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Abstract (English)

Understanding the neurophysiological mechanisms of information processing
within and across brain regions has always been a fundamental and challenging
topic in neuroscience. Considerable works in the brain connectome and transcrip-
tome have laid a profound foundation for understanding brain function by its
structure. At the same time, the recent advance in recording techniques allows us
to probe the nonstationary brain activity from various spatial and temporal scales.
However, how to effectively build the dialogue between the anatomical structure
and the dynamical brain signal still needs to be solved. To tackle the problem,
we explore interpreting electrophysiology signals with mechanistic models.

In chapter 2 we first segregate high-coherent brain signals into different pathways
and then connect their dynamics to synaptic properties. Based on a state space
model of LFP generation, we explore several preprocessing methods to bias the
signal to the synaptic inputs and enhance the separatability of pathway-specific
contributions. The separated sources are more reliable with the preprocessing
methods, especially in highly coherent states, e.g., awake running. With reliably
separated pathways, we further studied their synaptic properties and explored
the local directional connections in the hippocampus. The estimated synaptic
time constant and pathway connection agrees with well-established anatomical
studies.

In chapter 3 we explore establishing a simple model to capture the impulse
response of passive neurons with detailed dendritic morphology. We validate
Green’s function methods based on compartmentalized models by comparing
them to numerical simulations and analytical solutions on continuous neuron
membrane potentials. A parameterized model based on laminar Green’s function
is further developed and helps to infer the anatomical properties, like the input
current distribution and cell position, from their spatiotemporal response patterns.
The effect of cell position and template are examed.

Based on the model of chapter 3, we use the biophysical possible impulse response
profile to regularize the source separation in the frequency domain in chapter 4.
The components from different frequencies are clustered according to the same
latent input distributions. The source separation in better-separated frequency
bins from the same pathway helps separation in other highly contaminated
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frequencies. The optimization is formulated as a probabilistic model to maximize
the negentropy as well as spatial likelihood. Similar to dipole approximation
for EEG signals, Green’s function method provides an effective approximation
to capture biologically possible spatiotemporal patterns and helps to guide the
separation. We validated the method on real data with optogenetic stimulation.

In chapter 5 we further separate the far-field signals from the local pathway
activities according to their physiological properties. We propose a pipeline to
reliably separate and automatically detect far-field signal components. Based on
this, a toolbox is provided to remove the EMG artifacts and assess the cleaning
performance. In the free-running animals, we show that EMG artifacts shadow
the high-frequency oscillatory events detection, and EMG cleaning rescues this
effect.

Overall, this thesis explored multiple possibilities to incorporate neurophysiology
knowledge to understand and model the electrical field potential signals.



Zusammenfassung (Deutsch)

Das Verständnis der neurophysiologischen Mechanismen der Informationsverar-
beitung innerhalb und zwischen Gehirnregionen war schon immer ein grundle-
gendes und herausforderndes Thema in den Neurowissenschaften. Weitreichende
Arbeiten zum Konnektom und Transkriptom des Gehirns haben eine Grundlage
für das Verständnis der Gehirnfunktion gelegt. Des Weiteren ermöglicht uns der
derzeitige Fortschritt in der Aufnahmetechnik, die nicht stationäre Gehirnakti-
vität auf verschiedenen räumlichen und zeitlichen Skalen zu untersuchen. Wie
jedoch die anatomischen Strukturen und die dynamischen Gehirnsignal effektiv
zusammen wirken können, muss jedoch noch gelöst werden. Um dieses Problem
anzugehen, untersuchen wir die Interpretation elektrophysiologischer Signale
mit mechanistischen Modellen.

In Kapitel 2 trennen wir zunächst die hochkohärenten Gehirnsignale in ver-
schiedene Leitungsbahnen und verbinden dann die Dynamik mit synaptischen
Eigenschaften. Basierend auf einem Zustandsraummodell zur Erzeugung lokaler
Feldpotentiale (LFP) untersuchen wir verschiedene Vorverarbeitungsmethoden,
die die Signale bestmöglich auf die synaptischen Eingangsströme ausrichten
und die Trennbarkeit von leitungsbahnspezifischen Beiträgen verbessert. Die
Trennung der Signalquellen ist durch das Vorverarbeitungsverfahren insbesonde-
re während hochkohärenter Verhaltenszustände (z. B. laufen im Wachzustand)
zuverlässiger. Mit zuverlässig getrennten Leitungsbahnen konnten wir die ent-
sprechenden synaptischen Eigenschaften weiter untersuchen und die lokalen
gerichteten Verbindungen im Hippocampus untersuchen. Die geschätzte synap-
tische Zeitkonstante und die Verbindungen der Leitungsbahnen stimmen mit
etablierten anatomischen Studien überein.

In Kapitel 3 untersuchen wir die Erstellung eines einfachen Modells zur Be-
schreibung der Impulsantwort passiver Neuronen mit detaillierter dendritischer
Morphologie. Wir validieren Greensche Funktionsmethoden basierend auf kom-
partimentierten Modellen, indem wir sie mit numerischen Simulationen und
analytischen Lösungen des kontinuierlichen Membranpotentials von Neuronen
vergleichen. Ein parametrisiertes Modell, das auf der laminaren Greenschen
Funktion basiert, wird weiterentwickelt. Es hilft dabei, die anatomischen Eigen-
schaften - die Verteilung des Eingangsstroms und die Zellposition - aus ihren
raumzeitlichen Reaktionsmustern abzuleiten. Die Auswirkung der Zellposition
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und des Templates werden untersucht.

Basierend auf dem Modell aus Kapitel 3 verwenden wir in Kapitel 4 das biophy-
sikalisch mögliche Profil der Impulsantwort, um die Quellentrennung im Fre-
quenzbereich festzulegen. Die Komponenten verschiedener Frequenzen werden
nach derselben latenten Eingangsverteilungen geclustert. Die Quellentrennung
in besser getrennten Frequenzbereichen derselben Leitungsbahn hilft bei der
Quelltrennung in anderen stark kontaminierten Frequenzbereichen. Die Optimie-
rung wird als probabilistisches Modell formuliert, um sowohl die Negentropie
als auch die räumliche Wahrscheinlichkeit zu maximieren. Ähnlich wie die Di-
polnäherungen für EEG-Signale bietet die Greensche Funktionsmethode eine
effektive Annäherung, um biologisch mögliche raumzeitliche Muster zu erfassen,
und hilft, die Quellen zu trennen. Wir haben die Methode an realen Daten mit
optogenetischer Stimulation validiert.

Im Kapitel 5 trennen wir weiter die Fernfeldsignale von den Signalen der lokalen
Leitungsbahnen nach ihren physiologischen Eigenschaften. Wir schlagen eine
Methode vor, die es erlaubt, Fernfeld-Signalkomponenten zuverlässig von loka-
ler Aktivitaet zu trennen und automatisch zu erkennen. Es wird eine Toolbox
bereitgestellt, die EMG-Artefakte entfernt und die bereinigten Signale bewer-
tet. In Ableitungen von freilaufenden Tieren zeigen wir, dass EMG-Artefakte
die Erkennung von hochfrequenten Oszillationen beeintraechtigt, aber nach der
Bereinigung des EMG-Signals erkannt werden kann.

Insgesamt untersucht diese Dissertation mehrere Möglichkeiten die elektrischen
Feldpotentiale neuronaler Aktivität unter Einbeziehung neurophysiologischen
Wissens zu modellieren und zu verstehen.
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Chapter 1

Introduction

Our understanding of complex behavior and cognitive function depends on
decoding how the information is processed within and across brain regions.
The brain activity underlying signal processing could be observed with various
recording techniques at different spatial and temporal scales. The last decade
has seen a great advance in interpreting the existing measures as well as the
development of new recording techniques. For example, with the advancing of
large-scale recordings, a huge amount of work has been dedicated to decoding
the task information from unit data (Jazayeri & Ostojic, 2021, Cunningham &
Yu, 2014), and understanding neuron representation mainly based on signal
correlation to different features of tasks.

The function of the brain has more than passively representing information from
the environment. The study of the sensory or motor cortex benefit from their
position close to explicit sensory information or behaviors. According to the
information bottleneck theory, it’s reasonable to understand their representation
when the areas are close to the inputs and outputs stage, such that one can ob-
serve and control the experiments. However, recent works suggest that the brain
employs a much more complex architecture to process information through both
forward and top-down regularization instead of simply relaying the information
to higher-order cortical areas (Rao & Ballard, 1999). This raises the question of
how the brain generates hypotheses from the inside and selectively processes sen-
sory information accordingly. These complex nonlinear processing patterns could
only be understood by interpreting their spatiotemporal patterns, identifying
individual pathways, and studying their dynamic interactions. Electrophysiology
signals at different spatial scales with their fine temporal resolution have been
employed to capture the fast spatiotemporal response in the brain, among them,
high-density space-resolved local field recording has the best spatial resolutions.
In this work, I will focus on the biophysical modeling and interpretation of local
field potential (LFP) signals. Ultimately, I will discuss how to incorporate the
LFP modeling into a multi-objective general mechanistic model that integrates
different measures to probe the multiregional activities.



2 Chapter 1. Introduction

1.1 Biophysics Origin of LFP

LFP has been getting more attention since the advance of multielectrode recording.
Compared to the high-frequency unit activity (Koch, 2004), the slower part mainly
reflects synaptic activity driven by presynaptic neural populations (Einevoll et al.,
2013) and contains information about how these neurons integrate synaptic
inputs. Therefore, direct summation of all spikes in the local network has a poor
prediction of the generated LFP patterns. Instead, accurate modeling or prediction
of LFP has been well explored by detailed neuron simulations accounting for
their transmembrane currents (Einevoll et al., 2013, Lindén et al., 2014).

Take the hippocampus as an example, where pyramidal cells are packed in a
single layer called stratum pyramidal, while their axons lay in parallel with
each other. The synapses targeting postsynaptic populations are clustered in a
depth-dependent manner. The input-response of each pathway, therefore, has a
specific spatial profile depending on where it comes along the dendritic tree (see
detail in chapter 2 and chapter 3). So the question is, how can we quantitatively
capture the input-response of neurons?

The impulse response of the neuron’s membrane potential has been investigated
to study how the signal is processed along dendrites (Cash & Yuste, 1999, Sprus-
ton, 2008). The complex morphology of dendrites allows complicated modulation
of input signals (Rall, 2011). Different effects of modulation could be achieved
by arranging the cell’s branching patterns, active conductance and the site of
inhibition (Rall, 2011, Grienberger et al., 2017, Wybo et al., 2015). Analytical
solutions of the membrane potential at arbitrary points have been provided for
simple morphology (Rall, 2011, Brandwood, 1983, Koch & Poggio, 1985) and
largely extended to capture an arbitrary dendritic tree, quasi-active conductance,
as well as gap junctions (Abbott et al., 1991, Coombes et al., 2007, Caudron et al.,
2012). However, the extracellular potential integrates the electric field generated
by all transmembrane currents at any arbitrary position over the whole neu-
ron. This makes the overall integration very complex and hard to implement,
especially for a population of neurons with complex dendritic morphology. To
resolve this problem, a multi-compartment model approximation will simplify
the computation of the membrane impulse response.

Therefore, a computational framework to simulate neuron activity first and then
use volume conduction theory to compute the extracellular potentials has been
well established (Lindén et al., 2014). Multi-compartment models proved to be
adequate and widely used to simulate the membrane potential dynamics of
complex neurons with arbitrary dendritic trees (Hines & Carnevale, 2001). In
these models, the morphology of dendritic trees confines the spreading of the
electrical field in the intercellular conductance by the sparse connectivity matrix
between discretized compartments. Ions flow along the dendritic tree according to
the electrical field, various active conductance sitting at the membrane and adding
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nonlinear effect to the currents, hence the morphology of the dendritic tree has a
great impact on the spatial distribution of current density. In simulations, any
continuous dendritic trees reconstructed from real data could be approximated
by the multi-compartment model, with cable equation describing the dynamics
of carrier ions with the equivalent circuit and active conductance fitted to the
experimental data (Sterratt et al., 2011a, Dayan & Abbott, 2001, Carnevale &
Hines, 2006, Druckmann et al., 2007).

In this framework, transmembrane currents reflect the dynamics of ions dis-
tributed across the neural membrane driven by electrochemical gradients. The
ionic gradients are maintained mainly by various active transport processes
and drive the ion flow when specific ion channels open (Sterratt et al., 2011a).
When the synaptic input comes, neurotransmitters bind to specific post-synaptic
receptors, which leads to the opening of the post-synaptic ion channels. The
corresponding ion flow through the membrane changes the membrane potential.
The local change of the membrane potential creates an electrical field, which leads
to the spreading of ions across and through the whole neuron tree, which in turn
can be modeled by equivalent circuits. This whole process is well established
and is the basis for programs such as NEURON (Carnevale & Hines, 2006). The
transmembrane currents, as opposed to axial currents flowing within the neuron,
take into account any charge flowing across the neuron membrane.

