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Abstract 

The immune system is a critical component of the delicate balance between human 

health and disease, particularly as immunotherapy gains popularity. In order to identify 

patients at an early stage and develop individualized disease prevention strategies, it is 

important to systematically and accurately describe the immune environment before 

disease onset. However, the immune environment is a complex system consisting of 

immune cells, antibodies, complement, and cytokines. Traditional methods of 

monitoring immune patterns in clinical settings are limited in accuracy and reliability, 

which have created a pressing need for more advanced technologies. Therefore, 

bioinformatics has become an important tool in the field of disease immunology 

research. In recent years, computational methods and approaches have been 

developed, which specifically enumerate the immune microenvironment and allow for 

the further quantification of the complex immune system. 

The objective of this project is to explore the role of bioinformatics in the 

prediction of the diagnosis or prognosis of immune-related diseases. The focus of this 

dissertation is on two types of diseases, each with a different prediction model, which 

are described separately in two independent chapters due to their respective 

specificities. In Chapter 2, the immune cell compositions of blood samples from 

patients with Kawasaki disease (KD)—an immune-mediated inflammation in children—

were enumerated. A novel algorithm was developed for predicting KD diagnosis based 

on this enumeration. Using the model, patients with KD and febrile controls could be 

well distinguished in the test set, with an AUC of 0.80. In Chapter 3, a study concerning 

a tumor disease, uveal melanoma (UVM), was conducted. The study integrates the 

patterns of basement membrane and immunogenic cell death to investigate the 

immune microenvironment patterns in UVM patients. On this basis, three models using 

different algorithms were constructed and the optimal one was selected after 

comparing them in validation set, which was the model generated by the IPF-LASSO 

algorithm, with an AUC of 0.740, 0.841 and 0.835 for 1-, 3-, and 5-year overall survival, 

respectively. Furthermore, we assessed its performance on the test sets with different 

survival outcomes and preliminary investigated its association with the response to 

UVM immunotherapy.  

As such, this dissertation highlights how the integration of machine learning and 

high-throughput data can improve the characterization of the disease-associated 

immune microenvironment and the development of better prediction models. The study 

results demonstrate that the bioinformatics-based approach presented in this project 

holds great potential for predicting the diagnosis or prognosis of immune-related 

diseases, and could ultimately improve patient outcomes. 
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1. Introduction 

The immune system performs a vital function in the balance between health and 

disease especially in the current environment where immunotherapy is becoming 

increasingly popular. Its over-activation can lead to autoimmune or inflammatory 

diseases, while a state of immunosuppression increases the risk of infection and 

abnormal expression of tumor cells. If the immune environment can be systematically 

and accurately described before disease onset, patients can be identified early enough 

to develop more precise individualized disease prevention strategies or immunotherapy 

regimens, thereby improving their health quality [1, 2]. However, the immune 

environment is made up of a complex variety of immune cells, antibodies, complement 

and cytokine systems. Traditional methods for monitoring immune patterns in clinical 

settings have limitations in accuracy and reliability, leading to an urgent need for more 

advanced technologies [3, 4]. To overcome these limitations, bioinformatics has 

become an important tool in disease immunology research. 

Since the 21st century, bioinformatics has made significant progress in various 

aspects [5]. On one hand, the emergence and improvement of high-throughput 

sequencing technology have generated vast amount of genomic data, which provides a 

good foundation to conduct biomedical big data analysis; on the other hand, major 

breakthroughs in machine learning algorithms have enabled us to comprehensively 

and efficiently interpret these data and leverage them to develop better biomarkers for 

disease diagnosis or prognosis prediction. Machine learning algorithms based on 

biomedical big data have been applied to a variety of diseases including infectious 

diseases and cancer [6]. In addition, in recent years, researchers have developed a 

series of computational methods-based approaches specifically for the enumeration of 

immune microenvironment, helping further quantify the intricate immune system [7, 8].  

 

1.1 Kawasaki disease (KD) 

1.1.1 Epidemiology and pathophysiology 

Kawasaki disease (KD), which was initially identified by Tomisaku Kawasaki in Japan 

in 1967 [9], is an acute severe febrile inflammatory illness of unknown etiology that 

primarily affects young children and infants. For children living in developed countries, 

it causes the majority of heart disease acquired over time [10-12]. Despite the fact that 
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it occurs at any age in children, KD is most commonly seen in children under the age of 

five, and the risk is 1.5 times higher for boys than for girls [13]. KD is often 

characterized by a high fever (over 38.5°C) lasting for more than five days, associated 

with at least four of the following clinical manifestations: rash, conjunctivitis, cervical 

lymphadenopathy, oral changes (i.e., cracking, erythema, and/or strawberry tongue),  

and peripheral extremity changes (i.e., edema, erythema, and/or peeling) [10, 14]. KD 

principally attacks blood vessels throughout the body. If left untreated appropriately, it 

can result in fatal complications such as coronary artery aneurysm (CAA), myocardial 

infarction, and sudden death, by initially targeting the coronary arteries  [15-17]. With 

regards to standard treatment, high doses of oral aspirin and intravenous 

immunoglobulin (IVIG) therapy are recommended according to the current guidelines. 

In patients without  response to IVIG, glucocorticoids are administered as preemptive 

therapy  [18, 19].  

To date, the exact mechanism underlying KD pathogenesis has not yet been fully 

understood despite extensive researches. The pathophysiology of KD is hypothesized 

to begin with an abnormal immune response to infection, most likely to be viral or 

Yersinia, which triggers a T-helper cell-mediated immune response, generating a range 

of pro-inflammatory cytokines, including interleukin (IL)-6 and tumor necrosis factor-α 

(TNF-α). As a result, inflammation and damage occur in the endothelium of the 

coronary arteries [20-22]. Recent clinical and laboratory findings have also reported the 

involvement of innate immune cells (i.e., neutrophils and macrophages), in the 

pathogenesis of KD, which is similar to those febrile illness caused by bacterial 

infection [23, 24]. Besides, activated γδT cells appear to be the predominant T cell 

subset [25]. These innate immune cells release effector molecules such as matrix 

metalloproteinases (MMPs), which can impair the arterial wall formed from elastic 

lamina [26]. The inflammasome is considered to be a crucial component of the innate 

immune system. Researchers have also found the up-regulation of IL-1 signaling 

pathway in KD, which indicates that the inflammasome is involved in the progression of 

vasculitis in KD [27]. Notably, the NLRP3 inflammasome seems to serve as one of the 

inflammatory signaling factors that contribute to KD vasculitis [28]. Furthermore, 

several studies on the blood samples from KD patients have revealed that the IVIG 

treatment may benefit from binding multiple pattern recognition molecules, which are 

indispensable to innate immunity [29]. 

1.1.2 Current diagnosis  
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Until now, KD diagnosis relies primarily on clinical criteria, but additional diagnostic 

tools such as laboratory testing and imaging techniques are also important. These can 

include auscultation, chest X-ray, electrocardiograph (ECG), and echocardiography [15, 

30]. Standardized diagnostic criteria have been developed internationally, but variability 

in clinical interpretation can lead to missed or misdiagnosed cases, ultimately leading 

to delayed diagnosis [15]. Recent studies suggest that assessing peripheral 

inflammatory factors, such as CRP, neutrophils, albumin, and hemoglobin, during the 

acute stage of KD is essential for early diagnosis [31]. Elevated blood immunoglobulin 

and platelet levels during recovery from KD may also reflect the systemic inflammation 

present during the acute stage [32]. By utilizing these complementary diagnostic tools 

and monitoring systemic inflammatory parameters, physicians can improve their ability 

to diagnose KD in a timely manner. KD is generally divided into an acute, sub-acute 

and convalescent phase. The acute febrile phase, characterized by high fever, lasts 7 

to 14 days. The sub-acute phase follows, during which the patient may experience 

finger peeling, joint pain, and abnormal laboratory findings. This period carries the 

greatest risk of cardiac sequelae (i.e., CAAs) and lasts for about 4 weeks. The 

convalescent phase is typically asymptomatic and lasts for 4 to 8 weeks after the onset 

of the disease. However, the risk of aneurysm development remains during this phase. 

It's important to note that individual clinical manifestations may not present at the same 

time, and careful questioning and examination may be necessary to further assist in the 

diagnosis of KD [33]. Echocardiography should be considered in children with any 

major clinical features with prolonged unexplained fever. However, there is no clear 

test to distinguish KD from scarlet fever, hand-foot-and-mouth-disease, roseola 

infantum, or juvenile idiopathic arthritis, which cause similar symptoms [34, 35]. The 

results of all these studies suggest that, we need to improve the early and accurate 

identification of KD patients for early IVIG treatment in order to minimize the number of 

undiagnosed cases. 

 With the introduction of artificial intelligence algorithms, researchers can convert 

massive amounts of clinical documentation data into models of treatment methods to 

guide clinical practice. For example, Wang et al [36] retrospectively retrieved clinical 

electronic case information, then successfully used convolutional neural networks to 

identify KD patients. Subsequently, they again successfully construct a predictive 

model for identifying IVIG-insensitive KD patients using a new machine-learning 

algorithm. In addition, the development of high-throughput techniques has also 

facilitated individualization of the diagnosis of KD at the genetic level, for instance, 

Jaggi et al. [37] and Wright et al. [35] have successfully constructed diagnostic 

signatures consisting of different sets of genes that could be used to discriminate KD 
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from other inflammatory illness, based on transcriptomic profiling data, respectively. 

With the rapid development of machine learning algorithms, it is believed that in the 

near future, artificial intelligence will be able to provide clinical practitioners with more 

accurate decision support analysis on all aspects of the diagnosis, differential diagnosis 

and treatment, and even the long-term management of KD patients. 

1.2 Uveal melanoma (UVM) 

1.2.1 Epidemiology and pathophysiology 

Despite its rarity, uveal melanoma (UVM) is a significant primary intraocular malignant 

neoplasm, which originates from melanocytes located in the uveal tract [38]. It 

accounts for around 5% of all melanoma types [39]. The incidence of UVM is correlated 

with geographical region, race, and gender. In Western countries, incidence is 

estimated to be approximately 5 cases per million people per year, with a slightly 

higher incidence in men than women [40, 41]. There is also evidence that individuals 

with light-colored eyes may be at an increased risk of developing UVM [42]. Most 

people with UVM experience only mild vision problems or even no symptoms, and the 

disease is therefore usually diagnosed during a routine eye exam [43]. Valuable tools 

for diagnosis include slit-lamp, gonioscopy, ultrasonography (USG), and optical 

coherence tomography (OCT). The occurrence of complications (i.e., hyphemia, 

extraocular extension, cataracts, and secondary glaucoma) is also a significant sign to 

be considered [40, 44]. However, ultimate diagnosis needs to be confirmed by the gold 

standard – fine needle aspiration biopsy (FNAB) [44]. 

 The pathophysiology of UVM usually involves genetic mutations or/and 

epigenetic alterations. These abnormal changes lead to highly malignant proliferation 

of melanocytes and even metastasis. Available researches [45-47] have shown that 

BAP1, GNAQ, GNA11, and SF3B1 seem to be the main sites of these mutation. 

Among them, the BAP1, located on chromosome 3 and found to be mutated in nearly 

50% of all UVM patients, is involved in DNA repair and chromatin remodeling [48]. 

Other genes are usually enriched in RNA splicing and cell signaling pathways, 

specifically the G-protein signaling [45, 49-51]. On the other hand, epigenetic 

alterations are proved to play a preeminent role in the UVM pathophysiology as well. 

DNA methylation can alter gene expression patterns and contribute to tumorigenesis. 

PRAME, or the preferentially expressed antigen in melanoma, is being studied as a 

novel epigenetic biomarker for UVM metastasis  [52]. In addition, the immune system is 

closely associated with the progression and metastasis of various tumors, and UVM is 
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no exception. Available studies [24, 53, 54] have indicated that the immune 

microenvironment in KD is characterized by an overactive innate immune system, with 

increased infiltration levels of monocyte, macrophage and neutrophil. Besides, several 

investigations in UVM [55-57] have observed multiple signals of inflammatory 

microenvironment, which is initiated by inflammatory factors, such as HLAs, cytokines, 

and chemokines, which lead in recruitment of inflammation-related cells and promotion 

of angiogenesis. 

1.2.2 Current prognostic prediction approaches 

Uveal melanoma is an extremely aggressive form of cancer, with a poor prognosis and 

a strong tendency toward metastasis. This metastasis most commonly occurs through 

the bloodstream, with up to 80% of cases resulting in liver metastases [58-60]. 

Unfortunately, UVM patients with metastasis have a median survival of only 2 to 8 

months [40, 47, 59]. Identifying potential prognostic indicators for metastatic UVM, 

therefore, can be crucial in understanding its heterogeneity, improving prognostic 

predictions, and guiding individualized treatments. Numerous studies have found that 

UVM patients of advanced age experienced a poorer prognosis [61]. In a retrospective 

study of 99 patients with metastatic UVM, Lorenzo et al. [58] discovered that the 

median survival for patients with age ≤ 65 years was 11 months, compared to 8 months 

for those over the age of 65. The relationship between gender and prognosis in UVM 

remains controversial right now. Some studies suggest that hormonal factors may 

result in a lower metastatic rate for female patients [62], whereas more researchers 

have not found a statistical difference in the effect of gender on prognosis [58, 63, 64]. 

The stage classification system is a crucial prognostic factor for UVM. An investigation 

of 7,731 UVM patients [65] revealed that the 10-year metastatic rates for UVM with T1, 

T2, T3, and T4 stages were 15%, 25%, 49%, and 63%, respectively. 

As modern molecular biology techniques have advanced, researchers have 

increasingly turned their attention to the development of prognostic biomarkers at the 

molecular level. As mentioned in Section 1.2.1, genetic traits are highly associated 

with the progression and metastasis, making them crucial for prognosis of UVM. 

Monosomy 3 is the aberration of chromosome 3. It is linked to histopathologic risk 

factors that lead to metastasis [66]. Additionally, higher rate of chromosome 8q-gain or 

6p-loss also indicates a worse UVM outcome. In contrast, chromosome 6p-gain usually 

predicts a good prognosis [67]. In terms of bioinformatics approaches, Xu et al. [68] 

identified 103 potential candidate prognostic factors for UVM by analyzing differentially 

expressed genes between patients with primary and metastatic UVM. Next, they further 

identified a six-gene signature using the Kaplan–Meier method. By providing additional 
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clues for prognosis, this study enhanced our understanding of the process of tumor 

metastasis occurrence and progression in UVM. However, multifactorial analysis was 

not included to confirm the independent prognostic role of candidate genes, and its 

diagnostic value remains unclear. Despite this, there is still no doubt that high-

throughput techniques could facilitate the identification of ideal prognostic biomarkers 

and improve risk stratification for patients with UVM. 

1.2.3 Traditional treatment and immunotherapy 

Traditional UVM treatment includes surgical excision, chemotherapy drugs and 

radiotherapy. For primary tumor, radiotherapy is one of the most common and effective 

treatments, which has been proved to be effective in controlling local tumor growth in 

many patients [44]. Accompanying complications can occur locally, however [69]. 

Moreover, although various radiotherapeutic approaches for primary UVM have 

improved over time, treatments for metastasis remain disappointing [67, 70]. For 

metastatic UVM, chemotherapeutic agents are usually applied, either alone or in 

combination with other treatments. However, clinical trials have shown that they 

induced a response in a small subset of UVM patients, but their overall efficacies were 

limited, with no statistically significant survival improvement found [71-73].  

 Thanks to the era of immunotherapy, immunotherapeutic agents have been 

widely tested and shown promise in treating UVM [72, 74, 75]. CTLA-4 monoclonal 

antibodies were approved in the United States and Europe in 2011 as first-line agents 

therapies for the treatment of advanced melanoma [76]. Nevertheless, the response 

rate for Ipilimumab in metastatic UVM has been modest, ranging from 5%-10% [77]. 

Another immune checkpoint inhibitor, Pembrolizumab against the PD-1 receptor, has 

also been approved for advanced melanoma. However, it exhibited a response rate of 

only 3.6% in a large retrospective analysis [78]. These non-responders may be 

associated with low mutation load and new immune checkpoint acquisition [79], which 

are possible to be identified by the changes of immune landscape. Therefore, a novel 

predictive algorithm based on the characterization of tumor immune microenvironment 

may be potential to serve as a predictor for UVM prognosis and immunotherapeutic 

response. 

