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1. Introductory summary  

1.1 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is the most common acute leukemia in the adult 

population. It is characterized by the high proliferation of undifferentiated hematopoietic 

cells, which primarily populate the bone marrow leading to a displacement of the normal 

hematopoiesis. Consequently, patients may present with anemia, neutropenia, and 

thrombocytopenia.  For decades, induction chemotherapy (IC), consisting of continuous 

infusion of cytarabine (7 days) and short time infusion of daunorubicin or idarubicin 

(3 days) (“7+3” scheme) has been the golden standard in the treatment of AML [1].  

Based on the advances in genomic diagnostics, deeper insights into the molecular 

pathogenesis of the disease were gained, and targeted treatment options have evolved. 

Accordingly, nowadays the choice of induction therapy is integrating the genetic markers 

of the AML cells. Therefore, the combination of the development of targeted therapies 

and a better understanding of the impact of mutations on the survival and treatment of 

AML patients has reshaped the landscape of therapeutic options [2, 3]. In patients 

harboring a mutation in the fms like tyrosine kinase 3 (FLT-3) gene prolonged overall 

survival (OS) has been observed, when protein kinase inhibitors like Midostaurin, 

Quizartinib, or Sorafenib were combined with standard chemotherapy. For non-adverse 

AML patients, the antibody-drug conjugate gemtuzumab ozogamicin (GO) has been 

approved by the FDA in 2017 and by the EMA in 2018 and is now available as a 

combination therapy in addition to 7+3 [3–5]. 

Long-term remission rates of around 35 to 50 % are achieved in younger and fit patients 

with a favorable genetic risk profile. However, most patients with AML present with a 

median age of 68 years, a variable number of comorbidities, and, importantly, an 

unfavorable genetic risk profile. In this subgroup, the cure rate is below 15 % and most 

of the patients are not suitable for IC or allogeneic hematopoietic stem cell 

transplantation (allo-HSCT) [2, 6, 7]. In the past, mainly low-dose cytarabine or 

hypomethylating agents (HMAs) like azacytidine and decitabine were available as less-

intensive therapy options. However, these monotherapies are not curative, and the 

median survival did not reach more than 10 months [8, 9]. Recently, the combinatorial 

therapy of azacytidine and venetoclax has shown to be well-tolerated, to induce high 

complete response rates (73 % vs. 10-50 %) and prolonged OS with up to 17 months, 

now being the standard medical care for this subgroup[10, 11]. 
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Albeit great importance has been placed on the improvement of IC regimens for newly 

diagnosed AML patients to reduce the leukemic burden and to achieve complete 

remission (CR), relapse rates remain high due to surviving chemo-resistant cells. In case 

of relapse, treatment options are rather limited and allo-HSCT has proven to be the 

dominant curative option for relapsed patients, harnessing the potential of T cells to 

induce a graft-versus-leukemia (GvL) effect. However, this approach is only applicable 

in < 10% of patients and the success of allo-HSCT is hampered by infectious 

complications and treatment-related adverse events (TRAE) including graft-versus-host 

disease (GvHD) [12, 13]. Therefore, effective post-remission therapies and novel 

treatment options for chemorefractory patients are of high medical need, either as a 

stand-alone therapy or a bridge to transplant. 

1.2 Antibody-based immunotherapy in AML 

Empowered by the success of immunotherapies in solid cancers, innovative 

immunotherapeutic strategies have also been developed in the field of hematological 

malignancies. These approaches mainly rely on the immune system’s effector cells to 

induce antileukemic activity and research led to a broad spectrum of available tools 

ranging from dendritic cell vaccination and adoptive cell therapy to antibody therapy. 

Furthermore, the availability of a suitable target antigen as well as its recognition by 

effector cells is crucial for the success of immunotherapies. The ideal target antigen (TA) 

that is exclusively expressed on the cancerous cells while being absent on healthy tissue, 

has not been found yet in AML. However, several lineage-restricted antigens (LRAs) as 

well as leukemia-associated and -specific antigens (LAAs and LSAs) have been 

identified (Figure 1), which are being investigated in clinical trials utilizing several 

immunotherapeutic platforms [14–16]. 

1.2.1 Target antigens in AML 

Target antigens that are mainly expressed on the cell surface of leukemic blasts and that 

share the expression with cells from the myeloid lineage are so called lineage-restricted 

antigens (LRA). As surface antigens, they are practical targets for antibody-based 

approaches or chimeric antigen receptor (CAR) T-cells. However, due to the expression 

of LRAs on HSCs, targeted therapies could potentially lead to aplasia and on-target off-

tumor toxicities. Unlike to B-cell malignancies, in which the eradication of healthy CD19+ 

and CD20+ can be well-managed, LRAs in AML like CD33, CD123, CLL-1, or FLT-3 do 

not meet these favorable criteria. Nonetheless, targeting combined antigen pairings 
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seem to be a promising attempt in reducing on-target off-tumor toxicities and increasing 

selectivity [17, 18]. 

An alternative approach is to target LAAs, which are also overexpressed in leukemic 

blasts compared to healthy tissue, but the expression is either comparably low or tissue-

specific. In AML surface expressed LAAs like MUC1, CD44v6, and CD174 are mainly 

studied in CAR-T trials [19–23]. However, LAAs are frequently expressed intracellularly, 

requiring the ability to be presented within the HLA complex [24]. Therefore, intracellular 

target antigens like hTERT, survivin, and PRAME are potentially attractive to be the 

subject of vaccination strategies, like dendritic cell or peptide vaccines [25, 26]. 

Interestingly, novel bispecific developments also enable targeting intracellular target 

antigens presented in the context of defined HLA molecules. The first of this kind has 

recently been approved in the setting of advanced uveal melanoma (tebentafusp) [27]. 

In the context of AML, early phase I trials are currently evaluating an HLA-A2/WT-1 

targeting T-cell bispecific based on encouraging preclinical investigations [28]. 

 
Figure 1: Target antigens in acute myeloid leukemia. Figure modified from [29]. Created 

with BioRender.com 

In contrast to LRAs and LAAs, the properties of LSAs nearly fit the requirements for an 

ideal target as the expression is uniquely linked to the leukemic compartment. LSAs arise 

from leukemia-specific mutations or protein fusions caused by leukemia-specific 

chromosomal translocations, which need to be presented within the HLA complex as 

peptide fragments [14, 16]. Although the mutational burden in AML is known to be low 

compared to other cancers, immunogenic mutations that could serve as “neoantigens” 

have been identified. Mutated NPM1 and FLT-3 were able to induce T-cell responses in 
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vitro and ex vivo. For PML-RARA and DEK-CAN no spontaneous immune responses 

could be observed, likely due to a lack of presentation on the cell surface [30–32]. Clinical 

evaluation of LSA-targeted therapy is yet to be conducted. 

1.2.2 Monoclonal antibodies 

Unconjugated monoclonal antibodies 

A straightforward approach to target an antigen is the use of monoclonal antibodies 

(moAB). In that way, effector cells can be recruited by the FC domain of the antibody 

and mediate immune effector mechanisms like antibody-dependent cellular cytotoxicity 

(ADCC) or antibody-dependent phagocytosis (ADCP) [33]. The first of its kind was the 

CD20-targeting antibody Rituximab, which has become the standard of care in the 

treatment of non-Hodgkin lymphoma and follicular lymphoma [34, 35]. For now, clinical 

trials investigating moABs as monotherapy or in combination with chemotherapy or 

HMAs have been conducted. However, translation to AML is challenging and trials with 

mABs targeting, for example, CD33 (Lintuzumab; NCT00006045) [36, 37], CD123 

(Talacotuzumab; NCT02992860 and NCT02472145) [38, 39] and FLT-3 (LY3012218; 

NCT00887926) [40] had to be terminated due to lack of efficacy. The unconjugated 

moAB cusatuzumab directed against CD70 has shown promising results in the dose-

escalation phase I study in combination with azacytidine achieving CR and CR with 

incomplete hematologic recovery (CRi) rates of 83 %. Though, in the phase II study, with 

more patients included, CR/CRi rate dropped to around 50 % [41–43]. 

