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Zusammenfassung

Eines der auffälligsten phonetischen Merkmale, das andalusisches vom kasti-

lischen (Standard) Spanisch unterscheidet, ist die Glottalisierung bzw. Ab-

schwächung von /s/ zu /h/ (Canfield, 1981; Torreira, 2006; Villena-Ponsoda,

2008). In Clustern von /s/ gefolgt von einem stimmlosen Plosiv ist der Plosiv

folglich prä-aspiriert, z.B. resto /resto/ > /rehto/ (dt. Rest). In der jüngeren Ver-

gangenheit haben jedoch mehrere Studien gezeigt, dass ein Lautwandel hin zur

Post-Aspiration stattfindet, z.B. /rehto/ > /retho/ (Parrell, 2012; Ruch & Har-

rington, 2014; Torreira, 2012). Als synchrone Ursache dieses Lautwandels wird

eine Resynchronisierung artikulatorischer Gesten bei schnellem Sprechtempo

vermutet (Parrell, 2012). Die Koordination der Glottisöffnung mit dem ora-

len Verschluss bestimmt, ob der stimmlose Plosiv unaspiriert (beide Gesten

müssen synchronisiert und gleich lang sein), prä-aspiriert (der Verschluss wird

nach der Glottisöffnung geformt), oder post-aspiriert ist (der Verschluss wird

gelöst, während die Glottis noch geöffnet ist). Diese Dissertation beschäftigt

sich mit dem Lautwandel von Prä- zu Post-Aspiration im andalusischen Spa-

nisch, aber hofft auch einen Beitrag zu unserem allgemeinen Verständnis von

Lautwandeln leisten zu können. Hierzu werden neue Ansätze präsentiert,

die sowohl den Ursprung von Lautwandeln in der Dynamik gesprochener

Sprache als auch deren Verbreitung durch interindividuelle Interaktionen in

Betracht ziehen. Das erste Ziel dieser Arbeit war es, den Lautwandel in einer

Art und Weise zu analysieren, die die zugrundeliegende Resynchronisierung

der Gesten widerspiegelt. Die dynamische Analysemethode, die zu diesem

Zweck entwickelt wurde, ermöglicht die Beobachtung phonetischer Details,

die eine wichtige Rolle in Lautwandeln spielen, aber in traditionellen Analysen

verborgen bleiben können. Da das Aufkommen und die Verbreitung von Laut-

wandeln von einem komplexen Zusammenspiel von Faktoren abhängt, können

computationelle Simulationen ein hilfreiches Werkzeug sein, um Erkenntnisse

zu gewinnen. Deshalb war das zweite Ziel dieser Dissertation die Entwicklung

eines agent-basierten Modells (ABM), das zeigt, wie Lautwandel aus der Ver-

stärkung von phonetischen Biases und der Reorganisation phonologischer
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Zusammenfassung

Klassen entstehen kann. Dieses ABM wurde dann eingesetzt, um den Wandel

von Prä- zu Post-Aspiration im andalusischen Spanisch zu modellieren.

Die vorliegende Arbeit besteht aus drei Hauptkapiteln, die im Folgenden

kurz zusammengefasst werden. In Kapitel 2 (publiziert als Cronenberg et al.,

2020) wurde der Lautwandel von Prä- zu Post-Aspiration mittels einer neuen

Methode untersucht, die auf akustischen Signalen anstelle einer vertikalen

Segmentierung des Sprachsignals beruht (Fowler, 1984). Die akustischen Sig-

nale spiegelten die glottale und orale Geste wider: die orale Geste wurde

durch die Stimmhaftigkeitswahrscheinlichkeit repräsentiert (VP; Gonzalez

& Brookes, 2014), während der Verschlussgrad und das Aspirationsrauschen

vom hoch-frequenten Energiesignal (HF) abgelesen wurden. Diese Signale

wurden für die intervokalischen Cluster /sp, st, sk/ in Sprachaufnahmen

von 48 andalusischen Sprechern berechnet und anschließend der Functional

Principal Components Analysis (FPCA) übergeben. FPCA ist eine Analysetech-

nik, die die Variationen in den Signalformen ausgibt (Principal Components,

PCs). Der erste PC fing die Synchronisierung des Verschlusses im Verhält-

nis zum stimmlosen Intervall ein, was zeigte, dass Prä- und Post-Aspiration

durch das Timing des Verschlusses in einer wechselseitigen Beziehung standen.

Zudem wurde zum ersten Mal festgestellt, dass der sogenannte Trade-Off
zwischen Prä- und Post-Aspiration auch mittels der Amplitude des Aspira-

tionsrauschens signalisiert wurde. Der erste PC unterschied auch zwischen den

Sprechergruppen: jüngere SprecherInnen produzierten /sp, st, sk/ mit mehr

Post-Aspiration als ältere SprecherInnen, die wiederum mehr Prä-Aspiration

benutzten. Der Lautwandel war außerdem weiter fortgeschritten in West- als

in Ost-Andalusien. Anhand des Apparent-Time Paradigmas (Bailey et al., 1991)

etablierten diese Ergebnisse eine Verbindung zwischen der synchronen Basis

(d.h. der Resynchronisierung artikulatorischer Gesten) und einem fortschrei-

tenden Lautwandel. Im Hinblick auf die menschliche Sprachverarbeitung und

Lautwandel im Allgemeinen deutete die Studie in Kapitel 2 auf zwei Arten

von Informationen hin, die aus dem Sprachsignal extrahiert werden können.

Die erste Art is phonologisches Wissen, das etwas über die Charakteristika von

Lautkategorien im Vergleich zu anderen innerhalb einer Sprachgemeinschaft

aussagt. Zum Beispiel werden /sp, st, sk/ aspiriert (wo genau die Aspira-
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tion produziert wird, spielt keine Rolle), während /p, t, k/ unaspiriert sind.

Phonologisches Wissen wird abstrahiert von gespeicherten Sprachsignalen

(Pierrehumbert, 2001) und enthält auch Informationen über die artikulatori-

schen Gesten und ihre Synchronisierung. Die zweite Art von Informationen

betrifft die Verteilung bestimmter Aussprachevarianten, d.h. die Eigenschaften

einer SprecherIn wie z.B. das Alter oder die Herkunft korrelieren mit der

Produktion bestimmter Laute. Aus diesem Grund besteht bei HörerInnen,

die eine Vielzahl von Kontakten zu SprecherInnen haben, eine höhere Wahr-

scheinlichkeit, dass sie einen perzeptiven Trade-Off bspw. zwischen Prä- und

Post-Aspiration entwickeln (Beddor, 2009). Die Schlussfolgerung aus Kapitel 2

ist, dass eine Transformation (wie z.B. FPCA) wahrgenommener und sozial

variabler Sprachsignale in der menschlichen Sprachverarbeitung angewendet

wird, um Informationen über Phonologie und Verteilung daraus abzuleiten.

Kapitel 3 behandelt das auf kognitiven Prinzipien beruhende agent-basierte

Lautwandelmodell, das als Teil dieser Dissertation entwickelt wurde. Obwohl

Lautwandel seit Jahrhunderten erforscht wird, ist noch Vieles über das Zusam-

menspiel intra- und extra-linguistischer Faktoren, die zum Entstehen und

zur Verbreitung von Lautwandeln beitragen, unbekannt. Computationelle

agent-basierte Modelle (ABMs) bieten ein kontrolliertes Umfeld, in dem die

Rolle kognitiver, sozialer und linguistischer Faktoren in Lautwandeln unter-

sucht werden kann. In ABMs interagieren Agenten miteinander, indem sie

einer Reihe an Regeln folgen, und es kann in der Folge beobachtet werden,

wie individuelle Entscheidungen (micromotives) zu globalen Mustern oder

Verhaltensweisen führen (macrobehaviours; Schelling, 1978). Das ABM na-

mens soundChangeR, das hier präsentiert wird, ist das erste seiner Art, das als

frei verfügbares R Paket implementiert und vollständig dokumentiert wurde

(https://github.com/IPS-LMU/soundChangeR). Es basiert auf dem theoreti-

schen interaktiven-phonetischen (IP) Modell (Harrington et al., 2018), welches

davon ausgeht, dass Lautwandel das Ergebnis stochastischer Interaktionen

zwischen Individuen ist, durch die bereits existierende phonetische Biases ver-

stärkt werden. Das IP Modell übernimmt von der Exemplar Theorie und episo-

dischen Modellen des Gedächtnisses (Goldinger, 1996; Goldinger & Azuma,

2004; Pierrehumbert, 2001, 2003a), dass Sprachexemplare mitsamt phone-
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tischer Details abgespeichert werden und phonologische Klassen sich von

diesen Exemplarwolken ableiten lassen. Wenn das Individuum mehr Spracher-

fahrungen gesammelt und dementsprechend mehr Exemplare abgespeichert

hat, werden die phonologischen Klassen ggf. umstrukturiert (Norris et al.,

2003; Pardo et al., 2012). Jeder Agent wird mit parametrisierten Sprachexem-

plaren initialisiert, die von einer menschlichen SprecherIn produziert wur-

den, bevor die Interaktionen beginnen. In einer Interaktion extrahiert der

sprechende Agent ein neues Token eines Wortes aus einer Normalverteilung,

die aus den abgespeicherten Exemplaren gebildet wird. Das neue Token wird

zusammen mit dem assoziierten Worttyp dem hörenden Agenten übermittelt,

der entscheidet, ob er das perzipierte Token abspeichert. Diese Entscheidung

kann entweder anhand der Typikalität (d.h. ob das Token typisch genug für

das intendierte Phonem ist) oder Unterscheidbarkeit (d.h. ob das Token wahr-

scheinlicher zum intendierten als zu konkurrierenden Phonemen gehört)

des Tokens getroffen werden (Todd et al., 2019). Es wurde ein künstlicher

Datensatz erstellt, um den Einfluss der Speicherkriterien auf das Simulations-

ergebnis zu untersuchen. Der Datensatz bestand aus zwei Agenten, A und B,

die eine ähnliche Phonemklasse SP2, aber unterschiedliche Phonemklassen

SP1 hatten, wobei SP1 von Agent A breiter und zu SP1 von Agent B ausgerichtet

war. In einer Simulation, in der nur das Typikalitätskriterium angewendet

wurde, verschob sich SP1 von Agent A im akustischen Raum hin zu dem von

B, während Agent Bs Phonemklassen sich nicht veränderten und eine leichte

Überlappung beibehielten. Als jedoch nur das Unterscheidbarkeitskriterium

angewendet wurde, adaptierte Agent B die Phonemklasse SP1 von Agent

A, sodass beide Agenten am Ende zwei nicht überlappende Phoneme SP1

aufwiesen. SP2 veränderte sich bei keinem Agenten und in keiner der beiden

Simulationen. Diese Simulationen zeigten, dass soundChangeR sowohl phone-

tische Veränderungen als auch Stabilität simulieren kann (Sóskuthy, 2015).

Da Phoneme eine wichtige Rolle in der Perzeption der Agenten spielen, bie-

tet soundChangeR Algorithmen an, die Agent-spezifische Sub-Phonemklassen

von den gespeicherten Exemplaren und deren Assoziation zu Wortklassen

ableiten können. Mithilfe eines weiteren künstlichen Datensatzes, der nur aus

einem Agenten bestand, wurde gezeigt, wie diese Algorithmen Sub-Phoneme
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identifizieren. Bei einer systematischen Beziehung zwischen gespeicherten

Exemplaren und Wortklassen (d.h. Exemplare der Wörter W1 bis W5 waren

in einem anderen Teil des akustischen Raums angesiedelt als Exemplare der

Wörter W6 bis W10) wurden zwei Sub-Phoneme identifiziert. Bei einer zufälli-

gen Beziehung zwischen denselben Exemplaren und Wortklassen bestimmte

das Phonologiemodul in soundChangeR hingegen nur ein Sub-Phonem. Zusätz-

lich fanden Gubian et al. (2023), dass dieses flexible Phonologiemodul adäquat

den Zusammenfall des phonologischen Kontrastes zwischen /I@/ und /e@/

in Neuseeland-Englisch modellierte, während es die phonologische Stabili-

tät bewahrte, die zur Modellierung von /u/-fronting in Standard Southern

British English vonnöten war. Im letzten Teil des Kapitels 3 wird das ABM

soundChangeR mit anderen computationellen Lautwandelmodellen verglichen

und es werden verschiedene Erweiterungen der Software diskutiert.

Kapitel 4 kombiniert die dynamische Analyse aus Kapitel 2 mit dem

agent-basierten Modell aus Kapitel 3, um den Lautwandel von Prä- zu Post-

Aspiration in andalusischen Clustern zu simulieren. Im ersten Teil dieser

Studie wird ein Datensatz erstellt, der Wörter mit /st/ und /t/ enthählt, wobei

/t/ als phonologisch unaspiriert gilt. Dementsprechend bildet /t/ einen phono-

logischen Kontrast zu /st/, der trotz des Lautwandels hin zur Post-Aspiration

in /st/ bestehen bleiben sollte, und dient somit als Plausibilitätsprüfung für

die Simulation. Dieselben 48 SprecherInnen wie in Kapitel 2 produzierten 19

Wörter mit /st/ und 9 mit /t/, für die anschließend die Stimmhaftigkeitswahr-

scheinlichkeit und das Energiesignal für hohe Frequenzen abgeleitet wurden.

Auf diese Signalpaare wurde FPCA angewendet und die ersten vier PCs wur-

den analysiert. PC1 und vor allem PC4 unterschieden /st/ und /t/ voneinander

und zeigten, dass das Cluster durch ein längeres stimmloses Intervall, mehr

hochfrequente Energie und daher auch mehr Aspiration gekennzeichnet war.

Auch /t/ wurde mit ein wenig Post-Aspiration produziert, was zwar nicht zu

seiner phonologischen Beschreibung passt, aber auch nicht ganz unerwartet

ist, da die plötzliche Lösung des oralen Verschlusses für einige Millisekunden

die angestaute Luft entweichen lässt, bevor die Stimmlippen wieder anfangen

zu schwingen. PC2 beschrieb die Position der Aspirationsphase in /st/, d.h.

ob das Cluster prä- oder post-aspiriert war (oder eine Mischung von beidem).
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Diese Information korrelierte auch mit dem Alter der SprecherInnen: jüngere

SprecherInnen tendierten zu mehr Post-Aspiration, während ältere Sprecher-

Innen die Cluster eher prä-aspirierten. Dieses Ergebnis unterstützt frühere

Studien, die einen Wandel hin zu Post-Aspiration fanden. Mit dem Ziel, diesen

Lautwandel zu modellieren, wurden die PC Scores aus diesem ersten Teil der

Studie als Input für eine Simulation mit soundChangeR im zweiten Teil ver-

wendet. Die Agenten in dieser Simulation repräsentierten ältere und jüngere

andalusische SprecherInnen, die Exemplare von /st/ und /t/ austauschten.

Diese beiden kanonischen Phoneme wurden wie erwartet korrekt identifiziert

und für die Dauer der Simulation vom Phonologiemodul in soundChangeR
beibehalten. Auf dem akustischen Level produzierten alle Agenten /t/ nach

den Interaktionen genauso wie zuvor, aber die jüngeren und älteren Agenten

konvergierten entgegen der Erwartungen zu einer Variante von /st/, die so-

wohl Prä- als auch Post-Aspiration enthielt. Dieses Ergebnis ist wahrscheinlich

zustande gekommen, weil die PC Scores der älteren Agenten keine Verzerrung

hin zu denen der jüngeren Agenten zeigten. Solche Verzerrungen in Kom-

bination mit der selektiven Speicherung von Exemplaren sind jedoch einer

der Wirkungsmechanismen in soundChangeR, die solche akustischen Verän-

derungen auslösen können (s. 3.3.2). Außerdem wurden im letzten Teil von

Kapitel 4 zwei weitere Gründe für die unrealistischen Ergebnisse der Simula-

tion diskutiert. Der eine ist die generelle Tendenz von soundChangeR, die sich

gegen akustisch extreme Exemplare richtet. Dies könnte ein Problem darstel-

len, da solche Outlier besonders auffällig sind und daher eine wichtige Rolle in

Lautwandeln spielen könnten. Der andere Grund ist, dass soundChangeR keine

sogenannten perzeptiven Cues modellieren kann, deren Gewichtung sich vor

allem in Lautwandeln, bei denen neue Laute phonologisiert werden, ändern

kann.
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Abstract

One of the most salient characteristics that distinguishes Andalusian Span-

ish from Castilian (Standard) Spanish phonetically is that /s/ is glottalised

or lenited to /h/ (Canfield, 1981; Torreira, 2006; Villena-Ponsoda, 2008). In

clusters of /s/ followed by a voiceless plosive, the plosive is thus pre-aspirated,

e.g. resto /resto/ > /rehto/ (engl. rest). In recent years, several studies have

shown that there is an ongoing change from pre- to post-aspiration, e.g. /rehto/

> /retho/ (Parrell, 2012; Ruch & Harrington, 2014; Torreira, 2012). The syn-

chronic basis of this sound change is believed to be a resynchronisation of

articulatory gestures at faster speech rates (Parrell, 2012). More specifically,

the way that the glottal opening is aligned with the oral closure determines

whether a voiceless plosive is unaspirated (both gestures must be synchronised

and of the same duration), pre-aspirated (the closure is formed after the glottis

has been opened), or post-aspirated (the closure is released while the glottis

is still open). This thesis is concerned with the sound change by which pre-

becomes post-aspiration in Andalusian Spanish, but also hopes to contribute

more generally to our understanding of sound changes. This was attempted by

presenting new approaches that take into account both the origins of sound

change in the dynamics of spoken language as well as its spread through

interactions between individuals. More specifically, the first aim of this thesis

was to analyse the change in a way that reflected the underlying gestural resyn-

chronisation. The dynamic analysis developed for that purpose allows for the

observation of phonetic details that play an important role in sound changes

but might be easily missed in traditional analyses. Since the emergence and

spread of sound changes depend on a complex interplay of factors, computa-

tional simulations can be a helpful tool to gain insights. Therefore, the second

aim of this thesis was to develop an agent-based model (ABM) which shows

how sound changes can emerge from the reinforcement of phonetic biases and

reorganisation of phonological classes. This ABM was then used to model the

change from pre- to post-aspiration in Andalusian Spanish.
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This thesis consists of three main chapters which are briefly summarised

here. In chapter 2 (published as Cronenberg et al., 2020), the change from

pre- to post-aspiration was investigated by means of a novel method that uses

acoustic signals as proxies for the glottal and oral gestures instead of relying

on a vertical segmentation of the speech signal (Fowler, 1984). The glottal

gesture was represented by the voicing probability (VP; Gonzalez & Brookes,

2014); the degree of closure as well as aspiration noise was represented by the

high-frequency energy signal (HF). These signals, computed for intervocalic

clusters /sp, st, sk/ in the speech of 48 Andalusian Spanish speakers, were

supplied to Functional Principal Components Analysis (FPCA), a technique

that returns the main modes of variation in the signals’ shapes (Principal

Components, PCs). The first PC captured the phasing of the closure in relation

to the voiceless interval which showed that pre- and post-aspiration were

inversely related to each other through the timing of the closure. Moreover, it

was shown for the first time that the trade-off between pre- and post-aspiration

was also signalled by the amplitude of the aspiration noise. The first PC also

distinguished between the speaker groups: younger speakers were shown to

produce /sp, st, sk/ with more post-aspiration than older speakers who pre-

dominantly used pre-aspiration; the sound change was also further advanced

in speakers from West than East Andalusia. These results established a link

between the synchronic basis (i.e. the resynchronisation of articulatory ges-

tures) and a sound change in progress as shown by the apparent-time approach

(Bailey et al., 1991). With regard to both human speech processing and sound

change, the study in chapter 2 suggested that two kinds of information can be

extracted from the dynamic speech signal. The first is phonological knowledge

which indicates population-level characteristics of sound categories as com-

pared to others, e.g. that /sp, st, sk/ are produced with aspiration surrounding

the closure whereas /p, t, k/ are not. Phonological knowledge, learned and

abstracted from memorised traces of speech, also comprises information about

articulatory gestures and their alignment. The second kind of information is

distributional, i.e. characteristics of a speaker such as their age or regional ori-

gin correlate with the way they produce certain speech sounds. Thus, listeners

who have been exposed to a wide variety of speakers are more likely to develop
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a perceptual trading relationship between e.g. pre- and post-aspiration. While

it has been suggested previously that phonological knowledge is a statistical

abstraction over memorised exemplars (Pierrehumbert, 2001) and that trading

relationships can be a precursor to sound change (Beddor, 2009), the new

angle in chapter 2 is that a transformation (such as FPCA) of the perceived

time-varying and socially variable speech material is used to derive knowledge

from it that otherwise cannot be extracted.

Chapter 3 is about the cognitively-inspired agent-based model of sound

change which was developed as part of this thesis. Even though sound change

has inspired research for centuries, the complex interplay between intra- and

extralinguistic factors that may contribute to its initiation and propagation

remains poorly understood. Computational agent-based models (ABMs) offer

a controlled environment in which the role of cognitive, social, and linguistic

factors in sound change can be explored. In ABMs, agents interact with one an-

other along a defined set of rules and it can be observed how individual actions

(micromotives) lead to population-wide patterns (macrobehaviours; Schelling,

1978). The ABM presented here, called soundChangeR, is the first of its kind

that was implemented as a publicly available R package and comes with a full

documentation of the code (https://github.com/IPS-LMU/soundChangeR).

It is based on the theoretical interactive-phonetic (IP) model (Harrington

et al., 2018) which assumes that sound changes are the result of stochastic

interactions between individuals through which existing phonetic biases are

magnified. The IP model takes from exemplar theory and episodic models of

memory (Goldinger, 1996; Goldinger & Azuma, 2004; Pierrehumbert, 2001,

2003a) that traces of speech (exemplars) are stored and phonological classes

are abstractions over clouds of exemplars which can occasionally be regrouped

when the individual has acquired more language experience (Norris et al.,

2003; Pardo et al., 2012). Each agent in soundChangeR is initialised with para-

meterised traces of speech (exemplars) produced by an actual speaker before

starting to interact with other agents. In an interaction, an agent speaker uses

a Gaussian sampling procedure to produce a new token of a word which is

transmitted to an agent listener whose task it is to decide whether or not to

memorise the token. This decision can be based either on the token’s typicality

xv
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(i.e. is it a typical enough member of the intended phoneme?) or discrimin-

ability (i.e. is it more likely to belong to the intended phoneme than to all

competing phonemes?; also see Todd et al., 2019). An artificial dataset was

used to demonstrate the impact of the memorisation criteria on the simula-

tion’s outcome. The dataset consisted of two agents, A and B, who had a similar

representation of a phoneme SP2, but different representations of a phoneme

SP1 such that agent A’s SP1 was broader and skewed towards that of agent B.

In a simulation in which only the typicality criterion was applied, agent A’s

SP1 shifted towards that of agent B in the acoustic space, whereas agent B’s

phoneme classes did not change and maintained a slight overlap. When only

the discriminability criterion was applied, on the other hand, agent B’s SP1 be-

came more like that of agent A, leaving both agents with two non-overlapping

phoneme classes. SP2 did not change in either simulation. These simulations

showed that soundChangeR is capable of modelling both phonetic changes and

stability (Sóskuthy, 2015). Since phonemes play an important role in the agent’s

perception, soundChangeR provides algorithms that can derive agent-specific

sub-phonemic classes from the stored exemplars and their fixed association

to word labels. Using another artificial dataset consisting of only one agent,

it was shown how these algorithms identify sub-phonemic classes. When the

association between stored exemplars and word labels was systematic (i.e. ex-

emplars of words W1 to W5 were in a different part of the acoustic space than

those of words W6 to W10), two sub-phonemic classes were identified. When

the exemplars’ association to word classes was random, on the other hand, the

flexible phonology module in soundChangeR determined that there was only

one sub-phoneme. Additionally, Gubian et al. (2023) found that this flexible

phonology module can adequately model phonological change in the New

Zealand English merger of /I@/ and /e@/ while maintaining the phonological

stability necessary to model /u/-fronting in Standard Southern British English.

In the final part of chapter 3, the ABM soundChangeR is compared to other

computational models of sound change and several possible extensions of the

software are considered and discussed.

Chapter 4 combines the dynamic analysis technique from chapter 2 and

the agent-based model presented in chapter 3 to simulate the change from
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pre- towards post-aspiration in Andalusian Spanish clusters. In the first part, a

dataset is composed of words containing either /st/ or /t/, the latter of which

is considered to be phonologically unaspirated. Thus, /t/ posits a phonological

contrast to /st/ which should not be affected by the sound change towards

post-aspiration and can therefore serve as a sanity check in the simulation.

The same 48 Andalusian Spanish speakers that provided the speech material

for chapter 2 produced 19 words containing /st/ and 9 words containing /t/

from which the high-frequency energy and voicing probability signals were

extracted between the two vowels on either side of the voiceless plosive. FPCA

was applied on these signal pairs and the first four Principal Components

were analysed. PC1 and, more clearly, PC4 separated /st/ from /t/ and showed

that the cluster was characterised by a longer voiceless interval, more high-

frequency energy, and therefore more overall aspiration. Nevertheless, /t/ was

produced with a small amount of post-aspiration which does not match its

phonological description, but is also not unexpected given that the release of

the oral closure lets air escape with some force for a few milliseconds before

the vocal folds can start swinging again. PC2 captured the location of the

aspiration phase in /st/, i.e. whether the cluster was pre- or post-aspirated

(or a mixture of both). This information also correlated significantly with the

speakers’ age: younger speakers tended to post-aspirate while older speakers

were more likely to pre-aspirate the cluster. This result supported earlier

studies that found a sound change in progress towards post-aspiration. With

the aim of modelling the change by which pre- gives way to post-aspiration,

the PC scores extracted in the first part of chapter 4 were used as input to a

simulation with soundChangeR in the second part. The agents in this simulation

represented older and younger Andalusian Spanish speakers who exchanged

exemplars of /st/ and /t/. These two canonical phonemes were correctly

identified and maintained by the flexible phonology module in soundChangeR,

as expected. On the acoustic level, all agents produced /t/ the same way after

as compared to before the interactions, but younger and older agents converged

towards a common variant of /st/ that was characterised by both pre- and

post-aspiration. This result can be attributed to the lack of skew in the older

agents’ PC scores towards those of the younger agents. Skew and orientation
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of phonemic classes in combination with selective memorisation are a key

mechanism in soundChangeR which can trigger acoustic changes, as shown in

section 3.3.2. Two further possible reasons for the ABM’s failure to accurately

model the change from pre- to post-aspiration in Andalusian Spanish are

discussed in the final part of chapter 4. The first is soundChangeR’s general

bias against extreme exemplars which might pose a problem given that such

outliers are particularly salient and might play an important role in sound

changes. The second is that soundChangeR cannot model the re-weighting of

perceptual cues which is considered an important part of sound changes which

involve phonologisation.
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1 | Introduction

1.1 The Study of Sound Change

Humans have been interested in the mechanics of their spoken language for

more than two millennia (Schubiger, 1970). However, the field of science

that investigates spoken language in all of its many facets – phonetics – was

established as recently as the mid 19th century (Pompino-Marschall, 2009).

Since then, great advances have been made with respect to our understand-

ing of speech production and perception, not least because the methods with

which these immensely complex processes can be observed and examined

have evolved rapidly: from traditional anatomical studies to real-time ima-

ging, from purely impressionistic to empirical descriptions, from analogue

to digital recordings, and from manual to computational analysis. One of

the most astonishing discoveries that emerged from research over the last

150 years is that spoken language is abundantly variable, to the point where

any produced speech sound is never exactly like another even if produced

by the same speaker in quick succession. But spoken language does not only

vary synchronically, i.e. at a distinct point in time, but also diachronically, i.e.

it changes over time. Why, for example, does French have nasalised vowels

(e.g. main /mẼ/, engl. hand) when related languages such as Spanish (mano
/mano/) do not? Why is the word-initial consonant “k” produced in German

(e.g. Knoten /kno:t@n/), but not in English (knot /nOt/)? And why does the

speech of actors in old black and white films sound so different from that

of contemporary speakers? It is this phenomenon – the diachronic change of

sounds in spoken languages – which is the central topic of this thesis.

Sound changes are the result of the extraordinarily complex and still poorly

understood interplay of forces within speakers, listeners, their societal struc-

tures, and their language. The synchronic variability of spoken language men-

tioned above is considered the raw material for sound changes and can be

attributed to the articulatory processes executed by the speakers. Not only are

vocal tracts and articulators unique (Allen et al., 2003; Beck, 2010; Fant, 1960;
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1. Introduction

Harrington, 2014; K. Johnson et al., 1993; Peterson & Barney, 1952; Zellou,

2017), but the speakers’ articulation is also to a certain degree conditioned

by the norms of their society with regard to e.g. gender, ethnic background,

and social class (Babel et al., 2014; Eckert, 1989; Hall-Lew et al., 2010; Hay

et al., 1999; K. Johnson, 2006; Labov, 1963, 1972). While it seems astound-

ing that people can understand each other and process their interlocutor’s

message correctly most of the time given this enormous variability in speech

production, it seems even more miraculous when considering that speech

perception is just as individual and variable. Besides physiological idiosyn-

crasies, language processing is influenced by experience. It has been shown that

listeners memorise perceived speech in great detail (Campeanu et al., 2014;

Church & Schacter, 1994; Goldinger, 1996, 1998; Goldinger & Azuma, 2004;

Palmeri et al., 1993; Sheffert & Fowler, 1995) and that exposure to ambiguous

variants of sounds can lead to a shift of the listener’s perceptual boundaries

(Clarke-Davidson et al., 2008; Connine & Darnieder, 2009; Eisner & McQueen,

2006; Eisner & Mcqueen, 2005; Fenn et al., 2003; Goldstone, 1998; Kraljic

& Samuel, 2005, 2006; Norris et al., 2003; Samuel & Kraljic, 2009; Zhang &

Samuel, 2014). Thus, a listener’s speech sound recognition and categorisation

is shaped by their unique exposure to and experience with spoken language

(K. Johnson, 1997; Pierrehumbert, 2001, 2003a, 2006; Yu, 2013; Yu & Zellou,

2019). Nevertheless, there is some regularity and universality that governs

the “pool of synchronic variation” (J. J. Ohala, 1989) briefly described here.

For instance, the kind of variability that results from articulatory processes

is often directional, e.g. voiced plosives are more likely to become voiceless

than vice versa due to aerodynamic constraints and vowels are more likely to

centralise in unstressed than in stressed position (Garrett & Johnson, 2013;

Sóskuthy, 2013). These synchronic biases are also reflected in phonological

patterns that have developed diachronically as well as in language typology.

For instance, word-final obstruents are often devoiced, e.g. German Rad /Ka:t/

(engl. bike) but Räder /KE:d5/ (engl. bikes) (J. J. Ohala, 1997); and if a language

has only one set of plosives, it is much more likely to only have voiceless as

compared to voiced ones (J. J. Ohala, 1983). If the biases that introduce direc-

tional variability are universal, however, why does sound change remain a rare

2
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event? Why does it happen in one language under one set of circumstances,

but not in another one or at another point in time? This puzzle, posited most

prominently by Weinreich et al. (1968) as the actuation problem, underlines

that sound change is not just multifactorial, but also stochastic and therefore

impossible to predict in advance.

The stochasticity of sound change is often attributed to a failure in percep-

tion or speech processing on the side of the listener. In his seminal body of

work, John Ohala (e.g. J. J. Ohala, 1981, 1989, 1993a, 1993b, 2012) claimed that

sound changes originate from the listener’s occasional failure to compensate

for the effects of coarticulation. That is, most of the time the listener is able to

reconstruct the intended sequence of sounds by factoring out the variability

created by coarticulation or biases. But if the listener does not apply these

corrective rules (hypocorrection) or over-applies them (hypercorrection), the

listener-turned-speaker might produce the same sequence of sounds in a way

that reflects the lack or excess of normalisation applied in perception. For

example, if the listener does not compensate for the coarticulatory nasalisation

of the vowel in /man/, they might perceive and eventually reproduce some-

thing like /mãn/ or even /mã/. On the other hand, a purposefully nasalised

vowel which appears in adjacency to a nasal consonant may be hypercorrected

and thus perceived and reproduced as oral. Thus, in Ohala’s theory of the

origin of sound change, the listener’s misapplication of acquired compens-

ation rules can lead to a mini sound change (J. J. Ohala, 2012). By contrast,

Björn Lindblom’s H&H theory focuses on the speakers’ active role in sound

change, claiming that they adapt to their interlocutors’ informational needs

by hyper- or hypo-articulating (Lindblom, 1988, 1990, 1998; Lindblom et al.,

1995). When the message is low in informational density or can be derived

easily from context or prior knowledge, it is more likely that the speaker

hypo-articulates, resulting in a higher likelihood of phenomena such as un-

dershoot, centralisation, and coarticulation. Under these circumstances, the

listener is also more likely to direct their attention to the speech signal instead

of the message, and might therefore notice, store, and reproduce biased or

coarticulated speech sounds. That is, the origin of sound change according to

Lindblom lies in the adaptation of articulatory precision by the speaker, but

3
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depends also on the listener’s choice between the ‘what’- and the ‘how’-mode

(Lindblom et al., 1995). Yet another widely used theory of sound change is

provided by William Labov (e.g. Labov, 1963, 1966, 1972, 1990, 2001). His

influential work has examined the role of social factors such as gender, age,

social class or background, and ethnicity on the spread of a new variant. In

other words, whether or not a speaker adopts a new variant or propels a sound

change is dependent on their social indices and network. An opposing point

of view is taken by Peter Trudgill (e.g. Trudgill, 1986, 1999, 2004, 2008a,

2008b, 2011; Trudgill et al., 2000) who argued that sound change – at least

with regard to the emergence of new dialects – is not a question of identity,

but of numeric dominance. That is, if speakers from two or more dialects or

languages come into contact, as has often been the case through colonialism

and settlements, the linguistic outcome of that situation can be determined by

taking into account which variant is spoken by the largest amount of speakers.

Intermediate variants can emerge if the amount of speakers from two dialects

in contact are approximately equal.

These, as well as many other theories of sound change (including but not

limited to Beckman et al., 1992; Beddor, 2009; Bermúdez-Otero, 2020; Blev-

ins & Wedel, 2009; Bybee, 2015; Harrington et al., 2012; Harrington, Kleber,

Reubold, Schiel et al., 2019; Harrington & Stevens, 2014; Kerswill & Trudgill,

2005; Kirby, 2013; Martinet, 1952; Phillips, 1984; Solé, 2010; Sóskuthy et al.,

2018; Yu, 2013) typically focus on a subset of circumstances and factors that

are associated either to the emergence or to the propagation of sound change.

Although some models in recent years (Baker et al., 2011; Kirby & Sonderegger,

2015; Sóskuthy, 2013; Stevens & Harrington, 2014) aimed to contribute to

a solution of the actuation problem formulated by Weinreich et al. (1968), a

holistic model of sound change remains yet to be developed. Based on the

literature review, we can devise some desiderata that should be fulfilled by

such a model:

(a) The model should predict that sound changes are rare.

(b) The model should show which circumstances (including intra-

and extra-linguistic factors) can trigger specific sound changes.
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(c) The model should show how novel variants of sounds spread

through a community of speakers.

(d) The model should account for a variety of diverse sound

changes that have been observed in linguistically unrelated

languages.

Even though the previously mentioned studies have enhanced our under-

standing of sound changes in many ways, developing this model remains an

immensely complicated endeavour. Thankfully, the steady increase of com-

putational power in the past two decades has enabled researchers to find

new approaches to solving complex problems, one of which is agent-based

modelling.

Agent-based models (ABMs) have found wide recognition as a helpful

technique in many other scientific fields. Most prominently at the time of writ-

ing, ABMs were used to predict the spread of the Sars-Cov2 virus during the

COVID-19 pandemic while taking into account vaccination rates, immunity

levels after a vaccination, information on the infectiousness of novel strains

of the virus, data on the movements of people provided by telecommunica-

tion companies, and many other factors (Castiglione et al., 2021; Gomez et al.,

2021; Hackl & Dubernet, 2019; Keskinocak et al., 2020; Schlüter et al., 2021).

Simulations like these can help inform political decisions in order to limit the

spread of the virus. Another example of an agent-based model with political

implications is the one by Hassani-Mahmooei and Parris (2012) which invest-

igates internal migration movements in Bangladesh as a result of extreme

weather events caused by climate change, poverty, and high population density.

Similarly, Tonn and Guikema (2018) investigate how individual behaviour,

technical interventions, and harm reduction efforts through policy influence a

community’s flooding risk. In the social sciences, applications of ABMs range

from studies about the connection between police presence and crime levels

(Wise & Cheng, 2016) to investigations of the factors that influence an election

outcome (Laver & Sergenti, 2011). All of these ABMs have in common that the

observed entity changes over time as a result of the interplay between factors

inherent to the interacting individuals, their environment, or the entity itself.
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These computational models are therefore also ideally suited for modelling

changes of speech sounds.

The first of the two main aims of this thesis is to program, describe, and

demonstrate the mechanisms of an ABM of sound change which can be used

to gain insights that will eventually contribute to a holistic model of sound

change. More specifically, the model presented here shows how sound change

can emerge from the stochastic interactions between phonetically heterogen-

eous agents. The agents’ speech production and perception is shaped by their

exposure to diverse speech input and the agents can derive and reorganise

phonological information from their own stored traces of speech. This model

therefore provides an artificial world and controlled environment in which

the role of and interplay between cognitive, social, and linguistic factors in

sound change can be explored. Chapter 3 was written in pursuit of this first

aim, with section 4.3 showing a use case of the ABM.

The second main objective of this thesis is to provide a dynamic analysis of

a sound change in progress in Andalusian Spanish. This variety of Spanish is

characterised by a debuccalisation or lenition of /s/, especially before voiceless

plosives. An example of this can be seen in Figure 1.1a which shows the wave-

form and sonagram of the word despide (engl. she/he fires) produced by an An-

dalusian Spanish speaker. The arrow indicates the occurrence of friction noise

right before the closure in /p/, i.e. the plosive is pre-aspirated. Pre-aspiration

is considered a relatively rare feature in the world’s languages (Bladon, 1986;

Gilbert, 2023b; Silverman, 2003) and also in Andalusian Spanish it is currently

in the process of being replaced by post-aspiration. That is, instead of produ-

cing the word despide as /dehpide/, it is produced as /dephide/, as shown in

Figure 1.1b. The aspiration phase occurs after the closure in this case. Phono-

logically, however, Andalusian Spanish does not have post-aspirated voiceless

plosives, e.g. the plosives in the word pata (engl. paw) are both unaspirated

and remain unaffected by the change in /sp, st, sk/. The synchronic basis of

the sound change by which pre- gives way to post-aspiration is believed to be a

resynchronisation of articulatory gestures at faster speech rates (Parrell, 2012).

More specifically, the way that the glottal opening is aligned with the oral

closure determines whether a voiceless plosive is unaspirated (both gestures
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(a)

(b)

Figure 1.1: Waveform and spectrogram of the word despide (engl. she/he fires) by (a)
an older East Andalusian speaker who produced the /sp/ cluster with pre-aspiration,
and (b) by a younger West Andalusian speaker who produced the cluster with post-
aspiration. Arrows indicate the position of the aspiration phases. The spectrogram
range goes up to 8 kHz.
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must be synchronised and of the same duration), pre-aspirated (the closure

is formed after the glottis has been opened), or post-aspirated (the closure is

released while the glottis is still open). That is, according to this account from

articulatory phonology (Browman & Goldstein, 1989, 1992; Goldstein & Brow-

man, 1986) pre- and post-aspiration are inversely related through the timing of

the closure with respect to the onset of the voiceless interval. So far, however,

this sound change has only been investigated by measuring the duration of

the aspiration phases. While duration measurements can certainly document a

decrease in pre- and an increase in post-aspiration, this kind of static analysis

cannot deliver any insights about the gestural realignment that may be at play

in Andalusian Spanish. Moreover, duration measurements are based on an

artificial and superimposed segmentation of the speech signal, which can be

quite arbitrary and unreliable (Fowler & Smith, 1986). Indeed, sound changes

arise from the dynamics of speech, i.e. from the imprecision of articulatory

gestures and the resulting overlap and mutual interference of speech sounds.

It is therefore vitally important to use methods in the investigation of sound

changes that mirror the dynamic nature of spoken language. The second aim

of this thesis is therefore not just to dynamically analyse the change from pre-

to post-aspiration in Andalusian Spanish, but to show that it is feasible to

capture the alignment of the articulatory gestures without having to collect

physiological data. This aim was pursued in chapter 2 and section 4.2.

1.2 Overview

This thesis consists of three main chapters. Chapter 2 is concerned with a

phonetic analysis of the change from pre- to post-aspirated /sp, st, sk/ in

Andalusian Spanish that uses time-varying acoustic signals instead of a more

traditional segmental approach. For 48 speakers of Andalusian Spanish, which

are equally distributed across two age and two regional groups, the voicing

probability (VP) and the high-frequency energy (HF) are measured between

the two vowels on either side of the aspirated clusters. VP represents the

glottal gesture, i.e. voicing or voicelessness, while HF represents the degree

of closure as well as aspiration noise. The alignment of these signals indicates
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the presence and location of aspiration around the closure since aspiration is

characterised by voicelessness, friction noise, and lack of closure. These two

signals are used as input for Functional Principal Component Analysis (FPCA),

a technique that returns the main modes of variation in the signals’ shapes

(Principal Components, PCs). The analysis shows that the first PC captured the

phasing of the closure in relation to the voiceless interval. This indicates that

pre- and post-aspiration are inversely related to each other through the timing

of the closure. Moreover, it is shown for the first time that the trade-off between

pre- and post-aspiration is also signalled by the amplitude of the aspiration

noise. Thus, this dynamic analysis is not only an appropriate investigation

of the gestural realignment hypothesis, but also delivers new insights on

the change towards post-aspiration. The first PC additionally distinguished

between the speaker groups: younger speakers are shown to produce /sp, st,

sk/ with more post-aspiration than older speakers who predominantly use pre-

aspiration; the sound change is also further advanced in speakers from West

than East Andalusia. These results establish a link between the synchronic

basis (i.e. the resynchronisation of articulatory gestures) and a sound change

in progress by means of the apparent-time approach. The conclusion from this

study is that a resynchronisation of the closure relative to the voiceless interval

is causally related to this sound change in progress by which pre-aspirated

clusters of /s/ plus voiceless plosive come to be post-aspirated. Crucially, these

results could only be achieved by means of this dynamic method and by using

production data from a variety of speakers.

Chapter 3 is about the mechanisms and processes of a cognitively-inspired,

computational agent-based model (ABM) which was implemented as an R

package called soundChangeR. Agents in this model are representations of

human individuals, i.e. they are initialised with production data from real

speakers and are capable of producing and perceiving exemplars. Exemplars

are parameterised traces of speech that are stored in the agents’ memories

together with the word in which the sound was uttered. Exemplars and words

are linked via phonological classes which are either pre-determined by the

user or computed by means of two machine learning algorithms. Simula-

tions showed that the second option to derive phonological knowledge has

9
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advantages over the first option because the machine learning algorithms were

capable of identifying reasonable sub-phonemic classes in both systematically

and randomly distributed (artificially generated) data. Moreover, this flexible

phonology module is supported by usage- and exemplar-based theories of

language which claim that phonological classes are abstractions over clouds

of exemplars which are different from speaker to speaker because of their

individual language exposure. Using another set of artificially created data,

it was then demonstrated that the perceptual constraints greatly impact the

simulation outcome. In soundChangeR, the agent listener evaluates whether or

not to memorise a perceived exemplar by means of either one or both of the

following two criteria: The relative criterion determines whether the exemplar

is closer to its intended than to all other (sub-)phonological categories and thus

tests the exemplar’s discriminability. This criterion penalises acoustic ambigu-

ity (i.e. ambiguous exemplars are not memorised) and can therefore maintain

phonological contrasts. The absolute criterion, on the other hand, tests the

exemplar’s typicality by determining whether the exemplar is close enough

in terms of its Mahalanobis distance to the intended (sub-)phonological class.

The application of this criterion results in the reinforcement of phonetic biases

because broad and skewed phonological classes are more likely to incorporate

new exemplars than narrow ones. All in all, sound change in this ABM can

emerge from the stochastic interactions between agents as a result of their

production-perception loop and organisation of phonological information. The

model’s properties are discussed with respect to a variety of other computa-

tional models of sound change and some possible extensions to the current

architecture are proposed.

Chapter 4 combines the dynamic analysis technique from chapter 2 and

the agent-based model presented in chapter 3 to simulate the change from

pre- towards post-aspiration in Andalusian Spanish clusters. In the first part, a

dataset is composed of words containing either /st/ or /t/, the latter of which

is considered to be phonologically unaspirated. Thus, /t/ posits a phonological

contrast to /st/ which should not be affected by the sound change towards

post-aspiration and can therefore serve as a sanity check in the simulation.

The analysis showed that PC1 and, more clearly, PC4 separate /st/ from

10
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/t/, i.e. the cluster is characterised by a longer voiceless interval, more high-

frequency energy, and therefore more overall aspiration. According to this

parameterisation, /t/ is produced with a small amount of post-aspiration

which does not match its phonological description, but is also not unexpected

given that the release of the oral closure lets air escape with some force for a

few milliseconds before the vocal folds can start swinging again. PC2 captures

the location of the aspiration phase in /st/, i.e. whether the cluster is pre- or

post-aspiration (or a mixture of both). With the aim of modelling the change

by which pre- gives way to post-aspiration, the PC scores extracted in the

first part of chapter 4 are used as input to a simulation with soundChangeR in

the second part. The agents in this simulation represent older and younger

Andalusian Spanish speakers who exchange exemplars of /st/ and /t/. These

two canonical phonemes are correctly identified and maintained by the flexible

phonology module in soundChangeR, as expected. On the acoustic level, the

agents produce /t/ the same way after as compared to before the interactions,

but younger and older agents converge towards a common variant of /st/ that

is characterised by both pre- and post-aspiration. This result can be attributed

to the lack of skew in the older agents’ PC scores towards those of the younger

agents. Skew and orientation of phonemic classes in combination with selective

memorisation are a key mechanism in soundChangeR which can trigger acoustic

changes, as shown in section 3.3.2. Two further possible reasons for the ABM’s

failure to accurately model the change in Andalusian Spanish are discussed

in the final part of chapter 4. The first is soundChangeR’s general bias against

extreme exemplars which might pose a problem given that such outliers are

particularly salient and might play an important role in sound changes. The

second is that soundChangeR cannot model the re-weighting of perceptual

cues which is considered an important part of sound changes which involve

phonologisation.

