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3. Summary 

Understanding cellular identity, heterogeneity and differentiation in mammals is crucial for solving many 

long-standing questions regarding regenerative medicine, developmental biology, and evolution. Recent 

cutting-edge molecular profiling methods have been developed to explore cell identity in different 

biological systems. Particularly, investigating gene expression patterns in individual cells with single-cell 

transcriptomics has provided significant opportunities for understanding complex tissues. By using 

single-cell transcriptomics, it has been possible to extract a large amount of information from cells in 

various tissues, such as embryonic and cancer tissues. Having access to such an extensive molecular 

profile from single cells paves the way to understanding factors that shape cell identity in a data-driven 

manner. However, to achieve this aim, the development of new and tailored computational tools are 

required to extract biologically meaningful information. In this dissertation, I discuss how I have explored 

the molecular factors that contribute to regulating cellular fate decision in different types of mammalian 

pluripotent cells by analysing single-cell RNA-seq (scRNA-seq) data. Specifically, I show my 

contributions to understanding early human and mouse development, as well as hematopoiesis in adult 

mice. By using state-of-the-art as well as novel computational tools and algorithms, I contributed to the 

first-ever single-cell characterization of a human embryo in the gastrula stage. Afterward, I demonstrate 

my work on elucidating stem cell state transition in early mouse development in both in vivo and in vitro 

models. Finally, I present my contribution to investigating the effect of the Sema4a signaling molecule 

on regulating hematopoietic stem cells in adult mice by computationally comparing the scRNA-seq data 

from wild-type and mutant mice. Overall, the studies present in the thesis demonstrate the power of 

single-cell transcriptomics in characterizing cellular heterogeneity and its link with cell fate decision, as 

well as elucidating possible mechanisms of cell differentiation in different model systems and organisms.   
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4. Aims of the thesis 

• Understanding human gastrulation through single-cell RNA-seq 
o Characterize the cell atlas of the human embryo in the gastrula stage by using clustering 

methods 
o Explore endoderm, mesoderm, and ectoderm germ layers through trajectory 

reconstruction and sub-clustering 
o Compare the human data to the mouse and non-human primate in equivalent stages 
o Test in vitro models that are used to study gastrulation 
o Provide a valuable resource for scientists in the field by sharing the data in an 

accessible way and creating an app to explore the data 

 

• Investigating cell state transition in early mouse development in vivo and 
in vitro 

o Measuring mitochondrial heteroplasmy levels of mouse epiblast cells from scRNA-seq 
data and checking their role in cellular competition, in the transition from a “winner” to 
a “loser” state  

o Developing a computational pipeline for the above-mentioned aim 
o Helping to develop a mathematical model to describe state transition between 

pluripotency and totipotency and its relation to cell cycle in mouse embryonic stem cells 
 

• Hematopoiesis in adult mice through the lens of single-cell RNA-seq 
o Describe the effect of the Semaphorin 4a (Sema4a) secreted molecule on myeloid-

biased hematopoietic stem cell (myHSC) self-renewal and dormancy 
o Compare samples from wild-type and Sema4a knockout experiments by inferring their 

cell cycle phases and trajectories 
o Investigate possible molecular pathways involved in myHSC dormancy  



 12 

5. Introduction 

If we imagine the history of all organisms on earth as the result of countless cell divisions, life can a 
priori be envisioned as a single-cell genealogy. This genealogy entails both unicellular and multicellular 
organisms to arise and thrive in various environments. The success of unicellular organisms during 
evolution, however, did not prevent multicellularity to make an appearance in multiple lineages (Parfrey 
& Lahr, 2013). The cells that comprise these new multicellular organisms had to become more diverse 
and specialized as the size, complexity, and needs of these organisms grew.  This diversity has been 
the source of survival of these species and the rich phenotypic variation among them. It has helped 
them to solve many problems regarding their changing circumstances during evolution by efficiently 
sharing different functions in order to survive (Goldsby et al., 2012). This cellular diversity would not 
have been possible without a cell’s ability to change its internal state and function if the conditions 
demand it. The process of cell state shifting towards a functionally more mature state is called cellular 
differentiation. Although there are many hypotheses regarding the origin of differentiation during 
evolution, it is agreed that this ability existed in the cells before multicellularity emerged (Sogabe et al., 
2019). In multicellular organisms, cell differentiation acquired a new meaning, as their functions were 
tied to organismal level properties, such as reproduction and homeostasis. The efficient and creative 
use of resources across cells to solve such problems for the organism has caused cellular differentiation 
and heterogeneity to become crucial characteristics of multicellular organisms during evolution.  

We can observe this phenomenon in a wide number of contexts in nature. During the embryonic 
development of an animal (embryogenesis), stem cells can self-renew, as well as give rise to new cell 
types in a space- and time-dependent manner. Cells exhibit a wide range of behaviors and 
characteristics, such as migration, morphological variation, apoptosis, and communication. These 
eventually lead to the formation of tissues and organs with specified functions (organogenesis).  

Embryos are not the only place where one can observe cell differentiation. Adult organisms of certain 
species have the ability to replace lost tissues. In adult vertebrate organisms, the liver can regenerate 
itself in the event of mass loss, in order to maintain its crucial function for homeostasis (Michalopoulos 
2009). Blood cells also need to be constantly renewed through hematopoiesis. Axolotl has served as 
the main model organism to study the regeneration capabilities of different body parts. They can regrow 
both inner organs, such as kidneys and heart, as well as outer extremities and limbs (Vieira et al., 2020). 
Exciting studies have also come out from other model organisms, such as Xenopus laevis. They can 
correct their craniofacial structures after deformation by using the ability of the cells to differentiate and 
migrate into their correct positions (Vandenberg et al., 2012). These kinds of studies can be pivotal for 
improving the effectiveness of stem cell therapy in medicine.   

Many important questions arise regarding cell differentiation in different contexts when they are 
observed. How do the cells know when to stop differentiating? Why do they move to the correct position 
in the tissue? How is proper tissue size achieved? These are some of the most sought-out questions in 
biological research. Because of the complexity of the cellular differentiation process, researchers have 
investigated several aspects of it with various methods.  For instance, many studies involve confirming 
or tracking the identities of the cells as they differentiate, which also allows researchers to perform 
perturbation studies to uncover the mechanism of differentiation. A lot of cell types exhibit well-defined 
morphological features. This can help to confirm or predict the trajectory of these cell types using 
microscopy. However, because cell differentiation can happen gradually, morphological changes might 
not be so obvious. In this case, a more resolved approach is necessary.  One method has been to use 
lineage-specific markers and track its presence with, for example, fluorescent tags. Other approaches 
like DNA barcoding have also been used for lineage tracing (Pei et al., 2017). Despite their various 
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degrees of success, these methods often suffer from the limitation of not being able to capture detailed 
cell identity, due to a lack of information on the underlying gene expression (VanHorn & Morris, 2021). 
As a cell goes through a state change, its molecular portrait gets altered. This is because of the cell’s 
ever-changing and context-dependent needs as it differentiates and acquires new roles. In other words, 
the cell needs to use different resources (i.e. molecules) within it in new circumstances. Therefore, if we 
can observe the distribution of these molecules within each cell at a given moment, we can assign an 
identity to the cell. To tackle the question of pinpointing cell identity during differentiation, highly resolved 
techniques have been introduced. They are able to capture different molecular content of a single cell, 
such as DNA, RNA, and protein. For this thesis, I will focus on the transcriptomic (mRNA) 
characterization of single cells.  

Having an access to the transcriptomic profile of a cell can especially be advantageous. The gene 
expression pattern of a cell can provide valuable and detailed insights into the cell’s identity and state. 
Single-cell RNA-seq (scRNA-seq) has been developed and used for this purpose since its advent. Aside 
from the single-cell resolution it provides (unlike bulk RNA-seq), its power also lies in the unbiased 
quantification of all the mRNA molecules present in a cell.  

Of course, it would not be feasible to exploit the potential of scRNA-seq without using appropriate 
computational techniques. As the amount, complexity, and resolution of the data have increased as a 
result of advancing technologies, developing and using dedicated tools and algorithms have become a 
necessity. Extracting and distinguishing relevant signals from scRNA-seq data with computational tools 
have become a crucial part of such studies since the beginning (Stegle et al., 2015). 

This thesis is devoted to the utilization of the power of scRNA-seq to characterize cellular differentiation 
in mammalian stem cells and embryos. There are various computational techniques that have been 
developed to investigate stem cell differentiation including the cell type identification (Traag et al., 2019), 
novel marker gene discovery (Delaney et al., 2019), cell cycle assignment (Scialdone et al., 2015), and 
identification of differentiation trajectories (Saelens et al., 2019). 

The systems studied for this thesis include human and mouse embryonic development, as well as 
hematopoietic stem cells of adult mice.  

First, I analyzed single-cell transcriptomics data from a complete embryo in the gastrula stage, roughly 
in embryonic day 16-19,  (Publication 1), to get the first-ever glimpse of this crucial stage of development 
in humans.  

In the project on adult mice hematopoiesis, the focus was on a molecule (Sema4a) that prevents 
hematopoietic stem cells (HSCs) from differentiating (Manuscript 1). The aim was to understand the 
cellular heterogeneity within HSCs, particularly cells that are myeloid lineage biased (myHSCs) and the 
effect of the loss of Sema4a on their quiescence.  

I also contributed to two projects concerning mouse embryonic development. The first project entailed 
an in vitro model of pluripotency to totipotency transition in mouse embryonic stem cells (Publication 4, 
(Nakatani et al., 2022)). In the second project, we investigated cellular competition and the transition 
between a “winner” and a “loser” state in epiblast cells of mouse embryos before gastrulation 
(Publication 2, (Lima et al., 2021)). For this purpose, a new R package was also developed (Publication 
3, (Lubatti et al., 2022)). 
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5.1 Understanding cellular identity  

5.1.1 An evolutionary perspective 

In biology, it is widely agreed that the fundamental unit of life is a cell. It is also one of the fundamental 
units of selection during the evolution of all lifeforms. Evolutionary divergence has always been 
accompanied by the transformation of cellular features. This was necessary because cells needed to 
make use of their environments and adapt to them at the same time under various conditions. Some of 
the most ancient cells (unicellular organisms) were able to survive in the harshest conditions. Studies 
have shown that all organisms have emerged from these single-celled extremophiles that lived near 
hydrothermal vents without an oxygen (Weiss et al., 2016). They are considered the Last Universal 
Common Ancestor (LUCA), a concept that was first introduced by Charles Darwin in his book On the 
Origin of Species. After 3.5 billion years of evolution since LUCA, we can now observe tremendous 
diversity among lifeforms. A major source of this diversity can be traced back to the emergence of 
multicellular organisms. 

Despite the ability of ancient unicellular organisms to live in such habitats for a long time, evolutionary 
selection has also resulted in multiple origins of the multicellularity (Knoll, 2011). This has meant that 
the cells together were now able to perform certain tasks which could not perform by themselves. For 
example, in rudimentary multicellular aggregates, groups of cells could have improved motility to move 
to more favorable environments, increased resistance to stress, or longer memory capacity (Tong et al., 
2022). Performing these tasks requires all the single cells to contribute to the overall multicellular 
organism to increase their fitness. Over time, the complexity and magnitude of objectives that needed 
to be achieved by the primitive multicellular organisms have led to sharing different responsibilities 
across cells. Thus, different cells performing various functions have emerged as a result, also known as 
cell types. Existence of somatic and germ cells in metazoan can be used as a simple example of such 
division of labor. Indeed, the complexity of an organism has been attributed to the number of cell types 
or cellular diversity that it possesses (Valentine, 2003), which would give the organism greater flexibility 
as it navigates through a hostile world.  

5.1.2 Why can cells not be “rigid”? 

For the organism to reach certain objectives in the face of changing circumstances, the cells themselves 
need to exhibit flexibility or plasticity. Understanding this phenomenon is not only crucial to appreciate 
the phenotypic diversity among species, but also the changes in the cell types that they carry with them 
throughout their life cycle. This life cycle starts with many cell divisions that end up forming the adult 
body. While dividing, the cells also differentiate and acquire specific characteristics. The cells that 
possess this type of ability are called stem cells. They are also able to maintain their existence by 
proliferating if needed (self-renewal). In many multicellular organisms during their development, these 
stem cells act as a reservoir to supply the right number of cells that differentiate into tissues and organs. 
They have varying capabilities of giving rise to different cell types and states. They can generally be 
classified as totipotent, pluripotent, and multipotent stem cells. While totipotent cells can give rise to 
both embryonic and extra-embryonic tissues, pluripotent stem cells can generate only embryonic tissues 
that give rise to the adult body. Multipotent cells are also able to generate more than one lineage of cells 
but are more restricted than pluripotent cells. For example, a zygote can be considered totipotent and 
the epiblast cells can be considered pluripotent. Blood stem cells can be given as an example of 
multipotent stem cells.  As the cells differentiate during embryogenesis, their capability to produce cell 
types gradually decreases.  
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After the adult body formation, however, not all the cells lose plasticity. There are many instances of cell 
plasticity in adult organisms as well. For example, because vertebrates require a constant supply of 
different types of blood cells for their organs, a reservoir of stem cells needs to be present. These cells 
are called hematopoietic stem cells (HSC), and they give rise to various blood cell types with specific 
functions throughout an organism’s life cycle. Some organisms can regenerate other types of tissues 
as well. Starfish are amazingly good at regenerating large chunks of their bodies. Not only they can 
replace a lost arm from the central disk, but they can also regenerate the entire body from just a part of 
an arm as well. This is accomplished by a group of cells that are capable of proliferating and 
differentiating to generate the lost body parts (Carnevali, 2006). Other members of phylum 
Echinodermata, as well as the members of phyla Cnidaria and Annelida can perform similar types of 
regeneration (Zattara et al., 2019). 

Not all cases of cell plasticity and differentiation are considered to have beneficial outcomes. When 
certain cells in adult tissues receive carcinogenic signals, they can change their identity to acquire the 
ability to give rise to bigger and more invasive tissues. In other words, they act like the stem cells in an 
embryo to supply the tumor with heterogeneous cell populations (Takahashi & Yamanaka, 2006). They 
can achieve this by the process of changing their epithelial state towards mesenchymal one, also called 
EMT (epithelial-mesenchymal transition), as they can migrate and form metastases.  

This type of state transition where cells acquire migratory characteristics is one of many ways for cells 
to achieve objectives related to their differentiation. EMT is also an essential process that many cells go 
through during embryogenesis. For such a transition to happen, there must be a complex and robust 
interplay between cell-intrinsic and extrinsic factors. Epigenetic modifications, gene regulatory networks, 
and intracellular signaling can be shown as factors that participate in cell differentiation. We also have 
to consider the context in which a cell undergoes these changes. During embryogenesis, the timing of 
the internal cellular events has to be reckoned with. For example, the pluripotency marker 
OCT4/POU5F1 exhibits differences across stages in its splicing isoform expression during  pre-
implantation embryo development (Cauffman et al., 2006). Furthermore, the question of “when” an event 
happens has to be accompanied by “where”. A cell’s spatial context also influences its identity. So, the 
internal molecular events are also influenced by the cell’s location relative to other cells. For example, 
in an early developmental stage of mice (16-cell stage), the relative position of cells to each other can 
influence their identities in the following stage (Lorthongpanich et al., 2012). 

5.1.3 Studying cellular identity – a brief history  

The phenomenon of self-repair in animals has captured the attention of philosophers and scientists for 
many centuries. The first published study dates back to the 18th century by a French naturalist, who 
investigated the regeneration of crayfish claws (Réaumur, 1712). A few decades later, regeneration in 
freshwater polyps’ arms was detected (Trembley, 1744). The field has immensely evolved since, 
allowing a new potential for its application in medicine (Ntege et al., 2020). However, the mechanisms 
and factors underlying this fascinating process are not completely clear. To study regeneration and 
cellular plasticity on a cellular and molecular level, researchers have employed various methods.  

Traditionally, a cell’s location in the body was used as an indication of its identity, such as a brain cell 
or muscle cell. Additionally, microscopy has been used to distinguish cells based on their morphological 
features. Some early works were conducted by pioneers like Golgi, who used microscopy and dye-
staining to elegantly visualize neurons (Golgi, 1883). Conklin used these new techniques to study cell 
differentiation and construct a lineage tree during ascidian embryogenesis (Conklin, 1905).  Later in the 
20th century, developments in microscopy and molecular biology allowed the detection of specific 
molecules in a cell through immunofluorescence. This could be for example proteins (Coons et al., 
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1941), or nucleic acids (Pardue & Gall, 1969). All of these culminated in the complete fate mapping of 
C.elegans cells, the first such study was done in an animal (Sulston et al., 1983).  

Fate mapping studies eventually moved from using cells to their genetic material, since using a dye to 
trace cells had limitations in the dye diffusion to neighboring cells after a certain number of cell divisions 
(Kretzschmar & Watt, 2012). Because the progeny cells need to inherit information from their parent 
cells to be tracked, using the gene coding for the green fluorescent protein (GFP) has been an 
advantageous approach. However, they need to be inserted into the cell through various methods, such 
as lentiviral transduction. Using specific markers, it’s possible to detect cardiac or neural lineages both 
in vivo and in vitro (Nguyen et al., 2010). Recently, tracing the cells using DNA scarring methods has 
been exploited. They usually involved CRISPR/Cas9-based system to edit the genome and trace the 
introduced scars in progeny cells. The first application of this approach was GESTALT, which was 
successfully used to illustrate lineage relationships between the cells during the zebrafish development 
(McKenna et al., 2016). 

Aside from experimental limitations, the methods described above also suffer from either introducing 
biases that are driven by prior knowledge or the inability to capture the cell identity in the right context 
(VanHorn & Morris, 2021). Thus, a more comprehensive and unbiased approach needs to be integrated 
into determining the cell identity and its relationship to the other cells.  

5.2 Single-cell transcriptomics 

One of the technologies that have especially influenced all areas of biological research is RNA-seq. 
Being able to measure global RNA quantity in a given biological sample has opened doors to many 
intriguing findings. For example, this has meant that scientists have been able to find transcriptomic 
differences across samples using differential gene expression (DGE) analysis. DGE analysis has been 
the main goal of RNA-seq ever since its successful application to various organisms and systems in its 
early stages (Stark et al., 2019). Numerous technologies and sequencing platforms have been 
committed to making the RNA measurements more and more precise to achieve a better sensitivity in 
DGE analysis. 

Like with any technology in biological research, scientists have, in many cases, run into limitations with 
traditional bulk RNA-seq after employing it to make critical observations in their research. Because any 
sample had to be sequenced as a whole to measure its average global transcriptome across a 
population of cells, tissue and cellular heterogeneity within the sample were overlooked. This, for 
example, was an important limitation in the study of cancer tissues, which, in some cases, are affected 
only by an aberrant rare cell population (Gyanchandani et al., 2017). Studying the importance of such 
rare populations is not possible with the bulk RNA-seq methods. In general, it becomes difficult to define 
what should be selected as a homogenous sample for an RNA-seq experiment. This is especially 
important in developmental biology, which studies how cellular heterogeneity arises in tissues and 
organisms.  

These limitations have been overcome by single-cell RNA-seq (scRNA-seq), for which the first protocol 
was published in 2009 (Tang et al., 2009). Thanks to the advent of scRNA-seq, it has been possible to 
quantify the amount of RNA of individual cells in a sample. Like traditional bulk RNA-seq, scRNA-seq 
changed the course of research in many areas of biology and medicine. Unsurprisingly, this new 
technology has revolutionized developmental and stem cell biology as well. It has revealed cellular 
heterogeneity within certain cell types that were previously considered to be homogeneous. Because 
the transcriptional state of a cell can define its identity, developmental biologists have been able to take 
a glimpse at how cell identity changes during various stages of development in different model 
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organisms, as well as in vitro systems. Single-cell atlases of mice (Pijuan-Sala et al., 2019), zebrafish 
(Wagner et al., 2018), Xenopus (Briggs et al., 2018), and macaque (Ma et al., 2019) embryos have 
revealed many insightful findings on the nature of cellular heterogeneity in the early developmental 
stages of these organisms. However, these types of analyses have required the use of tailored 
algorithms and software tools to extract relevant information, as briefly described below. 

 

5.2.1 Utilization of single-cell transcriptomics 

Since the first study to generate the transcriptomic profile of a few cells through scRNA-seq (Tang et 
al., 2009), the capacity to sequence more cells has grown immensely. As the complexity and depth of 
the datasets obtained through scRNA-seq increased, its implementation in many different contexts 
emerged. In addition to the possible applications of bulk RNA-seq, having the transcriptomic information 
at a single-cell level paves the way for advancing knowledge in many areas of biological and medical 
research.  

Although other modalities of single-cell data, such as chromatin accessibility, can give useful information 
about cell state, having access to a cell’s transcriptomics provides a more convenient interpretation. 
This convenience mainly arises from the fact that features measured in transcriptomics methods 
correspond to the expression of well-annotated transcripts and genes, whereas signals obtained from 
epigenomics methods might correspond to single or multiple genomic regions. (Lähnemann et al., 
2020). However, there have recently been advances in merging these two technologies to obtain better 
mechanistic insights into the cell function (Yao et al., 2021). The changes in cell identity will be to a large 
degree reflected in its transcriptome. Whether a cell receives an environmental stimulus (e.g signal from 
other cells) or gains a new spatiotemporal context, the underlying gene expression pattern will be 
adjusted accordingly. Hence observing the gene expression patterns of cells can help reveal their 
identities both independently and in relation to each other.  

Below, I discuss some of the biological questions that scRNA-seq can help answer. Some of them are 
also illustrated in Figure 1. 

Tissue heterogeneity 

scRNA-seq is particularly suitable for studying tissues with a high degree of heterogeneity. For example, 
cancer tissues have various cell types, and the different subpopulations can be identified through their 
transcriptomic differences. This is also true for an animal embryo, which at any given time contains 
various cell types that change over the course of development. Thus, scRNA-seq is an excellent method 
to uncover the cellular heterogeneity in developing tissues, as well as discover novel and rare cell types.  

Novel marker genes 

Annotating cell states in data obtained through scRNA-seq usually requires examining the expression 
of known marker genes. However, once a cell type is assigned to the cells through this technique, it is 
also possible to find novel genes that define the cell population of interest. This can facilitate cell type 
identification for future studies and could give info on previously unknown functions that the cells might 
perform. 

 

Cell-type specific comparative analysis 

After establishing the various cell types within a tissue, one can compare cell type composition between 
tissues. This can be, for instance, comparing tissues from healthy and unhealthy patients to see which 
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specific cell type is affected and how. Additionally, other types of cross-sample analyses are possible, 
such as cross-species comparisons.  

Cell cycle phase inference 

Part of the cellular heterogeneity comes from the cells that are in different phases of the cell cycle. While 
some cells are dividing or proliferating, others are in a dormant state. Identifying the cell cycle phase 
can help interpret the differences between cellular states. In certain cases, the transcriptional differences 
due to the cell cycle can compound the identification of signals related to other processes, like the 
cellular differentiation (Buettner et al., 2015). Thus, correctly assigning cells to their cell cycle phase can 
provide important biological insights and remove a possible confounding factor during the analysis.  

 

Trajectory inference 

As mentioned above, a cell’s transcriptomic profile gets altered when it goes through a state change. In 
a given tissue where cells differentiate towards different fates, single-cell transcriptomics can capture 
cells in different stages of differentiation. Taking advantage of these transcriptomic differences in the 
sample, it is possible to predict the differentiation trajectory of the cells within a sample. This can reveal 
interesting trajectory shapes, such as bifurcating or cyclic. In a sample where stem cells give rise to 
various tissues, one can observe a tree-like trajectory. Aside from finding the overall course of 
differentiation, one can also extrapolate the expression trend of individual genes along a given trajectory.  

 

5.2.2 Computational analysis of scRNA-seq data 

Growing aims and ambitions of molecular biology have necessitated the utilization of knowledge and 
techniques from other scientific fields. Hence integrating the expertise of scientists with different 
backgrounds has become a quintessential part of molecular biology studies. It is possible to observe 
this integrative approach in recent years, as technologies have vastly improved. Although The Human 
Genome Project in 2003 has not immediately brought its promises of solving many standing problems 
in biology, it has paved a way for scientists to discover molecular components that play a role in many 
biological systems. Thanks to the advent of sequencing technologies, especially Next-Generation 
Sequencing (NGS), many omics fields have emerged, producing a breadth of crucial data to help 
understand complex molecular processes underlying disease progression, cellular function, and drug 
response. Hence another wave of the vast use of computers has been brought to biology, after the 
success of computational analysis of protein structure half a century before (Gauthier et al., 2019).  

Producing data through NGS technologies has brought many challenges with it. Many analyses, such 
as variant calling could be likened to “finding a needle in the haystack”. Before scRNA-seq was invented, 
computational biologists dealt with many challenges as well, such as noise and data quality. Already 
many tools were made to process and analyze bulk RNA-seq. So, the scientists that started dealing with 
scRNA-seq data had tools at their disposal. However, scRNA-seq data have additional intrinsic 
challenges, such as dropouts, the number of cells analyzed, and various biological confounders. This 
has demanded the creation of novel statistical and computational tools.  

Today, there are already hundreds of scRNA-seq tools existing to process and extract information for 
various biological questions (Zappia et al., 2018). I will discuss relevant computational methods to the 
uses of scRNA-seq mentioned above and their limitations.    
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Clustering and cell-type identification 

Grouping cells based on their transcriptomic profile is usually a quintessential step of scRNA-seq 
workflows (Trapnell, 2015). This is needed to establish the level of heterogeneity in the dataset so that 
the downstream analysis can be performed accordingly. In machine learning terms, clustering is an 
unsupervised learning method to divide data points into groups or clusters based on their similarity. For 
scRNA-seq data, this means that cells with similar transcriptomic profiles should fall into the same 
clusters. This is achieved without having prior knowledge about cell types. Many tools have been 
adopted or implemented for this purpose.  

Some of the most popular clustering algorithms are k-means clustering, hierarchical clustering, and 
graph-based community detection. Hierarchical clustering and k-means have scalability problem, having 
issues handling large datasets (Kiselev et al., 2019). Considering the size of scRNA-seq data, O(n2) 
time complexity for these two methods might not always be suitable depending on the number of cells 
being analyzed.  

Clustering tools from popular libraries for single-cell RNA-seq data analysis like scanpy (Wolf et al., 
2018) and Seurat (Stuart et al., 2019) use graph-based methods. The most popular one is the Louvain 
algorithm (Blondel et al., 2008). It can overcome the scalability issue of k-means and hierarchical 
clustering by relying on a procedure called modularity optimization (with time complexity of O(n*log(n)). 
Modularity is a measure of network structure, so it is possible to detect communities with different 
structures and sizes within a graph by optimizing the modularity value. However, it has been shown that 
modularity optimization suffers from resolution limit, resulting in communities that might include sub-
networks within (Fortunato and Barthelemy, 2007). For scRNA-seq data, it might be a problem when 
some small populations cannot be detected. Leiden algorithm was shown to be an improvement, by 
solving the resolution limit inherent to Louvain (Traag et al., 2019). For this reason, Leiden was chosen 
as a primary way of detecting cell populations for all the studies in this thesis, whenever clustering was 
performed.  

Overall, all methods rely on one or more parameters that define the number of clusters detected in the 
data. For k-means, the parameter k represents the number of clusters that the algorithm will identify.  
The graph-based methods rely on the resolution parameter to tune the number of clusters. Additionally, 
the graph is constructed through the k-nearest neighbor method, where the k parameter needs to be 
set. Higher values of k will result in fewer clusters.  As there is no straightforward way of choosing these 
parameter values, the outcomes can be very distinct from each other. This issue regarding parameter 
choices makes mapping clusters to biologically meaningful cell populations a challenging task. In this 
case, some prior knowledge of the cell types and their markers might be necessary. Although judgment 
from the researcher is ultimately necessary to interpret clustering results, there are ways to 
computationally predict the correct number of clusters. One way is the bootstrapping technique, whereby 
the same clustering algorithm is run on multiple subsets of data and the consistency of the clustering 
results is assessed with different parameter values.  As the scRNA-seq databases (also known as 
“transcriptional atlases”) are populated more with various samples and studies, the annotation of cell 
clusters can also make use of these databases.  

 

Cross-sample comparison 

Often in the scRNA-seq analysis workflow, more than one sample will be involved. The task could be 
merging different datasets, mapping one onto another, or doing comparisons between conditions. 
Because these data typically come from separate sources or batches, correcting this difference is 
ultimately a computational problem. In any data integration task, there might be more than one possible 
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source of difference. Some of them are technical and others biological. These sources can be different 
laboratories, sequencing platforms, or species. Therefore, it is computationally necessary to remove 
these effects while preserving the biological variation within and between the datasets.  

To date, there are dozens of methods available to integrate scRNA-seq data. Some of the popular 
methods are MNN (Haghverdi et al., 2018), scanorama (Hie et al., 2019), Harmony (Korsunsky et al., 
2019), and ComBat (Büttner et al., 2019). There are fundamental differences in terms of their 
performance, output, and data handling. Additionally, they do not perform well on various criteria of 
batch removal and conservation of biological signals (Luecken et al., 2022). Hence, there is no single 
method that will perform well for all datasets and integration tasks. A method can remove a batch effect 
well but might also remove interesting biological differences between datasets. For example, according 
to Luecken et al., Harmony performs well when it comes to batch correction but might perform poorly 
when it comes to conservation of biological signals. There are also differences in speed and scalability 
to consider. For example, MNN is less scalable compared to scVI (Lopez et al., 2018). Overall, the 
methods recommended by the authors were Scanorama, scVI and scGen (Lotfollahi et al., 2019).  

One of the biggest goals of data integration is to incorporate existing transcriptional atlases to help with 
annotation. One such atlas is the Human Cell Atlas (Regev et al., 2017). However, it becomes 
computationally intensive to make use of an evergrowing atlas. The methods mentioned above are not 
suitable to overcome this task. Transfer learning-based methods can be employed to transfer relevant 
knowledge from the atlas to the query data under study. They are able to perform the transfer without 
losing important biological variation between all relevant datasets (Lotfollahi et al., 2022). However, the 
main challenge of these models is the lack of useable output (corrected count matrix) for downstream 
analysis.  

Trajectory inference  

As many biological processes involve dynamic transcriptomic change during cellular state transition, it 
is possible to capture this computationally in scRNA-seq data. This allows putting cells in 
pseudotemporal order since tracking single cells in a laboratory setting might not be straightforward. 
Like other computational problems in scRNA-seq, many methods have been developed for trajectory 
inference analysis. The main challenge is to estimate the topology of the trajectory, whether it is linear, 
bifurcating, cyclic, etc. However, the choice of the method usually involves prior information on the type 
of trajectory, since not all methods can estimate all types of topology (Saelens et al., 2019). Depending 
on the method chosen, defining a progenitor cell might be necessary. However, if a user wants to 
perform a less biased approach, it is possible to add additional information such as RNA velocity (La 
Manno et al., 2018). This method estimates the trajectory of a cell using the information on spliced and 
unspliced mRNA counts. There are also potential issues regarding RNA velocity, such as a lack of 
generalization for all types of biological processes and systems (Bergen et al., 2021).  

After inferring a biologically reasonable trajectory, the typical downstream analysis involves estimating 
the gene expression trend. Because many genes gradually get either downregulated or upregulated in 
the cells that are changing states, detecting them can give crucial insights into the dynamics of cell 
differentiation. The comparison analysis mentioned above can be extended here too. For example, it is 
possible to compare the trajectories and gene expression trends between species, as has been done in 
some studies before (Kanton et al., 2019). The study in Publication 1 (Tyser et al., 2021) makes use of 
such comparison too, detecting genes that share similar and different trends between human and mouse 
gastrulation. 
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Differential gene expression and marker gene detection 

The main objective of bulk RNA-seq was to find differential expressed genes between conditions. This 
is of course an important objective of scRNA-seq analysis as well, often used to find DEGs between 
computationally and biologically defined cell types and states. Differential expression analysis is also a 
crucial part of cluster annotation. Although there are differences in technical considerations of bulk and 
single-cell RNA-seq, methods developed to detect DEGs for bulk RNA-seq perform very well for scRNA-
seq data (Soneson & Robinson, 2018; Luecken & Theis, 2019). However, there have also been tools 
designed specifically for scRNA-seq, including COMET (Delaney et al., 2019), scDD (Korthauer et al., 
2016) , and MAST (Finak et al., 2015). 

Due to inherent technical noise, intercellular variation, as well as bimodality of gene expression in 
scRNA-seq data, methods for DEGs detection devised for bulk RNA-seq might not always be suitable. 
It was shown that these approaches might overpredict the number of genes differentially expressed 
between cell populations in scRNA-seq data, leading to false positives (Finak et al., 2015).  However, 
tools designed specifically for scRNA-seq have also possible limitations, such as the lack of consistency 
across single-cell experimental methods, and the inability to take dropouts and zero-inflation into 
account (Das et al., 2021). It is also very common to use well-known statistical tests such as the 
Wilcoxon-rank-sum test, t-test, and logistic regression for DE testing. However, they are unable to 
differentiate between biological and technical variation, leading to false positive results (Squair et al., 
2021). For these reasons, it is important to be careful when inspecting top marker genes for cell type 
annotation. Additionally, defining top genes based on different metrics, such as false discovery rate 
(FDR) and log-fold change might be necessary.  

Top marker genes obtained through the algorithms above can be used to annotate a cluster that 
represents a biologically meaningful cell population. For the human gastrula study (Publication 1), using 
Wilcoxon-rank-sum test was sufficient to annotate the populations. This was possible thanks to the 
literature on marker genes available from mouse and in vitro studies. Because only one embryo was 
analyzed and the data included only one batch, using a method that takes batch effect into account was 
not necessary. This was not the case when investigating mouse hematopoietic stem cells (Manuscript 
I), where data from two conditions were compared using DEseq2 and the batches had to be considered 
by specifying a design matrix (Love et al., 2014).  

5.3 Scope of the thesis 

As we have seen, single-cell transcriptomics studies can be a powerful method for studying cellular 
identity and heterogeneity. There are also many tools and resources to make use of the data and gain 
insightful knowledge on complex biological processes involving a dynamic change in cellular state. The 
projects described in this thesis used scRNA-seq to study cell differentiation across different systems 
and organisms.  

Although the systems studied have unique characteristics, several general questions can be asked 
about the systems studied. At what point in time and space do the cells start changing their identities? 
What genes are involved during this process? How is the cell cycle related to cellular differentiation? 
Are there any distinct or intermediate cellular states that were not characterized before? Below, I briefly 
introduce the biological systems that I have worked on.  
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Human Gastrulation 

Gastrulation is a fundamental process during development that is conserved across all animals. It is one 
of the earliest stages of development during which the body plan and the germ layers are formed. These 
germ layers eventually give rise to all the tissues and organs in an adult body. Therefore, it is an 
extremely important stage of animal development that starts with massive expansion in cellular 
heterogeneity. Gastrulation has been studied in model organisms, such as mouse (Pijuan-Sala et al., 
2019) and zebrafish (Wagner et al., 2018). To get insights into human gastrulation, some in vitro studies 
have been done (Moris et al., 2020). However, there has never been a deep molecular look into human 
gastrulation in utero. In my work (Publication 1, (Tyser et al., 2021)), by analysing a single-cell RNA-seq 
dataset from a human embryo at the gastrula stage, many useful insights could be gained. In particular,  
the focus was on characterizing the cellular heterogeneity and differentiation paths. Additionally, 
comparisons were made with mouse and macaque embryos, as well as with in vitro studies (Messmer 
et al., 2019) published before. These findings will be a resource of paramount importance for 
investigations of human gastrulation. I performed all the computational analyses and data visualization 
in this project, in addition to creating a web app for interactive data exploration (http://human-
gastrula.net). 

 

State transition of pluripotent cells during early mouse development 

Mice have been powerful model organisms for studying complex processes that govern mammalian 
development. Many perturbation studies on mouse development can now be accompanied by 
computational analysis of scRNA-seq data. For example, we used scRNA-seq to investigate cell 
competition in mouse epiblast cells in pre-gastrulating human embryos (Publication 2, Lima et al., 2021). 
In this paper, we showed that the cells that are eliminated by competition possess defects in their 
mitochondrial DNA, which we identified from scRNA-seq data. For this project, I contributed to the 
development of a novel computational pipeline to extract mitochondrial heteroplasmy information from 
single-cell RNA-seq datasets (Publication 3, Lubatti et al., 2022). 

I also contributed to a study investigating cell state transition in mouse embryonic stem cells (mESCs). 
In particular, the relationship between cell cycle and state transition was studied with a mathematical 
model in publication 4 (Nakatani et al., 2022).  This mathematical model was used to estimate the 
transition probabilities of mESCs from a pluripotent to a totipotent state in each cell cycle stage.  

 

Mouse hematopoiesis 

Hematopoiesis is another dynamic system where applying single-cell transcriptomics can be extremely 
useful (Watcham et al., 2019). In a system where constant turnover of various cell types can be 
observed, grouping them based on their gene expression profiles can quantify the level of transcriptional 
heterogeneity of haematopoietic stem cells (HSCs) and how such heterogeneity can influence cell fate 
decision  (Sanjuan-Pla et al., 2013). For example, some stem cells are more biased towards the myeloid 
lineage and their dormancy must be ensured to prevent fast exhaustion. This is important because they 
only need to proliferate in case of stress. There are extracellular and intracellular signaling cascades 
that regulate the balance between dormancy and proliferation. The study included in Manuscript 1 
investigates the role of one of such signaling molecules that regulate myeloid-biased HSC proliferation, 
Semaphorin 4a (Sema4a). Using single-cell measurements from myeloid biased HSC (myHSC) in both 
WT and Sema4a KO cells, differences were explored to discover the role of Sema4a in maintaining 
myHSC dormancy. My contribution consisted in comparing single-cell RNA-seq data generated from 
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WT and Sema4a KO HSC to uncover which transcriptional differences arise in the mutant cells and 
what signaling pathways might act downstream of Sema4a.  

 

 

 

 

Figure 1. Types of analysis performed in this thesis from scRNA-seq data. a, Comparison between 
human CS7 gastrula and non-human primate (E16) clusters. b, Identification of clusters in human 
gastrula. c, Trajectory comparison of myeloid-biased HSCs and balanced HSCs d, Heteroplasmy levels 
of an mtDNA location located in gene mt-Rnr1 in mouse epiblast cells. 
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6. Results 

6.1 Publication 1 
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Single-cell transcriptomic characterization 
of a gastrulating human embryo

Richard C. V. Tyser1,6, Elmir Mahammadov2,3,4,6, Shota Nakanoh5, Ludovic Vallier5, 
Antonio Scialdone2,3,4,7 ✉ & Shankar Srinivas1,7 ✉

Gastrulation is the fundamental process in all multicellular animals through which 
the basic body plan is !rst laid down1–4. It is pivotal in generating cellular diversity 
coordinated with spatial patterning. In humans, gastrulation occurs in the third week 
after fertilization. Our understanding of this process in humans is relatively limited 
and based primarily on historical specimens5–8, experimental models9–12 or, more 
recently, in vitro cultured samples13–16. Here we characterize in a spatially resolved 
manner the single-cell transcriptional pro!le of an entire gastrulating human 
embryo, staged to be between 16 and 19 days after fertilization. We use these data to 
analyse the cell types present and to make comparisons with other model systems. In 
addition to pluripotent epiblast, we identi!ed primordial germ cells, red blood cells 
and various mesodermal and endodermal cell types. This dataset o#ers a unique 
glimpse into a central but inaccessible stage of our development. This 
characterization provides new context for interpreting experiments in other model 
systems and represents a valuable resource for guiding directed di#erentiation of 
human cells in vitro.

