a tangent to ιk at x = 1. But now, since (x1, ιk(x1)) and (x2, ιk(x2)) are above the
diagonal, so is the line connecting the two, which is a lower bound to ιk on (x1, x2) since ιk is concave
on this interval. By that we have finally showed that the overall picture is also the same for k = 5,
i.e. ιk(x) > x for x ∈ R>0 \ {1}.

The fact that ιk(x) > x, i.e. ιBP(x) > x with d = k, for x ∈ R>0 \ {1} shows that the only
stationary point of ∆k is a saddle at p∗ (respectively a maximum of ∆k ◦ ιrp at x = 1). But more
importantly, since xd−1 is decreasing in d for x ∈ (0, 1) and ι∗BP(x) ∈ (0, 1), we have ιBP(x) ≥ ιk(x) > x
for all d ∈ (2, k].
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The combination of Lemma 5.26, Lemma 5.27 and Lemma 5.28 shows that for k = 4 and all
d ∈ (2, dmax) there exist exactly three fixed points x− < x0 < x+ of ιBP, with x0 = 1, x+ ∈ (k,∞)
and x− = x−1

+ , hence Lemma 5.22 and Lemma 5.21 suggest that x0 is a minimizer of ∆d ◦ ιrp while
x− and x+ are maximizers. In particular, we have the three minimizers {0, 1,∞} of ∆d ◦ ιrp in total.

The combination of Lemma 5.26, Lemma 5.27 and Lemma 5.29 shows that for k ∈ Z≥5 and all
d ∈ (2, dmax) ⊆ (0, k) there exist exactly two fixed points x0 < x+ of ιBP, with x0 = 1 and x+ ∈ (k,∞),
hence Lemma 5.22 and Lemma 5.21 suggest that x0 is a minimizer of ∆d ◦ ιrp while x+ is a maximizer.
In particular, we have the two minimizers {1,∞} of ∆d ◦ ιrp in total, while x = 0 is a maximizer in
these cases.

The last step is to show that we have d∗ ∈ (2, dmax), which then directly establishes that the
unique minimizers of ∆d∗ ◦ ιrp are given by {0, 1,∞} for k = 4 and {1,∞} for k ∈ Z≥5 as required.
On the other hand, direct computation as in the proof of Corollary 5.25 shows that all minimizers are
roots of ∆d∗ ◦ ιrp, i.e. all minimizers are global minimizers and the global minimum of ∆d∗ ◦ ιrp is 0.
Lemma 5.19 directly suggests that the global minimizers of ∆d∗ ◦ ιrp are in one to one correspondence
with the global minimizers of ∆d∗ via x 7→ px, which then completes the proof of Proposition 5.5.

Lemma 5.30. For all k ∈ Z≥4 we have 2 < d∗ < dk < dx̄.

Proof. Recall from Corollary 5.25 that d∗ > 2. For convenience, we consider the extensions of d∗ − 1,
dx̄ − 1 and dk − 1 to the real line, i.e. for x ∈ R≥3 let

f0(x) =
ln
(

1
2x(x− 1)

)
xH(2/x) − ln

(
1
2x(x− 1)

) , f1(x) =
ln
(

1
7(x+ 6)

)
ln (8/7) , f2(x) = ln(x)

ln
(

2(7x−12)
9(x−2)

) ,

i.e. d∗ = f0(k) + 1, dx̄ = f1(k) + 1 and dk = f2(k) + 1 for all k ∈ Z≥4. We start with the asymptotic
comparison of f1 and f2. The corresponding rearrangement gives

f1(x) = m1 ln(x) + t1(x), m1 = 1
ln(8/7) , t1(x) = − ln(7)

ln(8/7) +
ln
(
1 + 6

x

)
ln(8/7) ,

f2(x) = m2(x) ln(x), m2(x) = 1
ln(14/9) + ln

(
1 + 2

7(x−2)

) .

Notice that ln(x) > 0 since x ≥ 3, further t1(x) is decreasing while m2(x) is increasing, and thereby
we have f1(x) ≥ f1∞(x) and f2(x) ≤ f2∞(x) with

f1∞(x) = m1∞ ln(x) + t1∞, m1∞ = m1, t1∞ = − ln(7)
ln(8/7) ,

f2∞(x) = m2∞ ln(x), m2∞ = 1
ln(14/9) .

