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Abstract

Medical image segmentation represents a fundamental aspect of medical image computing.
It facilitates measurements of anatomical structures, like organ volume and tissue thickness,
critical for many classification algorithms which can be instrumental for clinical diagnosis.
Consequently, enhancing the efficiency and accuracy of segmentation algorithms could lead to
considerable improvements in patient care and diagnostic precision.

In recent years, deep learning has become the state-of-the-art approach in various domains
of medical image computing, including medical image segmentation. The key advantages of
deep learning methods are their speed and efficiency, which have the potential to transform
clinical practice significantly. Traditional algorithms might require hours to perform complex
computations, but with deep learning, such computational tasks can be executed much faster,
often within seconds.

This thesis focuses on two distinct segmentation strategies: voxel-based and surface-based.
Voxel-based segmentation assigns a class label to each individual voxel of an image. On the
other hand, surface-based segmentation techniques involve reconstructing a 3D surface from
the input images, then segmenting that surface into different regions.

This thesis presents multiple methods for voxel-based image segmentation. Here, the focus
is segmenting brain structures, white matter hyperintensities, and abdominal organs. Our
approaches confront challenges such as domain adaptation, learning with limited data, and
optimizing network architectures to handle 3D images. Additionally, the thesis discusses ways
to handle the failure cases of standard deep learning approaches, such as dealing with rare
cases like patients who have undergone organ resection surgery.

Finally, the thesis turns its attention to cortical surface reconstruction and parcellation. Here,
deep learning is used to extract cortical surfaces from MRI scans as triangular meshes and
parcellate these surfaces on a vertex level. The challenges posed by this approach include
handling irregular and topologically complex structures.

This thesis presents novel deep learning strategies for voxel-based and surface-based medical
image segmentation. By addressing specific challenges in each approach, it aims to contribute
to the ongoing advancement of medical image computing.
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Zusammenfassung

Die Segmentierung medizinischer Bilder stellt einen fundamentalen Aspekt der medizinischen
Bildverarbeitung dar. Sie erleichtert Messungen anatomischer Strukturen, wie Organvolumen
und Gewebedicke, die für viele Klassifikationsalgorithmen entscheidend sein können und
somit für klinische Diagnosen von Bedeutung sind. Daher könnten Verbesserungen in der
Effizienz und Genauigkeit von Segmentierungsalgorithmen zu erheblichen Fortschritten in der
Patientenversorgung und diagnostischen Genauigkeit führen.

Deep Learning hat sich in den letzten Jahren als führender Ansatz in verschiedenen Be-
reichen der medizinischen Bildverarbeitung etabliert. Die Hauptvorteile dieser Methoden
sind Geschwindigkeit und Effizienz, die die klinische Praxis erheblich verändern können.
Traditionelle Algorithmen benötigen möglicherweise Stunden, um komplexe Berechnungen
durchzuführen, mit Deep Learning können solche rechenintensiven Aufgaben wesentlich
schneller, oft innerhalb von Sekunden, ausgeführt werden.

Diese Dissertation konzentriert sich auf zwei Segmentierungsstrategien, die voxel- und ober-
flächenbasierte Segmentierung. Die voxelbasierte Segmentierung weist jedem Voxel eines
Bildes ein Klassenlabel zu, während oberflächenbasierte Techniken eine 3D-Oberfläche aus
den Eingabebildern rekonstruieren und segmentieren.

In dieser Arbeit werden mehrere Methoden für die voxelbasierte Bildsegmentierung vorgestellt.
Der Fokus liegt hier auf der Segmentierung von Gehirnstrukturen, Hyperintensitäten der
weißen Substanz und abdominellen Organen. Unsere Ansätze begegnen Herausforderungen
wie der Anpassung an verschiedene Domänen, dem Lernen mit begrenzten Daten und der
Optimierung von Netzwerkarchitekturen, um 3D-Bilder zu verarbeiten. Darüber hinaus werden
in dieser Dissertation Möglichkeiten erörtert, mit den Fehlschlägen standardmäßiger Deep-
Learning-Ansätze umzugehen, beispielsweise mit seltenen Fällen nach einer Organresektion.

Schließlich legen wir den Fokus auf die Rekonstruktion und Parzellierung von kortikalen
Oberflächen. Hier wird Deep Learning verwendet, um kortikale Oberflächen aus MRT-Scans als
Dreiecksnetz zu extrahieren und diese Oberflächen auf Knoten-Ebene zu parzellieren. Zu den
Herausforderungen dieses Ansatzes gehört der Umgang mit unregelmäßigen und topologisch
komplexen Strukturen.

Diese Arbeit stellt neuartige Deep-Learning-Strategien für die voxel- und oberflächenbasierte
medizinische Segmentierung vor. Durch die Bewältigung spezifischer Herausforderungen in
jedem Ansatz trägt sie so zur Weiterentwicklung der medizinischen Bildverarbeitung bei.
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Part I

Introduction and Fundamentals





1Introduction

1.1 Motivation

Medical image segmentation is an essential process that aids in the diagnosis, prognosis,
and treatment of a wide range of medical disorders. It involves dividing medical images
into different regions or structures, such as organs, tissues, or pathologies. It is essential
for downstream applications like volumetric measurements, tumor growth monitoring, or
detecting structural changes due to aging or diseases like Alzheimer’s.

However, segmentation of medical images remains a time-consuming and labor-intensive
procedure that requires the expertise of trained professionals, such as radiologists. Despite the
availability of software tools and automated algorithms, the process can still take many hours,
depending on the image resolution and the number of classes.

Deep learning algorithms have demonstrated great promise in medical image processing in
recent years. These algorithms are high-speed and sometimes even outperform human experts
when trained with large amounts of data [89].

This thesis explores the potential of deep learning in medical image segmentation, specifically
focusing on two segmentation types. The first type is voxel-based segmentation, which
assigns class labels to individual voxels in the image, making it useful for tasks such as brain
tissue or abdominal organ segmentation. The second type is surface-based segmentation,
which involves extracting the boundaries of structures as continuous surfaces, providing a
geometrically and topologically accurate representation, like in cortical surface reconstruction.
Figure 1.1 compares voxel-based and surface-based segmentation, as applied to a brain
Magnetic Resonance Imaging (MRI) scan. The right cerebral hemisphere, depicted on the
left side of the figure, illustrates voxel-based segmentation, displaying a range of segmented
brain structures. The left hemisphere, shown on the right side of the figure, demonstrates
surface-based segmentation of the outer boundary of the cortex. A closer inspection of these
regions reveals a key distinction between the two methods: surface-based segmentation allows
boundary delineation between voxel boundaries, unlike voxel-based segmentation, where the
grid-like structure of voxels is clearly visible. This fundamental difference underscores the
unique capabilities and characteristics inherent to each segmentation strategy.

Overall, this thesis provides novel deep learning-based solutions for medical image segmenta-
tion that can significantly reduce the time and effort required for the segmentation process
while maintaining high accuracy and robustness.
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surface-basedvoxel-based

Image segmentation

Figure 1.1. MRI scan of the brain with an example of voxel-based segmentation and surface-based segmentation.

1.2 Objectives

The primary goal is to develop and improve deep learning algorithms for medical image
segmentation to replace time-consuming traditional methods.

Voxel-based segmentation: The first topic this thesis deals with is voxel-based segmentation.
The objective is to develop robust and efficient deep learning algorithms for various medical
segmentation tasks, specifically subcortical brain segmentation, abdominal organ segmentation,
and white matter hyperintensity segmentation. The focus is on improving the accuracy of 3D
segmentation models for subcortical brain segmentation and abdominal organ segmentation,
specifically in high class imbalance settings for multi-class segmentation. In the case of white
matter hyperintensity segmentation, the challenge lies in effectively utilizing a relatively
small labeled dataset to segment a considerably larger, diverse dataset acquired from various
scanners. This necessitates a focus on the issue of domain adaptation due to the discrepancies
between data sources. Finally, we explore deep learning methods for segmentation after organ
resection surgery. These methods are tested and evaluated in large-scale population studies.
The intention is to demonstrate the feasibility of deploying deep learning-based solutions in
real-world clinical scenarios, often involving patients from diverse demographic backgrounds
and with varying anatomies, such as post-surgery changes.

Surface-based segmentation: The second focus of this thesis is surface-based segmentation.
The goal is to construct and parcellate cortical surfaces from MRI scans using advanced deep
learning techniques. The emphasis here is on improving the accuracy of these techniques and
topological correctness, which can facilitate the diagnosis of neurological conditions, as shown
on the example of Alzheimer’s disease. Another objective is to facilitate group comparisons by
providing surfaces with vertex correspondence.
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Through these objectives, this thesis aims to advance the field of medical image segmen-
tation, offering efficient, accurate, and robust solutions for a wide range of medical image
segmentation tasks.

1.3 Contributions

Deep learning has significantly advanced medical image segmentation in recent years, improv-
ing accuracy and segmentation times. However, these methods still face various challenges,
such as optimizing network architecture for volumetric input images. In addition, domain
adaptation is necessary in medical imaging because it is not always possible to access previously
utilized patient data due to privacy concerns. To address these challenges, we propose three
different methods.

Recalibrating 3D ConvNets with Project & Excite [135]:
In this work, we focus on voxel-based subcortical and abdominal segmentation. We intro-
duced Project & Excite (PE) blocks, which recalibrate feature maps in both channel-wise and
spatial-wise manners, specifically tailored for 3D networks. We assess these modules on two
demanding tasks: MRI brain scan segmentation and whole-body Computed Tomography (CT)
scan segmentation. Our findings demonstrate that our approach improves Dice scores while
only slightly increasing the model’s complexity.

STRUDEL: Self-Training with Uncertainty Dependent Label Refinement across Domains [50]:
This work introduces an unsupervised domain adaptation method tailored to segment white
matter hyperintensities (WMH) in brain MRI scans. Our method combines self-training with a
focus on the uncertainty associated with pseudo-label predictions. By employing an uncertainty-
guided loss function, we integrate the uncertainty into the training process, emphasizing labels
that are predicted with high certainty. Recognizing that initial pseudo-labels are often noisy,
we further enhance our method by integrating the output from third-party software into the
generation of pseudo-labels. This combination leads to an improvement in WMH segmentation
when compared to traditional self-training methods.

HALOS: Hallucination-free Organ Segmentation after Organ Resection Surgery [137]:
We address the clinically significant issue of dealing with images featuring atypical anatomy,
such as post-organ resection surgery scans. State-of-the-art segmentation models frequently
result in false-positive organ predictions, referred to as organ hallucinations. In this work, we
introduce Hallucination-free Organ Segmentation (HALOS), a method specifically tailored for
handling cases after organ resection surgery. Our approach combines two tasks: classifying
the presence of organs and multi-organ segmentation. The classification branch assists the
segmentation branch, helping it to make more accurate decisions. Feature fusion modules that
incorporate the classification output into the segmentation process facilitate the communication
between the two tasks. We illustrate the efficacy of our methodology by conducting experiments
on a relatively small labeled test set as well as on data from the UK Biobank on a larger scale.
Notably, it improves segmentation accuracy, as measured by Dice scores, and reduces the rate
of false positive predictions to nearly zero.
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Cortical surface reconstruction from MRI scans is an important task in neuroimaging for analyz-
ing brain morphology and detecting diseases such as Alzheimer’s. While deep learning-based
algorithms provide accurate cortical surface reconstruction, they are often time-consuming
and require post-processing. Additionally, it is necessary to establish vertex correspondence
between a patient’s cortical mesh and a group template for comparing cortical thickness and
other measures at the vertex level. Furthermore, parcellation of the cortical surfaces into
individual brain regions is necessary for a fine-grained analysis of atrophy patterns. In this
context, we present three methods that tackle these challenges.

Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with
Geometric Deep Neural Networks [10]:
In this work, we present Vox2Cortex, a network to generate meshes that accurately depict the
boundaries of the cortex. Vox2Cortex combines two types of neural networks, convolutional
and graph convolutional networks. Based on an input MRI scan, the method entails deforming
a starting template mesh to match the intricately folded shape of the cortex. Through a series
of experiments conducted on three separate brain MRI datasets, we validate the efficacy of our
method. The meshes created by Vox2Cortex are precise and topologically correct, matching
the accuracy of those produced by existing methods. A significant advantage of our method is
that it bypasses the laborious and resource-intensive post-processing steps often required in
conventional approaches.

Joint Reconstruction and Parcellation of Cortical Surfaces [132]:
We present two innovative options to enhance template-based deformation algorithms for
generating surface meshes with atlas-based brain parcellation. One option employs a graph
classification branch, while the other uses a new generic 3D reconstruction loss. We ob-
tain accurate parcellations by integrating these approaches with our previously introduced
Vox2Cortex model and another state-of-the-art method for cortical surface reconstruction.
Additionally, the surfaces we generate maintain a quality comparable to what is achieved by
the existing state-of-the-art methods.

Vertex Correspondence in Cortical Surface Reconstruction [133]:
This work proposes a novel approach for learning vertex correspondence by optimizing an L1
loss on registered surfaces, in contrast to the more common Chamfer loss. Our approach yields
improved intra- and inter-subject correspondence, making it well-suited for direct group com-
parisons and atlas-based parcellation. We demonstrate that existing state-of-the-art methods
provide inadequate correspondence for accurately mapping parcellations, underscoring the
significance of optimizing for precise vertex correspondence.

6 Chapter 1 Introduction



1.4 Outline

The thesis is structured in four parts:

• Part I: Introduction and Fundamentals (Chapter 1 and 2): This part establishes
the foundation for the rest of the thesis. It introduces the topic, provides background
information, and outlines the main goals and contributions of the work. The fundamental
concepts related to medical image segmentation and deep learning are also discussed,
along with an introduction to the specific challenges of voxel-based and surface-based
segmentation.

• Part II: Voxel-Based Image Segmentation (Chapters 3 to 8): This part focuses on voxel-
based image segmentation. It begins with introducing the topic and the specific methods
under discussion. The following chapters then detail the development and implemen-
tation of novel methods designed to address challenges like class imbalance, domain
gap, and limited access to annotated data. These proposed methods are summarized
and evaluated in the closing chapter of this section.

• Part III: Surface-Based Image Segmentation (Chapters 9 to 14): This part explores
surface-based image segmentation. It commences with an introduction to the topic
and provides the needed background information. Subsequent chapters then present
proposed methods for the fast explicit reconstruction of cortical surfaces, joint cortical
surface reconstruction and parcellation, and improving vertex correspondence in cortical
surface reconstruction. A summary and evaluation of these methods are provided in the
final chapter of this part.

• Part IV: Conclusion (Chapter 15): The conclusion of the thesis provides a summary of
the key findings and contributions of the research.

1.4 Outline 7





2Medical Image Segmentation:
History and Challenges
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Medical image analysis encompasses a wide range of techniques aimed at extracting meaningful
information from medical images to facilitate diagnosis, treatment planning, and research. It
involves the application of computer algorithms and mathematical models to analyze, interpret,
and manipulate medical image data obtained from various imaging modalities. Typical tasks
in medical image analysis are image segmentation, registration, and classification. Combining
these techniques can form computer-aided diagnosis (CAD) systems or facilitate image-guided
interventions.

Medical image analysis begins with image acquisition, where medical imaging devices capture
data to create digital representations of anatomical structures or physiological functions.
Different imaging modalities offer unique imaging capabilities suited for various clinical
scenarios.

Accurate and precise segmentation is essential in medical image analysis as it provides quanti-
tative measurements, facilitates visualization, enables feature extraction, and aids in treatment
planning and monitoring. It is a prerequisite for many other tasks within the field of med-
ical image analysis, such as registration, quantitative analysis, computer-aided diagnosis,
image-guided interventions, and surgical planning.

This chapter provides the necessary background knowledge to understand the methods and
approaches presented in this thesis. It covers the history and basics of medical image segmen-
tation, the basics of deep learning, and current challenges in the field.
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2.1 Imaging Modalities

Various imaging modalities are available, such as XRay, ultrasound, positron emission tomogra-
phy (PET), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), each with
specific strengths and applications. In this thesis, I focus on MRI and CT.

2.1.1 Magnetic Resonance Imaging (MRI)

MRI is a non-invasive imaging modality that uses a combination of strong magnetic fields,
radio waves, and gradient fields to generate detailed images of the body’s internal structures.
MRI has excellent soft tissue contrast and does not expose patients to ionizing radiation.
Several MRI sequences are commonly used, including:

T1-weighted (T1w)
T1-weighted images emphasize differences in T1 relaxation times, providing good anatomical
detail. These images depict fat as bright and water as dark, making them suitable for visualizing
soft tissues and brain structures.

T2-weighted (T2w)
T2-weighted images emphasize differences in T2 relaxation times, with fluid appearing bright
and fat appearing dark. This contrast is beneficial for identifying edema, inflammation, and
other pathological changes in tissues.

Fluid-Attenuated Inversion Recovery (FLAIR)
Fluid-Attenuated Inversion Recovery (FLAIR) is a modified T2-weighted sequence that sup-
presses the signal from cerebrospinal fluid (CSF), making it easier to identify pathological
changes in brain tissues, such as multiple sclerosis lesions or white matter hyperintensities.
The top row of Figure 2.1 shows axial, coronal, and sagittal views of a T1 weighted brain MRI
scan and the axial slice of the corresponding FLAIR scan of the same subject.

Dixon
The Dixon method is used in MRI to separate water and fat signals in images. This technique
is handy for generating fat-suppressed images and can be applied to various MRI sequences,
such as T1w or T2w. An example of a Dixon sequence of the abdomen is presented in the
bottom row of Figure 2.1.

2.1.2 Computed Tomography (CT)

CT is an imaging modality that generates cross-sectional images of the body using a series
of X-ray projections captured from various angles. CT provides excellent spatial resolution
and is particularly well-suited for imaging bone and lung structures. CT images can also be
enhanced using contrast agents, which are injected into the body to improve visualization
of blood vessels and specific organs, such as the liver or kidneys. However, CT exposes
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T1 axial T1 coronal T1 sagittal FLAIR axial

Brain MRI

Abdominal MRI, Dixon sequence

Out-of-phase In-phase Water Fat

Figure 2.1. Top row: different views of T1 and FLAIR MRI scans of the brain. Bottom row: Axial view of the
abdomen’s Dixon MRI sequence.

patients to ionizing radiation, which should be considered when selecting an appropriate
imaging modality. The Hounsfield Unit (HU) is a unique advantage of CT scans over other
imaging modalities. Radiodensity is measured in Hounsfield Units, which are derived from
a linear transformation of the original linear attenuation coefficient measurement. This unit
is calibrated on a scale where air has a value of -1 000 HU, water has a value of 0 HU, and
compact bone has a value of approximately 1 000 HU. Tissues in the human body fall within
this scale, each with a specific range of Hounsfield Units. This numeric and uniform scale gives
CT a significant advantage in quantitative image analysis. Unlike MRI, where voxel intensities
are relative and vary between scans, the Hounsfield Units in CT scans provide a consistent
and absolute scale, making the results more reliably comparable between different scans and
patients.

2.2 Image Segmentation

Image segmentation is a fundamental task in computer vision that involves dividing an image
into meaningful regions or objects. This process is crucial for various applications, including
object recognition, tracking, and localization. Segmentation can be broadly categorized into
three types: Semantic segmentation: Assigns a class label to each pixel in the image, focusing
on delineating specific structures or regions of interest. In this thesis, I focus on semantic
segmentation for medical image analysis. Instance segmentation: Extends semantic segmenta-
tion by identifying and distinguishing between multiple instances of the same class within the
image. Panoptic segmentation: Combines semantic and instance segmentation, simultaneously
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assigning class labels to pixels while distinguishing between individual instances of the same
class.

2.2.1 Medical Image Segmentation and Applications

Medical image segmentation is the process of partitioning medical images, such as X-rays, CT,
and MRI, into different regions or structures. The resulting segmented images can provide
valuable information for clinical diagnosis, treatment planning, and disease monitoring. For
example, segmenting MRI scans of the brain can help detect and quantify changes in cortical
thickness, white matter integrity, and ventricular volume, which are valuable biomarkers for
Alzheimer’s disease, multiple sclerosis, and other neurodegenerative disorders.

Medical image segmentation is challenging due to various factors, such as image noise, artifacts,
variability in anatomical structures, and the presence of pathologies. In addition, manual
segmentation by specialists is time-consuming, costly, and subject to intra- and inter-observer
variability. Consequently, precise and robust automated segmentation methods are required.
In this thesis, I focus on several applications: subcortical brain segmentation, abdominal organ
segmentation, and white matter hyperintensity segmentation in Part II, and surface-based
segmentation of the cerebral cortex in Part III.

2.2.2 History of Medical Image Segmentation

Medical image segmentation has its roots in the late 1970s [32], and from the beginning, there
were two different approaches, intensity-based or voxel-based approaches and boundary-based
or surface-based approaches. I will provide a brief overview of the history of medical image
segmentation, but refer the reader to the following surveys [32, 85, 89, 126] for detailed
information. I divide the history of medical image segmentation into two categories: traditional
methods, meaning non-machine-learning methods and machine learning and deep learning
methods. One approach that does not fit into this categorization is atlas-based segmentation.
Here segmentation is treated as a registration problem, where an atlas image with labels is
given, typically a population average, and the atlas labels are transferred to the target image
after registration. Registration can also be done by traditional or deep learning methods, but
as this thesis does not focus on registration methods, I will omit these here. I will also use
atlas-based segmentation techniques in Part III, about surface-based segmentation.

Traditional Methods

Traditional Methods are often complemented by signal processing methods used for pre-
processing, like smoothing techniques such as anisotropic diffusion [125], which enhance the
images by reducing noise, while preserving edges before applying segmentation algorithms.

Voxel-based techniques constitute some of the earliest methods, leveraging individual voxel
characteristics for segmentation. Region-growing and thresholding are classic examples of such
methods. Region growing begins from a seed point, expanding the region iteratively based
on predefined criteria like pixel intensity or connectivity. On the other hand, thresholding
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methods, such as Otsu’s method [120], select pixel intensity thresholds to segregate different
regions either globally or adaptively.

Surface-based techniques took a slightly different approach, focusing on detecting and utilizing
edges and boundaries between regions. Initially, these methods utilized pixel intensity discon-
tinuities or gradients for edge detection[32]. Soon after, more sophisticated surface-based
methods, including deformable models such as active contours and level sets, began to take
shape [32, 103]. Deformable models exploited shape and appearance priors to segment,
match, and track anatomic structures.

Snakes [74], or active contour models, are curves within the domain of an image. These curves
adapt and change their shape due to internal and external forces, allowing them to conform to
prominent features such as edges and lines within the image. On the other hand, the level set
method [119] is another influential surface-based technique, where the object’s boundary to
be segmented is represented as the zero level set, typically a Signed Distance Function (SDF).
In SDFs, the value at any given point signifies the shortest distance to the contour or surface,
and its sign indicates if the point is inside or outside the contour. This approach enhances the
adaptability of deformable models, as it allows topological changes during the deformation
process.

These advancements in conventional segmentation methodologies have been instrumental in
paving the way for the subsequent emergence and evolution of machine learning and deep
learning techniques in medical image segmentation.

Machine Learning and Deep Learning Methods
The rise of machine learning brought a significant shift in the paradigm for medical image
segmentation. Traditional machine learning techniques like clustering [118], decision trees,
and support vector machines (SVMs) found their application in this field [32]. They can be
applied in voxel-based and surface-based segmentation, although their usage is more prevalent
in voxel-based approaches.

For voxel-based segmentation, machine learning techniques often extract handcrafted features
from individual voxels, such as texture descriptors or local statistical properties, and then use
these features to train classifiers that predict class labels for each voxel. Examples include
k-means clustering, which partitions voxels into groups based on their features, and SVMs,
which learn hyperplanes in the feature space to separate voxels of different classes.

Despite the power and flexibility of machine learning methods, a significant challenge was
the reliance on handcrafted features, which required expert knowledge and often did not
generalize well across different tasks or datasets. This limitation has been largely overcome
with the advent of deep learning methods, which can learn hierarchical feature representations
directly from the input images. In recent years, deep learning, particularly Convolutional
Neural Networks (CNNs), has revolutionized medical image segmentation, achieving state-
of-the-art performance in various tasks. Deep learning methods learn hierarchical feature
representations from the input images, eliminating the need for handcrafted feature extraction.
In voxel-based segmentation, architectures such as U-Net [140] have gained popularity. More
details on this type of architecture are given in Chapter 4. Besides CNNs, transformer models,
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which initially gained prominence in natural language processing applications, have recently
emerged as powerful tools for voxel-based segmentation. With their proficiency in grasping
long-range dependencies and spatial contexts, transformer models have proven well-suited for
medical image analysis [149].

On the surface-based segmentation front, deep learning methods have provided new ways to
extract and represent surfaces and shapes within medical images. Examples include approaches
for surface-based cortex parcellation [184] or deep learning techniques that operate directly
on surfaces by combining CNNs with Graph Neural Networks (GNNs) [174]. Further details
about these methods are given in Chapter 10.

2.3 Deep Learning

As this thesis focuses on deep learning methods, it is essential to provide a background on
machine learning with a specific emphasis on deep learning. Machine learning focuses on
creating algorithms that learn from data and utilize this learning to make informed predictions
or decisions. In medical imaging, machine learning algorithms have been widely applied to
various tasks such as segmentation, registration, and classification. These algorithms often
rely on handcrafted features extracted from the input images and employ a training process to
learn optimal parameters specific to the task.

Deep learning is an area within machine learning. It employs artificial neural networks with
multiple layers, called deep neural networks. These networks have the capability to learn
complex patterns and hierarchical features from large datasets. This enables them to perform
excellently in various fields, including medical imaging. In contrast to conventional machine
learning techniques, deep learning algorithms autonomously learn the most relevant features
from the input data, eliminating the need for handcrafted feature engineering.

2.3.1 Neural Networks

Neural networks modeled after the structure and function of biological neurons in the human
brain are the foundation of deep learning. A neural network consists of layers of artificial
neurons, also known as nodes or units, that are interconnected. Each neuron receives input
signals, performs computations, and produces an output signal, which is then passed on to the
next layer of neurons.

An Multi-Layer Perceptron (MLP), a type of neural network, consists of at least three layers
of nodes: the input layer, one or more hidden layers, and the output layer. The nodes in
each layer have connections, characterized by weights, to all nodes in the subsequent layer,
which characterizes the network as fully connected. The hidden layers are responsible for
learning complex representations and allow the network to identify and process patterns
and correlations within the data. The output layer is tasked with generating the ultimate
predictions or decisions, which are derived from the calculations computed in the earlier
layers.
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The training of a neural network involves a process called backpropagation, which allows the
network to adjust its parameters to minimize the difference between its predictions and the
desired outputs. During the training phase, a loss function is used to quantify the difference
between the predicted and actual outputs. The backpropagation algorithm propagates this
error back through the network, adjusting the weights and biases of the neurons based on the
calculated gradients.

By iteratively updating the network’s parameters through the backpropagation process, the
neural network gradually improves its ability to make accurate predictions or decisions.
Combined with the vast amount of training data, this iterative learning process enables
deep neural networks to learn complex representations and generalize well to unseen data
effectively.

Convolutional and Graph Convolutional Neural Networks
In medical image segmentation, CNNs have emerged as a prominent deep learning architecture.
CNNs are designed to capture spatial patterns and local dependencies within the input data.
They achieve this through convolutional, pooling, and fully connected layers, enabling them to
learn hierarchical representations directly from the image data.

Furthermore, GNNs have shown promise for tasks involving graph-structured data, such as
surface-based segmentation. GNNs extend the concept of CNNs to graph domains and leverage
graph structures to model relationships between data points. They have been successfully
applied to tasks that involve surfaces, meshes, or other irregular data representations.

In the subsequent chapters of this thesis, the fundamentals of both CNNs and GNNs will be
explored in more detail, providing a deeper understanding of their architectures, training
processes, and applications in voxel-based and surface-based medical image segmentation.

2.3.2 Learning Paradigms

Machine learning and deep learning algorithms can be categorized into several learning
paradigms. These paradigms differ in how they utilize available data for training, and each
has specific applications in medical image segmentation.

Supervised learning is the most common paradigm, where algorithms are trained using labeled
data. In medical image segmentation, this involves training a model to map input images to
their corresponding segmentation maps. Deep learning methods like CNNs have achieved
state-of-the-art performance in this paradigm. However, a disadvantage of supervised learning
is its dependence on extensive sets of labeled data, the acquisition of which can be both
resource-intensive and time-consuming.

Semi-supervised learning leverages both labeled and unlabeled data. This paradigm is useful
when labeled data is limited or expensive to obtain. In medical image segmentation, semi-
supervised learning involves, for example, training an initial model on labeled data and refining
it using unlabeled data. Weakly-supervised learning focuses on training models with limited or
noisy annotations instead of precise annotations. This paradigm assumes that obtaining precise
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pixel-level annotations for training data is challenging or time-consuming. Instead, weaker
forms of supervision, such as image-level labels, bounding boxes, or partial annotations, are
used to guide the learning process.

Unsupervised learning involves training algorithms using only unlabeled data. In the context
of medical image segmentation, unsupervised learning techniques often involve clustering
or generative modeling approaches. Self-supervised learning can be used for pre-training
segmentation models. It leverages the inherent structure or context within the data itself to
define supervisory signals for training. Self-supervised tasks are, for example, inpainting or
pixel shuffling.

2.4 Challenges

Although deep learning methods for medical image segmentation have shown great potential,
these methods are not without challenges. This section discusses some critical challenges when
applying deep learning algorithms to medical image segmentation. These challenges are not
unique to image segmentation but are relevant to deep learning approaches in medical image
processing as a whole.

2.4.1 Class Imbalance

Class imbalance is a common challenge in medical image segmentation, as some structures
or regions of interest may be much smaller or less frequent than others. In medical images,
pathological structures, such as tumors or lesions, are often much smaller and rarer than the
surrounding healthy tissue. This imbalance can cause the learning process to be dominated
by the majority class (healthy tissue), resulting in poor segmentation performance for the
minority class (pathological structures).

Further, organs and anatomical structures in medical images can vary significantly in size and
shape, both within and across patients. This variation can lead to class imbalance, as smaller
structures may be underrepresented in the training data compared to larger ones. As a result,
the segmentation algorithm may perform poorly on underrepresented structures. Several
techniques can be employed to address the issue of class imbalance:

Choice of loss function: Initial segmentation networks primarily optimized the cross entropy loss
function, which may prioritize majority classes, resulting in poor performance for the minority
classes. Choosing more balanced loss functions like the Dice loss [109] of focal loss [88] can
help alleviate the class imbalance problem.

Weighted Loss Functions: One approach to deal with class imbalance is to assign different
weights to different classes in the loss function. This approach is especially useful when
segmenting multiple classes in one image. For example, inversely weighting the classes based
on their frequency in the training dataset increases the importance of under-represented
classes during training.
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Data Augmentation: Data augmentation techniques can artificially increase the number of
samples from under-represented classes. This can involve applying various transformations,
such as rotation, scaling, and flipping, to the original images, creating new, diverse examples
for the network to learn from.

Sampling Strategies: Another approach to address class imbalance is to modify the sampling
strategy during training. This can involve oversampling from under-represented classes or
under-sampling from over-represented classes, ensuring that each class is equally represented
in each training batch.

2.4.2 Domain Gap

Domain gap refers to the differences in data distribution between various datasets arising,
for example, from heterogeneous imaging protocols, anatomical variations, or pathological
manifestations. This gap can significantly impact the performance of segmentation algorithms,
as they may not generalize well when applied to previously unseen data. The domain gap poses
a major challenge in medical image segmentation, and addressing it is crucial for developing
robust and reliable algorithms.

Medical images, such as CT or MRI scans, often come from various sources and can be acquired
using different imaging protocols with diverse acquisition parameters and across different
manufacturers. These variations can introduce inconsistencies in image appearance and
contrast, which might affect the capability of a segmentation algorithm to generalize across
different datasets or institutions. The disparity in image pre-processing techniques can further
widen the domain gap.

The human body exhibits considerable variability in its anatomy, with individual differences
in the size, shape, and position of organs and other structures. These variations can lead to
differences in the appearance of anatomical structures in medical images, posing challenges
for segmentation algorithms when applied to diverse patient populations. To overcome the
domain gap in medical image segmentation, several strategies can be employed:

Domain adaptation: Domain adaptation techniques aim to adapt the model trained on a source
domain (e.g., a specific dataset or imaging protocol) to perform well on a target domain (e.g.,
a different dataset or imaging protocol). This can involve unsupervised or supervised domain
adaptation, using adversarial training, self-training, or style transfer techniques.

Domain generalization: Domain generalization methods focus on training a model that can
generalize well across multiple unseen domains. This can be achieved through meta-learning,
data augmentation, or multi-task learning, which encourage the model to learn domain-
invariant features that are robust to variations in data distribution.
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2.4.3 Limited Data

In medical image segmentation, the availability of annotated data is crucial for training and
evaluating segmentation algorithms. However, obtaining a large amount of high-quality anno-
tated data is a significant challenge due to several factors which can impact the development
and performance of segmentation methods.

Manually annotating medical images requires a high level of expertise provided by medical
professionals, such as radiologists. These specialists must carefully delineate the contours of
anatomical structures or pathological regions in the images, which is labor-intensive and time-
consuming. Given the workload, time restrictions medical professionals face, and associated
costs, securing sufficient expert-annotated data can be difficult.

Furthermore, even among experts, the annotations may exhibit variability due to differences
in interpretation or experience, leading to inconsistencies in the annotated data, commonly
referred to as inter-rater variability. Such disparities may subsequently influence the training
and evaluation of segmentation algorithms. To mitigate this issue, consensus annotations may
be necessary, which could further amplify the time and effort required for data annotation.

Moreover, the privacy concerns of sharing medical images often containing sensitive patient
information pose a formidable challenge. Strict regulations and guidelines regulate the sharing
and usage of medical data. This can constrict the availability of annotated data necessary for
developing and evaluating segmentation algorithms. Several approaches can be employed to
address the challenge of limited annotated data.

Data augmentation generates new training samples from existing data. This way, the size of
the training data can be effectively enhanced. Therefore it can help improve the algorithm’s
generalization capabilities without requiring additional expert annotations.

Transfer learning leverages pre-trained models or features learned from large, diverse datasets
to enhance the performance of segmentation algorithms on smaller, target datasets. Transfer
learning can help mitigate the effects of limited data availability by fine-tuning pre-trained
models using the limited available annotated data.

Semi-supervised and self-supervised learning strategies are another effective way to harness
labeled and unlabeled data in training segmentation algorithms. By optimizing the usage of
the available data, the demand for extensive expert annotations can be lessened.

2.4.4 Ethics and Privacy Concerns

Applying deep learning algorithms in medical imaging comes with ethical and privacy concerns
that must be considered when developing and deploying these technologies. This section
briefly discusses some of the major concerns associated with using deep learning algorithms in
medical imaging.
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Data Privacy and Confidentiality: Medical imaging data contains sensitive patient informa-
tion, necessitating strict measures to ensure data privacy and confidentiality. Safeguarding
patient rights and complying with data protection regulations is crucial. Techniques like data
anonymization, secure storage, and access control can help protect patient privacy. Through-
out the work presented in this thesis, we have used publicly available datasets that follow
these guidelines. Although I don’t focus on this in this thesis, it is important to mention that
there is a research field of privacy-preserving machine learning methods, such as federated
learning, which can enable training on sensitive data without compromising individual patient
records.

Bias and Fairness: Deep learning algorithms learn from the data they are trained on, making it
vital to address potential biases in the training data. Biases can lead to unfair treatment or
reduced performance for underrepresented patient groups. Developers must curate diverse
and representative training data, considering factors like age, gender, ethnicity, and disease
prevalence. Data augmentation, re-sampling, or domain adaptation can help balance the data
and improve fairness across patient populations.

Transparency and Explainability: Deep learning models, known as "black boxes," can be
challenging to interpret due to their complex structure and decision-making process. This
lack of transparency and explainability is a concern in medical imaging, where trust and
understanding are crucial. The development of explainable AI techniques is an emerging
research field in the medical imaging community that often focuses on interpreting diagnostic
decisions made by deep learning methods. However, it can also be relevant in the context
of segmentation. Although these techniques are not directly explored in this thesis, they
are increasingly important as they provide valuable insights into model decisions. They can
enhance trust and support informed decision-making by clinicians and patients.
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3Introduction

Medical image segmentation is a critical task in medical imaging and computer vision. It
contributes to the downstream tasks of diagnosis and treatment planning in various medical
disciplines. However, developing effective and reliable segmentation methods remains chal-
lenging due to limited available expert annotations and the need for robust models that can
handle different imaging modalities and anatomical variations.

In this part, I present three novel deep learning techniques that address these challenges,
focusing on Convolutional Neural Networks for volumetric medical images. The covered
methods improve state-of-the-art medical image segmentation by addressing the challenges of
limited available annotations, model recalibration, and unsupervised domain adaptation.