1.3 Immune microenvironment  

Tumor cells are not isolated entities as they exist within an active microenvironment 

that plays a crucial role in tumor development. The cell infiltration within the tumor 

microenvironment is critical in both tumor killing and immune escape. It comprises 
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intrinsic non-tumor cells (i.e., endothelial cells and fibroblasts) and extracellular 

matrices, all of which contribute to tumor formation and progression. Moreover, the 

tumor microenvironment contains cells from the immune system and non-cellular 

molecules such as growth factors and proteases, in addition to stromal components [80, 

81]. In the advanced stages of the disease, the immune system portrays duality, as 

immune cells exert an anti-tumor effect in the early stages of tumor invasion, but later 

turn into pro-tumor phenotypes, assisting in tumor immune escape, leading to the 

formation of inflammatory microenvironments. There is a great deal of diversity and 

complexity in the of immune cell components, including both adaptive immune system 

and innate immune system, including dendritic cells (DCs), natural killer cells (NKs) 

and macrophages that play a role in antigen presentation [56, 81]. Tumor infiltration 

lymphocytes (TILs) infiltrate in the local tumor lesions. In interactions with tumor cells, 

components of the tumor immune microenvironment, represented by tumor-associated 

macrophages (TAMs) and regulatory T cells (Tregs), contribute to immunosuppression 

and tumor growth [82-84]. Numerous studies have demonstrated that components of 

the immune microenvironment are associated with the occurrence, development, and 

therapeutic efficacy of a wide range of tumors [85-88]. Additionally, it has been found 

that recurrent tumors of the same size exhibit greater resistance to treatment than 

primary tumors, and this phenomenon was accompanied by the differences of immune 

microenvironments, although tumor cells from both tumors show no heterogeneity [89]. 

Apart from tumors, the immune microenvironment also plays a crucial role in 

autoimmune and inflammatory diseases [90-92]. 

1.4 Basement membrane 

As specialized structures of the extracellular matrices (ECMs), basement membranes 

(BMs) provide mechanical support and regulate cellular behaviors. They are dense and 

thin sheets (50–100 nm) beneath epithelial and endothelial cells. Their primary 

components are proteoglycans and glycoproteins, including type IV collagens, laminins, 

nidogens, and perlecans, while other components, such as type XV and XVIII 

collagens and osteopontins, are present in smaller amounts. These components act 

synergistically with each other to influence both morphology and behavior of cells. In 

turn, cells adapt to different ECMs by adjusting the expression of surface receptors. 

During metastatic process, tumor cells degrade the BM by up-regulating expression of 

MMPs and heparanase. The damaged BM not only ceases to be a barrier to tumor 

cells, but may even become an accomplice to tumor metastasis [93]. BM proteins are 

key pathogenic factors and targets of autoantibodies in various diseases [94]. 
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Additionally, several studies have also found the correlation between poor prognosis 

and the proteins relevant to BM components or stiffness in different types of tumors [95, 

96]. Recently, Jayadev et al. [97] summarized 224 BM-related genes for the first time, 

bringing fresh perspectives on the role of BM in diseases and providing a more 

comprehensive understanding and prediction of tumor progression and metastasis.  

1.5 Immunogenic cell death  

In the last years, investigations have demonstrated that stimulating tumor cells with 

various therapeutic agents not only kills them, but also triggers the expression of 

antigenic signaling molecules on their surface, converting non-immunogenic cells into 

immunogenic cells. This phenomenon of immune-related anti-tumor effect in the body 

is named immunogenic cell death (ICD) [98, 99]. In vivo, ICD inducers recruit initial 

immune effector cells to the local cancer site, leading to inhibitions of tumor growth. 

This inhibitory effect is dependent (at least partially) on the immune system [100]. 

Inflammatory mediators, precursor inflammation cytokines and danger associated 

molecular patterns (DAMPs), are released and/or expressed during the process [101]. 

In the tumor ICD process, various DAMPs are released to regulate different immune 

responses with "find me" or "eat me" signals [102]. The patterns of predominant 

DAMPs expressed include: calreticulin (CRT) exposure, heat shock protein (HSP) 

translocation, interferon I (IFN I) secretion, and release of high mobility group box 

protein B1 (HMGB1) and/or adenosine triphosphate (ATP). Subsequently, Immature 

DCs transform into mature DCs by binding to these factors via pattern recognition 

receptors, and further phagocytize the apoptotic tumor cells. In the meanwhile, they 

present these cells to CD8+ T cells together with co-stimulatory molecules (CD83/86) 

and major histocompatibility complex I (MHC I), leading to the activation of cytotoxic T 

lymphocyte (CTL). In addition, tumor cell-secreted cytokines recruit NKs to participate 

in the regulation of adaptive immune response. Moreover, different studies [103-105] 

have shown that ICD-inducing chemotherapy enhanced the efficacy of immune 

checkpoint blockades. For melanoma, Choi et al [106] substantiated in experiments 

conducted in vitro and in vivo that the complex agent of Oxaliplatin and Nα-

deoxycholyl-L-lysyl-methylester (DCK) effectively induced the expression of CRT and 

HMGB1 in tumor cells, resulting in ICD and effective suppression of tumor. Overall, due 

to its ability to drive immunogenicity and release tumor antigens within tumors, ICD is 

anticipated to generate novel insights and strategies for immunotherapy. 
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1.6 Bioinformatic methods for model development 

1.6.1 Regression 

1.6.1.1 Logistic regression  

Logistic regression, which falls under the category of generalized linear models (GLMs), 

is a commonly employed statistical modeling technique. It establishes a relationship 

between outcomes and predictor variables, assuming that outcome variables are 

distributed from the exponential family. For binary outcomes, it is assumed to follow a 

Bernoulli distribution. [107]. In biomedical research, logistic regression has numerous 

applications, including diagnostic prediction, treatment efficacy, and patient outcome 

prediction. The most popular application is the prediction of disease diagnosis. By 

analyzing multiple predictor variables, including demographic information, lifestyle 

habits, medical history, and various omics data, logistic regression models can 

estimate the probability of a patient developing a particular disease. This information 

can enable healthcare providers to intervene early and personalize treatment plans for 

patients. In this project, we combine it and LASSO regression to develop a predictive 

model for KD diagnosis using the “glmnet” R package [108]. 

1.6.1.2 Cox regression 

In biomedical research, survival data are analyzed using Cox regression, which is 

additionally referred to as proportional hazards regression [109]. This method models 

the relationship between predictor variables and the time to an event of interest. It is 

commonly used in medical research to analyze right-censored survival data. Cox 

regression estimates hazard ratios, which represent how much more or less likely an 

individual is to experience the event of interest based on their level of each predictor 

variable. This helps identify prognostic predictors linked with disease outcomes and 

establish predictive models for patient survival. By determining the relative impact of 

different predictors on survival time, Cox regression allows for more accurate risk 

assessments and informed decision-making in healthcare. In this project, we 

implement it to develop a predictive model for UVM prognosis using the "survival" R 

package. Kaplan–Meier (K-M) curves and log-rank tests using the “survminer” R 

package were utilized to visualize and compare the survival probability, respectively.  

1.6.1.3 LASSO regression 
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The least absolute shrinkage and selection operator (LASSO) regression, proposed by 

Rοbert Tibshirani [110], is an algorithm used for constructing interpretable models. It 

achieves both estimation of unknown parameters and variable screening by penalizing 

the absolute value of the regression coefficients in the least squares estimation, hence 

its name L1-penalty. The penalty parameter is λ and it takes values in the range (0, +∞). 

The penalty function represents a trade-off between goodness-of-fit and model 

complexity, which is influenced by λ. As λ approaches 0, the model contains more 

predictors and fits better, but at the cost of predictive performance and interpretability. 

In contrast, as the value of λ increases, the regression coefficients of some 

independent variables gradually compress to 0, and the predictors in the model 

become less. It follows that choosing an appropriate λ is essential for model’s 

interpretability and performance. The cross-validation method is the most commonly 

used method to achieve this goal, where the n samples in a dataset are divided into K 

subsets to produce K-fold cross-validation (1<K<n). In practice, 10-fold cross-validation 

is generally used [111]. The LASSO method can be used for general linear regression 

models, as well as Logistic and Cox regression models, and is an essential tool used to 

solve the problem of model sparsity. Since its introduction, the LASSO method has 

received widespread attention and has been cited by a large number of researchers, 

becoming one of the classical statistical methods for high-dimensional variable 

screening. In this project, we conducted the LASSO using the “glmnet” R package [108] 

and every penalty parameter (λ) was determined via 10-fold cross-validation. 

1.6.1.4 IPF-LASSO 

Integrative LASSO with penalty factors (IPF-LASSO) is an extension of the standard 

LASSO algorithm that has the ability to accommodate diverse sources of data, as 

proposed by Boulesteix et al. [112]. It is specially designed to handle situations where 

multiple types of biomarkers (e.g., multi-omics) are available for the same patient [113]. 

The method globally assigns the penalty parameters λ to each block of data, which can 

be determined according to practical considerations, identify the contributions of these 

blocks. The "ipflasso" R package developed by Boulesteix et al. [112] can implement 

this IPF-LASSO algorithm and its variant that can process continuous, binary, and 

survival outcomes. In this project, we leveraged the IPF-LASSO as one of the three 

algorithms to construct the model for UVM prognostic prediction. It was applied on 

transcriptomic datasets with two different gene sets that could be treated as two blocks 

in the "ipflasso" R package.  
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1.6.1.5 ROC and time-dependent ROC curve 

In a binary classifier system, the receiver operating characteristic (ROC) curve graphs 

its performance, such as a diagnostic test [114]. By varying the recognition threshold, 

the ROC curve depicts the values of sensitivity (true-positive rates, TPRs) and values 

of 1-specificity (false-positive rates, FPRs), which can visually display the accuracy of a 

diagnostic test. A high-performing test yields an area under the curve (AUC) close to 1, 

while a useless test has an AUC of 0.5. ROC curve has several advantages over other 

measures of accuracy. For example, they provide a comprehensive evaluation of the 

trade-off between specificity and sensitivity for different thresholds. In addition, they 

convey less subjectivity about changes in prevalence than other measures of 

diagnostic accuracy. Finally, their concise visual presentation provides clarity and ease 

of interpretation for researchers and clinicians. 

In standard ROC curves, we assume that the predictor works equally well at all 

time points. For survival data, however, many outcomes are time dependent, therefore 

a ROC curve that varies over time may be a better solution. Considering this, time-

dependent ROC curve was developed as an extension of the standard ROC curve to 

account for the predictive accuracy of a test with censored survival time outcomes (i.e.,  

survival/decease). For prognostic prediction, the Cumulative/Dynamic ROC curve 

proposed by Heagerty et al. [115] has been popular to use. This approach defines a 

time-dependent version of sensitivity and specificity: time-dependent sensitivity refers 

to the likelihood that a subject who experiences the event before time t will be correctly 

classified as positive by the predictor at threshold c, while time-dependent specificity 

refers to the likelihood that a subject without the event before time t will have a 

predicted probability less than or equal to c, including those who have not yet 

experienced the event. 

In this project, we generated ROC curves and their AUCs by using “pROC” R 

package [116] for the diagnostic model (in Chapter 2), and the AUCs of time-

dependent ROC curves by using “timeROC” R package for the different prognostic 

models (in Chapter 3) to evaluate their performances. 

1.6.2 Consensus clustering 

Unsupervised clustering is a statistical method that can divide a set of objects into 

distinct groups based on similarities in their features, without prior knowledge of their 

labels [117]. This process can be carried out using different algorithms. One such 

algorithm, consensus clustering, is widely used in molecular subtyping of patients with 
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tumors to determine the optimal number of clusters due to its capability of analyzing 

biomedical data with complex structures. This algorithm involves resampling the 

original dataset to obtain different subsets, clustering each subset separately and then 

combining the clusters to generate the consensus index (range [0,1]). The larger the 

value of the consensus index, the more stable the clusters are. Either of the following 

criteria is used to determine the optimal number of clusters: (1) comparing the 

consensus matrices at different clustering numbers, setting the number of clusters  that 

achieves the comprehensive trade-off between the highest possible consensus index 

for samples within subgroups and the lowest possible consensus index for samples 

between subgroups; (2) selecting the number of clusters where the middle segment of 

the cumulative distribution function (CDF) curve of the consensus index is the flattest, 

resulting in the fewest sample pairs with ambiguous clustering. In this project, we 

conduct the consensus clustering using the “ConsensusClusterPlus” R package [118]. 

The K-means algorithm was employed on a random selection of 80% of the given 

samples with 1,000 iterations. We chose the first criterion to identify the optimal 

number of clusters. 

1.6.3 Differential gene expression analysis 

Differential gene expression analysis is a statistical technique commonly used in 

biomedical research to identify differences between two or more groups of samples in 

gene expression levels. It helps researchers gain insight into the underlying biological 

or functional mechanisms of diseases and identify potential therapeutic targets by 

identifying [119] differentially expressed genes (DEGs). To fit models to this data 

format, several R packages can be leveraged: 1) “limma” fits a linear model; 2) 

“DESeq2” and “edgeR” fit generalized linear models, specifically negative binomial 

distribution models. All of these packages implement an empirical Bayesian approach 

to borrow information across features. In brief, “limma” is useful for continuous data 

such as microarray data, while “edgeR” and “DESeq2” are useful for count data like 

high-throughput sequencing read counts. In this project, both the GEO microarray data 

and TCGA normalized data (in the form of FPKM or TPM) are continuous data. 

Therefore, we performed the analysis employing the “limma” R package [120] here. 

1.6.4 Functional and pathway enrichment analysis 

Functional enrichment analysis is a computational biological technique that can be 

applied in biomedical studies to highlight significant biological pathways and processes 

involved in diseases [121, 122]. The approach involves identifying the specific gene 
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sets where the DEGs are enriched and retrieving corresponding functional terms from 

an assigned bioinformatics database, in order to identify the up-regulated functional 

pathways or processes. These results significantly shed light on the underlying 

molecular mechanisms of diseases and its potential therapeutic targets. Traditional 

enrichment analysis (based on Fisher's exact test) encounters two common problems: 

firstly, certain remarkable genes may be excluded because they do not reach the 

uniform threshold for differentially expressed genes, and secondly, it is difficult to 

define the overall regulation of a functional pathway with both up- and down-regulated 

genes – whether it is suppressed or activated? To address these issues, Gene Set 

Enrichment Analysis (GSEA), a non-parametric algorithm variant of functional 

enrichment analysis, was proposed [123]. Its basic idea is to utilize a predefined gene 

sets (usually derived from annotations in databases or previous lab results), and 

subsequently sorts them according to their expression levels in two groups of samples, 

then test whether the gene set is enriched in one of the groups. GSEA detects changes 

of functional enrichment in gene sets rather than individual genes, and therefore can 

provide more desirable results compared to traditional approaches. In this project, we 

conducted the GSEA function in the ‘‘clusterProfiler’’ R package [124]. Predefined gene 

sets were downloaded from the Molecular Signatures Database (MSigDB, 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) [125]. 

1.6.5 Bioinformatics methods for immune microenvironment 

1.6.5.1 CIBERSORT 

The Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts 

(CIBERSORT) is a machine-learning algorithm specifically designed for identifying 

human immune cell phenotypes [7]. It combines support vector regression techniques 

with a priori knowledge of expression profiles from purified immune cells, enabling 

highly accurate identification of 22 different cell types. Furthermore, the algorithm 

utilizes deconvolution algorithm based on Monte Carlo sampling to generate p-values 

for each sample, and the root mean squared error (RMSE) is utilized for assessing the 

accuracy of the predicted fractions. Notably, Newman et al. [7] and Zhong et al. [92] 

have demonstrated its ability to enumerate patterns of immune cell infiltration in human 

lung cancer and systemic lupus erythematosus, respectively, highlighting its 

tremendous value in scrutinizing the immune microenvironment in tumors and 

autoimmune disorders, as well as its potential for immune scoring. In this project, we 

performed this algorithm using the “CIBERSORT” R package [7]. 
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1.6.5.2 ESTIMATEscore 

The ESTIMATEscore is a bioinformatics tool used to estimate the immune and stromal 

content in tumors. It is calculated by summing the scores of immune (ImmuneScore) 

and stroma (StromalScore), which represent the abundance of respective components. 

A higher ESTIMATEscore corresponds to a greater presence of immune and stromal 

cells within the tissue, indicating a lower tumor purity. The technique infers the 

presence of these cells in tumor samples via analyzing their gene expression data. 

Through ESTIMATEscores, researchers can gain insight into the tumor 

microenvironment and interplay amid the neoplasm and the immunological and stromal 

cells present. It has been widely used in cancer research to prognosticate patient 

survival outcomes and their susceptibility to immunotherapy, making it a valuable tool 

for clinicians and researchers alike. In this project, we calculate the ESTIMATEscore, 

ImmuneScore, and StromalScore by using the “ESTIMATE” R package [8]. 