We have m1∞ > m2∞, t1∞ < 0 and further f1∞(x) > f2∞(x) iff x > x12 with x12 = exp
(

−t1∞
m1∞−m2∞

)
∈

(16, 17), so f1(x) > f2(x) for all x ∈ R≥17 and hence dk < dx̄ for k ∈ Z≥17. We check by hand that
dk < dx̄ also holds for 4 ≤ k ≤ 16.

Hence, we’re left to show that 1 < f0(x) < f2(x) for x ∈ Z≥4. Again, we start with the asymptotic
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(b) relative positions (ρ1, ρ2) for (γ1, γ2)

Figure 6: The left figure shows a sequence γ = (γ1, γ2) of two directed (intersecting) four-cycles
with base variables i1 and i3 and directions indicated by the arrows respectively. Analogously to
Figure 5a we only denoted the i-edges and a-edges instead of the v-edges and f-edges. The relative
positions ρ = (ρ1, ρ2) corresponding to γ are depicted in the right figure. Here, the variables,
constraints, i-edges and a-edges are labeled according to the order of first traversal (where γ1 is
traversed before γ2). The numbers n(ρ) = 3, m(ρ) = 3, e(ρ) = 7 of variables, constraints and edges
in ρ are equal to the corresponding numbers in γ, further the degree dj(ρ) of the variable j ∈ [3]
equals the degree of ij in γ, and analogously for the degrees kb(ρ) of the constraints b ∈ [3] in ρ.
The absolute values α = (αv, αf , (αv,j)j∈[3], (αf,b)b∈[3]) are given by αv = (ij)j∈[3], αf = (ab)b∈[3],
αv,j = (hij ,e)e∈[dj(ρ)], j ∈ [3], and αf,b = (hab,e)e∈[kb(ρ)], b ∈ [3], i.e. they store the (initial) labels
of γ corresponding to the labels of ρ.

comparison, where the corresponding rearrangement f0(x) = m0(x) ln(x) + t0(x) is given by

m0(x) = 2
n0(x) , t0(x) =

ln
(
1 + 1

x

)
− ln(2)

n0(x) , n0(x) = −(x− 2) ln
(

1 − 2
x

)
− ln

(
1 − 1

x

)
− ln(2).

Recall that for given c ∈ R we have ln(1 + c
x) = (1 + o(1)) cx and ln(1 + c

x) ≤ c
x for all x ∈ R>|c|, since

ln(x) is concave and the tangent at 1 is x − 1. Hence, for all x ∈ R≥3 we have n0(x) ≥ n+(x) > 0
since x > 2 and x > x1, where

n+(x) = ln
(
e2

2

)
− 3
x

and x1 = 3
ln
(
e2

2

) ∈ (2, 3).

Since t0(x) < 0 and m0(x) ≤ m+(x) we have f0(x) ≤ f+(x) = m+(x) ln(x) with

m+(x) = 2
ln
(
e2

2

)
− 3

x

.

Now, since m+(x) is decreasing in x and m2(x) is increasing in x, we numerically determine x∗ ∈ R>0
such that m+(x∗) = m2(x∗) and find that x∗ ∈ (8, 9). In particular, we have f0(x) ≤ f+(x) < f2(x)
for x ∈ R≥9, and check that d∗ < dk for 4 ≤ k ≤ 8 by hand.

Lemma 5.30 concludes the proof of Proposition 5.5 as discussed before.
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5.6 Small Subgraph Conditioning

In this section we prove the remaining parts of Theorem 5.7, thereby establishing Theorem 5.1. The
first part of the proof heavily relies on Section 5.7 and illustrates the correspondences. We start with
the derivation of δℓ by computing E[ZcXℓ]. For this purpose we fix ℓ ∈ Z>0, n ∈ N sufficiently large,
and let c̄ℓ denote the canonical 2ℓ-cycle, i.e. the cycle with variables i, constraints a in [ℓ] and i-edges,
a-edges in {1, 2} with labels ordered by first traversal, see e.g. the left cycle in Figure 6b. Analogous
to the previous sections we rewrite the expectation and count the number |E| of triplets (G, c, x) ∈ E
such that c is a 2ℓ-cycle and x a solution in G, i.e.