Another promising candidate is the CD47-directed moAB magrolimab. The blockade of 

the “don’t eat me” signal induces phagocytosis mediated by macrophages, which 

together with azacytidine and venetoclax could be further enhanced [44–46]. The 

synergistic elimination of leukemic blasts with encouraging overall response rates (65 %; 

CR/CRi of 56 %), especially in TP53 mutated patients (CR/CRi in 67 %) led to the 

initiation of a phase III trial [47, 48]. 

Conjugated monoclonal antibodies 

Although unconjugated moABs often show high preclinical efficacy in vitro against AML 

cell lines and primary cells as well as in in vivo mouse models, clinical translation often 

lacks benefit. A further approach to make use of moAB after engagement to the target 

antigen, is the delivery of radioisotopes or toxins to the tumor site, therefore, enabling 

the killing of the tumor by internalization of the antibody-drug conjugate (ADC). The only 

approved immunotherapy in AML is the ADC gemtuzumab ozogamicin (GO) [5, 49]. The 

humanized CD33-targeting antibody is conjugated with calicheamicin and has gotten its 

first FDA approval in 2000. However, it was withdrawn voluntarily due to safety concerns 
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and lack of verification to be beneficial for the selected patient population of elderly, who 

have relapsed. After re-evaluating the dosing regimen, it regained approval in 2017 for 

the treatment of newly diagnosed AML [50]. Furthermore, it is now available for 

relapsed/refractory (r/r) pediatric patients [51]. The success of GO encouraged further 

clinical trials with ADCs directed against CD33, CD123, and FLT-3, for example 

(NCT02674763, NCT04086264, NCT02864290) [52, 53]. 

1.2.3 T-cell redirecting bispecific antibodies 

The potency of moABs is predominately mediated by phagocytic or natural killer (NK) 

cells. However, the GvL effect after allo-HSCT has demonstrated that T cells also harbor 

a great anti-leukemic potential [12]. Given the fact, that only a minority of patients is 

eligible for allo-HSCT, strategies have been investigated to specifically redirect T cells to 

the tumor site, while minimizing undesired toxicity against healthy tissue. 

According to their name, T-cell redirecting bispecific antibodies, are built up of two 

paratopes, which are directed against a TA and (a part of) the T-cell receptor (TCR) 

bridging the effector and the tumor cell to build an immunological synapse independent 

of TCR-specificity (Figure 2). With the development of blinatumomab, a CD19xCD3 

bispecific T-cell engaging (BiTE) molecule, the concept of T-cell redirection has been 

demonstrated to be successful in hematological malignancies [54]. It is the first FDA-

approved T-cell redirecting bispecific antibody and is now available for the treatment of 

r/r and minimal residual disease-positive B-cell precursor acute lymphoblastic leukemia 

[55–58]. Since then, the idea of T-cell redirection has been translated into other bispecific 

antibody formats and malignancies. Consequently, more clinical trials have followed and 

led to the approval of mosunetuzumab in the setting of r/r B-cell lymphoma, teclistamab 

in multiple myeloma, and tebentafusp for the treatment of uveal melanoma [27, 59, 60]. 

Still, no immunotherapy of this kind has been approved in AML and the translation 

remains challenging, mainly accounted for the absence of an appropriate target antigen. 

However, preclinical studies and results from early clinical trials indicate that T-cell 

redirecting bispecific antibodies could be a promising immunotherapeutic treatment 

strategy in AML. 
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Figure 2: Mechanisms of action of a bispecific T-cell engaging (BiTE) molecule against a 

tumor-associated antigen (TAA). Figure modified from [61]. Created with 
BioRender.com 

Based on the success of GO, a CD33 targeting BiTE molecule, AMG 330, has been 

developed [62]. Equivalent to blinatumomab, AMG 330 is comprised of two single-chain 

variable fragments (scFv) of conventional antibodies connected by a linker resulting in a 

recombinant protein of around 55 kDa. Consequently, it has a relatively short serum half-

life of only a few hours, necessitating a continuous intravenous infusion for the patients. 

Therefore, a half-life extended version (AMG 673) has been developed by fusing an FC 

domain to AMG 330 making the infusion schedule more compliant for patients [63]. 

AMG 330 has shown high efficacy against primary AML samples ex vivo and promising 

preclinical studies led to the initiation of phase I clinical trials with both, AMG 330 and 

AMG 673, for the treatment of r/r AML patients [62–65]. During dose-escalation, 17 % of 

patients achieved CR/CRi with the minimal efficacious dose of ≥120 µg/day for AMG 330. 

AMG 673 treatment was able to induce CRi in one out of 27 evaluable patients. Although, 

both constructs showed antileukemic activity and had acceptable safety profiles with 

manageable TRAEs like cytokine release syndrome (CRS; around 65 %; ≥ grade 3 in 

around 15 % for both constructs), nausea (20 % for AMG 330) and elevated liver tests 

(25 % for AMG 330; 32 % for AMG 673), both trials were terminated based on company’s 

prioritization decision. Further CD33 targeting T-cell redirecting bispecific antibodies 

including JNJ-67571244 (NCT03915379) and AMV564 (NCT03144245) are currently 

being evaluated for r/r AML patients in clinical trials and study updates are awaited [66–

68]. 
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Another prominent LRA in AML is CD123, which is not only over-expressed on AML blast 

but also on leukemic stem cells (LSCs) [69]. Additionally, high expression is associated 

with a poor prognosis making it an attractive target antigen [70–72]. Among other 

clinically investigated CD123 targeting bispecific antibodies, flotetuzumab, a dual-affinity 

retargeting (DART) antibody has shown potent antileukemic activity, safety, and 

tolerability, especially in primary induction failure and early relapse patients [73]. Further 

T-cell redirecting bispecific antibodies that are under preclinical or early clinical 

investigation target common AML-associated antigens like CLL-1, FLT-3, and WT-1 [28, 

74–76]. 

1.3 Resistance mechanisms to immunotherapy 

A deeper understanding of the interaction of the immune system and AML blasts is 

crucial for the development of novel immunotherapeutic strategies. It has been 

progressively demonstrated that the changes in the tumor microenvironment (TME) 

shape the hematopoietic niche, leading to immune evasion, disease adaption, and 

progression [14, 77].  

1.3.1 Immune evasion 

The recognition of AML blasts for immune cells plays a pivotal role in combating the 

leukemic burden with immunotherapeutic strategies. In patients relapsing after allo-

HSCT, it has been observed that HLA class II genes were epigenetically downregulated 

and genomic loss of HLA occurred, circumventing T-cell recognition by lack of antigen 

presentation [78–80]. Furthermore, AML blasts demonstrate immune editing properties 

by secretion of soluble factors, which promote the development of cellular components 

of an immune suppressive TME and alter T-cell and NK-cell immune responses [81]. The 

secretion of extracellular vesicles, that contain the oncoprotein MUC1, by AML blasts is 

known to be a driver of myeloid-derived suppressor cell expansion [82–85]. In addition, 

the differentiation of monocytes into tumor-associated macrophages of the M2 type can 

be promoted by the secretion of certain enzymes like arginase II [86, 87]. Other soluble 

factors secreted by AML blasts namely TGF-β, IDO1, and IL-10 negatively impact T-cell 

functions like proliferation and are known to induce T-cell apoptosis [88]. Furthermore, 

enrichment of immunosuppressive regulatory T cells (Treg) has been linked to the 

altered cytokine milieu within the bone marrow niche and patients with a high frequency 

of Tregs tend to have a poorer prognosis [89–91]. 