1.7 Objective of this project 

In this Ph.D. project, our aim is to explore the role of bioinformatics in the prediction of 

diagnosis or prognosis of immune-related diseases. Specifically, we focus on the 

combination of gene expression data and machine-learning methods to characterize 

the immune microenvironment in diseases and develop more accurate and reliable 

biomarkers to guide clinical decision-making and improve patient outcomes.  

Here, two types of diseases with different prediction models are the focuses of 

this dissertation. Due to their respective specificities, these two studies are described 

separately in two independent chapters. The study in Chapter 2 enumerates the 

immune cell compositions of the blood samples from patients with Kawasaki disease—

a severe immune-mediated inflammatory disease in children—and develops a novel 

algorithm for predicting Kawasaki disease diagnosis based on this. This study has 

been published in a pediatric journal [126]. The other study in Chapter 3 is devoted to 

a tumor disease. This study integrates the patterns of basement membrane and 

immunogenic cell death to investigate the immune microenvironment status in patients 

with uveal melanoma, then further develops a biomarker that can prognosticate the 

clinical outcomes of these patients.  

In conclusion, the investigation presented in this dissertation highlights how the 

integration of machine learning and high-throughput data improves the characterization 

of immune microenvironment and the development of better prediction models. 
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2. A Novel Algorithm for Predicting the

Diagnosis of Kawasaki Disease

2.1 Introduction 

Kawasaki disease (KD) is an immunological disorder characterized by acute febrile 

inflammation in the pediatric population. It is the predominant etiology acquired heart 

disease in children, specifically in developed nations, however, there is no known 

cause for it [10-12]. Some of its complications may be associated with fatal risks, 

including thrombotic occlusions, coronary aneurysms, and even myocardial infarctions 

[15]. At present, KD cannot be diagnosed with a specific test, as it is a clinical 

diagnosis. The distinction between KD and other febrile illnesses can sometimes be 

tricky, specifically infectious etiologies that present with comparable clinical features or 

occur concurrently [127], resulting in delayed treatment and complications [128, 129]. 

In recent years, several biomarkers have been found for diagnosing KD, however 

they either lack adequate specificity or verification in sufficient numbers of patients [16, 

35, 130-133]. Due to inflammatory nature of KD, immunological biomarkers may hold 

promise [130]. Nevertheless, these biomarkers are identified by flow cytometry or 

immunohistochemistry, making them difficult to standardize or implement in ordinary 

clinical practice. These limitations have led researchers to search for new diagnostic 

strategies, including high-throughput screening methods, but the role of immune cells 

in whole blood with respect to these approaches remains unclear [35, 37, 132].  

In the identification of immune cells, CIBERSORT has been reported to exhibit a 

high degree of accuracy because it is based on transcriptomic profiling. The use of 

CIBERSORT to differentiate KD from febrile illness in children remains to be seen. The 

objective of this study was to infer the CIBERSORT-derived fractions of immune cells 

in children with KD, and compare it with those in febrile controls (FCs), in order to 

establish a potential biomarker for KD diagnosis. 

2.2 Material and methods 

2.2.1 Data sources and preprocessing 
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To obtain data from the Gene Expression Omnibus (GEO) database, we employed the 

following search strategy: ((("Expression profiling by array" [DataSet Type] OR 

"expression profiling by high throughput sequencing" [DataSet Type]) AND "Homo 

sapiens" [Organism] AND ("mucocutaneous lymph node syndrome" [MeSH Terms] OR 

Kawasaki disease [Title]) AND (("diagnosis" [MeSH Terms] OR diagnostic [Title]) OR 

signature [Title])) AND blood [Sample Source]) AND ("infection" [All Fields] OR 

"infectious" [All Fields]). Initially, there were 5 items recognized (until 2021). Among 

them, GSE73464 was the SuperSeries composed of three sub-series: GSE73461, 

GSE73462, and GSE73463, so we excluded it. Next, we checked in each dataset 

whether their blood samples were collected according to the following criteria: 1) KD 

cases were diagnosed according to the American Heart Association (AHA) criteria [15]; 

2) FC cases manifested symptoms of fever and were only diagnosed infection of 

definite bacterial, definite viral, or "uncertain" pathogen. Ultimately, four datasets were 

obtained. Table 2.1 provides an overview of all datasets used here. Microarray gene 

expression data on Illumina® platform were processed and normalized using the "lumi" 

R package [134]. In detecting a gene by multiple probes, only the one with the highest 

level was selected.  

 Table 2.1 Summary of KD datasets 

Note: This table was adapted from Du et al. [126]. 

2.2.2 Composition estimation of immune cells 

We used the LM22 gene signature and the CIBERSORT algorithm with 1,000 

permutations to compute the fractions of immune cells in different samples [7]. See 

Section 1.6.5.1 for more details.  

Cohort Dataset Platform 
No. of 

KDs 

No. of 

FCs 

No. of 

HCs 

 GSE73461 
Illumina® HumanHT-12 

V4.0 
78 242 55 

Discovery: 

Training & 

Test set (7:3) 

GSE73462 
Illumina® HumanHT-12 

V3.0 
1 130 16 

GSE73463 
Illumina® HumanHT-12 

V4.0 
146 0 87 

GSE68004 

(2 batches) 

Illumina® HumanHT-12 

V4.0 

57 25 19 

 19 11 31 

Validation GSE15297 SMD Print_853 23 13 0 
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2.2.3 Pathway and functional enrichment analysis 

Functional enrichment analyses were conducted by running the GSEA function [123] in 

‘‘clusterProfiler’’ R package [124]. The predefined gene sets for GSEA were 

downloaded from the MSigDB. See Section 1.6.4 for more details. 

2.2.4 Other statistical analysis 

The discovery cohort, which was the merger of GSE73461, GSE73462, GSE73463, 

and GSE68004 datasets, was randomly allocated into two distinct sets in a 7:3 ratio, 

namely a training and a held-out test set. The GSE15297 dataset was used for external 

validation. We employed the LASSO algorithm for binary outcomes, as described in 

Section 1.6.1.1 and Section 1.6.1.3. The performance of the DIS was assessed using 

ROC curves and the optimal cut-off point was identified through reaching the largest 

Youden's index in the “OptimalCutpoints” R package [135]. Group comparisons were 

performed using the Wilcoxon’s test and Fisher’s exact test for continuous variables 

and categorical variables, respectively. Kruskal-Wallis tests were used in multiple 

group comparisons. Spearman’s rank correlation coefficient was used to analyze 

correlations between the DIS and the expression levels of the selected genes. All 

statistical tests were two-sided. Statistical significance was all set at p < 0.05.  

 

2.3 Results 

2.3.1 Characteristics of participants 

The strategy for the overall work can be found in Figure 2.1. Based on the filter criteria, 

a discovery cohort of 708 children (300 KDs and 408 FCs) was obtained, which was 

then randomized as described in Section 2.2.4. To verify our results externally, we 

obtained another independent dataset (GSE15297), which contained 23 KDs and 13 

FCs. In Table 2.2, we list the baseline clinical and demographic characteristics of the 

patients.  
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Figure 2.1 Flow chart of this study. This figure was adapted from Du et al. [126]. 

DIS, diagnostic immune score. 
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2.3.2 Gene expression data preprocessing 

We prepossessed the gene expression profile data before model construction, 

containing quantile normalization, log2-transformation and batch-effect removal. Figure 

2.2 indicates that the samples from GEO were well normalized, guaranteeing the 

majority of the differences subsequently found between study groups were most 

probably caused by different environments [136].  

After log2-transforming these normalized data, we performed the principal 

component analysis (PCA) to check the batch effect. According to PCA, a batch effect 

between datasets were apparently observed and needed to be removed. Here, we 

used the “ComBat” function in the “SVA” R package, which has been widely used for 

batch-effect correction by fitting a linear model for each gene [137]. Subsequent PCA 

Table 2.2 Clinical and demographic characteristics in all KD datasets. 

Note: There are two types of data presented: median [IQR] or n (%).* Children’s data did not 

show any statistically significant differences between the Test and the Training sets. This table 

was adapted from Du et al. [126]. NA, not applicable. 
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plot improves that this batch-effect was eliminated. Additionally, we identified an outlier 

from GSE73461 and excluded it (Figure 2.3A, B). 

Figure 2.2 Box plots for expression intensity of each sample before and after 

normalization. Vertical axis represents individual samples. 
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Figure 2.3 Principal component analysis on the discovery cohort before (A) and 

after (B) batch-effect removal. This figure was adapted from Du et al. [126]. 
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2.3.3 Immune cell fractions in different patient groups 

The CIBERSORT algorithm was employed in each individual sample to enumerate its 

immune cell composition. As compared to FC samples, KD samples showed 

significantly greater proportions of activated mast cells (p < 0.001), monocytes (p = 

0.035), neutrophils (p < 0.001), and M0 macrophages (p < 0.001). The fractions of M1 

and M2 macrophages, CD8+ and CD4+-naïve T cells, γδ T cells, resting mast cells and 

plasma cells, on the other hand, were lower in KD samples (all p values were less than 

0.001; Figure 2.4). Generally, blood samples from KD patients tended to contain 

mostly five cell types making up more than three quarters of the total: CD4+-naïve and 

CD8+ T cells, neutrophils, monocytes, and M0 macrophages. 

The CD4+/CD8+ T cell ratio has been reported as a potential biomarker to 

distinguish KD from children with infectious febrile illness [53, 138]. Taking this into 

account, we additionally measured this ratio. The ratios of CD4+/CD8+ T cells in KD 

patients were significantly higher than those in FC patients (p < 0.001, Table 2.3). 

Furthermore, Figure 2.5 shows a significant difference between the two groups in 

terms of immune cell composition landscape.  

In addition, A healthy control group (HC) was also compared with them. In the 

majority of cell types, higher fractions of these cells observed when comparing the HC 

group with the KD group were also observed when comparing the FC group with the 

KD group, and vice versa. In a particular instance, the fraction of plasma cells was 

reduced when comparing the HC group with the KD group, yet conversely elevated 

when comparing the FC group with the KD group (Figure 2.6). 

- 29 -
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Table 2.3 Comparison of the percentages of the T cell subsets between the KD 

and the FC group 

Note: Data were shown as median [IQR]. This table was adapted from Du et al. [126]. 

 

  

Group CD4+ CD8+ CD4+/CD8+ 

KD group 0.187 [0.149-0.240] 0.038 [0.018-0.075] 4.95 [2.49-9.94] 

FC group 0.222 [0.163-0.287] 0.081 [0.031-0.142] 2.82 [1.56-6.72] 

p value 6.6 x 10-6 6.2 x 10-10 5.2 x 10-7 

Figure 2.4 CIBERSORT-inferred compositions of various immune cells in the 

discovery cohort. Wilcoxon-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 

0.0001; ns, not significant. This figure was adapted from Du et al. [126]. 
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Figure 2.5 Estimated proportions of immune cell types in the discovery cohort 

presented as Stacked bar plots. Only eleven significantly differently expressed cell 

types (KD vs. FC) are shown. This figure was adapted from Du et al. [126]. 

Figure 2.6 The immune cell fractions in the HCs (yellow),  FCs (blue), and KDs 

(red) in the discovery cohort. Kruskal-Wallis test: *, p < 0.05; **, p < 0.01; ***, p < 

0.001; ****, p < 0.0001; ns, not significant. This figure was adapted from Du et al. [126]. 
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2.3.4 Diagnostic immune score (DIS) derivation and validation 

To begin, we constructed our diagnostic model, which we named “DIS” (diagnostic 

immune score), by extracting highly significantly different immune cells (p < 0.01). For 

model development, we used LASSO regression for binary outcomes and determined 

the penalty regularization λ based on 10-fold cross-validation and the 1-Se rule [139]. 

The candidate cell types were then narrowed down to eight (Figure 2.7, Figure 2.8).  

Figure 2.7 The construction of the DIS model. Error bars illustrate the standard 

errors of the necessarily biased cross-validation estimates. This figure was adapted 

from Du et al. [126]. 



 33 / 96 

- 33 - 

 

Table 2.4 Estimated coefficients of the diagnostic prediction model for KD 

diagnosis. This figure was adapted from Du et al. [126]. 

Immune cell marker Coefficient 

Intercept of the model    0.60 

Neutrophils    3.23 

M1 macrophages -44.59 

M2 macrophages -27.99 

Mast cells resting -27.73 

Plasma cells  -20.00 

Gamma delta T cells  -10.43 

CD4+ naïve T cells     -3.98 

CD8+ T cells    -2.60 

 

Figure 2.8 Fractions of candidate immune cell types with different paths of 

LASSO coefficient. The left and the right vertical lines are the optimal values 

according to the minimum and the 1-Se rule, respectively. This figure was adapted 

from Du et al. [126]. 
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Incorporating these eight variables, a diagnostic prediction model was constructed 

by using logistic regression. Table 2.4 shows the estimated coefficients of the model. 

The overall performance of the model was evaluated using ROC curves. Held-out test 

results showed an AUC of 0.80 (Figure 2.9B). In order to evaluate the capability of the 

DIS in external settings, we examined its performance on GSE15297, an independent 

dataset. Again, ROC curve presented a similar result (AUC = 0.77; Figure 2.9C). 

2.3.5 Evaluation of model performance 

We compared the DIS distribution across the different datasets studied, in order to 

assess its capability to discriminate KD from infection-caused febrile conditions (Figure 

2.10). In every dataset, KD children had higher DIS values than FC children according 

to the violin plots. Although the DIS distributions in the training and test set were highly 

comparable, they differed in the validation set. This could be attributed to the diverse 

microarray platforms underlying different cohorts, which may result in different inputs in 

the CIBERSORT program. Nevertheless, the DIS was still valid since in each of the 

datasets, the DIS values of KD cases were significantly higher, and moreover, the cut-

off point effectively distinguished the two conditions. Additionally, our exploration of the 

relationship between the DIS and gender observed no significant differences between 

males and females (p = 0.57; Figure 2.11).  

Figure 2.9 Evaluation of the performance of the DIS model in the training (A), 

held-out test (B), and validation (C) set. This figure was adapted from Du et al. [126]. 
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2.3.6 Nomogram construction and evaluation 

In order to create a more practical tool for use in clinical settings, we established a 

nomogram that integrated these diagnostic factors based on immune cell type fractions 

(Figure 2.12). Additionally, we generated calibration and decision curves separately in 

Figure 2.10 The distribution of DIS across the different datasets studied. Box 

plots indicate the interquartile ranges and median values. Red dashed lines indicate 

the cut-off point based on the largest Youden's index. This figure was adapted from Du 

et al. [126]. 

Figure 2.11 Distribution of DIS values in male (blue) and female children (red). 

This figure was adapted from Du et al. [126]. 
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all datasets we studied. These curves indicated that the nomogram has great potential 

for clinical application due to the strong correspondence between observed and 

predicted outcomes (Figure 2.13). 

Figure 2.12 Nomogram for predicting the risk for KD using the training set. This 

figure was adapted from Du et al. [126]. 

 

Figure 2.13 Evaluations of the established nomogram. (A-C) Calibration curves for 

the concordance of nomogram between the predicted and the actual outcomes in 

training (A), test (B) and external validation set (C). The apparent and bias-corrected 

performance (Bootstrap repetition, B = 1,000) lines are shown in red and blue. (D-F) 

Decision curves in training (D), test (E) and external validation set (F). 
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2.3.7 KD-related genes associated with the DIS 

In addition, the Spearman's rank correlation analysis mirrored a significant positive 

correlation between the DIS value and the expression level of majority factors that were 

known to be involved in KD [140, 141] (Figure 2.14). 

2.3.8 Functional enrichments associated with the DIS 

We also conducted the functional enrichment analysis using GSEA approach to 

evaluate biological plausibility of the model, by focusing on three gene sets of a series 

of well-defined biological processes and canonical pathways, which were the Hallmark, 

K E G G and BioCarta. All GSEA results for three gene sets mirrored that differentially 

expressed genes in the high-DIS group were predominantly enriched in inflammatory 

and immune-related pathways (e.g., IL-6/JAK/STAT3 signaling, TNFα signaling, 

Figure 2.14 Heat map illustrating the correlation between the DIS and the 

expression level of KD-related genes previously reported. This figure was adapted 

from Du et al. [126]. 
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reactive oxygen species, complement and coagulation cascades, and β-arrestin/ Src 

pathways), compared to the low-DIS group (Figure 2.15).  

2.4 Discussion 

In this study, a DIS model for KD was developed based on a combination of machine-

learning techniques and the inferred fractions of eight immune cells. Using the DIS, KD 

Figure 2.15 Biological processes and pathways in KD children with different DIS. 

Gene sets were obtained from (A) Hallmark, (B) KEGG and (C) BioCarta on MSigDB. 