By assuming a quasi-static approximation of Maxwell’s equations at low frequen-
cies (Plonsey & Heppner, 1967, Gratiy et al., 2017), the electric field potential
could be given according to local extracellular conductivity s (Butz & Cowan,
1974, Nunez et al., 2006). It’s also worth being cautious about the effect of in-
homogeneous and frequency-dependent extracellular conductivity (Bédard et al.,
2004), the complex tissue-specific conductivity and the boundaries for large-scale
head models (Wolters et al., 2006). In these cases, the extracellular conductivity
s f could be modeled as a 3D complex vector at frequency f . Here for simplicity,
we only consider the homogeneous and isotropic conductance, which doesn’t
have a frequency-dependent capacitative effect (Logothetis et al., 2007, Hagen
et al., 2016), i.e. the extracellular conductivity s f is modeled as a scalar.

The mechanism governing the generation of LFP is relatively straightforward,
however, simulating the field potential with thousands of neurons remains time
and computation resource-consuming. To simplify the whole process, (Hagen
et al., 2016) proposed a hybrid framework to simulate multi-scale networks. In
their work, they use spatiotemporal filter kernels to capture the extracellular
signals stemming from the synaptic activity for each connection pathway. By
convolving with their corresponding population spike rates, the model could
accurately predict the spatiotemporal dynamics of ground truth extracellular
signals from conductance-based multicompartment neuron networks obtained by
numerical simulations (Hagen et al., 2022). This linearized framework accounts
for the biophysics of neurons, populations, and recurrent connections and at the
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same time largely simplifies computation compared to biophysically detailed
network models. We would also use this insight in our work here, discussed in
chapter 3 and in our inverse model in chapter 4.

1.2 Inverse Modeling of LFP Signal
The inverse problem attempts to infer the microscopic variables from the macro-
scopic signals. In the narrative of electrophysiology signals, it usually infers
primary current dipoles or current distributions which give rise to the spatiotem-
poral profile of the volume conducted LFP signal. The inverse modeling of
electrophysiology data is generally ill-posed which means multiple different
architectures will render the same pattern (Buzsáki et al., 2012, Nunez et al.,
2006). It would be useful to separate the inverse problem of the LFP into two
steps, namely, to recover at the level of transmembrane currents, or to recover the
underlying activity of input currents or in general active currents. Current source
density methods aim to solve the first problem, namely estimate the density of
transmembrane current sources (CSD) generating the LFP (Nicholson & Freeman,
1975). CSD could be computed by a spatial Laplacian (Nicholson & Freeman,
1975) and it is extended by modeling the plausible waveforms of current sources
(Pettersen et al., 2006) and more general the kernel method kCSD (Potworowski
et al., 2012). Compared to the spatial Laplacian, the latter method allows for a
more smooth estimation of the CSD, allows for flexible channel arrangement,
and takes care of missing channels. It also allows for putting prior knowledge
about the spatial profile of local currents into account. Furthermore, the inverse
modeling framework of CSD incorporates the modeling of smooth temporal
dynamics with Gaussian process based gpCSD (Klein et al., 2021).

However, apart from getting rid of volume conduction, the current source den-
sity is still a mixture of contributions from different pathways. This is caused
by the electrical field spreading inside neurons. For example, both perforant
path (PP) coming from the medial entorhinal cortex and Schaffer collateral (SC)
from the CA3 region target CA1 neurons and are major inputs to the CA1
region (Fernández-Ruiz et al., 2012). Their synapses of the PP target the stra-
tum lacunosum-moleculare and the synapses of SC target the stratum radiatum.
However, the impulse response of PP typically has a current source at stratum
radiatum and vise versa because of the cable property of the dendritic tree. To
understand the signals, we still need to separate signals into different pathways.

Statistics-based methods are used to segregate the signal into pathway-specific
synaptic activities. Unsupervised methods seek to identify pathways with partic-
ular statistics-based methods properties. Principle component analysis or factor
analysis is used to find latent factors that explain most of the variance in the
data. Independent component analysis (Bell & Sejnowski, 1995, Cardoso, 1998,
Hyvärinen & Oja, 2000, Korovaichuk et al., 2010), find components most inde-
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pendent from each other. Extensions for ICA also consider the nonstationarity
of the components (Artoni et al., 2012). Temporal patterns could also be used to
segregate oscillation patterns from LFP data (Sirota et al., 2008, Lopes-dos Santos
et al., 2018). In spite of the widely used temporal independency, spatial-temporal
ICA (Łęski et al., 2010) explores to utilize the spatial sparsity to separate tempo-
rally correlated signals on CSD instead of LFP. One problem with the statistical
methods is that their independence assumption is often violated since the signals
are usually synchronized, especially in the freely moving animals (Sirota et al.,
2008). This problem could be mitigated by high pass filtering the data or taking
CSD (Schomburg et al., 2014). We would explore methods to deal with this
problem in chapter 2.

While all these statistics-based methods are fast and scale well, it requires post-hoc
knowledge to interpret the results. The anatomical position of the components
usually helps to identify their pathways (Fernández-Ruiz et al., 2012, Schomburg
et al., 2014, Herreras et al., 2015). The synaptic content of components could be
validated by pharmacological blockage or optogenetic modulation (Benito et al.,
2014, Fernández-Ruiz et al., 2021).

Bayesian models have also been employed to model the local networks. Dynamic
causal models (Friston et al., 2003, Pinotsis et al., 2017) have been exploited to
model the local dynamics and understand the connectivity between principal cells
and interneurons. However, the forward modeling of LFP is largely simplified and
dendritic morphology is ignored in current models. Besides, the current model
usually assumes simple cortical networks and ignores the complex interaction
between local sub-networks, which is critical for cortical population dynamics
(Mizuseki et al., 2009). These make the results of simple Bayesian modeling hard
to interpret. It remains unresolved how to construct an inference model that
connects local population dynamics to LFP.

1.3 Cross Regional Connectivity and Large Scale Mod-
eling

Now moving to a different scale, recent years have seen a great advance of large-
scale recordings in behaving animals, which allows concepts of brain connectivity
to become increasingly prevalent to uncover how computation is carried out in
multiple brain regions. Apart from how stimuli are represented in local areas, it
has been shown that brain networks communicate and entrain connected regions
through oscillations (Fries, 2015, Sirota et al., 2008, Mizuseki et al., 2009).

To understand the communication between regions, functional connectivity has
been used to capture cross-regional neuronal interactions (Seth et al., 2015, Bastos
& Schoffelen, 2016). Granger causality, based on the idea of the history of
cause would help to predict the current state of the effect (Geweke, 1982; 1984),
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has been widely used to capture the information processing pattern between
brain regions (Seth et al., 2015). Benefiting from regression models, the Granger
causality is usually formulated to capture linear dependencies (Barrett et al., 2010),
which directly connect to cross-correlation and partial correlation in the temporal
domain and cross-spectral density methods in the frequency domain (Barnett &
Seth, 2014). Therefore, it usually scales well with high dimensional data and a
long recording time. When formulated in general information-theoretic measures,
Granger Causality connects to the transfer entropy framework, which is used in
interpreting connections between spiking neurons or populations (Barnett et al.,
2009, Ito et al., 2011, Palmigiano et al., 2017).

The functional connectivity method is fast and easily scaleable but generally
suffers when applied to realistic data. One problem is when the noise is too large,
the direction estimation fails in methods like Granger causality. This problem has
been mitigated by estimating in the forward and backward temporal direction
(Haufe et al., 2012, Vinck et al., 2015). One could also use phase slope index (PSI)
methods assuming a constant time lag to determine the direction of pairwise
connections (Nolte et al., 2008). Another major problem attributed to the volume
conduction of the signal is always a mixture of multiple pathways and noise.
This situation is intensified when high-density multichannel recording is applied.
Therefore, applying the inverse method and segregating signals is critical to avoid
spurious causal connections. This would be explored in detail in chapter 2.

Biophysical modeling based methods have been developed to test hypotheses
about neural dynamics and estimate the relevant physiological meaningful pa-
rameters (Friston et al., 2003, Moran et al., 2008, Wang, 2022). Neural mass models
or dynamic mean field models are employed to characterize how local E-I balance
shapes the dynamics of local circuits. In this case, the average activity of local
principle cells or interneurons is considered as well as the connection between
them. In the Bayesian model framework, the best model fits the given assumption
which is picked up by scores like BIC or AIC (Moran et al., 2008, Penny et al.,
2011, Chaudhuri et al., 2015, Burt et al., 2018). However, the interpretation of
Bayesian models is highly dependent on how the assumptions match the underly-
ing mechanisms. Therefore, a clear understanding of the physics of the recorded
signals becomes very critical (Friston et al., 1998, Pinotsis et al., 2017, Einevoll
et al., 2013). For modeling LFP recordings, the current dipole is used, however,
it has been shown to be inadequate to capture the near field electrical potential
(Næss et al., 2021). In chapter 3 and chapter 4 we show that the Green’s function
or transfer function formulated in the frequency domain would be a candidate to
connect synaptic activity to the recorded LFP signal.

Recently, biophysical-based large-scale cortical network modeling surges with the
advance of research on anatomical structure. Brain tracing works challenge the
conventional low-density interareal graphs view and reveal high-density cortical
graphs (Markov et al., 2013; 2014). Long-distance neuronal coherence plays an
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important role in multisensory integration, working memory, and selective atten-
tion (Wang, 2010). However, resting state functional connectivity (using fMRI)
and structural connectivity (using diffusion spectrum imaging tractography)
measured in the same individuals revealed that strong functional connections
commonly exist between regions with no direct structural connection but indirect
connections. While direct structural connectivity, on the other hand, can not
explain the variance in functional connectivity, because of interregional dynamics
(Honey et al., 2009). Therefore, it is important to understand how long-range
feed-forward and feed-back connections integrate into local circuits and constraint
cortical computation.

Large scale dynamic mean field model has been developed to explore circuit
mechanisms. The interarea connectivity is first approximated by high-resolution
cortical connection matrices given by diffusion spectrum imaging (DSI) (Hagmann
et al., 2008, Deco & Jirsa, 2012) and later by directed and weighted connectivity
provided by brain retrograde tracer (Markov et al., 2014, Mejias et al., 2016).
The resultant functional connectivity of model simulation is then matched to
empirical functional connectivity (Deco et al., 2013, Chaudhuri et al., 2015). The
role of different components and their parameter space in the model could be
explored with the constrained model. With this framework, it has been shown
that locally constrained feedback inhibition compensates for the excess of long-
range excitatory connectivity and is critical to shaping the characteristics of local
dynamics (Deco et al., 2014). This emphasizes that we need a more precise
calibration for continuously fluctuating local population dynamics and improve
predictions of the mesoscopic dynamics models by investigating microscopic
dynamics. With the high temporal and spatial resolution, local electrophysiology
recording provides a clear picture to investigate how presynaptic inputs integrate
into local population dynamics.

These concerns lead us to propose a general framework aiming to synchronize
investigations in multiple fields based on their shared biophysical mechanisms in
the following session.

1.4 The General Framework of LFP Modeling
Our understanding of the brain has been largely advanced with the development
of neurophysiology recording and brain connectome (Sporns et al., 2005, Majka
et al., 2020, Wang, 2022). Especially with simultaneous multiregional recordings,
cross-regional interactions have been related to different behavior, brain infor-
mation processing and cognitive functions (Sirota et al., 2008, Bastos et al., 2015,
Sporns, 2014, Bohland et al., 2009). However, different measurement method-
ologies typically come with different spatial and temporal resolutions. It raises
an exciting challenge to find a comprehensive way to integrate the knowledge
from recordings of multiple brain regions at different scales, and with different
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Figure 1.1: Schematic of the microscopic level neural signal generation model.
S stands for the upstream inputs to local networks. The post-synaptic conduc-
tance gs responds to their corresponding neurotransmitter and changes the local
membrane potential Vm. The change of Vm together with the ion concentration C
influence a consecutive response of voltage- and ligand-regulated active conduc-
tance gA. Modeled in parallel, the kinetics of active ion currents C are much more
complicated and usually have a slower time scale compared to passive mecha-
nism (Gold et al., 2006). Neurotransmitters are released according to an action
potential, denoted as Sout, and link to fMRI signals by neurovascular coupling
(Friston et al., 2003) (in yellow). Measures and modeling of the dynamic system
come in all levels, macro-scale neuroanatomy like the map of neurotransmitter
systems or connection density determined by cellular level retrograde tracing
(in cyan) dictates the spatial distribution of gs (Hansen et al., 2022, Majka et al.,
2020). Similar to neurotransmitters, macro-scale active current conductance den-
sity could be measured and come as a prior in dynamic modeling. Ions C flow
through gA and change the transmembrane electrochemical gradient according
to Goldman-Hodgkin-Katz formalism. The dynamics of [Ca2+] concentration,
one example of C, is detected by [Ca2+] imaging (Grienberger & Konnerth, 2012)
(in red). The electrical field generated by trans-membrane currents gives rise
to local field potential, as well as the macroscopic level far-field EEG signals
(Buzsáki et al., 2012) (in blue). LFP influence the membrane potential through
ephaptic coupling (Anastassiou et al., 2011). And Vm at a particular position
could be recorded directly with intracellular or juxtacellular recordings or patch
clamping (in green). The N plates stand for local dendritic integration and they
are connected by passive neural dendritic trees.
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measurement techniques. Regardless of the signal readout, all measurements
basically probe different aspects of the shared underlying biophysical process
of brain dynamics. Understanding the system from a generative point of view
requires modeling how the latent biophysical process gives rise to the observed
signals. Hence the first step is to decide on an appropriate anatomical grid for
modeling and then to understand the physical signals over multiple measurement
scales which are captured by different techniques.