This part is built upon several publications, all of which are the result of collaborative efforts.
For each publication, the specific contributions of the individual authors are detailed:

Rickmann, A., Roy, A. G., Sarasua, I., and Wachinger, C. (2020). Recalibrating 3d convnets
with project & excite. IEEE Transactions on Medical Imaging, 39(7), (pp. 2461-2471) This
work is covered in Chapter 5. A. Roy, C. Wachinger, and the author conceived the initial idea.
The author did the implementation and execution of experiments. A. Roy and I. Sarasua
provided feedback throughout the project. C. Wachinger and the author contributed equally
to writing the final published article. I. Sarasua helped with proof-reading the final manuscript.

Gröger, F., Rickmann, A., and Wachinger, C. (2021). STRUDEL: Self-training with Uncertainty
Dependent Label Refinement Across Domains. In Machine Learning in Medical Imaging: 12th
International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France,
September 27, 2021, Proceedings 12 (pp. 306-316). Springer International Publishing. This
work is covered in chapter Chapter 6. C. Wachinger and the author conceived the initial idea.
F. Gröger implemented the proposed method, F. Gröger and the author ran the experiments. F.
Gröger, C. Wachinger, and the author contributed equally to writing the final published article.

Rickmann, A., Xu, M., Wolf, T., Kovalenko, O., and Wachinger, C. (2023). HALOS: Hallucination-
free Organ Segmentation after Organ Resection Surgery . In Information Processing for Medical
Imaging, IPMI 2023, Springer International Publishing. This work is covered in chapter Chap-
ter 7. C. Wachinger and the author conceived the initial idea. T. Wolf helped with the method
development and integration of the DAFT module. M. Xu and the author implemented the
proposed method and ran experiments. M. Xu, C. Wachinger, and the author contributed
equally to writing the final published article. O. Kovalenko helped with her medical expertise
in interpreting some results and provided manual segmentations.
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The outline of this part is as follows: First, in Chapter 4, I will explain the fundamental
knowledge needed for understanding this part, including current challenges in medical image
segmentation, such as limited data and domain differences. In the following chapters, I will
present the previously mentioned methods.

One of the primary challenges in medical image segmentation is the need for accurate and
robust models that can generalize well across different datasets and imaging protocols, partic-
ularly when dealing with limited available annotations. In Chapter 5, we propose a method
for 3D model recalibration, one of the first of such techniques to be designed specifically for
3D networks. We show that the approach also leads to better generalization across datasets,
including brain and abdominal organ segmentation tasks.

Self-training holds potential as an effective technique for unsupervised domain adaptation
by utilizing self-created pseudo-labels. Nonetheless, these pseudo-labels might be of varying
quality and may negatively impact the model’s performance. In Chapter 6, a new unsuper-
vised domain adaptation method specifically for segmenting white matter hyperintensity is
introduced. Self-training with Uncertainty Guided Label refinement (STRUDEL) estimates the
uncertainty associated with pseudo-labels and incorporates this information into the training
phase via an uncertainty-aware loss function, giving more weight to highly certain labels.
Moreover, the methodology is further refined by including the segmentation results from an
established method known for its reliability in white matter hyperintensity segmentation.

In Chapter 7, Hallucination-free Organ Segmentation (HALOS) is presented as a technique
for segmenting abdominal organs in MR images, with particular efficacy in managing cases
post-organ resection surgery. The methodology merges the tasks of identifying missing organs
and segmenting multiple organs into a single multi-task model. This integration lessens the
instances of organ hallucinations and enhances the overall performance of the segmentation.
This work highlights the importance of sturdy deep learning models for efficiently dealing with
atypical anatomy in medical image segmentation.

Finally, in Chapter 8, I will discuss the approaches and their limitations and provide an outlook
on future developments in the research field of medical image segmentation.
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4Fundamentals for Voxel-Based
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Voxel-based image segmentation is used in medical imaging and computer vision to partition
a 3D volumetric image into multiple regions or segments, each corresponding to a specific
anatomical structure or object of interest. In this context, a voxel, short for volume element,
represents the smallest unit of the 3D image, analogous to a pixel in 2D images. The goal of
voxel-based image segmentation is to assign a label to each voxel in the 3D image, indicating
the structure or object to which it belongs. Several methods exist for voxel-based image seg-
mentation, ranging from manual delineation by experts to semi-automatic and fully automatic
techniques. In recent years, there has been a surge of interest in deep learning-based methods,
particularly F-CNNs, owing to their capacity to yield exact segmentation outcomes. In this
chapter, I will explain the fundamentals of voxel-based medical image segmentation, focusing
on F-CNNs and current challenges in the field.

4.1 Convolutional Neural Networks for Medical
Image Segmentation

Convolutional Neural Networks (CNNs) are a specific category of deep learning models
designed for processing grid-like data, such as images. The principle of convolution, which is
the key operation in these networks, is not a new concept. Historically, convolution has been
a critical operation in signal and image processing, using specially designed convolutional
filters or kernels for tasks like blurring, edge detection, and smoothing. In the context of
image processing, a convolutional kernel is a small matrix of weights that is passed over the
input image. The kernel performs element-wise multiplication with the image sub-region
aligned with it, and all these products are then summed to produce a single value in the output
feature map. This process is repeated across the entire image, transforming the original image
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data in a way that can emphasize certain features or patterns. The innovative idea behind
CNNs is that rather than manually designing sequences of convolutional filters for distinct
tasks, the filter weights could be made learnable. With the advent of Alexnet, CNNs have
gained widespread recognition in computer vision tasks, from image classification to object
detection. F-CNNs, first introduced by Long et al. [93], are deep learning models specifically
designed for image segmentation tasks. F-CNNs can process input images of arbitrary size and
produce segmentation masks of the same size as the input image. F-CNNs typically consist of
an encoder, which extracts feature maps from the input image at various resolutions, and a
decoder, which upsample these feature maps to produce the final segmentation mask.

In the medical imaging domain, F-CNNs have demonstrated remarkable success in various
segmentation tasks, substantially improving the performance and efficiency compared to
traditional image processing techniques [17, 85, 89, 109, 139]. A typical F-CNN comprises a
series of layers, each serving a specific purpose. The primary building blocks of an F-CNN for
image segmentation include the following:

Convolutional layers
These layers apply convolution operations on the input data using a set of learnable filters,
which help detect local patterns or features in the input image. Convolutional layers can
capture spatial relationships within the input data, making them suitable for image processing
tasks.

Activation layers
The introduction of non-linearities into the network is facilitated by activation functions like
ReLU (Rectified Linear Units), sigmoid, or tanh to the outputs generated by the convolutional
layers. These activation functions empower the network to capture intricate non-linear
associations between the inputs and outputs.

Downsampling layers
Downsampling layers are used to reduce the spatial dimensions of the feature maps, which can
help control the computational complexity of the network and mitigate overfitting. Standard
downsampling methods are pooling operations, including max pooling and average pooling,
or strided convolution, which introduces additional network parameters.

Upsampling layers
Upsampling layers play a crucial role in the decoder part of the network, as they help increase
the spatial resolution of the feature maps. There are several methods for upsampling in
F-CNNs, including transposed convolution and unpooling. Transposed convolution (also known
as deconvolution or fractionally-strided convolution) is an upsampling method that involves
learning a set of filters to perform the upsampling operation. This method consists in convolving
the lower-resolution feature map with a learnable set of filters to produce a higher-resolution
output. Unpooling is an upsampling method that reverses the pooling operation used in the
encoder part of the network. For example, during a max-pooling operation, the network retains
the location of the maximum value in each pooling region. In the max-unpooling process,
these maximum values are placed back into their original positions in the higher-resolution
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feature map, while the other positions are filled with zeros. Unpooling can help recover some
of the spatial information lost during the pooling operation and comes with the benefit that it
adds no additional complexity in terms of learnable parameters to the network.

4.1.1 U-Net and Variants

U-Net is a widely-used F-CNN architecture for image segmentation, particularly in biomedical
image analysis. It was first introduced by Ronneberger et al. [139] in 2015 and has since
inspired various adaptations and modifications to suit different applications and data types.
In this section, I will describe the original U-Net architecture and three of its prominent
variants: 3D U-Net [17], V-Net [109], and nnU-Net [68, 69]. An overview of the original
U-Net architecture is depicted in Figure 4.1.

convolution, ReLU

max-pooling

transpose convolution

skip connection
convolution 1x1

Figure 4.1. Architecture of U-Net, figure adapted from Figure 1 in [139].

U-Net [139] was one of the first F-CNN architectures designed for biomedical image segmen-
tation tasks. It has an encoder-decoder structure with skip connections, forming a U-shaped
network. The encoder progressively captures high-level semantic information by downsam-
pling the input image using max-pooling. The decoder recovers spatial information and
upsamples the feature maps, using transpose convolution, to generate the final segmentation
mask. One of the key components of this architecture is that it connects the encoder and
decoder layers by so-called skip connections. These connections pass the feature map from the
corresponding encoder layer to the decoder and help retain fine-grained details, leading to
precise segmentation results and further providing an additional path for gradients to flow
during backpropagation.

3D U-Net [17] extends the original U-Net architecture to handle 3D volumetric data, making it
suitable for voxel-based image segmentation tasks. It replaces the 2D convolutional, pooling,
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and upsampling layers with their 3D counterparts, enabling the network to capture spatial
information across the height, width, and depth dimensions. This modification allows 3D
U-Net to effectively segment 3D structures in medical imaging applications, such as brain
tumor and organ segmentation. This architecture also adds batch normalization [67] into the
architecture.

V-Net [109] is another 3D adaptation of the U-Net architecture proposed concurrently with
3D U-Net. Like 3D U-Net, it proposes using volumetric convolutions, but it also introduces
an innovative loss function based on the Dice coefficient. This Dice loss function has since
become one of the most frequently employed loss functions in medical image segmentation.
The unique characteristic of the Dice loss function is that it promotes a greater overlap between
the predicted and the true segmentation masks. This leads to a more robust performance in
scenarios where class imbalance exists or the target structures are small. Another noteworthy
feature of the V-Net architecture is its incorporation of residual connections at each convolu-
tional stage. In this context, a convolutional stage refers to a sequence of convolutional layers
operating at the same spatial resolution. The residual connections take the input feature map
at the start of the convolutional stage and add it to the output feature map at the end of the
stage. V-Net also differs from 3D U-Net in a few other respects. For instance, it utilizes strided
convolution for downsampling instead of the pooling layers used in 3D U-Net. Furthermore, it
omits batch normalization layers, and instead of the Rectified Linear Unit (ReLU) activation
function, it employs the Parametric ReLU (PReLU) [58].

nnU-Net [68, 69], is a highly adaptable and robust segmentation framework based on the U-
Net architecture. It aims to automate the network design and configuration process for various
medical image segmentation tasks. nnU-Net includes preprocessing steps, such as intensity
normalization and data augmentation, and incorporates 2D and 3D U-Net architectures. The
framework dynamically selects the most suitable architecture, loss function, and training
strategy for the given task, making it highly versatile and applicable to various segmentation
challenges. The nnU-Net framework has become a commonly used baseline for comparing
medical image segmentation methods.

U-Net and its variants have proven highly effective for various image segmentation tasks,
particularly in medical imaging. These architectures provide a strong foundation for developing
advanced segmentation techniques that can address the unique challenges and requirements
of voxel-based image segmentation.

4.1.2 2D vs. 3D F-CNNs

In voxel-based image segmentation, F-CNNs can be designed as either 2D or 3D architectures,
depending on the nature of the input data and the desired output. The main difference
between 2D and 3D F-CNNs lies in the spatial dimensions they process. While 2D F-CNNs
handle 2D images and perform convolutions across the height and width dimensions, 3D
F-CNNs work with volumetric data and perform convolutions across the height, width, and
depth dimensions. This difference results in distinct kernel shapes, with 2D F-CNNs using 2D
kernels (e.g., 3x3) and 3D F-CNNs using 3D kernels (e.g., 3x3x3).
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Therefore, 2D F-CNNs, such as U-Net [139], have fewer parameters and require fewer com-
putational resources than their 3D counterparts. This makes them faster to train and more
suitable for systems with limited hardware capabilities. They are a fitting choice for 2D medical
images like dermatology or histology photos, 2D ultrasound, or x-ray scans. Since 2D F-CNNs
do not inherently model the depth dimension, they may fail to capture the full spatial context
and inter-slice correlations in 3D volumetric data, like Magnetic Resonance Imaging (MRI) or
Computed Tomography (CT) scans. This can lead to suboptimal performance in voxel-based
image segmentation tasks, especially for structures with complex 3D shapes. A popular strategy
to mitigate this problem is to train multiple 2D networks on different views of the 3D data,
like slicing the 3D volume in the axial, coronal, or sagittal direction. QuickNAT [143] is a
popular architecture aggregating predictions from the three standard views. Another method
to overcome this problem is concatenating multiple consecutive slices of a volumetric image in
the channel dimension and utilizing a 2D network, as in [59]. This approach is sometimes
referred to as 2.5D.

3D F-CNNs can naturally capture the 3D spatial context and inter-slice correlations in volumetric
data, making them more suitable for voxel-based image segmentation tasks. This ability to
leverage 3D information can lead to better segmentation performance than 2D F-CNNs,
particularly for structures with intricate 3D geometries. However, 3D F-CNNs typically have
more parameters and require more computational resources than 2D F-CNNs. This can make
them more challenging to train and deploy, particularly on systems with limited hardware
capabilities. Additionally, the larger memory footprint of 3D F-CNNs can necessitate smaller
batch sizes during training, which may affect the convergence properties and stability of the
learning process.

4.1.3 Loss Functions

To train a neural network, it is essential to evaluate the congruence between the predicted
segmentation output by the network and the actual labels. This necessitates the utilization of
a differentiable loss function, which facilitates the computation of gradients needed for the
backpropagation process. The optimization process seeks to minimize these loss functions. In
image segmentation, several loss functions are commonly adopted, including:

Cross-Entropy Loss

The cross-entropy loss is widely used for segmentation tasks. It measures the pixel-wise dis-
crepancy between the predicted probability distribution and the true distribution of class labels.
It encourages the network to produce accurate class probabilities, improving segmentation
results.

Dice Loss

The Dice loss, as introduced by Milletari et al. [109], is derived from the Dice coefficient, which
measures the overlap between the predicted segmentation and the ground truth. Dice loss is
defined as one minus the Dice coefficient, with lower values indicating better overlap. This
loss function is beneficial for imbalanced datasets, as it inherently balances the contribution of
different classes.
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Combined Loss Functions
In practice, combining different loss functions to leverage their respective strengths is common.
For example, combining cross-entropy and Dice loss can provide pixel-wise classification
accuracy and region overlap consistency, leading to better segmentation results.

4.1.4 Uncertainty

Uncertainty in CNNs is a concept that can provide insights into the confidence level of model
predictions. Understanding this uncertainty becomes crucial in medical imaging tasks, where
predictions have significant consequences. A common technique approximating this uncertainty
is Monte Carlo Dropout (MC Dropout) [43]. Dropout [157] is a regularization technique
used during training, where a fraction of neurons in a layer are randomly "dropped out" or
temporarily deactivated, helping to prevent overfitting by ensuring the model does not rely
too heavily on any single neuron.

In the context of MC Dropout, this idea is extended into the inference phase. Instead of a
single forward pass with all neurons active, as typically done in inference, multiple forward
passes are conducted with random dropout still in effect. Each forward pass thus results in
slightly different output due to the randomness introduced by dropout, forming a distribution
of predictions. The variance in this distribution is then used to measure model uncertainty.
By providing an estimate of prediction uncertainty, MC Dropout can be a valuable tool in
highlighting difficult or outlier cases and could enhance decision-making processes in clinical
settings.

4.2 Evaluation of Segmentation Methods

Evaluation metrics are essential for assessing the performance of voxel-based image segmenta-
tion methods. They provide quantitative measures of the agreement between the predicted
segmentation and the ground truth labels, helping researchers and practitioners compare
different approaches and identify areas for improvement. It is important to choose evaluation
metrics depending on the task and to evaluate multiple metrics, e.g., boundary-based metrics
measure different properties than overlap metrics. A new framework for selecting metrics for
medical image analysis suggests choosing an overlap metric, a boundary metric, and other
application-specific metrics if needed [99].

4.2.1 Overlap Metrics

Overlap metrics count and compare the overlapping pixels of predicted segmentation and
ground truth. They are very commonly used metrics for medical image segmentation but have
an essential drawback: they are biased towards single large organs and do not take organ
shape into consideration [99]. One of the most commonly used overlap metrics is the Dice
Coefficient, also known as the Dice Similarity Index. The Dice Coefficient is the ratio of twice
the intersection volume to the sum of the volumes of both sets. Dice coefficients range from
0 to 1, with higher values indicating better performance. Another commonly used overlap
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metric is the Intersection over Union (IoU), also called the Jaccard Index. The IoU is defined as
the ratio of the intersection volume to the union volume of both sets. Like the Dice coefficient,
IoU values range from 0 to 1, with higher values indicating better performance.

4.2.2 Boundary Metrics

The Hausdorff Distance (HD) measures the maximum distance between the boundaries of the
predicted segmentation and the ground truth. It is a worst-case metric that evaluates the
largest discrepancy between the two sets, indicating the overall quality of the segmentation.

Contrastingly, the Average Symmetric Surface Distance measures the average distance between
the boundaries of the predicted segmentation and the ground truth. Unlike the Hausdorff
distance, it evaluates the overall agreement between the boundaries, providing a more com-
prehensive assessment of segmentation performance.

The Surface Dice [116], or normalized surface distance, is another useful metric in evaluating
image segmentation quality. Rather than just measuring the overlap of pixels, this metric
accounts for the physical distance between the surfaces of the predicted and ground truth
segmentations. It computes the Dice coefficient on the surface voxels of the predicted and
ground truth segmentations, where a surface voxel is defined as a voxel at the boundary of the
segmentation region. In this way, the Surface Dice provides an additional measure of spatial
accuracy that is more sensitive to the exactness of segmentation boundaries. As with other
Dice metrics, a Surface Dice score ranges from 0 to 1, with higher values indicating better
performance.

4.2.3 Application-Specific Metrics

In some cases, typically used overlap and boundary metrics are not enough to measure
the performance of a proposed segmentation algorithm. For example, depending on the
application, looking at the algorithm’s runtime or GPU memory demands might be necessary.
In some tasks, like lesion segmentation, it might be essential to compute metrics such as lesion
Recall or F1 score, as explained in Chapter 6. In Chapter 7, we focus on segmentation after
organ resection surgery, where the most crucial application-specific metric is the false positive
rate (FPR). In summary, multiple evaluation metrics can and should be used to assess the
performance of voxel-based image segmentation methods. It is important to consider various
metrics to obtain a comprehensive understanding of the model’s performance and identify
areas for improvement.
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5.1 Introduction

As introduced in Chapter 4, F-CNNs have gained popularity for semantic image segmentation
in natural [5, 14, 93] and medical images [140, 143]. However, most tasks in computer
vision involve 2D natural images; therefore, architectural advancements are primarily focused
on 2D F-CNNs. In contrast, medical imaging primarily deals with 3D scans, such as CT and
MRI, which cannot be processed directly by 2D F-CNNs. When our work on recalibration
of 3D ConvNets [135] was published, using 2D F-CNN to analyze 3D medical scans slice by
slice was common practice. However, this approach ignores contextual information from
neighboring slices [108], resulting in suboptimal results. 3D F-CNNs have gained attention
in medical image segmentation and have shown promising results [13, 18, 29, 109, 167].
Nevertheless, there are still practical challenges, such as the significantly higher number of
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learnable parameters than their 2D counterparts, leading to overfitting when data are scarce,
and the considerable GPU memory required for training. These challenges are particularly
prevalent in medical image segmentation. Medical datasets are typically much smaller than
computer vision datasets, with only 15-20 labeled scans being typical at the time of publication
of this article [82, 161]. Although dataset sizes have increased since then, they only consist
of hundreds of scans, substantially less than datasets such as ImageNet [26] containing
over a million images. Additionally, 3D medical scans demand significantly more memory.
Researchers often meticulously engineer 3D F-CNNs for specific tasks by reducing model
complexity to address this issue. However, this approach restricts the model’s capacity to learn
relevant features.

The second challenge may be overcome by dividing the complete volume into smaller subvol-
umes and training the model. This will reduce the memory demand of the training process.
However, this method has limitations, as it reduces the model’s contextual awareness, similar
to 2D F-CNNs, and requires strategies for assembling the complete volume [64]. Recently, this
approach has demonstrated great potential when combined with transformer architectures, as
in the case of UNETR [56]. It is worth noting that this chapter solely addresses F-CNNs as the
article was published before the transformer architecture era.

Hu et al. [62] introduced the Squeeze and Excite (SE) module, that recalibrates intermediate
feature maps, resulting in improved performance in classification tasks within the computer
vision domain, with only a marginal increase in model complexity. SE modules enable the
modeling of interdependencies between feature map channels and learn to emphasize specific
channels based on the task at hand. Incorporating SE modules into 2D Convolutional Neural
Network (CNN) architectures has been shown to improve performance with only a small
increase in the number of learnable parameters [62, 144], which makes it a promising method
for 3D F-CNNs.

This chapter delves into the recalibration of feature maps in 3D F-CNNs by exploring dif-
ferent recalibration blocks originally designed for 2D networks and adapting them to the
3D domain. Additionally, we introduce a novel recalibration module called the Project &
Excite (PE) module, specifically tailored for 3D network architectures. We hypothesize that
completely discarding spatial information from high-dimensional feature maps, as done in the
SE module through global pooling, may result in the loss of crucial information, especially for
segmentation tasks requiring precise localization of anatomical structures. Instead, we aim to
retain spatial information while simultaneously providing the network with a global receptive
field at each stage. To achieve this, we employ traditional tensor slicing techniques [128] to
compute average values along the three primary axes of the tensor, generating three projec-
tion vectors that indicate the relevance of the slices along each axis. The process is visually
illustrated in Figure 5.1. Consequently, as observed in the SE module, the network learns the
interdependencies among these projection vectors across the channels for excitation rather
than learning dependencies between scalar values across channels.

The research presented in this chapter [135] builds upon our previous work [134] and
presents a comprehensive framework for recalibration methods. We thoroughly validated
the proposed module across diverse datasets and conducted experiments on two medical
image segmentation tasks, leading to the following noteworthy contributions. Firstly, we
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Figure 5.1. Illustration of 3D tensor slicing along the three axes and the subsequent generation of 1D projections
through methods such as average pooling, as employed in Project & Excite blocks. © IEEE,2020

introduce a novel computational block, Project & Excite (PE), which enables the recalibration
of 3D F-CNNs. Secondly, we demonstrate the seamless integration of PE blocks into 3D
F-CNNs by incorporating them into two distinct architectures. Thirdly, we establish that
integrating PE blocks enhances segmentation accuracy, particularly for smaller target classes,
while adding only a minimal amount of additional model parameters compared to including
additional convolutional layers. Fourthly, we introduce the compress-process-recalibrate
pipeline, facilitating the direct comparison of different recalibration blocks. Finally, we extend
existing recalibration techniques to the 3D setting and conduct comparative evaluations against
our proposed PE blocks. These experiments substantiate our hypothesis that preserving spatial
information is crucial for achieving optimal performance in 3D settings.

5.1.1 Related Work

In the previous chapter, we discussed the fundamental differences between 2D and 3D networks.
In 3D networks, the number of channels is typically lower compared to 2D networks. To
address the high memory requirements of 3D networks, a commonly employed approach is
training 3D F-CNNs on subvolumes [13, 29, 72, 167]. When using subvolumes for training, the
sampling strategy must be tailored to the specific task. As there is no need to store activations
for backpropagation during inference time, some networks, usually less complex ones, are able
to process the entire volume at once at test time. However, other networks process the volume
in segments during inference. In cases where these segments overlap, merging them becomes
necessary to generate a complete volume segmentation. This merging process often requires
a label fusion strategy to handle overlapping sections effectively. One example of a network
using subvolumes is SLANT [64], where brain volumes are divided into overlapping subspaces,
and each subspace is registered to a standardized atlas. Subsequently, individual 3D F-CNNs
are trained for each subspace. In contrast to the conventional training strategy on subvolumes,
our objective is to train 3D F-CNNs on complete volumes without additional preprocessing,
postprocessing, or complex stitching methods. This requires designing a low-complexity model
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that can still achieve accurate segmentations. In pursuit of this objective, we draw inspiration
from the successful use of Squeeze and Excite modules in 2D networks.

The Squeeze and Excite (SE) module [62] comprises two main operations: squeezing and
exciting. During the squeezing operation, the spatial dimensions of the feature maps are
reduced by global pooling to generate a channel descriptor. This descriptor captures the
significance of each channel. In the exciting operation, a set of learnable parameters is used to
produce attention weights for each channel. These attention weights are then applied to the
original feature maps, enabling the network to selectively enhance informative channels while
suppressing less relevant ones. The network can effectively capture long-range dependencies
across different image regions, even in deeper layers, by incorporating SE modules. As a
result, classification performance is improved without significantly increasing the model’s
complexity.

Several researchers have expanded the application of Squeeze and Excitation (SE) modules to
various computer vision and medical image analysis tasks, adapting them for classification and
segmentation purposes. Roy et al. [144] introduced the spatial squeeze and excite (sSE) block
as an extension of SE specifically designed for medical image segmentation. Recognizing the
importance of preserving fine-grained spatial information, the sSE block compresses channel
information and performs recalibration spatially. Their findings indicate that the sSE block
surpasses the original channel SE module (cSE) [62] in medical segmentation tasks, and a
combination of both modules (scSE) achieves even higher performance. Importantly, their
work highlights the potential advantages of lightweight blocks over additional convolutional
layers.

Similar to [144], the convolutional block attention module (CBAM) [176] combines channel
and spatial attention modules sequentially rather than simultaneously. These modules use
max and average pooling to compress channel and spatial information. It has been shown that
using max-pooling in addition to average pooling enhances performance over using a single
pooling approach. While sSE, scSE, and CBAM have shown promise in 2D segmentation tasks,
their 3D extensions have not been thoroughly examined.

Pereira et al. [124] developed the jointly learned channel and spatial recalibration module
(SegSE) for medical segmentation problems, which employs dilated convolutions rather
than average pooling. While SegSE outperforms pooling-based recalibration approaches, it
necessitates more GPU RAM due to the usage of dilated convolutions.

Although originally developed for 2D architectures, cSE blocks have recently been extended to
3D F-CNNs for volumetric segmentation assistance [187]. Zhu et al. directly adapted the cSE
module for 3D channel recalibration in medical image segmentation. Their results demonstrate
improved performance compared to baseline models without recalibration blocks, although
spatial recalibration was not performed. Recently, Zhu et al. [187] extended cSE blocks, first
created for 2D structures, to 3D F-CNNs for volumetric segmentation. Despite the absence of
spatial recalibration, their results demonstrate improved performance compared to baseline
models without recalibration blocks.
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Table 5.1. Various squeeze and excite module versions are compared to our proposed Project & Excite (PE) module
in terms of the operations of compress C(·), process P(·), and recalibrate R(·, ·). The second column lists
the CNN type (2D or 3D) for which the module was designed.

C(·) P(·) R(·, ·)

Module Used in Linear Parametric FC Conv Gating function Recalibration

cSE [62, 187] 2D & 3D CNNs ✓ ✗ ✓ ✗ sigmoid channel-wise multiplication
sSE [144] 2D CNNs ✓ ✓ ✗ ✓ sigmoid element-wise multiplication
CBAM channel [176] 2D CNNs ✗ ✗ ✓ ✗ sigmoid channel-wise multiplication
CBAM spatial [176] 2D CNNs ✗ ✗ ✗ ✓ sigmoid element-wise multiplication
Project & Excite 3D CNNs ✓ ✗ ✗ ✓ sigmoid element-wise multiplication

5.2 Methods

We have observed that the previously discussed recalibration modules share a common
recalibration process. To comprehensively compare these methods, we propose a universal
framework called compress-process-recalibrate (CPR). Within this framework, all recalibration
blocks operate on a high-dimensional feature map, typically obtained from a preceding
convolutional layer in the network. The first step, performed by the function C(·), involves
compressing the input feature map U into a lower-dimensional embedding Z. In the case of
SE, this compression is achieved through global average pooling, resulting in a vector of scalar
values per channel stored in Z.

Subsequently, the processor P(·) learns a mapping from the low-dimensional embedding Z to
recalibration factors Ẑ. For SE, this mapping is accomplished using a fully connected layer.

The final step of recalibration, denoted as R(·, ·), involves rescaling Ẑ using a gating function,
followed by element-wise multiplication of the input feature map with Ẑ. In the case of SE,
the gating function is implemented as a sigmoid layer.

This recalibration process generates a recalibrated output feature map Û, which emphasizes or
suppresses specific channels or spatial locations. A visual representation of the CPR framework
can be found in Figure 5.2. Various techniques can be employed for feature map compression,
such as linear or non-linear pooling operations, as well as parametric or non-parametric
approaches like convolutions. The processor component of CPR is typically parametric and
may incorporate fully connected or convolutional subnetworks. For a comprehensive overview
of different recalibration blocks within the CPR framework, please refer to Table 5.1. In the
subsequent sections, we will delve into the details of existing recalibration blocks, extend them
to 3D, and introduce the Project & Excite block within this CPR framework.

5.2.1 3D Channel Squeeze & Excite

The 3D Channel Squeeze & Excite (cSE) module is an adaptation of the original 2D SE
block [62] for 3D networks [187].
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Figure 5.2. Compress-Process-Recalibrate (CPR) framework illustration. Using the Compressor function C(·), the
input feature map U is compressed, yielding a lower-dimensional embedding Z. The Recalibration
function R(·, ·) scales the input feature map using the recalibration factors Ẑ that were learned by the
Processor function P(·, ·). The updated feature map is represented by the output Û. © IEEE,2020

The compression function C : RH×W ×D×C → RC applies a global average pooling operation
to the input feature map U, reducing its spatial dimensions and generating a scalar value per
channel z ∈ RC , referred to as the "squeeze". For simplicity, let us denote a single channel of
the input U as Uc. The processing function P(·) takes the squeezed representation z as input
and uses two fully connected layers, represented by W1 ∈ RC

r ×C and W2 ∈ RC× C
r , to learn

inter-channel dependencies. r is a hyperparameter that controls the channel reduction factor,
allowing for trade-offs between computational and memory costs. The ReLU nonlinearity δ is
applied to the intermediate result, resulting in the recalibration factors ẑ. The recalibration
function R(·, ·) applies a sigmoid gating function σ to the recalibration factors ẑ, allowing for
the emphasis or suppression of multiple channels. Finally, the input feature map is scaled
channel-wise with the learned recalibration weights.

The operations of the 3D cSE module can be defined as follows:

C : z = AvgPool(U), (5.1)

P : ẑ = W2δ(W1z), (5.2)

R : Ûc = σ(ẑc)Uc, (5.3)

here, AvgPool denotes the channel-wise average pooling operation.

5.2.2 3D Spatial Squeeze & Excite

The spatial SE block (sSE) [144] was created particularly for segmentation tasks and may be
expanded to 3D networks. We replace all functions in this extension with their 3D equivalents.
Unlike other recalibration modules, sSE notably integrates the process step inside the compress
transformation. The definitions of the operations C,P, and R are as follows:

C,P : Z = S ⋆ U, (5.4)

R : ûc = σ(Z) ·Uc. (5.5)
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The weights of the convolution kernel are represented as S ∈ R1×1×1×C×1, where C is the
number of channels. The compression procedure reduces the channel dimension to 1 by
applying a 1× 1× 1 kernel on the channel information. In the recalibration procedure, the
resultant recalibration map is rescaled using a sigmoid layer and element-wise multiplied
with each channel of the input feature map. This preserves geographical information while
highlighting or suppressing certain channels.

5.2.3 3D Spatial and Channel Squeeze & Excite

The combination of cSE and sSE blocks has been proposed in [144] as spatial and channel SE
(scSE). The input feature map U is processed separately in the scSE block by a cSE and a sSE
block. This produces two output feature maps, ÛcSE and ÛsSE . These two feature maps are
combined using an element-wise max operation to get the final result ÛscSE . To expand scSE
to 3D networks, we use the previously reported 3D cSE and 3D sSE blocks, which allow for
recalibration in both the channel and spatial dimensions.

5.2.4 3D Convolutional Block Attention Module

The Convolutional Block Attention Module (CBAM) [176] was designed for 2D classification
and object detection tasks and has not been widely utilized for 3D segmentation. We study its
application to 3D networks and compare our PE blocks to a 3D version of CBAM owing to its
similarities to squeeze and excite blocks.

Like the scSE block, CBAM consists of two components: a channel attention block and a
spatial attention block. But in contrast to scSE, CBAM applies the channel and spatial blocks
sequentially. The channel attention block is related to the 3D cSE block. On the input
feature map U, it conducts global max pooling and average pooling and feeds the pooled
representations into a shared, fully connected subnetwork. The obtained features are added
element by element and sent through a sigmoid gating function. The acquired weights are
then used to scale the input feature map by element-wise multiplication. The following are the
definitions of the functions Cavg, Cmax, P, and R:

Cavg : zavg = AvgPool(U), (5.6)

Cmax : zmax = MaxPool(U), (5.7)

P : ẑ = W2δ(W1zavg) + W2δ(W1zmax), (5.8)

R : Ûc = σ(ẑc)Uc, (5.9)

where AvgPool and MaxPool represent the channel-wise pooling operations, and W1 ∈ RC
r ×C

and W2 ∈ RC× C
r denote the weights of the fully connected layers.

The spatial attention block focuses on condensing the channel information. It conducts average
pooling and maximum pooling operations along the channel dimension and concatenates the
generated features. The concatenated features are sent through a 1× 1× 1 convolutional layer
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Figure 5.3. Illustration of the proposed Project & Excite block. The 4D input feature map U is first projected, and
three projection vectors per channel are generated using pooling techniques such as average pooling.
The three vectors are then expanded to the original input dimension and element by element added to
produce the intermediate feature map Z. The feature map is then passed through two convolutional
layers in the excitation operation, which first reduce and then increase the channel size. The recalibration
factor r is a hyper-parameter that can be used to fine-tune this decrease. Finally, the original input
feature map is multiplied by the recalibration map Ẑ to generate the recalibrated feature map Û in the
recalibration phase. ©IEEE,2020

to construct the spatial attention map, followed by a sigmoid layer. The following are the
definitions of the functions Cavg, Cmax, C, P, and R:

Cavg : Zavg = AvgCPool(U) (5.10)

Cmax : Zmax = MaxCPool(U) (5.11)

Z = [Zavg; Zmax] (5.12)

P : Ẑ = V ⋆ Z (5.13)

R : Û = Ẑ ·Uc, (5.14)

where AvgCPool(·) and MaxCPool(·) denote the channel-wise average and max pooling opera-
tions, [·; ·] represents concatenation along the channel dimension, ⋆ indicates the convolution
operation, and V ∈ R1×1×1×2×1 denotes the convolutional weights. These two blocks are
joined sequentially by sending the input through the channel attention block first and then
forwarding the output via the spatial attention block.

5.2.5 Project & Excite Module

The recalibration blocks discussed previously were primarily designed for 2D tasks and may
not be optimally suited for 3D segmentation tasks. The cSE, scSE, and CBAM blocks, which
compress the spatial information of a volumetric feature map into a single scalar value per
channel, may not adequately capture the essential spatial information of large-sized 3D inputs,
especially in the first and last layers of an encoder-decoder architecture. To address this
limitation, we propose the Project & Excite (PE) module, which aims to preserve valuable
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spatial information within the projection operation and learn inter-dependencies between
projections across different channels for recalibration.

The compression operation, denoted as C(·), is divided into three separate projection operations
along the spatial dimensions: CH(·), CW (·), and CD(·). These projection operations compress
the feature map along each spatial dimension to obtain the projected feature maps Zh ∈ RC×H ,
Zw ∈ RC×W , and Zd ∈ RC×D. For simplicity, a single channel of the projected feature maps is
denoted as zl,c, with l referring to the spatial dimension (e.g., h, w, or d).

The projection operation utilizes pooling operations, such as average or max pooling, to
compress the feature map along the spatial dimensions. As an example, we describe the
projection operation using average pooling:

CH : zh,c(i) = 1
W

1
D

W∑
j=1

D∑
k=1

Uc(i, j, k), (5.15)

CW : zw,c(j) = 1
H

1
D

∑
i = 1H

D∑
k=1

Uc(i, j, k), (5.16)

CD : zd,c(k) = 1
H

1
W

∑
i = 1H

W∑
j=1

Uc(i, j, k), (5.17)

where i ∈ 1, . . . , H, j ∈ 1, . . . , W , and k ∈ 1, . . . , D.

The projected feature maps Zh, Zw, and Zd are then broadcasted to the shape H ×W ×D×C

and added together to obtain the combined projected feature map Z. The processor P(·),
which comprises two convolutional layers with a ReLU activation, is then given this merged
feature map. While the second layer returns the channel dimension to its original size, the first
layer decreases the number of channels by a reduction factor r. The definitions of the process
and recalibrate operations are:

P : Ẑ = v2 ⋆ δ(v1 ⋆ Z), (5.18)

R : Û = σ(Ẑ)⊙U, (5.19)

where ⋆ represents the convolution operation, ⊙ denotes point-wise multiplication, v1 ∈
R1×1×1× C

r and v2 ∈ R1×1×1×C are the convolution weights.