E[ZcXℓ] = |E|
|Gc|

=
∑

y∈{0,1}ℓ

e1e2e3
2ℓ(dn)! , where

e1 = e1(y) =
(
n

n1

)
n
r1
1 (n− n1)ℓ−r1(d(d− 1))ℓ,

e2 = e2(y) =
(
k

2

)m
mℓ2r2(2(k − 2))2(r1−r2)((k − 2)(k − 3))ℓ−2r1+r2 ,

e3 = e3(y) = (dn1 − 2r1)!(d(n− n1) − 2(ℓ− r1))!,

and r = r(y) = (r1, r2) is defined as follows. For y ∈ {0, 1}ℓ we let r1 = r1(y) denote the number
of ones in y. Further, let r2 = r2(y) denote the number of constraints b ∈ [ℓ] in c̄ℓ such that both
b-edges take the value one under the assignment y of the variables j ∈ [ℓ] in c̄ℓ. With y fixed we can
compute the number of suitable triplets (G, c, x) as follows. The denominator in the first line reflects
|Gc|−1 and the compensation 2ℓ as we will count directed cycles γ in G. The sum over y ∈ {0, 1}ℓ
implements the choice of the assignment of the variables visited by γ such that the variables i1, . . . , iℓ
traversed by γ correspond to the variables 1, . . . , ℓ in c̄ℓ in this order, i.e. xi1 = y1, . . . , xiℓ = yℓ. The
first term in e1 chooses the variables that take the value one under the solution x. Then we choose
the r1 variables out of the n1-variables that participate in the directed cycle γ and take the value one
consistent with y (hence an ordered choice). Analogously, we then choose the variables in γ taking
zero under x. Finally, we choose the two i-edges traversed by γ for each of the ℓ variables i in the
cycle.

The first term in e2 is the usual choice of the two a-edges taking one under x for each a ∈ [m].
Then we choose the constraints visited by γ. The remaining terms account for the ordered choice
of the two a-edges that are traversed by γ and that is consistent with the assignments y and x in
the following sense. The (already chosen) variables i1, . . . , iℓ and constraints a1, . . . , aℓ traversed by γ
correspond to the variables 1, . . . , ℓ and constraints 1, . . . , ℓ in c̄ℓ in this order respectively. Further,
the assignment of these variables is already fixed by y and the a-edges taking the value one for each
of these constraints are also fixed by our previous choice. Hence, if y1 = y2 = 1, then we have only
two choices for the a1-edge connecting to i1, while the a1-edge connecting to i2 is fixed afterwards.
For y1 = 1 and y2 = 0 we have two choices for the a1-edge connecting to i1 and (k− 2) choices for the
a1-edge connecting to i2. The case y1 = 0, y2 = 1 is symmetric and we see that we have (k − 2) and
(k − 3) choices for the remaining case y1 = y2 = 0 analogously. To derive the number of constraints
for each of the cases above we recall that we have r1(y) ones in total and r2(y) ones whose successor
is one (i.e. the constraint a between the two ones takes the value one on both a-edges, and where the
successor of yℓ is y1). But then (r1 − r2) ones in y do not have the successor one, i.e. they have the
successor zero. Complementarily we see that since r2 ones are succeeded by a one there are r2 ones
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that are preceded by a one, hence there are (r1 − r2) ones that are preceded by zero. Then again, this
means that there are (r1 − r2) zeros that are succeeded by a one, hence the remaining (ℓ− 2r1 + r2)
zeros out of the (ℓ− r1) zeros are succeeded by a zero. This fixes γ, so in particular 2r1 v-edges that
take the value one and 2(ℓ− r1) v-edges that take the value zero. The two terms in e3 then wire the
remaining edges.

We divide by E[Zc] to match the left hand side of Theorem 5.7b), i.e.

E[ZcXℓ]
E[Zc]

=
∑

y∈{0,1}ℓ

e1e2e3
2ℓ(2m)!(dn− 2m)! , where

e1 = e1(y) = n
r1
1 (n− n1)ℓ−r1(d(d− 1))ℓ,

e2 = e2(y) = mℓ2r2(2(k − 2))2(r1−r2)((k − 2)(k − 3))ℓ−2r1+r2 ,
e3 = e3(y) = (dn1 − 2r1)!(d(n− n1) − 2(ℓ− r1))!,

and using Stirling’s formula we easily derive that

E[ZcXℓ]
E[Zc]

= (1 + o(1))λℓ
∑

y∈{0,1}ℓ

M r2
11M

r1−r2
01 M r1−r2

10 M ℓ−2r1+r2
00 = (1 + o(1))λℓ(1 + δℓ),

M =
(

1 − 2
k−1 1 − 1

k−1
2

k−1
1

k−1

)
.