The insights gained from the three main chapters are summarised in

chapter 5 which also provides ideas and proposals for further research in

this field.
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2 | A Dynamic Analysis of
Aspiration Phases in
Andalusian Spanish

Abstract

In Andalusian Spanish, there is a well-documented sound change in which

pre- has become post-aspiration in sequences of /s/ followed by voiceless

stops. Here we investigate acoustically its synchronic basis across two age

groups and two different regions of Andalusia that differ in the degree

to which the sound change has advanced. For this purpose, Functional

Principal Component Analysis (FPCA) was applied to the probability of

voicing and to the degree of closure that had been estimated from the

speech signal extending between the two vowels on either side of the

aspirated cluster. The first principal component derived from FPCA was

mostly associated with changes to the timing of the closure. Earlier clos-

ures were characteristic of both younger and West Andalusian speakers

and of alveolar stops. In the signals parameterised by the first PC score,

post- and pre-aspiration were found to be acoustically inversely related to

each other and predictable from closure timing. The general conclusion

is that the sound change by which pre- evolves into post-aspiration is a

derivative of resynchronising the closure relative to the voiceless interval

that emerges after decomposing speech signals varying over a wide range

of speakers into principal components of variation.

This chapter was published as Cronenberg et al. (2020) and is printed here with

permission from Elsevier. The layout has been adapted to fit the general layout

of this thesis. See Appendix A.1 for the authorship contribution statement.

Footnotes 1 and 2 were added to answer points raised by the reviewers of this

thesis.
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2. A Dynamic Analysis of Aspiration Phases in Andalusian Spanish

2.1 Introduction

The southern varieties of Spanish are derived from 13th century Castilian Span-

ish, when groups of speakers from different, yet mutually intelligible dialects

came into contact with each other during the Reconquista (Villena-Ponsoda,

2008). The resulting dialects, i.e. the regiolects of Andalusia, Extremadura, the

Canary Islands, and – because of emigration from Andalusia to South America

– some American varieties of Spanish, have since undergone many changes,

among them the lenition of the voiceless alveolar sibilant /s/ (Canfield, 1981;

Villena-Ponsoda, 2008). This sound change, that dates back to the beginning

of the 18th century according to Mondéjar Cumpián (2001) and Terrell (1980),

manifests itself as /s/-debuccalisation and affects the sibilant in a wide range

of positions: word-medially before consonants as in este /ehte/ (engl. this),

word-finally before consonants as in las toman /lahtoman/ (engl. they take

them), word-finally before vowels as in las alas /lahala/ (engl. the wings), and

in some cases even word-initially as in sí /hi/ (engl. yes) (Momcilovic, 2009;

Torreira, 2006). This type of reduction affects not only /s/ but also other fricat-

ives in Andalusian Spanish. Mondéjar, for instance, shows that words like ajo
(engl. garlic) have changed their place of articulation from uvular /X/ to glottal

/h/: /aXo/ > /aho/ (Mondéjar Cumpián, 2001). Also, the interdental fricat-

ive /T/ can be lenited to /h/ in syllable-final position in the South of Spain,

such as in voz /voT/ > /voh/ (engl. voice). The debuccalisation of fricatives

is a fairly common process in the languages of the world (Solé, 2010; Terrell,

1980). Consider for example the existence of prefixes such as super-/hyper-,
sex-/hex-, semi-/hemi- in present-day English. Such alternations between /s/

and /h/ derive from borrowings from Latin, which did not lenite /s/ to /h/,

and Classical Greek which has developed away from its Proto-Indo-European

(PIE) roots and has undergone /s/-debuccalisation, e.g. PIE septḿ
˙

> Cl. Greek

hEptá (engl. seven) (J. J. Ohala, 1993b).

The debuccalisation of /s/ before voiceless plosives has led to the develop-

ment of pre-aspirated plosives in Andalusian Spanish, e.g. in esquina /ehkina/

(engl. corner) (Ruch & Harrington, 2014; Torreira, 2007). Romero (1994) links

the historical development of pre-aspiration to the production of /s/ with a
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laminal place of articulation in Andalusian as opposed to the post-alveolar,

apical production of Castilian Spanish /s/. Romero (1994) also suggests that

pre-aspiration may have been more likely to arise in Andalusian than in

Castilian Spanish because, in comparison with an apical /s/, the gestures in

producing a laminal /s/ are slower and less extensive as a result of which a

laminal /s/ is more likely to be lenited.

The phonetic characteristics of the sibilant in /sC/ vary due to a number of

factors such as stress, lexical frequency, and speech rate (Alvar, 1955; Parrell,

2012; Ruch & Peters, 2016; Terrell, 1980; Torreira, 2006; Villena-Ponsoda,

2008). There is mixed evidence about whether /s/-aspiration is accompanied

by quality differences in the preceding vowel (see Herrero de Haro, 2017 for a

review). Auditory impressions suggest that the preceding vowel has a more

open quality if /s/ is aspirated or deleted (Navarro Tomás, 1938) leading to

singular/plural distinctions in East Andalusian Spanish in final and principally

mid vowels if the following /s/ is completely deleted, e.g. paso ["paso] (engl.

step) vs. pasos ["pasO] (engl. steps) (Hualde & Chitoran, 2016; Hualde & Sanders,

1995). Such differences in quality in mid vowels may also spread anticipatorily

to the stem in a form of metaphony leading to distinctions such as perro
[pefirofi] (engl. dog) vs. perros [peflrO] (engl. dogs). However, further experimental

data is needed to support these impressions (Torreira, 2007). Gerfen (2002)

also provides some evidence of a greater duration of the consonant closure

and of a correspondingly lesser duration of the vowel in pre-aspirated East

Andalusian post-vocalic /sC/ words (e.g. pasta /pasta/ [paht:a], engl. pasta)

than in corresponding singleton /C/ words (e.g. pata /pata/ [pata], engl. paw),

but only on the assumption that vowel duration was defined to extend from

its acoustic onset to the offset of pre-aspiration.

The phonetic characteristics of /s/ in Andalusian Spanish also vary by

age and regional origin of the speakers. Pre-aspiration in word-medial /sC/

clusters fairly consistently occurs in the speech of older speakers from Granada

(East Andalusia) and may be accompanied by breathy voice during the preced-

ing vowel or a longer closure duration (Gerfen, 2002; Torreira, 2006). Younger

speakers from Seville (West Andalusia), on the other hand, were found to

produce pre-consonantal /s/ either as pre-aspiration, or as post-aspiration,
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e.g. /ekhina/, or as a combination of both, e.g. /ehkhina/ (Ruch, 2013; Ruch &

Harrington, 2014; Ruch & Peters, 2016; Torreira, 2012). These findings provide

evidence for a sound change in progress from pre-aspirated to post-aspirated

voiceless stops in Andalusian Spanish that, so far, has taken stronger hold

in younger speakers from West Andalusia than in older speakers from East

Andalusia.

Regular sound change is often directional due to the existence of a phonetic

bias that promotes the change to work in one, but not the contrary direction

(Harrington et al., 2018; Labov, 1994). In the case of Andalusian Spanish,

it is a faster speech rate that favours a decrease in pre-aspiration and an

increase in post-aspiration. Parrell (2012) has shown that the /st/ cluster in

the word pastándola (engl. grazing it) exhibits more post-aspiration and less

pre-aspiration in fast than in slow speech. Similarly, it has been found for

Cuban Spanish that the educated societal class retains /s/ as a sibilant in

22% of all cases in semiformal speech, but only in 3% in fast and informal

speech (Terrell, 1980). The weaker perceptual salience of pre-aspiration in

comparison with post-aspiration may be an additional bias (Bladon, 1986;

Ruch, 2018; Ruch & Harrington, 2014). In the production of post-aspirated,

but not pre-aspirated stops, there is a build-up of air-pressure behind the

closure which results in an acoustic burst (Fant, 1973) and a rapid modulation

of the acoustic signal when the stop is released. The strong perceptual salience

of a post-closure release is demonstrated in perception experiments in which

listeners’ judgements of place of articulation in heterorganic stop consonant

clusters C1C2 in VC1C2V are swayed far more by C2 than by C1 (J. J. Ohala,

1990). Moreover, in a perceptual experiment by Ruch and Harrington (2014),

listeners of Argentinian Spanish who typically produce /sC/ clusters with

pre-aspiration and no post-aspiration (Aleza Izquierdo & Enguita Utrilla, 2002;

Torreira, 2006) were more inclined to perceive pasta in a continuum synthesised

between singleton pata (engl. paw) and pasta (engl. pasta) when the continuum

was created with a long (27 ms) as opposed to short (13 ms) duration of post-

aspiration. Thus, Argentinian Spanish listeners are nevertheless influenced

by post-aspiration as a cue to the distinction between post-vocalic /st/ and

post-vocalic /t/, even though they produce pre- and not post-aspirated stops
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and even though (in contrast to Andalusian Spanish) there is no evidence

of a sound change in progress in this variety in which pre- are becoming

post-aspirated stops.

The synchronic basis for the sound change by which pre- has evolved

into post-aspiration as proposed by Parrell (2012) is a resynchronisation of

autonomous articulatory gestures that also typically occurs at faster rates of

speech (cf. e.g. Beddor, 2009; Davidson, 2006). In this model, depicted in

Figure 2.1, the oral tract constriction gesture (solid) for the stop closure shifts

to be in phase with the glottal opening gesture (dashed) at faster rates of

speech. A direct consequence of the shift from anti- to in-phase timing is a

decrease in pre-aspiration and an increase in post-aspiration strength: that is,

a by-product of this resynchronisation is that the articulatory durations of pre-

and post-aspiration stand in an inverse relationship to each other.

pre−aspiration closure

0

1

1

post−aspirationclosure

0

1

Time

voicing
closure

2

Figure 2.1: Idealised scheme of resynchronisation of the closure with the voiceless
interval in Andalusian Spanish /s/-aspiration. The solid line is the glottal gesture,
where low values stand for an open glottis and hence voicelessness, the dashed line is
the oral constriction gesture of the voiceless plosive, where the minimum of the curve
indicates maximal closure.
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It is possible – although so far undemonstrated for aspiration in Andalus-

ian Spanish – that this inverse articulatory relationship forms the basis of

a perceptual trading relationship by which listeners parse aspiration from

the speech signal but might be agnostic about its temporal location (about

whether aspiration occurs before the closure, after the closure, or both; Ruch

and Harrington, 2014). There is a potential analogy to a different type of sound

change involving the phonologisation of nasalisation studied by Beddor and

colleagues in recent years (Beddor, 2009, 2012; Beddor et al., 2018). Their

model is informed by at least four related sets of studies from speech percep-

tion. Firstly, listeners are sensitive to anticipatory coarticulation in perceiving

speech (Alfonso & Baer, 1982; Martin & Bunnell, 1982): listeners perceive a

speech sound close to its articulatory onset, i.e. from the time at which there

is coarticulatory evidence for the speech sound in the acoustic signal (Fowler,

1984, 2005). Secondly, listeners weight differently the multiple cues to speech

sounds that originate from overlapping and coproduced speech gestures (Bo-

ersma et al., 2003; Clayards, 2018; Francis et al., 2000; Holt & Lotto, 2006;

Idemaru et al., 2012). Thirdly, listeners have the capacity to re-weight cues

(Boersma et al., 2003; Francis & Nusbaum, 2002; Harmon et al., 2019; Idemaru

& Holt, 2011) as also shown by studies of perceptual learning (McQueen et al.,

2006; Norris et al., 2003; Reinisch and Holt, 2013, see Samuel and Kraljic, 2009

for a review). Cue reweighting in perception has also recently been shown

to carry over to speech production (Lehet & Holt, 2017). Fourthly, the cues

can enter into a so-called trading relationship (Beddor, 2009; Best et al., 1981;

Haggard et al., 1981; Kingston et al., 2008; Kirby, 2014b; Repp, 1982; Whalen

et al., 1990) in which listeners can pay more attention to a secondary cue if

the primary cue to a phonological contrast is compromised. In many types

of sound change such as the development of contrastive vowel nasalisation,

metaphony (Savoia & Maiden, 1997; Torres-Tamarit et al., 2016), and tono-

genesis (Hagège & Haudricourt, 1978; Hombert et al., 1979), secondary cues

that were initially brought about by coarticulation become primary while the

primary cues are downweighted and typically completely disappear (thus

leading to e.g. the development of present-day German Füße /fys@/ (engl. feet)

from old High German /fotiz/ in which there is no trace left of /i/ which
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initially caused via VCV coarticulation the fronting of the high back vowel

in the first syllable; see Kiparsky, 2015; Penzl, 1949; Twaddell, 1938). This

stage, in which the secondary cues become primary and primary cues have all

but vanished is when the sound change is in the process of phonologisation

(Bermúdez-Otero, 2015; Bermúdez-Otero & Trousdale, 2012; Hyman, 2013;

Kiparsky, 2015; Ramsammy, 2015). Beddor showed that the precursor to phon-

ologisation is the development of a perceptual trading relationship (Beddor,

2009, 2012). When the cues for a feature trade, then listeners perceive the

feature but without necessarily associating it with the coarticulatory source or

effect: thus, in American English send, they hear nasalisation somewhere in the

rhyme without parsing the nasalisation with either of the rhyme’s constituents

(the vowel or the coda /n/).

The studies by Beddor and colleagues further suggest that the physiological

basis of such a trading relationship is an inverse relationship between the

coarticulatory source and effect. As far as nasalisation is concerned, this is

modelled as the temporal sliding of a nasal gesture of constant articulatory

duration into the gesture for the vowel (Beddor, 2009; Beddor et al., 2007): the

more the two gestures overlap, the greater the extent of vowel nasalisation and

the smaller the degree of articulatory prominence of the post-vocalic nasal.

The purpose of the present study is to determine from an acoustic analysis

whether there is any evidence of this type of gestural sliding in the production

of /s/-aspiration in Andalusian Spanish that could in turn form the basis of a

perceptual trading relationship as proposed by Beddor. There are evidently

similarities in the proposed physiological model that underlies both types of

sound change. Thus, in both Beddor’s model of the production of nasalisation

and in that proposed by Parrell (2012) for /s/-aspiration, the consequence

of sliding the gesture of constant duration in the direction that eventually

leads to the sound change is that, as one of the cues wanes (post-vocalic

/n/; pre-aspiration) the other becomes more prominent (coarticulatory vowel

nasalisation; post-aspiration).

One of the main aims of the present study is to analyse /s/-aspiration

in Andalusian Spanish in order to determine whether there is any evidence

for the type of model proposed by Parrell (2012) in which pre- and post-
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aspiration stand in an inverse relationship to each other as a consequence of

the resynchronisation of articulatory gestures of relatively constant duration.

Neither studies by Ruch and colleagues (Ruch, 2013; Ruch & Harrington,

2014; Ruch & Peters, 2016) nor Torreira (2007) have found much evidence

in support of such a relationship. Moreover, Ruch and Harrington (2014)

showed that the closure duration, far from being stable, was influenced by

the age and regional origin of the speakers. On the other hand, none of these

studies nor indeed Parrell’s (Parrell, 2012) are necessarily appropriate tests

of the model in Figure 2.1 because they are based on vertical segmentations

of the speech signal (as defined in van der Kooij and van der Hulst, 2005,

p. 167) into pre- and post-aspiration and a closure instead of modelling more

directly how glottal and supraglottal gestures are aligned and potentially

resynchronised. Segmentations are often unreliable and arbitrary given the

dynamic nature of speech (Fowler & Smith, 1986), so it might be the case that

a trading relationship can only be identified by considering a representation

of speech that is a closer representation of the model in Figure 2.1. Moreover,

the type of trading relationship that has been identified in perception in

connection with sound changes in progress might come about only after a

listener has experienced talkers that differ in their use of the acoustic cues that

are traded in perception. For example, a listener might interpret perceptual

equivalence between Ṽ and VN only after having been exposed to many talkers

that differ in the extent to which they nasalise a vowel in a VN context. If this

is so, then a trading relationship might be related to variations regulated by

dynamic relations between two cues that characterise an entire population of

speakers.

The present study addresses these issues by computing two time-varying

signals from acoustic data of Andalusian Spanish, one being a proxy for the

glottal gesture, the other a proxy for the oral constriction gesture. According to

articulatory phonology (Browman & Goldstein, 1986, 1992), the alignment of

these two gestures with respect to each other is responsible for the presence or

absence of aspiration around the voiceless plosive C in sequences like V1sCV2.

A central concern in section 2.2 will be to test whether there is any evidence

across the population of speakers that pre- and post-aspiration are negatively
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related through the phasing of the oral closure. The aim in section 2.3 is to

investigate whether age and regional origin of the speakers condition the

timing of the oral closure with reference to the voiceless interval. If so, this

would provide a link between the synchronic model in Figure 2.1 and a sound

change in progress by which pre-aspiration wanes and post-aspiration increases

in Andalusian Spanish /sC/ clusters. In the last part of this paper, we will

discuss how the dynamic analysis of speech can be beneficial to the study

of sound change and outline a new cognitive-computational model of sound

change which is based both on principles from articulatory phonology and

episodic models of speech.

2.2 Relation between Pre- and Post-Aspiration

There were two main issues of concern here. The first was to build a general

model of the synchronisation of the closure with the glottal opening (Figure 2.1)

based on the entire database of V1sCV2 sequences across speakers of different

age groups and regions. Functional Principal Component Analysis (FPCA) was

used for this purpose since it can model two (or more) time-varying signals

simultaneously (Gubian et al., 2019; Gubian et al., 2015). The second was to

test in this general model the extent to which pre- and post-aspiration are

predictable from closure phasing.

2.2.1 Method

2.2.1.1 Speakers and Materials

The data analysed in this study was taken from a larger speech database

collected by the fourth author of this paper (Ruch, 2013). Parts of this database

have been analysed elsewhere (Ruch, 2013; Ruch & Harrington, 2014; Ruch &

Peters, 2016). The focus of the present study was on 48 speakers of Andalusian

Spanish who produced words containing /sC/ clusters in a V1sCV2 context

(C = /p, t, k/). The speakers were equally divided between two age groups

(younger: 20-36 years; older: 55-79 years) and two regions (East and West):

21



2. A Dynamic Analysis of Aspiration Phases in Andalusian Spanish

thus, there were 12 speakers for each of the four possible age group × region

combinations. The clusters occurred in the words listed in Appendix A.2.

The words in the available corpus had been constructed as far as possible to

include /s/-aspiration clusters in several mostly high frequency real words

for three places of articulation /sp, st, sk/ combined with one of the three

vowel types /i, u, a/. The majority (just over 80%) of words had a paroxytonic

lexical stress pattern with primary lexical stress on the penultimate syllable

(e.g. espía /es"pia/). Other stress patterns (e.g. pasta /"pasta/) or non-words (e.g.

bestiando) were used when there were an insufficient number of real words for

these place × vowel combinations.

The productions were elicited using a prompt in which each word appeared

individually or in a short sentence on a computer monitor (see Ruch and Har-

rington, 2014 for further details of the recording procedure). There were up to

three repetitions per speaker per word, thus giving a potential maximum of 48

(speakers) × 52 (words) × 3 (repetitions) = 7488 word tokens. However, not all

speakers produced three repetitions. Tokens which included errors of produc-

tion (in particular the production of the wrong target word or of a false start)

as well as any productions of target words with standard Spanish /s/ in the

/sC/ cluster were removed from further consideration following the procedure

in Ruch and Harrington (2014). This left 6393 word tokens. Furthermore, 446

productions in which the voicing probability peak in V1 and/or V2 was too

low to indicate voicing were also discarded since it was then not possible to

identify reliably the existence of pre- or post-aspiration. Another 82 tokens

were excluded because the PEFAC algorithm (see section 2.2.1.2) erroneously

computed the voicing probability peaks to occur during the closure, not during

the neighbouring vowels. A further 18 tokens were excluded from the analysis

because the target words were not fully recorded, i.e. the recording was clipped

at the end. Two tokens had to be excluded because of technical issues during

the automatic speech processing. The final count of the analysed word tokens
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was 5845, distributed across 48 speakers and 52 word types that included 20,

17, 15 word types containing /st, sp, sk/ clusters respectively.1

2.2.1.2 Acoustic Parameters

The synchronisation of the closure with the glottal opening was estimated

acoustically by means of two separate parameterisations of the acoustic signal.

The first of these, designed to model the glottal opening, was the voicing prob-

ability (henceforth VP) that was computed by applying the PEFAC algorithm

(Gonzalez & Brookes, 2014) to the original audio files with a 5 ms frame shift

and otherwise default settings. The second, which was used to model the supra-

laryngeal closure, was derived from the high frequency energy (henceforth

HF) in the speech signal. This was obtained by double-differencing the audio

signal to give 12 dB boost per octave (i.e. pre-emphasis) resulting in sharper

transitions between fricated and closure phases of the signal (Harrington &

Cassidy, 1999). These double-differenced signals were then high-pass filtered

at 3 kHz, from which the logarithmic root mean square energy was computed

with a window length of 20 ms and a frame shift of 5 ms. The resulting signal

was smoothed with a 20 Hz Butterworth low-pass filter (Butterworth, 1930),

then normalised such that 0 dB was set to the minimum of this signal dur-

ing the supralaryngeal closure (point M in Figure 2.2). An example of the

two resulting signals, HF and VP, for one utterance of the word estado (engl.

state) by an older West Andalusian speaker can be seen in panels 2 and 3 of

Figure 2.2, respectively. The interval that was processed within V1sCV2 was

1 A reviewer of this thesis suggested to go into more details about the relatively high percent-
age of excluded data and the effects this might have on the analysis. The primary reason
for excluding data is related to eliciting dialectal speech. The formal recording setting, the
non-native experimenter, and the reading task (note that Andalusian Spanish does not have
a written standard) can make it difficult for participants to produce their dialect (Bailey,
2017). In addition, older speakers can sometimes struggle to read aloud for the duration
of the experiment, leading to less repetitions and clipped audio files. Given that the aim
of this study was to analyse a regional variant of a sound, it was important to include only
non-Standard productions so as to ensure that the results reflect the dialectal characteristics
under investigation. An effect of /s/-aspiration that could not be studied using the methodo-
logy presented here was the devoicing of the vowels surrounding the aspirated cluster. For
future studies, it might thus be interesting to analyse the 446 tokens which were excluded
because the voicing probability was too low in V1 and/or V2.
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defined as extending between points A and B in Figure 2.1. Point A is the time

at which the voicing probability first attains its maximum value in V1 working

backwards in time from the time of maximum closure, M. Point B is the time

at which the voicing probability first attains its maximum value in V2 working

forwards in time from M. The other parts of the signal from the acoustic onset

of V1 to A and from B to the acoustic offset of V2 were excluded from the

analysis.2

2.2.1.3 Data Analysis

Functional Principal Component Analysis (FPCA) (Gubian et al., 2015; J. O.

Ramsay & Silverman, 2010) was used in order to find the main dimensions

of variation in the N = 5845 pairs of HFi(t) and V Pi(t) curves, i = 1, . . . ,N .

There were three pre-processing steps prior to applying FPCA. Firstly, in

order to obtain a functional representation from the time-sampled curves,

standard smooth interpolation techniques were applied using B-splines as

function basis (see Gubian et al., 2015 and J. O. Ramsay and Silverman, 2010

for details). Secondly, the signals were linearly time-normalised between the

times of the voicing probability maxima (time points A and B in Figure 2.2;

see Appendix A.6 for details of the effect of time normalisation). Thirdly, the

HF signals were also amplitude re-scaled by dividing each curve by the 75%

quantile of all HF values. This was done to ensure that HF and VP signals both

spanned approximately the same range between 0 and 1.3 As a consequence,

HF and VP were a closer representation of the model in Figure 2.1. This re-
2 A reviewer of this thesis noted that the relation between the articulatory gestures and

the chosen acoustic proxies could be discussed in more detail. While articulatory data is
more resource-intensive to collect and process than acoustic data, it might also allow for
a more fine-detailed insight into the alignment of the gestures involved in the production
of (aspirated) voiceless plosives. However, the main effects of these gestures – namely, the
presence or absence of voicing, closure, and aspiration noise – can be measured acoustically
to some level of accuracy, as shown in Figs. 2.2 and 2.3 and as stated by Fowler (2005) and
Fowler and Brown (2000). Of particular interest is the synchronisation of the point of full
oral closure with the peak glottal opening, although as this study shows the dynamics of
these movements are equally important.

3 The empirical choice of the 75% quantile as a normalising factor was justified by the obser-
vation that the distribution of HF values has a long right tail; thus an exact normalisation
based on the maximum would have compressed the HF signals to the extent that the VP
signal would dominate (VP > HF) most of the time.
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Figure 2.2: From upper to lower panels: Waveform, HF (amplitude-normalised high
frequency energy), and VP (voicing probability) signals over time for a production
of estado (engl. state) by an older West Andalusian speaker. A & B are the voicing
probability maxima in V1 and V2, respectively. M is the point of lowest amplitude
during the closure. The interval that was analysed extended between A and B.

scaling also prevented the principal components from being unduly influenced

by large amplitude values of one of the signals with respect to the other.
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The FPCA parameterisation was expressed by the following pair of equa-

tions applied between time-normalised values 0 and 1 (e.g. points A and B in

Figure 2.2):

HFi(t) ≈ µHF(t) +
K∑
k=1

sk,i · P CkHF(t) (2.1a)

V Pi(t) ≈ µV P (t) +
K∑
k=1

sk,i · P CkV P (t) (2.1b)

where µHF(t) and µV P (t) are the mean signals, e.g. µHF(t) = 1
N

∑
iHFi(t), the

functions P CkV P (t) and P CkHF(t) are K pairs of Principal Components (PCs),

k = 1, . . . ,K , which are based on the entire data set, and sk,i are weights or

scores, which modulate each PCk differently for each signal pair (HFi(t),V Pi(t)).

Formally, Eq. (2.1) follow the same structure of ordinary PCA in which any

input signal is approximately decomposed into a linear combination of K

PCs added to the mean. The main difference in comparison with PCA is

that in FPCA the input, mean, and PCs are functions of time as opposed to

vectors of real numbers. Crucially, the linear combination expressed by PC

scores modulates the PCs for both dimensions together, i.e. s1,i , s2,i , . . . , sk,i are

the same in Eq. (2.1a) and (2.1b), which is essential for capturing systematic

co-variations across dimensions. Using the R package fda,4 we computed

the first K = 3 PCs for the set of 5845 smoothed curve pairs of HF(t) and

V P (t) which explained 31.5%, 24.3%, and 14.5% of the variance in the curve

shapes respectively (70.3% combined). Only the first PC is considered in

the remainder of this paper since the second and third added very little to

explaining phonetic variation in the data that was relevant to the sound change

at hand (see Appendix A.5 for more details on PC2 and PC3).

The resulting PCs and PC scores can be used to reconstruct individual pairs

of signals. The reconstructed curves tend towards an ever closer approximation

to the original signals as the number of PCs that are used in the reconstruction

4 Version 2.4.0 was used here. More recent versions (5.1.5.1 being the current one at the time
of writing) can be used as well, provided that PC scores are summed across dimensions.
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is increased (i.e. for increasing values of K in Eq. (2.1); see Figure 4 in Gubian

et al., 2015 for an example). This operation is demonstrated in Figure 2.3 for

one clearly post-aspirated and one clearly pre-aspirated instance of the word

despide (engl. he/she/it fires) produced by two different speakers. The normal-

ised time points 0 and 1 correspond to the beginning and end respectively of

the sequence of interest V1sCV2 (cf. points A and B in Figure 2.2). Row 2 in

this plot shows HF (solid) and VP (dashed) which were obtained as described

in section 2.2.1.2. Row 3 instead shows the HF and VP signals which were

reconstructed using only PC1 and the corresponding PC score s1 (0.46 for the

post-aspirated token, −0.48 for the pre-aspirated token) in Eq. (2.1). It is clear

from Figure 2.3 that the reconstructed curves in row 3 are similar in shape,

but smoother versions of the raw HF and VP signals in row 2 that were derived

directly from the speech signal. Rows 2 and 3 of the left column of Figure 2.3

show the in-phase timing of the articulatory gestures represented by HF and

VP, in which the closure of the plosive and the start of the voiceless interval

are approximately synchronous, resulting in post-aspiration. By contrast, HF

and VP in the right column of Figure 2.3 show an anti-phase timing in which

the closure is delayed relative to the start of the voiceless interval, resulting in

pre-aspiration. Recall that we expect there to be a closure when both HF and

VP show very low values, i.e. when there is very little energy as well as hardly

any or no voicing. Overall, the HF and VP signals matched the waveforms

very well. While there can be some imprecisions due to erroneous VP values

or residual noise in the HF signal, a visual inspection of several signal pairs

showed that the curves represented quite consistently and accurately the pre-

and post-aspiration phrases.

2.2.1.4 Estimating Aspiration

In order to quantify the extent of aspiration before and after the closure,

the area Atot enclosed between the two curves HF and VP for HF > VP was

measured. The reason why Atot is an appropriate measure for aspiration is

that aspiration occurs whenever VP as the proxy for the glottal gesture is

low (i.e. no voicing) and HF as the proxy for the oral constriction gesture is
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Figure 2.3: Example of a post-aspirated and a pre-aspirated token extending between
points A and B (see Figure 2.2) in V1sCV2 in the word despide (engl. he/she/it fires).
The post-aspirated token (left column) was produced by a young West Andalusian
speaker, the pre-aspirated token (right column) was produced by an older East An-
dalusian speaker. The first row shows the waveforms, the second row shows HF (solid)
and VP (dashed) calculated on the raw speech signals as described in section 2.2.1.2,
the third row shows HF and VP as reconstructed based solely on PC1 using Eq. (2.1).
The yellow areas are Apre and the blue areas are Apost as in Eq. (2.2).

high (i.e. no closure), as suggested by Figure 2.1. The influence of pre- and

post-aspiration that precede and follow the closure was respectively estimated

from the areas Apre and Apost defined in the same way as Atot but spanning the

normalised time intervals up to and beyond the minimum of HF, respectively

(hence Atot = Apre +Apost). Formally:
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Apre =
∫

(HF>V P )∩(0≤t≤tM )

(
HF(t)−V P (t)

)
dt (2.2a)

Apost =
∫

(HF>V P )∩(tM≤t≤1)

(
HF(t)−V P (t)

)
dt (2.2b)

where tM = argmintHF(t) (cf. point M in Figure 2.2, panel 2). The constraint

HF > VP was introduced in order to exclude negative areas which, in contrast

to the positive areas which we take as an estimate of aspiration strength, would

not have any meaning in this context.

This method for inferring aspiration strength from area calculations is

entirely independent of the functional data analysis, i.e. Eq. (2.2) does not

specify how HF and VP were obtained. Examples of the area calculation both

on raw (row 2) and reconstructed data (row 3) can be seen in Figure 2.3. That

is, wherever HF > VP, Apre (yellow) was computed as the area between the

curves from normalised time point 0 to the point of maximal closure, and Apost
(blue) was computed as the area between the curves from the point of maximal

closure to time point 1. Figure 2.3 shows that Apost is large while Apre is very

small for the post-aspirated token on the left, whereas the opposite is true

for the pre-aspirated token on the right. This was so both when HF and VP

were obtained from the raw speech signals and when they were reconstructed

using only PC1. It can also be seen that the areas partially extend into the

vocalic parts of the segments. This is because aspiration (and in particular pre-

aspiration) could often overlap with the vowel in a breathy voice production.

This type of temporal overlap can be expressed by the area measurements

proposed here, but is far more difficult to represent using durations extracted

from vertical segmentations of the acoustic speech signals into the vowel and

aspiration.5

5 Appendix A.7 shows how the methods which were chosen for data analysis and the quantific-
ation of aspiration compare to various other methods, including the use of more conventional
segmental durations.
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2.2.2 Results

We consider firstly the variation in PC1 derived from an application of FPCA to

the whole data set; and secondly an analysis of the how pre- and post-aspiration

are related based on area calculations.

Figure 2.4 shows the relationship between quantitative changes in the first

PC score and qualitative changes in the two signals HF and VP. The middle

panel contains the mean signals µHF(t) (solid) and µV P (t) (dashed) across all

input signals. These mean curves change, however, when s1 is set to positive

(right column) or negative values (left column), and all other scores to zero

(recall Eq. (2.1)). Thus, the panels from left to right show how the shapes of

the VP and HF signals are modified as the first PC score changes from negative

to positive values. We chose these representative PC score values to be ±σs1 ,

i.e. we added to, or subtracted from, each mean curve only the PC1 curve

multiplied by 0.28, the standard deviation of the first PC score s1.

µHF VP(t) − σs1
⋅ PC1HF VP(t) µHF VP(t) µHF VP(t) + σs1

⋅ PC1HF VP(t)
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Figure 2.4: Variation expressed by PC1. The middle panel shows the mean curves
µHF(t) and µV P (t), which were modified by adding to (right panel) or subtracting from
(left panel) each mean curve the PC1 curve multiplied by the standard deviation of s1.
The exact formulae are given in the panel headings.

PC1 was closely related to the dynamic changes predicted by the model

in Figure 2.1. A comparison of the left, central, and right panels of Figure 2.4

shows that PC1 modelled a phase shift relative to the VP signal of an HF-
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minimum that corresponds to the instant when the maximal constriction

of the vocal tract is attained. More specifically, variations from negative to

positive s1 resulted in a shift of the signal associated with the closure from

late to early. Note, however, that it is not a necessary consequence of FPCA

that the first PC describes a phase shift, nor that it coincides with the shape

variation that is most relevant for the analysis it was employed for, as no prior

information on the relevance of a phase shift was introduced as input to FPCA.

The first PC simply explains (by definition) the largest amount of variance

in any given data set. In the case reported here, it is coincidental that the

most relevant kind of variation was captured by PC1 (the reader is referred to

Appendix A.5 for an analysis of PC2 and PC3).

A test was then made of whether the closure phasing expressed by PC1

conditioned the extent of aspiration before or after the closure. To this end, HF

and VP were derived from Eq. (2.1) using only PC1 (cf. Figure 2.4, or Figure 2.3,

row 3) and the areas Apre, Apost, and Atot = Apre +Apost were computed using

Eq. (2.2). Figure 2.5 shows these areas as a function of the first PC score s1. The

steep and opposite trends of the lines for Apre(s1) (yellow) and Apost(s1) (blue)

indicate that pre-aspiration and post-aspiration were indeed related through

the phase shift of the closure expressed by changes in s1. More specifically,

when s1 was negative (e.g. left panel in Figure 2.4), the closure in the HF

signal was in an anti-phase relationship with the opening of the glottis, thus

leaving more time for pre-aspiration (large Apre) and less for post-aspiration

(small Apost) to occur, and vice versa for positive s1 (see e.g. the right panel in

Figure 2.4 in which a closure is represented by low values in both HF and VP).

The overall area Atot(s1), i.e. the total amount of aspiration, remained stable

across all values of s1. Appendix A.3 provides proof that the steepness of the

lines Apre(s1) and Apost(s1) is high, while Atot(s1) does not significantly depart

from a flat line.

2.2.3 Discussion

The aim of this section was to identify whether there was a relation between pre-

and post-aspiration strength, following the model in Figure 2.1. When FPCA
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Figure 2.5: Apre (yellow), Apost (blue), and Atot = Apre +Apost (black) computed by
using Eq. (2.2) as a function of s1, when the signals HF and VP are defined as in
Eq. (2.1) using only PC1.

was applied to HF and VP that had been extracted from the speech signals

and that represent the oral constriction and glottal gesture respectively, it was

found that the most important dimension for explaining the variance in these

Andalusian data was the relative alignment of the closure which was captured

by PC1 and modulated by score s1. Moreover, a reconstruction of HF and VP

using only PC1 in Eq. (2.1) (thereby eliminating all other sources of variation)

showed a clear relationship between closure timing, pre-, and post-aspiration.

Thus, later closures were associated with more extensive pre-aspiration and less

extensive post-aspiration while for earlier closures pre-aspiration diminished

and post-aspiration increased.

The results of this first part therefore provide some support for the model

in Figure 2.1 based on a gestural model of speech production in which the

extent of pre- and post-aspiration are inversely related to each other as a
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consequence of how the closure is timed relative to the glottal opening. A

major difference between the acoustic model presented here and the schematic

outline based on articulatory gestures is that the former but not the latter

takes amplitude into account. Thus, the model in Figure 2.1 is based only on

timing considerations and not on the size of vocal tract opening during the

intervals when the vocal tract is predominantly given over to aspiration. On

the other hand, in the present study the areas between the acoustic signals

of high frequency energy and voicing probability that were taken as a proxy

for the extent of aspiration were influenced not only by the phasing of the

closure, but also by the amplitude of energy in the HF signal. That is, Figure 2.4

has shown that PC1 did not only capture a phase shift of HF relative to VP,

but also that post-aspiration had a higher energy peak than pre-aspiration.

This functional analysis thereby presents more information on aspiration than

would be possible using duration measurements based on a segmentation of

the speech signals. However, in order for the amplitude (and hence areas) to

be comparable across tokens, global amplitude differences which were most

likely caused by speaker-dependent variations in the amplitude of the signal

(caused e.g. by speaking more quietly or softly and/or as a result of different

distances from the microphone) had to be factored out (see Appendices A.4

and A.5 for further details).

2.3 Influence of Speakers’ Age and Region on Clos-

ure Phasing

The analysis suggesting that pre- and post-aspiration are predictable con-

sequences of resynchronising the closure with the voiceless interval has been

based so far on a model applied to the entire data set across all speakers and

repetitions. The concern of this section is to test whether s1, which was shown

to capture variations in closure timing (section 2.2), also distinguishes between

age and regional origin of the speakers. The prediction is that it should do

so, given that older and East Andalusian speakers have been shown to have

greater pre-aspiration and less post-aspiration than their younger and West
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Andalusian counterparts (Ruch & Harrington, 2014; Ruch & Peters, 2016).

If the prediction holds, then this would establish a link between synchronic

variation and a sound change in progress.

2.3.1 Method

A linear mixed effect regression model was constructed for the first PC score

s1 as response variable and age (two levels), region (two levels), and cluster

type (three levels) as fixed factors, while word (52 levels) and speaker (48

levels) were added as random factors. All statistical results reported below for

s1 also approximately hold for Apost (and for Apre with negative sign), since

the areas are near-linearly related to the first PC score (cf. Figure A.1 and

see Appendix A.3 for further mathematical details). While the areas were

helpful in demonstrating the existence of a relationship between pre- and

post-aspiration in Andalusian Spanish, s1 was chosen as response variable here

because it directly expresses the closure phasing which, according to the model

in Figure 2.1, is responsible for this relationship.

The full LMER model is given in Eq. (2.3) below (R notation):

s1 ∼ (age+ region+ cluster)3 + (cluster |speaker) + (age+ region|word) (2.3)

where the term (age+ region+ cluster)3 indicates the presence of three fixed

factors plus all the possible two- and three-way interaction terms formed by

them, while the random factor speaker is modulated by cluster type and word

is modulated by age and region. The model was pruned using the R package

lmerTest (version 3.1.2) in order to remove all non-significant factors and

factor combinations. After pruning, all fixed and random terms were retained

apart from the three-way interaction of the fixed factors and the two-way

interaction between age and region. All post-hoc tests were computed using

the R package emmeans (version 1.4.6).

In order to translate the predicted s1 values back into HF and VP curves, the

resulting estimated marginal means (EMMs) were substituted into Eq. (2.1),
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where only s1 was used and the other scores were set to zero. For instance,HF(t)

for /st/ produced by young West Andalusians was represented by µHF + s1 ·
P C1HF(t), where s1 took the EMM value for that particular factor combination.

2.3.2 Results

The boxplots in Figure 2.6 provide a graphical impression of how age, region,

and cluster type affect the first PC score. Compatibly with the production of

an earlier closure accompanied by post-aspiration, s1 was higher in Figure 2.6

for younger speakers in all conditions. Figure 2.6 suggests only few region

differences except for alveolars. The results of the mixed model with the fixed

and random factors given in section 2.3.1 showed a significant main influence

on s1 of age (F[1, 46.9] = 24.6, p < 0.001) but not of region nor of cluster

type. There was however a significant two-way interaction between age and

cluster (F[2, 54.4] = 6.6, p < 0.01) as well as region and cluster (F[2, 53.3] =

5.7, p < 0.01). Post-hoc alpha-adjusted Tukey tests showed that there were

significant differences between older and younger speakers for all three places

of articulation (/sp/: t = 3.8, p < 0.001; /st/: t = 5.0, p < 0.001; /sk/: t = 4.6, p <

0.001). The post-hoc tests revealed no significant region differences. However,

there was a trend towards a significant difference between speakers from East

and West Andalusia producing the alveolar cluster (t = 1.9, p = 0.06). For

young West Andalusian speakers there was a significant difference between

labial and alveolar clusters (t = 3.9, p < 0.001).

Figure 2.6 also shows the estimated marginal means (EMMs) for each

combination of age group × region × cluster type (black dots within the boxes),

with their respective confidence intervals (vertical bands), which are the values

of s1 that the model predicts for each combination of the fixed factors. As

described in section 2.3.1, these EMM values for specific factor combinations

were used to reconstruct the HF and VP curves. This reconstruction (Figure 2.7)

shows that the closure (represented by the HF signal) occurred earlier for

younger (green) than for older (dark grey) speakers for all three places of

articulation and both regions. These differences between the age groups are

the consequence of (i) s1(young) > s1(old) as found by the LMER model (cf.
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Figure 2.6: Boxplots of s1 values as well as estimated marginal means of s1 (black dots
within the boxes) with related confidence intervals (black vertical bands around the
dots) based on Eq. (2.3). Younger speakers are shown in green, older ones in dark grey.

Figure 2.6) and (ii) s1 mainly modulating a phase shift of HF, where the shift is

towards the left of the time axis for increasing s1 (cf. Figure 2.4). Additionally,

the HF signals for /st/ and young speakers differed from each other between

East and West, the latter being more left shifted and reaching higher energy

values in the second part of the signal. Although this difference was not found

to be significant, it is clearly visible in the reconstructed curves.

2.3.3 Discussion

There were age- and (to a lesser extent) region-dependent variations in the PC

score s1 derived from FPCA. These differences between the speaker groups

together with the evidence that PC1 models a phasing of the closure suggest

that, consistently with various other studies (Moya Corral, 2007; O’Neill, 2010;

Ruch, 2013; Torreira, 2006, 2007), there is a sound change in progress in

/sC/ clusters in Andalusian Spanish. Based on the analysis and conclusions

in section 2.2, the direction of change is such that the closure is timed to

occur earlier in younger than in older speakers as a consequence of which
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Figure 2.7: Reconstruction of HF(t) (solid) and V P (t) (dashed) using Eq. (2.1). For
each factor combination, EMMs are used for s1, while sk = 0 for k > 1. The curves for
the younger age group are green, the ones for the older group are dark grey.

younger speakers produce these clusters with more post-aspiration and less

pre-aspiration than their older counterparts.

The East Andalusian variety is more conservative as far as this sound

change is concerned than its Western counterpart, as others (O’Neill, 2010)

have shown. A comparison between the two regions can therefore provide

some clues about how sound change is affected by phonetic context. The

analysis conducted in this section suggests that alveolar contexts might lead

the sound change while labial clusters seem to be the last ones to be affected

by the sound change. This is because, firstly, there was a trend towards a

significant difference between East and West Andalusian speakers only for /st/

and secondly, there was a significant difference between /sp/ and /st/ for the

most advanced speaker group, namely young West Andalusian speakers. This

finding is compatible with the suggestion in Ruch and Peters (2016) that the

sound change by which pre- evolves into post-aspiration first originates in the

alveolar context before spreading to the velar and, lastly, to the labial context.

37



2. A Dynamic Analysis of Aspiration Phases in Andalusian Spanish

2.4 General Discussion

The first part of this study showed that pre- and post-aspiration strength

in Andalusian Spanish are inversely related to each other and a predictable

consequence of how the closure is phased with respect to the voiceless interval

in V1sCV2 sequences. This finding is consistent with the model based on

articulatory phonology proposed by Parrell (2012) in which closure rephasing

is at the core of the change from pre- to post-aspiration at a faster speech rate

in the production of /st/ in pastándola. It also extends this model by suggesting

that the inverse relationship between pre- and post-aspiration as a consequence

of closure re-phasing depends not just on timing but also on scaling, i.e. on

the relationship between the amplitude of aspiration noise before and after

the closure.

The second part of the study showed that the closure phasing and hence

the inverse relationship between pre- and post-aspiration are conditioned

by age and to a lesser extent by region. As far as age is concerned, these

results are compatible with evidence showing a sound change in progress in

Andalusian Spanish (O’Neill, 2010; Ruch & Harrington, 2014; Ruch & Peters,

2016) given that the closure was found to be timed earlier for younger than

older speakers. The change in progress was more advanced for speakers from

West than from East Andalusia when producing the alveolar cluster. The new

approach in this study is that these age, region, and place of articulation

differences have been established based on analyses of pairs of time-varying

signals requiring no segmentation of the closure and aspiration intervals.

This approach has a methodological advantage given that these intervals

(in particular V1 and pre-aspiration) overlap with each other, thereby often

making vertical segmentation unreliable and inconsistent (Fowler & Smith,

1986). Speech is inherently dynamic involving the overlapping of autonomous

articulatory gestures (Fowler & Saltzman, 1993) and regular sound change

almost always arises out of dynamic processes such as coarticulation (J. J.

Ohala, 1993a) and undershoot (Lindblom et al., 1995). The method proposed

in this study based on FPCA is appropriate for modelling these dynamic

aspects of speech and the sound changes that they give rise to precisely because
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it provides a way of categorising speech signals and of quantifying change

without having to enforce an often arbitrary vertical segmentation of the

speech signals (Fowler, 1984; Fowler & Smith, 1986). Although FPCA does not

produce a dynamic model in the strict sense (e.g. a set of differential equations),

it provides a way of isolating the variation in the pair of signals HF(t) and

V P (t) (as shown by PC1) corresponding to the gestural dynamics sketched

in Figure 2.1. In other words, the evidence that the main variation in those

signals is due to a phase shift emerges from the statistical FPCA of the signal

shapes.