The final output of the PE block, Û, is obtained by performing an element-wise multiplication
between the feature map U and the recalibrated feature map Ẑ. This innovative approach
preserves more crucial spatial information within the projection operation, leading to improved
performance in the recalibration process. The Project & Excite module is a valuable contribution
to 3D segmentation tasks as it effectively captures spatial and channel information in the
recalibration operations.
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5.2.6 Integration into F-CNN Architectures

Existing F-CNNs networks can easily incorporate calibration blocks. According to Hu et al. [62],
they are often placed after the nonlinearity after a convolutional layer. We use the same
positioning technique in both our PE and 3D extensions. The various placements of PE blocks
inside a typical encoder-decoder-based network are shown in Figure 5.4 and are discussed in
Section 5.4.1.

Hu et al. also showed how well cSE blocks may be included in residual networks. In this study,
as described in Section 5.4.2, we examine the performance of 3D recalibration blocks inside a
residual 3D FCNN.

Figure 5.4. Left: Schematic representation of a 3D U-Net, which includes classification, bottleneck, encoder, and
decoder layers. Right: Project & Excite blocks, denoted as PE, are positioned in the bottleneck, encoder,
and decoder blocks to show how they are integrated into the network. Additionally, we use instance
normalization (’IN’) in our studies. © IEEE, 2020

5.3 Experimental Setup

5.3.1 Whole-Brain Segmentation of MRI Scans

Throughout the experiments, we utilize three distinct brain MRI datasets. To ensure consistency,
we preprocess all MRI scans using FreeSurfer [39] by resampling them to a voxel resolution of
1× 1× 1mm. Neuromorphometrics, Inc provided manual annotations for all brain datasets.
The objective is to segment 32 cortical and subcortical structures in the 3D MRI brain scans.

The first dataset we use is the Multi-Atlas Labeling Challenge (MALC) dataset [82], which is a
subset of the OASIS dataset [100]. It comprises 30 T1 MRI volumes from different subjects.
We use this dataset for training our networks. Considering the limited data availability, we
employ 5-fold cross-validation. In each fold, we use 24 scans for training and reserve 6 scans
for testing. Additionally, two scans from the training set are set aside as a validation set during
the model training process.
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The second dataset, ADNI-29, consists of 29 scans from the ADNI dataset [70]. It is carefully
curated to include a balanced distribution of subjects with Alzheimer’s Disease and control
subjects. The scans are acquired using both 1.5T and 3T scanners, and the presence of
pathology presents a challenging segmentation task. The third dataset, CANDI, is a subset of
the CANDI dataset [75], consisting of 13 brain scans of children aged 5-15 with psychiatric
disorders. Some scans in this dataset exhibit severe motion artifacts. The ADNI and CANDI
datasets are used as unseen datasets for evaluating model generalizability.

5.3.2 Whole-Body Segmentation of CT Scans

In this investigation, we use contrast-enhanced whole-body CT images from the Visceral
dataset [161]. This dataset comprises 20 annotated scans with a voxel resolution of 2mm3.
Our objective is to segment organs inside the thorax and abdomen, with a focus on 14 particular
organs. We use a 5-fold cross-validation procedure to evaluate our method. Each fold has 16
training scans and 4 testing scans. During the training phase, two scans from the training set
are set aside as a validation set inside each fold. In addition, one scan from the test fold is
saved as a validation set.

5.3.3 Baseline Architectures

3D U-Net [18], V-net [109], and VoxResNet [13] are three frequently used 3D F-CNN designs.
While 3D U-Net and V-Net have similar encoder-decoder architectures, VoxResNet has a unique
design with side supervision. Our suggested PE blocks are evaluated using one encoder-decoder
architecture (3D U-Net) and one side-supervision architecture (VoxResNet).

3D U-Net

The segmentation network employed in our experiments is a 3D U-Net architecture consisting
of an encoding path and a decoding path connected by skip connections. This network
architecture is depicted in Figure 5.4. To reduce memory demand during training and ensure
the feasibility of training on our available GPUs, we have modified the original design to
reduce the number of parameters.

Our modified 3D U-Net architecture includes three encoder blocks and three decoder blocks.
Downsampling is performed in the first two encoder blocks, while upsampling is performed in
the last two decoder blocks. Each encoder and decoder block consists of two convolutional
layers with a kernel size of 3 × 3 × 3. Additionally, we have reduced the number of output
channels at each encoder and decoder block to half the size used in the original 3D U-Net ar-
chitecture. For example, the two convolutions in the first encoder block have channel numbers
of 16 and 32 instead of 32 and 64. These modifications help to reduce the computational
requirements and memory usage while maintaining the overall architecture and performance
of the 3D U-Net.
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VoxResNet
VoxResNet, proposed by Chen et al. [13], is a 3D residual network architecture specifically
designed for volumetric brain segmentation. The key component of VoxResNet is the VoxRes
module, a residual block composed of two 3D convolutional layers. The network architecture
includes three downsampling operations performed using strided convolutions with a stride
of 2, and upsampling is achieved using transposed convolutions. In addition to the final
classifier, the network also includes four auxiliary classifiers. The final classifier is obtained
by summing the outputs of all the auxiliary classifiers. The use of auxiliary classifiers with
different receptive fields allows for deep supervision, which aids in segmenting structures
of varying sizes. To incorporate recalibration blocks into VoxResNet, we have positioned
them before each downsampling step. This placement allows for recalibration at different
scales within the network. Following the convention established in [62], we have placed the
recalibration blocks within the residual blocks of VoxResNet. The architecture of VoxResNet
and the placement of recalibration blocks are illustrated in Figure 5.5.

Figure 5.5. Project & Excite blocks, denoted as PE, are placed within the VoxResNet [13] model. (a) Diagram of the
VoxResNet architecture with side supervision (C1-C4), adapted from [13]. We choose to integrate PE
modules before each downsampling step. In this architecture that means in every second VoxRes module,
denoted as VoxRes + PE. The details of the VoxRes module areshown on the side (b). It includes instance
normalization (IN), ReLU, and convolutional layers. Before the residual connection, the PE module is
integrated. © IEEE, 2020

5.3.4 Training Parameters and Implementation Details

We decided on a batch size of 1 for training to handle the large input size. In our first tests,
we found that applying the running mean during testing after batch normalization resulted
in noisy validation loss and decreased performance on the test set. In place of it, we used
Instance Normalization [164]. In addition, we discovered that for our particular tasks, instance
normalization worked better than group normalization. We used Stochastic Gradient Descent
(SGD) with a momentum of 0.9 for optimization. We trained each model for 120 epochs. The
initial learning rate was set to 0.1, and when the validation loss plateaued for more than 10
epochs, the learning rate was decreased by a factor of 10. Data augmentation techniques, such
as elastic deformations and random rotations, were applied to the training set.
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To address the class imbalance issue, we combined Cross-Entropy and Dice loss. As demon-
strated in [143], the Cross-Entropy loss was weighted by median frequency balancing. Fol-
lowing the approach of Chen et al. [13], we incorporated a weighting factor for the loss of
the auxiliary classifiers during the training of VoxResNet. The weighting factor was initially
set to 1 and decreased by a factor of 2 every 10 epochs, with a minimum value of 0.001. All
models were trained on Nvidia Quadro P6000 GPUs with 24GB of RAM or Nvidia TitanXP
GPUs with 12GB of RAM. We utilized the PyTorch checkpoint functionality when training on
the TitanXP GPU, which prevents the storage of intermediate activations during the forward
pass and recomputes the activations during the backward pass. While this method increases
computation time, it is advantageous for training deep neural networks with inputs that require
substantial memory resources and volumetric data.

5.3.5 Evaluation Metrics

We have chosen two evaluation metrics to assess the performance of our segmentation method:
the volumetric Dice similarity coefficient (DSC) as an overlap metric and the surface Dice
coefficient as a boundary metric. The volumetric Dice coefficient measures the overlap
between the predicted segmentation mask and the ground truth labels in terms of volume.
It is a commonly used metric in medical image segmentation. However, it is worth noting
that the volumetric Dice coefficient is insensitive to minor segmentation errors in boundary
regions, particularly for large organs. We also employ the surface Dice coefficient [116] to
address this limitation. The surface Dice coefficient calculates the overlap of the surfaces of the
predicted and ground truth segmentations, considering a specific boundary tolerance. Unlike
the volumetric Dice coefficient, the surface Dice coefficient penalizes small segmentation errors
in boundary regions. As we lacked multiple manual segmentations to determine the optimal
tolerance parameter for each structure, we set the tolerance parameter to the lowest possible
value, which is the resolution of the scans, for all structures. Using a combination of evaluation
metrics, we can obtain a comprehensive assessment of the segmentation performance and
identify areas for improvement.

5.4 Results and Discussion

We use the following criteria to assess the performance of PE blocks: We conduct an ablation
study of PE blocks using the MALC dataset, looking at architectural decisions such as pooling
and aggregation procedures, the selection of the hyperparameter r, and the placement of PE
blocks within the network architecture. The performance of PE blocks is then compared against
the 3D extensions of current calibration techniques. We apply all trained models on the ADNI
and CANDI datasets to evaluate the performance on untested data. The next step is to see if
additional segmentation jobs can benefit from the usage of PE blocks. In order to accomplish
the goal of whole-body segmentation on the Visceral dataset, we apply PE blocks without
altering any hyperparameters. We employ the 3D U-Net [18] as our baseline architecture in
all of these experiments. Finally, we implement PE blocks into VoxResNet [13] and test their
effectiveness on the MALC dataset.
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Table 5.2. Comparison of various pooling methods and aggregation strategies used within the Project & Excite (PE)
block to combine projection vectors. The evaluation metric utilized is the volumetric Dice coefficient,
with the mean and standard deviation of the results reported. The PE modules were incorporated into
the 3D U-Net architecture, trained, and evaluated on the MALC dataset.

Pooling

Aggregation Avg Max Avg&Max

Add 0.854 ± 0.075 0.819± 0.194 0.848± 0.075
Max 0.853± 0.075 0.820± 0.175 0.817± 0.088
Mult 0.844± 0.101 0.798± 0.176 0.808± 0.164

5.4.1 Architecture Ablation Study and Hyperparameters

Pooling and Aggregation Strategy of PE Blocks
We examine various pooling strategies and aggregation techniques for projection vectors within
PE blocks. We compare average pooling, max-pooling, and a combination of the two for the
projection operation. In the combined pooling method, we use average pooling as described
in the Methods section and execute three max-pooling procedures along distinct dimensions.
The resultant average and maximum projection vectors are then expanded to the size of the
original feature map and independently processed by the shared convolutional layers. Before
passing through the sigmoid layer, the element-wise summation combines the recalibration
maps generated by the two pooling methods. In addition, we investigate various strategies for
combining the three projection vectors. We evaluate addition, element-wise max operation,
and element-wise multiplication as aggregation methods.

The results of these experiments are presented in Table 5.2. We observe that average pooling
yields the best performance across all three aggregation strategies. When using addition as the
aggregation method, we find that the combination of average and max pooling also performs
well. However, the performance is lower when using max or multiplication for aggregation.
Based on these findings, we select addition as the aggregation strategy for its computational
efficiency and ability to be computed in place.

Hyperparameter r
As mentioned in subsection 5.2.5, the hyperparameter r regulates the channel dimension
reduction within the Excitation operator. On the MALC dataset, we compare the performance
of the 3D U-Net with integrated PE blocks for various r values. We experiment with r values of
2, 4, 8, 16 and find that r = 8 produces the best results. We see a similar pattern for 3D cSE,
sSE, and CBAM blocks and, as a result, set r = 8 for these blocks. We set r = 2 for 3D scSE
since it improves performance.

Position of Project & Excite Blocks
In this experiment, we use the 3D U-Net to study the best arrangement of the PE blocks within
the F-CNN architecture. We investigate six possible PE block placement configurations: PE
blocks are placed after each encoder block (P1), PE blocks after each decoder block (P2), PE
blocks occur after the bottleneck block only (P3), PE blocks are placed after all encoder and
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decoder blocks (P4), PE blocks after each encoder block and the bottleneck (P5), and finally
PE blocks are placed after all encoder/decoder and bottleneck blocks (P6).

All six configurations’ findings are reported in Table 5.3 and compared to the baseline 3D U-Net
model. To begin, we see that inserting the PE blocks after the encoder (P1) and bottleneck (P3)
blocks increases the Dice similarity coefficient (DSC) by 1 percentage point, however placing
them after the decoder (P2) blocks has no effect on performance. Second, we discover that
adding the PE blocks after each encoder and decoder block (P4) resulted in a DSC improvement
of 0.026. This implies that when the encoder blocks also include PE blocks, the PE blocks at
the decoder have a favorable effect. Furthermore, we find that inserting the PE blocks after
the encoder blocks and the bottleneck (P5) results in a DSC boost of 0.018. This shows that
the encoder and bottleneck PE blocks collaborate more effectively. Finally, by arranging the PE
blocks after all other blocks (P6), we see a 0.03 improvement in DSC, which is more than the
previous setups. As a consequence, this setup is chosen for our investigations. Furthermore,
we evaluated the placement of PE blocks after each convolutional layer inside the encoder,
decoder, and bottleneck, but we found no gain in performance. Based on these data, we
infer that putting the PE blocks after all of the encoder, decoder, and bottleneck blocks (P6)
produces the best results and is, thus, the method we will use in our experiments.

Table 5.3. Average Dice score and standard deviations on the MALC dataset resulting from the placement of PE
blocks within various layers of the 3D U-Net. A checkmark in a column indicates that the PE block was
positioned after each of the corresponding layers.

Position of PE block

Encoders Bottleneck Decoders Mean Dice ± std

3D U-Net ✗ ✗ ✗ 0.823± 0.142
P1 ✓ ✗ ✗ 0.837± 0.127
P2 ✗ ✗ ✓ 0.825± 0.148
P3 ✗ ✓ ✗ 0.835± 0.115
P4 ✓ ✗ ✓ 0.849± 0.088
P5 ✓ ✓ ✗ 0.841± 0.113
P6 ✓ ✓ ✓ 0.854 ± 0.075

5.4.2 Comparison of 3D Recalibration Blocks

Brain Segmentation

We present the results of whole-brain segmentation in Table 5.4 for two different 3D F-
CNN architectures: 3D U-Net [17] and VoxResNet [13]. We integrated PE blocks and other
recalibration blocks, namely 3D cSE, 3D sSE, 3D scSE, and 3D CBAM, into both architectures.
Due to the significantly increased memory requirement of dilated convolutions, comparing
to a 3D version of SegSE [124] was not feasible on our GPUs. Dilated convolutions have a
higher memory demand than normal convolutions in 2D, and this effect becomes even more
pronounced in 3D due to the cubic scaling of complexity. The computational and memory
requirements of 3D dilated convolutions on whole volume inputs would exceed the capabilities
of our available GPUs. Therefore, we could not directly evaluate the performance of SegSE in

5.4 Results and Discussion 47



Table 5.4. Comparison of 3D U-net and VoxResNet segmentation performance on the MALC test set using several
3D recalibration blocks and our suggested Project & Excite block. Volumetric and surface Dice scores
for chosen classes are averaged across the hemispheres. Structure names are abbreviated due to space
constraints, Gray matter = GM, white matter = WM, inferior lateral ventricle = Inf. LV., amygdala =
Amygd., accumbens = Acc..

3D U-Net [17]
Volumetric Dice Surface Dice

Mean ± std WM GM Inf.LV Amygd. Acc. Mean ± std WM GM Inf.LV Amygd. Acc.

baseline 0.823± 0.142 0.918 0.904 0.382 0.785 0.529 0.928± 0.078 0.981 0.975 0.632 0.921 0.877
3D cSE [62, 187] 0.845± 0.102 0.920 0.907 0.488 0.787 0.754 0.938± 0.061 0.981 0.975 0.704 0.920 0.943
3D sSE [144] 0.849± 0.077 0.918 0.904 0.618 0.795 0.751 0.946± 0.022 0.979 0.973 0.890 0.927 0.939
3D scSE [144] 0.835± 0.115 0.919 0.905 0.554 0.794 0.527 0.933± 0.076 0.982 0.976 0.805 0.938 0.669
3D CBAM [176] 0.831± 0.125 0.918 0.903 0.488 0.792 0.525 0.921± 0.088 0.978 0.971 0.709 0.925 0.661
Project & Excite 0.854 ± 0.075 0.921 0.906 0.627 0.794 0.757 0.951 ± 0.022 0.981 0.975 0.893 0.929 0.948

VoxResNet [13]
Volumetric Dice Surface Dice

Mean WM GM Inf.LV Amygd. Acc. Mean WM GM Inf.LV Amygd. Acc.

baseline 0.855± 0.076 0.922 0.908 0.621 0.779 0.769 0.938± 0.022 0.933 0.939 0.895 0.909 0.951
+ 3D cSE [62, 187] 0.859± 0.071 0.926 0.912 0.653 0.779 0.768 0.942± 0.021 0.941 0.946 0.903 0.911 0.952
+ 3D sSE [144] 0.852± 0.072 0.916 0.903 0.644 0.775 0.758 0.934± 0.022 0.920 0.930 0.898 0.908 0.944
+ 3D scSE [144] 0.828± 0.106 0.911 0.899 0.552 0.763 0.599 0.908± 0.054 0.908 0.923 0.799 0.895 0.752
+ 3D CBAM [176] 0.853± 0.070 0.919 0.905 0.652 0.781 0.759 0.934± 0.022 0.926 0.933 0.901 0.916 0.942
+ Project & Excite 0.861 ± 0.072 0.941 0.926 0.657 0.789 0.771 0.947 ± 0.023 0.984 0.977 0.904 0.922 0.952

the 3D setting. We maintained the same placement of the other blocks in the architecture as
ours.

We report the volumetric and surface Dice coefficients, presenting the mean Dice scores across
all classes and those for some selected classes. For simplicity, we average the Dice coefficients
over both hemispheres.

For the 3D U-Net architecture, we observe that the overall mean Dice score increases by 0.02
when using 3D cSE and 3D sSE, while PE blocks lead to an increase of 0.03, demonstrating
their effectiveness. The modules combining channel and spatial recalibration (CBAM and scSE)
only result in an improvement of 0.01, suggesting their 3D versions may not be as efficient
as the corresponding 2D versions. When examining larger structures, such as white and grey
matter, the Dice score improvement is minimal across all blocks. This is likely because the
segmentation accuracy for these large structures is already quite high, with Dice scores around
0.92 and 0.90 for white and gray matter, respectively, suggesting that the performance of the 3D
U-Net might have reached its limit in these cases. We further investigate the impact of PE blocks
on smaller structures, including inferior lateral ventricles, amygdala, and accumbens, which
are difficult to segment, as demonstrated by the relatively low Dice scores of the 3D U-Net.
We find the best performance for PE and 3D sSE models, where the increase in performance
for large structures is modest, but adding these modules can lead to a performance boost for
smaller classes.

For the VoxResNet architecture, we find that it surpasses the 3D U-Net by 0.03 in average DSC,
primarily due to better performance for smaller structures like the inferior lateral ventricle
and accumbens. We believe this is achieved because of the deep supervision, which makes the
VoxResNet architecture more suitable for segmenting smaller structures than the 3D U-Net.
We observe increased volumetric and surface Dice scores using PE blocks for all structures.
While 3D cSE also improves performance, the other blocks, 3D sSE, 3D scSE, and 3D CBAM,
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result in an overall decline in performance. PE blocks contribute to increased performance
for smaller structures, although it is not as effective as in 3D U-Net. A possible explanation
for this is the better performance of the baseline VoxResNet on small structures like inferior
lateral ventricles and accumbens, where a further increase in performance is much harder to
achieve. Interestingly, although the baseline VoxResNet’s performance on the white and grey
matter is similar to 3D U-Net, PE blocks boost performance here.

In summary, we demonstrate the effectiveness of PE blocks when integrated into two distinct
architectures, 3D U-Net and VoxResNet. We find the best performance for PE and 3D sSE
models when combined with 3D U-Net, where the increase in performance for large structures
is modest, but adding these modules can lead to a considerable performance boost for smaller
classes. The performance of VoxResNet is overall better than 3D U-Net but can be further
boosted with PE blocks. Moreover, as in 2D networks, a combination of channel and spatial SE
modules works well. However, they must be carefully combined and designed explicitly for 3D
architectures, such as our PE blocks.

Table 5.5. Comparative analysis between 3D U-Net models with added 3D recalibration blocks and models with
additional convolutional layers. The maximum GPU RAM use during training, the average inference
time (including forward pass and evaluation metric computation), and the mean volumetric Dice score
are displayed. For this evaluation, we used a single Titan XP GPU to measure the time and memory
requirements. The top performing model is highlighted in bold.

Mean Dice ± std # Params Memory Time

3D-Unet [18] 0.823± 0.142 5.57 · 106 6.7 GB 0.56s

+ 3D cSE [62, 187] 0.845± 0.102 +0.50% 7.6 GB 0.85s

+ 3D sSE [144] 0.849± 0.077 +0.01% 7.7 GB 0.56s

+ 3D scSE [144] 0.835± 0.115 +1.98% 8.7 GB 0.87s

+ 3D CBAM [176] 0.831± 0.125 +0.50% 8.2 GB 1.19s

+ Project & Excite 0.854 ± 0.075 +0.50% 8.7 GB 0.79s

+ Encoder/Decoder 0.849± 0.086 +39.7% 6.8 GB 0.60s

+ 2 Conv layers 0.839± 0.115 +3.97% 6.7 GB 0.57s

Model Complexity

This section investigates the increase in model complexity caused by including PE blocks into
the 3D U-Net design. In Table 5.5, we compare PE blocks with 3D cSE [187], 3D sSE, 3D scSE,
and 3D CBAM, with findings reported on the MALC dataset. We discover that, whereas PE
blocks, CBAM, and 3D cSE blocks all result in the same 0.5% increase in model complexity, PE
blocks provide a larger accuracy gain at the same cost. While 3D sSE has the least complexity
increase, it does not perform as well as PE blocks. Because of the smaller reduction factor of 2,
3D scSE blocks result in a greater parameter increase, as mentioned in subsection 5.4.1.

It might be claimed that the improved performance is due to the increased complexity, which
could also be accomplished by including additional convolutional layers. We investigated this
further by doing two more tests. First, we added an additional encoder and decoder block
to the design, which raised model complexity by almost 40% and resulted in performance
comparable to adding 3D sSE blocks. Second, we merely added two more convolutional
layers at the second encoder and second decoder, resulting in a minor increase in model
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complexity (∼ 4%). In this situation, we see a performance boost equivalent to scSE, with
double the parameter increase, but it still falls short of the performance of PE blocks. As a
result, recalibration blocks outperform just adding convolutional layers.

We also compare the models regarding maximum GPU RAM utilization during training and
the time required to segment a single scan. The PE and scSE blocks use more GPU RAM than
other modules. On a Titan XP GPU, the inference time for all modules except CBAM is less
than one second. Integrating PE modules results in quicker model convergence, which may be
important when GPU time is restricted. We found a mean overall DSC of 0.845 for PE models
after training was stopped at 80 epochs, compared to 0.796 for the baseline 3D U-Net.

Table 5.6. Models that were trained on the MALC dataset are evaluated on new datasets, namely CANDI and ADNI,
to evaluate their generalizability. We assess the segmentation performance in terms of volumetric and
surface Dice scores for chosen structures. Structure names are abbreviated due to space constraints, Gray
matter = GM, white matter = WM, inferior lateral ventricle = Inf. LV., amygdala = Amygd., accumbens
= Acc.. All scores are averaged over the two hemispheres.

ADNI
Volumetric Dice Surface Dice

Mean ± std WM GM Inf.LV Amygd. Acc. Mean ± std WM GM Inf.LV Amygd. Acc.

3D U-net 0.743± 0.146 0.832 0.780 0.351 0.687 0.414 0.820± 0.112 0.907 0.889 0.498 0.823 0.590
+ 3D cSE 0.769± 0.101 0.837 0.787 0.471 0.694 0.648 0.855± 0.065 0.914 0.896 0.673 0.833 0.886
+ 3D sSE 0.764± 0.087 0.831 0.780 0.572 0.705 0.606 0.851± 0.045 0.907 0.886 0.823 0.840 0.846
+ 3D scSE 0.750± 0.131 0.835 0.783 0.484 0.692 0.383 0.831± 0.094 0.911 0.888 0.703 0.824 0.534
+ 3D CBAM 0.744± 0.125 0.831 0.795 0.460 0.650 0.434 0.837± 0.084 0.910 0.896 0.663 0.829 0.618
+ Project & Excite 0.776 ± 0.080 0.835 0.780 0.618 0.698 0.639 0.867 ± 0.046 0.913 0.892 0.859 0.839 0.883

CANDI
Volumetric Dice Surface Dice

Mean ± std WM GM Inf.LV Amygd. Acc. Mean ± std WM GM Inf.LV Amygd. Acc.
3D U-net 0.675± 0.169 0.848 0.859 0.228 0.506 0.377 0.723± 0.128 0.884 0.876 0.414 0.526 0.512
+ 3D cSE 0.703± 0.139 0.848 0.856 0.324 0.535 0.580 0.755± 0.090 0.886 0.875 0.580 0.559 0.762
+ 3D sSE 0.690± 0.123 0.837 0.848 0.414 0.527 0.547 0.739± 0.085 0.866 0.864 0.736 0.538 0.721
+ 3D scSE 0.676± 0.167 0.849 0.861 0.347 0.483 0.350 0.726± 0.118 0.889 0.882 0.617 0.517 0.468
+ 3D CBAM 0.699± 0.151 0.842 0.850 0.332 0.528 0.391 0.747± 0.103 0.880 0.866 0.594 0.550 0.526
+ Project & Excite 0.719 ± 0.126 0.858 0.865 0.427 0.555 0.552 0.780 ± 0.078 0.895 0.890 0.759 0.576 0.730

5.4.3 Deployment on Unseen Datasets

In prior trials, we trained and evaluated models only on data from the MALC dataset. This
experiment investigates a more realistic scenario in which the model is trained on MALC
and applied to previously unseen datasets (ADNI and CANDI). We study the role of several
recalibration blocks in getting dependable performance on these unseen datasets. The total
mean volumetric and surface Dice scores for chosen structures on both unseen datasets are
displayed by Table 5.6.

We observe a decline in performance for all models compared to those tested on MALC
(presented in Table 5.4). This can be attributed to the limited training set and the domain
shift between MALC, ADNI, and CANDI. Factors such as scanner types, imaging parameters,
and patient demographics might differ among these datasets. We also note that the decrease
in performance is more noteworthy for the CANDI dataset. Since CANDI contains scans of
children only, while MALC consists of adult scans, this is expected. Overall, MALC and ADNI
are more similar, except that ADNI includes scans of patients with Alzheimer’s disease.
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For the models tested on ADNI, we find that PE blocks lead to the most considerable improve-
ment in Dice and surface Dice scores. As with the experiments on MALC, we observe the
largest increase for smaller structures like inferior lateral ventricles. Interestingly, there is a
substantial drop in performance on larger structures, such as white matter and grey matter,
compared to the models tested on MALC. This drop is even more pronounced than on the
CANDI dataset. We believe this could result from some scans of patients with Alzheimer’s
disease, which can cause cerebral cortex atrophy and affect the shape and volume of white
and grey matter segmentations.

On the CANDI dataset, we observe that PE blocks outperform all other blocks on average
and for all selected structures except the accumbens. Interestingly, while sSE blocks were
the second-best module on the MALC dataset, they are outperformed by cSE on both unseen
datasets. This suggests the effectiveness of PE blocks over sSE blocks and demonstrates their
more reliable performance, even on unseen data from different distributions. However, the
overall performance on these datasets has dropped considerably compared to MALC, indicating
that the training data may not have been diverse enough and possibly too small. While this
was not the focus of our work, it could be addressed in future research. In Figure 5.6, we
present visualizations of the segmentation performance of PE models compared to the baseline
3D U-Net and other recalibration blocks for the CANDI dataset.

5.4.4 Experiments on Whole-Body Segmentation

We test the efficacy of PE blocks in the segmentation of thoracic and abdominal organs using
contrast-enhanced whole-body CT scans to assess their applicability to a new task and modality.
Table 5.7 displays the volumetric and surface Dice scores for the Visceral dataset for all models.
Unlike the results found in brain datasets, we find that the 3D sSE model performs the worst
on the Visceral dataset, with a mean Dice score roughly 0.06 lower than the baseline model.
Similarly, neither the scSE nor the CBAM models outperform the baseline model.

When investigating larger structures such as the liver and right lung, we observe a pattern
similar to brain segmentation, where all models’ performance is on par with the baseline 3D
U-Net. The segmentation accuracy for these organs is already quite high, and we believe that
further improvement is challenging. This is consistent with the fact that lung segmentation
in CT scans is relatively easier due to the clear contrast between air and surrounding tissue,
while liver segmentation benefits from the contrast enhancement.

Following that, we concentrate on medium-sized organs, such as the right kidney, and smaller
structures, such as the trachea and sternum, which are more difficult to segment precisely. Both
the cSE and PE models demonstrate relatively moderate gains in Dice score improvements for
the kidneys and trachea. Although the CBAM model performs best for trachea segmentation,
its overall performance is mediocre. Both the cSE and PE models show a significant increase of
roughly 0.3 in DSC for the sternum. However, the sSE model fails to segment the sternum fully.
The 3D scSE and CBAM models’ performance is similarly inadequate for this class. Because all
of these modules entail compressing the channel dimension, these observations highlight the
relevance of the information conveyed in the channel dimension. We conclude that PE models
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give the greatest overall results and the most consistent performance across all structures,
implying that PE blocks are more resilient.

We show visualizations of all segmentations in Figure 5.7. In particular, we show a thoracic
slice with the lungs, aorta, trachea, and sternum segmented. The baseline model, sSE, scSE,
and CBAM models all struggle to segment the sternum properly, while both the sSE and scSE
models fail to segment the trachea.

Table 5.7. Comparison of 3D U-Net segmentation performance on the Visceral dataset with various 3D recalibration
blocks. Volumetric and surface Dice scores are supplied for chosen classes, with the right side reported
for the lungs and kidneys.

Volumetric Dice Surface Dice

Mean Liver Lung Kidney Trachea Sternum Mean Liver Lung Kidney Trachea Sternum

3D U-Net [18] 0.810± 0.137 0.922 0.965 0.907 0.815 0.438 0.771± 0.121 0.755 0.924 0.857 0.895 0.481
+ 3D cSE [62, 187] 0.837± 0.091 0.929 0.967 0.916 0.817 0.737 0.805± 0.092 0.776 0.936 0.880 0.900 0.799
+ 3D sSE [144] 0.751± 0.268 0.925 0.964 0.919 0.347 0 0.711± 0.248 0.768 0.915 0.896 0.381 0
+ 3D scSE [144] 0.802± 0.147 0.927 0.966 0.914 0.659 0.419 0.763± 0.125 0.766 0.933 0.882 0.729 0.454
+ 3D CBAM [176] 0.797± 0.174 0.924 0.954 0.913 0.831 0.291 0.752± 0.156 0.750 0.901 0.875 0.902 0.316
+ Project & Excite 0.844 ± 0.088 0.934 0.967 0.920 0.822 0.733 0.814 ± 0.086 0.779 0.934 0.895 0.905 0.796

5.5 Conclusion

In this chapter, our main focus was on addressing the challenges associated with whole-volume
medical image segmentation using 3D F-CNNs. These networks typically have limited depth
and reduced feature capacity in order to manage the increased dimensionality. This is often
achieved by reducing the number of convolutional layers and channels per layer. To enhance
the performance of 3D F-CNNs, we explored the use of feature recalibration techniques. These
techniques have shown promising results in 2D networks with minimal increase in model
complexity. We initially extended several existing 2D recalibration blocks to the 3D domain.
Additionally, we introduced the ’compress, process, recalibrate’ framework, which allowed for
easy comparison of different recalibration blocks. Finally, we proposed the Project & Excite
(PE) module, specifically designed for 3D F-CNN architectures.

The PE module demonstrated improved segmentation performance while minimizing the
increase in model complexity. Through extensive experiments conducted on multiple datasets
and applications, we provided evidence that PE blocks outperform other recalibration blocks
and are more effective than simply adding more convolutional layers in 3D F-CNNs. Inter-
estingly, we observed that PE modules show a greater improvement in segmenting smaller
structures than other recalibration blocks, which we attribute to the preserved spatial infor-
mation within the projection operation. Consistent with our findings, PE blocks consistently
performed well across various datasets and base architectures, while other recalibration blocks
sometimes led to a decrease in performance. This confirms that PE blocks are an effective and
robust design choice for 3D segmentation tasks, particularly when targeting small structures.
We also acknowledge the limited availability of training data with expert annotations for
medical image segmentation tasks, which poses a significant challenge. In the following
chapters, we will address this problem by exploring self-training with limited annotations
in Chapter 6 and learning with weakly supervised data in Chapter 7.
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Figure 5.6. Visualisation of segmentation results on an example scan of the CANDI dataset. We compare the
performance of the backbone segmentation model, a 3D U-Net, and various 3D recalibration blocks. The
white boxes indicate an improvement due to using recalibration blocks over the baseline. White arrows
point to areas where recalibration blocks lead to incorrect segmentations. © IEEE, 2020
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Figure 5.7. Visualization of segmentation performance on the Visceral dataset. We show an input CT scan of the
thorax with gorund truth and baseline segmentations in comparison to several recalibration blocks. The
white arrows indicate structures, notably the sternum, and trachea, that some models failed to segment
correctly. Our PE model segments the sternum and trachea correctly. © IEEE, 2020
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6Self-Training with Uncertainty
Dependent Label Refinement
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6.1 Introduction

As the global population ages, the societal implications of dementia are becoming increasingly
significant. Accumulating evidence suggests that changes related to aging, both functional
and structural, can manifest as cerebral Small Vessel Disease (SVD). This SVD is increasingly
recognized as playing a central role in escalating the risk of developing dementia [131]. White
matter hyperintensities (WMHs) of presumed vascular origin have captured attention as a
promising neuroimaging biomarker for SVD. WMH can be visualized using Fluid-Attenuated
Inversion Recovery (FLAIR) MRI. Within these images, WMHs are characterized by regions that
exhibit a diffuse pattern and are hyperintense compared to the adjacent white matter [127].
WMHs are further distinguished into periventricular and deep white matter hyperintensities
based on location. Periventricular WMHs are found close to the brain’s ventricles, while
deep WMHs are located more internally within the white matter. The distinction between
periventricular and deep WMHs is important, as their distribution patterns and severity may
reflect different underlying pathological processes [49]. Additionally, it’s worth mentioning
that WMHs are not exclusive to dementia and SVD but are also significant in other neurological
disorders such as multiple sclerosis. The extent and distribution of WMHs are crucial in
gauging the severity of underlying conditions. In this context, the Fazekas scale [37] is often
employed to assess the extent of WMHs. This scale rates WMHs on a scale from 0 to 3, where 0
indicates no WMHs, 1 represents "punctate" WMHs, 2 denotes "early confluent" WMHs, and 3
signifies "confluent" WMHs. A higher score on the Fazekas scale indicates more extensive white
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matter damage, which could suggest a more advanced stage of SVD or other neurological
disorders. Accurately identifying and assessing WMHs through neuroimaging techniques like
FLAIR MRI is paramount in diagnosing and monitoring dementia and other neurological
conditions. This also highlights the necessity for efficient image segmentation methods to
assist in accurately identifying WMHs.

With the introduction of Convolutional Neural Networks (CNNs), there have been tremendous
breakthroughs in segmenting WMHs [81]. However, it’s important to recognize that the
success of CNNs is linked to the richness and diversity of the training data. In situations with
significant divergence between source and target domains, a phenomenon known as domain
shift, CNNs might see a steep decline in their effectiveness. A recent study that compared
various techniques revealed that conventional segmentation tools, which do not leverage deep
learning, actually outperformed CNNs when it came to the accuracy of WMH labels in the
context of domain shift [165]. These traditional approaches proved more robust in handling
inconsistencies due to scanner variations and image artifacts. This highlights the necessity for
deep learning-based models like CNNs to be powerful but also adaptable and robust when
facing diverse data landscapes.

Unsupervised Domain Adaptation (UDA) is an approach in machine learning that tackles the
challenge of adapting a model trained on one domain (source) to perform well on a different
but related domain (target) without using any labeled data from the target domain. This is
particularly valuable when obtaining labeled data for the target domain is costly or impractical,
like in medical image analysis.

Self-training is a UDA methodology that has recently gained traction. The process starts with
training a segmentation model on annotated source data. Then the trained model is applied to
the target data, and the predictions are saved as so-called pseudo-labels. These self-generated
pseudo-labels are then used for fine-tuning the model to the target data and iteratively updated.
However, pseudo-labels may contain noise, as illustrated in Figure 6.1, making it critical to
estimate the reliability of pseudo-labels and prevent error propagation.

This chapter explains our unique approach to self-training, which we call Self-training with
Uncertainty Guided Label refinement (STRUDEL). The idea for this approach comes from
research on brain lesion segmentation, which showed that uncertainty measurements might
identify incorrect pixel-wise predictions [113]. To include the uncertainty in the pseudo-labels
into the ongoing model revisions, we employ a Bayesian segmentation approach to measure
the uncertainty (as demonstrated in Figure 6.1) and then incorporate it using an uncertainty-
guided loss function. We recommend adding the output from the Lesion Prediction Algorithm
(LPA) [148] to enhance the initial construction of pseudo-labels. This method has been shown
to give reliable results in a number of different domains [165]. Our empirical evaluations
employ STRUDEL with a U-Net as the underlying structure and a modified network with an
amplified receptive field.