Top eight results are displayed in different colors based on their enrichment scores in 

each figure. This figure was adapted from Du et al. [126]. 
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and FC children could be distinguished well in the test set (AUC = 0.80). In addition, we 

scrutinized the functional contributions of the immune-related molecules (i.e., 

interleukins) and pathways (i.e., IL-6/JAK/STAT3 pathways) in KD. It is important to 

note that because all the analysed data were obtained from GEO database, its 

practicability and generalizability might be limited to a certain extent. Our results should, 

therefore, be ideally prospectively validated. 

To date, numerous investigations have well-reported the influence of the immune 

microenvironment on KD pathogenesis, and there is a consensus among them that the 

innate immune system is crucial during KD acute phase. In particular, 

monocyte/macrophage and neutrophil levels were markedly increased in KD children 

[24, 53, 54]. According to our results, these high-throughput studies were also in 

agreement [24, 54]. Our DIS focused heavily on macrophages and neutrophils. Since 

experimental validation was lacking, we had to rely on computational analyses for 

biological procedures. These analyses, however, were speculative necessarily. The 

results of this study suggested that innate immune-related genes (i.e., certain 

chemokines and S100 proteins) and signaling pathways (i.e., TNFα signaling and IL-

6/JAK/STAT3 pathways) could contribute to a high DIS. Moreover, researchers have 

noticed that KD and FC differed due to imbalances in T cell subsets in the body. 

Moreover, the CD4+/CD8+ T ratio in KD patients is significantly higher than that in FC 

patients, according to the studies of Furukawa et al. [138] and Ding et al. [53]. To a 

certain extent, our results supported this finding. It is nevertheless likely that B cell 

subsets are involved in KD, based on Xu et al.'s findings [142]. In contrast, in our 

diagnostic score, plasma cells negatively impacted the probability for KD and both 

groups exhibited similar proportions of naïve and memory B cells. One reason for this 

may be that Xu et al. had made comparison with healthy controls rather than febrile 

controls, and another reason may be that the presence of an infection could be 

indicated by certain B cell subsets.  

Currently, the diagnosis of KD is based on clinical criteria along with additional 

non-specific laboratory testing in certain cases. [15, 129, 132]. Due to their mutual 

clinical manifestations, nevertheless, it is possible to confuse KD with other febrile 

illnesses including infections, leading to delays in treatment [128, 129, 143]. 

Conversely, underdiagnosed cases may be overtreated with intravenous 

immunoglobulin and/or other immunosuppressants [35]. The development of a precise 

biomarker that can accurately differentiate between KD and infectious febrile diseases 

would be a significant breakthrough, as it would decrease improper treatment and 

enable prompt intravenous immunoglobulin therapy for true cases. Our current 

diagnostic model was created as a potential biomarker by utilizing machine-learning 
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techniques on high-throughput data, instead of solely relying on clinical features. The 

ROC curves demonstrated that in either internal or external prediction settings, the DIS 

model exhibits an acceptable level of performance. Nonetheless, this DIS model’s 

performance still needs to be compared with that of the current clinical KD-diagnostic 

algorithm, which necessitates further studies.  

As an immune-related disease, immunological methods may potentially be used to 

identify KD. However, immunohistochemistry or flow cytometry may not be practical for 

frequent application [130]. High-throughput methods, on the other hand, may be 

suitable for comparing the characterization of the immune landscape in KD and febrile 

disease in children. Although some studies have identified certain transcriptomic 

biomarkers for KD diagnosis [35, 37, 132], they did not fully characterize the immune 

landscape. By integrating high-throughput data with enumeration of immune cell types, 

CIBERSORT could potentially offer a solution for this challenge. 

There are some limitations to this study, which we acknowledge. Firstly, the DIS 

was derived from public datasets, where complete clinical information for each patient 

remained difficult to obtain. However, characteristics like ethnicity may have an impact 

on the variability of gene expression patterns. Secondly, batch effects may occur when 

we combined data from various microarray datasets. However, the results of PCA 

indicated that the majority of batch effects were corrected by the "ComBat" algorithm. 

Thirdly, mislabeling for some patients with KD or febrile disease by the provider of 

datasets we used can introduce bias into our analysis. It is necessary for prospective 

studies, therefore, to have a larger sample size and data collected in a more 

standardized process. Lastly, a bias may be introduced when comparing patients with 

different lengths of time from disease onset, and unfortunately, the datasets used in our 

study did not provide complete information on this aspect. Consequently, in the data 

collection of future studies, “days of illness” should be considered a significant factor.  

2.5 Conclusion 

In summary, we developed a potential predictive algorithm, namely DIS, for early 

diagnosis of KD by using CIBERSORT-derived fractions of immune cell types. 

However, future studies are required to further validate the DIS and ideally assimilate it 

into a novel clinical diagnostic model to improve the accuracy of KD diagnosis. 
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3. Integration of Basement Membrane and 

Immunogenic Cell Death Patterns Predicts the 

Prognosis in Uveal Melanoma  

3.1 Introduction 

Uveal melanoma (UVM) is an infrequent but formidable type of malignancy that 

originates from melanocytes within the ocular region [38]. Despite the recent treatment 

improvements, up to 50% of patients experience metastasis within a decade, rendering 

it a highly lethal disease [144]. In the recent decade, Immunotherapies have been 

approved for melanoma treatment, which offers hope for UVM patients. However, only 

under 5% of patients show a clinical response [145]. Therefore, there has been an 

urgent requirement for a novel algorithm for predicting the response to UVM 

immunotherapy. 

The tumor microenvironment (TME) is comprised of diverse non-tumor cellular 

populations, such as immune cells and stromal cellular elements including extracellular 

matrices [81, 87, 146]. Researches over the past decade have proved the pivotal 

function of TME in the development and metastasis of UVM [56, 147]. Specifically, as 

two predominant components in UVM, the tumor-associated macrophages (TAMs) 

facilitate metastasis of tumor cells [148], while tumor-infiltrating lymphocytes (TILs) are 

strongly related to poor prognosis and immunotherapeutic response [149, 150]. In 

order to foster new approaches for prognostic and/or therapeutic prediction, a 

comprehensive understanding of the TME in UVM is imperative. 

Basement membranes (BMs) are specialized extracellular matrices that surround 

tissues and cells, and alterations in their composition and structure can promote tumor 

invasion and metastasis [95, 151, 152]. A recent investigation has revealed BM 

stiffness is a crucial factor in the metastasis formation, and the expression level of 

netrin-4, a type of BM protein, was significantly associated with melanoma outcomes 

[95]. As a type of programmed cell death, the immunogenic cell death (ICD) generates 

long-term immunological memory, making it a potential target for immunotherapy 

against UVM [99, 153]. There is accumulating literature suggest that in the context of  

ICD, a variety of damage-associated molecular patterns (DAMPs) are released, which 

stimulate the maturation and recruitment of antigen-presenting cells to initiate adaptive 
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immunity, and have potential predictive value for immunotherapy efficacy [153, 154]. 

Although BM and ICD are crucial in the progression and metastasis of UVM, there 

remains a paucity of studies on their potential for developing predictive models.  

The objective of this study was to identify the roles of the BM and ICD patterns in 

UVM progression, then exploit them to develop a predictive algorithm for UVM 

prognosis and immunotherapeutic response strategies.  

 

3.2 Material and methods 

3.2.1 Data sources and preprocessing  

Table 3.1 summarizes the detailed information of all datasets involved in this study. For 

the training set, we used the TCGA-UVM cohort, which contains fragments-per-

kilobase-per-million (FPKM)-normalized RNA-seq data with clinical information and 

were downloaded from the UCSC Xena browser (https://xenabrowser.net/datapages/). 

Next, these FPKM values were transformed into transcripts-per-kilobase-million (TPM) 

values, whose distribution is more similar to microarrays profile and more comparable 

between samples [155].  

To obtain data from the GEO database, we used the following search strategy: 

(("Expression profiling by array" [DataSet Type] OR "expression profiling by high 

throughput sequencing" [DataSet Type]) AND ("Homo sapiens" [Organism]) AND 

((Uveal Neoplasms [MeSH Terms]) OR (((((((((((Uveal neoplasm [Title]) OR Uveal 

cancer [Title]) OR Uveal tumor[Title]) OR Uveal melanoma [Title]) OR intraocular 

neoplasm [Title]) OR intraocular cancer [Title]) OR intraocular tumor [Title]) OR 

intraocular melanoma [Title]) OR eye neoplasm [Title]) OR eye cancer [Title]) OR eye 

tumor [Title]) OR eye melanoma [Title])). Initially, there were 29 items recognized (until 

2022). Next, we selected only those subject to the following 1) prognostic information 

provided; 2) sample collected from tissues in UVM patient; 3) not a SuperSeries or 

repeated series. After filtering, we obtained three series with survival data: GSE22138, 

GSE44295, and GSE39717, which would subsequently be used as the validation and 

test cohort. Microarray gene expression data on Illumina® platform were processed 

with the "lumi" R package [134], while data on Affymetrix® were processed with the 

"Affy" and “limma” R package [120]. In detecting a gene by multiple probes, only the 

one with the highest level was selected. 
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Table 3.1 Information of UVM datasets 

Note: *, Two of these patients lacked survival data and were excluded. OS, overall survival; 

MFS, metastasis-free survival.  

 

3.2.2 Molecular subtype identification 

The unsupervised consensus clustering method for analysis of a certain gene set was 

employed to discover discrete subtypes based on Ward’s linkage and Euclidean 

distance [156]. See Section 1.6.2 for more details. 

3.2.3 DEG analysis and functional enrichment analysis 

DEGs between subtypes were determined with significance criteria as false discovery 

rate (FDR) < 0.05 and | log2 (Fold change) | > 1.0 using the “limma” R package [120]. 

See Section 1.6.3 for more details. Functional enrichment analyses were implemented 

as described in Section 2.2.3. 

3.2.4 Immune microenvironment characterization 

CIBERSORT was implemented as described in Section 2.2.2. The computation of the 

Estimate-Stromal-Immune scores for each UVM sample was performed using the 

“ESTIMATE” R package [8]. See Section 1.6.5 for more details.  

3.2.5 Survival prediction model construction and validation 

In order to identify a biomarker that better integrates the basement membrane (BM) 

and immunogenic cell death (ICD) patterns, we have attempted three options of 

algorithms based on the identified subtypes of BM and ICD in the training set. These 

algorithms were: 
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• Model I, based on the Separate-LASSO algorithm: 

 

 

• Model II, based on the IPF-LASSO algorithm: 

 

 

• Model III, based on the PCA algorithm: 

 

 

where P is the expression of gene whose Cox coefficient is positive, and N is the 

expression of gene whose Cox coefficient is negative. 

  

Here, “Separate-LASSO” refers to the following procedure: 1) apply standard 

LASSO separately to each of the two gene sets; 2) divide the patients into respective 

risk groups according to the results of two gene-set-based LASSO models separately; 

3) combine the primarily grouping results to develop the classifier. See Section 1.6.1 

for more details of modeling algorithms and their metrics of performance (i.e., time-

dependent ROC curves).  

Subsequently, an independent validation cohort was used to compare the 

capability of the three models and identity the most optimal algorithm as our risk 

scoring model. Furthermore, we used two independent GEO datasets as the test 

cohorts to assess the generalization ability of the selected model. Independent 

prognostic factors were determined using Cox regression models and visualized with 

the “forestplot” R package. Moreover, we incorporated clinical features to generated a 

nomogram and its calibration curves of 3- and 5-year survival, using the “rms” and 

“regplot” R package. Decision curve analysis (DCA) was conducted to determine the 

suitability of our established nomogram for clinical use [157]. The detailed study design 

is shown in Figure 3.1. 

3.2.6 Other statistical analysis 

𝑩𝑴𝒔𝒄𝒐𝒓𝒆 =  ∑ 𝑪𝒐𝒆𝒇(𝒊) ×𝟏𝟎
𝒊=𝟏 𝒆𝒙𝒑𝒓(𝒊);   𝑰𝑪𝑫𝒔𝒄𝒐𝒓𝒆 =  ∑ 𝑪𝒐𝒆𝒇(𝒊) ×𝟖

𝒊=𝟏 𝒆𝒙𝒑𝒓(𝒊) 

𝑩𝑴𝑰𝑪𝑫 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 :  High 𝑩𝑴– High 𝑰𝑪𝑫,  Low 𝑩𝑴– Low 𝑰𝑪𝑫,   Mixed 

𝑩𝑴𝑰𝑪𝑫𝒔𝒄𝒐𝒓𝒆 = 𝑩𝑴𝒔𝒄𝒐𝒓𝒆 + 𝑰𝑪𝑫𝒔𝒄𝒐𝒓𝒆 

𝑩𝑴𝒔𝒄𝒐𝒓𝒆 =  ∑ 𝑪𝒐𝒆𝒇(𝒊) ×𝟏𝟎
𝒊=𝟏 𝒆𝒙𝒑𝒓(𝒊);   𝑰𝑪𝑫𝒔𝒄𝒐𝒓𝒆 =  ∑ 𝑪𝒐𝒆𝒇(𝒊) ×𝟕

𝒊=𝟏 𝒆𝒙𝒑𝒓(𝒊) 

𝑩𝑴𝒔𝒄𝒐𝒓𝒆 = (∑𝑷𝑪𝟏𝑩𝑴.𝑷 + ∑𝑷𝑪𝟐𝑩𝑴.𝑷) − (∑𝑷𝑪𝟏𝑩𝑴.𝑵 + ∑𝑷𝑪𝟐𝑩𝑴.𝑵) 

𝑰𝑪𝑫𝒔𝒄𝒐𝒓𝒆 = (∑𝑷𝑪𝟏𝑰𝑪𝑫.𝑷 + ∑𝑷𝑪𝟐𝑰𝑪𝑫.𝑷) − (∑𝑷𝑪𝟏𝑰𝑪𝑫.𝑵 + ∑𝑷𝑪𝟐𝑰𝑪𝑫.𝑵) 

𝑩𝑴𝑰𝑪𝑫 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓 :  High 𝑩𝑴– High 𝑰𝑪𝑫,  Low 𝑩𝑴– Low 𝑰𝑪𝑫,   Mixed 
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Group comparisons were performed using the Wilcoxon’s test and Fisher’s exact test 

for continuous variables and categorical variables, respectively. Kruskal-Wallis tests 

were used multiple group comparisons. Spearman’s correlation coefficient was used to 

analyze correlations between Estimate-Stromal-Immune scores and the BMICDscore. 

The Boruta dimensionality reduction was performed using “Boruta” R package [158]. All 

statistical tests were two-sided. Statistical significances were all set at p < 0.05. 

Figure 3.1 Overview of the study design. Abbreviations: BM, basement membrane; 

ICD, immunogenic cell death; DEGs, differentially expressed genes; MFS, metastasis-

free survival. 
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3.3 Results 

3.3.1 Characteristics of participants 

According to the screening strategy outlined in Section 3.2.1, we identified a TCGA 

dataset with 80 samples containing survival data, as well as three GEO datasets 

(GSE22138, GSE44295, and GSE39717) with 63, 57, and 30 patients with survival 

data, respectively. The TCGA-UVM cohort, which served as the training set, consisted 

of 57 alive patients and 23 deceased patients, while the GSE22138 (validation set) and 

GSE44295 (test set) had alive: deceased ratios of 28:35 and 33:24, respectively. For 

assessing the predictive power to other survival outcomes, we selected the GSE39717 

dataset with metastasis as the endpoint outcome, which was comprised of eight 

metastasis cases and 22 non-metastasis cases. In Table 3.2, we compared the 

baseline data and clinical characteristics of the study cohorts.  

 

Table 3.2 Clinical and demographic characteristics in all UVM datasets. 

 
Training 

 
Validation 

 
Test 

 
TCGA-UVM 

 
GSE22138 

 
GSE44295 GSE39717 

Number of patients 80   63   57 30 

Age, months 
61.5 

[51.0, 74.2] 
  

62.1 

[52.1, 69.1] 
  NA 

62.5 

[54.2, 67.8] 

Sex             

Male   45 (56.2)      39 (61.9)      32 (56.1)    23 (76.7)  

Female   35 (43.8)      24 (38.1)      25 (43.9)     7 (23.3)  

Survival             

Alive   57 (71.2)      28 (44.4)      33 (57.9)  NA 

Deceased   23 (28.7)      35 (55.6)      24 (42.1)  NA 

Metastasis             

No   73 (96.1)    NA   NA   22 (73.3)  

Yes    3 ( 3.9)    NA   NA    8 (26.7)  

Survival time 
26.1 

[14.9, 39.3] 
  

32.1 

[14.9, 65.7] 
  

39.5 

[26.4, 52.8] 

22.1 

[8.4, 37.3] 

Clinical stage             

II   36 (45.0)    —   — — 

III   40 (50.0)    —   — — 

IV    4 ( 5.0)    —   — — 

T stage     
 

      

T2    4 ( 5.0)    —   — — 
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T3   36 (45.0)    —   — — 

T4   39 (48.8)    —   — — 

NA    1 ( 1.3)    —   — — 

M stage      
 

      

M0   76 (95.0)    —   — — 

M1    4 ( 5.0)    —   — — 

Note: There are two types of data presented: median [IQR] or n (%). NA, not applicable. 

