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SUMMARY 
The fruit fly Drosophila melanogaster has long become a paramount model organism for 

research in life sciences. As a result of the fly’s high temporal resolution and its reliable 

optomotor response - a reflex that helps it compensate for movements of the environment, - 

Drosophila lends itself exceptionally well to the study of vision and, in particular, the 

mechanism of motion detection. 

In the wild, Drosophila is active throughout the day, with especially high levels of activity at 

dawn and dusk, the periods of time when the visuals of the environment are changing rapidly. 

The fruit flies can also be found in a variety of habitats, from the expanse of an open field to 

the inside of a cluttered kitchen. Altogether, Drosophila encounters a variety of visual statistics 

it must employ to robustly respond to the outside world and succeed in finding food, escaping 

predators, and carrying out courtship behavior. 

In my thesis, I focused on the effects of visual contrast, i.e., differences in brightness in the 

environment, on the fly’s motion vision. I studied the impact of the surround contrast on the 

filtering properties of the visual interneurons within the motion detection circuit, including the 

first direction-selective T4 and T5 cells and their main inputs, and how the fly compensates for 

the changes in contrast to faithfully match the direction and speed of its movement to the 

external motion under various contrast conditions. 

Firstly, in Manuscript 1, we established the existence of contrast normalization in the early 

visual system of Drosophila and demonstrated its suppressive effect on the response amplitude 

at higher contrasts. We determined where contrast normalization first arises in the optic lobe 

and identified the main inputs into the T4 and T5 cells that exhibit contrast normalizing 

properties. We comprehensively characterized the normalization process: namely, it is fast, not 

dependent on the direction of motion, its effect comes from outside the receptive field of a cell 

and increases in strength with the size of the visual surround. Additionally, we demonstrated 

that the normalization relies on neuronal feedback and showed that adding a contrast 

normalization stage to the existing models of motion detection improves their robustness, 

matching their performance to the results obtained in behavioral experiments. 

In Manuscript 2, we further investigated the effects of contrast normalization on the main 

inputs to T4 and T5 cells, now focusing on its effect on the filtering properties of the cells. We 

demonstrated that spatially or temporally dynamic surrounds elicit contrast normalization, 

while static ones do not. We further showed that, in addition to the suppressive effect on the 

amplitude, contrast normalization speeds up the kinetics of the response and confirmed that 
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this effect is not due to signal saturation and involves a change in the filtering properties of the 

cell.  

In summary, we elucidated the role of contrast normalization in the motion detection circuit 

in the early visual system of Drosophila, comprehensively described the characteristics of the 

normalization process, and outlined its effects on the filtering properties of the cells. We also 

emphasized the potential role of shunting inhibition and narrowed down the search for the main 

candidates in the contrast normalization mechanism, paving the way for future studies to further 

delve into the contrast normalization circuit and implementation mechanism. 

 

 



1.INTRODUCTION

1.1 Visual Environments

1.1.1 Vision as One of the Primary Senses

Imagine a completely ordinary situation most encounter every day—crossing a busy road in

an urban area: a wide street is full of cars whizzing by in both directions, different colors of

traffic lights are blinking on and off, high-contrast black and white stripes on the road denote

the pedestrian areas and street borders. Now, consider the amount of information one is

getting at such a moment and the importance of the decisions that have to be made then and

there and you will see this mundane occurrence in a very different light.

To survive, animals need to be able to react to the environment around them fast and in an

appropriate manner, but how quick and suitable such reactions can be is limited by how well

they can perceive the world through the input they receive from their senses. To make a

decision about crossing the road, one needs to be able to detect motion in the environment

and to correctly deduce if the source of the motion is external (a car moving) or a result of

self-motion (us crossing the road). To this end, a sensor is necessary that is responsive, fast,

and reliable, with respect to both transmitting the information and filtering out the noise, and

it is able to carry out those tasks while using the least amount of energy possible. Such a

sensor could ultimately mean the difference between life and death, increasing the selection

pressure to improve the sensor's characteristics and become the fastest, most sensitive, most

reliable, and requiring the least amount of energy.

1.1.2 Visual Environments and Requirements They Impose

Despite the differences in animals' habitats, vision is one of the primary senses for the

majority of animals, and animals that rely on eyesight for survival are prevalent. The ability

of humans and other animals to perceive their environment visually is the result of complex

interactions between light, primary visual organs (commonly, eyes), and the brain. Among

various species, eye design depends not only on the constraints imposed by the habitat and

visual tasks the animal is likely to encounter but also on purely biological limitations that

arise from the design of perceptual systems. These factors affect the ability to resolve light
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patterns in the environment, and finding a compromise between them and optimizing eye

design is vital for the animal's survival.

Specialized behaviors also require different information to be extracted from the

environment. For example, a fast predator needs to resolve rapidly changing images to find

and target its prey and might favor resolution over sensitivity, while for a slow-flying

nocturnal insect, capturing as much light as possible might be beneficial, even if it comes at

the cost of image resolution (Gonzalez-Bellido et al., 2011). Ultimately, as visual demands

differ greatly depending on the tasks an animal commonly performs and the habitat the

animal exists in, the eye design reflects the animal's lifestyle and the versatility of neural

information processing in its visual system (Geisler, 2008).

1.1.3 Physics of Vision

Sensory systems are under a lot of evolutionary pressure as sensory organs are the

connecting point between an organism and its environment. The evolution of eyes, ears, and

noses is driven by the need to perceive and interpret electromagnetic and acoustic waves and

molecule concentration, respectively, to represent the characteristics of the objects in the

outside world. In vision, specifically, the ability to detect electromagnetic waves in the

environment and interpret them into perceived images is highly influenced by the physics of

the eye, which determines the specifics of how the world is seen. Here, the physics of vision

influences which and how much information is available, as well as how fast the information

is processed and transmitted for further computations.

Animal eyes show unique adaptations that arise from the requirements imposed by the

environment and from unavoidable biological constraints, such as the size of the animal and

its eyes, the signaling ability of the receptors and neurons, or the organic material available

for the construction of the visual sensors. These morphological and physiological adaptations

of visual systems include varying the shape of the eye or the position of the light detector,

creating an acute zone with increased sensitivity, modifying downstream processing channels,

and many more, and these adaptations create neural responses that are tuned to spatial and

temporal characteristics of the visual environment specific to the animal (Gonzalez-Bellido et

al., 2011).

In animals with eyes, visual processing starts when light hits photoreceptors. The main

processes along the visual cascade that occur in vertebrate and invertebrate eyes are briefly

summarized below:
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In the vertebrate eye (see Figure 1A), the amount of light entering the eye is regulated by

the pupil. The light is first refracted as it passes through the cornea and the lens. The cornea,

the lens, and the vitreous body together act as a compound lens that projects an inverted

image onto a light-sensitive membrane, the retina, where it is converted into a neural signal.

The retina encompasses over 100 million specialized photoreceptive cells to gather light,

namely, rods and cones. Rods are responsible for vision at low light levels: they are sensitive

to a broad range of light wavelengths but low-resolution; while cones are responsible for

vision at higher light levels and have one of the three photopigment types—red, green, or

blue—that correspond to a particular wavelength and peak response. The process of

phototransduction, i.e., the conversion of light into a change in the electrical potential of the

cell membrane, starts as the light is absorbed by the photopigments. Phototransduction

involves a sequence of activations of signaling proteins that cause further opening and

closing of ion channels, resulting in an electrical signal in the photoreceptor cell membrane.

This signal travels along the optic nerve, ultimately arriving at the occipital lobe and being

transmitted further upstream, where the analyzed pattern is translated into images a conscious

mind can interpret.

Figure 1. Physics of vision. Schematic representation of: A. a vertebrate eye, B. an invertebrate eye.

In the compound eye (see Figure 1B), a visual organ of arthropods, light first falls onto the

ommatidia—tiny independent detector units with a corneal lens and photoreceptor cells. Each

ommatidium is oriented to point in a slightly different direction and focuses light from a

narrow visual field onto sensory cells and a rhabdom, housed within. Rhabdoms are created

by a multitude of microvilli that extend from the sensory cells and contain high

concentrations of a light-sensitive pigment rhodopsin. Additionally, each ommatidium
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contains screening pigments in primary and secondary pigment cells, which stop stray light

scattered from the neighboring ommatidia from entering the ommatidium. Phototransduction

starts when rhodopsin absorbs light and converts it into electrical signals that are sent by the

sensory cells further to the pair of optic lobes (or optic ganglia), one innervating each

compound eye. The whole image perceived by an arthropod eye is, thus, built up from the

individual inputs from the numerous ommatidia.

One of the main visual cues for vertebrate and invertebrate eyes in the outside environment

is optic flow, the distribution of local motion directions and velocities across the visual field.

Optic flow is what allows the animal to determine the direction of external and self-motion,

guiding its course control. Local motion signals within an optic flow field are calculated

downstream of the primary sensory receptors. Detecting spatial contrast requires a neural

computation that compares the luminance changes at two separate points in space.

As the physics of the eye determines an animal's ability to detect light and process visual

information, it also influences how animals perceive motion by impacting the perception of

the visual characteristics of their environments. Some of the main characteristics of the

physics of the eye are shortly summarised below.

Luminance sensitivity (the efficiency of detecting light) and contrast sensitivity (the

efficiency of detecting differences in light intensities) correspond to the physiological

operational range of vision. They are defined by light intensities normally encountered by the

animal, and their lower boundary sets the absolute sensitivity threshold of the visual system

(Frolov, 2016). Here, the spectral sensitivity of the photoreceptor’s visual pigment determines

the probability that a photon of a given wavelength (energy) will be absorbed and converted

into a neural signal. The spectral sensitivity can be affected by a number of physical

characteristics, such as the lens size, the rate of thermal isomerization of the photopigment,

or, more specifically for flies, by the ommatidial acceptance angle, the size of the

rhabdomeres, and, most importantly, the identity of the photopigment (Osorio and Vorobyev,

2005; Frolov, 2016). In comparison to fruit flies, human eyes are sensitive only to a narrow

range of wavelengths and do not function well in low light.

Visual acuity or spatial resolution measures how much detail of the outside environment

can be discerned. It is defined by the number of visual points, i.e. pixels, that make up the

image and is directly related to the density of visual sensors - retinal cells in the human eye or

ommatidia and the number of ommatidia in the eye of a fruit fly (Land, 1997; Sanjayan,

2018). As such, it is also generally correlated to the size of the eye (Harmening, 2017), as the

larger size allows for more visual detectors. Thus, the vertebrate eye, in comparison to that of
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insects, offers significant advantages, such as better depth perception and increased

discrimination of the details. In addition, spatial resolution is also affected by the diffractions

of the lenses that cause a pixel of an image to blur. This is especially the case in compound

eyes, as diffraction increases with the shrinking of the lenses (Gonzalez-Bellido et al., 2011).

Flies also do not have a specialized zone with more acute vision (fovea), so the spatial

resolution stays very low, around 5° in fruit flies, throughout the whole eye.

The challenge of a low image resolution and the absence of a fovea in flies make their large

field of view, i.e., the angle of the observable world seen at any given moment, invaluable.

For the fruit flies, their field of view covers almost the entirety of the visual space, with

individual ommatidia providing visual fragments that are combined into a large overall

image. Unlike vertebrates with forward-facing eyes, Drosophila can see predators

approaching from any direction at the same time, thanks to their panoramic vision.

1.1.4 Statistics of Visual Environments

According to the efficient coding hypothesis (Barlow, 1961), a theoretical model of sensory

coding in the brain, sensory systems adapt in such a way as to encode and transmit the

maximum amount of sensory information while minimizing the cost of the encoding and

transmission. To optimize a sensory system for encoding the sensory signals found in the

animal's natural environment, sensory neurons need to match their limited range of responses

to the range of input signals an animal would get from a typical environment, and also to

ensure that all responses occur equally often (Laughlin, 1981).

As the visual systems of animals are adapted to exploit the regularities of natural

environments, the responses are adapted to and determined by the prominent statistics and

fundamental components of the natural images, i.e., the inputs of the sensory system in

question (Simoncelli, 2003; Geisler, 2008; Cai et al., 2020). These statistics and components

of the visual environments include, among others, luminance, contrast, color, noise, and

spatial range and structure of an image, all shortly described below.

At the very basic level, luminance is the intensity of light passing through, emitted from, or

reflected from a particular area. Depending on the intensity or the amount of light, varying

degrees of light, dark, or color are produced. Mean luminances vary between scenes and can

locally vary within one scene. Dark and light asymmetries are found naturally in the

environments, and the fact that, in an average scene, there are more dark pixels than light is

also exploited by the visual systems (Chichilnisky and Kalmar, 2002). Contrast is the

difference in luminance of the image points within the same field of view and defines the
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range of luminances found within an image. As with luminance, there are large variations of

local contrast in natural images. Color is derived from the spectrum of light interacting with

the physics of the environment and objects and the characteristics of the light-perceiving cells

of the eyes. Colors contribute to the contrast of a visual scene.

The amount of noise in a given environment determines a signal-to-noise ratio of the visual

signal and influences how much visual information is needed to make a decision, i.e., it

shortens or lengthens the integration time (Gold and Shadlen, 2007).

The distribution of distances or the range within a given image is important for

understanding depth and for the perception of motion, for example, through motion parallax:

an object moving at a constant speed across the visual field appears to move a greater amount

if it is closer than when it is at a greater distance. The spatial pattern of luminance and color

within an image determines its spatial structure. Here, strong features tend to cluster in

natural images, as shown in the spatial auto-correlation function (or the Fourier amplitude

spectrum) that stays relatively consistent across different natural scenes (Geisler, 2008).

1.2. Canonical Computations

Brains of different animals carry out the same tasks to ensure the animal's survival: they

notice the motion of a predator, remember the location of the nest, detect the smell of

something edible and calculate the distance to its source, and more. To this end, the brain has

to perceive the characteristic of interest, process the initial information about it, and perform

further computations on the same statistics of the outside world. Despite the wide diversity of

habitats and early evolutionary divergence of the species, some of these computations remain

remarkably similar across different animals. These are the canonical computations (Carandini

and Heeger, 2011)—standard computational modules that apply the same fundamental

operations, conserved across a variety of animals and in a variety of contexts. Such canonical

computations can rely on diverse circuits and mechanisms, occur in different brain regions,

and encompass unique neural components. These computations often stay preserved across

evolutionary divergent species as a result of the adaptation that occurs in the sensory organs

to compensate for the organs' limitations, such as the finite number of states available to

record the outside world.
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1.2.1 Normalization is a Type of Adaptation

Adaptation encompasses many processes, occurring on a variety of timescales, and is

defined by an adjustment to environmental conditions, be it evolutionary adaptation in an

organism’s traits or a change in response to sustained stimulus characteristics. Here, I will

focus on the shorter timescale of adaptation. Normalization, specifically, describes a type of

scaling of a response, such as the adaptation that happens when a response to a sustained

central stimulus is affected, or normalized, by a stimulus in the surround. Adaptation has

been proposed as one of the canonical computations of sensory systems (Carandini and

Heeger, 2011), since it has been demonstrated in a variety of model organisms, at multiple

levels of processing—from the most peripheral sensory systems to decision-making—and in

various sensory modalities. It has been shown to occur in response to different statistics of the

environment and to be implemented in different brain regions via a wide array of

mechanisms. Some examples of adaptation include light adaptation in the turtle retina

(Baylor and Fuortes, 1970), adaptation to temporal contrast in salamander and mouse retinal

ganglion cells (RGCs; Chander and Chichilinsky, 2001; Kim and Rieke, 2001), adaptation to

sound intensity in the mechanosensory neurons (Clemens et al., 2018), or normalization in

the olfactory population codes (Olsen et al., 2010) in fruit flies.

1.2.2 Effects of Adaptation

The most common effect of normalization is the suppression of the response amplitude to

stronger inputs (Kim and Rieke, 2001; Baccus and Meister, 2002; Harris et al., 2000; Olsen et

al., 2010). This reduction in the gain of the signal reflects the decrease in the cell sensitivity

with the increase in the input strength and plays an important role in keeping the output of the

system within a given range. The amplitude suppression can be seen in, for example, the

suppression of graded potentials or the decrease in the frequency of spikes. This effect has

been shown to occur very quickly (Kim and Rieke, 2001; Baccus and Meister, 2002; Wark et

al., 2007), on the order of time expected from a normal visual fixation, and to have a

prolonged effect, still altering the response when the next stimulus is presented after a 0.4 s

pause (Camp et al., 2011).

In addition to amplitude suppression, in some animals, adaptation has been shown to

hyperpolarize a neuron's membrane potential, reducing the baseline of the signal and making

it harder for a spiking neuron to fire (Demb, 2008; Harris et al., 2000).
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Normalization has also been shown to affect the temporal dynamics of the signal and

change the filtering properties of a neuron to be more band-pass-like, making the response

more transient or creating a phase advance in responses to sinusoidal inputs (Kim and Rieke,

2001; Chander and Chichilnisky, 2001; Baccus and Meister, 2002; Liu and Gollisch, 2015).

In vision, adaptation, and specifically normalization, constantly adjusts visual coding,

altering it according to the visual stimuli that an animal is exposed to. Adaptation can occur

on different time scales—from fast processes, occurring on the order of milliseconds, to slow

ones lasting for hours, with both types of the process sometimes occurring in the same circuit

or even in the same cells (Kim and Rieke, 2001; Baccus and Meister, 2002; Wark et al.,

2007). To distinguish between the different timescales of adaptation in response to the change

in contrast, some separate between the essentially instantaneous “gain control” and a slower

process of “adaptation” (Baccus and Meister, 2002; Demb, 2008). By this definition, contrast

gain control is a fast process that is active on the timescale of 0.1 s, occurs in response to a

change in the input, reduces sensitivity, and sharpens the temporal response of visual neurons.

Contrast adaptation, on the other hand, is a slower activity-dependent process that reduces

sensitivity, but does not change the temporal dynamics of the response.

Paradoxically, adaptation of the signal has also been shown to sensitize responses. For

example, in the inner retina of zebrafish, an increase in contrast can lead to depression of the

strong and facilitation of the weak bipolar cell responses, with distinct circuits causing

simultaneous increases or decreases in the responses of the same cell type (Nikolaev et al.,

2013). Moreover, stimuli not tailored to evoke robust responses from the tested neurons can

cause response facilitation and shifts in tuning toward the adapting stimulus itself (Wissig and

Kohn, 2012).

1.2.3 Function of Adaptation

Functionally, the main task of adaptation has been suggested to be maximizing the amount

of information. Barlow's efficient coding hypothesis (Barlow, 1961) states that, given a finite

capacity to transmit information, neural systems employ an optimally efficient coding

strategy to represent the inputs that they typically process. In this way, adaptation and,

specifically, normalization have been shown to increase the efficiency of neuronal coding and

increase the amount of sensory information an organism can use (Laughlin, 1989), largely as

a consequence of the following effects:

A. Adaptation equalizes the response and prevents saturation.
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Adaptation in the retina shifts the operating range of photoreceptors to match the prevailing

stimulus distribution and maximize sensitivity (Harris et al. 2000; Carandini and Heeger,

2011), to improve stimulus discriminability by modulating stimulus salience (Solomon et al.,

2014), and to decrease integration time and gain, protecting the response from saturation and

improving the retina's ability to encode fast temporal changes (Kim and Rieke, 2001;

Laughlin, 1989). As a result, adaptation equalizes cell responses to different stimuli allowing

the neurons to use their dynamic range uniformly and to efficiently encode the stimulus

distribution (Olsen et al., 2010).

B. Adaptation reduces redundancy in the signals.

Normalization facilitates the decoding of distributed neural representations and

discrimination among representations of different stimuli (Carandini and Heeger, 2011), and

reduces redundancy by removing spatially and temporally redundant signal components in

sensory representations (Laughlin, 1989; Solomon et al., 2014). For example, in cases when

response variability is correlated between visual cortex neurons with similar orientation

tuning, feedforward divisive normalization of a neuron's inputs effectively decorrelates their

variability, making estimates of a stimulus parameter more accurate than those based on

non-normalized inputs (Tripp, 2012). Normalization has also been shown to decorrelate the

activity in different glomeruli, creating independent responses (Olsen et al., 2010). These

computational benefits of normalization make it possible to accommodate more information

within the signal of a single cell (Laughlin, 1989).

C. Adaptation increases robustness to noise in the responses.

Increased normalization has been shown to diminish trial-to-trial response variability,

decreasing the noise in the responses (Ruff et al., 2016, Coen-Cagli and Solomon, 2019). In

extreme cases of noise cancellation, the computational benefits of normalization can even

include max-pooling (winner-take-all competition) (Carandini and Heeger, 2011).

Overall, adaptation reduces the effects of some fundamental extrinsic and intrinsic

limitations on sensory processing. However, adaptation often involves trade-offs: sensitivity

to one component of the stimulus is sacrificed for sensitivity to another. For example,

adaptation can prevent saturation by trading gain for temporal acuity (Laughlin, 1989) or can

provide invariance with respect to some stimulus dimensions at the expense of others

(Carandini and Heeger, 2011).
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1.2.4 Adaptation to Mean and Variance of the Signal

Normalization is well studied in the first sensory peripheral cells in the visual system and

their adaptation to light. Photoreceptor sensitivities are modulated by the background light

intensity, with the photoreceptors' response curves shifting their steepest portion to

correspond to the background intensity, i.e., the mean of the input (Carandini and Heeger,

2011). Normalization to the mean, which causes photoreceptors to adjust their operating point

to match mean light intensity, has been demonstrated in the retina of vertebrates (for example,

in turtles by Baylor and Fuortes (1970) and in monkeys by Makman (1970)), as well as

invertebrates (for example, in blowflies and dragonflies by Laughlin and Hardie (1978)).

Adaptation to the variance of the visual signal, i.e., the contrast has also been demonstrated

in the early visual systems of a variety of vertebrates, such as cats (Shapley and Victor, 1979),

rabbits (Brown and Masland, 2001), salamanders (Garvert and Gollisch, 2013), and mice

(Khani and Gollisch, 2017). Contrast normalization in these animals reduces the sensitivity of

the cells and alters the temporal profiles of the signals, making them more transient.

Contrast normalization in the Drosophila visual circuit, at the early stages of motion

detection, was not researched in detail before. Adaptation to the changes in the statistics of

the environment, however, has been shown at a later stage of the fly’s motion detection

circuit (Borst et al., 2005). Moreover, adaptation to the variance of the input in other sensory

modalities in fruit flies has been demonstrated: for example, fast adaptation has been found to

arise in mechanosensory neurons (Johnston's organ neurons) in the antenna in response to

both the antennal position (the stimulus mean) and to the sound intensity (the stimulus

variance), with both computations occurring in the same neuron but partly independent from

each other (Clemens et al., 2018).

1.2.5 Mechanisms of Normalization

As normalization has been found in a wide range of model organisms, brain areas, and

modalities, a vast array of different feedforward and feedback neural mechanisms has been

suggested as a source of this adaptation, such as the presynaptic lateral inhibition (Olsen et

al., 2010) that causes shunting inhibition (Carandini et al., 1997) and synaptic depression

(Abbott et al., 1997; Jarsky et al., 2011).

Lateral inhibition (Olsen et al., 2010) has a clear role in gain control in visual processing. It

creates a negative feedback loop that normalizes the response of the neuron by an activity of

a larger “normalizing” pool. This divisive normalization scales with the total neuronal
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activity and keeps the system output within a given range. Lateral inhibition can also cause

the unexpected sensitization effect by adapting the normalizing pool itself, normalizing its

activity instead of the activity of the neuron (Wissig and Kohn, 2012; Nikolaev et al., 2013).

In the mammalian visual circuit (Demb, 2008; Jarsky et al., 2011), a number of specific

biophysical mechanisms for contrast normalization have been identified. Contrast adaptation

in RGCs causes the neuron to adapt to the input and prevents response saturation and is

implemented via reduced gain or membrane hyperpolarization. Here, both local synaptic

processes acting on the input currents (such as synaptic depression at the bipolar-to-ganglion

cell synapse), as well as ganglion cell-intrinsic mechanisms involved in the generation of

spike trains (such as inactivation of sodium currents and activation of potassium currents)

have been implicated in retinal contrast adaptation (Kim and Rieke, 2001; Demb, 2008;

Khani and Gollisch, 2017). In the RGCs inputs, upstream rod bipolar and AII amacrine cells,

increased mean or variance of presynaptic membrane potential also causes decreased gain.

Here, Ca2+ channel inactivation and vesical depletion have been demonstrated to cause the

adaptation to the mean, while adaptation to the variance has been shown to be caused by

vesicle depletion alone.

The existence and the mechanisms behind contrast normalization in the early visual system

of Drosophila are still speculative.

1.3. Drosophila as Model Organism in Motion Vision Research

1.3.1 History of Drosophila Research

Since its first introduction as a model organism in genetics, Drosophila melanogaster has

had a long history in research in general and in circuits neuroscience in particular. Areas,

where research on fruit flies has been awarded the Nobel Prize encompass genetics, olfaction,

the immune system, and circadian rhythm, and the knowledge about the fly itself expanded

during the years since it was first used in research.

Drosophila’s developmental stages are well understood, a genetic toolbox providing cellular

access has been available for decades (Rubin and Spradling, 1982), fruit fly’s complete

genome was sequenced and published in 2000 (Adams et al., 2000), and electron microscopy

(EM) reconstruction of a complete brain of an adult Drosophila is now available (Zheng et

al., 2018). The exhaustively developed genetic toolbox allows access to specific cell types
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and single cells. Tools are available for visualization of the circuits and their activity, as well

as to manipulate the circuits and disrupt their physiology.

The popularity of Drosophila as a model organism is additionally boosted by the unique

advantages it offers, such as a short life cycle, ease of upkeep, a large number of offspring per

generation, and the small size of its brain. Thus, it is not surprising that Drosophila has also

been extensively used in research of the visual system. Though fruit flies do not have a

superior spatial resolution, they rely heavily on vision for their survival and their temporal

resolution allows them to perform incredibly fast aerial maneuvers.

1.3.2 Drosophila Optic Lobe

Drosophila has compound eyes that consist of 750-800 ommatidia, each pointing in a

slightly different direction and representing a separate point in the visual space. One

ommatidium houses 8 photoreceptors (R1 to R8), with 6 outer photoreceptors (R1-R6) and

two inner photoreceptors (R7 and R8), located underneath. Within the photoreceptors, visual

pigments are densely packed in compartments called “rhabdomeres”. Upon rhabdomere

illumination, a phototransduction cascade is triggered, leading to the opening of transient

receptor potential (TRP) and TRP-like (TRPL) channels that transmit the electrical signals

from the retina to the next stages of visual processing.

The information is sent to the optic lobes, where it is processed by four successive

neuropils: the lamina, the medulla, the lobula, and the lobula plate (see Figure 2). Between

consecutive neuropils, neural fibers cross over and form the outer and the inner optic

chiasma, respectively, causing the neural presentation of the visual image to be inverted in the

medulla and then inverted back to the original before the lobula complex (the lobula and the

lobula plate).

The lamina consists of lamina cartridges that house laminar monopolar (L) cells. The

lamina receives direct input from the outer photoreceptors R1-R6 and projects further into the

distal medulla (Meinertzhagen and O'Neil, 1991).