Figure 2.8 is a summary of the dynamic approach to analysing the An-

dalusian database and its potential association to components of a cognitive-

computational model of sound change (Ettlinger, 2007; Stevens et al., 2019;

Todd et al., 2019; Wedel, 2006). In this study, FPCA (section 2.2.1.3) was ap-

plied to a database of dynamic episodes of speech derived from acoustic speech

signals in order to obtain a signal decomposition model that consists of PC

curves and PC scores. There are two different kinds of information that fol-

low from the decomposition: First, the model shows how the time-varying

signals that represent articulatory gestures systematically vary in shape and

phasing. Second, the decomposition assigns every dynamic speech episode i its

specific PC scores s1,i , s2,i , . . . , sk,i . All PC scores of all tokens in the database

form a distribution in an abstract, multidimensional space. The location of the

scores in this space can depend on speaker-specific properties like their age or

regional origin, as shown in the second part of the study (section 2.3).

The cognitive-computational architecture of speech processing that is pro-

posed in this model adopts the idea from exemplar models that phonological

categories stand in a stochastic relationship to remembered speech signals

(K. Johnson, 1997, 2006; Pierrehumbert, 2003a, 2006). The central idea here is

that in human speech processing, individuals derive both phonological and

distributional information after applying a transformation such as FPCA to

multidimensional, remembered, time-varying episodes of speech. The derived

phonological knowledge is analogous to separate tiers in articulatory phon-

ology containing independent gestural dynamics showing (as in Figure 2.4)

how the shape and phasing of gestures that characterise the phonological
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Figure 2.8: A schematic outline of the outputs after applying FPCA to the database
in this study and their potential association (in italics) to components of a cognitive-
computational model of sound change. The PC-based signal decomposition model
gives rise to both summary signal characteristics over the entire database as well as
distributional information.

category vary across the population of speakers. The distributional informa-

tion is a cloud of points derived from the remembered episodes for the same

phonological category (cf. Figure 2.6).

The transformation of memorised episodes of speech (e.g. FPCA in Fig-

ure 2.8) can result in a large amount of dimensions along which signals of

the same phonological category can vary (e.g. PCs). The further issue to be

considered is how individuals learn which kinds of variation are most relevant

for a given phonological category. We suggest this might be guided by both

phonetic and phonological criteria. The phonetic criterion is that a dimension of

variation represents how the tokens of the phonological category are actually

produced. In the case of the Andalusian database presented here, the most

relevant variation for the /sC/ category was how the opening/closure phase

of the vocal tract was variably timed with respect to a voiceless interval (i.e.

PC1). The phonological criterion for identifying a dimension of variation as

relevant is that it represents a group-level characteristic of the phonological

category. That is, for the Andalusian data, the level of aspiration in episodes

of /sC/ must be high regardless of how the closure is phased relative to the
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voiceless interval. This is evident in the black line in Figure 2.5 which shows

that the total amount of aspiration (expressed by Atot) is more or less constant.

Such knowledge is functionally useful because it is likely to be a feature

that distinguishes aspirated from non-aspirated clusters. Although we have not

investigated unaspirated stops in the present study due to sparse data for /p, t,

k/, our earlier investigations (Ruch & Harrington, 2014; Ruch & Peters, 2016)

showed that the extent of pre- and post-aspiration is much less in unaspirated

than aspirated clusters. Thus, whereas we find high levels of aspiration irre-

spective of how the closure is timed in the aspirated cluster of e.g. pasta (engl.

pasta), the corresponding black line in Figure 2.5 is likely to be much lower

for the unaspirated /t/ in pata (engl. paw). It is from this perspective that it is

of functional value to choose a dimension of variation that is likely to provide

categorical information for distinguishing between aspirated, i.e. /st/, and

unaspirated, i.e. /t/, plosives. The actual classification i.e. distinction between

an aspirated and unaspirated cluster would be accomplished not directly by

this phonological information but instead by calculating the probability of

class membership to the cloud of data points that are also derived by FPCA.

Thus the model in Figure 2.8 shows, compatibly with exemplar models, that

there is a stochastic relationship between phonological knowledge and speech

signals: the new angle proposed here is that a transformation analogous to

FPCA is intermediary between the two.

A sound change in progress can sometimes be characterised by a percep-

tual trading relationship between the coarticulatory source and effect. Beddor

and colleagues (Beddor, 2009, 2012; Beddor et al., 2018) have investigated

the phonologisation of nasalisation in the vowels of words exemplified by

American English send and sent from this perspective. They show that there is

an inverse relationship in speech production between the extent of vowel nas-

alisation and the duration of the following /n/ that gives rise to coarticulatory

nasalisation. In perceiving send, they also show that listeners often identified

nasalisation from the signal without associating or parsing it explicitly with

either the vowel or following nasal consonant. This trading relationship is an

appropriate strategy in perception for such variation, given that nasalisation

in the American English variety that they investigated could be manifested in
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the vowel, in the following nasal consonant, or both in speech production (and

variably so between listeners in speech perception).

There is a degree of commonality between Beddor’s findings and those in

the present speech production study of Andalusian Spanish in which there

was shown to be an inverse relationship between pre- and post-aspiration

(Figure 2.5). This inverse relationship in our study only emerges, however,

following the application of an FPCA transformation across speech signals

from several speakers that differed in the extent to which they produced /sC/

clusters with pre- or post-aspiration. Without this FPCA transformation, there

is no such inverse relationship. This is demonstrated by Figure 2.9 in which

the areas Apre and Apost were calculated from Eq. (2.2) where HF and VP were

directly obtained from the speech signals, without applying FPCA. The general

conclusion from Figure 2.9 is that the inverse relationship between pre- and

post-aspiration is not directly manifested in the acoustics of any (or several)

/sC/ clusters. It is perhaps for this reason that there has been scant evidence

for such a relationship from other studies (Ruch, 2013; Ruch & Harrington,

2014; Ruch & Peters, 2016; Torreira, 2007). The inverse relationship exists

instead at a more abstract level that is a consequence of modelling the acoustic

speech of multidimensional, time-varying speech signals over many words

and repetitions and above all over many speakers of which some have pre-

dominantly pre- and others predominantly post-aspiration in producing these

clusters (see Appendices A.4 and A.7 for more details).

An individual who has abstracted the phonological and distributional

knowledge from the type of data investigated in this study is likely to classify

pre- or post-aspiration equivalently. This is apparent in Figure 2.5 which

shows that, irrespective of whether the closure is late or early, the quantity

of aspiration stays more or less the same. Here there are parallels once again

to Beddor’s findings showing that, at least for some listeners, it does not

matter whether the nasalisation occurs in the vowel or the following consonant:

both are treated equivalently as being [+nasal]. Whether or not Andalusian

listeners actually exhibit such trading relationships is not something that we

have yet investigated. Following analogous nasalisation studies by Beddor

(2009) and Zellou (2017), we would expect a considerable degree of variation
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Figure 2.9: Area Apost against Apre as in Eq. (2.2) when HF(t) and V P (t) are the
(smoothed and time-normalised) curves obtained directly from the speech signal
without FPCA transformation.

across Andalusian listeners in whether or not such a trading relationship is

manifested. The further prediction from the type of model in Figure 2.8 is that

experience conditions whether or not a listener demonstrates such a trading

relationship. Listeners who have been exposed predominantly to old, Eastern

Andalusian speakers (who typically pre-aspirate) or those exposed mostly

to younger, Western Andalusian speakers (who typically post-aspirate) are

predicted to show much less evidence of a trading relationship than those

listeners exposed to both these types of speakers.

The model in Figure 2.8 brings together insights from articulatory phono-

logy and episodic models of speech in order to relate synchronic variation to

diachronic change. Articulatory phonology has provided great advances in un-

derstanding speech dynamics, but given its historical emphasis on articulatory

invariants (Fowler, 2003), has been not so easily adaptable to the findings in
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the last 20 years or so that the relationship between phonological knowledge

and speech is a stochastic one. By contrast, exemplar theory has provided great

advances in modelling this stochastic relationship. With few exceptions (e.g.

Kirchner et al., 2010), there has, however, been an almost complete neglect in

explaining quite how these stochastic phonological categories are derived and

associated with multidimensional speech signals that change in time. The idea

in the present study that users of the language may extract dimensions across

their remembered speech signals brings together these important insights

from these separate models. This unified model shares with episodic models of

speech that there is no sharp distinction either between synchronic variation

and the resulting diachronic change nor between phonological knowledge and

the (remembered) speech signals out of which such knowledge is constructed.
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Abstract

This chapter is concerned with a cognitively-inspired agent-based model

(ABM) of sound change, i.e. a computational model in which human

speakers are represented by computational agents. These agents are given

rules and mechanisms in order to produce and perceive acoustic exem-

plars of words as well as a memory in order to store them. Exemplars

are associated to a word class, and exemplars and words are flexibly

linked through a phonological class. In the latest version of the ABM, the

phonological classes are agent-specific as they are regularly recomputed

using two unsupervised machine-learning algorithms. Using simulations

of artificially generated data, I aim to show how sound change can arise as

a consequence of the interplay between the input data, the implemented

mechanisms, and the prolonged interactions between agents, as predicted

by the interactive-phonetic model of sound change. The final part of this

chapter is about the ABM’s characteristics and their implications also in

comparison to other computational models of sound change as well as

about the relation between simulated and quantitative results.

This chapter is partially based on and complements Gubian et al. (2023). See

Appendix B.1 for the authorship contribution statement for the published

article.
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3.1 Introduction

This chapter is concerned with the architecture and core properties of a cogni-

tively-inspired agent-based model (ABM) of sound change. In ABMs, agents in-

teract with one another along a defined set of rules and it can be observed how

individual actions (micromotives) lead to population-wide patterns (macrobe-

haviours; Schelling, 1978). That is, the power of these models is to demonstrate

the emergence of global phenomena out of local decisions which makes them

especially useful for the investigation of complex adaptive systems (Bankes,

2002; Beckner et al., 2009; Berry et al., 2002; Bonabeau, 2002). A complex

system consists of many individual parts which are interdependent “so that

the emergent behavior of the whole is difficult to predict from the behavior of

the parts” (MacLennan, 2007, p. 173). When the parts of a complex system can

change as a response to their environment, the system is adaptive. According to

Beckner et al. (2009), spoken language qualifies as a complex adaptive system

because it fulfils four key characteristics:

(a) The system consists of multiple agents (the speakers in the speech

community) interacting with one another.

(b) The system is adaptive; that is, speakers’ behavior is based on their

past interactions, and current and past interactions together feed

forward into future behavior.

(c) A speaker’s behavior is the consequence of competing factors ran-

ging from perceptual mechanics to social motivations.

(d) The structures of language emerge from interrelated patterns of

experience, social interaction, and cognitive processes.

(Beckner et al., 2009, p. 2, line breaks added)

These four features of language as a complex adaptive system are all integral

concepts implemented in the agent-based computational model presented in

this chapter, as will be shown in section 3.2. Importantly, feature (d) implies

that language change – and, by extension, sound change – can be modelled as

a consequence of the interplay between the other three features, which is what

we attempt to do with the ABM.
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The motivation for developing such a model for the study of sound change

is twofold: First, an ABM provides a controlled environment which can be

used to test the factors that might play a role in the emergence and spread of a

specific change that has already been observed empirically. This is necessary

because it is impossible to know beforehand whether a sound change is going

to take place, so as soon as the change is underway, it is too late to capture

the circumstances which may have triggered it. In the artificial world of the

agent-based model, however, it is possible to explore how both intra- and

extralinguistic factors may have contributed to the occurrence and progres-

sion of a sound change. The second motivation is to test and further develop

theories of sound change. Every ABM relies on assumptions which are drawn

from evidence-based theories of sound change. If such an ABM is capable of

successfully replicating different kinds of sound changes, it provides strong

support for the theoretical model. If, on the other hand, the results of a sim-

ulation fail to replicate a sound change, a careful analysis of what has gone

wrong may provide new insights and lead to an adaptation of the tested theory

of change. Once an ABM has been shown to successfully replicate several

unrelated sound changes, it can even help to inform a holistic model of sound

change. ABMs are hence a computational method of shedding “light on the

architecture of human speech processing, how it is flexibly adapted to social

variation in language, and which mechanisms within this architecture can give

rise to change” (Harrington et al., 2018, p. 3).

The ABM presented here is a computational implementation of the inter-

active-phonetic (IP) model of sound change (Harrington et al., 2018). The IP

model tries to unify the two major strands of sound change research that,

so far, have mostly been pursued independently of one another (Harrington

& Schiel, 2017; Stevens & Harrington, 2014): the first is concerned with the

origins of sound change (e.g. Lindblom et al., 1995; J. J. Ohala, 1989, 2012),

while the second asks how a new variant of a sound can spread among the

members of a speech community (e.g. Eckert, 1988; Labov, 2001; Trudgill,

2004). Connecting these two approaches to the study of sound change may be

the key to answering one of the most pressing questions in this field which

remains largely unsolved despite an upsurge of research (Baker et al., 2011;
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Figure 3.1: Schematic sketch of the three focal points of the IP model: phonetic bias
(as exemplified by the aerodynamic voicing constraint (AVC)), perceptual learning,
and phonetic imitation.

Bermúdez-Otero, 2020; Kirby & Sonderegger, 2015; Sóskuthy, 2015; Stevens &

Harrington, 2014; Yu, 2013): Why does sound change happen under one set of

circumstances, but not another? More precisely, why does a sound change occur

in one language but not another, or in the same language but at a different point

in time? This so called actuation problem as posed by Weinreich et al. (1968)

requires an investigation of the complex mixture of intra- and extralinguistic

factors which affects the emergence and progression of sound changes. In order

to link the models concerned with the origin and spread of sound changes,

the IP model focuses on four related concepts, the first three of which are

also pictured in Figure 3.1: phonetic biases, non-social phonetic imitation

in stochastic interactions between individuals, perceptual learning, and the

flexible association between word classes and memorised traces of speech.

Phonetic biases are the result of the processes of speech production and

speech perception (see Garrett and Johnson, 2013 for an overview). That is,

the variability introduced by these processes is often not random, but direc-

tional and asymmetric. In Figure 3.1, for instance, a speaker has produced the

originally voiced plosives /b, d, g/ as their devoiced variants /b
˚
, d
˚
, g̊/ because

of the aerodynamic voicing constraint (AVC). The aerodynamic constraint on

voiced plosives is a well-known example of directional synchronic variation
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(J. J. Ohala, 1983, 1989). In order to produce a voiced sound, there must be a

constant flow of air through the glottis. In the case of a voiced plosive the air is

collected in the oral cavity behind the place of the closure, thereby increasing

the supraglottal air pressure. If the speaker does not release the closure for

some time, the air pressure above and below the glottis become so similar that

the air flow, and hence the vibration of the vocal folds, is stopped, resulting

in a voiceless plosive. That is, voicing cannot be maintained through a long

closure which creates a bias towards voiceless plosives (J. J. Ohala, 1997). This

constraint along with many other biases create a “pool of synchronic vari-

ation” (J. J. Ohala, 1989) which can provide the raw material for sound change

(although only a fraction of such variation is eventually turned into sound

change).

Interactions between individuals play a seminal role in triggering and

propagating a sound change (Labov, 1963; Trudgill, 1999, 2008a). According

to the IP model, this is because humans tend to imitate a conversational

partner’s (linguistic) behaviour which can turn a stable phonetic bias into

unstable change (Harrington et al., 2018). Phonetic imitation is defined as

an individual’s subconscious adjustment of acoustic speech characteristics

towards those of an interlocutor (Delvaux & Soquet, 2007; Pardo, 2006, 2013;

Sato et al., 2013). If the speaker in Figure 3.1 consistently devoiced /b, d,

g/, the listener-turned-speaker might imitate this phonetic behaviour (Y. Lee

et al., 2021; Nielsen, 2011; Zellou & Brotherton, 2021) – even though this

process takes place below the threshold of consciousness and the listener-

turned-speaker would not be aware of any changes in their speech production

(Lakin & Chartrand, 2003; Pardo et al., 2012). That is, phonetic imitation is

a subconscious and imperceptible process (Garnier et al., 2013; Kappes et al.,

2009) that occurs regardless of social factors (Shockley et al., 2004), although

e.g. attraction can affect the degree of convergence (Abrego-Collier et al., 2011;

Babel, 2012; Pardo et al., 2012). However, phonetic imitation is different from

social accommodation (Giles, 1973) which is explicitly not taken into account

by the IP model. It is rather a more general pattern of human behaviour, given

that it also occurs in other domains such as synchronisation in clapping (Néda

et al., 2000), limb movement (Richardson et al., 2005), and even brain rhythm
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(Kawasaki et al., 2013). It has been hypothesised that phonetic imitation – in

contrast to social factors such as the need for a common identity – is one of the

essential mechanisms in the emergence of new dialects (Sebanz et al., 2006;

Trudgill et al., 2000) and can permanently alter phonological systems (Nguyen

& Delvaux, 2015). Phonetic imitation also supports theories which propose a

strong cognitive link between speech production and speech perception.

So if, in a conversation, a speaker tends to devoice their voiced plosives

because of the aerodynamic constraint, this may be picked up and imitated by

the interlocutor (usually for the duration of the conversation or until shortly

thereafter; Eisner and McQueen, 2006). If the interlocutor encounters many

devoiced plosives over time, they might incorporate this supposed feature of

the language into their own speech repertoire. The process which makes such a

shift within an individual listener-turned-speaker possible is called perceptual

learning (Clarke-Davidson et al., 2008; Norris et al., 2003). That is, ambiguous

speech signals can lead to a shift of perceptual category boundaries which

impacts the phonological classification of perceived speech signals (Saltzman

& Myers, 2021; Samuel & Kraljic, 2009). In contrast to phonetic imitation,

perceptual learning involves intra-individual changes in how the mental lex-

icon in structured phonologically. In the example shown in Figure 3.1, the

individual on the right initially differentiates between /b/ and /p/, /d/ and

/t/, and /g/ and /k/ on a phonological level. Because the individual perceived

many ambiguous tokens of /b, d, g/ – namely tokens that were devoiced – the

perceptual boundary between voiced and voiceless plosives shifts towards the

voiceless category. In order for perceptual learning to occur, the individual

must perceive the same ambiguity in many tokens from many speakers (and

not just the three exemplary tokens from one speaker displayed in Figure 3.1),

i.e. whether or not perceptual boundaries shift permanently depends on the

stochastic contact between a large group of individuals, some of which con-

sistently produce ambiguous tokens e.g. because of a phonetic bias like the

AVC.

Both non-social phonetic imitation and perceptual learning are predicted

by episodic models of speech (Goldinger, 1996, 1998; Palmeri et al., 1993)

and exemplar theory (e.g. Pierrehumbert, 2001) which state that language
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experience shapes both speech production and speech perception. More spe-

cifically, these models state that perceived speech signals are parameterised

and stored mentally in a multi-dimensional phonetic space. Also in line with

exemplar theory, the IP model proposes that the association between word

classes and remembered speech signals through phonological classes is probab-

ilistic, flexible, and can differ from individual to individual (Harrington et al.,

2018). In Figure 3.1, for instance, the listener-turned-speaker has developed

phonological classes that are different from the canonical separation between

/b, d, g/ on the one hand and /p, t, k/ on the other and will keep changing

the association between word classes and remembered speech signals through

phonological classes with growing language experience. The IP model also

supports the notion of sub-phonemic classes, i.e. classes which hold allophonic

rather than phonological information. This is firstly because these classes are

created bottom-up as an abstraction over a cloud of parameterised and memor-

ised speech signals which are specific to each individual (Pierrehumbert, 2001,

2003a, 2003b), and secondly because it has been shown that sub-phonemic

classes are of relevance in speech perception (German et al., 2013; Jones &

Clopper, 2019; Luthra et al., 2019; Mitterer et al., 2013; Nielsen, 2011; Reinisch

et al., 2020; Reinisch & Mitterer, 2016; Scobbie & Stuart-Smith, 2008). In terms

of the example in Figure 3.1, the listener-turned-speaker may over time create

sub-phonemic categories for voiced, voiceless, and devoiced plosives (where

the latter are not distinctive, and hence not phonological but sub-phonemic).

So in summary, according to the IP model which provides the theoretical

basis for the agent-based model presented here, “whether or not sound change

actually comes about depends upon which speakers regularly speak to each

other, whether a phonetic bias happens to be magnified by interaction, and

whether or not sub-phonemic classes are fragmented and regrouped over time”

(Harrington et al., 2018, p. 17; also see Dediu and Moisik, 2019).

The rest of this chapter is structured as follows: Section 3.2 is concerned

with explaining all concepts, entities, and processes of the agent-based model

which was implemented as an R package called soundChangeR. In section 3.3,

the core mechanisms of the ABM and their implications are demonstrated

using simulations of artificially generated data. The strengths and weaknesses
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of the model are discussed and compared to other computational models of

sound change in section 3.4.

3.2 Computational Implementation

The first computational implementation of the IP model was presented by

Harrington and Schiel (2017) where the shift of /u/ to the front of the vowel

space was simulated based on data from speakers of Standard Southern British

English (SSBE). Since then, this agent-based model has been shown to success-

fully model other sound changes, but it has also evolved over time. We refrain

from describing the evolution of the model and instead focus on the latest

version which has been published as an R package of the name soundChangeR
on GitHub (https://github.com/IPS-LMU/soundChangeR). At the time of

writing, the current version of soundChangeR is 1.0.0. Basic installation instruc-

tions for the R package are given in Appendix B.2, but the reader is referred

to the GitHub repository for more details. The vignette to soundChangeR in

Appendix B.3 contains detailed explanations of and all relevant information

about the software side of this ABM.

This section is instead about concepts, constraints, and entities that play

a role in this model, the central one being the agents. Agents are the compu-

tational instantiation of human speakers and listeners. That means that the

agents are equipped with mechanisms in order to produce and perceive speech

as well as a memory that connects the two processes. At the beginning of a

simulation, each agent is given real production data to initialise their memor-

ies. The memory is a storage for exemplars which consist of the parameterised

acoustics of a sound as well as the word in which the sound was uttered

(e.g. formant values for the vowel in the word food). In between the phonetic-

acoustic space and the lexical level of the memory, there is a phonological

level which can either be pre-determined by the user (e.g. /u/ for the vowel

in food and /i/ for the vowel in feed) or calculated by means of two machine

learning algorithms. When pre-determined, the phonological classes remain

fixed over the course of the simulation, thereby preventing changes in the

association between exemplars and word classes via phonological classes. The
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machine learning algorithms, on the other hand, recalculate the phonological

classes regularly and separately for each agent. To do so, these unsupervised

algorithms do not need any prior information about the exemplars apart from

their location in the phonetic-acoustic space and their association to word

classes. Given these premises – a memory filled with exemplars which are

associated to lexical and phonological classes – the population of agents starts

to interact, i.e. an agent speaker produces an exemplar and an agent listener

perceives it. The production of exemplars is a Gaussian sampling procedure,

i.e. a new exemplar is sampled from a Gaussian distribution which was com-

puted over all exemplars belonging to a chosen word class. The perception (or

rather memorisation, given that word recognition and lexical access are not

modelled) is much more constrained and follows two criteria in order to decide

whether the perceived exemplar should be memorised: The first criterion tests

the exemplar’s typicality, i.e. whether it is located close enough to the intended

phonological class in the agent listener’s acoustic space. The second criterion

tests whether the exemplar is discriminable, i.e. whether it has a higher prob-

ability of belonging to the intended than to the competing phonological classes.

So while production is a word-based process, the decision of memorising an

exemplar in perception is based on phonemes, and both processes draw in-

formation from the same memorised pool of exemplars. In order to limit the

amount of exemplars stored in the memory, agents can forget exemplars by

removing them from memory. So in summary, agents initialised with human

production data can exchange exemplars in a production-perception feedback

loop which, over time, can result in acoustic and phonological changes. All

concepts briefly mentioned here are explained in detail below (for all implicit

assumptions and simplifications of the model, see Appendix B.7).

3.2.1 Agents and Exemplars

An agent is the computational representation of a real person, i.e. the agent

is initialised with the speech characteristics of an actual speaker (but see

section 3.2.2). Since this model aligns more with the mechanistic view on

sound change (Trudgill et al., 2000) and focuses less on the sociolinguistic
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components of such changes (Labov, 2001), the only social attribute of an

agent is their agent group. This grouping of agents can depend on the speakers’

age, regional origin or any other sociolinguistic variable that may be relevant

to the observed change. Dividing the agent population into groups is not

obligatory, and if the user decides to define agent groups, they do not have

to be binary. The agent groups impact the choice of an agent speaker and an

agent listener during the interactions: agents can interact only within their

own group, across groups, or they can interact randomly with one another

regardless of their group. An interaction always consists of an agent speaker

who produces a new token of a word and an agent listener who decides whether

or not to memorise the token.

Agents are given a memory to store traces of speech which are then used

for both speech production and perception. In line with Exemplar Theory, we

call these traces exemplars (or, alternatively, tokens). Exemplars are a usually

vectorial acoustic representation of the speech sounds under investigation.

The only technical requirement for the acoustic features is that they must

be numeric and continuous, e.g. they can be formant values, durations, or

parametric representations such as DCT coefficients and principal compon-

ent (PC) scores. The number of acoustic features used as dimensions of the

phonetic space in the agents’ memories is up to the user. Exemplars also have

a fixed association to the word in which they were uttered, so word classes are

statistical generalisations over clouds of acoustic exemplars. The phonological

level in the ABM provides a link between the exemplars and word classes as

explained in section 3.2.5.

3.2.2 Initialisation of Agents

Usually, every human speaker is represented by one agent which is achieved

by initialising the agent with the acoustic data of that speaker. However, it is

possible to break this paradigm by applying bootstrapping. In the context of

the agent-based model, bootstrapping means that the population is created

from the pool of real speakers, but one speaker can be represented by several

agents. If, for example, 20 speakers were recorded but the agent population
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should consist of 100 agents, the 20 speakers are randomly sampled until

100 agents are initialised. Since this is a random process, the speakers are not

necessarily represented equally in the agent population (e.g. of the 20 speakers,

some may have informed more agents than others). In order to avoid exact

clones of the speakers, the ABM provides options to create new exemplars by

means of a resampling technique (see section 3.2.6) and remove the agents’

original exemplars. It is also recommended to complete multiple runs of a

simulation with a bootstrapped agent population such that the settings are

the same, but the bootstrapped population is different every time. This is

necessary in order to avoid spurious results and to test for the robustness of

the simulation’s outcome. Bootstrapping can also be used to manipulate the

amount of agents per agent group (e.g. more agents of group A than of group

B).

3.2.3 Production

The production algorithm in soundChangeR is a relatively simple Gaussian

sampling procedure which does not explicitly model the execution of motor

plans or articulatory processes. Instead, the agent speaker randomly chooses

a word class, builds a Gaussian distribution over all memorised exemplars

associated with that word, and samples a new token from it. Contrary to

many other computational models of sound change, the produced token is

not subject to a bias that would push it towards or away from an articulatory

target. In soundChangeR, production is a word-based process in order to allow

for possible coarticulatory effects to be carried over into the acoustics of the

produced token. That is, if there was a coarticulatory effect of the phonetic

context on the observed sound in the original speech of the human speaker,

it can be reproduced by the word-based sampling procedure in the agent-

based model. A long-term effect of Gaussian sampling in production together

with the constraints on memorisation described in section 3.2.4 is that the

original acoustic distributions become narrower over time because new tokens

are more likely to be close to the mean of the distribution than to be on its
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tails. Appendix B.6 provides a more in-depth example of the production and

perception of a taken during an interaction between two agents.

3.2.4 Perception

The agent listener receives the acoustic token together with its associated word

class and makes use of phonological knowledge in order to decide whether or

not to memorise the token. This decision is not about word recognition: Since

misunderstandings are considered neither a catalyst nor an obstacle to sound

change, it is assumed in this model that lexical access and word recognition

work perfectly. Thus, the term perception is used very loosely here and only

refers to the process of updating an agent’s memory. The agent listener’s task

in perception is strongly linked to the phonemic level, i.e. the memorisation

criteria are computed with reference to the phonemic classes (see section 3.2.5).

There are two main memorisation criteria which were variably used in

earlier versions of this model. The first criterion determines whether the

Mahalanobis distance between the token and the centroid of the corresponding

phonological class is lower than a given threshold. If so, the token is memorised.

Hence, this criterion is a test of the token’s typicality (also see e.g. Todd

et al., 2019). Since the Mahalanobis distance threshold is computed only with

regard to the intended phonological class of the perceived exemplar, this

memorisation criterion is called absolute (in contrast to the relative criterion,

see below). A natural consequence of this criterion is that widely spread or

skewed phonological classes are more likely to incorporate new tokens than

compact ones. An example of this is given in Figure 3.2 where two agents, A

(left) and B (right), have different representations of the same phoneme classes

P1 (solid) and P2 (dashed). The ellipses enclose the same probability mass in

A and B, i.e., their contours define locations at the same Mahalanobis distance

to their respective centres (plus signs). In this artificial example it is assumed

that both agents are asked to evaluate the same token t1 (red) as a potential

member of phoneme P1. If both agents apply the absolute criterion to do so,

the token would only be memorised by agent A. This is because t1 is enclosed

by agent A’s phonological class P1, i.e. the Mahalanobis distance between t1
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and the centroid of P1 is below the threshold indicated by the ellipse contours.

The opposite is true for agent B: Since B’s phonological class P1 is very narrow,

t1 would have to be much closer to the centroid in order for it to be memorised

according to the Mahalanobis distance. Section 3.3.2.1 is concerned with the

effects of the absolute criterion when applied during interactions between

agents A and B.

Agent A Agent B
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Figure 3.2: Artificially constructed example of phonological classes P1 (solid) and
P2 (dashed) by two agents A and B in a two-dimensional acoustic space and their
relation to tokens t1 (red) and t2 (blue). The grey dots are exemplars and the ellipses’
respective centroids are marked by plus signs.

The second memorisation criterion is called relative because it takes all

phonological classes in the agent listener’s memory into account. In this case,

the perceived token is only memorised if its posterior probability conditioned

on the intended phonological class is higher than the posterior probabilities

conditioned on the competing phonological classes.6 Conceptually, using pos-

terior probabilities in this way is a test of the token’s discriminability (also see

e.g. Todd et al., 2019). In the example given in Figure 3.2, agents A and B test

whether token t2 (blue) should be incorporated into the intended phoneme

class P2 by applying the maximum posterior probability decision. For agent

A, the posterior probability of t2 given the phonological class P2 is 0.94, i.e.

6 A variation of this so called maximum a posteriori probability criterion tests whether the
posterior probability of the token conditioned on the corresponding phonological class
exceeds a given threshold (e.g. Harrington & Schiel, 2017).
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t2 is probabilistically much closer to P2 than to P1 and would therefore be

memorised as an exemplar of P2. For agent B, on the other hand, t2’s posterior

probability is 0.49 when tested for P2 (and, hence, 0.51 when tested for P1)

which means that the token closely fails the maximum posterior probability

criterion and is therefore rejected by agent B. Section 3.3.2.2 is about the

long-term effects of the relative criterion.

Memorisation strategies can be combined, i.e. it is possible to apply both

the absolute and a relative criterion. Only if both criteria are passed, the token

is memorised. Finally, it is also possible to apply no restriction on perception

by having the agents memorise all perceived tokens.

3.2.5 Phonological Level

There are two ways of linking the exemplars and word classes through a phon-

emic level. Either the phonemic classes are fixed and immutable throughout

the simulation or they are agent-specific, regularly updated, and computed

using unsupervised learning algorithms. The simulations in Harrington and

Schiel (2017) are an example of the first option: This is where the user supplies

the phonemic labels associated with the word types to the ABM and they are

carried along throughout the interactions. Using this fixed phonological level

is computationally efficient and may be used if no phonological change is

expected to occur. The second option periodically derives phonological know-

ledge without any prior information and has been shown to be able to model

both stability and change on the phonological level (Gubian et al., 2023). That

is why it is planned to have the flexible phonology module be the default way

of computing the phonological level in the ABM (also see 3.3.1) despite the

increased computation time compared to the fixed phonology.

In order to present the two algorithms which are used in the flexible phon-

ology module of the ABM, a simulation was run on the data from Harrington

and Schiel (2017) (also see Harrington et al., 2008). The simulation settings

are not important here, as only the state of one agent’s memory after 100,000

interactions is considered. The agent (called phfo) was initialised with 10 exem-

plars each of 11 word types in a three-dimensional DCT-based acoustic space.
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The phonological link between exemplars and words was derived from the

following two-step process.

In the first step of the flexible phonology module, Gaussian Mixture Models

(GMMs, Reynolds, 2009) are used to create acoustic clusters of exemplars (see

Appendix B.4.1 for mathematical details on this algorithm). This step relies

exclusively on information about the location of exemplars in the acoustic

space and no information about word classes. Figure 3.3a shows the GMM

components for the chosen agent at the given point during the simulation.

Every black dot represents an exemplar in the agent’s memory. At this stage,

the exemplars’ association to word classes is irrelevant, thus only the acoustic

information is used to form clusters in the three-dimensional phonetic space.

The GMM has determined in this case that there are four acoustic clusters (a1
to a4) as shown by the labelled ellipses.

The second step is to identify sets of acoustic clusters that contain exem-

plars of the same distinct word classes. These sets are called sub-phonemes

(and not phonemes) for the reasons explained by Gubian et al. (2023). The

algorithm which identifies sub-phonemes is non-negative matrix factorisation

(NMF, D. D. Lee & Seung, 2001, see Appendix B.4.2 for mathematical details).

NMF disregards any information about the location of exemplars and acoustic

clusters in the acoustic space, and instead uses information on the association

between exemplars and word classes. This is why every exemplar from Fig-

ure 3.3a is represented by the corresponding word label in Figure 3.3b. In

total, NMF has determined that there are three sub-phonemes as shown by the

different colours. Acoustic clusters a1 and a4 both contain mostly exemplars

of the same four word classes: queued, feud, hewed, and soup. That is why a1
and a4 are grouped together into the red sub-phoneme. Most exemplars of the

words cooed, food, and who’d are contained in acoustic cluster a3 and no other

cluster, hence a3 becomes the green sub-phoneme. However, two exemplars

of cooed and one exemplar of who’d were originally part of acoustic cluster

a1. These exemplars are so-called impurities in the red sub-phoneme (with

which cluster a1 is associated). Sub-phonemes can contain impurities as long

as the overall purity of the sub-phoneme surpasses a threshold determined by

the user. Purity is computed as the fraction of exemplars in a sub-phoneme
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Figure 3.3: Example of the flexible phonology module given an agent’s memory at a
certain time during a simulation. The agent has stored exemplars of 11 word types
in memory which are first grouped into acoustic clusters a1 to a4 by GMM (a). The
acoustic clusters are then grouped into three sub-phonemes as indicated by the colour-
coding by NMF (b). The three-dimensional DCT-based acoustic space was split into
two two-dimensional plots for better clarity.

belonging to a designated set of words. So if the red sub-phoneme consists

of a total of 27 exemplars, 24 of which are associated with the word classes

queued, feud, hewed, and soup, then the purity is 24
27 ≈ 0.89. Since this is higher

than the default purity threshold of 0.75, a1 and a4 are pure enough to become
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a sub-phoneme. Finally, acoustic cluster a2 exclusively contains exemplars

of the words feed, heed, keyed, and seep and is hence identified as the blue

sub-phoneme. A more in-depth explanation of this process is provided in

Appendix B.4.3.

Notice that the identified sub-phonemes overwhelmingly correspond to the

classical phonemes /i, u, ju/ as indicated by Table 3.1, the only exception being

soup which was grouped with /ju/- instead of /u/-words by the unsupervised

algorithms. Importantly, whenever the sub-phonemic classes are recomputed,

any previous results from GMM and NMF are disregarded. If this flexible

phonology module is used to derive phonemic knowledge, the memorisation

criteria are computed with respect to the agent-specific sub-phonemes.

Phoneme Word Classes

/i/ feed, heed, keyed, seep

/u/ food, who’d, cooed, soup

/ju/ feud, hewed, queued

Table 3.1: Association between words and classical phonemes (also see Harrington
and Schiel, 2017).

3.2.6 Memory Management

There are two scenarios in terms of memory management that should be

avoided because they can cause artefacts: data scarcity on the one hand renders

the computation of Gaussian distributions unstable, while an abundance of

exemplars minimises the impact of new tokens on the exemplar distributions

and hence effectively prohibits change from happening. In order to always re-

tain a sufficient number of exemplars per word class in an agent’s memory, two

measures were implemented. The first counteracts the data scarcity problem

during the initialisation of the agents. If there are too few tokens from real

speakers available, the Synthetic Minority Over-sampling Technique (SMOTE,

Chawla et al., 2002, see Appendix B.5 for mathematical details) can be applied

during the initialisation of the agents in order to increase the number of tokens

per word and agent. SMOTE is a standard resampling technique that linearly
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connects the existing data points to their nearest neighbours and randomly

samples new data points on these connecting lines.

The second measure takes effect when the agents’ memory size needs to be

controlled during the simulation, i.e. when the agents start to accumulate more

and more exemplars. Agent listeners are equipped with the ability to forget an

exemplar after having accepted and memorised a new exemplar. The exemplar

that is removed from memory has to be associated with the same word class as

the newly memorised exemplar, but is otherwise chosen at random. However,

the removal of the chosen exemplar is blocked if it would lead to a decrease in

the number of exemplars of the associated word class beyond the initialisation

level. This constraint was implemented to prevent the agents from forgetting

entire word classes. It is the user’s task to adjust the rate of exemplar removal

on a spectrum between no removal at all to removing an exemplar every time

a new exemplar has been memorised.

3.2.7 From Interactions to Change

According to the IP model (see section 3.1), permanent sound change can

arise when an existing phonetic bias is reinforced by interactions between in-

dividuals who imitate each other and whose associations between word classes

and remembered speech signals can be updated with increasing language

experience. That is, there are four key components in the IP model whose

interplay determines whether or not a sound change takes place: phonetic

biases, non-social phonetic imitation, perceptual learning, and flexible sub-

phonological categories. This section is concerned with the mapping between

these theoretical components and their counterparts in the ABM in order to

understand under which circumstances the simulations can result in change.

The first component to be discussed here is phonetic bias which results

from how speech is produced or perceived. In the IP model, the directional

synchronic variation that is a consequence of stable phonetic biases is a pre-

condition for sound change to emerge. In terms of the ABM, this highlights

the importance of the input data, i.e. the data configuration at baseline de-

termines in no small part the simulation’s outcome. In particular, the input
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data should mirror some phonetic variation that may eventually turn into

sound change. This is important because the mechanisms of the ABM are

incapable of generating systematic variation or a phonetic bias. As explained

in section 3.2.3, the agents’ production is a sampling procedure that is not

subject to a superimposed bias which would skew the produced token in the

direction of the expected sound change. The way in which variation is injected

into the model is by initialising agents with data from heterogeneous (groups

of) speakers. Some of these speakers should be further along in the modelled

sound change than the others such that, when speakers with different variants

interact, it can be observed whether all of them end up producing the more

innovative variant.

In the IP model, phonetic imitation, i.e. the acoustic convergence between

(usually two) speakers in a conversation, is viewed as an involuntary, subcon-

scious pattern of behaviour which is not socially motivated. The same is true

for the ABM: agents propagate their variants of a sound not because they are

instructed to build a common identity nor because they desire to become a

member of a social group, but because of the strong link between their speech

perception and speech production. That is, both processes draw from the same

pool of exemplars and newly memorised exemplars can affect the agent’s pro-

duction. The agents’ production-perception feedback loop is what can turn

phonetic variation into population-wide change in the computational model.

The third component of sound change in the IP model is perceptual learn-

ing, i.e. the possibility to shift perceptual boundaries between phonological

categories upon encountering ambiguous tokens of words. When the phono-

logical classes in the ABM are pre-determined and remain fixed, perceptual

learning is more easily observed than when they are derived automatically

from the acoustic exemplars. For example, in the scenario shown in Figure 3.2,

two agents have different representations of phoneme P1 but essentially the

same representation of phoneme P2. When either of them produces a token

of a word that is associated with P1, it is likely going to sound unfamiliar or

ambiguous to the perceiving agent. After a prolonged exchange of exemplars

of P1, agent A is more prone than agent B to shifting the perceptual boundary

between the phonemes P1 and P2 towards P2 because agent A’s P1 is skewed
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towards P2. However, the ambiguous exemplars still have to pass the relative

memorisation criterion, otherwise perceptual learning cannot take place. This

is where the flexible phonology module (see section 3.2.5) might be helpful

since the parts of the acoustic space considered ambiguous by individual

agents can change each time the sub-phonemic classes are recomputed. In this

case, perceptual learning might be understood as the creation of phonological

or sub-phonemic classes that reflect the agent’s acquired knowledge about the

association between speech signals and word classes which is updated when

the agent has collected more language experience (Cutler et al., 2010). So per-

ceptual learning is also closely related to the idea of a flexible and personalised

phonological level, i.e. the fourth component of the IP model.

Recall that the IP model states that “whether or not sound change actually

comes about depends upon which speakers regularly speak to each other,

whether a phonetic bias happens to be magnified by interaction, and whether

or not sub-phonemic classes are fragmented and regrouped over time” (Har-

rington et al., 2018, p. 17). In the ABM, sound change can emerge from the

stochastic interactions between heterogeneous agents (some of which are ini-

tialised with a more innovative variant of the sound under investigation than

others), given the mechanics of their production-perception feedback loop and

organisation of phonological information. The components of the theoretical

IP model and computational ABM described here also fit the definition of

spoken language as a complex adaptive system according to Beckner et al.

(2009) (section 3.1): multiple members of a speech community (i.e. speakers

or agents) interact with one another; their interactions are governed by the

mechanics of speech production and perception which can be adapted as a

consequence of past interactions; and sound change arises from the interplay

between language experience, population dynamics, and cognitive processes.

3.3 Core Mechanisms

The ABM presented in this chapter offers a wide variety of setting combina-

tions which, also in combination with the endless possibilities of input data,

can yield wildly differing results. In this section, we focus on two of the essen-
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tial mechanisms of this model and how they affect certain artificially generated

data configurations. Firstly, the simulations in 3.3.1 show that it is advantage-

ous to use the flexible as compared to the fixed phonology module in order to

establish phonological classes as a link between exemplars and word classes.

Secondly, three simulations are presented in 3.3.2 that explore the effects

of the absolute and relative memorisation criterion on the artificial dataset

first shown in Figure 3.2 in order to show how simulations can result in both

phonetic change and stability.

3.3.1 Flexible vs. Fixed Phonology

The aim of this section is to demonstrate the main advantage of using the flex-

ible phonology module that was presented in section 3.2.5: The phonological

level is derived directly from the data without relying on any superimposed

information provided by the user. Two artificial datasets were created to show

the implications of this data-based approach to generating phonological know-

ledge. Both consist of only one agent who is initialised with 10 exemplars

each of 10 word classes, called W1 to W10, in a two-dimensional acoustic

space. The only difference between the two datasets is the association between

exemplars and word classes which is either systematic or random. Without

conducting any interactions, the flexible phonology module is used to identify

sub-phonemic classes in this data.

Figure 3.4 shows the first dataset. All exemplars are represented by their

word class in the two-dimensional acoustic space. The Gaussian Mixture Model

has identified two acoustic clusters, a1 and a2. Since a1 exclusively contains

exemplars of words W1 to W5 and a2 overwhelmingly contains exemplars of

words W6 to W10, each acoustic cluster constitutes a sub-phoneme on their

own according to NMF (as indicated by the ellipses of different line types). One

exemplar of W2 is part of a2 instead of a1 (which holds all other exemplars

of W2), so this exemplar is considered an impurity in sub-phoneme 2 (SP2,

dashed ellipse). However, SP2’s overall purity is still very high with a value

of 50
51 ≈ 0.98. From the example in Figure 3.4 it can be concluded that the

machine learning algorithms that were applied to compute the phonological
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level were capable of recognising the systematicity in how exemplars were

associated with word classes: namely that exemplars of word classes W1 to W5

are usually characterised by negative values of Feature 1 whereas exemplars of

W6 to W10 have positive values of Feature 1.
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Figure 3.4: Results of applying GMM and NMF to an agent whose association between
exemplars and word classes is systematic. Each exemplar is represented by its corres-
ponding word class in the two-dimensional acoustic space. The flexible phonology
module identified two sub-phonemes (SP1 and SP2, as indicated by the ellipses), each
consisting of one acoustic cluster, a1 and a2, respectively.

The position of exemplars in the acoustic space is the same in the second

as in the first dataset. In this case, however, the word labels were randomly

assigned to the exemplars. Figure 3.5 shows that a mere swapping of word

labels in comparison to the first dataset yields fairly different results. GMM and

NMF have determined that there is only one sub-phoneme which consists of

two acoustic clusters. These two acoustic clusters are the same as in Figure 3.4

because the location of exemplars in the acoustic space is the same. However,

since both a1 and a2 contain exemplars of the same (i.e. all) word classes, NMF

has grouped the two clusters together to form one sub-phonemic class. That

is, the flexible phonology module has correctly inferred that there was no

discernible phonological pattern in this data.

The scenarios in this section have shown that the flexible phonology module

is capable of drawing reasonable conclusions from both systematically and
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Figure 3.5: Results of applying GMM and NMF to an agent whose association between
exemplars and word classes is random. Each exemplar is represented by its corres-
ponding word class in the two-dimensional acoustic space. The flexible phonology
module identified one sub-phoneme (SP1) consisting of two acoustic clusters (a1 and
a2).

randomly distributed data. In these two cases, where no interactions took place,

a user possibly would have come to the same conclusions, i.e. that in one case

there should be two phonological classes and in the other only one. However,

the main advantage of the flexible as compared to the fixed phonology module

emerges more clearly when the agent’s exemplar storage grows and changes

as a result of interactions with other agents. While GMM and NMF can react

to an agent’s increasing language experience and adapt the phonological link

between exemplars and words accordingly, it is impossible for the user to

intervene and determine new phonological classes during a simulation. When

the flexible phonology module is used, sub-phonemes are directly derived

from data, i.e. in accordance with Exemplar Theory they are abstractions over

clouds of stored exemplars (Pierrehumbert, 2001), thereby eliminating the

risk of superimposing fixed phonological classes that do not (anymore) match

the acoustic data. This is important because, as mentioned in section 3.2.4,

the memorisation criteria which are one of the main forces in the ABM are

computed with regard to the (sub-)phonological classes. Finally, GMM and

NMF allow for phonological changes such as splits and mergers to happen. It is
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beyond the scope of this chapter to demonstrate phonological changes, but the

reader is referred to Gubian et al. (2023), for a demonstration of phonological

stability and change in this agent-based model.