The results of our experiments in WMH segmentation across multiple datasets underscore the
vital role of domain adaptation and highlight the notable improvement when uncertainty and
LPA are integrated into the training procedure.
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Figure 6.1. This graphic showcases a FLAIR scan featuring three components: (1) white matter hyperintensity
segmentation ground truth, (2) pseudo-labels that over-segment regions not indicated in the ground
truth, and (3) uncertainty map of the pseudo-label prediction. White arrows direct attention to instances
of false positive predictions, which are associated with elevated levels of uncertainty. © Springer, 2021

6.1.1 Related Work

White Matter Hyperintensity Segmentation techniques have recently been evaluated in the WMH
segmentation challenge [81]. The challenge had 20 submissions, and the 11 top-performing
methods were deep-learning-based. The challenge also showed that 3D convolutional networks
performed worse than 2D networks, and the top-performing methods used dropout. The higher
performance of 2D models can be explained by the 2D nature of the given data. Specific
inter-scanner robustness experiments indicated that enhancing the robustness of these methods
is still necessary, which aligns with the findings in [165].

Unsupervised Domain Adaptation (UDA) methodologies enable the adaptation of models from
a source domain without the necessity of direct supervision in the target domain, often
employing adversarial learning techniques. The primary objective of these methods is to learn
features that are invariant across domains by diminishing the differences between the source
and target domains or transforming images from one domain to another. Several strategies
have demonstrated their effectiveness in medical contexts [65, 71]. However, the complexity
and diversity in training adversarial networks can make the process rather challenging and
intricate [2, 129].

Self-training, on the other hand, presents an alternate approach to UDA, and its high efficiency
has been highlighted in recent studies [188]. The fundamental idea behind self-training is
to utilize the model’s predictions from earlier stages as pseudo-labels that inform and guide
the subsequent stages of network training. This technique has been investigated for semantic
segmentation in both medical and non-medical fields, with cutting-edge results reported
on standard datasets [115, 151, 178, 180, 189, 190]. For an in-depth categorization of
methodologies that tackle the challenges of limited dataset annotations, one can refer to
the comprehensive review by Tajbakhsh et al. [159]. The viability of integrating uncertainty
guidance in the self-training paradigm was recently illustrated in a study on segmenting
micro-CT scans with sparse annotations [185].

6.2 Methods
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6.2.1 Problem Definition

Consider a dataset from the source domain, denoted as S, comprising samples XS = {XS
i }N

i=1
along with their respective labels YS = {YS

i }N
i=1. Additionally, let there be an unlabeled

dataset from the target domain, denoted as T , with samples X T = {XT
i }M

i=1. The goal of
domain adaptation is the generation of high-quality label predictions within the target domain.
In the context of unsupervised domain adaptation, the aim is to effectively weave the unlabeled
samples from the target domain into the training of the network - it is common for M to
be greater than N . Self-training achieves this by estimating pseudo-labels ỸT for the target
domain and iteratively refining these labels, which in turn enhances the overall learning
procedure.

6.2.2 STRUDEL: Self-Training with Uncertainty

A graphical representation of the STRUDEL (Self-TRaining with Uncertainty DEpendent Label
refinement) process is depicted in Figure 6.2, and the accompanying pseudo-code is provided
in Algorithm 1. The first step involves training the backbone segmentation model on the source
dataset

(
XS , Y S)

through conventional supervised learning. Following this, a random subset
of the target sample, denoted as r(XT ), with a size of P , is chosen without replacement and
is subjected to the base model to generate initial pseudo-labels. Given the disparity between
the domains, the initially produced pseudo-labels are likely to be of low quality, as domain
shift leads to a drop in performance, as it was described in previous studies [81, 165]. As
the study by Vanderbecq et al. [165] found that traditional WMH segmentation algorithms
are more robust to domain changes, we advocate for the additional utilization of established
software for pseudo-label generation, with LPA being a specific example. The refinement of the
pseudo-labels is accomplished by employing a pixel-wise OR operation between the predictions
of the base model and those of the LPA, resulting in the pseudo target labels, denoted as
Ỹ T =

{
ỸT

i

}P

i=1.

In step three, the base model is fine-tuned utilizing Ỹ T . With this optimized model, we
perform segmentation on the same randomly chosen sample as before, r(XT ), producing
enhanced-quality pseudo-labels. The underlying assumption is that the model is capable of
generating predictions that surpass the quality of the initially noisy training labels, as outlined
in [53]. Concurrently, we compute the segmentation uncertainty for every sample, denoted
as U. Subsequently, in step four, a new model is trained from scratch. During this phase, we
enrich the training set by integrating the updated pseudo-labels Ỹ T along with the associated
uncertainties U. As highlighted in [188], training a new model at this stage offers benefits
compared to just fine-tuning the existing one. The target scans and labels extracted from
this new model are then added to the fixed training set, which initially contained only the
annotated data from the source domain. Following this, the process moves to the next iteration,
starting from step 2. In this iteration, the newly-trained model assumes the role of the base
model. Another random subset is selected, and the model is used to derive pseudo-labels.
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Figure 6.2. Illustration of our STRUDEL Self-Training pipeline for unsupervised domain adaptation. First, a labeled
source dataset is used to pre-train the backbone segmentation network (Step 1). Then in step 2, the
pre-trained network is fed with a random subset of the target data to produce initial pseudo-labels. The
lesion prediction algorithm (LPA) output is also incorporated into pseudo-label initialization. Then in
step 3, the network is fine-tuned using the pseudo target labels, generating source data and uncertainty
maps. In step four, the network is re-trained from scratch using the source data and target data with
pseudo-labels and uncertainty maps. After step 4, the random subset of target data with pseudo labels is
added to the labeled dataset, and steps 2-4 are repeated k times with new random subsets drawn from
the target data. © Springer, 2021

6.2.3 Uncertainty-Guided Pseudo-Labels

Label noise is a common disadvantage of inferring pseudo-labels. To make our approach more
resistant to label noise, we recommend using uncertainty guidance, which rewards regions
with low uncertainty and penalizes those with high uncertainty. Bayesian machine learning
principles inspire our approach to estimating uncertainty. We utilize dropout [43] to estimate
Monte Carlo (MC) samples. As the WMH challenge also recommends using models with
dropout layers [81], we believe this will also improve segmentation precision. As a result, we
use dropout layers to train the backbone segmentation network. During the testing phase, C

stochastic forward runs are executed, facilitating the collection of Monte Carlo samples. The
expectation over the MC samples, E(Ŷ), provides a more accurate label prediction, which is
utilized to update the pseudo-label. This is also motivated by the results of the WMH challenge,
where it was discovered that ensemble methods produce superior segmentation outcomes. In
addition, calculating the variance across C MC samples gives us a pixel-by-pixel measure of
the segmentation’s uncertainty:

U(Ŷ) = {σ1, ..., σH×W } = 1
C

C∑
i=1

(
Ŷi − E(Ŷ))

)2
, (6.1)

where U(Ŷ) represents the uncertainty map, σi denotes the pixel-wise variance. The image’s
dimensions in terms of height and width are represented by H and W , respectively. The model
prediction extracted from the ith Monte Carlo sample is denoted by Ŷi. Anticipating that the
uncertainty values will be small, we undertake a rescaling procedure to confine these values
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within the [0, 1] range. To incorporate uncertainty during the training phase of the network,
we devise an uncertainty-aware binary cross-entropy loss, termed UBCE loss:

LUBCE = − 1
H ×W

H×W∑
n=1

(1− σn) [ỹn · log (ŷn) + (1− ỹn) · log (1− ŷn)] , (6.2)

where ỹn represents the nth pixel of the pseudo-label Ỹ and ŷn represents the nth pixel of the
prediction Ŷ. Note that the uncertainty-aware cross entropy LUBCE is applied only to pseudo-
labeled data during the re-training step (see Algorithm 1 line 11), whereas the standard cross
entropy LBCE is applied to fixed data samples. The definition of the combined loss function
is:

L = LDice + LBCE + LUBCE. (6.3)

Algorithm 1: Self-Training with Uncertainty on Noisy Labels

input :Source data XS , Source labels YS , Target data X T

output :Output modelMK

1 r()← random sampler;
2 M0 ← train base model with (XS ,YS);
3 Dfix ← (XS ,YS) ; // initialize fixed training set
4 for k ← 1 to K do
5 X T

k ← r(X T ) ; // sample random subset

6 ỸT
k ← pixel − wise_or(Mk−1(X T

k ), LPA(X T
k )) ; // init. pseudo-labels

7 Dk ← Dfix ∪ (X T
k , ỸT

k ) ; // merge training data
8 Mk−1 ← fine-tuneMk−1 with Dk;
9 ỸT

k , Uk ←Mk−1(X T
k ) ; // update labels and get uncertainty

10 D′
k ← Dfix ∪ (X T

k , ỸT
k ) ; // merge training data

11 Mk ← re-train model with D′
k and uncertainty Uk;

12 Dfix ← Dfix ∪ (X T
k ,Mk(X T

k )) ; // update fixed training set

13 end
14 returnMK ;

6.2.4 Segmentation Backbone Architectures

To evaluate whether our self-training approach applies to different network architectures, we
choose to assess STRUDEL on two distinct neural network structures for the segmentation
model represented by M . Our first choice is the popular U-Net [140], which has demonstrated
its performance in challenging segmentation tasks. Also, the deep learning models evaluated
in the WMH challenge were mostly U-Net based [81].

To make the U-Net better suited for segmenting small datasets and small target structures
like WMH, we developed a new version of the network. We refer to this improved version of
the U-Net as the OctSE-Net. First, octave convolutions [16] are used in place of traditional
convolution layers to frequency-wise separate feature maps. By providing more context and
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reducing memory utilization, Octave convolutions can enhance segmentation performance.
The second adjustment is the addition of recalibration blocks, such as the channel and spatial
SE block [144], that can enhance accuracy by recalibrating feature maps and, as also presented
in Chapter 5, have been shown to aid in segmenting small structures. Without substantially
altering the model parameters, these changes improve the receptive field. This can enhance
segmentation accuracy without encouraging overfitting, allowing for easier cross-domain
generalization.

We add dropout layers after each convolutional block in both architectures for uncertainty
estimation. Note that we chose 2D network architectures because the Magnetic Resonance
Imaging (MRI) FLAIR scans used for training are 2D scans.

6.3 Experiments and Results

6.3.1 Datasets

For the source dataset, we make use of the data available through the WMH challenge (avail-
able at https://wmh.isi.uu.nl). As for the target dataset, we turn to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (accessible at http://adni.loni.usc.edu). The
WMH challenge [81] facilitates a uniform assessment of automated segmentation techniques,
employing a standard dataset for testing. This dataset offers manually annotated data for 60
participants from three locations. Each participant’s data comprises 3D T1-weighted images
and 2D FLAIR images with multiple slices, both co-registered. As advised by [60, 162], our
work involves bias-field corrected T1 scans and the original FLAIR scans. This dataset functions
as the labeled source domain for our study.

The second dataset is procured from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
The ADNI-2 dataset [8] contains over 3,000 scans collected from 58 different sites, and it
serves the role of multi-domain target data in our study. This dataset encompasses T1-weighted
and 2D FLAIR images for every subject. We have ensured the linear alignment of these scans
within each session using ANTs [4]. Additionally, T1 scans have undergone bias field correction
via N4 normalization [163], leveraging the ANTs software. This particular dataset acts as our
unlabeled target domain.

To evaluate our techniques quantitatively on the ADNI dataset, we selected a subset consisting
of 30 subjects, chosen based on the scanner type and WMH lesion load, and subjected this
subset to manual annotation. Of these annotated scans, 21 are reserved strictly for testing,
while the remaining nine are employed to train alternative supervised segmentation methods,
which we delve into in the subsequent section.

6.3.2 Implementation Details

Our framework and all the baseline experiments were developed utilizing PyTorch version
1.6.0. The models were trained with the Adam optimizer, maintaining default parameters
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(betas=(0.9, 0.999), eps=1e-08), a learning rate set at 1e-4, and a batch size of 4. All image
intensities were normalized to have a mean of zero and a variance of one, and the center
cropping of axial segments produced a consistent pixel size of 192× 192 across all datasets.
During training, we applied common spatial augmentation techniques for regularization,
including flipping, rotation, scaling, and elastic deformation.

For the self-training component, we fixed the size of the random subset in each iteration
at P = 35. We established thresholds at 0.5 for network prediction and 0.75 for LPA when
generating binary segmentation maps to form pseudo-labels. Employing a higher threshold
for LPA assists in mitigating overly sensitive predictions. The training process from scratch
spanned 80 epochs, while the fine-tuning phase was allocated 20 epochs. We designated the
number of stochastic forward passes as C = 10 and observed that an increment in C did not
improve segmentation performance. The dropout rate was adjusted to 0.2. We refrained from
employing any explicit post-processing in the experiments. Training and testing were primarily
performed on a Geforce Titan RTX GPU.

6.3.3 Experiments

To assess our method’s capacity for robust domain transfer, we compare it to other approaches.
First, we compare it to a Base Model, the backbone segmentation network trained on the
source data and then applied to the target domain. Next, as we have access to a limited
amount of labeled target data, we compare two training strategies that utilize this labeled
target data. The Joint Model is trained on a dataset consisting of source and target labeled
samples; therefore, it is trained on a larger dataset than other models, and we anticipate that
it will outperform the base model, although domain adaptation models are anticipated to
perform better. The Fine-Tuning model is trained on the source data and then fine-tuned
using a limited quantity of labeled target data. We believe this model will outperform the joint
model because it suffers from less data imbalance.

In addition, we evaluate two unsupervised domain adaptation (UDA) methods that employ
pseudo-labels: Self-Training without uncertainty guidance and the proposed STRUDEL with
uncertainty guidance, both of which employ LPA labels. In addition, we present results
for STRUDEL without LPA and for LPA alone, with the threshold parameter set to 0.45, as
recommended in [165] for ADNI. We evaluate the accuracy of segmentation for all experiments
using evaluation metrics suggested by the WMH segmentation challenge [81]: (1) Dice
Similarity Coefficient (DSC), (2) modified Hausdorff distance (95th percentile; H95), (3)
absolute log-transformed volume difference (lAVD), (4) sensitivity for detecting individual
lesions (Recall), and (5) individual lesion F1-score (F1).

6.3.4 Results & Discussion

The quantitative segmentation outcomes on the target domain of ADNI are detailed in Table 6.1,
while a deeper examination of the DSC, represented as boxplots, is provided in Figure 6.3.
To establish a reference, the DSC of the Base Models on the source dataset stands at 0.73
for U-Net and 0.76 for OctSE-Net. The direct application of these Base Models to the ADNI
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Table 6.1. Comparison of different segmentation methods on the target data. The networks in the top part use
the U-Net architecture as the segmentation backbone, and the models in the bottom part are based on
OctSE-Net. The next three columns denote the type of data used for supervision during training. Where a
tick indicates that the corresponding data has been used for training and an X means it has not been used.
S stands for ground truth source labels, T stands for ground truth target labels and P stands for pseudo
labels. The performance is assessed by Dice Coefficient (DSC), 95th Percentile Hausdorff Distance (H95),
log transformed absolute volume difference (lAVD), lesion Recall and F1. We report mean ± standard
deviation.

Methods S T P DSC ↑ H95 [mm] ↓ lAVD ↓ Recall ↑ F1 ↑

LPA ✗ ✗ ✗ 0.57±0.16 23.1±23.4 0.71±0.49 0.81±0.16 0.39±0.18

U-Net

Base Model ✓ ✗ ✗ 0.45±0.28 27.1±37.5 1.09±1.70 0.67±0.32 0.48±0.21
Joint Model ✓ ✓ ✗ 0.64±0.19 17.2±25.0 0.60±0.52 0.74±0.29 0.52±0.15
Fine-Tuning ✓ ✓ ✗ 0.73±0.16 11.2±23.0 0.36±0.41 0.75±0.22 0.65±0.14
Self-Training ✓ ✗ ✓ 0.64±0.20 17.8±28.8 0.51±0.68 0.51±0.27 0.50±0.23
STRUDEL ✓ ✗ ✓ 0.69±0.18 11.2±14.5 0.30±0.32 0.58±0.27 0.64±0.22

OctSE-Net

Base Model ✓ ✗ ✗ 0.60±0.23 19.7±29.5 0.77±1.12 0.80±0.26 0.61±0.19
Joint Model ✓ ✓ ✗ 0.73±0.15 11.8±24.7 0.34±0.37 0.89±0.10 0.59±0.14
Fine-Tuning ✓ ✓ ✗ 0.73±0.15 11.4±23.4 0.41±0.38 0.77±0.18 0.64±0.17
Self-Training ✓ ✗ ✓ 0.73±0.13 14.7±18.2 0.25±0.27 0.56±0.21 0.63±0.17
STRUDEL ✓ ✗ ✓ 0.78±0.10 7.79±8.52 0.27±0.23 0.77±0.16 0.70±0.15
↪→ w/o LPA ✓ ✗ ✓ 0.67±0.20 12.9±13.4 0.63±0.58 0.58±0.23 0.66±0.18

dataset delivers underwhelming results, regardless of the backbone architecture employed.
This highlights the extent of the domain shift between the source and target domain and the
struggle both network architectures face in dealing with this shift.

In agreement with the findings documented in [165], LPA significantly outperforms the
baseline U-Net. Furthermore, OctSE-Net surpasses LPA, lending credence to our hypothesis
that OctSE-Net constitutes a more robust architecture.

Nonetheless, a closer look at the results in Figure 6.3 reveals that both base models generate
some predictions with zero DSC, a situation not encountered with LPA. These outliers could
result in inadequately initialized pseudo-labels, underscoring the rationale for including LPA
in pseudo-label initialization, as substantiated by the subpar outcomes for STRUDEL without
LPA. Furthermore, both baseline methods demonstrate high variance, whereas LPA appears
more robust.

In our experiment, we also trained a joint model on source and target data, using the target
dataset’s ground truth labels instead of pseudo-labels. This model serves as a benchmark, justi-
fying the fine-tuning and self-training approaches. As observable, fine-tuning outperforms the
joint training approach for the U-Net architecture. All self-training-based experiments ceased
to show further improvements after five iterations, at which point results were reported. Fig-
ure 6.4 displays the performance over various iterations for both base architectures. Moreover,
we also experimented with a simple fine-tuning model that uses target ground truth labels.
This approach led to substantial improvements across all metrics. Standard self-training results
are also presented, excluding the integration of LPA or our proposed uncertainty guidance.
For U-Net, this self-training matches the performance of the joint model but falls short when
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Figure 6.3. Boxplot illustrating the Dice Similarity Coefficient for various methods outlined in Table ??. Points
that fall beyond the whiskers, represented by a diamond shape, are classified as outliers based on the
interquartile range. © Springer, 2021

compared to fine-tuning. However, for OctSE-Net, the self-training performance is competitive
with the joint model and fine-tuning.

When considering DSC and H95 metrics, STRUDEL outperforms all other methods, holding
either the first or second position for lAVD and lesion F1. While LPA and the joint model perform
impressively in lesion recall, their performance in lesion F1 suffers due to a high frequency of
false positive predictions. STRUDEL, on the other hand, displays robust performance across
these metrics, a factor we attribute to uncertainty’s capability in effectively capturing false
positives. The Wilcoxon signed-rank test results on DSC demonstrate that the improvements
made by STRUDEL compared to Self-Training for OctSE-Net (p < 0.005), and the superiority
of OctSE-Net compared to U-Net for STRUDEL (p < 0.001), are statistically significant.

An example segmentation is demonstrated in Figure 6.5, with the corresponding Dice Similarity
Coefficients relative to the ground truth being 0.45 for the initial pseudo-label, 0.83 for
straightforward self-training, and 0.85 for STRUDEL.

Figure 6.4. Demonstration of the influence of architecture on the behavior of our proposed STRUDEL method across
iterations, in terms of the Dice Similarity Coefficient (DSC). Both networks reach a peak after five
iterations. © Springer, 2021
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Figure 6.5. A FLAIR scan from the ADNI2 dataset with overlays of segmentation maps. (1) ground truth segmen-
tation and predictions from our networks: (2) initial pseudo-label, (3) standard Self-Training without
uncertainty guidance, and (4) our proposed Self-training with Uncertainty Guided Label refinement
(STRUDEL). © Springer, 2021

6.4 Conclusion

Self-Training presents a straightforward and resource-efficient approach for UDA; nevertheless,
noisy pseudo-labels can hinder its efficacy. In this chapter, we introduced STRUDEL, a novel
methodology leveraging uncertainty guidance within self-training to tackle UDA challenges.

STRUDEL incorporates uncertainty into the loss function to direct the learning process amidst
noisy labels. Furthermore, integrating an established algorithm, namely the LPA, in the pseudo-
label initialization stage added another layer of refinement to the process. Incorporating
these elements within STRUDEL minimizes the impact of noisy pseudo-labels. Our empirical
evaluations showcased the potential of self-training with uncertainty guidance as a potent
mechanism for UDA. Notably, pairing this approach with a robust and high-performing network
architecture surpassed even supervised methods, underscoring the promise that STRUDEL
holds for future applications. This chapter also mainly concentrated on domain adaptation,
where the domain shift lies in the image acquisition by using different scanner manufacturers
or imaging protocols. In the next chapter, we will focus on anatomical domain shift, where the
domain shift lies in the anatomy of the patients, which we will demonstrate on the example of
missing organs after organ resection surgery.
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7.1 Introduction

Figure 7.1. In HALOS, we use mixed supervision by combining two datasets: one with image-level binary labels
indicating the existence of organs, and another with voxel-level annotations (segmentation maps) for
multiple organs. The gallbladder is shown by the white arrow. © Springer, 2023
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Deep learning techniques have emerged as the leading approach in medical image segmen-
tation tasks, including the segmentation of brain structures [142], tumors [92], and organs
within the abdomen [15, 45, 69, 141]. One of the challenges faced in medical image segmenta-
tion is the generalization of models to unfamiliar datasets, which is often hindered by domain
discrepancies between the training and testing sets, thereby impacting performance adversely.
There has been a wealth of research in the quest for robustness and adaptability in models [52],
with many solutions addressing domain shifts that arise from disparities in image intensity
distribution due to variations in scanning procedures or modalities. This was examined on the
white matter hyperintensity segmentation example in the preceding chapter Chapter 6.

Anatomical domain shifts, particularly those related to the absence of organs due to surgical
procedures, have not been as extensively studied. Medical imagery of the human abdomen
is generally consistent, containing a set ensemble of organs, unlike natural images that
may present arbitrary compositions. This inherent consistency in human anatomy has been
advantageous for model training, with the introduction of shape priors [91, 117, 186] to
leverage this feature. However, as the field evolves toward clinical applications and extensive
population studies, encountering deviations from typical anatomical configurations becomes
more probable, affecting segmentation accuracy.

This chapter focuses primarily on gallbladder resection (cholecystectomy), one of the most
common abdominal operations. Gallstones are the most common reason for gallbladder
removal, as they rarely affect other organs or the body as a whole. Nephrectomy, the surgical
removal of the kidney, may be required for more severe conditions such as kidney malignan-
cies, so we expand our examination to include this procedure. In addition, kidneys have a
significantly larger volume than gallbladders, and their removal can result in organ shifts after
surgery [158].

As will be evidenced by our experimental results, a common pitfall of contemporary seg-
mentation networks is their tendency to falsely detect organs in images where they have
been surgically removed - a phenomenon we term organ hallucination. Organ hallucinations
have likely been overlooked due to the scarcity of organ resection cases in publicly available
segmentation datasets. The reason behind the limited representation of organ resection cases
in most segmentation datasets is likely the combination of the time-consuming and costly
process of manual segmentation, which results in smaller datasets.

Fortunately, the horizon is changing with the introduction of grand-scale population imaging
studies, such as the UK Biobank (UKB) Imaging study [90], which sets out to include 100,000
individuals. Such large-scale studies present more representative data of the population.
Notably, within our subset of the UK Biobank data, cholecystectomies (gallbladder resections)
have a prevalence rate of 3.7%, supplying enough data to thoroughly explore this area of
research.

We introduce a novel model named HALOS, which stands for Hallucination-free Organ Seg-
mentation, tailored explicitly for organ segmentation in post-surgical scenarios where organs
may have been resected. At the core of HALOS is the simultaneous learning of two tasks –
classifying the presence of organs and segmenting six abdominal organs: the liver, spleen,
left and right kidneys, pancreas, and gallbladder. Our training approach employs a mixed
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supervision strategy to address the constraints of the available data; we utilize voxel-level
annotations for a limited dataset alongside image-level labels indicating organ removal in a
larger dataset, as illustrated in Figure 7.1. What sets HALOS apart is a flexible feature fusion
module [175], which integrates either the classification output or, when accessible, ground
truth labels denoting organ existence into the segmentation stream.

This work delivers three critical contributions: Firstly, it introduces a versatile and robust
multi-task model that combines the tasks of multi-organ segmentation and organ existence
classification. On the large UKB dataset, our approach generates almost no false positives.
Second, the classification results are fed into the segmentation pipeline through a unique
feature fusion technique called dynamic affine feature map transform, that we for the first time
employ in a multi-scale fashion. The severity of the organ hallucination problem is emphasized
in this work by comparing ours results to those of state-of-the-art segmentation models.

7.1.1 Related Work

7.1.2 Abdominal Multi-Organ Segmentation

Currently, convolutional neural networks are the leading approach for abdominal organ
segmentation in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans [9,
15, 45, 141, 171]. One noteworthy method is nnU-Net [69]. nnU-Net automates the majority
of the tasks involved in developing segmentation models. It achieves this by employing
flexible 2D, 3D, and ensemble U-Net architectures and automated pre-processing and training
processes. The network configuration is dynamically adapted based on the data, making it
capable of handling different medical imaging modalities and tasks. nnU-Net has won multiple
medical image segmentation challenges and has proven to be a reliable and versatile method.
As a result, we use nnU-Net as a baseline in our experiments.

7.1.3 Missing Organ Segmentation

To our knowledge, the missing organ problem has only been investigated for CT scans in [158].
The authors introduce an automatic missing organ detection method and an atlas-guided multi-
organ segmentation approach that accounts for missing organs. The missing organ detection
method uses features based on post-surgical organ motion and intensity homogeneity to detect
the absence of organs. The method was evaluated on cases after kidney and spleen removal
on a CT dataset of 44 scans, where 9 scans had missing organs. This approach relies heavily
on simulation for parameter tuning and is thus susceptible to distribution shifts. A more
recent method [160] investigated the Dice loss, commonly used for training deep learning
segmentation models. The authors argue that setting the reduction dimension across the entire
batch would help predict images with missing organs. Nonetheless, this method was not tested
on cases after organ resection. We compare our approach to this method in our experiments.
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7.1.4 Classification-Assisted Segmentation

Since image-level labels are more accessible to acquire than voxel-wise annotations, previous
work has explored incorporating these additional labels. A common approach is extending the
segmentation network with a classification branch [104, 110, 177]. In [110], both branches
are trained jointly with fully-annotated and partially-annotated data, initially sharing layers for
the segmentation of 2D brain tumors and classification of tumor existence. They demonstrated
that the additional classification improved segmentation performance significantly compared
to conventional fully supervised learning. In our experiments, we compare our approach to
this methodology.

7.1.5 Feature Fusion

Feature fusion is a concept that certain classification-assisted segmentation approaches adopt
for intertwining the segmentation and classification paths. For instance, in [177], dedicated
segmentation and classification models are developed to diagnose Covid-19. The feature maps
originating from the classification and segmentation models are merged utilizing Squeeze-and-
Excitation (SE) blocks [63]. Once the feature maps are fused, they are passed to the decoder
for segmentation. Another approach, apart from feature fusion, is incorporating metadata
like age, gender, or specific biomarker readings. The Dynamic Affine Feature Map Transform
(DAFT) [175] computes the scaling factors and shifts employed to excite or suppress the
feature maps at the channel level based on the metadata mentioned earlier. This process is
depicted inFigure 7.2.

7.2 Methods

Figure 7.2 visually represents HALOS’ dual-branch architecture, which combines Multi-task
Learning with Feature Fusion for effectively managing cases with missing organs. We will now
delve into the specifics of each component within this pipeline.

7.2.1 Segmentation Branch

We use a U-Net architecture derived from nnU-Net [68] in the segmentation branch. NnU-Net
is widely regarded as one of the most adaptable and powerful segmentation models for medical
images. The nnU-Net pipeline calculates the best U-Net architecture and data augmentation
method for a given dataset automatically. This led us to feed our segmentation dataset into the
nnU-Net pipeline, where we could pick the architecture and data augmentation technique of
the nnU-Net model that performed the best. The final model is a 3D U-Net with 32 channels
and five downsampling levels. This structure includes an encoder E , a bottleneck B, and a
decoder D.
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Figure 7.2. Overview of the HALOS pipeline. The U-Net network is extended with a classification branch that
classifies whether the image contains the organ of interest. Further, our network is trained in multi-scale
voxel-level supervision, also called deep supervision. The DAFT feature fusion modules are added to the
bottleneck and each decoder block. © Springer, 2023
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Encoder-decoder structured networks offer the ability to derive intermediate representations
at different resolutions due to their consecutive downsampling steps. The U-Net is trained
on X = {Xi}N

i=1 input MR images and ground truth segmentation maps Yseg = {Ysegi
}N

i=1
to generate segmentation predictions. The predictions Ŷseg = {Ŷsegi

}N
i=1 are learned under

voxel-level supervision, optimizing the segmentation loss, Lseg. The loss is defined as the
average of Dice and Cross-Entropy loss. As suggested by the nnU-Net pipeline, we additionally
compute the loss on segmentation predictions from intermediate feature maps from the
decoder at lower resolution, which is commonly known as deep supervision. Formally, the
segmentation loss is defined as:

Lseg = LCE + LDice, LCE = − 1
N

N∑
n

C∑
c

Ysegc
log(Ŷsegc

),

LDice = 1
N
· (1−

2 ·
∑N

n |Ŷsegn
∩Ysegn

|+ ϵ∑N
n |Ŷsegn

|+ |Ysegn
|+ ϵ

).

(7.1)

In this equation, we denote the class-wise ground truth Ysegc
, class-wise predictions Ŷsegc

,
the number of classes C, the number of segmentation samples N , and a smoothing term ϵ. It is
crucial to note that certain implementations of the Dice loss only add ϵ to the denominator to
avoid division by zero. In our situation, adding ϵ to the numerator and denominator is essential
since we want to ensure a Dice loss of 0, rather than 1, for accurate negative predictions of
gallbladders. Further, this definition of the Dice loss already includes batch reduction, meaning
the nominator and denominator are summed over the batch dimension before the division.

7.2.2 Classification Branch

Gathering global labels at the image level is remarkably more economical than collecting
manual annotations at the voxel level, albeit the trade-off is in the level of detail captured.
Consequently, we introduce a classification module into our framework to investigate the
impact of incorporating prior knowledge of organ existence on the final segmented outputs.
The classifier (designated as C) is integrated into the U-Net model above the encoder (E),
and it processes a feature map that is sourced from a particular encoder block. Although
the placement of the classifier can be adjusted through hyperparameters, our experiments
indicated that incorporating it into the fourth or fifth block of the encoder yielded the most
effective results.

C is structured with a convolutional block, the design of which mirrors that of an encoder
block. This is succeeded by a 3D global average pooling phase and, ultimately, a densely
connected layer that yields the classification results. The classifier is fine-tuned using MR scans
labeled with image-level surgery data, symbolized as Yclf . We compute the classification loss,
referred to as Lclf , using the mean cross-entropy, and it is balanced by considering the true
distribution of classes within the dataset used for training.
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7.2.3 Feature Fusion

A core component of HALOS is the feature fusion module. We posit that merging the classifier’s
information back into the segmentation branch, instead of solely having a multi-task model,
arms the model with the necessary information about organ presence during segmentation.
The module fuses prior knowledge of gallbladder removal with feature maps at distinct points
along the segmentation branch, including the bottleneck and all decoder stages, as illustrated
in Figure 7.2. It’s worth mentioning that either ground truth labels (Yclf ) or the classifier’s
predictions (Ŷclf ) could be fed into the feature fusion module, depending on whether data on
prior surgeries is accessible during testing. While training, we predominantly rely on ground
truth labels for feature fusion. Although employing the classifier’s predictions during training
is intriguing, it warrants additional exploration.

We adopt DAFT [175] for the fusion process. Originally designed to integrate 3D images
with sparse tabular data, DAFT can be effortlessly incorporated into any Convolutional Neural
Network (CNN). In preliminary experiments, we experimented with Squeeze-and-Excitation
(SE) blocks [62] as an alternative, but they did not work as well. In our setup, the fused tabular
data comprises either the binary classification output or the ground truth label of gallbladder
removal. As far as we know, this is the first time DAFT has been used in segmentation models
or across multiple scales. We anticipate that sharing information at multiple scales of the
decoder will emphasize the prior knowledge about the organ’s existence and lead the decoder
to generate fewer false positive predictions for non-existing classes.

Figure 7.2 delineates the precise locations of the feature fusion modules within the U-Net
structure. We merge the classification labels with the bottleneck feature map with the most
abstract information. After each transpose convolution, this merged version is fed into the
decoder, where we iterate the feature fusion blocks. We avert interference with additional
normalization layers by placing the DAFT-based feature fusion ahead of each decoder block.

To put it in mathematical terms, for every element in a batch, let’s denote the classifier’s
predicted output as ŷ ∈ R, and Fd,c ∈ RD×H×W as the input feature map’s c-th channel for
block d ∈ 0, . . . , 5 in the decoder, where D, H, W represent the depth, height, and width of the
feature map respectively, as depicted in Figure 7.2.

DAFT [175] is trained to ascertain scale αd,c and offset βd,c, and can be formally expressed
as:

F′
d,c = αd,cFd,c + βd,c, (7.2)

αd,c = fc(Fd,c, ŷd), βd,c = gc(Fd,c, ŷd), (7.3)

Here, fc and gc denote arbitrary functions that map from the image and tabular space to a
scalar. In line with [175], a singular fully-connected neural network, hc, embodies fc and gc

and yields one pair of α and β values.

7.2 Methods 73



MR images with voxel-level and image-level labels are randomly selected throughout the
training phase to compose batches. These batches are then utilized to update the segmentation
model and the classifier. Utilizing the previously outlined Lseg and Lclf , HALOS’s final loss is
computed as:

L = α · Lseg + (1− α) · Lclf , (7.4)

In this equation, α denotes the weight attributed to the segmentation loss.

7.3 Results and Discussion

7.3.1 Experiment Setup

Segmentation Data
In this study, we make use of whole-body MRI scans that have been annotated at the voxel
level, and these scans are sourced from three different studies: the German National Cohort
(NAKO) [7], the Cooperative Health Research in the Region of Augsburg (KORA) [6], and
UKB [90]. These datasets represent a diverse population drawn from Germany and the United
Kingdom. All three studies employed a two-point Dixon sequence to capture abdominal images,
and for our research, we specifically use the oppose-phase scans. Our pre-processing approach
aligns with the recommendations made in earlier studies [73, 136]. It is important to note
that the whole-body MRI scans are an assembly of multiple scans, each focusing on different
body parts, ranging from the neck down to the toes. These scans have fields of view that
overlap. The separate scans are stitched together during pre-processing to create a singular
volume. Additionally, we extract a specific region of interest that encompasses the abdominal
organs under investigation. The scans are then resampled to achieve a uniform resolution of
2 × 2 × 3 mm3. We also employ the N4 bias field correction technique [163] as part of the
pre-processing. A medical expert conducted manual segmentation to identify the six organs of
interest to annotate the scans. The dataset consists of a total of 63 scans, which include 16
from NAKO, 15 from KORA, and 32 from UKB. Within this dataset, 18 patients had undergone
gallbladder removal. We partitioned this dataset into three subsets: training (42 scans, 9 of
which are post-gallbladder resection), validation (7 scans, 3 of which are post-gallbladder
resection), and testing (11 scans, 6 of which are post-gallbladder resection).

UKB Data
The dataset from the UK Biobank is substantially more extensive than the segmentation data,
but it solely comprises image-level annotations, which indicate the presence of organs. We
harness this dataset for training the organ existence classifier, an integral component of our
multi-task pipeline. Moreover, it proves useful for assessing the robustness of the model, as
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we can compute the instances of false-positive segmentation for gallbladders that are not
present. We sourced information regarding past surgeries from the UKB database. As the
information about previous surgeries is self-reported by the study participants, our medical
expert ensured the accuracy of the labels. Out of the 19,000 images that we obtained from
the UK Biobank, 701 were identified as post-gallbladder removal cases. We also made a
random selection of subjects with no specific conditions. We divided this data into two groups.
The first group, meant for training and validation of the models, contained 899 scans of
individuals with gallbladders and 349 of those without. The second group, an independent
test set, included 952 scans with gallbladders and 352 without. Notably, the ratio of cases
without a gallbladder in each group is approximately 0.4. The UKB data underwent the same
pre-processing procedures as described earlier.