In addition to the input from the lamina (Takemura et al., 2008), the medulla receives direct

input from the inner photoreceptors R7 and R8 (Fischbach and Dittrich, 1989; Takemura et

al., 2017) and projects, in parallel, to the lobula and the lobula plate. The medulla itself

consists of 10 layers (M1-M10) with several types of neurons (Fischbach and Dittrich, 1989),

among them: Mi (medulla intrinsic) cells that connect different layers within the medulla; Tm

(trans-medulla) cells that connect specific medulla layers to the lobula; TmY (trans-medulla

Y) cells that connect specific layers in the medulla to the lobula and the lobula plate; and the
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unique CT (complex tangential) neuron –CT1– that innervates M10 layer in the medulla and

connects it to Lo1, the most proximal among the six layers (Lo1-Lo6) in the lobula.

Figure 2. Neurons involved in motion detection in the Drosophila optic lobe. Schematic of the

main elements of the motion detection circuit. Adapted from Fischbach and Dittrich (1989).

The signals received from the medulla and the lobula are processed in the four layers of the

lobula plate (LoP1-LoP4) and transmitted to the central brain by visual projection neurons

and various types of lobula plate tangential cells (LPTCs) (Hausen, 1984).

Each of the neuropils comprises regular columnar elements that correspond topographically

to the ommatidia pattern in the retina and retain retinotopy, meaning that neighboring points

in the visual space are processed by cells in the neighboring columns.

Light and dark increments are processed in the distinct parallel ON and OFF pathways in

the optic lobes. The separation between these pathways is already established at the level of

the lamina neurons (Joesch et al., 2010; Maisak et al., 2013). Here, the input from the outer

photoreceptors R1-R6 is split depending on the polarity of the incoming signal, with the L1

cells providing input to the ON pathway that conveys information about brightness

increments and the L2-L4 cells to the OFF pathway that transmits information about light

decrements (Joesch et al., 2010; Takemura et al. 2011; Shinomiya et al. 2014; Meier et al.

2014).

13



The main neurotransmitters (Kolodziejczyk et al., 2008; Mauss et al., 2014) that perform

signaling in the fly’s visual system are acetylcholine, GABA, and glutamate. Unlike in the

mammalian brain, where glutamate functions as an excitatory neurotransmitter, glutamate can

also be inhibitory in the fly nervous system, acting via a glutamate-gated chloride

conductance (Liu and Wilson, 2013).

1.4 Tools to Study Drosophila Vision

Merits of Drosophila as a model organism include the variety of methods that have been

introduced and can be applied in the research, as having a large toolbox to dissect the

anatomy and function of the visual circuit is indispensable.

Below, I describe some of the most commonly used methods, with a specific focus on the

ones that were central to my PhD research and to the publications presented in this thesis.

1.4.1 Targeting Cells: The Gal4/UAS system

One of the main tools in the Drosophila toolbox is the binary Gal4/UAS (Figure 3)

expression system that allows genetic access to the target cell types and single neurons

(Brand and Perrimon, 1993).

Figure 3. Gal4/UAS System.

Gal4/UAS system consists of two parts: one indicating “what” should be expressed and the

other “where” it should be expressed. Or, respectively, Upstream Activating Sequence

(UAS), which is an enhancer sequence in the DNA, and Gal4, a yeast transcription factor that

it binds to. Strains of flies with only Gal4 are called the “driver” lines and do not produce any
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effects by themselves as Drosophila has no endogenous UAS. However, combining the

“driver” line with a fly strain that has UAS next to the target region (the “reporter” line)

creates a powerful tool that allows targeting the expression of a specific reporter solely to the

neurons of interest.

With this tool, libraries of thousands of “reporter” lines have been established (for example,

Jennet et al., 2012), providing a variety of unique cell-specific expression patterns.

1.4.2 Visualizing Cells and Cell Activity: GFP and GCaMP

The “reporter” genes expressed through the Gal4/UAS system can be used to express

fluorescent proteins, which are excited with light of specific wavelengths, and visualize the

structure, as well as the activity of the cells of interest (see Figure 4 for example images).

Figure 4. Visualizing Cells and Cell Activity. A. Mi1 GFP staining. B. GCaMP6 signal in Mi1

cells in layer M10.

An example of the former is the Green Fluorescent Protein, GFP (Chalfie et al., 1994). It is

derived from a jellyfish and, when expressed in the cell of interest, visualizes its structure,

allowing, for example, to localize the soma and cell's arborizations.

To visualize the activity of the cell, one proxy that is often used is the fluorescence of

indicators that show the presence of different chemical elements and neurotransmitters in the

cell. Indicators have even been developed to directly access the cell's voltage: so-called

GEVIs, genetically encoded voltage indicators (Cohen, 1989). However, one of the most

commonly used indicators up to date remains the genetically encoded fluorescent sensor for

Ca2+, which measures the intracellular concentration of calcium as a proxy for neuronal
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activity. Initially developed in 2001 as GCaMP1 (Nakai et al., 2001), it has undergone many

improvements to become the commonly used GCaMP6 (Chen et al., 2013) and the most

recently created GCaMP8 (Looger et al., 2021), and continues to develop further, established

as an irreplaceable tool in the neuron activity visualization in a variety of model organisms.

When it is expressed in a specific cell type, for example, via the Gal4/UAS system, it can be

used to optically monitor the activity of a neuron or, even more specifically, a neuronal

compartment, such as the cell body or the dendrites.

However, calcium indicators also possess a number of drawbacks. Firstly, they are

inherently slow, serving as low pass filters for the neuronal activity and making the reported

signal slower in comparison to the membrane voltage changes, as they have their own rates of

binding and release of calcium, i.e., dissociation constants, which limit their temporal

response dynamics. This, in turn, affects the concentration of the free calcium available to the

cell, influences calcium dynamics in the cases of high calcium concentration, and can cause

nonlinear perturbations (Borst and Abarbanel, 2007). Secondly, intracellular calcium

concentration is an indirect indicator of neuronal activity and does not one-to-one translate

into membrane voltage: it cannot detect sub-threshold depolarization, rectifies the signal, and

can only report the changes in the membrane voltage that lead to significant calcium changes

(Chamberland et al., 2017).

1.4.3 Manipulating the Circuit: TeTxLC

There is, however, no need to remain passive observers: the available genetic toolbox also

makes it possible to manipulate the visual circuit. This can be achieved by, for example,

interfering with the synaptic transmission mechanisms, affecting the release of the

neurotransmitters, and thereby silencing the target cells. One of the tools that can be used to

block synaptic transmission is Tetanus Toxin Light Chain (TeTxLC), which cleaves the

synaptic vesicle protein synaptobrevin, disrupting the synaptic vesicle release (Sweeney et

al., 1995).

Manipulating the circuit in such a way helps answer questions that would not be

interpretable through observation of the cells’ activity alone. For example, it allows for

testing the extent to which the response of a cell depends on the feedback coming from within

the same cell type, even when the signal needs to go through an extra cell in between before

feeding back into the original cell, or imaging downstream cells and dissecting the

importance of individual cell types as inputs into the circuit.
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1.4.4 Recording Single Neuron Activity: Electrophysiology and Two-Photon

Microscopy

Two methods most commonly used to record neural activity in Drosophila are whole-cell

patch-clamp recording and two-photon excitation microscopy (Figure 5A and 5B,

respectively), both often employed to understand electrical signaling and signal propagation

between neurons.

Figure 5. Tools to Study Drosophila Vision. Schematics of setups for: A. Electrophysiology, B.

Two-photon microscopy, and C. Tethered walking.

Whole-cell patch-clamp recordings (Sakmann and Neher, 1984) allow direct measurement

of voltage fluctuations from a single cell body in living tissue. It is the most direct way of

accessing neural activity, unhindered by indicator dynamics. While the success of whole-cell

patch-clamp recordings is limited by the size of the soma, they have been used successfully in

different brain regions from fixed, walking, and flying flies (for example, olfactory responses

in fixed flies were measured by Wilson et al. (2004), and visual responses during tethered

flight by Maimon et al. (2010)). Recently, it has also become feasible to carry out

patch-clamp recordings from small, previously inaccessible neurons with a soma size of less

than 3 µm (Gruntman et al., 2018; Groschner et al., 2022)

Although electrophysiology offers the most direct access to cell signaling, it comes with

certain limitations: recording from the cell body might not necessarily reflect the neural

signal in other neuronal compartments in the cases of larger, highly compartmentalized

neurons. Additionally, even though access to neurons of smaller size is now possible,

anatomical accessibility of neurons still imposes certain limitations, such as the difficulty of

accessing cells with their somas located under another dense cellular layer.

Two-photon excitation microscopy is an imaging technique that allows optical access in

vivo to fluorescent indicators expressed in the cells of interest (Denk et al., 1990). Here, the
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simultaneous absorption of two low-energy photons of near-infrared light by a fluorophore

excites it so that it then emits light in the visible range.

Two-photon excitation microscopy allows access to cells that might be inaccessible to

electrophysiology because of their size or position. It provides good temporal resolution of

the signal (on par with the resolution of the indicators used), enough spatial resolution to

distinguish individual neurons and their compartments, access to living tissue, and, in

addition to the single-cell access offered by electrophysiology, it also allows simultaneous

recordings from a large number of neurons.

1.4.5 Observing Natural Behavior: Behavioral Assays

Fruit flies exhibit an optomotor response: a consistent pattern of behavior, whereby when

the environment around the fly is turning in a certain direction, the fly will also turn in that

direction. This way, the fly successfully compensates for, what is perceived as, being blown

off course by the wind. The magnitude of this turning response is determined by the internal

estimate of velocity, and this estimate has been shown to be specifically tailored for natural

environments (Chen et al., 2019). The optomotor response serves course stabilization and can

be exploited in behavioral experiments, such as when testing flies on tethered flight and

tethered walking (ball) setups (Götz, 1964) (Figure 5C).

In the walking setup, a tethered fly is placed onto a ball, which lies on an air cushion and

thus can freely turn with the movement of the fly. The fly is surrounded by screens that can

deliver visual stimuli, intended to induce an optomotor response: for example, if a grating

moving in a certain direction is displayed, the fly would start walking in the same direction,

moving the ball it is walking on. The displacement of the ball can be measured and used as a

readout of the fly's behavior, corresponding to the yaw rotation of the fly. Comparing the

direction and speed of the ball rotation with the direction and speed of the stimulus rotation

makes it possible to draw conclusions about the fly’s internal estimation of the motion.

Tethered walking setups provide numerous advantages, such as providing access to the

natural behavior of the fly and, thanks to their high throughput, making it possible to carry

out fast screenings for mutations, characteristics, or stimuli that might be of interest. The

main drawback of the tethered walking experiments is the difficulty of unambiguous

translation of the results obtained from the ball setups into flying behavior.
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1.4.6 Recreating the Circuit: Modeling

Knowing the individual elements and their properties, one might want to reconstruct the

circuit analytically. Matching the already known characteristics to the theoretical models

makes it possible to formulate hypotheses about functional architectures, find missing

components of a circuit, and instruct further experimental approaches.

Modeling can be performed at different levels from true to the biological reality, biophysical

and compartmentalized models, to a higher level, conceptual or algorithmic circuit models

with simplified elements.

Models play an important role in circuits neuroscience and help us find a correspondence

between computational modules and neural mechanisms in the brain.

1.5 Studying Individual Elements of the Motion Detection

Circuit

1.5.1 Computations in the Drosophila Optic Lobe

As the signal is transmitted through the neuropils down the optic lobe, computations

performed by the cells increase in their complexity.

One way to categorize such computations is by calculating the cell’s linear filter, i.e., by

extracting its linear spatiotemporal receptive field (RF) (Borst et al., 2020). This can be done

by reverse-correlating a neuron’s response to a stochastic stimulus, such as pixel or bar noise

(Eggermont et al., 1983; Chichilnisky, 2001). While the result is a linear approximation that

discounts any potential non-linearities in the cell’s computations, it is nevertheless a reliable

representation of the filtering operations that the cell performs. Using the spatiotemporal RF

of the cell, one can determine the cell’s preference for the stimulus polarity, find the spatial

location of its receptive field on the stimulus screen, and categorize the cell’s impulse

response, i.e., measure its immediate response to a brief input signal. This technique is often

used to categorize visual neurons in the Drosophila’s optic lobe and specifically within the

motion vision circuit (see Arenz et al., 2017 for linear spatiotemporal RFs of the main inputs

into the motion vision circuit).

In the retina, a photoreceptor responds merely to the number of photons it receives and

processes the incoming signals by scaling them to fit the limited output range of the

downstream neurons.
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In the lamina, non-spiking neurons respond either transiently or sustained to both light and

dark edges (specifically, responding with hyperpolarization to luminance increases and

depolarization to luminance decreases), and are not selective for moving stimuli (Tuthill et

al., 2013; Borst et al., 2020). As the output to the downstream neurons, the lamina transmits

information about the relative luminance difference, i.e., the absolute local contrast.

The separation of signal processing into ON and OFF pathways arises in the lamina (Joesch

et al., 2010; Maisak et al., 2013), with cells within a pathway responding exclusively either to

increments or to decrements in luminance. This division continues robustly in the medulla

and further along the motion vision circuit (with the exception of Mi9 cells that respond to

luminance decrements despite being a part of the ON visual pathway). Medulla cells also

differ from each other with respect to the size and complexity of their RFs: at this stage, cells

have larger RFs, many of them with prominent antagonistic center-surround components

(Arenz et al., 2017). Here, the division of the cells into low- and band-pass filters with a

spectrum of time constants becomes apparent, and the transient and sustained characteristics

of the responses produced by these cells play an important role in the motion detection

computations in the downstream circuit. The medulla corresponds to the second processing

stage, where information about the absolute local contrast, received from the lamina, is

processed to represent the relative contrast and transmitted further downstream.

The medulla and the lobula also house the dendrites of the first direction-selective neurons.

These cells are even more selective about the stimuli they respond to and now extract

higher-order visual cues from their inputs.

Within the lobula plate, neurons discriminate visual features further. Here, the lobula plate

tangential cells (LPTCs) integrate over large parts of the visual field and respond with

depolarization to visual motion in their preferred direction and hyperpolarization to motion in

the opposite direction (Hausen, 1984). From the lobula plate, the information from the

motion-sensitive pathways is projected further to the protocerebrum.

Going down the processing pathway in the optic lobe of Drosophila, from the retina to the

lobula plate, one can see the increase in the complexity of the computations that the cells

perform, as well as in the rise in the complexity of the information that is transmitted at the

output of each stage.

1.5.2 Motion Detection Circuit in Drosophila Optic Lobe

Detecting motion and its direction are fundamental tasks, however, the direction in which

the image is shifting is not explicitly represented at the level of individual photoreceptors, as
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a single photoreceptor only contains information about luminance change at one location in

space. Rather, directional motion information needs to be extracted from the photoreceptor

array by comparing the signals of neighboring units.

In the fly optic lobe (Figure 2) none of the medulla cells are directionally selective, and the

dendrites of T4 and T5 cells (T4/5), so-called bushy T cells, are the first stage to represent the

direction of motion (Maisak et al., 2013; Fisher et al., 2015). The two cell types process

motion information in parallel and independently, with T4 being a part of the ON pathway

and T5 its counterpart in the OFF pathway (Joesch et al., 2010; Maisak et al., 2013; Fisher et

al., 2015). T4 cells have their dendrites in the medulla layer 10, T5 cells in the posterior layer

Lo1 of the lobula, and both T4 and T5 cells send their projections to the four layers of the

lobula plate.

The ON and OFF motion pathways are similar in their function, characteristics of their main

inputs, and patterns of synaptic connections. Both T4 and T5 cells are further divided into

four subtypes: a, b, c, and d, each sensitive to motion in one of the four cardinal directions

(Maisak et al., 2013). Each subtype projects its axon to one of the lobula plate’s four layers,

depending on the direction of motion that it signals: the subtype that responds to

front-to-back motion projects to layer 1, back-to-front to layer 2, and upwards and

downwards responding subtypes project to layers 3 and 4, respectively (Maisak et al., 2013).

Takemura et al. (2017) comprehensively revealed medulla neurons that provide inputs to

T4. Shinomiya et al., (2014) also identified the first candidates for the OFF motion detection

pathway. All inputs, their relative proportions, and the location where they contact T4/5

dendrite have been identified (Shinomiya et al., 2019), with the main T4 inputs being, in

descending order starting from the ones with the most synaptic contacts: Mi1, Tm3, Mi9,

CT1, Mi4, and TmY15. Main inputs to T5 are as follows: Tm9, Tm2, Tm1, CT1, Tm4.

Additionally, T4/5 a-d subtypes also show recurrent connections within a subtype.

Combining this dense EM reconstruction (Takemura et al., 2017) with the later

characterization of the linear spatiotemporal RFs of the input neurons (Arenz et al., 2017)

also revealed that T4 and T5 cells receive input from tonic neurons (such as Mi4, Mi9, and

Tm9) that carry a slow, temporally low-pass filtered signal within one column, as well as

from transient neurons (such as Mi1, Tm1, Tm2, Tm3, and Tm4) that carry a fast, temporally

band-pass filtered signal within adjacent columns (Borst et al., 2020).
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1.5.3 Coincidence Detectors

As individual photoreceptors cannot detect motion, motion detection requires information

from at least two neighboring photoreceptors, which send their outputs to a coincidence

detector that can further read out the direction of motion from those signals. The main rules

when building such a coincidence detector (Borst et al., 2020) are: 1. It needs to receive at

least two inputs that are offset in space; 2. These inputs should be asymmetrically filtered in

time to allow the coincidence to happen; 3. The signals arriving from the two inputs have to

interact with each other in a non-linear way, allowing the direction of motion to be extracted

(specifically, there should be a response to the motion in one direction and no response to the

motion in the other). To complete the full elementary motion detector (EMD), two such

coincidence detector units that are mirror-symmetrical to each other are required (Reichardt

1987; Borst and Egelhaaf 1989). Subtracting the signal of two subunits with the opposite

direction preference produces a fully opponent response: consequently, producing a positive

response to motion in one direction and a negative one in response to motion in the other

direction.

In the case of the fly visual system, the cells’ dendritic arbors receive parallel inputs from

multiple columns, with a single arbor receiving inputs from columns signaling different

positions in the visual field, depending on the cell types of the input neurons (Takemura et al.,

2017). These signals are non-linearly combined within T4 and T5 cells so that stimuli

traveling along one direction (the so-called ‘preferred direction’) are amplified, and stimuli in

the opposite direction (the so-called ‘null direction’) become suppressed.

What computation happens between these signals determines the nature and the directional

preference of the detector (Figure 6). Historically, two of the most famous detectors that have

been used to explain motion detection in Drosophila are Hassenstein–Reichardt (HR;

Hassenstein and Reichardt, 1956) and Barlow–Levick (BL; Barlow and Levick, 1965)

detectors. Recently, a new detector has been added to the collection, created as a combination

of the two: Hassenstein–Reichardt/Barlow–Levick (HR/BL; Arenz et al., 2017) detector.

Within each subunit of the HR detector, direction selectivity is achieved through “preferred

direction enhancement”. This means that when the two input signals (delayed and

non-delayed) arrive at the non-linear processing stage simultaneously, which happens when

the delayed signal gets activated first, the signals enhance each other via an operation

equivalent to multiplication. The corresponding direction of motion is, therefore, the
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detector’s preferred direction. In other words, the HR detector enhances responses to motion

in the preferred direction by combining offset excitatory inputs.

Figure 6. Motion detectors. Examples of A. Hassenstein-Reichardt, B. Barlow-Levick, and C.

Hassenstein-Reichardt/Barlow-Levick motion detectors.

In the BL detector, direction selectivity is achieved through “null direction suppression”.

Here, activity is suppressed when both input signals arrive at the non-linear processing stage

simultaneously. This operation is equivalent to a division, and the corresponding direction of

motion is, therefore, the detector’s null direction. Or, biologically, the BL detector uses

inhibitory input to “veto” an offset excitatory input, suppressing motion in the null direction

(Gruntman et al., 2018).

Recently proposed HR/BL detector combines both HR and BL detectors and, consequently,

accounts rather well for both preferred direction enhancement on the preferred side and null

direction suppression on the null side of the dendrite, thus reflecting the basic response

properties of T4 and T5 cells. In particular and in contrast to either detector alone, the model

captures the high degree of direction selectivity that is observed in T4 and T5 cells right at

the first stage, where direction selectivity emerges (Haag et al., 2016; Leong et al., 2016;

Arenz et al., 2017). Intriguingly, this algorithmic input structure is rather well reflected by the

anatomic arrangement of presynaptic cells and their temporal filtering properties: fast Mi1

and Tm3 are positioned in the central part of the T4 dendrite, while slow neurons Mi4/CT1

and Mi9 are located at the null and preferred flanking sides, respectively. For T5, similarly,

fast Tm1, Tm2, and Tm4 are centrally located, while slow CT1 and Tm9 act on the null and

preferred sides.

The core process of direction selectivity as implemented on the dendrites of T4 and T5 cells

comprises both an enhancement of signals for motion along their preferred direction and a

suppression of signals for motion along the opposite direction (Haag et al., 2017). This
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combined strategy ensures a high degree of direction selectivity right at the first stage where

the direction of motion is computed.

1.5.4 Beyond the First Stages of Motion Detection

At the subsequent motion detection processing stage, information about behaviorally

relevant optic flow fields is extracted by a set of wide-field neurons called lobula plate

tangential cells (LPTCs). LPTCs' characteristic feature is their motion opponency: they

respond to motion along their preferred direction with depolarization and they hyperpolarize

when stimulated by motion in the opposite direction (Hausen 1976; Hausen, 1984; Joesch et

al., 2008), just like the subtraction stage of the fully opponent motion detector.

LPTCs derive their flow-field sensitivity from integrating direct excitatory, cholinergic

signals from ON and OFF selective T4 and T5 cells and indirect inhibition from bi-stratified

lobula plate intrinsic neurons (LPi) activated by neighboring T4/T5 terminals. These signals

are integrated onto the large LPTCs dendrites within selected layers of the lobula plate

(Schnell et al., 2012; Mauss et al., 2014), and, as a result, LPTCs are more specifically tuned

to particular flow fields and do not respond to other flow fields, even when they partially

match their preferred flow field within certain patches of the visual field (e.g., translation

versus expansion) (Mauss et al., 2015).

1.6 Scopes and Aims of the Thesis

Contrast normalization is a canonical computation found in the visual systems of various

vertebrates, that keeps the neural representation of stimuli robust despite varying contrast

conditions in the environment. The role of contrast normalization in the early visual system

of Drosophila, however, and specifically within the motion detection circuit and its main

inputs, has not yet been described.

During my PhD, I studied the effects of contrast normalization on neuronal processing and

motion detection, as well as its effect on the filtering properties of the neurons.

In my first project, as described in Drews et al. (2020), we focused on the question: “What

role does contrast normalization play in the motion detection circuit of Drosophila?”. We

found at which stage of the early visual processing in the optic lobe contrast normalization

first arises, showed the suppressive effect that it has on the amplitude of the signal, and

categorized the major inputs of the motion detection circuit into those affected by contrast

normalization and the ones that are not. We suggested possible mechanisms via which
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contrast normalization is implemented and showed the importance of neural feedback. We

also studied the effect that contrast normalization has on motion detection and concluded that

it improves the performance of the motion detection circuit in response to natural stimuli.

Additionally, we found that, when included in a motion detection model that would normally

underperform when compared to the responses of single cells, contrast normalization

improves the model's performance. It allowed us to fine-tune the model, and might, thus, be

the missing element in our understanding of motion detection.

In my second project, described in Pirogova and Borst (in revision), we aimed to answer the

question: “What effect does contrast normalization have on the dynamics of the neurons in

the motion detection circuit of Drosophila?”. We investigated the impact of static and

dynamic surround stimuli on the cell’s responses to a central stimulus and determined that it

affected the temporal dynamics of the signal, in addition to suppressing the signal’s

amplitude. We asked how the effects of contrast normalization influence the filtering

properties of the visual neurons when they are categorized with artificial stimuli. We also

further narrowed down the search for the mechanism behind contrast normalization in the

motion detection circuit of Drosophila.

Overall, we demonstrated the presence of contrast normalization early in the Drosophila

optic lobe, showed that it suppresses response amplitude and increases response speed,

confirmed that it partially relies on the neuronal feedback, narrowed down the search for the

implementation mechanism, and demonstrated that normalization improves motion detection

in the model responses to natural stimuli.
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SUMMARY

Sensory systems need to reliably extract information
from highly variable natural signals. Flies, for
instance, use optic flow to guide their course and
are remarkably adept at estimating image velocity
regardless of image statistics. Current circuit models,
however, cannot account for this robustness. Here,
we demonstrate that the Drosophila visual system
reduces input variability by rapidly adjusting its sensi-
tivity to local contrast conditions. We exhaustively
map functional properties of neurons in the motion
detection circuit and find that local responses are
compressed by surround contrast. The compressive
signal is fast, integrates spatially, and derives from
neural feedback. Training convolutional neural net-
works on estimating the velocity of natural stimuli
shows that this dynamic signal compression can
close the performance gap between model and or-
ganism. Overall, our work represents a comprehen-
sive mechanistic account of how neural systems
attain the robustness to carry out survival-critical
tasks in challenging real-world environments.

INTRODUCTION

Visual motion represents a critical source of sensory feedback
for navigation. Self-motion results in particular patterns of local
directional cues across the retina. Detection of these optic flow
fields allows animals to estimate and control their current head-
ing [1]. Flies, for instance, react to whole-field retinal motion by
turning in the same direction as their surroundings. This optomo-
tor response enables them to maintain a straight path under per-
turbations as well as over long distances [2, 3].
For the reflex to work effectively, biological motion detectors

need to respond reliably and independently of the particular vi-
sual statistics of the environment. This poses a challenge given
the complexity of natural scenes [4, 5]. Motion vision systems
therefore need to employ processing strategies that maintain
robust performance despite the variability of natural visual
input.