Human gastrulation starts approximately 14 days after fertilization and 
continues for slightly over a week. Donations of human fetal material at 
these early stages are rare, making it nearly impossible to study directly. 
Our understanding of human gastrulation is therefore based almost 
entirely on extrapolation from model systems, historical collections 
of fixed samples5–8 and more recently, several in vitro models. These 
include human embryonic stem (ES) cells cultured on circular micropat-
terns9, human ES cell colonies engrafted into chick embryos10 or 3D cel-
lular models derived from human ES cells11,12. The stages just preceding 
gastrulation have also been studied using human embryos cultured 
in vitro13–16. There is currently no transcriptional data of in utero human 
gastrulation with which to compare such in vitro models. Here we pre-
sent a morphological and spatially resolved single-cell transcriptomic 
characterisation of a single human gastrulating embryo at Carnegie 
stage (CS) 7, equivalent to 16–19 days post-fertilization, providing a 
detailed description of cell types present at this fundamental stage of 
human embryonic development.

Characterization of a CS7 human gastrula
We obtained a gastrulation stage human embryo through the Human 
Developmental Biology Resource, from a donor who provided informed 
consent for the use in research of embryonic material arising from the 
termination of her pregnancy. The embryo was karyotypically normal, 
male and staged as gestational week 4 plus 5 days, which corresponds 
to between 2 and 3 post-conception weeks (pcw).

The sample was completely intact and morphologically normal, 
comprising an embryonic disc with amniotic cavity, connecting stalk 
and yolk sac with pigmented cells (Fig.1a). We micro-dissected away 
the yolk sac and connecting stalk to isolate the embryonic disk with 
overlying amnion. Dorsal and ventral views of the disk showed the 
primitive streak extending approximately half the diameter of the 
disk along the long, rostral–caudal axis (Fig.1b, Extended Data Fig. 1a).  
The primitive node was visible at the rostral end of the streak. The length 
of the primitive streak relative to the embryonic disk, the presence of 
prechordal plate and the node at the middle of the disk enabled us 
to stage the embryo17 as CS7. To retain anatomical information when 
disaggregating cells for the single-cell RNA sequencing (scRNA-seq), 
we sub-dissected the embryo into the yolk sac, rostral embryonic disk 
and caudal embryonic disk (Fig. 1d, Extended Data Fig. 1b).

After stringent quality filtering, we generated a library of 1,195 single 
cells (665 caudal, 340 rostral and 190 yolk sac cells), with a median of 
4,000 genes detected per cell (Extended Data Fig. 1c). All cells showed 
expression of Y-chromosome genes and XIST transcript was largely 
undetectable (Extended Data Fig. 1d), confirming that there was no 
maternal cell contamination. All cell cycle stages could be detected, sug-
gesting that normal cell cycling was occurring (Extended Data Fig. 1e). 
The genomic integrity of the sample was normal, with the number of 
indels identified falling in the same range as other human transcrip-
tomic datasets (Extended Data Fig. 1f). These analyses, alongside the 
karyotyping (Methods) and morphology of the sample (Fig. 1a, b), sug-
gest that this sample is representative of normal human gastrulation.
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We detected 11 different cell populations with unsupervised clustering 
(Fig. 1c). Using a combination of anatomical location and marker genes 
(Supplementary Note 1), we annotated them as: epiblast, ectoderm (amni-
otic/embryonic), primitive streak, nascent mesoderm, axial mesoderm, 
emergent mesoderm, advanced mesoderm, extraembryonic mesoderm, 
endoderm, haemato-endothelial progenitors (HEP) and erythroblasts 
(Fig. 1c, Extended Data Fig. 2a, b, Supplementary Tables 1, 2). This anno-
tation was supported by comparison with cell types described in the 
mouse18 and the non-human primate cynomolgus macaque19 (Extended 
Data Fig. 2c, d). The Smart-seq2 protocol also enabled us to differentiate 
between transcript isoforms and detect the cluster-specific expression 
of gene isoforms (Extended Data Fig. 2e, Supplementary Table 3).

We have created a web interface to interactively explore these data 
as a user-friendly community resource, accessible at http://www.
human-gastrula.net.

Cell-type diversification
The identification of the CS7 epiblast cluster offered the opportunity to 
transcriptionally define the human primed pluripotent state as it exists 
in utero. To generate anchors of the in vivo primed and naive states, we 
first combined our epiblast data with existing pre-implantation human 
embryo scRNA-seq data20 that captures the in vivo naive state. Cells 
showed an ordered pattern according to their developmental stage 
(Fig. 2a, Extended Data Fig. 3a). We next projected the transcriptomes of 
naive and primed in vitro cultured human ES cells21 onto this represen-
tation. We found that naive human ES cells were closest to embryonic 
day (E) 6–E7 cells, whereas primed human ES cells partially overlapped 
with CS7 epiblast, verifying that at the global transcriptome level, the 
primed state captured in vitro in human ES cells closely represents 
the in vivo primed state. A comparison of the naive and primed state 
in vivo and in vitro showed some differences (Extended Data Fig. 3b, 
Supplementary Table 4), which could suggest ways to further refine 
in vitro models. Similar approaches could be adopted to evaluate 
in vitro models of human gastrulation, such as gastruloids (Extended 
Data Fig. 3c; details in Supplementary Note 2).

Diffusion maps and RNA velocity analysis22,23 (Fig. 2b, Extended Data 
Fig. 3d) revealed trajectories from the epiblast along two broad streams 

corresponding to mesoderm and endoderm, separated along the sec-
ond diffusion component (DC2). The first diffusion component (DC1) 
corresponded closely to cell type and spatial location, reflecting the 
extent of the differentiation and the ‘age’ of the cells, based on how far 
in the past of this sample they had emerged from the epiblast (Fig. 2b, 
Extended Data Fig. 3d). For example, extra-embryonic mesoderm cells, 
which emerge relatively early during gastrulation, were further from 
the epiblast than axial mesoderm cells, which emerge later. The cells 
that we annotated as nascent, emergent and advanced mesoderm 
showed overlapping expression of markers of established mesodermal 
sub-types, such as paraxial or lateral plate mesoderm. This suggests that 
at this stage, these clusters do not yet represent specified mesodermal 
subtypes and correspond to transitional states (Extended Data Fig. 4, 
Supplementary Notes 1, 3, Supplementary Table 16).

To probe changes in the epiblast during gastrulation, we computed 
RNA velocity vectors with cells belonging to the epiblast, primitive 
streak, nascent mesoderm and ectoderm (amniotic/embryonic) 
clusters. This supported the existence of a bifurcation from epiblast, 
towards mesoderm via the primitive streak on one side and towards 
ectoderm on the other (Fig. 2c). Ordering cells using diffusion pseu-
dotime provided a method to infer the changes in gene expression as 
epiblast cells differentiate into ectoderm or enter the primitive streak 
and begin to delaminate into nascent mesoderm (Fig. 2c, Extended 
Data Fig. 5). Whereas we could detect robust upregulation of markers 
common to the amniotic and embryonic ectoderm24 (DLX5, TFAP2A 
and GATA3), markers of early neural induction (SOX1, SOX3 and PAX6) 
and differentiated neurons (TUBB3, OLIG2 and NEUROD1) were unde-
tectable or expressed at very low levels25,26 (Extended Data Fig. 5c). In 
particular, we could not detect any cells expressing two or more of the 
markers SOX3, PAX6 or TUBB3. Together, these data suggest that in this 
CS7 embryo, neural differentiation had not yet commenced.

The mouse is the predominant model used for research into mam-
malian gastrulation. To unbiasedly test similarities and differences 
between human and mouse gastrulation, we used pseudotime analy-
ses to compare the transition from epiblast to nascent mesoderm in 
the human gastrula with the equivalent populations from the Mouse 
Gastrula Single Cell Atlas18 (Extended Data Fig. 6a, Supplementary 
Tables 5, 6). We identified 662 genes common to both species that 
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were differentially expressed along this developmental trajectory 
(Extended Data Fig. 6b, Supplementary Table 7). The majority of these 
(531) shared the same trend across pseudotime, either increasing 
(117) or decreasing (414). For example, in both mouse and human, 
during the transition from epiblast to nascent mesoderm, CDH1 
expression decreased, TBXT was transiently expressed, and SNAI1 
continuously increased (Fig. 2d, Extended Data Fig. 6c). In addi-
tion, we also found some genes with trends that differed between 
the two species, such as SNAI2 (upregulated only in human), TDGF1 
(opposing trends), FGF8 (transient expression in mouse only) and 
FGF2 (expression downregulated in human, but not expressed at 
all in mouse). To experimentally validate these human-specific 
transcriptional trends, we used a human ES cell-based in  vitro 
model of the transition from epiblast to nascent mesoderm and 
found similar trends during human ES cell differentiation (Fig. 2e, f,  
Extended Data Fig. 7). We extended this comparison to include the 
closest available stages of gastrulation of the cynomolgus monkey19. 
An analysis of expression trends of signalling molecules across the 
three species again revealed broad similarities, as well some specific 
differences (Extended Data Fig. 8; details in Supplementary Note 4).

Cluster subtypes
The ectoderm (amniotic/embryonic) cluster expresses markers 
common to the embryonic ectoderm at the rostral boundary of the 

neural plate, which will generate surface ectoderm, and the amni-
otic ectoderm24,27. To explore this population further, we performed 
sub-clustering, which revealed two subpopulations, one of which rep-
resented amniotic ectoderm, indicated by high expression of VTCN1 
and GABRP28 (Fig. 3a, Supplementary Table 8). The other subpopulation 
(NNE) represents either embryonic non-neural ectoderm at the rostral 
boundary of the forming neural plate27 or immature amnion.

A crucial population of cells to originate from the early epiblast 
are the primordial germ cells (PGCs). In the mouse, PGCs emerge at 
approximately E7.2529,30. Recent work has shown that cells expressing 
some PGC markers can be identified at E1131 in non-human primates 
and in ex vivo cultured human embryos13. Consistent with this, we were 
able to detect a small population of PGCs in the primitive streak cluster 
(Fig. 3b, Supplementary Table 9). A comparison of the transcriptional 
profile of early human PGCs with that of mouse and non-human pri-
mate identified markers shared between these species and others that 
differed, such as DND1 and PDPN (Fig. 3b, Supplementary Table 10).

The endoderm cluster showed a higher order of substructure based 
on gene expression and anatomical origin of cells. Subclustering 
revealed four spatially distinct subpopulations: hypoblast, yolk sac 
(YS) endoderm and two definitive endoderm (DE1 and DE2) groups 
(Fig. 3c, Extended Data Fig. 9, Supplementary Table 11). A comparison 
of these cells with mouse endodermal subtypes at E7.25 confirmed 
our annotation (Fig. 3c). The two definitive endoderm clusters had the 
largest proportion of cells collected from the caudal region (Extended 
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Data Fig. 9b). One of the main differences between them was in the 
distribution of cells across the phases of the cell cycle, with DE1 being 
more proliferative compared with DE2 (Extended Data Fig. 9c). DE2 
also showed increased expression of the anterior endoderm mark-
ers HHEX, OTX2, SHISA2 and CER1 (Extended Data Fig. 9f). Analysis of 
transcript isoforms also revealed further differences between these 
endoderm clusters in markers such as APOA2 and TTR (Extended Data 
Fig. 9i, Supplementary Table 12).

Maturation of haemogenic progenitors
Our initial analysis revealed two blood-related clusters, erythroblasts 
and haemato-endothelial progenitors (HEP). The identification of prim-
itive erythroblasts was consistent with pigmented cells in the yolk sac 
and the expression of embryonic globin genes (Fig. 4a, Extended Data 
Fig. 10f). This was unexpected, given the absence of pigmented blood 
cells at the equivalent stage in mouse embryos (approximately E7.25). 
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The expression of XIST and Y-chromosome specific genes (Extended 
Data Fig. 10a) ruled out the possibility of maternal origin of these cells.

Unsupervised clustering of the HEP revealed four subpopula-
tions with distinct transcriptional and isoform signatures (Fig. 4b, 
Extended Data Fig. 10d, Supplementary Tables 13, 14). These repre-
sented endothelium, megakaryocyte-erythroid progenitors (MEP) 
(expressing both megakaryocyte and erythroid markers), myeloid 
progenitors and an erythro-myeloid progenitor (EMP) population. 
Diffusion analysis revealed a separation of trajectories based on HEP 
subtype (Fig. 4c, Extended Data Fig. 10e).

The existence of haemoglobinizing cells and multiple haematopoi-
etic progenitor populations suggest that haematopoiesis in humans 
had progressed further in comparison to equivalent stage mouse 
embryos (E6.75–E7.5). To examine this in an unbiased manner, we com-
pared the sequence of the human clusters to the equivalent populations 
from the Mouse Gastrula Single Cell Atlas18, which span E6.5–E8.5. In 
contrast to the human Epiblast and Primitive Streak that correspond 
to mouse cells from E7.0 and E7.5 respectively, all the human haemat-
opoietic populations most closely correlated with cells from stage E8.5 
in the mouse (Fig. 4d, Extended Data Fig. 10g, h), further suggesting 
that haematopoiesis is more advanced in the human compared to the 
equivalent stage in mouse.

Discussion
The singular nature of the sequenced specimen means that care must 
be taken when making generalizations about human gastrulation 
in utero. Ethically obtained human samples at these early stages 
are exceptionally rare—thus, in this context, it will be informative 
to compare this human gastrula transcriptome with those from 
stage-matched non-human primates. For now, our characterization of 
this human sample provides some reassurance that it reflects normal 
development on the basis of gross morphology, karyotype, distribu-
tion and frequency of indels, and broad agreement of its single-cell 
transcriptome with established paradigms of gastrulation from model 
organisms.

Our characterization reveals that the embryo at this stage already had 
PGCs and red blood cells, but had not yet initiated neural specification. 
The differentiation trajectory and signalling pathways of gastrulating 
cells transitioning from epiblast to mesoderm was broadly conserved 
between humans and the mouse, indicating that the mouse represents a 
good model of human gastrulation. However, some notable differences 
suggest that the process of EMT may be regulated differently at the level 
of specific signalling family members. These human-specific details 
of differentiation will be a valuable resource for refining approaches 
towards directed differentiation of human embryonic stem cells. Fur-
thermore, they will help in interpreting experimental results on gastru-
lation from model organisms such as the mouse or in vitro gastruloid 
systems. The human and mouse gastrula are morphologically very 
different, with the human gastrula forming a disc and the the mouse 
gastrula being cylindrical. This profound difference in morphology 
alters the migratory path of cells during gastrulation and therefore the 
inductive signals that the cells might be subject to from neighbouring 
germ layers. It will therefore be important to compare this human gas-
trula single-cell transcriptome with stage-matched gastrulae of other 
organisms with a similar embryonic disc, such as the rabbit, chick and 
non-human primates. This will enable us to address the extent to which 
specific differences between human and mouse transcriptomes are 
simply a result of evolutionary divergence or, instead, reflect differ-
ences in morphology.
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Methods
Collection of human gastrula cells
The CS7 embryo was provided by the Human Developmental Biology 
Resource (HDBR) (https://www.hdbr.org/general-information). HDBR 
has approval from the UK National Research Ethics Service (London 
Fulham Research Ethics Committee (18/LO/0822) and the Newcastle 
and North Tyneside NHS Health Authority Joint Ethics Committee (08/
H0906/21+5)) to function as a Research Tissue Bank for registered 
projects. The HDBR is monitored by The Human Tissue Authority for 
compliance with the Human Tissue Act (2004). This work was done as 
part of project #200295 registered with the HDBR. The material was 
collected after appropriate informed written consent from the donor 
by medical termination. The sample was collected and transported in 
cold L15 medium. It was then transferred to M2 medium and imaged 
on a Leica Stereo microscope. The sample was micro-dissected using 
tungsten needles and dissociated into single cells using 200 µl Accutase 
(ThermoFisher, catalogue (cat.) no. A1110501) for 12 min at 37 °C, 
with agitation every 2 min, before adding 200 µl heat-inactivated FBS 
(ThermoFisher, cat. no. 10500) to quench the reaction. Cells were then 
centrifuged at 1,000 rpm for 3 min at 4 °C before being suspended in 
100 µl HBSS (ThermoFisher, cat. no. 14025) + 1% FBS, and stored on ice. 
Single cells were collected using a Sony SH800 fluorescence-activated 
cell sorter with a stringent single-cell collection protocol and sorted 
into 384-well plates containing SMART-seq2 lysis buffer32 plus ERCC 
spike-ins (1:10 M). To ensure we collected good quality cells, a live/dead 
dye (Abcam, Cat No. ab115347) was used; 100 µl was added to the cell 
suspension at a 2× concentration in HBSS 10 min before collection, 
and live cells were collected on the basis of their FITC intensity. Once 
cells were collected, plates were sealed, spun down, and frozen using 
dry ice before being stored at −80 °C. This complete process, from 
dissection to single-cell collection, took approximately 2–3 h. The 
embryo was karyotypically normal (region-specific assay: (13, 15, 16, 
18, 21, 22) × 2, (X, Y) × 1).

Single-cell RNA sequencing
mRNA from single cells was isolated and amplified (21 PCR cycles) using 
the SMART-seq2 protocol32. Multiplexed sequencing libraries were 
generated from cDNA using the Illumina Nextera XT protocol and 125 bp  
paired-end sequencing was performed on an Illumina HiSeq 2500 
instrument (V4 chemistry).

Raw data processing and normalization
To quantify the abundance of transcripts from 1,719 cells, Salmon v0.1733 
was used. After indexing the human transcriptome (GRCh38.p13) in 
quasi-mapping-based mode, we quantified the transcripts with Salmon 
using the–seqBias and–gcBias flags. We combined the transcript level 
abundances to the corresponding gene level counts, which were aggre-
gated into a gene-count matrix. Then, for downstream analyses, we 
only retained cells with more than 2,000 detected genes, with overall 
mapping rate greater than 55% and with relatively low mapping rate to 
mitochondrial genes (<0.02) and to ERCC spike-ins (<0.2). After this 
step, we obtained 1,195 good quality cells. The data were normalized 
using the quickcluster and normalize functions from the scran package 
in R34. This was followed by pseudocount addition of 1 and natural-log 
transformation of the count matrix.

Clustering and cell type identification
To identify clusters of cells, we applied a graph-based algorithm. First, 
we selected the top 4,000 highly variable genes (HVGs) using the high_
variable_genes function from scanpy v1.4.435. We constructed the cell–
cell distance matrix as ρ(1 − )/2, where ρ is the Spearman’s correlation 
coefficient between cells. Next, a k-nearest neighbour graph was built 
with the first 30 principal components and k = 50. This was accomplished 
by the ‘neighbors’ function in scanpy, which computes the connectivity 

between cells based on UMAP (method = ‘umap’)36. To identify clusters, 
we applied the Leiden algorithm for community detection to the result-
ing graph (with a resolution of 0.75), as it has been shown to be a supe-
rior alternative to Louvain37. The same algorithm and resolution were 
used for subclustering the endoderm, the ectoderm and the haemogenic 
endothelial progenitors clusters with top 2,000 HVGs in each. However, 
in this case the k-nearest neighbour graph was built with the first 10 
principal components and k = 20. We visualized the resulting clusters 
in two dimensions by computing a UMAP representation with default 
parameters in scanpy (tl.umap function). To check the robustness of 
the clustering, we also computed the shared nearest neighbour (SNN)38 
graph and applied Leiden to it (resolution = 1.75), which produced very 
similar clusters (the adjusted mutual information score calculated with 
Python’s sklearn module was 0.8).

We identified marker genes for the clusters with the Wilcoxon 
rank-sum test in scanpy (rank_genes_groups function), by comparing 
the gene-expression levels in a given cluster with the rest of the cells in 
the dataset. The genes were ranked according to their false discovery 
rate (FDR), after P values were corrected with the Benjamini–Hochberg 
method. We visualized the expression values of marker genes on a 
heat map, after scaling the log-normalized counts between 0 and 1 by 
using the ‘standard_scale = var’ option in the scanpy heat map plotting 
function sc.pl.heatmap.

Isoform analysis
We obtained the isoform-level count matrix from Salmon, considering 
transcripts per million-normalized counts and the ENSEMBL database 
(GRCh38.p13) for annotation. We compared transcript levels between 
pairs of clusters. First, we removed genes with more than 80% counts 
mapped to a single isoform. Then, for each gene, we built a contingency 
table including the average normalized levels of each isoform in the two 
clusters being compared. A chi-squared test was then used to check 
whether the isoform abundances differ between the two clusters of 
cells for a given gene, as in ref. 39.

Trajectory analysis using diffusion pseudotime and RNA 
velocity
For the whole-embryo diffusion map, we built the k-nearest neighbour 
graph as described above (with k = 50 and using the first 30 principal 
components) to find the connectivity kernel width. We then used the 
diffmap function to build the diffusion map.

To estimate the trajectory of epiblast differentiation, we took  
2,000 HVGs from epiblast, primitive streak, ectoderm and nascent 
mesoderm clusters combined. Finally, the diffusion components were 
computed from the first 15 principal components with k = 15.

To illustrate the estimated direction of differentiation of epiblast 
cells, we embedded the RNA velocities23 of single cells on the above 
diffusion map. For this task, we aligned reads from each cell using 
STAR v2.740 to the human reference genome (GRCh38.p13), which was 
obtained from ENSEMBL. The aligned bam files were processed with 
velocyto v0.17.1723 with the default run-smartseq2 mode, to create a 
count matrix made of spliced and unspliced read counts.

After filtering genes with less than 10 spliced and un-spliced counts 
from this matrix, we calculated the moments for velocity estimation 
by utilizing a built-in function from scVelo Python module v01.2041. 
Subsequently, we inferred the splicing kinetic dynamics of the genes 
by applying the recover_dynamics function. The velocity of each gene 
was estimated by solving splicing kinetics in the dynamical mode with 
the velocity function. Finally, we embedded the resulting velocities on 
the diffusion space calculated above by means of the velocity_embed-
ding function from the scVelo module. The diffusion map and the RNA 
velocities for the mesoderm specification analysis were computed in 
the same way.

We defined a diffusion pseudotime (dpt) coordinate on the diffusion 
map of epiblast differentiation in order to visualize gene-expression 
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trends. First, we fixed the cell with the highest value of the first diffu-
sion component (DC1) as root, so that the middle point of pseudotime 
would fall roughly into epiblast. We fitted the expression levels of the 
genes as a function of the pseudotime with a generalized additive model 
using the gam package in R (v1.16.1). For visualisation purpose, we trans-
formed the pseudotime values as (1 − dpt), so that ectoderm cells would 
fall onto the left side and primitive streak and nascent mesoderm would 
be on the right side of the pseudotime plot (Extended Data Fig. 5a–c). 
Both fitted and unfitted values of the genes were scaled by dividing 
each by its maximum value of expression.

Human and mouse EMT comparison
For this analysis, we considered published single-cell RNA-seq data 
from mouse embryos during mid-streak stage (E7.25)18, but we also 
checked that the results remain largely unaffected if data from E7.0 or 
E7.5 are used. Epiblast, primitive streak and nascent mesoderm clusters 
were selected from the human and the mouse datasets for downstream 
analysis, and they were analysed separately as detailed below.

After constructing diffusion maps as described above with default 
parameters, we defined pseudotime starting from the cell with low-
est DC1 value in both cases (Extended Data Fig. 6a). After fitting 
gene-expression values along pseudotime with generalized additive 
models (see above), we calculated the P values using the analysis of 
variance (ANOVA) non-parametric test from the gam R package and we 
then obtained the FDR values (Benjamini–Hochberg method). Genes 
with FDR <0.1 were clustered according to their expression pattern.  
This was achieved by hierarchical clustering with Spearman’s correla-
tion distance as described above (hclust function in R). For estimat-
ing the number of clusters, the dynamic hybrid cut method was used 
(cutreeDynamic function, in the package dynamicTreeCut, version 1.63, 
with ‘deepslit’ = 0 and ‘minclustersize’ = 50). In both human and mouse, 
we found three clusters of genes, two of which were characterized by 
a clear upward or downward average trend with an absolute log2 fold 
change greater than 1 between the fitted values at the end and at the 
beginning of the trajectory.

For the human–mouse comparison, we converted mouse genes 
to human equivalents (one-to-one homologous genes only) with the 
biomaRt R package42. We compared the trends of genes in human and 
mouse, and in particular we looked at genes coding for signalling mol-
ecules, as listed in the curated database of the CellPhoneDB package43. 
To visualize the trend of selected genes, we normalized the expression 
values by the maximum in both mouse and human. We set fitted values 
to zero for the genes that were expressed in fewer than 10 cells.

Mouse cluster comparison and blood staging analysis
We mapped the cells from the human gastrula against the mouse clus-
ters at E7.25 available from ref. 18. To do this, we took the median lev-
els of genes as a representation of the typical expression pattern of a 
given mouse cluster, and then, for each cell in the human gastrula, we 
used the “scmapCluster” function from the “scmap” R package44 (with 
1,000 genes and similarity threshold parameter set to 0) to identify 
the mouse cluster that was most similar to it. We performed the same 
procedure for human endoderm (Fig. 3c) and HEP (Extended Data 
Fig. 10g) subclusters.

For staging analysis, we selected epiblast, primitive streak, endothe-
lium, blood progenitors (1 and 2), and erythroid (1, 2 and 3) mouse 
clusters across the 9 stages, from E6.5 until E8.5. We merged the two 
blood progenitor clusters as well as three erythroid clusters and we 
obtained four mouse blood-related clusters that were used in down-
stream analyses. After verifying that the human blood-related clusters 
map onto the corresponding mouse clusters, we built a representative 
expression pattern for mouse for each cluster and stage, by calculat-
ing the median expression value of the genes per cluster and stage. 
Cells from human gastrula blood (erythroblasts, myeloid progenitors, 
endothelium, blood progenitors and EMPs), epiblast and primitive 

streak clusters were projected onto the corresponding mouse clusters 
(human erythroblasts to mouse erythroid; human myeloid progeni-
tors, blood progenitors and EMPs to mouse blood progenitors; human 
endothelium to mouse endothelium; human primitive streak to mouse 
primitive streak; human epiblast to mouse epiblast) using scmap with 
the same parameters specified above.

Human and non-human primate gastrulation comparison
We considered single-cell non-human primate (NHP) gastrulation data19 
at 16 days post fertilization (dpf), since PGCs were only identified at 
that stage. Seurat integration method was applied to human and NHP 
single-cell data with 3,000 features used to find anchors (anchor.fea-
tures parameter) and 70 neighbours to filter anchors (k.filter param-
eter). After obtaining the corrected expression values, we calculated the 
mean expression level of each gene per cluster. Finally, we performed 
hierarchical clustering with Spearman’s correlation-based distance 
(see above) and the average aggregation method, using the linkage 
function from Python’s scipy module (v 1.5.2).

PGC identification and cross-species comparison
To single out the PGCs, we ran the RaceID algorithm (RaceID package 
v0.1.5)45, which can identify rare cell types, on the cells in the primitive 
streak cluster. We used these parameter values: k = 1, outlg = 8 and 
probthr = 0.005. This resulted in the identification of 9 subclusters of 
outlier cells. Among these, the PGCs were identified as the only clus-
ter of outlier cells that had a median expression of PGC marker genes 
(NANOS3, SOX17, DND1, LAMA4 and DPPA5) above 0.

To perform cross-species comparison of PGCs, we considered epi-
blast, primitive streak and PGC cells from human and mouse (E7.5 
stage), and late epiblast (L-epi), late gastrulating cells 1 (L-gast1) 
and PGC clusters from non-human primate (16 dpf stage) single-cell 
datasets. Z-scores were calculated for each gene per species by using 
rank_genes_groups function from scanpy with Wilcoxon rank-sum test 
(method = ’wilcoxon’) applied to PGC versus all others. The genes shown 
in the heat maps of Fig. 3d were selected from the top differentially 
expressed genes between PGC and the other clusters.

Cross-species signalling comparison
We obtained the gene sets for FGF, WNT and BMP signalling pathways 
from MSigDB database46. Here, we considered epiblast, primitive streak 
and nascent mesoderm clusters from mouse and human gastrula data, 
and L-epi, L-gast1 and L-gast2 clusters from the non-human primate 
dataset. We computed the z-scores for each cluster per organism sepa-
rately with Wilcoxon rank-sum test as described above. The genes that 
were expressed in fewer than ten cells across all clusters in a species 
were labelled as undetected (Extended Data Fig. 8).

Cell cycle prediction
We estimated the cell cycle phase of each cell by applying the pairs 
algorithm described in47. A Python implementation of this algorithm, 
pypairs v3.1.1 was used in this analysis (https://pypairs.readthedocs.io/
en/latest/documentation.html). After determining marker pairs from 
a training dataset48 with the sandbag function, we applied the function 
cyclone to assign a cell cycle phase to each cell.

Indel analysis
Using our transcriptomic data, we estimated the sizes of genomic 
insertions and deletions (indels) in our data as well as in a dataset 
from human fetal liver cells49. This dataset was also processed with 
SMART-seq2 protocol and paired-end sequencing, although read 
lengths (75 bp) were smaller than in our data (125 bp). Hence, to 
minimize confounding effects in the results, we trimmed the reads 
in our data before processing it for this analysis. We aligned the 
data to the reference genome (GRCh38.p13), using bwa-mem v0.650 
with default parameters. We then merged the aligned data from 
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each single cell into one bam file and performed indel calling with 
a pipeline for insertion and deletion detection from RNA-seq data 
called transIndel v0.151. We kept the parameters at default values, 
except the minimum deletion length to be detected, which was set 
to 1 (-L flag set to 1).

Differential gene-expression analysis between rostral and 
caudal mesoderm
We used the R packages DESeq2 v3.1152 and Seurat v3.053 to identify the 
genes differentially expressed between rostral and caudal parts of the 
mesoderm cluster. After creating a Seurat object with the mesoderm 
cells, their anatomical and plate information, we converted it to DESeq2 
object with convertTo function. We found differentially expressed 
genes (with FDR<0.1) between caudal and rostral parts of the meso-
derm with DESeqDataSet and DESeq functions, while controlling for 
the plate effect.

Human embryonic stem cells comparison
For this comparison, we considered previously published single-cell 
RNA-seq data from pre-implantation human embryos20 and from 
human ES cells21. In the pre-implantation embryo data, we removed 
cells from extra-embryonic tissues, from immunosurgery samples and 
with unannotated stage. Moreover, we only kept cells with a log10 total 
number of reads greater than 5.5. This resulted in 442 cells distributed 
between E3 and E7 stages.

In the human ES cell dataset, only cells in batch 1 (including both 
primed and naive human ES cells) that passed the quality test performed 
in the original publication were taken.

These data from pre-implantation embryos and human ES cells 
were combined with the epiblast cells in our dataset, and count per 
million (CPM) normalization was performed. To assess the relation-
ship between the datasets, we also used two different integration 
methods: Harmony54(with the same HVGs and default parameters) 
and Seurat (using the same procedure as in the comparison with NHP 
data described above).

To compare changes in gene-expression levels between the naive 
and primed state in epiblast and in human ES cells, we took cells from 
E6 stage, given that they were closest to the naive (Fig. 2a, Extended 
Data Fig. 3a). Then, the log-fold changes of the previously identified 
HVGs (after removal of genes with less than mean log count of 1) were 
calculated between CS7 vs E6 cells and primed versus naive human ES 
cells, after adding a pseudocount of 0.1 to the mean expression values. 
The line in Extended Data Fig. 3b is obtained through a linear regression 
(LinearRegression function from sklearn Python module).

Human gastruloid comparison
Recently published spatial transcriptomic data from human gastru-
loids were considered for the comparison12. Specifically, we took the 
z-scores of the genes that were found to be reproducible across the 
two replicates of the spatial transcriptomic experiment (source data of 
figure 3c in ref. 12). For these genes, we also calculated z-scores in each 
cluster of our human gastrula data using rank_genes_groups function 
from scanpy with Wilcoxon rank-sum test (method = ’wilcoxon’) applied 
to cells in a given cluster versus all other cells.

Then, we compared the human gastrula with the gastruloid data 
by computing

G Si j( )ρ = corr , ,ij

that is the Pearson’s correlation coefficient between the z-scores of the 
ith gastrula cluster Gi and the z-scores of a gastruloid slice taken at the 
jth position along the anterior–posterior axis Sj. A null distribution for 
ρij, P ρ( )ij , was estimated by computing the Pearson’s correlation coef-
ficient after shuffling the z-scores of the gastruloid dataset across slices 
500 times. We estimated a P value pij as:
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Maintenance and differentiation of human ES cells
Human ES cells (H9/WA09 line; WiCell) were cultured on plates coated 
with 10 µg ml−1 vitronectin (Stem Cells Technologies) at 37 °C with 5% 
CO2. Pluripotent human ES cells were plated as single cells at 4.0 × 104–
5.0 × 104 cells per cm2 using accutase (Gibco) and 10 µM Y27632 (Sell-
eck), and maintained for two days in E6 medium55 supplemented with  
2 ng ml−1 TGF-β (bio-techne) and 25 ng ml−1 FGF2 (M. Hyvönen, Cam-
bridge University). These cells were sampled as ‘D0 PLU’. Then, the cells 
were cultured for one day in CDM/PVA medium56, 1 mg ml−1 polyvinyl 
alcohol (Sigma) (instead of BSA) with 100 ng ml−1 activin A (M. Hyvönen, 
Cambridge University), 80 ng ml−1 FGF2, 10 ng ml−1 BMP4 (bio-techne), 
10 µM LY294002 (Promega) and 3 mM CHIR99021 (Tocris), and sampled 
as ‘D1 ME’ or ‘D1 ME + PD’. PD0325901 (Stem Cell Institute) was added 
at 1 µM. Bright-field images were taken with an Axiovert microscope 
(200M, Zeiss). Authentication of the H9/WA09 cell line was conducted 
by fingerprinting and the cells were confirmed negative for mycoplasma.

Immunocytochemistry
Cells plated on vitronectin-coated round coverslips (Scientific Labora-
tory Supplies) were washed once with PBS, and fixed with 4% paraform-
aldehyde (Alfa Aesar) in PBS at room temperature for 10 min. Following 
another PBS wash, cells were incubated with 0.25% Triton in PBS at 
4 °C for 15–20 min, 0.5% BSA (Sigma) in PBS at room temperature for 
30 min, primary antibodies at 4 °C overnight and secondary antibodies 
at room temperature for one hour. Anti-E-cadherin antibody (3195, Cell 
Signaling Technology; 1:200), and anti-Rabbit IgG–Alexa Fluoro 568 
(A10042, Invitrogen; 1:1,000) together with 10 µg ml−1 Hoechst33258 
(B2883) were diluted in 0.5% BSA in PBS and each staining was followed 
by three washes with 0.5% BSA in PBS. Coverslips were preserved on 
slide glasses (Corning) with ProLong Gold Antifade Mountant (Life 
Technologies) and nail polish, and observed with a Zeiss inverted con-
focal system (LSM 710, Zeiss).

Quantitative real-time PCR for human ES cell samples
Total RNA was extracted from cells using the GenElute Mammalian 
Total RNA Miniprep Kit (Sigma-Aldrich) and the On-Column DNase I 
Digestion set (Sigma-Aldrich). Complementary DNA was synthesized 
from the RNA using random primers (Promega), dNTPs (Promega), 
RNAseOUT (Invitrogen) and SuperScript II (Invitrogen). Real-time 
PCR was performed with KAPA SYBR FAST qPCR Master Mix (Kapa 
Biosystems) on QuantStudio 12K Flex Real-Time PCR System machine 
(Thermo Fisher Scientific). Molecular grade water (Thermo Fisher 
Scientific) was used when necessary. Each gene-expression level was 
normalized by the average expression level of PBGD and RPLP0. Primer 
sequences are shown in Supplementary Table 15 and source data are 
provided in Supplementary Table 17. Statistical analysis was performed 
using GraphPad Prism.

Mouse strains, husbandry and embryo collection
All animal experiments complied with the UK Animals (Scientific Pro-
cedures) Act 1986, approved by the local Biological Services Ethical 
Review Process and were performed under UK Home Office project 
licenses PPL 30/3420 and PCB8EF1B4. To obtain wild-type embryos, 
C57BL/6 males (in house) were crossed with 8- to 16-week-old CD1 
females (Charles River). All mice were maintained in a 12-h light:dark 
cycle. Noon of the day when a vaginal plug was found was designated 
E0.5. To dissect the embryos, the pregnant females were killed by cervi-
cal dislocation in accordance with Schedule 1 of the Animals (Scientific 
Procedures) Act. Embryos of the appropriate stage were dissected in 
M2 medium (Sigma-Aldrich, cat. no. M7167).
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In situ hybridization chain reaction
In situ hybridization chain reaction (HCR) kit (version 3) containing ampli-
fier set, hybridization, amplification, wash buffers and DNA probe sets, 
were purchased from Molecular Instruments (http://molecularinstru-
ments.org) and the protocol described57 was followed with slight modifi-
cations58. Probe libraries were designed and manufactured by Molecular 
Instruments using Mus musculus sequences from the NCBI database. 
Following HCR embryos were then placed into 87% glycerol solution 
and imaged on a Zeiss 880 confocal microscope with a 40× oil (1.36 NA) 
objective. Images were captured at 512 × 512 pixels using multiple tiles 
with a z-step of 1.5 µm. Each HCR was repeated on at least 3 embryos.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The raw data from our study can be downloaded from ArrayExpress 
under accession code E-MTAB-9388. The processed data can be down-
loaded from http://www.human-gastrula.net. Datasets used as refer-
ences include mouse gastrula data (E-MTAB-6967); pre-implantation 
embryo data: E-MTAB-3929. Source data are provided with this paper.

Code availability
All data were analysed with standard programs and packages, as detailed 
in Methods. The code used to create the human gastrula shiny app is 
available at https://github.com/ScialdoneLab/human-gastrula-shiny.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality control of scRNA-seq dataset. a, Dorsal view of 
the dissected embryonic disk showing the primitive streak and node (Scale 
bar = 500µm; n = 1). b, Brightfield images showing embryo dissection with 
schematic diagrams highlighting the three anatomical regions collected (yolk 
sac, rostral and caudal regions of embryonic disk; Scale bar = 500µm; n = 1).  
c, Metrics used to assess the quality of the scRNA-seq libraries. From top to 
bottom the scatter plots show the number of detected genes, the fraction of 
reads mapped to the human genome, the fraction of reads mapped to 
mitochondrial genes and the fraction of reads mapped to ERCC spike-ins, all as 
a function of the total number of reads. Cells that passed quality control are 
marked by green circles, while black circles indicate cells that failed the quality 
control and were excluded from downstream analyses. d, The boxplots show 
the total log expression of normalized counts for XIST and Y-genes across all 

clusters. While XIST was mostly not detected, Y-chromosome genes had always 
non-zero counts; this suggests that there is no contamination from maternal 
tissues in any of the clusters. n = 1195 cells were examined from a single embryo. 
Horizontal black lines denote median values and boxes cover the 25th and 75th 
percentiles range; whiskers extend to 1.5 × IQR. e, The stacked barplots indicate 
the percentages of cells from each cluster in the phase G1, S or G2/M of the cell 
cycle, as predicted from their transcriptomic profiles. f, Insertion-deletion 
length and size distribution of gastrula and fetal liver data. Y axis represents 
total number of indels on merged cells, while x axis represents indel length in 
base pairs. Hemato-Endothelial Progenitors (HEP), Endoderm (End), Advanced 
Mesoderm (AM), Primitive Streak (PS), Extraembryonic Mesoderm (ExM), Axial 
Mesoderm (AxM), Erythroblasts (Ery), Emergent Mesoderm (EM), Epiblast 
(Epi), Nascent Mesoderm (NM), Ectoderm (Amniotic/Embryonic (EAE)).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Characterisation and comparison of a CS7 human 
gastrula with Non-human primate and Mouse. a, Heatmap with the 
normalized log expression of well characterized marker genes for the 
identified cell types: Epiblast (Epi), Ectoderm (Amniotic/Embryonic (EAE)), 
Primitive Streak (PS), Nascent Mesoderm (NM), Emergent Mesoderm (EM), 
Advanced Mesoderm (AM), Extraembryonic Mesoderm (ExM), Axial 
Mesoderm (AxM), Endoderm (Endo), Hemato-Endothelial Progenitors (HEP), 
Erythroblasts (Ery). b, Stacked bar plots highlighting the anatomical region 
that cells were collected from and the percentage breakdown of each cluster. 