Implementation Details and Hyperparameter Tuning
Our research uses DGX A100 GPUs as the computational backbone for experiments. Our code
is based on Python, and we use PyTorch and MONAI as the key libraries. The tuning of hyper-
parameters such as the loss weight α, weight decay, learning rates for both the segmentation
model and classifier, the type of normalization (be it instance or batch normalization), batch
size, and the location of the classifier is carried out with the aid of Ray Tune. We leverage Py-
Torch’s automated mixed precision feature for training our models. The source code is openly
accessible and can be found at the following link: https://github.com/ai-med/HALOS.

Metrics
Our goal in this work is to provide accurate and robust segmentations for patients with and
without removed gallbladders. Therefore, we evaluate the performance with a standard
segmentation metric, the Dice Score, to evaluate the overall performance. As our models
are based on nnU-Net, which already provides state-of-the-art segmentation, we are mainly
interested in performance decrease due to organ resection. In cases where an organ was
removed, the Dice score is not defined for this organ. Therefore we set it to 1 for true negative
cases and 0 for false positive cases by setting ϵ to 1. As a result, we can observe significant
changes in the Dice score when reducing the false positive rate. The main metric we are
interested in regarding organ hallucinations is the false positive rate (FPR) of resected organs.
We count an image as a false positive if one or more voxels were segmented as a non-existing
organ. Further, on the large-scale UKB data, we provide other metrics derived from the
confusion matrix, such as false negatives and F1 scores. To evaluate the performance of the
organ existence classifier, we provide balanced accuracy (BAcc).

Baselines
In addition to the nnU-Net baseline outlined in subsection 7.2.1, we also evaluate two simple
baseline methods to tackle the problem of organ hallucinations, which we term oversampling
and post-processing. Given the data imbalance concerning the number of samples with intact
versus resected organs, we believe this is a potential reason for organ hallucinations. Therefore
for the oversampling baseline, we oversample cases without a gallbladder during training to
achieve a balance in class frequency. It is imperative to acknowledge that class frequencies
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Table 7.1. This table showcases a comparison between HALOS and the baseline nnU-Net, as well as some straightfor-
ward baselines involving oversampling and post-processing, in addition to techniques from related studies
such as Dice loss with batch reduction[160] (labeled as + batch red.) and the multi-task model [110].FF
indicates feature fusion, ’pred’ indicates the use of predicted organ existence labels during testing, and
’gt’ indicates the use of ground truth labels during testing. The table exhibits Dice scores for all organs in
addition to the false positive rate (FPR) for cases following cholecystectomy. For both metrics, the mean
and standard deviation derived from a 5-fold cross-validation are presented. The asterisk (*) signifies
that the optimal 3D U-Net architecture for our dataset, as recommended by the nnU-Net pipeline, was
reimplemented.

Dice Scores ↑
FPR ↓

Method Mean liver spleen r kidney l kidney pancreas gallbl.

nnU-Net*[68] 0.823±0.014 0.938±0.004 0.891±0.006 0.898±0.003 0.894±0.002 0.643±0.016 0.674±0.076 0.267±0.149

+ oversampling 0.832±0.008 0.940±0.006 0.894±0.005 0.901±0.005 0.891±0.005 0.655±0.011 0.712±0.052 0.233±0.091

+ post-proc. (gt) 0.847±0.005 0.938±0.004 0.891±0.006 0.898±0.003 0.894±0.002 0.643±0.016 0.819±0.009 0±0

+ batch red. [160] 0.818±0.010 0.945±0.002 0.895±0.002 0.901±0.005 0.894±0.006 0.663±0.014 0.610±0.045 0.400±0.091

multi-task [110] 0.822±0.010 0.930±0.006 0.879±0.004 0.895±0.003 0.885±0.002 0.625±0.016 0.716±0.054 0.233±0.091

HALOS w/o FF 0.825±0.010 0.941±0.002 0.892±0.009 0.898±0.004 0.892±0.005 0.657±0.013 0.668±0.073 0.3±0.139

HALOS (pred, gt) 0.853±0.002 0.939±0.003 0.899±0.005 0.899±0.003 0.893±0.004 0.649±0.021 0.840±0.015 0±0

are already factored into the loss function computation. Conversely, in scenarios where it is
definitively known at the testing phase whether an organ has been excised, an intuitive solution
is the elimination of any false positive detections through post-processing. This is accomplished
by reassigning such pixels to the background class. The post-processing approach capitalizes
on pre-existing knowledge of gallbladder resections to remove false positives. However, this
strategy is contingent upon the availability of this information and is rendered infeasible when
such data is absent.

7.3.2 Experiments on Cholecystectomy Cases

We train all models using 5-fold cross-validation and report the average results over all folds
on the segmentation test set in Table 7.1 and the UKB test set in Table 7.2. First, we want to
understand the severity of the organ hallucination problem and evaluate the baseline model
and several simple approaches for reducing false positives. The average FPR is relatively
high for the baseline nnU-Net on both datasets, around 0.26. This also shows that our small
segmentation dataset seems to be representative of the population in UKB. The high FPR
results in a relatively low gallbladder Dice score of 0.674. Remember that cases with false
positives are counted as a Dice score of zero, therefore having a high impact on the Dice score.
The segmentation performance on the pancreas is also low at 0.643, but this organ is difficult
to segment due to its shape variability. We can see that a well-performing segmentation
model like nnU-Net leads to false positives in around a quarter of cases. Next, we want to
evaluate whether simple approaches can alleviate the problem of organ hallucinations. As the
amount of gallbladder resection cases in our training segmentation data is around 24% and
in the UKB data 40%, a first observation is the class imbalance and a simple oversampling of
gallbladder resection cases during the training process might help to reduce false positives.
We observe that the oversampling only marginally improves the false positive rate on both
datasets, indicating that the high FPR is not solely caused by class imbalance. Further, on the
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Table 7.2. Comparison of HALOS and the baseline nnU-Net, as well as basic baseline approaches such as oversam-
pling and post-processing, and techniques from related research, such as Dice loss with batch reduction
[160] (abbreviated as + batch red.) and the multi-task model [110], on the UKB dataset. FF here stands
for feature fusion; gt for feature fusion using ground truth labels at test time; and pred for feature
fusion using classification predictions at test time. The table provides the balanced accuracy (BAcc) of all
classifiers, as well as the false positive (FP), false negative (FN), true positive (TP), true negative (TN),
false positive rate (FPR), and F1 score for instances with excised gallbladders. The displayed values are
the mean and standard deviation derived from 5-fold cross-validation.
The replication of the nnU-Net pipeline’s suggested 3D U-Net architecture for our dataset is denoted by
an asterisk (*).

Method FP ↓ TN ↑ TP ↑ FN ↓ FPR ↓ F1 ↑ BAcc ↑

nnU-Net*[68] 91.2 ±30.62 260.8 ±30.62 537.2 ±16.62 62.8 ±16.62 0.259 ±0.087 0.875 ±0.009

+ oversampling 66.6 ±6.633 285.4 ±6.633 522.6 ±13.18 77.4 ±13.18 0.189 ±0.028 0.879 ±0.011

+ post-proc. (gt) 0 ±0 352 ±0 537.2 ±16.62 62.8 ±16.62 0 ±0 0.945 ±0.015

+ batch red. [160] 135.2 ±57.15 216.8 ±57.15 530.2 ±24.39 69.8 ±24.39 0.384 ±0.162 0.838 ±0.017

multi-task [110] 100.2 ±16.48 251.8 ±16.48 578.2 ±3.701 21.8 ±3.701 0.285 ±0.047 0.905 ±0.054 0.874 ±0.045

HALOS w/o FF 52.6 ±17.67 299.4 ±17.67 547.4 ±22.39 52.6 ±22.39 0.149 ±0.050 0.869 ±0.056 0.896 ±0.047

HALOS (gt) 2 ±2.550 350 ±2.550 564.8 ±14.74 35.2 ±14.74 0.006 ±0.007 0.968 ±0.010 0.933 ±0.005

HALOS (pred) 11 ±5.339 341 ±5.339 541.8 ±14.20 58.2 ±14.20 0.031 ±0.015 0.940 ±0.010 0.933 ±0.005

UKB data, we observe that oversampling reduces false positives and increases false negatives,
which is unwanted behavior.

Using ground-truth information about cholecystectomy, post-processing predictably results in
higher gallbladder Dice scores and zero FPR. However, the post-processing approach has a
drawback: the model’s false positive predictions may arise in neighboring organs, creating a
segmentation hole. Gallbladders are typically located in the fossa vesicae biliaris, a depression
on the visceral surface of the liver between the quadrate and right lobes. Due to this area’s
proximity to the liver, we observed numerous errors in our baseline that are either localized
within the liver or partially within the liver and other tissues, such as visceral fat. In Figure 7.3,
the gallbladder is hallucinated in the fossa vesicae biliaris (C), the liver (D), and the intestine
(E) as examples of common organ hallucinations. We want to point out that there is no change
to be observed in Dice scores of other organs like the liver, as the liver is a large organ, and
small holes from removing false positive gallbladder segmentations did not have an effect on
the Dice score on our small segmentation dataset.

The recent work [160] suggests lowering ϵ in the Dice loss to a low number, e.g., 10−7,
increasing the batch size, and reducing the Dice loss across the batch dimension. The authors
argue that this will help with missing organ cases but have not evaluated their method on a
dataset with resected organs. To test their method, we set the batch size to 8, which was the
maximum amount of GPU RAM we had. Our baseline model has a batch size of 2, an epsilon of
1, and also reduces across the batch dimension. Surprisingly, when using the method by [160],
denoted as ’+ batch red’ in Table 7.1 and Table 7.2, we observe an increase in FPR for both
datasets. We removed the batch reduction in the Dice loss in preliminary experiments but
found no noticeable difference in performance.

Next, we look at the effect of multi-task learning, where the idea is that learning shared
features between segmentation and classification branches will lead to better performance of

7.3 Results and Discussion 77



the segmentation network. The multi-task model proposed in [110] incorporates a classifier
just before the decoder’s segmentation output. To test this approach, we employ our nnU-Net
model and enhance it with a classifier, as recommended in [110] at decoder block 5. This
model results in a slightly lower FPR on segmentation data but a higher FPR on UKB data.
Furthermore, we train Hallucination-free Organ Segmentation (HALOS) without feature fusion,
which makes it a simple multi-task model and differs from the approach by [110] only in the
location of the classifier. This leads to unexpected gain in FPR, a decrease in gallbladder Dice
score, and a minor loss in FPR on UKB compared to nnU-Net, despite the classifier’s balanced
accuracy being 0.896. As a result, we contend that multi-tasking training alone cannot diminish
organ hallucinations.

We trained HALOS using the ground truth labels Yclf as input for the DAFT modules. In
preliminary experiments, we have also tried using the classifier’s predictions Ŷclf as input but
did not achieve comparable results. In future work, this could be interesting to explore further.
HALOS achieves a reduction of FPR to 0 on the segmentation dataset. On the UKB data, it
is slightly increased but still near zero at 0.006. The classifier attains a balanced accuracy of
0.93. When we use the classifier’s prediction for feature fusion at test time, we observe a slight
increase in FPR to 0.03 over using the ground truth labels on the UKB data. As the FPR on
the segmentation data is zero, there is no difference between the classification output and the
ground truth labels. This demonstrates the adaptability of our strategy; depending on whether
prior information regarding gallbladder resection is available at the time of testing, the ground
truth labels or classifier predictions can be used for feature fusion.

7.3.3 Experiments on Nephrectomy Cases

Next, we evaluate the capability of HALOS to tackle cases involving organ removal beyond
gallbladder resections by examining its performance in post-nephrectomy instances. Acknowl-
edging that no extra fine-tuning of hyperparameters was executed for this assessment is crucial.
We compiled a dataset with 46 scans (6 missing left kidneys and 2 missing right kidneys) for
training purposes and 10 scans (2 missing left kidneys and 1 missing right kidney) for testing.
In the case of the UKB dataset, we partitioned the data into a training and validation set com-
prising 200 scans (17 missing left kidneys and 5 missing right kidneys), along with a separate
test set of 55 scans with 4 and 2 instances of missing left and right kidneys, respectively.

Like the gallbladder analysis, we trained the baseline nnU-Net and HALOS models using 5-fold
cross-validation. In contrast to the binary classification used in the gallbladder experiments,
the classifier in this example was tasked with classifying whether all kidneys are intact or
whether the left or right kidneys are missing. Below are the results of the post-nephrectomy
analysis.

In the UKB dataset, the baseline nnU-Net registered a False Positive Rate of 0.2 for the left
kidney and a perfect 1 for the right kidney. Comparatively, HALOS demonstrated remarkable
improvement with an FPR of 0 for the left kidney, and though it had a high FPR of 0.7 for
the right kidney, the count of false positive voxels was considerably diminished to 16.5 from
nnU-Net’s 129. Additionally, HALOS exhibited a superior Dice score for the left kidney (0.9024)
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Figure 7.3. Visual representation of segmentation outcomes on both the segmentation dataset (upper row) and UKB
dataset (lower row), featuring a side-by-side comparison between nnU-Net and HALOS. A: Illustrates
a scan where the gallbladder has been removed; nnU-Net generates a false positive, while HALOS
successfully avoids false positives. Scan B demonstrates an intact gallbladder. The gallbladder is well
defined by both nnU-Net and HALOS. C: In this case, the gallbladder’s former position is wrongly
predicted as a false positive by both models. However, HALOS has a significantly reduced number of
falsely predicted voxels. D: In this case, nnU-Net incorrectly identifies a region within the liver as the
gallbladder (false positive). HALOS accurately segments the liver without any false positives in the
corresponding area. E: Displays a scenario where nnU-Net wrongly identifies a section of the intestine as
the gallbladder (false positive), whereas HALOS does not make this error and produces no false positives.
© Springer, 2023

compared to nnU-Net (0.8413). However, the right kidney’s Dice scores were nearly identical
for both models (0.864 for HALOS versus 0.867 for nnU-Net).
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One plausible explanation for these results is the constraints imposed by the limited size
of the dataset coupled with a notable class imbalance, particularly given that the training
set contained only two instances of right kidney removal. The balanced accuracy for the
HALOS classifier was 0.93 for the left kidney but substantially lower at 0.58 for the right
kidney, reinforcing the supposition that the class imbalance plays a more prominent role in
this scenario.

7.4 Conclusion

In this chapter, we introduced HALOS, a versatile multi-task model that combines classification
and segmentation for more accurate and hallucination-free organ segmentation. We incorpo-
rated multi-scale feature fusion through a dynamic affine feature-map transform to enrich the
segmentation branch’s feature maps with prior knowledge regarding the presence of organs.
Our experiments demonstrate that HALOS substantially reduces the number of false positives
on a comprehensive UK Biobank testing set and enhances the Dice scores for the gallbladder
and left kidney on a more compact segmentation testing set when compared to nnU-Net and
an assortment of baselines and multi-task approaches, particularly for scenarios following
cholecystectomy and nephrectomy.

A central advantage of HALOS is its adaptability. Depending on the information available
during testing, HALOS can effortlessly switch between employing organ existence ground
truth labels and the predictions made by its classifier. This adaptability ensures that HALOS
can effectively perform under different data scenarios without compromising its efficacy.

As we move forward, our ambition is to broaden the scope of HALOS to encompass more types
of organ resections. Potential future application areas include cases of hysterectomy, where
the uterus is removed surgically, and splenectomy, which entails the spleen’s removal. Since
datasets that include post-removal cases of organs like the kidney or spleen are typically small,
we believe that creating synthetic data could be a worthwhile approach to tackle this challenge.
Additionally, employing self-supervised pre-training on extensive datasets might also prove to
be advantageous.
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8Discussion of Voxel-Based
Segmentation Methods

8.1 Summary

In this part, I have discussed three voxel-based medical image segmentation methods. Firstly,
we presented Project & Excite (PE) modules, a novel approach to recalibrating 3D Fully-
Convolutional Neural Networks (F-CNNs). Inspired by the Squeeze and Excite modules used
for 2D channel recalibration, we designed our PE modules specifically to address the challenges
faced with 3D networks. Our research revealed that our recalibration method outperformed
other 3D extensions and proved particularly beneficial for segmenting smaller structures, a
common challenge in the field.

Our second work introduced Self-training with Uncertainty Guided Label refinement (STRUDEL),
a method developed for self-training with uncertainty-dependent label refinement. Our focus
here was on the task of white matter hyperintensity segmentation. The methodology of
STRUDEL was particularly geared toward cases where the available data set consisted of a
small amount of labeled data and a large unlabelled data set. Using Bayesian uncertainty
measures to guide the self-training process proved innovative and efficient, leading to notable
improvements in the segmentation model’s performance. STRUDEL demonstrated significant
potential for the task of domain adaptation and managed to even surpass supervised methods
in some cases.

Lastly, we addressed the often-overlooked challenge of anatomical domain shifts due to
organ resection. Our solution, Hallucination-free Organ Segmentation (HALOS), is a flexible
multi-task model that concurrently learns organ existence classification and segmentation. By
incorporating the dynamic affine feature-map transform (DAFT), our model enhanced the
feature maps of the segmentation branch with prior information about organ presence. This
significantly reduced false positive predictions on a large-scale UK Biobank test set compared
to several baselines and multi-task strategies.

8.2 Discussion

While our PE module has proven effective in medical image segmentation, especially for
small structures, it is only one possible approach to developing efficient and accurate 3D
segmentation techniques. The recent successes of transformer architectures, which are funda-
mentally based on attention mechanisms, signal another exciting avenue of research. These
architectures have gained popularity in computer vision and have made strides in medical
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image segmentation [149]. This is because transformers can capture long-range dependencies
without being constrained by the fixed geometric structures of convolutions, potentially of-
fering an advantage in complex segmentation tasks. However, the application of transformer
architectures in medical imaging is still relatively new, and there are challenges to address.
For example, the high computational cost of transformers can be prohibitive for 3D imaging
data. Additionally, while the sequence-based nature of transformers is well-suited for NLP
tasks, adapting them for image data, which is fundamentally 2D or 3D, poses challenges.

Currently, there is a trend towards developing architectures that combine the strengths of
traditional U-Nets, which have a proven track record in medical image segmentation, with
the capabilities of transformer networks [149]. These hybrid architectures could leverage the
spatial awareness of U-Nets with the global receptive field of transformers, opening up new
possibilities for segmentation tasks.

The idea of refining pseudo-labels using uncertainty has been proposed in several works
concurrent to our work, e.g., in [172], which shows the relevance of our idea. Another aspect
worthy of attention in future research is the choice of the initial segmentation model used for
pseudo-label generation. In our work, we utilized the lesion prediction algorithm (LPA), but
there could be potential benefits to exploring other robust algorithms or even combining the
outputs from multiple algorithms to generate initial pseudo-labels. This ensemble approach
could further reduce label noise and increase the reliability of pseudo-labels, leading to
improved performance of the STRUDEL method.

The impact of HALOS is yet to be fully realized at the time of this thesis submission, but the
potential for expansion and adaptation of the model is considerable. Future directions include
the evaluation of HALOS across a range of organ resection cases, broadening its applicability.
Furthermore, the model’s dynamic affine feature map transform (DAFT) module offers oppor-
tunities to incorporate a broader range of meta-data, such as demographic information (age,
sex, BMI) or comorbidity details, which could enrich its prediction capabilities.

Additionally, HALOS isn’t confined to organ resection cases. Its flexible design allows it to be
applied to other instances of anatomical domain shifts, such as cases featuring severe scoliosis,
deformities like horseshoe kidneys, or even patients with extra organs, such as polysplenia. As
the field moves toward large-scale epidemiological studies, like the UK Biobank, the role of
incorporating meta-data will grow in importance. Recognizing and addressing novel challenges,
like the missing organ problem, will be an essential part of future work, ensuring our machine
learning methodologies remain effective and relevant in the evolving landscape of medical
image segmentation.

The focus of this part of the thesis has been on voxel-based medical image segmentation. This
approach is well-suited for a broad range of organs, including subcortical brain structures
and abdominal organs. Despite the effectiveness of this methodology, when it comes to the
segmentation of the cerebral cortex, surface-based segmentation methods often prove to be
more advantageous. The reasons behind this and an in-depth exploration of these surface-
based techniques will be the focus of the next part of this thesis, offering a comprehensive
perspective on the diverse strategies utilized in medical image segmentation.
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9Introduction

Apart from subcortical segmentation and lesion segmentation, as discussed in Chapter 5 and
Chapter 6, cortical surface reconstruction is another essential field in neuroimage computing.
The representation of the cortical surface as a triangular mesh is particularly valuable for
analyzing cortical thickness and sulcal morphology. Traditional methods like FreeSurfer [39]
include a surface reconstruction pipeline that computes all cortical measurements on a surface
representation instead of a voxel representation. Additionally, the cortex can be further
subdivided, or segmented into smaller areas, often called parcels, hence the name cortex
parcellation.

I will focus on cortical surface reconstruction from brain Magnetic Resonance Imaging (MRI)
scans and surface-based parcellation in this part. This part is based on the following publi-
cations, all of which are collaborative works. For each publication, the contributions of each
author are listed.:

Bongratz, F.*, Rickmann, A.*, Pölsterl S., and Wachinger, C. Vox2Cortex: fast explicit reconstruc-
tion of cortical surfaces from 3D MRI scans with geometric deep neural networks, Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, ©IEEE, 2022 [10] *: the
authors contributed equally
This work is covered in chapter 11. C. Wachinger and the author conceived the initial idea.
F. Bongratz implemented the proposed architecture, and F. Bongratz and the author ran the
experiments. F. Bongratz, C. Wachinger, and the author contributed equally to writing the
final published article. S. Pölsterl helped with group study experiments and proof-reading the
final manuscript.

Rickmann, A.*, Bongratz, F.*, Pölsterl S., Sarasua, Ignacio, and Wachinger, C. Joint Recon-
struction and Parcellation of Cortical Surfaces, Machine Learning in Clinical Neuroimaging:
5th International Workshop, MLCN 2022, Held in Conjunction with MICCAI 2022, Singapore,
September 18, 2022, Proceedings, ©Springer Nature, 2022 [132] *: the authors contributed
equally
This work is covered in chapter 12. F. Bongratz, C. Wachinger, and the author conceived
the initial idea. F. Bongratz did the implementation and execution of experiments on the
class-based reconstruction loss, and the author did the implementation and running of ex-
periments on classification networks. F. Bongratz, C. Wachinger, and the author contributed
equally to writing the final published article. S. Pölsterl and I. Sarasua helped with group
study experiments and proof-reading the final manuscript.
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Rickmann, A., Bongratz, F., and Wachinger, C.: Vertex Correspondence in Cortical Surface Re-
construction, accepted at International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI) 2023 This work is covered in chapter 13. C. Wachinger, F.
Bongratz, and the author conceived the initial idea. The author did the implementation and
execution of experiments. The author wrote a significant portion of the manuscript that all
authors took part in writing.

I will discuss the principles behind these methods, their advantages and limitations, and how
they compare to existing state-of-the-art techniques in the field. The outline of this part is
as follows, first, I will introduce the cortical surface reconstruction problem statement and
explain the fundamentals of the field. Then I will explain the concept of Vox2Cortex. Next,
I will discuss the extensions of Vox2Cortex, including joint parcellation approaches and the
improvement of vertex correspondence. Finally, I will discuss the three presented methods
and shed light on some promising avenues for future exploration. By the end of this part,
readers will clearly understand the challenges involved in cortical surface reconstruction and
surface-based parcellation and the latest approaches for addressing them.
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10Fundamentals for Cortical Surface
Reconstruction
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In the development of medical image segmentation, two distinct approaches have emerged –
the intensity-based or voxel-based methodologies and the boundary-based or surface-based
methodologies. While both approaches have merits and applicabilities, they differ fundamen-
tally in methodology. Voxel-based techniques focus on the voxel grid, independently classifying
each voxel based on its features and the surrounding context. In contrast, surface-based
methods explicitly model the boundaries of the segmented objects, allowing them to capture
geometric and topological properties more naturally.

The specific advantages of surface-based segmentation become evident in neuroimaging, where
surface representations are particularly valuable for analyzing cortical thickness and sulcal
morphology. Precise surface reconstructions can give us more accurate measurements and
allow us to perform analyses that are otherwise challenging with voxel-based representations,
such as cortical parcellation. Therefore, while both voxel and surface-based techniques are
integral to the broader field of medical image segmentation, the work in this part of the thesis is
devoted to surface-based segmentation, focusing specifically on cortical surface reconstruction
and parcellation.

This part of the thesis differs from the previous part, not only by its emphasis on surface-based
segmentation but also by the consistent theme of the presented works, which all aim to solve
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the same task and are inherently built upon each other. In this chapter, I will explain the
tasks of cortical surface reconstruction and parcellation, providing a detailed overview of
relevant concepts such as mesh representations and topology. I will then reflect upon the
related works, focusing on the third-party software FreeSurfer, followed by an introduction to
the deep learning concept of Graph Convolutional Neural Networks. Finally, I will provide an
overview of the data used in the subsequent chapters.

10.1 Cerebral Cortex

The brain’s outermost layer is the cerebral cortex, responsible for higher cognitive functions,
sensory processing, and motor control. The cortex is divided into distinct functional areas,
which have been mapped and defined using various parcellation atlases. Magnetic Resonance
Imaging (MRI) plays a crucial role in studying the anatomy and function of the cerebral cortex
in vivo.

The surface of the cortex is highly folded, forming characteristic gyri (ridges) and sulci (valleys).
This folding increases the surface area of the cortex, allowing for a higher density of neurons
and more complex processing capabilities. The cortex is divided into two hemispheres, each
of which is divided into four main lobes: the frontal, parietal, temporal, and occipital lobes.
Each lobe is associated with specific functions, such as motor control in the frontal lobe,
somatosensory processing in the parietal lobe, auditory processing in the temporal lobe, and
visual processing in the occipital lobe.

The cortex’s folding increases its surface area, allowing for more neurons and complex con-
nectivity. The folding patterns of the human cerebral cortex develop through a complex
process that begins in the embryonic stage and continues into early adulthood. During fetal
development, the cortex undergoes rapid expansion, and the initially smooth surface begins to
fold, creating the characteristic gyri and sulci [30]. As the brain ages, it experiences atrophy,
characterized by a decrease in cortical thickness and a reduction in the number of neurons
and synapses [25, 112]. This process can be exacerbated by neurodegenerative diseases,
such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, which lead to more
pronounced brain atrophy and cognitive decline [31]. MRI plays a crucial role in studying
the development, aging, and pathology of the cerebral cortex by providing non-invasive, high-
resolution images of the brain’s structure and function, enabling researchers to investigate
cortical folding patterns and track changes over time in both healthy and diseased brains.

10.2 Cortical Surface Reconstruction

Cortical surface reconstruction is a process employed in neuroimaging to transform 3D volu-
metric brain data, commonly derived from T1w MRI scans, into a set of 2D cortical surface
representations. This task involves several steps, including extracting the cortical boundary
from the MRI scans and removing topological defects. Notably, the output of this procedure
typically includes four distinct surfaces - an inner (white matter) surface, representing the
gray-white matter boundary, and an outer (pial) surface, representing the gray matter-pial

88 Chapter 10 Fundamentals for Cortical Surface Reconstruction



boundary, for each cerebral hemisphere. Figure 10.1 shows MRI scans of three different
subjects of different ages, white matter, and pial surfaces. Cortical surface reconstruction
primarily aims to formulate accurate geometric models of the cortical surfaces, effectively
delineating the intricate gyri and sulci of the brain’s cortex. These reconstructed surfaces
are invaluable for subsequent tasks such as brain mapping, cortical thickness estimation, and
cortical parcellation. Moreover, biomarkers such as cortical thickness play a crucial role in
diagnosing neurodegenerative diseases like Alzheimer’s.

female, healthy, 55 years male, healthy, 72 years male, Alzheimer's, 72 years

Figure 10.1. Top: MRI T1w scans from the ADNI dataset of subjects 55 and 72 years old with and without Alzheimer’s
disease. Bottom: Corresponding left white matter and right pial surfaces, extracted with FreeSurfer.
Zoom in on the triangular mesh structure for the left-most pial mesh.

10.2.1 Triangular Meshes

Triangular meshes have been widely adopted as a standard representation of the cerebral
cortex in medical imaging. Composed of interconnected vertices and edges that form triangular
faces, these structures allow a comprehensive and precise geometric portrayal of the intricate
cortical surface. Figure 10.1 shows the triangular structure on an example of a pial surface.
One primary advantage of triangular meshes is their inherent flexibility. They can capture
complex shapes and topologies with varying levels of detail, depending on the density of the
triangulation.

10.2.2 Topology

Topology is a branch of mathematics that deals with the properties of geometric shapes that
remain invariant under continuous deformations, such as stretching, twisting, or bending.
In the context of surfaces and triangular meshes, topology is crucial for understanding the
structure of the mesh and its underlying shape [33]. Preserving the topology in cortical surface
reconstruction is important as it directly influences the accuracy and consistency of subsequent
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analysis. In this subsection, I will explain relevant concepts of topology that will be often
referred to in the later parts of this thesis.

Spherical Topology
A surface with genus-zero topology is characterized by having no holes or handles, making
it topologically equivalent to a sphere. In the case of triangular meshes, the mesh can be
deformed into a sphere without tearing or gluing its faces. A genus-zero surface has the
property of being simply connected, meaning that any closed loop on the surface can be
continuously deformed to a single point without leaving the surface. The surfaces of the
human cerebral cortex have a genus-zero or spherical topology, and it is essential for cortical
surface reconstruction approaches to guarantee this topology.

Self-Intersecting Faces
Self-intersecting faces occur when two or more faces of a mesh intersect or overlap, resulting
in an inconsistent or non-manifold surface representation. These intersections can lead to
ambiguities and issues when processing or analyzing the mesh, as they violate the basic
assumption that each point on the surface is uniquely defined. Regarding topology, self-
intersecting faces do not directly affect the genus of a mesh, as the underlying structure
remains unchanged. However, they can cause difficulties in accurately computing surface
properties that rely on a consistent surface representation, like surface area. The percentage of
self-intersecting faces can be used as an evaluation metric to assess the surface quality.

Spheres and Icosahedrons
As a triangular mesh is a discrete representation, approximating a sphere using icosahedron
expansion is a common technique in computer graphics and computational geometry for
generating a mesh with approximately uniform vertex distribution on a spherical surface.
The process starts with an icosahedron, a polyhedron with 20 equilateral triangular faces, 12
vertices, and 30 edges. The icosahedron undergoes a recursive subdivision to approximate
the spherical surface more closely. FreeSurfer uses this approximation of a sphere, e.g., the
spherical representation of the FsAverage template is an order seven icosahedron with 163,842
vertices, and the lower resolution fsaverage6 template is an order six icosahedron with 40,962
vertices. When we speak of a sphere in the subsequent chapters, we refer to an icosahedron
approximation of a sphere, also called an icosphere.

10.2.3 FreeSurfer

Throughout this part, I frequently reference FreeSurfer [39] and often employ it as a benchmark
or even a silver standard when training models. Consequently, I will provide an overview of
FreeSurfer’s capabilities here and delve deeper into the surface reconstruction process, as it is
most relevant to the work showcased in this thesis. More recent related work, especially deep
learning based techniques, will be explained in the following chapters.

FreeSurfer is an open-source software package to process and analyze human brain structural
MRI data. The software offers a variety of tools for tasks such as reconstructing the brain’s
cortical surface, measuring cortical thickness, segmenting subcortical structures, and examining
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longitudinal data. FreeSurfer is applicable in diverse research areas, including investigating
neurodegenerative diseases, brain development, and the aging process. Researchers in the
neuroimaging community have widely adopted FreeSurfer, often using it as a reference
standard in their work.

The FreeSurfer pipeline involves the segmentation of subcortical structures of T1w MRI
scans [40], the reconstruction of cortical surfaces [24, 41], inter-subject alignment of cortical
surfaces based on cortical folding patterns [38], the parcellation of cortical surfaces [27, 28,
42] and measurement of cortical thickness [39].

The command for the FreeSurfer cortical surface reconstruction pipeline is recon-all. It
involves an initial pre-processing step involving intensity normalization and skull stripping.
Throughout the experiments presented in this thesis, we have always used the recon-all out-
put orig.mgz as the input MRI scan, which has not yet undergone any intensity normalization
or skull stripping unless mentioned otherwise.

The next step in the pipeline is segmenting the brain’s white matter (WM) and gray matter
(GM) tissues using a probabilistic atlas. This step also identifies the boundary between the
WM and GM, which is the initialization for constructing the white matter cortical surface.

The pipeline generates an initial triangular mesh representation of the WM-GM boundary by
tessellating the segmented brain volume [24]. It then applies an iterative refinement process
to minimize the discrepancies between the mesh and the MRI data. This results in a smooth,
accurate surface representation of the WM-GM interface, the recon-all output files are called
lh.white and rh.white, and I refer to them as white matter surfaces. The pial surface, which
represents the interface of the gray matter and cerebrospinal fluid (CSF), is reconstructed by a
deformation of the white matter surface. The vertices of the WM surface are moved outward
to find the GM-CSF boundary. This deformation is guided by an intensity gradient computed
from the MRI data. The intensity gradient captures the differences in intensity between the
gray matter and the surrounding cerebrospinal fluid [24]. The pipeline refines the initial
estimate of the pial surface by minimizing an energy function that considers the MRI intensity
values, surface smoothness, and prior anatomical knowledge. The goal is to obtain a pial
surface closely following the GM-CSF boundary while maintaining smoothness and anatomical
plausibility. Once the pial surface has been generated, it is checked for topological defects and
self-intersections. If any issues are detected, the pipeline attempts to correct them using local
smoothing or other heuristics. The output files are called lh.pial and rh.pial. The top row
of Figure 10.2 shows the input MRI scan, overlayed voxel-based white matter segmentations,
and the extracted white matter and pial surfaces for the left (yellow) and right (green)
hemisphere. Since a deformation of the white surface generates the pial surface, the surfaces
come with vertex correspondence between the two. FreeSurfer further computes morphological
measurements like cortical thickness. For this, they use the correspondence between white and
pial surfaces. The thickness is computed as the average distance measured from each surface to
the other [39]. The reconstructed surface must be registered to a standard anatomical space to
compare surfaces to a reference group. FreeSurfer provides average surfaces called FsAverage.
It is an average representation of the cortical surface derived from many individual brains
processed using the FreeSurfer cortical surface reconstruction pipeline [38]. The FsAverage
template is a standard reference space for group-level analyses and inter-subject comparisons
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in neuroimaging studies. Once the cortical surfaces are reconstructed for individual subjects,
they are registered to the FsAverage template. First, the surface is inflated to create a spherical
representation of the cortical surface. This inflated surface is then registered to a spherical
atlas, the spherical representation of the FsAverage template. The spherical registration is
based on the curvature computed on the original surface. The bottom row of Figure 10.2
shows how the white matter surfaces are inflated. The curvature is overlayed on the sphere,
and the subject’s sphere is registered to the FsAverage sphere. Based on the registration,
FreeSurfer further maps an atlas parcellation from the FsAverage template, based on the
Desikan Kiliany Tourville atlas [77] or Destrieux atlas [28], onto the surfaces. Registering
individual subjects to the FsAverage template brings their cortical surfaces into a standard
anatomical space. This allows for comparing and integrating data across subjects, even when
their brain morphologies differ significantly. Once individual data have been normalized to the
FsAverage space, researchers can perform group-level analyses, such as studying differences in
cortical thickness or functional activation patterns between different populations (e.g., healthy
controls vs. patients with a specific neurological disorder). The FsAverage template also
provides a convenient reference for visualizing neuroimaging results on a standardized brain
surface, such as statistical maps or cortical parcellations.

10.2.4 Marching Cubes Algorithm

The Marching Cubes algorithm bridges the world of voxels and the domain of surfaces, enabling
the transition from volumetric data to a polygonal mesh representation. It is a widely-used
computer graphics technique for creating a polygonal, usually triangular, mesh representation
of an isosurface from a 3D scalar field, such as volumetric data from medical imaging. The
Marching cubes Algorithm was first introduced by Lorensen et al. [94] and has since been
advanced to be more computationally efficient by Lewiner et al. [87]. Throughout the methods
presented in this thesis, we have always used the implementation by Lewiner et al. [87]. The
primary goal of the Marching Cubes algorithm is to extract an isosurface, which is a surface
that represents points of equal value (e.g., intensity) within the 3D scalar field. This isosurface
can then be visualized, manipulated, or analyzed. The 3D scalar field is divided into a grid of
cubes. Each cube has eight vertices, each with an associated scalar value.

For each cube in the grid, determine whether the isosurface intersects it by comparing the scalar
values at the cube’s vertices with the isosurface’s threshold value (also called the isovalue). If
the value at a vertex is greater than the threshold, it is considered inside the surface; otherwise,
it is outside the surface. This step results in 256 possible cube configurations, which can be
reduced to 15 unique cases due to symmetry. For each cube configuration, a predefined set
of triangles is generated to approximate the isosurface within the cube. These triangles are
created by interpolating the positions of the intersecting points along the cube’s edges based
on the scalar values at the vertices and the isovalue.