Recent circuit mapping efforts have yielded unprecedented
insight into the neural substrate ofmotion detection inDrosophila
[6, 7]. The fly optic lobe consists of sequential neuropils (retina,
lamina, medulla, lobula, and lobula plate) and is arranged in
columns that process visual input retinotopically. In various com-
binations, lamina cells L1–L5 feed into a light-sensitive ON or a
dark-sensitive OFF pathway, each comprising at least four cell
types in the medulla [8]. Medulla units fall into two classes char-
acterized either by transient temporal filtering and moderate
center-surround antagonism in their spatial receptive field (Mi1
and Tm3 for ON; Tm1, Tm2, and Tm4 for OFF) or by tonic re-
sponses and strong antagonistic surround (Mi4 and Mi9 for
ON; Tm9 for OFF) [9–13]. Postsynaptic T4 and T5 cells then
compute local ON and OFF motion, respectively, by comparing
medulla signals with different dynamics across neighboring col-
umns [8, 14–19]. Jointly, they are necessary for the optomotor
response [20]. By pooling appropriate T4 and T5 signals, lobula
plate tangential cells (LPTCs) detect optic flow fields that corre-
spond to rotations around different body axes and ultimately
control turning [3, 21–23].
For artificial stimuli, fly motion processing is well explained by

correlation-based detector models that rely on multiplication of
spatially adjacent, asymmetrically filtered luminance signals
[24]. These elementary motion detectors (EMDs) account for
subtle features of behavioral and neural responses such as
pattern-induced shifts in velocity tuning [25, 26], intrinsic velocity
gain control [27], or reverse-phi sensitivity [28, 29]. However,
EMD output strongly depends on contrast as defined by the
average difference between light and dark [26]. EMDs thus
invariably confound image contrast with velocity. Since local
contrast varies substantially within natural images [4], output
from individual EMDs is sparse and fluctuates heavily under
naturalistic conditions (Figures S1A–S1C). Motion responses in
flies, however, have been shown to be highly robust, across
both time and different natural scenes [30, 31].
Various general mechanisms for adaptation to naturalistic

signals have been described in the fly visual system. These
include gain control in photoreceptors or LPTCs [32–34], redun-
dancy reduction through lateral inhibition [35], subtractive
enhancement of flow field selectivity [36], and tailoring of
processing to fundamental natural scene statistics [31, 37,
38]. However, none effectively address the problem of contrast
fluctuations.
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In vertebrate visual systems, contrast sensitivity is continu-
ously regulated through the mechanism of divisive normalization
[39–41]. Here, the response of a neuron is effectively divided by
local contrast, estimated as the average activity within a popula-
tion of neighboring neurons. The process compresses signals of
varying contrast into a fixed range by dynamically adjusting gain
to current conditions [5] and renders the neural representation of
stimuli largely invariant with respect to contrast. However, so far,
no comparable mechanism has been described for the inverte-
brate visual system.

Here, we investigate how the fly visual system copes with
contrast variability and demonstrate that dynamic signal
compression based on divisive contrast normalization renders
motion processing robust to the challenges imposed by natural
visual environments.

RESULTS

Fly Motion Responses Are Robust to Natural Scene
Variability
To rigorously assess the robustness of Drosophila motion pro-
cessing, we measured optomotor responses to a diverse set
of moving naturalistic panoramas on a walking treadmill setup
(Figure 1A). Fly turning was highly consistent across images
and velocity tuning curves showed virtually no variation over
different scenes, matching previous findings [31] (Figure 1B; Fig-
ure S1). To quantify reliability at the neural level, we recorded the
membrane potential of horizontal system LPTCs that detect

optic flow fields corresponding to yaw rotation (Figure 1C).
Potential was tuned to scene velocity and again exhibited little
image-dependent variation (Figure 1D). Additionally, membrane
voltage proved highly stable across time. This was consistent
with earlier work in hoverflies [30].
To perform a consistent comparison, we tested the robust-

ness of EMDs on the same set of stimuli as in behavior and elec-
trophysiology (Figure 1E). As anticipated from a multitude of
similar studies [31, 37, 42, 43], responses were remarkably unre-
liable across time and images (Figure 1F). For most images,
temporally resolved output fluctuated strongly, average ampli-
tudes differed, and tuning curves exhibited peaks at different
velocities. Overall, EMDs provided a poor readout of true image
velocity. This stands in stark contrast to the experimentally
observed robustness of motion responses and leads to the
central question: how does the fly visual system compensate
for natural contrast variability?

Sensitivity of Optomotor Response Is Modulated by
Surround Contrast
We designed an optomotor stimulus to establish whether
Drosophila dynamically adapt the sensitivity of motion-induced
turning to image contrast, which could serve to normalize varia-
tion within natural scenes. The stimulus segregated the visual
field into a background and a foreground pattern (Figure 2A).
The background contained random luminance fluctuations but
no net motion. Pattern movement within the foreground window
triggered turning. For both, average contrast could be controlled
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Figure 1. Flies Respond More Robustly to
Natural Scene Variability Than Predicted
by Correlation-Based Motion Detectors
(A) Illustration of behavioral set-up. Tethered wild-

type Drosophila were stimulated with translating

natural images.

(B) Left: turning responses for images moving at

80!s"1 (n = 16 flies). Each color indicates a distinct

scene. Images moved during gray-shaded period.

Right: velocity tuning curves for all measured

scenes (averaged between 0 and 1 s after motion

onset).

(C) Illustration of fly visual system. Photoreceptor

signals are processed in five retinotopically ar-

ranged neuropils. Wide-field lobula plate tangen-

tial cells (LPTCs) respond to particular optic flow

fields.

(D) Left: membrane potential of horizontal system

LPTCs in response to images moving at 20!s"1

(n = 11 cells from 9 flies). Right: velocity tuning

curves (averaged between 0 and 3 s after motion

onset).

(E) Schematic of an individual correlation-based

elementary motion detector (EMD; t denotes

delay line; 3, multiplication; –, subtraction).

(F) Left: responses of an array of EMDs to stimu-

lation with natural images moving at 20!s"1. Right:

velocity tuning curves of EMD array (evaluated like

LPTC output). Note that in contrast to experi-

ments, model responses were averaged across

many different starting phases. Shaded areas

around curves indicate bootstrapped 68% confi-

dence intervals.

See also Figure S1 and Table S2.
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independently. We confirmed that the background by itself pro-
duced no net activity in EMDs (Figure 2B).
At zero background contrast, foreground motion induced a

reliable optomotor response (Figure 2C). Turning was fully sup-
pressed at maximum background contrast, proving that turning
gain is controlled by surround contrast. Average field luminance
was constant for all conditions, so linear processing could not
account for the phenomenon. A full measurement of contrast
tuning curves for foreground motion revealed a smooth shift of
the dynamic range of the optomotor response toward the current
surround contrast (Figures 2D and 2E).
To efficiently map features of contrast gain control in a single

stimulus condition, we sinusoidally modulated background
contrast over time, which resulted in oscillations around mean
turning (Figures 2F and 2G). Whenever background contrast
was high, syndirectional rotation in response to motion was

transiently suppressed. Evaluating oscillation amplitude thus
allowed a readout of the level of contrast-induced gain adjust-
ment. We determined the spatial scale of suppression by varying
the spacing between foreground and a windowed background,
separated by uniform gray (Figure 2H). Modulation fell with dis-
tance between motion stimulus and background stripe and
dropped to baseline at approximately 35!, so contrast estimation
was non-local but spatially limited (Figure 2I; Figures S2A and
S2B; full width at half maximum of 43.8! for zero-centered
Gaussian least-squares fit to mean tuning curve).
When we varied oscillation frequency in the background, sup-

pression followed contrast changes up to fast timescales
beyond 3Hz (Figure 2J; Figures S2C–S2F). However, modulation
decreased at lower frequencies than for equivalent foreground
oscillations, which is indicative of temporal integration. We
additionally evaluated the lag between contrast oscillation and
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Figure 2. Sensitivity of Drosophila Optomo-
tor Response Is Controlled by Surround
Contrast
(A) Experimental set-up. Visual display is separated

into two areas whose contrast can be set inde-

pendently.

(B) Bottom: space-time plot of base stimulus.

Foreground pattern moved during time span indi-

cated by dashed lines; background is dynamic but

contains no coherent motion. Top: time-averaged

response of EMD array along azimuth. Only fore-

ground produced net activity.

(C) Turning responses for extreme background

contrast conditions (n = 16 wild-type flies) at

foreground contrast 12.5%. Gray-shaded area in-

dicates motion.

(D) Mean rotation (averaged between 0 and 1 s after

stimulus onset) as a function of foreground contrast

for two background conditions (n = 16; gray arrow

indicates foreground contrast depicted in C).

(E) Heatmap of mean rotation for multiple back-

ground conditions. With increasing background

contrast, optomotor sensitivity shifted rightward

(n = 16).

(F) Example stimulus for mapping magnitude of

sensitivity shift. Background contrast was modu-

lated at 1 Hz.

(G) Left: baseline turning response in the absence of

background contrast (n = 16, foreground contrast

25%). Right: turning response for sinusoidal change

in background contrast (data taken from spatial

experiment evaluated in I at distance 15!). During

high-contrast phase, optomotor response was

suppressed; turning modulation allowed readout of

background-induced changes in gain.

(H) Illustration of spatial oscillation experiment.

Distance indicates separation between centers of

foreground motion and flanking background.

(I) Turning response modulation as a function of

distance between motion stimulus and background

(n = 16). Gray-shaded bar indicates 68% confi-

dence interval around baseline modulation in the

absence of background.

(J) Turning response modulation as a function of

carrier frequency for either foreground (n = 13) or

background (n = 13). Shaded area around curves

indicates bootstrapped 68% confidence interval.

See also Figure S2, Table S2, and Videos S1 andS2.
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turning by means of cross-correlation (Figures S2G and S2H).
The maximum suppressive effect of background modulation
was delayed with respect to the effect of foreground modulation
by approximately 70ms (bootstrapped 95%CI: 33–114ms). This
supported the previous conclusion that themechanism for back-
ground contrast estimation operates on slower timescales than
the primary motion pathway. Silencing T4 and T5 cells abolished
all contrast-guided oscillatory turning (Figures S2I–S2K), sug-
gesting that contrast adaptation is not mediated by a system
parallel to motion detection [44]. Our experiments thus point to
a rapid, spatially distributed gain control mechanism that arises
in early visual processing.

Signal Compression Emerges in Transient Medulla
Neurons
We next used two-photon calcium imaging to locate the neural
origin of contrast adaptation. The calcium indicator GCaMP6f
was genetically expressed in particular cell types [45]. We tar-
geted visual stimuli to individual neurons by determining recep-
tive field coordinates through a combination of stochastic stimuli
and online reverse correlation (Figures 3A and 3B; STAR
Methods). This procedure additionally yielded estimated linear
receptive fields for L1–L5, analogously to the ones previously
described for medulla neurons [9] (Figures S3A–S3T). Consistent
with earlier functional work [29, 46], spatiotemporal filters group-
ed into tonic (L3) or transient units (L1, L2, L4, and L5) like they
did in the medulla. In contrast to all other lamina cells, we found
that the polarity of the L5 receptive field center is ON.

To precisely map context-dependent changes in contrast
sensitivity for a given cell type, we then presented drifting sine
gratings with separately controlled contrast in the foreground
(as defined by a 25! circular window centered on the receptive
field) and the background (Figure 3C). At a fixed foreground
contrast, L1 activity followed local grating luminance and was
independent of background contrast (Figure 3D). Responses in
downstream synaptic partner Tm3, however, showed the signa-
ture of gain control as signal amplitude was increasingly sup-
pressed by growing surround contrast (Figure 3E).

We performed these experiments for all major columnar cell
types in the circuit as well as T4 and T5 cells (Figure 3F). To
obtain contrast tuning curves, we evaluated calcium modulation
at the stimulus frequency. Lamina units tracked foreground
contrast but were weakly, if at all, modulated by the surround
except for a vertical shift at low levels (Figures 3G–3K). This
was likely due to background leaking into the receptive fields
since antagonistic surrounds extend beyond 25! for some cell
types (Figure S3) [9]. In the medulla (Figures 3L–3U), tonic Mi4,
Mi9, and Tm9 showed similar tuning as L1–L5 and again little sur-
round dependency. However, for all transient cells (Mi1 and Tm3
for ON; Tm1, Tm2, and Tm4 for OFF), increasing background
contrast had a strongly suppressive effect, which is a hallmark
of divisive contrast normalization [41].

As with the corresponding behavioral experiments (Figure 2),
linear receptive fields could not explain the effect given that
the average luminance was constant for all conditions. Curves
were shifted rightward on the logarithmic axis, which corre-
sponds to divisive stretching in linear contrast space. Impor-
tantly, preferred direction responses in T4 and T5 were also
strongly background dependent (Figures 3P and 3U) even

though not all their medulla inputs are subject to gain control.
Finally, sensitivity to foreground contrast was generally higher
in ON than OFF units.
Several cell types—particularly medulla transient cells—

showed a dependency between fluorescence modulation at
the target frequency and average response (Figure S4), possibly
due to temporal integration by the calcium indicator [47].
Depending on this average activity, a saturating transformation
between calcium signal and GCaMP fluorescence could by itself
introduce compression of strong signal amplitudes due to ceiling
effects at the far end of the sensor’s dynamic range. To rule this
out, we directly compared mean activity with oscillation ampli-
tude and found no region in which this correlation was negative
(Figures S4Q–S4S).
To quantify tuning curves in detail, we fit a closed-form model

resembling commonmodels of divisive normalization to the data
(Figure 3V; STARMethods) [41, 48]. Here, response gain is regu-
lated by a divisive term that depends on background contrast
while a linear term represents the combined contribution of fore-
ground contrast and background leakage. The model accurately
reproduced tuning curves for each cell type (Figure 3W; Table
S1). Critically, it accounted for vertical shifts as well as sigmoidal
tuning curves and context-dependent changes in contrast
sensitivity.
We computed a normalization index from model parameters

that estimates the degree of normalization. Given that different
cell types had different baseline sensitivities and that horizontal
shifts on a logarithmic scale correspond to multiplication, we
quantified the relative factor by which tuning curves would shift
when background contrast was increased from 0% to 100%
(STAR Methods). This index was substantially higher in transient
medulla cells (Mi1, Tm3, Tm1, Tm2, and Tm4) and direction-
selective T4 and T5 cells than in L1–L5 or tonic medulla units
(Mi4, Mi9, and Tm9; Figure 3X). Interestingly, L2 and L5 exhibited
mildly elevated normalization indices. For L2, this may be related
to previously described non-linearities in its receptive field
structure [49].

Normalization Relies on Fast Integration of a Pool of
Transient Units
Overall, fly contrast gain control appeared to be based on divi-
sive normalization that predominantly originates in medulla units
with transient response dynamics. We focused on these neurons
to investigate the mechanism in detail. Responses in Mi1, Tm1,
Tm2, and Tm3 were equally suppressed for all background
grating directions relative to a reference stimulus with zero back-
ground contrast (Figure 4A). Temporal frequency tunings for
suppression resembled band-pass filters with a peak at 2 Hz
(Figure 4B). Crucially, static backgrounds did not have a sup-
pressive effect. Suppression steadily increased with the outer
diameter of an annulus containing the background pattern,
which again indicated an extended integration area (Figure 4C).
Spatiotemporal features of neural gain control thus matched our
findings from behavior (Figure 2).
To determine the temporal scale of normalization, we de-

signed a contrast-step stimulus in which the foreground was
replaced by a single light pulsematching each cell type’s polarity
(Figure 4D). By varying the time interval between motion onset of
the background grating and the onset of the pulse, we scanned
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the temporal profile of the suppressive signal. For the tested
neurons Tm3 and Tm2, we found virtually immediate response
reduction within a measurement precision of 50 ms given by
the smallest tested onset difference. We observed transient
ringing of suppression strength at the background temporal fre-
quency. Ringing was stronger when the grating was present

before motion onset compared to when it was masked by uni-
form gray. A similar effect has been described in LPTCs [26],
where it results from neural integration of multiple transient,
out-of-phase inputs. In sum, these findings indicated that sur-
round suppression derives from a pool of transient neurons
that are not selective for direction. Both isotropy and frequency

X

/�
FG contrast 32%

1Hz component

D E
7P�
FG contrast 32%

0L�

7P�

0L�

0L�

7�

7�

F

/� /� /� /� /�

/R
EX

OD
0
HG
XO
OD

/D
P
LQ
D

7P�

7P�

7P�

7P�

A

Stochastic
stimulus

Receptive 
field

Cell-centered
stimulus

1 2 3

c50

cbg

V

BG contrast
0

8%

16%

32%

64%

100%

C

/�
GCaMP6f

B

H I J K

M N O P

R S T U

L

Q

W

G

Figure 3. Contrast Normalization Emerges in Transient Medulla Neurons
(A) Schematic of experimental procedure. (1) White noise stimulus. (2) Receptive field reconstruction from single-neuron calcium signals. (3) Drifting grating with

different contrasts in foreground and background.

(B) Two-photon image of L1 axon terminals expressing GCaMP6f. Green line indicates example region of interest.

(C) Experimental protocol. Darker color shade corresponds to higher background contrast as used in (G)–(U). Zero background contrast condition is shown in

black.

(D and E) Average calcium responses of L1 (D) and Tm3 (E) for fixed foreground and various background contrasts.

(F) Schematic of the motion circuit including all neurons measured.
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as well as T4 and T5, exhibited strongest degree of normalization.

See also Figures S3 and S4, Tables S1 and S2, and Video S3.
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tunings were strikingly similar to filter properties of the transient
lamina and medulla units involved in motion detection (Figures
S3U and S3V). This suggested that one or more of these cell
types provides input to the suppressive pool.

To determine whether a mechanism that integrates transient
units across space to divisively suppress local responses could
reproduce our findings, we built a time-resolved, data-driven
model. The model faithfully predicted direction, frequency, and
size tunings, as well as contrast-step ringing, T4 and T5 re-
sponses, and LPTC output for our behavioral stimuli (Fig-
ure S5A–K).

Neural Feedback Is Critical for Contrast Normalization
Spatial pooling, however, could occur over either feedforward
signals from the lamina or feedback from themedulla (Figure 5A).
In vertebrate systems, it has provendifficult to distinguish the two
[41, 50, 51]. Fly transient units in the laminaormedullahavesimilar
temporal properties (Figures S3U and S3V), and both implemen-
tations produce equivalent steady-state output [48], so we used
genetic silencing to pinpoint the source. We co-expressed a cal-
cium indicator and the tetanus toxin light chain (TNT; STAR
Methods) [52] in different medulla cell types, blocking chemical
synaptic output and thus feedback from the entire neuron array
but leaving feedforward input and calcium signals intact.

For the ON pathway unit Tm3, we observed significantly
reduced suppression across background frequencies when
compared to controls with inactive TNT (Figures 5B and 5C).
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Figure 4. Neural Contrast Normalization
Relies on Rapid Integration of a Pool of
Transient Units
(A) Polar plot of response amplitude for different

directions of background motion. Black dashed

line represents response to reference stimulus

with background contrast of 0%. For each neuron,

foreground contrast was chosen to maximize

possible background suppression (Mi1: 16%,

Tm3: 32%, Tm1: 64%, Tm2: 100%).

(B) Responses for different background contrast

frequencies, revealing band-pass tuning of sup-

pression.

(C) Suppression strength increased with outer

diameter of background annulus (Mi1: 21/9

cells/flies, Tm3: 20/6, Tm1: 18/6, Tm2: 21/4 in A–C).

(D) Top left: x-y and x-t plots of contrast-step

stimulus for Tm3 (ON center). Background

contrast frequency was 3 Hz. Center left: velocity

function vbg(t) of background and intensity func-

tion Icen(t) of center pulse. Bottom left: mean re-

sponses of Tm3 for different time intervals Dt.

Right: mean peak amplitude for Tm3 and Tm2

(Tm3: 19/6, Tm2: 20/5). Black line shows condi-

tion where the background grating was masked

before onset; red where background was visible

but static.

Shaded areas around curves indicate boot-

strapped 68% confidence intervals. See also

modeling in Figure S5, Table S2, and Video S4.

When measuring tuning curves (similar to
Figure3butonly for backgroundcontrasts
0% and 100%), baseline contrast sensi-
tivity as measured by the semi-saturation

constant of model fits was significantly increased (Figure 5D).
This suggests that Tm3 cells were disinhibited due to a reduced
pool signal.Weobserved similar effects forON-sensitiveMi1 cells
(Figures 5E and 5F), but the impact was less pronounced than for
Tm3 cells. Absolute signal amplitude was generally not affected
by silencing, demonstrating that cells remained visually respon-
sive in the presence of TNT (see Figure 5B).
In the OFF pathway, blocking Tm1 cells did not have any sig-

nificant effects (Figures 5G and 5H). In contrast, when blocking
Tm2, we observed an almost complete loss of background sup-
pression across frequencies (Figure 5I). For this cell type, we did
not observe any change in contrast tuning curves for the 0%
background condition, and consequently, the fitted semi-satura-
tion constant was not affected (Figure 5J). For full background
contrast, however, suppression at high foreground contrasts
was strongly reduced. Additionally, background leakage at low
foreground contrasts increased substantially compared to con-
trol flies. As with Tm3 and Mi1, this is compatible with Tm2 cells
being disinhibited due to the silencing of a suppressive signal
derived from recurrent output. We therefore conclude that in
the fly, contrast normalization is at least partially based on feed-
back from a combination of medulla neurons.

Contrast Normalization Improves Robustness to Natural
Scene Variability
Could this type of response normalization account for the
robustness of fly motion detection? Previous work on EMDs
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and natural scenes has exploited compressive transforms but
did so heuristically or without surround-dependent gain control
[42, 43, 53]. We evaluated natural image responses in the

A B

C D

FE

G H

JI

Figure 5. Neural Feedback Underlies Contrast
Normalization
(A) Schematic of feedforward and feedback model

for surround suppression.

(B) Mean responses of Tm3 for TNT block (red) and

TNTin controls (black) at background frequency

16 Hz (dashed line indicates reference response and

solid line the response at full background contrast;

Tm3 block: 21/5 cells/flies, Tm3 control: 20/5).

(C) Left: frequency tuning for block experiment. Black

dashed line represents response to reference stim-

ulus. Right: average amplitude over all frequencies

was higher for Tm3 block flies (Mann-Whitney U: 8,

***p < 0.001).

(D) Left: foreground contrast tuning for block exper-

iments at 0% and 100% background contrast. Right:

contrast sensitivity was increased for Tm3 block flies

as measured by lowered semi-saturation constant

c50 (Mann-Whitney U: 39, ***p < 0.001).

(E) Blocking results for Mi1 (as in C). Average ampli-

tude over all frequencies was reduced for Mi1 block

flies (Mi1 block: 20/5, Mi1 control: 21/6; Mann-

Whitney U: 143, *p = 0.04).

(F) Blocking results for Mi1 (as in D). Contrast sensi-

tivity was increased for Mi1 block flies (Mann-Whit-

ney U: 128, *p = 0.02).

(G) Blocking results for Tm1 (as in C). No significant

effect was found for Tm1 block flies (Tm1 block: 20/5,

Tm1control: 19/5;Mann-WhitneyU: 169,NSp=0.28).

(H) Blocking results for Tm1 (as in D). Sensitivity was

not affected (Mann-Whitney U: 158, NS p = 0.19).

(I) Blocking results for Tm2 (as in C; Tm2 block: 20/5,

Tm2 control: 25/6; Mann-Whitney U: 17, ***p < 0.001).

(J) Blocking results for Tm2 (as in D; Mann-Whitney

U: 239, NS p = 0.49). Semi-saturation constant at 0%

background contrast did not change for Tm2 block

flies. Shaded areas show bootstrapped 68% confi-

dence intervals around the mean. Error bars show

bootstrapped 68% confidence intervals around the

median.

See also Table S2.

data-driven LPTC model and found moder-
ate reduction of cross-image variability
compared to a model with bypassed
normalization (Figures S5L–S5N). However,
post hoc ablation may specifically disad-
vantage the simpler model. To investigate
performance limits in a principled way, we
pursued a task-driven approach.
Recent progress in deep artificial net-

works has made it feasible to use image-
processing models of neural systems for
rigorously assessing performance on real-
world problems [54–56]. EMD-like architec-
tures are concisely expressed asmulti-layer
convolutional networks [54] and fully differ-
entiable, rendering them amenable to opti-
mization methods like gradient descent.

We designed a fly-like neural network and independently trained
possible types of contrast processing such that eachmodel class
could optimally adapt to a specific, behaviorally relevant task.
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All models featured linear, spatiotemporally separable input
convolutions (Figure 6A). We evaluated three alternatives for
contrast transformation: a linear stage where output was trans-
mitted unchanged, a statically compressive stage that limited
signal range independently of context, and a dynamic compres-
sion stage with adaptive gain depending on the output of a
contrast-sensitive surround filter (Figures 6A and 6B; STAR
Methods). Resulting output from two distinct channels was
then processed according to a multiplicative EMD scheme.
Through backpropagation and stochastic gradient descent,
models were trained to estimate the true velocity of natural im-
ages translating at random speeds.

All models successfully learned the task on the training set
(Figure 6C). We initialized convolutions randomly but after
training observed antagonistic spatial filters and transient tem-
poral filters where one channel was phase delayed with respect
to the other (Figure 6D; Figures S6A–S6C). Models thus made
extensive use of redundancy reduction through center-surround
configurations [35] and discovered the EMD strategy of delay
and compare [26]. Normalization fields for the dynamic model
spanned approximately 30! in azimuth and invariably excluded
information from the center of the filter (Figure 6E; Figure S6C).
Interestingly, dynamic models exploited normalization in both

channels and switched normalization strategies during training,
transitioning from purely static to purely context-dependent
compression (Figures S6D and S6E). Overall, normalized net-
works acquired representations that matched filtering and gain
control properties of the fly medulla.
When tested on previous experimental stimuli (Figure 1), linear

models exhibited improved velocity tuning curves compared to a
standard EMD (Figures 1F and 6F; Figure S6F), but estimates still
varied substantially across time. Dynamic models, on the other
hand, proved extremely robust at extracting scene motion
across time, images, and velocities within the velocity range of
the training set (Figures 6F and 6G). Given that all networks
were based on amultiplicative EMD scheme, typical phenomena
like the velocity optimum were still present. We compared
average estimation error on a held-out test set and found both
types of non-linear compression to vastly outperform the linear
stage (Figure 6H). The performance of static compression indi-
cates that simple response saturation already enhances robust-
ness to contrast fluctuations in natural scenes. However, fly-like
context sensitivity consistently decreased test error over the
static non-linearity (error reduction 22.0%–29.2%; bootstrapped
95% CI). Finally, we benchmarked generalization on a fully inde-
pendent image set (Figure S6G), where linear models failed
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Figure 6. Contrast Normalization Enhances
Robustness to Natural Scene Variability
(A) Schematic of single convolutional input filter.

Motion stimuli are sequentially processed by a

spatial 3 3 3 3 1 (azimuth, elevation, time) and a

temporal 1 3 1 3 30 filter. Through a transfer

function, the signal is combined with a normali-

zation signal generated by a 11 3 11 3 1 convo-

lution operating on full-wave rectified input signal.

The output of two distinct channels is processed

analogously to multiplicative EMDs.

(B) Input-output relationships for linear, static, and

dynamic models. In the dynamic model, response

sensitivity is a function of normalization field activity.

(C) Training mean squared error (MSE) for two

example models during stochastic gradient

descent.

(D) Spatial and temporal receptive fields for the

two channels of a typical dynamic model. De-

picted are normalized filter weights.

(E) Spatial receptive field of normalization pool for

the model from (D).

(F) Model output for individual images moving at

20!s"1 during gray-shaded period. Gray line in-

dicates target velocity. Left: example model

without non-linearity. Right: example model with

dynamic non-linearity.

(G) Velocity tuning curves of example dynamic

model for individual images (averaged between

0 and 3 s after motion onset). Gray line indicates

true velocity. Gray-shaded area indicates the 99th

percentile of absolute velocities in training set.

(H) Mean performance of trained models on held-

out test set, estimated as root mean square error

(RMSE; n = 22/23/16 for linear/static/dynamic;

*p < 0.001, t = 9.01, Student’s t test with assumed

equal variance; only difference between static and

dynamic was tested). Error bars indicate boot-

strapped 68% confidence intervals.