 

3.3.2 Identification of BM and ICD subtypes in UVM patients 

We used the unsupervised-consensus-clustering approach introduced in Section 1.6.2 

and Section 3.3.2 to identify the BM and ICD subtypes of UVM. Jayadev et al. [97] and 

Garg et al. [159] have summarized 224 major BM-related genes and 34 major ICD-

related genes, respectively, through large-scale studies, which we used as gene sets 

for UVM subtyping. After 1,000 iterations, it was clear from the consensus clustering 

results that the highest variability interpretation was observed in both BM (Figure 3.2) 

and ICD (Figure 3.3) subtypes when patients were divided into two clusters. We 

named the two subtypes based on each gene set as BMtype1/BMtype2 and 

ICDtype1/ICDtype2, respectively. Survival analysis using K-M curves revealed that 

UVM patients’ overall survival (OS) probability was statistically significantly different 

between subtypes (both in BMtypes and ICDtypes; log-rank test, both p values are less 

than 0.0001; Figure 3.4). BMtype1 and ICDtype1 showed the prominent survival 

advantage compared to BMtype2 and ICDtype2, respectively. Besides, we employed 

heat maps utilizing hierarchical clustering to further depict the intrinsic distinctions 

between BM-related or ICD-related genes and clinical features among these subtypes. 

Results indicated that there were a higher proportion of death and increased severities 

of various tumor stages in BMtype2 patients, where most BM-related genes were 

significantly up-regulated (Figure 3.5),  and we observed a similar trend in ICDtype2, 

where most ICD-related genes were significantly up-regulated  (Figure 3.6). 
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Figure 3.2 Tumor BM-based subtyping of patients from TCGA-UVM cohort. 

Consensus matrix heat maps for each k (the number of selected clusters). 
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Figure 3.3 Tumor ICD-based subtyping of patients from TCGA-UVM cohort. 

Consensus matrix heat maps for each k (the number of selected clusters). 
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Figure 3.4 Kaplan–Meier (K-M) curves for the OS of patients in different BMtypes 

(A) and ICDtypes (B) in the TCGA-UVM cohort. 

 

Figure 3.5 Expression of BM—related genes in TCGA-UVM cohort presented as a 

heat map. Unsupervised clustering was performed with Hierarchical clustering. 

Columns represent UVM patients, while rows represent BM-related genes. 
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3.3.3 Immune landscape in different subtypes  

Next, by using the CIBERSORT algorithm, we characterized the tumor 

microenvironment (TME) in different UVM subtypes. BMtype2 was characterized by 

elevated infiltration of M1 macrophages, CD8+ and follicular helper T cells but 

depressed infiltration of monocytes, naïve B cells, and CD4+ memory resting T cells, 

compared to BMtype1 (Figure 3.7A). ICDtype2 exhibited high infiltration levels of M1 

macrophages, and activated CD4+ memory, CD8+, follicular helper, and γδ T cells  

compared to ICDtype1, and its cell composition at low infiltration levels was the same 

as BMtype2 (Figure 3.7B). 

 

Figure 3.6 Expression of ICD—related genes in TCGA-UVM cohort presented as a 

heat map. Unsupervised clustering was performed with Hierarchical clustering. 

Columns represent UVM patients, while rows represent ICD-related genes. 
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Figure 3.7 Compositions of TME immune cell types expressed in BMtypes (A) 

and ICDtypes (B). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not 

significant. 
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3.3.4 Biological processes and clinical features associated 

with different subtypes 

We identified the DEGs between BMtype1 and BMtype2, and between ICDtype1 and 

ICDtype2, respectively, to scrutinize the potential molecular mechanism associated 

with them, and provide the features for the construction of predictive model. According 

to Figure 3.8, a total of 1,084 DEGs between BMtypes and 772 DEGs between 

ICDtypes were identified, which were subsequently exploited for model construction. 

To better understand the underlying biological processes involved in BMtypes 

and ICDtypes, we analyzed the enriched “Hallmark” and “KEGG” pathways using 

GSEA approach. In BMtype2, both “Hallmark” and “KEGG”  GSEA plots revealed 

principal up-regulation of pathways of immune response, cytokine and chemokine 

signaling, cell cycle and proliferation, and cell adhesion, which are crucial for tumor 

progression, invasion and metastasis (Figure 3.9A,B). Again, a similar pathway 

enriched phenomenon was observed in ICDtype2 (Figure 3.9C,D). 

The next investigation was to compare the differences of clinical characteristics 

between different subtypes, as shown in those stacked bar charts in Figure 3.10. In 

both BMtypes and ICDtypes, we observed the significant differences of survival rates 

between different subtypes, or, more precisely, alive individuals accounting for a major 

Figure 3.8 Volcano plots for DEGs between BMtype1 and BMtype2 (A), and 

between ICDtype1 and ICDtype2 (B) in TCGA-UVM cohort. 
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percentage of either BMtype2 or ICDtype2. The compositional difference of clinical 

stages was seen in BMtypes, whereas no statistical difference was seen in ICDtypes. 

Moreover, there were no statistical difference presented in other clinical traits, even 

though the proportion of T stages exhibited a few trends. Future work with a larger 

sample size would be required to confirm these trends. 

 

Figure 3.9 GSEA showing signaling pathways and biological processes in 

different BMtypes (A,B) and ICDtypes (C,D). Gene sets were obtained from 

“Hallmark” (A,C) and "KEGG" (B,D) on MSigDB. The top eight results are displayed in 

different colors based on their enrichment scores in each figure. 
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Figure 3.10 Proportions of patients with different survival statuses (A,G), 

genders (B,H), ages (C,I), clinical stages (D,J), T stages (E,K), and M stages (F,L) 

between different BMtypes (A-F) and ICDtypes (G-L) in the TCGA-UVM cohort. 
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3.3.5 Risk score calculation and classifier construction using 

Separate-LASSO algorithm  

We built and compared three predictive models with different algorithms to find the 

optimal one. To develop the first model, we used Separate-LASSO algorithm for 

survival outcomes, as described in Section 3.2.5. In the training set, based on the ideal 

value of penalty regularization λ with 10-fold cross-validation [139], the BMscore 

including ten genes and the ICDscore including eight genes were ultimately found 

(Figure 3.11A-D). Detailed parameters with coefficients were listed in Table 3.3. K-M 

curves exhibited statistically significant differences in OS probability between the high- 

and low-risk group in both BMscore and ICDscore (both two log-rank p<0.001; Figure 

3.11E,F). Both high BMscore and high ICDscore were associated with the unfavorable 

survival outcome. The time-dependent ROC curves were used to estimate the 

performance of two predictive scores, which indicated the good power of both two 

models for predicting the OS with different time points for UVM patients (BMscore: 1-, 

3-, and 5-year OS AUC = 0.922, 0.970 and 0.948, respectively; ICDscore: 1-, 3-, and 5-

year OS AUC = 0.896, 0.969, and 0.948, respectively; Figure 3.12).  

Considering the combination of two risk scores simultaneously could be 

preferable to characterize the tumor progression, we then constructed a BMICD 

classifier according to the risk groups based on two gene sets (BMscore: “High-

BMscore” group and “Low-BMscore” group; ICDscore: “High-ICDscore” group and 

“Low-ICDscore” group), consisting of three groups: “High BM–High ICD”, “Mixed”, and 

“Low-BM–Low ICD”. According to the OS curves, “High BM–High ICD” patients had the 

worst prognostic outcomes; between the other two groups, however, no significant 

difference was found (Figure 3.13A). We believe it might be due to the limited sample 

size of the “Mixed” group (only 2 patients). Additionally, AUCs of 1-, 3-, and 5-year OS 

prediction were 0.796, 0.908, and 0.762, respectively (Figure 3.13B). Notably, the K-M 

curves for the “Low-BM–Low ICD” group and “Mixed” group were overlapped until the 

time point of 36 months, which indicated that there was no statistically significant 

difference between the two groups. Therefore, there was only one cutoff point in their 

corresponding ROC curve (of either 1- or 3-year OS). We speculated the reason may 

be that the sample size of the “Mixed” group was insufficient, with only 2 cases. 
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Figure 3.11 Performing Separate-LASSO algorithm to calculate the BMscore 

(A,C,E) and the ICDscore (B,D,F) in the training set. (A, B) Tuning the model using 

a 10-fold cross-validation. (C, D) Fractions of candidate genes with different paths of 

LASSO coefficient. (E, F) K-M curves for the OS of UVM patients.  
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Figure 3.12  ROC curves for the BMscore (A) and ICDscore (B) depicting the AUCs 

of 1-, 3-, and 5-year OS in the TCGA-UVM cohort (training set). 

Figure 3.13 Construction and evaluation of the BMICD classifier in the TCGA-

UVM cohort (training set). (A) K-M curves for the OS of three BMICD group. (B) ROC 

curves depicting the AUCs of 1-, 3-, and 5-year OS among three BMICD group. 
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Table 3.3 Coefficients of selected genes by Separate-LASSO algorithm 

Gene Coefficient Gene set 

NECAB2 0.005 BM 

CA12 0.289 BM 

ARX 0.071 BM 

KDELR3 0.171 BM 

ADAM12 0.071 BM 

PARP8 0.614 BM 

MMP9 0.105 BM 

POLA1 0.115 BM 

SLC45A2 0.016 BM 

S100A13 0.301 BM 

CA12 0.295 ICD 

KDELR3 0.187 ICD 

PARP8 0.486 ICD 

MMP9 0.119 ICD 

SLCO5A1 0.038 ICD 

TJP2 -0.139 ICD 

CHRNB2 -0.063 ICD 

SH3D19 -0.006 ICD 

Abbreviations: BM, basement membrane; ICD, immunogenic cell death. 

 

3.3.6 BMscore, ICDscore and BMICDscore calculation using 

IPF-LASSO algorithm 

For the second model, we tried to introduce the “modality” to the same gene set and 

separate the whole dataset into two blocks based on two modalities, so that we can 

directly calculate the incorporated risk score simultaneously containing two gene sets. 

We assigned penalty factors to each block and chose the best model according to the 

cross-validated prediction error. Finally, we got the BMICDscore including ten BM 

genes (also served as BMscore) and seven ICD genes (also served as ICDscore). 

Detailed parameters with coefficients were listed in Table 3.4. K-M curves depicted the 

statistically significant differences in OS between high- and low-risk group in all risk 

scores (all log-rank p values are less than 0.001; Figure 3.14). The time-dependent 

ROC curves showcased predictive performance of the OS with different time points 

(BMscore: 1-, 3-, and 5-year OS AUC = 0.924, 0.962 and 0.948, respectively; 

ICDscore: 1-, 3-, and 5-year OS AUC = 0.843, 0.885, and 0.818, respectively; 

BMICDscore: 1-, 3-, and 5-year OS AUC = 0.921, 0.966, and 0.948, respectively) , 

suggesting the good power of all models for UVM prognostic prediction. 
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Figure 3.14 Calculation and evaluation of BMscore (A, B), ICDscore (C,D) and 

BMICDscore (E, F) based on IPF-LASSO algorithm in the TCGA-UVM cohort 

(training set). (A, C, E) K-M curves for the OS of BMscore (A), ICDscore (C) and 

BMICDscore (E). (B, D, F) ROC curves depicting the AUCs of 1-, 3-, and 5-year OS for 

BMscore (B), ICDscore (D) and BMICDscore (F). 



 61 / 96 

- 61 - 

 

Table 3.4 Coefficients of selected genes by IPF-LASSO algorithm 

Gene Coefficient Gene set 

S100A4 0.118 BM 

NECAB2 0.140 BM 

CA12 0.326 BM 

ARX 0.125 BM 

MATK 0.008 BM 

MMP9 0.070 BM 

ANKRD30B 0.079 BM 

PCP4 -0.053 BM 

MSC -0.048 BM 

GSTA3 -0.185 BM 

IGJ 0.006 ICD 

CA12 0.015 ICD 

MMP9 0.023 ICD 

MSC -0.010 ICD 

GSTA3 -0.004 ICD 

HMCN1 -0.124 ICD 

PDE6G -0.050 ICD 

Abbreviations: BM, basement membrane; ICD, immunogenic cell death. 

 

3.3.7 Feature selection for the PCA algorithm 

Before performing PCA algorithm, we attempted to reduce the noise or redundant 

genes in the DEGs of both BMtypes and ICDtypes. As a dimensionality reduction 

approach based on the random forest algorithm (Kursa, 2010), “Boruta” algorithm was 

conducted here. Table 3.5 and Table 3.6 list all included genes and excluded genes in 

the DEGs of  both BMtypes and ICDtypes, respectively.  

 

Table 3.5 BM-gene selection by Boruta algorithm 

Decision Gene 
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Confirmed 

(n=126) 

HTR2B, CHAC1, COL9A3, ECM1, HTRA1, MYEOV, PLN, GEM, CARD11, PPM1K, 

PTP4A3, HTRA3, SDC2, DLL4, PRKCDBP, RAB31, NQO1, HES6, MRC2, ARMC9, 

IGFBP2, KIAA0196, SULF2, FABP3, CA12, TGFBI, MAP1A, ARC, PRKDC, CALHM2, FN1, 

FKBP11, TLCD1, JAG2, FKBP10, C4A, AMN, ITGA5, MAPK12, SPHK1, ASB9, COL18A1, 

ATP8B2, SGSM2, TRIB1, GREB1, TSC22D1, PAPSS2, ELFN1, OAF, SPARC, CSPG4, 

ZNF467, TTYH3, GPC4, SERPINE1, COL5A1, BASP1, LAPTM4B, SOCS2, TCIRG1, 

ECE1, BCL3, MGST2, DECR1, PDGFRB, CYC1, CDH24, ADCY3, PDLIM4, FOXD1, 

MFSD3, GAS8, DENND3, HM13, APLNR, ACADVL, DHRS7B, GPR162, PREX1, COL5A3, 

FAM105A, G6PC3, YWHAZ, DUSP14, NSMF, LIG3, VPS53, VOPP1, PVRL1, PLEKHG2, 

LAYN, KIAA1462, RFTN1, PLXDC1, GPAA1, CAMK1, TNFRSF1A, LTBR, CLPB, TRIL, 

DDRGK1, SHC1, AFAP1L2, SDHA, NDUFB9, TMEM208, BAX, GJA4, POR, GPR143, 

SLC35F6, DLST, SHPK, ACAD10, ALG1, GBA, FOXRED1, ITM2C, AIFM2, TM4SF1, 

SKIV2L, ZHX3, CTF1, ZNF835, LY6G5C 

Tentative 

(n=56) 

SPON2, IRX1, FERMT3, GPR56, CADM1, TMEM119, ASTN2, KLHL38, RCOR2, PRKCA, 

BAI1, COX7A1, ADAM11, PAM, GGT1, KLHL30, KDELR3, COL4A2, ASAP1, SLC16 A8, 

STEAP3, P2RX6, ITFG1, HOGA1, FAM132B, DERL1, TCEB1, PTPLA, THY1, BAI2, 

ADCK5, C8orf33, PPAP2B, ANPEP, SORL1, ODF3L1, P4HA2, KDR, PPIC, CKS2, MAF, 

MROH1, ATP8B3, VASH1, FADS2, QDPR, C8orf82, FOXS1, MYO1G, ERVMER34-1, 

CXorf65, RASL11B, RENBP, EMC7 

Rejected 

(n=902) 