Besides the secretion of soluble factors and the concomitant alteration of the TME, the 

expression of inhibitory ligands on AML blasts contribute to immune evasion leading to 
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T-cell and NK-cell dysfunction. One of the most prominent inhibitory ligands in AML is 

the programmed-cell-death ligand-1 (PD-L1). Upregulation of PD-L1 was observed in 

patients treated with HMAs and is linked to a lower OS. Further, PD-L1 upregulation was 

observed on AML blasts in patients relapsing after allo-HSCT emphasizing the PD-1/PD-

L1 axis as an immune escape mechanism [92–94]. The interaction of PD-L1 on the 

leukemic blasts with its corresponding receptor PD-1 on T cells serves as an inhibitory 

signal and hampers T-cell activation. A higher frequency of PD-1+ effector T cells was 

observed for AML patients compared to healthy controls suggesting a dysfunctional T-

cell state in AML patients [95, 96]. In addition, gene-expression profiling of AML patients’ 

T cells demonstrated an altered phenotype linked to an impaired actin cytoskeleton and 

defective immune synapse formation, consequently [97]. 

Further, the co-expression of PD-1 with other inhibitory receptors is associated with T-

cell dysfunctionality like T-cell exhaustion and senescence. In AML, co-expression with 

TIM-3 and/or LAG-3 was connected to poor response to IC and a lower likelihood of 

senescent-like T-cells responding to BiTE molecule stimulation in vitro [98, 99]. Other T-

cell and NK-cell inhibitory pathways that contribute to immune evasion in AML are the 

galectin-9/TIM-3, CD155/TIGIT, CD112/TIGIT, and the NKG2D/(s)NKG2DL axes [77]. 

The advancements in the field of spatially-resolved immunohistochemistry, mass 

spectrometry, and transcriptomics have contributed to more detailed insights into 

immune evasion in AML, therefore, conceiving novel possibilities to interfere with 

immunotherapeutic strategies. Checkpoint blockade has already entered daily clinical 

practice in solid tumors with the approval of checkpoint inhibitors (CPIs) against PD-1 

(nivolumab, pembrolizumab), PD-L1 (atezolizumab, avelumab, durvalumab), CTLA-4 

(ipilimumab) or LAG-3 (relatlimab). However, the clinical benefit as monotherapy or in 

conjunction with HMA appears to be limited, and possibly, CPIs are of greater benefit 

when combined with other immunotherapy approaches, like bispecific antibodies or 

CAR-T cells. 

1.3.2 Targeting checkpoint molecules with novel antibody formats 

T-cell redirecting strategies are accompanied by the release of inflammatory cytokines, 

leading to the upregulation of PD-L1 on AML blasts. Ex vivo evaluation of AMG 330 

combined with PD-1/PD-L1 blockade showed enhanced cytotoxic potential of T cells 

against primary AML cells [100]. However, the clinical evaluation of AMG 330 in 

combination with pembrolizumab was terminated after phase I (NCT04478695).  

One major hurdle in the clinical application of PD-1 and PD-L1 blocking antibodies is the 

occurrence of TRAEs like hepatitis, skin disorders, or myocarditis. To reduce TRAEs and 
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benefit from the properties of a BiTE at the same time, Hermann et al developed a 

bifunctional checkpoint inhibitory T-cell engaging (CiTE) antibody [101]. The CiTE is 

composed of two scFvs directed against CD33 with high-affinity binding properties and 

CD3ε within the TCR complex. Furthermore, the extracellular domain of PD-1 (PD-1ex) 

with low binding affinities to PD-L1 has been fused to the antibody construct (Figure 3). 

The combination of high-affinity αCD33 and low-affinity αPD-L1 mediated high and 

selective cytolytic properties of T cells in vitro against CD33+PD-L1+ cell lines and ex vivo 

against AML cells. In vivo the CiTE antibody had a safe toxicity profile with no TRAEs 

and induced eradication of the leukemic burden in a xenograft mouse model, making it 

a promising candidate for early clinical studies. 

 
Figure 3: Mode of action of novel antibody formats targeting checkpoint molecules on 

AML cells. Figure modified from [101, 102]. Created with BioRender.com. 

Another novel antibody format combining checkpoint molecule blockade with targeted 

NK-cell and macrophage-mediated lysis of AML cells has been developed by Tahk et. al 

[102]. In this approach, a conventional αCD123 IgG1 antibody has served as a backbone 

to which either one or two SIRPα domains were fused. Due to the low affinity binding 

properties of the SIRPα domains to CD47, the fusion antibody preferentially binds to 

CD123+CD47+ double-positive cells, while sparing healthy tissue (CD123-CD47+). 

Therefore, AML blasts and LSCs were selectively targeted enabling phagocytosis by 

blocking the “don’t eat me signal” CD47. Furthermore, the fusion antibody redirected NK-

cell mediated cytotoxicity against cell lines in vitro and ex vivo against primary AML 

blasts. In vivo Tahk et. al could show, that NSG mice, who received patient-derived 

xenograft cells, that were previously treated in a co-culture with NK cells and the SIRPα 

fusion antibody did not develop leukemia, conversely to their counterparts treated with a 

conventional αCD123 antibody or an isotype control. 
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Taken together, several novel combinatorial strategies are under development 

demonstrating high efficacy in preclinical studies. Especially, designing antibody 

constructs that aim to increase selective targeting of cancerous cells with a dual-targeting 

approach seem to be promising. 

1.3.3 Combination with the immunomodulatory drug lenalidomide 

Functional immune cells are the linchpin for the success of immunotherapeutic 

strategies. Therefore, T-cell redirecting approaches rely on the formation of a stable 

immune synapse to achieve the full cytotoxic potential of T cells [103, 104]. However, it 

is known that hematologic and solid cancers can induce impairment of T-cell actin 

dynamics by inhibitory ligands as an immunosuppressive strategy hampering the 

success of immunotherapies [97, 105].  

Looking at its mode of action, the immunomodulatory imide drug (IMiD) lenalidomide has 

a high potential to reverse immune evasion and to serve as a drug for combinatorial 

immunotherapeutic options. On the one hand, lenalidomide promotes antitumor effects 

like apoptosis and inhibition of tumor cell proliferation. Furthermore, it has been observed 

that ex vivo exposure of CLL cells to lenalidomide enhanced their function as antigen-

presenting cells by upregulation of CD95 (FasL) as well as costimulatory molecules 

CD80, CD86 and CD40 [106, 107]. On the other hand, exposure to the IMiD markedly 

increased proliferative capacities and effector function of T- and NK cells as seen by 

enhanced killing of tumor cells, high IL-2 secretion, and improved immune synapse 

formation. Also, preclinical studies have demonstrated an even higher cytotoxic potential 

of T and NK cells when lenalidomide and CPI were combined [108, 109].  

Clinically, lenalidomide is now a well-established IMiD for the treatment of various 

myeloid and lymphoid malignancies, especially in combinatorial strategies. It has been 

approved by the FDA for the treatment of multiple myeloma (MM) and follicular 

lymphoma (FL). In MM the present standard of care for newly diagnosed MM patients is 

the combination of lenalidomide with dexamethasone and bortezomib or daratumumab, 

a CD38-targeting moAB [110]. In FL, the AUGMENT trial (NCT01938001) demonstrated 

that the combination of lenalidomide with rituximab significantly prolonged progression-

free survival (39.4 vs 14.1 months) compared to rituximab alone, which also led to an 

FDA approval of this combinatorial approach [111]. 

Interestingly, in AML the combination of lenalidomide with a WT-1-specific T-cell 

bispecific antibody increased cytotoxic potential against primary AML blasts ex vivo [28]. 