See also Figure S6.
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catastrophically while both compressive stages retained perfor-
mance. This was particularly pronounced when testing images
with high dynamic range (STAR Methods). Critically, on all data-
sets, dynamic compression resulted in substantial error reduc-
tion with respect to both linear transfer and static compression.

DISCUSSION

In summary, our work represents the first demonstration that
divisive contrast normalization occurs in the fly visual system
and offers a comprehensive look at non-linear response proper-
ties in a virtually complete motion vision circuit. We established
at multiple levels of motion processing that responses to moving
panoramas are substantially more robust than predicted by
correlation-based models of the system. Our behavioral experi-
ments indicate that the sensitivity of the optomotor response is
regulated by average contrast in a spatially confined part of the
visual field. Critically, we traced the emergence of this dynamic
signal compression to local elements in the medulla of the fly
optic lobe and used targeted circuit manipulation to identify
neural feedback as a critical underlying mechanism. Finally,
our task-driven approach revealed that the inclusion of spatial
contrast normalization drastically improves velocity estimation
in correlation-based models of fly motion vision.

Implications for Fly Motion Vision
Previous work on the function of local units in the Drosophila
optic lobe mostly explored linear properties of light responses,
often relying on first-order systems identification techniques
like reverse correlation [9–11, 29]. Investigation of non-linear
contributions generally focused on computations in direction-
selective T4 and T5 cells [13–19, 57, 58].
Here, we describe a powerful non-linearity, adaptive gain con-

trol that occurs in a majority of columnar neurons involved in the
detection of motion. This casts doubt on the extent to which
existing functional descriptions can be generalized. Linear filter
estimates are typically based on responses to dynamic noise
stimuli of fixed amplitude [9, 10, 29]. Our work suggests that
this contrast regime only corresponds to one particular adapta-
tion state for anymeasured cell type, so filter properties may well
differ for stimuli with differing contrast characteristics. Step and
edge responses, for instance, are usually measured on back-
groundswith uniform luminance [11, 12, 18, 59]. This places cells
in a maximally sensitive state due to lack of surround inhibition
and is likely to affect both response amplitude and kinetics.
Signal compression may reconcile observed discrepancies be-
tween studies conducted with different stimuli.
Interestingly, visual interneurons exhibited qualitatively

different sensitivity curves even at constant background contrast.
In the lamina, for instance, only tonic cell type L3 responded lin-
early to increasing visual contrast. Sensitivity curves of transiently
responding cell types like L1 and L2, on the other hand, proved
approximately logarithmic. This is in line with expectations from
previous work in other fly species [60] but deviates from predic-
tions based on white noise characterizations [29].
Moreover, we observed a stark discrepancy in baseline sensi-

tivity between ON- and OFF-sensitive neurons, where tuning
curves of dark-selective units were shifted toward higher pattern
contrast. Notably, due to strong surround suppression, full-field

gratings elicited comparatively weak responses in T5 units
whereas T4 cells were driven effectively by the same stimuli.
This adds to previous work on ON-OFF asymmetries in the
Drosophila visual system [31, 38]. We conclude that even at pri-
mary processing stages, the fly visual system represents
contrast in a multiplexed fashion where individual channels
diverge with respect to how they transmit information about
luminance differences. The function of these asymmetries re-
mains to be investigated.
The proposed model based on divisive normalization accu-

rately captures most features of the observed contrast tuning
curves (see Figure 3; Figure S5; Table S1). Certain discrep-
ancies remain. For instance, the normalization model predicts
that responses for different background contrasts eventually
plateau at the same level. However, we observed in both
behavior (Figure 2E) and T4 responses (Figure 3P) that in the
absence of background contrast, saturation occurred at a lower
level than for other conditions. To explain such non-monotonic
behavior, further investigation of the underlying mechanism is
required.
Divisive normalization of local motion signals has previously

been suggested to occur at the level of LPTCs, through either
isotropic pooling of EMDs in hypothetical secondary cell types
[33] or passive membrane properties of LPTCs [61, 62]. Here,
we show that gain control already originates upstream of mo-
tion-sensitive cell types T4 and T5. However, LPTC-intrinsic
gain control mechanisms, including temporal adaptation [32],
could well be complementary such that at each processing
stage, the fly visual system makes use of compression to opti-
mize the reliability of output signals.
In flies, there is ample evidence for changes in visual coding

that depend on the behavioral state of the animal. Various inter-
neurons within the optic lobe, for instance, are affected by the
activity of octopaminergic projection units, leading to drastic
shifts in response gain or temporal tuning [9, 59, 63–67]. Our cal-
cium imaging experiments were performed in immobilized
Drosophila. It will be of interest to explore whether the properties
of contrast gain control are modulated by locomotion, particu-
larly in highly state-sensitive units like Mi4 [59].

Mechanism of Signal Compression
Our experiments suggest that neural feedback plays a crucial
role in gain adjustment. At this point, the cellular origin of feed-
back is unknown. Present experiments indicate a visual integra-
tion field that spans many columns (Figures 2 and 4). Moreover,
the observed contrast compression appears to be suppressive.
All tested medulla cell types with strong background contrast
dependency emit acetylcholine, which, in the Drosophila visual
system, is generally thought to be excitatory [68, 69]. Inhibitory
interneurons could mediate the required synaptic sign reversal.
Signal compression could then be implemented through lateral
neighbor-to-neighbor interactions between columnar medulla
units where suppressive signals spread through a local network.
Alternatively, we hypothesize that wide-field interneurons pool
local medulla units across multiple columns and provide recur-
rent inhibitory input to the same cells. In our data-driven model,
such a pool cell mechanism accounted for all observed spatio-
temporal properties of signal compression including ringing ef-
fects (Figure S5). Finally, our TNT-based intervention strategy

Current Biology 30, 209–221, January 20, 2020 217
35



should leave coupling via electrical synapses intact [52, 70]. We
can therefore not exclude that gap junctions are also involved in
shaping contrast response properties.

Silencing feedback from individual medulla cell types had dif-
ferential effects, ranging from completely abolished suppression
in Tm2 to unchanged responses in Tm1 (Figure 5). This suggests
either that multiple cell types feed into the pool signal with vary-
ing weight or that alternative mechanisms provide the compres-
sive signal, for example, in Tm1. Moreover, it is an open question
whether all cell types are suppressed by one or multiple pool cell
types. Asymmetries in sensitivity between ON and OFF path-
ways, for instance, could be an indicator for polarity-specific
sources of suppression.

In both distal and proximal layers of the medulla, the class of
neuropil-intrinsic Dm and Pm neurons contains approximately
20 cell types and offers a possible substrate for the mechanism
[71, 72]. These neurons arborize within the medulla and exhibit
diverse stratification and tiling patterns, often spanning dozens
of columns and thus approximately matching the observed sup-
pression field of local units. Dm and Pm units release either
GABA or glutamate for which receptors in the fly visual system
are mostly inhibitory [68], pointing to these cell types as potential
candidates for gain control.

Functional Relevance
Normalization has often been described as a generic mechanism
for removing higher-order correlations from natural signals [5,
73–75]. Here, we close the loop between neural mechanism
and an ecologically critical behavior, the optomotor response,
and demonstrate how contrast gain control can render motion
detection resilient to challenges imposed by natural scene statis-
tics. Specifically, normalization serves to distinguish between
ecologically relevant parameters like retinal image velocity and
nuisance factors like image contrast.

Various biomimetic modeling studies have incorporated
compressive transforms along the motion processing cascade
to improve robustness under naturalistic visual conditions [43,
53, 76]. In contrast to our work, these normalization stages
were not based on experimental evidence, required ad hoc
parameter tuning, and generally operated in the temporal
domain. Interestingly, the fly visual system bases gain control
on a temporally immediate, spatially extended estimate of
contrast. This represents a trade-off where spatial resolution is
sacrificed in favor of temporal resolution, whichmay be advanta-
geous for global optic flow estimation in rapidly moving animals.

To assess the exact causal contribution of contrast compres-
sion to the robustness of velocity estimation in Drosophila, one
would need to disrupt this mechanism specifically while leaving
all other visual processing intact. Silencing the synaptic output of
medulla neurons (Figure 5) demonstrates the importance of neu-
ral feedback for gain control but should additionally affect feed-
forward processing in downstream units, particularly T4 and T5
[11, 12, 77, 78]. Future mapping of the circuits underlying
contrast compression will provide the tools for establishing
causality.

The convolutional network (Figure 6) solves the task of esti-
mating velocity across diverse environments and at little compu-
tational cost, particularly compared to standard optic flow
algorithms like the Lucas-Kanade method [79]. Present findings

may thus aid the design of low-power, low-latency machine
vision systems suitable for autonomous vehicles [80, 81].

Comparison with Other Sensory Systems
Gain control in the Drosophila optic lobe bears a striking resem-
blance to normalization in other systems and modalities like fly
olfaction [82] or mammalian auditory cortex [83] as well as pro-
cessing in vertebrate visual areas from retina to V1 [48, 84–86].
Spatial and temporal tuning or isotropy of non-linear surround
suppression in the lateral geniculate nucleus, in particular, qual-
itatively match that of transient units in the fly medulla [40]. The
present study suggests differences at the implementation level.
For instance, investigations into divisive normalization in
mammalian V1 cells point to feedforward mechanisms underly-
ing gain control whereas the fly visual system appears to rely pri-
marily on feedback signals (Figure 5) [50]. Both systems, howev-
er, realize a similar algorithm. This provides further proof for
evolutionary convergence on canonical solutions in neural sen-
sory processing [41].
Overall, our work establishes the Drosophila visual system

with its defined cell types, known connectivity patterns, powerful
genetic toolkit, and direct correspondence between circuit and
task as a novel model for the study of normalization. It thus
lays the foundation for future mechanistic inquiries into the func-
tional, cellular, molecular, and biophysical underpinnings of a
crucial computation in sensory processing.
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Experimental data (behavior, electrophysiology,

and calcium imaging)

This study https://github.com/borstlab/

normalization_paper

Experimental Models: Organisms/Strains

D. melanogaster: WT: Canton S N/A N/A

D. melanogaster: L1-AD: w1118; VT027316-AD; + Courtesy of A. Nern / Janelia

Research Campus

N/A

D. melanogaster: L1-DBD: w1118; +; R40F12-DBD Courtesy of A. Nern / Janelia

Research Campus

RRID: BDSC_69935

D. melanogaster: L2-AD: w1118; R53G02-AD; + [87] RRID: BDSC_68990

D. melanogaster: L2-DBD: w1118; +; R29G11-DBD [87] RRID: BDSC_70173

D. melanogaster: L3-AD: w1118; R59A05-AD; + [87] RRID: BDSC_70751

D. melanogaster: L3-DBD: w1118; +; R75H07-DBD [87] RRID: BDSC_69459

D. melanogaster: L4-AD: w1118; R20A03-AD; + [87] RRID: BDSC_68957

D. melanogaster: L4-DBD: w1118; +; R31C06-DBD [87] RRID: BDSC_68978

D. melanogaster: L5-AD: w1118; R21A05-AD; + [87] RRID: BDSC_70588

D. melanogaster: L5-DBD: w1118; +; R31H09-DBD [87] RRID: BDSC_68980

D. melanogaster: Mi1-AD: w1118; R19F01-AD; + [12] RRID: BDSC_68955

D. melanogaster: Mi1-DBD: w1118; +; R71D01-DBD [12] RRID: BDSC_69066

D. melanogaster: Tm3-AD: w1118; R13E12-AD; + [12] RRID: BDSC_68830

D. melanogaster: Tm3-DBD: w1118; +; R59C10-DBD [12] RRID: BDSC_69153
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GCaMP6f}VK00005

Bloomington Drosophila Stock Center RRID: BDSC_52869

D. melanogaster: UAS-TNT: +; UAS-TNT; + [52] N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Aljoscha
Leonhardt (leonhardt@neuro.mpg.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster were kept on a 12 h light/12 h dark cycle at 25!C and 60% humidity on standard cornmeal-agar medium.
Genetic expression of effectors was targeted through the Gal4-UAS system [90]. Resulting genotypes and their abbreviations are
listed in Table S2.
Unless stated otherwise, locomotion and tangential cell responses were recorded in wild-type Canton S flies 1 to 5 days after

eclosion (Figures 1 and 2). We used the genetically encoded calcium indicator GCaMP6f [45] to determine the functional properties
of individual cell types (Figures 3, 4, and 5). Throughout silencing experiments (Figure 5; Figure S2), we expressed tetanus toxin
light chain (TNT) or an inactive version (TNTin) in the cell type of interest [52]. For calcium imaging experiments involving silencing
(Figure 5), one day old flies were collected and put on 29!C for 3 days to boost expression of TNT or TNTin.

METHOD DETAILS

Natural image sets
For electrophysiology, behavioral, and modeling experiments, we used images from a published set of 20 natural panoramic scenes
[43] termed dataset A. All images were independently processed as follows: We averaged across color channels and downsampled
the scene to a resolution of 1,600 3 320 pixels (covering 360! sampled at 0.225 pixels per degree along the azimuth) using linear
interpolation. To be able to render 12 bit images on conventional screens with 8 bits of dynamic range, we first performed standard
gamma correction by raising raw pixel values to a power of 0.45 and then clipped the top percent of pixel intensities. The resulting
image was scaled to fill the range between 0 and 255.
For optomotor experiments (Figure 1), we selected a subset of 8 images that covered different types of terrain. From this set, we

again selected a subset of 6 images to determine tangential cell responses. We used all 20 images to build the convolutional network
(Figure 6), randomly assigning 15 scenes to the training and 5 to the test set. Finally, we validated the trained convolutional model with
images from an independent panoramic scene collection [89] consisting of 421 images (Figure S6G). These scenes were kept at their
native resolution of 927 3 251 pixels (corresponding to an azimuthal sampling rate of 0.39 pixels per degree) and processed as
above, yielding dataset B. We then generated two test sets: One had gamma correction applied to limit the images’ bit depth
(‘‘low dynamic range’’ or LDR) and the other one was left at 12 bit depth to produce a dataset with high dynamic range (HDR).

Behavioral experiments
Experiments on the treadmill setup were conducted as described before [20, 31, 44]. Briefly, we tethered flies to a thin metal rod and
placed them on air-cushioned polyurethane balls whose movement was tracked at 4 kHz, allowing for direct readout of rotational
motion along all three axes. Temperature within the vicinity of the fly was 25!C at the start of each experiment. Using a closed-
loop thermoregulation system, we linearly increased it to 34!C within 15 min to encourage locomotion.
For visual stimulation, we used three identically calibrated computer screens that were placed in a rectangle surrounding the fly. To

simulate a cylindrical display, all stimuli were rendered onto a virtual cylinder and distorted accordingly before projection onto
screens. Our setup covered approximately 270! in azimuth and 120! in elevation of the visual field. All stimuli were displayed at
144 Hz and at a spatial resolution greatly exceeding that of the fly eye. Screens had a maximum luminance of approximately
100 cd m-2 and a luminance depth of 8 bit; for all descriptions below, we assume pixel brightness to range from 0 to a maximum
of 1. Patterns were generated in real-time and programmed in Python 2.7 using the game engine Panda3D.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Custom-written software in Python This study https://github.com/borstlab/

normalization_paper

ScanImage 3.8 [88] http://scanimage.vidriotechnologies.

com/display/SIH/ScanImage+Home

Other

Natural images for experiments and modeling [43] N/A

Natural images for modeling [89] https://doi.org/10.4119/unibi/2689637
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Wemeasured velocity tuning curves (Figure 1) for 8 distinct natural images at 6 logarithmically spaced velocities ranging from 5 to
1,280!s-1. Initial image phase was randomized on each trial. Scenes were displayed at their native gamma-corrected mean
luminance and contrast (see above). On each trial, images stood still for 1.5 s, then were rotated at the chosen velocity for 0.5 s,
and remained fixed for another 1.5 s.

The optomotor contrast stimulus separated the visual field into two areas (see Figure 2A; Figure S2). For the so-called background,
we tiled the visual field with pixels of size 5! x 5!. At each pixel location we drew a temporal frequency f from a normal distribution
(m = 0 Hz, s = 1 Hz) and a starting phase l from a uniform distribution covering 0 to 360!. Instantaneous luminance of each pixel iwas
then determined by a random sinusoid of the form

IiðtÞ = 0:5+ 0:5 cbggðsinð2p fi t + liÞÞ

where the experimental parameter cbg runs from 0 to 100% and controls the effective contrast of the background. To increase
average contrast in the visual field, we applied the compressive transform

gðxÞ = x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+a2

1+a2x2

r

where a = 5 determined the degree of curve flattening. Using this method, we generated stochastic and dynamic visual input at a
controllable contrast level without introducing coherent motion (see Figure 2B).

The so-called foreground delivered a coherent motion stimulus driving the optomotor response. It consisted of two vertical stripes
that were placed at plus and minus 90! from the frontal axis of the fly, each spanning 20! in azimuth and the full screen elevation. We
again tiled each stripe with pixels covering an area of approximately 5! x 5!. For each pixel i, luminancewas fixed over time and deter-
mined by

IiðtÞ = 0:5+ 0:5cfggðsinðliÞÞ

where the experimental parameter cfg controls the effective motion contrast and l was independently drawn from a uniform dis-
tribution covering 0 to 360!. The pixelated noise pattern smoothly wrapped around the azimuthal borders whenmoving. Note that for
all instantiations of the stimulus, mean luminance across the visual field was 0.5.We verified that at typical scales of visual processing
in Drosophila (approximated as a Gaussian filter with FWHM = 25! that covers a majority of the receptive fields of visual neurons; see
[9]), variation in average luminance around this mean was small (Figure S2L).

For the basic contrast tuning experiment (Figures 2A–2E; see Video S1), we exhaustively measured combinations of logarithmically
spaced values for cfg (1.6, 3.1, 6.3, 12.5, 25, 50, and 100%) and cbg (0, 25, 50, and 100%). At the beginning of each trial we simul-
taneously presented the dynamic background and the static foreground pattern. Between 1.5 and 2.0 s following stimulus onset, the
foreground pattern moved at a fixed velocity of 50!s-1. For oscillation experiments (Figures 2F–2J), the motion period was extended
to 6 s.While the foreground pattern wasmoving, we sinusoidally modulated the contrast of either fore- or background between 0 and
100% around a mean value of 50% and at the specified temporal frequency (see Figure 2F; Figures S2A, S2C, and S2E; Video S2).
When mapping the spatial extent of the contrast-induced modulation, we set the modulation frequency to 1 Hz and restricted the
background pattern to two stripes of 10! width flanking each foreground pattern (see Figure S2A). The distance parameter (15,
17.5, 20, 22.5, 25, 27.5, 30, 35, or 40!) determined the separation between centers of foreground and background. In this experiment,
we additionally measured a zero-contrast background condition to obtain an appropriate modulation baseline. Here, the motion
stimulus had a contrast of 25% and luminance in the rest of the field was set to a uniform 0.5. Example traces in Figure 2G are taken
from this spatial experiment (for distance 15! or no background). For the temporal experiments, wemeasured oscillation frequencies
of 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, and 10 Hz (Figure 2J). Background contrast was zero when measuring foreground tuning; for back-
ground tuning, foreground contrast was set to 25%.

All stimulus patterns were displayed twice throughout optomotor experiments, once in clockwise and once in counterclockwise
direction of motion. We recorded multiple trials to obtain robust turning responses for each fly (15 trials for natural image stimuli,
20 for contrast tuning, 25 for oscillation stimuli). Presentation order was shuffled across conditions within any trial to mitigate adap-
tation effects. Individual experiments lasted between 60 and 120 min.

Electrophysiology
Our patch-clamp recordings from tangential cells followed established protocols [11]. Cell bodies of horizontal system (HS) units
were targeted visually through a microscope. We confirmed their preferred direction by stimulation with oriented moving sine
wave gratings before each experiment.

Visual stimulation was delivered using a cylindrical projector-based arena as previously described [9]. Briefly, the screen of the
arena covered a viewing angle of the fly of 180! in azimuth and 105! in elevation. Stimuli were generated at a framerate of 180 Hz
using green light spanning approximately 500 nm to 600 nm in wavelength. The maximum luminance this arena achieved was
276 ± 48 cd m-2 (mean ± SD across devices). All visual stimuli were rendered using custom software written in Python 2.7 and the
Panda3D framework. Membrane potential was recorded using custom software written in MATLAB (MathWorks, MA).

We measured tuning curves for 6 distinct natural image panoramas at 9 logarithmically spaced velocities ranging from 2.5 to
640!s-1 (Figure 1). On each presentation, the scene was displayed at a fixed phase, stayed still for 1 s, and then rotated horizontally
for 3 s at the chosen constant velocity. Image movement was always in the preferred direction of the HS unit. We showed images at
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their native gamma-corrected mean luminance and contrast (see above). Each condition was repeated 5 times. Conditions and trials
were randomly interleaved to exclude adaptation effects along any stimulus dimension.

Calcium imaging
Calcium imaging experiments were performed using custom-built two-photon microscopes as described before [9]. The imaging
acquisition rate was 11.8 Hz for all experiments, or 23.7 Hz for the experiment in Figure 4D, with imaging resolutions ranging from
32 3 32 to 64 3 128 pixels. Image acquisition was controlled using the ScanImage software (version 3.8) [88]. We prepared flies
as previously described [9, 14]. Briefly, Drosophila were anesthetized on ice and glued onto an acrylic glass holder with the back
of their head exposed to a perfusion chamber filled with Ringer’s solution. Then the cuticula was surgically opened to allow optical
access.
Stimuli were presented using the same projector system as in electrophysiological experiments, with additional long-pass filters

(cut-off wavelength of 550 nm) in front of the projectors to spectrally separate visual stimulation from GCaMP fluorescence signals.
To identify receptive field (RF) positions of individual neurons, white noise stimuli of 3 min length were used (except for T4 and T5

cells, see below). The stimuli were pre-rendered at 60 Hz and generated as previously described [9]. Briefly, the spatial resolution of
all white noise stimuli was 2.8! of visual angle corresponding to 64 pixels across the 180! screen. For all lamina cells, the same stim-
ulus was used in order to provide a systematic description of their spatiotemporal filtering properties (Figure S3). This stimulus had a
Gaussian autocorrelation with a standard deviation of approximately 45 ms in time and a contrast of 25% around a mean intensity
value of 50 on an 8 bit grayscale. For some medulla cell types, variants of this stimulus with higher contrast or longer time constants
were used if necessary to reliably locate their RFs on the arena. Specifically, wemapped RFs for Tm4,Mi4,Mi9 and Tm9with a binary
stimulus at 100% contrast and a temporal cut-off frequency of 1 Hz. For Mi9, we chose a 1D version of this stimulus, consisting of
horizontal (1.5 min) and vertical bars (1.5 min) instead of pixels.
For T4 and T5, we relied on a novel stochastic motion noise stimulus to determine RF coordinates. First, we determined the

preferred direction of an ROI using drifting gratings. Then we displayed a stimulus consisting of 20 randomly distributed 15! wide
circular windows. Inside of each window, a 30! wavelength sine grating drifted at 30!s-1 in the preferred direction (Figure S3X).
The positions of these 20 windows were changed and randomly chosen every second over 4 min. Reverse correlation of T4 and
T5 responses with the area covered by those windows at a given time point yielded motion-sensitive RFs which were fit with a
Gaussian to determine center coordinates (Figure S3Y). These were verified by presenting 25! windows containing full contrast drift-
ing gratings at the estimated RF center and 6 hexagonally distributed positions around the center. Cells responded only to the grating
in the RF center (Figure S3Z).
For the experiments shown in Figure 3, a 25! circular window around the RF center of a cell defined the foregroundwhereas the rest

of the screen was defined as background. Before stimulus presentation, we verified that RF centers were sufficiently distant from the
border of the screen to allow full display of the foreground. A drifting sine grating with 30! wavelength and a velocity of 30!s-1 was
shown, starting with medium gray at the center of the RF and moving for 4 s after stimulus onset (see Video S3). The contrast of the
grating was varied independently between background and foreground. A stimulus matrix of 7 foreground contrasts (1.6, 4, 8, 16, 32,
64 and 100%) and 6 background contrasts (0, 8, 16, 32, 64 and 100%) at a constant mean luminance of 0.5 was presented.
For the experiments shown in Figures 4A–4C, the foreground contrast was chosen depending on the cell type as the point where

the suppression elicited by 100% background contrast (as measured in Figure 3) would be greatest. This was 16% for Mi1, 32% for
Tm1, 100% for Tm2 and 64% for Tm3. The background had 100% contrast and 30! wavelength. We varied either its direction, its
velocity (0, 0.25, 0.5, 1, 2, 4, 8, 16, 32 or 64!s-1), or restricted its presentation to an annulus with changing outer diameter. A reference
condition with 0% background contrast was added to the stimulus protocol.
For the contrast-step stimulus experiments shown in Figure 4D (see Video S4), the background grating had 30! spatial wavelength,

drifted with 90!s-1 after motion onset and its initial phase was randomized. For Tm2 it had full contrast, for Tm3 44%contrast. The 25!

foreground windowwas 50%gray and we placed a 5! wide dot in the center. For Tm3, the dot was initially black and set to white for a
duration of 50ms at a given time interval aftermotion onset of the background grating. For Tm2, the dot was initially white and then set
to black. The time interval was varied in steps of 50 ms from –250ms to 500 ms and then in steps of 100ms. Negative values indicate
that the surround grating started to move after the dot changed its intensity. Additional time intervals were –500 ms and –1 s. The
block experiments in Figure 5 were performed with the same frequency tuning stimuli as before (Figure 4B). For the contrast tunings,
the same stimuli as in Figure 3 were used but with background contrast of either 0 or 100% only.
All stimuli were repeated three times in randomized condition order to prevent adaptation to any stimulus features.

Modeling
Natural motion stimuli
To evaluate the performance of our models under naturalistic conditions, we generated a synthetic set of motion sequences that
closely mimicked the experimental stimuli described above. For each sequence we translated 360! images at a fixed horizontal ve-
locity through a virtual window spanning 100! in azimuth. Given their panoramic nature, scenes wrapped around seamlessly at each
border. Movies were generated at a time resolution of 100 Hz. To reduce jitter for small velocities, we linearly interpolated non-integer
pixel shifts. Fly eye optics were simulated ahead of time. We blurred each frame with a Gaussian filter (full width at half-maximum of
4!) to approximate the acceptance angle of each photoreceptor [26] and then sampled individual signals from a rectangular grid with
isotropic spacing of 4! (yielding 23 3 17 receptor signals per frame for dataset A and 23 3 23 for dataset B, as described above).
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For the comparison in Figure 1, we modeled the exact stimulus parameters of the electrophysiological experiment including an
approximation of the image’s starting phase on the arena. We generated sequences for our convolutional detector models (Figure 6)
as follows: The set of 20 panoramic images was randomly split into a training group consisting of 15 scenes and a test group con-
sisting of 5 scenes. For each sequence, a random image was drawn from the appropriate set. The stimulus lasted 5 s. Between 1 and
4 s, scene velocity stepped from zero to a fixed value drawn from a Gaussian distribution with SD = 100!s-1. The initial window phase
followed a uniform distribution spanning 360!. To further augment the dataset, we flipped the underlying image along the horizontal
and vertical axes with a probability of 50%. We generated 8,192 such sequences for the training set and 512 for the test set.
Experimental stimuli
For all modeling experiments in Figure S5, we replicated the experimental protocols described above as precisely as feasible. All
stimuli were projected onto a field of view that spanned 120! in azimuth and 90! in elevation at a spatial resolution of 1! for calcium
imaging experiments and 0.5! for behavioral experiments. Frames were then blurred and sampled as described for natural image
stimuli. Brightness values for all stimuli ran from 0 to 1 and we fixed the mean level for contrast stimuli at 0.5. For calcium imaging
stimuli, we always placed the foreground disk at the center of the field of view. Patterns were rendered and processed at 100 Hz.