VGF, SLC38A5, CYSLTR2, EEF1A2, PTGER4, TNFRSF19, WARS, KIT, HSPB8, CELF2, 

VTN, AHNAK2, S100A4, ISM1, GRID1, TRPV2, NT5E, SSX5, UCHL1, APOL1, HLA-DRB5, 

TMEM200B, LINGO1, GDF11, NECAB2, SLC16A6, TFPI2, RARRES2, C1S, NKG7, 

SPARCL1, C1R, B2M, SEL1L3, FCGR3A, HLA-DRA, S100A1, CCL5, HLA-B, HLA-DRB1, 

ADAM23, ADCY1, CDH1, CITED1, GALNT18, CLIP3, FIBCD1, CCNO, IRF1, HLA-DQB1, 

C1orf95, HLA-DQA1, TTR, TSPYL5, GBP1, ARX, C4B, LAG3, TAP1, ITPR2, PHLDA2, 

ADAMTS2, MMP2, THBS2, KCTD17, LY96, PSMB9, C1orf116, LYZ, FABP5, SIPA1L2, 

C1QB, CST7, CD74, DYSF, HTATIP2, IFI27, LOXL4, PFKP, CPLX1, HLA-DPA1, CYGB, 

CPXM1, PANX2, TMEM255A, PLEKHG4B, NFATC4, CD3D, CEBPD, COL1A1, IQGAP1, 

CPVL, KIF17, PCDHGA12, CDC25B, C1QC, C2, SECTM1, SQLE, FAM26F, CD8A, ME1, 

ATP1B2, FZD7, PIK3C2A, CXCL9, CDKN1A, GBP2, GZMA, RRM2B, ATP1B1, LHFP, 

FRZB, MAL2, ISG20, CRABP2, SGK1, CXCL10, IGFBP7, SCN1B, SSX1, BAG2, GJA1, 

MATK, MGLL, PXDN, TYMP, CD2, MT1E, SLC1A4, SULT1A1, CD209, MDFI, GDF15, 

CD79B, COL4A1, IMPA1, C1QA, COL3A1, RAB2A, CECR1, MAN1C1, PROS1, STAT1, 

CHI3L1, SLCO5A1, RTN4RL1, DNAJC3, MGST1, ARHGDIG, SOAT1, HLA-DOA, 

TNFRSF1B, APOL3, NRG3, LAPTM5, ALDH1L2, CD3E, JPH1, DNAJC13, RIMS2, HLA-C, 

NT5DC3, MTDH, NOV, LYN, FEZ1, AQP1, CD27, FKBP5, TAF2, SLC22A17, SCCPDH, 

SEPT2, KCNK1, SPESP1, HCN2, GPM6B, ITGAX, RPS6KA2, ADAM12, MRPS28, 

LGALS3, ARFGEF1, P4HA1, PRF1, GZMK, CPE, IL18BP, DKK3, STK32A, S100A6, GBP4, 

FMN1, RDX, FADS1, FBXL7, NLRC5, HLA-F, FOS, RAP1GAP, GPR176, SLC1A1, HLA-A, 

IL2RG, RARRES3, CD70, SPIDR, CTSO, TAPBPL, ADRA2A, TWIST2, IL32, SLC2A3, 

TRAM1, BST2, KIAA1644, STOM, BTN3A3, APOL6, PAEP, PARP8, NDUFA4L2, ABI3, 

CHSY3, OXCT1, TNFAIP2, NOX5, IFITM1, MDK, MMP9, EPDR1, WWTR1, VLDLR, 

ACSL1, ASS1, ATHL1, PRIMA1, LGALS1, ANKRD30B, FHDC1, ALG5, MAP1B, COL1A2, 

TGS1, YTHDF3, RMDN1, UBR5, KLF4, AK4, AGT, SLC29A4, IDH2, CNTNAP1, HLA-

DPB1, PSMB8, RNASE6, PCOLCE, SYT11, TPPP, PTGDS, NCALD, COTL1, COL22A1, 

PGM1, TSC22D3, TMEM70, JAG1, MCM4, LMAN1, FJX1, HLA-DQB2, SAP30, SNX25, 

REEP1, ZNF704, MRPL13, UBE2V2, CXCR4, TNFSF9, LYPLA1, PTPN13, HCLS1, 

MAP3K12, DOCK10, OLFM1, NSMCE4A, EFR3A, POLA1, GABRA5, ISG15, BAIAP2L2, 

FGF9, SFXN3, ASIP, IFI16, LCP1, ENO3, CCL4, FAM49B, COPS5, FLNC, ST3GAL1, 

SRD5A3, PHACTR1, PTPRU, SLC45A2, PTGS1, HLA-DQA2, OLIG1, AIF1, NSMAF, 

MPEG1, TCF12, HLA-DMA, NIPAL2, PLXNC1, HDAC4, SLC38A6, SMOC2, TRPM2, 

NPTX1, WIPI1, MRPL15, EMC2, MTFR1, ADM2, TMEM173, OMG, FAM173B, CD109, 

RASD2, VAV2, SOX1, BMPR1B, IDUA, GALNT14, CXXC5, POMC, SH3PXD2A, MDGA1, 

GNG4, CD53, SLC2A10, ETV7, UBD, FFAR3, MT1A, TSPAN10, SDCBP, GIMAP4, 

HRSP12, BCAT1, ATP6V1H, SCD5, WSB1, FGL2, MAFB, RASA3, SOCS3, CORO1A, 

SGCD, ANO6, RAC2, SCG3, EMID1, FOSL1, C3, CTSW, RTF1, ABHD3, NAAA, RGS1, 

SLC11A2, STK39, PIK3R3, ABCC4, MS4A7, MAPT, DUSP9, VSTM2L, CPQ, CSF2RA, 

SLC25A32, MR1, LRP1, B3GNT7, SMARCA5, TUBB3, GABRB3, FIG4, GADD45G, NBN, 
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B4GALNT3, CXCR3, LFNG, C1QL1, MET, THEM6, CRIP2, LAP3, RECQL, SPOCK1, 

TNFRSF21, NID1, FGFR1, IGFBP5, RAB15, TMEM176A, NOTCH3, HLA-DMB, GOLM1, 

GIMAP7, GLIS2, ALK, PTN, VCPIP1, APOD, SEPHS2, TBC1D1, TYROBP, COLGALT2, 

SLC38A3, IMPAD1, CDC27, HMOX1, ANKDD1A, CD7, PTPN6, RAPGEF4, LDB3, FMNL1, 

EHD2, HECTD1, LHB, ANXA4, UBXN2B, FAM167B, VWCE, DOK5, ATP6V1C1, KIAA0020, 

SIGLEC10, PCDHGC3, TMEM176B, LRRC39, ITGA6, C16orf45, OLFML3, ABCB7, SCX, 

SPON1, IGF2, WDR34, CD300A, SLAMF8, PSME4, NCOA2, TNFRSF12A, CHD7, 

FAM91A1, RNF139, TMEM64, PGM2, SLC16A2, PRDX4, SNCG, ANO9, UBE2W, SUMF2, 

CPM, MYOF, KCND3, SH3PXD2B, PDLIM1, MGAT5, GZMH, TCEA1, NSF, PECAM1, 

CORO6, EXOSC4, SUSD2, ACSBG1, SPTBN1, EMILIN3, SYNE2, OLFML2B, CLIC2, 

DPYSL3, ADAM10, PAG1, DCAF13, CD163L1, ULK4, HPSE, GFPT1, SQRDL, OXR1, 

CLCNKA, RNF19A, TMEM55A, TMEM68, TMSB4X, ITGAL, PITPNC1, UCP2, LDLRAD3, 

ID3, FAS, LCK, SLC9A3, B4GALNT4, LACTB2, CCDC140, TPR, HIP1, RAMP1, IL1R1, 

PCSK1, HLA-E, TRPM4, KIF21A, GMFG, SLC38A2, MS4A6A, MTERF3, HERC2, 

SLC38A8, XPOT, ALDH4A1, TSPAN5, LAMC1, RGS5, PHYHIP, COBL, SLC17A9, 

BTBD19, COQ2, ANXA1, THEMIS2, SASH3, OSGIN2, CTSC, CCDC74A, CA2, KATNAL2, 

PSRC1, EVA1B, PAQR8, MICAL1, ELP2, SGCB, SYK, IFI6, ACACB, STAT3, CD48, 

CORO2B, PBX3, SEC14L2, NUP88, IL10RA, KIF20A, FCER1G, CAPN3, CD8B, 

TNFAIP8L2, SPIRE1, CCDC64, GPC1, SRGAP2, ASPH, PLEKHO1, SLC52A2, PLA2G4C, 

CNTF, CD52, PCP4, LAMA5, COMT, EBI3, AUTS2, LST1, HEXB, CD93, OLFM2, SLITRK2, 

DDIT4L, FOXC1, COX6C, FPR3, IARS, RASSF2, MT2A, MXRA8, TERF1, RNF145, ILKAP, 

ZMYND8, NACC2, CALU, APP, NCS1, AZIN1, ABCA8, PPFIBP1, GZMB, ABCB10, RTTN, 

MDM2, ARMC1, MAN1A1, CLIC4, PTK2, MAP2, PKM, SYNJ2, PPAPDC1B, TRPV4, 

MAD1L1, PSTPIP1, VPS13B, RAD21, PDCD1, CASP1, FAM134B, NRD1, BATF, 

PCDHGB5, CTNND2, GLIPR2, P2RX4, IRF8, MC1R, GPR124, IL2RB, SIT1, SLC22A18, 

CCL18, SLC17A5, DHRS3, REEP2, INPP4B, TP53INP1, ZNF385A, CXCL12, KIAA1429, 

FSTL4, SLC6A17, LHFPL2, HCK, TPP2, CPNE7, NDUFAF1, LAMA1, SH2B3, LRRCC1, 

ANGPTL7, CCL4L1, SH2D5, SPATA18, EIF4G3, TMEM206, SH3RF3, STAM, POLR2K, 

ADAM33, A2M, CACNA1H, ZDHHC7, GPX8, TRIM47, IL12RB1, SLIT1, CBR3, HEXIM1, 

CD9, COX4I2, TFRC, C10orf54, WFDC1, ZNF469, CCDC109B, TRAK2, SIRPG, CNTFR, 

CPNE3, CA8, IDO1, ATP8B1, C8orf76, DNASE1L3, CDCA7, NOP58, GJA3, SEC24D, 

IAH1, BGN, CCRN4L, SEMA5A, NBL1, PKD2, NCF4, KIAA0513, C1orf21, DIP2A, PSMA3, 

HSPA5, CHST11, SORD, NKX2-4, DUSP5, S100A13, MEIS3, NRSN2, ABTB2, GIMAP6, 

LSP1, MUT, TMEM87B, SOS1, SFXN5, JKAMP, AP1S3, GALNT3, RBFOX2, RRM2, 

CDK5R1, HPN, C2CD2, CA14, VAT1L, GABRD, FKBP7, NES, RCAN2, AUH, RDH10, 

MAN2A1, MT1G, HLCS, GNPTAB, ASIC1, F2R, TAGLN2, VSIG4, PANX1, CTSS, IGFBP4, 

CD14, SNX22, PCED1B, EDA2R, VIMP, NUSAP1, MANBA, METTL7B, FAM98A, FGD5, 

GPER1, PHTF1, COL9A2, MBP, BTBD1, JUNB, CP, TMEM87A, IDE, SLC4A11, 

DCSTAMP, RGS16, ATP9A, CALM2, TGFB1, WAS, PLEKHF2, NR2F1, CORO1C, 

KIRREL, PEX2, TBCE, GSDMD, NELL2, DPY19L4, EVI2B, TMCO1, MTSS1, EMP3, 

SEPT11, ATP2A2, ATAD1, ADAM9, CCL3, CTSH, CTPS1, SELPLG, MSC, GSTA3, 

SYNPR, HHATL, AZGP1, CLEC11A, COX6A2, GPR27, LIMS2, ENPP2, EFS, FBXO17, 

SPP1, BCHE, MLIP, LNP1, IL12RB2, ROPN1B, RNF208, CHL1, MTUS1, MPZ, SLC44A3, 

CAMSAP3, GATA4, PALMD, PDE3A, RAPGEF3, DLL3, EDNRB, SLC25A38, LGI4, ACSF2, 

ANG, SSUH2, KLC3, PPARG, BEX1, MEGF10, RNF43, WNK4, SNCA, ZNF415, PPP1R3C, 

LMCD1, SATB1, KLK13, ZNF391, BAP1, ROPN1, ANKRD65, KIAA1045, TFAP2A, RBP7, 

GIPC3, RORC, BEX5, MUC7, HNMT, CPS1, GSTO2, SERPINB9, ALDH1L1, SHC4, FBP2, 

PLEKHG4, DNALI1, AHCYL2, ATAD3C, NR6A1, KCNK2, RPSAP58, ROBO1, MANEAL, 

HRASLS, NEDD9, COL11A1, PLXNB1, EFCAB1, C4orf19, IRF6, DUSP15, EXTL1, 

ZNF667, DCT, MAMSTR, PDE4B, SCIN, SORBS2, ZNF560, FAM71E1, PPP1R3B, L1CAM, 

MID1, RPL32, TUBB4A, NFIA, TFF3, PRRT4, TSGA10IP, YJEFN3, HFE, SH3D19, MYH14 

 

Table 3.6 ICD-gene selection by Boruta algorithm 

Decision Gene 
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Confirmed 

(n=100) 

HTR2B, CYSLTR2, VGF, CHAC1, LY96, HLA-DRB5, WARS, LAG3, CD3D, NKG7, CCL5, 

TAP1, CD74, CD8A, CD2, C1QB, GZMK, C1QC, HLA-DQB1, CD3E, IRF1, CD27, FAM26F, 

HLA-A, APOL6, HLA-E, CXCR3, HTATIP2, HLA-DOA, FGL2, CCL4, NKX2-4, CD8B, 

CLIC2, FABP3, ARMC9, CD209, CD53, SIT1, LCK, ADAMDEC1, SIRPG, BTN3A3, ITGAL, 

GIMAP7, RRM2B, PDCD1, TNFRSF1B, HLA-DMB, PTPRC, SIGLEC10, LAP3, IRF8, 

GZMB, CD163L1, RAP1GAP, CD300A, AP1S3, PTPN7, BTBD19, SPN, SLC2A10, 

TBC1D10C, CD247, SH2D1A, MDM2, ZAP70, BIN2, SLA2, APOL4, TIGIT, SEP15, 

EIF4G3, LAMA1, TNFRSF9, SAMSN1, CLCNKA, MLIP, WNK4, PPP1R3C, LMCD1, JUP, 

IFT122, EPHX2, RPL32, KIF7, NMNAT3, SLC7A2, ZNF853, SCGB3A1, ZBTB47, ZNF395, 

TCTN1, FAM86B1, MSRA, C8orf58, SORBS3, FAM181B, PCBP4, RPL29 

Tentative 

(n=41) 

CXCL9, CXCL10, GZMA, HSPB8, HLA-C, HLA-DQA1, ISG15, IL18BP, ADCY1, RNASE6, 

KIAA0196, ITGAX, MS4A7, EVI2B, MS4A6A, ABI3, MTDH, CAPZA1, CHSY3, FKBP10, 

TNFSF9, KDELR3, TRPM2, PARP8, TGS1, TMEM70, GREB1, CXCR6, CD86, SLC38A6, 

RNF208, ACSF2, GSTO2, H1FX, GPD1L, CENPV, FAM127C, GLTSCR2, SF3A2 

Rejected 

(n=631) 