The matrix M has a nice interpretation as a (column stochastic) transition probability matrix in a
two state Markov process, with

1 + δℓ =
∑

y∈{0,1}ℓ

y1=0

M r2
11M

r1−r2
01 M r1−r2

10 M ℓ−2r1+r2
00 +

∑
y∈{0,1}ℓ

y1=1

M r2
11M

r1−r2
01 M r1−r2

10 M ℓ−2r1+r2
00

reflecting the probabilities that we return to the starting point given that the starting point is zero
and one respectively. Let us consider the first partial sum restricted to sequences y (of Markov states)
such that y1 = 0, i.e. we start in the state zero. Then M0y2 reflects the probability that we move
from the initial state zero to the state y2 given that we are in state zero (which is the case because
we know that y1 = 0). As discussed above we will move from a one to a one in y exactly r2 times,
from a one to a zero (r1 − r2) times, from a zero to a one (r1 − r2) times and from a zero to a zero
(ℓ − 2r1 + r2) times. Hence the contribution to the first partial sum for given y exactly reflects the
probability that we start in the state zero and (with this given) return to the state zero after ℓ steps
(since the successor of yℓ is y1 = 0). Since we sum over all such sequences y the first sum reflects the
probability that we reach state zero after ℓ steps given that we start in the state zero. The discussion
of the second sum is completely analogous. This directly yields

1 + δℓ = (M ℓ)00 + (M ℓ)11 = Tr(M ℓ) = λ′
1 + λ′

2 = λℓ1 + λℓ2, λ1 = 1, λ2 = − 1
k − 1 ,

where we used the Kolmogorov-Chapman equalities in the first step, i.e. that the ℓ-step transition
probability matrix is the ℓ-th power of the one step transition probability matrix, which allow to
translate the first sum into the transition probability (M ℓ)00 that we reach the state zero after ℓ steps
given that we start in the state zero and analogously for the second sum. In the second step we use
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the definition of the trace, while in the third step we use that the trace is the sum of the eigenvalues
λ′

1, λ′
2 of M ℓ. In the next step we use that the eigenvalues λ′

1 λ
′
2 of the ℓ-th power M ℓ of the matrix

M are the ℓ-th powers of the eigenvalues λ1, λ2 of M . In particular this also yields that δℓ > −1 for
all k > 3 and establishes δℓ = (1 − k)−ℓ.

Following the strategy of Section 5.7 we turn to the case of disjoint cycles. Similarly, the present
case is a canonical extension of the single cycle case discussed above. We fix L ∈ Z>0, r ∈ ZL≥0 and
n ∈ N sufficiently large. Further, as in the previous sections we rewrite the expectation and count
the number |E| of triplets (G, c, x) ∈ E such that c = (cs)s∈[r̄] is a sequence of r̄ = ∑

ℓ∈[L] rℓ distinct
2ℓs-cycles cs in the configuration g sorted by their length ℓs in ascending order (as described in Section
5.7) and x is a solution of g. This yields

E

Zc
∏
ℓ∈[L]

(Xℓ)rℓ

 = |E|
|Gc|

= |E0|
|Gc|

+ |E1|
|Gc|

,

where E0 ⊆ E is the set over all triplets (g, c, x) ∈ E involving sequences c of disjoint cycles and
E1 = E \ E0. We begin with the first contribution, which can be regarded as a combination of the
discussion of disjoint cycles in Section 5.7 and the single cycle case above, i.e.

|E0|
|Gc|

=
∑

y∈{0,1}l

e1e2e3
(dn)!∏s∈[r̄](2ℓs)

,

e1 = e1(y) =
(
n

n1

)
n
r1
1 (n− n1)l−r1(d(d− 1))l,

e2 = e2(y) =
(
k

2

)m
ml2r2(2(k − 2))2(r1−r2)((k − 2)(k − 3))l−2r1+r2 ,

e3 = e3(y) = (dn1 − 2r1)!(d(n− n1) − 2(l − r1))!,
l =

∑
s∈[r̄]