3.3.2 Phonetic Stability and Change

This section is concerned with showing the long-term effects of the absolute

and relative memorisation criteria on the outcome of simulations using the

artificial data that was shown in Figure 3.2. The data consists of two agents,

A and B, both of which are initialised with 50 exemplars each of 10 word

classes. The acoustic space is two-dimensional and the phonological level was

determined using GMM and NMF as explained in section 3.2.5. The data

was intentionally designed in such a way that the initial computation of the

phonological level would yield two sub-phonemic classes for each agent.7 For

agent A, sub-phoneme 1 (SP1) is broad and skewed towards sub-phoneme 2

(SP2) which, in turn, is similar to agent B’s SP2. For agent B, both sub-phonemic

classes are relatively narrow and in close proximity in the acoustic space. This

setup is motivated by the same findings that support the IP model (section 3.1).

That is, synchronic phonetic variability can skew a phonological class (in this

case agent A’s SP1), e.g. in many English varieties /u/ is fronted in adjacency

to tongue-tip or palatal consonants, but remains a high back vowel in other

contexts. In another group of speakers (represented here by agent B), however,

the same phonological category is less variable and might already lie in the

direction of change, e.g. when some speakers have already adopted a fronted

/u/ in all contexts.

Below, three simulations are presented which use the described artificial

data as input. The first demonstrates the impact of the absolute memorisation

criterion, while the second shows the effect of applying the maximum a pos-
teriori decision in perception (see section 3.2.4). The third applies both criteria,

as is the default in the soundChangeR settings. The simulations were stopped

7 Sub-phonemic labels are randomly assigned at every rerun of GMM and NMF and they are
also not the same across agents. For reasons of convenience, the labels of the sub-phonemic
classes in Figures 3.6 to 3.10 have been manipulated to be the same before and after the
simulation.
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when there were no more acoustic changes (after 5800, 9000, and 6000 interac-

tions respectively in the first, second, and third simulation). Apart from that,

the simulations share the same settings: the phonological level was computed

using GMM and NMF and recomputed whenever 20 new exemplars had been

memorised; sub-phonemic classes had to surpass a purity level of 75%; and

after each memorisation, another exemplar was removed from memory.

3.3.2.1 Effects of the Absolute Memorisation Criterion

Figure 3.6 shows the acoustic space of the two agents (in columns) at the

baseline (top row) and post-run (bottom row). Every grey dot represents a mem-

orised exemplar and the ellipses indicate their association to sub-phonemic

classes SP1 (solid) and SP2 (dashed). The Mahalanobis distance threshold was

set to 0.95 probability mass (the default setting), which means that an exem-

plar is accepted and memorised only if it is located within the mean-centred

ellipse enclosing 95% of the probability mass of the corresponding Gaussian

distribution. From the bottom row of Figure 3.6 it can be seen that after the

interactions both agent A and agent B still have two sub-phonemic classes,

each of which consists of one acoustic cluster. It is also very clear that agent A

has adopted agent B’s variant of SP1 so that the two sub-phonemes are in close

proximity and even overlap in the acoustic space. Over simulation time, the

agents also forget a number of exemplars, so agent A has removed many of the

original exemplars of SP1 with low values of Features 1 and 2, leaving A with

a shifted and narrower SP1. SP2, on the other hand, has not changed in either

agent. Also note that the agents’ sub-phonemic classes have generally become

more narrow post-run compared to the baseline.

Insights on how these simulation results came about can be taken from

Figure 3.7 which shows the baseline configuration for both agents (grey dots

and ellipses) as well as exemplars that were rejected (yellow) or accepted

(blue) by the absolute criterion in the first 200 interactions when tested for

membership in SP1 (top) or SP2 (bottom). Exemplars of SP1 produced by agent

A typically have low values of Feature 1 and mostly low values of Feature 2.

These exemplars would be very atypical members of agent B’s SP1; in technical
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Figure 3.6: State of agent A’s and B’s representations of sub-phonemic classes in the
acoustic space before and after the simulation. Grey dots represent stored exemplars.
Only the absolute Mahalanobis distance criterion with the default threshold of 0.95
was applied to decide whether perceived tokens should be memorised.

terms, that means that these exemplars’ Mahalanobis distance to the centroid

of agent B’s SP1 is too high and they are therefore rejected (cf. yellow dots in

top right panel). As a consequence, agent B’s SP1 does not shift towards that

of agent A. The exemplars of SP1 produced by agent B, however, all fall within

agent A’s ellipse and thus are accepted according to the absolute criterion and

memorised (cf. blue dots in top left panel). Since all of the exemplars that

agent A accepts for SP1 lie in the top right corner of the acoustic space, agent

A’s SP1 starts to shift in that direction. So because agent A’s SP1 is large and

skewed towards agent B’s narrow SP1, agent A is more likely to accept tokens

from agent B than vice versa, resulting in a shift of agent A’s SP1 towards that

of agent B. SP2, on the other hand, is very similar in both agents, so most of the

produced tokens pass the Mahalanobis distance threshold (blue dots in bottom

row). The rare tokens that are rejected (yellow dots in bottom row) closely miss

the threshold. This rigid pressure against atypical tokens also leads to ever
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narrower sub-phonemic classes, because even exemplars that are almost, but

not quite enclosed by the ellipses are rejected.
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Figure 3.7: Baseline configuration of sub-phonemic classes 1 (SP1, solid) and 2 (SP2,
dashed) for agents A and B (in columns) in the acoustic space. Grey dots represent
baseline exemplars, yellow/blue dots represent exemplars from the first 200 interac-
tions that failed/passed the Mahalanobis threshold when tested for membership in
SP1 (top) or SP2 (bottom).

3.3.2.2 Effects of the Relative Memorisation Criterion

Similarly to Figure 3.6, Figure 3.8 shows the sub-phonemic classes 1 (solid

ellipse) and 2 (dashed ellipse) of the two agents (in columns) both before (top

row) and after the simulation (bottom row). In this case, the relative criterion

(i.e. maximum a posteriori probability) was used to decide whether or not a

token was stored in an agent’s memory. After 9000 interactions between agents

A and B, agent B’s SP1 has shifted towards that of agent A and both agents’

phonological classes are acoustically distinct.

As shown by Figure 3.9, these results are a consequence of a pressure

against ambiguous exemplars, i.e. exemplars that are located in a part of the
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Figure 3.8: State of agent A’s and B’s representations of sub-phonemic classes in the
acoustic space before and after the simulation. Grey dots represent stored exemplars.
Only the relative maximum posterior probability criterion was applied to decide
whether perceived tokens should be memorised.

acoustic space in which it is questionable according to posterior probabilities

whether the exemplar belongs to one or another sub-phoneme. For instance,

agent B is very likely to accept exemplars of SP1 from agent A since these

almost always fall into an unambiguous part of the acoustic space, i.e. a part

where SP2 cannot be considered a competing phonological class according

to the conditional posterior probabilities (cf. top right panel). Agent A, on

the other hand, rejects those exemplars of SP1 produced by agent B that are

located in the part of the acoustic space where agent A’s SP1 and SP2 overlap

(yellow dots in top left panel). From the top row of Figure 3.9 it also becomes

clear that agent B’s SP1 must have shifted towards that of agent A already after

200 interactions, given that agent B has started to produce exemplars of SP1

that are unambiguous to agent A and therefore accepted (blue dots in top left

panel). Similarly to the first simulation, both agents usually accept each other’s

exemplars of SP2, because they have acoustically similar representations of

that sub-phonemic class. Interestingly, however, agent B has rejected several
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exemplars of SP2 because they fell into the part of the space where SP1 and

SP2 overlap (yellow dots in bottom right panel). Overlapping sub-phonemes

cause ambiguity, and such ambiguity is penalised when the relative criterion

is applied. Over time, the constant pressure against ambiguous exemplars

creates a force of repulsion between sub-phonemes as can be seen from the

bottom row of Figure 3.8 where the agents acoustically discriminate SP1

and SP2.8 Notably, some of the exemplars accepted by both agents are clear

outliers of their sub-phonemic classes (at least as long as the sub-phonemic

classes have not been adapted by reapplying GMM and NMF), i.e. they are

not enclosed by the ellipses (also see Figure 3.8). A side effect of applying the

relative memorisation criterion is that outliers are accepted as long as they are

located in an unambiguous part of the acoustic space, which can lead to an

expansion of the acoustic space even beyond values that are realistic in terms

of articulation.

In summary, the two simulations in this section have both shown cases

of phonetic change and stability. When agents did not differ in their repres-

entation of a sub-phonemic class (e.g. SP2), there was no phonetic change,

whereas between-agent variation (e.g. in SP1) in combination with the different

perceptual strategies resulted in shifts of sub-phonemic classes in the acoustic

space as well as in changes of the classes’ size and orientation. This underlines

the necessity for heterogeneous agents or agent groups: the acoustic variation

introduced by them is required for phonetic changes to emerge from a simula-

tion with the agent-based model. It was also shown that the two memorisation

criteria had opposing effects on the chosen data configuration: the Mahalanobis

distance threshold caused a shift from agent A’s SP1 towards that of agent B,

whereas the maximum a posteriori probability resulted in a shift from agent B’s

SP1 towards that of agent A. Since both memorisation criteria have different

long-term effects as well as possible side effects, it seems reasonable overall to

test exemplars both for their typicality by means of a Mahalanobis distance

8 Recall, however, that sub-phonemes are recalculated regularly, which can lever out the effect
of repulsion caused by the application of the relative criterion. For further explanation, the
reader is referred to Stevens et al. (2019) and Gubian et al. (2023).
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Figure 3.9: Baseline configuration of sub-phonemic classes 1 (SP1, solid) and 2 (SP2,
dashed) for agents A and B (in columns) in the acoustic space. Grey dots represent
baseline exemplars, yellow/blue dots represent exemplars from the first 200 interac-
tions that failed/passed the maximum posterior probability decision when tested for
membership in SP1 (top) or SP2 (bottom).

threshold and their discriminability by means of posterior probabilities (Todd

et al., 2019).

3.3.2.3 Effects of Applying Both Memorisation Criteria

Figure 3.10 shows a simulation with the same data as before, but when both

criteria had to be passed in order for a token to be memorised. Both agents

have maintained two sub-phonemic classes consisting of one acoustic cluster

each. Agent A’s SP1 has shifted more towards agent B’s SP1 than vice versa, the

sub-phonemic classes do not overlap anymore, and they have become slightly

narrower over simulation time. So the simulation results display characteristics

of both of the previous simulations.

Figure 3.11 illustrates how this outcome arose as a consequence of the

application of both memorisation criteria. All exemplars that were exchanged

in the first 400 interactions between the agents are plotted over the baseline
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Figure 3.10: State of agent A’s and B’s representations of sub-phonemic classes in the
acoustic space before and after the simulation. Grey dots represent stored exemplars.
Both memorisation criteria had to be passed during the perception procedure in order
for a perceived token to be memorised.

configuration of the data with the colour-code indicating whether the exemplar

was accepted (blue), rejected due to the absolute (yellow) or relative criterion

(red). More precisely, exemplars were tested first against the relative criterion;

only if they passed that test, they were also subjected to the absolute criterion.

So yellow exemplars in Figure 3.11 were accepted according to the relative

criterion, but rejected by the absolute criterion, whereas red exemplars were

rejected by the relative criterion even though they might have passed the

absolute criterion if they had been subjected to it.

Agent A rejected exemplars of SP1 produced by agent B because they

were too probabilistically close to SP2 (red dots in top left panel). Just like in

section 3.3.2.1, agent A was more inclined to accept exemplars of SP1 produced

by agent B (blue dots) than vice versa because agent A’s SP1 is broad and skewed

in the direction of agent B’s SP1. Exemplars of SP1 produced by agent A, while

clearly acceptable to agent B according to the relative criterion (cf. Figure 3.8),

were rejected because of the Mahalanobis distance threshold (see yellow dots
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in top right panel of Figure 3.11, cf. Figure 3.7). That also means that the

effects of the maximum posterior probability decision – i.e. an expansion of

the acoustic space through the acceptance of outliers in unambiguous parts of

the acoustic space – was counteracted by the absolute criterion and resulted in

only minor phonetic changes of agent B’s SP1.

With regard to SP2, Figure 3.11 shows that the agents almost always accep-

ted and memorised each other’s tokens (blue dots, bottom row) because they

share a similar representation of that sub-phonemic class. Agent A rejected

some of agent B’s exemplars of SP2 because they did not pass the Mahalanobis

distance threshold despite their proximity to agent A’s SP2 (yellow dots in bot-

tom left panel) and others because they were probabilistically closer to agent

A’s SP1 and SP2 (red dots). Finally, as shown also in Figure 3.9, agent B rejected

some exemplars of SP2 produced by agent A because they were too ambiguous

to classify according to the maximum posterior probability decision (red dots

in bottom right panel of Figure 3.11). Since the agents’ sub-phonemic classes

are relatively stable over simulation time, the relative criterion can create the

force of repulsion mentioned in section 3.3.2.2 which is why SP1 keeps its

distance to SP2 (cf. bottom row of Figure 3.10).

This simulation, in which both memorisation criteria had to be passed,

demonstrates the interplay between the two and their combined effect on the

chosen data configuration: The absolute criterion is capable of enforcing phon-

etic skews if the agent with the skewed variant is in contact with another agent

whose variant lies in the direction of the skew. Thereby (and in combination

with a rigorous removal policy), the absolute criterion can create shifts of

(sub-)phonemic classes through the acoustic space. By contrast, the relative

criterion takes effect when two (sub-)phonemic classes are acoustically close

and prohibits the memorisation of ambiguous exemplars. As a consequence,

(sub-)phonemic classes tend to stay apart.

3.4 Discussion

This chapter was about a cognitively-inspired agent-based model of sound

change: its theoretical background based on the IP model, its entities and pro-

76



3. An Agent-Based Model of Sound Change: soundChangeR

Agent A Agent B

Te
ste

d
 fo

r S
P

1
T
e

s
te

d
 fo

r S
P

2

-10 -5 0 5 -10 -5 0 5

-8

-4

0

4

-8

-4

0

4

Feature 1

F
e
a
tu

re
 2

Sub-Phoneme

SP1

SP2

Accepted?

Accepted

Rejected by Absolute Criterion

Rejected by Relative Criterion

Figure 3.11: Baseline configuration of sub-phonemic classes 1 (SP1, solid) and 2 (SP2,
dashed) for agents A and B (in columns) in the acoustic space. Grey dots represent
baseline exemplars, blue dots represent exemplars from the first 400 interactions that
passed both criteria, yellow/red dots represent exemplars that were rejected by the
absolute/relative memorisation criterion when tested for membership in SP1 (top) or
SP2 (bottom).

cesses, the advantages of using the flexible as compared to the fixed phonology

module, and how all of this together can result in change. Here we aim to

compare the properties of the ABM to those of other computational models of

sound change, point out some unresolved issues, and discuss opportunities to

expand the model.

Compatibly with many other agent-based or computational models of

sound change (Blevins & Wedel, 2009; Ettlinger, 2007; Kirby, 2014b; Kirby

& Sonderegger, 2013; Pierrehumbert et al., 2014; Sóskuthy, 2015; Stanford

& Kenny, 2013; Todd et al., 2019; Wedel, 2006), soundChangeR is founded

upon an exemplar-based production-perception feedback loop as proposed

by exemplar theory and episodic models of memory. That is, the agents store

parameterised traces of speech in their memories, are capable of deducing

some form of phonological code from the phonetic and lexical levels, and use

their knowledge to produce new exemplars and to perceptually evaluate and

categorise incoming tokens. In contrast to all other computational models of

77



3. An Agent-Based Model of Sound Change: soundChangeR

sound change, the ABM presented in this chapter can handle real production

data and is not reliant on artificially created data. While artificial data can be

helpful in exploring the simulations’ possible outcomes by controlling their

input (as demonstrated in section 3.3), artificial data can never adequately

include all the idiosyncrasies of spoken language which have been shown to

be relevant for sound change (Beddor et al., 2018; Clopper, 2014; Harrington,

2014; Stevens & Harrington, 2014; Yu, 2021; Yu & Zellou, 2019). The exemplars

in other ABMs follow either a uniform distribution (Wedel, 2006) or normal

distribution in a finite artificial acoustic space, e.g. between 0 and 1 (Sóskuthy,

2015) or between 0 and 30 (Stanford & Kenny, 2013). In the models by Kirby

(2013, 2014b) the acoustic features are distributional information derived from

real production data, i.e. the agents do not store single exemplars but rather

retain information about the acoustic distribution. The production data with

which agents are initialised in soundChangeR should mirror phonetic variation

as well as different stages of the sound change under investigation, i.e. some

agents should be further advanced in the change than others. This is often

achieved by means of apparent-time data in which it is assumed that younger

speakers represent a more recent state of the language than older speakers

(Bailey et al., 1991). In interactions between such heterogeneous agents, it is

expected that all agents adopt the innovative variant of the sound by the end

of the simulation. However, such a result should not be taken to mean that

older speakers adapt to younger speakers in everyday life and that this is how

sound change comes about – it only shows that a newer state of the language

acts as an attractor to people who use an older speaking style while older states

of the language are abandoned.

Although most of the computational models cited above rely on the same

theoretical background, they differ in their precise implementation and ap-

plication of production and perception which, as shown in section 3.3.2, can

greatly influence the simulation’s outcome. Focusing first on perception, we

can compare how different ABMs impose rules and constraints on the categor-

isation of exemplars. For example, the model by Stanford and Kenny (2013)

only applies a relative criterion, so the perceived exemplar has to be closer to

the intended than to competing phonological classes in order to be memorised.
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Similarly, the models by Kirby (2013, 2014b) use an ideal observer in percep-

tion, i.e. a Bayesian classifier that relies on posterior probabilities in order to

decide whether an incoming token is accepted. Sóskuthy (2015) weights the

relative memorisation criterion by functional load, i.e. ambiguous exemplars

are likely to be rejected unless their functional load is low. Common to all of

these models is their focus on contrast maintenance. Thus, when there are two

or more competing phonological categories in the simulated acoustic space,

tokens that fall in the ambiguous space between them are less likely to be

memorised than those that are probabilistically close to their intended phon-

eme. This perceptual pressure for contrast maintenance effectively prohibits

mergers from happening in these models because phonemes will always repel

each other. Gordon (2013) notes that chain shifts and mergers are alternative

outcomes of phonetic changes whereby one phoneme approaches another in

an acoustic space: If the phonemic contrast must be maintained (e.g. in order

to avoid wide-spread cases of homophony in the lexicon; Blevins and Wedel,

2009), a chain shift occurs; otherwise the two categories merge and the contrast

is lost. Other computational models of sound change apply no restrictions or

constraints on the agents’ perceptual procedure (Fagyal et al., 2010; Lev-Ari,

2018), but this is because they are interested in the influence of social network

size on the propagation of phonetic variants and less so in modelling the

cognitive mechanisms inherent in human speech perception. The only ABM

besides soundChangeR to my knowledge that applies both an absolute and a

relative criterion in perception is that by Todd et al. (2019). According to them,

a computational model of phonetic change must meet two desiderata when

agents are initialised with two categories. First, the categories should maintain

their distance to one another, and second, they should maintain their degree

of overlap. The forces needed to fulfil these requirements can come from the

application of the two different perceptual criteria, as shown in section 3.3.2:

the absolute criterion can lead to a phonetic shift while preserving the categor-

ies’ overlap whereas the relative criterion promotes contrast maintenance by

penalising acoustic ambiguity. Todd et al. (2019) justify these desiderata using

data from the New Zealand English vowel shift from Hay et al. (2015) which

shows that the front vowel categories /æ/ and /E/ shifted phonetically over the
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course of 150 years but maintained both their distance and overlap. Applying

both memorisation criteria is indeed apt for modelling phonetic shifts, but

fails at modelling changes with phonological components such as mergers or

splits because of the rigid definition of phonological categories.

While the assumption that acoustically close phoneme categories do not

always collapse is generally reasonable (Blevins & Wedel, 2009), a holistic

model of sound change should be capable of producing both stable phon-

emic conditions as well as mergers and splits. In order to allow categories to

merge, agents must be able to update their association between acoustic tokens

and phonemic categories regularly so as to weaken the effects of the contrast

maintenance rule. More specifically, when an agent has acquired a number of

new exemplars through interactions with others, the agent should determine

whether its phonological categories still match the acoustic data stored in its

memory, and if not, recompute them (Pierrehumbert, 2001). The first computa-

tional model of sound change that included a more flexible phonology module

is the one by Stevens et al. (2019) (an early version of soundChangeR) which was

built to simulate the retraction of /s/ in /str/-clusters in Australian English

(also see Harrington et al., 2018). In this model, the agents were initialised with

real speech data from Australian English speakers producing words containing

/s/ (e.g. seen, stream) or /S/ (e.g. sheep). During the simulation, the agents could

perform binary splits and mergers of the pre-defined canonical phonemes /s/

and /S/ as a result of which they quickly developed their own, personalised

sub-phonemic classes. An analysis of those exemplars which contained /str/

over the whole agent population showed a slightly decreased first spectral

moment and thus a more /S/-like realisation of the sibilant in /str/ after as

compared to before the simulation. In addition, the phonemic categorisation

of these exemplars had changed. After the simulation they were more often

separated from /s/ and more often merged with /S/, or they were categorised

as their own phonemic class separate from both /s/ and /S/. Importantly, the

recomputation of phonological classes throughout the simulation counterac-

ted the effects of the relative criterion that would otherwise lead to phoneme

repulsion. However, this approach by Stevens et al. (2019) has two main dis-

advantages. First, the user has to provide the model with prior knowledge
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on the canonical phoneme categories. This means that the categories which

are superimposed on the input data do not necessarily fit the actual acoustic

distributions, but rather match classical phonemes (Ladd, 2006). In exemplar

theory – from which the ABM at hand borrows many principles as explained in

section 3.1 – phonological classes are derived bottom-up from clouds of stored

exemplars which are different for each person given their individual language

experience, and not top-down by relying on minimal pairs in the lexicon to

identify distinctive segments (Pierrehumbert, 2001, 2003a). Second, the bin-

ary splits and mergers in Stevens et al. (2019) result in very high number of

sub-phonemic classes, some of which only comprise of exemplars of two word

classes (because this limit was implemented into the model). This is because

the algorithm preferred splits over mergers, leading to a fragmentation of the

agents’ memories. The idea of allowing agents to re-evaluate their internal

phonological structures after acquiring new exemplars and tolerating sub-

phonemic units which are not necessarily distinctive like classical phonemes

was carried over into soundChangeR. Two machine learning algorithms are

regularly applied to the agents’ memories which group the stored exemplars

into acoustic clusters (i.e. Gaussian mixture components) and then determine

sets of clusters which contain the same distinct subset of word classes. These

algorithms are classified as unsupervised, i.e. they do not require any prior

information about e.g. the amount of (sub-)phonological classes, and they do

not take results from previous computations into account. That is, as shown in

section 3.3.1, these algorithms can infer agent-specific sub-phonemic classes

solely from the location of exemplars in the acoustic space as well as from their

association with word classes. This flexible phonology module was tested by

Gubian et al. (2023) on the merger of /I@, e@/ in New Zealand English (NZE) in

which the first element of /e@/ was raised so much that the formerly distinct

lexical sets near and square are now produced with the same diphthong /I@/.

The agents in this study were initialised with exemplars of the two diphthongs

from older and younger NZE speakers who represented different stages of this

sound change; older speakers still produced acoustically distinct centring diph-

thongs while younger speakers had completed the sound change and hence

did not differentiate between /I@/ and /e@/ anymore. The simulation was run
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on a pre-publication version of soundChangeR, i.e. using all the mechanisms

and rules explained in this chapter. After these agents had interacted with one

another, /e@/ had shifted towards /I@/ in the speech of agents representing

older speakers, as expected. Furthermore, an analysis of the sub-phonemic

classes computed by GMM and NMF revealed that the contrast between the

diphthongs was increasingly neutralised over the course of the simulation.

More specifically, most agents organised their stored exemplars into two sub-

phonemic classes after the interactions, but these classes contained a balanced

mixture of words with canonical /I@/ and /e@/. Thus, the study by Gubian et al.

(2023) shows that soundChangeR, in contrast to all other currently existing

ABMs of sound change, can model phonological mergers by allowing for agent-

specific sub-phonemic classes that are derived from the statistical properties

of phonetically detailed exemplars and that are updated regularly (Coleman,

2002; Kiparsky, 2018; Scobbie, 2006; Scobbie & Stuart-Smith, 2008).

Many ABMs of sound change also critically depend on settings that determ-

ine how exemplars are produced although most of them, like soundChangeR,

start by sampling a set of acoustic feature values from a Gaussian distribution.

In the case of the ABM presented here, the agent speaker randomly chooses

a word class and the Gaussian distribution is computed over all exemplars

associated with that word class (and the distribution can be stabilised by means

of SMOTE if necessary). In most of the other models (Blevins & Wedel, 2009;

Ettlinger, 2007; Kirby, 2013; Sóskuthy, 2015; Todd et al., 2019; Wedel, 2006),

however, random noise is added to the sampled values to model imprecision

in reaching articulatory targets, or the effects of a phonetic bias are emulated

by pushing the newly produced exemplars in the direction of the expected

change. In the model by Todd et al. (2019, p. 6), for instance, produced tokens

are shifted in a given direction to model “external influences such as reduction

of articulatory effort” – although this rule is only applied to tokens of the

pusher (and not the pushed) category to simulate a vowel push chain. This

force, called bias by Todd et al. (2019), is required to trigger phonetic shifts in

that model. Additionally, they add some noise to all tokens to model articulat-

ory imprecision. The shuffling of tokens in any direction helps to maintain the

within-category variance, as otherwise the Gaussian sampling might lead to a
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return-to-the-mean effect. Another example is provided by Sóskuthy (2015)

who implemented a bias that acts as an attractor for all tokens, but more

strongly so for tokens that are acoustically far away from the bias location than

for those that are closer. In theory this should model cases like /u/-fronting

in many English varieties in which the vowel is affected differently by the

fronting bias depending on its phonetic context (i.e. coronal or palatal conson-

ants vs. other consonants; Harrington et al., 2008). However, given that the

bias in Sóskuthy (2015) is a logistic function with the attractor located at the

function’s inflection point, tokens of /u/ that are overly fronted are retracted

towards the bias location just like overly retracted tokens of /u/ are pulled

to the front. In the ABMs by Blevins and Wedel (2009) and Wedel (2006),

the addition of noise to the produced token is used as a source of variation,

though they also implement measures to prevent categories from broadening

inexorably – a concern that is mediated by the absolute memorisation criterion

in soundChangeR. While the addition of random noise during the production

procedure could indeed counteract the effect of decreasing within-category

variance caused by Gaussian sampling in soundChangeR, the absolute memor-

isation criterion likely exerts an even stronger influence in this regard than

the Gaussian sampling. That is, if a token is rendered too atypical through

the addition of random noise, it will be rejected by the Mahalanobis distance

threshold in our ABM, which can lead to reduction of within-category variance

over time as shown in section 3.3.2.1. In these and other computational models

(e.g. Ettlinger, 2007; Kirby, 2013) it remains unclear whether the added noise

models articulatory imprecision or indeed phonetic bias faithfully and (as with

many settings in such computational models) what amount of noise could be

considered realistic based on experimental evidence.

A computational model must abstract from reality and may therefore

simplify real-world processes for the benefit of achieving generalisability.

However, as sound change is a multi-factorial process, there certainly are

conceivable extensions to the ABM presented in this chapter. The first concerns

the parameterisation and transmission of data. Although technically the ABM

accepts any numeric continuous values as acoustic parameters, it has been an

aim of the computational implementation of the IP model to use parameters
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as input that reflect dynamic properties of the speech signal, such as DCT

coefficients or PC scores (Harrington & Schiel, 2017). While it seems reasonable

to store exemplars in some form of acoustic parameterisation in the agents’

memories, it is questionable whether these should also be transmitted. A

possible alternative would model the process of articulation more closely, i.e.

during production, the sampled parameters are converted into speech signals

(by means of inverse DCT or, in case of PC scores, the process explained

in section 2.2.1.3). The resulting signal is then transmitted to the listener

who parameterises it again and goes through the perception process. This

is especially useful when the chosen parameterisation is data-specific (e.g.,

FPCA) because each agent could develop their own internal language model

over time based on their language experience (recall Figure 2.8).

The second extension that might be considered for future versions of the

agent-based model presented here is the implementation of activation levels.

In exemplar theory, the production and perception of exemplars is influenced

by their activation level which is linked to both the frequency of the word in

which the exemplar was uttered as well as the time that has passed since its

memorisation (Pierrehumbert, 2001, 2002). That is, exemplars associated with

a high-frequency word and those stored more recently have higher resting

activation levels. The proposal by Pierrehumbert (2002) about exemplar-based

speech production states that tokens are produced by computing the aver-

age acoustic values over a few stored exemplars while giving recently stored

exemplars more weight than older ones. The classification of exemplars in

perception is similarly impacted by time-decaying activation levels accord-

ing to Pierrehumbert (2001), i.e. the perceived token is assigned the label

of the phonological class whose exemplars, weighted by activation strength,

are closest to the token. This account is supported by findings from phonetic

imitation experiments which might hint to a stronger activation of more re-

cent as compared to older exemplars (e.g. Pardo, 2006) and has parallels to

spreading-activation theories in lemma selection and retrieval (Levelt, 2001;

Roelofs, 1992) as well as in spoken word recognition (Luce & Pisoni, 1998).

Time-decaying activation levels have been implemented in a number of compu-

tational models, exerting their impact either only in speech production (Wedel,
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2006) or in both production and perception (Ettlinger, 2007) or they are only

used for the purpose of memory management (Kirby, 2013). In earlier versions

of soundChangeR, the concept of time decay was implemented in the form of

a forgetting strategy, i.e. the user could choose to have the agents forget the

oldest exemplar (very similarly to Stanford and Kenny, 2013). Especially in

small datasets, this strategy led to unforeseen random walks of the exemplar

clouds through the acoustic space, which is why the agents in soundChangeR do

not assign time stamps to exemplars and instead remove randomly chosen ex-

emplars from memory (although it must be noted that this forgetting strategy

was a rougher implementation of time decay than the gradually decreasing

activation levels). Conceptually, the time decay approach also neglects recent

findings on accent reversal in elderly individuals who return to using charac-

teristics of their childhood dialect (Harrington & Reubold, 2021; Reubold &

Harrington, 2015). That is, these individuals either re-activate or have never

de-activated the oldest exemplars in their memory, otherwise they could not

accurately produce their childhood accent in old age.

So instead of extending soundChangeR by time-decaying activation levels,

activation levels based on lexical frequency in speech production and percep-

tion could be implemented, a proposal that has only been realised and tested

by Todd et al. (2019) despite the numerous studies investigating effects of lex-

ical frequency on sound change (e.g. Bybee, 2002, 2015; Clark and Trousdale,

2009; Hay et al., 2015; Hooper, 1976; Lin et al., 2014; Phillips, 1984; Tamminga,

2013; for an overview of frequency effects on aspects of language and memory

in general see Divjak, 2019). According to Pierrehumbert (2001), exemplars

associated with high-frequency words should have higher activation levels

than those associated with low-frequency words. So, given that high-frequency

words in such a model are produced more often, they are more often subjected

to phonetic biases which eventually turn into permanent change. That is why

exemplar theory predicts that high-frequency words should change faster

than low-frequency words (Hay & Foulkes, 2016). If frequency-based activa-

tion levels were incorporated into soundChangeR, the choice of a word type in

speech production would no longer be random, but the probability of a word

type being chosen would depend on its activation level. Hence, high-frequency
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words would be produced more often than low-frequency words. If frequency-

based activation levels do not influence speech perception (e.g. because speech

perception is first and foremost a phoneme-based process in soundChangeR),

high-frequency words will be represented by more exemplars in the agents’

memories than low-frequency words after some interactions – that is, if the

agents have not already been initialised with a number of exemplars per word

type that reflects their lexical frequency. In any case, this imbalance in the

exemplar storage would result in a reduced impact of high-frequency exem-

plars on the shape, size, and orientation of the exemplar clouds (cf. Figure 8

in Todd et al., 2019, p. 11), thereby rendering high-frequency words less sus-

ceptible to change than low-frequency words. While this is contrary to the

predictions of exemplar theory, there is some evidence in support of faster

rates of change in low-frequency than high-frequency words (Hay et al., 2015;

Phillips, 1984). It should also be noted that the usage of activation levels only

in speech production puts focus on the speaker as a conduit for sound change,

while the IP model follows a listener-based approach. It is somewhat more

difficult to foresee the impact of frequency-based activation strength when

integrated into the speech perception mechanisms of soundChangeR, since it is

not word or phoneme recognition that is modelled (Clopper et al., 2010; Con-

nine, 2004; Connine et al., 1993; Dahan et al., 2001; Forster & Chambers, 1973;

Jescheniak & Levelt, 1994; Luce & Pisoni, 1998; Vitevitch & Luce, 1999), but

rather probabilistic memorisation of phonetic details, categorisation behaviour,

and statistical learning. So, whereas previously a token t would be accepted as

an exemplar of phoneme P1 if its probability of belonging to that class was

higher than that of belonging to alternative phoneme P2 – P (t|P 1) > P (t|P 2)

– and if its Mahalanobis distance to P1 was below a given threshold, both of

these metrics could be weighted by the activation levels of the stored exem-

plars. Consequently, exemplars of high-frequency words would have a higher

probability of being memorised than those of low-frequency words, even if

they are ambiguous or atypical.

Another possible extension concerns generational changes in the agent pop-

ulation, a mechanism that has previously been implemented by others (Kirby,

2014b; Kirby & Sonderegger, 2013; Stanford & Kenny, 2013). The reason to
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consider this extension is that there is evidence that shows that children can

be drivers of sound change, particularly sound changes that are essentially

non-social (Nardy et al., 2014; Nielsen, 2014; Roberts, 1997; Trudgill, 2004,

2008b). Trudgill has repeatedly underlined the critical role of children in the

development of new dialects or languages in contact-scenarios such as coloni-

alisation in which the groups of adults in contact speak diverse languages, but

the first- and second-generation children establish new speaking norms (Ker-

swill & Trudgill, 2005; Trudgill, 2004, 2008b). This is because children start

their language acquisition with a clean slate, collecting language experience

mainly from interactions with their peers (Nardy et al., 2014), and adapting

quickly and seamlessly to new phonetic variants (Nielsen, 2014; but see Flege

et al., 2006), while “[f]or adults, incomplete accommodation and imperfect

language learning and dialect learning are the norm” (Trudgill, 2004, p. 28).

In the realm of sound changes, a new generation of speakers represents a lack

of continuity (Kerswill & Trudgill, 2005), i.e. the stable language state of the

parent generation can be restructured phonologically by children or an ongo-

ing phonetic change can be accelerated (Roberts & Labov, 1995; Smith et al.,

2019) or, in Labovian terms, incremented (Labov, 2007). Labov’s model of

transmission, incrementation, and diffusion was tested by Stanford and Kenny

(2013) using agent-based simulations including generational changes. The

agents in this model lived for a total of 25 time-periods (and were part of 1000

interactions per time-period) and were considered children during the first five

time-periods. Children in this model always started with an empty exemplar

storage and collected exemplars over the course of the interactions. The total

number of agents was kept stable by balancing the rates of birth and death.

When this ABM was run on artificial data that emulated the Northern City

Shift in Chicago and St. Louis, it was found, inter alia, that children advanced

ongoing changes in their parent generation and thereby contributed signific-

antly to the progression of the sound change. Presumably, using generations

like this would accelerate phonetic and phonological changes in soundChangeR,

too. This is because the parent-generation, while slowly undergoing a change,

also retains many exemplars of an older speaking style, which are not transmit-

ted to their children. While agent generations can help to increment a sound
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change, it is unlikely that they can trigger them, which would render hetero-

geneous agent groups (e.g. according to the apparent-time paradigm, Bailey

et al., 1991) superfluous. That is, using children and parents is not the same as

initialising agents with production data from older and younger real speakers.

If data from young speakers is used to initialise agents in soundChangeR, it is

because they represent speakers who have largely completed the sound change

under investigation and act as attractors for speakers who have yet to undergo

the change. Omitting these innovative speakers from the ABM would probably

result in phonetic and phonological stability amongst the homogeneous agents,

even if generational changes were implemented into the model.

A question that has not been addressed in this chapter, but also has been

neglected by authors of other computational models of sound change, is when

simulations should be stopped. In soundChangeR, the user is given the option

(and responsibility) of choosing the number of interactions to be executed.

However, one cannot be sure which number of interactions will be enough or

exactly right to complete the changes, given the number of agents, number

of exemplars per word per agent, and the initial acoustic conditions of the

input data. That is, the necessary amount of interactions increases with the

amount of agents, amount of speech data, as well as the amount of change

left to be accomplished by the simulation. Moreover, there is no established

or universally applicable metric that determines when simulated changes

are actually finished. Visually, one can determine, for instance, the point at

which the centroids of phoneme categories do not change anymore acoustically

either across the population or within all individual agents, especially when

the phonological categories are fixed (as done also by e.g. Harrington et al.,

2018; Sóskuthy, 2015; Stanford and Kenny, 2013; Stevens et al., 2019). This

sort of impressionistic evaluation becomes much more difficult when the

flexible phonology is applied, i.e. when the sub-phonemes are agent-specific

and can consist of several acoustic clusters. Using the flexible phonology

module also entails another challenge: Which criterion should be used to

identify a complete phonological change as created by GMM and NMF? In

our experimentation with the flexible phonology module, we have found

that the algorithms tend to lead to a slowly progressing fragmentation of
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the phonological level after there are no more significant acoustic changes

across the population, at which point we opted to stop the simulation. A

further complication lies in the unclear relation between real and simulated

time. Most sound changes progress over the course of several generations of

speakers, i.e. a few decades or even centuries (Salmons et al., 2012), and it

might be impossible to determine how many simulated interactions are the

equivalent of this time period. For example, while simulating vocalic shifts

in an isolated population of Antarctic winterers, Harrington, Gubian et al.

(2019, p. 3331) found that one of the simulated changes extended beyond

the empirically observed change, and concluded: “The discrepancy between

the actual and computationally modeled changes in Antarctica could have

come about because there is no predictable link between the actual time spent

in Antarctica and the number of interactions in the model”. Establishing a

stopping criterion for simulations of phonetic and phonological changes in

agent-based models will be an interesting task for the further development of

soundChangeR.

Finally and perhaps most importantly for future research, the ABM presen-

ted here also crucially differs from other computational models of sound

change in that the code to the model is openly accessible and easily expand-

able. We are following an open science policy because it is important that the

scientific community can check and try to replicate previous results (Garellek

et al., 2020; Laurinavichyute et al., 2022; Roettger et al., 2019; Winter, 2020).

A consequence of making the software available is that the risk of publishing

erroneous results is reduced while at the same time constructive discussions

about the model’s implementation are invited. Since the code is versioned

with git, all adaptations of the code since 2018 (when the code was first up-

loaded to GitHub) are tracked and justified by means of commit messages

(see https://github.com/IPS-LMU/soundChangeR). Moreover, the ABM is

provided as an R package, i.e. a programming language that is commonly

used in speech science, and the software itself is fully documented (see Ap-

pendix B.3) which enables researchers from all around the world to apply

the model themselves without having to rely on the developers. Moreover,

the agent-based model was programmed in such a way that new settings and
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mechanisms can be implemented easily. The modular code will hopefully

invite others to expand the ABM as needed to test new hypotheses.
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4 | Modelling the Change from
Pre- to Post-Aspiration in
Andalusian Spanish

Abstract

This study is concerned with simulating the change from pre- to post-

aspiration in /st/ clusters in Andalusian Spanish. Using the agent-based

model soundChangeR, it was tested whether this metathesis of aspiration

results in the phonologisation of post-aspirated (as compared to unaspir-

ated) voiceless plosives. Therefor, the population of agents was initialised

with exemplars of /st/ and /t/ produced by speakers who had either

already undergone the sound change and thus post-aspirated the cluster

or who had not yet adopted the new variant. In the simulation, the agents

exchanged exemplars of /st/ and /t/ in a perception-production loop and

two machine-learning algorithms were used to compute the agent-specific

sub-phonemic classes that linked the exemplars to their word types. As

expected, the agents did not change their acoustic representation of /t/

and the phonological separation between /st/ and /t/ was established

by the end of the simulation. However, younger and older agents con-

verged towards a common acoustic representation of /st/ that included

aspiration phases on both sides of the closure, so the interactions between

the agents did not lead to the expected reduction of pre-aspiration. It is

discussed how the mechanisms of the ABM contributed to these results

and how they could be expanded to adequately model the emergence of

post-aspirated voiceless plosives in Andalusian Spanish.
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4.1 Introduction

In the variety of Spanish spoken in Andalusia, /s/ is glottalised or lenited

in many positions within the word so that, when it occurs before a voiceless

plosive, that plosive is produced with pre-aspiration, e.g. esto /esto/ [ehto]

(engl. this). In the past years, multiple studies have established that there

is a sound change in progress by which the pre-aspirated voiceless plosives

/sp, st, sk/ are becoming post-aspirated (Gilbert, 2022, 2023a; Parrell, 2012;

Ruch, 2013, 2018; Ruch & Harrington, 2014; Torreira, 2007, 2012; Villena-

Ponsoda, 2008). This sound change was hypothesised to be the consequence of

a realignment of articulatory gestures, i.e. when the oral closure is formed in

phase with the opening of the glottis, but released before the vocal folds start

swinging again, post-aspiration is produced, whereas an anti-phase timing

of the closure leads to pre-aspiration (Parrell, 2012; cf. Figure 2.1). The first

study to test this hypothesis adequately by means of analysing time-varying

acoustic signals that represented the glottal and oral gestures involved in

producing voiceless plosives with and without aspiration (Browman & Gold-

stein, 1986, 1989) was conducted by Cronenberg et al. (2020, see chapter 2).

They established that there was a trading relationship between pre- and post-

aspiration in /sp, st, sk/ clusters produced by a population of Andalusian

speakers that was heterogeneous in terms of age and regional origin. That

is, while older and East Andalusian speakers tended to produce the clusters

with pre-aspiration, younger and West Andalusian speakers used the more

progressive post-aspirated variant. Both pre- and post-aspiration, however,

were predictable from the timing of the closure with respect to the voiceless

interval in sequences of intervocalic /s/ plus voiceless plosive.

The metathesis of aspiration in Andalusian Spanish can also be considered a

case of possible phonologisation, similarly to sound changes like umlaut, vowel

nasalisation (Beddor, 2009; Carignan et al., 2019; J. J. Ohala & Ohala, 1993;

Zellou & Tamminga, 2014), or tonogenesis (Coetzee et al., 2018; Kang and

Han, 2013; Kirby, 2014a; for an overview, see Kingston, 2011). Phonologisation

is defined as “the process by which intrinsic phonetic variation gives rise to

extrinsic phonological encoding” (Kirby, 2013, p. 1) and often involves the
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loss of the conditioning environment while maintaining the coarticulatory

effect. With respect to umlaut, for instance, the phonetic precursor is the

same as in /u/-fronting (Alderton, 2020b; Fridland, 2008; Harrington et al.,

2008), i.e. a high front vowel has an anticipatory coarticulatory effect on high

back vowels, such that e.g. /u/ > [y]. If at some point the high front vowel

disappears as the conditioning environment, a phonological contrast between

/u/ and /y/ can become part of the language system, e.g. Old High German

fotiz > German Füße /fys@/ (engl. feet) vs. Fuß /fu:s/ (engl. foot) (Kiparsky,

2015; Twaddell, 1938). Before the metathesis in Andalusian Spanish began, the

contrast between /sC/ and /C/ (where C is a voiceless plosive) was cued mainly

by pre-aspiration, but especially in fast speech, there was an articulatory and

perceptual bias towards post-aspiration: the anti-phase timing of the closure

relative to the glottal opening gesture is less stable than in-phase timing (Kelso,

1984; Oliveira & Marin, 2005; Tuller & Kelso, 1989; Wimmers et al., 1992)

and post-aspiration is perceptually more salient than pre-aspiration as it is

associated with higher amounts of spectral energy (Bladon, 1986; J. J. Ohala,

1990; Ruch, 2018; but see Gilbert, 2023b). That is, post-aspiration came to

serve as a secondary cue to distinguish e.g. /st/ as in pasta (engl. pasta) from

/t/ as in pata (engl. paw). This has been shown to be true even in varieties of

Spanish such as Argentinian Spanish in which there is no ongoing change by

which pre-aspiration gives way to post-aspiration (Ruch & Harrington, 2014).

When listeners perceive an acoustic feature (e.g. nasalisation, vowel raising,

aspiration) that serves as an indicator to the underlying form, but without

being able to differentiate between the coarticulatory source and its effect, the

primary and secondary cues are in a trading relationship (Fitch et al., 1979;

Haggard et al., 1981; Repp, 1982) such as the one reported by Cronenberg et al.

(2020) for Andalusian Spanish. While it has been shown that the process of

phonologisation might be preceded by a trade-off between cues (Beddor, 2009;

Carignan et al., 2021; Greca et al., 2022; Kuang & Cui, 2018), it remains obscure

why the formerly primary cue should vanish given that phonological contrasts

are always redundantly cued (Francis et al., 2000; Holt & Lotto, 2006; Lisker,

1986; Schertz & Clare, 2020) and which mechanisms of speech production and
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perception support the enhancement of the formerly secondary cue beyond

the level of coarticulation (Kirby, 2013).