Numbers in brackets represent the total number of cells per cluster. c, Heatmap 
showing the fraction of human gastrula cells allocated to mouse cell types at 
E7.25 (data from18). d, Dendrogram showing hierarchical clustering of the 
transcriptomes of cell types from human gastrula and cultured cynomolgus 
macaque embryos at 16-day post-fertilization (from19). e, Top, UMAP plots 
showing the log expression of MEST and GCNT2. Bottom, violin plots showing 
the log expression of total transcripts (top row) and selected isoforms scaled 
by the maximum value in different cell types. Isoform names refer to Ensembl 
nomenclature.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | In Vitro vs In Vivo comparisons. a, Dendrogram 
representation built on corrected expression values obtained with Seurat 
showing comparison of an in vitro model of pluripotency with in vivo data.  
b, Log-fold changes of expression levels of the genes between primed vs naïve 
hESC (y axis) and CS7 epiblast vs E6 data (x axis). Selected genes are highlighted 
in red; the blue line is obtained through a linear regression. A statistically 
significant positive correlation is found (Pearson’s correlation coefficient 
~0.63, p-value = 3e-107), indicating that the hESC resemble the in vivo primed 
and naïve states at the transcriptome-wide level. c, Heatmaps showing the 
correlations between the transcriptomic profiles of the human gastrula cell 
types (rows) and sections of human gastruloids taken at different positions 
along the rostral-caudal axis (columns) in two different replicates (Gastruloid 1 

and Gastruloid 2). Only the values of the statistically significant correlations 
(p-value < 0.01; 2-tailed Pearson’s correlation, see Methods) are reported, while 
all the non-significant correlations were set to 0. d, UMAP representation of the 
human gastrula data with the PGCs highlighted. d, Diffusion map of cells from 
all 11 clusters. The first three diffusion components (DC1, 2, 3) are plotted in 
different combinations. In the top panels, cells are coloured by the clusters 
they belong to, while in the bottom panels the colours indicate the region each 
cell was dissected from. Ectoderm (amniotic/embryonic) (EAE), Epiblast (Epi), 
Primitive Streak (PS), Axial Mesoderm (AxM), Nascent Mesoderm (NM), 
Emergent Mesoderm (EM), Advanced Mesoderm (AM), Erythroblasts (Ery), 
Hemato-Endothelial Progenitors (HEP), Endoderm (Endo), Extraembryonic 
Mesoderm (ExM).
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Extended Data Fig. 4 | Rostral and Caudal differences in diversification of 
mesodermal subtypes. a, UMAP highlighting combinatorial gene expression. 
Individual gene expression (left) is reported as the log expression whilst 
combinatorial plots (right) show scaled log expression values. b, Diffusion map 
of cells from the 6 mesoderm related clusters (Primitive Streak, PS; Nascent 
Mesoderm, NM; Emergent Mesoderm, EM; Mesoderm, Meso; Axial Mesoderm, 

AxM; Extraembryonic Mesoderm, ExM), with the first and the second diffusion 
components plotted. c, Diffusion map of mesodermal showing the log 
expression levels of mesodermal markers genes. d, Differential gene 
expression between rostral and caudal advanced mesoderm cells. Significantly 
upregulated in rostral (*) or caudal (#) cells. e-j, Diffusion map of mesodermal 
clusters showing log expression levels of mesoderm subtype markers.
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Extended Data Fig. 5 | Differentiation of the epiblast. a, Diffusion map of 
cells from the Epiblast, Primitive Streak, Nascent Mesoderm and Ectoderm 
(amniotic/embryonic). The first two diffusion components are plotted (DC1 
and DC2) and cells are colored by their cluster (top) or the anatomical region 
they were isolated from (bottom). b and c, Normalized log gene expression 

changes along a pseudotime coordinate (see Fig. 4a) running from 0 to 1 and 
spanning the Ectoderm (amniotic/embryonic) (EAE), the Epiblast (EPI), the 
Primitive Streak (PS) and the Nascent Mesoderm (NM), as depicted by the arrow 
on top. The selected genes highlight Primitive Streak and mesoderm formation 
(panel b) as well as ectoderm differentiation (panel c).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Mesoderm formation in human and mouse. 
 a, Diffusion map with cells from the human (top two plots) or mouse (bottom 
two plots) Epiblast, Primitive Streak and Nascent Mesoderm clusters. Cells are 
colored based on their cluster of origin or on their diffusion pseudotime 
coordinate. b, Upset plot for the number of differentially expressed (DE) genes 
as a function of the diffusion pseudotime (dpt) shown in panel a in mouse (m) or 
human (h). Here, only genes that are differentially expressed in both species 
and with a log-fold change > 1 along the trajectory are included. Genes are split 
according to their increasing (up) or decreasing (down) trend as a function of 
dpt. c, Comparison of pseudotime analysis during primitive streak and nascent 

mesoderm formation in human and mouse (data from18). Cells in epiblast (Epi), 
Primitive Streak (PS) and Nascent Mesoderm (NM) clusters from human and 
mouse embryos at matching stages (see Methods) were independently aligned 
along a differentiation trajectory and a diffusion pseudotime coordinate (dpt) 
was calculated for each (top). The expression pattern and standard error of the 
mean of selected genes along pseudotime is plotted for human (left, 
continuous lines) and mouse (right, dashed lines). Both SNAI1 and CDH1 showed 
comparable expression profiles during mesoderm formation in mouse and 
human whilst MSGN1was differently expressed between species.
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Extended Data Fig. 7 | Characterization of EMT during hESC mesoderm 
formation. a, Bright-field microscopy images of D0 hESC (left), D1 Meso 
(center) and D1 MEK Inhibition (right) ESC colonies (top panels). Fluorescence 
microscopy images of E-Cadherin staining (bottom panels). b, Quantification 
of transcript levels for selected pluripotent, EMT and mesendoderm genes 
across the three conditions PLU, ME, ME+PD. c, Quantification of transcript 
levels for selected non-neural ectoderm genes across the three conditions PLU, 

ME, ME+PD. (n = 6 from three different experiments. Center line, median; box 
limits, upper and lower quartiles; whiskers, minimum and maximum; dots, 
mean value per experiement. ns = p-value ≥ 0.05; *** = p-value < 0.001; 
**** = p-value < 0.0001 (Ordinary one-way ANOVA after passing a Shapiro-Wilk 
normality test. Kruskal-Wallis multiple comparison test used if Shapiro-Wilk 
normality test failed (MSGN1, TDGF1, HAND1, DLX5). House-keeping genes, 
HKGs. See SI Table 17 for source data and exact p-values.
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Extended Data Fig. 8 | Comparison of signaling during mesoderm 
formation in the human and mouse. Heatmap comparison of the 
z-score-normalized log expression values of components of FGF, TGF-β and 
Wnt signaling pathways in the human gastrula, mouse embryos (E7.25 stage) 

and cultured cynomolgus macaque embryos (16 d.p.f stage). From human and 
mouse we considered the Epiblast (Epi), Primitive Streak (PS) and Nascent 
Mesoderm (NM) clusters; in the macaque, we used the clusters annotated as 
postL-Epi, L-Gast1 and L-Gast2.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Endoderm subcluster identification. a, Heatmap 
showing the scaled log expression levels of marker genes of the four 
endodermal subclusters. b, Percentage of cells dissected from the Caudal, 
Rostral or Yolk Sac portion of the embryo in the four endodermal subclusters. 
c, Percentage of cells based on their predicted cell-cycle phase of the four 
endodermal subclusters. d, Diffusion map of cells from the Endoderm cluster. 
The first two diffusion components (DC1 and DC2) are plotted and cells are 
coloured by the sub clusters (left), anatomical origin (central) or the predicted 
cell-cycle phase (right). Yolk Sac, YS; Definitive Endoderm (DE) 1 and 2.  
e, Diffusion map of cells from the Endoderm cluster with DC1 and DC3 plotted, 
showing log expression levels of Pan-endoderm, Yolk-sac endoderm and 

definitive endoderm markers. f, Log expression levels of Anterior Definitive 
Endoderm markers. These genes are more highly expressed in DE2. g, Log 
expression levels of Gut Endoderm markers, showing limited expression. 
 h, Maximum intensity projection and mid-sagittal section (h’) of an E7.0 mouse 
embryo showing expression of Gjb1 (yolk sac endoderm marker) as well as Cer1 
and Hhex (anterior definitive endoderm markers) using Hybridization Chain 
Reaction (n = 4). Cer1 and Hhex show greater expression in the anterior 
embryonic endoderm. Anterior, Ant; Posterior, Pos; Yolk-sac Endoderm, YSE. 
 i, Violin plots showing the scaled log expression of total transcripts (top row) 
and individual isoforms in different endodermal subclusters. Isoform lables 
refer to Ensembl transcript numbers.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Hemato-Endothelial Progenitors subclusters. 
 a, Boxplots showing the total log expression of normalized counts for XIST and 
Y-genes in Erythroblasts (Ery) and Hemato-Endothelial Progenitors (HEP), 
indicating no contamination from maternal tissue. n = 143 cells were examined 
from a single embryo. Horizontal black lines denote median values and boxes 
cover the 25th and 75th percentiles range; whiskers extend to 1.5 × IQR.b, UMAP 
of HEP and Erythroblast clusters showing log expression of blood related 
marker genes. c, Heatmap showing the scaled log expression of well-
characterized marker genes for both the Hemato-Endothelial Progenitors 
subclusters and Erythroblast cluster. d, Heatmap showing the normalized log 
expression levels of the top 5 marker genes of the four Hemato-Endothelial 

Progenitors subclusters. e, Diffusion maps of HEP subclusters and 
Erythroblasts showing diffusion components (DC) 1, 2 and 3. f, Violin plots 
showing the scaled log expression of Globin genes in the five blood related 
clusters: Erythroblasts (Ery), Myeloid Progenitors (MP), Endothelium, 
Megakaryocyte-Erythroid Progenitors (MEP) and Erythro-Myeloid progenitors 
(EMP). Each grey dot represents a single cell. g, Heatmap showing the 
estimated mapping of human Erythroid and HEP subclusters to mouse blood-
related clusters. Scalebar represents the fraction of human cells mapped to 
each category. h, Bar graph showing the number of cells present in the mouse 
scRNA-seq dataset18 at different development timepoints.
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Cell competition is a fitness-sensing mechanism that elimi-
nates cells that, although viable, are less fit than their neigh-
bours. The cells that are eliminated are generically termed 

losers, while the fitter cells that survive are referred to as winners. 
Cell competition has been shown to act in a broad range of settings, 
from the developing embryo to the ageing organisms1–3. It has been 
primarily studied in Drosophila, where it was first described in the 
imaginal wing disc4. Since then, it has also been found to be con-
served in mammals. In the mouse embryo, 35% of embryonic cells 
are eliminated between embryonic day (E) 5.5 and E6.5, and strong 
evidence suggests that this elimination is through cell competi-
tion5–7. These and other studies identified a number of read-outs of 
cell competition in the mouse embryo, such as relative low c-MYC 
expression, a loss of mTOR (mammalian target of rapamycin) sig-
nalling, low TEAD transcription factor activity, high P53 expression 
or elevated levels of ERK phosphorylation5–9. Importantly, there is a 
substantial overlap with the markers of cell competition originally 
identified in Drosophila as well as those found in other cell competi-
tion models, such as Madin–Darby canine kidney cells1–3. Despite 
the advance that having these cell competition markers signifies, 
given that they were primarily identified by using genetic models 
that rely on over-expression or mutation, we still have little insight 

into the overarching features of the cells that are eliminated in the 
physiological context.

Mitochondria, with their diverse cellular functions ranging 
from determining the bioenergetic output of the cell to regulating 
its apoptotic response, are strong candidates for determining com-
petitive cell fitness. During early mouse development, mitochon-
dria undergo profound changes in their shape and activity10. In the 
pre-implantation embryo, mitochondria are rounded, fragmented 
and contain sparse cristae, but after implantation they fuse to form 
complex networks with mature cristae11. The mode of replication 
of mitochondrial DNA (mtDNA), which encodes vital components 
of the bioenergetic machinery, also changes during early mouse 
development. After fertilization, mtDNA replication ceases and 
its copy number per cell decreases with every division until the 
post-implantation stages, when mtDNA replication resumes10. As 
the mutation rate of mtDNA is much higher than that of nuclear 
DNA12,13, this increased replication most likely leads to an increased 
mutation load. In fact, inheritable mtDNA-based diseases are 
reported with a prevalence of 5–15 cases per 100,000 individu-
als14,15. A number of mechanisms have been proposed to reduce this 
mutation load, such as the bottleneck effect, purifying selection or 
biased segregation of mtDNA haplotypes16–21. However, how these 

Cell competition acts as a purifying selection to 
eliminate cells with mitochondrial defects during 
early mouse development
Ana Lima! !1,2,14, Gabriele Lubatti3,4,5,14, Jörg Burgstaller6, Di Hu7, Alistair P. Green8, Aida Di Gregorio1,  
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Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from develop-
ment to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination 
remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mito-
chondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling 
of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that 
mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function trig-
gers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes 
in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. 
Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.
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mechanisms act at the molecular and cellular level is still poorly 
understood.

To understand the nature of the cells eliminated during early 
mouse post-implantation development, we have analysed their tran-
scriptional profile by single-cell RNA sequencing (scRNA-seq) and 
found that these cells share a cell competition signature. Analysis of 
the mis-regulated pathways identified mitochondrial dysfunction as 
a common feature. Importantly, our studies also found evidence of 
mtDNA mutations in the eliminated cells. Furthermore, we demon-
strate that manipulating mitochondrial activity by either disrupting 
mitochondrial dynamics or introducing non-pathological mtDNA 
changes is sufficient to trigger cell competition. Therefore, these 
results pinpoint mitochondrial performance as a key cellular feature 
that determines the competitive ability of embryonic cells and sug-
gest that cell competition is acting as a purifying selection during 
early mammalian development.

Results
Loser cells have a distinct transcriptional profile. We have pre-
viously shown that in the early post-implantation mouse embryo 
about 35% of epiblast cells are eliminated and that these cells are 
marked by low mTOR signalling7. However, we currently do not 
understand the characteristics of these cells or what triggers their 
elimination. To answer these questions, we have analysed their tran-
scriptional profile with scRNA-seq. To ensure the eliminated cells 
can be captured, as we have done before7, we isolated embryos at 
E5.5 and cultured them for 16 h in the presence of a caspase inhibi-
tors (CIs) or vehicle (DMSO) (Fig. 1a). Unsupervised clustering of 
the scRNA-seq data revealed five clusters: two corresponding to 
extra-embryonic tissues (visceral endoderm and extra-embryonic 
ectoderm) and three that expressed epiblast marker genes (Fig. 1b,c, 
Extended Data Fig. 1a–f and Methods). Interestingly, cells from 
CI-treated and DMSO-treated embryos were unequally distributed 
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Fig. 1 | Cells eliminated during early mouse embryogenesis have a distinct transcriptional profile. a, Experimental design. The number of cells in the 
two conditions (DMSO treated and CI treated) refers to the cells that passed the quality control. d.p.c., days post-coitum. b, Identification of the clusters 
according to known gene markers from the different embryonic regions73. Three clusters (clusters 1, 3 and 4) show marker genes of the epiblast (Epi), 
while the remaining clusters correspond to the extra-embryonic visceral endoderm (VE; cluster 5) and extra-embryonic ectoderm (ExE; cluster 2). The 
epiblast clusters were named ‘winner’, ‘intermediate’ and ‘loser’ on the basis of the relative fraction of cells from CI-treated embryos they include (e). c,d, 
Uniform manifold approximation projection (UMAP) visualization of the single-cell RNA-seq data, with cells coloured according to cluster (c) or condition 
(d). A region made up exclusively by cells from CI-treated embryos emerged. e, Ratio between the fraction of cells from DMSO-treated and CI-treated 
embryos in the three epiblast clusters. While the ‘winner’ epiblast cluster shows an enrichment of cells from DMSO-treated embryos, the ‘intermediate’ 
and the ‘loser’ epiblast clusters are strongly enriched for cells from CI-treated embryos.
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across the three epiblast clusters. In particular, one of these clus-
ters (cluster 4) was only composed of cells from CI-treated embryos 
(Fig. 1d,e). Also notable is that all epiblast clusters contained cells 
in the G2/M and S phases of the cell cycle, suggesting they are all 
cycling (Extended Data Fig. 2a).

The three epiblast clusters are highly connected, as highlighted 
by a connectivity analysis carried out with PAGA22 (Extended Data 
Fig. 2b). Hence, to establish the relationship between these epiblast 
clusters, we computed a diffusion map23. For this, we selected only 
cells captured from CI-treated embryos, to eliminate possible con-
founding effects due to the CI (Fig. 2a). However, when all epiblast 
cells were considered, the results remain unchanged (Extended Data 
Fig. 2c–e). This analysis identified a trajectory between the three 
epiblast clusters, with those cells unique to CI-treated embryos fall-
ing at one extreme end of the trajectory (corresponding to cluster 
4; Fig. 2a) and with those cells present in both DMSO-treated and 
CI-treated embryos at the other (corresponding to cluster 1; Fig. 2a 
and Extended Data Fig. 2d).

To further define the identity of the epiblast cells of CI-treated 
embryos, we analysed the genes differentially expressed along 
the trajectory (Methods and Extended Data Fig. 3a) using inge-
nuity pathway analysis (IPA) to characterize gene signatures24. 
Importantly, we found that these differentially expressed genes fell 
under molecular and cellular function categories associated with 
cell death and survival, protein synthesis and nucleic acids (Fig. 
2b). Analysis of the factors with enriched targets within the genes 
differentially expressed along the trajectory revealed RICTOR 
(an mTOR component), TLE3, MYC, MYCN, P53 and IGFR 
(that is, upstream of mTOR) as the top upstream regulators (Fig. 
2c). Breaking down the differentially expressed genes into those 
downregulated or upregulated along the winner-to-loser trajectory 
revealed that the targets of RICTOR, MYC, MYCN and IGFR pri-
marily fell within the downregulated genes (Supplementary Tables 
1 and 2). P53-activated targets were preferentially upregulated and 
P53-repressed targets were preferentially downregulated (Extended 
Data Fig. 3b,c). Moreover, genes related to protein synthesis were 
primarily found to be downregulated.

The observation that the genes differentially expressed along 
the trajectory fall into cell death categories, as well as being mTOR, 
MYC and P53 targets, strongly suggests that cells at each end of the 
trajectory are the winners and losers of cell competition5–7. For this 
reason, we hereafter refer to those epiblast cells unique to CI-treated 
embryos as ‘loser’ epiblast cells and to those at the opposite end of 
the trajectory as the ‘winner’ epiblast cells. Those cells lying between 
these two populations on the trajectory are considered ‘intermedi-
ate’. Using this knowledge, we can define a diffusion pseudotime 
(dpt) coordinate25 originating in the ‘winner’ cluster that tracks the 
position of cells along the trajectory and that can be interpreted as 
a ‘losing score’; that is, it quantifies how strong the signature of the 
‘losing’ state is in the transcriptome of a cell (Fig. 2d,e).

In accordance with previous studies6,8,9, we also found evidence 
for miss-patterning in the eliminated epiblast cells, as a proportion 
of these cells co-expressed naïve pluripotency and differentiation 
markers (Fig. 2f and Extended Data Fig. 3d). To test if loser cells 

are developmentally delayed or advanced compared to control cells, 
we projected our data onto a previously published diffusion map 
that includes epiblast cells from E5.5, E6.25 and E6.5 embryos26. We 
found that all epiblast cells, irrespective of the condition in which 
the embryos were cultured (that is, treated with DMSO or CI) and 
of their losing state (that is, that they belonged to the winner, inter-
mediate or loser cluster), mostly overlapped with E6.5 epiblast cells 
(Extended Data Fig. 3e–g). Cells from the loser cluster were slightly 
closer to the E6.25 stage than the winner and intermediate cells, as 
shown by their pseudotime coordinate, but they remain far from the 
earlier E5.5 stage. This result, combined with the higher expression 
of some differentiation markers observed in loser cells, suggests that 
these cells are miss-patterned rather than developmentally delayed.

Loser cells have defects in mitochondrial function. Using IPA, 
we next analysed the cellular pathways mis-regulated in loser epi-
blast cells and found that the top two pathways (mitochondrial 
dysfunction and oxidative phosphorylation (OXPHOS)) were 
related to mitochondrial function (Fig. 3a,b and Supplementary 
Tables 1 and 2). For example, we found a downregulation along the 
winner-to-loser trajectory of the mtDNA-encoded subunits mt-Nd3 
and mt-Atp6, of regulators of mitochondrial dynamics such as Opa1 
(optic atrophy 1), as well as of genes involved in mitochondrial 
membrane and cristae organization such as Samm50 (Fig. 3c), sug-
gesting that mitochondrial function is impaired in loser cells.

A recent body of evidence has revealed that stress responses, 
such as the integrated stress response (ISR) or the closely related 
unfolded protein response (UPR), when triggered in cells with 
impaired mitochondrial function prompt a transcriptional pro-
gramme to restore cellular homeostasis27–29. We observed that loser 
epiblast cells displayed a characteristic UPR/ISR signature30–33 and 
key regulators of this response, such as Atf4, Ddit3, Nfe2l2 (Nrf2) 
and Foxo3 were all upregulated in these cells (Extended Data Fig. 
4a–d). Similarly, Sesn2, a target of p53 that controls mTOR activity34, 
was also upregulated in loser cells (Extended Data Fig. 4d). These 
findings support that loser epiblast cells present mitochondrial 
defects, leading to the activation of a stress response in an attempt 
to restore cellular homeostasis35.

To validate the significance of the observed mitochondrial 
defects, we did two things: First, we asked if the changes in expres-
sion of mitochondrial regulators at the mRNA level are also reflected 
at the protein level. We observed that in CI-treated embryos, loser 
cells that persist and are marked by low mTOR activity7 also show 
significantly lower OPA1 levels (Fig. 3d–f). We also found that 
DMSO-treated embryos showed strong DDIT3 staining (an UPR/
ISR marker also known as CHOP) in the dying cells that accumu-
late in the pro-amniotic cavity, and that in CI-treated embryos, 
DDIT3 expression was upregulated in a proportion of epiblast 
cells (Extended Data Fig. 4e–g). Second, we studied the mitochon-
drial membrane potential (∆ψm), an indication of mitochondrial 
health, in loser epiblast cells. We observed that while the cells of 
DMSO-treated embryos showed a high ∆ψm that fell within a nar-
row range, in CI-treated embryos the proportion of cells with a low 
∆ψm significantly increased (Fig. 3d,g,h). Together, these results 

Fig. 2 | A cell competition transcriptional signature is identified in cells eliminated during mouse embryonic development. a, Diffusion map of epiblast 
cells (only from CI-treated embryos), coloured by cluster. b,c, IPA of genes differentially expressed along the diffusion trajectory (Extended Data Fig. 3a) 
generated lists of the top five molecular and cellular functions (b) and upstream regulators (c) found to be differentially activated in epiblast cells along 
the diffusion trajectory from winner (cluster 1) to loser status (cluster 4). d, Diffusion map of epiblast cells (only from CI-treated embryos) coloured by 
the dpt coordinate. The winner and the loser clusters were found at the two extremities of the trajectory, hence the dpt coordinate can be interpreted 
as a ‘losing score’. e, Losing score of the cells in the three epiblast clusters in CI-treated (left) or DMSO-treated (right) embryos. The losing score of the 
cells from DMSO-treated embryos was obtained by projecting them on the diffusion map shown in d (Methods). f, Expression levels in epiblast cells from 
CI-treated embryos of genes (in rows) that are markers for naïve pluripotency (Klf4, Klf5, Sox2, Pou3f1, Tcf7l1, Pou5f1 and Zfp42 (Rex1)), primed pluripotency 
(Fgf5 and Tdgf1), mesoderm (Mesp1 and T), neuroectoderm (Neurod1 and Sox1) and endoderm (Sox17 and Gata6). Cells (columns) were sorted by their 
losing scores. The genes marked with an asterisk were differentially expressed along the trajectory. See Methods for details on statistical analysis.
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tricarboxylic acid (TCA) cycle, such as malate, fumarate, glutamate 
and α-ketoglutarate are depleted in both Bmpr1a−/− and 4n ESCs in 
differentiation culture conditions (Fig. 4a). Next, we performed an 
extracellular flux Seahorse analysis of Bmpr1a−/− ESCs to measure 
their glycolytic and OXPHOS rates. We observed that when these 
cells are maintained in pluripotency culture conditions that are not 
permissive for cell competition6, they exhibit a higher OXPHOS 
rate than control cells (Extended Data Fig. 5a,b). In contrast, when 
Bmpr1a−/− cells are induced to differentiate, this phenotype is 
reversed, with mutant cells showing lower ATP generated through 
OXPHOS and a higher glycolytic capacity than controls (Fig. 4b–e 
and Extended Data Fig. 5c,d). This suggests that after differentiation 
Bmpr1a−/− cells are unable to sustain proper OXPHOS activity.

To further test the possibility that defective mouse ESCs (mESCs) 
have impaired mitochondrial function, we assessed their ∆ψm. We 
found that whilst Bmpr1a−/− and 4n cells had a similar ∆ψm to 
control cells in pluripotency conditions (Extended Data Fig. 5e,f), 
following differentiation both these cell types presented a loss of 
∆ψm, irrespective of whether they were separate or co-cultured 
with wild-type cells (Fig. 4f,g). This reduction in ∆ψm is not due 
to excessive mitochondrial reactive oxygen species (ROS) produc-
tion or to a lower mitochondrial mass within mutant cells because, 
as for example, Bmpr1a−/− cells had lower ROS levels and similar 
TOMM20 and mt-CO1 expression to control cells (Fig. 4h–j and 
Extended Data Fig. 5g). The fact that the loss of ∆ψm and lower 
OXPHOS activity can be observed even when loser cells are cul-
tured separately suggests that the mitochondrial dysfunction phe-
notype is an inherent property of loser cells and not a response to 
them being out-competed. These results also indicate that the mito-
chondrial defects are directly linked to the emergence of the loser 
status: In conditions that are not permissive for cell competition 
(pluripotency), mutant cells do not show defective mitochondrial 
function, but when they are switched to differentiation conditions 
that allow for cell competition, they display impaired mitochon-
drial function.

To further explore the relationship between mitochondrial activ-
ity and the competitive ability of the cell, we analysed the ∆ψm of 
BMP-defective cells that are null for p53 (Bmpr1a−/−;p53−/− ESCs), 
as these are not eliminated by wild-type cells7. Remarkably, we 
observed that mutating p53 in Bmpr1a−/− cells not only rescues the 
loss of ∆ψm of these cells, but also causes hyperpolarization of their 
mitochondria (Fig. 4k). These results suggest a role for P53 in regu-
lating mitochondrial activity of ESCs and strongly support a pivotal 
role for mitochondrial activity in cell competition.

Impaired mitochondrial function triggers cell competition. 
The mitochondrial defects observed in loser cells led us to ask if 
disrupting mitochondrial activity alone is sufficient to trigger cell 

competition. During the onset of differentiation, mitochondrial 
shape changes substantially. In pluripotent cells, mitochondria have 
a round and fragmented shape, but after differentiation they fuse 
and become elongated, forming complex networks10. Given that this 
change in shape correlates with when cell competition occurs, we 
tested if disrupting mitochondrial dynamics is sufficient to induce 
cell competition. MFN1 and MFN2 regulate mitochondrial fusion 
and DRP1/DNM1L controls their fission36–38. We generated ESCs 
null for mitofusin 2 (Mfn2−/−), which have enlarged globular mito-
chondria, and ESCs null for dynamin-related protein 1 (Drp1−/−), 
which show hyper-elongated mitochondria (Fig. 5a). We first tested 
the competitive ability of Mfn2−/− ESCs in pluripotency conditions, 
which we have previously found not to induce out-competing in 
Bmpr1a−/− or 4n cells6. Interestingly, we found that although Mfn2−/− 
cells grow similarly to wild-type cells in separate cultures, they were 
out-competed in co-culture (Fig. 5b). Analogously, the Drp1 mutant 
cells did not grow significantly slower than wild-type cells when 
cultured separately in differentiation-inducing conditions, but they 
were out-competed by wild-type cells in co-culture (Fig. 5c). The 
observation that disrupting mitochondrial dynamics can induce cell 
competition even in pluripotency culture conditions, suggests that 
mitochondrial activity is a dominant parameter determining the 
competitive ability of the cell.

To establish how disruption of mitochondrial fusion and fis-
sion affects mitochondrial performance, we compared the ∆ψm, 
respiration rates and mitochondrial ATP production of Mfn2−/− 
and Drp1−/− ESCs to those of wild-type cells (Fig. 5d–g). We found 
that whilst Mfn2−/− and Drp1−/− ESCs had lower ∆ψm than control 
cells (Fig. 5d,f), Mfn2−/− ESCs had lower maximal respiration rates 
but similar basal respiration and ATP production to controls, and 
Drp1−/− ESCs showed similar respiration and ATP production to 
controls (Fig. 5e,g). This suggests that ATP production or respira-
tion rates alone do not determine the relative competitive ability 
of ESCs.

Besides mitochondrial dysfunction, another prominent signa-
ture of loser cells found in vivo was the UPR/ISR (Extended Data 
Fig. 4). Because the loss of Drp1 has been associated with activa-
tion of the UPR39–41, we investigated if the Drp1−/− loser cells also 
showed evidence for the activation of the UPR/ISR. We observed 
that Drp1−/− cells show higher expression of ATF4 and phosphory-
lated eukaryotic initiation factor 2ɑ (p-eIF2ɑ) than their wild-type 
counterparts, which is indicative of UPR/ISR activation (Fig. 5h)39–

41. Another feature previously described following loss of Drp1 is the 
proteolytic cleavage of OPA1, where short isoforms (S-OPA1) are 
accumulated in detriment of the long isoforms (L-OPA1)39. When 
we analysed the expression of OPA1 in wild-type and Drp1−/− cells, 
we observed that while wild-type cells retained L-OPA1 expres-
sion, loser cells predominantly expressed the S-OPA1 isoforms and  

Fig. 3 | Cells eliminated during early mouse embryogenesis have mitochondrial defects. a, Top canonical pathways, identified by IPA, mis-regulated 
in loser cells in comparison to normal epiblast cells. The numbers at the end of each bar refer to total amount of genes involved in that pathway. The 
percentage refers to the number of genes found mis-regulated in loser cells relative to the number total genes within each pathway. b, Details of changes 
in the OXPHOS pathway identified in a. Circular and oval shapes represent each of the electron transport chain (ETC) complexes (complexes I to V). 
Diamond shapes represent subunits of each ETC complex. Downregulated genes in loser cells are coloured in shades of red. Darker shades correspond 
to lower false discovery rate (FDR) values. Cox6b2, in yellow, was upregulated in loser cells. Grey denotes genes that were not differentially expressed 
between loser and winner cells (FDR!>!0.01). White denotes genes from the Knowledge Base that were not tested (for example, because they were not 
detected in our dataset). c, Expression levels of mitochondrial genes as a function of the losing score of cells. d, Experimental design adopted to assess 
mitochondrial function in e–h. The asterisk indicates a representative micrograph of one of the isolated epiblasts (arrow) used for ∆ψm analysis after 
embryo microdissection. e, Representative immunohistochemistry of OPA1 in E6.5 embryos where cell death was inhibited (CI treated), quantified 
in f. Loser cells were identified by low mTOR activation (low p-rpS6; arrowheads). Scale bar, 20!μm. f, Quantification of OPA1 fluorescence in normal 
epiblast cells and loser cells. N!=!6 embryos with a minimum of 8 cells analysed per condition. g, Representative histogram of flow cytometry analysis of 
tetramethylrhodamine methyl ester (TMRM) probe, indicative of ∆ψm, in epiblast cells from embryos where cell death was allowed (DMSO treated) or 
inhibited (CI treated), quantified in h. h, Frequency of epiblast cells with high or low TMRM fluorescence, according to the range defined in g from embryos 
where cell competition was allowed (DMSO treated) or inhibited (CI treated). Data were obtained from three independent experiments and are shown as 
the mean!±!s.e.m. (g and h). Twelve embryos per condition were pooled for each experiment. See Methods for details on statistical analysis.
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observed that this was sufficient to partially rescue L-OPA1 expres-
sion (Fig. 5j). This rescue together with the evidence for UPR/ISR 
activation suggests that Drp1−/− cells display defects in mitochon-
drial translation.

Loser epiblast cells accumulate mtDNA mutations. There is 
strong evidence for selection against aberrant mitochondrial func-
tion induced by deleterious mtDNA mutations in mammals21,44–47. 
Given our observation that cell competition selects against cells 
with impaired mitochondrial function, we asked if cell competi-
tion could be reducing mtDNA heteroplasmy (frequency of dif-
ferent mtDNA variants) during mouse development. It has been 
recently shown that scRNA-seq can be used to reliably identify 
mtDNA variants, although with a lower statistical power compared 
to more direct approaches, like mtDNA sequencing48. We there-
fore tested if mtDNA heteroplasmy is present in our scRNA-seq 
data and whether this correlates with the losing score of a cell. Our 
analysis revealed that the frequency of specific mtDNA polymor-
phisms increased with the losing score of epiblast cells (Fig. 6a), 
and such mtDNA changes occurred within mt-Rnr1 and mt-Rnr2 
(Fig. 6b–h and Extended Data Fig. 7a–e). Moreover, these changes 
were not dependent on the litter from which the embryo came from 
(Extended Data Fig. 7f–k). As it was formally possible that these 
loser-specific sequence changes could originate from contaminating 
nuclear mitochondrial sequences (NUMTS) or from RNA editing, 
we performed several controls to confirm that mtDNA polymor-
phisms are the most likely source of these changes (Methods). For 
example, we considered only the RNA-seq reads that are uniquely 
mapped to the mitochondrial genome and not to nuclear DNA, and 
we confirmed that the variants with highest heteroplasmy found in 
the ‘loser’ cells were not present in any of the NUMTS that have 
previously been reported or could be identified using BLAST. 
Moreover, we verified that the observed sequence changes were not 
compatible with canonical RNA editing (Methods). It is worth not-
ing that the sequence changes we detected in mt-Rnr1 and mt-Rnr2 
strongly co-occurred in the same cell, with those closest together 
having the highest probability of coexisting (Fig. 6i and Extended 
Data Fig. 7l). This is suggestive of mtDNA replication errors that 
could be ‘scarring’ the mtDNA, disrupting the function of mt-Rnr1 
(12S rRNA) and mt-Rnr2 (16S rRNA) and causing the loser pheno-
type. Importantly, the presence of these specific mtDNA mutations 
in the loser cells suggests that cell competition could be contrib-
uting to the elimination of deleterious mtDNA mutations during 
early mouse development. Of note, we only report mtDNA variants 
detected in regions of the genome with high sequencing coverage 
(Extended Data Fig. 7m); therefore, the presence of other varia-
tions in mtDNA sequences between winner and loser cells cannot 
be excluded.

mtDNA sequence determines the competitive ability of a cell. 
To explore this possibility further, we analysed if alterations in 
mtDNA can induce cell competition by testing the competitive abil-
ity of ESCs with non-pathological differences in mtDNA sequence. 
For this we compared the relative competitive ability of ESCs that 
shared the same nuclear genome background but differed in their 
mitochondrial genomes by a small number of non-pathological 
sequence changes. We derived ESCs from hybrid mouse strains 
that we had previously engineered to have a common nuclear 
C57BL/6N background, but mtDNAs from different wild-caught 
mice16. Each wild-derived mtDNA variant (or haplotype) contains 
a specific number of single-nucleotide polymorphisms (SNPs) that 
lead to a small number of amino acid changes when compared to 
the C57BL/6N mtDNA haplotype. Furthermore, these haplotypes 
(BG, HB and ST) can be ranked according to their genetic distance 
from the C57BL/6N mtDNA (Fig. 7a and Extended Data Fig. 8a). 
Characterization of the isolated ESCs revealed that they have a 
range of heteroplasmy (mix of wild-derived and C57BL/6N mtD-
NAs) that is stable over several passages (Extended Data Fig. 8b). 
Importantly, these different mtDNA haplotypes and different levels 
of heteroplasmy do not alter cell size, cell granularity, mitochondrial 
mass or mitochondrial dynamics, nor do they substantially impact 
the cell’s ∆ψm (Extended Data Fig. 8c–f).

When we tested the competitive ability of these ESCs with dif-
ferent mtDNA content, in pluripotency culture conditions, we 
observed that cells carrying the mtDNAs that were most distant 
from the C57BL/6N mtDNA, such as the HB (100%), the HB (24%) 
and the ST (46%) ESCs could all out-compete the C57BL/6N line 
(Fig. 7b,c and Extended Data Fig. 8g). Similarly, when we tested the 
HB (24%) line against the BG (99%) or the BG (95%) lines (which 
have mtDNAs more closely related to the C57BL/6N mtDNA), we 
found that cells with the HB haplotype could also out-compete 
these ESCs (Fig. 7d and Extended Data Fig. 8h). In contrast, we 
observed that the HB (24%) ESCs were unable to out-compete their 
homoplasmic counterparts, HB cells (100%) or the ST cells (46%) 
that carry the most distant mtDNA variant from C57BL/6N (Fig. 
7e and Extended Data Fig. 8i). These results tell us three things: 
First, non-pathological differences in mtDNA sequence can trigger 
cell competition. Second, a competitive advantage can be conferred 
by only a small proportion of mtDNA content, as indicated by our 
finding that HB (24%) behave as winners. Finally, these findings 
suggest that the phylogenetic proximity between mtDNA variants 
can potentially determine their competitive cell fitness.

To characterize the mode of competition between cells with 
different mtDNA, we focused on the HB (24%) and the BG (95%) 
ESCs. Analysis of these cell lines revealed that specifically when 
co-cultured, the BG (95%) cells displayed high levels of apopto-
sis (Fig. 7f), indicating that they are out-competed through their 

Fig. 4 | Mitochondrial defects are a common feature of cells eliminated by cell competition. a, Metabolic enrichment analysis of the TCA cycle and 
intermediate metabolites obtained using Metabolon platform for defective cells (Bmpr1a−/−, left bar; 4n, right bar), in comparison to wild-type cells during 
differentiation. Bars indicate compound levels relative to wild-type cells. Blue bars indicate compounds that were significantly altered (P!<!0.05), and 
light-blue bars indicate compounds that were almost significantly altered (0.05!≤!P!≤!0.1). Black bars indicate compounds that were altered although not 
statistically significant in comparison to the levels found in wild-type cells. The enzymes on the pathway are represented as boxes and labelled by their 
canonical names. b–e, Metabolic flux analysis of wild-type and BMP-defective cells during differentiating conditions. Analysis of OCR as a measure of 
mitochondrial function (mitochondrial stress test; b). Details of metabolic parameters found changed from the analysis of the mitochondrial stress test 
(c). Analysis of extracellular acidification rate (ECAR) as a measure of glycolytic function (glycolysis stress test; d). Details of metabolic parameters found 
changed from the analysis of the glycolysis stress test (e). f,g, ∆ψm in defective mESCs undergoing differentiation in separate or co-culture conditions. 
Representative histograms of TMRM fluorescence and quantification for wild-type and Bmpr1a−/− (f) and wild-type and 4n (g) cells. h, Representative 
micrographs of wild-type and Bmpr1a−/− cells co-cultured during differentiation and stained for a reporter of ∆ψm (MitoTracker Red; top) or mitochondrial 
mass (TOMM20; bottom). Nuclei were stained with Hoechst. Scale bar, 10!μm. i,j, Western blot analysis of mitochondrial mass markers TOMM20 (i) 
and mt-CO1 (j) for wild-type and Bmpr1a−/− cells during differentiation. k, Analysis of ∆ψm for wild-type, Bmpr1a−/− and Bmpr1a−/−;p53−/− cells during 
differentiation. Representative histogram of TMRM fluorescence and quantification. Data are the mean!±!s.e.m. Extracellular flux Seahorse data were 
obtained from three (d and e) or four (b and c) independent experiments, with five replicates per cell type in each assay. The remaining data were obtained 
from three (g and j) or five (a,f,i and k) independent experiments. See Methods for details on statistical analysis. MFI, mean fluorescence intensity.
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and an upregulation of those associated with cytokine activity (Fig. 
7g). Interestingly, in the co-culture condition, in addition to these 
signatures, BG (95%) cells revealed a downregulation in signature 
markers of MYC activity and mTOR signalling (Fig. 7h), whose 
downregulation is a known read-out of loser status during cell com-
petition in the embryo5–7 (Fig. 2c).