ℓs, ri =
∑
s∈[r̄]

ri(ys), i ∈ [2],

where y = (ys)s∈[r̄] is the subdivision of y corresponding to the definition of c, and r1, r2 are the
notions defined above. The combinatorial arguments are now fairly self-explanatory, e.g. we make an
ordered choice of the r1(y1) variables taking one for γ1, then an ordered choice of r1(y2) variables
taking one for γ2 out of the remaining n1 − r1(y1) variables taking one and so on.

The asymptotics are also completely analogous to the single cycle case and Section 5.7. First,
we notice that the sum is still bounded, i.e. we can also use the asymptotic equivalences for the
corresponding ratio here. Then, the sum can be decomposed into the product of the r̄ factors that
correspond to the single cycle case above, analogously to Section 5.7, which yields

|E0|
|Gc|E[Zc]

= (1 + o(1))
∏
ℓ∈[L]

λrℓ
ℓ (1 + δℓ)rℓ .

Now we turn to the proof that the second contribution involving E1 is negligible, which is a combination
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of the above and the discussion of intersecting cycles in Section 5.7. We let

E2 = {(G, γ, x) : (G, c(γ), x) ∈ E1}, R = {ρ(γ) : (G, γ, x) ∈ E2} and
Eρ = {(G, γ, x) ∈ E2 : ρ(γ) = ρ} for ρ ∈ R

denote the sets that match the corresponding sets in Section 5.7. For relative positions ρ ∈ R we
consider an assignment y ∈ {0, 1}n(ρ) of the variables V = [n(ρ)] in the corresponding union of cycles
c = c(ρ) and let

r1 = r1(ρ, y) = |{j ∈ V : yj = 1}|,
o(b) = oρ,y(b) = |{h ∈ [kb(ρ)] : yic(b,h) = 1}| for b ∈ [m(ρ)] and

o = o(ρ, y) =
∑

b∈[m(ρ)]
o(b)

denote the number of variables j ∈ V in c that take the value one under y, the number of b-edges for
a constraint b ∈ [m(ρ)] in c that take the value one under y and the number of f-edges in c that take
the value one under y respectively. Since c is a configuration the number of v-edges in c that take the
value one under y is also o. We are particularly interested in the assignments

y ∈ Y = Y(ρ) = {z ∈ {0, 1}n(ρ) : ∀b ∈ [m(ρ)]o(b) ∈ [2 + kb − k, 2]}

that do not directly violate a constraint b ∈ [m(ρ)] in c(ρ) in the sense that o(b) ≤ 2 and also do not
indirectly violate b in that 2 − o(b) ≤ k − kb, i.e. there are sufficiently many b-edges left to take the
remaining (2 − o(b)) ones. With this slight extension of our machinery we can derive

|E1|
|Gc|

=
∑
ρ∈R

|Eρ|
(dn)!∏s∈[r](2ℓs)

, |Eρ| =
∑
y∈Y

e1e2e3,

e1 = e1(ρ, y) =
(
n

n1

)
n
r1
1 (n− n1)n(ρ)−r1

∏
j∈[n(ρ)]