Tuning curves for the basic contrast experiment (Figures S5B–S5D), the frequency experiment (Figure S5F), and the background
diameter experiment (Figure S5G) were estimated from a single trial per parameter setting. For the background orientation experi-
ment (Figure S5E) and the step interval experiment (Figure S5H) we averaged 100 trials with randomized background pattern phases
to approximate the experimental phase stochasticity that results from individual cell receptive fields being located in different parts of
the visual field. We averaged 200 trials for the behavioral stimuli (Figure S5K) to account for the intrinsic stochasticity of the stimulus
and to generate reliable model responses. Throughout Figure S5, we calculated point estimates for all tuning curves exactly as
described for the behavioral and calcium data.
Tuning curve normalization model
The analytical model for divisive normalization (Figures 3V–3X) resembles previous formulations in the literature [48, 50, 86]. The
steady-state response R of a neuron is given by

R
"
cfg; cbg

#
=
Lfgc

p
fg + Lbgc

p
bg

cp
50 + cp

fg +Sp

where cfg and cbg are foreground and background contrast and Lfg and Lbg are weight factors defining the respective amount of
linear contribution of foreground and background to the response. The semi-saturation constant c50 determines the contrast at which
the cell responds with 50% strength and the parameter p defines the steepness of the saturation curve.

The normalization term

S = wpool$c
q
bg

gives the amount of divisive surround suppression which is proportional to background contrast to a power of q, which accounts
for possible non-linear scaling behavior, with a proportionality weight constant wpool. In this model, the normalization indexwpool/c50
quantifies how much the sigmoidal tuning curve shifts to the right when cbg is increased from 0 to 1 (full contrast), in relation to the
semi-saturation constant. It thus describes the fold decrease in contrast sensitivity between no background contrast and full back-
ground contrast.

For evaluation of the normalization index (Figure 3X), this model was fit individually for each cell. Parameter fits to the average
tuning curve per cell type are listed in Table S1. Since tuning curves from individual cells are subject to measuring inaccuracies,
we cross-validated fit quality. We optimized model parameters for the average tuning curve of 50% of all measured cells per type
and evaluated variance explained for the other 50%. This was repeated 100 times with shuffled training and validation sets. For
all cell types, cross-validated variance explained was more than 90% (see R2

DivisiveNorm in Table S1). When we repeated this proced-
ure with a fully linear model

R
"
cfg; cbg

#
= Lfgcfg + Lbgcbg

variance explained dropped substantially for all units except L3 (see R2
linear in Table S1).

This analysis was implemented using Python 2.7 and NumPy 1.11.3. Optimization of model parameters was performed using the
L-BFGS-B algorithm in SciPy 0.19.0.
Data-driven detector model
The reference model in Figure 1 was based on a standard implementation of the Reichardt-type correlational motion detector [26].
Briefly, all receptor signals of the two-dimensional input grid (see above) were filtered with a first-order high-pass (t = 150 ms). We
then multiplied each local signal with the delayed horizontal neighbor (first-order low-pass, t = 50 ms). This was done twice in a
mirror-symmetrical fashion and resulting output was subtracted. Finally, we summed across all local detectors to derive a model
of tangential cell output. For the illustration in Figure S1C, we simulated the receptor array at the full image resolution without blurring.
These models were implemented in Python 3.6 using PyTorch 0.4.1.

We simulated time-resolved cell models for three basic response types: a purely linear low-pass unit (modeled after L3; Fig-
ure S5B), a strongly normalized band-pass unit (modeled after Mi1; Figure S5C), and a weakly normalized low-pass unit (modeled
after Mi9; Figure S5D). We hand-tuned parameters based on our and previous work [9] to qualitatively match response properties
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of the corresponding cell. Models were implemented as signal processing cascades (see Figure S5A). First, signals at each location in
the field of view were filtered with a spatial difference of Gaussians kernel that had a central full-width at half-maximum (FWHM) of 6!

and a FWHM of 20! in the surround. In accordance with results from receptive field mapping (Figure S3), the weight ratio between
surround and center was 100% for low-pass units and 50% for the band-pass model. Full-field flashes would thus produce no acti-
vation in low-pass units. This was followed by first-order temporal filters: a single low-pass filter for low-pass units (t = 80ms) or serial
low- (t = 50 ms) and high-pass filters (t = 150 ms) for band-pass units. We then left the signal as is for ON cells or sign-inverted it for
OFF cells and half-wave rectified the output by setting all negative values to zero.
For normalized cell models, we calculated local input Pi from the normalization field by pooling across rectified signals xi with a

Gaussian kernel (FWHM = 30!). Final output was then calculated using the divisive normalization equation

fðxiÞ =
xpi

cp
50 + xpi + ðwpoolPiÞp

where i indexes across points in space and time, c50 determines baseline sensitivity, exponent p regulates the static response non-
linearity, andwpool adjusts sensitivity to the normalization field signal.Wemanually tuned normalization parameters for the band-pass
(c50 = 0.012, p = 1.3, wpool = 1.5) and the low-pass cell (c50 = 0.12, p = 1.1, wpool = 3.0) to match critical features of the empirical
contrast tuning curves (Figures S5C and S5D).
To generate simulated T4 responses (Figures S5I and S5J), wemultiplied the output of spatially adjacent low- and band-pass units.

For the linear reference model we bypassed the final normalization step in both arms of the detector. We built the LPTC model (Fig-
ure S5K) as a spatial array of T4 and T5 cells covering the full field of view, analogously to the previously described two-quadrant
detector [28]. For the T5 model, we used two OFF-sensitive input units with identical parameters as for ON cells. Output from
syndirectionally tuned T4 and T5 motion detectors was summed and subtracted from a mirror-symmetric, oppositely tuned array
to produce LPTC model output. The same model was used to simulate natural scene responses (Figures S5L–S5N). All models in
Figure S5 were implemented using Python 3.6 and NumPy 1.15.
To quantify the robustness of velocity tuning for models and LPTCs (Figure S5N), we calculated per-velocity coefficients of vari-

ation as the ratio between response standard deviation across images and response mean across images. For neural data, we used
cell-averaged mean potential to estimate these parameters.
Task-driven detector model
We implemented the trained detector model as a four-layer convolutional neural network consisting of linear input filters, a normal-
ization stage, local multiplication, and linear spatial summation. In contrast to typical deep architectures used for object recognition,
this network processed three-dimensional inputs spanning two dimensions of space as well as time.
First, receptor signals of shape 23 3 17 3 500 or 23 3 23 3 500 (azimuth, elevation, time), depending on the dataset, were

processed in two independent convolutional channels. The convolutions were temporally causal and spatiotemporally separable.
Each of the channels was composed of a 3 3 3 x 1 spatial filter (covering 3 simulated receptors in azimuth and elevation) followed
by a temporal filter of shape 13 1 x 30 (corresponding to 300 ms at the chosen time resolution of 100 Hz). Convolutions had no bias
parameter. In contrast to standard Reichardt detectors, each filter weight was allowed to vary freely during optimization.
Second, we passed local output signals xi (where i indexes points in space and time) through one of three types of local normal-

ization: a simple pass-through (termed ‘‘linear’’)

fðxiÞ = xi

a static and contrast-independent compression stage (termed ‘‘static’’)

fðxiÞ = tanh
$xi
c

%

where the trained parameter c determines the sensitivity of the saturating function, or an adaptive saturation stage (termed
‘‘dynamic’’)

fðxiÞ = tanh

&
xi

c+Pi

'

where c again determines the baseline sensitivity and Pi is the instantaneous output of a 113 113 1 spatial filter (centered on the
location of xi and operating on full-wave rectified output signals |xi|; see Figure 6A). This models the fast and spatially distributed
normalization we observed during experiments. We chose the hyperbolic tangent because it generalizes to positive and negative
input values, the transformation closely resembles the normalization model described above, and it is more commonly used in
the field of deep learning. Spatiotemporal filters were optimized independently for each of the two channels while the sensitivity
parameter c was shared.
Third, we then combined signals from both channels in a EMD-type scheme where adjacent signals were multiplied and output

from two mirror-symmetric pairs was subtracted. This stage was parameter-free. Finally, resulting signals were summed across
space and multiplied by a trained scalar amplification factor to generate the final time-resolved output of the model. The base model
without normalization had 79 trainable parameters; static normalization added one parameter and dynamic normalization
another 242.
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We trained each model architecture to estimate the true velocity of translation stimuli using automatic differentiation, backpropa-
gation, and stochastic gradient descent. The loss function we applied was the mean squared error (MSE) between model output and
current velocity of the scene. Weights were updated using the Adam optimizer [91], with parameters set to standard values (b1 = 0.9,
b1 = 0.999, ε = 10-8). Models were trained over 800 epochs with a batch size of 128; no early stopping was used. We set the initial
learning rate to 0.025 and divided it by a factor of 4 after 400, 500, and 600 steps. Input convolutional layers were initialized to random
values drawn from a uniform distribution. For the pooling receptive field, we initialized each weight with 0.0001 and the sensitivity
factor c with 1.0. Static sensitivity as well as pooling weights were constrained to be positive. In the dynamic normalization model,
we applied a L2 penalty of 400.0 to the spatial weights of the pooling stage. Hyperparameters were determined in preliminary exper-
iments with an independent image set. We optimized each architecture 16 to 23 times with different random number generator seeds
to assess reliability and did not select models post hoc.

We implemented all architectures in Python 3.6 using PyTorch 0.4.1 for automatic differentiation. Depending on model type, a
single optimization run took between 6 and 14 hs on an NVIDIA Titan Xp GPU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data evaluation for behavioral experiments
To ensure data quality, we excluded all flies whose average forward velocity during the experiment was below 0.25 cm s-1 andwhose
average turning tendency was either slowly drifting or far from 0!s-1. Fewer than 20% of all experiments failed these criteria.
Measurements of ball movement were downsampled via linear interpolation for further processing (to 50 Hz for natural image stimuli,
Figure 1; 20 Hz for contrast tuning, Figure 2; 100 Hz for oscillation stimuli, Figure 2). Trials were averaged.

Responses for clockwise and counterclockwise motion were subtracted and divided by two to minimize residual deviations from
straight forward walking. Traces for natural image and contrast tuning stimuli were filtered using a first-order low-pass with a time
constant of 100ms. For the contrast oscillation experiments, we evaluatedmodulation at the relevant carrier frequency by calculating
the zero-padded Fourier Transform of the turning trace and averaging the amplitude spectrum in a window of width 0.2 Hz centered
on the target frequency. These values were normalized per experiment such that themodulation peak after averaging was 100%.We
applied a Savitzky-Golay filter (window length 11 samples, 5th order polynomial) before plotting traces from oscillation experiments;
this did not affect the analysis.

All analysis for behavioral experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for electrophysiological experiments
Voltage data were digitized at 1,000 Hz. To account for slow drift in potential, we subtracted the average voltage in a 1 s window
before stimulus onset from each trace per stimulus condition and trial. Signals were then low-pass filtered (8th order Chebyshev
Type 1) and resampled at 100 Hz. Finally, we averaged cell responses across trials. Cells whose mean depolarization during full-
contrast sine grating presentation in preferred direction remained below 5 mV were discarded before further analysis. All analysis
for electrophysiological experiments was performed in custom-written software using Python 3.6, NumPy 1.15, and SciPy 1.1.

Data evaluation for calcium imaging experiments
Calcium imaging stacks were registered in order to correct for translational movement artifacts of brain tissue using custom-written
software. Responses of individual neurons were extracted by manually selecting small regions of interest (ROI) encompassing
individual anatomical structures. For T4 and T5 these corresponded to single or few axon terminals; for Mi and Tm cells, individual
axon terminals could be identified clearly through visual inspection. For ON pathwaymedulla cells, signals weremeasured in layer 10
of the medulla, for OFF pathway medulla cells in layer 1 of the lobula. For lamina cells L1–5, signals were measured at axon terminals
in corresponding layers 1–5 in the medulla. For T4 and T5, signals were recorded in the lobula plate.

To reconstruct RFs, calcium signals were mean subtracted and reverse-correlated with the stimulus as previously described [9].
1DGaussians were fit to horizontal and vertical cross-sections of spatial receptive fields to obtain precise RF coordinates. For lamina
cells (Figure S3), all reconstructed RFs were peak-aligned and analyzed as previously [9]. For 1D projections of spatial RFs (Figures
S3F–S3J), an average of 1D projections of 2D RFs along 3600 evenly distributed projection angles between 0! and 360! was calcu-
lated. This enhanced the visibility of the center-surround structure but neglected possible anisotropies in the spatial structure of RFs
[49]. For impulse responses (Figures S3K–S3O) the temporal receptive field of the 9 center pixels was averaged; frequency responses
(Figures S3P–S3T) are the Fourier-transformed impulse responses. Deconvolution (Figures S3U and S3V) was performed by dividing
the frequency spectra with the frequency response of a 1st order low-pass filter with time-constant 350 ms as a proxy for calcium
indicator dynamics [9, 92].

Relative fluorescence changes (DF/F) from raw calcium traces were obtained by adapting an automatic baseline detection algo-
rithm [93]. Briefly, raw data were first smoothed with a Gaussian window (full-width at half maximum, FWHM = 1 s). Then, minima
within a 90 s long sliding window were extracted and the resulting trace smoothed with a Gaussian window (FWHM = 4 min). The
result was used as a dynamic baseline F0 and DF/F values were computed as DF/F = (F–F0)/F0.

For further evaluation, only recordings with good signal-to-noise ratio (SNR) were taken. The criterion was that the standard
deviation of the mean signal averaged over trials had to be at least 120% of the mean standard deviation over trials. This criterion
filtered out cells with an inter-trial variance larger than the typical cell response (caused by movement artifacts or photobleaching).
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In addition, the standard deviation of the mean signal had to be larger than 25% DF/F. On average, 90% of all cells measured passed
these criteria with slight variations due to different levels of GCaMP expression depending on the genotype.
For experiments with drifting gratings, the driving foreground contrast frequency was 1 Hz. For these experiments, we evaluated

the amplitude of the 1 Hz component of the signal. This was achieved by computing the Fourier coefficient at that frequency, using
the equation

F =

((((((
1

T

ZT

0

dt s tð Þ e"2pi$1Hz$t

((((((

where s(t) denotes the signal and T the stimulation time. For experiments in Figure 4D, we evaluated the peak response of the
calcium signal. For Figure S4, we additionally evaluated the average calcium signal (F0) during stimulus presentation and normalized
it to the maximum amplitude of the 1 Hz component (F1).
Amplitudes were averaged over trials and normalized to the maximum, then averaged over cells and normalized to the maximum.

For Figures 4 and 5, amplitudes were normalized to the response amplitude for the reference stimulus.

Statistical tests
Unless indicated otherwise, error bars show bootstrapped 68% confidence intervals around the mean (estimated as corresponding
distribution percentiles after resampling the data 1,000 times). All statistical tests were two-tailed and performed at a 5% significance
level. Normality of data distributions was assessed visually but not tested formally. Sample sizes are given in each figure legend and
were not based on power analysis but predetermined in line with standards in the field. We did not blind experimenters to genotypes
or conditions during data gathering and analysis.

DATA AND CODE AVAILABILITY

Code and experimental data are available on GitHub (https://github.com/borstlab/normalization_paper).
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Figure S1 | Behavioral, neural, and model responses to natural scenes. Related to Figure 1. 
(A) Natural image patch as seen through the field of view of model LPTC. (B) Estimate of local 
contrast in natural image patch. RMS contrast was estimated by filtering the image with a Gaussian (σ 
= 0.5 º), subtracting the filtered image from the original, squaring the mean-subtracted image, filtering 
it with a Gaussian (σ = 0.5 º), and taking the square root. (C) Spatially reconstructed output of 
simulated LPTC for same image patch as before, plotted as the square root of the time-averaged 
response. A horizontally motion-sensitive LPTC was constructed using the same parameters as in 
Figure 1F (STAR Methods) with the exception of more fine-grained sampling at exactly the image 
resolution. The depicted panorama was moved for 16 s at a velocity of 22.5 ºs-1, resulting in a single 
complete rotation. Responses at each pixel location were then averaged across the full stimulus period. 
This demonstrates that the response of the EMD array depends strongly on squared local image 
contrast. (D) Turning responses for 8 images (indicated by trace color) and 5 velocities (indicated by 
panel title; N=16 wild-type flies; data as in Figure 1B). Gray shaded area indicates duration of motion 
stimulus. (E) Membrane potential for 6 images and 5 velocities (N=11 HS cells from 9 flies; data as in 
Figure 1D). (F) Output of model LPTC for same images and velocities as E (data as in Figure 1F). See 
Table S2. 
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Figure S2 | Detailed behavioral responses to contrast stimuli. Related to Figure 2. 
(A) Illustration of spatial oscillation experiment. Background was restricted to 10 º wide stripes 
flanking the foreground motion stimulus at the center distance indicated by the red arrow. Dashed 
lines indicate period during which foreground pattern moved at 50 ºs-1. This arrangement was repeated 
at plus and minus 90 º from the frontal axis of the fly; 0 º in this plot indicates the center of the 
foreground. (B) Contrast traces and turning responses for five distance conditions (indicated above 
each panel). Top, instantaneous contrast (25 % in foreground, oscillating at 1 Hz in background). 
Bottom, turning response of the fly (N=16 wild-type flies). Modulation was reduced as spacing 
between foreground and background increased. (C) Illustration of temporal foreground modulation 
stimulus at 1 Hz frequency. (D) Contrast traces and turning responses for five foreground oscillation 
frequencies (N=13; background contrast was 0 %). Modulation decreased as frequency increased. (E) 
Illustration of temporal background modulation stimulus at 1 Hz frequency. (F) Contrast traces and 
turning responses for five background oscillation frequencies (N=13; foreground contrast was 25 %). 
Modulation again decreased with frequency. (G) Normalized cross-correlation between contrast 
oscillation and turning behavior for 1 Hz data from D and F. (H) Lag between stimulus oscillation and 
turning, evaluated as per-fly lag at first minimum within 500 ms for cross-correlations from G. (I) 
Left, comparison of turning responses between wild-type flies and flies in which T4/T5 cells were 
silenced using TNT (STAR Methods; N=16/14 for WT/block flies). Right, turning responses averaged 
between 0 and 6 s following motion onset. Syndirectional turning was abolished in T4/T5-silenced 
flies. (J) Average forward speed throughout full experiment. T4/T5 block flies did not exhibit 
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locomotion deficiencies. (K) Comparison of spatial oscillation tuning. T4/T5 block flies did not show 
modulation at the contrast oscillation frequency of 1 Hz and a generally increased level of baseline 
fluctuation. (L) Evaluation of luminance properties at different spatial scales for the behavioral 
stimulus. Normalized coefficient of variation across visual field was calculated after applying a 
Gaussian filter with different full-widths at half-maximum (FWHM). Gray lines indicate typical 
FWHM of ommatidium (left) and full receptive field of medulla cells (right). See Table S2. 
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Figure S3 | Lamina and T4/T5 receptive field mapping. Related to Figure 3. 
(A–E) Averaged 2D spatial receptive fields (RF) of L1–L5 from reverse correlation using white noise 
stimulation (L1: 21/7 cells/flies, L2: 34/5, L3: 34/5, L4: 17/6, L5: 18/9). (F–J) 1D projection 
(averaged over all orientations) of the RFs in A–E. All cell types possessed linear RFs with 
antagonistic center-surround structure. (K–O) Temporal RFs measured in the center of the spatial RFs. 
(P–T) Frequency-space representations of temporal RFs. (U) Frequency representations of lamina 
transient cells (all lamina cells except for L3) after deconvolution with a putative linear GCaMP6f 
low-pass filter with time constant 350 ms as performed previously [S1]. (V) Deconvolved frequency 
responses of medulla bandpass filter cells (replotted from previous work [S1]). (W) Spatial integral of 
the 2D RFs in A–E. For L3, the strong antagonistic ON surround exactly counterbalanced the OFF-
center contribution. (X) x-y plot of the stochastic motion noise stimulus used for localizing T4/T5 
RFs. (Y) Example RF of a T4 cell from reverse correlation with the motion noise stimulus. (Z) 
Average responses of T4/T5 to 25 ° windowed drifting gratings probing different positions around the 
estimated RF center. This validated the RF coordinates obtained from the stochastic motion noise 
stimulus. All data are shown as mean ± s.d. See Table S2. 
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Figure S4 | Raw calcium responses for basic contrast stimuli. Related to Figure 3. 
(A) Shown is only a subset of the data evaluated in Figure 3. Background contrast of 0 % is indicated 
by black lines, background contrast of 100 % is depicted in magenta. Responses are shown only for 3 
out of 7 foreground contrasts. (B–P) Average calcium responses of all neurons to combinations of 
different foreground and background contrasts. (Q) Shown is a correlation analysis of the same dataset 
as in Figure 3 for the lamina cells L1–L5. On the y-axis is the F1-component of the calcium response 
(as evaluated in Figure 3) while the x-axis indicates the F0-component of the signal, i.e. the average 
calcium response during the stimulus. Data points corresponding to the same BG contrast are 
connected by lines and color-coded analogously to Figure 3. All data points are normalized to the 
maximum F1 response for each cell type. The gray dashed line marks the diagonal of the coordinate 
system. Correlation coefficient R is indicated in each panel. (R) Same as in Q but for ON-pathway 
medulla cells Mi1–Mi9 and for T4 cells. (S) Same as in Q but for OFF-pathway medulla cells Tm1–
Tm9 and for T5 cells. (T) Color legend for panels Q–S. Darker color shade corresponds to higher 
background contrast, similarly to Figure 3. Zero background contrast condition is shown in black. See 
Table S2. 
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Figure S5 | Data-driven functional model of normalization circuit. Related to Figure 4. 
(A) Illustration of signal cascade for data-driven cell model (STAR Methods). Filter elements are 
sketched for an ON band-pass cell with normalization. (B–D) Contrast tuning curves for three model 
cells, estimated using the same protocol as during calcium imaging (FG = foreground, BG = 
background). Top, empirical data for L3, Mi1, and Mi9 (see Figure 3). Inset depicts a single frame 
from stimulus centered on recorded cell with background contrast 25 % and foreground contrast 100 
%. Bottom, tuning curves from models manually tuned to resemble their empirical counterparts (see 
STAR Methods for parameters). (E) Responses of normalized ON band-pass cell model to orientation 
tuning stimulus (see Figure 4A; dashed line marks reference stimulus without background). Stimuli 
and evaluation were exactly matched to the experiment. (F) Responses of the same model to 
background frequency tuning experiment (see Figure 4B; dashed line marks reference stimulus 
without background). (G) Responses of the same model to background size stimulus (see Figure 4C; 
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dashed line marks reference stimulus without background). (H) Responses of the same model to 
contrast-step protocol (see Figure 4D). (I) Illustration of T4 or T5 model. Signals from a strongly 
normalized band-pass and a weakly normalized low-pass unit covering adjacent areas of the visual 
field are multiplied, yielding a direction-selective signal. (J–M) Top, responses from motion detector 
models with normalization. Bottom, responses from motion detector models in which normalization 
was switched off for both input arms. (J) Foreground contrast tuning for simulated T4 cell (see Figure 
3). (K) Responses to behavioral contrast stimulus for a LPTC model composed of T4 and T5 models 
(STAR Methods). (L) Responses to various natural scenes moving at 20 ºs-1 (modelled and evaluated 
as in Figure 1). (M) Velocity tuning curves for natural scenes (modelled and evaluated as in Figure 1). 
(N) Coefficient of variation across images for individual image velocities (derived from velocity 
tuning curves in M and Figure 1F; STAR Methods). A model including input normalization 
outperformed the linear model and approximated the variability of LPTC responses. 
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Figure S6 | Detailed receptive fields and performance data for task-driven model. Related to 
Figure 6. 
(A–C) Receptive fields and temporal filters for 16 models of each non-linearity configuration (A, 
linear; B, static; C, dynamic). Models were sorted by test set error (increasing from left to right). Each 
pair of spatial and temporal filters was normalized to the maximum absolute weight across both 
channels (SF = spatial filter, TF = temporal filter, NF = normalization filter). Axis limits are the same 
as in Figure 6. (D) Values of sensitivity parameter c for all static (N=23) and dynamic (N=16) 
normalization models. (E) Evolution of weights for a single dynamic model. Both curves were 
independently normalized to their maximum across epochs. Pool contribution was quantified as the 
sum of weights across both 11 x 11 x 1 normalization filters. (F) Velocity tuning curves of best-
performing linear model for various images (analogously to Figure 6G). Gray curve indicates true 
scene velocity on logarithmic axis. (G) Quantification of average model performance for all tested 
data sets (analogously to Figure 6H; LDR = low dynamic range, HDR = high dynamic range). See 
STAR Methods for details on how data sets were generated. Note that performance is plotted on a 
logarithmic axis. N=22/23/16 for linear/static/dynamic; *P<0.001; t=9.01/7.51/7.72 for set A/set B 
(LDR)/set B (HDR); Student’s t-test with assumed equal variance; only difference between static and 
dynamic was tested. 