To test if the downregulation of genes involved in OXPHOS was 
also reflected at the functional level, we compared oxygen consump-
tion rates (OCRs) and mitochondrial ATP generation in HB (100%), 

HB (24%), BG (95%) and C57BL/6N ESCs. We found that the winner 
cells HB (100%) and HB (24%) had higher basal respiration, higher 
maximal respiration and higher mitochondrial ATP production than 
the loser BG (95%) and C57BL/6N ESCs (Extended Data Fig. 9). These 
data indicate that the mtDNA differences that exist between winner 
and loser cells are sufficient to affect their mitochondrial performance 
and this ultimately determines their competitive ability. However, 
the observation that differentiating Drp1−/− ESCs are eliminated by 
cell competition but do not show differences in respiration rates or 
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Fig. 6 | Intermediate and loser epiblast cells accumulate polymorphisms in mtDNA sequences. a–g, mtDNA heteroplasmy (plotted as heteroplasmy!=!1 
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the six positions within the mt-Rnr1 indicated in b–g) greater than 0.01. This shows that the level of mtDNA heteroplasmy in mt-Rnr1 is strongly associated 
with the loser status of the cells, as ~55% and ~87% of cells in the intermediate and the loser clusters, respectively, had heteroplasmic sequences in this 
gene compared to only ~5% of cells in the winner cluster. i, Spearman’s correlation coefficient between the mtDNA heteroplasmy at the six positions 
shown in b–g. See Methods for details on statistical analysis.
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trigger cell competition. Interestingly, mtDNA genes are amongst 
the top mis-regulated factors identified during cell competition in 
mouse skin53. In the Drosophila wing disc oxidative stress, a gen-
eral consequence of dysfunctional mitochondria, underlies the 
out-competing of Minute and Mahj mutant cells54. Similarly, in 
Madin–Darby canine kidney cells, a loss of ∆ψm occurs during the 
out-competing of RasV12 mutant cells and is key for their extru-
sion55. These observations raise the possibility that differences in 
mitochondrial activity may be a key determinant of competitive cell 
fitness in a wide range of systems. Unravelling which mitochondrial 
features lead to cellular differences that can be sensed between cells 
during cell competition and if these are conserved in human sys-
tems will be key not only for understanding this process, but also to 
open up the possibility for future therapeutic avenues in the diagno-
sis or prevention of mitochondrial diseases.

Methods
Animals. Mice were maintained and treated in accordance with the Home O!ce’s 
Animals (Scienti"c Procedures) Act 1986 and covered by the Home O!ce project 
licence PBBEBDCDA. All mice were housed on a 10–14-h light–dark cycle with 
access to water and food ad libitum. All mice were housed within individually 
ventilated cages. Temperature was maintained between 21–24 °C and humidity 
between 45–65%. Mattings were generally set up in the a#ernoon. Noon on the day 
of "nding a vaginal plug was designated as E0.5. Embryo dissection was performed 
at appropriate time points in M2 medium (Sigma), using Dumont no.5 forceps 
(11251-10, FST). No distinction was made between male and female embryos 
during the analysis.

Cell lines, cell culture routine and drug treatments. E14 mESCs (RRID: CVCL_
C320), kindly provided by A. Smith from Cambridge University, were used as 
wild-type control tdTomato-labelled or unlabelled cells. GFP-labelled or unlabelled 
cells defective for BMP signalling (Bmpr1a−/−), tetraploid cells (4n) and Bmp1a−/− 
null for p53 (Bmpr1a−/−;p53−/−) are described elsewhere6,7. Drp1−/− or Mfn2−/− cells 
were generated by CRISPR mutagenesis. Cells with different mtDNA content in the 
same nuclear background were derived from embryos of hybrid mice, generated 
elsewhere16.

Cells were maintained at pluripotency and cultured at 37 °C in 5% CO2 
in 25-cm2 flasks (Nunc) coated with 0.1% gelatin (Sigma) in DPBS. Growth 
medium (ES medium) consisted of GMEM supplemented with 10% FCS, 
1 mM sodium pyruvate, 2 mM l-glutamine, 1× minimum essential medium 
non-essential amino acids and 0.1 mM β-mercaptoethanol (all from Gibco) and 
0.1% leukaemia inhibitory factor (LIF, produced and tested in the laboratory). 
Cells derived from hybrid mice (C57BL/6N nuclear background) were 
maintained on 0.2% LIF. The growth medium was changed daily, and cells were 
split every 3 d.

To manipulate mitochondrial translation during differentiation, wild-type and 
Drp1−/− mESCs were treated with doxycycline (22.5 μM), from day 1 to day 3 of 
culture, or with actinonin (150 μM), for 6 h on day 3 of culture in N2B27 medium 
(‘Differentiation and cell competition assays’). As the control condition, cells were 
treated with vehicle. Samples were collected on day 3 of differentiation for western 
blot analysis.

CRISPR mutagenesis. Drp1 and Mfn2 knockout ESCs were generated by CRISPR–
Cas9-mediated deletion of Drp1 exon 2 and Mfn2 exon 3, respectively. sgRNA 
guides flanking Drp1 exon 2 or Mfn2 exon 3 were cloned into the PX459 vector 
(Addgene)56: Drp1 exon 2 upstream sgRNA: 5′ TGGAACGGTCACAGCTGCAC 
3′; Drp1 exon 2 downstream sgRNA: 5′ TGGTCGCTGAGTTTGAGGCC 3′; 
Mfn2 upstream sgRNA: 5′ GTGGTATGACCAATCCCAGA 3′; Mfn2 downstream 
sgRNA: 5′ GGCCGGCCACTCTGCACCTT 3′. E14 ESCs were co-transfected 
with 1 µg of each sgRNA expression using Lipofectamine 2000 (Invitrogen) 
according to the manufacturer’s instructions. As the control, E14 ESCs were 
transfected in parallel with an equal amount of empty PX459 plasmid. Following 
6 d of puromycin selection, single colonies were picked from both Drp1 sgRNA 
and ESCs transfected with empty vector and screened for mutations. Drp1 
exon 2 deletion was confirmed by PCR genotyping using the following primers: 
Drp1_genot F: 5′ GGATACCCCAAGATTTCTGGA 3′; Drp1_genot R: 5′ 
AGTCAGGTAATCGGGAGGAAA 3′, followed by Sanger sequencing. Mfn2 
exon 3 deletion was confirmed by PCR genotyping using the following primers: 
Mfn2_genot F: 5′ CAGCCCAGACATTGTTGCTTA 3′; Mfn2_genot R: 5′ 
AGCTGCCTCTCAGGAAATGAG 3′, followed by Sanger sequencing.

Derivation of mouse embryonic stem cells from hybrid mouse strains. The 
derivation of new mESC lines was adapted from work by Czechanski et al.57. Cells 
were derived from embryos of hybrid mouse strains BG, HB and ST. These contain 
the mtDNA of C57BL/6N (BL6) laboratory mouse and mtDNA variants from 
wild-caught mice16.

Embryos were isolated at E2.5 (morula stage) and cultured in four-well 
plates (Nunc, Thermo Scientific) containing KSOM medium (Millipore) plus 
two inhibitors (KSOM + 2i): 1 μM MEK inhibitor PDO325901 (Sigma-Aldrich) 
and 3 μM GSK-3 inhibitor CHIR9902 (Cayman Chemicals) for 2 d at 37 °C in 
a 5% CO2 incubator. To reduce evaporation, the area surrounding the wells 
was filled with DPBS. Embryos were further cultured in fresh 4-well plates 
containing N2B27 + 2i + LIF medium: N2B27 medium supplemented with 1 μM 
MEK inhibitor PDO325901 and 3 μM GSK-3 inhibitor and 0.1% LIF for up to 
3 d until reaching the blastocyst stage. Each embryo was then transferred to a 
well of a 96-well plate coated with 0.1% gelatin in DPBS and containing 150 μl 
of N2B27 + 2i + LIF medium per well. In these conditions, the embryos should 
attach to the wells allowing the epiblast to form an outgrowth. This plate was 
then incubated at 37 °C in a 5% CO2 incubator for 3 to 7 d until ESC-like colonies 
start to develop from the epiblast outgrowth. Cells were passaged by dissociation 
with Accutase (Sigma) and seeded in gradually increasing growth surface areas 
(48-well, 24-well and 12-well plates; T12.5 and T25 flasks), until new cell lines were 
established. At this stage, cells were weaned from N2B27 + 2i + LIF medium and 
then routinely cultured in ESC medium.

These new cell lines were then subjected to characterization by flow cytometry 
(cell size, granularity and mitochondrial ∆ψm) and amplification refractory 
mutation system (ARMS)–qPCR assay16 to determine heteroplasmy.

Heteroplasmy quantification by ARMS–qPCR assay. Every qPCR run consisted 
of the consensus and an ARMS assay.

Consensus assay. CO2-F: TCTTATATGGCCTACCCATTCCAA, CO2-R: GGAAA 
ACAATTATTAGTGTGTGATCATG, CO2-FAM: 6FAM-TTGGTCTACAAGAC 
GCCACATCCCCT-BHQ-1

(amplicon length: 103 bp)

ARMS assays. 16SrRNA2340/Staudach-f: AAACCAACATATCTCATTGACCgAA 
(haplotype ST), 16SrRNA2340(3)G-f: AATCAACATATCTTATTGACCaAG 
(haplotype C57BL/6N), 16SrRNA2340(3)A-f: 
AATCAACATATCTTATTGACCgAA (haplotypes BG and HB), 16SrRNA2458-r: 
CAC CAT TGG GAT GTC CTG ATC, 16SrRNA-FAM: FAM-CAA TTA GGG 
TTT ACG ACC TCG ATG TT-BHQ-1.

Lower-case letters indicate the intentional mismatch (ARMS), underlined 
letters indicate SNP-specific bases (amplicon length: 142 bp for BG and HB; 143 bp 
for ST).

Master-mixes for triplicate qPCR reactions contained 1× buffer B2 (Solis 
BioDyne), 4.5 mM MgCl2, 200 µM of the four deoxynucleotides (dNTPs, Solis 
BioDyne), 0.7 units HOT FIREPol DNA polymerase (Solis BioDyne), 300 nM 
of each primer and 100 nM hydrolysis probe. For each reaction, 12 µl of 
master-mix and 3 µl DNA were transferred in triplicates to 384-well PCR plates 
(Life Technologies) using the automated pipetting system epMotion 5075TMX 
(Eppendorf). Amplification was performed on the ViiA 7 Real-Time PCR 
System using the ViiA 7 software v1.1 (Life Technologies). DNA denaturation 
and enzyme activation were performed for 15 min at 95 °C. DNA was amplified 
over 40 cycles consisting of 95 °C for 20 s, 58 °C for 20 s and 72 °C for 40 s for all 
assays.

The standard curve method was applied. Amplification efficiencies were 
determined for each run separately by DNA dilution series consisting of DNA 
from mice harbouring the respective analysed mtDNA. Typical results were: 
slope = −3.462, −3.461, −3.576 and −3.668; mean efficiency = 0.95, 0.94, 0.90 and 
0.87; and y intercept = 32.4, 33.8, 34.5 and 31.9; for the consensus, C57BL/6N, HB and 
BG, and ST assays, respectively (Supplementary Figs. 1–4). Coefficient of correlation 
was ≥0.99 in all assays in all runs. All target samples were within the linear interval 
of the standard curves. To test for specificity, in each run, a negative control sample, 
that is, a DNA sample of a mouse harbouring the mtDNA of the non-analysed type 
in the heteroplasmic mouse (C57BL/6N or the respective wild-derived mtDNA) was 
measured. All assays could discriminate between C57BL/6N and wild-derived mouse 
mtDNA at a minimum level of >1%. Target sample DNA was tested for inhibition by 
dilution in Tris-EDTA buffer (pH 8.0).

For the calculation of mtDNA heteroplasmy, the assay detecting the minor 
allele (C57BL/6N or wild-derived mice, <50%) was always used. If both specific 
assays gave values >50% (that can happen at around 50% heteroplasmy), the mean 
value of both assays was taken. All qPCR runs contained no template controls for 
all assays; these were negative in 100% of analyses.

ARMS–qPCR standard curves and detection limit. mtDNA heteroplasmy was 
quantified by ARMS–qPCR, an established method in the field16,19,58–63. Calibration 
curves were created with a dilution series of DNA that showed a 100% match 
with the respective assay. Therefore, for all assays, necessarily divergent dilution 
series had to be used. The amount of DNA between the dilution series can diverge 
and thus values were plotted as arbitrary units. Supplementary Fig. 1 shows the 
standard curve produced for the consensus assay (detecting mt-Co2 as a measure 
of total mtDNA) and Supplementary Figs. 2–4 show standard curves produced 
for specific mtDNA variants (laboratory mouse mtDNA, C57BL/6N; wild-derived 
mice mtDNAs BG, HB and ST).
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SNP-specific quantification of mtDNA. To test the SNP-specific quantification 
of mtDNA, mixtures of match and mismatch DNA were analysed in triplicates. All 
assays could discriminate between C57BL/6N and wild-derived mouse mtDNA 
(and vice versa) at a minimum level of 1%, as shown by the ARMS–qPCR typical 
false-positive signal with the 100% mismatch DNA (detection limit, in all assays 
below 0.3%). The results and amplification plots for the specific quantification of 
HB and BG wild-derived mouse mtDNA from C57BL/6N mtDNA are shown in 
Supplementary Fig. 5 and Supplementary Table 9. The results and amplification 
plots for the specific quantification of ST wild-derived mouse mtDNA from 
C57BL/6N mtDNA are available in Supplementary Fig. 6 and Supplementary  
Table 10. Average values of the triplicate values are shown.

Embryo experiments. Early mouse embryos were isolated at E5.5 (from pregnant 
CD1 females, purchased from Charles River). Following dissection from the 
decidua, embryos were cultured overnight in poor N2B27 medium (same 
formulation as N2B27 medium but supplemented with 0.5× B27 supplement 
and 0.5× N2 supplement) with pan-CIs (100 μM, Z-VAD-FMK, FMK001, R&D 
Systems) or an equal volume of vehicle (DMSO) as the control. On the next 
morning, embryos were processed for scRNA-seq or functional validation (∆ψm 
analysis and immunohistochemistry for markers of loser cells).

For the scRNA-seq and ∆ψm analysis, embryos were dissociated into a 
single-cell suspension. Briefly, up to 12 embryos were dissociated in 600 μl 
Accutase (A6964, Sigma) over 12 min at 37 °C, with tapping of the tube at 2-min 
intervals. Accutase was then neutralized with an equal volume of FCS, cells were 
spun down and stained with TMRM (for ∆ψm analysis) or directly resuspended 
in 300 μl DPBS with 1% FCS (for single-cell sorting and RNA-seq). Sytox Blue 
(1:1,000 dilution, S34857, Thermo Fisher Scientific) was used for viability staining.

Differentiation and cell competition assays. Cell competition assays 
between wild-type cells and Bmpr1a−/−, 4n or Drp1−/− cells were performed in 
differentiating conditions. Cells were seeded onto fibronectin-coated plates (1:100, 
Merck) in DPBS for 1 h at 37 °C and grown in N2B27 medium to promote the 
differentiation of mESCs into a stage resembling the post-implantation epiblast, 
as cell competition was previously shown to occur in these conditions6. N2B27 
medium consisted of 1:1 DMEM/F12 nutrient mixture and Neurobasal medium 
supplemented with N2 (1×) and B27 (1×) supplements, 2 mM l-glutamine and 
0.1 mM β-mercaptoethanol (all from Gibco). Cell competition assays between 
wild-type and Mfn2−/− cells and between mESCs with different mtDNA content 
were performed in conditions of pluripotency maintenance (ESC medium).

Cells were either seeded separately or mixed for co-cultures at a 50:50 ratio, 
onto 12-well plates, at a density of 8 × 104 cells per well, except for assays between 
wild-type and Mfn2−/− mESCs, where 3.2 × 105 cells were seeded per well. The 
growth of cells was followed daily and compared between separate cultures or 
co-cultures, to control for cell-intrinsic growth differences, until the fourth day of 
culture. Viable cells were counted daily using a Vi-CELL XR Analyser (Beckman 
Coulter), and proportions of each cell type in co-cultures were determined using 
an LSR II Flow Cytometer (BD Bioscience), based on the fluorescent tag of the 
ubiquitously expressed GFP or TdTomato in one of the cell populations.

Metabolomic analysis. The metabolic profile was obtained using the Metabolon 
Platform (Metabolon). Each sample consisted of five biological replicates. For each 
replicate, 1 × 107 cells were spun down and snap frozen in liquid nitrogen. Pellets 
from five independent experiments for each condition were analysed by Metabolon 
using a combination of ultra-high performance liquid chromatography–tandem 
mass spectroscopy (UHPLC–MS/MS) and gas chromatography–mass spectroscopy 
(GC–MS). Compounds were identified by comparison to library entries of purified 
standards based on the retention time/index, mass-to-charge ratio (m/z) and 
chromatographic data (including MS/MS spectral data) on all molecules present 
in the library. Samples were normalized to protein content measured by Bradford 
assay. Statistical analysis was performed using Welch’s two-sample t-test and 
statistical significance was defined as a P value ≤ 0.05.

Seahorse analysis. The metabolic function of cells was assessed by extracellular 
flux analysis using Seahorse XF24 (Agilent Technologies). For assays ran 
during pluripotency, cells were seeded, on the day before the assay, onto 0.1% 
gelatin-coated plates (Sigma) in 300 µl of ESC medium. All cell types were seeded 
at 5 × 104 cells per well, except for Bmpr1a−/− cells, which were seeded at 5 × 104 
cells per well. For assays ran during differentiation, cells were seeded, 3 d before 
the assay, onto fibronectin-coated plates (1:100 dilution; Merck) in 300 µl of N2B27 
medium. All cell types were seeded at 2.4 × 104 cells per well, except for Bmpr1a−/− 
cells, which were seeded at 3.2 × 104 cells per well.

On the day of the assay, cells were carefully washed twice with assay medium and 
then left with a final volume of 600 µl per well. The plate was then equilibrated on a 
non-CO2 incubator at 37 °C for 30 min. The assay medium consisted of unbuffered 
DMEM (D5030, Sigma) that was supplemented on the day of the assay according to 
the test performed. For the OCR measurements, the assay medium was supplemented 
with 0.5 g l−1 glucose (Sigma) and 2 mM l-glutamine (Life Technologies), while for the 
ECAR measurements, the medium was supplemented with 1 mM sodium pyruvate 
and 2 mM l-glutamine (both from Life Technologies) at pH 7.4 and 37 °C.

The protocol for the assay consisted of four baseline measurements and three 
measurements after each compound addition. Compounds (all from Sigma) used 
in OCR and ECAR assays were prepared in the supplemented assay medium. For 
the OCR assay, the following compounds were added: 1 mM pyruvate, 2.5 µM 
oligomycin, 300 nM carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone and 
a mixture of rotenone and antimycin A at 6 µM each (R&A). For the ECAR assay, 
the following compounds were added: 2.5 mM and 10 mM of glucose, 2.5 µM of 
oligomycin and 50 mM of 2-deoxyglucose.

Each of the experiments was performed three times, with five biological 
replicates of each cell type. For background correction measurements, four wells 
were left without cells (A1, B4, C3 and D6). ECAR and OCR measurements were 
performed on the same plate. The assay parameters for both tests were calculated 
following the Seahorse assay report generator (Agilent Technologies).

At the end of the assay, cells were fixed and stained with Hoechst. Both OCR 
and ECAR were normalized to cell number, determined by manual cell counts 
using Fiji software. The normalization of the data was processed on Wave Desktop 
software (Agilent Technologies) and data were exported to Prism 8 (GraphPad) for 
statistical analysis.

Analysis of mitochondrial membrane potential and reactive oxygen species. 
For TMRM staining in single cells from early mouse epiblasts, embryos were 
dissected at E5.5 and cultured overnight in the presence or absence of CIs. On 
the following morning, to avoid misleading readings, epiblasts were isolated 
initially by an enzymatic treatment with 2.5% pancreatin, 0.5% trypsin and 0.5% 
polyvinylpyrrolidone (PVP40), all from Sigma-Aldrich, to remove the visceral 
endoderm. Embryos were treated for 8 min at 4 °C, followed by 2 min at room 
temperature (RT). The visceral endoderm was then peeled with the forceps and the 
extra-embryonic ectoderm was removed to isolate the epiblasts. Twelve epiblasts 
were pooled per 600 µl of Accutase (Sigma-Aldrich) for dissociation into single 
cells before staining. The reaction was stopped with an equal volume of FCS and 
cells were subjected to TMRM staining. Cells were incubated in 200 μl of 10 nM 
Nernstian probe TMRM perchlorate (T5428, Sigma), prepared in N2B27 medium. 
After incubation for 15 min at 37 °C, cells were pelleted again and resuspended 
in flow cytometry (FC) buffer (3% FCS in DPBS). Sytox Blue (1:1,000 dilution; 
S34857, Thermo Fisher Scientific) was used as viability staining.

Quantitative analysis of ∆ψm and mitochondrial ROS was performed by flow 
cytometry. Cells were grown in pluripotency or differentiating conditions. Cells were 
dissociated and pelleted to obtain 2 × 105 cells per sample for the staining procedure. 
For TMRM staining in mESCs, 2× 105 cells of each cell line were resuspended in 
200 μl of 10 nM TMRM (T5428, Sigma), prepared in N2B27 medium. Cells were 
incubated at 37 °C for 15 min, and then resuspended in FC buffer (3% FCS in DPBS). 
For the analysis of mitochondrial ROS, cells were grown in differentiating conditions 
and stained on the third day of culture. Briefly, 2 × 105 cells of each cell line were 
resuspended in 200 μl of a 5-μM solution of MitoSOX (M36008, Invitrogen) 
prepared in N2B27 medium. Cells were incubated at 37 °C for 15 min, and then 
resuspended in FC buffer. Sytox Blue was used for viability staining.

Cell suspensions stained with TMRM or MitoSOX were analysed in a BD LSR II 
flow cytometer operated through FACSDiva software (Becton Dickinson Biosciences). 
For TMRM fluorescence detection, the yellow laser was adjusted for excitation 
at λ = 562 nm, capturing the emission light at λ = 585 nm for TMRM. MitoSOX 
fluorescence was analysed with the violet laser adjusted for excitation at λ = 405 nm, 
capturing the emission light at λ = 610 nm. In the case of GFP-labelled cell lines, for 
GFP fluorescence detection, the blue laser was adjusted for excitation at λ = 488 nm, 
capturing the emission light at λ = 525 nm. Results were analysed in FlowJo Software 
v9 or v10.0.7r2. See the FACS gating strategy in Supplementary Fig. 7.

Qualitative analysis of ∆ψm was performed by confocal microscopy. 
Wild-type and Bmpr1a−/− cells were grown in fibronectin-coated glass coverslips. 
On the third day of differentiation, cells were loaded with a 200-nM MitoTracker 
Red probe (Life Technologies), prepared in N2B27 medium, for 15 min at 
37 °C. Cells were then washed with DPBS and fixed with 3.7% formaldehyde for 
subsequent immunocytochemical staining of total mitochondrial mass, with 
TOMM20 antibody.

Immunofluorescence. Cells were washed with DPBS and fixed with 3.7% 
formaldehyde (Sigma) in N2B27, for 15 min at 37 °C. Permeabilization of the 
cell membranes was performed with 0.4% Triton X-100 in DPBS (DPBS-Tx), 
at RT with agitation. The blocking step with 5% BSA in DPBS-Tx 0.1% was 
performed for 30 min, at RT with agitation. Mitochondria were labelled with 
TOMM20 antibody (1:100 dilution; Santa Cruz Biotechnologies). Dead cells 
were labelled with cleaved caspase-3 antibody (1:400 dilution; CST-9664), and 
NANOG antibody was used to mark pluripotent cells (1:100 dilution; eBioscience). 
Secondary antibodies were Alexa Fluor 488 and 568 (1:600 dilution; Invitrogen). 
Primary antibody incubation was performed overnight at 4 °C and secondary 
antibody incubation was done for 45 min, together with Hoechst to stain nuclei 
(1:1,000 dilution; Thermo Scientific) at RT and protected from light. In both cases, 
antibodies were diluted in blocking solution. Three 10-min washes with DPBS-Tx 
0.1% were performed between each critical step and before mounting with 
Vectashield medium (Vector Laboratories).
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Samples were imaged with a Zeiss LSM 780 confocal microscope and processed 
with Fiji64. Mitochondrial stainings were imaged with a ×63/1.4 oil objective. For 
samples stained with TOMM20 antibody and MitoTracker Red, z-stacks were 
acquired and processed for deconvolution using Huygens software (Scientific 
Volume Imaging; https://svi.nl/). Samples stained with cleaved caspase-3 were 
imaged with a ×20/0.8 air objective. Imaging and deconvolution analysis were 
performed with support and advice from S. Rothery from the Facility for Imaging 
by Light Microscopy (FILM) at Imperial College London.

Embryo immunofluorescence staining for p-rpS6, OPA1 and DDIT3 
(CHOP) markers was performed as follows. Cultured embryos were fixed in 4% 
paraformaldehyde in DPBS containing 0.01% Triton and 0.1% Tween 20 for 20 min at 
RT. Permeabilization of the membranes was performed for 10 min in DPBS with 0.5% 
Triton. Embryos were blocked in 5% BSA in DPBS with 0.25% Triton during 45 min. 
Incubation with primary antibodies (CHOP (1:500 dilution; CST, 2895), OPA1 
(1:100 dilution; BD Biosciences, 612606) and p-rpS6 (1:200 dilution; CST, 5364)) was 
completed overnight at 4 °C in 2.5% BSA in DPBS with 0.125% Triton. The following 
morning, hybridization with secondary antibodies Alexa Fluor 568 and Alexa Fluor 
488 (Invitrogen, diluted at 1:600 in DPBS with 2.5% BSA and 0.125% Triton) was 
performed next for 1 h at RT. Hoechst was also added to this mixture to stain nuclei 
(1:1,000 dilution; Invitrogen). Three 10-min washes with filtered DPBS-Tx 0.1% were 
performed between each critical step. All steps included gentle agitation.

Embryos were imaged in embryo dishes (Nunc) in a drop of Vectashield using 
a Zeiss LSM 780 confocal microscope at ×40/1.3 oil objective.

Further details about image acquisition and processing are specified in 
Supplementary Table 8.

Western blotting. Cells were washed in DPBS and lysed with Laemmli lysis buffer 
(0.05 M Tris-HCl at pH 6.8, 1% SDS, 10% glycerol and 0.1% β-mercaptoethanol in 
distilled water). Total protein quantification was done using BCA assay (Thermo 
Scientific) and samples (15 μg of protein per lane) were loaded into 12% Bis-Tris 
protein gels (Bio-Rad). Resolved proteins were transferred into nitrocellulose 
membranes (GE Healthcare). The following primary antibodies, prepared in 
TBS-0.1% Tween containing 5% BSA were incubated overnight at 4 °C with 
gentle agitation: rabbit anti-TOMM20 (1:1,000 dilution; CST, 42406), mouse 
anti-ATPB (1:1,000 dilution; Abcam, ab14730), rabbit anti-α-tubulin (1:1,000 
dilution; CST, 2144), mouse anti-mt-CO1 (1:2,000 dilution; Abcam, ab14705), 
rabbit anti-DRP1 (1:1,000 dilution; CST, 8570), mouse anti-MFN1 (1:1,000 
dilution; Abcam, ab57602), mouse anti-MFN2 (1:500 dilution; Abcam, ab56889), 
mouse anti-vinculin (1:1,000 dilution; Sigma, V9131), mouse anti-OPA1 (1:1,000 
dilution; BD Biosciences, 612606), rabbit anti-ATF4 (1:1,000 dilution; CST, 11815), 
rabbit anti-PCNA (1:5,000 dilution; Abcam, ab18197) and rabbit anti-p-eIF2ɑ 
(Ser51; 1:1,000 dilution; CST, 9721). On the following morning, HRP-conjugated 
secondary antibodies (1:5,000 dilution; sc-2004 and sc-2005, Santa Cruz), prepared 
in TBS-0.1% Tween containing 5% milk (Sigma) were incubated for 1 h at RT 
under gentle agitation. Membranes were developed with ECL reagents (Promega) 
and mounted in cassettes for time-controlled exposure to film (GE Healthcare).

Bulk and single-cell RNA sequencing. For bulk RNA-seq in the competitive 
scenario between cells with different mtDNA, HB (24%) and BG (95%) mESCs 
were grown separately or in co-culture. On the third day of culture, cells were 
dissociated and subjected to FACS to separate the cell populations in co-culture 
according to their GFP label. Propidium iodine (1:1,000 dilution; 81845, Sigma) 
was used for viability staining. See the FACS gating strategy in Supplementary 
Fig. 8. To control for eventual transcriptional changes due to the FACS process, 
a mixture of the two separate populations was subjected to the same procedure 
as the co-cultured samples. Total RNA isolation was then carried out using RNA 
extraction Kit (RNeasy Mini Kit, QIAGEN). PolyA selection/enrichment was the 
method adopted for library preparation, using the NEB Ultra II RNA Prep Kit. 
Single-end 50-bp libraries were sequenced on an Illumina HiSeq 2500. Raw base 
call files were converted to fastq files using Illumina’s bcl2fastq (v2.1.7). Reads 
were aligned to the mouse genome (mm9) using Tophat2 (v2.0.11)65 with default 
parameters. Mapped reads that fell on genes were counted using featureCounts 
from Rsubread package66. Generated count data were then used to identify 
differentially expressed genes using DESeq2 (ref. 67). Genes with very low read 
counts were excluded. Finally, GSEA was performed using GSEA software68,69 on a 
pre-ranked list generated by DESeq2.

To investigate the nature of cells eliminated by cell competition during early 
mouse embryogenesis by means of scRNA-seq, early mouse embryos were 
dissected at E5.5 and cultured overnight in the presence or absence of CIs. The 
next morning, embryos were dissociated with Accutase and subjected to single-cell 
sorting into 384-well plates. Total RNA isolation was then carried out using an 
RNA extraction Kit (RNeasy Mini Kit, QIAGEN). scRNA-seq was performed using 
the Smart-seq2 protocol70. PolyA selection/enrichment with Ultra II Kit (NEB) was 
the method adopted for library preparation.

Data processing, quality control and normalization. We performed transcript 
quantification in our scRNA-seq data by running Salmon (v0.8.2)71 in the 
quasi-mapping-based mode. First, a transcriptome index was created from the 
mouse reference (version GRCm38.p4) and ERCC spike-in sequences. Then, the 

quantification step was carried out with the ‘quant’ function, correcting for the 
sequence-specific biases (‘--seqBias’ flag) and the fragment-level GC biases (‘--gcBias’ 
flag). Finally, the transcript-level abundances were aggregated to gene-level counts. 
On the resulting raw count matrix including 1,495 cells, we applied a quality-control 
check to exclude poor quality cells from downstream analyses.

For quality control, we applied the following criteria: identification of cells that 
had a log10 total number of reads equal to or greater than 4, a fraction of mapped 
reads equal to or greater than 0.8, a number of genes with an expression level above 
ten reads per million equal to or greater than 3,000 and a fraction of reads mapped 
to endogenous genes equal to or greater than 0.5. This resulted in the selection of 
723 cells, which were kept for downstream analyses. Transcripts per million (TPM) 
normalization (as estimated by Salmon) was used.

Highly variable genes and dimensionality reduction. To identify highly variable 
genes (HVGs), we first fitted a mean and total variance trend using the R function 
‘trendVar’ and then the variance was decomposed into biological and technical 
components with the R function ‘decomposeVar’; both functions are included in 
the package ‘scran’ (v1.6.9)72.

We considered HVGs those with a biological component that was significantly 
greater than zero at an FDR (Benjamini–Hochberg method) of 0.05. Then, we 
applied further filtering steps by keeping only genes that had an average expression 
greater to or equal than 10 TPM and were significantly correlated with one 
another (function ‘correlatePairs’ in ‘scran’ package, FDR < 0.05). This yielded 
1,921 genes, which were used to calculate a distance matrix between cells defined 
as 

√

(1 − ρ)/2, where ρ is the Spearman’s correlation coefficient between cells. A 
two-dimensional representation of the data was obtained with the UMAP package 
(v0.2.0.0; https://cran.r-project.org/web/packages/umap/index.html) using the 
distance matrix as input.

Cell clustering and connectivity analysis. To classify cells into different clusters, 
we ran hierarchical clustering on the distance matrix (see above; ‘hclust’ function 
in R with ward.D2 aggregation method) followed by the dynamic hybrid cut 
algorithm (‘cutreeDynamic’ function in R package ‘dynamicTreeCut’ (https://
CRAN.R-project.org/package=dynamicTreeCut) v1.63.1, with the hybrid method, 
using a minimum cluster size of 35 cells and a ‘deepSplit’ parameter equal to 0), 
which identified five clusters. Cells from different batches were well mixed across 
these five clusters (Extended Data Fig. 1), suggesting that the batch effect was 
negligible. The identity of the five clusters was established based on the expression 
of known marker genes of epiblasts, visceral endoderm and extra-embryonic 
ectoderm, which were identified in a previous study73. The expression levels of 
some of the top markers are plotted in Fig. 1b.

We performed a robustness analysis on the clustering by exploring in detail how 
the choices of genes, clustering parameters and algorithms affect the identity and 
the number of clusters. First, we quantified the cluster robustness by calculating 
Pearson’s gamma and the average silhouette width obtained with 100 random 
subsets of 60% of the HVGs and different values of the deepSplit parameter. While 
the robustness at a deepSplit value of 0 and 1 was similar, for greater values of 
deepSplit (corresponding to less conservative clustering), the robustness rapidly 
declined (Extended Data Fig. 1e). The clustering with deepSplit value of 0 and 1 
(the more robust choices) yielded very similar results, the only difference being the 
splitting of the intermediate cluster in two subclusters (Extended Data Fig. 1f).

In addition to this, we also used Louvain clustering on the HVGs (resolution = 0.3, 
k = 20 with 20 principal components), which again produced very similar clusters.

We quantified the connectivity between the clusters (using only CI-treated 
cells) with PAGA22 implemented in the Python library scanpy (v1.4.7)74. The 
analysis revealed that the three epiblast clusters were connected with each other, 
whereas the two extra-embryonic tissues (visceral endoderm and extra-embryonic 
ectoderm) were isolated (Extended Data Fig. 2b).

Identification of a single-cell trajectory in the epiblast. We calculated a diffusion 
map (‘DiffusionMap’ function in the R package ‘destiny’ (v2.6.2)23) on the distance 
defined above on the epiblast cells from CI-treated embryos. The pseudotime 
coordinate was computed with the ‘DPT’ function with the root cell in the winner 
epiblast cluster (identified by the function ‘tips’ in the ‘destiny’ package). Such 
pseudotime coordinates can be interpreted as a ‘losing score’ for all the epiblast 
cells from the CI-treated embryos.

We estimated the losing scores of the epiblast cells from DMSO-treated 
embryos by projecting such data onto the diffusion map previously calculated 
(function ‘dm_predict’ in the destiny package). Finally, for each of the projected 
cells, we assigned the losing score as the average of the losing scores of the ten 
closest neighbours in the original diffusion map (detected with the function 
‘projection-dist' in the destiny package).

While for the clustering and the trajectory analysis we used the HVGs 
computed from the whole dataset, we verified that all results concerning the 
separation between winner and loser epiblast cells (for example, clusters and losing 
score) remain unaffected if the HVGs are calculated using only the epiblast cells.

Mapping of data from epiblast cells onto published datasets. We compared the 
transcriptional profile of epiblasts from embryos cultured in DMSO and CI with 
that of epiblasts collected from freshly isolated embryos at different stages.
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none of these cells had a mtDNA heteroplasmy higher than 0.01 in the 11 significant 
positions identified within mt-Rnr1 and mt-Rnr2 in loser epiblast cells, and the 
reference allele was always the most common. This reinforces the hypothesis that such 
variants are specific to loser epiblast cells and are not resulting from contamination.

To test the reliability of our heteroplasmy estimations, we used RNA-seq data 
from two of the mtDNA cell lines (BG and HB; Fig. 7) for which the heteroplasmy 
was measured also by ARMS–qPCR. To do so, first we downloaded the fasta 
files of the two mtDNA cell lines from https://www.ncbi.nlm.nih.gov/nuccore/
KC663619.1/ and https://www.ncbi.nlm.nih.gov/nuccore/KC663620.1/, then we 
identified the mtDNA positions that differed from the BL6 reference genome. 
Finally, on these different positions, the heteroplasmy, H, was computed as 
explained above. The values of heteroplasmy we found with our computational 
analysis were very close to those estimated by ARMS–qPCR: for HB (24%), ~17% 
from RNA-seq data versus ~24% measured by ARMS–qPCR; and for BG (95%), 
~93% from RNA-seq data versus ~95% measured by ARMS–qPCR.

Because we are inferring mtDNA changes from RNA-seq data, we also 
considered additional potential sources for the sequence changes we observed. 
Specifically, one possible source is contamination from NUMTs. However, a 
NUMT contamination is very unlikely for the following reasons: (1) we considered 
only reads that uniquely mapped to the mitochondrial genome; (2) the variants 
with the highest heteroplasmy identified in ‘loser’ cells (mt-Rnr1 326 and 327) were 
not present in any of the NUMTs previously reported76 or those that we identified 
using blastn (also taking into account the SNPs of the mouse strain we used); 
(3) the variants detected were exclusively found in ‘loser’ epiblast cells, and they 
were not detected in any other cell type from the same embryos, that is, neither in 
‘winner’ epiblast cells nor in cells from extra-embryonic tissues; (4) we estimated 
that if the variants with the strongest heteroplasmy (that is, mtRnr-1 326 and 327) 
were present on a NUMT, in order for them to reach an heteroplasmy of ~20% 
(Fig. 6b,c), the NUMT would have to be expressed at high levels, comparable to or 
even higher than many mitochondrial genes.

Another possible cause of the sequence changes is RNA editing. However, the 
majority of the changes that we found (see above) are not compatible with the 
canonical RNA editing in Metazoans, which consists of A-to-I (which would be 
read as A-to-G in RNA-seq) and C-to-U77.

Common features of scRNA-seq and bulk RNA-seq datasets. Differential 
expression analysis between the co-cultured winner HB (24%) and loser BG (95%) 
cell lines was performed using the package EdgeR (v3.20.9)78.

Batches were specified in the argument of the function ‘model.matrix’. We fitted 
a quasi-likelihood negative binomial generalized log-linear model (with the function 
‘glmQLFit’) to the genes that were filtered by the function filterByExpr (with default 
parameters). These genes were used as background for the gene enrichment analysis.

We set an FDR of 0.001 as a threshold for significance. The enrichment analysis 
for both the scRNA-seq and bulk RNA-seq datasets were performed using the tool 
g:Profiler79. The list of upregulated, downregulated and background genes related 
to the differential expression analysis for the bulk RNA-seq dataset is provided in 
the Supplementary Tables 5–7.

Quantification, statistical analysis and reproducibility. The quantification of 
the DDIT3 and OPA1 expression in embryos was performed using two distinct 
methods. DDIT3 expression was quantified by counting the number of epiblast 
cells with positive staining in the embryos of each group. The expression of OPA1 
was quantified on Fiji software as the mean fluorescence across a ten-pixel-width 
line drawn on the basal cytoplasm of each cell with high or low p-rpS6 fluorescence 
intensity, as specified in a previous study7. A minimum of eight cells were 
quantified per condition (high versus low mTOR activity) in each embryo. Six 
embryos treated with CI were analysed. Mean values of OPA1 fluorescence for each 
epiblast cell were pooled on the same graph.

Flow cytometry data were analysed with FlowJo Software v9 or v10.0.7r2.
Western blot quantification was performed using Image Studio Lite v5.2.5 

(LI-COR). Protein expression levels were normalized to loading controls vinculin, 
α-tubulin or PCNA.