However, no clinical trials in AML have been initiated yet investigating the combination 

of lenalidomide with T- or NK-cell redirected immunotherapies. 
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1.4 Summary of publications and contribution 

1.4.1 Publication I: CD33 BiTE® molecule-mediated immune synapse 
formation and subsequent T-cell activation is determined by the 
expression profile of activating and inhibitory checkpoint molecules 
on AML cells 

Bispecific T-cell engaging (BiTE®) molecules are comprised of two single-chain variable 

fragments (scfv) derived from conventional antibodies. Those scfvs are directed against 

a target antigen expressed on the leukemic blasts and against CD3zeta expressed within 

the T-cell receptor complex. However, physiologically, T-cells require at least two signals 

(signal 1: engagement of the TCR; and signal 2: engagement of costimulatory molecules 

and/or cytokines) to become fully activated. Given the fact, that BiTE molecules lack the 

provision of signal 2, we investigated the modulatory capacity of the expression profile 

of costimulatory and -inhibitory antigens on target cells on BiTE molecule-mediated T-

cell function in this publication. As a first step, we demonstrated that the CD33xCD3 BiTE 

molecule AMG 330, in general, was able to induce TCR-triggering using a reconstituted 

T-cell system. Next, we have developed a cell-based model system by transducing the 

murine pro-B-cell line with CD33 (target antigen), CD86 (costimulation), and/or PD-L1 

(co-inhibition). In co-cultures with the different Ba/F3 sublines and healthy donor (HD) T-

cells, we observed that expression of CD86 significantly enhanced AMG 330 mediated 

T-cell function reflected by cytotoxic potential, T-cell proliferation, granzyme B 

expression, cytokine secretion, downstream signaling and metabolic fitness of T cells. 

Additionally, these observations were validated in an orthotopic mouse model. 

Furthermore, the number of formed Ba/F3 cell-T cell conjugates was significantly 

increased when CD86 was expressed on Ba/F3 sublines, accompanied by a more stable 

immune synapse. Oppositely, additional expression of PD-L1 on Ba/F3 sublines 

diminished previously observed enhancement in T-cell function.  

We confirmed our findings with primary AML samples and investigated strategies to 

overcome PD-L1-mediated resistance to AMG 330 treatment in vitro. In line with our 

previous findings, AMG 330 mediated T-cell cytotoxicity, granzyme B expression, and 

cytokine secretion, as well as immune synapse formation were decreased when primary 

AML samples expressed PD-L1. However, when combining either a PD-1 blocking 

antibody (nivolumab) and/or the immunomodulatory drug lenalidomide with AMG 330 in 

co-cultures of primary AML samples and HD T cells the negative impact of PD-L1 could 

be reversed. Compared to nivolumab, which only led to a minor enhancement, 

lenalidomide significantly increased AMG 330 mediated granzyme B expression, IFNy, 
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and IL-2 secretion.  The strongest effect on specific lysis, as well as IL-2 secretion, was 

obtained when nivolumab and lenalidomide were combined. 

I contributed to this publication by designing, planning, performing, analyzing, and 

interpreting all in vitro experiments. In addition, I performed flow cytometric staining, 

analysis, and interpretation of in vivo experiments and analyzed patient samples for 

antigen expression. Moreover, I designed all figures, wrote the manuscript draft, and 

went along with the revision process until final publication. 

1.4.2 Publication II: SIRPα-αCD123 fusion antibodies targeting CD123 in 
conjunction with CD47 blockade enhance the clearance of 
AML-initiating cells 

In this study, published by Tahk et. al, novel immunotherapeutic antibodies were 

investigated, comprising a dual-targeting approach to treat AML. AML-initiating leukemic 

stem cells (LSCs) upregulate the inhibitory immune checkpoint CD47 which leads to the 

inhibition of phagocytosis by interaction with SIRPα, which is expressed on phagocytic 

cells. Blockade of the CD47/SIRPα axis renders a promising strategy to overcome 

immune evasion. However, due to the ubiquitous expression of CD47 on healthy tissue 

antigen sink and potential on-target off-tumor toxicities may arise. On the other hand, 

CD123 is a well-known therapeutic target antigen, expressed on LSCs and AML blasts. 

Therefore, we have generated SIRPα-αCD123 fusion antibodies and investigated their 

potential to eliminate AML cells. The fusion antibodies either contained one (1x) or two 

(2x) extracellular SIRPα domains fused to each light chain of an αCD123 antibody. In 

the first step, several binding studies were performed highlighting that the fusion 

antibodies preferentially bind to CD123+CD47+ cells than to CD123-CD47+ cells. Due to 

the weaker binding affinity of the SIRPα domains to CD47 compared to the high affinity 

of the αCD123 antibody to CD123, potential antigen sink generated by e.g., red blood 

cells (CD123-CD47+) can be avoided. Additionally, we could show that our fusion 

antibodies didn’t induce platelet aggregation and we observed lower binding to PBMCs 

compared to clinically tested high-affinity αCD47 binding antibody (Hu5F9-G4) or 

commercially available antibody (B6H12 clone). Next, functional properties of 

SIRPα-αCD123 fusion antibodies to induce phagocytosis and NK-cell mediated cell lysis 

were investigated. Indeed, both 1× and 2×SIRPα-αCD123 fusion antibodies induced 

ADCP and ADCC against MOLM-13 cell line as well as against primary AML cells to a 

higher extent than Hu5F9-G4 or B6H12. Interestingly, SIRPα-αCD123 fusion antibodies 

showed higher potency in NK-cell mediated cytotoxicity compared to analog fusion 

antibodies directed against CD33. This was especially pronounced in NK-cell activation 

depicted as CD69 expression on NK cells. Lastly, we addressed the question of whether 
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the SIRPα-αCD123 fusion antibody could eliminate LSCs. Hence, patient-derived 

xenograft cells were co-cultured ex vivo with HD NK cells in the presence of αCD123 

antibody, 2×SIRPα-αCD123, or an isotype control. The remaining live AML cells from 

the ADCC assay were sorted and re-transplanted into NSG mice, defining that the 

leukemia-initiating cells (LICs) served as a surrogate for LSCs. In NSG mice receiving 

LICs from the isotype or αCD123 antibody condition engraftment of the leukemia was 

observed. In mice receiving 2×SIRPα-αCD123 treated LICs the outgrowth of leukemia 

was prevented. 

I contributed to this publication by conducting the AML long-term ADCC experiments, 

which led to the results displayed in Figure 5 B, C, D, and E. 
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Abstract
Bispecific T-cell engager  (BiTE®) molecules recruit T cells to cancer cells through CD3ε binding, independently of T-cell 
receptor (TCR) specificity. Whereas physiological T-cell activation is dependent on signal 1 (TCR engagement) and signal 2 
(co-stimulation), BiTE molecule-mediated T-cell activation occurs without additional co-stimulation. As co-stimulatory 
and inhibitory molecules modulate the strength and nature of T-cell responses, we studied the impact of the expression 
profile of those molecules on target cells for BiTE molecule-mediated T-cell activation in the context of acute myeloid 
leukemia (AML). Accordingly, we created a novel in vitro model system using murine Ba/F3 cells transduced with human 
CD33 ± CD86 ± PD-L1. T-cell fitness was assessed by T-cell function assays in co-cultures and immune synapse formation by 
applying a CD33 BiTE molecule (AMG 330). Using our cell-based model platform, we found that the expression of positive 
co-stimulatory molecules on target cells markedly enhanced BiTE molecule-mediated T-cell activation. The initiation and 
stability of the immune synapse between T cells and target cells were significantly increased through the expression of CD86 
on target cells. By contrast, the co-inhibitory molecule PD-L1 impaired the stability of BiTE molecule-induced immune 
synapses and subsequent T-cell responses. We validated our findings in primary T-cell-AML co-cultures, demonstrating a 
PD-L1-mediated reduction in redirected T-cell activation. The addition of the immunomodulatory drug (IMiD) lenalidomide 
to co-cultures led to stabilization of immune synapses and improved subsequent T-cell responses. We conclude that target 
cells modulate CD33 BiTE molecule-dependent T-cell activation and hence, combinatorial strategies might contribute to 
enhanced efficacy.