57



Cell type Lfg Lbg p c50 wpool q Norm. index R2
DivisiveNorm R2

linear 
L1 1.47 0.07 1.10 0.53 0.22 0.97 0.42 98.39 ± 0.10 92.55 ± 0.14 
L2 1.10 0.05 1.37 0.23 0.36 0.77 1.58 99.29 ± 0.03 85.17 ± 0.13 
L3 1.68 0.16 1.46 1.00 0.00 1.27 0.00 95.90 ± 0.08 97.17 ± 0.07 
L4 1.41 0.12 1.23 0.53 0.32 1.09 0.61 98.94 ± 0.04 93.71 ± 0.07 
L5 1.04 0.05 1.29 0.14 0.19 1.10 1.36 94.51 ± 0.23 69.34 ± 0.24 
Mi1 1.03 0.03 1.21 0.06 0.25 1.05 4.33 97.37 ± 0.14 56.26 ± 0.41 
Mi4 1.61 0.33 0.90 1.00 0.31 5.92 0.31 90.08 ± 0.26 87.50 ± 0.35 
Mi9 1.69 0.23 0.99 1.00 0.40 2.87 0.40 92.40 ± 0.24 89.61 ± 0.32 
T4 0.96 0.01 2.47 0.11 0.49 0.74 4.45 96.78 ± 0.15 74.17 ± 0.35 
T5 1.08 0.07 1.97 0.26 1.17 0.92 4.55 97.02 ± 0.13 77.27 ± 0.27 
Tm1 0.98 0.09 1.87 0.18 0.86 0.71 4.75 97.53 ± 0.11 78.67 ± 0.29 
Tm2 1.08 0.17 1.36 0.20 1.14 0.91 5.76 97.58 ± 0.08 73.09 ± 0.32 
Tm3 1.02 0.01 1.97 0.16 0.53 0.72 3.39 97.97 ± 0.12 82.33 ± 0.20 
Tm4 1.06 0.11 2.33 0.40 1.44 0.81 3.61 96.77 ± 0.16 76.96 ± 0.37 
Tm9 1.83 0.50 0.92 0.98 1.01 1.65 1.03 96.37 ± 0.14 87.42 ± 0.25 

 
 
Table S1 | Fits for divisive normalization model. Related to Figure 3. 
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Short name Full genotype Used in 

WT w+/w+; +/+; +/+ Figure 1, Figure 2 

T4/T5 block w+/w-; R59E08-AD/UAS-TNT; R42F06-DBD/+ Figure S2 

L1-GCaMP6f w+/w-; VT027316-AD/UAS-GCaMP6f; R40F12-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L2-GCaMP6f w+/w-; R53G02-AD/UAS-GCaMP6f; R29G11-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L3-GCaMP6f w+/w-; R59A05-AD/UAS-GCaMP6f; R75H07-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L4-GCaMP6f w+/w-; R20A03-AD/UAS-GCaMP6f; R31C06-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

L5-GCaMP6f w+/w-; R21A05-AD/UAS-GCaMP6f; R31H09-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3–
S4 

Mi1-GCaMP6f w+/w-; R19F01-AD/UAS-GCaMP6f; R71D01-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Tm3-GCaMP6f w+/w-; R13E12-AD/UAS-GCaMP6f; R59C10-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Mi4-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; R13F11-
DBD/UAS-GCaMP6f 

Figure 3, Figure S4 

Mi9-GCaMP6f w+/w-; R48A07-AD/UAS-GCaMP6f; VT046779-
DBD/UAS-GCaMP6f 

Figure 3, Figure S4 

Tm1-GCaMP6f w+/w-; R41G07-AD/UAS-GCaMP6f; R74G01-
DBD/UAS-GCaMP6f 

Figure 3, Figure 4, 
Figure S4 

Tm2-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT012282/UAS-
GCaMP6f 

Figure 3, Figure 4a-c, 
Figure S4 

Tm2split-GCaMP6f w+/w-; R28D05-AD/UAS-GCaMP6f; R82F12-
DBD/UAS-GCaMP6f 

Figure 4 

Tm4-GCaMP6f w+/w-; +/UAS-GCaMP6f; R35H01/UAS-GCaMP6f Figure 3, Figure S4 

Tm9-GCaMP6f w+/w-; +/UAS-GCaMP6f; VT065303/UAS-
GCaMP6f 

Figure 3, Figure S4 

T4-GCaMP6f w+/w-; VT016255-AD/UAS-GCaMP6f; 
VT012314-DBD/UAS-GCaMP6f 

Figure 3, Figure S3, 
Figure S4 

T5-GCaMP6f w+/w-; VT013975-AD/UAS-GCaMP6f; R42H07-
DBD/UAS-GCaMP6f 

Figure 3, Figure S3, 
Figure S4 

Mi1-GCaMP6f, 
TNT-E 

w+/w-; R19F01-AD/UAS-TNT-E; R71D01-
DBD/UAS-GCaMP6f  

Figure 5 

Mi1-GCaMP6f, 
TNTin 

w+/w-; R19F01-AD/UAS-TNTin; R71D01-
DBD/UAS-GCaMP6f  

Figure 5 
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Tm3-GCaMP6f, 
TNT-E 

w+/w-; R13E12-AD/UAS-TNT-E; R59C10-
DBD/UAS-GCaMP6f 

Figure 5 

Tm3-GCaMP6f, 
TNTin 

w+/w-; R13E12-AD/UAS-TNTin; R59C10-
DBD/UAS-GCaMP6f 

Figure 5 

Tm1-GCaMP6f, 
TNT-E 

w+/w-; R41G07-AD/UAS-TNT-E; R74G01-
DBD/UAS-GCaMP6f 

Figure 5 

Tm1-GCaMP6f, 
TNTin 

w+/w-; R41G07-AD/UAS-TNTin; R74G01-
DBD/UAS-GCaMP6f 

Figure 5 

Tm2split-GCaMP6f, 
TNT-E 

w+/w-; R28D05-AD/UAS-TNT-E; R82F12-
DBD/UAS-GCaMP6f 

Figure 5 

Tm2split-GCaMP6f, 
TNTin 

w+/w-; R28D05-AD/UAS-TNTin; R82F12-
DBD/UAS-GCaMP6f 

Figure 5 

 
 
Table S2 | Genotypes and abbreviations. Related to Figures 1–5. 
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Abstract 8 

In natural environments, light intensities and visual contrasts vary widely, yet neurons have a 9 

limited response range for encoding them. Neurons accomplish that by flexibly adjusting their 10 

dynamic range to the statistics of the environment via contrast normalization. The effect of 11 

contrast normalization is usually measured as a reduction of neural signal amplitudes, but 12 

whether it influences response dynamics is unknown. Here, we show that contrast 13 

normalization in visual interneurons of Drosophila melanogaster not only suppresses the 14 

amplitude but also alters the dynamics of responses when a dynamic surround is present. We 15 

present a simple model that qualitatively reproduces the simultaneous effect of the visual 16 

surround on the response amplitude and temporal dynamics by altering the cells’ input 17 

resistance and, thus, their membrane time constant. In conclusion, single-cell filtering 18 

properties as derived from artificial stimulus protocols like white-noise stimulation cannot be 19 

transferred one-to-one to predict responses under natural conditions. 20 

Introduction 21 

Due to the complexity of the natural environment, the sensory inputs animals receive can vary by several 22 

orders of magnitude, ranging from the uniformity of an open field on an overcast evening to the stark 23 

Click here to access/download;Manuscript;Manuscript.docx
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visual contrast of forest trees on a sunny day. The spectrum such inputs can encompass is broad but 24 

individual neurons have only a limited response range to map these inputs onto, be it the graded 25 

membrane potential or spike rates. Therefore, the range of the responses has to be used efficiently to 26 

match the inputs [1]. For the visual system, that means adapting not only to the mean light intensity of 27 

each of the scenes but also to the fluctuations of these intensities around the mean, i.e. the image 28 

contrast. Neurons solve this problem by contrast adaptation: they dynamically adjust their contrast 29 

sensitivity to the statistics of the current environmental conditions [2]. This way, the sensitivity of the 30 

neuron increases at low contrast, making the neuron more responsive to small changes, and decreases 31 

at high contrast so that large changes in the stimulus do not lead to response saturation [3 - 5]. Thus, the 32 

amount of information about the stimulus contained in the response is maximized [1, 2, 6]. Contrast 33 

adaptation in the vertebrate retina has also been shown to induce changes in the dynamics of the signal, 34 

increasing the signal processing speed, making the signal more transient and, thus, improving the cell’s 35 

ability to encode fast temporal changes [3 - 5].  36 

The fruit fly Drosophila melanogaster is able to successfully navigate a variety of environments with 37 

variable visual statistics [7]. Motion vision is a critical sensory cue for the fruit flies’ course control 38 

system [8], where self-motion is estimated from the optic flow to respond to different environments 39 

reliably and robustly [9]. Drosophila’s visual system is well-studied, with a large genetic toolbox 40 

allowing for interrogating individual neurons of interest. The visual system of Drosophila starts at the 41 

retina and comprises four sequential neuropils, namely, lamina, medulla, lobula, and lobula plate (Fig 42 

1A). Visual signals are processed retinotopically in the fruit fly’s optic lobe. From lamina cells onwards, 43 

processing runs in two parallel pathways: an ON pathway processes light increments, an OFF pathway 44 

processes light decrements [10 - 12]. Neurons in the medulla have been previously described as either 45 

transient or tonic, based on their filtering properties [13]. Medulla neurons themselves do not respond 46 

selectively to the direction of visual motion but form the main inputs to the first direction-selective cells, 47 

T4 in the ON pathway, and T5 in the OFF pathway [14 - 16]. Contrast normalization is present in the 48 

early visual system of Drosophila and arises first in transient neurons of the medulla [17]: a high-49 

contrast grating presented in the visual surround outside the neuron’s receptive field (RF) suppresses 50 

62



 3 

the amplitude of the response to a local stimulus presented in the center of the cell’s RF. Contrast 51 

sensitivity is usually measured as the response of the cell as a function of the local contrast (Fig 1B). 52 

When this measurement is taken with a grating moving in the surround, contrast normalization shifts 53 

the response curve on a logarithmic contrast axis to the right. This shift adjusts the steep part of the 54 

neuron’s response curve, i.e. where the cell is the most sensitive, to the prevalent contrast in the 55 

surround. Drews et al. (2020) [17] characterized the compressive, normalizing signal as fast, integrating 56 

spatially over a large area and deriving from neural feedback. Functionally, it significantly improves 57 

the robustness of motion detection in natural scenes [17].  58 

Fig 1. Contrast Normalization in Early Visual System of Drosophila. (A) Schematic representation 59 

of early stages of the motion detection circuit. Highlighted are contrast normalization-exhibiting 60 

neurons that provide major input to T4 and T5 cells, the first direction-selective neurons in the ON and 61 

OFF pathways, respectively.  (B) Contrast normalization experimental protocol and contrast tuning 62 

curves for different medulla neurons: Mi1 (n = 20/5), Tm3 (n = 21/8),  Tm1 (n = 21/7), and Tm2 (n = 63 

20/6). Shaded areas around the curves show bootstrapped 68% confidence intervals. Adapted from 64 

Drews et al. (2020) [17].  65 

To understand the mechanism by which T4 and T5 cells become selective for the direction of image 66 

motion, it is important to know the filtering properties of each of their input cells. To characterize the 67 

response dynamics of visual interneurons in Drosophila, the following artificial stimuli were commonly 68 

employed in the past: a) gratings with defined spatial wavelength and contrast moving at various 69 

velocities [14, 18, 19, 20];  b) moving edges of defined polarity [11, 21],  i.e. either a dark edge on a 70 

bright background or the other way around; c) white noise stimuli consisting of statistically independent 71 

flickering pixels or bars [13, 22 - 24]; d) defined luminance pulses or steps placed in the center of the 72 

RF of the cell [20, 25]. Importantly in the present context, these stimuli differ from each other with 73 

respect to the amount of contrast present in the surround. 74 

As was already shown, the contrast of the surround can strongly suppress the amplitude of the responses 75 

to the center stimulus [17]. In this paper, we asked whether contrast normalization in the Drosophila 76 

visual system has an influence not only on the amplitude of the response but also on its temporal 77 
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dynamics, as was shown for the vertebrate retina [3-5]. This way, contrast normalization would affect 78 

the cell’s filtering properties and, therefore, might influence its role in motion vision. We focused on 79 

four transient medulla neurons that have previously shown to exhibit contrast normalization and to 80 

provide major input signals to the first direction-selective cells in the ON and OFF pathways in 81 

Drosophila [15, 16]. By combining artificial stimuli widely used to characterize neuronal responses in 82 

Drosophila melanogaster, we aim to untangle the effects of the local and global stimulus profile on the 83 

cells’ filtering properties. 84 

Materials and Methods 85 

Data and Code Availability 86 

Raw data from calcium imaging experiments, code to replicate the figures, and the modelling code are 87 

available in the GitHub repository: https://github.com/nopirogova/paper_signal_time-course/ 88 

Flies 89 

Flies were raised and kept on standard cornmeal-agar medium on a 12h light/12h dark cycle at 25°C 90 

and 60% humidity. The genetically-encoded calcium indicator GCaMP6f [26] was expressed using the 91 

Gal4-UAS system [27], resulting in the following genotypes: 92 

L1>GC6f: w+; VT027316-AD/UAS-GCaMP6f; R40F12-DBD/UAS-GCaMP6f 93 

Mi1>GC6f: w+; R19F01-AD/UAS-GCaMP6f; R71D01-DBD/UAS-GCaMP6f 94 

Tm1>GC6f: w+; R41G07-AD/UAS-GCaMP6f; R74G01-DBD/UAS-GCaMP6f 95 

Tm2>GC6f: w+; R28D05-AD/UAS-GCaMP6f; R82F12-DBD/UAS-GCaMP6f 96 

Tm3>GC6f: w+; R13E12-AD/UAS-GCaMP6f; R59C10-DBD/UAS-GCaMP6f 97 

The transgenic fly line driving split-Gal4 expression in L1 cells is courtesy of A. Nern, Janelia Research 98 

Campus; lines for Mi1 and Tm3 cells were generated and described in Strother et al. (2017) [20], for 99 

Tm1 and Tm2 in Davis et al. (2020) [28].  100 
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Two-photon Imaging 101 

Fly Preparation 102 

The flies were taken 2-5 days after eclosion and prepared as previously described [14, 20]. In short, 103 

flies were anesthetized on ice, their backs, legs, and wings were fixed onto an acrylic glass holder, and 104 

the back of the head was exposed in a chamber filled with Ringer’s solution. The cuticle behind the 105 

right eye was cut with a fine hypodermic needle and removed, along with muscles and air sacks, 106 

uncovering the optic lobe. 107 

Image Acquisition 108 

Two-photon imaging [29] was performed on a custom-built microscope as described by Maisak et al. 109 

(2013) [14], controlled with the ScanImage software (version 5.1) in MATLAB [30]. Imaging was 110 

performed at an acquisition rate of 11.8 Hz with an image resolution of 128×128 pixels. As described 111 

by Arenz et al. (2013) [13], imaging stacks were automatically registered in a custom-written software 112 

to correct for the movement of the brain.  113 

Regions of interest (ROIs) were drawn manually on the average raw image to extract responses of 114 

individual neurons. For ON pathway medulla cells, Mi1 and Tm3, ROIs were drawn in the medulla 115 

layer M10, for the OFF pathway medulla neurons, Tm1 and Tm2, in lobula layer Lo1, and for the lamina 116 

neuron, L1, in the medulla layer M1. Fluorescence changes (ΔF/F values) were then calculated using a 117 

standard baseline algorithm over the ROI [31].  118 

Visual stimulation 119 

Arena  120 

Stimuli were projected with 2 commercial micro-projectors (TI DLP Lightcrafter 3000) onto a custom-121 

built cylindrical arena, as previously described by Arenz et al. (2017) [13]. Stimuli covered 180° in 122 

azimuth and 105° in elevation of the visual field of the fly.  123 
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The projectors had a refresh rate of 180 Hz (at 8-bit color depth), their medium brightness was set to 124 

the value of 50 on an 8-bit grayscale, corresponding to a medium luminance of 55±11 cd/m2. Stimuli 125 

were rendered using custom-written software in Python 2.7 and Panda3D framework. 126 

Gaussian Noise Stimulus 127 

The stochastic noise stimulus used to determine the location of a cell’s receptive field was pre-rendered 128 

and generated as previously described in Arenz et al. (2017) [13]. Briefly, the 3-minute-long stimulus 129 

consisted of 64×52 pixels that covered the whole screen, one pixel corresponding to a visual angle of 130 

around 2.8°. The intensities of each pixel were drawn from a Gaussian distribution at 100% contrast 131 

and low-pass filtered using a Gaussian window with a standard deviation of approximately 90 ms, 132 

corresponding to a binary noise with the temporal cut-off frequency of 1 Hz.  133 

The response of an individual cell, as imaged within an ROI, was used to reconstruct the cell’s 134 

spatiotemporal receptive field as described by Arenz et al. (2017) [13]. The obtained coordinates of its 135 

position on the screen were used to center the step stimulus as described below.  136 

Visual Stimulation of the Medulla Neurons  137 

The coordinates of a cell’s receptive field, obtained from its response to the Gaussian noise, were used 138 

to position the step stimulus. Before presenting the stimulus, we verified that the RF center was 139 

sufficiently distant from the border of the screen so that a significant part of the surround of the stimulus 140 

could be displayed. 141 

The center of the stimulus comprised a 5° circular window, in which a 1-second-long step of luminance 142 

was presented. The contrast polarity of the step corresponded to the preference of the cell [22], i.e. for 143 

Mi1 and Tm3, the luminance of the center increased from 0% to 50%, 75%, or 100% during the step, 144 

and vice versa, the luminance of the center decreased from 100% to 50%, 25%, or 0% for L1, Tm1, and 145 

Tm2. The center window was surrounded by a 30° gray annulus (medium luminance), intended to cover 146 

the surround of the receptive field of the cell and prevent the stimulus surround from leaking into the 147 

cell’s RF.  148 
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Beyond the annulus, one of the four surround conditions was shown, all with the same mean luminance. 149 

Each surround condition was shown 3 s before the luminance step in the center and remained on screen 150 

for 2 s after the step. In the cases when the surround condition was dynamic, the dynamics of the 151 

surround started 1 s before the luminance step in the center. The four surround conditions were as 152 

follows: 1. uniformly gray (contrast 0%); 2.  20°-wavelength stationary grating (contrast 100%); 2.  20°-153 

wavelength grating moving at 1 Hz (contrast 100%); 4. stochastic stimulus, (here, a binary noise with 154 

the temporal cut-off frequency of 10 Hz, further properties as described in Gaussian Noise Stimulus).   155 

All stimuli were repeated 3 times in randomized order to prevent adaptation to any stimulus features. 156 

Data Analysis 157 

Data analysis was performed offline using custom-written routines in Matlab and Python 2.7 and Python 158 

3.7 (with the SciPy and OpenCV-Python Libraries).       159 

Data Evaluation 160 

Relative fluorescence change (ΔF/F) was calculated using a standard baseline algorithm over an 161 

individual ROI as described in Jia et al. (2010) [31]. Briefly, raw signal was smoothed with a Gaussian 162 

window with FWHM of 1 s, the minima in a 90 second-long sliding window were extracted, and the 163 

trace was smoothed with a Gaussian window with FWHM of 4 min, resulting in the dynamic baseline, 164 

F0. To better compare the time-course of the signals to different stimuli, response curves were also 165 

normalized to their maximum, i.e. divided by the peak value reached during the stimulation period.  166 

To filter out the cells for which the variance in responses between trials was caused by movement 167 

artifacts, a signal-to-noise ratio (SNR) criterion was introduced. Here, only the recordings, in which the 168 

inter-trial variance was smaller than the average cell response, were taken, i.e. the standard deviation of 169 

the averaged signal had to be at least 115% of the mean standard deviation over trials. On average, over 170 

90% of all cells measured passed the SNR criterion.  171 

Data Visualization 172 
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For all experiments, responses for each cell were averaged over trials, normalized to the cell’s 173 

maximum, and further averaged over the cells. Additionally, to illustrate the temporal dynamics of the 174 

responses, responses of each cell type for every condition were normalized to the condition's maximum 175 

for the respective cell type. 176 

To visualize response traces when a cell responded identically to several stimuli, an artificial gap was 177 

introduced by offsetting one of the responses vertically. In these cases, the figure legend specifies for 178 

which conditions the offset was introduced.  179 

Statistical Tests    180 

Shaded areas around the response curves show bootstrapped 68% confidence intervals around the mean 181 

(estimated as corresponding distribution percentiles after resampling the data 1,000 times). Sample sizes 182 

are given in each figure legend. The experimenters were not blinded to genotypes or conditions during 183 

data gathering and analysis.  184 

Modelling 185 

The model comprised three stages through which an input, a step function, was sequentially processed. 186 

The input was a 1 s pulse at either full amplitude or an amplitude of 0.2. 187 

The processing cascade was as follows: a (1) band-pass filter, followed by either a (2.1) static or a (2.2) 188 

dynamic nonlinearity, followed by a (3) low-pass filter.  189 

(1) The first stage of the model, a band-pass filter, simulated the response of a cell membrane to a 190 

luminance step received in the center of its RF. The band-pass filter was constructed as a combination 191 

of a low- and a high-pass filter (LP and HP) with 𝜏 = 200 ms and 𝜏ு = 300ms. 192 

(2) At the second stage, the response was transferred through a divisive nonlinearity, as often used to 193 

describe “contrast normalization” i.e. the saturating contrast dependency. 194 

(2.1) The stationary nonlinearity was constructed as follows:  195 
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𝑦(𝑡)   = ௫(௧)
௫(௧)  ା 

 , 196 

where 𝑥 was the input and 𝑦 the output signal amplitude, and 𝑘 the parameter controlling the amount 197 

of saturation. 𝑘 values of 0.2 and 1.0 were used to simulate the static and dynamic surround 198 

experimental conditions, respectively.  199 

(2.2) The dynamic nonlinearity was constructed as follows:  200 

𝑦(𝑡)  = ௫(௧ିଵ)ாೣ ା ௬(௧ିଵ)೩
௫(௧ିଵ) ା  ା ೩

  , 201 

where 𝑥 was the input and 𝑦 the output signal amplitude, 𝐸௫ was set to 1.0, 𝐶௱௧ to 100.0, and 𝑘 was 202 

the parameter controlling the amount of saturation. 𝑘 values of 0.2 and 1.0 were used to simulate the 203 

static and dynamic surround experimental conditions, respectively. 204 

This corresponds to: 205 

𝑉(𝑡)  =
ೣாೣ ା (௧ିଵ) 

೩

ೣ ା ೌೖ ା 
೩

 , 206 

where 𝑔௫ is the conductance of the excitatory current, 𝑉 is the membrane potential, 𝐸௫ is the reversal 207 

potential of the excitatory current, 𝐶 is the membrane capacitance, and 𝑔 is the conductance of the 208 

leak current. 209 

As derived from the equation for the electrically passive membrane, which states that the sum of all 210 

currents across the membrane equals zero: 211 

−𝐶 ௗ(௧)
ௗ௧

 =  𝑔௫(𝑉(𝑡)  − 𝐸௫)  +  𝑔(𝑉(𝑡)  − 𝐸) . 212 

(3) At the last stage, to account for the calcium indicator (GCaMP6f) dynamics, the signal was 213 

processed through a low-pass filter with 𝜏 = 200 ms. 214 

69



 10 

Finally, the responses were normalized as described in “Data Evaluation” so that the model output was 215 

comparable to the experimental data.  216 

Results 217 

We performed in vivo 2-photon calcium imaging from axon terminals of Mi1 and Tm3 neurons in layer 218 

M10 of the medulla, and from axon terminals of Tm1 and Tm2 neurons in layer Lo1 of the lobula. 219 

These recording sites correspond to the locations where the respective neurons synapse onto the 220 

dendrites of the first direction-selective cells: Mi1 and Tm3 onto T4 cells, and Tm1 and Tm2 onto T5 221 

cells (see Fig 1A). 222 

As we were interested in the effects that contrast normalization has on single cells, our stimulus protocol 223 

included a stochastic noise stimulus to determine the location of the cell’s RF. This location was then 224 

used to project further stimuli to specific screen locations relative to the cell’s RF (Fig 2A).  225 

Fig 2. Dynamic Surround Affects Response Amplitude and Kinetics. (A) Experimental procedure: 226 

(1) white noise stimulus, (2) receptive field (RF) reconstruction from single-neuron calcium signals, (3) 227 

experimental stimuli centered on RF. (B) Stimulus protocol. Luminance step in RF center with 4 228 

surround conditions. (C) Average Tm3 response to luminance step in RF center with gray, stationary, 229 

moving grating, and stochastic stimulus surround; n = 23/6. Luminance step happened during the gray-230 

shaded period. Left: Amplitudes of cell responses. Responses are normalized to the cell's maximum. 231 

Shaded areas around the curves show bootstrapped 68% confidence intervals. Right: Kinetics of cell 232 

responses. Responses during each condition are normalized to the condition's maximum. Artificial gap 233 

is created between responses to static conditions for easier visualization. See also Fig S1. 234 

All of our stimuli followed the same pattern: a 1-second luminance step with a 100% amplitude was 235 

shown in a 5° circular window positioned in the center of the cell’s receptive field. This step consisted 236 

of a luminance increase from 0 to 1 for Mi1 and Tm3, and a luminance decrease from 1 to 0 for Tm1 237 

and Tm2. The window was surrounded by a 30° annulus at an intermediate luminance level that covered 238 

most, and often the entirety, of the cell’s receptive field. The annulus ensured that the surround of the 239 
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stimuli was not spilling over into the receptive field of the cell avoiding a direct stimulation of the 240 

neuron. The size of 30° of the annulus was based on the average full width at half maximum (FWHM) 241 

for the imaged cells: this value was previously determined to be 29° for Mi1 cells, 12° for Tm3 cells, 242 

27° for Tm1 cells, and 31° for Tm2 cells [13]. Covering the rest of the screen (hereafter referred to as 243 

“surround”), sparing the center and the annulus, one of four different surround stimuli was presented 244 

(Fig 2B): (i) uniformly gray, i.e. medium luminance, (ii) stationary grating at full contrast; (iii) 20°-245 

wavelength full-contrast grating moving at 1 Hz; (iv) full-contrast stochastic binary pixel noise. This 246 

selection of stimulus conditions ensured that we had both a static (conditions i and ii) and a dynamic 247 

(conditions iii and iv) surround. The two different dynamic surround conditions further differentiated 248 

between temporal dynamics containing motion (moving grating in condition iii) and no motion 249 

component (stochastic noise in condition iv). 250 

Effect of Visual Surround on Response Amplitude and Kinetics 251 

First, we wanted to probe the cells of interest to determine which features of the stimulus surround 252 

affected the response of the cell to stimulation of its receptive field center. To this end, our stimulus 253 

consisted of a luminance step in the center and one of the four conditions in the surround. Fig 2C shows 254 

responses of Tm3 neurons to the four stimulus conditions. For all the surround conditions, the cells 255 

responded to the luminance step with a fast signal increase that began decaying while the step was still 256 

present. However, the amplitudes of the response and the kinetics of the signal decay varied depending 257 

on the dynamics of the surround. Stationary grating in the surround had no visible effect on the signal, 258 

making the responses to the two static surround conditions, uniformly gray and stationary grating, 259 

virtually identical (Fig 2C). In the presence of a dynamic surround, however, the amplitude of the 260 

response was dramatically reduced. For a stochastic noise surround, the maximum signal amplitude 261 

only reached about 46% of the peak response value observed for static surround (for the values, see 262 

Table S2). The signal was suppressed even more strongly by a moving grating in the surround, reaching 263 

only about 20% of the peak response value observed for static surround.  264 
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In addition to suppressing the amplitude, the dynamic surround affected the kinetics of the responses 265 