The triangles generated in the previous step are connected to form a continuous triangular
mesh representing the isosurface. The Marching Cubes algorithm has been widely used
in various fields, including medical imaging, computer graphics, and computational fluid
dynamics. In the case of cortical surface reconstruction, it is commonly used to generate a
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input MRI scan voxel WM segmentation WM surfaces pial surfaces

FreeSurfer's cortical surface reconstruction:

FreeSurfer's spherical registration:

FsAverage space

Subject space

Inflation to a sphere: spherical registration:

Figure 10.2. Top: Overview of FreeSurfer’s cortical surface reconstruction. First, an input MRI scan is segmented (only
white matter segmentation is shown for simplicity). Then an initial white matter surface is extracted
(following refinement and topology correction omitted for simplicity), deforming to a pial surface.
Bottom: FreeSurfer’s spherical registration from subject space to FsAverage space. White matter surfaces
of the subject and FsAverage template are iteratively inflated to a sphere. Curvature information is
mapped to the sphere, and the subject’s sphere is registered to the FsAverage sphere based on the
curvature information.

surface representation from an initial voxel-based segmentation or Signed Distance Function
(SDF).

10.3 Cortex Parcellation

Cortex parcellation is dividing the cerebral cortex into distinct regions or parcels based on
various anatomical or functional attributes. These regions often correspond to different
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brain areas associated with specific functions, such as motor control, vision, or language
processing. Cortex parcellation is essential in neuroimaging analysis, as it facilitates studying
structural and functional brain organization. It allows for quantitative measurements of
specific brain regions, such as volume, thickness, or surface area, and enables region-based
analysis of functional brain activities. Additionally, having a consistent parcellation scheme
across individuals is crucial for group studies, enabling meaningful comparisons and statistical
analysis across subjects. The process of parcellation, however, poses significant challenges due
to the complex and highly variable structure of the human brain. Hence, various methods
have been developed, with a trend toward machine learning and deep learning approaches in
recent years.

Parcellation can be done using either voxel-based or surface-based techniques. Voxel-based
parcellation is a variant of voxel-based brain segmentation, as, e.g., presented in Chapter 5.
However, the number of classes significantly surpasses the roughly 30 class distinctions found
in brain segmentation as in Chapter 5, often exceeding 100 classes, including subcortical brain
structures and cortical parcels. Such an increase intensifies issues such as class imbalance and
demands for computational resources and memory.

Given that the primary purpose of cortical parcellation is to enable per-parcel comparisons of
cortical metrics, such as gyrification or cortical thickness, the parcellation is usually mapped
onto cortical surfaces. As such, surface-based parcellation, which conducts the segmentation
directly on the surface, is a logical choice. This method streamlines the process and enables a
more integrated and intuitive approach to exploring the cerebral cortex.

Brain parcellation atlases are references or guides for dividing the cerebral cortex into distinct
regions. These atlases differ based on their underlying principles, the granularity of divisions,
and the specific brain features they focus on. I will not detail functional atlases as we deal
with structural MRI scans throughout this thesis. Commonly used structural parcellation
atlases include the Desikan-Killiany (DK) [27], Desikan-Killiany-Tourville (DKT) [78] and
Destrieux [28, 42] atlases. An example of the Desikan-Killiany and Destrieux parcellations is
visualized in Figure 10.3 These atlases are also used within the FreeSurfer software. They differ
in the number of regions, e.g., the DK atlas divides the cortex into 34 areas per hemisphere,
whereas the Destrieux atlas divides it into 74 areas per hemisphere.

Desikan-Killiany atlas Destrieux atlas

Figure 10.3. FreeSurfer’s FsAverage template with Desikan-Killiany atlas and Destrieux.
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10.4 Graph Convolutions

The methods presented throughout the chapters in this part will be based on combinations of
convolutional neural networks and graph convolutional networks. For this, I will introduce the
concept of graph convolutions here.

Graph Convolutions and Graph Neural Networks (GNNs) are tools in the machine learning
landscape that operate on data structured as graphs. In essence, graphs are a more general
structure than regular grid data (like images), representing complex relationships and in-
teractions between entities. This is particularly relevant in the context of cortical surfaces,
which can be naturally represented as triangular meshes, which are graphs with vertices
corresponding to positions on the surface and edges representing adjacency relationships.

The standard convolutional operations in Convolutional Neural Networks (CNNs) are tailored
for image processing and inherently assume a regular, grid-like data structure. On the other
hand, graph convolutions adapt the concept of convolutions for irregular structures like graphs,
allowing neural networks to assimilate information from the immediate neighbors of each
graph node.

A GNN is a type of neural network that employs graph convolutions as its basic operation, akin
to regular convolutions in CNNs. In the context of cortical surface parcellation, a GNN would
be a natural choice to classify each vertex in the cortical surface graph into a specific parcel,
effectively performing surface-based parcellation. Further, they can also be used to learn a
deformation field on the vertices by learning to deform a mesh template to a patient’s cortex,
conditioned on the MRI scan.

Throughout the following chapters, our focus will be on employing spectrum-free graph
convolutions, particularly in the style of message-passing operations, as referenced in [12]. We
will adopt the implementation delineated in [130]. In the context of GNNs, the term ’message
passing’ describes the process by which a node updates its features based on the features of its
neighboring nodes. Specifically, at each network layer, every node sends a ’message’ containing
its current features to its neighbors. Each receiving node then aggregates these messages to
compute its new features.

In formal terms, a graph convolutional layer updates the features of a previous layer fi ∈ Rdin

for a vertex vi ∈ R3 by performing aggregation as shown:

f′
i = 1

1 + |N(i)|

W0fi + b0 +
∑

j∈N(i)

(W1fj + b1)

 , (10.1)

Here, W0, W1 ∈ Rdout×din along with b0, b1 ∈ Rdout signify linear transformations and N(i)
denotes the set of neighbors of vi. It is worth noting that, akin to CNNs, graph convolutional
layers are typically succeeded by batch normalization and Rectified Linear Unit (ReLU) layers
within our network models.
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10.5 Challenges

At the time of publishing our initial work on this topic [10], there were scarce deep learning
methodologies for cortical surface reconstruction. Among the few was DeepCSR [21], which
employed an implicit surface reconstruction approach, learning a SDF used in marching cubes
to extract the mesh. This method, however, depended on topology correction. We hypothesize
that an explicit mesh reconstruction can evade this issue.

Due to its robustness, automatic software like FreeSurfer and CAT12 is widely utilized for
cortical surface reconstruction in the research community. However, the lengthy runtimes of
these tools, several hours per MRI scan, make their application in clinical routine impractical.
Deep learning methods, with their potential to accelerate this process significantly, could
provide a feasible solution.

But the path toward developing deep learning for cortical surface reconstruction is challenging.
Firstly, there is a lack of manual ground truth labels, necessitating the reliance on third-party
software like FreeSurfer as a silver standard.

Moreover, these surfaces need to be exceedingly precise. Subvoxel accuracy is a requirement,
as the errors ideally should be significantly less than 1mm. This precision level is vital since
cortical thickness changes often fall within this range. The surfaces are used to detect early
changes, hence the need for such accuracy.

A final hurdle to consider is the requirement for topological correctness, an essential factor in
ensuring that the reconstructed surface correctly represents the complex and unique topology
of the cerebral cortex. Balancing these factors — speed, accuracy, and topological correct-
ness — presents a challenging task for applying deep learning methods in cortical surface
reconstruction.

Alongside speed, accuracy, and topological correctness, another feature that enhances the
usability of tools like FreeSurfer is their ease of performing group comparisons. FreeSurfer
provides the FsAverage template, which provides a standard anatomical space allowing data
from different individuals to be analyzed collectively. Therefore, a desirable trait for a deep
learning method is its ability to emulate these features. The development of tools that can
combine the speed and efficiency of deep learning with such practical features, like the ease of
comparison across groups, will make them more appealing and suitable for use in a clinical
setting.

10.6 Datasets

Throughout this part, we use the same datasets and pre-processing, which I will describe
here.

96 Chapter 10 Fundamentals for Cortical Surface Reconstruction



10.6.1 ADNI

Data utilized for the crafting of this thesis were sourced from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database, which is accessible at adni.loni.usc.edu. Initiated
in 2003, ADNI emerged as a collaboration between public and private sectors, under the
leadership of Principal Investigator Dr. Michael W. Weiner. The core objective of ADNI is to
explore whether the integration of serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical as well as neuropsychological
assessments can effectively gauge the progression of mild cognitive impairment (MCI) and
early-stage Alzheimer’s disease (AD). Please visit www.adni-info.org for the most current
information.

The ADNI database furnishes MRI T1 scans for individuals diagnosed with Alzheimer’s Disease,
Mild Cognitive Impairment, as well as for healthy subjects. We first removed data with
processing artifacts, e.g. segmentation errors by FreeSurfer, detected by the UCSF quality
control measures [55]. We then partitioned the dataset into training, validation, and testing
subsets, ensuring a balanced representation in terms of diagnosis, age, and gender. Given that
ADNI is conducted as a longitudinal study, only each participant’s first (baseline) scan was
employed.

For the experiments, two distinct partitions of the ADNI data were utilized. The first partition,
termed as ADNIsmall, encompasses 299 subjects in the training set, and 60 subjects each in
the validation and testing sets. This subset was instrumental for the architecture ablation
study experiments, as detailed in Chapter 11. The second partition, named ADNIlarge, is more
extensive, containing 1,155 subjects for training, 169 for validation, and 323 for testing.

10.6.2 OASIS

The OASIS-1 dataset [101] comprises MRI T1 scans from a total of 416 subjects, out of which
100 subjects are diagnosed with Alzheimer’s disease ranging from very mild to moderate stages.
The data was divided, ensuring balance based on diagnosis, age, and gender, which led to the
allocation of 292 subjects for the training set, 44 for the validation set, and 80 for the testing
set.

10.6.3 Test-Retest

Test-Retest dataset (TRT) [98] comprises 120 T1w MRI scans from three subjects, with each
subject scanned twice on 20 different days. This dataset is primarily employed to assess the
consistency of our models. We compare our model’s predictions on scans taken on the same
day, as we anticipate no structural changes in the brain and only minor variations due to
patient positioning. A robust and consistent model should yield highly similar predictions
for scans from the same day. Moreover, we use this dataset to evaluate the transfer learning
capabilities of our models, examining how well models trained on other datasets adapt to this
previously unseen data.
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10.6.4 MALC

The MALC dataset [83] is used in chapter Chapter 11 for initial experiments and hyperparame-
ter tuning. Here we split the dataset into 15 training scans, seven validation scans, and 8 test
scans. But we only present results on the validation set.

10.6.5 J-ADNI

The Japanese ADNI Project (J-ADNI) (https://www.j-adni.org/) provides MRI T1w scans
from healthy subjects and subjects with Alzheimer’s disease from Japan. We use 502 baseline
scans for testing models trained on ADNI for their generalizability to unseen data.

10.6.6 Mindboggle

We further test generalization to the Mindboggle-101 dataset [77] 101 MRI T1w scans. This
dataset also contains manual parcellations; therefore, it is also used to evaluate parcellation
accuracy.

10.6.7 Pre-Processing

In this part, the data was processed using FreeSurfer v5.3 or v7.2 [39]. We utilized orig.mgz
files, along with white matter (WM) and pial surfaces (lh.white, lh.pial, rh.white, and rh.pial),
generated by FreeSurfer. The MRI scans in orig.mgz format possess dimensions of 256× 256×
256 with a voxel resolution of 1mm.

The pre-processing pipeline proposed by [21] was employed, which involved aligning the MRI
scans to the MNI152 template [102] through rigid followed by affine registration. MNI152 is a
widely recognized brain template crafted by averaging 152 healthy brain scans.

NiftyReg [111, 121] was utilized for the registration process. Excluding Chapter 13, when
FreeSurfer meshes were employed as supervised training labels, they were simplified to
approximately 40,000 vertices per surface via quadric edge collapse decimation [44]. This
simplification was primarily conducted to economize memory usage.

After the registration to MNI space, the input MRI images exhibited dimensions of 182× 218×
182 with a voxel resolution remaining at 1mm. For most experiments, unless explicitly stated
otherwise, padding was applied to input images to achieve dimensions of 192 × 208 × 192,
followed by downsampling to 128× 144× 128 voxels to save memory. Lastly, intensity values
underwent min-max normalization, scaling them to fall within the [0, 1] range.
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11.1 Introduction

It is necessary to reconstruct the cortical surface as a triangular mesh to obtain accurate cortical
thickness and volume measurements. While voxel-based segmentations can be used to obtain
mesh-based surface representations, the resulting meshes often suffer from staircase artifacts
and topological defects, which require post-processing steps to correct, see Figure 11.1.
Traditional methods, such as FreeSurfer [39], provide accurate and topologically correct
cortical surface meshes but are time-consuming and impractical for fast predictions in clinical
use.

Recent research has introduced deep learning-based algorithms that can produce explicit
surface representations of organs from Magnetic Resonance Imaging (MRI) scans without
the need for post-processing [174]. However, at the time of publication, these methods had
not been applied to reconstruct shapes with complex folding patterns, such as the cerebral
cortex.

To address this gap, we created Vox2Cortex, a deep learning network that integrates convo-
lutional and graph convolutional networks. By deforming an initial template, it is able to
directly recreate explicit meshes of cortical surfaces from MRI images of the brain. Four output
meshes are predicted by our network, including the white matter and pial surfaces of both
hemispheres. The cortical meshes’ spherical topology is maintained by the deformation of
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Figure 11.1. Brain MRI scans in the coronal plane, with overlays highlighting both mesh-based and voxel-based
segmentations, and three-dimensional visualizations of the corresponding pial and WM surfaces. In the
top row, one can observe the meshes that have been generated through our proposed method, while
the bottom row displays meshes that were produced using the marching cubes algorithm applied to the
voxel segmentation. Notably, the meshes in the bottom row exhibit distinct staircase-like irregularities,
which are artifacts inherent to the marching cubes method. This figure has been adapted and modified
from Figure 1 in [10] © IEEE 2022

an initially spherical surface. Consequently, our procedure prevents the formation of mesh
openings or handles. We train our model on meshes with up to 168,000 vertices per mesh to
accurately represent the extremely complex folding patterns of the cortex.

We have made several significant contributions through our work. Firstly, we have devised a
rapid and highly precise method for recreating the cortex by integrating a convolutional neural
network with a graph neural network. Secondly, we ensured that the generated meshes possess
a spherical topology, which was achieved by deforming a template mesh with a fixed topology
that can have any resolution. Further, we considered the interconnected nature of the white
matter (WM) and pial surfaces and facilitated information exchange between them. Lastly,
we introduced a novel loss function for training methods focused on explicit reconstruction.
This function takes advantage of local curvature, which is used to assign weights to Chamfer
distances.

Moreover, our technique demonstrates performance that is either equivalent to or surpasses
the existing reconstruction methods, that rely on implicit representations or are voxel-based,
concerning accuracy and consistency. Notably, our method is also 25 times faster during
the inference phase. The practical applicability of our method has been demonstrated on
downstream tasks, such as the measurement of cortical thickness and surface area.
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Figure 11.2. This figure illustrates that the prevailing deep learning-driven methods for reconstructing the cortical
surface from MRI scans predominantly employ an implicit or voxel-based approach. Such approaches
necessitate the execution of complex post-processing operations, which include correcting the topology
and utilizing the marching cubes algorithm [87] to create explicit surface representations, such as
triangular meshes. These meshes are indispensable for subsequent applications, like evaluating the
thickness of the cortex. However, in stark contrast, our proposed model efficiently generates highly
precise meshes of the white matter (WM) and the pial surfaces directly. The figure has been sourced
from [10] © IEEE, 2022

11.2 Related Work

Traditionally, processing pipelines for brain MRI scans have been composed of multiple
stages, such as the alignment of images (registration), dividing the images into segments
(segmentation), and the extraction of cortical surfaces [24, 41, 156]. However, these processes
require significant computational resources, leading to delays in obtaining measurements of
the cortex following the completion of the scans. As an alternative, deep learning approaches
for cortical surface reconstruction focused on voxel-based or implicit surface reconstruction
methods when we developed Vox2Cortex, which can be categorized as a template-deformation
approach. For a visual summary that compares the different methodologies, refer to Figure 11.2.
Additionally, in the subsequent sections, we delve into a more comprehensive explanation of
the methods related to computer vision and cortical surface reconstruction that were prevalent
when this work was published.
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11.2.1 Voxel-Based Surface Reconstruction

The idea of voxel-based surface reconstruction is first to segment an object, like the cerebral
cortex, by voxel-based segmentation methods, e.g., Convolutional Neural Networks (CNNs),
and then use a post-processing step for mesh extraction. A common algorithm to use is
marching cubes [87], which requires additional topology correction. The marching cubes
algorithm is explained in subsection 10.2.4. FastSurfer [59] is a deep learning approach,
similar to QuickNAT [143], that focuses on cortex parcellation. For both subcortical and
cortical segmentation, the FreeSurfer pipeline is sped up using a CNN; nonetheless, surface
creation and topology correction still need marching cubes. For combined segmentation and
surface reconstruction, SegRecon [48] presents a 3D CNN, which learns a 3D signed distance
function and still needs marching cubes and topology correction.

11.2.2 Deep Implicit Representations

Deep implicit representations have recently gained significant traction as a field of study within
3D computer vision [105, 122, 153, 179]. The central concept involves training a function
to associate 3D coordinates with a continuous implicit representation of a shape, usually in
the form of a signed distance function (SDF) or an occupancy value. These functions can be
learned by Multi-Layer Perceptrons (MLPs) either for an individual shape or a group of shapes,
usually conditioned on an image. Early work in this field of research was DeepSDF [122],
OccNet [105], or DISN. DeepCSR [21] has been proposed for cortical surface reconstruction.
While the shape representation is continuous, the need for topology correction of the implicit
field and marching cubes for mesh generation remains a drawback.

11.2.3 Template-Deformation Approaches

Template-deformation networks [79, 80, 169, 173, 174] deform a mesh iteratively by
learning the deformation field of the vertices using an input image and a template mesh.
Voxel2Mesh [174] and MeshDeformNet [79, 80] have shown promising results when applied
to medical data, though they were mainly applied to simpler shapes like hippocampus or liver.
While it remains to be evaluated if this approach can work well on cortex reconstruction,
deformation-based approaches for surface reconstruction have an explicit shape representation
that typically doesn’t need post-processing. PialNN, as cited in [97], is designed to morph an
initial WM surface into a pial surface through a sequence of graph convolutions. However, it
necessitates using FreeSurfer to generate the WM surface.

11.3 Method

This section describes our proposed Vox2Cortex architecture, which achieves fast cortical
surface reconstruction from MRI scans. Our model comprises a convolutional branch (voxel
network) and a graph convolutional branch (mesh network), which we describe in detail in
the following.
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11.3.1 Vox2Cortex Architecture

Vox2Cortex utilizes both a 3D brain MRI scan and template meshes corresponding to each
hemisphere’s white and pial surfaces as inputs. The network concurrently calculates the
deformation for all four of these template surfaces. As output, it produces the modified
surfaces along with a voxel segmentation of the brain, specifically targeting the gray matter
and the tissue surrounded by the gray matter. The design of Vox2Cortex is influenced by
preceding methods [79, 80, 168, 174] and comprises two connected sub-networks. The first
sub-network is a CNN, which processes voxels, and the second is a Graph Neural Network
(GNN) that takes charge of the deformation of the meshes. These networks are connected by
feature-sampling modules, which are responsible for mapping the features extracted by the
CNN to the vertex locations found within the meshes. Figure Figure 11.3 visually represents
the entire architecture, alongside examples of inputs and outputs. In the following sections,
we elaborate on the various components of this system: the network that handles voxels, the
network responsible for mesh deformation, and the mechanism for exchanging information
between these networks.

Voxel Network (CNN)
We use a residual 3D UNet architecture [17, 68, 139, 182] for image-feature extraction. This
encoder-decoder Fully-Convolutional Neural Network (F-CNN) solely takes the 3D brain scan
as input and outputs a binary segmentation of the brain. The UNet’s encoder comprises an
initial convolutional layer that preserves the shape, four residual convolution blocks, and four
downsampling layers. Each residual convolution block consists of two convolutional layers
with a 3× 3× 3 kernel size, followed by batch normalization and Rectified Linear Unit (ReLU)
activation. The input is added to the residual output [57] before the final ReLU activation.
To ensure that the residual input’s channel number matches that of the residuum, we use a
1× 1× 1 convolutional layer. The feature maps are downsampled using a 2× 2× 2 convolution
with a stride of 2 after each residual block.

The decoder of the UNet follows the same architecture as the image encoder, consisting of
four residual convolution blocks. Before each block, the input is upsampled using transposed
convolutions with a kernel size of 2×2×2 and stride 2, matching the downsampling layers of
the encoder. The feature maps from the corresponding size in the encoder are then added to the
upsampled feature maps and fed to the residual decoder block. To allow for deep supervision,
branches are created following the approach in [181] to propagate the segmentation loss to
lower decoder layers. For the segmentation output of the final and deep supervision layers, a
1×1×1 convolution and subsequent sigmoid classifier are used. The architecture of the voxel
network is depicted in detail in Figure 11.3.

Mesh Network (GNN)
Our architecture comprises a GNN, which inputs a template mesh. This approach is inspired
by related work [79, 80, 168, 174]. The choice of a GNN in comparison to an MLP [51, 170]
is verified by our ablation study in Table11.3.

The GNN employs a series of four mesh-deformation steps to deform the templates, as depicted
in Figure Figure 11.3. Within each of these steps, the GNN computes displacement vectors for
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Figure 11.3. Illustration of the Vox2Cortex pipeline. Given a brain MRI scan and a mesh template as inputs, our
network generates a voxel level segmentation alongside cortical surface meshes. The architecture is
fundamentally built upon a voxel network, visualized as the U-Net style architecture at the top, and a
GNN, visualized at the bottom. The GNN is tasked with deforming the initial template through four steps,
employing features that describe both the image and shape to produce the final output meshes.

each vertex relative to the mesh produced in the preceding step. The architecture of the GNN
has notable parallels with the voxel network in design, incorporating several residual blocks
that enable learning based on residuals, as mentioned in [57, 80]. Each graph-residual block
comprises three graph convolutions, followed by batch normalization and a ReLU activation.
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The input residuum is added before the last ReLU activation. The vertices features are initially
comprised of the three vertex coordinates and information on the neighbors, which is explained
in more detail in subsection 11.3.1. As the length of these vertex feature vectors is much
smaller than the image feature vectors, the initial graph-residual block has more channels than
the later blocks to upscale the vertex features, as proposed in [80]. Each of the four mesh
deformation blocks outputs the new vertex features, illustrated as red dots in Figure 11.3,
as well as the displacement vectors for each vertex at the current deformation stage. The
new vertex coordinates after deformation, illustrated as green dots in Figure 11.3, are then
concatenated to the vertex features as input to the next mesh deformation block.

To implement our GNN, we utilize spectrum-free graph convolutions based on message-passing
operations [12], implemented by the framework proposed in [130].

Combining CNN and GNN

Although CNNs and GNNs are well-established network architectures, there have been few
attempts to combine them, and the optimal way to exchange information between them
remains unanswered [79, 80, 168, 174].

In Vox2Cortex, we feed information from the voxel network into the graph network to condition
the template deformation process on the image. We achieve this by sampling from multiple
CNN feature maps at locations determined by the vertex coordinates of the mesh prediction of
the current GNN block. Trilinearly interpolating feature maps from discrete voxels is necessary
to obtain features in continuous 3D space. These image features are then concatenated
with the vertex features in the mesh network. This process is illustrated as circles f1 to f9
in Figure 11.3.

While it may seem intuitive to use high-level image features, such as those from the CNN
bottleneck, for early deformation stages and more granular features for later stages, previous
approaches have extracted this information either only from the encoder or only from the
decoder. We argue that concatenating features from both the encoder and the decoder at
multiple resolutions is more reasonable as it allows the network to optimize its decision about
which information to use during training.

Interdependence of White and Pial Surfaces

At the time of publication, template deformation approaches have been mainly applied to
reconstruct single objects. However, we deal with multiple surfaces, which are interdependent,
as the inner and outer brain surfaces are always aligned. To enhance the reconstruction quality,
we incorporate information exchange between the meshes to model their interdependence.

For each surface vertex, we design an additional feature vector. This feature vector contains the
coordinates of the five nearest vertices on the other surface, meaning for a white matter vertex,
we find the nearest vertices on the corresponding pial surface and vice versa, and a surface
identifier (value between 0 and 3). This feature vector is depicted as gray dots in Figure 11.3
and concatenated to the existing vertex features. This enables the network to incorporate the
spatial relationships between the different surfaces. This is in accordance with methods like
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FreeSurfer [24], which inherently model the inter-dependency by extracting the pial surface
based on the white one.

Mesh Templates

Existing template deformation methods in the literature commonly use simple mesh templates
like spheres or ellipsoids[79, 80, 168, 174]. However, we found that the accuracy of our
reconstructed surfaces was not satisfactory using the spherical or ellipsoid templates (cf. sub-
section 11.4.2). Therefore, we propose to use a more realistic brain-shaped template for
surface reconstruction. To create the new templates, we randomly selected FreeSurfer meshes
from the MALC dataset [83] and applied Laplacian smoothing [166] until no further changes
occurred. The resulting templates, depicted in Figure 11.3, were used as input to the network
during training. Interestingly, we observed that we could use a higher resolution template
during testing than training, thereby increasing the surface accuracy of a trained model. This
allows us to choose the desired mesh resolution independently of the template used during
training. During training, we used about 42,000 vertices per surface, while during testing, we
increased this number to approximately 168,000 vertices per surface. This results in a total of
over 672,000 vertices across all four surfaces.

11.3.2 Loss Functions

In this section, we outline the construction of the loss function used to train the Vox2Cortex
network, focusing on the innovative aspect of our curvature-weighted Chamfer loss.

Let Ŷ = {M̂s,c, ∆̂s,c, B̂l|s = 1, . . . , S; , l = 1, . . . , L; c = 1, . . . C} be the model’s prediction.
Here, M̂s = (V̂s, F̂s, Ês) represents the meshes that are predicted at S distinct stages of
deformation, and each stage is comprised of C different surfaces. In our implementation,
C is set to four, accounting for each hemisphere’s white and pial surfaces. ∆̂s stands for
the predicted displacement vectors compiled into a tensor, and B̂l ∈ [0, 1]HW D signifies the
voxel-by-voxel binary segmentation maps, which is the final output of the CNN and includes
L− 1 deep-supervision outputs.

Training our model follows a supervised approach, and we presume the availability of corre-
sponding ground-truth meshes and segmentation maps, represented as Y = {M, B̂}, for each
example in the training dataset. The loss function used to train Vox2Cortex is composed of
two main components: a voxel part, Lvox, and a mesh part, Lmesh:

L(Ŷ,Y) = Lvox(Ŷ,Y) + Lmesh(Ŷ,Y). (11.1)

Voxel Loss

Let LBCE(B̂l, B) denote the binary cross-entropy loss between a predicted segmentation
map B̂l ∈ [0, 1]HW D and the corresponding ground truth segmentation map B ∈ 0, 1HW D.
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Considering that we have L segmentation outputs, which include the final segmentation of the
CNN and L− 1 deep-supervision outputs, the voxel loss is computed as follows:

Lvox(Ŷ,Y) =
L∑

l=1
LBCE(B̂l, B). (11.2)

The purpose of the voxel network is to facilitate the learning of meaningful feature maps, and
one way to achieve this is by learning the segmentation of the brain. Since the segmentation is
binary, we discovered that using a simple segmentation loss such as the LBCE was effective.
Therefore we did not utilize a more complex segmentation loss as we did in the previous
part.

Mesh Loss

Defining an appropriate loss function for two meshes is more difficult than for voxel loss,
primarily due to the absence of point correspondences between predicted meshes and labels.
This makes creating a loss function that enforces an accurate cortical surface mesh challenging.
Drawing inspiration from previous template deformation approaches [80, 168, 174], we
employ a combination of geometry-consistency and regularization losses:

Lmesh(Ŷ,Y) = Lmesh, cons(Ŷ,Y) + Lmesh, reg(Ŷ). (11.3)

The geometry-consistency loss comprises our novel curvature-weighted Chamfer loss LC,
detailed in the next section, and an inter-mesh normal consistency (also referred to as normal
distance [46]) Ln:

Lmesh, cons(Ŷ,Y) =
S∑

s=1

C∑
c=1

[
λ1,c,LC(M̂s,c, Mc)

+ λ2,c Ln(M̂s,c, Ms,c)
]

.

(11.4)

The regularization loss consists of Laplacian smoothing of the displacement fields LLap, intra-
mesh normal consistency Ln, intra, and edge length Ledge

Lmesh, reg(Yp) =
S∑

s=1

C∑
c=1

[
λ3,c LLap(M̂s,c, ∆p

s,c)

+ λ4,c Ln, intra(M̂s,c)

+ λ5,c Ledge(M̂s,c)
]

.

(11.5)

More details about the loss hyperparameters can be found in the Results section. We describe
each loss function in detail in the following.

Curvature-Weighted Chamfer Loss

The Chamfer distance has become an essential tool in learning deformable shape models for
surfaces [36, 168]. Nonetheless, it’s imperative to couple it with regularization terms to avoid
edge intersections that may occur otherwise [54]. Specifically, in regions characterized by
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Figure 11.4. This figure demonstrates the impact of employing the curvature-weighted Chamfer loss for training
Vox2Cortex in contrast to using the conventional Chamfer loss, along with a comparison to the FreeSurfer
ground truth. Utilizing the curvature-weighted Chamfer loss results in surface meshes of higher fidelity,
with the cortical folds being more precisely captured.

pronounced curvature, such as the intricate folding patterns of the cortex, the smoothing effect
brought about by the regularization terms can cause a decrease in geometric precision.

To tackle this problem, we introduce a curvature-weighted Chamfer loss function that empha-
sizes regions with high curvature, thus improving the reconstruction of areas with a dense
folding pattern, as depicted in Figure Figure 11.4. Further, we provide a proof in the Appendix
that substantiates how this loss function actively nudges the predicted points in high-curvature
zones closer to their true positions compared to those in low-curvature areas, given certain
mild assumptions.

It is critical to highlight that the curvature weights are exclusively derived from ground-truth
data points, as reliance on the curvature from a prediction might be unreliable and steer the
model in the wrong direction.

We take into account a curvature function, denoted as κ(p) ∈ R≥0, which assigns a curvature
value to a given point p. With this, the curvature-weighted Chamfer loss is defined as follows:

LC(M̂s,c, Mc) = 1
|Pc|

∑
u∈Pc

κ(u) min
v∈P̂s,c

∥u− v∥2

+ 1
|P̂s,c|

∑
v∈P̂s,c

κ(ũ)min
u∈Pc

∥v− u∥2,
(11.6)
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where ũ = arg min
r∈Pc

∥v− r∥2. In practice, we found that

κ(p) = min{1 + κ̄(p), κmax}. (11.7)

In this case, κ̄(p) represents the discrete mean curvature [106, 114], and it has proven to be a
suitable choice (with κmax = 5 in our experiments). Pc and P̂s,c denote sampled point clouds
from the surfaces of the ground truth and predicted mesh. During the training phase, each
Pc|c = 1, . . . , C contains a number of vertices equal to that in the smallest ground-truth surface
in the training dataset. Further, the point clouds P̂s,c|c = 1, . . . , C; s = 1, . . . , S are sampled
from the surface of the predicted meshes in a differentiable manner [46, 154]. This ensures
that the sampled point clouds have the same number of points as the reference meshes.

Inter-mesh normal consistency loss

The Chamfer distance is primarily concerned with the spatial alignment of two meshes, making
sure that the points on the surfaces are positioned accurately. In contrast, the cosine distance
considers the meshes’ orientation. Typically, the cosine distance can be computed within a
single mesh, termed intra-mesh normal consistency, or between two meshes, referred to as
inter-mesh normal consistency. The computation of the inter-mesh normal consistency loss
involves using the normal vectors of the nearest points between the predicted and ground-truth
meshes. Suppose P̂s,c and Pc are the predicted and ground-truth point clouds, with associated
normals N̂s,c = n(p)|p ∈ P̂s, c and Nc = n(p)|p ∈ Pc, respectively. The inter-mesh normal
consistency loss can then be expressed as follows:

Ln(M̂s,c, Mc) = 1
|Pc|

∑
u∈Pc

1− cos(n(u), n(ṽ))

+ 1
|P̂s,c|

∑
v∈P̂c

1− cos(n(v), n(ũ)),
(11.8)

where ṽ = arg min
r∈P̂s,c

∥u− r∥2 and ũ = arg min
r∈Pc

∥v− r∥2.

For every specific point p, its normal vector is contrasted with the normal of the closest neigh-
boring point in the corresponding point set. Given that the nearest-neighbor correspondences
are also essential for the computation of the Chamfer loss, the same point sets P̂ and P are
used in our implementation to save computation time.

Intra-Mesh Normal Consistency Loss

Instead of using the cosine distance for comparing the normals of two separate meshes, a
different methodology involves analyzing the normal vectors of two neighboring faces within
the same mesh. Faces are considered adjacent if they possess a shared edge. We term this
metric of mesh smoothness intra-mesh normal consistency (Ln,intra), and it is defined as
follows:

Ln, intra(M̂s,c) = 1
|Ês,c|

∑
a,b∈Es,c

(1− (n̂a · n̂b))2, (11.9)

11.3 Method 109



where n̂i represents the unit normal of the i-th face of M̂s,c. This loss attains its minimum for
meshes with no curvature, leading to smoother surfaces. Since this loss is calculated solely
using a predicted mesh and doesn’t consider any ground truth, it falls under the category of
mesh-regularization losses.

Laplacian Loss
The smoothness of a mesh can also be assessed through the employment of the uniform
Laplacian operator L = D−1A− I, in which D signifies the degree matrix and A represents the
adjacency matrix of the mesh. Laplacian smoothing, in particular, is defined as:

LLap(M̂s,c) = 1
|V̂s,c|

|Vs,c|∑
i=1
∥(L̂s,c.∆s,c)i∥ (11.10)

The technique is renowned for its efficacy in creating smooth meshes [114]. Numerous re-
search [80, 168, 174] generally apply mesh smoothing to vertex coordinates V̂s,c, but, drawing
inspiration from [183], our method employs the Laplacian operator to the displacement field
∆s,c. Our ablation study confirms the effectiveness of this approach. More precisely, ∆s,c are
the displacement vectors which morve the vertices V̂s−1,c to V̂s,c, implying that the equation
V̂s,c = V̂s−1,c + ∆s,c transforms the mesh M̂s−1,c into M̂s,c.

Although a Laplacian loss cannot ensure that the predicted meshes are entirely free of self-
intersections, it does promote smoother surfaces with fewer self-intersections. It is essential to
mention that in Equation (11.10), L̂s,c is treated as a constant, and therefore the loss is not
propagated back through the creation of L̂s,c.

Edge Loss
Another loss function that can be used to regularize predicted meshes is the edge loss, which
is defined as follows for a predicted mesh M̂s,c:

Ledge(M̂s,c) = 1
|Ês,c|

∑
(i, j) ∈ Ês,c∥vi − vj∥2. (11.11)

The edge loss encourages the predicted meshes to have homogeneous edge lengths, resulting
in a more even distribution of vertices on the surface.

11.4 Experiments and Results

11.4.1 Implementation Details

PyTorch v1.7.1 https://pytorch.org/ and pytorch3D v0.4.0 https://pytorch3d.readthedocs.

io were used to create our implementation. One NVIDIA Quadro GPU and one NVIDIA Titan
RTX GPU, both with 24GB of RAM, were used in the studies. We used Python 3.88, CUDNN
7.6.5, and CUDA 10.2.89. We also used the Voxel2Mesh [174] and DeepCSR [21] repos-
itories https://bitbucket.csiro.au/projects/CRCPMAX/repos/deepcsr/browse and https:
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Table 11.1. Hyperparameters used in our experiments.

Optimizer
CNN learn-

ing rate
GNN learn-

ing rate Batch size
Mixed

precision
CNN

channels
GNN

channels
Gradient
clipping

Adam [76]
β1 = 0.9,

β2 = 0.999
1e−4 5e−5 2

(1 for OASIS) yes
16, 32, 64,

128 , 256, 64,
32, 16, 8

255, 64,
64, 64, 64 2e5

Table 11.2. Hyperparameters weighting the different mesh loss functions: Chamfer loss, inter-mesh normal consis-
tency, laplacian loss, intra-mesh normal consistency, and edge length loss, for white and pial surfaces.

chamfer inter-mesh NC Laplacian intra-mesh NC edge
Surface λ1,c λ2,c λ3,c λ4,c λ5,c

c = wm 1.0 0.01 0.1 0.001 5.0
c = pial 1.0 0.0125 0.25 0.00225 5.0

//github.com/cvlab-epfl/voxel2mesh/blob/master/README.md, respectively. Our code is
available at https://github.com/ai-med/Vox2Cortex for easy access and replication.

Hyperparameters

The hyperparameters for the model are outlined in Table Table 11.1. The models were
trained for 100 epochs on the OASIS and ADNIsmall datasets and 40 epochs on the ADNIlarge

dataset. The best model was selected based on the respective validation set, considering voxel
Intersection over Union (IoU) and Hausdorff distance as evaluation metrics.