Normalization of data from metabolic flux analysis with Seahorse was 
performed using Wave Desktop software (Agilent Technologies) and data were 
exported to Prism v8 (GraphPad) for statistical analysis.

All box plots show the lower quartile (Q1, 25th percentile), the median (Q2, 
50th percentile) and the upper quartile (Q3, 75th percentile). Box length refers to 
interquartile range (IQR, Q3 − Q1). The upper whisker marks the minimum between 
the maximum value in the dataset and 1.5 times the IQR from Q3 (Q3 + 1.5 × IQR), 
while the lower whisker marks the maximum between the minimum value in the 
dataset and the IQR times 1.5 from Q1 (Q1 − 1.5 × IQR). Outliers are shown outside 
the interval defined by box and whiskers as individual points.

The micrographs shown on Fig. 3d represents one of the micro-dissected 
embryo epiblasts used for the experiment presented in Fig. 3g,h. The representative 
confocal microscopy images shown in Fig. 4h are from confocal imaging 
deconvolution performed from one experiment following reproducibility of 
observations from previous independent experiments.

The statistical analysis of the results generated in wet-lab experiments was 
performed using GraphPad Prism v8.0.0 for Mac (GraphPad Software). Data were 

To do this, we considered a dataset published previously26, which includes 
epiblast cells from embryos at the stages E5.5 (102 cells), E6.25 (130 cells) and E6.5 
(288 cells). A diffusion map and a diffusion pseudotime coordinate were computed 
with these cells following the same procedure described above (Extended Data 
Fig. 3e,f). Then, we projected epiblast cells from CI-treated and DMSO-treated 
embryos and we assigned to them a diffusion pseudotime coordinate as described 
above (Extended Data Fig. 3g).

Differential gene expression analysis along the trajectory. To identify the genes 
that were differentially expressed along the trajectory, we first kept only genes 
that had more than 15 TPM in more than ten cells (this list of genes is provided in 
Supplementary Table 4); then, we obtained the log-transformed expression levels 
of these genes (adding 1 as a pseudo-count to avoid infinities) as a function of the 
losing score and we fitted a generalized additive model (GAM) to them (R function 
‘gam’ from ‘GAM’ package version 1.16.). We used the ANOVA test for parametric 
effects provided by the ‘gam’ function to estimate a P value for each tested gene. 
This yielded a list of 5,311 differentially expressed genes (FDR < 0.01).

Next, we looked for groups of differentially expressed genes that shared similar 
expression patterns along the trajectory. To this aim, similarly to what we did when 
clustering cells, we calculated a correlation-based distance matrix between genes, 
defined as 

√

(1 − ρ)/2, where ρ is the Spearman’s correlation coefficient between 
genes. Hierarchical clustering was then applied to this matrix (‘hclust’ function 
in R, with the ‘ward.D2’ method) followed by the dynamic hybrid cut algorithm 
(‘dynamicTreeCut’ package) to define clusters (‘cutreeDynamic’ function in R 
with the hybrid method and a minimum cluster size of 100 genes and a deepSplit 
parameter equal to 0). This resulted in the definition of four clusters, including 
three clusters of genes that decreased along the trajectory (merged together for the 
Gene Ontology enrichment and the IPA analysis) and one cluster of increasing 
genes (Extended Data Fig. 3a). IPA (QIAGEN; https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/), was run on all genes differentially 
expressed (FDR < 0.01) along the trajectory from winner to loser cells (Figs. 2a–d 
and 3a–c), using all the tested genes as a background (Supplementary Table 4). This 
software generated networks, canonical pathways and functional analysis. The list 
of decreasing/increasing genes is provided in Supplementary Tables 1 and 2. The 
pathways found as mis-regulated in Fig. 3 were: mitochondrial dysfunction, −log10(P 
value) = 21.1; OXPHOS, −log10(P value) = 18.6; EIF2 signalling, −log10(P value) = 11.9. 
FDRs for the genes shown in Fig. 3b range from 1.25 × 10−51 (for Atp5b) to 5.42 × 10−3 
(for Ndufa11). Cox6b2 was found to be upregulated in loser cells (FDR = 2.69 × 10−13).

Analysis of heteroplasmy in a single-cell RNA-seq dataset. We used STAR (v2.7)75 
to align the transcriptome of the epiblast cells from CI-treated embryos (274) to the 
mouse reference genome (mm10). Only reads that uniquely mapped to the mtDNA 
were considered. From these, we obtained allele counts at each mtDNA position with 
a Phred quality score greater than 33 using the samtools ‘mpileup’ function.

Next, we applied filters to remove cells and mtDNA positions with a low 
coverage. First, we removed cells with fewer than 2,000 mtDNA positions covered 
by more than 50 reads. Second, we removed positions having less than 50 reads in 
more than 50% of cells in each of the three epiblast clusters (winner, intermediate 
and loser). These two filters resulted in 259 cells and 5,192 mtDNA positions 
(covered by ~700 reads per cell on average) being considered for further analyses.

Starting from these cells and positions, we applied an additional filter to keep 
only positions with a sufficiently high level of heteroplasmy. To this aim, for 
each position with more than 50 reads in a cell, we estimated the heteroplasmy 
according to equation (1):

H = 1 − f

max

(1)

where fmax is the frequency of the most common allele. We kept only positions with 
H > 0.01 in at least ten cells.

Finally, using GAMs (see above), we identified the positions whose 
heteroplasmy H changes as a function of the cells’ losing score in a statistically 
significant way. We found a total of eleven significant positions (FDR < 0.001), six 
of them in mt-Rnr1 and five in mt-Rnr2. All of these positions had a higher level 
of heteroplasmy in loser cells (Fig. 6b–g and Extended Data Fig. 7a-e). The results 
remain substantially unaltered if the Spearman’s rank correlation test (as opposed 
to the GAMs) is used.

The most common substitutions observed in each position were: mt-Rnr1 300 
A-to-C; mt-Rnr1 303 T-to-G; mt-Rnr1 304 T-to-G; mt-Rnr1 305 C-to-G; mt-Rnr1 
326 A-to-G; mt-Rnr1 327 C-to-G; mt-Rnr2 2,031 T-to-G; mt-Rnr2 2,074 C-to-G; 
mt-Rnr2 2,077 A-to-C; mt-Rnr2 2,079 C-to-T; mt-Rnr2 2,081 A-to-G.

For the bar plot shown in Fig. 6h and the correlation heat maps in Fig. 6i and 
Extended Data Fig. 7l, we took into account only cells that covered with more than 
50 reads all the significant positions in the mt-Rnr1 gene (215 cells; Fig. 6h,i) or in 
both the mt-Rnr1 and mt-Rnr2 genes (214 cells; Extended Data Fig. 7l).

As a negative control, we repeated the analysis described above using the ERCC 
spike-ins added to each cell. As expected, none of the positions were statistically 
significant, which suggests that our procedure is robust against sequence errors 
introduced during PCR amplification.

We also performed the mtDNA heteroplasmy analysis in cells from the visceral 
endoderm and the extra-embryonic ectoderm in both DMSO and CI conditions; 
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tested for normality using the Shapiro–Wilk normality test. Two-tailed parametric 
or non-parametric statistical tests were applied accordingly. Statistical significance 
was considered with a confidence interval of 0.05%; *P < 0.05; **P < 0.01; 
***P < 0.001.

Here we specify details about the statistical test and multiple-comparisons 
test (when applicable) used for each experiment. The statistical significance 
of IPA analysis shown in Figs. 2b,c and 3a,b was calculated with A right-tailed 
Fisher’s exact test (P < 0.05). Data presented in Figs. 3f and 4i and Extended 
Data Fig. 4g were analysed by Mann–Whitney test. Data shown in Fig. 4b–e and 
Extended Data Fig. 5a–d were analysed by an unpaired t-test or Mann–Whitney 
U test. Data shown in Figs. 4j and 5e,g–i were analysed with an unpaired t-test. A 
one-sample t-test was used to analyse data presented in Fig. 5d,f. Figure 4k and 
Extended Data Fig. 8b–f show data analysed by one-way ANOVA, followed by 
Holm–Sidak’s multiple-comparisons test. Data presented in Figs. 3h, 4f,g, 5b,c,j 
and 7b–f and Extended Data Figs. 5e–g, 6b,c and 8g–i were analysed by two-way 
ANOVA, followed by Holm–Sidak’s multiple-comparisons test. The statistical 
analysis of data from Extended Data Fig. 9 was carried out with one-way ANOVA 
or Kruskal–Wallis test, followed by Holm–Sidak’s or Dunn’s multiple-comparison 
test, respectively. ANOVA for parametric effects on a GAM fit was used test 
statistical significance for data presented in Fig. 6a–g and Extended Data Fig. 
7a–e. The adjusted P values (indicated at the top of each plot) were computed 
using the Benjamini–Hochberg method. The correlation coefficients shown in 
Fig. 6i and Extended Data Figs. 2e, 3d and 7l were calculated with Spearman’s 
rank correlation rho test (two-sided test, 0.95 confidence level). Data shown 
in Extended Data Figs. 3b,c, 4a and 10b,c were analysed with Fisher’s exact test 
(two-sided). Gene enrichment analysis shown in Extended Data Fig. 10 was 
tested for statistical significance with a cumulative hypergeometric test. P values 
were adjusted for multiple comparisons using the g:Profiler algorithm g:SCS 
(https://doi.org/10.1093/nar/gkm226). Finally, the statistical analysis on data 
presented in Supplementary Tables 5 and 6 was performed using empirical Bayes 
quasi-likelihood F tests. P values were adjusted for multiple comparisons using the 
Benjamini–Hochberg method.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data were analysed with standard programmes and packages, as detailed above. All 
relevant data are included in the paper and/or its Supplementary Information files. 
RNA-seq raw data as well as processed data are available through ArrayExpress, 
under accession numbers E-MTAB-8640, for scRNA-seq data, and E-MTAB-8692, 
for bulk RNA-seq data. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality controls of scRNA-seq and clustering robustness analysis. a, Selection criteria for quality control (QC) of all cells. A 
total of 723 passed the quality control (723 good quality cells) and were considered for downstream analysis. All these parameters were computed for 
each cell. Log10 total number of reads (top left): log10 of the sum of the number of reads that were processed in every cell; Fraction of mapped reads (top 
central): number of reads that are confidentially mapped to the reference genome divided by total number of reads that were processed for each cell. 
This number is automatically provided by Salmon v0.8.2; Fraction of genes (top right): number of reads mapped to endogenous genes divided by the 
total sum of reads that were processed; Fraction of mt-genes (bottom left): number of reads mapped to mitochondrial genes divided by the total sum of 
reads that were processed; Fraction of spikes (bottom central): number of reads mapped to ERCC spike-ins divided by the total sum of reads that were 
processed; Number of genes above 10 RPM (bottom right): number of genes with expression level above 10 reads per million. b, Number of good quality 
cells in each condition (rows) and batch (columns). c, Number of good quality cells per cluster (rows) and batch (columns). d, UMAP plot of the data with 
cells coloured by batch. In each batch there is a balanced distribution of cells in the two conditions and across the five clusters. e, The Pearson’s gamma 
(left panel) and the Average Silhouette Width (right panel) was calculated for each set of clusters obtained with 100 random subsamples of 60% of 
highly variable genes and different values of the deepSplit parameter (see Methods). The most robust clusters correspond to deepSplit values of 0 and 1. 
f, The changes in composition and number of clusters between the clustering obtained with deepSplit 0 (top) and 1 (bottom) are shown using the library 
‘clustree’80. See methods for details on statistical analysis.
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Extended Data Fig. 2 | Cell cycle analysis and cluster connectivity. a, Cell cycle analysis of epiblast cells from clusters 1, 3 and 4. Cell cycle phase was 
predicted with cyclone algorithm81 and shows that there are cells in S and G2M phase also in the loser and intermediate clusters. b, PAGA plot showing the 
connectivity of the five clusters of cells from CI-treated embryos. c-d, Diffusion map analysis in all epiblast cells (from DMSO and CI-treated embryos): 
cells are coloured according to the condition (c) and to the cluster (d). e, The pseudotime coordinate of the CI-treated epiblast cells obtained from the 
diffusion map including all epiblast cells correlates extremely well (with the pseudo-time coordinate obtained in the diffusion map calculated only from 
CI-treated epiblast cells (Fig. 2a). See methods for details on statistical analysis.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis on epiblast cells from DMSO and CI-treated embryos. a, Heatmap showing the expression pattern of all genes 
differentially expressed along the trajectory from winning to losing cells in Fig. 2d. b-c, Overlap of genes differentially expressed along the trajectory joining 
winning and losing epiblast cells in CI-treated embryos (Fig. 2a and panel d) and genes targeted by p53. Pie charts show the percentage of genes up- or 
down-regulated in loser cells within the group of target genes that are activated (b) or repressed (c) by p53. There is an enrichment of activated/repressed 
targets among genes upregulated/downregulated in losing cells respectively (p-value=1E-4). The list of p53 targets is taken from58. d, Scatter plots of the 
expression levels of different marker genes plotted against each other in loser epiblast cells (cluster 4). Loser cells have higher expression of pluripotency 
markers as well as higher expression of some lineage-specific markers and the co-expression of these markers is only weakly correlated - the Spearman’s 
correlation coefficient is shown. e-g Our scRNA-seq data from epiblast cells is projected on top of previously published data from epiblast collected from 
freshly isolated embryos at different stages (E5.5, E6.25 and E6.5; data from26). First, a diffusion map (e) and a pseudotime coordinate (f) is computed for 
the epiblast cells from freshly isolated embryos. Then, a pseudotime coordinate is estimated for our data after projecting it onto the diffusion map. Panel g 
shows the pseudotime coordinates for both datasets, split by stage, treatment and cluster. See methods for details on statistical analysis.
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Extended Data Fig. 4 | See next page for caption.

NATURE METABOLISM | www.nature.com/natmetab



 79 

ARTICLESNATURE METABOLISM ARTICLESNATURE METABOLISM

Extended Data Fig. 4 | Cells eliminated during early mouse embryogenesis have activated stress responses. a, Overlap of genes differentially expressed 
along the trajectory joining winning and losing epiblast cells in CI-treated embryos (Fig. 2a and Extended Data Fig. 3a) and genes related to the unfolded 
protein response and integrated protein response pathways (UPR_ISR, see Supplementary Table 3). From the 32 genes related to the UPR & ISR pathways, 
12 are down-regulated in loser cells, 8 genes are up-regulated in loser cells, and 12 genes are not differentially expressed between loser and winner 
cells. There is a statistically significant enrichment of UPR&ISR genes among the up-regulated genes in loser cells (odds ratio=3.0, p-value=0.012). 
The intersection between UPR-ISR genes and the down regulated genes is not significant (odds ratio=1.2, p value=0.69). b-c, List of genes from UPR-
ISR pathways that are statistically significantly up-regulated (b) or down-regulated (c) in loser cells. d, Scatterplots with the expression levels of genes 
involved in stress responses in epiblast cells from CI-treated embryos as a function of cells’ losing score. e, Experimental design with the approach taken to 
validate the expression of the stress response marker DDIT3 in epiblast cells from DMSO or CI-treated embryos. f, Representative micrographs of DMSO 
(upper panel) or CI-treated embryos (100!μM, lower panel) stained for DDIT3, quantified in (g). Nuclei are labelled with Hoechst. In control embryos 
(DMSO-treated), dying cells in the cavity show very high DDIT3 expression (arrow), while live cells in the epiblast of the CI-treated embryos show more 
modest levels of DDIT3 expression (arrowheads). Scale bar!=!20!μm. g, Quantification of the percentage of epiblast cells with nuclear DDIT3 expression. 
N!=!10 DMSO and N!=!9 CI-treated embryos. Data shown as mean ± SEM. See methods for details on statistical analysis.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Mitochondrial function in wild-type, Bmpr1a−/− and 4n mESCs. a-d, Metabolic flux analysis of wild-type and Bmpr1a−/− mESCs. 
OCR profile and metabolic parameters assessed during the mitochondria stress test performed in pluripotency conditions (a). ECAR profile and metabolic 
parameters assessed during the glycolysis stress test performed in pluripotency conditions (b). Metabolic parameters from the mitochondria stress test 
found to be similar between wild-type and Bmpr1a−/− mESCs during differentiation – day 3 (c). Metabolic parameters from the glycolysis stress test found 
to be similar between wild-type and Bmpr1a−/− mESCs during differentiation – day 3 (d). Data obtained from 3 (a,b) or 5 (c,d) independent experiments, 
with 5 replicates per cell type in each assay. e-f, Analysis of mitochondrial membrane potential (Δψm) in defective mESCs maintained in pluripotency 
conditions, in separate or co-culture. Representative histograms of TMRM fluorescence and quantification for wild-type and Bmpr1a−/− (e) and wild-
type and 4n (f). g, Analysis of mitochondrial ROS in wild-type and Bmpr1a−/− mESCs undergoing differentiation in separate or co-culture: representative 
histograms of mitoSOX Red fluorescence and quantification of the percentage of mitoSOX positive cells. Data shown as mean ± SEM from 3 (e-f) or 5 (g) 
independent experiments. See methods for details on statistical analysis.
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Extended Data Fig. 6 | Effect of actinonin in OPA1 expression in wild-type and Drp1−/− cells. a, Western blot analysis of OPA1 expression in wild-type and 
Drp1−/− cells treated with actinonin (Act, 150!μM) during 6!hours on the third day of differentiation, quantified in (b-c). b-c, Expression levels of L-OPA1 (b) 
and S-OPA1 (c) relative to ɑ-tubulin. Data shown as mean ± SEM of 3 independent experiments.

NATURE METABOLISM | www.nature.com/natmetab



 83 

ARTICLESNATURE METABOLISM ARTICLESNATURE METABOLISM

Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Analysis of SNPs in mtDNA in epiblast cells. a-e, mtDNA heteroplasmy (plotted as Heteroplasmy!=!1- frequency of most common 
allele) in epiblast cells from CI-treated embryos for five positions within the mt-Rnr2 gene. All these positions have an heteroplasmy that increases with 
the cells’ losing scores in a statistically significant way - the adjusted p-values are indicated at the top of each plot. f-k, The variation in the heteroplasmy 
across the CI-treated cells is not due to a batch effect for the 6 significant positions within the mt-Rnr1 gene. The number of cells analysed per cluster (and 
batch) is as follows: number of cells in Normal Epiblast :42 (1),16 (2),18 (3),0 (4),2 (5); number of cells in Intermediate: 42 (1), 28 (2), 28(3), 12 (4), 5 
(5); number of cells in Loser Epiblast: 22 (1), 15(2), 20 (3), 2 (4), 7 (5). l, Correlation between the mtDNA heteroplasmy at all the statistically significant 
positions, six within the gene mt-Rnr1 and five within the gene mt-Rnr2. m, Schematic representation of the mitochondrial genome showing in red the 
positions that passed our filtering based on coverage and were considered for the heteroplasmy analysis. Only the genes that include these positions are 
indicated. See methods for details on statistical analysis.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Changes in mtDNA sequence are enough to trigger cell competition. a, Illustration of the process of derivation of the mESCs lines 
from mice that are hybrid between the wild-caught strains (BG, HB or ST) and the lab mouse (C57BL/6N). These hybrid mice were generated elsewhere16 
by ooplasmic transfer: the zygote of a C57BL/6N mouse was injected with ooplasm from a wild-caught mouse (orange, HB pictured). Therefore, 
these hybrid mice contain the nuclear background of the C57BL/6N strain and the mtDNA of wild-caught strain and potentially C57BL/6N mtDNA 
(heteroplasmic mice strains). mESCs lines were derived from the hybrid mice and characterised. b-f, Characterisation of the derived cell lines by flow 
cytometry, during pluripotency, in comparison to the wild-type cell line used in previous experiments (E14, 129/Ola background). Heteroplasmy analysis of 
the derived mESC lines from the hybrid mice, indicating the percentage of wild-derived mtDNA (b). Cell granularity (internal complexity) given as median 
fluorescence intensity of SSc-A laser (c). Cell size given as median fluorescence intensity of FSc-A laser (d). Analysis of the expression of mitochondrial 
markers: representative western blot and quantification of markers of mitochondrial mass (ATPB, mt-CO1 and TOMM20) and mitochondrial dynamics 
(DRP1, MFN1and MFN2), relative to vinculin, in cells derived from hybrid mice (e). f, Representative histograms and quantification of median TMRM 
fluorescence, indicative of Δψm, for the hybrid cell lines derived, in comparison to the wild-type cell line used in previous experiments (E14, 129/Ola 
background). g-i, Cell competition assays between hybrid cell lines maintained in pluripotency culture conditions. The ratio of final/initial cell numbers 
in separate or co-culture is shown. j, Experimental design for RNA-Seq and gene set enrichment analysis (GSEA). The isolation of RNA from winner 
HB(24%) and loser BG(95%) cells was performed after three days in separate or co-culture conditions, once cells have been subjected to FACS to isolate 
the two populations form mixed cultures. Data shown as mean ± SEM of 3 independent experiments. See methods for details on statistical analysis.
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Extended Data Fig. 9 | Metabolic flux analysis of the cells with different mtDNA variants: HB(100%), HB(24%), BG(95%) and C57BL/6N. a, OCR 
profile during mitochondria stress test performed in pluripotency maintenance conditions. b-i, Metabolic parameters assessed during the during the 
mitochondria stress test performed in pluripotency conditions. Data obtained from 3 independent experiments, with 5 replicates per cell type in each 
assay. Error bars represent SEM. See methods for details on statistical analysis.

NATURE METABOLISM | www.nature.com/natmetab



 88 

ARTICLES NATURE METABOLISMARTICLES NATURE METABOLISM

Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Common features of scRNA-seq and bulk RNA-seq datasets. a, Terms significantly enriched among genes downregulated in 
BG(95%) (loser) ESCs in vitro when co-cultured with HB(24%) cells. The loss of mitochondrial activity emerges as a common feature between loser cells 
in vivo and in vitro. The gene enrichment analysis was performed using g-profiler tool (see Methods) and p-values were adjusted for multiple comparisons 
using the g:Profiler algorithm g:SCS (10.1093/nar/gkm226). b, Intersection between differentially expressed genes along the trajectory from winning to 
losing epiblast cells (‘in_vivo_scRNA-seq’; Fig. 2a and Extended Data Fig. 3a, and genes differentially expressed between co-cultured HB(24%) (winner) 
and BG(95%) (loser) ESCs (‘in_vitro_bulk_RNA-seq’). ‘Up’ and ‘Down’ here refer to genes up- or down-regulated in loser cells. For the intersection 
between down-regulated genes from scRNA-seq (in vivo) and down-regulated genes from bulk RNA-seq (in vitro): p-value, 1.71E-12; odds ratio 1.80. For 
the intersection between down-regulated genes from scRNA-seq (in vivo) and up-regulated genes from bulk RNA-seq (in vitro): p-value, 5.20E-3; odds 
ratio 0.67. For the intersection between up-regulated genes from scRNA-seq (in vivo) and down-regulated genes from bulk RNA-seq (in vitro): p-value, 
4.87E-3; odds ratio 0.80. The intersection between up-regulated genes from sc-RNA-seq (in vivo) and up-regulated genes from bulk RNA-Seq (in vitro) is 
not statistically significant: p-value: 0.30, odds ratio 1.14. c, Intersection between the significantly enriched terms in genes upregulated or downregulated in 
loser cells in the epiblast of CI-treated embryos (‘in_vivo_scRNA-Seq’) or in our in vitro model of competition between co-cultured HB(24%) (winner) and 
BG(95%) (loser) ESCs (‘in_vitro_bulk_RNA-seq’). All the terms enriched among downregulated genes in vitro are also enriched in vivo. See methods for 
details on statistical analysis.
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Summary
Eukaryotic cells rely on mitochondria: organelles that are equipped with their own DNA
(mtDNA) to produce the energy they need. Each cell includes multiple mtDNA copies that
are not perfectly identical but have differences in their sequence; such sequence variability is
called heteroplasmy. mtDNA heteroplasmy has been associated with diseases (Nissanka &
Moraes, 2020), which can affect cellular fitness and have an impact on cellular competition
(Lima et al., 2021). Several single-cell sequencing protocols provide the data to estimate
mtDNA heteroplasmy, including single-cell DNA-seq, RNA-seq, and ATAC-seq, in addition
to dedicated protocols like MAESTER (Miller et al., 2022). Here, we provide MitoHEAR
(Mitochondrial HEteroplasmy AnalyzeR), a user-friendly software package written in R that
allows this estimation as well as downstream statistical analysis of the mtDNA heteroplasmy
calculated from single-cell datasets. MitoHEAR takes as input BAM files, computes the
frequency of each allele and, starting from these, estimates the mtDNA heteroplasmy at each
covered position for each cell.
The analysis parameters (e.g., the filtering of the mtDNA positions based on read quality
and coverage) are easily tuneable. Moreover, statistical tests are available to explore the
dependency of the mtDNA heteroplasmy on continuous or discrete cell covariates (e.g., culture
conditions, differentiation states, etc.), as extensively shown in the included detailed tutorials.

Statement of need
Although mtDNA heteroplasmy has important consequences on human health (Stewart &
Chinnery, 2015) and embryonic development (Floros et al., 2019), there are still many open
questions on how heteroplasmy affects cells’ ability to function and how cells keep it under
control. With the increasing availability of single-cell data, many questions can begin to be
answered. Still, it is essential to have efficient and streamlined computational tools that enable
researchers to estimate and analyse mtDNA heteroplasmy. Existing packages (Calabrese et al.,
2014; Huang & Huang, 2021; Prashant et al., 2021) focus only on the first step of quantifying
heteroplasmy from BAM files, and do not provide any specific tools for further statistical
analyses or plotting. MitoHEAR covers all steps of the analysis in a unique user-friendly
package, with highly customisable functions. Starting from BAM files, MitoHEAR estimates
heteroplasmy and offers several options for downstream analyses. For example, statistical tests
are provided to investigate the relationship of the mtDNA heteroplasmy with continuous or
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discrete cell covariates. Moreover, it includes plotting functions to visualise heteroplasmy and
allele frequencies and to perform hierarchical clustering of cells based on heteroplasmy values.

Key functions
The two main functions of MitoHEAR are:

1. get_raw_counts_allele: A parallelised function that relies on Rsamtools and generates
the raw counts matrix starting from BAM files, with cells as rows and bases with the
four possible alleles as columns.

2. get_heteroplasmy: Starting from the output of get_raw_counts_allele, this function
computes the matrix with heteroplasmy values (defined as 1 minus the frequency of the
most common allele) and the matrix with allele frequency values, for all the cells and
bases that pass a filtering procedure.

Among the downstream analyses implemented in the package are:
• Several statistical tests (e.g., Wilcoxon rank-sum test) for the identification of the mtDNA

positions with the most different levels of heteroplasmy between discrete groups of cells
or along a trajectory of cells (i.e., cells sorted according to a diffusion pseudo-time)
(Figure 1 and Figure 2).

• Plotting functions for the visualisation of heteroplasmy and the corresponding allele
frequency values among cells.

• Unsupervised hierarchical clustering of cells based on a distance matrix defined from the
angular distance of allele frequencies that could be relevant for lineage tracing analysis
(Ludwig et al., 2019) (Figure 3).

Figure 1: Example of an output plot generated by MitoHEAR showing heteroplasmy values at a given
position estimated from single cells in three clusters indicated on the x-axis. Data from Lima et al.
(2021).

Lubatti et al. (2022). MitoHEAR: an R package for the estimation and downstream statistical analysis of the mitochondrial DNA heteroplasmy
calculated from single-cell datasets. Journal of Open Source Software, 7(74), 4265. https://doi.org/10.21105/joss.04265.
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Figure 2: Example of an output figure generated by MitoHEAR where the heteroplasmy is plotted
as a function of the pseudo-time coordinate of each cell. Cells are classified into three clusters. The
heteroplasmy shows a statistically significant change along the pseudo-time, as indicated by the
adjusted p-value reported at the top, which is computed by a generalised additive model fit. Data
from Lima et al. (2021).

Figure 3: Unsupervised hierarchical clustering of cells based on a distance matrix defined from the
angular distance of allele frequencies. The data shown is bulk RNA-seq mouse data from two mtDNA
cell lines labelled Loser and Winner. Data from Lima et al. (2021).

The package has been used in a recently published paper (Lima et al., 2021), where we
revealed that cells with higher levels of heteroplasmy are eliminated by cell competition in
mouse embryos and are characterised by specific gene expression patterns.
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Cellular plasticity is an essential requirement for multicel-
lular organisms. Cells in the early mammalian embryo are 
most plastic because they can generate every cell type in the 

body. In particular, the mouse zygote and each of the blastomeres in 
2-cell-stage embryos are totipotent1,2, because they can generate a 
new organism on their own without the need for carrier cells. This 
contrasts with pluripotent cells, which can generate all the cells in 
the body, but not extraembryonic tissues3,4. Thus, totipotent cells 
have greater cellular plasticity. However, the mechanisms that sus-
tain totipotency are poorly understood.

DNA replication is a fundamental process for genetic and epi-
genetic inheritance. However, how the early mammalian embryo 
replicates its DNA and whether the acquisition of totipotency is 
regulated through DNA-replication-dependent mechanisms is 
unknown. As the molecular properties of the replication fork are 
central to the regulation of replication5, we set out to investigate rep-
lication fork dynamics in totipotent cells in vivo and totipotent-like 
cells in culture.

Results
2CLCs and totipotent embryos have a slow replication fork 
speed. Totipotent-like cells resembling 2-cell-stage mouse embryos 
arise spontaneously in embryonic stem cell (ESC) cultures, but only 
in very low proportions of around 0.5%6. 2CLCs recapitulate several 
molecular features of the totipotent cells in mouse embryos and dis-
play expanded potency, including higher ability to be reprogrammed  

upon nuclear transfer6–8. Similar to 2-cell-stage embryos, 2CLCs 
express specific repeats such as MERVL6,9 and thus can be identi-
fied by a fluorescent reporter under the control of the MERVL 
long-terminal repeat6,10, enabling their characterization and isola-
tion (Fig. 1a). We used DNA fiber analysis to study DNA replication 
and measure replication fork speed11,12. Analysis of replication fork 
speed in 2CLCs revealed a significantly slower fork speed compared 
with ESCs (Fig. 1b). Although ESCs displayed an expected rate of 
1.34 kb min−1 (ref. 13), 2CLCs had approximately half this speed 
(0.56 kb min−1) (Fig. 1c). This suggested that totipotent-like cells 
in culture replicate DNA much more slowly than pluripotent stem 
cells. Importantly, the length of the S-phase did not change (see also 
below), suggesting that 2CLCs may use more origins than ESCs, to 
compensate for a slower fork progression. Indeed, analysis of the 
DNA fibers14 indicated an increase in DNA fibers in which repli-
cation stopped after the first label, implying more termination or 
blockage events (Fig. 1d), consistent with increased origin usage. In 
agreement, visualization of replication by 5-ethynyl-2′-deoxyuridine 
(EdU) incorporation revealed that 2CLCs displayed a more dis-
persed EdU pattern and higher number of replication clusters com-
pared with ESCs (Extended Data Fig. 1a,b).

To address whether slow replication dynamics is a feature of 
genuine totipotent cells, we measured replication fork speed in 
2-cell-stage embryos in vivo (Fig. 1e). Notably, 2-cell-stage embryos 
displayed a low fork speed during their complete S-phase (median 
0.33 kb min−1 in early, mid and late S-phase; Fig. 1f). This was in 

DNA replication fork speed underlies cell fate 
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Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, 
we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like 
cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs 
recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomi-
tant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes 
occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogram-
ming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the 
reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and 
that remodeling of replication features leads to changes in cell fate and reprogramming.
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contrast to 4- and 8-cell-stage embryos, which displayed faster 
replication dynamics that increased further at the blastocyst stage 
(0.53 kb min−1, 0.68 kb min−1 and 1.37 kb min−1, respectively; Fig. 
1e,f). The slow fork speed in 2-cell-stage embryos was accompa-
nied by an increase in the number of replication clusters compared 
with ESCs, considering the difference in nuclear volume (Extended 
Data Fig. 1c–e), suggestive of an increase in the number of repli-
cation foci and potentially also of origins used. To explore this 
possibility, we quantified the proportion of ‘origin label’ events as 
well as inter-origin distance (IOD). The 2-cell-stage embryos dis-
played a higher ratio of origins to forks (first label origin) on aver-
age confined to the early S-phase and compared with 8-cell-stage 
embryos and blastocysts (Extended Data Fig. 1f). In addition, the 
IODs—known to inversely correlate with the number of active 
origins15—were significantly shorter in 2-cell-stage embryos, com-
pared with 8-cell embryos and blastocysts (Fig. 1g). Thus, totipotent 
cells in the early embryo replicate DNA with slow fork dynamics, 
which increases as development proceeds. These data underscore  

fundamental properties of DNA replication dynamics in the early 
mouse embryo.

Emergence of 2CLCs requires DNA replication. Next, we rea-
soned that, if replication fork dynamics is relevant for 2CLC repro-
gramming, the S-phase may play a critical role for 2CLC emergence. 
To address this, we synchronized cells at G1/S using a double thy-
midine block, after which we removed pre-existing 2CLCs from the 
culture using fluorescence-activated cell sorting (FACS), and mea-
sured the number of newly emerging 2CLCs every hour after releas-
ing the culture from the block, using the 2C MERVL-driven reporter 
as readout (Fig. 2a). This analysis revealed 2CLC emergence along 
with cell cycle progression, which reached the same proportion as 
the synchronized population on completion of the S-phase within 
~6 h after release (Fig. 2b and Extended Data Fig. 2a). Inhibition 
of DNA synthesis, upon addition of aphidicolin or thymidine after 
release from G1/S, led to a reduction in the proportion of 2CLCs. 
This suggests that, although DNA synthesis partially contributes to 
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Fig. 1 | 2CLCs and totipotent embryos display slow replication fork speed. a, Experimental setup for isolation of ESCs (GFP−) and 2CLCs (GFP+) based on 
FACS. b–g, DNA fiber analysis of pluripotent and totipotent cells by sequential labeling of nascent DNA. Representative fiber images (b) and quantification 
results of fork speed (c) from ESCs and 2CLCs are shown. d, Distribution of patterns of replication derived from fiber analyses from ESCs and 2CLCs.  
e,f, Representative fiber images (e) and quantification results of fork speed (f) from mouse embryos at the indicated developmental stages.  
g, Quantification of the IOD at the indicated stages of mouse preimplantation embryos. In c and f, the red line indicates the median. In g, the boxplots 
show the median and the IQR and whiskers depict the smallest and largest values within 1.5!×!IQR. In c, f and g, statistical analyses were performed  
with a two-sided Wilcoxon’s rank-sum test. In d, statistical analyses were performed using a two-sided binomial test. In b and e, scale bars, 5!μm.
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2CLC emergence, it is entry into the S-phase, which neither thy-
midine nor aphidicolin blocks, that is important for 2CLC repro-
gramming (Fig. 2b). We obtained similar results using another ESC 
line6 (Extended Data Fig. 2b,c). We also investigated whether 2CLC 
induction is related to checkpoint activation, but obtained no evi-
dence for the requirement of checkpoint activation in 2CLC induc-
tion or increased γH2A.X levels in 2CLCs compared with ESCs10 
(Extended Data Fig. 2d,e). To address whether completion of the 
S-phase is important for 2CLC induction, we added thymidine 2 h 
after release from the G1/S block. This resulted in full 2CLC induc-
tion (Fig. 2c), in concordance with cells progressing through the 
S-phase but accumulating before the G2/M peak (Extended Data 
Fig. 2f), suggesting that entry into the S-phase, but not necessarily 
completion, is relevant for 2CLC reprogramming. We then asked 
whether preventing origin firing affects 2CLC emergence. G1 syn-
chronization and sustained treatment with a CDC7 kinase inhibi-
tor (Extended Data Fig. 2g,h), which blocks MCM phosphorylation 
and thereby origin firing16, resulted in an almost complete suppres-
sion of 2CLC emergence (Fig. 2d). Importantly, synchronization 
at the G2/M transition did not increase the proportion of 2CLCs 
(Extended Data Fig. 3a), suggesting that our results do not reflect 
cell cycle inhibition in general, but rather reflect 2CLC emergence 
together with DNA replication. In agreement, irreversible cell cycle 
arrest prevented 2CLC emergence (Extended Data Fig. 3b,c). Of 
note, we observed an increase in 2CLCs after G2/M release, which 
paralleled progression into the next S-phase and was prevented 
on CDK1 inhibition, which blocks origin firing17 (Extended Data 
Fig. 3a,d). As cell cycle arrest using chemical inhibitors may have 
indirect effects, we looked at whether 2CLCs emerge during the 
S-phase in normal, cycling ESCs. Sorting G1 cells using the FUCCI 
(fluorescence ubiquitination cell cycle indicator) system18 in the 
absence of any chemical arrest confirmed de novo 2CLC emergence 
coincident with S-phase progression (Fig. 2e and Extended Data 
Fig. 3e). We also performed mathematical modeling using our cell 
cycle data (Extended Data Fig. 3f and Methods), which indicated 
that 2CLCs emerge primarily during the S-phase, because the tran-
sition rates (f) in other phases of the cell cycle are negligible and 
smaller than the transition rate in the S-phase (that is, fG1, fG2M < fS; 
Fig. 2f). Accordingly, direct observation with live microscopy using 
the FUCCI system indicated that most 2CLCs emerge together with 
S-phase progression (Fig. 2g,h). We conclude that 2CLC emergence 
occurs concomitant with DNA replication and that entry into the 
S-phase is key for this reprogramming.