d
dj(ρ),

e2 = e2(ρ, y) =
(
k

2

)m
mm(ρ) ∏

b∈[m(ρ)]
(2o(b)(k − 2)kb(ρ)−o(b)),

e3 = e3(ρ, y) = (dn1 − o)!(d(n− n1) − (e(ρ) − o))!,

for the following reasons. With ρ ∈ R and y ∈ Y(ρ) fixed we choose the n1 variables out of the n
variables in the configuration G that should take the value one under x. Out of these n1 variables
we choose the r1 variables (ordered by first traversal) that take the value one in the directed cycles γ
under x, corresponding to the r1 variables in ρ that take one under y (more precisely we choose the
values i ∈ [n] of the absolute values αv for the r1 variables j ∈ [n(ρ)] in ρ that take the value one
under y) and analogously for the variables that take zero. Then, for each variable j ∈ [n(ρ)] in ρ and
corresponding variable i = αv(j) in γ we choose the i-edges that participate in γ (meaning that we
choose αv,j). On the constraint side we first choose the two a-edges that take the value one under
x in G for each a ∈ [m]. Then we select the m(ρ) constraints that participate in γ (i.e. we fix αf ).
Further, for each constraint b ∈ [m(ρ)] in ρ and its corresponding constraint a = αf (b) in γ we choose
the o(b) a-edges that take the value one in γ under x consistent with ρ and y out of the two a-edges
that take the value one in G under x and analogously for the a-edges that take the value zero (which
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means that we fix αf,b for b ∈ [m(ρ)] consistent with the choice of y and the choice of the two a-edges
that take the value one for each a ∈ [m]). This fixes the sequence of the directed cycles (i.e. the
isomorphism α and further γ). The remaining terms wire the (dn1 − o) remaining v-edges that take
the value one and the v-edges taking zero respectively.

As opposed to the rather demanding combinatorial part the asymptotics are still easy to derive
since both sums are bounded, so the procedure analogous to Section 5.7 yields

|E1|
|Gc|E[Zc]

= (1 + o(1))
∑
ρ∈R

∑
y∈Y

c1(ρ, y)nn(ρ)+m(ρ)−e(ρ),

where c1(ρ, y) is a constant compensating the bounded terms. The right hand side tends to zero by
the argumentation in Section 5.7, so this contribution is indeed negligible. This shows that |E|

|Gc| =
(1 + o(1)) |E0|

|Gc| and thereby establishes Theorem 5.7 (b)).
With d ∈ [1, d∗) ⊆ [1, k) as discussed in Lemma 5.27 and Lemma 5.30, λℓ as derived in Lemma

5.8, δℓ = (1 − k)−ℓ, the asymptotics of the second moment discussed in Lemma 5.6 and the Taylor
series ln(1 − x) = −

∑
ℓ≥1 x

ℓ/ℓ, x ∈ (0, 1), we establish Theorem 5.7 (c)) by applying our results to
the sum

∑
ℓ≥1

λℓδ
2
ℓ =

∑
ℓ≥1

1
2ℓ

(
d− 1
k − 1

)ℓ
= −1

2 ln
(

1 − d− 1
k − 1

)
= ln

√k − 1
k − d

 .

This concludes the proof of Theorem 5.7 and further the proof of Theorem 2.10.

5.7 Proof of Lemma 5.8

We present the proof of Lemma 5.8 in detail so as to facilitate the presentation of the small subgraph
conditioning method in Section 5.6. Lemma 5.8 can be shown by a direct application of the method
of moments, which is discussed, for example, in [68] (Theorem 6.10).

Theorem 5.31 (Method of Moments). Let L ∈ Z>0 and ((Xℓ,i)ℓ∈[L])i∈Z>0 be a sequence of a vector
of random variables. If λ ∈ RL≥0 is such that, as i → ∞,

E
[
L∏
ℓ=1

(Xℓ,i)rℓ

]
→

L∏
ℓ=1

λrℓ
ℓ

for every r ∈ ZL≥0, then (Xℓ,i)ℓ∈[L] converges in distribution to (Zℓ)ℓ∈[L], where the Zℓ ∼ Po(λℓ) are
independent Poisson distributed random variables.

First, we notice that Gc and further Xℓ = Xℓ(Gc) is only defined for m = dn/k ∈ Z as stated in
Lemma 5.9, hence Lemma 5.8 only applies to such sequences of configurations.

Fix k, d ∈ Z>1. Before we turn to the general case we consider the E[Xℓ] for ℓ ∈ Z>0. For this
purpose let n and m(n) be sufficiently large. Let Cℓ,G be the set of all 2ℓ-cycles in G ∈ Gc. Then

E[Xℓ] =
∑
G∈Gc

Xℓ(G)
|Gc|

= |Gc|−1 ∑
G∈Gc

|Cℓ,G| = |E|
|Gc|

, where E = {(G, c) : G ∈ Gc, c ∈ Cℓ,G}.
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With this at hand we obtain that

E[Xℓ] = 1
2ℓ(dn)!n

ℓmℓ(d(d− 1))ℓ(k(k − 1))ℓ(dn− 2ℓ)!