Here we present a schematic summary of the current views of modeling and how
to connect multiple scales (fig.1.1).

To get a mechanistic interpretation of recorded data starts from the microscopic
scale, where local neuron populations are studied with all cellular details as
well as particular cytoarchitectonic features (Buzsáki et al., 2012). Experimental
mapping of neuroanatomical circuitry on the mesoscopic scale to provide com-
prehensive, brain-wide coverage requires multiregional connectivity measures
between groups of neurons (Bohland et al., 2009). Macroscopic is summarising
the population activity at the level of entire structural–functional systems and
major fiber bundles and is usually used to understand cognitive functions at a
coarse grain (Sporns et al., 2005).

Biophysical models have been extensively explored to understand both macro-
scopic and microscopic level measurements, respectively. Early forward network
models are used to understand their oscillatory dynamics and computational
functions (Wang, 2010). Recent studies suggest that cortical neuron networks
code information in comparably low dimensional manifolds (Cunningham & Yu,
2014). However, the dimension of the subspace also depends on the structure
of tasks (Stringer et al., 2019). But there is evidence that projection into a lower
dimensional subspace is good enough to capture and decode the task from popu-
lation dynamics (Pandarinath et al., 2018). This basically asks the question: do we
need to model all neuronal details? Or can we capture the neuronal population
dynamics with some simple input-response functions instead? If the answer is
yes, the lower dimensional latent dynamics of the neuronal population could be
conveniently incorporated into the mesoscopic level modeling.

Mesoscopic-level modeling has benefited from the advances in tracing techniques
and a large amount of brain connectome data. Biophysically constrained multi-
scale modeling is built on local population models with interregional connection
given by neuroanatomical data (Deco & Jirsa, 2012, Chaudhuri et al., 2015).
Control theory or graph theory is further applied on top of the mesoscopic mea-
surements to understand the dynamics or provide efficient control (Liu et al., 2011,
Lynn & Bassett, 2019). However, sufficient approximations of the actual underly-
ing biophysical process are desirable to answer biological questions. Experimental
evidence of frequency-dependent information channeling (Bastos et al., 2015)
has put constraints on population modeling, which is based on the oscillation
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frequency of the model (Feedforward and feedback frequency-dependent interac-
tions in a large-scale laminar network of the primate cortex) (Mejias et al., 2016).)
Insights about the function of circuit architecture are gained from exploring the
parameter space of this line of modeling (Deco et al., 2014). To match simulations
to empirical data, mean-field abstraction is used to capture the local network
activity (Deco et al., 2013). More sub-networks need to be accounted for, but the
latent space is still much lower than the population size (Mizuseki et al., 2009,
Jazayeri & Ostojic, 2021). These works about low dimensional approximation
again suggest that detailed population models are unnecessary for large-scale
modeling. Instead, we need simple and sufficient functional models for the
abstract local population impulse response. But how do we find such a model?
Considering the number of recording sites and the complexity of mechanisms
that regulate the neuron populations, the modeling work faces a considerable
parameter space, and its inversion is generally ill-posed.

To bridge the gap, LFP is in a good position to connect different microscopic
measurements, helping to understand and confine the input-response of local
networks. Down to the physical origin of electrophysiological signals, the multi-
electrode recording captures slower subthreshold membrane potential dynamics
which reflect multiple latent sources (Buzsáki et al., 2012), as well as spiking
activity which code the task-relevant information in a spatially resolved manner
(Cao et al., 2021, Gallego-Carracedo et al., 2022) (fig. 1.1 blue). Even though we
still don’t have a clear understanding of all the sources of LFP, which consists
of large synchronized inputs to the local circuits (Benito et al., 2014, Schomburg
et al., 2014), and contributions of active conductances, the modeling could be
related to postsynaptic activity (Makarova et al., 2011) (fig. 1.1 cyan), [Ca2+]
dynamics measured by [Ca2+] imaging (fig. 1.1 red) (Grienberger & Konnerth,
2012), and other latent intracellular processes (Reimann et al., 2013) measured by
intracellular recordings (fig. 1.1 green). The magnitude of LFP depends on the
cytoarchitecture, geometry of current sources (Fernández-Ruiz et al., 2013), as
well as the level of the correlation between current sources. It has been shown
that the LFP signal is significantly detectable in most laminar structures like
cortical areas and hippocampus (Głąbska et al., 2014, Schomburg et al., 2014,
Bastos et al., 2015).

The underlying population activity which leads to the LFP also gives rise to
the fMRI signals by influencing the local blood flow by neurovascular coupling
(Friston et al., 1998) (fig. 1.1 yellow). Although the connection between the
electrophysiological signal and fMRI signal is still under investigation (Goense
& Logothetis, 2008), it is helpful to take one step back and first model the
underlying brain activity. The population response could be modeled using
forward modeling (Wong & Wang, 2006), or by fitting to data either using
higher order Volterra functions (Song et al., 2009), nonlinear system identification
(Brunton et al., 2016, Rudy et al., 2019) or empirical data constrained neuron
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networks (Andalman et al., 2019).

Then the recording signal could be modeled with different signal readout mech-
anisms (Friston et al., 2003, Einevoll et al., 2013). One advantage of using the
LFP is that it shares the same biophysical process as far-field signals like EEG
or EcoG and thus naturally connects, and the generation process of electrical
fields also generates the signals of MEG recordings (Næss et al., 2021). The
relationship could then be simulated by a linear forward model, namely, the lead
field (Mechler & Victor, 2012). Constraining the local population response model
by LFP would vastly reduce the parameter space. Furthermore, using LFP makes
it possible to prob fast-nonstationary integration of population inputs into a local
neuron. In chapter 3 we present a linear forward modeling method.

We should also emphasize the point that LFP data, especially with multichannel
recordings, captures how the long-distance or local presynaptic activity is pro-
jected to the local circuit. This way, on top of coarse-scale tracing data, we have a
clear local readout of how the groups of presynaptic neurons are influencing the
downstream activity. By first investigating locally how the integration happens,
we further suggest that the connectivity weight between areas, currently modeled
with anatomical data, could be relaxed and fitted with a probabilistic model.
Highly nonstationary and fluctuating brain connectivity would benefit from the
identification of circuit architecture (Zhang et al., 2017). This way, the identifica-
tion of interactions within and between circuits could further benefit from the
recent development of graphic models and causal discoveries (Glymour et al.,
2019). In chapter 4 we investigate how to separate contributions from different
pathways based on their statistics with a biophysical constraint, and this could
be further adapted to a Bayesian model fitted to empirical data.

This framework based on biophysics and probabilistic modeling and connected
to multi-scales and multiple recording techniques would allow researchers to
incorporate modulations to validate brain functions, e.g., optogenetic modulation
for local neuronal processes (Fernández-Ruiz et al., 2021, Valero et al., 2022) in
the microscopic scale or cross-regional modulation like TMS in mesoscopic scale.
One related question would be: do we need to explicitly model the population
activity and the link between the latent activity and the observed recording, or
is it sufficient to just build a predictive model with neural network to match
the recorded signals. Here we suggest to have this biophysical-based generative
model, that could be fitted by multiple techniques and we believe this would put
more constraints on the model fitting. It is likely that the dimension of population
dynamics is still larger than the number of recording sites, especially when we
consider the spontaneous activity or when the subject is facing natural stimuli
(Stringer et al., 2019). In this way, a linear inversion will fail to give you the
whole picture, but joint fitting with multiple measurements will reveal better
the underlying process. With all possible parameter spaces to be fitted, it’s clear
that one can not claim to discover the "true process" of the brain activity, but can
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only aim to find an approximation that is as close as possible to the underlying
process given all possible recordings. And with the best model one could find,
the hope is this would help us to understand the brain and answer interesting
questions like how the information is processed, or how dysfunction in different
scales affects cognitive functions.

1.5 Preview of the Dissertation
In this thesis, we seek to robustly segregate and model the local circuit in the
hippocampus with LFP data. Statistical methods are general, easy to scale, and
fast. It generally has very few assumptions on the biophysical mechanisms of
the data. Unsupervised learning methods are widely applied to disentangle
the pathways of specific activities (Herreras et al., 2015). However, post-hoc
knowledge of biophysical mechanisms is still needed to understand and interpret
the results, which sometimes fails to unmix the sources when the statistical
assumptions are not fulfilled. On the other hand, biophysics-based models
typically have particular assumptions on the recorded signal, which limit their
usage to specific cytoarchitecture (Einevoll et al., 2007, Gratiy et al., 2011). Here,
we seek to improve the separation by utilizing some generic biophysical properties
to guide the statistical separations.

In chapter 2, we set off to improve the unsupervised method to separate the
sources by biasing data to their high-frequency part. We first show that synaptic
input is more localized around the input site at the higher frequencies because of
the cable effect of dendritic cable. On the other hand, higher-frequency signals
are less affected by slow active processes in the dendrites. We find biasing data
to the higher frequencies stabilizes the separation. By applying Granger causality
analysis to the separated data, we find stable asymmetric directions found by
the analysis match the known MEC-HP circuitry. Besides, we also find a lot of
cross-laminar directional connections. This demonstrates it is possible to discover
the complex interaction between multiple pathways, including cross-regional
connections, with LFP data. Our analysis of the components’ time scale also
suggests that the LFP involves complex slower conductances. The slower part of
LFP affects separation in the real data more than the simulated passive neurons
suggest. There is a complex nonlinear process in the real neurons and signal
contributed by a rich amount of sources, especially in the slow frequency.

In chapter 3 and 3, we try to find an efficient strategy to model LFP signals
and connect them to presynaptic inputs. We re-discover the early work of
transfer/Green’s function method to capture the membrane potential (Koch,
2004, Abbott et al., 1991), which is later developed to take into account the LFP
signal (Gratiy et al., 2011), and we extend it for more general usage. This idea
aligns with current kernel-based simulation methods, and the linearization of
the population response is nicely demonstrated in current work (Hagen et al.,
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2022). The questions we ask are, first of all, how to efficiently capture the impulse
response with a known morphology and, secondly, how to deal with recordings
where we don’t have an explicit reconstruction of cell morphology.

In chapter 3 we present the essential modeling components and show how
the simplified Green’s function method could generate a LFP signal response
for neurons with any given morphology. We connect to the early work of
Green’s function treatment of membrane potentials (Abbott et al., 1991, Koch
& Poggio, 1985, Caudron et al., 2012), and discuss how heterogeneity affects
the transfer function. We demonstrate the usage of this model by comparing it
to the numerically simulated data, where the prediction is similar, but Green’s
function method is much faster. With this simple forwarding modeling strategy,
we investigate how the population properties affect the LFP. We also show a
simple way to parameterize the model. With this model, we are able to tell
the position of the current injection and multiple biophysical parameters. To
summarize, we demonstrate that the frequency domain Green’s function method
provides an efficient way to characterize LFP signals systematically.

Based on results from chapter 3, in chapter 4 we propose a model for the inverse
problem on LFP multichannel recording data. The idea is to unmix LFP signals
with the biophysical-inspired constraint. The logic is when one separates the LFP
signals with unsupervised methods, the algorithm is likely to fail because the
independence or sparsity of the signal is not fulfilled. However, brain signals
are typically highly correlated and barely become sparse when, in this case, the
animal is moving (Sirota et al., 2008). Therefore we propose to use biophysical
models in chapter 3 to constrain the spatial profile of components. By considering
their statistics, parameterization with the Gaussian mixture model allows us to
loose the reliance on a detailed, precise knowledge of neuron morphology. We
formulate the problem into a maximum likelihood framework and demonstrate
that this method improves the source separation in the frequency domain.

When separating sources in chapter 2, a closer look at the frequency patterns
not only allows us to probe the local biophysical signals but could also help us
to identify the far-field artifacts. These volume-conducted artifacts have been
reported to constitute a large portion of electrophysiological recordings, especially
at higher frequencies (> 30Hz) (Muthukumaraswamy, 2013) Amongst them, EMG
artifacts coming from various head muscle activities show an interesting colored
(compare to a flat spectrum for white noise) frequency pattern. Utilizing the
spatial pattern given by volume conduction theory and the temporal pattern, we
present in chapter 5 an ICA-based EMG-removing toolbox that autonomously
identifies and removes these types of far-field activity, as well as removes common
line noise. We show that the identified far-field noise is taking a significant portion
of the high-frequency signals, and by removing it, we improve the separation of
biophysically meaningful signals.
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I would like to close the introduction with this alike mind:

"It’s one thing to know that something causes something else and why.
What more does "function" add to that? – Lauren Ross"

When we set off to answer the why question, then an explicit and carefully
quantified picture of the network structure, its dynamics which is constrained by
the biophysical network architecture, and the generative model and mechanism
behind all these becomes more important than just relating neural activity to
particular predefined cognitive functions.