Slowing replication fork speed induces 2CLCs. To address how 
S-phase enables 2CLC reprogramming and given our observations 
above (Fig. 1), we focused on replication fork speed. We asked 

whether modulating replication fork speed can regulate reprogram-
ming toward 2CLCs. For this, we sought to reduce fork speed exper-
imentally. The USP7 deubiquitinase modulates small ubiquitin-like 
modifier (SUMO) levels at sites of DNA replication, thereby regu-
lating replication fork progression. Inhibiting USP7 decreases fork 
speed in human cells and fibroblasts19. We thus asked whether 
ubiquitin-specific-processing protease 7 (USP7) depletion can 
induce 2CLCs. Usp7 downregulation in ESCs led to reduced fork 
speed (Fig. 3a,b and Extended Data Fig. 4a) without significantly 
affecting cell proliferation (Extended Data Fig. 4b). Strikingly, 
Usp7 RNA interference (RNAi) led to more than approximately 
sixfold induction of 2CLCs (Fig. 3c) and a concomitant increase in 
the transcription of the MERVL retrotransposon (Extended Data 
Fig. 4c), a marker of 2CLCs and 2-cell-stage embryos. The 2CLCs 
induced upon Usp7 knockdown displayed typical 2CLC features, 
such as ZSCAN4 expression, downregulation of OCT4 (POU5F1), 
chromocenter dispersion (Fig. 3d) and a high gene expression pro-
file overlap with endogenous 2CLCs7 (Fig. 3e and Extended Data 
Fig. 4d), including upregulation of MERVL and MT2_Mm and 
an enrichment of ‘2C’ genes (Supplementary Tables 1 and 2 and 
Extended Data Fig. 4e–g). Unsupervised clustering of transcrip-
tomes from early embryos20, ESCs and several 2CLC datasets6,7,21,22 
confirmed that USP7 knockdown-induced 2CLCs are transcrip-
tionally more similar to 2CLCs and 2-cell-stage embryos (Fig. 3f). 
In line with their 2CLC identity8,23, they express the transcription 
factor Dux and MERVL activation—as determined using the 2C 
reporter—that was dependent on Dux (Fig. 3e and Extended Data 
Fig. 4h). As USP7 can have multiple functions throughout the cell 
cycle24,25, we next asked whether USP7 functions to regulate 2CLC 
emergence during or outside the S-phase. For this, we first depleted 
USP7 using small interfering (si)RNA, then synchronized cells at 
the G2/M transition using a PLK1 (polo-like kinase 1) inhibitor 
(PLKi) and cultured them for another 6 h (Extended Data Fig. 4i,j), 
after which we determined the number of 2CLCs. Addition of the 
PLK1i prevented induction of 2CLCs after synchronization at G2/M 
(Extended Data Fig. 4k), suggesting that the effect of USP7 deple-
tion in inducing 2CLCs occurs before G2. To address this directly, 
we engineered a knock-in ESC homozygous Usp7 allele with an 
auxin-induced degron (AID) (Extended Data Fig. 4l), which enables 
precise temporal control of USP7 protein using auxin (Extended 
Data Fig. 4m). With this approach, we were able to deplete USP7 
specifically from the early, mid or late S-phase (Fig. 3g). Using these 
conditions, we determined the impact of the temporal depletion of 
USP7 on 2CLC emergence in the S-phase immediately after release 
from double thymidine block as above (Fig. 3h). The steady-state 
population of 2CLCs was higher in the USP7–AID cell line, presum-
ably because our transgene causes slightly lower USP7 expression  

Fig. 2 | Emergence of 2CLCs occurs together with or after DNA replication. a, Strategy to evaluate 2CLC emergence during the S-phase. b, After 
synchronization of ESCs at G1/S by double thymidine block, existing 2CLCs were removed. The remaining cells were released from the block and cultured 
with or without the indicated inhibitors. Emerging 2CLCs were quantified by FACS. Asyn, asynchronized. c, After synchronization as in b, 2CLCs were 
removed by FACS and thymidine added 2–6!h after release to prevent S-phase completion. Emerging 2CLCs were quantified 6!h after release. NS, not 
significant. d, ESCs synchronized in G1 using a CDC7 inhibitor, after which existing 2CLCs removed. Cells were subsequently grown with or without CDC7 
inhibitor and newly emerging 2CLCs were quantified 6!h after release. Barplots show mean!±!s.d. Statistical analyses are by two-sided Student’s t-test. 
e, ESCs in G1 sorted based on their FUCCI (mCherry-hCdt1(1/100)Cy(−) and iRFP-hGeminin (1/110)) fluorescence and new 2CLCs quantified hourly by 
FACS. The means!±!s.d. of at least four independent biological replicates are shown. Statistical analyses are by two-sided Student’s t-test. f. Mathematical 
modeling showing the quantitative relationships between the transition rates (f) of ESCs into 2CLCs during cell cycle phases (that is, fG1, fS and fG2M). The 
transition rate is the probability that an ESC changes its fate to 2CLC during a given unit of time. The gray area demarcates all possible values compatible 
with the data: all the values of transition rates falling within the gray area fit the experimental data. As the dashed line cuts the y and x axes at values  
<1 for both G2/M over S (fG2M/fS, y axis) and G1 over S (fG1/fS, x axis), transitions from ESCs to 2CLCs must occur most frequently in the S-phase.  
g,h, Live-cell microscopy indicating that 2CLCs emerge concomitantly with S-phase progression. a.u., arbitrary units. Live-imaging stills representative 
of 20 time-lapse recordings of emerging 2CLCs using FUCCI (mCherry-hCdt1(1/100)Cy(−) and iRFP-hGeminin (1/110)). h, Quantification of the 
representative emerging 2CLC in g depicting normalized mean fluorescence intensities (mCherry, iRFP, left axis) and mean raw fluorescence (GFP, right 
axis) over time. The S-phase duration is indicated. The majority of cells analyzed displayed similar results, with onset of 2C::tbGFP fluorescence during  
the S-phase or S/G2 transition. Scale bar, 10!μm. Barplots, mean!±!s.d.; dots, values of each replicate; n, number of biological replicates.
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compared with the parental clone (Extended Data Fig. 4n). USP7 
depletion resulted in a 2CLC increase, compared with basal levels, 
exclusively when depleted from early S-phase onward, but not from 
mid or late S-phase (Fig. 3h). These experiments demonstrate that 
entry into the S-phase and/or early S-phase is critical for 2CLC 
emergence.

As an orthologous approach to slow down replication fork speed, 
we employed low doses of hydroxyurea (HU)26. We verified that HU 
treatment led to a reduction in fork speed (Fig. 3i). HU treatment 
resulted in a striking, approximately tenfold increase in 2CLCs  

(Fig. 3j), which displayed typical 2CLC features (Fig. 3k and Extended 
Data Fig. 4h). As a third approach, we used RNAi to achieve partial 
downregulation for the ribonucleotide reductase subunits RRM1 
and RRM2, known to result in reduction of fork speed26,27(Extended 
Data Fig. 4o,p). Downregulation of both RRM1 and RRM2 led to a 
robust 2CLC increase of ~20- and 10-fold, respectively (Extended 
Data Fig. 4q), suggesting that slowing the replication fork speed 
regulates changes in cell fate and highlighting the relevance of repli-
cation fork dynamics for 2CLC reprogramming. We also addressed 
whether our findings may be applicable to other reprogramming 
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systems. Namely, we addressed whether induced pluripotent cell 
(iPSC) generation can be improved upon incubation with low doses 
of HU. Our results (Extended Data Fig. 5a,b) indicate an increase in 
the number of iPSC colonies after exposure to HU and may suggest 
a more general role for fork speed in cell reprogramming.

To further characterize the 2CLCs induced by USP7 depletion 
or HU, we examined their developmental potential compared with 
ESCs using two approaches. First, we performed morula aggrega-
tion with ESCs and 2CLCs produced after USP7 downregulation or 
by HU treatment, and analyzed their lineage contribution in blasto-
cysts reconstructed in three dimensions, based on confocal micros-
copy. In each experiment we aggregated an equivalent number of 
cells and scored the number of cells in the inner cell mass (ICM) or 
the trophectoderm (TE) to account for variability between embryos. 
Although we found ESCs contributing to both the ICM and the TE, 
with a strong bias toward the ICM, in agreement with previous 
reports under these conditions28–30, 2CLCs more frequently contrib-
uted to both (Extended Data Fig. 5c,d), in line with the suggested 
bipotentiality of 2CLCs. Single-cell chimera injections confirmed 
that 2CLCs can contribute to cells that express OCT4 and CDX2 
(Extended Data Fig. 5e). Second, we asked whether depletion of 
USP7 or HU treatment can improve developmental efficiency after 
nuclear transfer (NT), as a readout for expanded cell potency as 
previously described for 2CLCs7,21,31. We performed NT into enucle-
ated mouse oocytes using 2CLCs induced after siRNA for USP7 or 
upon HU treatment as donor. Remarkably, the number of embryos 
that cleaved to the 2-cell stage and formed hatching blastocysts was 
greatly increased when USP7-depleted or HU-treated green fluores-
cent protein-positive (GFP+) cells were used as donors, compared 
with controls (Fig. 3l,m, Extended Data Fig. 5f and Supplementary 
Table 3). These findings are in line with the known increased 
reprogrammability of control 2CLCs7. These experiments using 
USP7-depleted and HU-induced 2CLCs as donors suggest that they 
correspond to endogenous 2CLCs6,7 in terms of cellular potency. 
Thus, we conclude that reducing replication fork speed generates 
cells with a higher propensity to be reprogrammed upon NT.

2CLCs display distinctive changes in RT. Next, we explored the 
possible consequences of the differences in fork speed between 
ESCs and 2CLCs. We hypothesized that a slower fork speed, known 
to entail an increase in active origins to maintain the duration of 
the S-phase32, may result in changes in RT. Mammalian cells dis-
play an orderly program for replicating their genome in units of 
around 400–800 kb, which are coordinately replicated at deter-
mined times during the S-phase33–35. Early replication often corre-
lates with the transcriptional potential of a gene36, although a causal 

relationship between RT and gene expression has not been firmly 
established. We first investigated whether 2CLC reprogramming 
entails a change in RT. We generated genome-wide RT maps from 
sorted ESCs and 2CLCs in early, mid and late S-phase (Extended 
Data Fig. 6a–c). A survey over the genome browser revealed spe-
cific gene regions shifting to earlier RT in 2CLCs. These included 
‘2C’-specific genes such as Zscan4, Obox2/3 and Dux (Fig. 4a and 
Extended Data Fig. 6d). Inquiry into the genomic regions shifting 
RT between the two cell types37 revealed changes across the genome 
in the replication timing of 2CLCs, compared with ESCs (Fig. 4b). 
These changes represented approximately 3% of the genome, and 
most occurred by shifting at early S-phase (Fig. 4c), in line with 
our observations above suggesting that the early S-phase is criti-
cal for 2CLC emergence. These changes corresponded primarily to 
enlarged early replication domains in 2CLCs, leading to larger repli-
cation domains in the early S-phase in 2CLCs, compared with ESCs 
(Fig. 4d). In addition, domains shifting to earlier RT were enriched 
for MERVL sequences, in particular the MERVL promoter (LTR, 
MT2_Mm) and internal sequences (MERVL), but not for other 
endogenous retroviruses, LINE-1 or SINE-B2 elements (Fig. 4e). 
This shift to earlier RT matches a higher expression of MERVL ele-
ments in 2CLCs compared with those that change RT or shifted to 
a later pattern of replication (Fig. 4f and Extended Data Fig. 6e). We 
next examined the genes that change RT in 2CLCs. We identified 
440 genes that shifted in their RT profile, most of which changed 
to an earlier phase (76%; n = 333 genes) (Supplementary Table 4). 
Among them, most changed from mid- and late RT in ESCs to ear-
lier replication in 2CLCs (98%; n = 328 genes) (Fig. 4g). These genes 
included genes from the ‘2C’ program, such as Zscan4 and Dux 
(Fig. 4a and Extended Data Fig. 6d). Approximately a quarter of the 
RT-changing genes shifted to a later pattern of replication (n = 107 
genes). Among the genes that changed RT, only 30% (n = 136) were 
differentially expressed in 2CLCs compared with ESCs and most of 
these shifted to an earlier RT (Fig. 4h). This suggests that only a 
fraction of the changes in RT of 2CLCs is concordant with changes 
in gene expression. To address the chromatin status of the genes 
that shift RT, we analyzed ESC and 2-cell-stage embryo chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) data-
sets. In general, RT genes displayed enrichment of H3K4me3 at 
promoters or had bivalent signatures (Extended Data Fig. 6f–h), 
in agreement with their expression state in ESCs and 2-cell-stage 
embryos38. Some were enriched with H3K9me3 (Extended Data 
Fig. 6f–h) and the ENCODE term ‘heterochromatin’ was signifi-
cantly over-represented in the RT regions that shift to earlier RT 
in 2CLCs (Extended Data Fig. 6i). This is in line with our obser-
vation that MERVL shifts to earlier RT in 2CLCs. RT profiles in 

Fig. 3 | Slowing replication fork speed induces 2CLCs. a, USP7 expression 48!h after siRNA transfection. b, Fork speed in ESCs, GFP+ (Usp7KD-induced 
2CLCs) and GFP− cells after USP7 depletion. Statistical analysis was by two-sided Wilcoxon’s rank-sum test. c, FACS quantification of 2CLCs 48!h after 
USP7 siRNA transfection. Statistical analysis was by two-sided Student’s t-test. d, ZSCAN4 and OCT4 immunofluorescence in 2CLCs induced upon 
USP7 knockdown. e, Venn diagram of upregulated genes in control, USP7-depleted ESCs and USP7-depleted 2CLCs. f, Dendrogram of transcriptomes 
from various 2CLCs, early embryos, siControl-transfected ESCs, siUSP7-transfected ESCs and siUSP7-transfected 2CLCs. g,h, Early S-phase is critical for 
2CLC induction on USP7 depletion. g, Western blot in an AID–USP7 knock-in cell line at indicated hours of auxin (indole-3-acetic acid (IAA)) treatment. 
IAA was added 30!min before early, mid or late S-phase (red arrowhead). GAPDH, glyceraldehyde 3-phosphate dehydrogenase. h, ESCs synchronized 
with double thymidine block, existing 2CLCs removed by FACS and IAA added as indicated. Emerging 2CLCs were quantified 6!h after release. Statistical 
analyses for pairwise comparison with control group were with a two-sided Student’s t-test. i, Fork speed in HU-treated ESCs. Statistical analyses were  
by Wilcoxon’s rank-sum test. j, 2CLCs induced by HU. The apparent higher increase in 2CLC percentage in 100!µM HU compared with 50!µM HU may be 
due to selective increase in ESC death and an increase in the number of cells in the S-phase with 100!µM HU (Extended Data Fig. 7j). Statistical analyses 
for pairwise comparison with control group used a two-sided Student’s t-test. k, ZSCAN4 and OCT4 immunofluorescence in 2CLCs induced by HU.  
l,m, Greater reprogrammability of 2CLCs, induced by slowing fork speed. Nuclei of sorted GFP+ and GFP− cells after USP7 siRNA (l) or HU (m) treatment 
were transferred into enucleated oocytes. Reprogramming efficiency is indicated by development of NT-derived embryos to 2-cell (left) and blastocyst 
(right). Barplots show average percentage of developmental efficiency across 6 (l) and 10 (m) independent experiments; each dot indicates percentages 
obtained in each experiment and color depicts side-by-side experiments; n, number of embryos analyzed. Statistical analyses were by two-sided Welch’s 
test for unequal variances. b,i, Red line: median; barplots: mean!±!s.d.; dots, values of each replicate; n, number of independent biological replicates.  
In d and k, scale bars, 10!μm.
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2CLCs induced by Usp7 knockdown (Extended Data Fig. 6j,k and 
Supplementary Table 5) displayed overall a similar RT profile com-
pared with endogenous 2CLCs (Extended Data Fig. 6l), suggesting 
that the changes in replication fork speed during the S-phase, elic-
ited by USP7 depletion, lead to a similar change in the RT profile in 
2CLCs. Thus, we conclude that 2CLCs display a distinctive RT pro-
file, characterized by changes to early replication of MERVLs and 
part of the 2C program. Importantly, as an excess number of origins 
are licensed in G1 than are used during the S-phase39,40, these data 
are consistent with our observations indicating that entry into early 
S-phase is important, and suggest that additional origins may fire 
during early S-phase to promote 2CLC emergence.

MERVL shift to earlier replication during 2CLC reprogramming. 
Next, to address whether changes in RT temporally precede changes 
in cell fate, we devised an approach to map RT of emerging 2CLCs 
in the S-phase during which they transition toward 2CLCs, which 
we referred to as the ‘transitional’ S-phase (Fig. 4i). Our experimen-
tal design enabled us to analyze all cells that would undergo repro-
gramming in a synchronized fashion during the S-phase. Notably, 
the length of the S-phase of the transitioning cells, albeit variable, 
did not differ significantly in either the ‘mothers’ of the 2CLCs or 
the emerging 2CLCs themselves, compared with ESCs (Extended 
Data Fig. 7a), which enabled direct comparison of the RT profiles in 
both cell types. Our transitional RT datasets showed good correla-
tion among replicates (Extended Data Fig. 7b) and revealed minor 

changes in RT compared with ESCs (Extended Data Fig. 7c), similar 
to the RT datasets of ‘stable’ 2CLCs. Analysis of the genes, which 
shift RT during the transitional S-phase, revealed 6 genes that shifted 
earlier with at least a 2-fold difference between ESCs and 2CLCs, 
and 145 genes with at least a 1.5-fold difference (Methods; Extended 
Data Fig. 7d and Supplementary Table 6). The fact that RT analysis 
in stable 2CLCs displays a higher number of genes that change in RT 
compared with the transitional RT dataset could indicate that part of 
the RT program of 2CLCs changes during the transitional S-phase, 
during which 2CLCs emerge, but another portion is achieved and 
consolidated once 2CLCs have been reprogrammed. Notably, most 
genes that shift to earlier RT during this transitional S-phase are not 
expressed in ESCs and become highly upregulated in 2CLCs (Fig. 
4j,k)7. These genes belong to both the Zscan4-signature and the 
2C signature6,10,41,42. Likewise, MERVL elements were enriched in 
domains shifting to earlier RT before 2CLC emergence (Extended 
Data Fig. 7e). As we detected differences in RT already during the 
transitional S-phase before 2CLC emergence, these data suggest that 
changes in RT of a subset of 2C genes and MERVL elements occur 
before changes in cell fate and transcriptional profile.

To address how a change in RT could potentially affect MERVL 
expression, we investigated their chromatin status because altera-
tion of RT can disrupt chromatin modifications43. To restore the 
chromatin template after replication and preserve the correspond-
ing epigenetic information, the replication machinery interacts  
with and recruits chromatin modifiers and remodelers44. Distinct 
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chromatin proteins associate with the replication machinery in 
early versus late S-phase45,46. For example, ‘new’ histone H3.3 is 
known to be enriched at nascent chromatin specifically in the early 
S-phase47. H3.3 is associated with transcriptionally active chro-
matin and is incorporated throughout the cell cycle48,49. Thus, we 
investigated the distribution of H3.3 at MERVL. CUT&RUN for 
H3.3 indeed revealed that H3.3 is enriched at MERVL in 2CLCs, 
compared with ESCs (Fig. 4l). H3.3 is also enriched at MERVL in 
2-cell-stage embryos (Extended Data Fig. 7f), coincident with the 
onset of MERVL expression50. Thus, a change in RT is associated 
with H3.3 enrichment at MERVL upon 2CLC emergence.

Slowing replication promotes reprogramming during SCNT. 
Finally, we sought to address the functional relevance of the replica-
tion dynamics and fork remodeling for reprogramming to totipo-
tency. Terminally differentiated somatic cells can be reprogrammed 
to totipotency upon transplantation into enucleated oocytes51,52. 
However, this process is inefficient and often development beyond the 
2-cell stage is considered to be a bottleneck31. Considering the slower 
fork speed that we observed in 2-cell-stage embryos, we addressed 
whether reducing fork speed improves somatic cell nuclear transfer 
(SCNT) efficiency using cumulus cells as donors. In normal fertilized 
embryos, HU treatment did not affect developmental progression 
(Extended Data Fig. 7g). Remarkably, HU treatment greatly increased 
SCNT efficiency, leading to significantly higher developmental rates 
compared with the controls (3.5-fold, P = 0042; Fig. 5a). RNA-seq 
analysis of NT embryos indicated that cloned embryos have effectively 
reset their transcriptional landscape, including activation of zygotic 
genome activation genes and importantly, also, of ‘reprogramming 
resistant regions’ (RRRs)31 (Fig. 5b,c and Extended Data Fig. 7h,i). 
Thus, these results suggest that manipulating replication fork speed 
can improve cloning and facilitate reprogramming to totipotency.

Discussion
The overall rate of DNA synthesis is controlled by altering the rate at 
which individual replication forks synthesize DNA and/or changing 
the total number of active forks in the S-phase. In other vertebrates, 
such as Xenopus, embryonic cells divide extremely fast when the 
embryo goes from 50 to >5,000 cells, with S-phase lasting ~14 min 
at the earliest measured stage53. Although fork speed has not been 
determined before the midblastula transition, work with egg extracts 
supports a model whereby a high density of randomly positioned 
origins ensures genome duplication within this very short time54,55. 
DNA combing at the ribosomal DNA locus also revealed that fre-
quency of initiation decreases from the early blastula onward56–58. 
However, similar analyses have not been done in mammals. Our 
data in the mouse indicate that the mammalian embryo replicates 
its DNA with low speed in the first three cell cycles after fertilization.

Our data suggest a working model whereby slower fork speed 
and the concomitant higher ratio of origins to forks enable a shift 
of RT of specific genomic regions, which are enriched in MERVL, 
toward early S-phase. Early replication may enable the recruitment 
of factors preferentially associated with replicative chromatin in 
early S-phase compared with late S-phase46,47. We propose that a 
change in RT provides a window of opportunity to alter the chro-
matin template toward transcriptionally permissive chromatin, for 
example, through the incorporation of the histone variant H3.3  
(ref. 47). Indeed, H3.3 can be deposited during the S-phase59,60 and 
therefore changes in the distribution of H3.3 can potentially occur 
as a consequence of earlier replication. This is consistent with our 
data showing that MERVLs, which shift toward earlier RT, become 
highly expressed in 2CLCs and with data indicating that H3.3 
enrichment at MERVL in the 2-cell-stage embryos is dependent on 
DNA replication50. This, in turn, may facilitate the expression of 2C 
genes driven by MERVL6,9,21,61. Indeed, H3.3 is required for de novo 
global transcription and embryonic development62. Molecular  

studies to determine the position and the number of origins used are 
currently impossible in embryos or 2CLCs, primarily because tech-
niques to identify origins require amounts in the millions of cells. 
Identifying the mechanisms for origin firing during reprogramming 
and early development will demand further study and the develop-
ment of low-input protocols. Our work contributes to the molecular 
characterization of 2CLCs, for which similarities to and differences 
from the 2-cell-stage embryo have started to emerge61,63–65.

DNA damage induces Zscan4 expression66 and has recently been 
shown to promote expression of Dux through direct transactiva-
tion by p53 (ref. 67). It is interesting that, upon DNA damage, the 
DNA-damage response (DDR) kinases ATR (ataxia telangiectasia 
and Rad3 related) and ATM (ataxia telangiectasia mutated) are 
required for DNA-damage-induced 2CLCs67. Earlier work docu-
mented that aphidicolin treatment, leading to increased phosphory-
lation of CHK1 in ESCs, induces Zscan4 and MERVL expression68. 
However, although chemical inhibition of ATR partly reduced the 
extent of ZSCAN4 activation, this was not the case in ATR-deficient 
ESCs68. Although checkpoint activation and DNA damage can 
induce 2CLCs67, 2CLC emergence can also occur without check-
point activation69. It is noteworthy that most studies on the role of 
checkpoint activation in 2CLC induction are based on experimen-
tal induction of DNA damage, but only few have been performed 
in unperturbed conditions. Our work in naturally cycling 2CLCs, 
demonstrating the lack of detectable increase in γH2A.X in 2CLCs 
and that depletion of several checkpoint mediators does not impact 
the number of 2CLCs10, suggests that DDR is not necessarily always 
involved in this process. This is in line with recent findings by Grow 
et al., which support both p53-dependent and p53-independent 
mechanisms for regulating DUX67.

Overall, we suggest that regulation of fork speed can act as a fate 
determinant factor. Thus, our work highlights fundamental features 
of DNA replication in reprogramming cell fate.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-022-01023-0.

Received: 26 October 2021; Accepted: 27 January 2022;  
Published online: 7 March 2022

References
 1. Casser, E. et al. Totipotency segregates between the sister blastomeres of 

two-cell stage mouse embryos. Sci. Rep. 7, 8299 (2017).
 2. Tarkowski, A. K. Experiments on the development of isolated blastomeres of 

mouse eggs. Nature 184, 1286–1287 (1959).
 3. Ishiuchi, T. & Torres-Padilla, M. E. Towards an understanding of the 

regulatory mechanisms of totipotency. Curr. Opin. Genet. Dev. 23,  
512–518 (2013).

 4. Baker, C. L. & Pera, M. F. Capturing totipotent stem cells. Cell Stem Cell 22, 
25–34 (2018).

 5. Merchut-Maya, J. M., Bartek, J. & Maya-Mendoza, A. Regulation of 
replication fork speed: mechanisms and impact on genomic stability. DNA 
Repair 81, 102654 (2019).

 6. Macfarlan, T. S. et al. Embryonic stem cell potency !uctuates with 
endogenous retrovirus activity. Nature 487, 57–63 (2012).

 7. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating 
replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22,  
662–671 (2015).

 8. Hendrickson, P. G. et al. Conserved roles of mouse DUX and human DUX4 
in activating cleavage-stage genes and MERVL/HERVL retrotransposons.  
Nat. Genet. 49, 925–934 (2017).

 9. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes 
and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

 10. Rodriguez-Terrones, D. et al. A molecular roadmap for the emergence of 
early-embryonic-like cells in culture. Nat. Genet. 50, 106–119 (2018).

NATURE GENETICS | VOL 54 | MARCH 2022 | 318–327 | www.nature.com/naturegenetics326



 109 

ARTICLESNATURE GENETICS

 11. Michalet, X. et al. Dynamic molecular combing: stretching the whole human 
genome for high-resolution studies. Science 277, 1518–1523 (1997).

 12. Techer, H. et al. Replication dynamics: biases and robustness of DNA !ber 
analysis. J. Mol. Biol. 425, 4845–4855 (2013).

 13. Ahuja, A. K. et al. A short G1 phase imposes constitutive replication stress 
and fork remodelling in mouse embryonic stem cells. Nat. Commun. 7,  
10660 (2016).

 14. Nieminuszczy, J., Schwab, R. A. & Niedzwiedz, W. "e DNA !bre 
technique—tracking helicases at work. Methods 108, 92–98 (2016).

 15. Anglana, M., Apiou, F., Bensimon, A. & Debatisse, M. Dynamics of DNA 
replication in mammalian somatic cells: nucleotide pool modulates origin 
choice and interorigin spacing. Cell 114, 385–394 (2003).

 16. Montagnoli, A. et al. A Cdc7 kinase inhibitor restricts initiation of DNA 
replication and has antitumor activity. Nat. Chem. Biol. 4, 357–365 (2008).

 17. Katsuno, Y. et al. Cyclin A-Cdk1 regulates the origin !ring program in 
mammalian cells. Proc. Natl Acad. Sci. USA 106, 3184–3189 (2009).

 18. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular 
cell-cycle progression. Cell 132, 487–498 (2008).

 19. Lecona, E. et al. USP7 is a SUMO deubiquitinase essential for DNA 
replication. Nat. Struct. Mol. Biol. 23, 270–277 (2016).

 20. Wu, J. et al. "e landscape of accessible chromatin in mammalian 
preimplantation embryos. Nature 534, 652–657 (2016).

 21. Yang, F. et al. DUX-miR-344-ZMYM2-mediated activation of MERVL LTRs 
induces a totipotent 2C-like state. Cell Stem Cell 26, 234–250.e7 (2020).

 22. Hu, Z. et al. Maternal factor NELFA drives a 2C-like state in mouse 
embryonic stem cells. Nat. Cell Biol. 22, 175–186 (2020).

 23. De Iaco, A. et al. DUX-family transcription factors regulate zygotic genome 
activation in placental mammals. Nat. Genet. 49, 941–945 (2017).

 24. Hernandez-Perez, S. et al. DUB3 and USP7 de-ubiquitinating enzymes 
control replication inhibitor Geminin: molecular characterization and 
associations with breast cancer. Oncogene 36, 4817 (2017).

 25. Alonso-de Vega, I., Martin, Y. & Smits, V. A. USP7 controls Chk1 protein 
stability by direct deubiquitination. Cell Cycle 13, 3921–3926 (2014).

 26. Poli, J. et al. dNTP pools determine fork progression and origin usage under 
replication stress. EMBO J. 31, 883–894 (2012).

 27. Somyajit, K. et al. Redox-sensitive alteration of replisome architecture 
safeguards genome integrity. Science 358, 797–802 (2017).

 28. Martin Gonzalez, J. et al. Embryonic stem cell culture conditions support 
distinct states associated with di#erent developmental stages and potency. 
Stem Cell Rep. 7, 177–191 (2016).

 29. Wood, S. A. et al. Simple and e$cient production of embryonic stem cell- 
embryo chimeras by coculture. Proc. Natl Acad. Sci. USA 90, 4582–4585 (1993).

 30. Beddington, R. S. & Robertson, E. J. An assessment of the developmental 
potential of embryonic stem cells in the midgestation mouse embryo. 
Development 105, 733–737 (1989).

 31. Matoba, S. et al. Embryonic development following somatic cell nuclear 
transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014).

 32. Zhong, Y. et al. "e level of origin !ring inversely a#ects the rate of 
replication fork progression. J. Cell Biol. 201, 373–383 (2013).

 33. Rivera-Mulia, J. C. & Gilbert, D. M. Replicating large genomes: divide and 
conquer. Mol. Cell 62, 756–765 (2016).

 34. Goren, A. & Cedar, H. Replicating by the clock. Nat. Rev. Mol. Cell Biol. 4, 
25–32 (2003).

 35. MacAlpine, D. M., Rodriguez, H. K. & Bell, S. P. Coordination of replication 
and transcription along a Drosophila chromosome. Genes Dev. 18,  
3094–3105 (2004).

 36. Farkash-Amar, S. et al. Global organization of replication time zones of the 
mouse genome. Genome Res. 18, 1562–1570 (2008).

 37. Marchal, C. et al. Genome-wide analysis of replication timing by next- 
generation sequencing with E/L Repli-seq. Nat. Protoc. 13, 819–839 (2018).

 38. Deng, Q., Ramskold, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq 
reveals dynamic, random monoallelic gene expression in mammalian cells. 
Science 343, 193–196 (2014).

 39. Dimitrova, D. S. & Gilbert, D. M. "e spatial position and replication timing 
of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 
983–993 (1999).

 40. Fragkos, M., Ganier, O., Coulombe, P. & Mechali, M. DNA replication origin 
activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).

 41. Eckersley-Maslin, M. A. et al. MERVL/Zscan4 network activation results  
in transient genome-wide DNA demethylation of mESCs. Cell Rep. 17, 
179–192 (2016).

 42. Cerulo, L. et al. Identi!cation of a novel gene signature of ES cells self-renewal 
%uctuation through system-wide analysis. PLoS ONE 9, e83235 (2014).

 43. Klein, K. N. et al. Replication timing maintains the global epigenetic state in 
human cells. Science 372, 371–378 (2021).

 44. Probst, A. V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the 
cell cycle. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

 45. Miller, A. M. & Nasmyth, K. A. Role of DNA replication in the repression of 
silent mating type loci in yeast. Nature 312, 247–251 (1984).

 46. Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and 
epigenetic cell memory. Nat. Cell Biol. 22, 361–371 (2020).

 47. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across 
the cell cycle. Genes Dev. 29, 585–590 (2015).

 48. Ahmad, K. & Heniko#, S. "e histone variant H3.3 marks active  
chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 
1191–1200 (2002).

 49. Clement, C. et al. High-resolution visualization of H3 variants during 
replication reveals their controlled recycling. Nat. Commun. 9, 3181 (2018).

 50. Ishiuchi, T. et al. Reprogramming of the histone H3.3 landscape in the early 
mouse embryo. Nat. Struct. Mol. Biol. 28, 38–49 (2021).

 51. Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R. & Yanagimachi, R. 
Full-term development of mice from enucleated oocytes injected with 
cumulus cell nuclei. Nature 394, 369–374 (1998).

 52. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H.  
Viable o#spring derived from fetal and adult mammalian cells. Nature 385, 
810–813 (1997).

 53. Graham, C. F. & Morgan, R. W. Changes in the cell cycle during early 
amphibian development. Dev. Biol. 14, 439–460 (1966).

 54. Kermi, C., Lo Furno, E. & Maiorano, D. Regulation of DNA replication in 
early embryonic cleavages. Genes 8, 42 (2017).

 55. Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork 
density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 
300, 1133–1142 (2000).

 56. Hyrien, O., Maric, C. & Mechali, M. Transition in speci!cation of embryonic 
metazoan DNA replication origins. Science 270, 994–997 (1995).

 57. Walter, J. & Newport, J. W. Regulation of replicon size in Xenopus egg 
extracts. Science 275, 993–995 (1997).

 58. Collart, C., Allen, G. E., Bradshaw, C. R., Smith, J. C. & Zegerman, P. 
Titration of four replication factors is essential for the Xenopus laevis 
midblastula transition. Science 341, 893–896 (2013).

 59. Santenard, A. et al. Heterochromatin formation in the mouse embryo 
requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 
853–862 (2010).

 60. Dunleavy, E. M., Almouzni, G. & Karpen, G. H. H3.3 is deposited at 
centromeres in S phase as a placeholder for newly assembled CENP-A in 
G(1) phase. Nucleus 2, 146–157 (2011).

 61. Kruse, K. et al. Transposable elements drive reorganisation of 3D chromatin 
during early embryogenesis. Preprint at bioRxiv https://doi.
org/10.1101/523712 (2019).

 62. Kong, Q. et al. Histone variant H3.3-mediated chromatin remodeling is 
essential for paternal genome activation in mouse preimplantation embryos. 
J. Biol. Chem. 293, 3829–3838 (2018).

 63. Genet, M. & Torres-Padilla, M. E. "e molecular and cellular features of 
2-cell-like cells: a reference guide. Development 147, dev189688 (2020).

 64. Zhang, Y. et al. Unique patterns of H3K4me3 and H3K27me3 in 2-cell-like 
embryonic stem cells. Stem Cell Rep. 16, 458–469 (2021).

 65. Yu, J. et al. Relaxed 3D genome conformation facilitates the pluripotent to 
totipotent-like state transition in embryonic stem cells. Nucleic Acids Res. 49, 
12167–12177 (2021).

 66. Storm, M. P. et al. Zscan4 is regulated by PI3-kinase and DNA-damaging 
agents and directly interacts with the transcriptional repressors LSD1 and 
CtBP2 in mouse embryonic stem cells. PLoS ONE 9, e89821 (2014).

 67. Grow, E. J. et al. p53 convergently activates Dux/DUX4 in embryonic stem 
cells and in facioscapulohumeral muscular dystrophy cell models. Nat. Genet. 
53, 1207–1220 (2021).

 68. Atashpaz, S. et al. ATR expands embryonic stem cell fate potential in 
response to replication stress. eLife 9, e54756 (2020).

 69. Zhu, Y. et al. Cell cycle heterogeneity directs spontaneous 2C state entry and 
exit in mouse embryonic stem cells. Stem Cell Rep. 16, 2659–2673 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

NATURE GENETICS | VOL 54 | MARCH 2022 | 318–327 | www.nature.com/naturegenetics 327



 110 

ARTICLES NATURE GENETICS

Methods
Embryo collection and culture. All mouse experiments were approved by the Ethics 
Committee of the Université de Strasbourg (Com’eth Institute of Genetics, Molecular 
and Cellular Biology) and performed under the compliance of either French 
legislation or the government of Upper Bavaria. F1 female mice (C57Bl/6J × CBA) 
aged <10 weeks were superovulated by intraperitoneal injection of 10 U of 
human chorionic gonadotropin (hCG) followed by 10 U of pregnant mare serum 
gonadotropin 48 h later, and then mated with F1 male (C57Bl/6J × CBA) mice. Zygotes 
were collected from the oviduct, placed in drops of KSOM (potassium-supplemented 
SOM) and cultured at 37 °C with 5% CO2 as previously described70.

ESC culture. Mouse E14 ESC lines were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) with GlutaMAX (Invitrogen) containing 15% fetal 
calf serum, 2× leukemia inhibitory factor, penicillin–streptomycin, 0.1 mM 
2-mercaptoethanol, 3 μM CHIR99021 (GSK3β inhibitor) and 1 μM PD0325901 
(MEK inhibitor) on gelatin-coated plates unless otherwise stated.

FACS. For isolation and quantification of 2CLCs, cells were washed twice with 
phosphate-buffered saline (PBS) and treated with 0.25% trypsin. After neutralization 
with ESC medium, cells were collected by centrifugation and the dissociated single 
cells were resuspended in ESC medium. To calculate the population of 2CLCs, 
we counted turbo GFP+ ESCs after exclusion of dead and doublet cells based on 
the forward and side-scatter profiles. After sorting, cells were collected in normal 
culture medium and kept at 4 °C. For collection of cells in G1-phase in Fig. 2e 
and Extended Data Fig. 3e, we sorted the mCherry-hCdt1(1/100)Cy(−)-positive, 
iRFP-hGeminin(1/110)-negative subpopulation based on their fluorescence. For cell 
cycle analysis, the dissociated single cells were fixed with 70% ethanol for 30 min. 
After treatment with 250 µg ml−1 of RNase A (Thermo Fisher Scientific) for 5 min, 
cells were treated with 50 μg ml−1 of propidium iodide (PI) to stain DNA. For the 
cell death analysis in Extended Data Fig. 7j, harvested cells were incubated with 
Annexin-V, APC conjugate (A35110) for 15 min at room temperature in binding 
buffer (10 mM Hepes, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2), according to the 
manufacturer’s protocol. Cells were subsequently washed with binding buffer and 
stained with 0.5 μg ml−1 of PI for 15 min on ice. Sorting was performed on a BD 
Biosciences FACSAria III and FACSMelody. Percentage of 2CLCs was calculated 
using FACSDiva and FACSChorus and the analysis of other FACS data was 
performed using FlowJo software.

DNA fibers in embryos and ESCs. DNA fibers were prepared as described12,71, 
which we applied to low cell numbers. Embryos and ESCs transfected with siRNA or 
treated with HU were sequentially pulse labeled with 25 μM 5-iodo-2′-deoxyuridine 
(IdU; Sigma-Aldrich) and 50 μM 5-chloro-2′-deoxyuridine (CldU; Sigma-Aldrich) 
for 30 min each and collected. Labeled cells were lysed and DNA fibers were 
stretched on to the slide glass by tilting. The fibers were fixed in methanol:acetic 
acid (3:1), then denatured with 2.5 M HCl for 1 h, neutralized with PBS and blocked 
with 1% bovine serum albumin/0.1% Tween-20 in PBS. CldU and IdU tracks 
were detected with anti-bromodeoxyuridine (anti-BrdU) antibodies (described in 
Supplementary Table 7) recognizing CldU and IdU, respectively, and appropriate 
secondary antibodies. After the detection of IdU and CldU tracks, DNA was 
detected using an antibody against single-stranded DNA and the corresponding 
secondary antibody. 2-cell embryos in early S-phase, mid S-phase and late S-phase, 
and 4-cell embryos, 8-cell embryos and blastocysts were collected at 35, 37, 39, 53, 
70 and 96 h post-hCG injection, respectively. Images were acquired on a Leica SP8 
confocal microscope using a ×40 Plan/Apo NA1.3 oil immersion objective (Leica) 
at 2,048 × 2,048 pixels2 at an effective pixel size of 142 nm. To calculate fork speed, 
we used the established conversion 1 μm = 2 kb (ref. 72). Analysis of DNA fibers 
was performed by two different researchers using a customized image analysis 
pipeline that consisted of three steps: (1) localization of fibers in confocal images, 
(2) detection of branch modes in each fiber and (3) statistical analysis of different 
fiber parameters (for example, pattern proportion, branch length). As a prerequisite 
step, we employed masks to select regions of interest in the images, which contained 
a sufficient number of fibers to be analyzed. Briefly, for the fiber localization, we 
used a vessel detection algorithm, using a space-scale local variational approach, 
followed by a morphological reconstruction to extract the median line by B-spline 
fitting. To overcome issues of noise and signal heterogeneity, we implemented a 
structure reconstruction with a spatially variant morphological closing73. The process 
uses a small segment (at least the size of disconnection, for example, 20 pixels) as a 
structuring element. The map is then thresholded to a certain value (typically 0.5) 
and single fibers are identified separately by a connected component algorithm. 
Then, the skeletons of the fibers were identified by a morphological thinning and 
fitted to achieve subpixel accuracy. To detect patterns in the extracted fibers, we 
used a branch detection strategy. Briefly, intensity profiles from both channels 
were sampled along the median line. As the channels were not directly comparable 
in absolute intensity value, the logarithm of their point-wise intensity ratio was 
used instead. We used regression tree structures in combination with the CART 
algorithm74, which uses a partitioning algorithm to detect the patterns of the DNA 
fibers. Subsequently, a semi-automated step to verify fiber detection and features 
was implemented manually. The fiber analysis software is written in Python and is 
available at https://github.com/IES-HelmholtzZentrumMunchen/dna-fibers-analysis. 

To calculate the IOD, we manually selected sufficiently long fiber stretches from 
our DNA fiber dataset in the DNA channel, which encompassed several IdU/CldU 
boundaries. To facilitate the analysis, we generated a Fiji (ImageJ) macro to open the 
regions of interest in the images and applied the ImageJ ‘Straighten’ function with a 
width of 19 pixels to convert bent fibers into approximately two-dimensional images, 
where the channel intensities were interpolated along the x axis. In the stretched 
fiber images, we then manually selected all identifiable IdU/CldU boundaries. The 
remaining analysis was performed in R. We first calculated from the x coordinates 
of the boundaries all origin positions by averaging between two adjacent boundary 
points. We then determined the pairwise difference between origins to obtain the 
IOD. IOD and boxplots were created using the ggplot2 library in R.