Keywords Acute myeloid leukemia · Bispecific antibodies · Immune synapse · Costimulation (CD86) · Checkpoint 
molecule (PD-L1)
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Results

T-cell co-signaling ligands are expressed 
on leukemic cells

Cell surface expression of the T-cell co-signaling ligands 
CD80, CD86 and PD-L1 was assessed on leukemic bulk 
cells  (CD45dimSSClow) from peripheral blood (PB) and 
bone marrow (BM) samples obtained at the time of first 
diagnosis or relapse. All analyzed samples were nega-
tive for cell surface expression of CD80 (Fig. 1A). We 
observed CD86 expression in 61 of 333 (18.32% with an 
MFI ratio > 1.5; Fig. 1A) and PD-L1 expression in 21 of 
377 (5.57% with an MFI ratio > 1.5; Fig. 1A) primary 
AML samples. Patient samples showed a variability in 
their expression levels, and we report these subdivided 
into the five groups defined by Tamura et al. [25]: < 5%, 
5–10%, 10–30%, 30–60% and > 60% (Fig. 1B, C).

Based on these findings, we decided to investigate the 
roles of CD86 and PD-L1 in a cell-based model system. 
For this, we generated a stable expression system by 
transducing the murine pro-B cell line Ba/F3 with human 
(hu) CD33 (2.4–3.1 ×  108 molecules/cell) ± huCD86 
(1.4–1.7 ×  108 molecules/cell) ± huPD-L1 (4.8 ×  107 mol-
ecules/cell) (Fig. 1D, E). Expression levels of CD86 and 
PD-L1 are higher on Ba/F3 sublines compared to primary 

AML samples. However, the CD86/PD-L1 ratio of mean 
expression (~ 1.7) were comparable.

AMG 330 induces TCR triggering characterized 
by CD45 exclusion from and CD33 clustering 
within the synapse

Using a reconstituted T-cell system previously described 
by James et al. [23], we characterized the immune synapse 
that forms upon AMG 330-induced TCR triggering. We 
observed exclusion of CD45 from the immune synapse and 
simultaneous CD33 clustering within the Raji B–HEK T-cell 
interface in the presence of AMG 330, but not in the pres-
ence of c BiTE (Fig. 2A). Quantification of the relative fluo-
rescence signal intensities of CD45, CD33 and AMG 330 
within the cell–cell interface revealed that CD33 cluster-
ing and AMG 330 binding were co-localized. In contrast, 
CD45 exclusion was spatially distinct and clearly anti-cor-
related (Fig. 2B). Next, we investigated AMG 330-medi-
ated conjugation and stability of synapse formation after 
20 and 60 min, respectively, with different Ba/F3 sublines. 
The total number of conjugates formed with  CD33+  CD86+ 
Ba/F3 subline was approximately 1.3-fold higher than 
with those expressing either no co-stimulatory antigen or 
additional PD-L1 in the presence of AMG 330 (Fig. 4A). 
Furthermore, expression of CD86 without PD-L1 on Ba/
F3   CD33+ subline resulted in a remarkable increase of 

Fig. 1  T-cell co-signaling receptors are expressed on leukemic cells 
and transduced Ba/F3 sublines. A MFI ratio of cell surface expression 
of CD80 (green), CD86 (blue) and PD-L1 (orange) in  CD45dimSSClow 
primary AML samples (n = 107–377). MFI ratios ≥ 1.5 (dashed lines) 
indicate positivity. B Percentage of CD80-, CD86- and PD-L1-posi-

tive cells and C distribution of CD86 and PD-L1 expression intensi-
ties within primary AML samples (n = 432–521). D Antigen count of 
CD33 (red), CD86 (blue) and PD-L1 (orange) on transduced Ba/F3 
sublines (n = 3) with E representative histograms
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LFA-1 accumulation at the cell–cell interface, determined 
by imaging flow cytometry (for gating strategy see supple-
mentary Fig. S1). In contrast, LFA-1 expression intensity 
within Ba/F3  CD33+ PD-L1±–T cell conjugates was com-
parable to the control with c BiTE (Fig. 2C, D). Collectively, 
our results demonstrate that expression of the co-stimulatory 
molecule CD86 stabilizes immune synapses, as seen by the 
accumulation of LFA-1 at the cell–cell interface, whereas 
concomitant expression of PD-L1 had a negative impact on 
the formation of conjugates and synapses.

Checkpoint molecule expression on target cells 
modulates AMG 330-mediated cytotoxicity 
and T-cell function

In co-culture assays with different Ba/F3 sublines and 
healthy donor (HD) T cells the potential for CD86 and 
PD-L1 to modulate T-cell cytotoxicity and AMG 330-redi-
rected T-cell function was evaluated. We observed that 
lysis of CD33 single-positive Ba/F3 cells upon addition 
of AMG 330 and HD T cells was < 25% after 3 days. 

Fig. 2  AMG  330 induces TCR triggering characterized by CD45 
exclusion from and CD33 clustering within the synapse. A Repre-
sentative spinning disc confocal microscope images of AMG  330 
 (BiTE® molecule) and c  BiTE molecule-mediated conjugates 
formed of a CD33-transduced Raji B cell and a reconstituted HEK-T 
cell. B Line profiles of CD45 (green), CD33 (blue), and AMG  330 
(red) intensities across a conjugate interface equivalent to that 
shown in a representative image in panel  A. C Total number of 
AMG  330-induced T-cell–CD33+  CD86± PD-L1± Ba/F3 cell con-
jugates after 20  min, assessed by flow cytometry. D Representative 

imaging flow cytometric analysis of AMG  330-induced T-cell–
CD33+  CD86± PD-L1± Ba/F3 cell conjugation: brightfield (BF, 
gray), Hoechst staining (purple), Ba/F3 cell  (GFP+; green), T cell 
 (CD45+; magenta), LFA-1 (yellow), and overlay of Ba/F3, T-cell and 
LFA-1 channels. E Median intensity of LFA-1 accumulation at the 
interface of AMG 330-and c BiTE molecule-induced T-cell–CD33+ 
 CD86± PD-L1± Ba/F3 cell conjugates. Statistical analysis: One-
way ANOVA with Dunnett's multiple comparisons test; ns p > 0.05, 
*p ≤ 0.05
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Cytotoxicity was significantly improved by co-expres-
sion of CD86 (Fig.  3A). Higher cytotoxicity against 
Ba/F3   CD33+   CD86+ was accompanied by significant 
increases in T-cell proliferation, expression of gran-
zyme B, and secretion of IFNγ and TNFα (Fig. 3B, C). 
HD T cells did not induce lysis against Ba/F3 cells due to 
xenogeneic MHC recognition (Fig. S2C). Furthermore, we 
were able to translate our findings into an in vivo model 
system. Specifically, we observed higher clearance of 
the Ba/F3  CD33+  CD86+ subline compared to the Ba/
F3  CD33+ subline in the BM and spleen in an orthotopic 
mouse model (Fig. 3D). In line with these observations, 
T cells from Ba/F3  CD33+  CD86+ mice also showed 
higher CD69 expression levels (Fig. 3E). The influence 
of co-inhibition was investigated in co-cultures with the 
 CD33+   CD86+  PD-L1+  Ba/F3 subline. Although this 
resulted in an only marginal decrease of AMG 330-medi-
ated cytotoxicity, T-cell proliferation and function were 
markedly reduced (Fig.  3A–C). These findings could 
be observed in bulk T cells and in  CD4+,  CD8+, naïve 
and memory T-cell subpopulations used for co-culture. 
Our findings underline the importance of co-stimulatory 

molecules in AMG  330-mediated cytotoxicity against 
CD33-expressing target cells.