To enhance the reconstruction quality, we incorporated surface class-specific mesh-loss weights,
despite the increased number of hyperparameters. Specifically, we found that different weights
were necessary for the white matter and pial surfaces. To determine the optimal mesh-loss
weights, we independently fine-tuned them for the white matter and pial surfaces using the
small MALC dataset [83]. This tuning process focused on one hemisphere at a time and
disregarded the corresponding other surfaces. Table Table 11.2 provides the resulting loss
weights. Typically, the regularization weights for pial surfaces were higher, because the ground
truth white surfaces are less smooth and contain regions of higher curvature.

Initially, a grid search was performed to fine-tune the mesh-loss function weights for inter-mesh
normal consistency (Ln), intra-mesh normal consistency (Ln,intra), and Laplacian smoothing
(LLap). The grid search involved testing values of 0.1, 0.01, and 0.001. Subsequently, the
best values obtained from the grid search were further refined using values of x + 0.5x, x,
and x− 0.5x, where x represented the respective best value from the initial tuning. During
this process, the weights for the Chamfer and edge losses were kept constant at 1, while the
edge-loss weight was separately fine-tuned with values of 1, 5, and 10.
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Table 11.3. The ablation study’s outcomes are summarized in the table below using the Average Symmetric Surface
Distance (ASSD) and 90th-percentile Hausdorff Distance (HD-90) metrics. The use of a reduced-
vertex-count (42,000 as opposed to 168,000) test template is denoted by an asterisk (*). For ease of
understanding, we have bolded the best values. For a detailed discussion of the various variants tested,
see Section 11.4.2. Millimeters (mm) are used for all measurements.

Left WM Surface Right WM Surface Left Pial Surface Right Pial Surface

ASSD HD-90 ASSD HD-90 ASSD HD-90 ASSD HD-90

Vox2Cortex 0.401 ±0.065 0.894 ±0.177 0.403 ±0.057 0.896 ±0.142 0.375 ±0.055 0.965 ±0.210 0.378 ±0.060 1.012 ±0.248

Vox2Cortex* 0.455 ±0.063 1.057 ±0.195 0.457 ±0.056 1.055 ±0.145 0.467 ±0.057 1.316 ±0.278 0.470 ±0.0611 1.371 ±0.281

Voxel2Mesh* [174] 0.528 ±0.222 1.209 ±0.732 0.528 ±0.197 1.186 ±0.625 0.486 ±0.114 1.457 ±0.398 0.476 ±0.108 1.440 ±0.384

Encoder features 0.453 ±0.072 0.984 ±0.177 0.456 ±0.054 1.007 ±0.144 0.432 ±0.067 1.057 ±0.211 0.430 ±0.059 1.040 ±0.174

Classic Chamfer 0.852 ±0.081 2.175 ±0.340 0.985 ±0.074 2.282 ±0.313 0.716 ±0.063 1.906 ±0.282 0.913 ±0.056 2.391 ±0.160

w/o inter-mesh NNs 0.444 ±0.063 0.960 ±0.174 0.438 ±0.052 0.958 ±0.142 0.390 ±0.051 0.892 ±0.146 0.396 ±0.049 0.946 ±0.168

Ellipsoid template 0.459 ±0.065 0.970 ±0.145 0.452 ±0.071 0.954 ±0.140 0.407 ±0.044 0.948 ±0.145 0.412 ±0.053 0.983 ±0.201

w/o voxel decoder 0.413 ±0.069 0.914 ±0.168 0.424 ±0.065 0.928 ±0.150 0.392 ±0.057 0.916 ±0.147 0.400 ±0.059 0.942 ±0.180

Lap. on abs. coord. 0.467 ±0.075 0.958 ±0.150 0.444 ±0.065 0.952 ±0.140 0.414 ±0.050 1.102 ±0.182 0.425 ±0.050 1.057 ±0.178

MLP deform 0.538 ±0.062 1.237 ±0.195 0.542 ±0.057 1.228 ±0.181 0.533 ±0.057 1.472 ±0.227 0.566 ±0.055 1.447 ±0.218

In the subsequent sections, we present a comparative analysis of Vox2Cortex in relation to other
relevant approaches across multiple datasets. Furthermore, we conduct an extensive ablation
study to assess the individual contributions of the main building blocks of Vox2Cortex.

11.4.2 Results

Ablation Study

We focus on evaluating the design choices made in Vox2Cortex and examine the characteristics
of template deformation approaches, which include the choice of the initial template, our
proposed inter-mesh neighbor features, the proposed curvature weighted chamfer loss, and
our choice of regularizing the deformation field instead of vertex coordinates. One of the
key questions raised by combining a CNN and a GNN is how to transfer information in the
form of features from one subnetwork to the other. Existing literature does not extensively
study the impact of this and other choices. To address this, we train multiple models that
are created as described below and compare their final performance in terms of Average
Symmetric Surface Distance (ASSD) and 90th-percentile Hausdorff Distance (HD-90) with
respect to the FreeSurfer pseudo ground truth labels in Table 11.3.

Voxel2Mesh: In this variation, we adopt the Voxel2Mesh network [174] as our architecture
replacement. Notable differences from Vox2Cortex are as follows: we exclusively sample
the CNN features from the voxel-decoder stage at each mesh deformation step rather than
sampling from both the encoder and decoder. To ensure a fair comparison, we double the
number of voxel-decoder channels at each stage, as these channels are the only ones passed
to the GNN in Voxel2Mesh. This adjustment ensures that the length of the feature vectors
passed to the GNN remains consistent between Vox2Cortex and Voxel2Mesh. Additionally,
we employ learned neighborhood sampling instead of trilinear interpolation at the vertex
locations, following the approach described in [174].
Encoder features: In this setup, as shown in works such as [79, 80], we only sample CNN
features from the relevant voxel-encoder step at each mesh-deformation stage.
Classic Chamfer: Here, we train our architecture using the classic Chamfer loss, which is
equivalent to setting κ(·) ≡ 1 in Equation 11.6.
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W/o inter-mesh NNs means that the white and pial surfaces do not share their nearest-neighbor
vertex locations.
Ellipsoidal template: Instead of starting the deformation process with our smoothed cortical
template, we use an ellipsoidal template.
W/o voxel decoder: In this configuration, we skip the voxel decoder altogether and instead
draw CNN features directly from the encoder at each level, as in [168].
Lap. on abs. coord.: Here, the Laplacian loss is computed based on absolute vertex coordinates
rather than relative displacements. In other words, we smooth the mesh itself instead of
focusing on the displacement field.
MLP deform: In this scenario, each layer of the GNN is replaced with a linear layer. This setup
allows us to evaluate the choice of using a GNN for mesh deformation.

The detailed results of our ablation study can be found in Table 11.3. Notably, we observe
that despite being designed for medical applications, Voxel2Mesh [174] does not yield cortical
surfaces with sufficient accuracy. Our study shows that the combination of design choices in
Vox2Cortex results in the best performance in terms of ASSD for all four surfaces. HD-90 is
lowest for Vox2Cortex when it comes to white surfaces, while for pial surfaces, the model
without inter-mesh neighbor features and the model without a voxel decoder outperform. As
these models only excel over Vox2Cortex in a single mesh for one metric, we argue that the
Vox2Cortex architecture is more robust across surfaces, making it a superior choice.

Among Vox2Cortex’s design choices, the curvature-weighted Chamfer loss is the most critical
factor, as the reconstruction accuracy declines most when replaced by the standard Chamfer
loss. When examining the voxel network design, it’s interesting to observe that omitting
the voxel decoder entirely has minimal impact on the overall performance. However, the
performance slightly decreases when sampling the features only from the encoder. One possible
explanation is that when the network only has an encoder, it learns features more relevant
to template deformation. In contrast, when it has a decoder and segmentation output, the
encoder focuses more on learning features relevant to segmentation.

Interestingly, sampling image features from the encoder or decoder does not seem overly
important. This could explain why both approaches have been successful in previous work [79,
174]. When using an ellipsoid template instead of our smoothed brain template, the perfor-
mance declines, validating our choice of a template closer to the desired shape. Applying
the Laplacian regularization on vertex coordinates rather than the displacement field results
in poorer performance, which might oversmooth the mesh and decrease geometric accuracy.
Replacing the graph convolutional layers with linear layers also leads to worse performance.
This outcome not only supports the choice of a GNN in Vox2Cortex and the importance of
using local neighborhood information even in a fixed mesh but also differentiates our novel
recombination of a CNN and a GNN from previous MLP-based approaches [51, 170]. We
also observe that it is possible to use a template with lower resolution, i.e., fewer vertices
during test time. This leads to slightly lower performance but comes with the benefit of faster
processing time and lower memory demand and, therefore, might be of value for some users.
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Table 11.4. On the ADNIlarge and OASIS datasets, we compare the performance of Vox2Cortex, DeepCSR, and nnU-
Net over all four surfaces. We report Average Symmetric Surface Distance (ASSD) and 90th-percentile
Hausdorff Distance (HD-90) in millimeters (mm).

Left WM Surface Right WM Surface Left Pial Surface Right Pial Surface

Data Method ASSD HD-90 ASSD HD-90 ASSD HD-90 ASSD HD-90

ADNI
large

Vox2Cortex 0.345 ±0.056 0.720 ±0.125 0.347 ±0.046 0.720 ±0.087 0.327 ±0.031 0.755 ±0.102 0.318 ±0.029 0.781 ±0.102

DeepCSR [21] 0.422 ±0.058 0.852 ±0.134 0.420 ±0.058 0.880 ±0.156 0.454 ±0.059 0.927 ±0.243 0.422 ±0.053 0.890 ±0.197

nnU-Net [68] 1.176 ±0.345 1.801 ±2.835 1.159 ±0.242 1.739 ±1.880 1.310 ±0.292 3.152 ±2.374 1.317 ±0.312 3.295 ±2.387

OASIS Vox2Cortex 0.315 ±0.039 0.680 ±0.137 0.318 ±0.048 0.682 ±0.151 0.362 ±0.036 0.894 ±0.141 0.373 ±0.041 0.916 ±0.137

DeepCSR [21] 0.360 ±0.042 0.731 ±0.104 0.335 ±0.050 0.670 ±0.195 0.458 ±0.056 1.044 ±0.290 0.442 ±0.058 1.037 ±0.294

Comparison with Related Work

We compared Vox2Cortex and DeepCSR [21] on the ADNIlarge and OASIS datasets. For
DeepCSR, we obtained high-resolution predictions by sampling points at a distance of 0.5mm.
To assess the performance against a voxel-based segmentation method, we selected 3D nnU-
Net [68], a state-of-the-art segmentation model known for its effectiveness across various
segmentation tasks.

We follow the approach by Santa Cruz et al. [21] to extract mesh representations of the cortical
surfaces from the nnU-Net segmentation. Here we apply topology correction and marching
cubes [87] to obtain topologically correct meshes that enable a fair comparison to other
methods. As illustrated in Table 11.4, nnU-Net achieves mesh predictions that are less accurate
compared to the other methods. This was expected as nnU-Net is a voxel based method
and therefore the resolution of the generated meshes is dependent on the image resolution.
As the image resolution is 1mm cubic, we can not expect the surface distance to get below
1mm. Moreover, staircase artifacts in the meshes resulting from voxel-based segmentation and
marching cubes extraction contribute to higher surface distances when comparing the meshes
to the smoother FreeSurfer ground truth meshes. Vox2Cortex outperforms DeepCSR in nearly
all performance metrics across both datasets.

We also compared our method’s predictions to DeepCSR on the OASIS test set, both with and
without topology adjustment (see Table 11.5 for details). The starting template for Vox2Cortex
determines the maximum allowed number of faces and vertices for the meshes to contain.
Without topology correction, DeepCSR meshes contain multiple connected components, which
results in a higher genus than zero. After topology correction, the topology becomes spherical,
as expected. The number of vertices and faces of DeepCSR meshes is much larger compared
to Vox2Cortex, which is due to the small grid of 0.5mm. However, our results in Table 11.4
demonstrate that the number of vertices and faces of Vox2Cortex meshes is sufficient and even
leads to higher surface accuracy. As we visually display in Figure 11.5, topology correction
might lead to geometric errors.

Consistency

In this experiment, we evaluate the robustness and consistency of our method. We use models
trained on ADNIlarge and test them to the Test-Retest dataset (TRT) dataset [98]. We predict
the cortical surfaces of the two brain scans from the same day and compare them in terms of
ASSD and HD-90 to evaluate the consistency of the methods.
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Table 11.5. In this table, we compare our Vox2Cortex to a state-of-the-art method DeepCSR [21], in terms of mesh
complexity, as assessed by the number of faces and vertices, and topological metrics, such as the number
of connected components (CC) and the genus.

Pial Surfaces WM Surfaces

Method CC genus # faces # vertices CC genus # faces # vertices

Vox2Cortex 1 0 336112 168058 1 0 336112 168058
DeepCSR 48.6 152.4 1341838.3 670711.5 18.3 15.8 1209313.5 604661.7
DeepCSR + top. corr. 1 0 1291385.5 645694.8 1 0 1160980.8 580492.4

Figure 11.5. Visualizations depicting incorrect anatomy resulting from topology correction on DeepCSR [21] meshes.
The images display pial surfaces from two distinct patients from the OASIS dataset. On the left, we
showcase DeepCSR’s prediction before topology correction. In the middle, we display the outcome
after applying topology correction. On the right, we provide the FreeSurfer pseudo ground truth for
reference. The zoomed-in regions show how the topology correction introduced cracks in a fold, which is
anatomically not plausible. © IEEE,2022

Reconstructions should be similar, with occasional differences attributable to the imaging
method, because brain morphology does not vary across scans on the same day. In this
experiment, we utilize Iterative Closest-Point algorithm (ICP) to align images before doing
comparisons, as recommended in [21]. Vox2Cortex outperforms DeepCSR and FreeSurfer
regarding repeatability, as shown by the data in Table 11.6. This experiment demonstrates
that Vox2Cortex can generalize effectively to unknown data, as the models were not trained
on the TRT dataset. When we look into how quickly each approach can predict a target, we
discover that Vox2Cortex is around 25 times quicker than DeepCSR.

Cortical Thickness
Surface reconstruction is crucial in determining cortical thickness, an important biomarker
for assessing cortical atrophy in neurodegenerative diseases. In this experiment, we utilize
Vox2Cortex surfaces to derive cortical thickness measurements and compare them to the
thickness measurements obtained from FreeSurfer. The thickness calculation involves finding
the closest-point correspondences between the WM and pial surfaces [107]. On the OASIS
test set, the median cortical thickness error per vertex, compared to the closest vertices from
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Table 11.6. Comparison of Vox2Cortex with DeepCSR and FreeSurfer in terms of reconstruction consistency using
the ASSD and HD-90 on the TRT dataset. Additionally, we provide the percentage of points with a
surface distance over 1 and 2mmm and the inference time for each method per 3D scan. We highlight the
best performing methods for each metric in bold font. An asterisk (*) denotes the utilization of smaller
templates, with approximately 42,000 vertices per surface instead of the usual approximately 168,000
vertices.

Method ASSD (mm) HD-90 (mm) > 1mm > 2mm Inference time

Vox2Cortex 0.228 ±0.048 0.478 ±0.101 0.80% 0.06% 18.0s
Vox2Cortex* 0.225 ±0.049 0.471 ±0.103 0.77% 0.06% 2.1s
DeepCSR 0.357 ±0.284 0.739 ±0.595 5.82% 2.23% 445.7s
FreeSurfer 0.291 ±0.133 0.605 ±0.279 2.87% 0.67% >4h

FreeSurfer, is 0.305mm [lower quartile: 0.140mm, upper quartile: 0.564mm]. To provide
context, regions affected by atrophy in Alzheimer’s disease often exhibit thickness reductions of
one millimeter or more. As shown in Figure 11.6, the thickness measurements on Vox2Cortex
meshes closely align with those obtained from FreeSurfer pseudo-ground-truth meshes, further
validating the accuracy of Vox2Cortex.

Using a group analysis, we examined the vertices with reduced cortical thickness in people
with Alzheimer’s disease (n=50) and healthy controls (n=124) in the ADNIlarge test-split.
Our surfaces were registered to the FreeSurfer Fsaverage template so that all thickness

a)

b)

c)

Cortical thickness (mm)

White matter Pial

Figure 11.6. Predicted meshes of an example subject from the OASIS dataset, with each vertex color-coded to represent
cortical thickness in millimeters. Row a) showcases the Vox2Cortex meshes, while row b) displays the
FreeSurfer meshes. In row c), the cortical thickness is visualized between the white matter (green) and
pial (red) surfaces. © IEEE,2022
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Table 11.7. Results of AD classification (95% confidence interval bootstrapped) based on cortical thickness biomark-
ers.

balanced acc. roc-auc avg. prec.

est. low high est. low high est. low high

Vox2Cortex 0.812 0.737 0.875 0.890 0.798 0.940 0.840 0.722 0.906
FreeSurfer 0.816 0.740 0.874 0.915 0.860 0.950 0.825 0.697 0.896
DeepCSR 0.787 0.717 0.847 0.838 0.752 0.897 0.705 0.554 0.809

measurements would be in the same domain, allowing for a more reliable comparison. Cortical
thickness was computed using FreeSurfer meshes based on closest-point correspondences
rather than the thickness values provided by FreeSurfer. Figure 11.7 displays the p-values
(one-sided t-test) obtained for both hemispheres. Vox2Cortex is suited for group analysis of
cortical thickness, as seen by the striking resemblance between the significance maps created
by Vox2Cortex and FreeSurfer.

We were further interested if thickness measurements from our predicted surfaces can be used
for Alzheimer’s disease prediction and how it compares to FreeSurfer and DeepCSR. For this,
we take the per-vertex thickness measurements and use PCA to reduce the dimension to 64.
We then trained a gradient-boosted regression tree to classify AD vs. healthy control subjects.
Table 11.7 shows the classification results, where Vox2Cortex achieves comparable results
to FS and outperforms DeepCSR. This experiment shows that our surfaces are geometrically
accurate, and biomarkers derived from our meshes can be used for clinically relevant tasks.

Figure 11.7. Cortical atrophy in the right and left hemispheres: a group comparison using the ADNIlarge test-split
of patients with Alzheimer’s disease and healthy controls. P-values obtained from one-sided t-tests are
visualized on the FsAverage meshes, providing insights into the statistical significance at each vertex.
Figure adapted from figures in [10] © IEEE,2022

Visual Analysis of FreeSurfer Fails
Within our ADNIlarge dataset, we carefully excluded cases where FreeSurfer encountered fail-
ures during the surface pipeline. For the lack of automatic quality control for the surface stream,
we follow the hypothethis that errors in surface reconstruction are related to errors in the
voxel-based segmentation stream. Therefore we remove all scans that exhibited segmentation
failures in one or more structures, as determined by the UCSF quality control guidelines [55].
As the voxel segmentation often fails in cases where contrast between structures is low or gen-
eral image quality is low, we believe this will translate well to the surface stream. Subsequently,
we applied our trained model to the cases where FreeSurfer failed, which we had previously
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excluded from the training and testing sets. To enhance visibility, we focused on visualizing
the results for the pial surfaces in Figure 11.8. In the first case, which exhibited relatively mild
issues, FreeSurfer generated four surfaces; however, the left pial surface extended into the
dura, resulting in artifacts. Our model, on the other hand, successfully avoided these artifacts.
Additionally, we present a more extreme case in which FreeSurfer failed to generate surfaces
for the right hemisphere and incorrectly segmented parts of the left temporal lobe.

This evaluation is limited since we only visually inspected two subjects. For instance, a large-
scale comparison between Vox2Cortex and FreeSurfer on a dataset like the UK Biobank would
be interesting. However, to the best of our knowledge, no automatic quality control algorithms
are available for such an analysis.

Figure 11.8. The MRI scans in this image show the pial surfaces created by Vox2Cortex, shown in green and FreeSurfer,
displayed in pink. The images are arranged from top to bottom, including two patients’ sagittal, coronal,
and axial slices. We notably emphasize regions where FreeSurfer failed in the zoomed-in parts. For the
first subject (left), an observation can be made regarding the FreeSurfer pial mesh (pink) extending into
the dura. In the second example (right), FreeSurfer failed to generate a mesh for the right hemisphere
and exhibited numerous errors in the temporal lobe of the left hemisphere. In comparison, Vox2Cortex
demonstrates superior visual performance in these particular cases, with fewer artifacts and inaccuracies.
© IEEE,2022

11.5 Limitations and Potential Negative Impact

It should be noted that the findings shown here are the raw output of our model. While we can
make predictions, we can’t guarantee that the resulting meshes won’t have self-intersections,
which might be essential in some cases. But techniques like MeshFix [3] can fix the problem of
self-intersections. Furthermore, it should be noted that the absence of manually generated
ground-truth surfaces for our dataset led us to employ FreeSurfer surfaces as a pseudo-ground-
truth, which is a common practice in the field [21, 97]. Although efforts were made to
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eliminate noisy labels from our training set, there may still be some residual noise in the
labels.

Importantly, these predictions should not be used to make clinical decisions, even though our
technique can assist radiologists in observing brain surfaces and rapidly computing metrics such
as cortical thickness. Since our model has only been evaluated using the datasets described
in this chapter, we cannot guarantee its performance with previously unseen data or data
from other fields. In addition, the data analyzed in this study only include healthy subjects
and those with dementia, so the trained model may generate inaccurate predictions when
presented with other morphological brain alterations (e.g., tumors).

We attempted to balance our data splits concerning patient age and sex to minimize bias.
However, our model may still lack fairness and potentially discriminate against underrepre-
sented groups within the given datasets. Therefore, expanding the diversity of the training
data and addressing potential biases could help mitigate this limitation. Further, the combi-
nation of reconstruction losses in this work requires tedious tuning of several loss weights.
Therefore, exploring ways to reduce the number of loss hyperparameters in future work would
be interesting, which will be addressed in Chapter 13.

Although Vox2Cortex could potentially replace FreeSurfer’s time-consuming surface recon-
struction, it does not have the full functionality of FreeSurfer’s surface stream. For example,
FreeSurfer provides parcellations of the surface and registration to the FsAverage template,
which is useful for group comparisons and visualization. The next two chapters will tackle
these problems.

11.6 Conclusion

In this chapter, we introduced Vox2Cortex, a new approach to reconstructing white matter and
pial surfaces from brain MR images in a single step. Our method incorporates a number of
novel elements, including a generic brain template that is iteratively deformed by combining
convolutional and graph convolutional neural networks. Using a unique curvature-weighted
Chamfer loss function, we successfully included ground-truth curvatures, allowing for accurate
reconstructions, even in heavily folded locations. This loss function might be useful in a
number of fields where complex 3D geometries are common, in addition to the medical
industry. Extensive experiments show that our suggested combination of loss functions
permits the development of state-of-the-art cortical surfaces utilizing an end-to-end trainable
architecture while drastically reducing computing time. In addition, we have demonstrated
our method’s ability to generate accurate cortical thickness maps, which facilitates the study of
atrophy in Alzheimer’s disease.

Overall, Vox2Cortex represents a significant advancement in brain surface reconstruction,
offering a comprehensive and efficient solution that holds promise for medical and non-
medical applications involving complex 3D geometries. The end-to-end trainable architecture
and efficient computation time make it a powerful tool for generating state-of-the-art cortical
surfaces.
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Looking ahead, the next chapter Chapter 12 focuses on learning joint parcellation and surface
reconstruction. This integration enables comparisons of thickness measures at a regional level,
providing valuable insights for studies such as the analysis of atrophy in Alzheimer’s disease.
This approach enhances the interpretability of group-level analyses by considering parcels
instead of individual vertices. In the subsequent chapter Chapter 13, we address the challenge
of vertex correspondence between the input template and the output reconstructed surface. By
eliminating the need for registration to a group template, our method simplifies group studies
and facilitates direct comparisons between cortical surfaces.
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12.1 Introduction

In the last chapter Chapter 11, we have presented Vox2Cortex (V2C), a deep learning technique
for cortical surface reconstruction. It was one of the first of these methods, along with [21,
84, 97], offering significant speed improvements over FreeSurfer by reconstructing cortical
surfaces from Magnetic Resonance Imaging (MRI) scans in a matter of seconds. However,
these methods cannot currently provide surface parcellations. This chapter will discuss
our publication ’Joint cortical surface reconstruction and parcellation’ [132], proposing two
methods for joint parcellation and surface reconstruction extending our previously discussed
Vox2Cortex network.

Modern parcellation methods [22, 47] typically depend on FreeSurfer for surface mesh
extraction. An exception is SegRecon [48], but it falls short regarding surface accuracy.

In this chapter, we bridge this gap by integrating two distinct parcellation techniques in a way
that permits end-to-end training into two state-of-the-art methods of cortical surface recon-
struction (CSR): our own Vox2Cortex [10], that was introduced in the previous Chapter 11,
and the simultaneously released CorticalFlow [84]. Specifically, we use a graph classification
network to improve CSR networks. Alternatively, we use a novel class-based reconstruction
loss to pass template parcellation labels through the CSR network. Figure 12.1 illustrates both
of these methodologies. Our results show that using these methods produces state-of-the-art
cortical surfaces and accurate segmentations of the cerebral cortex.
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Figure 12.1. Here, we show our improvements to cortical surface reconstruction (CSR) networks for cortical parcella-
tion schematically. Top left: Typical CSR network that creates white matter and pial meshes based on
input MRI scan and template meshes. It is trained with a surface reconstruction loss like the chamfer loss.
Bottom left: after the CSR network, we add an additional classification network, that predicts a class for
each vertex of the generated mesh. We employ an additional classification loss to train the classification
network. Right: Here we use as input a template mesh with vertex features that represent the parcellation
class. These labels are passed throughout the mesh deformation and instead of computing a global
surface reconstruction loss, we compare vertices of the same class only in a class based reconstruction
loss. © Springer,2022

12.2 Related Work

This section briefly reviews past work on cortical parcellation and surface reconstruction.
Although we focus on joint reconstruction and parcellation, most existing methods address
only one of these tasks at a time.

Fully-Convolutional Neural Networks (F-CNNs) have seen extensive use in medical image
segmentation and have demonstrated success in cortex parcellation. FastSurfer [59] replaces
FreeSurfer’s voxel-based stream with a multi-view 2D F-CNN. Other methods [20, 66] employ
3D patch-based networks. However, applying fully-convolutional segmentation networks is
ultimately constrained by the input MRI scans’ image resolution, and combining them with
FreeSurfer’s surface stream is inefficient in inference time.

Deep learning techniques for parcellation that work on given surface meshes have been
introduced. For instance, [22] investigates a range of network architectures for segmenting
two brain regions, concluding that approaches based on graph convolutions are more apt
than multi-layer perceptrons (MLPs). Similarly, [34] employs graph attention networks for
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parcellating the whole cortex. Taking a different approach, [47] utilizes spherical graph
convolutions, which they found to be superior to the traditional graph convolutions in the
Euclidean domain. It is important to note that all these vertex classifiers operate assuming
that the surface mesh is already available.

In contrast to implicit methods, template-deformation methods like Vox2Cortex [10] provide
explicit cortical surface reconstruction without the need for post-processing. CorticalFlow [84]
(CF) is another template-deformation method developed concurrently with Vox2Cortex. Unlike
Vox2Cortex’s approach to predicting the mesh-deformation field on a per-vertex basis, CF
generates a deformation field in image space and maps it onto mesh vertices through interpo-
lation. The deformation process in CF is performed incrementally, using a 3D UNet to predict
each sub-deformation. The authors propose an Euler integration scheme for the flow fields to
avoid self-intersections. The rationale behind numerical integration is that mesh deformation
is guaranteed to be diffeomorphic and intersection-free by selecting a small step size. However,
this guarantee is not always achieved due to surface discretization[84].

SegRecon [48] stands alone as a method that concurrently learns the generation of cortical
surfaces along with a specialized parcellation. The authors utilized a 3D U-Net for training on
a voxel-based Signed Distance Function (SDF) of the interface between white and gray matter
and spherical coordinates in atlas space. The parcellation from the atlas may be aligned with
the surfaces once the mesh is extracted and the topology is corrected. Although this technique
can extract a white matter surface from an MRI (with a reported Hausdorff distance of 1.3
mm), its major focus is parcellation. Consequently, the surface reconstructions it produces
don’t quite match up to recent algorithms that are tailored specifically for this objective, like
Vox2Cortex [10] or CorticalFlow [84]. For a more in-depth discussion regarding related
implicit and template deformation techniques for cortical surface reconstruction, refer to the
preceding Chapter 11.

12.3 Method

Following recent progress in this area, we suggest extending current approaches to supply
the reconstructed surfaces with a jointly learned parcellation. In particular, we build on our
previous technique, Vox2Cortex [10], and CorticalFlow [84], both of which are template
deformation approaches that have shown state-of-the-art results in extracting cortical surfaces.
The white matter and pial surfaces of both hemispheres are computed concurrently using each
technique, which takes as inputs a 3D MRI scan and a mesh template.

Multiple atlases are available for parcellation of the human cortex based on various criteria
like structural or functional attributes that distinguish different brain regions. Atlases that
are widely adopted include the Desikan-Killiany-Tourville (DKT) [27, 78] and Destrieux [28]
atlases, both of which can be accessed in FreeSurfer. Our work uses FreeSurfer surfaces as
pseudo-ground-truth meshes and parcellation labels derived from the DKT atlas. Additionally,
we employ smoothed versions of the FreeSurfer FsAverage template as mesh input for the
networks for cortex reconstruction. Compared to Vox2Cortex [10], where we used a smoothed
mesh of a random training subject as input, the FsAverage template is more generic, as it
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represents an average surface of 40 subjects [38]. In the following, we describe the two
proposed extensions of cortical reconstruction networks that we evaluate in this chapter.

12.3.1 Classification Network:

Recent work [22, 34] has showcased the capability of Graph Neural Network (GNN) oriented
classification networks in achieving precise cortex parcellations. Building on this, we introduce
an enhancement to the CSR networks by incorporating a classification arm. This arm is made up
of three residual GNN blocks, with each block comprising three GNN layers. The classification
network takes the predicted mesh with vertex features obtained from Vox2Cortex’s GNN or
simply the vertex coordinates sourced from CorticalFlow, as its input. For every vertex, the
output is a vector containing each class’s probabilities. We then apply a softmax layer and
compute a cross-entropy loss by comparing the predicted classes to the ground-truth classes
for the nearest points in the target mesh.

In the case of Vox2Cortex, the classification network is integrated following the final mesh
deformation stage. Both the CSR and classification networks are trained in an end-to-end
fashion. When combined with CorticalFlow, the classification layer is appended after the final
deformation, but the parameters of the U-Nets from prior stages are kept constant. Through
experimentation, we found that incorporating the classification network at every step of the
iterative optimization introduced instability in training. Consequently, we opted to include the
classification network in the final iteration.

12.3.2 Class-Based Reconstruction:

Both CSR methods of interest, Vox2Cortex, and CorticalFlow, are template-deformation
techniques, meaning they start from a given template mesh that they iteratively deform.
Therefore, we propose a method that starts from a template with parcellation labels and
passes these labels through the deformation procedure. Upon deformation, it is critical to
ascertain that the vertices align with analogous anatomical locations in the initial template.
In essence, this necessitates the establishment of vertex correspondence between the input
template and the resultant reconstructed surface. To this end, we advocate the utilization of a
class-based reconstruction loss function. Notably, the loss function is insensitive to the specific
choice of the reconstruction loss, such as Chamfer distance in CorticalFlow or a combination
of curvature-weighted Chamfer distance and normal distance in Vox2Cortex.

Adhering to the notation introduced in the preceding Chapter 11, let’s represent the predicted
and actual point sets, which are sampled from the meshes M̂s,c and Mc (potentially inclusive
of normals), by P̂s,c and Pc respectively. Moreover, let Lrec(P̂s,c,p,Pc,p) symbolize any recon-
struction loss between the point clouds of a specific parcellation class, denoted by p where
p ∈ 1, . . . , Cp. The class-based reconstruction loss is then calculated as follows:
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Lrec,class(P̂s,c,Pc) = 1
|Cp|

Cp∑
p=1
Lrec(P̂s,c,p, Pc,p). (12.1)

In essence, the predicted points corresponding to a particular parcellation class are exclusively
compared to the ground-truth points that belong to that same class. This concept is also visually
represented in Figure 12.1B. By designing this loss function, we align the parcellation of the
deformed template and the ground-truth parcellation. A notable advantage of this method
over the classification network is that it precludes the emergence of "islands," misclassified
diminutive regions, on the reconstructed meshes.

12.4 Experiments & Results

12.4.1 Setup and Hyperparameters

Our models are trained using the OASIS dataset, adhering to the same preprocessing steps out-
lined in Section 10.6. A singular deviation in the experimental setup compared to Vox2Cortex
is utilizing an updated version, v7.2, of the FreeSurfer software pipeline. This updated version
is a silver standard in training and evaluating our models. For the computation of reconstruc-
tion losses, we employ a differentiable sampling method to acquire 50,000 points from the
predicted and ground-truth meshes [46]. In the case of CorticalFlow, the training adheres
to the iterative methodology detailed by [84], which entails keeping the parameters of the
UNet(s) from steps 1 to i− 1 fixed while training the UNet at step i. Additionally, we leverage
the AdamW optimizer [95] with an exponential weight decay of 1e−4, combined with a cyclic
learning rate schedule [155] for network optimization.

Table 12.1. List of hyperparameters. We always trained until the performance converged on the respective validation
sets, unless for CorticalFlow experiments where we trained the first two UNets for a fixed number of 50
epochs.

All experiments

Optimizer Lr scheduler
Weight
decay

Mixed
precision

AdamW [95] Cyclic [155] 1e−4 Yes

Graph classifier

Base lr Max lr Channels
Loss weight

(V2C)
Loss weight

(CF)

2.5e−5 2e−4 (64)× 3 1e−2 1e−4

Vox2Cortex

Base lr
UNet

Max lr
UNet

Base lr
GNN

Max lr
GNN

Template size
training

Template size
test

Loss
weights

Channels
UNet

Channels
graph net

1e−4 4e−4 5e−5 2e−4 41K 164K see [10]
16,32,64,128,256,

128,64,32,16 ((64)× 3)× 4

Cortical Flow

Base lr Max lr
Template

sizes
Chamfer
weight

Edge
weight

Channels
per UNet

1e−4 4e−4
41K

164K
164K

1 1
16,32,64,128,256,128,64,32,16

16,32,64,32,16
16,32,64,32,16
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As the input source for the deformation networks, we make use of the FsAverage templates
derived from FreeSurfer, which are subjected to intensive smoothing via the HC Laplacian
smoothing operator accessible in MeshLab [19]. Table 12.1 encompasses a comprehensive
list of model parameters, which have been inherited from the Vox2Cortex and CorticalFlow
studies. Our code is based on PyTorch [123] and PyTorch3D [130], and the training regimen
was executed on an Nvidia Titan RTX GPU.

12.4.2 Results

We show findings for the classification network and class-based reconstruction parcellation
methods suggested here by integrating them with V2C and CorticalFlow (CF) as described
in the Section 12.3. This results in a total of four methods, labeled as V2CC , CFC (classifica-
tion network), and V2CT , CFT (class-based reconstruction via template). We evaluate each
reconstruction technique against FastSurfer [59] and two additional baselines.

As a first additional baseline, we train CF and V2C and assume vertex correspondence between
the input template and the predictions and map the atlas labels directly to the predicted
surfaces (labeled as CF + atlas and V2C + atlas). This baseline serves as an evaluation of the
vertex-wise alignment between predicted meshes and ground truth. If each template vertex
corresponds to the same anatomical location as the predicted vertex, a direct mapping of the
templates’ parcellation labels should also yield a correct parcellation of the predicted mesh.
This feature is also referred to as vertex correspondence and, in more detail, is addressed
in Chapter 13. As a post-processing step, the second additional baseline uses FreeSurfer’s
spherical registration to register the predicted meshes to FsAverage. Then it maps the FsAverage
parcellation labels to the registered meshes. This approach is called CF + FS and V2C + FS).
Table 12.2 presents the parcellation accuracy in terms of the average Dice coefficient over all
parcellation classes and the surface reconstruction accuracy in terms of Average Symmetric
Surface Distance (ASSD) and 90th-percentile Hausdorff Distance (HD-90) in mm.

FastSurfer produces surfaces of remarkable accuracy when compared to the FreeSurfer silver
standard. This can be attributed to FastSurfer’s use of the FreeSurfer surface pipeline to
generate surfaces. The CF and V2C baselines deliver highly precise surface predictions, with
CF having a slightly better performance. However, mapping the atlas parcellation directly to
the output does not yield an accurate surface parcellation, as we cannot guarantee vertex
correspondence between the template and the predictions. However, it is interesting that the
mapped parcellations are not completely off, which hints that V2C and CF provide some level
of vertex correspondence between the input FsAverage template and the predictions.

Producing the DKT parcellation using FreeSurfer’s spherical atlas registration results in an ele-
vated Dice score compared to FastSurfer. We believe this to be due to the superior performance
of the mesh-based parcellation compared to an approach based on voxels. It is important to
note that FreeSurfer’s spherical registration is exclusively designed for white matter surfaces,
making it inapplicable for parcellating pial surfaces.