Cell cycle synchronization and drug treatment. For all G1/S synchronization 
with thymidine, a double thymidine block was used as follows: cells were 
incubated for 12 h with 2.5 mM thymidine, released for 9 h after washing out the 
thymidine, and then blocked again with 2.5 mM thymidine for 14 h to arrest all 
cells at the beginning of S-phase. For release experiments (Figs. 2a–c, 3g,h and 
4i–k and Extended Data Fig. 2a–c,f), cell cycle arrest was subsequently released 
with two washes of thymidine-free medium. After release, cells were harvested at 
1-h intervals or treated with 1 μM aphidicolin or 2.5 mM thymidine for 6 h. For 
other drug treatments (Fig. 2d and Extended Data Figs. 2g,h, 3a–d and 4i–k), the 
following inhibitors and concentrations were used: CDC7 inhibitor (PHA-767491; 
10 μM), CDK1 inhibitor (RO-3306; 10 μM), PLK1 inhibitor (BI-6727; 500 nM) were 
used to synchronize cells for 8, 10 and 4 h, respectively. In Fig. 2e and Extended 
Data Fig. 3e, cells in G1-phase were sorted by FACS based on their FUCCI reporter 
system as described in FACS. After sorting, cells were plated under normal culture 
conditions or with medium supplemented with 10 μM CDC7 inhibitor. After 
culturing for 6 h, cells were analyzed by FACS to calculate the number of 2CLCs.

RNA-seq. Forty-eight hours after transfection of siRNA for control and USP7, cells 
were FACS sorted into ESCs and 2CLCs based on the GFP fluorescence, reflecting the 
2C::tbGFP reporter activity. Total RNA was extracted using PicoPure RNA Isolation 
Kit (Thermo Fisher Scientific) and treated with turbo DNase (Life Technologies). 
Two biological replicates were prepared for each sample and their quality was checked 
using the 2100 Bioanalyzer with the RNA 6000 Nano Kit (Agilent). Libraries for 
strand-specific sequencing were created with a TruSeq Stranded Total RNA Library 
Prep Human/Mouse/Rat (Illumina) and IDT for Illumina-TruSeq RNA UD Indexes 
(Illumina) according to the manufacturer’s protocol. Excess primers were removed 
through a purification step using AMPure XP beads (Agencourt Biosciences 
Corporation). The quality and quantity of the complementary DNA libraries were 
verified with the 2100 Bioanalyzer using the High Sensitivity DNA Kit (Agilent). 
Sequencing was carried out on an Illumina HiSeq 4000 (Illumina) with a 150-bp 
paired-end protocol according to Illumina’s instructions.

NT with 2CLCs and ESCs. NT was performed as described51 with slight 
modifications75,76. Metaphase II-arrested oocytes were collected from superovulated 
F1 female mice (C57Bl/6J × CBA) aged <10 weeks and cumulus cells were removed 
using hyaluronidase. Oocytes were enucleated in a droplet of M2 medium 
containing 5 μg ml−1 of cytochalasin B (CB) using a blunt Piezo-driven pipette. After 
enucleation, the spindle-free oocytes were washed extensively and maintained in 
CZB medium up to 2 h before nucleus injection. Nuclei of ESCs and 2CLCs (E14 
background, originally derived from 129/Ola mouse strain) cultured in serum/
leukemia inhibitory factor (nontreated, siControl-transfected, siUSP7-transfected 
or HU-treated cells) were collected by FACS based on their GFP fluorescence and 
size, and were aspirated in and out of the injection pipette to remove the cytoplasmic 
material and then injected into enucleated oocytes. The reconstructed oocytes were 
cultured in CZB medium for 1 h and activated for 6 h in Ca2+-free CZB medium 
containing 10 mM Sr2+ and 5 μg ml−1 of CB. After activation, the reconstructed 
embryos were cultured in KSOM at 37 °C under 5% CO2:air for 5 d and subsequently 
checked for their developmental efficiency. Note that, although most NT protocols 
employ Trichostatin A, we purposely refrained from using Trichostatin A to avoid 
confounding effects due to potential alterations to chromatin structure.

SCNT. SCNT was performed using cumulus cells as donors. For these experiments, 
we used two different F1 mouse strains to provide robustness and validation: 
C57BL/6J × DBA/2J and C57Bl/6J × CBA. The same protocol as for 2CLCs and 
ESCs was used, with slight modifications. Briefly, MII oocytes were collected and 
enucleated in CZB medium and then allowed to recover in KSOM until they were 
used for NT. The nuclei of donor cumulus cells were injected into the enucleated 
oocytes using a Piezo-driven micromanipulator. After reconstruction, oocytes were 
cultured for 1 h in KSOM and activated for 6 h in KSOM containing 10 mM Sr2+ and 
5 μg ml−1 of CB supplemented with 2 mM (ethylenebis(oxonitrilo))tetra-acetate77. 
Embryos were then randomly distributed in medium with or without HU (10 μM), 
which was replaced by fresh medium without HU after 24 h. Experimental design 
and scoring were double blinded. The SCNT data derived from the two mouse strains 
were verified for consistency and the sum of the compiled data is shown in Fig. 5a.

Replication timing. For the stable RT and USP7 RT, synchronously cycling cells 
were pulse labeled with the nucleotide analog BrdU for 2 h, respectively. Cells were 
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sorted into early, mid and late S-phase fractions, 20,000 cells each, on the basis of 
DNA content using FACS. For the transitional RT, existing 2CLCs were removed 
after double thymidine block. After release from G1/S arrest, ESCs were treated with 
BrdU for 2 h during the specific time windows indicated in Extended Data Figure 4i 
(0–2 h for early S-phase, 2–4 h for mid S-phase or 4–6 h for late S-phase). ESCs and 
newly emerged 2CLCs were sorted by FACS based on the 2C::tbGFP fluorescence 
6 h after release from G1/S block, and genomic (g)DNA was isolated from each 
condition (that is, early, mid or late S-phase for ESCs and 2CLCs) using sodium 
dodecylsulfate–proteinase K buffer and purified by phenol–chloroform extraction. 
The gDNA was fragmented using the Covaris sonicator to obtain fragments 
of 700 bp on average. The sheared, BrdU-labeled DNA from each fraction was 
immunoprecipitated using 0.5 μg of mouse anti-BrdU antibody followed by addition 
of 50 μl of precleared Dynabeads coupled to sheep anti-mouse immunoglobulin G 
(Invitrogen). The immunoprecipitated pellet was digested overnight with proteinase 
K and purified by phenol–chloroform extraction. RT libraries were prepared 
based on Accel-NGS methyl seq library kit (Swift Biosciences) according to the 
manufacturer’s instructions. The BrdU-immunoprecipitated DNA was denatured 
and subjected to Adaptase reaction. This step was followed by an extension reaction 
with two cleanup steps utilizing Agencourt Ampure XP beads (Beckman Coulter). 
The eluate was subjected to a ligation step, followed by Ampure bead-mediated 
purification. Indexing PCR was performed at 98 °C for 30 s, 9 cycles at 98 °C for 10 s, 
60 °C for 30 s and 68 °C for 60 s, followed by a 4 °C hold cycle. The PCR product was 
further purified by Ampure beads and eluted in a 20-μl volume using Tris–EDTA 
buffer provided by the manufacturer. The libraries were verified using Agilent 
2200 Tape Station (Agilent) utilizing DNA high-sensitivity tape (Agilent). Up to 
12 libraries were pooled together after Qubit quantification with Qubit DNA HS 
assay kit (Thermo Fisher Scientific) and loaded into Nextseq 500/550 high-output 
cartridge (Illumina) for 75 cycles of single-end sequencing.

RT analysis. Repli-seq reads from early, mid and late time points of S-phase were 
mapped to the reference mm9 genome using BWA78 and counted over 100-kb 
genomic bins across the genome, followed by the Loess smoothing of bin counts as 
previously described37. The E/L was calculated from the read counts in early and 
late S-phase. Regions with differential RT between ESCs (GFP−) and 2CLCs (GFP+) 
cells were determined based on 2-fold (or 1.5-fold for the transitional S-phase) 
cutoff of change in E/L ratio. Domains of early and late replication were identified 
using the DNAcopy package79. Genes were classified as early, mid or late replicating 
based on the stage of S-phase with the highest read density over the gene body. 
This three-stage classification was highly consistent with the traditional E/L based 
only on the reads from early and late stages.

Single embryo RNA-seq and library preparation. Control and HU-treated 
(10 μM) nuclear transferred embryos were cultured until 28 h after activation, at 
which point a representative proportion of embryos was collected, washed with 
PBS, placed in tubes with 1× Clontech lysis buffer (Z5013N) containing ERCC 
RNA Spike-In Mix (Invitrogen) and flash-frozen in liquid nitrogen. RNA-seq 
was carried out using the SMART-seq2 protocol80 and subjected to paired-end 
sequencing on a Nextseq 500 (Illumina) platform. A total of nine control and eight 
HU-treated embryos derived from two independent experiments were sequenced. 
In parallel, we collected 12 single cumulus cells used as donors and processed them 
for RNA-seq under identical conditions.

Statistical analyses. To assess whether the data were normally distributed, we 
performed a Shapiro–Wilk test or F-test. For normally distributed data, we 
applied the Student’s t-test to perform pairwise comparisons between groups, as 
indicated throughout the figure legends; otherwise we applied the nonparametric 
Mann–Whitney (Wilcoxon’s rank-sum) test. The proportions of patterns from 
the DNA fiber data were analyzed by a binomial test in R (two-sample test for 
equality of proportions with continuity correction). Where data are shown as 
box-and-whisker plots, we followed the convention for boxplots81 (thick bar, 
median; boxes, IQR; whiskers, range without outliers; dots outside whiskers, 
outliers beyond 3× or 2× IQR). For datasets with unequal variance (Fig. 3l,m), we 
applied Welch’s test for unequal or unknown variances.

Antibodies. Antibodies used in this work are described in Supplementary Table 7.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The Repli-seq and RNA-seq data from the present study are available from the 
Gene Expression Omnibus database, accession nos. GSE136228 and GSE166338. 
Previously published RNA-seq datasets reanalyzed in the present study are available 
under accession nos. GSM1933935, GSM1625860, GSM1933937, GSM1625862, 
GSM1625864, GSM1625867, GSM1625868, GSM838739, GSM838738, 
GSM1625873, E-MTAB-2684 and GSM1933935. ChIP-seq datasets reanalyzed 
in the present study are available under accession nos. GSE73952, GSE97778, 
GSE73952, GSE23943 and GSE139527. Source data are provided with this paper. 
All other data supporting the findings of the present study are available from the 
corresponding author upon reasonable request.

Code availability
All next-generation sequencing data were analyzed using standard programs and 
packages, as detailed in Methods. Code for DNA fiber analysis is available at: 
https://github.com/IES-HelmholtzZentrumMunchen/dna-fibres-analysis.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Increasing the number of active origins in 2-cell-embryos. a. DNA replication in asynchronous ESCs and 2CLCs visualized with 
STED microscopy. Cells were pulse-labeled with EdU for 20!min. White dotted line indicates 2CLCs. Scale bar, 2.5!μm. Images were acquired side by side 
and analyzed using identical parameters and are therefore comparable. b. Number and size distribution of EdU foci of representative, randomly selected 
ESCs and 2CLCs. Each dot indicates the number of EdU foci (left) and their size (right) in one single STED section in one nucleus. Boxplots: median and 
interquartile range (IQR); whiskers: smallest and largest values within 1.5×IQR. 1 pixel equals 20.6!nm. Statistical analyses: two-sided Wilcoxon rank-sum 
test. c. DNA replication patterns in ESCs under STED microscopy. EdU was added 0, 2, 4!h after double thymidine block release for early, mid, and late 
S-phase, respectively. d. DNA replication patterns in 2-cell-embryos using STED microscopy. EdU incubation was from 34, 36, and 38!h post-hCG injection 
for early, mid, and late S-phase, respectively. Images in c and d were acquired side by side, analyzed using identical parameters and are comparable (but 
not with panels in a and b). c, d, Scale bar, 10!μm; n, number of nuclei analyzed. e. Number and size distribution of replication foci of early, mid, and late 
S-phase in ESCs and 2-cell-embryos. Each dot indicates the number of EdU foci (left) and their size (right) in each nucleus in one STED section. Note 
that because the nuclear volume of 2-cell embryos is approximately 20 times bigger than ESCs, the total number of DNA foci in 2-cell embryos is much 
higher than ESCs. Boxplots: median and interquartile range (IQR); whiskers: smallest and largest values within 1.5×IQR. 1 pixel equals 20.6!nm. Statistical 
analyses: two-sided Wilcoxon rank-sum test. f. Replication patterns from fiber analyses at the indicated embryonic stages. N: number of fibers analyzed.
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Extended Data Fig. 2 | Effect of cell cycle progression on the emergence of 2!CLCs. a. Cell cycle profiles determined by FACS based on propidium 
iodide staining of ESCs after release from double thymidine block, which corresponds to Fig. 2b. b. Population of 2CLCs (in %) after release from double 
thymidine block detected with 2C::tdTomato reporter6. Following synchronization of ESCs at G1/S by double thymidine block, existing 2CLCs were 
removed and the remaining cells were released from the block and cultured with or without the indicated DNA replication inhibitor. Newly emerging 
2CLCs were quantified by FACS at indicated time points after release. c. Cell cycle profiles determined by FACS based on propidium iodide staining of the 
2C::tdTomato ESCs reporter line after release from double thymidine block, which corresponds to Extended Data Fig. 2b. d, e. γH2A.X immunostaining 
in asynchronous ESCs and 2CLCs. Representative images (d) and the corresponding quantification of global γH2A.X levels (e). 2CLCs are outlined with 
white dotted lines. Boxplots show median and interquartile range (IQR), whiskers depict the smallest and largest values within 1.5×IQR. Scale bar, 10!μm. 
Statistical analyzes: two-sided Wilcoxon rank-sum test. f. Cell cycle profiles determined by FACS based on propidium iodide staining of ESCs under 
thymidine treatment from 2!h after release from double thymidine block, which corresponds to Fig. 2c. The dashed, red line indicates the G2/M peak.  
g, h. S-phase progression after removal of the CDC7 inhibitor. The effects of CDC7 inhibitor on the cell cycle arrest (g) and restoration of the DNA 
replication after releasing from block (h, left and right panels) were verified by FACS and EdU incorporation, respectively. In b mean values are shown, dots 
indicate values for each replicate. In h, bar plots show mean±S.D and dots indicate values of each image. n indicates number of independent biological 
replicates. Statistical comparisons: two-sided Student’s t-test.
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Extended Data Fig. 3 | Effect of entry into S-phase on 2CLC reprogramming. a. ESCs were synchronized using a CDK1 inhibitor, after which existing 2CLCs 
were removed. Cells were subsequently grown with or without CDK1 inhibitor and newly emerging 2CLCs were quantified hourly by FACS until 6!h after 
block release. b. ESCs were synchronized using a PLK1 inhibitor, after which existing 2CLCs were removed. Cells were subsequently grown with or without 
PLK1 inhibitor and newly emerging 2CLCs were quantified by FACS 6!h after block release. c. Cell cycle profiles determined by FACS for propidium iodide 
staining of ESCs after release from PLK1 inhibitor, which corresponds to Extended Data Fig. 2b. d. Cell cycle profiles based on propidium iodide content of 
ESCs after release from CDK1 inhibitor, which corresponds to Extended Data Fig. 2a. e. Cell cycle profiles based on propidium iodide content of ESCs after 
collection in G1-phase using FACS without the addition of drugs (for example without cell cycle synchronization) based on the FUCCI reporter. These data 
correspond to Fig. 2e. f. The panel shows the data from the double thymidine block and release experiment described in Fig. 2A and the corresponding 
fit. The estimation of fs obtained from this fit was then used to identify the values of fG1

f

S

 and fG2M
f

S

 compatible with the data, shown in Fig. 2f. These values 
lie on a line, shown in Fig. 2f, computed from eq. (1) in the Methods. The values of the parameters used are: N2c

N

E

= 0.01, T

c

= 8 h, 1

ω−φ

2c

= 12 h. In a and 
b, the bar plots show mean±S.D. and dots indicate the values of each replicate. n indicates the number of independent biological replicates. Statistical 
comparisons were performed by two-sided Student’s t-test.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | S-phase-dependent effect of USP7 on the emergence of 2CLCs. a. USP7 protein quantification upon Usp7 siRNA (corresponds to 
Fig.3a). Statistical comparisons: two-sided Welch’s t-test. b. Growth curve after Usp7 RNAi at day 1(D1) 2(D2) after seeding(D0). c. MERVL and Usp7 qRT-
QPCR upon Usp7 RNAi. Statistical comparisons: two-sided Welch’s t-test. d. Venn diagram comparing downregulated genes in control, USP7-depleted 
ESCs, and USP7-depleted 2CLCs. e. logFC scatter plots between siUSP7-2CLCs and endogenous 2CLCs showing high overlap of upregulated genes (red) 
between both 2CLC samples. f. Gene-set enrichment analysis of siUSP7-induced 2CLCs against a ‘2C’ signature. g. PCA of siControl, siUSP7 ESCs (GFP− 
cells) and siUSP7-induced 2CLCs transcriptomes compared with embryos and other 2CLC datasets. h. 2CLC percentage upon siRNA for Usp7 or HU 
treatment combined with siRNA for Dux. Statistical comparisons: two-sided Student’s t-test for pairwise comparison only between the indicated groups. 
i. Western Blot after Usp7 siRNA or control siRNA transfection and treatment of PLK1 inhibitor at indicated times. Statistical comparisons: two-sided 
Student’s t-test between each sample. Highest p-values are shown. j-k. Cell cycle profiles of ESCs (j) and 2CLC percentage (k) after transfection of control 
or Usp7 siRNA, followed by treatment with PLK1 inhibitor at indicated times. In (k) n for 42!h control samples is 2 biological replicates; for 48!h control is 
4 and for all other samples is 5. Statistical comparisons between the indicated groups: two-sided Student’s t-test. l. Usp7 gene locus and knock-in strategy 
to insert Auxin-Inducible Degron (AID) at the C-terminus of USP7. m. Western Blot of USP7 after auxin (IAA) treatment. n. Western Blot in parental and 
knock-in USP7-AID line. The USP7-AID transgene causes lower USP7 expression compared to the parental clone, presumably leading to higher steady-
state 2CLC population. o. Rrm1 and Rrm2 RT-qPCR 48!h after transfection with their respective siRNAs compared to control. Statistical comparisons: two-
sided Welch’s t-test. p. Fork speed upon RNAi for RRM1, RRM2 or control. Statistical analysis: two-sided Wilcoxon rank-sum test. q. 2CLCs quantification 
48!h after siRNA transfection. Statistical analysis: two-sided Student’s t-test. In bar graphs plots are mean±S.D and dots are individual replicate values. n: 
number of independent biological replicates. In m and n, dots are values from biological replicates.
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Extended Data Fig. 5 | Impact of modulating replication fork speed on reprogramming. a, b. HU treatment facilitates iPS reprogramming. Alkaline 
phosphatase-positive iPSC colonies (a) and their quantification results (b) after OKSM induction by Dox in reprogrammable MEFs treated during the 
indicated time windows of HU. In b, the dots indicate the values from individual experiments compared to the control, the middle line is the mean and the 
boxes depict mean!±!SD. Statistical analyses were performed with a generalized linear model using a Poisson distribution. Both the concentration and the 
days as well as the combination have a significant effect (p!<!0.0001) on reprogramming efficiency. Scale bar, 1!mm. c. d. Lineage contribution of ESCs and 
2CLCs in chimeric blastocysts. siControl-transfected ESCs, siUSP7-induced 2CLCs, and HU-induced 2CLCs were aggregated with 4–8 cell stage embryos 
and cultured for 2 days. Blastocysts were analyzed by confocal microscopy, and reconstructed in 3D to determine the position of individual cells in each 
lineage using phalloidin as cell membrane label. Representative images of cells within ICM and TE (c) and the quantification results (d) of 26, 38 and 
32 embryos analyzed per group, respectively, are shown. Data are displayed as the percentage of cells, which upon aggregation, display inner (ICM) or 
outer (TE) position. Statistical analyses were performed with a Kruskal-Wallis test. Scale bar, 25!μm. e. Representative images showing immunostaining 
of chimeric blastocysts injected with H2B-tdiRFP expressing siUSP7-2CLCs or 50 μM HU induced 2CLCs. H2B-tdiRFP-positive cells expressing Cdx2 and 
Oct3/4 are indicated by arrowheads and the corresponding Insets at higher magnification are shown. A total of 17 embryos were injected with siUSP7-
2CLCs and 21 embryos were injected with HU induced 2CLCs. Note that the Oct3/4 positive cell in the siUSP7 panel depicts a cell in mitosis. Scale 
bars, 25!μm. f. Representative images of nuclear transferred embryos derived from the indicated donor cells 4 days after activation, corresponding to a 
representative experiment related to Figs. 3l and m. Scale bar, 50!μm.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Genome-wide analysis of replication timing (RT) in 2CLCs. a. Collection of early, mid, and late S-phase of ESCs and 2CLCs. Each 
subpopulation of S-phase in ESCs (top) and 2CLCs (bottom) was sorted based on their DNA content upon propidium iodide staining. b. Scatter plots of 
read density at 100 Kbp bins across the whole genome between Repli-seq replicates of ESCs (GFP− cells) and 2CLCs (GFP+ cells). Pearson R2 is indicated. 
c. Heatmap depicting Pearson R correlation based on read density at 100 Kbp bins across the genome for the indicated samples. d. Repli-seq tracks around 
the Dux locus at early, mid, and late S-phase in ESCs and 2CLCs indicating early to late ratio as log2(E/L). e. Distribution of MERVL elements (MT2_Mm 
and MERVL_int) according to early, mid, and late replication regions in ESCs. f. Heatmaps of histone modification densities in ESCs in the 5-Kbp vicinity of 
gene bodies for 333 genes with differential replication timing. g. Heatmaps of histone modification densities in oocyte in the 5-Kbp vicinity of gene bodies 
for 333 genes with differential replication timing. h. Heatmaps of histone modification densities in 2-cell embryos in the 5-Kbp vicinity of gene bodies for 
333 genes with differential replication timing. i. Log2-fold enrichment of ENCODE chromatin states among genomic regions shifting to earlier (top) and 
later (bottom) replication in 2CLCs. j. Scatter plots of read density at 100 Kbp bins across the genome between Repli-seq replicates of control siRNA-
transfected ESCs, and GFP+ (USP7KD-induced 2CLC) and GFP− cells following USP7 depletion. Pearson R2 is indicated. k. Heatmap depicting Pearson R 
correlation based on read density at 100 Kbp bins across the genome in each S-phase of control siRNA transfected ESCs, and GFP+ (USP7KD-induced 
2CLC) and GFP− cells following USP7 depletion. l. Usp7KD-induced 2CLCs display changes in replication timing similar to 2CLCs, when compared to 
ESCs. Scatter plot shows a high degree of correlation (R2=0.84) between the differences in Early to Late ratio for 2CLCs vs ESCs (x-axis) and for Usp7KD-
induced 2CLC vs GFP− cells following USP7 depletion, among 100 Kbp bins across the genome.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Genome-wide analysis of replication timing (RT) in the transitional S-phase during which 2CLC emerge. a. S-phase length in 
mother cells of 2CLCs and ESCs and in ESCs and 2CLCs during the transitional S-phase. Boxplots: median (middle line) IQR (boxes) and extent of data 
without outliers (whiskers,>1.5x IQR). Notches extend to!+!/−1.58xIQR/sqrt(n), indicating confidence intervals. Dots are individual measurements 
arranged in 0.2!h bins. b. Scatter plots of read density at 100 Kbp bins across the genome between Repli-seq replicates of the transitional S-phase of cells 
transitioning from ESC to 2CLC. Pearson R2 is indicated. c. Pearson R correlation heatmap based on read density at 100 Kbp bins across the genome in 
each S-phase of cells transitioning from ESC to 2CLC. d. Pie charts of numbers of genes that replicate in early, mid and late S-phase in ESCs, for gene-sets 
whose replication shifted to earlier and later timing during the transitional S-phase in emerging 2CLCs. e. Enrichment of repeat elements across genomic 
regions changing to an earlier and later replication timing during the transitional S-phase at which 2CLCs emerge. f. H3.3 enrichment at MERVL-int and 
MT2_Mm repeats in 2-cell embryos. Reads were normalized by sequencing depth and length, data from two biological replicates shown separately as 
25th and 75th percentiles (box), median (line) and smallest and largest values within 1.5×IQR of the hinge (whiskers). Statistical analyses against the 
input were with two-sided Wilcoxon-signed-rank test. g. Developmental progression of fertilized embryos upon HU treatment. Zygotes collected at 17-18!h 
post-hCG were treated with HU until 48!h posthCG. Embryos reaching the blastocyst stage (%) are indicated; n: number of embryos analyzed. Scale bar, 
100!μm. h. RNAseq quality control (QC) metrics for nuclear transferred embryos (control and 10μM HU-treated) and single cumulus cells. QC thresholds 
(red dotted lines) are indicated; samples failing QC (triangles) were discarded. Boxplots show median and IQR; whiskers depict the smallest and largest 
values within 1.5×IQR. i. Heatmap with expression of ZGA genes upon nuclear transfer compared to in vivo derived embryos. j. Cell death analysis by dual 
Annexin-V and propidium iodide (PI) staining following HU treatment. Cells positive for either or both Annexin-V and PI were considered dead. Statistical 
analyses: two-sided Student’s t-test.
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SUMMARY 

 

Tissue stem cells are hierarchically organized. Those that are most primitive serve as key 

drivers of regenerative response but the signals that selectively preserve their functional 

integrity are largely unknown. Here, we identify a secreted factor, Semaphorin 4A (Sema4A), as 

a specific regulator of myeloid-biased hematopoietic stem cells (myHSC), which are positioned 

at the top of the HSC hierarchy. Lack of Sema4A leads to exaggerated myHSC (but not 

downstream “balanced” HSC) proliferation after acute inflammatory stress, indicating that 

Sema4A enforces myHSC quiescence. Strikingly, aged Sema4A knock-out myHSC expand but 

almost completely lose reconstitution capacity. The effect of Sema4A is non cell-autonomous, 

since upon transplantation into Sema4A-deficient environment, wild-type myHSC excessively 

proliferate but fail to engraft long-term. Sema4A constrains inflammatory signaling in myHSC 

and acts via a surface receptor Plexin-D1. Our data support a model whereby the most primitive 

tissue stem cells critically rely on a dedicated signal from the niche for self-renewal and life-long 

persistence.   

Hematopoietic Stem Cells, Inflammation, Aging, Niche  

 

INTRODUCTION 

 

In multiple tissues, stem cells are hierarchically organized and contain distinct, functionally 

specialized subsets.  For example, in the brain (Sachewsky et al., 2019), skeletal muscle 

(Scaramozza et al., 2019), cornea (Altshuler et al., 2021; Farrelly et al., 2021) and skin (Hsu et 

al., 2011; Rompolas et al., 2013), the most primitive stem cells (which are also largely 

quiescent) become activated by injury or stress, whereas their “downstream”, more 

differentiated counterparts are more proliferative and mainly engaged in on-going tissue repair. 

Although this two-tiered organization of the stem cell compartment is essential for life-long 
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tissue maintenance, the mechanisms that ensure functional preservation and persistence of 

individual stem cell subsets within a tissue stem cell hierarchy remain largely unknown. 

 

In the bone marrow, the stem cell hierarchy is exemplified by the myeloid-biased and “balanced” 

(HSC) subsets, in which the former is considered the most primitive (Challen et al., 2010; Morita 

et al., 2010; Sanjuan-Pla et al., 2013). Compared to balanced HSC (balHSC), myeloid-biased 

HSC (myHSC) are inherently skewed towards myeloid differentiation, endowed with a higher 

self-renewal potential and possess a superior ability to enter cell cycle in response to 

inflammatory stress (Mann et al., 2018; Matatall et al., 2014; Mitroulis et al., 2018). Although 

these properties are beneficial for powerful and timely host defense response, they likely 

account for myHSC expansion during inflammation and aging, which is associated with 

profound and irreversible functional loss (Beerman et al., 2010; Esplin et al., 2011; Grover et al., 

2016; Pang et al., 2011). Thus, despite being positioned at the top of the HSC hierarchy, 

myHSC appear most vulnerable to stress-induced damage.  

 

In the current study, we identify a membrane-bound and secreted protein Semaphorin 4A 

(Sema4A) as a myHSC-protective factor. We show that under stress conditions, such as aging 

and transplantation, the absence of Sema4A results in excessive expansion and functional 

attrition of myHSC. Surprisingly, balHSC are only minimally affected, suggesting that the effect 

of Sema4A is myHSC-specific. We further demonstrate that Sema4A from the bone marrow 

niche is essential for myHSC self-renewal and identify Plexin-D1 as a functional receptor. Our 

results reveal that by selectively preserving a functional myHSC pool, Sema4A plays a key role 

in long-term maintenance of the HSC hierarchy.  
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RESULTS 

 

Sema4A regulates quiescence of mouse and human hematopoietic stem/progenitor cells 
 
 
We have previously established proximity-based analysis as a platform for niche factor 

discovery (Silberstein et al., 2016).  We compared single cell RNA-Seq signatures of 

osteolineage cells (OLC) that were located in close proximity to a single transplanted HSC 

(proximal OLC) and further away (distal OLC), and functionally validated several secreted 

factors with a higher expression in proximal OLC (Angiogenin, IL18, Embigin, VEGF-C) as non 

cell-autonomous regulators of hematopoietic stem cell/progenitor quiescence (Fang et al., 2020; 

Goncalves et al., 2016; Silberstein et al., 2016). Because Sema4A displayed a similar 

expression difference by being significantly more abundant in proximal OLC, as shown in Fig. 

1A, we hypothesized that it could also act as a niche-derived HSC quiescence regulator.  

 

Semaphorins are a large family of membrane-bound and/or secreted proteins which mediate 

cell-cell communications in neural development, angiogenesis, immune response and cancer 

(Fard and Tamagnone, 2021; Kolodkin et al., 1993). In keeping with our hypothesis for a 

possible non cell-autonomous regulatory role of Sema4A in hematopoiesis, we found that 

Sema4A transcripts were detectable in niche cell subsets, such as CD31+ endothelial cells and 

niche factor-enriched VCAM1highEmbigin+ OLC fraction, as also supported by the published data 

(Baccin et al., 2020) (Fig. S1A and S1B). Of note, expression of Sema4A in CD45-Ter119-

ALCAM+ bone-lining cells (Valletta et al., 2020) was significantly increased in aged mice (Fig. 

S1C). In human bone marrow, Sema4A mRNA was also present in bone-lining and endothelial 

cells, as demonstrated by single-molecule fluorescent in situ hybridization (Fig. S1D).  
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In order to gain initial functional insights, we tested the effect of Sema4A on proliferation of 

mouse and human hematopoietic stem/progenitor cells in vitro. Consistent with our hypothesis, 

addition of recombinant Sema4A-Fc protein resulted in fewer lin-c-Kit+Sca-1+ (LKS) cells after 24 

hours of liquid culture and suppression of hematopoietic colony formation in a dose-dependent 

manner (Fig. 1B and S1E). Similarly, human recombinant Sema4A-Fc inhibited in vitro 

proliferation of human bone marrow CD34+ cells from several donors, as measured by the 

Carboxyfluorescein succinimidyl ester (CFSE) dilution assay (Takizawa et al., 2011) (Fig. 1C 

and S1F). Collectively, these data indicate that Sema4A non cell-autonomously restricts HSPC 

proliferation, and that this property is conserved between mice and humans.  

 

Next, we examined the role of Sema4A in steady-state hematopoiesis using a germline knock-

out model. Sema4A knock-out (Sema4AKO) mice are viable and have a normal life span 

(Kumanogoh et al., 2005). However, baseline analysis of young Sema4AKO animals revealed 

subtle but reproducible anemia and thrombocytosis (Fig. S1G). Moreover, in the bone marrow, 

while the number and frequency of long-term HSC (LT-HSC, defined as LKS CD48-CD34-Flk2-

CD150+) was similar between the genotypes, the differentiation was skewed towards the 

myeloid lineage, as evidenced by increased frequency of myeloid-committed progenitors MPP2 

and mature myeloid cells (Fig. 1D, see Fig. S1H for gating strategy). Importantly, young 

Sema4AKO HSC displayed more active cycling, as assessed by Ki-67/DAPI staining and EdU 

incorporation (Fig. 1E, S1I and S1J). Single-cell RNA-Seq of HSPC from young WT and 

Sema4AKO mice, while showing no difference in cluster distribution (Fig. S1K), revealed 

positive enrichment for the terms “Kegg ribosome” and “Electron transport chain oxphos system 

in mitochondria” in Sema4AKO cells within the HSC cluster, consistent with disruption of 

quiescence (Fig. 1F, 1G, S1L, and Suppl. File).  Collectively, these results indicate that loss of 

Sema4A leads to increased HSC proliferation, metabolic activation and myeloid-biased 

differentiation.  
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Sema4A/PlxnD1 signaling constrains the response of myeloid-biased HSC to proliferative 

stress  

 

Given recent evidence suggesting that lineage-restricted HSC subsets are differentially 

regulated by niche-derived signals, we hypothesized that myeloid bias in the Sema4AKO model 

is due to the lack of quiescence-inducing effect of Sema4A specifically on myHSC. While 

baseline analysis demonstrated no appreciable difference in cell cycle status between 

Sema4AKO myHSC (LKS CD48-CD34-Flk2-CD150high) and balHSC (LKS CD48-CD34-Flk2-

CD150low) (Beerman et al., 2010) [data not shown], exposure to acute inflammatory stress 

revealed important HSC subset-specific differences.  

 

In particular, twenty-four hours after injection with polyinosinic:polycytidilic acid (Poly (I:C)) 

(Walter et al., 2015)(Fig 2A), we found a significant increase in the percentage of Sema4AKO 

myHSC in G2M phase of cell cycle (Fig.2B and S2B) while no cell cycle difference was 

observed in balHSC subset (Fig. 2C and S2C, see Fig. S2A for gating strategy under 

inflammatory conditions) (Hirche et al., 2017).  Of note, myHSC and balHSC cycling was 

comparable in PBS-injected WT/Sema4AKO animals (Fig S2D and S2E) suggesting that the 

above changes in Sema4AKO myHSC were due to exaggerated response to inflammatory 

stress. Indeed, subsequent RNA-Seq analysis of myHSC and balHSC from Poly (I:C)-injected 

animals revealed enrichment for the terms “IL6-Jak Stat3 signaling” and “Interferon alpha 

response” which was unique to Sema4AKO myHSC dataset (Fig. 2D, 2E, S2F, Suppl. File). 

Thus, our results reveal that the absence of Sema4A promotes myHSC cell cycle entry and lead 

to enhanced myHSC sensitivity to inflammatory signaling. 
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Next, we asked if Sema4A deletion differentially impacts long-term reconstitution capacity of the 

two HSC subsets. To this end, we isolated myHSC and balHSC from WT and Sema4AKO 

(CD45.2) donors and transplanted equal number of cells from each subset into lethally 

irradiated WT (CD45.1) recipients (Fig. 2F). As shown in Fig. 2G, Sema4AKO myHSC displayed 

a significantly higher level of post-transplant reconstitution as compared to WT myHSC controls, 

with the difference increasing over time (see Fig. S2G for gating strategy used in chimerism 

analysis). In contrast, this trend was considerably weaker in the recipients of WT/Sema4AKO 

balHSC and no longer detectable 24 weeks post-transplant (Fig. 2H). In addition, Sema4AKO 

myHSC (but not balHSC) graft displayed excessive lymphoid skewing (Fig. S2H and S2I). 

These data provide further support for the myHSC-specific action of Sema4A, as evidenced by 

enhanced output and impaired differentiation of transplanted Sema4AKO myHSC. 

 

In order to establish a cellular mechanism for this effect, we sought to identify a functional 

receptor for Sema4A on myHSC. Analysis of published HSC gene expression datasets 

(Cabezas-Wallscheid et al., 2017; Cabezas-Wallscheid et al., 2014) revealed that amongst 

known receptors for Sema4A, Plexin-B2 (PlxnB2) and Plexin-D1 (PlxnD1) had the highest 

expression level in HSC (Fig. 2I).  However, PlxnB2 has been described as a receptor for 

Angiogenin (Yu et al., 2017) which has no effect on myeloid differentiation (Goncalves et al., 

2016). We therefore considered PlxnD1 the most likely candidate. Interestingly, the ability of 

Sema4A/PlxnD1 signaling to constrain stress-induced proliferation (as it would be for myHSC) 

has been already shown for the endothelial cells (Toyofuku et al., 2007). Furthermore, our 

analysis of PlxnD1-GFP reporter mice (Gong et al., 2003) revealed a significantly higher level of 

PlxnD1 expression in myHSC as compared to balHSC (Fig. 2J), which was consistent with a 

predominant functional effect of Sema4A. Of note, a fraction of CD34+CD90+ human HSC also 

expressed PlxnD1 (Fig. S2J).   
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Global deletion of PlxnD1 in mice is embryonic lethal due to structural cardiac and vascular 

defects (Serini et al., 2003), thus precluding functional analysis of adult HSC from these 

animals. We therefore conditionally deleted PlxnD1 by crossing PlxnD1 “floxed” (Zhang et al., 

2009) mice with the Mx1-Cre strain (Kuhn et al., 1995). We confirmed a complete excision of 

PlxnD1 by PCR and Q-PCR analysis of sorted LKS cells after Poly (I:C) induction (Fig. S2K and 

S2L). Baseline analysis of PlxnD1fl/fl Mx1-Cre(+) and PlxnD1fl/fl Mx1-Cre(-) mice revealed no 

significant differences in blood counts, HSC cell cycle and HSPC and mature cell frequency, 

except for a slight increase in MPP2 and lin-Sca-1-c-Kit+ myeloid progenitors, suggesting 

myeloid bias (Fig. S2M and S2N, Suppl. Table 1). However, competitive transplantation of 

myHSC and balHSC from of PlxnD1fl/fl Mx1-Cre(+) and PlxnD1fl/fl Mx1-Cre(-) mice revealed 

significantly higher reconstitution by PlxnD1-deficient myHSC while their balHSC counterparts 

engrafted normally, thus recapitulating the phenotype of transplanted myHSC and balHSC from 

Sema4AKO mice (Fig. 2K-L and S2O-Q). In sum, our results are consistent with a previously 

unrecognized role of PlxnD1 as a functional receptor for Sema4A on myHSC. 

 

Sema4A prevents excessive myHSC expansion and functional loss with age 
 

Our observation that Sema4A loss enhances myHSC responsiveness to proliferative 

challenges, such as acute inflammation and transplantation, prompted us to investigate whether 

this will lead to impaired myHSC function upon chronic inflammatory stimulation, as occurs 

during aging (Kovtonyuk et al., 2016). Analysis of peripheral blood in aged Sema4AKO mice 

revealed progressive anemia, thrombocytosis and neutrophilia (Fig. 3A).  In order to rule out 

systemic inflammation as a cause of the above abnormalities, we examined the plasma levels of 

36 proinflammatory cytokines in aged WT and Sema4AKO mice (including thrombopoietin and 

G-CSF) but detected no significant differences (Suppl. Table 2).  
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Immunophenotypic analysis of the bone marrow in aged Sema4AKO mice demonstrated a 

higher number of primitive hematopoietic cells and marked myeloid expansion, as evidenced by 

increased frequency and absolute number of myeloid progenitors and mature myeloid cells (Fig. 

3B and S3A). Critically, we observed a marked (~2.5-fold) increase in the absolute number of 

myHSC while the number of balHSC was comparable with that of aged-matched WT controls 

(Fig. 3C and S3B).  

 

The amplified aged Sema4AKO myHSC population may represent either expanded bona fide 

myHSC or a more differentiated progeny which retained immunophenotypic features of myHSC 

but lost long-term regenerative potential following expansion (Bernitz et al., 2016). To 

distinguish between these two possibilities, we competitively transplanted equal numbers of 

myHSC from aged Sema4AKO and WT animals into lethally irradiated WT recipients (Fig. 3D).  