AMG 330-induced downstream signaling in T cells 
is strongly enhanced by CD86 expression on target 
cells

In a next step, we aimed to characterize downstream sign-
aling in T cells of various kinases that are involved in the 
regulation of TCR phosphorylation and subsequent T-cell 
proliferation and survival. Therefore, we measured the 
phosphorylation of Akt, ERK1/2 and ZAP70 after engage-
ment between HD T cells and different Ba/F3 subline in 
the presence of AMG 330. The percentage of kinase phos-
phorylation after 1, 3, 5, 10, and 20 min was determined 
relative to unstimulated T cells as a background control. 
We observed time-dependent phosphorylation of Akt, 
ERK1/2 and ZAP70 within the T cells regardless of which 
Ba/F3 subline was engaging (Fig. 4A–C). The extent of 
phosphorylation varied between the T-cell HDs and also 
depended on the Ba/F3 subline, according to the trend Ba/
F3  CD33+  CD86+  >  > Ba/F3  CD33+  CD86+ PD-L1+  > Ba/

Fig. 3  Checkpoint molecule expression on target cells modu-
lates AMG  330-mediated cytotoxicity and T-cell function. A 
AMG  330-mediated cytolytic capacity, B proliferation, C gran-
zyme B expression and cytokine secretion of HD T-cell subsets after 
co-culture with  CD33+  CD86± PD-L1± Ba/F3 sublines for 72  h. D 
AMG 330-mediated cytolytic capacity in BM and spleen and E CD69 

expression of HD T cells (from BM) against  CD33+  CD86± sublines 
in vivo. AMG 330 concentration = 0.5–5 ng/ml (in vitro) or 200 µg/kg 
(in vivo); E:T ratio = 1:1; n = 5–6; Error bars represent mean ± SEM; 
Statistical analysis: One-way ANOVA or Mixed-effects analysis 
with Dunnett's multiple comparisons test; ns p > 0.05, *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001, **** p ≤ 0.0001
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F3   CD33+. This observation was most pronounced after 
10 min of conjugate formation (Fig. 4D–F).

PD-L1 expression on target cells alters metabolic 
reprogramming of T cells

Activation of T cells is accompanied by a metabolic repro-
gramming and is further modulated by the engagement 
of ligands expressed on APCs [26]. T cells activated by 
AMG 330 in co-culture with the  CD33+ Ba/F3 subline, 
devoid of positive co-stimulatory molecules, showed 
very low metabolic activity with low oxygen consump-
tion rates (OCRs; Fig. 5A) and extracellular acidification 
rates (ECARs; Fig. 5C). By contrast, T cells activated by 

AMG 330 in co-culture with the  CD33+  CD86+ Ba/F3 
subline, showed a significant increase of both glycolysis 
and oxidative phosphorylation, indicating high metabolic 
activity (Fig. 5A–D). T cells stimulated with the  CD33+ 
 CD86+ PD-L1+ Ba/F3 subline showed an altered meta-
bolic phenotype, preferring oxidative phosphorylation over 
glycolysis as the main pathway for energy production. In 
accordance with a comparable approach, PD-L1 stimula-
tion led to an even higher spare respiratory capacity (SRC) 
in T cells than CD86 stimulation alone (Fig. 5B) [26]. 
These data underline that co-stimulation is a prerequisite 
for achieving a fully functional BiTE molecule-mediated 
T-cell response.

Fig. 4  AMG 330-induced downstream signaling in T cells is strongly 
enhanced by CD86 expression on target cells.  Kinetics of phospho-
rylation (% positive) of A Akt, B ERK1/2, and C ZAP70 in T cells 
after 1, 3, 5, 10, and 20  min of AMG  330-mediated engagement 
with different Ba/F3 cell constructs.  Percentage of phosphorylated 
D Akt, E ERK1/2, and F ZAP70 in T cells after 10 min of engage-

ment. Overlays of representative flow cytometry histograms after 
10 min of engagement are shown. AMG 330 concentration = 5 ng/ml; 
E:T ratio = 1:1; n = 7–8; Error bars represent mean ± SEM; Statisti-
cal analysis: One-way ANOVA or Mixed-effects analysis with Dun-
nett's multiple comparisons test; ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001
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IFNγ and TNFα modulate the profile of checkpoint 
molecule expression of primary AML cells

Having found that T-cell co-signaling ligands on target 
cells influence AMG 330-mediated T-cell function in 
our cell-based model system, we next aimed to translate 
our findings into primary patient material. To increase 
PD-L1 levels in primary AML samples, we pre-cultivated 
primary AML samples with IFNγ and TNFα to induce 
PD-L1 expression (PD-L1ind). After 48 h we observed 
a significant upregulation of PD-L1, whereas expres-
sion of CD33 and CD86 was not significantly affected 
by cytokine treatment (Fig. 6A). This led to significantly 
reduced AMG 330-mediated cytotoxicity and granzyme B 
expression, together with a decrease in IFNγ and IL-2 
secretion (Fig. 6B). Importantly, these observations were 
accompanied by reduced stability of the immune synapse, 
as indicated by lower levels of LFA-1 expression within 
AMG 330-induced cell–cell conjugates after IFNγ and 
TNFα pre-treatment (Fig. 6D).

Lenalidomide reversed the negative impact of IFNγ 
and TNFα on AMG 330-mediated T-cell function 
and synapse formation in co-cultures with primary 
AML samples

Pre-treatment of primary AML samples with IFNγ 
and TNFα led to PD-L1 upregulation and decreased 
AMG 330-mediated stability of immune synapses. Accord-
ingly, we observed that the AMG 330-mediated function of 
T cells was diminished in co-cultures with pre-treated AML 
samples. In a next step, we aimed to reverse this functional 
impairment due to pro-inflammatory cytokines by using the 
IMiD lenalidomide (10 µM). Indeed, we could show that 
T-cell responses and the stability of immune synapses were 
significantly improved by adding lenalidomide to co-cul-
tures. Interestingly, PD-1 blockade with nivolumab (10 µg/
ml) could not abrogate the negative impact of the inflamma-
tory stimuli to the same extent as lenalidomide. However, 
the combination of PD-1 blockade and lenalidomide medi-
ated the highest specific lysis of primary AML cells and 

Fig. 5  PD-L1 expression on target cells alters metabolic reprogram-
ming of T-cells. A OCR kinetics of T cells after 72 h of co-culture 
with different Ba/F3 sublines in the presence of AMG  330, after 
72 h of stimulation with CD3/CD28 beads (pos. ctrl) or left unstimu-
lated for 72 h (neg. ctrl); B corresponding bar graphs showing basal 
OCR, maximal OCR, and SRC in a mitochondrial stress test. C 
Kinetics of ECAR of T cells after 72  h of co-culture with different 
Ba/F3 sublines in the presence of AMG 330, after 72 h of stimula-

tion with CD3/CD28 beads (pos. ctrl) or left unstimulated for 72  h 
(neg. ctrl); D corresponding bar graphs showing glycolysis, glycolytic 
capacity, and glycolytic reserve in a glycolysis stress test. AMG 330 
concentration = 0.5 ng/ml; E:T ratio = 1:1; n = 5; Error bars represent 
mean ± SEM; Statistical analysis: Mixed-effects analysis with Dun-
nett's multiple comparisons test; ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001, ****p ≤ 0.0001
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significantly enhanced IL-2 secretion (Fig. 6B–D; Fig. S3). 
Of note, expression levels of PD-L1 and CD86 on primary 
AML cells and PD-1 on T-cells remained unchanged through 
the exposure to lenalidomide (Fig. S3). Our results support 
the notion that lenalidomide can reverse the negative impact 
of IFNγ and TNFα on AMG 330-mediated T-cell responses 
by improving immune synapse formation and circumventing 
inhibitory signals on T cells by boosting their effector func-
tion, especially in combination with PD-1 blockade.

Discussion

Since the approval of blinatumomab—the first bispecific 
T-cell-redirecting antibody molecule—other bispecific con-
structs of different formats have been evaluated in several 
clinical trials. Antibodies including mosunetuzumab have 
entered clinical practice in the setting of r/r B-cell lym-
phoma. Tebentafusp, a bispecific fusion protein, was granted 
approval for treating uveal melanoma, and other bispecific 

T-cell-redirecting agents are expected to follow in hemato-
logical and solid malignancies [6–8, 27–30].

Despite these impressive developments, a significant 
number of patients do not respond to this type of therapy, 
or they eventually relapse. It is well known that the efficacy 
of bispecific T-cell-redirecting antibodies crucially depends 
on T-cell activation and proliferation, although the param-
eters determining these activities are poorly understood [31]. 
Therefore, it is of critical importance to better understand 
the contributors to an effective T-cell response for improving 
treatment strategies involving T-cell-redirecting antibodies.