Agent-based models (ABMs) can be helpful in investigating possible factors

that might facilitate or prevent the phonologisation of one cue and the loss

of another. In general, ABMs of sound change have been used to show how

social networks influence the diffusion of phonetic or more abstract categories

through a speech community (Fagyal et al., 2010; Lev-Ari, 2018; Pierrehum-

bert et al., 2014), how sound change might be avoided if it would result in

widespread cases of homophony (Blevins & Wedel, 2009; Wedel, 2006), how

Labov’s notions of transmission, diffusion, and incrementation (Labov, 2007)

are related to communication density in vowel chain shifts (Stanford & Kenny,

2013), how the interplay of biases and functional load can lead to different out-

comes of phonetic shifts (Sóskuthy, 2015), how an exemplar-based production-

perception feedback loop can reinforce phonetic biases and thus result in

sound change (Harrington, Gubian et al., 2019; Harrington & Schiel, 2017),

and how lexical frequency impacts the rate of change in different language

scenarios (Todd et al., 2019). Of special interest to the study at hand is the series

of agent-based models by Kirby (2013, 2014b) which aimed to explore how

phonologisation is affected by articulatory biases, probabilistic enhancement

of cues, and compensation for coarticulation (also see Kirby and Sondereg-

ger, 2013, 2015). In these models, the agents operated in an exemplar-based

production-perception loop, similarly to the ABM soundChangeR (Cronenberg

et al., 2022) which was used here. In contrast, however, produced tokens could

be pushed in a direction that increases (enhancement) or decreases (bias)

contrast precision on one cue dimension, thereby influencing which cues (i.e.

acoustic features) are helpful to the agent listener in recognising the intended

sound. Both the likelihood and degree of enhancement of a cue in Kirby (2013)

depended on its informativeness (among other measures, e.g. functional load

of the contrast), i.e. on how well it separated one phonetic category from an-

other (Schertz & Clare, 2020; Toscano & McMurray, 2010, 2012). This model

was successful in simulating the phonologisation of fundamental frequency

and progressive loss of voice onset time as a cue to the distinction between

lenis and aspirated stops in Seoul Korean (Kang, 2014; Kang & Han, 2013;
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Kirby, 2013). A more abrupt switch in attention to cues was modelled by Kirby

(2014b) by allowing agent listeners to use only a subset of cue dimensions

in order to categorise a perceived exemplar. More specifically, a cue was no

longer considered in perception if the mean of the cue’s acoustic distribution

fell below a given threshold which was a crucial mechanism in modelling

tonogenesis in Phnom Penh Khmer (Kirby, 2014a).

The aim of this chapter is to model the sound change from pre- to post-

aspiration in Andalusian Spanish analysed in chapter 2 by means of the agent-

based model described in chapter 3. In order to do so, the ABM needs input

data that mirrors both the change and the distinction between aspirated and

unaspirated voiceless plosives, given that this contrast does not vanish as a

result of the change, i.e. post-aspiration is not generalised to phonologically

unaspirated plosives. Therefore, it was decided to compose a new dataset

of Andalusian Spanish that consists of productions of isolated words with

/st/ (e.g. hasta, engl. until) and /t/ (e.g. ata, engl. she/he tied) from the same

speakers that provided the data in chapter 2. The study at hand focuses on

the alveolar plosives because of a lack of data for singleton /p/ and /k/. In

the first part of this chapter, the newly composed dataset is analysed in the

same way as in chapter 2, i.e. using FPCA on the time-varying probability of

voicing and high-frequency energy, so as to establish dimensions of variation

that are relevant to the change from pre- to post-aspiration, but also differ-

entiate between aspirated and unaspirated voiceless plosives. In the second

part, the scores extracted from FPCA are used as input to a simulation with

soundChangeR, i.e. the ABM presented in chapter 3. The agents represent the

48 speakers of Andalusian Spanish and they exchange tokens of /st/ and /t/ in

their production-perception feedback loop (cf. section 3.3.2). While this com-

putational model does not allow for a reduction in (acoustic) cue dimensions

as in Kirby (2014b), it is equipped with algorithms that regularly restructure

the agents’ sub-phonemic classes in response to recently memorised exemplars

(cf. section 3.3.1). Thus, it is possible that the more conservative agents create

different sub-phonemes for unaspirated, pre-, and post-aspirated plosives,

respectively, upon encountering the strongly post-aspirated variants of more

innovative agents. If the acoustic bias towards post-aspiration is captured by
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the FPCA parameterisation, the innovative agents will be less prone to accept-

ing the conservatives’ pre-aspirated exemplars so that they will act as attractors

for the conservative agents rather than vice versa. Therefore, it is expected that

the interactions between the agents lead to the decrease of pre-aspiration and

the emergence of a contrast between post-aspirated and unaspirated /t/.

4.2 Aspiration in /st/ and /t/

The cognitive-computational architecture of speech processing introduced by

Cronenberg et al. (2020) proposed that a transformation such as FPCA can be

applied to a cloud of memorised exemplars (Goldinger & Azuma, 2004; Pierre-

humbert, 2001) to gain both phonological and distributional knowledge. Phon-

ological knowledge entails systematic, usually population-level articulatory or

acoustic patterns that differentiate one class of sounds from another. Within a

phonological class, the exemplars are distributed in a multi-dimensional acous-

tic space which can provide information about the socio-linguistic background

of the speakers who produced the exemplars. With regard to Andalusian Span-

ish, Cronenberg et al. (2020) found that the multi-dimensional space resulting

from FPCA was systematically structured such that exemplars produced by

older and East Andalusian speakers were typically located in a different part

of the space than those of younger and West Andalusian speakers. However,

given their limited dataset, it could only be speculated that FPCA (or a sim-

ilar transformation) can differentiate between /sp, st, sk/ on the one hand

and /p, t, k/ on the other given that the former are produced with aspiration

anywhere surrounding the closure whereas the latter are not. This section is

concerned with extracting this kind of phonological knowledge from a dataset

of Andalusian Spanish that is composed of a subset of the /st/ tokens presen-

ted in chapter 2 as well as additional tokens of /t/. The singleton voiceless

plosives are described as phonologically unaspirated for Spanish in general,

i.e. the glottal gesture that is responsible for voicelessness and the oral gesture

that forms the closure are aligned in both duration and phasing (Browman &

Goldstein, 1986, 1992).
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Since the method is essentially the same as in chapter 2 and the data

also partially overlaps, it is expected that the results of the functional data

analysis should capture the trade-off between pre- and post-aspiration in /st/

clusters that has been established previously. Additionally, we expect to find a

dimension of variation in the shapes of the acoustic signals that describes the

differences between aspirated clusters and unaspirated singletons.

4.2.1 Method

4.2.1.1 Participants and Material

The participants were the same as those described in chapter 2. There were

48 speakers, equally distributed across two age groups (younger and older)

and two regional groups (East and West Andalusian). The younger speakers

were between 20 and 36 years old (mean: 26.1 years), the older speakers were

between 55 and 78 years old (mean: 66.8 years). All speakers had lived in

their home towns of Seville (West Andalusia) or Granada (East Andalusia)

for their whole life or at least for the last 20 years prior to the recording. The

recording setup was as explained in Ruch (2013). In brief, the participants

were wearing a headset microphone and the material was presented to them

via SpeechRecorder (Draxler & Jänsch, 2004) on a computer screen. They were

asked to speak in their natural dialect as if they were talking to a friend.

For the present study, 19 words containing /st/9 and 9 words containing

singleton /t/ were selected from the complete corpus which consists of in-

terviews, a read text, and a list of 180 isolated words. The target words for

this study (see Appendix C.1) were produced in isolation by the speakers

and repeated three times, resulting in a total of 48 (speakers) × 28 (words)

× 3 (repetitions) = 4032 tokens. 36 tokens were excluded because they were

misread, leaving 3996 tokens for the analysis.

9 In Cronenberg et al. (2020), a total of 20 words containing /st/ were analysed. The same
word types were used here, with the exception of pasta. This is because pasta was produced
in a short sentence instead of in isolation by most speakers.
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4.2.1.2 Data Processing

The data was processed entirely automatically without the need for manual

segmentations, alignments, or corrections. The first step was to transform the

data into an EMU database (Winkelmann, 2017) and automatically segment it

using a grapheme-to-phoneme converter and MAUS from the BAS Webservices

(Schiel et al., 2011). In a second step, the high-frequency energy (HF) signal

and voicing probability (VP) were computed as described in section 2.2.1.2

(Cronenberg et al., 2020). These two acoustic signals are used as proxies for

the articulatory gestures needed to form a voiceless plosive with and without

aspiration phases surrounding the closure (Goldstein & Browman, 1986): VP

represents the glottal gesture, HF the oral gesture.

The alignment of HF and VP can represent closures, vowels, and aspiration

phases in the speech signal (Cronenberg et al., 2020). Closures are marked by

voicelessness and very low energy, i.e. both HF and VP must be low in this

case. Vowels are characteristically voiced and have a lot of energy also in the

higher frequencies, so a vocalic segment is represented by high HF and VP

signals. In contrast to both closures and vowels, aspiration phases are typically

voiceless and, given the glottal source of friction, have a lot of energy in high

frequency bands. This means that aspiration is present in the speech signal

when VP is low and HF is high (see Figure 2.3 for examples of a pre- and

a post-aspirated token of the word despide). Therefore, we take the positive

area between HF and VP (as computed using formulae (2.2)) as a measure for

aspiration strength.

There were two deviations from the data processing procedure in Cronen-

berg et al. (2020) which used a database where the closure in /sC/ clusters had

been segmented manually by Hanna Ruch for her dissertation (Ruch, 2013).

For the present study, no prior manual segmentations were used. Thus, the first

deviation from Cronenberg et al. (2020) was that the amplitude normalisation

of HF was achieved by subtracting from the HF signals the lowest energy value

during the production of the automatically segmented plosive, and not of the

closure. The second deviation affected the sequence of interest in /V1(s)tV2/

which extends between the last (resp. first) point in time where VP reached
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a local maximum during the production of /V1/ (resp. /V2/). This approach

relied on the automatic segmentation by MAUS instead of searching for the

VP peaks going backwards (resp. forwards) in time from the manually set

boundaries of the closure. Both of these deviations are not expected to have a

notable impact on the results.

As a prerequisite for the functional analysis, the pairs of HF and VP signals

were linearly time normalised between the beginning and end of the sequence

of interest. Additionally, HF was re-scaled to values between approx. 0 and

1 by dividing each HF signal by the third quartile over all HF data points in

order to avoid that any variation in HF would overshadow variations in VP.

4.2.1.3 Functional Data Analysis

The 3996 pairs of HF and VP signals were given as input to Functional Principal

Components Analysis (FPCA; Gubian et al., 2015; J. O. Ramsay and Silverman,

2010) in order to identify the main modes of variation in the signal shapes. The

FPCA was executed as described in section 2.2.1.3, but using a more recent

version of the R package fda (version 6.0.3, J. Ramsay et al., 2021). FPCA

returns three main objects as can also be seen from equations (2.1a) and (2.1b).

The first is the mean HF and VP signals over all input signals, µHF(t) and

µV P (t). The second is a set of K pairs of time-varying Principal Components

P CkHF(t) and P CkV P (t) which capture distinct modes of variation in the signal

shapes. The third are PC scores sk,i , one for each input signal i and each PCk.

These scores can be considered weights that determine how much of variation

k is present in input signal i. Since FPCA decomposes each pair of input signals

into a linear combination of K PCs added to the mean, the PCs and PC scores

can also be used to approximately reconstruct the original signals. For this

analysis, the first K = 4 PCs were computed. Together, these described 78.7%

of the variance in the signal shapes, apportioned into 31.1%, 27.8%, 12.3%,

7.6% for PC1, PC2, PC3, and PC4 respectively.
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4.2.2 Results

The results are presented in two parts: The first part is about the kinds of

variation captured by the PCs, i.e. the independent but systematic variations

in the shapes of the HF and VP signals that are relevant to both the sound

change in /st/ clusters as well as to the distinction between /st/ and /t/. The

second part of the results is a statistical analysis using Linear Mixed Effect

Regressions which test whether there are correlations between the PCs and the

speakers’ age, regional origin, and the plosive type (aspirated vs. unaspirated).

4.2.2.1 Variation Captured by Principal Components

Figure 4.1 shows the modes of variation captured independently by PCk, where

k = 1,2,3,4. This is achieved by adding to the mean HF and VP signals µHF(t)

and µV P (t) (middle column) plus or minus one standard deviation of the PCk

score ±σsk multiplied by the corresponding P Ck(t).

PC1 (top row) captured both the timing of the closure from early (left

panel) to late (right panel) and the height of HF from low (left) to high (right).

Additionally, PC1 encoded the duration of the voiceless interval (characterised

by continuous low values of VP) from short (left) to long (right). That means

that negative values of s1 were associated with an early closure (and hence, no

pre-aspiration) and very little post-aspiration, whereas positive values of s1
were associated with a longer voiceless interval, more high-frequency energy

and therefore both pre- and post-aspiration phases.

PC2 (second row) described the varying height of the HF maxima as well

as the closure timing from anti- to in-phase. PC2 also captured a variation

in the second half of the VP signal which results in a longer (left) or shorter

voiceless interval (right). Negative values of s2 were related to relatively low

HF peaks which means that there is little possibility for aspiration to occur

despite the longer voiceless interval. Positive values of s2 on the other hand

were associated with post-aspiration because of the combination of high HF

peaks and the in-phase timing of the closure with the voiceless interval.

PC3 (third row) captured the compression of the HF signal with a slight par-

allel change in VP. Very similarly to PC3 in Cronenberg et al. (2020), this vari-
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Figure 4.1: Variation expressed by the first four PCs. The middle column shows the
mean signals µHF(t) and µV P (t) which were modified by subtracting from (left panel)
or adding to (right panel) each mean signal the respective P Ck(t) signal (k = 1,2,3,4
in rows) multiplied by the standard deviation of sk (σsk = 0.27,0.25,0.17,0.13, for the
four PCs respectively). The exact expressions are given in the column headings.
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ation is unlikely to be relevant to the analysis and rather comes about because

of amplitude differences between individuals or words (cf. Appendix A.5). This

possibility will be further investigated with Linear Mixed Effect Regression

models below.

PC4 (bottom row) described a variation in the low values of VP: Negative

values of s4 represented a long voiceless interval with VP values around zero,

whereas positive s4 values were associated with a short voiceless interval and

a local minimum in the VP signal slightly above zero. In combination with

HF, the variation captured by PC4 might represent aspirated (negative s4) and

unaspirated plosives (positive s4).

4.2.2.2 Statistical Analysis

Here we focus on relations between the PC scores from FPCA and the speakers’

age, regional origin, and the differences between /st/ and /t/. In line with

Cronenberg et al. (2020), we expect to find a significant influence of age and

region on the amount of pre- and post-aspiration in /st/, with younger and

West Andalusian speakers having more post- and less pre-aspiration than older

and East Andalusian speakers. We do not expect to find a similar influence

of these sociophonetic variables on /t/ which should present with little to no

aspiration, especially pre-aspiration.

The variation in the signals’ shapes which is relevant to both the overall

amount of aspiration (for the difference between /st/ and /t/) and to the sound

change from pre- to post-aspiration in /st/ is spread across at least PC1, PC2,

and PC4. That is why a linear mixed model was constructed for each of the four

PCs with the score sk as the dependent variable. The maximal model contained

age (older vs. younger), region (East vs. West Andalusia), and plosive (/st/ vs.

/t/) as well as all two-way interactions and the three-way interaction as fixed

factors. Random intercepts were computed for word (28 levels) and speaker

(48 levels) and random slopes were computed for age and region by word as

well as for plosive by speaker. The full model in R notation is given in (4.1).
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sk ∼ (age + region + plosive)3 +

(age + region | word) +

(plosive | speaker)

(4.1)

The LMERs were pruned using the step function from the R package

lmerTest (version 3.1.3, Kuznetsova et al., 2017). For the LMER with s1 as

dependent variable, only the random slope for region by word was removed

from the model. The same was done for the model of s2, in addition to the

removal of the three-way interaction between the fixed factors as well as

the two-way interaction between age and plosive. For the model with s3 as

dependent variable, plosive was pruned as a fixed factor and all interactions

between the remaining fixed factors were also removed. The random effects

were left unchanged in this case. Lastly, for the LMER on s4, all interactions

between the fixed factors as well as the by-word random slopes for age and

region were removed.

PC score s1 was significantly influenced by plosive (t[63.4] = 3.1,p < 0.01).

There were also significant interactions between age and region (t[44.0] =

2.3,p < 0.05) as well as between the three fixed factors (t[44.0] = 2.7,p < 0.01).

Given the significant interactions, we computed pairwise comparisons with

emmeans (version 1.7.4.1, Lenth, 2022). There was a significant difference

between /st/ and /t/ for older East (t[63.4] = 3.1,p < 0.01), younger East

(t[63.2] = 2.8,p < 0.01), and older West Andalusians (t[63.6] = 4.3,p < 0.001).

In all of these cases, the estimated marginal mean was negative for /t/ and

positive for /st/ (see Table C.3 in Appendix C.4 for the exact values), so ac-

cording to the top row of Figure 4.1 there was less aspiration in /t/ than in

/st/. This difference between /st/ and /t/ can also be observed in the top row

of Figure 4.2 which shows boxplots of s1 by age (colour-coded), region (x-axis),

and plosive (columns). For younger West Andalusian speakers, the estimated

marginal means for /st/ and /t/ were both negative and the difference between

them was not significant. Referring back to Figure 4.1, this means that /st/

and /t/ are characterised by an early closure and relatively low energy when
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Figure 4.2: Boxplots of PC scores s1, s2, s3, and s4 (top to bottom row), separately by
age group (colour-coded), region (x-axis), and /st, t/ (columns).
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produced by young West Andalusians. Furthermore, there was a significant s1
difference between young and old West Andalusian speakers producing /st/

(t[46.7] = 4.2,p < 0.001) which is also visible from Figure 4.2. The estimated

marginal mean was negative for younger and positive for older West Andalus-

ian speakers’ /st/. Finally, there was a significant difference between younger

East and West Andalusian speakers producing /st/ (t[44] = 3.4,p < 0.01), and

an almost significant difference for /t/ (t[44] = 1.8,p = 0.08). The estimated

marginal mean was negative for younger West, but positive for younger East

Andalusian speakers’ /st/. Overall, it can be summarised that younger speak-

ers, West Andalusian speakers, and /t/ tended to be associated with lower

values of s1 (which indicates an earlier closure, shorter voiceless interval, and

overall less energy) than older speakers, East Andalusian speakers, and /st/.

PC score s2 was significantly influenced by age (t[47.6] = 2.8,p < 0.01)

and there were significant interactions between age and plosive (t[46.8] =

3.4,p < 0.01) as well as between region and plosive (t[45.1] = 2.1,p < 0.05).

The pairwise comparisons showed significant differences between older and

younger speakers producing /st/ independently of the speakers’ regional

origin (t[47.6] = 2.8,p < 0.01), as shown in the left panel of the second row of

Figure 4.2. The estimated marginal mean in this case was negative for older and

positive for younger speakers (see Table C.4 in Appendix C.4). So according

to PC2 from Figure 4.1 (middle row), younger speakers’ /st/ is characterised

by an in-phase closure timing and a high HF maximum in the second half of

the signals, resulting in strong post-aspiration, whereas older speakers’ /st/

has a long voiceless interval with a late closure leading to some pre-aspiration

despite the overall low energy.

There was a significant effect of age (t[56.4] = 2.1,p < 0.05) and region

(t[53.0] = 2.3,p < 0.05) on PC score s3. Pairwise comparisons were not com-

puted in this case, but the estimated marginal mean s3 for older East An-

dalusian speakers was negative, whereas it was positive for younger West

Andalusians (see Table C.5 in Appendix C.4). Recall from Figure 4.1 that PC3

captured a vertical compression of the HF signal (and also to a lesser degree

of the VP signal), with positive s3 values being associated to stronger com-

pression. For older West and younger East Andalusian speakers, the estimated
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marginal mean was close to zero (cf. third row in Figure 4.2 which shows

the s3 values also separately for /st/ and /t/ even though plosive was pruned

from the LMER). As stated earlier, the variation captured by PC3 is difficult to

interpret in the context of the sound change, but might be capturing systematic

differences in how the re-scaling of the HF signal affected the age and regional

groups.

The LMER with s4 as dependent variable resulted in significant effects

for age (t[45.0] = 3.2,p < 0.01), region (t[45.0] = 2.1,p < 0.05), and plosive

(t[38.5] = 12.0,p < 0.001). The bottom row of Figure 4.2 shows that s4 clearly

differentiates between /st/ and /t/. In line with this, the estimated marginal

means in all four speaker groups was negative for /st/, but positive for /t/ (see

Table C.6 in Appendix C.4). Referring back to Figure 4.1, this means that /st/

is associated with a longer voiceless interval and overall more aspiration than

/t/.

Note that those PCs that are relevant to the estimation of aspiration can

complement or cancel out each other’s influence. For example, PC scores s1
and s4 determined that /st/ (in contrast to /t/) was associated with a long

voiceless interval and high energy levels, without being able to differentiate

between pre- and post-aspiration. This information was provided by the res-

ults on s2 which showed that /st/ for younger speakers was associated with

post-aspiration and for older speakers with pre-aspiration. Figure 4.3 shows

the VP and HF signals, reconstructed using all four PCs as well as the median

PC scores for each combination of age × region × plosive in formulae (2.1). For

/st/, it can be observed that older speakers have more pre-aspiration (yellow)

than post-aspiration (blue), whereas younger speakers produced /st/ with

more post- than pre-aspiration. From older East to younger West Andalusian

speakers, the closure also shifts from anti- to in-phase articulation. The unas-

pirated singleton /t/ presents with some post-aspiration, but no pre-aspiration

according to the right column of Figure 4.3. In comparison, however, there is

less post-aspiration in /t/ than in /st/. Furthermore, the aspirated cluster is

associated with a much more extensive voiceless interval than /t/ in all four

speaker groups.
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Figure 4.3: HF and VP reconstructed using formulae (2.1) in which sk was replaced by
the median sk for each factor combination (i.e. each combination of the levels of age,
region, and plosive). All four PCs were used for this reconstruction, so k = 1,2,3,4.
The median sk values are provided in Table C.1.
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4.2.3 Discussion

This section provided a functional (i.e. dynamic) analysis of a database of

/st/ and /t/ produced by Andalusian Spanish speakers of two age and two

regional groups. The analysis relied on acoustic signals that represented the

glottal and oral articulatory gestures that are needed to produce voiceless

plosives both with and without aspiration (Goldstein & Browman, 1986): the

voicing probability (VP) and the high-frequency energy signal (HF). Functional

Principal Components Analysis determined systematic variations in the shapes

of these signals that differentiated between aspirated and unaspirated plosives

as well as between pre- and post-aspirated clusters. PC2 captured how /st/ was

systematically produced with pre-aspiration by older, but with post-aspiration

by younger speakers. This finding supports earlier studies which found a

sound change in progress from pre- towards post-aspirated /sC/ clusters in

Andalusian Spanish (Cronenberg et al., 2020; Gilbert, 2022; Parrell, 2012; Ruch

& Harrington, 2014; Torreira, 2007) by means of an apparent-time approach

(Bailey et al., 1991). Overall, the analysis has also provided further support

for modelling this change as a realignment of the closure with respect to the

voiceless interval, i.e. as a shift from anti- to in-phase timing.

PC1 and PC4 mainly separated /st/ from /t/: according to this paramet-

erisation, the cluster is characterised by a longer voiceless interval, more

high-frequency energy and therefore more aspiration. This shows for the first

time that the acoustic parameterisation introduced by Cronenberg et al. (2020)

is also capable of describing singleton voiceless plosives that are not aspirated.

While PC1 and PC4 did not differentiate between pre- and post-aspiration,

they captured that /t/ was produced with a small amount of post-aspiration

despite being phonologically unaspirated in Andalusian Spanish. This is not

entirely unexpected given that the release of the closure is bound to let air

escape from the oral cavity. Furthermore, previous studies which used more

traditional duration measurements have found that the voice onset time after

/t/ is around 20 ms in Andalusian Spanish (Ruch, 2013; Torreira, 2006, 2007).

Nevertheless, and in line with the cognitive-computational model of sound

change proposed by Cronenberg et al. (2020), the analysis has shown that FPCA
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can provide phonologically functional knowledge about the different ways in

which aspirated and unaspirated voiceless plosives are produced in this variety.

This study has thereby extended the one in chapter 2 in an important way: it

has shown that the contrast between underlying /sC/ clusters and /C/ (where

/C/ is a voiceless plosive) is maintained despite the aspiration metathesis in

/sC/, i.e. /C/ remains unaffected by the change towards post-aspiration.

4.3 Agent-Based Simulation

This part of the study is concerned with applying the agent-based model

soundChangeR presented in chapter 3 to the data assembled and analysed

in the previous section. The aim here is to model the change from pre- to

post-aspiration in Andalusian Spanish, i.e. a sound change that entails both

acoustic and phonological components (O’Neill, 2009). According to e.g. Par-

rell (2012), the realignment of the articulatory gestures (or, in terms of the

chosen parameterisation, of the HF and VP signals; Cronenberg et al., 2020)

affects the phonetic realisation of /st/ such that pre-aspiration diminishes

and post-aspiration increases. Additionally, this change might lead to a phon-

ologisation of post-aspirated voiceless stops in Andalusian Spanish which

would contrast with unaspirated voiceless stops. That is, the phonological

contrast between e.g. /st/ and /t/ is upheld, but is cued by post- instead of

pre-aspiration.

As detailed in chapter 3, it is necessary to include data from heterogeneous

speakers, some of which lie in the direction of the change. This is because

there is no mechanism in soundChangeR that emulates a production bias by e.g.

pushing the produced token in the direction of the change. Instead, it can be

observed whether the initial equilibrium between two agent groups, one of

which is more advanced with regard to the sound change under investigation,

shifts towards the more progressive agents as a result of the interactions. In

this case, it was decided to focus on interactions between age groups (i.e. older

vs. younger) because age was a stronger predictor for the sound change than

regional origin (also see Cronenberg et al., 2020). The singleton plosive /t/ was

included as a sanity check for two reasons: first, /t/ is not expected to change
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in Andalusian Spanish and second, it provides a phonological contrast to /st/

which should remain stable even after the sound change in /st/ is complete.

The hypotheses were constructed separately for the acoustic and phonolo-

gical outcome of the simulation.10 All agents should produce the cluster /st/

with more post-aspiration than pre-aspiration after than before the simulation.

That is, especially those agents that represent older speakers should adopt

PC score values for /st/ that resemble those of younger agents. The acoustic

representation of /t/, on the other hand, should not change due to the inter-

actions. Phonologically, it is expected that the flexible phonology module in

soundChangeR should detect two sub-phonemic classes that correspond to the

canonical underlying phonemes /st/ and /t/. There should not be any splits

or mergers, i.e. the phonological separation between /st/ and /t/ should be

maintained.

4.3.1 Method

4.3.1.1 Simulation Settings

The input data to the simulation were the four PC scores extracted from the

acoustic data in section 4.2. In total, there were 3996 tokens distributed across

19 word types with /st/ and 9 words types with /t/ and 48 speakers. The R

package soundChangeR was used to perform the simulation. Each of the 48

speakers was represented by a computational agent who exchanged exemplars

across age group for a total of 250,000 interactions. Before the first interaction,

the agents’ memories were expanded by a factor of five in order to render

the computation of Gaussian distributions throughout the simulation more

robust. Although no phonological change (in the sense of a split or merger)

was expected, the flexible phonology module was applied, i.e. sub-phonemes

were agent-specific and regularly updated using the combination of GMMs

10At the current stage of the ABM’s development, hypotheses about simulation outcomes are
derived from theoretical or empirical knowledge about the direction and effects of a sound
change, and not from knowledge about or experience with the mechanics of soundChangeR.
That is, soundChangeR is working as intended only if it manages to produce results that align
with our hypotheses; otherwise the simulation results are an indication of shortcomings of
soundChangeR which require extensions or adjustments.
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and NMF as explained in section 3.2.5. Both the absolute and relative decision

criterion had to be passed in order for a new token to be memorised. After

each memorisation, the agent listener removed a random exemplar of the same

word class as the newly memorised token from its memory. Forgetting was

blocked if, as a result, there would be less than 15 exemplars of that word in

the agent listener’s memory. The simulation was repeated 10 times in order to

test for the robustness of the results, but the repetitions were indeed so similar

that all following analyses and results are reported for only one simulation

run.

4.3.1.2 Quantification of Changes

Changes that resulted from the simulation were quantified separately for the

acoustic and phonological levels. Acoustic changes were analysed statistically

by means of four linear mixed effect regressions with the PC scores as depend-

ent variables. The full model is given in Eq. 4.2 in R notation and was pruned

using the step function. The fixed effects were group (older vs. younger), sim-

ulation state (baseline vs. post-run), and plosive (/st/ vs. /t/). Random effects

were included for word (28 levels) and speaker (48 levels). For the models

with s1 and s4 as dependent variables, only the by-speaker random slope for

state was removed from the models. In addition to this, the by-word random

slope for state was pruned from the LMER with s2 as dependent variable. For

the model with s3 as dependent variable, the fixed factor for age group was

removed as well as the random slope for state by speaker. It must also be

mentioned that post-hoc comparisons with emmeans could not be computed

because there were approx. 50,000 data points in the dataset that resulted

from the simulation. Therefore, 13,420 data points were randomly sampled

from the simulation result.11 The results of the LMERs did not differ in any

meaningful way between the full and sub-sampled dataset, but since post-hoc

comparisons can only be reported for the latter, we also report the LMERs for

115 samples × 48 agents × 28 words × 2 simulation states = 13,440 data points; since four
agents started out with zero exemplars of the word estuche, the sub-sampling resulted in a
dataset with 13,440− 20 = 13,420 observations.
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the sub-sampled data.

sk ∼ (group + state + plosive)3 +

(group + state | word) +

(state + plosive | speaker)

(4.2)

Phonological changes were quantified by means of two measures. First, the

agreement A between the sub-phonemic classes and the canonical phonemes

/st/ and /t/ was computed as follows (formula taken from Gubian et al., 2023):

A =
1
Nw
·
∑
p

Nmajority(p), (4.3)

In Eq. (4.3), “Nw is the total number of word classes and Nmajority(p) is the

number of unique word classes in the sub-phoneme p that belong to the

canonical phoneme, which counts the largest number of unique word classes

in p” (Gubian et al., 2023, p. 98). When some sub-phonemic classes contain

only exemplars of /st/ and others only of /t/, A = 1. The chance level, i.e. the

level at which sub-phonemes contained a balanced mixture of exemplars of

both /st/ and /t/, was 19
19+9 ≈ 0.68) in this case.

The second measure was the number of sub-phonemic classes. The two

measures complement each other; in other words, on their own they can be

misleading. For example, a high number of sub-phonemes might be misinter-

preted as a split of phonological classes – but if the agreement is very high at

the same time, the many sub-phonemes actually correspond nicely to canonical

phonemes. On the other hand, if the agreement A = 1, one might think that

the canonical phonemes were maintained or no merger has taken place, but A

might be 1 because there is only one sub-phoneme (which obviously includes

all exemplars). The same statistical models as in Gubian et al. (2023) were

used to analyse whether the number of sub-phonemes Np and the canonical

agreement A differed between older and younger agents (factor group), as well

as between the baseline and post-run (factor state). Formula (4.4) specifies

the binomial mixed model which was computed to evaluate the canonical

agreement, using the function glmer from the R package lme4 (version 1.1.30,
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Bates et al., 2015):

c(Nmajority(p), Nw − Nmajority(p)) ∼ group ∗ state + (1 | agent) (4.4)

The dependent variable in this model was a vector that was composed of

entities that were already defined for equation (4.3). The agent group and

simulation state, as well as their interaction, constituted the fixed factors. A

random intercept for the individual agents was computed as well (a by-agent

random slope for state was removed from the model due to singularity).

Differences in the number of sub-phonemic classes between the agent

groups and simulation states were computed by means of a Poisson regression,

using the function glm with the following formula:

Np − 1 ∼ group ∗ state (4.5)

The number of sub-phonemesNp minus one was the dependent variable in this

case. This was because the “Poisson distribution models counts from zero to

infinity, while the number of sub-phonemes Np can vary between one and the

number of word classes Nw. Subtracting one from Np matches the minimum

value to the Poisson distribution” (Gubian et al., 2023, p. 99). The factors in

this regression model were group and state as well as their interaction.

4.3.2 Results

Figure 4.4 shows HF and VP signals that were reconstructed using the median

PC score values (see Table C.2) by age group, simulation state, and plosive.

Additionally, the pre- and post-aspiration areas Apre and Apost are colour-coded.

For /st/, older agents slightly shifted their closure to an earlier point in time,

resulting in less pre- and more post-aspiration (compare first and second

row, left column in Figure 4.4). Contrary to the expectations, younger agents

produced more pre- and less post-aspiration after as compared to before

the simulation (compare third and fourth row, left column in Figure 4.4),

thus adapting to the older agents’ /st/. In both agent groups, the acoustic
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representation of /t/ hardly changed (see right column), i.e. /t/ remained

characterised by some post-aspiration according to Apost and no pre-aspiration.

This visual impression of the acoustic changes was tested statistically using

LMERs as described in 4.3.1.2. The first PC score s1 was significantly influenced

by the agents’ age group (t[52.3] = 6.8,p < 0.001), the plosive (t[42.1] = 6.0,p <

0.001), and the simulation state (t[36.3] = 9.0,p < 0.001). All two-way and

the three-way interaction were significant as well, which is why post-hoc

comparisons were computed. The resulting estimated marginal means as well

as the p-values are visualised in Figure 4.5 (top row). There were significant

differences between the baseline and post-run – i.e. changes as a result of

the interactions between agents – for older agents’ /st/, younger agents’ /st/,

and older agents’ /t/. The estimated marginal means revealed that older and

younger agents changed their s1 values for /st/ to approximately the same

degree, thus meeting in the middle on the PC dimension that captured both a

shift of the closure from in- to anti-phase and changes in the overall energy

level according to Figure 4.1. The s1 value for older agents’ /t/ decreased

slightly over the course of the interactions (cf. the predicted s1 for older agents

in the top left panel of Figure 4.5). Moreover, there were significant differences

between older and younger agents at the baseline producing /st/ and /t/, but

no significant differences between the age groups after the simulation. That is,

the interactions resulted in a convergence between the agents in s1 for both

types of plosives. The differences between /st/ and /t/ were significant for older

agents at the baseline (t[42.1] = 6.0,p < 0.001) and post-run (t[51.6] = 5.4,p <

0.001), as well as for younger agents at post-run (t[58.6] = 6.1,p < 0.001). There

was no significant difference between the plosives for younger speakers at the

baseline which was to be expected given the same result from section 4.2.2.2

for the most progressive group of younger West Andalusian speakers.

The second PC score s2 was significantly influenced by age group (t[52.0] =

5.5,p < 0.001) and state (t[13270] = 10.6,p < 0.001), but not plosive. All inter-

actions between the fixed factors were significant as well and the results of the

pairwise comparisons are shown in Figure 4.5 (second row). There were signi-

ficant s2 differences between older and younger agents producing /st/ at the

baseline, i.e. before the interactions. Older agents’ estimated marginal mean s2
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Figure 4.4: HF and VP, reconstructed using the median s1, s2, s3, and s4 from one
simulation run for each factor combination of age group × plosive × simulation state
in formulae (2.1). The median PC scores are provided in Table C.2.
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Figure 4.5: Estimated marginal means with 95% confidence bars for s1, s2, and s4
(rows) for older and younger agents’ (colours) /st/ and /t/ (columns) at the baseline
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results for s3 are reported in the text.
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was negative, thus indicating an anti-phase closure in older agents’ /st/ for the

simulation, whereas it was positive for younger agents, indicating an in-phase

timing of the closure and high HF peak in the second half of the signal (cf.

Figure 4.1). This significant difference therefore differentiates between older

agents’ pre-aspirated and younger agents’ strongly post-aspirated cluster at

simulation start. There were significant changes over the course of the in-

teractions (i.e. significant differences between the baseline and post-run) for

older and younger agents’ /st/ as well as for younger agents’ /t/. Similarly

to the changes in s1 that resulted from the simulation, older and younger

agents’ converged towards a common s2 value for /st/. Since this post-run

value was very close to zero, the agents’ /st/ was associated neither with strong

pre- nor post-aspiration after the simulation (see second row, middle panel

of Figure 4.1). This is a crucial result, given that we observed from Figure 4.4

that younger agents unexpectedly developed a more pre-aspirated /st/ due

to the contact with older agents. The pairwise comparisons also showed that

younger agents’ /t/ had a slightly lower s2 value after as compared to before

the simulation, thereby also accommodating to the older agents (see centre

right panel in Figure 4.5).

For PC score s3, there was a significant influence (t[26.4] = 5.9,p < 0.001)

of simulation state and an almost significant influence of plosive (t[36.8] =

1.9,p = 0.07). The interaction between the two fixed factors in this model was

also significant (t[26.9] = 2.3,p < 0.05), given that there were changes in s3
over the course of the interactions only for /st/, but not for /t/, and that the

cluster was different from the singleton only at the baseline, but not post-run.

More specifically, s3 of /st/ decreased over simulation time resulting in an

estimated marginal mean s3 value for /st/ that was very similar to that of /t/.

This is then why /st/ and /t/ are statistically the same in terms of s3 after the

simulation. In light of the unclear interpretation of PC3, it is difficult to state

these changes’ influence on the agents’ speech with regard to the sound change

from pre- to post-aspiration.

Finally, PC score s4 was significantly influenced by age group (t[55.5] =

2.9,p < 0.01), plosive (t[34.6] = 11.4,p < 0.001), and simulation state (t[32.6] =

2.4,p < 0.05). All interactions between the fixed factors were significant, too.
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The pairwise comparisons revealed significant differences between the baseline

and post-run for older agents’ /st/, younger agents’ /st/, and older agents’

/t/ (cf. Figure 4.5, bottom row). For both older and younger agents, the s4
value of /st/ decreased slightly as a result of the interactions. Thus, after the

simulation, the agents’ cluster was associated with a longer voiceless interval

and possibly overall more aspiration than before the simulation (cf. bottom left

panel in Figure 4.1). Older agents significantly increased s4 for /t/ due to the

contact with younger agents, which means that older agents’ /t/ was produced

with a shorter voiceless interval and less aspiration after the interactions.

Furthermore, there were significant s4 differences between older and younger

agents at the baseline producing /st/ and /t/, but not post-run, showing that

the agents converged towards similar s4 values. Lastly, there were significant

s4 differences between /st/ and /t/ for all combinations of age group and

simulation state with p-values lower than 0.001. This shows that s4 remained

an important acoustic dimension for separating between /st/ and /t/ for both

agent groups and throughout the simulation run.

Figure 4.6 shows the number of sub-phonemes (top row) and agreement

between sub-phonemes and canonical /st, t/ (bottom row) by age group

(in columns) across simulated time. Older agents started out with 2.2 sub-

phonemic classes on average, while younger agents initially had about 2.4 sub-

phonemes. In both agent groups, the number of sub-phonemes then dropped

to approx. 1.4 to 1.5 sub-phonemes, before increasing again until it stabilised

at 2 sub-phonemes.12 According to the Poisson regression model, there were

no significant differences in number of sub-phonemes between the baseline

and post-run as well as between older and younger agents.

The canonical agreement steadily increased from about 0.75 to 1 in both

agent groups, i.e. the sub-phonemes increasingly contained exemplars of words

with either /st/ or /t/, not a mixture of both. The binomial mixed model

revealed that there was a significant increase in canonical agreement from

baseline to post-run (z = 8.5,p < 0.001), but no significant differences between

12Contrary to our previous experiences with the flexible phonology module, there was no
increase of sub-phonemic classes after the acoustic changes had finished even when the
simulation was prolonged to 500,000 interactions.
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Figure 4.6: Number of sub-phonemes and agreement between sub-phonemes and
canonical /st, t/ over the course of 250,000 interactions between older and younger
agents.

older and younger agents at either simulation state. So while the phonological

separation between /st/ and /t/ was not entirely clean in the beginning, the

agents learned to organise their phonological space in such a way that the

aspirated cluster and unaspirated singleton plosive became clearly distinct

sub-phonemes.

4.3.3 Discussion

In summary, the results of the simulation were mixed. On the phonological

level, the unsupervised machine learning algorithms adequately identified

and subsequently maintained two sub-phonemic classes which, after the sim-

ulation, corresponded perfectly to the canonical phonemes /st/ and /t/ in

all agents. Also in line with the expectations, there were no relevant acoustic
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changes in /t/ in either agent group such that the singleton voiceless plosive

remained slightly post-aspirated throughout the simulation. However, younger

agents adapted their acoustic representation of /st/ at least as much to that of

the older agents as vice versa, even though it was expected that older agents

would adopt the younger agents’ mostly post-aspirated variant of /st/. In-

stead, all agents produced the underlying cluster with an approximately equal

amount of pre- and post-aspiration as a result of the interactions.

These two main findings, i.e. the identification of adequate sub-phonemes

and the convergence in /st/, are connected to each other, but they developed

at different rates. At simulation start, the flexible phonology module identified

two or three sub-phonemes in each agent’s exemplar storage. This slightly

higher than expected number of sub-phonemes in combination with the relat-

ively low agreement of approx. 0.75 to 0.80 (with 0.68 being the chance level

and 1.00 indicating full agreement between sub-phonemes and the canonical

separation between /st/ and /t/) is likely due to the four-dimensional acoustic

space. In a high-dimensional space, GMMs tend to create a larger amount

of acoustic clusters, such that NMF can subsequently identify more sets of

clusters that pass the purity threshold and therefore form a sub-phoneme.

When the agents began to interact, they started to converge especially in the

s1 and s2 dimensions (cf. Figure 4.5) which were associated with the trade-off
between pre- and post-aspiration in /st/ (see section 4.2.2). This convergence

happened very quickly and was completed after 100,000 interactions. As a

result, at around 75,000 interactions, there was a sudden decrease in the num-

ber of sub-phonemic classes (cf. Figure 4.6) because most agents could not

devise more than one sub-phoneme in a cloud of exemplars which have no

apparent structure or pattern in at least two out of four acoustic dimensions.

Once this movement of agents towards each other in s1 and s2 had finished,

s4 began to separate /st/ from /t/ increasingly clearly in both agent groups

(cf. bottom row of Figure 4.5). This allowed the flexible phonology module to

once again differentiate /st/ and /t/ on a sub-phonemic level, leading to two

sub-phonemes and the highest possible agreement.

The convergence between pre- and post-aspirated /st/ most likely came

about because the older agents’ distributions of PC1 and PC2 scores were
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not skewed towards those of the younger agents (Harrington & Schiel, 2017).

According to the IP model (Harrington et al., 2018), phonetic shifts result

from the continuous application of a phonetic bias which, in turn, leads to

directional or asymmetric phonetic distributions of sounds. In the previous

chapter, it was demonstrated that a precondition for such phonetic shifts in

soundChangeR was that one agent group’s acoustic distribution of a phoneme

was skewed towards that of another agent group and that the absolute memor-

isation criterion was applied during perception (cf. Figure 3.6 and Figure 3.10).

Even though there is a phonetic bias that affects /sp, st, sk/ in Andalusian

Spanish and favours post- over pre-aspiration – namely a faster speech rate

(Parrell, 2012; Terrell, 1980) – this bias is apparently not reflected in the relev-

ant PC score distributions. There are two possible solutions to this problem

which could be attempted in future studies. The first is to include words with

/st/ that have been produced at a faster speech rate. This should ensure that

the bias towards post-aspirated /st/ is represented more strongly in the data,

and subsequently also in the extracted PC scores. The other solution is to

explore alternative or extended parameterisations of the data that may identify

a skewed variation in the older speakers’ acoustic representation of the cluster

while maintaining a clear separation between /st/ and /t/.

4.4 General Discussion

There were two main findings from this study: The first was that the dy-

namic analysis method introduced by Cronenberg et al. (2020) can also ad-

equately differentiate between aspirated and unaspirated voiceless plosives

(i.e. between /st/ and /t/) while still capturing the trade-off between pre-

and post-aspiration in /sC/ clusters. This is in line with descriptions from

articulatory phonology according to which voiceless plosives with and without

aspiration are the result of two gestures (glottal opening and oral closure), as

well as their relative duration and alignment (Browman & Goldstein, 1986,

1989). The second was that the change from pre- to post-aspiration could not

be simulated to its full extent using the ABM soundChangeR that is based on

the IP model (Harrington et al., 2018). Here we discuss two possible reasons
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for this outcome: the handling of exemplars that are acoustic outliers and the

necessary components to model phonologisation computationally. Finally, we

point towards potential adaptations of the agent-based model that may help to

simulate sound changes that have both phonetic and phonological components,

like the change from pre- towards post-aspiration in Andalusian Spanish.

4.4.1 Handling Outliers

Apart from the increase in younger agents’ pre-aspiration which was adopted

from older agents, another problematic result from the simulation was the

decrease in younger agents’ post-aspiration of /st/. More specifically, some of

the more extreme s2 values associated with strong post-aspiration (cf. Figure 4.1

and second row of Figure 4.2) were gradually removed (i.e., forgotten) by the

agents and no new extreme exemplars were acquired. Three mechanisms in the

ABM are responsible for that: First, with a forgetting rate of 1, the agent listener

has to remove an exemplar from memory after having memorised a new one.

When applied over a long enough period of simulated time (i.e., 250,000

interactions in this case), the forgetting procedure results in the removal of all

originally stored exemplars – and that includes those that are acoustic outliers.

Second, the production algorithm samples new exemplars from a Gaussian

distribution in which extreme values occur very rarely by definition. And

third, even if an outlier has been produced by an agent speaker, the absolute

criterion is likely to prevent that extreme exemplar from being memorised

by an agent listener. So the agent-based model is inherently biased against

outliers, i.e. acoustically extreme exemplars. However, what if outliers that lie

in the direction of the sound change (and, perhaps, were produced by the most

innovative speakers) play an important role in the progression of said change

(Labov et al., 2010; Uehara & Evans Wagner, 2017)? After all, sound change is

the process of establishing an innovative variant of a sound as the new norm.