Chapter 2

LFP Model in the Temporal Domain

The local field potential (LFP) is generated by multiple neural transmembrane
current sources: synaptic currents, action potentials (Gold et al., 2006), active con-
ductance currents, dendritic spikes, as well as slow non-neuronal sources, such
as glia or polarization of blood vessels. Generally speaking, any transmembrane
current source would contribute to the extracellular electric field, with distinct
sources linearly mixing and giving rise to a complex interference pattern that
is what observable LFP is. While the high-frequency part is used to detect the
spiking activity of neurons, the slower part referred to as local field potential is
biased to sub-threshold transmembrane currents, e.g., dendritic processes and
synaptic currents, as well as the gradients of the putative extracellular diffusion
current (Gratiy et al., 2017). The latter contributes mostly to the slower frequen-
cies less than a few hertz, and the former is predominate in the physiological
frequencies. This provides rich information about local dynamics, far beyond a
simple average of local spiking activity, as it is currently mostly utilized.

One of the major contributors to LFP is synaptic input currents. It has been well
established in theoretical works (Lindén et al., 2014). The synaptic currents result
in large dipoles along the dendrites and the field it generates spreads around the
neuron population and depends on their spatial alignment and correlation level
(Łęski et al., 2013). Simulations have been used to tell how the extra-cellular field
profile is shaped by local populations (Einevoll et al., 2013, Lindén et al., 2014,
Hagen et al., 2016).

The study of local network dynamics would be enhanced by incorporating the
input signal to the local system. In practice, it’s difficult to target precisely
the directly connected sender and receiver pair in different brain areas at the
same time. However, information carried by synaptic currents resembles the
presynaptic activity directly targeting the local network (Einevoll et al., 2013,
Pesaran et al., 2018). This would be captured by LFP and mixed with the currents
generated by local dynamics. So it would be useful to recover the afferent synaptic
currents from the LFP data.
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With the LFP reflecting the collective behavior of local and afferent dynamics,
we would like to identify the contribution of the underlying synaptic and non-
synaptic mechanisms of the LFP. This poses an inverse problem. However, by
contrast to the forward problem, the inverse problem is generally ill-posed and
doesn’t have a unique solution (Buzsáki et al., 2012, Nunez et al., 2006). Methods
have been applied at different levels to extract the information. For example,
current source density methods aim to estimate the density of transmembrane
current sources (CSD) generating the LFP (Nicholson & Freeman, 1975). It
starts with spatial Laplacian and is extended by modeling the plausible forms of
current sources (Pettersen et al., 2006) and more general kernel method kCSD
(Potworowski et al., 2012). Later work also incorporates the modeling of smooth
temporal dynamics with Gaussian process based gpCSD (Klein et al., 2021).

On the other hand, unsupervised methods are employed to identify pathways
with certain statistical properties. Principle component analysis or factor anal-
ysis is used to find latent factors that explain most of the variance in the data.
Independent component analysis (Bell & Sejnowski, 1995, Hyvärinen & Oja, 2000,
Korovaichuk et al., 2010), find components most independent from each other. Ex-
tensions for ICA also consider the nonstationarity of the components (Artoni et al.,
2012). In spite of the widely used temporal independency, spatial-temporal ICA
(Łęski et al., 2010) explores to utilize the spatial sparsity to separate temporally
correlated signals after reducing the volume conduction with CSD methods.

Bayesian models have also been employed to model the local networks. Dynamic
causal models (Friston et al., 2003, Pinotsis et al., 2017) have been used to model
the local dynamics and understand the connectivity between principal cells and
interneurons. However, the forward modeling of LFP and dendritic activities
is largely simplified in this kind of model. Especially for high-density LFP
recordings, a simple dipole model is not sufficient to capture and make full use
of the spatial profile of input responses (Næss et al., 2021).

In this work, we are interested in LFP source separation as well as the inverse
problem of LFP. Here we theoretically formulate and emphasize how the dendritic
properties would affect the source separation. We provide methods to reduce the
cable effect and increase spatial sparsity. We further develop methods to estimate
the synaptic properties of each pathway. Then we validate the methods with
NEURON simulation. With these methods, we further develop a framework to
automatically separate and select reliable components which consistently appear
across multiple recording sessions. Our method finds more reliable components
across sessions than previous methods. These reliable components generally
have meaningful dipole shapes which agree with the anatomy of the known
structures in the hippocampus and their receptor types are discussed. We further
confirmed the components with multivariate Granger causality assessments. The
connections estimated with the method agree with the anatomical connection.
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2.1 LFP Dynamics Model

Neurons propagate electrical activity to process information. They are enclosed
by an insulating membrane with ion channels distributed across it. Ions flow
through these channels, producing transmembrane currents. During synaptic
transmission, neurotransmitters released from the presynaptic terminal bind to
postsynaptic receptors, which directly or indirectly open ion channels located
at the postsynaptic terminal and elicit post-synaptic currents. These change the
membrane potential of neurons. So the membrane potential directly corresponds
to synaptic input (Sterratt et al., 2011a).

Inferring the synaptic activity corresponding to different pathways is important
in understanding the dynamics of neuron circuits. Local electrophysiology data
has been recorded to interpret the network dynamics, yet how to disentangle the
effluent activity and local network response remains to be elucidated (Einevoll
et al., 2013). Once proper functional links between neural physiology activity and
the recorded signal (forward models) have been established, for example in LFP
modeling (Nicholson & Freeman, 1975, Brette & Destexhe, 2012, Lindén et al.,
2014), model inversion has been employed to infer the dynamics of local neuron
network (Mazzoni et al., 2008, Moran et al., 2008, Barbieri et al., 2014). State
space modeling has been widely used to infer neural network activity. Detailed
biophysical models of single neurons have been explored to capture postsynaptic
activities in voltage dye imaging (Huys et al., 2006, Pakman et al., 2014). On the
other hand, the multichannel extracellular recording provides us with a lower
resolution yet powerful tool to simultaneously record LFP and unit data, the
extended spatial sampling allows us a closer look at the input activity from
effluent pathways. However, biophysical modeling in multichannel recording is
still under investigation. Therefore in this work, we built a biophysical proper
model with certain simplification to infer pathway-specific contributions in local
neural population from LFP recording.

The very basic motivation is, whether we can more precisely monitor the input
and output of the local network directly with the help of multi-site recordings,
instead of recording and trying to interpret the input and output by patching
single neurons or larger imaging methods that ignore the sublayer subtlety such
as EEG.

In the following, the realistic biophysical model of LFP is revisited in section 2.1.1,
a discretized and simplified model is proposed in section 2.1.2, and our method
is explained in detail. In the result section, our method is tested in different
scenarios. Conductance-based models and other nonlinear facts will be discussed.
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Figure 2.1: The Schematic of LFP Signal Generation through a Dendritic Tree
is Depicted as a State Space Model. Pathway-specific inputs ‚ arrive at their
corresponding synapses S activate synapses according to auto-regressive dynamic
systems parameterized by At. When the local synapses are opened, currents flow
through synapses according to the synaptic distribution As and lead to the local
membrane potential V depolarization. The currents flow along the dendritic tree
with the conductance depicted by AV . At the same time, the depolarization of V
leads to the opening of various voltage-gated ion channels Ga, and Ga also have
their own, usually slower, kinetics. The transmembrane currents, determined
by membrane potential V, generated the local electric field. Therefore, the local
field potential F is linearly generated by membrane potential V, H denotes their
relationship. This chapter tries to separate the contribution of pathway-specific
contribution from F (red arrow from S to F) by reducing the history dependence
contribution according to this state space model.
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2.1.1 Forward Model of the Membrane Potential

The neuron cable model is well established to characterize membrane kinetics of
dendrites (Dayan & Abbott, 2001, Sterratt et al., 2011a). In a continuous-valued
manner, passive membrane properties are modeled using the cable equation,
while active channels, as well as synapses, are modeled as nonlinear conductances
distributed across the neuron’s membrane. V(x, t) (denotes as V for nomination
simplicity) is the membrane potential at the location of x along the neuron cable
at observation time t, El denotes the resting potential. Currents flow within
the neuronal cable with the axial conductance ga, and cross membrane with the
passive conductance gl. The phospholipid bilayer structure of the membrane
acts as a capacitor with capacitance Cm. These are the basic passive properties of
neurons.

Additionally, k families of inputs project to distinct positions with time-invariant
spatial loading Ai(x), whose equilibrium potentials are Ei, respectively. Besides
that h different types of active ion channels are located along the dendrites. Their
conductances Gaj(x,V) are modeled as functions of membrane voltage and other
dependencies like calcium concentration cx. The driving force of membrane
currents is given by the difference between the current membrane potential and
their respective equilibrium potential EGa,j for each active channel family, which
is determined by their ion permission.

According to Kirhoff’s law of current conservation, the net current in each
dendritic compartment should be zero. Hence, the cable equation is written as:

Cm
∂V
∂t

+ gl(V � El) +
h

Â
j

Gaj(x,V)(V � EGa,j) +
k

Â
i

Asi(x)si(V � Ei)

�ga
∂2V
∂x2 = 0. (2.1)

A summary of the variables could be found in table 2.2.

The overall currents flow across the membrane is denoted as transmembrane
current Imembrane. The transmembrane current consists of the capacitive current,
current flow through channels as well as synaptic currents (e.g. the first line of
eq.(2.1)).

According to the current conservation law, we could further write the Imembrane as
the negative of axial current:

Imembrane = ga
∂2V(x)

∂x2 . (2.2)

Imembrane gives rise to the extracellular potential that we could measure with LFP
and EEG (Einevoll et al., 2013), which we would discuss later in the next session.
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The synaptic inputs are distributed along the dendritic tree according to a distri-
bution Asi(x) for each pathway i. For simplicity, their activity are simulated as
an exponentially decay process with pathway-specific inputs hi. At any point, x
the membrane potential V(x) evolves according to equation 2.3. That is,

∂V
∂t

=
�gl(V � El) + ga

∂2V
∂x2 � Âh

j Gaj(x,V)(V � EGa,j)� Âk
i Asi(x)si(V � Ei)

Cm
,(2.3)

∂si
∂t

= �tisi + hi. (2.4)

An analytical solution of the membrane potential is usually very difficult to
achieve (Butz & Cowan, 1974, Abbott et al., 1991, Caudron et al., 2012), we’ll
discuss this later in the next chapter (see Green’s function).

An easier alternative is to discretize the spatially continuous system which leads
to the multi-compartmental model.

V((k + 1)T) = AVV(kT) + BVS(kT)

S((k + 1)T) = ASIS(kT) + BSE(kT),

where AV = eC�1
m (GA�Gl)T

BV = (AV � I) (GA � Gl)
�1 As

ASI = eAtT

BS = (ASI � I)A�1
t .

(2.5)

As 2 RN⇥K is the synaptic distribution of all the pathways. We use GA = gaO 2
RN⇥N to account for the axial currents operator. Gl and Cm is passive conductance
and capacity. At = diag(t1, ...,tk) captures the time constants of the synapses. To
keep it simple, we just list the major formulas, and the details of derivation could
be found in the appendix A.1. As would be expected with dynamics of a linear
system (Gajic, 2003), discrete-time state space models of the membrane potential
(equation.2.3) could be captured by a multivariate auto-regressive process.

2.1.2 Model of the Local Field Potential

The LFP is an integration of electrical potential produced by current sources
(transmembrane currents) (Einevoll et al., 2013, Nunez et al., 2006). For simplicity,
the electric field is regarded as a quasi-static field (Plonsey & Heppner, 1967).
(Notice that this assumption is valid at the frequencies typically encountered
in nervous tissue, but violated in the very low frequency (Gratiy et al., 2017)).
Assuming a purely homogeneous and isotropic ohmic conductivity, LFP is given
according to Gauss’ divergence theorem.

F(t,rj) =
1

4pr

Z 1
|rj � r| Imembrane(t,r)dr (2.6)
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To achieve a numerical solution, we discretized the model and simulate each
neuron by n compartments, e.g., V 2 Rn. Then equation 2.6 becomes a linear
transform of the current sources (Johnston & Wu, 1994, Pettersen et al., 2006), as
has been shown in (2.7):

F =

0

BB@

f1,t

...

ym,t

1

CCA = H ⇥ Imembrane = B⇤V. (2.7)

H 2 Rm⇥n resembles a distance-dependent mapping from currents at compart-
ments to recording sites. Here we define B⇤ = HGA which uses the axial current
operator to obtain the transmembrane currents (eq.2.2) and then map it to the
extracellular field. Therefore, F is a linear transformation of the membrane
potential V.