Here, we present a unique model cellular platform based 
on the murine Ba/F3 cell line aimed at deepening our insight 
into the mechanistic aspects of T-cell activation mediated 
by CD33 BiTE molecules. This model system is free from 
interfering endogenous stimulatory or inhibitory checkpoint 
molecules (Fig. S4) and provides an ideal setup for under-
standing how selected surface molecules are involved in the 
formation of synapses and subsequent T-cell activation and 
downstream signaling.

Fig. 6  Lenalidomide reverses negative impact of IFNγ and TNFα 
on AMG  330-mediated T-cell function and synapse formation in 
co-cultures with primary AML samples. A  Expression of CD33 
(MFI), CD86 (%  CD33+), and PD-L1 (%   CD33+) on primary AML 
samples after pretreatment ± IFNγ and TNFα (PD-L1ind) for 48  h. 
B  AMG  330-mediated cytolytic capacity, granzyme  B expression, 
IFNγ and IL-2 secretion of HD T cells against non-pretreated and 
PD-L1ind primary AML samples. C Fold change of AMG 330-medi-
ated cytolytic capacity, granzyme B expression, IFNγ and IL-2 secre-
tion of HD T cells against PD-L1ind primary AML samples ± lena-
lidomide or/and nivolumab after 72  h of co-culture. D Fold change 

of median intensity of LFA-1 accumulation at the interface of 
AMG  330-induced T-cell–primary AML cell conjugates. Primary 
AML samples were pretreated ± IFNγ and TNFα for 48 h and HD T 
cells were pretreated ± lenalidomide for 24  h; AMG  330 concentra-
tion = 5  ng/ml; Lenalidomide = 10  µM; Nivolumab = 10  µg/ml; E:T 
ratio = 1:4 (panels B and C) or 1:1 (panel D); n = 4–14; Error bars 
represent mean ± SEM; Statistical analysis: Paired t-test (panel A and 
B) and One-way ANOVA with Dunnett's multiple comparisons test 
(Panels C and D); ns p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, 
****p ≤ 0.0001
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Fig. 2  AMG  330 induces TCR triggering characterized by CD45 
exclusion from and CD33 clustering within the synapse. A Repre-
sentative spinning disc confocal microscope images of AMG  330 
 (BiTE® molecule) and c  BiTE molecule-mediated conjugates 
formed of a CD33-transduced Raji B cell and a reconstituted HEK-T 
cell. B Line profiles of CD45 (green), CD33 (blue), and AMG  330 
(red) intensities across a conjugate interface equivalent to that 
shown in a representative image in panel  A. C Total number of 
AMG  330-induced T-cell–CD33+  CD86± PD-L1± Ba/F3 cell con-
jugates after 20  min, assessed by flow cytometry. D Representative 

imaging flow cytometric analysis of AMG  330-induced T-cell–
CD33+  CD86± PD-L1± Ba/F3 cell conjugation: brightfield (BF, 
gray), Hoechst staining (purple), Ba/F3 cell  (GFP+; green), T cell 
 (CD45+; magenta), LFA-1 (yellow), and overlay of Ba/F3, T-cell and 
LFA-1 channels. E Median intensity of LFA-1 accumulation at the 
interface of AMG 330-and c BiTE molecule-induced T-cell–CD33+ 
 CD86± PD-L1± Ba/F3 cell conjugates. Statistical analysis: One-
way ANOVA with Dunnett's multiple comparisons test; ns p > 0.05, 
*p ≤ 0.05
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In another set of experiments, we investigated the 
selective binding of our antibodies to MOLM-13 cells in 
the presence of HD PBMCs (Fig. 2E). From PBMCs, plas-
macytoid dendritic cells express CD123 and are targeted 
by the αCD123 antibody CSL362 [37]. We also found 
that some of our αCD123 binds to PBMCs; however, 
the majority of the antibodies still bound to MOLM-13 
cells (Fig.  2E). #e 1 × SIRPα-αCD123 antibody bound 
PBMCs to a considerable extent, but higher selective 
binding to MOLM-13 cells was observed compared to 
the αCD47 Hu5F9-G4 clone. 2 × SIRPα-αCD123 targeted 
MOLM-13 cells similarly to αCD47 Hu5F9-G4. However, 
when we analysed binding of the antibodies to PBMCs 

Fig. 1 SIRPα-αCD123 fusion antibodies bind to CD123 and CD47. A Structure of SIRPα-αCD123 fusion antibodies.  VH—variable heavy,  CL—
constant light,  CH1—constant heavy 1,  CH2—constant heavy 2,  CH3—constant heavy 3. B Different CD123 concentrations binding to the antibody 
constructs measured using SPR. Raw data are shown in red; black curves were fitted to a 1:1 interaction. KD values represent mean values from 
n = 3 independent experiments ± standard error of the mean (SEM). C Binding of antibodies to  CHO_hCD47+ and  CHO_hCD47– cells at 100 nM 
concentration measured by flow cytometry. The grey line indicates nonspecific staining of the isotype control and secondary antibody. Histograms 
show 1 of 3 experiments with similar results

Table 2 Antigen expression levels

Determined using QIFIKIT. Data are shown as the means ± SEM (n = 2–3). Not 
determined (n. d.)

Cell type CD123 CD47 CD19

MOLM-13 13 723 ± 1 108 67 703 ± 3 784 30 ± 2

Raji 94 ± 95 170 868 ± 37 029 141 688 ± 19 997

CHOCD47+ 104 ± 68 1 424 894 ± 329 869 n. d.

CHOCD47− 159 ± 50 532 ± 35 n. d.

RBC 106 ± 33 33 841 ± 2 221 n. d.
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alone, we observed that our fusion antibodies bound 
PBMCs significantly less than the αCD47 Hu5F9-G4 
and B6H12 antibodies (Fig. 2F). #ese data indicate that 
although our fusion antibodies seem to target PBMCs 
more than RBCs, they bind to PBMCs to a lesser extent 
than the high affinity αCD47 antibodies.

In addition to binding to RBCs, CD47-targeting agents 
have been reported to bind platelets and interfere with 
their function [38, 39]. We therefore investigated whether 
our SIRPα-αCD123 fusion antibodies target platelets and 
induce their aggregation (Fig.  2G–H). Indeed, SIRPα-
αCD123 fusion antibodies bound to platelets similarly to 
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Fig. 2 SIRPα-αCD123 fusion antibodies preferentially bind to MOLM-13 cells in the presence of RBCs. A Binding of SIRPα-αCD123 fusion antibodies 
to MOLM-13 cells assessed by flow cytometry-based MFI ratio. The dotted line indicates an MFI ratio of 1.5 as the cut-off for positivity. Shown are the 
mean values from n = 2–3 independent experiments ± SEM. B Percentage of 100 nM antibodies targeting MOLM-13 cells or RBCs measured by flow 
cytometry at a 20-fold excess of RBCs. C MFI ratios of antibody binding to MOLM-13 cells in the presence of a 20-fold excess of RBCs. D MFI ratios 
of antibody binding to RBCs in the presence of MOLM-13 cells. The results of independent experiments with 4 different RBC donors represented 
as the mean ± SEM are shown. E Percentage of 100 nM antibodies targeting MOLM-13 cells or PBMCs measured by flow cytometry at a fivefold 
excess of PBMCs. Shown are mean values from n = 6 donors ± SEM. F Binding of SIRPα-αCD123 fusion antibodies to PBMCs assessed by flow 
cytometry-based MFI ratio. Shown are mean values from n = 5 donors ± SEM. G Binding of SIRPα-αCD123 fusion antibodies to platelets assessed by 
flow cytometry-based MFI ratio. Mean values from n = 4 donors ± SEM are shown. H Platelet aggregation induced by 100 nM antibody over time. 
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were determined by one-way ANOVA using Holm–Sidak’s post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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the SIRPα-Fc construct but less than the αCD47 Hu5F9-
G4 control (Fig. 2G). However, SIRPα-αCD123 antibodies 
did not induce aggregation of platelets, unlike SIRPα-Fc, 
αCD47 Hu5F9-G4 and especially αCD47 B6H12 antibod-
ies (Fig. 2H). #ese experiments suggest that binding of 
the constructs does not directly correlate with a func-
tional effect and indicate that our SIRPα-αCD123 fusion 
antibodies do not stimulate platelet aggregation.