First of all, it has been shown that listeners are perceptive to the stochastic

distribution of a sound and are therefore cognitively capable of detecting out-

liers. In an experiment in which participants listened to sounds drawn from a

Gaussian distribution, Garrido et al. (2013) found that sounds from the tails
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of the distribution elicited a mismatch negativity (MMN) response. This well-

known effect is associated with surprise, i.e. the participants had identified

some regularity in the sounds to which they were listening (statistical learning;

Idemaru and Holt, 2011; Lehet and Holt, 2017; Pierrehumbert, 2003a) and

clearly recognised the outliers as such (also see e.g. Cheng et al., 2010; Daikhin

and Ahissar, 2012; Winkler et al., 1990). Besides their cognitive salience, out-

liers can also carry social meaning. For Andalusian Spanish, for example, Ruch

(2018) has shown that listeners from both East and West Andalusia reliably

associate strong post-aspiration in /sC/ clusters with younger and West An-

dalusian speakers. For diverse English varieties, it has also been shown that

listeners can identify speakers’ ethnicity (Purnell et al., 1999; Wong & Babel,

2017), region of origin (Clopper and Pisoni, 2004; Jacewicz et al., 2021; McCul-

lough et al., 2019; for an overview, see Clopper and Pisoni, 2005), social class

(Alderton, 2022), and make judgements of their overall personality (Alderton,

2020a) through certain acoustic cues. That is, in these cases, listeners are aware

that a linguistic feature has come to be indicative of some socio-indexical

characteristics of the speaker. While this feature must not necessarily be an

acoustic outlier in the speaker’s production, it certainly is in the listener’s

perception.

It may be phonetic imitation that provides the missing link between the

cognitive salience and sociolinguistic categorisation of acoustic outliers on

the one hand, and their contribution to sound change on the other. Several

studies have emphasised that for a sound change to be initiated, there have

to be innovative individuals in whose speech the effect of coarticulation on

a sound is unusually pronounced (Garrett & Johnson, 2013; Stevens et al.,

2019; Yu, 2021). In particular, Baker et al. (2011, p. 348) have proposed a path

towards sound change in which “a hearer interprets an extreme instance of a

phonetic effect as a distinct production target, an exaggeration of the normal

coarticulation”. The phonetically motivated and extreme variation of a sound

as well as its interpretation as a new target are such rare incidents that this

theory by Baker et al. (2011) adequately predicts sound changes to be rare

themselves. Similarly to Baker et al. (2011), but possibly with a more explicit

focus on imitation, the IP model (cf. section 3.1 and Harrington et al., 2018;
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Harrington and Schiel, 2017) as well as the sociolinguistic account by Labov

(1990, 2001) claim that innovative speakers may be imitated more often than

their peers. If innovative, strongly coarticulated variants of a sound are very

likely to be imitated even though, at the same time, they are very unlikely to

occur frequently, they must be weighted more heavily when they are encoded

in the listeners’ memories. This is generally in line with exemplar models

which propose that stored episodes of speech receive activational weights

which affect their influence on both speech production and perception (K.

Johnson, 1997; Pierrehumbert, 2001, 2002) as well as with models suggesting

that the exemplar storage is structured to some degree in terms of meaningful

socio-indexical categories (Creel & Bregman, 2011; Hay et al., 2006; K. Johnson,

2006; Kleinschmidt et al., 2018; Munson, 2011). More specifically, Sumner

et al. (2014) propose that exemplars are weighted according to their social

salience, whereas the exemplar’s typicality plays a less important role.13 That

is, atypical and socially salient tokens (e.g. strongly post-aspirated tokens of

/st/) are given a higher weight than non-salient tokens regardless of their

typicality (e.g. typical: a token with both pre- and post-aspiration; atypical: a

strongly pre-aspirated token) (Sumner et al., 2014).

This suggests how the agent-based model soundChangeR could be exten-

ded to counteract the inherent bias against outliers, given their role in sound

changes. First, as proposed in chapter 3 (section 3.4), perceived exemplars

would have to be given a weight before they are stored in an agent’s memory.

Secondly, this weight has to depend on the social characteristics of the agent

speaker, i.e. tokens produced by agents that represent more innovative speak-

ers should receive higher weights. And thirdly, the exemplar’s weight should

impact speech perception. That is, if a perceived token is a very atypical

member of its intended (sub-)phonological category (and would therefore be

rejected by the absolute memorisation criterion according to the current im-

plementation), but is similar to stored exemplars with a high weight, it should

have an increased probability of being memorised compared to an equally

13While in their approach a socially salient or idealised token of a word refers to “a variant or
talker that is subjectively viewed as more standard compared to other variants or talkers”
(Sumner et al., 2014, p. 1), it would refer to a token produced by an innovative speaker in
our model.
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atypical token that is acoustically similar to less heavily weighted exemplars

(see Sóskuthy, 2015 for an analogous exception rule whereby exemplars can

be memorised despite being phonologically ambiguous, but only if their func-

tional load is low). These alterations to the ABM would increase the overall

influence of outliers that lie in the direction of the sound change. However,

it would have to be tested whether the altered version of soundChangeR pre-

dicts sound changes to be inevitable, which is clearly not the case: even in the

face of seemingly endless phonetic variation and the presence of innovative

individuals, sound changes remain rare (Weinreich et al., 1968).

4.4.2 Modelling Phonologisation

The simulation in this section failed to adequately model the change by which

pre-aspiration becomes post-aspiration in clusters of /s/ plus voiceless conson-

ant in Andalusian Spanish. In 4.3.3, this result was attributed to the lack of

acoustic bias towards post-aspiration captured by the FPCA parameterisation

of the data. While the parameterisation of the sounds under investigation is

crucial in determining a simulation’s outcome, the purpose of this section is to

discuss possible shortcomings of soundChangeR that prevent it from modelling

phonologisation not just in Andalusian Spanish, but also with regard to other

cases such as vowel nasalisation (Beddor, 2009; Carignan et al., 2019; J. J. Ohala

& Amador, 1981; Solé, 1995), Lausberg Italian metaphony (Greca et al., 2022;

Torres-Tamarit et al., 2016), or Seoul Korean tonogenesis (Bang et al., 2018;

Kang, 2014; Kang & Han, 2013).

The two key mechanisms of soundChangeR that can trigger phonetic and

phonological changes, respectively, are the exaggeration of acoustic biases

through the absolute memorisation criterion as well as the flexible and agent-

specific clustering of memorised exemplars into sub-phonemic classes. Phono-

logisation, however, is often described in terms of cue re-weighting by listeners

who perceive one cue to a contrast between speech sounds as less and an-

other as more informative (Coetzee et al., 2018; Hagège & Haudricourt, 1978;

Harmon et al., 2019; Hyman, 1976; D. Kim et al., 2017; Kirby, 2013, 2014b).

Coarticulation and other biases (Garrett & Johnson, 2013) can bring about a
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stable secondary cue while at the same time they can introduce variability

in the primary cue, thus rendering it less reliable (Kirby, 2013). As a result,

the secondary cue is eventually phonologised whereas the primary cue is

weakened or vanishes entirely. Thus, it seems that implementing cues and cue

weights in the ABM may be the first step towards modelling phonologisation

computationally. Cues could be viewed as an abstraction over acoustic features,

i.e. one or multiple acoustic features together represent one cue. Following

Kirby (2013) and Toscano and McMurray (2010, 2012), cue weights can be

calculated by determining how well two (sub-)phonemic classes are separated

in one cue dimension compared to another. The less these classes overlap,

the more informative is the cue dimension, and hence the higher is its cue

weight. Since this measurement would depend on the agents’ clouds of memor-

ised exemplars in a soundChangeR simulation, that means that individual cue

weights may differ which has proven to be the case empirically (Clayards, 2018;

Idemaru et al., 2012; Kapnoula et al., 2017; Kong & Edwards, 2016; Ou et al.,

2021; Schertz et al., 2015; Yu, 2021, 2022). It has also been shown that listeners

can update their cue weights as a result of perceptual learning (Francis et al.,

2000; Francis et al., 2008; Francis & Nusbaum, 2002; Goldstone, 1998; Harmon

et al., 2019). Therefore, each agent should recompute the relative weights of

each cue dimension in regular intervals, perhaps in synchrony with the re-

computation of the sub-phonemic classes (i.e. right after GMM and NMF have

determined new sub-phonemic classes for an agent). Importantly, this measure

of informativity should impact the agents’ perception given that listeners tend

to categorise speech sounds by using mainly the primary, most informative cue

and relying on secondary cues more heavily when the primary cue is ambigu-

ous or unreliable (Abramson & Lisker, 1985). Even though it is unclear how

exactly cues are integrated to identify the perceived sounds or words, most

theoretical models of human speech perception posit that cues contribute to

the categorisation of speech sounds in proportion to their weight (S. Lee &

Katz, 2016; McMurray et al., 2008; McMurray & Jongman, 2011; Oden & Mas-

saro, 1978; Toscano & McMurray, 2010, 2012). There are several possible ways

of implementing perception based on cues and cue weights, the most invasive

of which would be to abandon the current focus on selective memorisation
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in favour of categorisation, thereby also shifting the theoretical point of view

from a more exemplar-based model towards one in which errors in speech

perception are a driver of sound change. More specifically, a perceived token

would not be transmitted together with the word type in which it appeared,

but would instead become a member of the sub-phonemic class to which it

most likely belongs according to probabilistic criteria which are conditioned

on the cue weights. A less radical approach would be to stick with the current

criteria for selective memorisation (i.e. the intended word type is transmitted

from agent speaker to agent listener), but to think of the cue dimensions as

independent and integrate them only in cases of ambiguity. That is, when a

perceived exemplar falls in the ambiguous space between two categories in

the primary cue dimension (i.e. the one which most reliably separates two

sub-phonemes from one another), it should be tested whether it passes the

typicality and discriminability criteria in the secondary cue dimension. An

alternative version of this idea was implemented by Kirby (2014b) in which

the agents used all available cues, but disregarded a durational cue when the

duration values were too low to make a difference perceptually. In general,

the notion of cues is most present in studies focusing on perception and hu-

man speech recognition, but it has also been shown that an adjustment of

cue weights can affect speech production (Lehet & Holt, 2017). In addition, it

has been suggested that there is a correlation between cue informativity and

cue enhancement (Greca et al., 2022; Kirby, 2013): if one cue is compromised

(i.e. its weight decreased), another one might be enhanced proportionately by

the speaker to ensure that the contrast is maintained (Cohn, 2007; Hyman,

2013). In terms of the ABM, cue enhancement can only be implemented by

abandoning soundChangeR’s relatively narrow focus on the listener’s role in

sound change (Harrington et al., 2018; J. J. Ohala, 1981, 2012). In particular,

the agent speaker would create a production target by sampling from a dis-

tribution over memorised exemplars of a word (as described in section 3.2.3),

and then adjust that target so that it maximises the distance between the

sub-phonemic classes on the cue dimension that was not compromised. This

process may also occur stochastically (i.e. in any agent speaker at any time

as compared to in the agent listener-turned-speaker) given that there is not
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necessarily a correlation between an individual’s perceptual cue weights and

their reliance on the same cues in production (Lehet & Holt, 2017; Schertz

et al., 2015).

Since these proposals for extending soundChangeR are quite pervasive and

yet still underspecified from a technical perspective, it will have to be tested

under which circumstances and for which kind of input data the model pre-

dicts change and stability on the phonetic, phonological, and cue levels. In any

case, many questions remain to be answered with respect to phonologisation

and its role in sound change, among others, why one cue should be eliminated

while another is phonologised if speech sounds are redundantly cued (Lisker,

1986; Schertz & Clare, 2020), why specific secondary cues are more prone to

phonologisation than others (Kirby, 2013), and how a coarticulatory effect can

keep being enhanced while the coarticulatory source wanes. Computational

models such as soundChangeR and others (Ettlinger, 2007; Kirby, 2014b; Todd

et al., 2019; Wedel, 2006; Winter & Wedel, 2016) can help answer these ques-

tions, both by running simulations using models that include mechanisms

proposed in the literature and by generating new testable hypotheses from

these simulations for further empirical research.
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5.1 Summary

This thesis was concerned with the sound change by which pre- becomes post-

aspiration in Andalusian Spanish, but also hoped to contribute more generally

to our understanding of sound changes. This was attempted by presenting

new approaches that take into account both the origins of sound change in

the dynamics of spoken language as well as its spread through interactions

between individuals.

Chapter 1 motivated the two main aims of this thesis. These were to analyse

the sound change in Andalusian Spanish /sp, st, sk/ in a way that reflects its

synchronic basis in gestural realignment, and to develop and demonstrate

the mechanisms of an agent-based model that unifies theories on the origin

and spread of sound change. For this purpose, some of the most relevant

sound change theories were briefly introduced: Ohala’s theory of hypo- and

hyper-correction on the part of the listener, Lindblom’s H&H theory that also

gives an active role to the speaker, Labov’s research on the social aspects of

sound change, and Trudgill’s mechanistic view of dialect emergence. While all

of these theories, and many others, agree that sound changes arise from syn-

chronic variability in speech production and perception, and spread through

interpersonal contact, their focus clearly differs. Furthermore, none of these

theories can explain why sound change happens in one language at one point

in time, but not in another language or at another point in time (Weinreich

et al., 1968). A holistic model of sound change that could solve the actuation

problem and unify theories of origin and spread of sound changes remains to

be developed. It was then proposed that computational simulations, especially

agent-based models (ABMs), could provide a way of exploring the complex

interplay of cognitive, social, and linguistic factors that can result in sound

change. Finally, chapter 1 briefly described that /s/ before voiceless plosives is

lenited in Andalusian Spanish, resulting in pre-aspirated plosives, and that

this pre-aspiration is giving way to post-aspiration, thus despide (engl. she/he
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fires) /dehpide/ > /dephide/. Previous studies have measured the duration of

the aspiration phases to quantify this sound change. However, using a static

measurement that relies on an artificially superimposed segmentation of the

speech signal is not quite an adequate test of the underlying realignment of

glottal and oral gestures which is considered the change’s synchronic basis.

Therefore, it was important to develop a method that could capture the dynam-

ics of spoken language from which this sound change in Andalusian Spanish

emerges.

Said method was presented in chapter 2 (which was published as Cronen-

berg et al., 2020). This chapter gave an overview of the historical development

of pre-aspirated voiceless plosives in Andalusian Spanish before turning to a

description of the articulatory bias and gestural coordination favouring post-

over pre-aspiration. That is, in faster or informal speech the oral and glot-

tal gestures needed to produce an aspirated voiceless plosive can shift from

anti- to in-phase, thereby leading to an increase of post- and a decrease of

pre-aspiration. This resynchronisation of gestures was modelled by means of

two acoustic signals that were derived from the speech signal. The voicing

probability (VP) represented the glottal opening, while the high-frequency

energy signal (HF) represented the closure and friction noise. In combination,

i.e. when VP was low and HF was high, these signals were taken as a measure

of aspiration. HF and VP were extracted from /VsCV/ sequences (where C =

/p, t, k/) produced by 48 speakers of Andalusian Spanish. Functional Principal

Component Analysis (FPCA) was applied to the pairs of HF and VP signals

in order to find the main dimensions of variation in their shapes. PC1 was

related to the timing of the closure with respect to the glottal opening. It was

furthermore shown that closure phasing impacted the extent of aspiration

surrounding the closure, thus supporting the articulatory model of this sound

change that claims that pre- and post-aspiration are inversely related to each

other. In addition, this sound change in Andalusian Spanish was shown to

be dependent on the speakers age and region: younger and West Andalusian

speakers were further advanced, i.e. used more post-aspiration, than older and

East Andalusian speakers. Chapter 2 suggested that two kinds of information

can be extracted from the dynamic speech signal which might play import-

130



5. Conclusion

ant roles in both human speech processing and sound change. The first is

phonological knowledge which indicates population-level characteristics of

sound categories as compared to others, e.g. that /sp, st, sk/ are produced

with aspiration surrounding the closure whereas /p, t, k/ are not. The second

kind of information is distributional, i.e. characteristics of a speaker such as

their age or regional origin correlate with the way they produce certain speech

sounds. Thus, listeners who have been exposed to a wide variety of speakers

are more likely to develop a perceptual trading relationship between e.g. pre-

and post-aspiration which is considered a precursor to sound change.

Chapter 3 was concerned with a cognitively-inspired agent-based model

of sound change that was also made publicly available as an R package called

soundChangeR. It was argued that ABMs are very useful for the investigation of

complex adaptive systems such as spoken language because they demonstrate

how individual actions can lead to global patterns. The ABM soundChangeR
is a computational implementation of the interactive-phonetic (IP) model of

sound change (Harrington et al., 2018), the key components of which were in-

troduced in detail: phonetic biases, stochastic interactions, phonetic imitation

and perceptual learning, and the exemplar models of memory and phonology.

Section 3.2 then explained how the IP model was implemented computation-

ally and described the concepts, constraints, and entities that play a role in

the ABM which included agents, exemplars, the production-perception feed-

back loop, the derivation of phonological classes, and memory management.

It was concluded that sound change can emerge from the stochastic inter-

actions between heterogeneous agents (some of which are initialised with a

more innovative variant of the sound under investigation than others), given

the mechanics of their production-perception feedback loop and organisation

of phonological information. The core mechanisms of the model were then

demonstrated in section 3.3 using two artificial datasets. The first one was

used to show that the flexible phonology module of soundChangeR is capable

of recognising systematic associations between exemplars, their location in the

acoustic-phonetic space, and their word type and that, as a consequence, it

identifies reasonable sub-phonemic classes. The second dataset consisted of

two agents which interacted with each other, but tested the perceived tokens
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either for typicality, or for discriminability, or both. These simulations resulted

in phonetic shifts in different directions depending on the applied memor-

isation criterion, but also showed that no change emerged when none was

expected. Finally, chapter 3 compared the properties of soundChangeR to other

ABMs of sound change and discussed some opportunities to expand the model,

such as the agent-specific parameterisation of data, using activation levels

for memory management or for modelling lexical frequency, and introducing

generational changes.

Chapter 4 combined the dynamic and computational approaches to sound

change introduced in the previous two chapters and applied them to Andalus-

ian Spanish. The aim in this chapter was to simulate the change from pre- to

post-aspiration using input data that mirrors both the change (as observed

in chapter 2) and the distinction between aspirated and unaspirated voice-

less plosives. The inclusion of the unaspirated voiceless plosive served two

purposes with regard to the simulation: it was not expected to change and

the contrast between aspirated and unaspirated plosives was expected to re-

main stable despite the change in the aspirated ones. Thus, in section 4.2 a

new dataset was composed which consisted of words containing /st/ or /t/

produced by the same 48 Andalusian Spanish speakers that provided the data

for chapter 2. Once again, FPCA was applied to the voicing probability and

high-frequency energy signals extracted from these data. Of the four analysed

Principal Components, PC2 captured the shift from pre- to post-aspiration

in /st/, which was also related to the speakers’ age, whereas PC1 and PC4

captured the differences between /st/ and /t/. Although /t/ is phonologically

unaspirated in Andalusian Spanish, it was produced with a small amount of

post-aspiration in the analysed dataset. Nevertheless, it was shown that FPCA

can derive phonological information about the variable production of voiceless

plosives as suggested in chapter 2. In section 4.3, the parameterised data was

submitted to the ABM soundChangeR. It was expected that agents represent-

ing older speakers should adopt the post-aspirated /st/ of those representing

younger speakers and that /t/ should not change. Since the flexible phonology

module was used, it was expected that the phonological separation between

/st/ and /t/ should be maintained. While there was indeed no acoustic change
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in /t/ and the phonological classes were adequately identified and maintained

throughout the simulation, all agents produced the cluster with both pre- and

post-aspiration by the end. This was most likely because the older agents’ PC

scores were not skewed towards those of the younger agents, i.e. there was

no bias that could have been reinforced through the absolute memorisation

criterion. In the final part of chapter 4, possible adaptations of the ABM were

discussed which would enable the model to simulate sound changes in which

acoustic outliers or the reweighting of perceptual cues may play a role.

In summary, this thesis presented two perspectives on the sound change by

which pre- becomes post-aspiration in Andalusian Spanish /sp, st, sk/ clusters.

The first perspective united the articulatory basis and cognitive implications

of this change. The investigations in chapter 2 on production data from di-

verse speakers showed that the change towards post-aspiration came about

as a result of the resynchronisation of articulatory gestures and that pre- and

post-aspiration are inversely related through the relative timing of the closure.

In addition, the analysis in section 4.2 supported the claim from chapter 2 that

a technique like FPCA can derive phonological and distributional information

from time-varying and socially variable speech data. Thus, the cognitive im-

plications are that individuals who receive input from diverse speakers may

play an important role in advancing the sound change because they are the

most likely to develop a perceptual trading relationship between pre- and

post-aspiration. The second perspective on the Andalusian Spanish aspiration

change was computational. In section 4.3 it was shown that the computational

model presented in chapter 3 was able to simulate at least parts of the sound

change through stochastic interactions between heterogeneous agents who

operated in an exemplar-based production-perception feedback loop and could

organise and restructure their phonological classes. While the mixed results of

this simulation did not generally challenge the architecture of the ABM, the

simulation’s shortcomings did inspire a discussion of possible expansions of

the model.
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5.2 Insights

The studies in this thesis have provided at least three main insights which

contribute to our overall understanding of sound change. First, the analysis

of time-varying acoustic signals allows for the observation of phonetic details

that are relevant to sound change but might be easily missed in traditional

static analyses. For instance, the study in chapter 2 showed that the amplitude

of energy is an important characteristic of aspiration phases surrounding voice-

less plosives in Andalusian Spanish, whereas previous studies have almost

exclusively focused on the aspiration’s temporal extent. Furthermore, this

study was the first that was able to test the assumption that the change by

which pre- becomes post-aspiration in that variety of Spanish is the result of

a realignment of articulatory gestures. While previous studies attempted to

frame this sound change in terms of a trade-off between the durations of pre-

and post-aspiration phases, the study in chapter 2 derived acoustic signals from

the speech signal that were proxies for the glottal and oral gestures involved

in producing aspirated voiceless plosives. This technique was a closer approx-

imation to the original hypothesis than static analyses of duration while it was

also much less expensive and resource-intensive than collecting physiological

measurements. In general, analyses that use time-varying signals can be very

helpful in the investigation of sound change, because coarticulation often

prevents vertical segmentations of the speech signal from being unequivocal

and reliable. Moreover, the interplay between neighbouring sounds that is at

the core of all sound changes can only be captured by looking beyond single

segments and taking into account the dynamics of spoken language.

Second, in listener-based computational approaches to sound change, it is

of utmost importance to understand how constraints on token memorisation

affect simulations both in intended and unintended ways. Using simulations

on an artificial dataset, it was shown in chapter 3 that the application of

the absolute and relative memorisation criteria can cause very diverse sim-

ulation outcomes: while the absolute criterion can cause a shift of a broad

and skewed phoneme towards a narrower one, the relative criterion leads

to phoneme repulsion. However, when applied on their own, these criteria
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can result in an unwanted increase or decrease of within-category variance.

Therefore, it was recommended for soundChangeR to use both memorisation

criteria so they can counteract each other’s side effects. The same thorough

testing approach should be taken for all relevant settings of an agent-based

model. In contrast to most other computational models in this field which are

usually constructed to test a specific hypothesis, soundChangeR has the very

ambitious goal to model a wide variety of sound changes, involving either

only phonetic-acoustic adjustments (such as those provoked by the memor-

isation criteria) or additional phonological changes. Hence, it was important

to carefully test how agent-specific phonological classes are derived from re-

membered exemplars using the newly implemented unsupervised machine

learning algorithms. In an artificially created agent, it was found that these al-

gorithms can adequately identify sub-phonemic classes in both systematically

and randomly distributed data. In addition, the study by Gubian et al. (2023)

has shown that soundChangeR is capable of modelling phonological stability

in Standard Southern British English /u/-fronting as well as the neutralisation

of the phonological contrast between /I@, e@/ in New Zealand English.

The settings of the model are of course only one part in determining a

simulation’s outcome, the other part being the input data. As also stated for

earlier versions of soundChangeR (Harrington, Gubian et al., 2019; Harrington

& Schiel, 2017; Stevens et al., 2019), it is currently the only ABM of sound

change that is capable of using real speech production data as input. This was

very important because the sort of phonetic variation that is widely considered

to be the raw material for sound changes cannot be emulated by means of

artificially created data. It is for this reason that one main objective of this

thesis was to develop soundChangeR and make it publicly available: with each

new dataset that is being used in a simulation, we enhance our understand-

ing of which mechanisms are crucial in a holistic, computational model of

sound change. To my knowledge, soundChangeR is the first of its kind that

was implemented as an R package, comes with a full documentation of the

code as well as extensive demonstrations of the core mechanisms, and can be

extended relatively easily if necessary. This allows all members of the research
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community to test the ABM themselves and try to model the sound changes

they are interested in.

Third, the study in chapter 4 combined the techniques from the previous

two chapters and revealed that (i) the functional analysis of the high-frequency

energy and voicing probability signals captures both the trade-off between pre-

and post-aspirated /st/ and the difference between aspirated and unaspirated

/t/ in Andalusian Spanish, and that (ii) the ABM soundChangeR failed to model

the change by which pre- gives way to post-aspiration. The first part of these

findings closed a desideratum from Cronenberg et al. (2020) who claimed

that a data transformation such as FPCA should be able to provide functional

knowledge about the phonemic contrast between /st/ and /t/. Indeed, the

analysis in section 4.2 showed that there are much lower levels of aspiration

in /t/ as compared to /st/ and that these differences were distributed across

at least two Principal Components. Therefore, this analysis lends support

for the cognitive-computational architecture in Figure 2.8. The results from

the subsequent simulation on the Andalusian Spanish data, however, did

not entirely align with the actual direction of change. While the separation

between /st/ and /t/ was recognised and maintained by the flexible phonology

module in soundChangeR, all agents used approximately equal amounts of pre-

and post-aspiration when producing /st/ by the end of the simulation. That

is, the ABM was not able to simulate the phonologisation of post-aspirated in

contrast to unaspirated voiceless plosives which was expected to emerge from

the interactions between younger and older agents. This result, but also the

comparison to other computational models of sound change, suggested several

ways in which the agent-based model could be expanded in the future.

5.3 Directions for Future Research

As mentioned in chapter 1, sound change is a complex, multi-factorial process.

While a simulator must abstract from reality to achieve generalisability, there

are certainly some extensions of soundChangeR that may be worth examining.

The first is the treatment of outliers. The simulation in section 4.3 uncovered

that soundChangeR is biased against outliers which might be a disadvantage in
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modelling sound changes if exemplars of the innovative variant are especially

salient, both cognitively and socially. One way to handle outliers differently

would be to introduce activational weights. In exemplar theory, exemplars

are weighted either with regard to the point in time of their memorisation

(i.e. more recently stored exemplars have a higher weight than those stored

a long time ago) or with regard to their lexical frequency (i.e. exemplars of

words with higher lexical frequency receive a higher weight). Alternatively (or,

possibly, in addition), it might be useful to weight exemplars according to their

level of innovation, so that exemplars that lie in the direction of change and/or

were produced by more progressive speakers are given a higher weight. These

weights then impact both speech production and perception, so that heavily

weighted exemplars have a stronger influence on the Gaussian sampling in

production as exemplars with a lower weight, and can override ambiguity and

atypicality issues in perception. The latter means that outliers that lie in the

direction of change, but fail the memorisation criteria for being too ambiguous

or too atypical, would have a chance of being memorised nevertheless.

Activational levels can also fulfil different purposes in the agent-based

model as discussed in chapter 3. One is memory management, i.e. avoiding

an abundance of stored exemplars which would minimise the influence of

newly memorised exemplars. This could be achieved by means of increment-

ally diminishing weights, thereby decreasing the impact of older exemplars on

speech production and perception. However, this extension of the agent-based

model may only counteract an issue that may not arise in reality, i.e. it is un-

clear how many exemplars an individual can store mentally and under which

circumstances remembered traces of speech are forgotten. Somewhat more

interesting would be the use of activational levels to model effects of lexical

frequency on sound changes. Lexical frequency is considered influential in

some sound changes, with studies showing that words change faster or slower,

or are affected first or last depending on their frequency. Again, the activational

weight of an exemplar, which would depend on the associated word type in

this case, would influence the agents’ production-perception feedback loop.

Being able to model frequency effects would allow for soundChangeR to model

a broader range of sound changes.
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Another extension of soundChangeR that was discussed in chapter 4 given

the failure to model phonologisation was the introduction of cues and cue

weights. In human speech processing, cues are used to categorise speech

sounds; and since such sounds can be distorted either through articulatory

processes or during transmission, contrasts between speech sounds are cued

redundantly, thereby facilitating accurate speech recognition. During sound

changes, in particular those that involve phonologisation, the cue that most

reliably signalled a phonemic contrast is rendered ambiguous while another

one is enhanced and eventually takes over as the primary cue. A cue in the

ABM would be a set of acoustic features which together provide information

about a phonemic contrast. Thus, their weight is determined by a measure

that takes into account how well two sub-phonemic classes are separated in

a cue dimension and must be updated when agents have changed their sub-

phonemic classes as a result of the memorisation of new exemplars. The cue

weights then play a role in the agents’ perception and production, although

the exact implementation of their influence on these algorithms will have

to be subject to testing and exploration. In perception, exemplars could be

categorised or memorised according to how well they fit into one of the sub-

phonemic classes in the most informative cue dimension; in this scenario, other

cue dimensions are used when the exemplar is ambiguous. In production,

on the other hand, the initial production target could be adjusted so that

the produced exemplar is an unambiguous member of the associated sub-

phonemic class in the most reliable cue dimension. All in all, cues would

provide a third level besides the acoustic-phonetic and sub-phonemic level

at which changes or stability can be observed. While acoustic changes are

triggered by a combination of input data and the memorisation criteria, and

phonological changes result from the systematicity (or lack thereof) in how

exemplars are distributed in space and how they are associated to word classes,

it will require thorough testing to identify the forces that impact the cue level.

Future research should also consider the continuous nature of the aspiration

change in Andalusian Spanish. According to the data presented in chapters 2

and 4, the sound change is still under way, i.e. not all speakers have adopted

post-aspirated voiceless plosives and, given the trading relationship between
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pre- and post-aspiration, post-aspiration has not been fully phonologised yet

(Beddor, 2009). Modular feedforward models (Bermúdez-Otero & Trousdale,

2012; Fruehwald, 2017; Ramsammy, 2015) as well as the lexical phonology

framework (Kiparsky, 2015) claim that sound changes proceed bottom-up,

i.e. they first appear in the phonetic domain before progressing to phonology

and then the lexicon. So when a sound change is still post-lexical, it applies

regardless of word boundaries. In order to assess the degree of phonologisation

of Andalusian Spanish post-aspiration, Egurtzegi et al. (2022) investigated

whether the innovative post-aspirated variants of /p, t, k/ were also present at

the word boundary, e.g. in las tapas /lahtapah/ > [lathapah] (engl. the tapas).

Using the same parameterisation and analysis as in 2.2.1, it was found that

younger speakers from the more progressive West Andalusian variety pro-

duced significantly more post-aspiration in /st/ across the word boundary than

older speakers. However, the same was not true for /sp, sk/ across the word

boundary, i.e. these clusters were realised with more pre- than post-aspiration

by speakers of both age groups. In accordance with modular feedforward

architecture, this finding would suggest that post-aspiration has been phon-

ologised in /sp, sk/ ahead of /st/. However, previous research showed that

/st/ was leading the sound change (Cronenberg et al., 2020; Ruch & Peters,

2016), thus posing a contradiction to the modular feedforward interpretation

of the results. Further research will be needed to examine how the change from

pre- to post-aspiration applies in ever narrower domains (from phonetics via

phonology to lexicon) and what role the plosive’s place of articulation plays.

In the data used in this thesis as well as in other recordings, it has been

observed that the alveolar cluster /st/ was sometimes post-affricated instead

of post-aspirated, e.g. esto /ehto/ or /etho/ (engl. this) > /etso/ (Del Saz, 2019;

Moya Corral, 2007; Ruch, 2010). Aside from the palatal affricate /tS/ as in

e.g. chica /tSika/ (engl. girl), there are no affricates in Spanish. It is therefore

noteworthy that Andalusian Spanish has introduced /ts/ as a variation of the

post-aspirated alveolar voiceless plosive. An example of this can be seen in

Figure 5.1b which shows the waveform and spectrogram of the word pasta
(engl. pasta) produced with post-affrication as indicated by the arrow. This

token can be compared to the post-aspirated token of the same word produced
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(a)

(b)

Figure 5.1: Waveform and spectrogram of the word pasta (engl. pasta) by (a) an
younger male West Andalusian speaker who produced the /st/ cluster with post-
aspiration, and (b) by a younger female West Andalusian speaker who produced the
cluster with post-affrication. Arrows indicate the position of the post-aspiration and
post-affrication, respectively. The spectrogram range goes up to 8 kHz.
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by a different Andalusian Spanish speaker in Figure 5.1a, which has a weaker

release and lower centre of gravity (duration cannot be visually compared

here due to different speech rates). According to a study by Ruch (2010), the

dento-alveolar affricate has a similar centre of gravity as /s/ at about 6500

to 6900 Hz which is much higher than that of the glottal fricative or of post-

aspiration (also see Henriksen & Harper, 2016). Del Saz (2019) showed that

tokens with a centre of gravity lower than 4 kHz were clearly identifiable as

/th/, whereas those with a centre of gravity higher than 6 kHz were identified

as /ts/. Apart from centre of gravity, acoustic measures that may distinguish

post-aspiration from post-affrication include VOT, closure duration, the ratio

of VOT to overall cluster duration, and zero-crossing rate (Del Saz, 2019;

Ruch, 2010). Nevertheless, Ruch (2010) concluded that there was a lot of

within- and between-speaker variation in how /st/ was produced and that

post-aspiration and post-affrication often shared some acoustic characteristics.

Therefore, it might be worth investigating in which ways /th/ is different

from /ts/ from both articulatory-acoustic as well as perceptual perspectives.

Such investigations could also shed light on the role of affrication in the sound

change that affects clusters of /s/ plus voiceless plosives in Andalusian Spanish.

Relying of apparent-time data, Ruch (2010) and Vida Castro (2016) found that

younger speakers used post-affrication in place of post-aspiration more so

than older speakers, indicating a change in progress /th/ > /ts/. In a sample

of utterances from young West Andalusian speakers, Del Saz (2019) found

that almost 74% of /st/ clusters were produced with post-affrication (the

remaining 26% were post-aspirated). Hence, affrication might be the next step

after the sound change from pre- to post-aspiration has been completed in

the alveolar voiceless plosive. The current parameterisation of the change in

terms of high-frequency energy and probability of voicing as explained in

chapter 2, however, is not capable of capturing the difference between strong

post-aspiration and post-affrication. Adding a third time-varying signal such

as spectral centre of gravity or zero-crossing rate should provide the necessary

distinction and could provide valuable insights into the dynamics of that

sound change including both post-aspiration and post-affrication.
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A.1 Authorship Contribution Statement

These are the authors’ contributions to Cronenberg et al. (2020) according to

the Contributor Role Taxonomy (CRediT). Johanna Cronenberg: Formal ana-

lysis, Data curation, Writing – original draft, Writing – review & editing, Visu-

alization. Michele Gubian: Methodology, Formal analysis, Writing – original

draft, Writing – review & editing. Jonathan Harrington: Conceptualization,

Data curation, Writing – original draft, Supervision, Project administration,

Funding acquisition. Hanna Ruch: Resources, Data curation, Writing – review

& editing.

A.2 Word List

/sp/
caspa – dandruff
espada – sword

espalda – back

España – Spain

espanto – fright

despide – he/she/it fires

espía – spy

espina – thorn

respira – he/she/it breathes

despierta – awake (fem.)

espiaba – I/he/she/it spied

espiando – spying

disputa – argument

espuma – foam

esputo – sputum

después – later

143



Appendices

espuela – spur

/st/
vestuario – wardrobe

hasta – until

pistolín – small pistol

resto – rest

estaba – I/he/she/it was

estado – state

estanco – kiosk

pestaña – eyelash

destino – fate

estima – he/she/it respects

estío – summertime

pestiño – type of pastry

bestial – bestial

bestiando – (pseudoword)

destiempo – untimeliness

estuche – case

estufa – stove

estuve – I was

estuela – (pseudoword)

pasta – pasta

/sk/
vasca – Basque (fem.)

escama – scale

escapa – he/she/it escapes

escaso – insufficient

pescado – fish

cosquillas – tickle (noun)

esquía – he/she/it skies
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esquife – skiff
esquina – corner

esquiando – skiing

escucha – he/she/it listens

escudo – shield

escupe – he/she/it spits

escuela – school

escueto – concise

A.3 Mathematical details on Apre and Apost

In section 2.2.2 it was stated that the steepness of the curves Apre(s1) and

Apost(s1), defined in Eq. (2.2) and shown in Figure 2.5, is extreme and not due

to chance, while their sum Atot(s1) does not depart significantly from a flat

line. Here we provide a proof of those statements.

Before proceeding with the actual proof, we apply two modifications to

the definitions in Eq. (2.2) that in combination produce linear approximations

of Apre(s1) and Apost(s1). This is necessary in order to obtain properly defined

slopes, and also it makes the proof more manageable. First we lift theHF > V P

constraint, thus including integration intervals where the area between HF(t)

and V P (t) is negative. Then we substitute the integration boundary tM =

argmintHF(t), which varies with s1 around the middle of the time interval,

with the fixed value t = 0.5. Looking at Figure 2.4 we can see that the impact

of these modifications on the shape of Apre(s1) and Apost(s1) will be rather

modest. The inclusion of intervals where HF < V P results in the inclusion of

the two small intervals at the beginning and at the end of the normalised time

interval where V P (t) is above HF(t). In those intervals, the areas delimited

by the curves are small compared with the positive areas and are roughly

constant at varying s1. We can then expect that the main effect of this first

approximation step is going to be a downward shift of Apre(s1) and Apost(s1),

as negative areas are going to subtract some (roughly constant) amount from

the positive areas. The second approximation step is going to have a clearer,

yet modest impact on the shapes of Apre(s1) and Apost(s1), namely a mitigation
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of the divergence of the two curves, especially for s1 > 0. For example, in the

right panel of Figure 2.4 we can see that fixing the demarcation between Apre
and Apost at t = 0.5 allows more area to be assigned to Apre and less to Apost;

the opposite occurs in the left panel.

Applying the above modifications to Eq. (2.2) we obtain:

Apre ≈
∫ 0.5

0

(
HF(t)−V P (t)

)
dt (A.1a)

Apost ≈
∫ 1

0.5

(
HF(t)−V P (t)

)
dt (A.1b)

Figure A.1 compares Apre, Apost, and Atot based on Eq. (2.2), i.e. the original

definition in the main text, to the approximate versions based on Eq. (A.1),

where we can see that the approximate curves (solid) are indeed linear and

also close enough to the original ones (dotted), especially as far as their slope

is concerned. The fact that Apre(s1) and Apost(s1) in Eq. (A.1) are linear in s1
when HF(t) and V P (t) are computed only on the basis of P C1 follows from

the linearity of FPCA and the linearity of the definite integral. To make this

explicit, the following steps derive an expression for Apre:

Apre(s1) ≈
∫ 0.5

0

(
HF(t)−V P (t)

)
dt

=
∫ 0.5

0

(
µHF(t) + s1 · P C1HF(t)−µV P (t)− s1 · P C1V P (t)

)
dt

=
∫ 0.5

0

(
µHF(t)−µV P (t)

)
dt︸                          ︷︷                          ︸

Mpre

+s1 ·
∫ 0.5

0

(
P C1HF(t)− P C1V P (t)

)
dt︸                                   ︷︷                                   ︸

Ppre

=Mpre + Ppre · s1

(A.2)

where the first step is Eq. (A.1a), the second step is the application of Eq (2.1)

using only s1, and the rest is term rearrangement and convenient definitions

of constants Mpre and Ppre. Similarly we find Apost(s1) ≈Mpost + Ppost · s1 and
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Atot(s1) = Apre(s1)+Apost(s1) ≈ (Mpre+Mpost)+(Ppre+Ppost) ·s1. The four constant

values are: Mpre = 0.08, Mpost = 0.09, Ppre = −0.21 and Ppost = 0.20.
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Figure A.1: Apre (yellow), Apost (blue), and Atot = Apre + Apost (black) as functions
of s1, computed by using Eq. (2.2) (dotted lines, the same as in Figure 2.5) or its
approximation Eq. (A.1) (solid lines), when signals HF and VP are defined as in
Eq. (2.1) using only PC1.

Having derived linear approximations to Apre(s1), Apost(s1), and Atot(s1),

we focus on the corresponding slopes Ppre, Ppost, and Ptot. We want to prove

that Ppre and Ppost are extreme (opposite) values, while Ptot is not significantly

different from zero. To this end we construct a reference distribution for slopes

by extending Eq. (A.1) to allow for any arbitrary partition of the time interval

(0,1) in two complementary subsets on which the two integrals are computed.

In this way, the partition {(0,0.5), (0.5,1)} is the special case defining Apre and

Apost, while {(0,1), (1,1)} defines Atot (and a null area). In practice we want to

show that only by setting the subdivision between Apre and Apost in the middle

of the total time interval we get a clear trade-off relationship between the two,

i.e. steep and opposite slopes Ppre and Ppost, while partitioning the interval
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between, say, the central and remaining part or any other arbitrary partition

would not provide any significant complementary relation. Operationally, we

sliced the interval (0,1) in Nint = 20 slots of equal size, i.e. (0,0.05), (0.05,0.10),

etc., then defined the corresponding Nint sub-areas ai as:

ai =
∫ i

Nint

i−1
Nint

(
HF(t)−V P (t)

)
dt, i = 1, . . . ,Nint (A.3)

and then assigned a random subset of them to A′pre and the remaining to A′post,

the generalisations of Apre and Apost for arbitrary integration limits.

Figure A.2 shows an example of randomly partitioning the integration

interval among the ones allowed by the discretisation imposed by Eq. (A.3).

Each random partition will produce different A′pre(s1) and A′post(s1), which

results in different constant terms M ′pre, P
′
pre, M

′
post, and P ′post defined as in

Eq. (A.2). We are interested in the distribution of P ′pre and P ′post. Since those

have complementary definitions, their distributions are identical, hence we

will look at P ′pre only. There are 2Nint possible partitions, that is 220 = 1,048,576

when Nint = 20, each producing a different slope P ′pre. We treat this large yet

deterministic set of values as a population and describe it empirically as a

random distribution. We estimate it by computing 10,000 randomly chosen

values of P ′pre.

Figure A.3 shows the Empirical Cumulative Distribution Function (ECDF)

of P ′pre. We can immediately notice that the particular values Ppre = −0.21 and

Ppost = 0.20 from Eq. (A.2), which descend from (a linear approximation of)

our quantification of pre- and post-aspiration, are indeed extreme (opposite)

values for P ′pre, while their sum Ptot = −0.012 lies inside the central area of the

distribution, which includes the value zero, i.e. the slope of a flat line. The

distribution of P ′pre is quite symmetric (skewness is 0.0058), the median and

mean are both around −0.005, its kurtosis is 2.78, very close to 3, which allows

us to treat it as a Gaussian. The empirical quantile q2.5% is −0.13, much greater

than Ppre, and q97.5% is 0.12, much smaller than Ppost, i.e. Ppre and Ppost are

indeed extremes. On the other hand, the symmetric interval centred around the

mean and spanning one standard deviation is (−0.069,0.059), which includes

both zero and Ptot, hence supporting the evidence that the curve Atot(s1) does
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Figure A.2: Random partition of the integration interval obtained by setting A′pre =
a1 +a2 +a4 +a6 +a9 +a10 +a14 +a17 +a19, and A′post = Atot −A′pre, where ai ’s are defined
in Eq. (A.3). The particular curves shown here are HF(t) = µHF(t) and V P (t) = µV P (t),
i.e. s1 = 0.

not depart significantly from a flat line, i.e. the total amount of aspiration is

approximately constant throughout the data set we have collected.

A.4 Effects of FPCA-based signal decomposition

In section 2.2.2 it was shown for the examined data set that pre- and post-

aspiration are related through the phasing of the closure when the selected

acoustic signals HF and VP were derived from Eq. (2.1) using only PC1. The

same relation, however, was not found when HF and VP were derived from

the raw data, as shown by Figure 2.9. In this section, we will provide a more

detailed explanation for this phenomenon.
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Figure A.3: Empirical Cumulative Distribution Function (ECDF) of P ′pre, based on
10,000 random values out of 1 million.

Acoustic signals contain a virtually infinite amount of variation, parts of

which transmit attributes of the speaker to the listener. Therefore, variations

that are important in a possible trade-off between pre- and post-aspiration

in Andalusian Spanish can easily be masked by other sources of variation, as

shown in Figure A.4. This plot was constructed in the same way as Figure 2.9,

but every data point is now coloured according to its s1 value. Recall from

Figure 2.4 that positive values of s1 were associated with earlier closures

accompanied by post-aspiration, and negative values of s1 with later closures

that leave an interval for pre-aspiration. Even though the areas in Figure A.4

were calculated on the raw HF and VP signals, they bear a strong connection

to the s1 values of the data points: s1 is positively correlated with Apost and

negatively with Apre (cf. Figure 2.5). When a token is post-aspirated according

to its s1 value (blue), it has a small Apre, but can have any Apost, and vice

versa for pre-aspirated (red) tokens. Apost in post-aspirated tokens can take
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low or high values because of global amplitude variations in the HF signal, but

importantly, Apre is always small in these cases. There is, therefore, a (barely

discernible) trade-off between pre- and post-aspiration in the raw data (as

shown by the association of the raw data points to s1 and consequently to

the areas computed on signals reconstructed using PC1), but the trade-off is

buried beneath many other kinds of variation (see e.g. Appendix A.5). This

might also be the reason why other studies were unable to identify a trading

relationship (e.g. Ruch, 2013; Ruch and Harrington, 2014; Ruch and Peters,

2016; Torreira, 2007).
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Figure A.4: Area Apost against Apre as in Eq. (2.2) whenHF(t) and V P (t) are the curves
obtained directly from the speech signal without FPCA transformation. In comparison
to Figure 2.9, the colour-coding in this plot indicated the values of PC score s1 for each
data point.
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FPCA is a powerful tool for disentangling sources of variation in data sets of

continuous signals so that previously unnoticeable, systematic variations can

be examined while excluding other influences. This methodological advantage

of FPCA is demonstrated in Figure A.5 which shows the raw data (row 2)

as well as signals derived from PC1 (row 3), and both PC1 an PC2 together

(row 4) for a production of estanco (engl. kiosk) by two different speakers. The

areas Apre (yellow) and Apost (blue) between VP and HF were computed for all

panels using Eq. (2.2). The pairs of signals (and hence: the areas between them)

are very similar to each other in row 3, i.e. both panels correctly show that

there is more post- than pre-aspiration in the two tokens. That is because they

have a very similar closure phasing (PC score s1 is 0.34 for token 1 and 0.32

for token 2). However, when the signals are derived from both PC1 and PC2, a

large difference between the two emerges: the HF signal of token 1 is shifted

downwards (s2 = −0.12), resulting in overall smaller areas, whereas the HF

signal of token 2 is shifted upwards (s2 = 0.59) which has the opposite effect on

the areas. The latter signal reconstructions (row 4) are a closer approximation

to the originals (row 2) than those based on PC1 only (row 3), and they still

correctly indicate more post- than pre-aspiration for both tokens (Apost > Apre).