using the following combinatorial arguments. Instead of counting pairs (G, c) of configurations G
and 2ℓ-cycles c ∈ Cℓ,G we count pairs (G, γ) of configurations G and directed 2ℓ-cycles γ (based at a
variable node) in G. There are exactly 2ℓ directed cycles γ corresponding to each (undirected) cycle c
of length 2ℓ since we can choose the base from the ℓ variables in c and γ is then determined by one of
the two possible directions. The denominator reflects the compensation for this counting next to the
probability |Gc|−1. Further, the term nℓ reflects the ordered choice of the variables for the directed
cycle, as does mℓ for the constraints. The next two terms account for the choice of the two i-edges and
a-edges traversed by the cycle for each of the ℓ variables i and constraints a. This fixes the directed
cycle γ and further the corresponding undirected cycle c(γ). In particular, the 2ℓ edges of the cycle c
in G are fixed, i.e. the corresponding restriction of G to c. This leaves us with (dn− 2ℓ) half-edges in
[n] × [d] and (km− 2ℓ) half-edges in [m] × [k] that have not been wired yet. The last term gives the
number of such wirings.

Next, we turn to asymptotics. Extracting λℓ and expanding the falling factorials yields

E[Xℓ] = λℓd
ℓkℓ

n!m!(dn− 2ℓ)!
(dn)!(n− ℓ)!(m− ℓ)! .

Using Stirling’s formula we readily obtain that

E[Xℓ] = (1 + o(1))λℓdℓkℓ
√

nm(dn− 2ℓ)
dn(n− ℓ)(m− ℓ)

nnmm(dn− 2ℓ)dn−2ℓ

(dn)dn(n− ℓ)n−ℓ(m− ℓ)m−ℓ ,

and so

E[Xℓ] = (1 + o(1))λℓdℓkℓ
√√√√ (1 − 2ℓ

dn)
(1 − ℓ

n)(1 − ℓ
m)

nℓmℓ(1 − 2ℓ
dn)dn−2ℓ

(dn)2ℓ(1 − ℓ
n)n−ℓ(1 − ℓ

m)m−ℓ = (1 + o(1))λℓdℓkℓ
nℓmℓ

(dn)2ℓ .

Using that dn = km leads to

E[Xℓ] = (1 + o(1))λℓdℓkℓ
nℓ(dk−1n)ℓ

(dn)2ℓ = λℓ,

as claimed. We turn to the general case. For this purpose let L ∈ Z>0, r ∈ ZL≥0 and let n and m be
sufficiently large. Then

Xℓ(G)rℓ =
rℓ−1∏
s=0

(|Cℓ,G| − s) = |Cℓ,rℓ,G| , where Cℓ,rℓ,G = {c ∈ Crℓ
ℓ,G : ∀s ∈ [rℓ]∀s′ ∈ [s− 1] cs ̸= cs′}

for G ∈ Gc, since this corresponds to an ordered choice of 2ℓ-cycles in G without repetition. The
product can then be directly written as

L∏
ℓ=1

Xℓ(G)rℓ = |Cr,G| , where Cr,G =
L∏
ℓ=1

Cℓ,rℓ,G.
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To avoid double indexed sequences we use the equivalent representation c = (cs)s∈[r] ∈ Cr,G where
r = ∑

1≤ℓ≤L rℓ. From the above we see that the cycles cs are ordered by their length ℓs in ascending
order and are pairwise distinct. We obtain that

E
[
L∏
ℓ=1
X

rℓ

ℓ

]
= |E|

|Gc|
, where E = {(G, c) : G ∈ Gc, c ∈ Cr,G}.

Since we have ℓs distinct variables and constraints in each cycle cs respectively, we can have at most
l = ∑

s∈[r] ℓs distinct variables and constraints in c. Specifically, we only have |V (c)| = l variables and
|F (c)| = l constraints iff all cycles cs are disjoint. So, let

E0 = {(G, c) ∈ E : |V (c)| = |F (c)| = l}

denote the set of pairs (g, c) ∈ E with disjoint cycles and further E1 = E \ E0 the remaining pairs.
Then we have

|E0|
|Gc|

= 1
(dn)!∏r

s=1(2ℓs)
nlml(d(d− 1)l(k(k − 1))l(dn− 2l)!