Concerning the quality of surfaces, we notice a degradation in accuracy in the models we
propose due to the inclusion of the additional task of cortex parcellation. This reduction is
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Table 12.2. Using the OASIS dataset, we assess the surface and parcellation accuracy of our improved Vox2Cortex
(V2C) and CorticalFlow (CF) methods. The Average Symmetric Surface Distance (ASSD) and 90th-
percentile Hausdorff Distance (HD-90) are two millimeter-based surface reconstruction metrics. All
measurements are averaged throughout both hemispheres of the brain and displayed as the mean ±
standard deviation over the full dataset.

White surfaces Pial surfaces

Parcellation Surface accuracy Parcellation Surface accuracy

Method Dice↑ ASSD↓ HD-90↓ Dice↑ ASSD↓ HD-90↓

CorticalFlow (CF) [84]

CF + atlas 0.810 ±0.095 0.244 ±0.040 0.578 ±0.101 0.787 ±0.091 0.302 ±0.039 0.747 ±0.117

CF + FS 0.885 ±0.069 0.244 ±0.040 0.578 ±0.101 n.a. 0.302 ±0.039 0.747 ±0.117

CFC 0.727 ±0.178 0.471 ±0.047 1.190 ±0.170 0.672 ±0.178 0.355 ±0.040 0.896 ±0.126

CFT 0.904 ±0.048 0.323 ±0.048 0.784 ±0.126 0.877 ±0.049 0.347 ±0.044 0.854 ±0.120

Vox2Cortex (V2C) [10]

V2C + atlas 0.740 ±0.121 0.282 ±0.034 0.587 ±0.078 0.691 ±0.132 0.341 ±0.037 0.848 ±0.124

V2C + FS 0.876 ±0.076 0.282 ±0.034 0.587 ±0.078 n.a. 0.341 ±0.037 0.848 ±0.124

V2CC 0.902 ±0.050 0.303 ±0.034 0.641 ±0.082 0.876 ±0.053 0.362 ±0.038 0.894 ±0.119

V2CT 0.885 ±0.057 0.372 ±0.051 0.823 ±0.108 0.858 ±0.058 0.429 ±0.052 1.066 ±0.182

FastSurfer [59] 0.862 ±0.084 0.138 ±0.057 0.331 ±0.172 0.839 ±0.081 0.240 ±0.065 0.557 ±0.179

especially pronounced in the CFC and V2CT models. We hypothesize that the class-based
reconstruction loss might clash with the regularizers in V2C, which necessitates several
regularization losses. As for the accuracy of parcellation, the best performing methods are the
CFT and V2CC models, which exhibit an average Dice score surpassing 0.9 for white surfaces
and 0.87 for pial surfaces across all parcels. These models also exhibit the least reduction in
surface accuracy. The GNN classifier in V2CC makes use of vertex features from the Vox2Cortex
GNN as its input, which are not available in CFC , where the classification network only receives
vertex positions as input. As expected, CFC achieves a lower parcellation accuracy than V2CC .
We infer that combining CF with a GNN classification network is not the most effective.

In Figure 12.2, we visually represent the accuracy of parcellation and surface reconstruction
for the left hemisphere’s surfaces. Notably, classification errors primarily arise along the
borders of the parcels, as observed from the averaged data across the test set. In summary, the
GNN classifier appears more compatible with V2C due to the enhanced vertex input features
provided by preceding graph convolutions. On the other hand, CF yields superior results when
employing the class-based reconstruction loss. We further show detailed per-parcel results of
the two best performing methods CFT and V2CC in Figure 12.3. Regarding the runtime of
the evaluated methods, FastSurfer takes about one hour, the FS parcellation of CF and V2C
meshes several hours, and the runtime of the proposed methods is in the range of seconds.
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Figure 12.2. Comparison of our four methodologies’ parcellation and reconstruction accuracy, averaged across the
predicted pial and white matter surfaces in the OASIS test set. The average distance in millimeters is
presented in the top rows, depicting how far the predicted surface is from the ground-truth surface. The
parcellation error is displayed in the bottom rows, with a value of 0.0 indicating that a vertex is correctly
classified for all subjects, and a value of 1.0 indicating that it is wrongly classified for all subjects. The
errors are predominantly located at the boundaries of the parcels. © Springer, 2022
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Figure 12.3. Per-class comparison of our best-performing methods CFT and V2CC in terms of Dice scores. © Springer,
2022

12.5 Conclusion

In this chapter, we proposed two novel extensions to cortex reconstruction networks that
enable joint cortex parcellation. The first extension is based on a graph classifier, and the
second one is based on a novel region-based reconstruction loss that is generic and effective.
Both methods are well-suited for template deformation networks, which produce accurate
surface meshes, allowing for precise parcellation of the surfaces into associated regions. With
inference times in the range of seconds, the presented algorithms are high-speed and achieve
high parcellation accuracy. These attributes make them ideal for use in large-cohort studies and
clinical practice for more fine-grained analysis of brain diseases. However, we have seen in our
experiments that the multi-task approach presented in this chapter leads to a slight reduction
in surface reconstruction accuracy. The next chapter presents a method for improving vertex
correspondence between the input template and the prediction. This facilitates mapping an
atlas parcellation from the template to the prediction.
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The disadvantage of the previously mentioned joint reconstruction and parcellation approaches
is the reduced surface reconstruction accuracy compared to specified surface reconstruction
methods like Vox2Cortex. Further, mapping atlas parcellations such as the Desikan-Killiany-
Tourville (DKT) atlas directly onto the predicted meshes produces inaccurate parcellations.
This chapter focuses on vertex correspondence between the predicted meshes and the input
template. Such vertex correspondence would enable direct mapping of parcellations and group
comparisons of, e.g., cortical thickness measurements.

13.1 Introduction

The reconstruction of cortical surfaces from brain magnetic resonance imaging (MRI) scans
is an essential task in neuroimaging studies. An array of algorithms has been developed
and extensively employed for the reconstruction of cortical surfaces, which include, but are
not limited to, FreeSurfer [39] and CAT12 [23]. While the surfaces reconstructed from a
single individual can be exploited for calculating various metrics such as cortical thickness,
curvature, and gyrification, one primary objective in reconstructing cortical surfaces is to
facilitate group comparisons. These group comparisons are critical for the identification of
structural discrepancies in the brain between patients and healthy control groups.

To execute these comparisons, it is essential to establish correspondence between the vertices
of an individual’s cortical mesh and a representative group template. This correspondence
enables the evaluation of cortical thickness at the vertex level. Moreover, the establishment of
vertex correspondence is crucial for the transference of atlas parcellation from the template
to individual surfaces, which is instrumental in comparing measurements at a regional scale.
This includes the computation of cortical thickness for specific parcels, and it has extensive
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Figure 13.1. Top: Overview of existing cortical surface reconstruction approaches dependent on a cumbersome
spherical registration as post-processing to obtain vertex correspondence to a template. Bottom: Our
approach directly yields surface predictions with correspondence to the input template and does not
require any registration.

applications in research on cortical maturation, as well as in the investigation of age-related
and pathological cortical atrophy [86, 138, 150, 152].

Currently, the generation of vertex correspondence is accomplished in a post-processing phase,
which constitutes a time-intensive procedure that generally involves aligning and remeshing
an individual’s surfaces to an atlas [38, 41]. As such, the direct generation of surfaces with
integrated vertex correspondence could provide a valuable means for efficient, reliable, and
precise cortical surface comparisons.

Recent advancements have given rise to various deep learning methodologies for cortical
reconstruction, including DeepCSR [21], Vox2Cortex [10], CorticalFlow [84, 147], CortexODE
[96], and Topofit [61].

Among these, template deformation strategies for cortical surface reconstruction employ a
template mesh as an input to the deep learning model, and a vertex-centric deformation field is
learned, conditioned on 3D MRI data. One of the primary challenges faced by these methods is
the generation of smooth and watertight output meshes, which entails ensuring diffeomorphic
mapping from the input to the output mesh. This challenge has been tackled through the
incorporation of regularization losses [10, 61] or the numerical integration of an ordinary
differential equation (ODE) that describes deformation [84, 96, 147]. The connectivity of
the output mesh is mainly determined by the template mesh, with potential up- or down-
sampling of the mesh resolution. Keeping the mesh resolution constant facilitates comparisons
between reconstructed surfaces, as the output mesh has the same number of vertices and vertex
connectivity as the input mesh. Despite maintaining constant mesh resolution, Vox2Cortex
(V2C) [10], CorticalFlow++ [147] (CFPP), and Topofit [61] have not focused on optimizing
or evaluating the accuracy of vertex correspondence.

In this work, we propose a novel surface reconstruction approach that natively provides
correspondence to a template without spherical registration; see Fig. 13.1. We achieve this by
training on meshes with vertex correspondence instead of meshes that vary in the number of
vertices and vertex connectivity. For the network to learn these correspondences, we replace
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Figure 13.2. Overview of our V2CC method. The ground truth mesh is registered to the template mesh in a pre-
processing step, allowing to compute the L1 loss on the vertex locations. As the surface reconstruction
network, we use V2C [10]. Vertex correspondence to the template enables direct mapping of an atlas
parcellation at inference.

the commonly used Chamfer loss with the L1 loss, which has yet to be used for cortical
surface reconstruction. We use V2C as our backbone network as it is fast to train and provides
white and pial surfaces for both hemispheres with one network, but our approach is generic.
It can also be integrated into other surface reconstruction methods. We term our method
Vox2Cortex with Correspondence (V2CC). We demonstrate that template deformation methods
trained with the Chamfer loss, such as V2C, Topofit, and CFPP, provide insufficient vertex
correspondences for mapping parcellations. Instead, our approach improves inter- and intra-
subject vertex correspondence, making it suitable for direct group comparison and atlas-based
parcellation.

13.2 Methods

In cortical surface reconstruction, template deformation methods transform a mesh template
to match the neuroanatomy of the given patient. Following the notation introduced in
Chapter 11, let MT

c be the triangular mesh template, where MT
c = {VT

c , FT
c , ET

c }, contains n

vertices, represented as VT
c ∈ Rn×3, o faces FT

c ∈ Ro×3, storing the indices of the respective
vertices that make up the triangles, and r edges ET

c ∈ Rr×2, storing the indices of two
adjacent faces that share a common edge. The surface reconstruction algorithm computes
the displacement f : Rn×3 → Rn×3 for the set of vertices VT

c . The index c, ranging from
1 to C, denotes the specific surface under consideration. For our scenario, C is set to four,
corresponding to each hemisphere’s white and pial surfaces. As a recap of Section 11.3, in
V2C, this displacement is computed by a graph convolutional network, conditioned on image
features from a convolutional neural network that takes the Magnetic Resonance Imaging
(MRI) scan as input. The two sub-networks are connected via feature-sampling modules that
map features extracted by the Convolutional Neural Network (CNN) to vertex locations of
the meshes. V2C addresses the issue of self-intersections in explicit surface reconstruction
methods by incorporating multiple regularization terms into the loss function.
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Let Mc = {Vc, Fc, Ec} be the ground truth mesh, and M̂s,c = {V̂s,c, F̂s,c, Ês,c} the predicted
deformed mesh, where V̂s,c ∈ Rn×3, and Vc ∈ Rm×3. Note that n ̸= m and no one-to-
one mapping exists for vertex correspondence. The index s ∈ 1, . . . , S defines the different
deformation stages, as in Chapter 11.

The complete loss function of V2C consists of a loss term for the CNN and a loss term for the
mesh reconstruction, with further details in subsection 11.3.2. Here, we focus on the mesh
reconstruction loss, which contains a geometric consistency loss and several regularization
terms. The geometric consistency loss LC is a curvature-weighted Chamfer loss and is defined
as:

LChamf(M̂s,c, Mc) = 1
|Pc|

∑
u∈Pc

min
v∈P̂s,c

∥u− v∥2 + 1
|P̂s,c|

∑
v∈P̂s,c

min
u∈Pc

∥v− u∥2, (13.1)

where Pc ∈ Rq×3, and P̂s,c ∈ Rq×3 are point clouds sampled from the surfaces of M and M̂s,c

respectively. For simplicity, we have omitted the curvature weights here.

To optimize for vertex correspondence, we propose to use a pre-processing step that registers
the mesh Mc to the template mesh MT

c , resulting in a resampled ground truth mesh M ′
c =

{V′
c, F′

c, E′
c}, with V′

c ∈ Rn×3 and F′
c ∈ Ro×3, where each index i ∈ 1, . . . , n represents the

same anatomical location in both VT
c and V′

c. Instead of the Chamfer loss in (Equation (13.1)),
we propose the loss function of V2CC as L(M̂s,c, M ′

c) = L1(M̂s,c, M ′
c) + λLreg(M̂s,c), where

L1 is the mean absolute distance between corresponding vertices in M ′
c and M̂c, and Lreg

is the normal consistency regularization to avoid self-intersections in M̂s,c. L1 and Lreg are
defined as:

L1(M̂s,c, M ′
c) = 1

n

n∑
i

|vi − ui|, (13.2)

Lreg(M̂s,c) = 1
|Ês,c|

∑
a,b∈Ês,c

(1− (n̂a · n̂b))2, (13.3)

where n̂i is the unit normal of the i-th face of M̂s,c. Our method relies on only one regulariza-
tion term, compared to three in V2C. In cortical surface reconstruction, there is an inherent
trade-off to consider: surface accuracy, which can be optimized through geometric consistency
losses like Chamfer or L1 loss, versus surface smoothness, which can be enhanced through
regularization techniques. During preliminary experiments, we evaluated the regularizers
used in V2C, see subsection 11.3.2, including Laplacian loss, intra-mesh normal consistency
loss, and edge length loss in combination with our proposed L1 loss. Our findings suggested
that using only the normal consistency regularization resulted in the best outcomes, while
Laplacian smoothing didn’t bring additional benefits. We decided against employing edge
length regularization as it seemed counterintuitive to enforce uniform edge lengths while also
using L1 loss to ensure precise vertex locations. The regularization factor λ needs to be tuned
as a hyperparameter. Our proposed V2CC method and the pre-processing step are presented
in Figure 13.2.
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Table 13.1. Comparison of mesh quality of right hemisphere surfaces by ASSD in mm ±std and mean of percentage of
self-intersecting faces (% SIF), and vertex correspondences by mean RMSD ±std of vertex positions and
Dice overlap of mapped atlas parcellation. All models were trained on the ADNI data. RMSD values were
computed on the TRT dataset, all other metrics on the data specified by the data column. Bold numbers
indicate best performing methods. Input template: fsaverage6.

Right Pial Right WM Average

Method data RMSD↓ ASSD↓ % SIF↓ RMSD↓ ASSD↓ % SIF↓ Dice↑

V2C [10] ADNI 1.015 ±0.496 0.437 ±0.0311 1.123 0.961 ±0.447 0.372 ± 0.030 0.185 0.762
CFPP [147] ADNI 0.884 ±0.353 0.3314 ±0.029 0.052 0.778 ±0.294 0.337 ±0.031 0.013 0.813
Topofit [61] ADNI - - - 1.271 ±0.410 0.180 ±0.030 0.022 0.838

V2CC only L1 ADNI 0.816 ±0.337 0.268 ±0.036 2.880 0.739 ±0.268 0.228 ±0.036 0.073 0.921
V2CC ADNI 0.825 ±0.360 0.285 ±0.040 1.335 0.748 ±0.285 0.231 ±0.036 0.073 0.921

13.3 Experiments and Results

13.3.1 Experiment Setup

To assess the quality of reconstructed cortical surfaces, we employ four metrics. We evaluate
the reconstructed surfaces ’ quality with the Average Symmetric Surface Distance (ASSD)
and the percentage of self-intersecting faces (%SIF ). We use two approaches for intra- and
inter-subject cases to evaluate vertex correspondence. In intra-subject cases, we measure
whether the same template vertex moves to the same location when provided with different
scans of the same subject. In this case, we use scans acquired within a brief period to avoid
structural changes. We calculate the consistency of vertex locations using the Root Mean
Square Deviation (RMSD) of vertex positions. In inter-subject cases, we assess the ability of
our method to map pre-defined parcellation atlases, such as the DKT atlas [27, 78], onto
cortical surfaces. This mapping allows for assessing morphological measurements, such as
cortical thickness in cortical regions. We directly map vertex classes from the template atlas
onto the predicted mesh and calculate the Dice overlap (Dice) to FreeSurfer’s silver standard
parcellation to evaluate inter-subject vertex correspondence.

Similar to the experiments in the previous chapters, we use the ADNIlarge dataset and pre-
processing as described in Section 10.6. We use FreeSurfer version 7.2. We used the Test-Retest
dataset (TRT) dataset [98] to evaluate intra-subject correspondence, which contains 120 MRI
T1w scans from 3 subjects, where each subject was scanned twice in 20 days. We further
tested generalization to the Mindboggle-101 dataset [77] and the Japanese ADNI (J-ADNI).

13.3.2 Implementation Details

We use FreeSurfer’s mri_surf2surf tool to register surfaces to FsAverage6 (40,962 vertices)
and FsAverage (163,842 vertices) template surfaces. We used public implementations of
baseline methods [1, 35, 146] and made adaptations so that all methods use the same
template for training and testing. All models were trained on NVIDIA Titan-RTX or A100 GPUs.
After grid search, the hyperparameter λ was set to 0.003 for white surfaces and 0.007 for pial
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surfaces. For baseline models (V2C, CFPP, and Topofit), we used hyperparameters proposed by
the original method. Topofit uses an early stopping regime when the validation loss plateaus,
leading to a training time of 2600 epochs. CFPP trains each of the three U-Nets for 70000
iterations, which with a training set size of 1155, leads to 60 epochs per U-Net. We use the
CFPP model with the highest performance on the validation set.

13.3.3 Results and Discussion:

We compare the proposed V2CC method to state-of-the-art models V2C, CFPP, and Topofit on
the ADNIlarge dataset with FreeSurfer’s FsAverage6 right hemisphere templates as an input
mesh. All methods were trained using the resampled ground truth meshes. We show the results
in the top part of Table 13.1. Topofit achieves the highest surface reconstruction accuracy on
the white surface, and CFPP has the lowest number of self-intersecting faces pial surfaces. V2C
achieves lower surface accuracy compared to CFPP and Topofit and has a higher number of
self-intersections. We believe this could be due to longer training time for Topofit and CFPP,
2600 epochs for Topofit, and 60 epochs per U-Net for CFPP. For V2C and V2CC, we have
trained models for 100 epochs and used the models with the best validation performance,
which for V2CC was epoch 100 and for V2C epoch 90. This suggests that training the V2CC
models for longer might lead to better results.

When replacing the loss function in V2C with L1, we observe an immense boost in surface
accuracy and improved inter- and intra-subject correspondence. The disadvantage of using
the L1 alone is seen in an increase of self-intersecting faces, especially on pial surfaces. Self-
intersections of pial surfaces can be reduced by introducing the normal consistency regularizer
in (Equation (13.2)).

Next, we trained the baseline V2C model, Topofit, and our V2CC model on higher-resolution
templates (FsAverage) and images. We present the results on the right hemisphere in the
lower section of Table 13.1. Results for the left hemisphere can be found in the supplementary
material. We did not train CFPP on high resolution because of the long training process (about
four weeks). For experiments on full-resolution (FsAverage) templates, we have trained V2C
and V2CC for 140 epochs, where the best validation score for V2CC was at epoch 140 and
for V2C at epoch 101. The full-resolution Topofit model stopped training at 2150 epochs. We
can observe that all models achieve lower surface reconstruction error (cdist) when trained
with higher resolution and more self-intersections. We believe this is partly due to existing
self-intersections in the FsAverage templates and the resampled ground truth meshes. For the
vertex correspondence metrics, we can observe that both baselines, V2C and Topofit, achieve
higher parcellation scores than in the low-resolution experiment but are still outperformed
by V2CC. We have further trained a state-of-the-art parcellation model (FastSurfer [59]) on
the same dataset, which yields a Dice score of 0.88 ± 0.022, so we can conclude that our
atlas-based parcellation can even outperform dedicated parcellation models. We visualize the
quality of intra-subject correspondence of V2CC and FreeSurfer in the top box of Figure 13.3,
where we display the per-vertex RMSD on each subject’s white matter surface of the right
hemisphere. We can observe that for all three subjects, our method leads to less variance of
vertex positions than FreeSurfer. This is interesting, as FreeSurfer results were registered and
resampled to obtain vertex correspondence, and our predictions were not. Further, this shows
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Table 13.2. Comparison of mesh quality of right and left hemisphere surfaces by ASSD in mm ±std and mean of
percentage of self-intersecting faces (% SIF), and vertex correspondences by mean RMSD ±std of vertex
positions and Dice overlap of mapped atlas parcellation. All models were trained on the ADNI data.
RMSD values were computed on the TRT dataset, all other metrics on the data specified by the data
column. Bold numbers indicate best performing methods. The input template is fsaverage.

Right Pial Right WM Average

Method data RMSD↓ ASSD↓ % SIF↓ RMSD↓ ASSD↓ % SIF↓ Dice↑

V2C [10] ADNI 1.139 ±0.569 0.210 ±0.030 3.174 1.010 ±0.485 0.185 ±0.032 0.727 0.823
Topofit [61] ADNI - - - 1.326 ±0.406 0.137 ±0.033 0.020 0.871
V2CC ADNI 0.911 ±0.404 0.192 ±0.029 2.981 0.821 ±0.326 0.186 ±0.035 0.110 0.920
V2C [10] Mindb. - 0.305 ±0.045 5.372 - 0.196 ±0.023 1.272 0.780
V2CC Mindb. - 0.305 ±0.048 4.453 - 0.204 ±0.030 0.157 0.865
V2C [10] J-ADNI - 0.262 ±0.046 3.578 - 0.222 ±0.078 1.063 0.803
V2CC J-ADNI - 0.262 ±0.048 3.614 - 0.230 ±0.079 0.140 0.913

Left Pial Left WM Average

V2C [10] ADNI 1.195 ±0.589 0.211 ±0.035 3.059 1.059 ±0.495 0.187 ±0.041 0.859 0.818
Topofit [61] ADNI - - - 1.300 ±0.362 0.137 ±0.041 0.027 0.875

V2CC ADNI 0.950 ±0.398 0.196 ±0.034 2.903 0.853 ±0.306 0.186 ±0.042 0.120 0.921
V2C [10] Mindb. - 0.314 ±0.062 5.097 - 0.194 ±0.032 1.186 0.783
V2CC Mindb. - 0.305 ±0.053 4.356 - 0.199 ±0.031 0.187 0.865
V2C [10] J-ADNI - 0.258 ±0.047 3.491 - 0.221 ±0.080 1.077 0.805
V2CC J-ADNI - 0.262 ±0.053 3.549 - 0.226 ±0.082 0.148 0.916

that even though FreeSurfer surfaces have been used as ground truth to train our model, V2CC
generalizes well and is more robust to subtle image changes. The bottom box in Figure 13.3
visualizes the parcellation result of one example subject and the average parcellation error
over the whole test set. Parcellation errors occur mainly in boundary regions for all methods,
but these boundary regions are much finer in V2CC. To test the generalization ability of our
method, we tested V2CC and V2C on two unseen datasets J-ADNI and Mindboggle. We observe
that V2CC achieves better parcellation Dice scores, while the surface reconstruction accuracy
is similar for both methods.

13.3.4 Downstream Applications

We hypothesize that our meshes with vertex correspondence to the template can be directly
used for downstream applications, such as group comparisons or disease classification, without
the need for post-processing steps. We compared subjects with Alzheimer’s disease (AD) and
healthy controls of the ADNIlarge test set, where we compare cortical thickness measures on
a per-vertex level. We present a visualization of p-values in Figure 13.4. Meshes generated
with V2CC highlight regions similar to FreeSurfer meshes. The visualization shows significant
atrophy throughout the cortex, with more substantial thinning in the left hemisphere, which
matches findings from studies on cortical thinning in Alzheimer’s disease [138, 152]. We
further performed an AD classification study based on thickness measures on the ADNIlarge

test set. We computed mean thickness values per parcel (DKT atlas parcellation) for V2CC,
FreeSurfer, and the V2C [10] baseline. We show the classification results for AD and controls
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Figure 13.3. Top box: vertex RMSD on the TRT dataset. Bottom box: Top: Parcellation examples on a white surface of
the right hemisphere of an example subject from the ADNIlarge test set. Bottom: Fraction of misclassified
vertices over the test set, displayed on the smoothed FsAverage template.

using a gradient-boosted regression tree, trained on thickness measurements from the ADNIlarge

training set. The classifiers achieved 0.810 balanced accuracy (bacc) for Freesurfer, 0.804 bacc
for V2CC, and 0.776 bacc, for V2C on the ADNIlarge test set, demonstrating that V2CC achieves
comparable results to FS and outperforms V2C.

13.4 Conclusion

In this work, we proposed V2CC, a novel approach for cortical surface reconstruction that
directly provides vertex correspondences. V2CC utilizes a pre-processing step, where ground
truth meshes are registered to a template, and directly learns the correspondences by op-
timizing an L1 loss instead of the commonly used Chamfer loss. We evaluated V2CC on
several datasets, including ADNIlarge, TRT, Mindboggle-101, and J-ADNI, and compared it
to state-of-the-art methods. Our experimental results show that V2CC achieves comparable
performance to previous methods regarding surface reconstruction accuracy. However, V2CC
improves intra- and inter-subject correspondence and disease classification based on cortical
thickness. We have evaluated our proposed pre-processing step and loss function with V2C as
the backbone network. However, the underlying concepts are generic and could be integrated
into other methods like Topofit or CFPP.
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Figure 13.4. Group study of per-vertex cortical thickness measures in patients with Alzheimer’s disease and healthy
controls on the ADNIlarge test set. Colors indicate regions with significantly lower cortical thickness in AD
subjects (t-test, one-sided). Note that our predicted meshes can be directly compared on a per-vertex
basis, while FreeSurfer meshes need to be inflated to a sphere and registered.
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14Discussion of Surface-Based
Segmentation Methods

14.1 Summary

In this part, I presented three novel methods to address challenges in cortical surface recon-
struction and parcellation and improved vertex correspondence.

First, we introduced Vox2Cortex, a method for concurrently reconstructing white matter and
pial surfaces from brain MR images. This approach begins with a general brain template
and iteratively deforms it using a combination of convolutional and graph convolutional
neural networks. We utilized a novel curvature-weighted Chamfer loss function to achieve
high reconstruction accuracy in densely folded regions. The experiments demonstrated
that this end-to-end trainable architecture generates state-of-the-art cortical surfaces with
reduced computation time and allows for deriving precise cortical thickness maps for studying
Alzheimer’s disease.

Second, we proposed two extensions to cortex reconstruction networks like Vox2Cortex for
joint cortex parcellation: a graph classifier-based extension and one based on a region-based
reconstruction loss. Both methods are compatible with template deformation networks,
resulting in meshes with slightly reduced surface accuracy and precise parcellation. With rapid
inference times and high parcellation accuracy, these algorithms are suitable for large-cohort
studies and clinical practice in the fine-grained analysis of brain diseases.

Lastly, we introduced Vox2Cortex with Correspondence (V2CC), an approach for cortical
surface reconstruction that directly provides vertex correspondences. V2CC leverages a pre-
processing step involving ground truth mesh registration to a template and optimizes an L1 loss
instead of the conventional Chamfer loss. The evaluation on multiple datasets, including ADNI,
TRT, Mindboggle-101, and J-ADNI, demonstrated that V2CC achieves comparable surface
reconstruction accuracy to state-of-the-art methods while improving intra- and inter-subject
correspondence and disease classification based on cortical thickness. The pre-processing step
and loss function can potentially be integrated into other methods like Topofit or CFPP.

14.2 Discussion

Vox2Cortex was among the initially published template deformation approaches. The method
may be sensitive to the quality of the input template and could perform better if the template
is representative of the subjects in the dataset. In [10], we used a random subject from our
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training set to serve as a template, which outperformed spherical or ellipsoid templates that
were predominantly used before. However, choosing a random subject is not optimal, as
it could be an outlier. We addressed this in our later work by using FreeSurfer’s FsAverage
template. We have also experimented with group-specific templates, e.g., different templates
for males and females and different age groups. In preliminary experiments, we have seen
that this can lead to improved performance.

Concurrently to Vox2Cortex, CorticalFlow [84] was introduced. CorticalFlow, another template
deformation approach, learns the deformation field using a 3D U-Net instead of a graph
convolutional network. The advantage of learning deformation at the voxel level is the
reduction of self-intersections, as demonstrated in Chapter 13. However, a disadvantage is
the strong dependence of surface reconstruction accuracy on voxel and template resolution.
With lower template resolution, such as with the FsAverage6 template, vertex deformation
relies heavily on interpolation, leading to less accurate predictions. Furthermore, the official
implementation of CorticalFlow trains separate U-Nets for all four surfaces, making the training
process time-consuming.

CorticalFlow has been recently extended to CorticalFlow++ (CFPP) [147], which employs
a more accurate ODE solver and deforms white surfaces to predict pial surfaces, analogous
to the FreeSurfer approach. This results in vertex correspondence between white and pial
surfaces. CortexODE [96], another recently proposed method, also deforms white surfaces to
pial surfaces. This approach is prevalent in the literature, likely due to its use in FreeSurfer.
For example, the argument is that correspondence between white and pial surfaces is essential
for utilizing existing surface analysis tools [147]. Our experiments demonstrate that using
nearest-neighbor correspondence is equally accurate for cortical thickness estimation. However,
a registration processing step is necessary if one wishes to use Vox2Cortex surfaces with surface
analysis tools requiring white-to-pial correspondence.

With our latest adaptation, V2CC, registration is no longer required, as white and pial surfaces
correspond to FsAverage, which has white-to-pial correspondence. This results in correspon-
dence between our white and pial surfaces. However, minor errors in correspondence still
exist, so if white-to-pial correspondence is crucial, the V2CC network could be modified to
predict white surfaces first and then predict pial surfaces based on the white surface.

Many methods, such as CorticalFlow or CortexODE, formulate template deformation as an ODE
problem, potentially leading to fewer self-intersections. It is feasible to design the Vox2Cortex
architecture similarly, and we have attempted this, resulting in further improvements in surface
reconstruction accuracy. The manuscript [11] is currently under review and not part of this
thesis.

V2CC’s performance may be sensitive to the quality of the pre-processing step, including
template registration and ground truth mesh alignment. For example, if FreeSurfer’s spherical
registration leads to errors or reduced surface quality, as it also resamples the mesh and
potentially could lead to self-intersections, this would impact the quality of V2CC’s predictions.
Learning vertex correspondence in an unsupervised way could be a potential solution to this
problem.
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A general problem for cortical surface reconstruction is the reliance on FreeSurfer as a silver
standard, as no manual ground truth surfaces exist. In the future, it would be interesting
to develop a method for training and evaluating cortical surface reconstruction techniques
without relying on FreeSurfer. Recent research has proposed a cortical thickness estimation
benchmark [145], which involves designing a synthetic dataset to assess a method’s ability
to detect subtle changes in cortical thickness, which could be interesting for evaluating our
methods further.

Other methods, such as Topofit [61] or CFPP, could potentially benefit from incorporating
V2CC’s pre-processing step and loss function to improve vertex correspondence in their
frameworks. In general, the task of cortical surface reconstruction from Magnetic Resonance
Imaging (MRI) scans has reached a point where surface accuracy is already quite precise
on commonly used datasets like ADNI. The focus now shifts to evaluating the robustness
of these models on large-scale cohorts like the UK Biobank, whether the models are fair to
underrepresented demographics, and how to improve such fairness.

14.3 Future Work

Referring back to the challenges defined in Section 10.5, we have made significant strides in
mitigating some of the obstacles confronting deep learning for cortical surface reconstruction.
However, certain challenges persist, which can be addressed in future work.

With our proposed methods, Vox2Cortex and V2CC, the inference time has been reduced to
mere seconds, dramatically improving the multi-hour runtime required by FreeSurfer. At this
point, efforts to increase speed further seem less imperative.

Our approach also successfully delivers a surface accuracy well below the 1mm threshold. The
accuracy achieved, we believe, meets the need for a highly accurate representation of cortical
surfaces.

We’ve addressed the issue of preserving spherical topology by employing a spherical template
like FsAverage, ensuring topological correctness, an essential requirement in cortical surface
reconstruction.

However, there’s a lingering issue of occasional self-intersections in the generated surfaces
that remains to be fully resolved. Future explorations should aim to refine our methods to
eliminate self-intersections.

Methods such as V2CC, by providing both inter-subject and intra-subject correspondences,
facilitate group and intra-subject comparisons with ease. But we still need to apply our
approach to longitudinal datasets or compare them to existing longitudinal processing pipelines
such as FreeSurfer’s longitudinal stream. This would be an exciting direction for future
endeavors.

Lastly, it’s important to acknowledge our methods’ dependence on FreeSurfer. Future work
should involve efforts to devise methods that reduce this reliance on third-party software.
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Conclusion





15Conclusion

This thesis has comprehensively examined deep learning techniques in medical image seg-
mentation. The main contributions of this thesis have been divided into two main parts, each
focusing on different directions of medical image segmentation. The first direction, presented
in Part II explored voxel-based segmentation techniques, where we introduced innovative
algorithms that enhanced the segmentation quality and efficiency of brain and abdominal MR
and Computed Tomography (CT) images. Our methods demonstrated robust performance in
the face of domain shift and data scarcity, critical issues in applying deep learning models in
medical imaging. In Part III, we tackled the complexities of cortical surface reconstruction
and parcellation through surface-based segmentation methodologies. We made significant
improvements in the reconstruction quality of cortical surfaces as well as in learning-based
and atlas-based parcellation, facilitating improved neuroimaging analyses. The broader impli-
cations of our work extend beyond academia and into clinical neuroscience and neurology, as
well as other areas of clinical interest, such as abdominal imaging. Improved segmentation and
surface reconstruction techniques can significantly impact our understanding and management
of various diseases, including neurodegenerative conditions like Alzheimer’s.

While significant strides have been made throughout our research, it’s important to acknowl-
edge its limitations. A common challenge in the field pertains to biases in the datasets used for
training our models. These biases can impact the generalizability of our results, highlighting
the need for future research to consider diverse datasets encompassing varied demographic
characteristics and health conditions. Additionally, though our methods showed promise in
improving computation times and segmentation quality, their translation into a clinical setting
remains a challenging task. Looking forward, I see numerous potential avenues for further
research. There is scope for our methods to be examined in longitudinal datasets, offering an
exciting direction for future investigations. Further, transitioning from research to a clinical
setting is challenging yet crucial. Efforts to optimize and tailor our methods for real-world
medical environments will be a key focus. This will include the exploration of bias and fairness
in segmentation models and delving into the instances where our methods did not perform
as expected. Our work with Hallucination-free Organ Segmentation (HALOS), for example,
identified an instance where a well-performing model, nnUNet, hallucinated a non-existing
organ. Discoveries like this can lead to model refinement and, ultimately, better clinical
translation. Analyzing the performance of our methods on population-scale datasets, like the
UK Biobank, can provide valuable insights into their efficacy, adaptability, and limitations and
potentially be a first step toward clinical translation.

In conclusion, this thesis has made several contributions to the medical image segmentation
field by introducing novel voxel-based and surface-based segmentation methods. As we
continue to refine these techniques, we hope to see them contribute to driving forward the
field of medical image computing and ultimately enhancing patient care.
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AAppendix

Proof for Cuvature-Weighted Chamfer:
In order to provide a concise mathematical explanation for the emphasis on geometric

accuracy in high-curvature regions compared to low-curvature regions by our curvature-
weighted Chamfer loss, let us consider two ground-truth points, denoted as a and b, with
corresponding curvatures κ(a) < κ(b). Additionally, we have the closest predicted points,
represented by u and v (as illustrated in Appendix A). Assuming that the distances between
the predictions and ground truth are equal, such that |u − a| = |v − b|, we can simplify the
treatment of u and v as parameters optimized by gradient descent. Let u′ be the updated value
of u based on the gradient descent update step, given by u′ = u − λ ∂LC(a,u)

∂u , where λ > 0
represents the learning rate. Referring to Equation (11.6), we can calculate the gradient of the
curvature-weighted Chamfer loss with respect to u as follows:

∂LC(a, u)
∂u

= ∂

∂u

[
κ(a)

(
∥a− u∥2 + ∥u− a∥2)]

= 4κ(a)(u− a).
(A.1)

The calculation of ∂LC(b,v)
∂v = 4κ(b)(v− b) works analogously. The parameter updates are given

by

u′ = u− ∂LC(a, u)
∂u

= u + 4λκ(a)(a− u),

v′ = v − ∂LC(b, v)
∂v

= v + 4λκ(b)(b− v).
(A.2)

a

b

u

v

Figure A.1. Given two ground-truth points, a and b, with different curvatures, where κ(a) < κ(b), and corresponding
predicted points, u and v with equal distance to the ground truth points.
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Moreover, we have ∥a− u∥ = ∥b− v∥ and κ(a) < κ(b). Consequently, if we assume that we
do not "shoot over" the desired outcome, i.e., 0 < 4λκ(a) < 4λκ(b) < 1, we can observe that
|v′ − b| < |u′ − a|. This means that during one backward pass, point v is pushed closer to b

compared to how much point u is pushed towards a. ■
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