HLA-B, ECM1, EEF1A2, APOL1, GBP1, HLA-DRA, LYZ, IFI27, BST2, HLA-DRB1, PSMB9, 

B2M, FCGR3A, S100A4, CST7, RARRES3, GBP2, MYEOV, TRPV2, HLA-F, HLA-DPA1, 

ISM1, C1QA, TNFRSF19, UBD, STAT1, COL22A1, IL2RG, GEM, HTRA1, LAPTM5, 

SLC16A6, APOL3, LGALS3, IFI6, ETV7, PTGER4, LCP1, ADAM23, CTSS, IGJ, SECTM1, 

PRF1, CELF2, GBP4, PTP4A3, PSMB8, SDC2, SPON2, TYMP, NQO1, NT5E, IFITM1, 

DLL4, RIMS2, HLA-DQA2, HLA-DQB2, UCHL1, C1S, CTSW, HLA-DPB1, CD52, CD48, 

CORO1A, SEL1L3, PAEP, ITPR2, IL32, PPM1K, AIF1, SLAMF8, TYROBP, GBP5, IDO1, 

SGK1, CITED1, PIK3C2A, C1R, NLRC5, RAB31, BATF, CADM1, RAC2, SASH3, GZMH, 

HLA-DMA, GIMAP4, MPEG1, FCER1G, KIT, BTN3A1, GGT1, CECR1, ISG20, TRIM22, 

TMEM119, SULF2, IMPA1, CCR5, EOMES, HCLS1, RGS1, PLN, GDF15, FERMT3, CD5L, 

KLHL38, NOV, PLEK, IL2RB, PHLDA2, CASP1, AHNAK2, ADAMTS2, TMSB4X, SLC38A5, 

C2, TMEM200B, FMN1, MATK, CDKN1A, SSX5, ARC, CARD11, IL12RB1, GPR56, 

MAP1A, CCL18, KIF17, STOM, MRC2, SLC6A17, CD7, IL10RA, THBS2, PRKDC, QPCT, 

MAL2, BAG2, PTPN6, FIBCD1, SNX25, TRIM69, GBP3, TAPBPL, LTB, RAB2A, IL1R1, 

SNX10, FAS, COL9A3, CCL3, CD70, VSIG4, ME1, IQGAP1, ARFGEF1, UCP2, DOK2, 

UBE2L6, S100A1, DCSTAMP, CA12, HTRA3, FAM91A1, C4B, CYBB, ANO9, CCL4L1, 

IGFBP7, S100A6, CXCL13, SSX1, LOXL4, KCND3, IGSF6, LCP2, SLAMF7, LYPLA1, 

TNFAIP2, C4A, TRAM1, EBI3, PRKCDBP, TGFBI, TAF2, GMFG, NBN, SLAMF6, CPVL, 

YTHDF3, GRID1, FKBP11, TMEM255A, FGF9, CD79B, FABP5, SELPLG, FAM49B, 

GALNT18, MRPS28, SDCBP, WAS, TNFAIP8L2, SLC1A1, ASTN2, LST1, NCF4, PANX2, 

FPR3, EFR3A, SIGLEC8, HCK, SOAT1, GDF11, PARP9, HRSP12, RASAL3, MRPL13, 

IGFBP2, EPSTI1, NIPAL2, PHACTR1, CYGB, SCPEP1, EMC2, ABCC2, CD14, PRKCA, 

HAVCR2, LAPTM4B, CD5, PLEKHG4B, BTN3A2, DERL1, ATP6V1C1, SPHK1, CRABP2, 

TSPYL5, WIPI1, CLIP3, SPI1, NPTX1, C1orf116, OMG, PFKP, TAP2, WWTR1, OAS2, 

CD163, MTFR1, PSRC1, CDC25B, ASS1, DOCK10, SOCS2, ITGB2, MAN1C1, OXR1, 

UBR5, LRRC39, VCPIP1, IKZF3, NFATC4, PLA2G7, ASAP1, TRIB1, TMEM64, TNFRSF21, 

MMP9, ABHD3, MRPL15, UBE2V2, NCKAP1L, UBE2W, MT1E, CEBPD, FAM167B, 

RMDN1, IFI16, APOL2, ALDH1L2, TCEB1, ASIP, SQRDL, CCNO, ARHGAP30, FASLG, 

ACSBG1, RNF139, GPM6B, ARMC1, DNAJC13, THEMIS2, TLCD1, LRRCC1, CTSO, 

LGALS1, CCL24, COPS5, FTL, CD109, CYC1, BCL3, SLCO5A1, MAFB, CLIC4, LGALS9, 

SQLE, SLIT1, PAM, GIMAP6, CALHM2, FZD7, CNTF, P4HA1, PCED1B, MTERF3, RDX, 

LACTB2, MGST1, DDX60, HMOX1, LYN, FOSL1, CSF2RA, TNFSF13B, SMARCA5, 

TMEM68, KCTD17, RB1CC1, DNAJC3, MS4A4A, TP53INP1, NSMAF, ATP1B1, MAP3K12, 

IFI44, PTCHD4, LHFPL3, AK4, PARP14, SPARCL1, FBXO32, AOAH, SLC38A2, NT5DC3, 

AGT, RNF145, PGM1, FCGR1A, TMEM51, XCL2, RECQL, PROS1, CD300LF, ARHGAP9, 

HHATL, AZGP1, MSC, COX6A2, ENPP2, CTF1, SYNPR, EFS, LIMS2, GSTA3, HPGD, 

SLC44A3, CAMSAP3, BEX1, CLEC11A, FBXO17, KLC3, ALDH1L1, KCNK2, GPR27, 

CHADL, CHL1, BCHE, EDNRB, SEMA6A, BEX5, SEMA3B, LNP1, PDE3A, COL11A1, 

SNCA, SLC25A38, GATA4, MPZ, KIAA1045, MTUS1, PRRT4, CPS1, PDK4, ERBB3, 

RAPGEF3, CHGB, BAP1, ROPN1B, KCNA5, PPARG, RAB34, FAM129A, PERP, DUSP15, 

SOX15, NEDD9, GIPC3, SATB1, ZNF835, DLC1, TFAP2A, GPR37, PLXNB1, HNMT, 

SERPINB9, PPP1R3B, LGI4, MYH14, RBPMS, OSBP2, RBP7, ACCSL, MANEAL, 

PLEKHG4, MATN2, MARC2, PALMD, KCNE4, DLL3, NDN, ATAD3C, FDFT1, ZNF391, 
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SHC4, RPSAP58, MAMSTR, GJB1, MID1, CDCA7L, CDC42EP1, TUBB4A, GJC3, ID4, 

SOBP, AFF3, IL12RB2, ABCA3, APOM, HRASLS, RFTN2, DNALI1, ARSE, PHYHD1, 

FAM71E1, KREMEN2, ME3, H2AFY2, EMCN, TJP2, KCNG2, FMOD, HMCN1, HSD17B8, 

ANKRD65, PHLDA1, ANG, POMGNT2, TIMP3, CA4, FHL2, PLCD1, OVOL1, MCF2, 

NR6A1, KCNQ5, ABHD14B, MEGF10, ROBO1, NUDT18, HDAC11, NFIA, CITED4, PALM, 

EFEMP2, ADRA2C, FBP2, COL11A2, ITGB4, RAMP2, SSUH2, ASB10, ABLIM1, YJEFN3, 

SULT1C4, RNF43, ZNF581, ZNF608, ALG1L, ZSCAN18, LYRM4, LTA4H, DUSP8, NRTN, 

RPL14, PDGFD, WIPF3, GYG2, RAB11FIP1, GRIK3, SLC6A15, MPPED2, PCOLCE2, 

SORBS2, EEFSEC, C10orf2, STEAP1, CH507-42P11.8, PDE4B, TDRD3, BTG1, NMRK2, 

CAND2, RPL35A, KIAA1217, TGFB1I1, C6orf48, CHRNB2, CTNNB1, BOC, SH3D19, 

GAS1, MARCH9, NPM2, MUC7, ZNF415, C16orf86, RXRG, HOXD1, ASRGL1, TMEM8B, 

RHCG, RADIL, DVL3, RORC, TMEM97, CELF5, PDE6G, DDAH2, DPYSL2, ZBTB12, 

RPL15, DUOX1, DPP6, NIPSNAP3B, SLC35F2, ASPG, DALRD3, RPSA, FAM69B, DCT, 

SLC2A4, ZDHHC2, EFNB3, FAM212A, DDX11, SEMA3C, ASPHD1, RPL22L1, NOXA1, 

C6orf226, HYAL1, TIPARP, PCSK4, LTBP1, POU3F1, CDO1, EIF1B, ZNF135, NYNRIN, 

ZNF560, GNAI1, SLC27A5, IRF6, MARCKS, LRRN1, KIAA1549L, ROPN1, SLC41A3, 

ZNF229, TFF3, ENKD1, ID2, NHSL1, IGHMBP2, AMOTL2, PPP1R13L, ADCY6, MZT2A, 

SYN2, BEX2, OSBPL2, FHIT, KIF6, CASKIN1, KLF15, NPW, NCKAP5, SCARA3, ZFPM1, 

OGDHL, SCAP, SCT, SOSTDC1, ADPRHL1, SPAG16, RPL24, TSGA10IP, MYO7B, CDK2, 

POSTN, BAMBI, ARHGEF37, C2orf72, ADAMTSL4, EFCAB1, TCF7L1, TSPAN7, SUGCT 

 

3.3.8 Risk score calculation and classifier construction using 

PCA algorithm 

Based on the results of Boruta dimensionality reduction, we chose 126 BM-related 

genes and 100 ICD-related genes for modeling. We initially computed the Cox 

coefficients of these genes separately using univariate Cox regression, extracted their 

positive and negative signs, as summarized in Table 3.7. Then, we applied the PCA 

algorithm on them and calculate the BMscore and ICDscore according to the 

algorithms described in Section 3.2.5. Next, the training set was classified into high- 

and low-BMscore groups, and high- and low-ICDscore groups, respectively. Using the 

same approach as that in Section 3.3.5, we developed another BMICD classifier 

comprised of “High BM–High ICD”, “Mixed”, and “Low BM–Low ICD”  groups. We 

visualized their performance in Figure 3.15. The K-M curves showed that high-

BMscore and high-ICDscore were both associated with death (log-rank p values are all 

less than 0.0001). Patients in the “Low BM–Low ICD” group had the best prognosis, 

followed by the “Mixed” group, and the “High BM–High ICD” group had the worst 

outcome. The time-dependent ROC curves showed predictive performance of the OS 

with different time points (BMscore: 1-, 3-, and 5-year OS AUC = 0.804, 0.838, and 

0.889, respectively; ICDscore: 1-, 3-, and 5-year OS AUC = 0.759, 0.833, and 0.854, 

respectively; BMICD classifier: 1-, 3-, and 5-year OS AUC = 0.852, 0.845, and 0.796, 

respectively).  
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Table 3.7 The selected genes and their signs of cox coefficients used for PCA  

Gene set – 

Cox sign 
Gene 

BM – 

positive 

HTR2B, CHAC1, COL9A3, ECM1, HTRA1, MYEOV, PLN, GEM, CARD11, 

PPM1K, PTP4A3, HTRA3, SDC2, DLL4, PRKCDBP, RAB31, NQO1, HES6, 

MRC2, ARMC9, IGFBP2, KIAA0196, SULF2, FABP3, CA12, TGFBI, MAP1A, 

ARC, PRKDC, CALHM2, FN1, FKBP11, TLCD1, JAG2, FKBP10, C4A, AMN, 

ITGA5, MAPK12, SPHK1, ASB9, COL18A1, ATP8B2, SGSM2, TRIB1, GREB1, 

TSC22D1, PAPSS2, ELFN1, OAF, SPARC, CSPG4, ZNF467, TTYH3, GPC4, 

SERPINE1, COL5A1, BASP1, LAPTM4B, SOCS2, TCIRG1, ECE1, BCL3, 

MGST2, DECR1, PDGFRB, CYC1, CDH24, ADCY3, PDLIM4, FOXD1, MFSD3, 

GAS8, DENND3, HM13, APLNR, ACADVL, DHRS7B, GPR162, PREX1, 

COL5A3, FAM105A, G6PC3, YWHAZ, DUSP14, NSMF, LIG3, VPS53, VOPP1, 

PVRL1, PLEKHG2, LAYN, KIAA1462, RFTN1, PLXDC1, GPAA1, CAMK1, 

TNFRSF1A, LTBR, CLPB, TRIL, DDRGK1, SHC1, AFAP1L2, SDHA, NDUFB9, 

TMEM208, BAX, GJA4, POR, GPR143, SLC35F6, DLST, SHPK, ACAD10, 

ALG1, GBA, FOXRED1, ITM2C, AIFM2, TM4SF1, SKIV2L, ZHX3 

BM –  

negative 
CTF1, ZNF835, LY6G5C 

ICD –  

positive 

HTR2B, CYSLTR2, VGF, CHAC1, LY96, HLA-DRB5, WARS, LAG3, CD3D, 

NKG7, CCL5, TAP1, CD74, CD8A, CD2, C1QB, GZMK, C1QC, HLA-DQB1, 

CD3E, IRF1, CD27, FAM26F, HLA-A, APOL6, HLA-E, CXCR3, HTATIP2, HLA-

DOA, CCL4, NKX2-4, CD8B, CLIC2, FABP3, ARMC9, CD209, CD53, SIT1, LCK, 

ADAMDEC1, SIRPG, BTN3A3, ITGAL, GIMAP7, RRM2B, PDCD1, TNFRSF1B, 

HLA-DMB, PTPRC, SIGLEC10, LAP3, IRF8, GZMB, CD163L1, RAP1GAP, 

CD300A, AP1S3, PTPN7, BTBD19, SPN, SLC2A10, TBC1D10C, CD247, 

SH2D1A, MDM2, ZAP70, BIN2, SLA2, APOL4, TIGIT, EIF4G3, LAMA1, 

TNFRSF9, SAMSN1, CLCNKA 

ICD –  

negative 

MLIP, WNK4, PPP1R3C, LMCD1, JUP, IFT122, EPHX2, RPL32, KIF7, NMNAT3, 

SLC7A2, ZNF853, ZBTB47, ZNF395, TCTN1, FAM86B1, C8orf58, FAM181B, 

PCBP4, RPL29 
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Figure 3.15 Calculation and evaluation of BMscore (A, B), ICDscore (C,D), and 

BMICD classifier (E, F) based on PCA algorithm in the TCGA-UVM cohort 

(training set). (A, C, E) K-M curves for the OS of BMscore (A), ICDscore (C) and 

BMICD classifier (E). (B, D, F) ROC curves depicting the AUCs of 1-, 3-, and 5-year 

OS for BMscore (B), ICDscore (D) and BMICD classifier (F). 
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3.3.9 Model selection in the validation set 

After completing three survival predictive models, we assessed and compared them 

using C-index and integrated Brier score in GSE22138 (validation set). Within one year, 

the OS predictive performance of Separate-LASSO model was higher than the other 

two, but the IPF-LASSO model obviously outperformed it after one year (Figure 3.16A). 

Figure 3.16 Model selection in the validation set (GSE22138). (A) Curves of C-

index up to 60 months for three predictive models. (B) Prediction error curves up to 60 

months for three predictive models. Red, yellow and blue line represents the Separate-

LASSO algorithm, IPF-LASSO algorithm, and PCA algorithm, respectively, and the 

black line represents the only K-M curve (null model). (C) K-M curves for the OS of 

BMICDscore in GSE22138. (D) ROC curves of 1-, 3-, and 5-year OS for BMICDscore 

in GSE22138.   
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In terms of predictive error, the integrated Brier scores of three models were all 

markedly lower than the null model. Separate-LASSO seemed to be the one with least 

prediction error, but the gaps between it and the IPF-LASSO was not significantly clear 

(Figure 3.16B). Given two points aforementioned, we considered the model obtained 

by IPF-LASSO algorithm with high accuracy and interpretability as the optimal one for 

our risk score. We further evaluated the predictive power of IPF-LASSO model in 

GSE22138. Obviously, patients in different risk score group have experienced different 

survival probabilities (log-rank p < 0.001; Figure 3.16C), and the BMICDscore 

predicted the prognosis fairly accurately according to the ROC analysis (1-, 3-, and 5-

year OS AUC = 0.740, 0.841, and 0.835, respectively; Figure 3.16D). 

 

3.3.10 Testing on independent GEO cohorts 

For external validation of the BMICDscore generated by IPF-LASSO algorithm, we 

tested them on two independent GEO datasets: GSE44295 and GSE39717. In 

GSE44295, patients with high-BMICDscore experienced poorer survival outcomes (log-

rank p = 0.007) and there was a similar trend in GSE39717. Moreover, the survival 

outcome of UVM patients in GSE39717 is metastasis-free survival, which implies that 

our model could be applied on researches with other survival outcomes beyond the OS 

(log-rank p = 0.012; Figure 3.17A,C). ROC curves provided another evidence for the 

satisfactory performance of our model in both GSE44295 (1-, 3-, and 5-year OS  

AUC = 0.900, 0.664, and 0.624, respectively) and GSE39717 (1-, 3-, and 5-year MFS 

AUC = 0.778, 0.799, and 0.871, respectively; Figure 3.17B,D).  
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Figure 3.17 External validation of IPF-LASSO model in two test sets. (A) K-M 

curves for the OS of BMICDscore in GSE44295. (B) ROC curves of 1-, 3-, and 5-year 

OS for BMICDscore in GSE44295. (C) K-M curves for the OS of BMICDscore in 

GSE39717. (D) ROC curves of 1-, 3-, and 5-year OS for BMICDscore in GSE39717.   
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3.3.11 Relationship between the BMICDscore and clinical 

characteristics 

With violin plots, we portrayed the distributions of the BMICDscore values with different 

clinical traits in the TCGA-UVM cohort to compare the differences of the BMICDscore 

in different clinical subgroups. There were no statistically significant differences 

between males and females (Wilcoxon p = 0.43; Figure 3.18A).  Nevertheless, greater 

ages (Wilcoxon p = 0.04), clinical stages (Kruskal-Wallis p = 0.0028), T stages 

Figure 3.18 The distribution of BMICDscore values with different genders (A), 

ages (B), clinical stages (C), T stages (D), and M stages (E) in the TCGA-UVM 

cohort. Box plots inside violin plots indicate interquartile ranges and median values. 
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(Kruskal-Wallis p = 0.04), and M stages (Wilcoxon p = 0.0052) were all linked to a 

higher BMICDscore (Figure 3.18B–E), which indicates that the association between 

our model and these clinical features became stronger when we ungraded the BMtypes 

and ICDtypes to the ultimate BMICDscore.  

 

3.3.12 Functional enrichments associated with the BMICDscore 

Using GSEA method, we explored the potential biological processes and pathways 

contributing to the high-risk group. From both “Hallmark” and “KEGG” GSEA plots, we 

considered those enriched signaling pathways were related to immune response, 

cytokine and chemokine signaling, cell cycle and proliferation, and cell adhesion. This 

finding is similar to those results from the GSEA on BMtypes and ICDtypes (Figure 

3.19).  