SIRPα-αCD123 fusion antibodies block CD47 and induce 
phagocytosis of MOLM-13 cells in vitro
SIRPα-αCD123 fusion antibodies were designed to 
inhibit the CD47-SIRPα axis locally on  CD123+ cells. 
To examine this, we performed a blocking assay using 
labelled αCD47 antibodies that interfere with the bind-
ing of SIRPα. Despite the weak affinities of the SIRPα 
domains, 1 × SIRPα-αCD123 and 2 × SIRPα-αCD123 
were able to block CD47 molecules on MOLM-13 cells. 
Not surprisingly, maximum blockade was observed 
with the high affinity αCD47 antibody. In comparison, 
1 × SIRPα-αCD123 did not block CD47 on CD123¯ Raji 
cells, and 2 × SIRPα-αCD123 minimally blocked CD47 
(Additional file 1: Figure S2A), indicating that binding of 
the αCD123 moiety to target cells is required for efficient 
disruption of the CD47-SIRPα axis.

We next examined whether CD47 blockade with con-
comitant engagement of FcγRs stimulates the ADCP of 
MOLM-13 cells by HD-derived macrophages (Fig.  3B). 
Indeed, phagocytosis was significantly boosted by 
1 × SIRPα-αCD123 compared to αCD123. 2 × SIRPα-
αCD123 also induced elevated phagocytosis, but this 
was not statistically significant. In contrast, αCD47 did 

not stimulate phagocytosis either alone or in combina-
tion with αCD123 in this setting. #e respective αCD19 
controls did not have an effect on phagocytosis. In sum-
mary, SIRPα-αCD123 fusion antibodies boost ADCP in 
MOLM-13 cells, whereas αCD123 and αCD47 antibodies 
alone lack this ability.

SIRPα-αCD123 fusion antibodies induce enhanced 
phagocytosis of patient-derived AML cells by allogeneic 
and autologous macrophages in vitro
We further investigated the stimulation of phagocyto-
sis by SIRPα-αCD123 antibodies using primary AML 
patient-derived blasts as targets and allogeneic or autol-
ogous monocyte-derived macrophages as effector cells 
(Fig.  4A, B). We observed enhanced overall phagocy-
tosis by primary AML cells compared to MOLM-13 
cells. Allogeneic macrophages from HDs mediated sig-
nificantly higher ADCP with the 1 × SIRPα-αCD123 
fusion antibody compared to αCD123. #e 2 × SIRPα-
αCD123 had a similar effect (Fig. 4A). More importantly, 
these results were confirmed in the autologous setting 
(Fig.  4B). Phagocytosis mediated by 1 × SIRPα-αCD123 
and 2 × SIRPα-CD123 was significantly higher than that 
mediated by αCD123. αCD47 antibodies B6H12 and 
Hu5F9-G4 alone or in combination with αCD123 anti-
body induced similar ADCP as SIRPα-αCD123 fusion 
antibodies. When comparing SIRPα-CD123 fusion anti-
bodies to similar αCD33-based constructs [18], we did 
not observe significant differences in the ability to induce 
phagocytosis of AML cells (Fig.  4B). Taken together, 
these data reveal that SIRPα-αCD123 fusion antibodies 

Fig. 3 SIRPα-αCD123 fusion antibodies block CD47 and stimulate phagocytosis of MOLM-13. A CD47 blockade on MOLM-13 cells with 100 nM 
antibodies determined by FITC αCD47 binding using flow cytometry. Background fluorescence was subtracted from the FITC αCD47 signal and 
normalized to isotype to calculate the CD47 blockade. Mean ± SEM of n = 4 independent experiments. B ADCP of MOLM-13 cells at a 50 pM 
concentration of antibodies after 3 h at an E:T ratio of 1:1. ADCP was measured as the percentage of double-positive cells from macrophages and 
normalized to the isotype control. Bar charts represent the mean ± SEM from n = 7 different donors. Statistical differences were determined by 
one-way ANOVA using Holm-Sidak’s post hoc test. *p < 0.05, ***p < 0.001, ****p < 0.0001, not significant (ns)
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represent an effective tool to overcome the CD47-medi-
ated inhibition of phagocytosis in AML.

SIRPα-αCD123 fusion antibodies induce NK cell-mediated 
speci"c lysis of AML cells in vitro
ADCC by NK cells is one of the primary mechanisms 
by which IgG1 antibodies induce the elimination of 
antibody-bound cells in addition to macrophage-medi-
ated ADCP [40]. "erefore, we analysed specific lysis 
of MOLM-13 cells by HD-derived NK cells (Fig.  5A). 
αCD123 induced moderate dose-dependent lysis of 
MOLM-13, whereas 1 × SIRPα-αCD123 and 2 × SIRPα-
αCD123 were more potent. We postulated that SIRPα-
αCD123 fusion antibodies are more efficient due to 
the avidity-dependent targeting of both CD123 and 

CD47. "e respective αCD19 controls induced lysis of 
MOLM-13 cells only at high concentrations, which can 
be attributed to autonomous targeting of CD47 by the 
fused SIRPα domain. Nevertheless, the half maximal 
effective concentration  (EC50) was considerably lower 
for 2 × SIRPα-αCD123 (19.1 pM) than for the 2 × SIRPα 
αCD19 analogue (192.1 pM), demonstrating target anti-
gen-specific cytotoxicity. "is was further demonstrated 
in a competitive ADCC assay in which  CD123+ MOLM-
13 cells were mixed with CD123¯ Raji cells (Additional 
file  1: Figure S2B). In this setting, Raji cells were not 
lysed by 1 × SIRPα-αCD123 and 2 × SIRPα-αCD123 only 
exerted an effect at high concentrations. In summary, 
although independent binding of the SIRPα domains can 
cause some lysis of target cells at high concentrations, we 

Fig. 4 SIRPα-αCD123 fusion antibodies stimulate phagocytosis of AML patient cells by allogeneic and autologous macrophages. AML target cells 
and macrophages were incubated with 50 nM antibody for 3 h at an E:T ratio of 1:1. ADCP was measured as the percentage of double-positive 
cells (gated) from all macrophages. Each symbol represents one patient (Table 1). A Phagocytosis of AML patient cells by allogeneic macrophages 
(n = 4). B Phagocytosis of AML patient cells by autologous macrophages (n = 10). Statistical differences were determined by one-way ANOVA using 
Holm-Sidak’s post hoc test. *p < 0.05, ****p < 0.0001, not significant (ns)
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Fig. 5 SIRPα-αCD123 fusion antibodies enhance NK cell-mediated lysis of MOLM-13 and PDX AML cells. A NK cell-mediated dose-dependent lysis 
of MOLM-13 cells after 4 h at an E:T ratio of 5:1 measured by calcein AM release. Mean values ± SEM for n = 6 different NK cell donors are shown. 
 EC50 values were calculated where possible. B Expression of CD123, CD33 and CD47 in primary AML samples assessed by flow cytometry. C, D NK 
cell-mediated lysis of AML cells in long-term culture at a 10 nM antibody concentration after 20 h at an E:T ratio of 5:1 measured by flow cytometry. 
The results from n = 7 different AML patient samples are represented as different symbols, and their mean values are shown. E Percentage of  CD69+ 
cells measured by flow cytometry. F NK cell-mediated lysis of PDX cells at 100 nM antibody concentration after 20 h at an E:T ratio of 5:1 measured 
by flow cytometry. The results from n = 3 different AML patient samples are represented as different symbols, and their mean values are shown. 
Statistical differences were determined by one-way ANOVA using Holm-Sidak’s post hoc test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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