With this, we could combine the eq.2.5 with the linear transform of eq.2.7:

F(kT) = B⇤V(kT)

V((k + 1)T) = AVV(kT) + BVS(kT)

S((k + 1)T) = ASIS(kT) + BSE(kT),

(2.8)

Denote BF = B⇤BV and B+
F = Ws (GA � Gl) (AV � I)�1B̃:m its pseudo-inverse

(with Ws As = IK⇥K), the dynamics of LFP could also be captured by a multivariate
auto-regressive model:

2

Â
i=0

ZiF(t + i) +
1

Â
j=0

Z⇤/jF⇤/(t + j) = E (2.9)

where Z2 = B�1
S B+

F ,

Z1 = �B�1
S (B+

F AF,:m + ASI B+
F),

Z0 = B�1
S ASI B+

F AF,:m,

Z⇤/1 = �B�1
S B+

F AF,m+1:,

Z⇤/0 = B�1
S ASI B+

F AF,m+1:

which directly links the LFP to the presynaptic inputs.

Assume the number of inputs is at least the same as recording sites, then BF has
an inverse matrix B�

F = B⇤(AV � I) (GA � Gl)
�1 As = BF. So we would further
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have:

F(kT) =
2

Â
j=1

ZjF((k � j)T) +
2

Â
j=1

Z⇤/jF⇤/((k � j)T) + BEE((k � 2)T) (2.10)

where Z1 = (AF,:m + B�
F ASB+

F),

Z2 = �B�
F ASB+

F AF,:m,

Z⇤/1 = AF,m+1:,

Z⇤/2 = �B�
F ASB+

F AF,m+1:

BE = B�
FBS,

where F⇤/ span the orthogonal complement space of F. Details could be found
in appendix A.2.

2.2 Methods

2.2.1 Simulation

Here we use the LFPy toolbox (Lindén et al., 2014) to simulate the local field
potential. The detailed neuron model we used, the early brunching CA1 pyra-
midal neurons, is downloaded from ModelDB.The soma of the pyramidal cell
locates at 0um. All the passive parameters are kept the same as previous work
(Grienberger et al., 2017).

To be comparable to the real data, we modeled the two profoundly studied
hippocampal pathways: the Schaffer collateral path and the perforant path. The
Schaffer collateral path is the projection from CA3 to the CA1 radiatum layer(rad.).
So we modeled it as synapses targeting the oblique dendrites. While the perforant
path is the input coming directly from layer III of Entorhinal cortex (ECIII) and
it targets the apical dendrites (locunosum moleculare (l.m.) layer). We simulate
the input loading in a distance-dependent manner centering at the middle of
the radiatum or l.m. layer. To model the distribution of the laminar synapses,
the whole cell is binned into n input layers. The total number of synapses is
assigned according to the depth of the layer. Afterward, the number of synapses
is distributed according to the surface area of each compartment within the layer.

We model the neuron to study the dynamic pattern of its input-response, there-
fore, the input activity is generated as a random spike train with a non-stationary
Poisson process and the spike time is been saved as the ground truth activ-
ity.Afterward, a binary spike train is constructed, and then the ground truth
synaptic currents stim are generated with the given synaptic time constant t.
In the simulation, the synaptic kinetics are modeled as AMPA receptors with
double-exponential functions (rising t = .01ms and decaying t = 2ms. We also
simulated the inhibitory components around soma at [�20,50]µm according to
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the realistic synaptic distributions given in (Jaffe & Carnevale, 1999). The GABA
receptors are modeled as double-exponential functions with a rising time constant
of 1ms and a decaying time constant of 12ms.

In the theta-modulated simulation, signals are modulated by an fq = 8Hz theta
signal with a phase shift for each pathway. The mean firing rate is modeled as
a gamma frequency burst sitting on theta baselines (fig.2.2). The theta phase
of each pathway is shifted for radiatum, l.m., PV cell (IN) inputs at [120,0,240]
degrees, and their gamma oscillation frequency is modeled as [70.,100.,125.] Hz,
respectively.

Figure 2.2: Theta modulated simulation. A. Example for the distribution of
synapses along the neuron: PV interneuron input on the soma (pv, green), CA3
Shaffer-Collateral input to str. radiatum (rad, blue) and MEC layer 3 perforant
path input to locunosum moleculare (lm, orange) B. Firing rates of the presynaptic
cells (blue). Plot with a common theta wave as coordinate (orange). C. Generated
LFP signals. D. Membrane potential at soma.

2.2.2 Recording

The adult Long Evans rat was housed together with other Long Evans rats at
standard conditions. All experiments were in accordance with the European
Union guidelines on the protection of vertebrates used for experimentation
(Directive 2010/63/EU of the European Parliament and of the Council of 22
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September 2010). They were performed under the German Law for Protection
of Animals (TierSchG) and approved by the local authorities (ROB � 55.2 �
2532.Vet02 � 16 � 170). The rat was trained on a T-maze alternation task. After
the conclusion of the training the animal was returned to ad libitum water access
and at 10 month of age, weighing 460 gram the rat was chronically implanted
with depth electrodes. Subsequently, a miniature stainless steel screw (0.86 mm
diameter, Antrin Miniature) was implanted above the cerebellum to serve as the
ground. Craniotomies were performed above the right Olfactory bulb as well as
over a trapezoid right hemispheric area, extending between ca. -3 and -6 mm
AP and between ca. 0.5 and 5 mm ML. After durotomies, the craniotomies were
each covered with a sheet of pre-polymerized 1 : 10 PDMS (Sylgard 184, Dow
Corning), and the borders were sealed with tissue glue (Vetbond, 3M) and UV
curing dental cement (Tetric EvoFlow, Ivoclar). Three 64-channel silicon probes
(linear arrangement of 20 um spaced recording sites, H3, Cambridge Neurotech)
which had been mounted on custom-made microdrives to allow for postsurgical
depth adjustment and probe recovery were painted before implantation with
fluorescent DiIC (Invitrogen) to facilitate post-mortem visualization of electrode
tracks. In addition probe shanks were coated with water-dissolvable polyethylene
glycol (PEG, average mol wt 8000, Sigma Aldrich) to mechanically stiffen them
for insertion through the PDMS polymer. Atlas-derived insertion coordinates
were rescaled based on measured bregma-lambda distance (8.5 mm). With help of
a robotic stereotaxic apparatus (Stereodrive, Neurostar) the probes were inserted
at or close to the target depth. The probe targeting the medial entorhinal cortex
was inserted at �4.8 mm AP, +4.7 ML, with an insertion angle of 43 anterior-
to-posterior and an insertion depth of ca. 50 um beyond LFP phase reversal
in superficial layers of MEC). The probe targeting the dorsal hippocampus was
inserted at �3.5 mm AP, 1.8 mm ML, and 3 mm DV. The sleeves of the recoverable
microdrives were cemented to a 3D printed support structure, the implant was
covered with a 3D printed protective cap and the animal returned to its home
cage. After a 7-day recovery period, the animal was put on a water restriction
schedule identical to the one used in the training phase and recordings were
performed in the T-Maze alternation task described above.

Before the first post-surgical recording the anatomical position of the probes was
inferred from ongoing recordings with help of known physiological landmarks
and probe depth adjustments were done using the microdrives to optimize
coverage of the structures of interest. Electrical signals were recorded in a
tethered configuration using the eCube recording system (WhiteMatter) and a
headstage (HS-640) with 4 headstage modules stacked to acquire data from the
3 depth probes as well as the EEG channels. Signals were amplified (200x) and
digitized at 25 kHz. Ground and reference were shorted together and connected
to a cerebellar stainless steel screw. During preprocessing the electrophysiological
data was downsampled from 25 kHz to 1250 Hz to simplify the analysis of LFP
patterns.
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After the conclusion of the experiments, the rat was deeply anesthetized with
Pentobarbital and transcardially perfused with PBS followed by 4% paraformalde-
hyde (PFA). The brain was carefully mechanically extracted from the skull and
stored in 4% PFA for post-fixation overnight. Subsequently, brain slices of 70µm
thickness were made on a vibratome (OTS 5000, FHC Inc.), the slices mounted in
Mounting Medium with DAPI (VECTASHIELD, Vector Laboratories) on glass
slides and borders sealed with nail polish. Slices were then preselected for can-
didate DiI stained fluorescent electrode tracks with help of an epifluorescence
microscope and regional targeting of the fluorescent silicon probe tracks was
verified using a confocal microscope. (Leica TCS SP5).

Anatomical layers were identified in the recordings with help of known physi-
ological landmarks: The center of the CA1 pyramidal layer was defined as the
channel with peak ripple power. Subsequently, the dendritic input layers of
CA1 and Dentate Gyrus were defined with the help of the spectral profile, and
theta-gamma modulation profiles of LFP across depth as well as sharp-wave-
ripple (SWR) and theta-triggered CSD pattern and the spatial distribution of
gamma burst modes after spatially resolved gamma burst detection. In some
cases, a combination of features was used to define a layer most consistently
across sessions. CA1 oriens was defined using depth profiles of spatially resolved
gamma burst detection and identified with the burst mode directly neighboring
the CA1 pyramidal layer in the direction of the neocortex. This corresponded to
the border between the CA1 pyramidal layer and CA1 oriens being located about
midway through the superficial CA1 sharp-wave source in SWR-triggered CSD
profiles. CA1 stratum radiatum was taken to cover the space between the upper
and lower zero-crossings of the sharp wave sink in SWR-triggered CSD profiles.
The fissure between CA1 stratum lacunosum moleculare and the outer molecular
layer of Dentate Gyrus was assumed to run between the dorsal 2

3and ventral 1
3 of

the ventral CSD source of the SWR associated sharp-wave.

In sessions where dentate spikes were detected, this corresponded to the dorsal
border of the main sink associated with Dentate Spike Type 1. The space between
such defined CA1-DG fissure and the lower border of CA1 radiatum was labeled
as CA1 stratum lacunosum moleculare. Dentate Gyrus (DG) outer molecular
layer was defined as the space between the Fissure and DG middle molecular
layer with the DG middle molecular layer being taken to encompass the channels
with the strongest mode of theta modulation of high gamma (100 � 200 Hz)
power in DG. In sessions with Dentate Spike detection, this corresponded to
the location of the main CSD sink associated with Detate Spike Type 2. Finally,
DG inner molecular layer was being located via the most dominant DG sink in
average ripple-triggered CSD profiles.

Brain states were labeled as awake theta, awake non-theta, slow wave sleep (SWS),
and REM sleep with the help of motion tracking derived head speed as well
as using LFP power in dorsal CA1 stratum oriens in the delta (2 � 4 Hz), theta
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(5 � 9.5 Hz) and alpha-beta (10 � 25 Hz) bands as well as 160 � 200 Hz power in
the olfactory bulb EEG. First active behavioral periods were distinguished from
inactive periods as displaying head speeds exceeding 50 mm/s. To detect theta
states we defined a theta reference channel in the CA1 stratum oriens ca. 100µm
dorsal of the center of the CA1 pyramidal layer. Theta states were then detected
automatically using the ratio of the power in the theta band (5 � 9.5 Hz) to the
power of neighboring bands (2 � 4 Hz, 10 � 25 Hz) on this channel. The ratio
threshold separating theta from other states was set empirically in each animal
after visualization of the spectrograms and state separation results. High voltage
spindle (HVS) periods were detected independently with help of EEG signals
and excluded from candidate theta periods. Candidate theta periods separated
by less than 2 seconds were merged, and candidate theta periods shorter than 2
seconds were skipped. Slow wave states (SWST) were defined as periods when
the theta reference channel integrated power in the 2� 4 Hz and 10� 25 Hz bands
exceeded an empirically set threshold during non-Theta, non-HVS periods. Theta
periods occurring during inactivity were defined as REM when they directly
followed slow wave states. The remaining theta periods were considered awake
theta. Slow wave sleep (SWS) was defined as slow wave states during motor
inactivity and with 160 � 200 Hz power in olfactory bulb EEG being below an
empirically set threshold. SWS candidate periods shorter than 20 seconds were
skipped. All remaining periods and SWST periods outside SWS were considered
awake non-theta states.

2.2.3 State Space Model Estimation and Source Separation

As we have shown in the last session (eq.2.10), dendrites integrate synaptic
currents and, therefore, LFP depends linearly on its own previous values and
on a stochastic term. What’s more, it also depends on the representation of the
membrane dynamics in it’s null space. This brings about the spatial-temporal
dependency of the response pattern (Sterratt et al., 2011b). That means the spatial
pattern flattens out with time because of cable effect 2.3. This pattern could be
easily appreciated in simple neuron cables. The analytical solutions in the level
of membrane potential have been well developed mainly with Green’s function
methods (Butz & Cowan, 1974, Abbott et al., 1991).

Because the inputs dominate the LFP signals, it is possible to segregate the signals
contributed by different pathways when they are independent enough (Hyvärinen
& Oja, 2000, Makarova et al., 2011, Schomburg et al., 2014, Fernández-Ruiz et al.,
2021). But the estimation would be affected by the history-dependent part of the
signal. However, when the correlation of the signal increases, the dependency
would accumulate with time and affects the separation of the signal.