 

Figure 3.19 GSEA showing signaling pathways and biological processes in 

TCGA-UVM cohort. Gene sets were obtained from "Hallmark" and "KEGG" on 

MSigDB. The top twelve results are displayed in different colors based on their 

enrichment scores in each figure.  
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3.3.13 Association between the BMICDscore and immune 

landscape in UVM 

 

Figure 3.20 Fractions of 22 immune cell types in the different risk groups in the  

TCGA-UVM cohort. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not 

significant. 

 

Figure 3.21 Scatter plots for correlations between the BMICDscore and the three 

immune scores in the TCGA-UVM cohort. Histograms for distributions of the 

BMICDscore and corresponding scores are attached on the top and on the right, 

respectively. 
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To better investigate the role of the BMICDscore in UVM immune landscape, we 

performed several analyses. Using the CIBERSORT algorithm, we firstly compared 

twenty-two immune cell compositions between high- and low-BMICDscore group. 

Compared to the patients in low-BMICDscore group, those in the high-BMICDscore 

group exhibited higher infiltration of M0 and M1 macrophages, CD8+ and follicular 

helper T cells, but lower infiltration of resting dendritic cells, monocytes, naïve B cells, 

and CD4+ memory resting T cells (Figure 3.20). 

Figure 3.22 Box plots for the expression levels of HLA genes (A) and immune 

activation—related genes and immune checkpoints (B) in the TCGA-UVM cohort. 

*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant. 
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Next, we exploited the ESTIMATE algorithm to generate three TME-specific 

scores and analyzed the correlations between the BMICDscore and them. All 

correlation analyses indicated the positive correlation between the BMICDscore and 

ESTIMATE score (Spearman r = 0.5, p = 2.6e-6), Immune score (Spearman r = 0.5, p 

= 3.3e-6) and Stromal score (Spearman r = 0.44, p = 6.1e-5; Figure 3.21), which 

provided evidence for a close association between our model and the previously 

reported TME scoring system.  

Furthermore, human leukocyte antigens (HLAs), immune activation-related 

factors and immune checkpoints fulfil essential functions in the immune reaction to 

tumors in the microenvironment. Therefore, we also scrutinized the expression levels of 

the genes relevant to these molecules in different risk groups. Surprisingly, the results 

displayed a remarkable consistency among three gene types: the majority of genes in 

each gene functional type were significantly up-regulated in the high-BMICDscore 

group. These findings collectively suggest that the BMICDscore is highly correlated 

with the response to immunotherapy (Figure 3.22). 

 

3.3.14 Nomogram establishment and evaluation 

Based on the association of BMICDscore and the progression of UVM, we were also 

interested in the application of BMICDscore in clinical practice. We firstly performed 

univariate and multivariate Cox regression analyses involving the BMICDscore and 

other clinicopathological features as the covariates. Our results indicated that the age 

over 65 (HR (95%CI) = 2.311 (1.008–5.297), p = 0.048), T stage (HR (95%CI)  = 2.862 

(1.278–6.408), p = 0.011), and the BMICDscore ((HR (95%CI) = 6.426 (3.369–12.257), 

p <0.001) were the potential prognostic factors for the OS prediction (Figure 3.23 A,B).  

By integrating the prognostic factors, we established survival nomograms for 3- 

and 5-year OS, in order to provide clinically practical quantitative tools for survival 

probability predictions (Figure 3.24 A). Additionally, we evaluated the established 

nomogram using calibration curves and decisions curve analyses. The calibration 

curves revealed a good correspondence between predicted and observed  outcome 

values for predicting both 3- and 5-year overall survival probability (Figure 3.24 B). 

Decision curves also indicated that either at 3- or 5-year risk, the benefit of prediction 

using the nomogram is greater than those of other single factors and their 

combinations (Figure 3.24 C,D) 
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Figure 3.23 Forest plots summarizing the univariate (A) and multivariate (B) Cox 

regression models of the BMICDscore and clinicopathological characteristics. 

The green rhombuses with transverse lines represent the hazard ratios (HRs) and their 

95% confidence intervals (95%CIs). There are also detailed information of 95%CI and  

p value for each prognostic factors on the right side. 

Figure 3.24 Establishment and evaluation of the survival nomograms based on 

three prognostic factors (on the next page). (A) Nomograms for predicting UVM 

death probability at 5- or 3-year (presented in 60- or 36-month survival time); ∗, p < 

0.05; ∗ ∗ ∗ , p < 0.001. (B) Calibration curves of the corresponding nomograms 

(Bootstrap repetition, B = 1,000). (C, D) Decision curve analyses of the corresponding 

nomograms based on various combinations of prognosis factors for predicting 3- (C) 

and 5-year (D) OS probability.  
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3.4 Discussion 

Uveal melanoma (UVM) remains an aggressive disease with poor prognostic outcomes 

[38, 72]. However, predicting the prognosis of UVM individually and accurately remains 

challenging due to the complexity of its influencing factors [67]. In recent years, cancer 

research has focused on the tumor microenvironment (TME), which encompasses the 

surrounding of oncocytes, including infiltrating immune cells and extracellular matrices 

[81, 87]. Lei and Zhang have discovered the involvement of the TME in the 

pathogenesis of UVM [86]. Numerous studies have demonstrated the importance of 

both basement membranes (BMs) [95, 151, 152] and immunogenic cell death (ICD) 

[99, 153] in tumor invasion and metastasis, as well as their strong interaction with TME. 

In the present study, we investigated the role of the BM-related and ICD-related genes 

in UVM, followed by integrating them with machine-learning methods to develop a 

scoring model for UVM prognosis prediction.  

 The implementation of unsupervised clustering has identified different UVM 

subtypes based on BM and ICD patterns. These subtypes varied in prognostic 
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outcome, TME characteristics, and biological processes. BMtype2 and ICDtype2, 

where most of the BM-related and ICD-related genes were up-regulated, respectively, 

exhibited a worse prognosis and a greater enrichment of pathways of cell proliferation, 

cytokine and chemokine signaling, and cell adhesion. Several reports have shown that 

in melanoma tumors, molecules of cytokine, chemokine and cell adhesion may play a 

dual role as both pro- and anti-tumor agents [160-162].  Their contribution to the tumor 

invasion and migration, together with cell cycle and proliferation pathways, which are 

essential for tumorigenesis, may be linked to poor clinical outcomes. In contrast to 

other types of cancer, some investigators have considered the infiltration of CD8+ T 

cells as an unfavorable prognostic factor in UVM [163-165]. Interestingly, our results 

from CIBERSORT analysis were in accordance with them. We assumed a possible 

justification could be that the infiltrating CD8+ T cell subset might be impaired in the 

TME in UVM and therefore exert an inhibitory effect. 

Given the significant interplay between the extracellular matrix and immunogenic 

cell death in TME, we combined the BMtypes and ICDtypes to create a scoring system 

for more comprehensive prognosis prediction. Using the differentially expressed genes 

between these subtypes, we have constructed three models based on different 

algorithms and selected the optimal one named BMICDscore after comparing them in 

validation set, which was the BMICDscore generated by IPF-LASSO algorithm (1-, 3-, 

and 5-year survival AUC = 0.740, 0.841, and 0.835, respectively). This may be benefit 

from the enablement of integrating BM and ICD patterns by IPF-LASSO through 

assigning different penalty factors to each gene set [112]. In addition, the BMICDscore 

performed well in two independent test sets. Moreover, the survival outcome of UVM 

patients in GSE39717 is metastasis-free survival (MFS), which implies that our model 

could be applied on studies with other survival outcomes beyond the OS, and its 

prognostic capability is likely unaffected by gender according to the comparison of the 

distribution of its values. We consider it a novel prognostic algorithm since it has not 

been previously reported. Incorporating clinical features including age and different 

types of tumor stage, we additionally established nomograms to furnish a clinically 

applicable quantitative tool for survival probability predictions and results have shown 

its outperformance of these independent clinical prognostic factors as well as the 

BMICDscore alone.  

The results of functional enrichment analysis and TME characterization were 

consistent with those obtained from the same analyses conducted on BMtypes and 

ICDtypes. Various in-silico approaches to TME analysis not only provide evidence for 

the close association between BMICDscore and TME, but also suggest that the 

BMICDscore may be correlated with the response to immunotherapy. Over the past 
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decade, there has been a significant increase in attention and investment towards the 

development of immunotherapies, though clinical research has revealed suboptimal 

efficacy in UVM treatment [81, 166]. The issue of immunotherapy resistance is 

multifaceted and extensive research has shed light on the crucial role TME plays in it 

[167]. In light of the complicacy of TME, we conducted a comprehensive study on the 

correlation between BMICDscore and various aspects of immune-related functions, 

beyond just infiltrated immune cells, including Estimate-Stromal-Immune score and the 

expression of genes associated with HLA, immune checkpoint and immune activation. 

Results signified the predictive value of BMICDscore for the response to UVM 

immunotherapy and we speculate that patients with high-BMICDscore would benefit 

from immunotherapies.  

It is still important to note some limitations here. Firstly, the limited sample size 

may have affected the generalizability of our predictive model despite applying external 

validations. Future studies with larger sample sizes would be needed for better training 

and validating the model. Secondly, we have only performed analyses of immune-

related functions in an in-silico way. However, bioinformatics approaches may not yield 

enough conclusive evidence, and therefore, these results require experimental 

verification. Thirdly, we failed to obtain clinical prognostic parameters previously 

reported, such as radiological data and chromosomal abnormality status, which could 

be incorporate to our model and improve its power and robustness. Fourthly, due to the 

lack of another dataset with the clinical features used in our nomogram, we have only 

assessed it in the training set. Consequently, subsequent researches with sufficient 

clinical information and sample sizes  remain necessary. Last but not least, although 

we have preliminarily explored the relationship between the BMICDscore and those 

immunotherapeutic markers, the lack of a dataset with information on patients who 

have received UVM immunotherapy prevents us from making predictions and 

evaluations of response to immunotherapy. Hence, we plan to take the next step to 

conduct the investigation which take these aspects into account. 

3.5 Conclusion 

In summary, this study characterized the patterns of BM and ICD in UVM separately, 

and subsequently combined them to generate the BMICDscore that can be served for 

prognostic prediction and stratified clinical management of UVM patients. It may also 

help physicians to predict immunotherapeutic response and potentially, develop novel 

immunotherapies. However, future studies with large sample size and multiple 

information are still necessary to further optimize and validate the model. 
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4. Overall Discussion  

The aim of this Ph.D. project was to explore the development of diagnostic and 

prognostic approaches for immune-related disease based on bioinformatical methods. 

To this end, we characterized the immune microenvironment and established two 

independent predictive models for Kawasaki disease (KD) and uveal melanoma (UVM), 

separately. We initially enumerated the compositions of immune cell types using 

CIBERSORT algorithm in both two diseases. Then, for KD, a diagnostic score named 

DIS was generated utilizing the combination of CIBERSORT-derived immune cell 

fractions and machine-learning techniques; for UVM, a prognostic model named 

BMICDscore was constructed by applying IPF-LASSO algorithm on the incorporation of 

BM-related and ICD-related genes. 

KD is an acute inflammatory illness while UVM is a melanogenic eye tumor, and 

both are highly immune-related. As a crucial role in immune-related diseases, the 

immune microenvironment significantly influences their disease progression and 

treatment outcomes. Moreover, understanding the dynamic relationship between tumor 

cells and the tumor immune microenvironment will be valuable in devising new 

therapies and in understanding the pathophysiological mechanisms of tumor growth 

and immune evasion [168]. Advanced technologies, such as machine learning, have 

been used to study the microenvironment and its impact on diseases [7, 169, 170]. 

One such technology is CIBERSORT, a computational approach that can estimate 

cellular components of complex tissues. By using CIBERSORT, we can characterize 

and even quantify the immune microenvironment with fractions of specific immune cell 

subsets [7]. According to existing reports, the immune microenvironment in KD is 

characterized by an overactive innate immune system, with increased infiltration levels 

of monocyte, macrophage and neutrophil [24, 53, 54]. On the other hand, UVM exhibits 

multiple signals in an inflammatory microenvironment initiated by inflammatory factors, 

such as HLAs, cytokines, and chemokines, which lead in recruitment of inflammation-

related cells and promotion of angiogenesis [55-57], and this pattern has also been 

found in hepatic metastasis lesion [171]. Results in both our studies corroborated the 

findings of these work.  

Based on these observations, we attempted to develop two predictive models. In 

Chapter 2, we leveraged these immune cell fractions to construct the DIS for KD 

diagnostic prediction, while in the modeling in Chapter 3, we also took both tumor 

invasiveness and response to immunotherapy into account, so for the BMICDscore, we 

additionally incorporated the patterns of BM and ICD-related genes. In Chapter 2, we 
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merged multiple datasets as the entire discovery cohort before splitting it into a training 

set and a held-out test set, and utilized an additional GEO dataset for external 

validation. ROC curves mirrored the robust performance of DIS, with AUC values of 

0.80 for the held-out test set and 0.77 for the external validation set. In Chapter 3, we 

tested and compared three modeling algorithms to optimally leverage the two gene 

sets. By applying the three fitted models to the validation set, the BMICDscore 

generated by the IPF-LASSO algorithm was ultimately determined as the best-

performing algorithm (1-, 3-, and 5-year survival AUC = 0.740, 0.841, and 0.835, 

respectively). In addition, we analyzed two additional GEO datasets with different 

outcomes, namely overall survival and metastasis-free survival, to assess our model’s 

capability for generalization and application on other prognostic outcomes. ROC 

analyses in two datasets also supported the strong predictive power of BMICDscore, 

with not only overall survival but also metastasis-free survival. Furthermore, we also 

successfully established two nomograms based on our predictive scores, separately, to 

further facilitate their application in clinical practice. With regards to the respond to 

UVM immunotherapy, we preliminarily investigated the association between its 

previously reported markers and our BMICDscore. According to the multiple results of 

immunotherapy-related scrutiny, we speculate that patients with high-BMICDscore 

would benefit from immunotherapies. Future prospective studies on patients who have 

received UVM immunotherapy, however, are still needed to further improve and 

validate our model. Last but not least, considering that KD and UVM are closely 

immune-related inflammatory diseases and tumors respectively, we believe it is 

worthwhile to explore the possibility of extending these two models to other 

autoimmune and cancerous conditions with similar characteristics. 

As discussed in Section 2.4 and Section 3.4, we acknowledge some limitations 

in this doctoral project. Apart from those limitations of disease-specific data that have 

been mentioned in the corresponding chapters, here, we highlight some common 

limitations we have met when modeling. First of all, the generalizability of our predictive 

models may have been influenced by the limited sample size of available datasets that 

we can obtain publicly. Thus, it would be important to conduct further investigations 

with larger sample sizes to optimize and validate our models. Secondly, it is possible 

for batch effects to arise during the combination of various datasets. To reduce this 

danger, we should try our best to find datasets in similar platforms, and implement 

approaches of batch-effect correction such as the "ComBat" algorithm. Thirdly, 

demographic and clinical information for every participant is challenging to obtain and 

usually incomplete on publicly available databases. However, incorporating these 

features, especially the response to immunotherapy, may effectively improve the power 
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and robustness of our models. Finally, we conducted all analyses about gene 

expressions and microenvironment by only using in-silico techniques that are difficult to 

reflect the exact and real biological situation. Therefore, laboratory experiments are 

required to be involved in our next studies for biological verification.  
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5. Conclusion and Outlook 

Taken together, focusing on the intersection between biomedicine and informatics, this 

doctoral project has investigated the characterization of immune microenvironment in 

Kawasaki disease (KD) and uveal melanoma (UVM), and the development of 

innovative predictive algorithms for KD diagnosis and UVM prognosis based on their 

compositions of  immune cell subsets, respectively. These models may offer significant 

contributions to the field of biomedical research and clinical management. On the one 

hand, they can help us comprehensively understand the complex immunological 

dynamics in these immune-related diseases. On the other hand, they can provide 

guidance in making clinical surveillance and treatment decisions for KD and UVM, and 

yield novel insights for the exploitation of immune microenvironment for clinical 

application. Looking ahead, it would be interesting to obtain multi-center data with a 

larger sample size and sufficient clinical information specific to the diagnosis of KD and 

the prognosis of UVM, as well as to carry out laboratory experiments, in order to 

significantly optimize and comprehensively validate our models. Moreover, studies on 

the association of our models with response to immunotherapy are needed to explore 

their potential to predict immunotherapeutic efficacy and potentially, to pave a way for 

novel immunotherapy development. In addition, given the immune-related 

characteristics of KD and UVM, we believe that extending these models to other 

autoimmune and cancerous conditions with similar features is a promising avenue 

worth exploring. 
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