(Fig 2C, right panel). As best seen after normalizing cell responses to their peaks, Tm3 responses to the 266 

two static conditions had virtually identical kinetics, with a rather slow decay of the signal during the 267 

luminance step. In the presence of a dynamic surround, however, responses decayed visibly faster and, 268 

by the end of the luminance step (arrows in Fig 2C), decreased to approximately 35% and 43% of their 269 

peak amplitudes in the stochastic noise and moving grating surround conditions, respectively, compared 270 

to only a decrease to 82% in the presence of static surround (for all values, see Table S1). Interestingly, 271 

the temporal profiles of the responses in the two conditions with dynamic surround were virtually 272 

identical, as were the signals in the two static surround conditions. 273 

These phenomena, i.e. response amplitude suppression and faster response decay caused by the dynamic 274 

but not the static surround, as well as extremely similar temporal profiles of the responses within the 275 

two static and the two dynamic surround conditions, were also observed in Mi1 (Fig S1). Curiously, in 276 

the specific case of Mi1, a certain level of response was present already before the luminance step and 277 

was subsequently suppressed by the dynamic surround. We conclude that dynamic, but not static, 278 

surround has an effect on both the response amplitude and its kinetics.  279 

Because of the high level of similarity of response time courses within the static and dynamic surround 280 

conditions, and as we were interested specifically in the effect of contrast normalization on the kinetics 281 

of the signal, we focused on one stimulus per condition category. Thus, in further experiments, we used 282 

the uniformly gray surround to represent the stationary and the moving grating for the dynamic surround 283 

condition.  284 

Response Kinetics of Transient Medulla and Transmedulla Neurons 285 

With this stimulus protocol, we probed the other cells, i.e. Mi1, Tm1, and Tm2, that had previously 286 

shown to exhibit contrast-normalizing properties [17]. Here, a similar picture arose (Fig 3). Firstly, all 287 

the cells tested responded to the luminance step in the center of their receptive field, regardless of the 288 

surround. Contrast normalization had a dramatic effect on the amplitude of the cells’ responses, strongly 289 

decreasing the size of the response in the presence of moving grating in the surround (Fig 3A). Here, 290 
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the response of Tm3 was suppressed the most: under dynamic surround conditions, its peak signal 291 

corresponded to only about 20% of its response maximum in the static surround condition. For the rest 292 

of the cells, the peak amplitude in the dynamic surround condition constituted approximately 58% 293 

(Mi1), 58% (Tm1), and 45% (Tm2) of their highest signal observed in the uniformly gray surround 294 

condition.  295 

Fig 3. Contrast Normalization Affects Response Amplitude and Kinetics. Average responses of 296 

contrast normalization-exhibiting neurons to luminance step in the RF center with gray and moving 297 

grating surround. Mi1 (n = 98/25); Tm1 (n = 24/9); Tm2 (n = 22/7), and Tm3 (n = 65/16). Luminance 298 

step happened during the gray-shaded period. (A) Amplitudes of cell responses. Responses are 299 

normalized to the cell's maximum. Shaded areas around the curves show bootstrapped 68% confidence 300 

intervals. (B) Kinetics of cell responses. Responses during each condition are normalized to the 301 

condition's maximum.  302 

The dynamic surround also had a pronounced effect on the temporal profile of the responses (Fig 3B), 303 

with the signal decaying faster when a moving grating was present in the surround. Numerically, when 304 

comparing the level of signal decay reached by the end of the luminance step in the two conditions, Mi1 305 

response decreased to about 86% of its own maximum response amplitude in the dynamic condition, 306 

compared to 97% in the static surround condition. For Tm3, the signal decayed to 43% of its own 307 

maximum in the presence of a moving grating and to 82% in the presence of a uniformly gray surround. 308 

For Tm1, these values for the dynamic and the static surround constituted 67% and 88%; and for Tm2, 309 

22% and 35%, respectively.  310 

We conclude that, in all the transient medulla cells that had previously been reported to exhibit contrast 311 

normalization, the dynamic surround not only suppresses their response amplitude but also has a 312 

pronounced effect on their temporal profile.  313 
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Modelling Effects of Dynamic Surround 314 

How can we explain that a moving stimulus in the surround, outside the receptive field of a neuron, 315 

affects both the amplitude and the time-course of the response? Classically, the phenomenon of contrast 316 

normalization is attributed to a divisive nonlinearity. The saturating contrast dependency of the response 317 

to a stimulus within the receptive field is well described by the following formula [2]:  318 

(1)  𝑦(𝑡)   = ௫(௧)
௫(௧)  ା 

 319 

with x being the input and y the output signal amplitude, and k the parameter which controls the amount 320 

of saturation: for small values of k with respect to x, y strongly saturates with increasing x (Fig 4A). 321 

This corresponds to the situation of a static surround. Conversely, for k being large with respect to x, y 322 

grows in a rather linear way with increasing x. This corresponds to the situation where a grating is 323 

moving in the surround. 324 

Fig 4. Model with Dynamic Nonlinearity Reproduces Dynamic Surround Effect on Response 325 

Amplitude and Kinetics. (A) Model schematic: input step is sequentially passed through band-pass 326 

filter (BP), nonlinearity (NL), and low-pass filter (LP). NL with k = 1 corresponds to moving grating 327 

surround condition, k = 0.2 to gray surround condition. (B) Model cascade with stationary nonlinearity. 328 

(C) Model cascade with stationary nonlinearity and varying input amplitudes. (D) Model cascade with 329 

dynamic nonlinearity and varying input amplitudes. (B-D) For easier visualization, an artificial gap is 330 

created between model responses to moving grating and gray surround conditions. 331 

Consider the following signal processing cascade (Fig 4A). It consists of a band-pass filter (Fig 4A, 332 

left), the above-mentioned nonlinearity (Fig 4A, middle), and a final low pass filter (Fig 4A, right) to 333 

account for the calcium indicator dynamics. The nonlinearity is shown for two values of k, 0.2 (blue, 334 

representing static surround) and 1.0 (red, representing moving surround). If we stimulate the cell with 335 

a 1s pulse of light (Fig 4B, left), the signal amplitude will be different after the nonlinearity, depending 336 

on whether the surround is static or moving (Fig 4B, middle). However, the shape of the signal is also 337 

slightly different, as can be seen after the output signals are normalized to their maximum amplitude 338 
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(Fig 4B, right). Thus, a stationary nonlinearity of the kind shown in formula (1) will affect not only the 339 

signal amplitude but also the signal dynamic. 340 

If this explains the phenomenon shown in Fig 3, we should obtain the same signal amplitude and time-341 

course for a static surround that we observed for a moving surround by simply reducing the stimulus 342 

amplitude accordingly (Fig 4C). A stimulus amplitude of 0.2 for a static surround resulted in a signal 343 

that is identical in amplitude and shape to the one resulting from a stimulus amplitude of 1.0 for a 344 

moving surround (Fig 4C, middle to right). 345 

There is, however, another explanation for the phenomenon taking into account the biophysics of a 346 

neuron. The following equation describing an electrically passive membrane states that the sum of all 347 

currents across the membrane equals zero: 348 

(2)  −𝐶 ௗ(௧)
ௗ௧

 =  𝑔௫(𝑉(𝑡)  − 𝐸௫)  +  𝑔(𝑉(𝑡)  − 𝐸)  349 

Here, 𝑉(𝑡) is the membrane potential, 𝐶 the membrane capacitance,  𝑔௫ and 𝐸௫ the conductance 350 

and the reversal potential of the excitatory current, and  𝑔 and 𝐸 the conductance and the reversal 351 

potential of the leak current. Under steady-state conditions, i.e. ௗ(௧)
ௗ௧

 = 0, and considering 𝑉(𝑡)  relative 352 

to 𝐸  (i.e. 𝐸 = 0), this equation becomes: 353 

(3) 𝑉(𝑡)  = ೣ
ೣ ା ೌೖ

𝐸௫  354 

With 𝑔௫ being the signal driving 𝑉(𝑡), the correspondence to equation (1), i.e. contrast normalization, 355 

is obvious:  𝑔 becomes the factor controlling the amount of saturation. Under non-steady-state 356 

conditions, however,  𝑔, together with C, affects the membrane time-constant and thus the dynamic 357 

of the membrane voltage. In other words: taking into account the biophysics of a neuron’s membrane, 358 

contrast normalization will alter the dynamic of the output signal, in addition to the effect described 359 

above, by altering the membrane time constant. 360 

Rewriting equation (2) as a difference equation results in the following equation: 361 

75



 16 

(4) 𝑉(𝑡)  =
ೣாೣ ା (௧ିଵ) 

೩

ೣ ା ೌೖ ା 
೩

 362 

With the capacitive current being small relative to the leak and excitatory current, equation (4) 363 

degenerates to equation (3), i.e. it describes the membrane voltage under steady-state conditions. 364 

Can we still observe the same time-course for a small stimulus amplitude with a static surround and a 365 

large stimulus amplitude with a moving surround? As is shown in Fig 4D, the answer is ‘No’. Given a 366 

sufficiently large value of membrane capacitance, the two conditions cannot be interchanged with any 367 

combination of stimulus amplitudes: for both stimulus amplitudes, the responses with a moving 368 

surround are always faster than the responses with a static surround. 369 

Dynamic Nonlinearity in the Model Recapitulates Temporal Effects of Contrast 370 

Normalization 371 

In order to test which of the two explanations describes our data best, i.e. whether contrast normalization 372 

also affects the membrane time constant, we repeated the experiments on Tm3 and Mi1 cells, this time 373 

using three different stimulus amplitudes: 50%, 75%, and 100% (Fig 5A). 374 

Fig 5. Luminance Step Amplitude Has No Effect on Response Kinetics. (A) Spatial and temporal 375 

stimulus profile. Left: 3 luminance step amplitudes with gray surround. Right: 3 luminance step 376 

amplitudes with moving grating surround. (B) Tm3 responses to 50%, 75%, and 100% luminance steps 377 

with gray surround; and to 50%, 75%, and 100% luminance steps with moving grating surround; n = 378 

21/4. Luminance steps happened during the gray-shaded period. Left: Amplitudes of cell responses. 379 

Responses are normalized to the cell's maximum. Shaded areas around the curves show bootstrapped 380 

68% confidence intervals. Right: Kinetics of cell responses. Responses during each condition are 381 

normalized to the condition's maximum. An artificial gap is created between responses to 100% and 382 

75% steps for easier visualization. (C) Mi1 responses to 50%, 75%, and 100% luminance step with gray 383 

surround; and to 50%, 75%, and 100%  luminance step with moving grating surround; n = 26/8. 384 

Luminance step happened during the gray-shaded period. Left and right as in (B).  See also Fig S2. 385 
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With decreasing input amplitude, the amplitude of the response also decreased, scaling, however, in a 386 

non-linear way (Fig 5B and 5C). In Tm3, inputs of 75% and 100% in the dynamic surround condition 387 

yielded virtually identical response amplitudes, while the amplitude of the response to a 50% luminance 388 

step was significantly lower (Fig 5B, left). Mi1 exhibited similar behavior in the static surround 389 

condition (Fig 5C, left).  390 

However, inspection of the temporal profile of the responses (Fig 5B, C, right) reveals that the kinetics 391 

of the signals remained the same within the static and the dynamic surround conditions, independent of 392 

the input amplitude, with responses decaying visibly faster in the presence of a dynamic surround. Here, 393 

by the end of the luminance step, Mi1 responses to all three input amplitudes decayed to about 85% of 394 

the respective maximum if a moving grating was shown in the surround. In contrast, the responses 395 

decreased to only 98% of the respective maximum if the surround was uniformly gray. Similarly, for 396 

Tm3, the signal also decayed equally in response to the three stimuli, reaching approximately 39.5 - 397 

43.5% of its maximum in the dynamic surround condition and roughly 80% if the surround was static.  398 

Additionally, we used the same stimulus protocol and imaged the response of the lamina neuron L1 399 

(Fig S2), previously shown not to exhibit contrast normalizing properties [17]. Here, the amplitude of 400 

the response showed a clear dependence on the amplitude of the input step while the temporal kinetics 401 

of the signal remained the same, independent of the properties of the surround or the amplitude of the 402 

input.  403 

Taken together, our results demonstrate that the amplitude of the input stimulus does not have a 404 

pronounced effect on the temporal properties of the response. The results also show that the differences 405 

in the signal time course are purely linked to the presence or absence of a dynamic surround. Therefore, 406 

the change in the response dynamics cannot be explained as resulting from a static saturation 407 

nonlinearity. Conversely, the results are in line with changes in the membrane time constant that depend 408 

on the properties of the surround, thus supporting a model with a dynamic nonlinearity (Fig 4D).  409 

77



 18 

Discussion 410 

Characterizing the temporal filter properties of visual interneurons, we have shown that contrast 411 

normalization has a large influence not only on the amplitudes of the cells’ responses but also on their 412 

temporal dynamics. This effect was present in all medulla neurons that had previously been shown to 413 

possess contrast normalization properties (Fig 3) and was exerted only by dynamic, but not by stationary 414 

stimuli present in the visual surround of the cells. We considered two models to explain this effect, one 415 

with a stationary, the other with a dynamic nonlinearity (Fig 4). By demonstrating that the temporal 416 

profile of the response was only influenced by the stimulus surround (Fig 5) and was not a simple 417 

consequence of response saturation, we could exclude the model with a stationary nonlinearity. The 418 

results were in line with our hypothesis that contrast normalization affects the membrane time constant. 419 

The results, thus, favor the model with a dynamic nonlinearity.  420 

In Drews et al. (2020) [17], the presence of contrast normalization in Drosophila’s optic lobe and its 421 

suppressive effect on the gain of the response has been established. Here, we demonstrate the effect of 422 

contrast normalization on the temporal kinetics of the responses. Our results parallel the findings from 423 

the vertebrate retina, where cells’ processing has also been shown to speed up, leading to their responses 424 

becoming more transient at higher contrasts [3-5]. At the same time, our findings seem to be, at first 425 

sight, hard to reconcile with a study by Matulis et al. (2020) [32] who investigated temporal contrast 426 

adaptation in the Drosophila optic lobe. They found different cells to be affected by the visual contrast 427 

than the current study as well as what was described in Drews et al. (2020) [17]. Furthermore, in 428 

electrophysiological recordings, contrast adaptation had no effect on the temporal dynamics of the 429 

signal, while, in two-photon calcium recordings from the same cells’ dendrites, higher contrasts were 430 

found to slow the signals down - a finding that is opposite to the results from the vertebrate retina [3-5] 431 

and from our study. Whatever the explanation of the latter differences between voltage and calcium 432 

signals may be, these discrepancies may be partly attributed to the differences in the stimuli applied. In 433 

order to study contrast adaptation, i.e. the change in the cell’s signal in response to the contrast of the 434 

entire visual scene, Matulis et al. (2020) [32] used full-field stimuli consisting of stochastic binary noise 435 

that switched between periods of low and high contrast. Hence, the change in stimulus contrast applied 436 
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to both the cells’ receptive field as well as the overall surround simultaneously. Our goal was to study 437 

contrast normalization, i.e. the influence of the surround stimulus on the response of the cell to the 438 

stimulus within its receptive field. Therefore, we as well as Drews et al (2020) [17] designed the 439 

stimulus such as to stimulate the cells’ receptive field and the surround separately. Taken together, the 440 

effects of contrast normalization on the amplitude and the dynamics of the response to stimuli delivered 441 

within the receptive field of the neurons, as found in Drews et al. and in this paper, seem to be distinct 442 

from the effects of contrast adaptation, as found by Matulis et al.(2020) [32]. 443 

Implications for Characterizing Filter Properties of Visual Interneurons 444 

In order to characterize the filter properties of single cells, a variety of different artificial stimuli are 445 

typically used, amongst them stochastic pixel noise, bars, and gratings, to name only a few. These 446 

stimuli offer numerous advantages for systematic studies: they are easy to parametrize by their mean 447 

luminance, contrast, and spatial wavelength, and the resulting response is readily evaluated in terms of 448 

the cell’s impulse response, receptive field size, and frequency spectrum. However, the visual system 449 

has evolved as an adaption to complex natural images. Therefore, the results obtained from the 450 

simplified artificial stimuli may not be transferable to a cell’s responses to naturalistic stimuli. Unlike 451 

natural environments, many of the stimuli used to characterize response properties of visual 452 

interneurons are tailored to the receptive field of the cell under study. However, as we have shown 453 

above, the presence or absence of dynamic stimuli in the visual surround, far outside of the receptive 454 

field of a cell, has a pronounced influence not only on the response amplitude but also on the temporal 455 

response properties of the cell. 456 

This has immediate implications for the interpretation of results obtained from visual interneurons in 457 

general, and for neurons involved in motion vision in particular. Here, the various models proposed to 458 

account for this computation [33-34], although different in detail, all share the principle that a direction-459 

selective output is achieved by a non-linear operation performed on differentially filtered signals 460 

derived from adjacent image points. In the fly visual system, T4 and T5 cells are known to be the first 461 

direction-selective neurons [14]. While contrast normalization has indeed been demonstrated in a 462 
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number of columnar neurons providing input to T4 and T5 cells [17], their specific contributions to 463 

motion vision were derived from their temporal filtering properties which, in turn, were determined 464 

using stochastic pixel noise [13]. However, depending on the specific cell under study, the temporal 465 

response properties might be quite different whether the cell is stimulated by a full-field grating or by 466 

a local contrast step. To avoid this dilemma and in order to feed the model with faithful signals, input 467 

neurons should ideally be measured under stimulus conditions identical to those used to characterize 468 

the motion-sensitive neurons. Interestingly, this exact path has been chosen in a recent study on T4 cells 469 

[35]. 470 

Functional Consequences of Contrast Normalization 471 

We focused on the visual interneurons with band-pass filtering properties [13], that provide excitatory 472 

input onto direction-selective T4 and T5 cells [16], exhibit contrast normalization [17], and are often 473 

used as input signals of various motion detector model simulations [13, 23]. Incorporating spatial 474 

contrast normalization into correlation-based models of motion vision has already been demonstrated 475 

to drastically improve the models’ performance [17]. Here, we show that, in addition to the suppressive 476 

effect on the amplitude of the response, contrast normalization also alters the temporal dynamics of the 477 

signal and, thus, the filtering properties of the neurons. This change in the time course of the inputs has 478 

potential implications for the temporal dynamics of T4 and T5 neurons by adjusting the cells’ speed 479 

tuning to the prevailing speed in the surround. To determine the influence that visual surround has on 480 

temporal filtering properties and velocity tuning of the neurons, the motion vision circuit needs to be 481 

scanned with a set of dynamic global stimuli at varying frequencies. 482 

Contrast normalization does not alter the amplitude and the temporal dynamics of all the cells it affects 483 

by an equal amount. Consequently, the relative contribution of the different inputs to the T4 and T5 484 

cells will vary depending on the global structure of the stimulus. In the ON pathway, in the presence of 485 

a global visual surround, Tm3 responses are suppressed and sped up to a higher degree than the 486 

responses of Mi1 neurons (Fig 3). As these two cells constitute a large portion of T4 input [16, 36], the 487 

unequal effects of contrast normalization, depending on the presence of a local or a global stimulus, 488 
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would skew the ratio of the neurons’ outputs onto T4. To emphasize, this has severe implications for 489 

the resulting output of the computation because the composition of the inputs varies, depending on the 490 

profile of the visual stimulus.  491 

Mechanism of Contrast Normalization 492 

The contrast normalization mechanism relies on neural feedback. At least part of this feedback comes 493 

from one or more medulla neurons [17]. The feedback does not solely rely on the output of the neuron 494 

itself, as blocking the cell’s output is not enough to completely abolish contrast normalization of its 495 

response. 496 

Even though the normalizing cell has not yet been identified, the search can be focused, as we can 497 

determine a number of characteristics that describe the feedback cell. Firstly, the normalizing feedback 498 

neuron has temporal band-pass filtering properties, as a stimulus with a high-contrast but static surround 499 

elicits the same response as a purely local stimulus (Fig 2). Secondly, the normalizing feedback cell is 500 

not selective for the direction of motion, as a surround with purely temporal dynamics is enough to 501 

reproduce the normalizing effects of a global stimulus that contains spatial motion. Thirdly, the 502 

normalizing feedback neuron either has a large receptive field or is a part of an interconnected network 503 

of the same cell type with smaller receptive fields, as the strength of the normalization increases as the 504 

surround grows in size, extending well beyond 50° [17]. 505 

We also make a clear prediction about the mechanism, via which the normalization is achieved in the 506 

neuron that exhibits the contrast normalization properties. The effects of contrast normalization on 507 

amplitude and kinetics of the signal are not a result of a simple saturation (Fig 4), instead, we can 508 

reproduce these effects by altering the cell’s input resistance. We hypothesize that the input resistance 509 

of the cell should drop significantly in the presence of a global stimulus with a dynamic surround. 510 

However, measuring such a drop in the input resistance in the presence of the global dynamic surround 511 

at varying speeds might be a complicated experiment to perform. The contrast normalization effect 512 

described here is seen when imaging at the axon terminals of the cells, at the site of their synaptic output 513 

onto the first direction-selective cells, i.e. T4 and T5 cells. In the ON pathway, this corresponds to 514 

81



 22 

medulla layer M10. Input resistance measurements of these cells, however, are only possible at the 515 

soma, which, in the case of ON-pathway interneurons, is located outside of the medulla. Supposing that 516 

the neuronal computations are compartmentalized and local to the axons and dendrites, the drop in the 517 

input resistance might not reach the soma and thus not be measurable there.  518 

To uncover the physiological mechanism underlying contrast normalization, one could start by focusing 519 

on octopamine, as the application of the octopamine receptor agonist chlordimeform (CDM) has been 520 

shown to significantly speed up response of Drosophila visual interneurons [17], and stimulus-521 

dependence has been demonstrated to elicit changes in the shape of the response similar to those 522 

produced by octopamine [24]. The effect we observed here might be of a similar nature, mimicking the 523 

shift toward higher frequencies that occurs in the cells when the fly is in active locomotion [18], a state, 524 

in which it receives an abundance of global visual cues from the environment. Exploring the connection 525 

between the activation of octopamine receptors and the drop in the input resistance of the neuron in the 526 

presence of a global dynamic stimulus might shed further light on the mechanism of contrast 527 

normalization. 528 

In summary, we built on the work in contrast normalization in the motion vision circuitry of Drosophila 529 

melanogaster and demonstrated the dramatic effect that contrast normalization has on the temporal 530 

characteristics of the interneurons’ responses. Our findings illustrate the limitations of using simplified 531 

artificial stimuli with varying spatial profiles to probe the filtering properties of single cells and the 532 

constraints in transferring these results onto naturalistic conditions. 533 

Supporting Information 534 

S1 Fig. Dynamic Surround Affects Response Amplitude and Kinetics. Mi1 responses to a luminance 535 

step in the RF center with gray, stationary, moving grating, and stochastic stimulus surround; n = 48/11. 536 

Luminance step occurred during the gray-shaded period. Left: Amplitudes of cell responses. Responses 537 

are normalized to the cell's maximum. Shaded areas around the curves show bootstrapped 68% 538 

confidence intervals. Right: Kinetics of cell responses. Responses during each condition are normalized 539 

to the condition's maximum.  540 
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S2 Fig. Dynamic Surround and Input Amplitude Do Not Affect L1 Response Kinetics. (A) 541 

Schematic representation of early stages of the motion detection circuit. Highlighted is a lamina neuron 542 

in the ON pathway that doesn’t exhibit contrast normalization properties and provides major input to 543 

contrast normalization-exhibiting neurons. (B) Contrast tuning curves for lamina neuron L1 (n = 14/4). 544 

Shaded areas around the curves show bootstrapped 68% confidence intervals. Adapted from Drews et 545 

al. (2020) [17].  (C) Spatial and temporal stimulus profile. Left: 3 luminance step amplitudes with gray 546 

surround. Right: 3 luminance step amplitudes with moving grating surround. (D) L1 responses to 547 

luminance steps of different amplitudes with gray and moving grating surround. Luminance step 548 

happened during gray-shaded period. Left: Amplitudes of cell responses. Responses are normalized to 549 

cell’s maximum. Shaded areas around the curves show bootstrapped 68% confidence intervals. Right: 550 

Response kinetics. Responses during each condition are normalized to condition’s maximum.  551 

S1 Table. Signal Amplitude after Luminance Step as a Percentage of Peak Amplitude during the Step. 552 

 Mi1 Tm1 Tm2 Tm3 

Stationary grating 98.58% 90.89% 32.52% 81.32% 

Moving grating 86.09% 67.05% 22.19% 43.47% 

Moving grating, 75% step  89.23% N/A N/A 40.23% 

Moving grating, 50% step  84.57% N/A N/A 39.46% 

Stochastic 83.96% N/A N/A 35.21% 

Gray 96.91% 88.38% 35.24% 82.15% 

Gray, 75% step  97.49% N/A N/A 81.89% 

Gray, 50% step  98.52% N/A N/A 75.16% 
 553 

S2 Table. Maximum Signal Amplitude as a Percentage of Peak Amplitude during Gray Condition. 554 

 Mi1 Tm1 Tm2 Tm3 

Stationary grating 99.89% 104.41% 101.06% 100.17% 

Moving grating 58.49% 58.34% 45.19% 20.54% 

Moving grating, 75% step 48.38% N/A N/A 17.46% 
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Moving grating, 50% step 33.29% N/A N/A 9.59% 

Stochastic 65.43% N/A N/A 45.68% 

Gray 100.00% 100.00% 100.00% 100.00% 

Gray, 75% step 101.07% N/A N/A 84.26% 

Gray, 50% step 87.85% N/A N/A 52.14% 
 555 
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Fig 1. Contrast Normalization in Early Visual System of Drosophila.
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Fig 2. Dynamic Surround Affects Response Amplitude and Kinetics.
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Fig 3. Contrast Normalization Affects Response Amplitude and Kinetics.
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Fig 4. Model with Dynamic Nonlinearity Reproduces Dynamic Surround Effect on
Response Amplitude and Kinetics.
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Fig 5. Luminance Step Amplitude Has No Effect on Response Kinetics.

92



S1 Fig. Dynamic Surround Affects Response Amplitude and Kinetics.

93



S2 Fig. Dynamic Surround and Input Amplitude Do Not Affect L1 Response Kinetics.
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3. DISCUSSION

3.1 Contrast Normalization in the Fly Optic Lobe

In Manuscript 1 (Drews et al., 2020) and in Manuscript 2 (Pirogova and Borst, under

review), we discovered that the canonic computation of contrast normalization is present in

the early visual system of Drosophila, comprehensively described its characteristics and its

effect on the response of the cells, and demonstrated the importance of contrast normalization

for motion vision.

3.1.1 Effects of Contrast Normalization

In Manuscript 1, we demonstrated contrast normalization in the medulla cells with

band-pass filtering properties (Mi1, Tm3, Tm1, and Tm2) that serve as their main inputs into

the first direction-selective neurons in the Drosophila optic lobe (T4 and T5). We showed that

a dynamic visual surround suppresses the amplitude of the cells’ response (Manuscript 1) and

speeds it up, making the signal more transient (Manuscript 2). Both of these findings are

similar to results that had been obtained from neurons in the vertebrate retina (Chander and

Chichilinsky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002). We also showed that

different cell types are affected by contrast normalization to a different extent.

3.1.2 Characteristics of Contrast Normalization

In Manuscript 1, we demonstrated that contrast normalization arises early in the optic lobe

of the fly: while not present in the lamina, the first neuropil after the retina, contrast

normalization already affects the cells one synapse downstream, in the medulla, both in the

ON and the OFF visual pathways. From the medulla, the effects of contrast normalization

propagate further to the first direction-selective cells.