However, Apost and Apre are now rendered incomparable across tokens, e.g.

Apost in token 2 is considerably larger than Apost in token 1, because they

are affected by a kind of variation that is irrelevant to the trade-off between

pre- and post-aspiration, namely the global energy level in /sC/ clusters. From

another perspective, factoring out the variation expressed by PC2 (and all other

PCs except PC1) provides a way of standardising the area measurements with

the consequence that the trade-off between pre- and post-aspiration emerges

from the remaining amplitude differences in the PC1-derived HF signal.

A.5 Variation explained by PC2 and PC3

When applying FPCA to the input HF and VP signals, the kind of variation

that is most relevant to the sound change from pre- to post-aspiration in /sC/

clusters was found to be captured by PC1. As shown in Figure 2.4, PC1 ex-

presses a phase shift of the HF minimum relative to a voiceless interval, which

152



Appendices

e t h a e t h a

token 1 token 2

1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

V
P
, 

H
F

 (
ra

w
 d

a
ta

)

2

0.0

0.4

0.8

1.2

V
P
, 

H
F

 (
P

C
1

)

3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

Normalised Time

V
P
, 

H
F

 (
P

C
1

 +
 P

C
2

)

Apre

Apost

VP
HF

4

Figure A.5: Two post-aspirated tokens of the word estanco (engl. kiosk) produced by
different young West Andalusian speakers. When reconstructing HF (solid) and VP
(dashed) curves based on only PC1 (row 3), the areas Apre (yellow) and Apost (blue)
are similar for both tokens, but they are markedly different from each other when the
reconstruction of the curves is based on both PC1 and PC2 (row 4).

supports the model of this sound change given in Figure 2.1 and suggests

that there is a trading relationship between pre- and post-aspiration in An-

dalusian Spanish. However, we also computed the second and third principal

component. Here we will analyse these further components and explain why

we excluded them from the main part of this study.
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Figure A.6: Modification of the mean curves µHF(t) and µV P (t) (middle panel) by
adding to (right column) or subtracting from (left column) each mean curve only one
PCk curve multiplied by the standard deviation of its corresponding score (0.24 for s2,
0.19 for s3). The top row corresponds to PC2, the bottom row to PC3. VP curves are
dashed, HF curves are solid lines.

Figure A.6 was constructed in the same way as Figure 2.4, but for the second

and third PC. That is, the mean HF and VP curves are shown in the middle

column; they are the same for all PCs. These mean curves were then modified

by adding to (right column), or subtracting from (left column), each curve only

one PCk curve multiplied by the standard deviation of its corresponding PC

score (0.24 for s2, 0.19 for s3). The top row corresponds to PC2, the bottom row

to PC3. PC2, which explained 24.3% of all variance, captures global amplitude

differences predominantly in the HF signal (with almost no change to VP).

This is likely caused by speaker-specific variation in energy, e.g. their distance

from the microphone during the field recordings and their amplitude level
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while speaking. Rather than modifying the raw speech signals, we let FPCA

catch these differences. We did however try to scale the HF signals by speaker

which removed most of this variation (but it did not change the main result

reported in this paper), confirming that PC2 indeed captures global, speaker-

specific energy levels. PC3, which explained only 14.5% of the variance in

the input signals, encodes a compression and expansion of the HF curve with

some slight parallel changes to VP. This kind of variation is more difficult to

interpret; however, it is very clear that the PC3 curves do not contribute to an

explanation of the sound change from pre- to post-aspiration in Andalusian

Spanish which the present study has shown to be a phase shift of the closure

in /sC/ with respect to the voiceless interval.
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Figure A.7: Boxplots of s2 (top row) and s3 (bottom row) as well as their estimated
marginal means (black dots within the boxes) with related confidence intervals (black
vertical bands) based on the LMER models described in the text. Younger speakers are
shown in green, older ones in dark grey.
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We constructed the same LMER models with s2 and s3 as response variables

as we did for s1 in section 2.3.1. After pruning, all fixed terms with interactions

were retained for s2, whereas all interactions as well as the fixed factor age

were dropped for s3 (however, we added age back in to make the analysis

homogeneous across the three PC scores). For s2, the random intercept for

word as well as the random slope for speaker were retained. All random slopes

were retained for s3. The post-hoc tests were again computed using the R

package emmeans. This allowed us to construct Figure A.7 in the same way as

Figure 2.6, but for the second and third PC scores. These boxplots show that s2
is generally higher for alveolar and velar than for bilabial clusters. Given that

PC2 captures amplitude differences in the HF signal, it is perhaps unsurprising

that s2 is lower for bilabial than for the other two cluster types as /p/ typically

has a weaker burst than /t, k/. The results of the mixed model confirmed that

s2 was significantly influenced by cluster type (F[2, 60.1] = 18.6, p < 0.001).

The LMER model for s2 also shows a significant interaction between age and

cluster (F[2, 44.4] = 5.3, p < 0.01) as well as a significant three-way interaction

between the fixed factors (F[2, 44.3] = 3.3, p < 0.05). The former interaction

can be observed in Figure A.7 where s2 takes slightly higher values for older

than for younger speakers from West Andalusia producing /sp/ or /sk/. The

post-hoc tests showed that there was a significant difference between older

and younger speakers from West Andalusia producing /sp/ (t = 2.6, p < 0.05).

Furthermore there were significant s2-differences between /sp/ and /st/ for

older East (t = 4.6, p < 0.001), younger East (t = 5.1, p < 0.001), older West (t =

2.9, p < 0.05), and younger West Andalusian speakers (t = 6.6, p < 0.001) as

well as between /sp/ and /sk/ for older East (t = 3.9, p < 0.001), younger East

(t = 4.7, p < 0.001), older West (t = 2.5, p < 0.05), and younger West Andalusian

speakers (t = 4.4, p < 0.001).

PC score s3, on the other hand, was significantly influenced by region (F[1,

50.3] = 5.8, p < 0.05) and cluster type (F[2, 65.1] = 6.2, p < 0.01), as shown by

the mixed model. Figure A.7 shows that s3 was slightly higher for speakers

from West than from East Andalusia for all three places of articulation, most

visibly so for younger speakers producing /st/. For both age groups and all

cluster types, the post-hoc tests confirmed a significant regional difference in
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s3 (t = 2.3, p < 0.05). Furthermore, there was a significant difference between

/sp/ and /sk/ (t = 3.2, p < 0.01) as well as between /st/ and /sk/ (t = 2.6, p <

0.05).

Table A.1: Rounded marginal and conditional coefficients of determination for the
three Linear Mixed Effects models.

PC Score Marginal Conditional

s1 0.11 0.46

s2 0.13 0.70

s3 0.03 0.27

Table A.1 reports marginal and conditional coefficients of determination or

Pseudo-R2 scores (P. C. D. Johnson, 2014; Nakagawa & Schielzeth, 2013) for the

three LMER models. These coefficients were calculated using R package MuMIn
(version 1.43.15). The values roughly correspond to the fraction of variance

explained by the fixed factors only and by the whole model, respectively. The

low marginal and conditional coefficient values for PC3 indicate that this

component did not contribute much to explaining the variance in the input

data, as was shown previously. The random elements (Conditional - Marginal)

seem to be more relevant to the s2 model than to the s1 model. This could

indicate that the vertical shift of the high-frequency energy signal shown in the

PC2 panels of Figure A.6 was conditioned more by the variation introduced

by individual speakers or words, while the timing shift of the energy signal

modelled by PC1 was a systematic effect governed by the fixed factors. We

therefore assume PC2 to be a correcting influence on PC1 rather than to be

conceptually relevant to the sound change in progress itself.

Together, the analysis of the second and third PC in this Appendix as well as

Appendix A.4 show that neither of them contributes any information essential

to the sound change modelled in Figure 2.1, and that both need to be factored

out from the main analysis because they would otherwise obscure the relation

between pre- and post-aspiration in Andalusian Spanish.
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A.6 Including duration in FPCA

The analysis presented in the main text is based on the linearly time-normalised

HF(t) and V P (t) signals, as a result of which the total duration d between time

points A and B in Figure 2.2 has not been taken into account. Here we show

that total duration d, though obviously varying among tokens, does not play a

significant role in characterising the pre-/post-aspiration trade-off.

In order to preserve the original duration of HF(t) and V P (t) we adopt an

extended version of multi-dimensional FPCA that incorporates time warping

r(t) as an extra dimension (Gubian et al., 2011). This additional curve encodes

the relationship between the original and normalised time axis and decouples

the information about curve shape from its duration (i.e. this is a special case of

non-linear time warping). In the simple case of linear time normalisation, the

time warping curve r(t) is a flat horizontal line taking the value − log d
mean(d) ,

i.e. (minus) the log of the normalised token duration (see Gubian et al., 2011

and Appendix A in Asano and Gubian, 2018 for an extended explanation14).

The analysis is then carried out as a standard FPCA on the three-dimensional

signals (HF(t),V P (t), r(t)), where the first two dimensions are the same as the

ones used in the main text, thus still expressed in normalised time, while r(t)

separately encodes total duration in the way described above. For the analysis

of the results, r(t) was converted back to ordinary duration values.

Figure A.8 shows the variation of HF(t) and V P (t) when approximated by

PC1 only. Different curve shapes are associated with different durations, from

210 ms (left panel), to 235 ms (middle panel), to 263 ms (right panel).

Despite the different type of signals, two- vs. three-dimensional, FPCA

captured basically the same trends for the shape of HF(t) and V P (t), as can be

seen by comparing Figure A.8 with Figure 2.4 in the main text, i.e. PC1 still

14The cited sources introduce r(t) as a result of landmark registration, a procedure that was not
applied here. The reader consulting those sources should consider linear time normalisation
as a special case of landmark registration, where the only landmarks are placed at signal
start and end. The resulting time warping function h(t) is a segment whose inclination is
higher (resp. lower) than 45° when total duration is higher (resp. lower) than average. The
corresponding r(t) is a flat line defined on the normalised time axis taking the value reported
in the main text.
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Figure A.8: Variation of HF(t) (solid) and V P (t) (dashed) as modulated by score s1
(cf. Figure 2.4 in the main text). The curves were obtained applying FPCA to three-
dimensional signals (HF(t),V P (t), r(t)), where HF(t) and V P (t) are in normalised time
and r(t) (not shown) encodes duration. The corresponding durations are, from left to
right: 210 ms, 235 ms, 263 ms.

encodes a phase shift of HF(t). The preservation of the trends found in the

duration-agnostic analysis is not a general rule, since added information on

duration can break and rearrange statistical associations (encoded by PCs). In

this case, we note that longer tokens are associated with more post-aspiration

(right panel), which is an expected result as post-aspiration is inherently longer

than pre-aspiration.

Figure A.9 shows a corrected version of Figure 2.5, where HF(t) and V P (t)

are approximated using PC1 from the duration-aware FPCA in which the areas

were computed on unnormalised time intervals (note the different scale on

the y-axis, reflecting a multiplication by duration in ms). The main difference

is that Atot incorporates the duration trend associated with PC1 in which

a higher s1 and hence a longer integration interval are derived from longer

tokens. Despite that, the trends found in the main analysis remain, as Apre and

Apost are clearly in a trade-off, mildly distorted by the rising trend of Atot. In

conclusion, the duration-aware version of FPCA has enriched the analysis of
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Figure A.9: Apre (yellow), Apost (blue), and Atot = Apre +Apost (black) computed as in
Figure 2.5, based on HF(t) and V P (t) corrected for duration.

the pre-/post-aspiration trade-off reported in the main text without disrupting

it in any significant way. In other words, there is no evidence that the trade-

off is confounded by total duration. This is because in both FPCA analyses

(with and without total duration) post-aspiration was characterised by an early

closure (minimum of HF(t)).

A.7 Role of Areas, Time Normalisation, and FPCA

Here we illustrate how Apre and Apost as defined in Eq. (2.2) compare to a

number of alternative ways to obtain measures of pre- and post-aspiration that

reliably and effectively show the underlying trade-off relation between the

two. In particular, we explain the role of linear time normalisation, FPCA, as

well as the use of the pre- and post-aspiration areas as opposed to using more
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conventional segmental durations. For this purpose, we present a number

of scatter plots showing the distribution of 5845 data points, in which each

point corresponds to an /sC/ token in our data set, and the x and y axes are

pre- and post-aspiration measures either in the form of areas or durations,

according to different definitions and procedures. Table A.2 summarises (i)

the different combinations of method of computation, either based on manual

annotation or based on the HF(t) and V P (t) signals as defined in 2.2.1.2, (ii)

whether the HF(t) and V P (t) signals were the raw versions or the PC1-based

reconstructions, (iii) whether or not linear time normalisation was applied, and

(iv) whether segmental durations or areas were used as a measure of aspiration.

Table A.2: Specifications for scatter plots in Figure A.10.

Fig. Method Signals Time norm. Measures

A.10a manual annot. – no durations
A.10b manual annot. – yes durations
A.10c HF(t), V P (t) Raw yes durations
A.10d HF(t), V P (t) PC1-based yes durations
A.10e HF(t), V P (t) Raw yes areas
A.10f HF(t), V P (t) PC1-based yes areas

Figures A.10a and A.10b are based on semi-automatically annotated dura-

tions of pre- and post-aspiration, where the annotation was taken from Ruch

and Harrington (2014).15 Figure A.10a is based on unnormalised measures,

while A.10b shows the effect of dividing the durations in Figure A.10a by the

total duration of the /sC/ interval (defined as in Ruch and Harrington, 2014).

While pre- and post-aspiration show a mild negative correlation (Spearman’s

correlation are −0.13 for Figure A.10a and −0.24 for Figure A.10b), it is clear

that several factors contribute to the physical duration of the acoustic manifest-

ation of aspiration which blur the underlying trade-off that we hypothesise to

be at the base of the planned articulation gesture and that we want to isolate.

Figure A.10c is obtained from the same procedure as Figure A.10b, but

with the difference that the durations of pre- and post-aspiration were obtained

15In Figures A.10a and A.10b, dpre takes negative values when the voicing of the previous
vowel extended into the following closure.
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from theHF(t) and V P (t) signals by computing the length of the integration in-

tervals defined in Eq. (2.2). In other words, dpre (resp. dpost) is the total duration

of the interval before (resp. after) the minimum value of HF(t), conditioned by

HF(t) > V P (t). There is an improvement in the visible correlation (Spearman’s

correlation is −0.31), but still the trade-off is not clearly delineated from other

factors that contribute to duration. The situation is even worse when comput-

ing the areas Apre and Apost instead of durations, as shown in Figure A.10e

(same as Figure 2.9). By contrast, a few lines rather than a cloud of points

are obtained when the same parameters were derived from the PC1-based

reconstructed signals (Figures A.10d and A.10f). Those lines are still scatter

plots, i.e. formed by individual points, but this time the location of the points

is constrained by a single degree of freedom, i.e. PC score s1. In Figure A.10d a

large portion of the scatter plot exhibits an obvious trade-off (the segment with

roughly −45° inclination), while other parts are affected by what we argue are

artefacts. These are the consequence of the fact that dpre+dpost ≤ 1 (because the

total duration of the signals is 1 in normalised time), but at the same time dpre
(resp. dpost) cannot be larger than tM (resp. 1− tM), where tM is the location of

the minimum of HF(t), which is usually around the temporal midpoint t = 0.5

and it rarely occurs near t = 0 or t = 1. As a consequence, when either dpre or

dpost decreases below approx. 0.3, the other stops increasing, i.e. the trade-off
between dpre and dpost is interrupted. This explains e.g. the roughly vertical

line at the bottom right corner in Figure A.10d, where dpost keeps decreasing

from 0.3 to 0.2 while dpre stops increasing (and even decreases slightly), as

according to its definition its value cannot exceed tM , which is not likely to be

far from t = 0.5. These artefacts are not present when areas were used instead

of durations, as Figure A.10f illustrates, where a clear trade-off relation is

preserved even when either Apre or Apost are small.

To summarise, with Figure A.10 we have shown that for the purpose of

isolating the underlying pre-/post-aspiration trade-off (i) linear time norm-

alisation alone does not bring any particular benefit, (ii) a clear trade-off
emerges only by applying the FPCA-based signal decomposition on HF(t) and

V P (t), and when doing so, (iii) computing areas instead of segmental durations
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preserves a clear trade-off trend also at the extremes of pre-/post-aspiration

ranges.
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Figure A.10: Scatter plots showing the distribution of pre- (x-axis) and post-aspiration
(y-axis) measures obtained using different methods. See Table A.2 and text for details.
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B | Appendices to Chapter 3

B.1 Authorship Contribution Statement

These are the authors’ contributions to Gubian et al. (2023) according to the

Contributor Role Taxonomy (CRediT). Michele Gubian: Methodology, Soft-

ware, Validation, Formal analysis, Writing – original draft, Writing – review

& editing, Visualization. Johanna Cronenberg: Software, Validation, Formal

analysis, Data curation, Writing – original draft, Writing – review & editing,

Visualization. Jonathan Harrington: Conceptualization, Methodology, Writing

– original draft, Writing – review & editing, Supervision, Project administration,

Funding acquisition. Please note that Appendices B.4 to B.7 are largely the

work of Michele Gubian and have been taken from Gubian et al. (2023) with

some rearrangements and adaptations to make them align with the contents

of chapter 3.

B.2 Installation of soundChangeR

The R package soundChangeR can be installed via GitHub (i.e. it is not available

on CRAN). The link to the repository of soundChangeR is https://github.com/

IPS-LMU/soundChangeR and the most recent version of the package will

always be on the branch called main. At the time of writing, the current version

of soundChangeR is 1.0.0. As usual before installing a new package in R, please

make sure all of your packages are up-to-date and you are on an R version equal

to or higher than 4.1.0. If necessary, install devtools first, before installing

soundChangeR:

1 install . packages (" devtools ")
2 devtools :: install _ github ("https:// github .com/IPS -LMU/

soundChangeR ", build_ vignettes = T)

There is a vignette available for this package which gives an overview of

the mechanics of the model and explains each parameter that can be set in a

simulation (see Appendix B.3).
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Simulating Sound Changes with
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1 Interactions
1.1 Production
1.2 Perception
1.3 Phonology
1.4 Memory Management

2 Parameters of the Model
2.1 Input data
2.2 Setup
2.3 Production
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2.6 Interactions
2.7 Runs
2.8 Other options

3 Analysing Results and Managing Simulations
3.1 Demo
3.2 Data Structures
3.3 Analysis of Results
3.4 Managing Simulations

4 Recommended Literature

soundChangeR is an agent-based computational implementation of the interactive-phonetic
(IP) model of sound change (Harrington et al., 2018). The central entities in this model are
agents and exemplars. Agents are artificial representations of real speakers, i.e. the agents are
endowed with a memory filled with acoustic data from actual speakers. The agents also follow
a set of rules in order to produce, perceive, and forget exemplars. Exemplars consist of
acoustic parameters that capture essential characteristics of the speech sounds under
investigation. Every exemplar is also associated to a fixed lexical class, i.e. the word in which
the exemplar was produced. The phonemic level of this model links the acoustic exemplars
and the word classes. Sound change may or may not emerge from the interactions between
the agents as well as the mechanisms of their production-perception feedback loop.

We will explain the ABM’s mechanisms by means of the exemplary dataset which is provided
with the package:
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B.3 Vignette to soundChangeR
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The dataset u_fronting contains data from 22 speakers of Standard Southern British English
(SSBE) producing the three vowels /i, u, ju/ in a total of 11 words. Each word was repeated
usually 10 times per speaker. The vowels are parameterised by means of the first three DCT
coefficients of the second formant trajectory. A help page for this dataset is available:

More detailed information on the data is provided by Harrington & Schiel, 2017.

1 Interactions
During a simulation with soundChangeR, the agents exchange tokens for a given amount of
interactions. An interaction always consists of an agent speaker who produces a new token of
a word and an agent listener who decides whether or not to memorise the token. Agents can
interact with each other either freely or they do so only within or only across predefined
groups (such as older vs. younger, region A vs. region B, etc.).

In u_fronting, the agent groups are based on the speakers’ age:

This is because empirical studies have found that younger speakers of SSBE are further
advanced in the change of /u/ to the front of the vowel space than older speakers. So, whereas
younger speakers have a /u, ju/ close to /i/, older speakers still produce a retracted /u, ju/ most
of the time. However, when /u/ appears in adjacency to coronal consonants, even older
speakers are more likely to produce a fronted /u/ due to the high F2-locus of coronal
consontants. This can be shown by calculating the mean DCT0 coefficient by vowel and age
group in u_fronting:

#> # A tibble: 6 × 3
#>   label age     mean_DCT0
#>   <chr> <chr>       <dbl>
#> 1 i:    older       1416.

library(soundChangeR)
u_fronting
#> # A tibble: 2,390 × 8
#>    sl_rowIdx speaker age     word  label  DCT0  DCT1   DCT2
#>        <int> <chr>   <chr>   <chr> <chr> <dbl> <dbl>  <dbl>
#>  1         1 albr    younger seep  i:    1453. -20.8 -14.4 
#>  2         2 albr    younger seep  i:    1438. -35.2 -24.8 
#>  3         3 albr    younger seep  i:    1419. -34.6 -21.0 
#>  4         4 albr    younger seep  i:    1438. -27.3 -13.6 
#>  5         5 albr    younger seep  i:    1443. -27.5 -11.9 
#>  6         6 albr    younger seep  i:    1423. -29.2 -14.5 
#>  7         7 albr    younger seep  i:    1432. -14.3 -13.4 
#>  8         8 albr    younger seep  i:    1449. -32.7 -14.0 
#>  9         9 albr    younger seep  i:    1450. -31.7 -19.2 
#> 10        10 albr    younger seep  i:    1438. -34.6  -8.71
#> # … with 2,380 more rows

?u_fronting

unique(u_fronting$age)
#> [1] "younger" "older"
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#> 2 i:    younger     1469.
#> 3 ju:   older       1099.
#> 4 ju:   younger     1377.
#> 5 u:    older        926.
#> 6 u:    younger     1299.

DCT0 is linearly related to the mean of the F2 trajectory, i.e. the higher DCT0, the higher F2.
While there is hardly any difference in the mean DCT0 of /i/ between older and younger
speakers, older speakers have much lower DCT0 values for /u, ju/ than younger ones.

1.1 Production

The agent speaker randomly chooses a word class, then builds a Gaussian model over all
memorised exemplars associated with that word, and samples a new token from it. This
process is word-based in order to ensure that possible coarticulatory effects can be carried
over into the new token.

Say, albr is the agent speaker and has chosen to produce a token of the word food. Then 
albr gathers all exemplars of food (as shown by the food labels in the plots below) and
estimates a Gaussian model over them (as exemplified by the ellipses) in the three-
dimensional DCT space (here broken down into two 2D plots for reasons of legibility). A new
token of food, shown in orange, is then sampled from the Gaussian distribution:

The new token consists of the values for the three DCT coefficients as well as the label of the
word class, food.

1.2 Perception

The agent listener receives the token together with its associated word class. This means that
it is assumed that word recognition works perfectly and that misunderstandings are neither a
catalyst nor an obstacle for sound change. Instead, the agent listener has to decide whether or
not to memorise the token. This decision is strongly linked to the phonemic level, i.e. the agent
tests whether the perceived token is close enough to the intended phonemic class and/or
probabilistically closer to the intended than to all other phonemic classes. The phonemic
classes can either be pre-determined by the user and remain fixed or be regularly updated by
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each agent by means of unsupervised learning algorithms.

Continuing with the example above, say, elwi is the agent listener who has to decide whether
or not to memorise the perceived token of food. elwi’s acoustic space with the phonemic
categories colour-coded is shown in the following plot. The perceived token of food is again in
orange.

For elwi, food is associated with the blue phonemic class. elwi can either accept the token
without any constraint, or use different probabilistic decisions (also see
memoryIntakeStrategy). One of them tests whether the token of food is close enough to its
intended phonemic class without taking any other phonemic classes into account. If, according
to the Mahalanobis distance, the token is too far from the blue phonemic class, elwi rejects
the token. The other default decision metric is the maximum posterior probability criterion
which takes all phonemic classes into account. The new token of food must be probabilistically
closer to the blue than to all other phonemic classes. If this is the case, elwi accepts and
memorises the token. In the given example, both probabilistic decisions would lead to a
rejection of the token.

1.3 Phonology

There are two ways of linking the exemplars and word classes through a phonemic level.
Either the phonemic classes are fixed and immutable throughout the simulation (like in the
demo simulation) or they are agent-specific, regularly updated, and computed using
unsupervised machine learning mechanisms (see useFlexiblePhonology). The latter option
consists of a two-step process: First, Gaussian Mixture Models (GMM) are used to create
acoustic clusters of exemplars. This step relies exclusively on information about the location of
exemplars in the acoustic space (and no information about word classes etc.).

The plot below shows the components of the GMM for the speaker phfo from a simulation
with the u_fronting dataset after 100,000 interactions. Every black dot is an exemplar in 
phfo‘s memory at that point in the simulation. At this first stage of deriving phonemic
knowledge, the exemplars’ association to word classes is irrelevant, thus only the acoustic
information is used to form clusters. The GMM has determined that there are four acoustic
clusters (a1 to a4) as shown by the labelled ellipses.
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In the second step, non-negative matrix factorisation (NMF) is used to identify sets of acoustic
clusters that contain exemplars of the same distinct word classes. These sets are called sub-
phonemes. This step neglects any information on the location of exemplars and acoustic
clusters in the acoustic space, and instead uses information on the association between
exemplars and word classes.

Therefore, every exemplar from the previous plot is now represented by the associated word
label. In total, NMF has determined that there are three sub-phonemes as shown by the
different colours. Acoustic clusters a1 and a4 both contain mostly exemplars of the same four
word classes: queued, feud, hewed, and soup. That is why a1 and a4 are grouped together into
the red sub-phoneme. Most exemplars of the words cooed, food, and who’d are contained in
acoustic cluster a3 and no other cluster, hence a3 becomes the green sub-phoneme. However,
two exemplars of cooed and one exemplar of who’d were originally part of acoustic cluster a1.
These exemplars are so-called impurities in the red sub-phoneme (with which cluster a1 is
associated). Sub-phonemes can contain impurities as long as the overall purity of the sub-
phoneme surpasses a given threshold. Purity is computed as the fraction of exemplars in a
sub-phoneme belonging to a designated set of words. So if the red sub-phoneme consists of a
total of 27 exemplars, 24 of which are associated with the word classes queued, feud, hewed,
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and soup, then the purity is

which is higher than the default purity threshold of 0.75. Finally, acoustic cluster a2 exclusively
contains exemplars of the words feed, heed, keyed, and seep and is hence identified as the blue
sub-phoneme.

The sub-phonemic classes are recomputed at regular intervals. Importantly, previous results
from GMM and NMF are disregarded and play no role in the recomputation of the sub-
phonemes. If this flexible phonology module is used to derive phonemic knowledge, the
memorisation criteria are computed with respect to these sub-phonemes.

1.4 Memory Management

There are two scenarios to be avoided in terms of memory size: When there are too few
exemplars per word and agent, Gaussian distributions (as computed in production) are
unstable or cannot be computed; when there are too many exemplars in the agents’
memories, the influence of new exemplars is minimised and change is effectively inhibited. To
solve the first issue, the user can choose to apply SMOTE, both at initialisation and during
production. SMOTE is a standard resampling algorithm that has no harmful effects on the
acoustic distributions.

The second issue (i.e. too many exemplars) can be avoided by having the agent listeners forget
exemplars, i.e. remove an exemplar from memory that belongs to the same word class as the
memorised token. The only restriction on forgetting is that word classes cannot be diminished,
so if the deletion of an exemplar would leave the word class with less exemplars than it was
initialised with, forgetting is blocked.

Let’s assume that elwi has decided to memorise the perceived token of food in the example
above. Depending on the model’s settings, a random exemplar of food can be removed unless
the result is that there are less than 10 exemplars of food left afterwards. This is because elwi
was initialised with 10 exemplars of food.

2 Parameters of the Model
The function which starts a simulation is called run_simulation(). The following is a
comprehensive list of all parameters of the model that are arguments of run_simulation().
Short explanations of the arguments are also available on the function’s help page:

2.1 Input data

24/27
#> [1] 0.8888889

?run_simulation
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The first five arguments all take strings or a vector of strings. inputDataFile is the relative or
absolute path to a data file, which can be a .csv or simple .txt file. When running the
simulation, it will be loaded as a data.table. The argument speaker indicates the column in 
inputDataFile which contains the speaker codes. The argument group can be used if there
are two or more agent groups, based on e.g. age or regional origin. If there are no groups, this
argument can remain NULL, otherwise it is the name of the respective column in 
inputDataFile. The argument word indicates the column in inputDataFile which contains
the lexical labels. If you are not using the flexible phonology algorithm (i.e. if 
useFlexiblePhonology = FALSE), the argument phoneme has to be specified and must
point to the column in inputDataFile that contains the canonical phonemic labels.
Otherwise, phoneme can remain NULL. For argument features, please indicate the name(s)
of the column(s) that contain the acoustic parameter(s) (formant values, DCT coefficients, PC
scores, etc.) of the sounds under investigation. The indicated column(s) must contain numbers.
There can be more columns in inputDataFile than needed for the simulation (they will be
ignored).

An example for these arguments can be given using the data frame u_fronting again. This
dataset is also used in the demo of this model for which the arguments above are set as
follows:

The argument inputDataFile in this case points to the .csv file of u_fronting which is
located at:

2.2 Setup

If only a subset of speakers or a subset of canonical phonemes should be used in the

inputDataFile = NULL
speaker = NULL
group = NULL
word = NULL
phoneme = NULL
features = NULL

speaker = "speaker"
group = "age"
word = "word"
phoneme = "label"
features = c("DCT0", "DCT1", "DCT2")

system.file("extdata", "u_fronting.csv", package = "soundChangeR")

subsetSpeakers = NULL
subsetPhonemes = NULL
createBootstrappedPopulation = FALSE
bootstrapPopulationSize = 50
expandMemory = FALSE
expandMemoryFactor = 2
removeOriginalExemplars = FALSE
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simulation, the arguments subsetSpeakers and subsetPhonemes can be set with vectors of
strings containing the speaker codes or phonemes, respectively, that are to be part of the
simulation.

Usually, every human speaker is represented by one agent which is achieved by initialising the
agent with the acoustic data of the speaker (createBootstrappedPopulation = FALSE).
However, there is the possibility to break this paradigm by applying bootstrapping. If so, the
argument bootstrapPopulationSize must specify how many agents (per agent group) the
new population should be comprised of (a full positive number). For example, the u_fronting
dataset consists of data from 11 older and 11 younger speakers. If the bootstrapped
population should consist of a total of 50 agents (irregardless of their age groups), the
arguments need to be:

If, instead, the bootstrapped population should consist of 25 older and 25 younger agents, the
arguments are:

It is highly recommended to do multiple runs of simulations when the population is created by
means of bootstrapping.

Since we often deal with sparse data in the phonetic sciences, it makes sense to augment the
amount of data (i.e. tokens per word per speaker) before the first interaction takes place by
setting expandMemory = TRUE. In this case, expandMemoryFactor needs to be set to a full
positive number to indicate the factor by which to multiply the number of tokens per word
and speaker. The memory expansion uses the production technique indicated by the
parameters in the next section, i.e. the agent is essentially talking to itself to create more
tokens. Be aware that a large expansion factor, e.g. 10, will slow any change down, so many
more interactions are needed. The argument removeOriginalExemplars only takes effect if 
expandMemory = TRUE and results in the deletion of all original exemplars from the agents’
memories before the interactions begin.

2.3 Production

The agent speaker randomly chooses a word class from which to produce a new token. If the
number of exemplars associated with the chosen word class is less than minTokens, SMOTE
can be applied to temporarily create more tokens of the word by setting useSMOTE = TRUE.
This makes the estimation of the (often multi-dimensional) Gaussian distribution from which a
new token is sampled more stable. In this case, SMOTENN specifies the number of nearest
neighbours to be considered when performing the random linear interpolation for SMOTE.

Before applying SMOTE, one can decide to additionally use exemplars of the same phonemic

createBootstrappedPopulation = TRUE
bootstrapPopulationSize = 50

createBootstrappedPopulation = TRUE
bootstrapPopulationSize = c("older" = 25, "younger" = 25)

useSMOTE = TRUE
fallBackOnPhoneme = TRUE
minTokens = 10
SMOTENN = 5
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class with which the chosen word is associated. So if fallBackOnPhoneme = TRUE, the
exemplars associated with the chosen word as well as exemplars of the same phonemic class
are used to estimate the Gaussian distribution. Only if these exemplars are still less than 
minTokens, SMOTE is applied. If fallBackOnPhoneme = FALSE, SMOTE is used immediately.
If useSMOTE = FALSE, the argument fallBackOnPhoneme takes no effect.

2.4 Perception

The agent listener has several options for deciding whether or not to memorise the perceived
token. The argument memoryIntakeStrategy is therefore one of the most critical ones in
this model and can take either a string or vector of strings as values (i.e. combining strategies
is possible).

"mahalanobisDistance": The distance between the token and the corresponding
phonemic class in the agent listener’s memory has to be smaller than the 
mahalanobisProbThreshold which takes a value between 0 and 1. This approach does
not take into account any of the other phonemic categories.
"maxPosteriorProb": Maximum posterior probability decision, i.e. the token is only
memorised if its probability of belonging to the listener’s corresponding phonemic
category is higher than that of belonging to any of the other categories.
"posteriorProbThr": The produced token is memorised if its posterior probability of
belonging to the phonemic category is higher than the threshold indicated by the
argument posteriorProbThreshold.
"acceptAll": All perceived tokens are also memorised, i.e. there is no constraint on
memorisation.

The two possible combinations of values for memoryIntakeStrategy are:

If the perceived token is associated with a word that is unknown to an agent listener, a word
label will be assigned to the token based on a majority vote among perceptionOOVNN nearest
neighbours. This argument therefore has to be an uneven full positive number.

If the perceived token has been memorised, the agent listener can forget an exemplar of the
same word class if a value sampled from a uniform distribution is below forgettingRate. So
the agent listener will always remove an exemplar if forgettingRate = 1, never remove
one if forgettingRate = 0, and remove a token some of the time if forgettingRate is set
to a value between 0 and 1.

2.5 Phonology

memoryIntakeStrategy = c("mahalanobisDistance", "maxPosteriorProb")
mahalanobisProbThreshold = .95
posteriorProbThreshold = 1/3
perceptionOOVNN = 5
forgettingRate = 1

memoryIntakeStrategy = c("mahalanobisDistance", "maxPosteriorProb")
memoryIntakeStrategy = c("mahalanobisDistance", "posteriorProbThr")
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As described before, phonemic classes can either be fixed and immutable if 
useFlexiblePhonology = FALSE (in this case, phoneme must be set) or they can be
computed using unsupervised learning algorithms (GMM and NMF) if 
useFlexiblePhonology = TRUE. In the latter case, three arguments are used to configure
GMM and NMF. computeGMMsInterval takes a full positive number and defines after how
many memorised tokens an agent recomputes their sub-phonemic classes. Be aware that this
way of generating phonemic classes is computationally expensive and may lead to long
computation times if the interval is set to a relatively low value.

Sub-phonemes must surpass the purityThreshold, i.e. the fraction of exemplars in a sub-
phoneme belonging to a designated set of words, in order to be identified as a sub-phoneme.
This threshold is a number between 0 and 1. Since there is an element of stochasticity to the
NMF algorithm, the optimal number of sub-phonemes is determined by running NMF 
purityRepetitions times.

2.6 Interactions

The argument interactionPartners can be set to specify from which groups the two
interacting agents shall come.

"random": It does not matter from which group an agent comes
"withinGroups": Speaker and listener must come from the same group
"betweenGroups": Speaker and listener must be members of different groups

The arguments speakerProb and listenerProb can be used to introduce an imbalance
regarding the probability with which one or more agents are chosen to be speakers or
listeners in an interaction. Both arguments take a vector of numbers (one number per agent).
The numbers do not need to sum up to one, as they will be normalised internally. If left NULL,
all agents will get equal chances to be selected as speakers or listeners in an interaction.

2.7 Runs

The model offers two ways of performing simulations: either as single runs or as multiple,
parallel runs. Multiple runs of the same simulation can offer insights into the stability or
robustness of the results. The argument runs specifies how many runs are computed, the
default being a single run.

useFlexiblePhonology = FALSE
computeGMMsInterval = 100
purityRepetitions = 5
purityThreshold = 0.75

interactionPartners = "betweenGroups"
speakerProb = NULL
listenerProb = NULL

runs = 1
nrOfSnapshots = 10
interactionsPerSnapshot = 100
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A simulation is a sequence of nrOfSnapshots * interactionsPerSnapshot interactions.
At every interactionsPerSnapshot interactions, a snapshot of all agents’ memories is
saved.

2.8 Other options

The argument rootLogDir specifies the relative or absolute path to the logging directory
where the simulation results will be saved. If the directory does not exist, it is created when
running the simulation. Notes regarding the simulation can optionally be given in notes. This
is useful because the arguments given to run_simulation() will be saved for each
simulation, so the argument notes can help to specify the intention or purpose of running a
specific simulation.

3 Analysing Results and Managing
Simulations

3.1 Demo

There is a demo of this agent-based model available which uses the u_fronting dataset. The
demo uses the default values for all arguments of run_simulation() apart from those that
refer to the input data frame (see this section). The following function takes no arguments and
starts the demo simulation:

3.2 Data Structures

Running a simulation causes multiple new directories and files to be created throughout the
process. First of all, the root logging directory (as set by rootLogDir) is created if it did not
previously exist. In this directory, all simulations will be saved under a name that consists of
“ABM” and the date and exact time when the simulation was started. An example of that is 
ABM20211102135337: a simulation that was started on November 11th, 2021, at 1:53pm and
37 seconds. The root logging directory also contains the simulations register which is saved as
an .rds and updated automatically whenever a new simulation is saved in the same directory.
The next section is concerned with how to manipulate the simulations register manually.

In a simulation directory, there are two files and as many numerically named directories as
there are runs. The two files are called input.rds and params.yaml. The first is the input
data file as specified by inputDataFile, which, during the simulation, was loaded as a 
data.table. Its columns were renamed and the resulting data frame was saved as 
input.rds.

rds is a compressed file type specific to R which is used to save and restore single R objects.
The R function to load .rds files is readRDS(). This function can be used, for example, to load

rootLogDir = "./logDir"
notes = ""

run_demo_simulation()
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input.rds:

The second file in a simulation directory is params.yaml. YAML is a simple text format which
can be opened with any text editor. params.yaml contains a list of the arguments including
their values given to run_simulation(), as well as some more parameters that were created
in the process of validating the arguments of run_simulation(). The function 
get_params() can be used to load the params.yaml file of a simulation by giving it the root
logging directory and the simulation’s name, for instance:

The result of that function is a list.

soundChangeR also provides several wrappers for readRDS() in order to load the population,
interactions log, cache, and input data file. The latter can be loaded using 
load_input_data() which takes the parameter list (as loaded by get_params()) as an
argument.

The difference between load_input_data() and readRDS(input.rds) as shown above is
that the latter loads the saved input file, while the former loads the original input data file,
performs some conversions, and returns the loaded data as a data.table; in fact, 
load_input_data() is used during the simulation to load the input data file. The results of
the two functions should be the same.

Further wrappers of readRDS() include load_pop(), load_intLog(), and load_cache()
all of which take three arguments: logDir (the path to the simulation directory), runs (the
runs to be loaded), and snaps (the snapshots to be loaded). In the subdirectories of the
simulation directory, e.g. ABM20211102135337/1 or ABM20211102135337/2, the snapshots
of the agent population, the interactions log, and the cache are saved as .rds files. The files 
pop.X.rds (where X stands for a snapshot; 0 <= X <= nrOfSnapshots) contain the agents’
memories at the given time during the simulation as a data frame. These can be loaded using 
load_pop(), for example as follows:

Using these arguments, the function loads ./logDir/ABM20211102135337/1/pop.0.rds
and ./logDir/ABM20211102135337/1/pop.100.rds and binds them together into a 
data.table. Both runs and snaps can either take a single full positive number or a vector of
full positive numbers. The population data frame consists of the following columns:

run: character column indicating the run
P1 etc.: all numeric columns starting with P are the acoustic features
word: character column indicating the word class of the given exemplar

input.df <- readRDS("path/to/input.rds")

params <- get_params(rootLogDir = "./logDir",
                     simName = "ABM20211102135337")

input.df <- load_input_data(params = params)

pop <- load_pop(logDir = "./logDir/ABM20211102135337",
                runs = 1,
                snaps = c(0, 100))
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phoneme: character column indicating the phonemic class of the given exemplar
nrOfTimesHeard: numeric column indicating how often the corresponding agent has
memorised tokens of the word class in word
producerID: numeric column indicating the ID of the agent who produced the given
exemplar
exemplar: list of the feature columns
agentID: numeric column indicating the ID of the agent in whose memory the given
exemplar is stored
speaker: character column indicating the agent’s speaker code
group: character column indicating the agent’s group
snapshot: character column indicating the snapshot

Given a data frame like the population or input data as an argument, the function 
get_Pcols() returns the names of the feature columns and get_N_Pcols() returns the
amount of feature columns.

The interactions log is saved in files called intLog.X.rds (where X again stands for snapshot; 
1 <= X <= nrOfSnapshots) and can be loaded using load_intLog(), for example:

In this case, the snapshots start at 1 (i.e. when the first nrOfInteractions interactions have
taken place), not at 0 (i.e. before the first interactions). The interactions log contains the
following columns:

run: character column indicating the run
P1 etc.: all numeric columns starting with P are the acoustic features
snapshot: character column indicating the snapshot
word: character column indicating the word class of the given exemplar
producerID: numeric column indicating the ID of the agent who produced the given
exemplar
producerPhoneme: character column indicating the phonemic class of the given
exemplar according to the agent speaker
producerNrOfTimesHeard: numeric column indicating how often the agent speaker
has memorised tokens of the word class in word
perceiverID: numeric column indicating the ID of the agent who perceived the given
exemplar
perceiverPhoneme: character column indicating the phonemic class of the given
exemplar according to the agent listener
perceiverNrOfTimesHeard: numeric column indicating how often the agent listener
has memorised tokens of the word class in word
accepted: logical column indicating whether the exemplar was memorised by the agent
listener
rejectionCriterion: character column indicating which memorisation criterion was
responsible for rejecting the exemplar (i.e. if accepted is FALSE); if two memorisation

get_Pcols(data = pop)
get_N_Pcols(data = input.df)

intLog <- load_intLog(logDir = "./logDir/ABM20211102135337",
                      runs = 1,
                      snaps = c(1, 100))
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criteria were applied and both were failed, the first of them is given in this column

Finally, the cache is actually part of the agents’ memories which is used for storing some
agent-specific statistics and statistical models. The files are called cache.X.rds (where X
again stands for snapshot; 0 <= X <= nrOfSnapshots) and can be loaded into a 
data.table using load_cache(), e.g. as follows:

The cache contains the following columns:

run: character column indicating the run
snapshot: character column indicating the snapshot
agentID: numeric column indicating the ID of the agent
name: character column with one of nFeatures (number of acoustic features), qda
(quadratic discriminant analysis for posterior probability memorisation criteria), GMM
(Gaussian Mixture Model if useFlexiblePhonology is TRUE), nAccepted (total number
of tokens that the agent has accepted and memorised), nForgotten (total number of
exemplars that the agent has removed from memory)
value: list of values corresponding to the cached object indicated by name
valid: logical column indicating whether the cached object is valid, i.e. used at the given 
snapshot during the simulation

3.3 Analysis of Results

Three functions were implemented to produce some basic plots of the simulation results.
These are not exhaustive, i.e. there are certainly more metrics that might be interesting
depending on the simulation settings and input data. However, the following plotting functions
are a start to understanding whether any change emerged from the simulation and if so, why.

A simulation was run on the u_fronting dataset, i.e. younger and older SSBE speakers
interacted with one another, exchanging exemplars of 11 word classes in a three-dimensional
DCT-based acoustic space. The settings of this simulation that differed from the default
arguments of run_simulation() were:

We use some of the functions described in the previous section to load the data from this
simulation. The population data frame pop is altered to contain the canonical phonemes /i:, u:,
ju:/. These canonical phonemes as well as the information on the agents’ group membership is
added from pop to the interactions log intLog.

cache <- load_cache(logDir = "./logDir/ABM20211102135337",
                    runs = 1,
                    snaps = c(0, 100))

SMOTENN = 10.0
useFlexiblePhonology = TRUE
runs = 5
nrOfSnapshots = 250
interactionsPerSnapshot = 1000
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The first plotting function is called plot_centroids() and receives the population data
frame pop, the columns with the acoustic features Pcols, grouping variables groupVar, and
the parameter list params. The resulting plot shows the mean acoustic features over
simulation time, i.e. over the course of the interactions. The default grouping variables are 
snapshot and run, of which snapshot is obligatory. If run is part of groupVar, it is always
plotted as “group” in the aesthetic mappings, so that there is one line per run in each panel.
Further grouping variables are either colour-coded or plotted in facets. More than four
grouping variables cannot be plotted.

rootLogDir <- "./logDir"
simulationName <- "ABM20211111100942"
logDir <- file.path(rootLogDir, simulationName)
params <- get_params(rootLogDir, simulationName)

pop <- load_pop(logDir, 
                runs = 1:5, 
                snaps = seq(0, 250, by = 10)) %>% 
  mutate(
    canonical = 
      case_when(word %in% c("seep", "heed", "keyed", "feed") ~ "i:",
                word %in% c("soup", "who'd", "cooed", "food") ~ "u:",
                word %in% c("hewed", "queued", "feud") ~ "ju:")
    )
Pcols <- get_Pcols(pop)
intLog <- load_intLog(logDir, 
                      runs = 1:5, 
                      snaps = seq(1, 250, by = 10)) %>% 
  left_join(
    pop %>% 
      select(speaker, group, word, canonical, agentID) %>% 
      unique(),
    by = c("perceiverID"="agentID", "word")
  )

plot_centroids(pop, Pcols, groupVar = c("snapshot", "run"), params)
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This plot shows that P1 (i.e. DCT0) increased over simulation time when aggregated across the
population and canonical phonemes in all five runs, and P2 and P3 (i.e. DCT1 and DCT2)
decreased slightly in four out of five runs. Since there were two agent groups with markedly
different starting points, let’s differentiate the plot also by group:

plot_centroids(pop, 
               Pcols, 
               groupVar = c("snapshot", "run", "group"), 
               params)
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This shows that older agents changed more than younger ones – an important finding, given
that in this case we would expect older agents to adapt to younger agents’ vowel variants,
rather than vice versa. Since /i:/ and /u:/ are still aggregated in the plot, the following plot
colour-codes by the canonical phonemes.

plot_centroids(pop, 
               Pcols, 
               groupVar = c("snapshot", "run", "group", "canonical"), 
               params)
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This plot shows that older agents’ /u:/ shifts towards that of younger agents, especially in P1
(DCT0) and in all five runs. The same holds for /ju:/, although to a lesser degree. Younger
agents’ vowels and older agents’ /i:/ does not change and therefore shows that change is not
an inevitable outcome of the simulations.