for the following reasons. For each cycle cs in c counting the 2ℓs directed cycles facilitates the
computation, hence we find the corresponding product in the denominator. Since the variables within
each directed cycle and the cycles in the sequence are ordered we have an ordered choice of all variables.
Further, since the ℓs variables within each cycle are distinct and the cycles are pairwise disjoint we
choose all variables without repetition. This explains the first falling factorial. The next term for
the constraints follows analogously. But since variables and constraints are disjoint the edges are too,
hence we choose two edges for each of the l variables and constraints respectively. Then we wire the
remaining edges.
The asymptotics are derived analogously to the base case, i.e.

|E0|
|Gc|

= (1 + o(1))(d− 1)l(k − 1)l∏r
s=1(2ℓs)

= (1 + o(1))
r∏

s=1
λℓs = (1 + o(1))

L∏
ℓ=1

λrℓ
ℓ ,

using the definition of c = (cs)s∈[r] in the last step. Since the contribution of the disjoint cycles already
yields the desired result, we want to show that the contribution of intersecting cycles is negligible. As
before, we count directed cycles γs and adjust the result accordingly, so let

E2 = {(G, γ) : (G, c(γ)) ∈ E1}, i.e. |E2| = |E1|
∏
s∈[r]

(2ℓs).

In the next step we consider the relative position representations (α, ρ) of sequences γ of directed
cycles. Instead of a formal introduction we illustrate this concept in Figure 6. The corresponding
decomposition of the contributions to the expectation according to ρ is

|E1|
|Gc|

=
∑
ρ∈R

|Eρ|
|Gc|

∏
s∈[r](2ℓs)

, Eρ = {(G, γ) ∈ E2 : ρ(γ) = ρ}, R = {ρ(γ) : (G, γ) ∈ E2}.
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For the following reasons we can then derive

|Eρ| = nn(ρ)mm(ρ) ∏
j∈[n(ρ)]

d
dj(ρ) ∏

b∈[m(ρ)]
kkb(ρ)(dn− e(ρ))!.

Since ρ is fixed, we have to fix the absolute values α, thereby the directed cycle γ, and wire the
remaining edges. But the first four terms exactly correspond to the number of choices for the index
vectors in α. This fixes γ, further the union c(γ) of cycles and in particular e(ρ) edges. The remaining
term counts the number of choices to wire the remaining edges.

For the asymptotics we notice that n(ρ), m(ρ) ≤ l and that also the two products are bounded
in both the multiplication region and values. But this further implies that |R| is bounded, i.e. the
summation region is also finite in the limit and hence we can consider the asymptotics of each term
separately, which yields

|E1|
|Gc|

=
∑
ρ∈R

∏
i∈[n(ρ)] d

di(ρ)∏
a∈[m(ρ)] k

ka(ρ)∏
s∈[r](2ℓs)

nn(ρ)mm(ρ)(dn− e(ρ))!
(dn)!

=
∑
ρ∈R

c1(ρ)n
n(ρ)mm(ρ)(dn− e(ρ))!

(dn)!

= (1 + o(1))
∑
ρ∈R

c1(ρ)
(1
e

)n(ρ) ( d

ke

)m(ρ) (e
d

)e(ρ)
nn(ρ)+m(ρ)−e(ρ)

= (1 + o(1))
∑
ρ∈R

c2(ρ)nn(ρ)+m(ρ)−e(ρ),

where we summarized the terms that only depend on ρ into constants. Now, let ρ ∈ R and let c = c(ρ)
be the graph of ρ as introduced in Section 5.2.4. Since ρ is a sequence of directed cycles that are not
all disjoint, its graph c is the union of the corresponding (undirected) cycles that are not all disjoint.
But then c has more edges than vertices, i.e. 3e(ρ) > n(ρ) +m(ρ) + 2e(ρ), and hence

|E1|
|Gc|

= (1 + o(1))
∑
ρ∈R

c2(ρ)nn(ρ)+m(ρ)−e(ρ) ≤ (1 + o(1))n−1 ∑
ρ∈R

c2(ρ) = (1 + o(1))c3n
−1,

which shows that this contribution is negligible. This establishes the asymptotic equivalence

E

 ∏
ℓ∈[L]

X
rℓ

ℓ

 = (1 + o(1))
∏
ℓ∈[L]

λrℓ
ℓ

and allows to apply the method of moments, which directly yields Lemma 5.8.
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