Therefore, we develop different ways to reduce the history dependency of LFP
signal and enhance the pathway separation. First of all, according to eq.2.10,
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the LFP could be captured by a MAR(2) model. Therefore, we fit a MAR model
according to the following:

argmin
{Zi}

L = Âk

���F(kT)� Â2
j=1 ZjF((k � j)T)

���
2

2
. (2.11)

We apply ICA on the residue data after we remove the history-dependent part
of the signals. We denote the preprocessed data as rLFP and the result of this
method as rLFP � ICA.

However, MAR model fitting has its limitations. In the underlying mean-field
model, all neurons are assumed to be homogeneous. Furthermore, the non-
stationary inputs would affect the estimation of the MAR model. On the other
hand, the order or MAR model would change when the input spectrum is not
white, i.e., the inputs from the presynaptic activity have some particular temporal
structure. Therefore, in practice, we use MAR model fitting to reduce the effect
of history integration.

On the other hand, a simple temporal derivative could also help to reduce the
effect of temporal integration. We call the temporal derivative of LFP dLFP
and this method dLFP � ICA. In practice, we always compare the result from
dLFP � ICA and rLFP � ICA because the former is more robust to noise but the
latter largely reduces the temporal integration effect and tracks the fast events of
inputs. Clearly with this simple operation, here we made the least assumption of
the data generation model, yet reduced the temporal dependency. Compared to
the original LFP, dLFP is largely dominated by the synaptic inputs to the local
network. dLFP� ICA preserves the temporal information of the wideband signal
while compensating the P µ 1/ f a power-law spectrum by taking the derivative
of the time series. The activity of the source is integrated back to approximate
the original LFP patterns.

It has been widely recognized that the temporal power spectrum of an arrhythmic
LFP signal follows a P µ 1/ f a shape (Buzsaki, 2006, Mitra & Pesaran, 1999). This
is called a "power-law" distribution, and the exponent a is linked to cognitive
functions (Buzsaki, 2006, He, 2014). It has been pointed out by multiple modeling
works that a would be related to membrane time scales, including synaptic
conductance (Gao et al., 2017) as well as membrane conductance (Pettersen et al.,
2014). We also notice that active conductance will contribute to the power-law
shape. Overall, the power-law shape in the high frequency here represents the
dendritic and synaptic integration of the input signal. With our formulation
in eq.2.10, the power-law spectrum would naturally be explained by the vector
auto-regressive model. This observation indicates that temporally whitening
data with auto-regressive models would reduce the integration effect and yield
better separable signals (Mitra & Pesaran, 1999). Therefore, we also include the
whitened data as wLFP and the method as wLFP � ICA.
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The separation on orignal LFP data and high-passed (> 30 Hz) LFP data is labeled
as LFP � ICA and btLFP � ICA, respectively.

2.2.4 Independent Component Analysis

Independent component analysis is a blind source separation tool widely used
to separate mixed signals, so the components are statistically independent or as
independent as possible. In the commonly used linear settings, it assumes the
signal X is constructed by a linear mixture of multiple signals S = [s1, ..., si]T with
specific spatial loading A = [A1, ..., Ai]. Writes:

X = AS. (2.12)

while its inverse, the unmixing of the signal, would be written as S = WX.

Statistical independence is defined as the joint probability of any two signals
being separable, that is,

p(si, sj) = p(si)p(sj), (2.13)

assessed with information theory, is defined by their mutual information as
equal to zero. The concept of independence (Comon, 1994) and information-
maximization (Sejnowski, 1996) was proven to be equivalent to maximum like-
lihood (Cardoso, 1997), optimize non-gaussianity (Hyvarinen, 1999), and the
higher order moments based separation (Cardoso, 1999). In this work, we use
the maximum likelihood-estimation-based fast kernel ICA (KDICA) to separate
the independent sources (Chen, 2006) for its fast and stable performance and
probabilistic likelihood estimation.

Without diving too much into the details, the KDICA separates independent com-
ponents by maximizing log profile likelihood. This is achieved by minimizing the
negative log profile likelihood function J using Laplacian kernel density estimates
which renders a fast kernel density estimation of the source distributions.

Suppose each source activity si has a density function ri, then p(X) =
|det(W)|’m

i=1 ri(Wix), is the likelihood function of observations of X. Then
replacing ri with the k kernel density estimators r̄Wi(s) =

1
nh Âk

i=1 K(WiX�s
h ), here

the Laplacian kernel is used for density estimation. Then the log profile likelihood
is given as:

lp(W) =
1
n

n

Â
t=1

m

Â
i=1

logr̄Wi(WiX(t))log|det(W)|. (2.14)

and hence W is optimized to minimize J ⇠ �lp(W). We also use J to assess
the performance of separation. Even though it’s not directly generalizable over
different data sets, it indicates how well the separation explains the data.



2.2. Methods 29

2.2.5 Cross Frequency Coupling

The cross-frequency phase-amplitude coupling is measured by modulation index
(Tort et al., 2008) and mean vector length (Canolty et al., 2006). The cross-
frequency coupling measures are compared with surrogate sequences where we
keep the phase data but shuffle the amplitude of higher frequency with random
time lag similar to (Tort et al., 2010). This way, we keep the temporal structure as
well as the marginal distribution of both sequences.

2.2.6 Component Time Constant Fitting

Here we separated the LFP signals into pathway-specific IC components, naturally,
we asked the question of whether we can tell more about the synaptic properties
of each component. In the linear system, the presynaptic spike-trains first pass
through an auto-regressive model is then filtered by the neural dendrites. In
the frequency domain, these two processes, together with the dynamics of the
presynaptic activity are multiplied. That means, any dynamical pattern, even
when narrow band oscillations, will have a baseline shaped by the synaptic
kinetics and neural dendrites. And among these two filtering effects, the slower
synaptic kinetics will dominate the slow frequency part of the spectrum (see the
impulse response pattern of passive neuron dendrites in the next chapter).

Here we consider the slow frequency baseline response produced by synaptic
kinetics. Instead of a double-exponential function, we fit an exponential decay to
capture the decay time constant of the receptors for simplicity. The spectrum of a
synapse with time constant t is written as:

dx
dt

= � x
t
+ d ) jwX(w) = �X(w)

t
+ 1 (2.15)

Therefore, the log power spectrum of the signal is fitted to:

argmin
t,c?

|2log(F( f ))� (c ?�log(
1

(2pt)2 + f 2))| (2.16)

2.2.7 Evaluate the Components

Reliability

To assess the stability of the ICA parameter estimation, we look at the reliability of
the components in two levels. Firstly, we estimate the reliability of the estimation
within each session, by employing the resampling method (Meinecke et al., 2002).
In each session, we generate the surrogate data by bootstrapping. Since the
number of potential independent sources could be larger than the recording
dimensions and ICA is a method of finding local minima (Hyvärinen & Oja,
2000), we need to limit the algorithm to search for the local minima close to the
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original estimation. A simple trick to control the searching is to project data to the
subspace spanned by the original ICA estimate first, then estimate a new rotation
matrix on the resampled data. With this, we only consider small deviations from
the original unmixing matrix, so the search would converge much faster and
the new estimation would be better interpretable. One latent assumption of this
method is the ICA components are rotated to improve the independence between
each pair of the components in the bootstrap samples. Therefore, instead of
measuring the square error estimate of the mixing or unmixing matrix, or the
similarity of each of n new estimated component with regard to the original
component, here we decompose the rotations into n(n�1)

2 elementary rotation
angles by taking the matrix logarithm .

â⇤b = ln(R̂⇤b) (2.17)

Here, each component aijis the angle of a rotation in the i � j plane. And then
the separability matrix is given by:

Ŝij =

vuut 1
B

B

Â
b=1

(â⇤b
ij )

2 (2.18)

Therefore, Ŝij measures how unstable the component i is with respect to a rotation
in the i � j plane. It measures how well the components i and j are separated. In
practice, the components belonging to the same subregion would generally render
a higher Ŝij, forming an independent subspace, indicating they are contaminated
due to nonlinear interactions within the same neuron population. Independent
sources or inputs from the upstream are typically easier to separate and have a
lower Ŝij. We implement following the steps in (Meinecke et al., 2002), the full
derivation could be found in section III of this paper.

Apart from testing the reliability in each session, we also need to group and
realign the data across sessions. To cluster the components and assess the signifi-
cance of the cluster, we use ISCtest (Hyvärinen, 2011) designed by (Hyvärinen,
2011) for testing the inter-subject mixing matrix consistency. This algorithm con-
siders two components to be similar if the corresponding spatial pattern (loading
of the mixing matrix) is similar. A significance test is conducted against the null
hypothesis under which the independent components are random orthogonal
components in the whitened space. In other words, here in the null hypothesis,
components from different sessions have no intersession consistency in their
spatial loading. In contrast to that, the components we are interested in usually
have well-defined spatial patterns due to the anatomical wiring. During the
cluster assignment, each cluster would contain only one component from each
session. The ISCtest also controls the false positive rates of the detected clusters
of components (equ.B.9), and the false discovery rates of joining components to
the clusters (equ.B.8). In the appendix B.4 we summarize the basic idea about
isctest.
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In experiments, the recording shank is moved deeper across days to access signals
across layers. In the hippocampus, the channels with the largest ripple power are
detected as pyramidal cell layers and aligned accordingly.

Pairwise Mutual Information

The separation performance of ICA is given by the negative profile likelihood
J. However, we also want to check how independent is each pair of signals
separated by the ICA. Therefore we also use mutual information to evaluate the
separation of signals. The mutual information is estimated with a histogram-
based method, where the marginal distribution of signals is first transferred
into a uniform distribution and then binned into optimized numbers of bins
(Moddemeijer, 1989). This provides a robust entropy estimation of any arbitrary
distributions.

Causality

Granger causality is widely used to determine the direction of information
flow in the field of brain signal analysis, especially in electrophysiology signal
processing (Granger, 1969, He et al., 2019). It conceptualizes the "causality" with
two fundamental components: the past of one time-series Yt contains information
that helps to improve the prediction of Xt and if this information is contained
in no other series in the predictor, then Yt is said to cause Xt. Here we use the
linear implementation of Granger causality, i.e., Multi-Variate Granger Causality
(MVGC (Barnett & Seth, 2014)). The connection strength is assessed by the
Geweke’s measure (Geweke, 1982; 1984), which compares the predictability with
or without Yt, which is written as:

FYt!Xt|Z ⌘ ln(
Set

Se0t

) (2.19)

where Set is the prediction residue without Yt, and Se0t
is the prediction residue

with the past of Yt. This definition is closely related to the nonlinear causal
measure of transfer entropy (Barrett et al., 2010), especially in the linear Gaussian
model case, they are equivalent to each other.

A frequency domain factorization of Granger causality is also applied to under-
stand where information transition happens (Geweke, 1982, Chen et al., 2006). For
a linear system that we consider here, we assume the frequency domain transfer
function of the system can be written as: H(w)SH(w)⇤ = S(w), with S(w) being
the cross-spectral density matrix for a multivariate signal X at frequency w, and
S represents the AR model prediction residues. The frequency domain Granger
causality can be computed as:

fYt!Xt(w) ⌘ ln(
|Sxx(w)|

|Sxx(w)� Hxy(w)(Syy � S2
xy/Sxx)Hxy(w)⇤| ) (2.20)
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which has been proved by (Geweke, 1982) that:

1
2p

Z p

�p
fYt!Xt(w)dw = FYt!Xt (2.21)

In the multivariate case, the Granger causality is naturally extended by fitting
a multivariate AR model where the causal residue then been factorized in the
frequency domain to see the causal connection happen within each frequency
band (Barnett & Seth, 2014).

To avoid high variance and bias caused by independent VAR model fitting, the
MVGC toolbox fits the full model and extracts reduced model parameters from
the full model via factorization of the spectral density matrix (Chen et al., 2006,
Dhamala et al., 2008).

In freely moving animals, the functional connectivity variate depends on the
behavior of the animal. Therefore, we compute Granger Causality in periods from
the whole session. Considering the causal strength would change in different
periods, the directional estimation is conducted by comparing the causal flow in
both directions. Statistical significance is assessed by a two-sided Wilcoxon sign
rank test corrected for multiple-comparison by Bonferroni correction.

2.3 Results

2.3.1 Separation in Simulation Data

To appreciate the cable effect, we first simulate the LFP response to a single
str.radiatum input. Even when there are no active channels and the synaptic
currents keep the same spatial pattern, the spatial pattern of the LFP is changing
due to the cable filtering effect (fig.2.3 A). The spatial profile is narrower at
the raising phase while getting stable afterward. This slower stable pattern
largely dominates the whole time series and would be detected as the principal
component as well as the rad. component, as would also be easily appreciated
in (Makarova et al., 2011). On the other hand, the dLFP, wLFP, and the rLFP
are largely dominated by the raising phase of the signal, they respond quickly to
the input and fall back to the baseline afterward (fig.2.3 A, B, C, D). This enables
dLFP, wLFP, and the rLFP to track the fast-changing signal.