The second plotting function, called plot_rejection(), shows the rejection rate over
simulation time. Rejection rate is calculated as \(1-\frac{nr.~of~accepted}{nr.~of~perceived}\).
The function takes the interactions log intLog, grouping variables groupVar, and the
parameter list params as arguments. The constraints on the grouping variables are the same
for plot_rejection() as they are for plot_centroids().

plot_rejection(intLog, groupVar = c("snapshot", "run"), params)
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The rejection rate can range between 0 and 1. In this plot, it can be seen that the rejection rate
decreases over simulation time in all five runs. This means that the agents adapt to each other
since they start to accept more and more tokens. A separation by agent group might be
interesting, but in this case, there does not seem to be a big difference in rejection rate
between the two:

plot_rejection(intLog, groupVar = c("snapshot", "run", "group"), params)
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When we differentiate the same plot also by canonical phoneme, it can be seen that the
rejection rate is lower for /i:/ than for /u:, ju:/. This is because the agent groups are very similar
in how they pronounce /i:/, so they mostly accept each others exemplars.

plot_rejection(intLog, 
               groupVar = c("snapshot", "run", "group", "canonical"), 
               params)
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Finally, the function plot_phonology() creates a plot of two metrics that need to be
interpreted together and only make sense when useFlexiblePhonology = TRUE. The first
metric is the number of sub-phonemic classes over simulation time. The second is a
measurement of the agreement of the sub-phonemic classes with the canonical phonemes. In
order to compute this measure, the user must add the canonical phonemes to the pop data
frame as shown above and give the column’s name to plot_phonology() as argument 
canonical. The other two arguments to the function are pop (the population data frame) and
params (the parameter list). If there were agent groups, they are automatically plotted in
different columns. Runs are grouped per panel, as shown below for the five runs of this
simulation.

plot_phonology(pop, canonical = "canonical", params)
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Using the purity() function from the NMF package, the agreement between sub-phonemes
and canonical phonemes is calculated as \(\frac{1}{N_w} \cdot \sum_p N_{\textrm{majority}}
(p)\). \(N_w\) is the total number of word classes (e.g. 11 in case of the u_fronting data
frame) and \(N_{\textrm{majority}}(p)\) is the number of unique word classes in a sub-
phoneme \(p\) that belong to the majority canonical phoneme, i.e. the canonical phoneme
which is associated with the largest number of unique word classes in \(p\). The u_fronting
data frame contains 4 /i/-words, 4 /u/-words, and 3 /ju/-words. So if an agent had three sub-
phonemes, \(p1\) containing exemplars of the 4 /i/-words, \(p2\) containing exemplars of the 3
/ju/-words as well as 1 /u/-word, and \(p3\) containing exemplars of the remaining 3 /u/-words,
the agreement is \(\frac{4 + 3 + 3}{11} \approx 0.91\) . If an agent had two sub-phonemes, \(p1\)
containing exemplars of 3 /i/-words, 2 /ju/-words, and 1 /u/-word and \(p2\) containing
exemplars of the remaining 1 /i/-word, 1 /ju/-word/, and 3 /u/-words, the agreement is \(\frac{3
+ 3}{11} \approx 0.55\).

It is important to take into account both the number of sub-phonemes and the agreement,
because on their own you may draw the wrong conclusions. For instance, if many sub-
phonemes (e.g. 10 or so) have developed over the course of the simulation, it may look like a
phonological split has occured; however, if the overall agreement is low this actually indicates
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that the sub-phonemes contain a balanced mixutre of exemplars from all canonical
phonemes, which might rather point to a merger. On the other hand, if all sub-phonemes
contain exemplars of only one word class each, the agreement is 1; so looking only at the
agreement would indicate that the sub-phonemes are in perfect agreement with the canonical
phonemes when actually this is due to the over-formation of sub-phonemes.

For the exemplary simulation on the u_fronting simulation, the plot above shows the
agreement and number of sub-phonemes over simulation time for older and younger
speakers. From the scale of the top row, it can be seen that the overall agreement between
sub-phonemes and canonical /i, u, ju/ is higher than 0.8 throughout the simulation. For older
agents, the agreement is even higher than 0.9 and remains stable, for younger agents it
increases over time. The number of sub-phonemes circle around 3, with older agents starting
on average with a little more sub-phonemes than younger agents and then decreasing their
number of sub-phonemes. From this plot, we can conclude that both agent groups’ phonology
becomes more similar to the canonical phoneme separation into /i/, /u/, and /ju/: older agents’
sub-phonemes separate /i/-, /u/-, and /ju/-words nicely from the start and over the course of
the interactions they additionally decrease the number of sub-phonemes to approx. 3;
younger agents have the expected three sub-phonemes which, at simulation start, are not
exactly in agreement with the canonical phonemes, but come to be over time.

3.4 Managing Simulations

There are four functions in soundChangeR which help to manage simulations that are listed in 
simulations_register.rds. The first is filter_simulations() which goes through the
registered simulation and returns the simulation names of all simulations that match the given
filters. These filters must be arguments from run_simulation() and their desired values.
Here are three examples:

So filter_simulations() needs the root logging directory as the first argument, and then
either a single filtering argument using logical operators, or a list of filtering arguments without
logical operators.

The second helper function is delete_simulation(). This function needs the root logging
directory and a simulation name as arguments and removes the simulation from the
simulations register (but does not delete the simulation results). In the following example, the
simulation ./logDir/ABM20211102135337 is removed from the simulations register.

The next two functions remove simulations from the register as well as permanently deleting
the simulation’s results. purge_simulation() takes the same arguments as 

filter_simulations(rootLogDir = "./logDir", 
                   forgettingRate == 1)
filter_simulations(rootLogDir = "./logDir", 
                   forgettingRate == 1 & useFlexiblePhonology == TRUE)
filter_simulations(rootLogDir = "./logDir",
                   condList = list(
                     forgettingRate = 1,
                     useFlexiblePhonology = TRUE
                   ))

delete_simulation(rootLogDir = "./logDir",
                  simName = "ABM20211102135337")
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delete_simulation(), e.g.:

The function purge_uncompleted_simulations() only takes the root logging directory as
an argument, then searches for incomplete simulations in the register and deletes those and
their results, e.g.:

4 Recommended Literature
Gubian, M., Cronenberg, J., and Harrington, J. (under review): Phonetic and Phonological Sound
Changes in an Agent-Based Model. Speech Communication.

Cronenberg, J. (in prep.): New Approaches to the Study of Sound Change: The Case of
Aspiration in Andalusian Spanish. Dissertation, LMU Munich, chapter 3.

Harrington, J., Kleber, F., Reubold, U., Schiel, F., and Stevens, M. (2018): Linking Cognitive and
Social Aspects of Sound Change Using Agent-Based Modeling. Topics in Cognitive Science,
pp. 1-22.

Harrington, J., and Schiel, F. (2017): /u/-fronting and agent-based modeling: The relationship
between the origin and spread of sound change. Language 93 (2), pp. 414-445.

purge_simulation(rootLogDir = "./logDir",
                  simName = "ABM20211102135337")

purge_uncompleted_simulations(rootLogDir = "./logDir")
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B.4 Calculating Sub-Phonemic Classes

This section provides mathematical details as well as an in-depth example

of Gaussian Mixture Models and non-negative matrix factorisation which

are used to calculate sub-phonemic classes in the agent-based model. This

appendix is supplementary to section 3.2.5.

B.4.1 Gaussian Mixture Models-based Clustering and Classi-

fication

A Gaussian Mixture Model (GMM) is a parametric probability density function

represented as a weighted sum of Gaussian component densities (Reynolds,

2009). Its general form is:

f (x|λ) =
G∑
j=1

wj · g(x|µj ,Σj) (B.1)

where x is a continuous-valued d-dimensional vector, G is the number of

components, g(·) is the multidimensional Gaussian density function and λ =

{wj ,µj ,Σj}, j = 1, . . . ,G indicates the set of weights wj satisfying
∑G
j=1wj = 1, the

d-dimensional mean vectors µj and the d × d-dimensional covariance matrices

Σj .

Given a set of N d-dimensional data vectors {xi}, i = 1, . . . ,N , and fixing the

number of components G, a model like Eq. (B.1) can be obtained by maximum

likelihood (ML) estimation, usually applying the expectation-maximisation

(EM) algorithm, as there is no closed-form solution for the maximisation of

Eq. (B.1) with respect to λ. Often constraints are applied on the structure of Σj ,

e.g. diagonal, or parameters are tied across components, e.g. Σj = Σ,∀j. The

number of components can be estimated by first estimating several candidate

models like Eq. (B.1), each one with a different number of components G,

and then applying the Bayesian information criterion (BIC), or alternative IC

methods, to select the best model.
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Eq. (B.1) can be used as a clustering model for the data vectors {xi} that

were used to estimate its parameters. By interpreting the mixture components

as clusters, any vector x, from the training dataset or otherwise, can be assigned

to a cluster j by applying the maximum a posteriori (MAP) criterion:

Cluster(x) = argmax
j

wj · g(x|µj ,Σj)∑G
k=1wk · g(x|µk ,Σk)

= argmax
j

wj · g(x|µj ,Σj)
(B.2)

When information on class membership of the data is available, i.e. the

vectors xi are paired with corresponding class labels yi ∈ {1, . . . ,K}, where K is

the number of classes, it is possible to use the form Eq. (B.1) as building block

for a hierarchical classification model (Mixture Discriminant Analysis, MDA,

Fraley & Raftery, 2002). MDA is a generalisation of Linear and Quadratic

Discriminant Analysis (LDA, QDA) that allows the density of each class to be

of the form of Eq. (B.1). Class membership y for a new vector x is obtained by

applying Bayes’s rule:

Class(x) = argmax
y

P r(x ∈ y)

= argmax
y

τy · fy(x|λy ,Gy)∑K
k=1 τk · fk(x|λk ,Gk)

= argmax
y

τy · fy(x|λy ,Gy)

(B.3)

where {τy}, y ∈ {1, . . . ,K} are the proportions of members of class y in the

training set, fy(·) are functions of the form of Eq. (B.1), each having in general

a different parameter set λy and number of components Gy .

In soundChangeR, both GMM clustering and MDA classification are im-

plemented using the R package mclust (Scrucca et al., 2016). The number of

acoustic components, as well as a suitable set of constraints on the parameter

set λ, are determined by the BIC criterion as implemented by the function
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Mclust. The MDA model is estimated using function MclustDA, where the

number of components of each phonemic class is fixed according to the map-

ping obtained from the NMF procedure (see Appendix B.4.3). For example, if

clusters a1 and a2 map to sub-phoneme p1 and a3 maps to p2, then the number

of components for p1 and p2 are fixed to 2 and 1, respectively. This helps to

preserve the original purely acoustic-based structure expressed by the GMM

clustering model.

B.4.2 Non-negative Matrix Factorisation

Non-negative Matrix Factorisation (NMF, D. D. Lee & Seung, 2001) is a family

of algorithms that given a m × n input matrix C with non-negative entries

determines an approximation of it in the form of a product of two matrices, W

and H , also with non-negative entries. Formally:

C ≈W ·H (B.4)

whereW has dimensionm×r,H has dimension r×n, and usually r <min(m,n).

Once r is fixed, Eq. (B.4) is solved by minimising the difference between C and

its approximation W ·H , i.e. W and H are the solution to:

min
W,H
‖ C −W ·H ‖2F , such that W,H ≥ 0, (B.5)

where ‖ · ‖F is the Frobenius norm, the analogous of Euclidean norm for

matrices.

In applications, each of the n columns cj of C represents an observation

or feature vector, where the m elements of cj represent counts, frequencies,

energies or other non-negative quantities. For example, in text mining the n

columns of C represent documents and the m rows word counts or frequencies

(Shahnaz et al., 2006). As the number of words × documents can be in the

thousands ×millions, it is convenient to find a compact approximation of C in

the form of Eq. (B.4) with r as small as possible, say in the tens. Similarly to

PCA, the columns ofW can be seen as bases or principal components capturing

the fundamental traits of the columns of C (though the columns of W are not
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constrained to be orthogonal), while each column hj of H determines the

linear combination of columns of W that best reconstructs a corresponding

input column cj . Differently from PCA, the non-negativity of W and H in

Eq. (B.4) allows to interpret the composition of columns of W as strictly

additive contribution from each basis in the quantities determined by the

positive coefficients in H , where no contribution can undo (i.e. subtract) parts

of the others. For example, in text mining the r columns of W are interpreted

as topics, and each document cj , codified by the number of occurrences of m

selected words (i.e. bag of words representation), is a weighted sum of topics,

the weights being the elements of column hj of H .

A further step in the interpretation of Eq. (B.4) is achieved whenever W

and H are sufficiently sparse, in which case the columns of H tend to ideally

have only one large entry, which identifies only one column of W . This means

that each of the n input column vectors of C can be approximated by just a

coefficient multiplying one of the r < n columns wk of W , i.e. cj ≈ H(k, j) ·wk
whenH(k, j)�H(i, j), ∀i , k. The particular columnwk approximating a given

input vector cj can be interpreted as its centroid or prototype, analogously

to other prototype-based clustering algorithms, e.g. k-means (see Ding et al.,

2005, for a formal statement). This interpretation allows to utilise NMF as a

clustering algorithm, with r being the number of clusters. In order to improve

the performance of NMF as clustering method, several sparse solutions have

been proposed (e.g. J. Kim & Park, 2008; Pascual-Montano et al., 2006). As

for most clustering algorithms, the optimal number of clusters r has to be

determined by applying a model selection criterion external to the algorithm

itself.

In soundChangeR, NMF clustering is implemented using the the R package

NMF (Gaujoux & Seoighe, 2010). In particular, the NMF algorithm version

by Pascual-Montano et al. (2006) is selected, which produces sparser solu-

tions (setting method option to ‘nsNMF’ in the nmf command). The cluster

assignment is determined by taking the argmax of each column of matrix H .
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B.4.3 Derivation of Acoustic and Sub-Phonemic Representa-

tions

Table B.1 explains the symbols used in this appendix as well as in Appen-

dices B.5.2 and B.6.

B.4.3.1 Overview

Each agent periodically re-estimates its acoustic and sub-phonemic models

following a two-stage process schematised in Figure B.1. First, a GMM clus-

tering model as in Eq. (B.1) is estimated from the acoustic representation of

all the N = Ne exemplars stored in memory, i.e. the set {x(ei)}, i ∈ {1, . . . ,Ne},
disregarding any information on sub-phonemic classes established in pre-

vious estimations. The number of acoustic clusters Na = G is estimated by

BIC. By applying Eq. (B.2) each exemplar is assigned to an acoustic cluster

a ∈ {1, . . . ,Na} corresponding to a single Gaussian component. The acoustic

cluster membership information associated to each exemplar {a(ei)}, but not
the corresponding acoustic representation {x(ei)}, is fed to the NMF-based

procedure, which combines it with the word membership {w(ei)} to determ-

ine which acoustic clusters shall be joined together, i.e. a mapping from the

acoustic labels {1, . . . ,Na} to the sub-phonemic labels {1, . . . ,Np}, Np ≤Na. This

mapping allows to indirectly associate each exemplar with a sub-phonemic

class, i.e. p(a(ei)). Using these class assignments, an MDA classification model

is estimated, where the number of classes coincides with the number of sub-

phonemic classes estimated by NMF, i.e. K =Np in Eq. (B.3). NMF operates on

a matrix where each cell contains the exemplar count of a given word (row) in

a given acoustic cluster (column). The result is a grouping of columns having

similar count patterns, which are then merged together. Sub-phonemic classes

are represented by those columns, while each word is assigned to a class by

picking the column with the highest count for that word.

The two-stage process described above is executed periodically and in-

dependently by each agent. Within the same agent, each execution bears no

memory of the acoustic and phonological representations derived in previous

194



Appendices

Symbols Meaning
x an acoustic vector, e.g. [1.2,−0.4,0.88]T , when the

acoustic space is 3-dimensional
d number of dimensions of the acoustic space
w a word type and a specific position within the word,

e.g. food
e an exemplar, i.e. a tuple (x,w)
x(e) acoustic vector of exemplar e
w(e) word type of exemplar e
Ne number of exemplars in an agent’s memory
Na number of acoustic clusters
Np number of sub-phonemic classes
Nw number of word types
a an acoustic cluster, determined by probabilistic mem-

bership to a Gaussian mixture component
p a sub-phonemic class, determined by applying NMF

to acoustic clusters
Ca Nw×Na matrix of exemplar counts, Ca(j,k) is the count

of exemplars of word wj that belong to acoustic cluster
ak

Cp Nw × Np matrix of exemplar counts, Cp(j,k) is the
count of exemplars of word wj that belong to sub-
phonemic class pk; these counts allow impurities. The
sub-phonemic class of word type wj is determined by
picking argmaxkCp(j,k)

a(x(e)) = a(e) acoustic cluster associated to an acoustic vector
p(a(e)) = p(a) sub-phonemic class associated to an acoustic cluster
p(w(e)) = p(w) sub-phonemic class associated to a (position within a)

word
Relations Comment

1 ≤Np ≤Na highest number of sub-phonemic classes occurs when
each acoustic cluster constitutes a phonological class

p(a(e)) , p(w(e)) if an exemplar is ‘impure’, the sub-phonemic class as-
sociated to its location in the acoustic space is different
from that associated to the word it belongs to

Table B.1: Symbols used in Appendices B.4.3, B.5.2, and B.6.
.
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GMM

clustering

MAP

GMM

 clusters NMF

MDA

classification

 classes

ARGMAX  Phonology

MDA model
Acoustics

Memorised

exemplars

Figure B.1: General scheme of the implementation of acoustic and sub-phonemic
representations in soundChangeR.

executions, a choice driven by implementation convenience. Continuity is

indirectly guaranteed by making sure that only a small fraction of memory

has changed (through exemplar memorisation and forgetting) between one

execution and the next.

B.4.3.2 Identification of Sub-Phonemic Classes by NMF

The input to NMF are (i) the set of acoustic cluster memberships {a(ei)}, i ∈
{1, . . . ,Ne}, obtained by applying MAP as in Eq. (B.2) to the acoustic exemplars

{x(ei)}, and (ii) the set of word memberships of each exemplar, {w(ei)}. These

two pieces of information are combined into a Nw ×Na matrix of counts Ca,

whose (j,k) element is the count of exemplars of word wj that belong to

acoustic cluster ak, i.e. Ca(j,k) = |{i : w(ei) = wj , a(ei) = ak}|. This matrix is

decomposed into the product of two matrices using NMF as in Eq. (B.4), i.e.

Ca ≈W ·H , where the rank of the approximation corresponds to the number

of sub-phonemic classes (r =Np) and it is empirically determined as explained

later on. Matrix H is further processed to obtain an indicator matrix H̃ , where

each column hk of H is substituted with a column of zeros and ones, with a

single 1 at the position corresponding to the maximum element of hk and zeros

elsewhere. This is then used to recompute word counts according to the new

Np sub-phonemic clusters:

Cp = Ca · H̃T (B.6)

where Cp is a Nw ×Np count matrix and T is matrix transposition.
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Figure B.2: Example of acoustic clusters (B.2a) and sub-phonemic classes (B.2b) in
an agent. In B.2a, dots represent memorised exemplars in the acoustic space, and
ellipses a1 – a5 identify acoustic clusters. In B.2b, the same exemplars are labelled
according to the word they are associated with, while colours show their sub-phonemic
classes. The acoustic space is three-dimensional (s1, s2, s3) based on FPCA scores (cf.
section 2.2.1.3); left and right views are projections on the (s1, s2) and (s1, s3) plane,
respectively.
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An example was taken from the Standard Southern British English dataset

that is part of soundChangeR (Harrington et al., 2008; Harrington & Schiel,

2017, also see example in section 3.2.5, Figure 3.3). One of the 22 agents at

simulation start (i.e. before any interaction has taken place) has the acoustic

cluster counts Ca shown in Table B.2a, where we see that this agent divides its

acoustic space into Na = 5 clusters, a1 to a5, corresponding to the five Gaussian

mixture components plotted in Figure B.2a. Applying Eq. (B.4) to Ca, where

we fix the rank to r =Np = 3, we obtain:



0 0 2 7 0

0 3 0 0 7

9 0 1 0 0

0 0 0 10 0

0 9 0 0 1

8 0 2 0 0

0 7 0 0 3

9 0 1 0 0

0 9 0 0 1

3 0 6 1 0

0 0 0 10 0

︸                ︷︷                ︸
Ca

≈



0 0 0.31

0 0.25 0

0.25 0 0

0 0 0.34

0 0.25 0

0.25 0 0

0 0.25 0

0.25 0 0

0 0.25 0

0.25 0 0

0 0 0.34

︸                  ︷︷                  ︸
W

×


29 0 12 0 0

0 28 0 0 12

0 0 0 28 0

︸                       ︷︷                       ︸
H

(B.7)

where we note that the NMF solution is indeed sparse. For example, the first

column of Ca is approximated by the first column of W multiplied by 29, the

second column of Ca by the second column of W multiplied by 28, etc., each

column of Ca is approximated by just one column of W .16 This provides the

foundation for using the NMF expansion as a clustering criterion, namely

columns of Ca approximated by the same column of W , such as columns 1

and 3, belong together because they are approximately proportional, which

in our application means that they roughly contain the same word types. By

observing Ca in Table B.2a we can see that this is the case for acoustic clusters

16The reader unfamiliar with matrix multiplication may consult any text on linear algebra.
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a1 and a3, which makes them good candidates for a merge. The merge of

acoustic categories is obtained by constructing the indicator matrix H̃ from H :

H̃ =


1 0 1 0 0

0 1 0 0 1

0 0 0 1 0


the rows of which indicate with 1s the columns of Ca which should be merged

(summed) into columns of Cp, e.g. the first row indicates that the first and

third column of Ca will be summed together to become the first column of Cp.

This operation is formalised by Eq. (B.6), the result of which is Table B.2b.

The result in Eq. (B.6) defines the mapping from acoustic clusters to sub-

phonemic clusters p(a(ei)), which is not yet a definition based on word types,

but rather on exemplars. For instance, according to Table B.2b two exemplars of

cooed belong to sub-phonemic class p1 and seven to p3. To obtain a many-to-one

mapping from word types (and position within word) to sub-phonemic classes

we assign each word w to the sub-phonemic cluster with highest exemplar

count, i.e.

p(w) = argmax
p

Cp(w,p) (B.8)

For example, p(cooed) = p3, p(feed) = p2, etc., as indicated by boldface

figures in Table B.2b, by labels in Table B.2c, and by colours in Figure B.2b. We

call the entities defined by the mapping in Eq. (B.8) sub-phonemic categories
or classes, to distinguish them from the sub-phonemic clusters identified by

exemplar counts in Cp. This distinction is crucial as it brings along the concept

of cluster purity, which plays a central role in determining the optimal number

of sub-phonemic clusters, as explained below.

Purity is defined for each cluster as the fraction of exemplars that belong

to that cluster, according to the majority rule defined in Eq. (B.8), divided

by its exemplar count. Purity of the whole clustering solution is defined as

the minimum purity value among the clusters (other definitions are possible,

e.g. taking the average instead of the minimum, cf. Manning et al. (2008)).

Formally:
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Acoustic clusters
Word a1 a2 a3 a4 a5
cooed 0 0 2 7 0
feed 0 3 0 0 7
feud 9 0 1 0 0
food 0 0 0 10 0
heed 0 9 0 0 1
hewed 8 0 2 0 0
keyed 0 7 0 0 3
queued 9 0 1 0 0
seep 0 9 0 0 1
soup 3 0 6 1 0
who’d 0 0 0 10 0

(a) Ca

Sub-phonemic clusters
Word p1 p2 p3
cooed 2 0 7
feed 0 10 0
feud 10 0 0
food 0 0 10
heed 0 10 0
hewed 10 0 0
keyed 0 10 0
queued 10 0 0
seep 0 10 0
soup 9 0 1
who’d 0 0 10

(b) Cp

Sub-phonemic classes
Word
cooed p3
feed p2
feud p1
food p3
heed p2
hewed p1
keyed p2

queued p1
seep p2
soup p1
who’d p3

(c) p(w)

Table B.2: Exemplar counts by word type (rows) and by acoustic cluster (columns,
B.2a) or by sub-phonemic cluster (columns, B.2b). This is a snapshot at simulation
start of the memory of one of the agents from the /u/-fronting dataset described in
Harrington and Schiel (2017). In B.2b, boldface figures indicate which sub-phonemic
cluster contains the majority of exemplars for each word type, which determines the
assignment of words to sub-phonemic classes p(w) in B.2c.

Purity = min
k

(
|{i : p(a(ei)) = p(w(ei)) = pk}|

|{i : p(a(ei)) = pk}|

)
(B.9)
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To illustrate, the purity of each cluster in Table B.2b is the sum of boldface

counts divided by all counts in each column, e.g. Purity(p1) = 39
41 = 0.951, which

is the smallest value among the three (Purity(p2) = 1.0 and Purity(p3) = 27
28 =

0.964), so also the purity of the whole clustering solution according to Eq. (B.9).

The optimal number of sub-phonemic clusters Np is determined empirically

by running several instances of NMF for each value of Np from 2 to Na, and

choose the result that on average reaches the best trade-off between a high

number of clusters and a high purity. This criterion in general disfavours the

two extreme solutions, i.e. Np = 1 and Np =Na. On the one hand, the highest

number of clustersNp =Na is probably not the solution with the highest purity;

on the other hand, the trivial solution Np = 1, which always yields a purity of

1, has also the lowest number of clusters. The trade-off is regulated by a purity

threshold θpurity, which has to be set by the user. The optimal Np is chosen to

be the largest among those corresponding to an average purity above θpurity.

Note that the solution Np = 1 can be chosen, provided that purity at Np = 2 is

below θpurity. To illustrate, Table B.3 shows how purity was computed for the

example in Table B.2 with Eq. (B.9) five times for each candidate number of

sub-phonemic clusters Np, from 2 to Na = 5, and then the optimal value Np = 3

was chosen as the highest among the solutions above θpurity = 0.75.

Np Purity estimates Average
2 0.95 0.95 1.0 1.0 0.9 0.96
3 0.95 0.95 0.95 0.95 0.95 0.95
4 0.58 0.50 0.50 0.50 0.50 0.52
5 0.50 - 0.50 0.50 0.50 -

Table B.3: Five computations of purity and their average value (columns) for different
number of sub-phonemic clusters (rows). The optimal solution is Np = 3, as its average
is the one with the highest Np among the solutions with average purity above θpurity =
0.75. The stochasticity of NMF allows for different solutions starting from the same
input (rows). Missing values can occur whenever one or more clusters are empty, and
such solutions are never chosen, as we consider them unstable.
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B.5 Memory Management

Two measures were implemented so that the agents’ memories are filled with

an appropriate number of exemplars per word in the beginning and are kept

at the same size throughout the simulation. In the case in which there are

very few tokens from real speakers available for the initialisation of agents,

the number of tokens can be increased by applying SMOTE (Chawla et al.,

2002). This is a standard resampling technique that was adapted to the ABM

architecture as explained in Appendix B.5.1. When the agents start interacting

and accepting each others’ exemplars, their memories will grow in size. In

order to control the memory size, the model allows agent listeners to forget

exemplars, i.e. when an agent listener has accepted and memorised a new

exemplar, another exemplar of the same word class is removed from their

memory. The only constraint on forgetting is that agents cannot forget word

classes, i.e., removal is blocked if the deletion of an exemplar would lead to

a decrease in the number of exemplars of the word class with respect to the

number of exemplars with which the word class was initialised.

B.5.1 SMOTE

Synthetic Minority Over-sampling TEchnique (SMOTE, Chawla et al., 2002) is

a non-parametric resampling algorithm used to mitigate the negative impact

of imbalanced datasets on supervised classification. SMOTE has been applied

to several classification problems (see Fernandez et al., 2018, for a survey),

its performance and theoretical properties have been evaluated (Blagus &

Lusa, 2013), and a number of modifications to the original algorithm have

been proposed (Fernandez et al., 2018; Leevy et al., 2018). In its basic form,

SMOTE generates extra artificial data for the under-represented class(es) in

such a way as to preserve their original statistical properties. For example, if

class A contains only 10 data points, while class B has 100, SMOTE can be

applied to class A to top it up to the level of class B by generating 90 artificial

data points. The generative process only makes use of the existing data points

from the under-represented class. In other words, SMOTE does not require
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the existence of a numerous class to generate extra data for a less numerous

class. As a consequence, SMOTE can be applied more generally to increase

the number of data points, e.g. when data are insufficient (though possibly

balanced) for a given task.

1

2

3

4

1

2

3

4

1

2

3

4

Figure B.3: Example of application of SMOTE to a set of four points (numbered).
Each panel shows the generation of one new point (red ×’s), in succession from left to
right. In each panel, a pivot point (point 1, 2, and 3 from left to right) is connected
by segments to its k = 2 nearest neighbours. A new point is generated at a random
position on one of those segments. The new points are not used in the generation
process, i.e. they do not become pivot points nor are they considered as neighbours.

The data generation mechanism of SMOTE is illustrated in Figure B.3. Sup-

pose there are n data points living in a d-dimensional space (n = 4 numbered

points in a d = 2-dimensional space in Figure B.3) and nS new points need to

be created. Each new data point (red ×’s in Figure B.3) is generated by selecting

a pivot point from the original n data points, connecting it to its k nearest

neighbours (k = 2 in Figure B.3), selecting one of such connecting segments

at random and generating a new data point along that segment at a random

location. The process is repeated nS times, each time changing the pivot point.

Figure B.3 shows the generation of the first three points. Both k and nS are

parameters to be set by the user.
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B.5.2 Application of SMOTE in the ABM

SMOTE has been employed in soundChangeR as a robustness measure for

production. As described in section 3.2.3, the generation of a new acoustic

token for speech production is implemented by first selecting a word class,

then using all the exemplars of that word class available in the agent’s memory

to estimate a Gaussian distribution. The new token is produced by extracting

one sample from that distribution. When the number of exemplars (data

points) Ne(w) of the target word class w is insufficient for a reliable estimation

of a (multi-dimensional) Gaussian distribution, i.e. Ne(w) < Nprod, where Nprod

is a user-defined threshold, Nprod −Ne(w) extra exemplars for the target class

are generated on the fly via SMOTE. After estimation, the extra exemplars are

discarded. In case Ne(w) < k+ 1, i.e. if the number of available exemplars Ne(w)

is not even sufficient to identify k nearest neighbours, k−Ne(w)+1 exemplars in

the acoustic proximity of the Ne(w) target exemplars from other word classes,

but belonging to the same sub-phonemic class p(w) as the target word, are

added to the set of original data points used by SMOTE to generate new points.

The pure application of the above strategy was found to be insufficient as a

protection against instability, especially at the beginning of ABM simulations.

This is the case when very few tokens from real speakers are available for the

initialisation of agents, so much so that not only production but also perception

becomes unreliable, as the estimation of Gaussian mixtures necessary for the

identification of acoustic clusters (cf. section 3.2.5 and Appendix B.4.1) is

also negatively affected by data scarcity. To mitigate the problem, a strategy

to populate agent memories based on production, thus ultimately based on

SMOTE, was introduced. A threshold Nex/word defining the minimum number

of exemplars per word per agent available at all times throughout a simulation

was introduced. For all cases not meeting such requirement at the beginning

of a simulation, i.e. if Ne(w) < Nex/word for some word w, Nex/word−Ne(w) extra

exemplars are generated by the same mechanism used for production and

stored in the agent’s memory. To exemplify, suppose Ne(w) = 3 and Nex/word =

10 for a given agent and word w at simulation start. Then 7 extra exemplars

are produced, each one applying the ordinary production algorithm based
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on the 3 original exemplars. If Ne(w) < Nprod, then SMOTE is applied each

time, as explained above. Note that once a new exemplar is generated, it is not

immediately made available as basis for the generation of the next ones. This is

to avoid propagation of estimation errors. Only after all Nex/word −Ne(w) extra

exemplars are generated, these are stored in memory and treated as original

exemplars once the actual simulation (i.e. agent interactions) begins. To keep

Ne(w) ≥ Nex/word throughout the simulation, a constraint on the forgetting

process was imposed such that no exemplar from a word class w can be

forgotten (removed) if as a result the number of exemplars for w would go

below the threshold Nex/word (cf. section 3.2.6). Note that Nex/word and Nprod

are thresholds controlling different aspects, as the former is there to make sure

that there is a minimum number of actual exemplars per word class in memory,

which influences all aspects of the simulation, while the latter controls for the

estimation basis for production only. In general Nprod ≥Nex/word, for example

if Nex/word = 10 and Nprod = 20 it means that (i) Ne(w) ≥ 10 for all w in all

agents and (ii) SMOTE is applied in production whenever 10 ≤Ne(w) < 20.

B.6 Production-Perception Feedback Loop

A schematic outline of the interaction between an agent speaker and listener

is shown in Figure B.4, where both panels represent entities in a common

two-dimensional acoustic space in the respective agents’ memories. The agent

speaker randomly chooses a word class, w1, and builds a Gaussian model

(black ellipse) over the acoustic representations of w1’s exemplars stored in

its memory. The agent speaker then samples an acoustic value x from that

model to build a new token (x,w1) (w1 in red, where x encodes its position

in the Cartesian plane). The agent listener receives the token as is and looks

up the phonological class with which w1 is associated, in this case p2. The

agent listener memorises the token if it passes both the discriminability and

typicality test.

The implementation of token production as well as the representation

of sub-phonemic classes involve the use of density distributions. We opted

for Gaussians and Gaussian mixture models because of their generality. In
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particular, for production we opted for a unimodal Gaussian distribution,

rather than a general GMM, because usually the number of tokens available

for the estimation is quite reduced. Sub-phonemic classes are represented

as a Mixture Discriminant Analysis model (MDA, Fraley & Raftery, 2002), a

hierarchical model where each class is a GMM. For example, the listener panel

in Figure B.4 represents an MDA model with three classes p1–p3, where p1

is a two-component GMM, p2 and p3 are one-component GMMs, i.e. simple

Gaussians.
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Figure B.4: Schematic representation of a token exchange between an agent speaker
(left) and an agent listener (right). Ellipses represent mean-centred boundaries around
Gaussian distributions enclosing 95% of their probability mass. The means are marked
with a ×. The speaker produces a new token of a target sound of word type w1 by
estimating a Gaussian distribution based on all the stored exemplars of w1 (black
ellipse) and extracting a sample from it (in red). The listener receives the token as is
and applies two memorisation tests based on its local phonological classes (coloured
ellipses). The typicality test imposes a threshold on the maximum distance between
the token and the phonological class it belongs to (here p2); the discriminability test
ensures that the token is closer to its phonological class than to the competing ones
(here p1 and p3).

Typicality and discriminability tests involve some form of distance between

a token and sub-phonemic classes. Typicality is operationalised by the Ma-

halanobis distances (Mahalanobis, 1936) between the token and all the GMM
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components belonging to the relevant sub-phoneme. A threshold for the test

was empirically set to a value corresponding to accepting tokens that lie within

the mean-centered ellipsoid containing 95% of the Gaussian component prob-

ability mass. When the sub-phoneme consists of more than one component,

the distances to all components are computed and the threshold is applied

to the smallest distance. For example, the token received by the listener in

Figure B.4 passes the typicality test because it lies inside the 95% probability

mass ellipsoid of its class p2, while it would fail if it belonged to class p1 or

p3. The discriminability test is implemented by computing the maximum a
posteriori probability (MAP) of the received token according to the MDA model.

The test is passed if the sub-phonemic class the token belongs to according to

its word label coincides with the MAP class; intuitively, the test is passed if the

token is not acoustically ambiguous. For example, in Figure B.4 the received

token (x,w1), whose word label w1 belongs to p2, will pass the discriminability

test if the posterior probability of x belonging to p2 is higher than for the other

two classes. More formally, a new exemplar x, which according to phonology,

i.e. via word membership p(w(ei)), belongs to phoneme y, is memorised only if

Eq. (B.3) also yields y as class membership. Note that the MDA model is based

on class memberships obtained via the chain p(a(ei)), which in general does not

yield the same result as the one that uses word membership, i.e. p(w(ei)). The

reason is that acoustic clusters contain impurities, i.e. exemplars that do not

belong to the sub-phonemic class that is present as majority in a given acoustic

cluster. We prefer to use this ‘impure’ association to build the classification

model because this represents the acoustic counterpart of the sub-phonemic

organisation of words, hence should be based on acoustic similarity rather

than on pure word membership.

B.7 Implicit Assumptions, Proxies, and Simplific-

ations

The agent-based model makes use of a number of implicit assumptions and

simplifications, both in the way each agent is modelled as well as in the way
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agents interact. Regarding the perception-production loop, first there is no

explicit model of speech articulation. Any (co)articulation effect is indirectly

modelled by the estimation of word-specific distributions, while sample ex-

traction is a proxy for residual articulatory variation. Second, the transmission

and perception of the acoustic properties of speech tokens between agents is

assumed to be perfect. Besides not including any environmental acoustic noise,

the ABM bypasses the acoustic domain entirely by implementing the acoustic

perception of a token as a mere copy of its acoustic parameters, which implies

that the identical acoustic parameterisation is assumed to be applied by all

agents. The concept of token contains in itself the further assumption that all

agents are parsing the continuous stream of speech in the same way insofar

as the isolation of speech sounds is concerned. Finally, word recognition is

assumed perfect, an assumption reflected by the error-free copy of the lexical

information between interacting agents.

Agents’ mental representations are also shaped by simplifying assump-

tions. The lexicon, identical for all agents, is actually a flat list of labels, as

no orthographic or morphological information is used by the agents. More

specifically, a “word” here is intended as the identification of a speech sound

belonging to a certain word in a certain position, e.g. the vowel in food. There

is no representation of a word as a sequence of speech sounds, which implies

that there is no explicit or emerging pressure to maintain minimal pairs. The

lexicon merely reflects the list of words of which agents have acoustic exem-

plars stored in memory, which in practice limits its size quite significantly. As

a result, the emergence of sub-phonemic classes may be biased by the reduced

variety of represented acoustic contexts.

There is no explicit notion of time. Implicitly, time advances at every

interaction between two agents exchanging a token, which induces a partial

ordering over interactions. In the current implementation, interactions occur

only in pairs and only the agent listener can modify its state after an interaction

by storing and/or forgetting an exemplar. Hence, if interaction 1 is a token

exchange from agent A to B, interaction 2 from C to D, interaction 3 from

C to E, and interaction 4 from B to F, then the only order constraint is that

interaction 1 occurred before 4, because B as listener in 1 may have modified
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its state before acting as speaker in 4, while all other interactions may have

occurred in any order, e.g. (1,2,3,4) is indistinguishable from (3,1,4,2). The

notion of time based on interactions is not calibrated, as we illustrate below.

Each interaction involves the exchange of a single token, which may or may not

be memorised by the listener. The impact of one new exemplar in memory on

the future production and perception depends to a first approximation on the

amount of exemplars already present in memory, i.e. the more the exemplars,

the smaller the relative impact of a single new exemplar will be, as both

perception and production are operationalised by some form of probability

distribution estimation on the exemplars. However, the number of exemplars

in an agent’s memory is primarily determined by the available speech data, i.e.

neither determined on the basis of any estimation on the amount of speech

episodes humans may retain in memory, nor calibrated in such a way as to

reproduce an experimentally quantified effect on speech production, e.g. based

on imitation experiments. As a consequence, there is no way to determine

an equivalence between, say, 1000 interactions and an amount of time in

a real community of speakers. On top of this, interactions between agents

are reduced to the exchange of a single token, while human conversations

obviously involve exchange of a comparably larger amount of speech material

between two (or more) speakers.

Agents’ memories are initialised with speech material from actual speak-

ers, typically one speaker initialising one agent, although the same speaker’s

material may be used to initialise more agents using resampling techniques.

As a consequence, the amount of speakers available in the data set, which can

be as small as 10 or 20, determines the size of the modelled agent population.

A small population can introduce artefacts in that the relative importance of

single individuals is disproportionately large. This may be a problem when

the agent population models a large community of speakers, like in the cases

presented here, while it may be adequate when modelling an actual isolated

community (Harrington, Gubian et al., 2019). Groups of agents are obtained

in two, possibly combined ways. First, groups of speakers of different accents

or speaking styles are implicitly created by initialising agents with speech

material from speakers of those distinct accents (cf. section 3.2.1), often using
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an apparent time paradigm, whereby older and younger speakers of the same

language are used as proxies for two different stages of sound change, the

younger representing the more advanced one. Second, groups within a popula-

tion can be predefined explicitly and thus be considered by the rules imposed

on interactions, e.g. by allowing only inter- or only intra-group interactions.

These groups may or may not coincide with the accent-based groups implicitly

defined at initialisation.
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C | Appendices to Chapter 4

C.1 Word List

/st/
vestuario – wardrobe

hasta – until

pistolín – small pistol

resto – rest

estaba – s/he/I was

estado – state

estanco – kiosk

pestaña – eyelash

destino – fate

estima – s/he respects

estío – summertime

pestiño – type of pastry

bestial – bestial

bestiando – (pseudoword)

destiempo – untimeliness

estuche – case

estufa – stove

estuve – I was

estuela – (pseudoword)

/t/
etapa – stage

retara – s/he/I may have challenged

etipa – (pseudoword)

retira – s/he takes away

returo – (pseudoword)

etupa – (pseudoword)

pata – paw

ata – s/he tied

repata – (pseudoword)
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C.2 Median PC Score Values for Figure 4.3

Age Region Plosive Median s1 Median s2 Median s3 Median s4
Older East /st/ 0.103 −0.104 −0.062 −0.058

Older East /t/ −0.049 −0.015 −0.058 0.090

Older West /st/ 0.065 −0.079 −0.024 −0.087

Older West /t/ −0.089 −0.042 −0.052 0.075

Younger East /st/ 0.002 0.042 −0.058 −0.036

Younger East /t/ −0.074 0.078 −0.045 0.124

Younger West /st/ −0.154 0.034 0.051 −0.068

Younger West /t/ −0.156 −0.014 −0.016 0.132

Table C.1: Median PC score values used in Figure 4.3.

C.3 Median PC Score Values for Figure 4.4

Age State Plosive Median s1 Median s2 Median s3 Median s4
Older Baseline /st/ 0.088 −0.082 −0.038 −0.067

Older Baseline /t/ −0.064 −0.032 −0.059 0.072

Older Post-run /st/ 0.032 −0.002 −0.034 −0.069

Older Post-run /t/ −0.090 −0.001 −0.042 0.131

Younger Baseline /st/ −0.073 0.045 −0.006 −0.049

Younger Baseline /t/ −0.109 0.022 −0.030 0.118

Younger Post-run /st/ 0.028 −0.002 −0.034 −0.069

Younger Post-run /t/ −0.089 0.002 −0.044 0.131

Table C.2: Median PC score values used in Figure 4.4.
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C.4 Estimated Marginal Means

Age Region Plosive EMM lower CL higher CL

Older East /st/ 0.122 0.029 0.215

Older East /t/ −0.019 −0.090 0.052

Older West /st/ 0.113 0.020 0.206

Older West /t/ −0.079 −0.150 −0.008

Younger East /st/ 0.057 −0.035 0.149

Younger East /t/ −0.063 −0.131 0.004

Younger West /st/ −0.151 −0.242 −0.059

Younger West /t/ −0.131 −0.198 −0.064

Table C.3: Estimated marginal means (EMM) with 95% confidence interval (lower
and higher CL) computed by emmeans for the LMER with s1 as dependent variable,
for each combination of age group, region, and plosive.

Age Region Plosive EMM lower CL higher CL

Older East /st/ −0.057 −0.143 0.029

Older East /t/ 0.013 −0.079 0.105

Older West /st/ −0.063 −0.149 0.023

Older West /t/ −0.039 −0.131 0.053

Younger East /st/ 0.061 −0.027 0.149

Younger East /t/ 0.044 −0.052 0.140

Younger West /st/ 0.055 −0.033 0.143

Younger West /t/ −0.008 −0.105 0.088

Table C.4: Estimated marginal means (EMM) with 95% confidence interval (lower
and higher CL) computed by emmeans for the LMER with s2 as dependent variable,
for each combination of age group, region, and plosive.
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Age Region EMM lower CL higher CL

Older East −0.038 −0.071 −0.005

Older West −0.004 −0.034 0.026

Younger East −0.005 −0.035 0.026

Younger West 0.029 −0.001 0.060

Table C.5: Estimated marginal means (EMM) with 95% confidence interval (lower
and higher CL) computed by emmeans for the LMER with s3 as dependent variable,
for each combination of age group and region.

Age Region Plosive EMM lower CL higher CL

Older East /st/ −0.0582 −0.0817 −0.03475

Older East /t/ 0.1050 0.0779 0.13217

Older West /st/ −0.0799 −0.1034 −0.05639

Older West /t/ 0.0834 0.0562 0.11053

Younger East /st/ −0.0255 −0.0490 −0.00198

Younger East /t/ 0.1378 0.1107 0.16493

Younger West /st/ −0.0471 −0.0706 −0.02363

Younger West /t/ 0.1161 0.0890 0.14328

Table C.6: Estimated marginal means (EMM) with 95% confidence interval (lower
and higher CL) computed by emmeans for the LMER with s4 as dependent variable,
for each combination of age group, region, and plosive.
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