 

Strikingly, aged Sema4AKO myHSC, while still displaying myeloid bias, generated a markedly 

lower level of donor chimerism in peripheral blood (range 0-1.43% vs 9.93-77.5% in aged WT 

myHSC controls) (Fig. 3E and S3C) and failed to produce a detectable long-term graft in the 

bone marrow (Fig. S3E). In contrast, balHSC from both WT and Sema4AKO mice gave rise to 

comparable levels of peripheral blood and bone marrow donor chimerism (Fig. 3F and S3D). 

These data demonstrate that during aging, Sema4A absence leads to profound functional 

attrition of phenotypic myHSC but is inconsequential for balHSC.  

Aiming to understand the molecular events which are responsible for the myHSC-specific effect 

of Sema4A, we performed single cell RNA-Seq analysis of myHSC and balHSC from aged WT 

and Sema4AKO mice using the Smart-Seq2 protocol (Picelli et al., 2014). We sorted 192 cells 

per group (768 total), of which 642 were selected for analysis following quality control (see 

Methods). As expected, WT myHSC had a higher expression of Slamf1, self-renewal/low-
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output-associated genes (CD74, Ly6a, vWF, Procr) and lower expression of cell cycle-related 

genes (Cdk6 and Mki67) as compared to WT balHSC (Fig. S3F) (Becker-Herman et al., 2021; 

Kent et al., 2009; Kent et al., 2008; Laurenti et al., 2015; Morcos et al., 2017; Rodriguez-

Fraticelli et al., 2020).  

A transcriptome-wide analysis revealed that within the myHSC fraction, WT and Sema4AKO 

cells formed distinct, minimally overlapping clusters (Fig. 3G) while balHSC of both genotypes 

merged together, indicating that the absence of Sema4A induces transcriptional changes 

predominantly in myHSC (Fig. 3H). We quantified this HSC subset-specific difference by 

detecting a greater correlation-based distance between WT/ Sema4AKO myHSC compared to 

WT/ Sema4AKO balHSC (Fig. 3I); Wilcoxon Rank-Sum test, p-value 3.1e-85, see Methods for 

further details).   

 

Next, we examined the transcriptional features of the above aged HSC subsets in more detail. 

Consistent with the results of the clustering analysis, the number of genes which were 

differentially expressed in aged Sema4AKO vs WT myHSC was much greater (431) compared 

to aged Sema4AKO vs WT balHSC (30). In the aged Sema4AKO myHSC signature, we noted 

markedly reduced expression of genes that normally constrain HSC pool and promote HSC self-

renewal (CD74, vWF, Ly6a, Mllt3)(Becker-Herman et al., 2021; Calvanese et al., 2019; Kent et 

al., 2009; Kent et al., 2008), consistent with their excessive expansion and loss of stemness 

(Fig. S3G). Moreover, GSEA demonstrated a significant enrichment for the terms “p53 

pathways” (top genes: Jun, Fos, Sesn1) and “TNF-alpha/NFkB signaling” (top genes: Fosb, 

Egr1, Jun) and as well as a recently defined “core aging HSC signature” (Svendsen et al, 2021) 

(Fig. 3J, 3K, S3H, Suppl. File). 
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While “TNF-alpha/NFkB signaling” was also enriched in aged Sema4AKO balHSC (Fig. S3I), no 

enrichment for “p53 pathway” was observed, and enrichment for the “core aging HSC signature” 

was much weaker (FDR=0.09, P=0.047 for balHSC vs FDR=0.002, P=0.001 for myHSC, 

(Fig.S3H and data not shown). These findings suggest that in the absence of Sema4A, aged 

myHSC sustain a greater degree of stress- and inflammation-induced damage (Walter et al., 

2015). Consistent with this notion, in silico cell cycle analysis (Scialdone et al., 2015) revealed 

reduced cycling in aged Sema4AKO myHSC but not in balHSC (Fig. 3L). While loss of 

proliferative capacity in myHSC occurs during normal aging (Montecino-Rodriguez et al., 2019), 

it was more prominent in aged Sema4AKO myHSC. In conjunction with other phenotypic 

(expansion and functional loss) and molecular (aging HSC signature) features of normal aging 

which were exaggerated in aged Sema4AKO myHSC, this suggests that the absence of 

Sema4A leads to premature myHSC aging.  

 

Given that amplification of aged Sema4AKO phenotypic myHSC was accompanied by a marked 

expansion of downstream myeloid progeny, we wondered if accelerated differentiation was 

another factor which would explain their functional loss. We addressed this question using 

diffusion pseudotime (DPT) analysis (Haghverdi et al., 2016), which can quantify the 

differentiation state of each cell going from naive (corresponding to HSC) to more mature 

(multipotent progenitors, MPP). To this end, we first generated 10x Genomics single cell RNA-

Seq profiles of lin-c-Kit+ HSPC from 74-weeks old WT animals, i.e. age-matched with 

WT/Sema4AKO animals for the Smart-Seq2 single-cell RNA-Seq experiment described above. 

In this 10x dataset, by mapping expression of previously described markers (Nestorowa et al., 

2016) we identified the clusters that correspond to HSC (Cluster 2; Ly6a, Procr, Hlf) and MPP 

(Cluster 0; Cd34, Cebpa, Ctsg) (see Methods and Fig. S3J-L). Next, we utilized the 

transcriptomes of cells within these clusters to estimate a differentiation trajectory (Fig. S3M, 

see Methods for further details), in which higher DPT values correspond to more mature cells. 
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As expected, analysis of known self-renewing marker genes revealed downregulation of vWF, 

Mpl, Fdg5, Ctnnal1, Procr, and upregulation of Ctsg and Cbpa as cells progressed from HSC to 

MPP (Fig. S3N).   

 

We then estimated a DPT value along this trajectory for myHSC and balHSC from aged WT and 

Sema4AKO mice which were profiled in the Smart-Seq2 experiment described above. 

Consistent with previously reported myHSC/balHSC hierarchy, the DPT values of WT aged 

myHSC were lower than WT balHSC, indicating that myHSC are more primitive than balHSC 

(Fig. S3O), (Carrelha et al., 2018; Morita et al., 2010). Importantly, the comparison between 

aged WT myHSC and aged Sema4AKO myHSC revealed that the DPT values for aged 

Sema4AKO myHSC were higher, suggesting that they became more differentiated (p-value = 

0.0002, Wilcoxon rank-sum test, Fig. 3M). Conversely, no significant difference was found 

between the DPT distributions of aged WT and aged Sema4AKO balHSC (Fig.3N). Thus, our 

DPT analysis demonstrates that the absence of Sema4A during aging leads to premature, 

myHSC-specific activation of the differentiation transcriptional program. 

 

In sum, our immunophenotypic, functional and transcriptional analysis identified Sema4A as a 

critical regulator of myHSC self-renewal and differentiation. The profound loss of regenerative 

capacity in aged Sema4AKO myHSC, as observed in the transplant experiments, likely 

represents a cumulative effect of partially overlapping cellular defects, such as inflammatory 

injury, premature aging and accelerated differentiation.  

 
Sema4A from the bone marrow niche restrains stress-induced myHSC proliferation and 

maintains self-renewal  
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Since Sema4A is expressed in both non-hematopoietic and hematopoietic cells, including 

HSC(Baccin et al., 2020; Cabezas-Wallscheid et al., 2017; Cabezas-Wallscheid et al., 2014), 

we asked which cellular source of Sema4A was functionally indispensable for myHSC function. 

First, we investigated the role of HSC-derived Sema4A by employing conditional deletion with 

Mx1-Cre. We confirmed Cre-induced recombination of the “floxed” Sema4A allele in HSPC by 

PCR and Q-PCR analysis (Fig. S4A and S4B).  Analysis of Sema4Afl/fl Mx-1Cre (+) animals at 

the steady-state revealed no difference in peripheral blood counts, bone marrow cellularity, cell 

cycle and frequency of HSPC and mature cells, as compared to Sema4Afl/fl Mx1-Cre(-)  controls 

(Suppl. Table 1, Fig. S4C and S4D).  In competitive transplantation assay, no difference in long-

term reconstitution capacity of myHSC and balHSC from Sema4Afl/fl Mx1-Cre(+)  and Sema4Afl/fl 

Mx1-Cre(-)  mice was observed (Fig. 4A-B and Fig. S4E-G). These data indicate that 

hematopoietic-derived Sema4A is dispensable for myHSC and balHSC function. 

 

In order to elucidate the role of bone marrow microenvironment-derived Sema4A, we non-

competitively transplanted lethally irradiated WT and Sema4AKO recipients with a 

radioprotective dose of myHSC and balHSC from WT mice (Fig. 4C).  Strikingly, we observed a 

~50% post-transplant mortality in Sema4AKO recipients of myHSC (Fig. 4D, left panel). The 

surviving animals from this group displayed marked anemia and neutrophilia, which resembled 

blood count abnormalities in aged Sema4AKO mice (Fig. 4D, right panel and Fig. S4H). In 

contrast, no survival difference was observed in the recipients of balHSC, which showed only 

mild blood counts changes (Fig. 4E and Fig. S4I). This experiment revealed that Sema4A from 

the host hematopoietic niche is critical for myHSC self-renewal under stress but plays no 

significant role in balHSC regeneration.  

 

Among the subsets which make up the bone marrow niche, Sema4A is expressed by 

endothelial and osteoprogenitor cells (Fig. S1A and Fig. S1B). In order to refine their 
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physiological relevance as cellular sources of Sema4A in the niche, we conditionally deleted 

Sema4A from each of the two cell types by crossing “floxed” Sema4AKO mice to either VECad-

CreERT2 or Osx-Cre animals. Steady-state analysis of Sema4A
fl/fl 

VE-CadCre
 
ERT2(+) and 

Sema4A
fl/fl

 Osx-Cre
 
(+) mice revealed no difference in peripheral blood counts, bone marrow 

cellularity, cell cycle and frequency of HSPC and mature cells, as compared to Sema4A
fl/fl 

VE-

CadCre
 
ERT2(-) (Sorensen et al., 2009) and Sema4A

fl/wt
 Osx-Cre

 
(+) (Rodda and McMahon, 

2006) controls, respectively (Fig. S4J-M and Suppl. Table 1). Transplantation of WT myHSC 

and balHSC into lethally irradiated donors of the above genotypes showed that both endothelial- 

and osteoprogenitor-specific deletion of Sema4A only partially recapitulated the effect of a 

complete Sema4A absence in the host. Specifically, we observed increased mortality in 

Sema4A
fl/fl

 Osx-Cre
 
(+) recipients of myHSC, but the difference was not statistically significant 

(Fig. S4N-P). In Sema4A
fl/fl 

VE-CadCre
 
ERT2(+) recipients of myHSC, we detected a slight 

reduction in hematocrit and no impact on survival (Fig. S4Q-S). Taken together, these studies 

suggest that a cumulative production by osteoprogenitors, endothelial cells and likely other 

cellular source(s) may be responsible for the full functional effect of microenvironment-derived 

Sema4A on myHSC.  

 

Having demonstrated that a complete absence of Sema4A in the host is critical for myHSC 

engraftment (Fig. 4D), we asked how it may affect early homing, expansion and motility of 

transplanted myHSC in real time. To this end, we isolated myHSC and balHSC from WT mice 

and fluorescently labeled them with DiD. We then transferred equal numbers of these cells into 

lethally irradiated WT and Sema4AKO recipients and performed intravital time-lapse two-photon 

microscopy of the calvarial bone marrow (Christodoulou et al., 2020).  We recorded 3D z- 

stacks and time-lapse movies 15-20 hours after the cell injection. Single cells and clusters 

(defined as two or more cells whose cell-to-cell edge are within 15 µm) were detected 

throughout the calvarial bone marrow in all mice (Fig. S4T). Notably, we observed a ~3 times 
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higher number of transplanted cells in Sema4AKO recipients of myHSC compared to WT 

controls (mean ~106 cells vs. 34 cells, [p-value = 0.0295]) whereas cell number in WT/Sema4A 

recipients of balHSC were not significantly different (mean ~68 cells vs. 41 cells, respectively [p-

value = 0.2793]) (Fig. 4F and S4U). These results indicate that the absence of Sema4A in the 

host leads to excessive myHSC expansion but is inconsequential for balHSC. As further 

evidence for this, we found a similar 3-fold increase in the number of cell clusters in the 

Sema4AKO recipients of myHSC as compared to WT controls (mean ~21 vs. 7 clusters [p-value 

= 0.0219] whereas the trend in the balHSC recipients was much weaker (~15 vs. 8 clusters [p-

value = 0.2591]) (Fig. S4V).  

Next, we analyzed the effect of Sema4A on myHSC and balHSC localization by measuring the 

3D distance to the endosteal surface, an established location of post-transplant HSC niche (Lo 

Celso et al., 2009). Importantly, we observed that in Sema4AKO recipients of myHSC, 

transplanted cells were found nearly 2x farther from the endosteum compared to WT controls 

(mean ~8.2 µm vs. 4.9 µm, respectively [p-value = 0.0024]) whereas this difference was smaller 

and not statistically significant in the Sema4AKO/WT balHSC recipients (mean ~5.9 µm vs. 4.0 

µm, respectively [p-value = 0.0674]) (Fig. 4G). These results suggest the in the absence of host 

Sema4A, myHSC homed away from the niche, whereas localization of balHSC was only 

marginally altered.  

 

Recent intravital time-lapse microscopy studies revealed that upon proliferative challenge, some 

HSC within the bone marrow niche become motile (Christodoulou et al., 2020; Upadhaya et al., 

2020), indicating that motility may reflect HSC activation state. In order to investigate if motility 

of transplanted myHSC and balHSC is altered in the absence of Sema4A, we performed time-

lapse microscopy for 1.5 hrs. We found that balHSC displayed limited motility (defined as <5 µm 

movement of the cell centroid over the imaging period) regardless of the host genotype (data 

not shown). In contrast, a small fraction (~4.7% of total) of myHSC transplanted into 
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Sema4AKO mice exhibited highly motile behavior Sema4A (Fig. 4H, Fig.S4V-X, Suppl. Movie). 

In sum, our intravital imaging data suggests that host absence of Sema4A leads to myHSC 

hyperactivation, excessive proliferation and mis-localization, which cumulatively may contribute 

to the loss of self-renewal and engraftment failure in Sema4AKO recipients of myHSC. 

Intriguingly, post-transplant behavior of balHSC was relatively unaffected, indicating that the two 

HSC subsets may have fundamentally different requirements for engraftment, including specific 

dependence of myHSC on Sema4A.  

 

DISCUSSION 

 

Our study provides substantial experimental support for the concept that functionally diverse 

subsets of somatic stem cells are controlled by distinct non cell-autonomous signals. Prior 

studies have indicated that within the HSC pool, myHSC and balHSC display differential 

sensitivity to soluble factors, such as TGF-beta, RANTES, CXCL2 and histamine (Challen et al., 

2010; Chen et al., 2017; Ergen et al., 2012; Pinho et al., 2018). However, the impact of these 

molecules on myHSC longevity and interaction with the bone marrow microenvironment has not 

been investigated in detail.  

In the current study, we identify Sema4A as an indispensable and specific regulator of myHSC 

quiescence and self-renewal. Semaphorins and plexins are large protein families (Alto and 

Terman, 2017) whose role in regulation of adult stem cell quiescence and self-renewal is not 

known. We demonstrate that the absence of Sema4A leads to myHSC over-proliferation and 

hyperactivation following acute inflammatory insult, which correlates with a dramatic loss of 

regenerative function with age, likely due to the loss of protection from detrimental effects of 

inflammatory signaling over the animal’s lifetime (Kaschutnig et al., 2015). Notably, WT myHSC 

are preferentially activated by inflammation (Mann et al., 2018; Matatall et al., 2014; Mitroulis et 
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al., 2018) and become vulnerable to damage, underscoring a physiological need for a dedicated 

protective signal, such as Sema4A.  

Excessive myeloid expansion, as observed in the aged Sema4AKO model, is the cardinal 

feature of human hematopoietic aging (Pang et al., 2011) and clonal hematopoiesis of 

indeterminate significance (CHIP) - a common condition which carries a significant risk of 

progression to myeloid malignancy over time but lacks effective therapeutic intervention 

(Jaiswal and Ebert, 2019). Our findings raise a possibility that pharmacological augmentation of 

Sema4A/PlxnD1 signaling may serve as a potential strategy to constrain proliferation of myHSC 

at the top of expanding myeloid-biased clones, thereby preventing aging-associated HSC 

dysfunction and reducing the risk of malignant transformation.  

Our results underscore the importance of niche-derived signals in life-long maintenance of 

tissue stem cell hierarchy, which is topped by myHSC in the hematopoietic system. Given that 

stem cell hierarchies underlie functional organization of other tissues (Altshuler et al., 2021; 

Farrelly et al., 2021; Hsu et al., 2011; Rompolas et al., 2013; Sachewsky et al., 2019; 

Scaramozza et al., 2019), the data presented here provide justification for broader efforts to 

identify subset-specific stem cell regulators, which may lead to development of more precise 

and effective pro-regenerative therapies. 

 

LIMITATIONS OF THE STUDY 

 

Recent studies revealed that CD150-expressing phenotypic HSC contain a heterogenous 

mixture of myeloid-restricted progenitors which vary in their capacity for long-term reconstitution 

and degree of commitment to myeloid, erythroid and platelet lineage (Yamamoto et al., 2018). 

We recognize that our experiments are unable to resolve the precise identity of a myeloid-

restricted subset(s) which is regulated by Sema4A beyond the CD150high HSC fraction. Future 
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studies, including single cell transplantation experiments, will be required to address this 

question.     

 

Although our data demonstrates that Sema4A suppresses myHSC proliferation during stress, 

the downstream mediators of this effect are not known. Therefore, the molecular consequences 

of Sema4A binding to PlxnD1 (and potentially other Sema4A receptors whose functional 

relevance has not be ruled out by the current study) will need to be further investigated.  
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MAIN FIGURE LEGENDS 
 
 
Figure 1. Sema4A regulates quiescence of mouse and human hematopoietic 
stem/progenitor cells. 
 
(A) Expression of Sema4A in single proximal and distal osteolineage cells. The joint posteriors 
(black lines) describe the overall estimation of likely expression levels within the proximal (top) 
and distal (bottom) OLCs and are used to estimate the posterior of the expression fold 
difference (middle plot). The shaded area under the fold-difference posterior shows 95% 
confidence region. FPM, fragments per million.  
 
(B) The number of mouse LKS cells 24 hours after addition of mouse Sema4A-Fc/IgG1 control 
protein (n=5 technical replicates per condition).  
 
(C) CFSE dilution analysis of ex vivo proliferation kinetics of human CD34+ cells 24 hours after 
addition of human Sema4A-Fc/IgG1 protein (n=5 technical replicates per condition, Donor 1). 
Estimated number of divided cells and representative CSFE fluorescence histograms are 
shown.  
 
(D) Immunophenotypic analysis of the bone marrow from young WT/Sema4AKO mice (n=3-6 
per genotype). 
 
(E) HSC cell cycle analysis using DAPI/Ki-67 staining in young WT/Sema4AKO mice (n=6 per 
genotype). 
 
(F) Gene set enrichment analysis (GSEA) of single cell RNA-Seq data for the HSC cluster (as 
defined in Figure S1K) from young WT/Sema4AKO mice. FDR<0.01, top five enriched 
pathways are shown.  
 
(G) GSEA plots for the pathways as shown in (F).  
 
Data are presented as mean ± SD ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 by unpaired T-test.  
 
Figure 2. Sema4A/PlxnD1 signaling constrains the response of myeloid-biased HSC to 
proliferative stress.  
 
(A) Experimental schema for the acute inflammatory stress model.  
 
(B) Cell cycle analysis of myHSC 24 hours after injection with Poly(I:C) (n=5 mice per 
genotype). 
 
(C) Cell cycle analysis of balHSC 24 hours after injection with Poly(I:C) (n=5 mice per 
genotype). 
 
(D) WT vs Sema4AKO GSEA of myHSC from Poly(I:C) injected mice, FDR<0.01. 
 
(E) GSEA plots and top differentially expressed genes for the pathways that were enriched in 
Sema4AKO myHSC, as shown in (D). 
 
(F) Experimental schema for the transplant studies as shown in (G) and (H). 
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(G) Donor chimerism in the recipients of myHSC from young WT/Sema4AKO mice (n=5 mice 
per donor genotype). 
 
(H) Donor chimerism in the recipients of balHSC from young WT/Sema4AKO mice (n=4-5 mice 
per donor genotype). 
 
(I) Published HSC gene expression data (Cabezas-Wallscheid et al., 2014) showing expression 
of known Sema4A receptors. 
 
(J) Representative histograms (left panel) and quantification of mean fluorescence intensity of 
GFP expression (right panel) in myHSC (pink) and balHSC (blue) from PlxnD1-GFP reporter 
mice (n=3 mice).   
 
(K) Donor chimerism in the recipients of myHSC from PlxnD1fl/fl Mx1-Cre(+)and PlxnD1fl/fl Mx1-
Cre (-) mice (n=5 recipient mice per genotype). 
 
(L) Donor chimerism in the recipients of balHSC from PlxnD1fl/fl Mx1-Cre(+)and PlxnD1fl/fl Mx1-
Cre (-) mice (n=5 recipient mice per genotype). 
 
Data are presented as mean ± SD ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 by unpaired T-test.  
 
Figure 3. Sema4A prevents excessive myHSC expansion and functional loss with age. 
 
(A) Serial peripheral blood counts of WT and Sema4AKO mice during aging (n=4-9 mice per 
genotype, age range 8-74 weeks). 
 
(B) Immunophenotypic analysis of the bone marrow from aged (74-weeks old) WT/Sema4AKO 
mice (n=4-5 mice per genotype). 
 
(C) Frequency of myHSC and balHSC in aged (74-weeks old) WT/Sema4AKO mice 
(representative flow cytometry plots shown on the right) (n=4-5 mice per genotype). 
 
(D) Experimental schema for competitive myHSC/balHSC transplantation experiments shown in 
(E) and (F).   
 
(E) Donor chimerism in the recipients of myHSC from aged WT/Sema4AKO mice (n=3-5 per 
donor genotype). 
 
(F) Donor chimerism in the recipients of balHSC from aged WT/Sema4AKO mice (n=4-5 per 
donor genotype). 
 
(G) UMAP representation of 162 myHSC from aged WT and Sema4AKO mice (n=2 mice per 
genotype). 
 
(H) UMAP representation of 165 balHSC cells from WT and Sema4AKO mice (n=2 mice per 
genotype). 
 
(I) Distribution of pairwise Spearman’s correlation distances between aged WT and Sema4AKO 
myHSC (left) and balHSC (right). The two distributions are statistically significantly different 
according to a Wilcoxon rank-sum test (p-value = 3.1e-85). 
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(J) GSEA of myHSC from aged WT/Sema4AKO mice, FDR<0.01. 
 
(K) GSEA plots and top differentially expressed genes for pathways enriched in Sema4AKO 
myHSC. 
 
(L) Percentage of myHSC and balHSC cells from aged WT/Sema4AKO in the G2M phase of the 
cell cycle as estimated from their transcriptome using Cyclone.  
 
(M, N) Distributions of diffusion pseudotime values of myHSC (panel M) and balHSC (panel N) 
from aged WT/Sema4AKO. The P-values shown at the bottom were computed with a Wilcoxon- 
rank sum test. 
 
Data are presented as mean ± SD ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 by unpaired T-test. 
 
Figure 4. Sema4A from the bone marrow niche restrains stress-induced myHSC 
proliferation and maintains self-renewal.   
 
(A) Donor chimerism in the recipients of myHSC from Sema4Afl/fl Cre(+) and Sema4Afl/fl Cre(-) 
mice (n=4-5 mice per donor genotype). 
 
(B) Donor chimerism in the recipients of balHSC from Sema4Afl/fl Cre(+) and Sema4Afl/fl Cre(-) 
mice (n=4-5 mice per donor genotype). 
 
(C) Experimental schema for non-competitive transplant experiments shown in (D) and (E). 
 
(D) Survival curve (left panel) and hematocrit/neutrophil count (right panel) in WT/Sema4AKO 
recipients of myHSC (data are the summary of 6 independent experiments involving a total of 9-
11 recipients per genotype). 
 
(E) Survival curve and peripheral blood counts in WT/Sema4AKO recipients of balHSC (data 
are the summary of 6 independent experiments involving a total of 9-11 recipients per 
genotype). 
 
(F) Average number of cells per mouse ~15-20 hours after transplantation of WT myHSC or 
balHSC into WT/Sema4AKO recipients, as assessed by two-photon intravital imaging of the 
calvarial bone marrow (Data are the summary of 6 independent experiments involving a total of 
4-6 recipients per genotype). 
  
(G) Quantification of 3D distances between individual transplanted cells and the nearest 
endosteal surface (n = 171, 628, 161, and 266 total cells for WT myHSC, Sema4AKO myHSC, 
WT balHSC, and Sema4AKO balHSC, respectively; Data are the summary of 6 independent 
experiments involving a total of 4-6 recipients per group). 
  
(H) Representative time-lapse two-photon intravital image of single motile WT myHSC in the 
calvaria of Sema4AKO recipient. Each cell and white arrow correspond to a different timepoint 
at increments of 10 mins. The myHSC (DiD, red), bone (SHG, green), and autofluorescence 
(blue) are shown. Scale Bar ~ 25 µm.  
  
Data are presented as mean ± SD ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 by unpaired T-test.  
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7. Discussion 

The studies included in the thesis reveal the power of utilizing single-cell transcriptomics in 
understanding cellular identity and differentiation in different tissues. Several aspects of cell fate 
decision-making could be explored by applying computational and mathematical methods to the data 
collected from single cells. The tissues investigated have varying degrees of cellular diversity. However, 
it was possible to capture the nature of heterogeneity between cells thanks to the high resolution of 
information that can be obtained with the current single-cell technologies. By employing computational 
tools on scRNA-seq data, I explored various ways of studying cellular decision-making in mammals.  

7.1  Single-cell transcriptomic characterization of a human 

gastrula 

This project entailed the first-ever molecular glimpse into a fundamental stage of mammalian 
development in humans – gastrulation. Data obtained through scRNA-seq from a rare sample in 
Carnegie stage 7 (E16-19) was crucial in corroborating previous knowledge, as well as revealing new 
insights. Some of these analyses include cell type identification, comparison with published data from 
in vitro systems and model organisms, and detection of cellular state transitions through trajectory 
reconstruction. They are briefly discussed below in more detail. 

Quality control of the embryo  

Before performing downstream analysis, we wanted to check the viability of the sample. This allowed 
us to obtain desirable knowledge from this rare sample more confidently. One way was to infer the cell 
cycle information from the cells. Inferring the cell cycle phases of the cells can help understand features 
of cellular plasticity. This was demonstrated in the studies included in this thesis. Cell cycle analysis was 
used to pinpoint different aspects in different systems. For human gastrula, assigning the cell cycle 
phases to the cells helped to confirm its viability. Because only one embryo was analyzed, such quality 
control was necessary. By showing that cells show differences in their cell cycle stage, we could 
conclude that normal cell division was probably going on throughout the embryo. Along with other 
metrics, cell cycle analysis provided reassurance about the quality of the specimen.  

High-throughput sequencing of single cells can also provide an ability to take a glimpse into the DNA of 
the cells and infer embryo viability. Because of the higher cost associated with direct DNA sequencing, 
RNA sequencing can be an efficient way of handling questions related to the genome. Thus, without 
performing an additional whole-genome sequencing experiment, it is possible to extract relevant 
information from scRNA-seq data. The usefulness of this was demonstrated when checking the viability 
of the human embryo at the gastrula stage. For this purpose, insertions and deletions (indels) were 
detected in the genomes of the cells and compared to published scRNA-seq data obtained from fetal 
tissue (Segal et al., 2019). Like the cell cycle analysis, this provided assurance that the embryo was 
going through normal development, as no significant difference was detected between the two samples. 
Particularly, the distribution of indel lengths was quite similar.  This demonstrates that scRNA-seq data 
can be useful to extract information other than gene expression.  

 

Identification of cell-type diversification  

Our transcriptomic characterization of the human gastrula confirmed the presence at this stage of many 
cell types that were expected based on the work done in other model organisms, like mouse. On the 
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other hand, with our analysis, we also observed interesting differences between species, such as 
differences in the timing of blood cell formation. For example, the major germ layers were detected in 
the data by using the Leiden algorithm and known marker genes. Additionally, the epiblast that gives 
rise to these germ layers could also be found. Mesoderm, endoderm, and ectoderm themselves possess 
heterogeneity, so further clustering them revealed several cell types, like amniotic ectoderm, which was 
a sub-cluster of the ectoderm cluster. Microscopy images also indicated the presence of red-pigmented 
cells, which corresponded to one of the two blood clusters (erythroblasts). Characterizing these known 
cell types allowed for various downstream analyses. However, because a lot of cells are in a transition 
state towards their fates, pinpointing their exact identities was not straightforward. This could be seen 
in mesodermal clusters (nascent, emergent, and advanced), which were annotated based on their 
transcriptional similarity with the primitive streak, spatial origins of the cells, as well as gene expression 
patterns. While advanced mesodermal cells mostly occupied the rostral region, nascent mesoderm (NM) 
cells were all in the caudal region of the embryo. NM cells also expressed Brachury (TBXT), which is a 
PS marker.  

Rare cell types usually get lost in the first stage of clustering in scRNA-seq datasets. Therefore, an 
additional step was needed to explore rare cell populations in the human gastrula data. Because 
common clustering algorithms are not able to capture small rare populations, a different algorithm was 
employed. RaceID (Grün et al., 2015) is designed specifically to detect these kinds of populations. It 
was applied to the epiblast and primitive streak (PS) populations separately. By using RaceID as well 
as previously known marker genes, we identified primordial germ cells (PGCs), which were not observed 
and transcriptionally characterized in in vivo human embryos before. This shows the power of the 
scRNA-seq in finding rare cell populations. 

We also performed a more in-depth computational analysis that allowed us to detect cell-type specific 
splicing isoforms, by taking advantage of the fact that the scRNA-seq data was generated with a full-
length protocol (Smart-seq2 (Picelli et al., 2014)). While a lot of genes are expressed at comparable 
levels in all cell populations, specific isoforms of those genes show differences in their expression. For 
example, mesodermal populations expressed specific isoforms of mesoderm specific transcript (MEST) 
gene.  

Gene expression was not the only information used to characterize the identity of the cells. Because of 
the challenges mentioned above, having additional prior knowledge can help with cell annotation. In the 
case of the gastrula dataset, there was additional information on the location of the cells in the embryo. 
In particular, a sub-dissection of the sample prior to single-cell dissociation provided information about 
the spatial origin of each cell, i.e., whether each cell came from the rostral or caudal portion of the 
embryonic disc or from the yolk sac. This helped to confirm the annotation of clusters, as well as 
appreciate the heterogeneity within them. For instance, it is known that hematopoietic cells arise from 
the yolk sac. Two blood-related clusters detected in the data, erythroblasts and haemato-endothelial 
progenitors (HEPs) were mainly found in yolk-sac. The primitive streak and nascent mesoderm cells 
were only in the caudal region, as expected. As the mesodermal cells differentiate into a more mature 
state, they occupy the rostral part. In the advanced mesoderm cluster, unsupervised clustering did not 
indicate region specificity between the sub-clusters. However, comparing rostral and caudal regions 
directly revealed genes that were differentially expressed. These nuanced differences would not have 
been possible to detect without the information on spatial regions. Overall these suggest that although 
gene expression can be enough to identify the cells, additional information can be useful in confirming 
their identities and establishing ground truth for researchers who want to compare their gene expression 
data to the human gastrula. 
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Human gastrula data as a reference for in vitro models of embryonic 
development 

Identifying and annotating the cells in human gastrula for the first time provides a unique atlas for future 
studies. Many studies have already used this dataset as a reference to test in vitro models of embryonic 
development (Jo et al., 2022), or to perform cross-species comparisons, e.g., with non-human primates  
(Bergmann et al., 2022).  

In our paper, we used the human gastrula dataset to carry out two comparisons with in vitro models.  To 
test whether human primed stem cells resemble CS7 epiblast, rather than naïve stem cells, two datasets 
were considered (Messmer et al., 2019; Petropoulos et al., 2016). Using Harmony as data integreation 
method, we observed that human epiblast is closest to primed stem cells obtained from human ES cells 
(hESCs), while naïve hESCs were transcriptionally closest to embryonic day 6 and 7 of in vivo embryos. 
This result was also confirmed by integrating these datasets employing the algorithm implemented in 
Seurat v3 (Stuart et al., 2019), followed by hierarchical clustering (based on Spearman’s correlation 
distance) on the corrected gene expression.  

We also compared data collected across species (human, mouse and non-human primate) and with 
different experimental protocols (Smart-seq2 and 10x) when we analyzed the species-specific molecular 
fingerprints of PGCs. In this case, we computed the intra-sample z-scores in order to identify 
upregulated and downregulated genes in PGCs, compared to epiblast and PS populations from each 
species. The results require caution, however, since observing lack of gene expression can be due to 
drop-outs, especially in the more sparse 10x data.  

We observed an overall good match between populations when comparing the human gastrula to 
mouse and non-human primate (NHP). In addition to the Seurat integration and hierarchical clustering 
method (see above), scmap (Kiselev et al., 2018) tool was also used for these comparisons. One issue 
in inter-species comparison arises from choosing orthologous genes. The methods for integrating two 
datasets usually require these datasets to have the same genes.  Because one gene in an organism 
can have multiple orthologues in another organism, the integration task can provide an additional 
challenge. However, the number of genes with one-to-one mapping is usually far higher and can be 
enough for the algorithms to perform well.  

 

 

Trajectory inference reveals molecular insights into cell differentiation during 
human gastrulation 

Gastrulation is a stage at which many cell differentiation events occur. To explore the increase in cellular 
heterogeneity, it is important to establish trajectories to link cell states in pseudotime. For example, 
Epithelial to mesenchymal transition (EMT) is an integral part of gastrulation. To explore gene 
expression dynamics during EMT, a trajectory from epiblast to nascent mesoderm through the primitive 
streak cells was defined by using diffusion maps and diffusion pseudotime. More specifically, expression 
trends of the genes were estimated through computational and statistical tools.  These tools are based 
on fitting gene expression levels as a function of pseudotime through generalized additive models, 
followed by ANOVA test to detect genes significantly up/down-regulated. One challenge here was to 
define the trend of the genes. Not all genes have a clear up or down trend because some only get highly 
expressed in the primitive streak and downregulate in the nascent mesoderm. One way to solve this 
issue was to set a threshold for log fold-change of the genes along the trajectory. This allowed inter-
species comparison of gene expression patterns along EMT from epiblast to nascent mesoderm. Many 
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expected similarities, as well as some intriguing differences, were found between mouse and human 
gastrulation. Although the same signaling pathways are involved in human and mouse EMT, specific 
members of the pathways showed differences in their regulation. Some of these bioinformatics-driven 
results were validated by in vitro differentiation model.  

Overall, these results show the ability of scRNA-seq data to provide valuable molecular insights into 
differences in cell differentiation occurring between species. The inter-species analyses only considered 
genes with similar trends. However, it is also possible to align the timing of the gene regulation in both 
mouse and human EMT. For instance, one could use a method based on dynamic time warping (e.g. 
Trajan (Do et al., 2019)) to detect genes that undergo similar regulation between different organisms. 
However, the interpretation of this analysis requires caution as it is based on the assumption that the 
expression patterns of most genes are preserved across species.  

Analysis of the entire data through diffusion pseudotime allowed the observation of three main cell fate 
decisions during gastrulation. These correspond to the major germ layers-ectoderm, endoderm, and 
mesoderm.  RNA velocity was used to obtain information about the direction of differentiation. The 
velocities overlaid on top of the diffusion map highlighted the points at which the fate decisions were 
made.  

 

7.2  Effect of Semaphorin 4a on mouse hematopoietic stem cell 

dormancy 

In this project (Manuscript I), the aim was to investigate the role of Semaphorin 4a(Sema4a) on HSCs 
that possess a bias toward myeloid lineage (myHSCs). By generating single-cell libraries from WT and 
Sema4a KO samples from mouse HSCs, we performed a comparative analysis to test the hypothesis 
that the Sema4a is required for regulation of myHSC stemness.  

 

Trajectory inference demonstrates the effect of Sema4a on myHSCs 

To investigate the effects of Sema4a loss in myHSC differentiation, we analyzed the transcriptional 
trajectory joining myHSC and the progenitor cells. Using diffusion pseudo-time, we found evidence that 
the absence of Sema4a might make myeloid biased HSCs lose their stemness.  

The ability of scRNA-seq data to provide an opportunity for the analyses mentioned above show the 
usefulness of transcriptional trajectory identification and analysis, across conditions (e.g., to find the 
effects of a KO, as discussed here) or species (e.g., as discussed above in the comparative analysis of 
gastrulation).  

Estimation of HSC proliferation through cell cycle analysis 

Consistent with the overproliferation of HSCs without Sema4a, cell cycle analysis of the scRNA-seq 
data showed that in the absence of Sema4a, there is a higher fraction of myHSCs in the G2/M cycle 
phase compared to WT cells (Appendix 1).  The analysis also confirmed the hypothesis that Sema4a 
only affects the subset of HSC that are more biased towards myeloid lineage, as there was no difference 
between balanced HSCs in the absence of Sema4a.  This shows that the transcriptional analysis of 
single cells can capture cell cycle information and their relation to defining cellular state. One limitation 
of the cell cycle detection method was the inability to differentiate between cells in G0 and G1 phases. 
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Because analyzing dormancy requires this information, checking marker gene expression specific to G0 
between the conditions can be necessary. Additionally, RNA velocity can potentially be used to 
distinguish cells in the G0 phase from the cells G1 phase, where velocity vectors would originate 
specifically from G1 cells in the direction of cells in the S phase.  

7.3  Detecting heteroplasmy from scRNA-seq of mouse epiblast 

cells 

Aside from computationally detecting large structural genomic variations, such as indels and copy 
number variations (CNV) from scRNA-seq data (Yang et al., 2018; Serin Harmanci et al., 2020), 
investigating single nucleotide variants (SNV) is also possible. This can be especially useful when 
constructing a lineage tree with genetic scars or natural barcodes, as described previously in the thesis. 
An example of this was when scRNA-seq was used to build a lineage tree with mitochondrial 
heteroplasmy (Ludwig et al., 2019). Although direct sequencing of mtDNA was better at detecting SNVs 
in that study, scRNA-seq still captured most of the variants. We used this approach in exploring the 
relationship between mitochondria heteroplasmy and cellular competition in Publication 2 (Lima et al., 
2021). Not only did the overall heteroplasmy levels between “loser” and “winning” cells have differences, 
but it was also possible to detect mtDNA variants specific to cells losing the competition.  

It is still important to be cautious to detect SNVs from scRNA-seq data. Modifications specific to 
transcripts might not be present in the DNA. Additionally, the variable gene expression levels between 
cells can lead to biases stemming from differing read depth. We took the read depth issue into account 
while creating a pipeline to quantify mitochondrial heteroplasmy from scRNA-seq data, in order to 
remove the genomic regions that do not have adequate coverage (Lubatti et al., 2022). Additionally, the 
nuclear mitochondrial sequences (NUMTs) can lead to possible artifacts which would bias the results. 
Therefore, in our analyses we also checked whether the sequences with high heteroplasmy correspond 
to NUMTs.  

7.4  Future outlook 

The successful use of scRNA-seq to study cellular fate decision in various contexts has been 
demonstrated in this thesis. We saw how gene expression patterns can reveal insights into cellular 
heterogeneity in various biological systems by using appropriate computational tools. As both the 
experimental and computational limitations are gradually solved, the single-cell transcriptomics field 
constantly offers more exciting research. In combination with different types of molecular profiling, such 
as single-cell epigenomics and proteomics, new powerful ways of exploring cellular heterogeneity and 
identity can be established. Additionally, by obtaining spatial transcriptomics on the same sample, cells 
can be analyzed in their localized context to elucidate their interactions (Longo et al., 2021). Finally, the 
computational tools used to analyze scRNA-seq data can be complemented with quantitative models to 
help explain molecular dynamics within cells.  Therefore, integration of experiments, data analysis and 
mechanistic modeling can bring more insight in cellular fate decision, as was the case in Publication 4 
(Nakatani et al., 2022). 
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