The capacitive current reduces the amount of current produced by the synaptic
input and changes the spatial loading of the response patterns. We didn’t
specifically fit the capacitive currents here, but the temporal fitting largely reduces
the spatial spreading patterns (fig.2.3 C). In practice, we find the rLFP and dLFP
give very similar separation performance, but dLFP is model-free and integration
back to the LFP time scale would preserve the original power law spectrum
pattern. We use the dLFP to demonstrate the benefit of reducing temporal
dependency in separation in the following analysis.
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Figure 2.3: Cabel effects and preprocessing methods. A. Dendritic impulse
response to radiatum input. The LFP recorded parallel to the somatodendritic
axis on the lower left panel is displayed in the other three views. The spatial
profile of the response pattern is plotted at each sampling time, their order is
depicted by their color and shared with all the other subplots. The color map
is shown in the upper-left inset. The upper-left inset shows the time series at
multiple recording sites, notice the peak time varies according to their distance
to the input. The LFP recording is further separated into the contribution from
EPSC and the cable currents. The cable effect alleviates the fast and localized
instantaneous effect of inputs. B. The same signal after pre-processing with
temporal-derivative (dLFP). C. The same signal after removing the MAR model
fitting (rLFP). D. The same signal after temporal whitening (wLFP). E. The same
signal after high-pass filtering above 30 Hz ( f LFP).
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In the simulation, we applied ICA to dLFP and LFP. Here we introduce a
low correlation signal and the firing rate is modulated by a slow band theta
wave (fig.2.2). As suggested by previous works (Makarova et al., 2011), ICA still
separates the components under low correlation levels and recovers the dynamic
patterns of the pathways (fig.2.4B, PSD).

However, we find contamination in the slower frequencies, especially in the LFP
components. This could directly be appreciated from the time series (fig.2.4E).
The LFP components show a higher pairwise mutual information (2.4 A). The
radiatum component and l.m. components are better separated in especially
higher frequencies but contaminated in the slower frequencies (fig.2.4B, C). With
the Granger Causality estimation, we would see a spurious causal link from the
rad. stim to l.m. component in LFP data, but this is reduced in the dLFP data
(fig.2.4 G inset). On the other hand, the rad. comp also has a significant influence
on the IN component, because the driving forces of the GABAergic inputs would
be highly influenced by the nearby excitatory pathways.

We next test the ICA methods on different co-incidence levels. Inputs are projected
to different depth layers. Amari distance measures how similar the mixing matrix
is compared to the ground truth. In the lower correlated data, LFP ICA usually
separates the signal well except for a few very close input pairs (fig.2.5 A, B). In
this case, however, rLFP and wLFP components are not very reliable, likely due
to the model estimation.

When the correlation is large, LFP ICA would converge into local minima and
gives spurious components(fig.2.5A). The estimation sometimes converges into
different local minima and becomes less reliable over multiple estimations (a
larger S in fig.2.5 A, especially when the inputs are close to each other (fig.2.5 C).
However, dLFP always has a reliable separation (fig.2.5 B, C).

We also checked the Granger Causality between stimulation sequences and the
components. A better separation leads to a better Granger Causality estimation.
In the high correlation level, LFP components contaminate each other and show
a high causal strength in the wrong direction (fig.2.5D, E, left column). While the
dLFP components have a better separation and GC estimation except for a few
concatenated inputs.

Overall, the temporally sparser signal enabled a better separation in highly
synchronized scenarios and this would provide a better signal for connectivity
estimation.

2.3.2 Synaptic Time Constant Fitting

We next investigated the synaptic properties for each pathway by fitting the time
constant to the power spectral density baseline of each component (fig.2.6 A).
Notice the spectrum is multiplicative, which means the contribution from the
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Figure 2.4: ICA separation in simulated theta modulated periods. A. upper:
median pairwise mutual information cross sessions; down: separability S across
sessions. B. power spectral density of synaptic currents(stim, black) overlapped
with IC.dLFP(red) and IC.LFP(blue) on the left and coherence on the right
between stim and IC.dLFP/ IC.LFP in red and blue, respectively. all the plots
are in log-log scale. C. Example spectrogram of the l.m. components. D. Spatial
loading of the dLFP IC components (red) and the LFP IC components(blue).
E. Example activity of the components. F. Membrane potential at the soma.
G. Granger causality (F) of stims and LFP components (left) and its frequency
domain decomposition (f, right). Inset compares the Granger causality from s1
(rad. stim) to l.m. component estimated, the spurious estimated connection due
to separation contamination, with LFP IC or dLFP IC components. H. same as G
but for dLFP IC components.
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Figure 2.5: ICA separation with regard to distance and correlation level. A.
Separation performance measured by Amari distance from ground truth versus
negative profile likelihood J for LFP component on the left and Amari distance
verses separatability S on the right. B. J (left) and S of separation measured by
layer distance at low coherence level simulation. C. J (left) and S of separation
measured by layer distance at high correlation level simulation. D.E. separation
performance at a high correlation level. D. Total GC is explained by true stim in
the upper panel versus explained by the wrong stim in the lower panel. Right
GC and wrong GC are separated by dotted lines. GC is computed for each pair
of inputs coming at different layers. We only plot the upper triangle of the matrix
because the input at layer i and layer j are symmetric to scenarios with input
at layer j and layer i. E. Smallest value of true GC pair on the upper panel and
largest wrong GC pair estimated from the same simulation.



2.3. Results 37

Figure 2.6: Synaptic time constants estimated from power spectral density. An
Example time constant estimation from stims’ power spectral density(red, in
log-log scale). Blue indicates the fitted baselines. B. Estimated time constants
for each component. C. Time constant estimated with the LFP data at each
recording channel. Blue is the ground truth LFP profile of IPSC, red is the
dLFP IN component, and black is the LFP IN component. Ground truth 2ms for
AMPA-based rad. component and l.m.component and 12ms for GABA based IN
component is marked in each case.
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Table 2.1: Time constant estimation for simulated pathways.

Pathways Stim dLFP IC LFP IC Chmax LFP Chmax�2 LFP

str. rad. 2.04± 0.50 1.99 ± 0.58 2.01±0.58 2.41±0.28 2.38±0.25

str. l.m. 2.43±0.53 2.31±0.66 3.17±0.76 2.48±0.67 2.46±0.67

IN 14.73±1.85 15.16±1.50 15.10±1.71 10.37±1.58 7.54±1.16

input temporal pattern and from synaptic integration will add up linearly in the
log scale. Therefore, it’s possible to separate the baseline pattern contributed
by synaptic kinetics from the input spectral when the latter exhibits oscillatory
patterns (Donoghue et al., 2020). In spite of the large theta band power, the esti-
mated time constant for stim matches the simulated AMPA and GABA receptor
kinetics (table 2.1, fig.2.6 B). In this case, the time constants estimated by both
LFP and dLFP components match the ground truth.

On the other hand, the time constants estimated by the raw LFP signals show a
mixture of both AMPA and GABA receptors. For channels close to the center
of the input target region, the spectrum and time constant are dominated by
one single pathway (table 2.1 Chmax LFP). While LFP in other channels reflects a
mixture of synaptic response from all the pathways (table 2.1 Chmax�2 LFP, fig.2.6
C).

Overall, we show the possibility to establish the synaptic properties in each
afferent pathway with simulation. Estimations based on the mixed signal in
LFP recording will likely lead to misinterpretation of local synaptic organization,
especially when multiple pathways with different synaptic properties converge
into the same neuron population. While source separation and parameter fitting
for each pathway renders biophysically meaningful interpretation and relieved
this problem.

2.3.3 Identify Robust Components Corresponding to the Path-
way Topology

We apply ICA to data collected in freely moving animals. During the running
period, LFP has strong theta band synchronization and is largely dominated by
slower frequencies (Sirota et al., 2008, Schomburg et al., 2014, Buzsaki & Mizuseki,
2014). We preprocess the data and apply ICA to LFP, f LFP, wLFP, rLFP, and
dLFP data. After ICA separation, we first look at the reliability of the separation.

Similar to simulation data, f LFP, wLFP, rLFP, and dLFP components have much
smaller pairwise mutual information both in the hippocampus and MEC (fig.
2.7 A, B). The components are also more reliably separated with pre-processing
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(fig.2.7 C, D).

Figure 2.7: Reliability of hippocampal LFP separation.
A. The average pairwise mutual information (MI) for
components separated from hippocampal CA1 high-
density recording data with different preprocessing
methods at each session (n = 7). Bar indicates signifi-
cant p < 0.05. Lower mutual information indicates a
better separation. B. Same as A but for MEC data. C.
The average separability for CA1 components (equ.
2.18). A lower S usually indicates reliable separation
and less contamination. D. Same as C but for MEC
data.

Next, we cluster the com-
ponents according to their
spatial profiles. Clus-
ters would depend on the
smoothness of the current
source kernels 2.8, when
the kernel width is small,
the result would be af-
fected by noisy channels
and imperfect separation.
On the other hand, when
the kernel width is too
large, the large current
kernels give spurious cur-
rent sources (Potworowski
et al., 2012). Here we
choose 4 channels which
sum up to ⇠ 90µm as the
kernel width to preserve
a good amount of spatial
detail.

In the hippocampus, we
consistently observe 8 clus-
ters with dLFP � ICA (fig-
ure 2.8 B first row and fig-
ure 2.10) with consistent
spatial loading and cross

frequency modulation. Most of the components explain < 10% of the total power
of dl f p except for one flat component (also observed in other methods, fig. 2.9
A clu.3 and B clu.4). This component surprisingly has consistent spatial load-
ing where little spikes sitting on the nearly flat baseline may reflect channel
impedance noise. The flat component also corresponding to the far field signal
volume conduction doesn’t have a clear cross-frequency modulation compared to
other hippocampal components, but contributes mostly to the total power ( 49%,
especially in the high frequency (figure 2.12 B clu.3, D clu.3)). Interestingly, we
also find a similar component in MEC shank, which takes 46% of the total dl f p
power (fig. 2.10 B clu.5). The coherence between these two components shows a
clear power in the high-frequency range (fig. 2.11 C). This motivated us to design
a toolbox to remove the far-field noise from the data, which will be introduced in
chapter 5.

The rest of the consistent components all have meaningful spatial profiles and
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Figure 2.8: Consistent clusters cross sessions with different pre-processing steps.
A. The clustering results across sessions, the x-axis is the kernel width measured
by minimum channel distance, the y-axis is the number of sessions whose
component shows up in each cluster (Ncomp), color indicates how many clusters
have Ncomp. B, The number of clusters appears over 75% of data. The line
indicates r = 4, which is used in the later analysis. C, examples of clusters (MEC
layer II component of dl f p � ICA) given by choosing given kernel width.
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consistent dynamic patterns. The cross-frequency coupling appears to be con-
sistent across sessions, especially in the preprocessed data (fig 2.9 A for wide
band LFP data and B for high passed preprocessed data, fig. 2.10 shows the
dl f p � ICA result).

Figure 2.9: Cluster results of hippocampal LFP and btLFP components. A. The
hippocampal LFP components. 1 LFP spatial loading of the components. 2.
cross-frequency coupling of each component measured with modulation index
(x10�3) in each session. 3. Theta modulation is measured by phase locking value.
X axis is the phase of theta, and the color indicates the resultant length at each
gamma frequency. We also show the preferred theta phase at each frequency from
each session in gray. The black line indicates theta waveform.4. The normalized
power spectrum density in log-log scale. B. The hippocampal btLFP components.
Same arrangement as in A.

One component with the largest current loading at the middle molecular layer
(DG mmol) and characteristic strong theta modulation in high gamma frequency
above 100Hz at the trough of theta cycle (mean=165.7 ± 8.6, p < .0001 with
Rayleigh’s test) is consistently separated with all the methods (figure 2.9 A clu.1,
B clu.5 and figure 2.10 A clu.8). This is consistent with the previously described
perforantal path projecting from MEC layer II to dentate gyrus middle molecular
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Figure 2.10: Cluster results of dLFP. The analysis is applied to the integrated ac-
tivity. A. The hippocampal components. 1 LFP spatial loading of the components.
2. cross-frequency coupling of each component measured with modulation index
(x10�3) in each session. 3. Theta modulation is measured by phase locking value.
X axis is the phase of theta, and the color indicates the resultant length at each
gamma frequency. We also show the preferred theta phase at each frequency
from each session in gray. The black line indicates theta waveform.4. The normal-
ized power spectrum density in log-log scale. B. The MEC components. Same
arrangement as in A.
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layer (Benito et al., 2014, Fernández-Ruiz et al., 2021).