In Manuscript 1, we showed that contrast normalization in response to visual surround

motion is fast (<50 ms) and does not depend on the direction of the motion, with all

directions suppressing the response amplitude to the same degree. Moreover, in Manuscript 1

and Manuscript 2, we determined that contrast normalization does not require a spatial

component and that the normalizing effect on the signal is caused by dynamic but not by

stationary stimuli in the visual surround. For example, we showed that a low-contrast moving

grating exerted a suppressive effect on the amplitude, while a high-contrast grating that was
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stationary or moving at a frequency beyond that discernible by the fly’s eye did not. A

high-contrast surround that was dynamic but had no motion component also exerted a

suppressive effect on the amplitude of the response.

We demonstrated that the effects of contrast normalization come from outside the receptive

field of the cell. In Manuscript 2, we confirmed that the visual surround beyond the cell’s

receptive field affects the cell’s response to a stimulus covering a small central portion of its

receptive field. And in Manuscript 1, we identified that the normalizing pool is integrated

over a large spatial scale, with the strength of the normalization growing as the size of the

visual surround increases.

3.1.3 Contrast Normalization Improves Robustness of Motion Detectors

The existing models of motion detection in Drosophila are often used to replicate the

responses of large-field LPTC neurons. When presented with natural stimuli, however, the

models underperform compared to the electrophysiological recordings from the cells. While

the models successfully match the direction of stimulus motion, they, in contrast to LPTCs,

fail to consistently match the velocity of the stimulus.

In Manuscript 1, we confirmed that adding a compression stage, equivalent to the task of

contrast normalization, to the existing model dramatically improves its performance, putting

it on par with the LPTC responses. Consequently, we determined the importance of contrast

normalization for motion detection and for robust responses to natural images.

3.2 Mechanism of Contrast Normalization

In addition to establishing the presence and characterizing the main properties of contrast

normalization in the early visual system of Drosophila, we also investigated its mechanism.

We demonstrated that contrast normalization is implemented via a feedback loop, proved that

the effects on the amplitude and temporal dynamics of the response are not a result of signal

saturation, emphasized the potential role of shunting inhibition in the normalization process,

and related the effects of normalization to a known mechanism in the fly’s optic lobe that had

also been shown to increase the temporal dynamics of cell responses.

3.2.1 Contrast Normalization Relies on Neural Feedback

In Manuscript 1, we proposed two alternative models to explain the origin of the

normalizing signal in the medulla neurons (Mi1, Tm3, Tm1, and Tm2): 1.) A feedforward
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model, in which the output of the upstream neuropil, the lamina, constitutes the normalizing

pool for the medulla cells, or 2.) a feedback model, in which the signal from the cell itself is

fed back to create the normalizing pool.

To distinguish between the two models, we disrupted the feedback connections from the

cells of interest by blocking their synaptic output and measured the extent of contrast

normalization. The absence of synaptic feedback dramatically reduced the suppressive effect

of contrast normalization on the response amplitude of the cell of interest. The degree of this

reduction varied between cell types but, even when the feedback was lacking, the effects of

contrast normalization were still present for all cell types. Thus, the feedback signal is critical

for contrast normalization but is not its sole component.

Although the significant reduction but not a complete absence of contrast normalization

might be a result of an incomplete genetic block, it is more likely a consequence of the

complex architecture of the feedback circuit. As such, the normalizing pool is likely to

encompass more than just the output signal of one cell type alone, and contributions from

other cell types might be sufficient for contrast normalization to take place to a lesser degree.

Alternatively, with the feedback from the cell lacking, the weights given to other inputs into

the normalizing pool might be altered, allowing contributions from other cells to compensate

for this absence.

Since contrast normalization relies on neuronal feedback, the next step should be to identify

the exact elements that constitute this feedback circuit.

3.2.2 Contrast Normalization Alters Response Time Constants

The effects of contrast normalization can be best represented by incorporating a divisive

nonlinearity, either static or dynamic. A static nonlinearity is well described by a saturating

contrast dependency, in which different conditions of the stimulus surround are represented

by varying the saturation constant. Here, a high-contrast isolated local stimulus causes the

response to saturate, further leading to changes in the response amplitude and temporal

dynamics. Alternatively, a dynamic nonlinearity takes into account the biophysical properties

of the neuronal membrane and entails a change in the filtering properties of the cell, i.e., in

the membrane time constant.

In Manuscript 2, we confirmed that the model with a static nonlinearity does not faithfully

replicate the effects of contrast normalization seen in the responses of the medulla

interneurons. We, thus, concluded that the increased speed of the temporal dynamics and the

suppressed amplitude of the signal at higher contrasts are not consequences of a simple
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response saturation. The mechanism of contrast normalization, therefore, involves a change

in the filtering properties of the cell, specifically entailing a change in its time constant. As

the time constant is a function of the membrane resistance, this change in the resistance of the

cell membrane can help elucidate the role of shunting inhibition in the process of contrast

normalization.

3.2.3 Contrast Normalization and Shunting Inhibition

Shunting inhibition inhibits postsynaptic potential by locally reducing the input resistance

(Figure 6). In contrast to other types of inhibition, such as hyperpolarization, which effects

are best represented by linear subtraction, shunting inhibition most closely corresponds to the

mathematical operation of division.

Shunting inhibition had previously been incorporated into contrast normalization models,

such as in the model from Carandini and Heeger (1994) and Carandini et al. (1997):

,𝑔 =  
𝑔

0

1−𝑘∑𝑅

where, corresponds to the conductance, to the pooled neuronal activity that𝑔 ∑ 𝑅

normalizes the signal, and the parameter determines the effectiveness of the normalization𝑘

pool.

Here, the authors extended a simple linear model to include mutual shunting inhibition

among a large number of cells to explain normalization in simple cells of the macaque

primary visual cortex. In the model, shunting inhibition normalized the linear response of the

cell by the pooled activity from the signals of the surrounding neurons, with the strength of

shunting inhibition increasing at higher stimulus contrasts, i.e., with the rise in the activity of

the neuronal pool. The increase in shunting inhibition also caused an increase in the

conductance of the cell, thus leading to a reduction of the cell’s membrane time constant and

a decrease in its integration time. Subsequently, the change in the membrane time constant

altered the temporal dynamics of the response in a manner similar to the effects of contrast

normalization found in vertebrates (Chander and Chichilinsky, 2001; Kim and Rieke, 2001;

Baccus and Meister, 2002) and in Manuscript 2, namely, by increasing the speed of the

responses at higher stimulus contrasts. Overall, the normalization model that incorporates

98



shunting inhibition, as proposed by Carandini et al. (1997), successfully accounts for the

response nonlinearities.

As shunting inhibition corresponds to the change in the input resistance of the cell,

comparing the membrane resistance at different stimulus contrasts might of further interest.

3.2.4 State- and Stimulus-Dependent Modulation of Neural Processing Speed

The increase in the speed of the medulla interneuron responses at higher contrasts of the

visual surround is reminiscent of the change that octopamine induces in the signals of

Drosophila visual neurons (Suver et al., 2012).

Octopamine is a neurotransmitter in the optic lobe of Drosophila that plays an important

role in flight (Brembs et al., 2007; Jung et al., 2011) and is involved in the state-dependent

modulation of neural processing speed. Namely, during active locomotion, Drosophila visual

neurons exhibit a boost in their response when compared to a resting state (Chiappe et al.,

2010; Maimon et al., 2012; Suver et al., 2012), and the endogenous release of octopamine is

involved in this state-dependent modulation (Suver et al., 2012). Moreover, this boost in the

cell temporal filtering can be mimicked through the application of octopamine (Suver et al.,

2012) and octopamine receptor agonist chlordimeform (CDM) (Arenz et al., 2017).

In active locomotion, the fly is likely to be confronted with visual inputs that are more

dynamic than the inputs encountered when the fly is at rest, with a significant portion of the

dynamics induced by the fly’s self-motion. Thus, it is easy to draw parallels between the

resting and active locomotion states of the fly and the static and dynamic categories of visual

surround stimuli in Manuscript 2 and, thus, the role of visual surround in contrast

normalization and temporal filtering of the signal. Moreover, visual stimuli alone, without

any change in the activity of the fly, have been shown to elicit changes in the shape of the

response similar to those produced by octopamine (Kohn et al., 2021). Therefore, the effect

observed in Manuscript 2 might be of a similar nature, reflecting the activity-dependent

modulations in the responses of a sensory system. Specifically, the modulation shifts the

neuronal responses to higher frequencies, which the fly is more likely to encounter in

locomotion, altering the processing characteristics to fit a specific behavioral state.

Recapitulating the effect of high-contrast surround stimuli using octopamine and studying

the similarities between the two mechanisms, then, is of further interest.
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3.3 Implications for Characterization of Visual Neurons

The effect of contrast normalization on the filtering properties of the visual neurons has

serious implications for characterizing single cells and building motion detector models.

Knowing the impact that the stimulus design has on the neuronal responses, however, might

help us understand the observed inconsistencies in cells’ filtering properties, observed in

different studies. It might also offer a solution: using a consistent stimulus throughout the

motion vision circuit to acquire a comprehensive description of cells’ characteristics for the

motion detector models.

3.3.1 Stimuli to Characterize Filtering Properties of the Cell

Characterizing the filtering properties of single cells creates an understanding of individual

elements of a complex circuit, which is an important step that needs to be carried out to

faithfully replicate biological mechanisms algorithmically. Current genetic tools make it

possible to isolate specific neuronal populations as well as single cells for access and

manipulation and to observe their responses in a tightly controlled environment.

Figure 7. Stimuli to characterize cell filtering properties. Examples of A. stochastic noise, B.

apparent motion, C. light flickers, and D. moving edges and E. gratings.

A plethora of artificial stimuli used to interrogate the visual system includes stochastic

noise, light flickers, apparent motion, and moving edges and gratings, to name only a few

(Figure 7). One of the reasons for such a variety is the increase in feature selectivity and in

the complexity of computations exhibited by the cells when going down the visual pathway

(discussed in Introduction 4.1 Computations in the Drosophila Optic Lobe). While the same

stimuli are sometimes used to stimulate neurons in different neuropils, often stimuli that are

specifically tailored to the cells of interest elicit the best response and make it possible to

study the exact aspects of a mechanism. For example, light flickers are commonly used to

determine the preferred polarity of the cells in the lamina (Clark et al., 2011). In the medulla,

stochastic stimuli that allow for the extraction of the spatiotemporal RF are used to find cells’
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receptive fields and characterize their impulse responses (Arenz et al., 2017). In the lobula

and lobula plate, moving edges and gratings are often used to determine the preferred

direction of motion of the first direction-selective cells and describe the properties of the

motion detector (Serbe et al., 2016; Maisak et al., 2013). Moreover, apparent motion is used

to stimulate the first direction-selective cells to determine if their response to motion is more

or less than the sum of their responses to distinct steps that constitute the motion (Haag et al.,

2016).

Each of these synthetic stimuli offers numerous advantages for characterizing cell

responses: all of the main stimulus parameters (mean luminance, contrast, velocity, etc.) are

fully controlled by the experimenter, and the stimuli themselves are easy to tailor and cater to

the specific preferences of the cell (the cell’s preferred polarity, its receptive field size, etc.).

If the cells in question are linear filters, then any of these stimuli can fully characterize their

responses. However, as the cells of interest often exhibit non-linear filtering properties, these

synthetic stimuli might potentially create obstacles when response properties characterized

with them are used to predict cell responses to naturalistic images. Unlike natural images,

many of the synthetic stimuli are locally focused to stimulate single cells, neglecting the

interactions of a neural network, and their controlled parameters lack the richness of cues

found in complex natural environments. Thus, it would not be surprising if differences in

stimulus features have an impact on the cell response properties

A major difference between the features of the synthetic stimuli used in the Drosophila

optic lobe is their spatial profile, i.e., the presence or absence of the visual surround and its

dynamics. For example, two large groups of stimuli can be distinguished: local (focused light

flickers, apparent motion, etc.) and global (full-field gratings and edges, stochastic noise

stimuli, etc.). However, as we have shown in Manuscript 1 and Manuscript 2, the presence or

absence of dynamic stimuli in the visual surround, far outside of the cell’s receptive field, has

a pronounced influence on the response amplitude as well as on the temporal response

properties of the cell. These findings exemplify the impact that the differences in stimulus

design have on the cell responses and their interpretation.

3.3.2 Stimulus Design and Inconsistencies in Cell Characterization

Even small variations in stimulus design might cause divergent responses from the same

cell, leading us to interpret its filtering properties differently. For example, in Manuscript 2,

we saw that the sensitivity and the temporal filtering properties of the medulla cells that

exhibit contrast normalization vary dramatically depending on the visual surround. For
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instance, Mi1, in the absence of the visual surround, responded prominently to even the

lowest amplitude of the visual input and, at first glance, also possessed temporal dynamics

reminiscent of a low-pass filter, responding with a sustained signal throughout the

presentation of the visual stimulus. This effect was, however, reversed in the presence of a

high-contrast dynamic surround, which made the cell significantly less sensitive to the

changes in the input stimulus but also altered the temporal dynamics of the response to that of

a band-pass filter, with the response of the cell already starting to decay during the stimulus

presentation. This divergence in the interpretation of dissimilar cell responses, caused by

different visual surround conditions, potentially holds true for other visual neurons that

exhibit contrast normalization.

The impact that differences in stimulus design have when studying similar phenomena is

evident when comparing Manuscript 1 and Manuscript 2 to a recent study of temporal

contrast adaptation in the early Drosophila visual system by Matulis et al. (2020). Matulis et

al. (2020) also used two-photon calcium imaging to scan the main inputs into the motion

vision circuit, probing a number of neurons that were also investigated in Manuscript 1 and

Manuscript 2. Matulis et al. (2020), however, used full-field, binary noise that switched

between periods of low and high contrast, with the change in stimulus contrast

simultaneously applying to both the cells’ RF and its visual surround (see below). Similarly

to Manuscript 1 and Manuscript 2, Matulis et al. (2020) found contrast normalization to be

present in the neurons in the motion vision circuit, both in the ON and the OFF pathway, and

showed that the models of motion detection performed better at estimating the velocity of

moving naturalistic images when they included a contrast adaptation stage.

However, the majority of the cells that Matulis et al. (2020) found to be affected by contrast

normalization are distinct from the ones identified in Manuscript 1. And, conversely, many

neurons that, in Manuscript 1, exhibited contrast normalization, were not identified as such

by Matulis et al. (2020). Additionally, the few neurons that were shown to exhibit contrast

normalization in both studies, varied in the degree to which they were affected by the visual

contrast. Furthermore, Matulis et al. (2020) found that contrast adaptation had no effect on

the temporal dynamics of the response, contrary to the findings in Manuscript 2 and the

effects of contrast normalization that had previously been described in the vertebrate retina

(Chander and Chichilinsky, 2001; Kim and Rieke, 2001; Baccus and Meister, 2002).

These stark discrepancies may partly be attributed to the differences in the visual stimuli

used to interrogate the motion vision circuit (Figure 8). Matulis et al. (2020) used a full-field

stimulus that did not separate between the visual center and surround, i.e., the stimuli within
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the cell’s receptive field that directly stimulate the neuron of interest and the stimuli outside

of the cell’s receptive field that do not stimulate the neuron of interest when presented in

isolation. It provided constant stimulation to the entirety of the cell’s receptive field and

beyond and potentially masked the effects of any inhibition coming from outside of the

receptive field. Our stimuli, on the other hand, were designed to deliver the stimulation to the

cell’s receptive field and to its surround independently (Manuscript 1 and Manuscript 2) and

then were further focused on stimulating only the central part of the cell’s receptive field

while providing the normalizing signal in the visual surround (Manuscript 2).

Figure 8. Stimuli spatial profiles. Examples of stimuli spatial profiles from A. Matulis et al.

(2020), B. Manuscript 1, and C. Manuscript 2, showing the relation of the cell’s receptive field (cell

RF) to the stimulus center and surround.

This example illustrates the dramatic effects that differences in the stimuli, designed to

study similar phenomena, can have on the cell responses and the interpretation of the results

obtained from the same cells.

3.3.3 Stimuli Profiles and Motion Detection

The most commonly employed models of motion detection in the fly optic lobe are

coincidence detectors (Figure 9), namely, Hassenstein-Reichardt (Hassenstein and Reichardt,

1956), Barlow-Levick (Barlow and Levick, 1965), and, more recently,

Hassenstein-Reichardt/Barlow-Levick (Haag et al., 2016; Arenz et al., 2017), described in

more detail in Introduction 4.2.2 Coincidence Detectors. In these models, the robustness of

motion detection relies on the model inputs, the balance between their contributions, and their

temporal filtering properties, which together allow the coincidence to occur and the
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non-linear computation to produce reliable and reproducible results. As such, the effect that

the surround of the stimulus on the filtering properties of the cell has a strong impact not only

on the characterization of the visual interneurons themselves but also on the process of

motion detection and the interpretation of the motion detector output.

Firstly, contrast normalization might affect the composition of motion detector models or, in

general, which motion detector models are considered. When choosing cells as the motion

detector inputs, we take into account their spatial characteristics and filtering properties, for

example, we distinguish between slower low-pass and faster band-pass filter cells and select a

combination thereof that would facilitate the coincidence in the detector. However, if the

properties of the cell that are crucial for the motion detector models, such as time constants,

vary as a result of contrast normalization, the measured cell properties will also differ

depending on the stimulus used for their characterization. Thus, a different combination of

input cells might be chosen to build a motion detector or a motion detector model might be

favored with a different non-linear computation altogether. This way, different stimuli used to

characterize cells can partly explain the divergence in the models proposed to algorithmically

represent motion detection in the Drosophila optic lobe.

Secondly, contrast normalization might change the balance between the motion detector

inputs. In Manuscript 2, we saw that contrast normalization does not alter by an equal amount

the amplitude and the temporal dynamics of all the cells that it affects. Thus, the relative

contribution of the different inputs to the motion-selective T4 and T5 cells will vary

depending on the global structure of the stimulus. For example, if we look specifically at the

ON pathway, the main two inputs to direction-selective T4 cells are Mi1 and Tm3 neurons

(Takemura et al., 2013). In Manuscript 2, we showed that, at higher contrasts of the surround,

Tm3 responses are suppressed and sped up to a higher degree than the responses of Mi1

neurons. Thus, the balance between the contribution of Mi1 and Tm3 is different depending

on the visual stimulus, for instance, under the conditions of global dynamic visual surround

or when presented with a local stimulus.

Finally, the change in the time course of the inputs has potential implications for the

temporal dynamics of the motion detector itself. By adjusting the inputs’ velocity tuning to

the prevailing speed in the surround, contrast normalization would also change the preferred

frequency of T4 and T5 neurons downstream, i.e., alter the preferred frequency of the motion

detector.
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To faithfully replicate the motion detector in the models, the filtering properties of the

neurons need to not be conflated with the influence of the visual surround. To this end, the

whole motion vision circuit needs to be scanned with a consistent set of stimuli.

3.3.4 Synthetic Stimuli to Scan the Motion Detection Circuit

Even though using the same set of stimuli to scan the motion vision circuit, from the lamina

inputs through the medulla interneurons to the motion detector itself, would not make it

possible to generalize the results for all visual stimuli, it would provide a complete set of

answers accurately characterizing motion detector’s response to the particular set of stimulus

parameters. This puts a lot of importance on finding the correct stimulus. The search is

complicated by the fact that the cells along the motion vision pathway vary greatly in regard

to their preferred stimuli. For example, pixel noise is commonly used to characterize

spatiotemporal RFs of lamina and medulla cells but it elicits limited responses from the

motion-sensitive T4 and T5 cells.

To accommodate for the cells’ preferences while ensuring control over specific stimulus

parameters and the stimulus delivery (e.g., being able to focus the stimulus on a single cell),

we might employ synthetic stimuli with a simpler local architecture and a motion component

or an illusion of motion, such as apparent motion. However, using local synthetic stimuli to

probe neurons that respond to more complex stimulus features raises the question if the

stimuli themselves might cause a change in the filtering properties of the cell as it is trying to

accommodate for their artificial nature. For example, apparent motion is a stimulus that

successfully stimulates cells in isolation, creating an illusion of motion that evokes responses

throughout the motion vision circuit. It is, however, localized to a couple of bright points on

the screen, although the cells have evolved in the presence of complex natural images and

developed as a part of a larger network, the connections of which would remain silent due to

the lack of inputs that a cell would receive naturally.

On the other hand, using natural images for stimulation will let us faithfully represent the

environment in which the eye has evolved. At the same time, it might make it impossible to

interpret the properties of the cell due to the lack of control over precise stimulus parameters

and delivery, as well as the difficulty of disentangling the diversity of visual cues that the

neurons are responding to.

Alternatively, global synthetic stimuli, such as full-field gratings or edges, might offer a

middle ground between simplified synthetic stimuli and natural images to probe the motion

vision circuit. Such full-field stimuli stimulate the whole neural network while still offering a
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high level of control over their design. However, they do not provide access to the filtering

properties of separate cells, potentially stimulating competing mechanisms that can mask

each other’s effects. For example, when a cell that exhibits contrast normalization is

stimulated by a full-field high-contrast dynamic pattern, its response would be a combination

of the suppressive effects of the contrast in the visual surround and the boost in the response

due to the stimulation of the cell’s RF itself, emphasizing the importance of separating visual

stimulus center and surround to disentangle the effects of the normalization (such as in

Manuscript 1 and Manuscript 2).

Seeing how the differences in the visual surround outside of the cell’s RF affect the filtering

properties of the cell raises the question: what is the right balance between simplifying the

stimulus and staying true to the natural environments? And to what extent are filtering

properties of the cells fixed or able to change to accommodate for the artificial nature of the

stimulus?

Finding the ideal synthetic stimulus to probe the motion detection circuit might not be an

easy task, but measuring the whole circuit under identical stimulus conditions would provide

us with faithful signals for our models. A solution to this problem was offered in a recent

study on T4 cells (Groschner et al., 2022) that scanned the motion vision circuit with a set of

dynamic global stimuli at varying frequencies to determine the influence that visual surround

has on temporal filtering properties and velocity tuning of the neurons.

3.4 Conclusion and Future Directions

We demonstrated that contrast normalization is present in the early visual system of

Drosophila, confirmed its importance for the computations in the motion vision circuit, and

further described some of the main characteristics of the normalization process. Additionally,

we narrowed down the space of possible mechanisms that explain how contrast adaptation

shapes motion detection. Namely, we determined that the normalization is implemented via a

feedback loop and suggested the role of shunting inhibition in the normalization process. The

future investigation of the normalization mechanism should focus on describing further

characteristics of the contrast normalization process, as well as searching for the main players

in the normalizing circuit. Below, some of the future avenues to explore are described.
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3.4.1 Searching for the Normalizing Neuron

In Manuscript 1, we confirmed that contrast normalization relies on a feedback connection,

however, blocking the output of the neuron that exhibits normalization did not completely

abolish the normalization effects in that neuron. Additionally, as the neurons exhibiting

contrast normalization are excitatory, there must exist an inhibitory neuron, over which the

normalization is carried out. Thus, another “normalizing neuron” plays a major role in this

feedback loop, and, thus, the search for the normalizing neuron continues.

Even though we did not identify the normalizing neuron itself, we can describe some of its

characteristics: 1.) The normalizing neuron is a temporal band-pass filter that responds

transiently to the changes in the visual stimulus. As we have shown in Manuscript 2, the

normalizing signal is present when the visual surround is dynamic but not when it is static,

ruling out neurons with low-pass filtering characteristics that would respond in a sustained

manner to a static surround; 2.) The normalizing neuron is not selective for the direction of

motion (as we have shown in Manuscript 1) or for motion in general (as we have shown in

Manuscript 2), as a visual surround that is temporally dynamic but has no motion component

is enough to elicit contrast normalization; 3.) The normalizing neuron either possesses a large

receptive field or forms an interconnected network within its cell type. As we have shown in

Manuscript 2, the normalization signal comes from outside the cell's receptive field, and the

strength of contrast normalization continues increasing beyond 85° from the receptive field

center (Manuscript 1). 4.) The normalizing neuron provides inhibitory signals.

The next steps in the search for the normalizing neuron would involve tracing synaptic

connections from the medulla neurons that exhibit contrast normalization (for example, using

the connectome of the Drosophila optic lobe) and further focusing on the neurons that can

integrate signals from multiple neurons into a normalizing pool, either by being a part of a

large interconnected network themselves or by possessing dense arborizations that span

several columns. After the candidates are identified, the normalization circuit can be

manipulated by blocking the output of the candidate neurons and measuring the impact of the

block on the normalization effects. Alternatively, the search can be narrowed down by

characterizing the filtering properties and receptive fields of the candidate neurons to find the

best match to the characteristics described above. Another way to narrow down the search is

by looking at the neurotransmitters of the candidate neurons and focusing on the ones that

release either GABA or glutamate, for which receptors in the fly nervous system are mostly

inhibitory (Liu and Wilson, 2013; Mauss et al., 2014; Davis et al., 2018).
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A potential obstacle to a straightforward interpretation of the results might emerge if the

normalizing neuron is, in fact, itself a part of a larger network that can partially compensate

for the lack of input from a cell type, masking the effects of the block.

3.4.2 Validating the Role of Shunting Inhibition

In Manuscript 2, we proposed a model that incorporates a dynamic nonlinearity to explain

the mechanism of contrast normalization and confirmed that the model was in agreement

with our experimental results. From the model, we hypothesized that the change in membrane

resistance is involved in contrast normalization, thus implying that shunting inhibition is

likely to play an important role in the mechanism via which the normalization is

implemented. We further postulated that the input resistance of the cell should drop

significantly in the presence of a dynamic visual surround.

Measuring the resistance of the cell membrane under different contrast conditions would

allow us to test this hypothesis, confirming or denying the role of shunting inhibition and

further characterizing properties of contrast normalization.

As it is not possible to carry out electrophysiological recordings from the dendrites of the

medulla interneurons, the measurements would need to be taken at the soma. However, for

compartmentalized neurons, it might not be possible to detect the drop in the input resistance,

that occurs at the dendrites, from the soma. This would delay drawing unambiguous

conclusions and validating our hypothesis until the technology is available to perform the

local measurements at the cell’s dendrites.

3.4.3 Recapitulating the Effects of the Dynamic Surround with Octopamine

Octopamine speeds up the responses of Drosophila visual interneurons when the fly is in

active locomotion (Suver et al., 2012), similar to the effect of contrast normalization on the

cell responses that we observed in Manuscript 2 in the presence of a dynamic visual surround.

Moreover, when in flight, the visual inputs that the fly receives are more dynamic than when

the fly is at rest, with the visual environment it encounters potentially reflecting the

difference between the static and dynamic visual surround used in Manuscript 2.

That is why the next step is to explore a potential connection between the drop in the input

resistance and the activation of octopamine receptors (specifically, Oamb and Oct1βR

octopamine receptors (El-Kholy et al., 2015) have been shown to be expressed in the

Drosophila optic lobe). This can be done via a pharmacological application of octopamine or

CDM and would allow us to shed further light on the mechanism of contrast normalization.
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