Another strongly theta-modulated component is the hippocampal stratum la-
cunosum moleculare layer component (str. l.m. 2.10 clu.1). It shows a strong
modulation at 100Hz around the peak of hippocampal pyramidal layer theta
(mean = 16.8 ± 15.7, p < 0.001 with Rayleigh’s test, figure 2.9 B clu.1 figure 2.10
A clu.1). The separation in wide band LPF data shows a spatially consistent
component with similar spatial loading (2.9 A clu.5) but is highly influenced by
the DG mmol component.

Apart from the perforantal pathway, we also find components with a large sink
at stratum radiatum, corresponding to the Schaffer collaterals (Fernández-Ruiz
et al., 2012, Schomburg et al., 2014). It contributes 7% to the total power in dl f p
and is best modulated by theta at 164 ± 15 around 56 ± 28 Hz (fig. 2.10 A clu.5,
also in fig. 2.12 A clu. 4 B clu. 6). Both band-pass filtered ICA and the dlfp-ICA
show the best theta-gamma modulation at slow gamma range (30 � 80Hz), which
agrees with previous works (Schomburg et al., 2014) while wide band LFP shows
a wider coupling range.

We have one component located below the DG mmol component, due to the
span of the recording shank, we don’t know where exactly is the center of the
current source (fig.2.10 A clu.2). It contributes 2% to the total power, with
the best theta modulation around 60Hz at the trough 207 ± 11, similar to the
CA1 Schaffer component. We hypothesize that this component reflects the
commissural pathway projecting to the inner dentate granular layer (Fernández-
Ruiz et al., 2021).

The other component with high theta modulation at a slow gamma range is
located at the deep end of the CA1 pyramidal layer (fig. 2.10 A clu.7). It
contributes 3% of the dl f p power. The best theta gamma modulation, however,
is at the descending phase (61 ± 29) of pyramidal theta. We term it the alveus
component.

Above this component is the hippocampal pyramidal layer component (Pyr. comp,
fig. 2.10 A clu.6). It contributes 2% of the total dl f p power and has a typical high
theta gamma modulation in the high gamma range (> 120 Hz) around 197 ± 14.

The last cluster 4 in the hippocampus has a spatial profile, which agrees with the
LEC projection target, the Dentate Gyrus outer molecular layer current sink, and
is modulated by theta at 48Hz around the theta trough 176 ± 50 (p=0.02, fig. 2.10
A clu.4, fig.2.9 B. clu.3). It contains 8 of the total dl f p power.

In the MEC, we consistently observe 3 � 6 components, 3 of them corresponding
to the superficial layer activity, and the rest is located at deep layers (figure 2.12
F). Despite the EMG component, superficial components contribute most to the
power in the entorhinal cortex. These components also show strong coherence
with components in the hippocampus (fig. 2.11 A, B).
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Robust cluster 6 at MEC has a large dipole spanning layer I to layer III. This cluster
contributes 21% of the dl f p signal power and has the best theta modulation at the
middle gamma range 83 Hz around theta peak 34 ± 11 (p < 1e � 4). Cluster 4 at
MEC belongs to layer II and contributes 9% of the total MEC dl f p power. It has
the best theta modulation at a high gamma range before the theta trough 135 ± 3
(p = .0001), which agrees with the MEC II neuron population firing (Mizuseki
et al., 2009).

Here wide-band ICA gives the least separable stable estimation cross sessions
under the same statistical criteria aclu = .05 (significance corrected by FPR),
acomp = .05 (significance corrected by FDR), which implies a failure of clean
separation. This could be due to the strong slower frequency oscillation that
entrains the local network dynamics (Sirota et al., 2008, Mizuseki et al., 2009),
which increases the dependence between components. The other cause of this
could be the frequency dependence of the corresponding dipole shapes (Gratiy
et al., 2011), which we will discuss in detail in the next session. As we can see
from the cable equation, the neuron membrane performs a low pass filtering,
which leads to a broader average dipole shape in the slower frequency and a
more localized one in the higher frequency. This also leads to a higher spatial
overlapping, which would be critical in separating the highly synchronized
components, especially in the wake theta state. Apart from the passive membrane
properties, the active conductance is most prominent in the slower frequencies.
Various active conductance alleviates fast changes in dendrites (Magee, 1998),
contribute to dendritic resonance (Hu et al., 2009), and introduce input-dependent
nonlinear integration (Spruston, 2008).

Figure 2.11: Coherence Between Hippocampus and MEC superficial layer com-
ponents. A, Coherence between Hippocampus and MEC layer II component. B,
Coherence between Hippocampus and MEC layer III component. C, Coherence
between Hippocampus and MEC EMG components. Color code phase shifts.
The black line is the variance of shuffled surrogate data coherence. Phase =
phase(MEC) - phase(Hippocampus)

Overall, we show the LFP components with proper separation are stable, and
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we group them over the sessions. Pushing the data into a sparser regime would
enhance the separation. This probably is due to less contamination from the
slower frequency band, where most of the nonlinear process and slow frequency
modulation happen. In the next session, we set out to study the interaction
between the consistently separated components.

2.3.4 Reliable Causal Direction Estimation

One of the major advantages of utilizing LFP is to tell about the connectivity
within and between areas. In other words, we aim to obtain a faithful estimation
of the information flow between interested LFP sources. Firstly, we can see large
coherence between MEC superficial layer components and hippocampal com-
ponents, mainly in theta band (fig. 2.11A, B, fig AppendixB.5). However, many
are significant, and we can not exclude the possibility of indirect connections.
Therefore, here we propose to use causal discovery and inference methods (Peters
et al., 2017) as a measure indicating good separation. The causal relationship will
be contaminated if the components are not well unmixed. But on the other hand,
a good separation of the mixed signal will improve the MAR model estimation.

The components extracted with the independent component analysis naturally
fit into the Ganger causality framework and have multiple benefits. The fast
electrical response of the membrane potential gives rise to return currents spread-
ing through the whole neuron and gives rise to a dipole shape. This creates
instantaneous interactions between recording sites which would affect modeling
and causal inference, volume conduction also adds to this problem (Barnett &
Seth, 2015, Bastos & Schoffelen, 2016). Applying source separation beforehand
and obtaining spatially meaningful components, however, would reduce the
noise, take care of the return currents, and get rid of far-field volume conducted
signals.

The causal information flow between robust components reveals major pathways
in the hippocampus (Andersen et al., 1971). We observe two major connections
between the MEC and the hippocampus. Firstly, we find a strong unidirectional
information flow from the MEC layer II component to the DG mmol component
which agrees with the anatomical connection. The unidirectional information
flow mainly happens in the gamma band (figure 2.12 A MEC clu.4 to HP clu.8, C,
figure 2.13 I ).

The str. l.m. component, with a slightly slower peak theta-gamma modulation
than the MEC III component, is mainly influenced by the MEC layer III component
at the middle gamma range (figure2.13 H) significantly slower than the MEC
layer II projection in the perforant path.

Interestingly, we find the CA1 str. l.m. component receiving layer III projection
from MEC is highly regulated by both the Schaffer component and the alveus
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Figure 2.12: the estimated connection between stable components. A, connec-
tivity graph. Greens indicate components from the hippocampus, and yellow
indicates components from the medial entorhinal cortex (MEC). B. Depth profile
of Hippocampus, which maps into the components spatial profile in C. From
left to right, patches indicate the pyramidal layer, stratum lacunosum moleculare
(l.m.) layer, and the granule layer in the dentate gyrus, respectively. C. current
sources density spatial profile of all the consistent hippocampal components. D,
color map on the left is the average modulation index cross sessions(x10�3). On
the right, we show the normalized power spectrum density of each component
(in red), compared to all the other components (in gray) in log-log scale. E, the
depth profile of MEC superficial layers, which maps into the components’ spatial
profile in F. From left to right, patches indicate layer III and layer I, respectively.
F, current sources density spatial profile of all the consistent MEC components.
G, same as D but for MEC components.
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Figure 2.13: Perforant Path and Schaffer collaterals revealed by the frequency
domain Granger causality (GC). A, frequency domain GC between shank1 com-
ponent 6 (1.6) (pyramidal layer component) to shank1 component 5 (1.5) (stratum
radiatum). The shadowed line is the frequency domain Granger Causality value
from each period cross all sessions. The darker line is average F(w). Black dots
indicate a significantly higher influence in one direction, two-sided Wilcoxon sign
rank test p<.05 corrected by Bonferroni correction.
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component at both slow frequency and the gamma band (fig.2.13 D, E). This
indicates that apart from being located at the distal dendrites, the hippocampus
uses more complex mechanisms to regulate the MEC layer III input in local
computations (Mikulovic et al., 2018, Leão et al., 2012). While layer II projection
from MEC is less influenced by other hippocampal pathways.
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Figure 2.14: Perforant path time
constants estimated at [1,80] Hz.
A, power spectrum density of str.
l.m. component and DG mmol
component plotted in log-log
scale for each session. The solid
line indicates the median value
at each frequency and the shad-
owed area indicates one stan-
dard deviation. B. Compare
the estimated time constant of
the components across sessions.
p=.005 given by the Wilcoxon
rank sum test.

Within the hippocampus, we observe a strong
influence from the Schaffer collaterals onto the
pyramidal layer component (fig.2.13 A), and
the Schaffer component also gates the informa-
tion from MEC to the pyramidal layer (fig.2.13
E and A, fig.2.12 A), mainly at the slower fre-
quency band. The Schaffer component receives
information from the comm. the component at
the inner molecular layer of the Dentate Gyrus.
Instead of a direct anatomical connection, this
link is more likely due to their common cause:
the CA3 neurons. This also emphasizes the
importance of combining our knowledge of
anatomical connections (Andersen et al., 1971,
Tecuatl et al., 2021) to the causal link estima-
tion. Instead of purely relying on the causal
inference methods to study the connections be-
tween regions, the causal inference could help
to detect the non-stationary functional connec-
tion strength at anatomical connections (Zhang
et al., 2017).

In the MEC, we observe a strong mutual in-
fluence between layer II and layer III compo-
nents (fig.2.13 C). This is also inherited by the
DG mmol component and CA1 str. l.m. com-
ponent (fig.2.13 B). This indicates MEC layer
II and III population dynamics highly influ-
ence each other through both principle cells
and inter-neurons, and they are the common
cause of components in MEC and hippocam-

pus (Mizuseki et al., 2009, Winterer et al., 2017).

Besides the connections, here we also estimated the synaptic response time
constants of the PP pathway component2.14: l.m. (comp.1): 14.8 ± 2.9 ms, mmol
(comp.8): 7.2 ± 1.6 ms (fig.2.14 A). None of them show a pure AMPA receptor-
modulated pattern. Instead, they are a mixture of faster and slower synaptic and
dendritic mechanisms. The l.m. component contains a larger amount of slower
mechanisms compared to the DG mmol components (fig.2.14 B p < 1e3 Wilcoxon
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rank sum test ), which qualitatively agrees with the previous calibrated NMDA
receptor distribution on the apical dendrite. A larger NMDA/AMPA ratio has
been found in dentate LPP synapses compared to MPP synapses, while the ratio
in CA1 Schaffer pathway is similar to the LPP synapses and generally smaller
than str. l.m. synapses (Otmakhova et al., 2002, Nicholson et al., 2006, Min et al.,
1998). It has also been reported that during anesthetization l.m. component is
significantly reduced during pharmacological intervention with bicuculline while
the mmol component is less affected (Benito et al., 2014). Our analysis confirms
the large contribution of NMDA receptors in l.m. component in freely moving
animals.

Overall, we find the directional connections between pathways within and pro-
jecting to the hippocampus could be estimated by applying Granger causality to
independent components. Our estimation from the freely moving animals agrees
with anatomical findings. This is one step further than the common correlation-
based analysis. Previous studies suffered from high volume conduction and
nonlinear mixing of pathway-specific sources (López-Madrona et al., 2020). We
release this problem by pushing the components separation to the sparser higher
frequency regime, hence improving the separability of the signals. With the PP
path as an example, we show the possibility to infer the synaptic properties from
the component spectrum in real data. The resulting components capture rich
information on pathway-specific dynamics.

2.4 Discussion

2.4.1 Impacts of Cable Model

In this chapter, we discussed how the cable effect of dendritic filtering affects the
LFP signal unmixing. In the nonindependent regime, ICA separates components
based on their temporal sparsity. Therefore, we propose to release this problem by
pre-processing LFP data by taking the temporal derivative or temporal whitening
(Mitra & Pesaran, 1999), and bias it to the sparser high-frequency regime, It helps
to improve the separation when simulated inputs are highly dependent. In the
real data, this pre-processing step also reduces the impact of nonlinear dendritic
interaction (Spruston, 2008) and removes the colored spectrum bias, without
which the high power slower frequency signal will dominate the separation.
With it, we obtain stable clusters of pathway-specific components over multiple
recording days. The activity of the components tells about their pathway-specific
synaptic properties. By applying Granger causality methods on the activities
of the components, we obtain consistent uni-directional connections from the
entorhinal cortex to the hippocampus revealing the perforant path and agreeing
with anatomy.

Here we introduced multiple strategies to remove the cable-induced history



50 Chapter 2. LFP Model in the Temporal Domain

dependency of the LFP signal. With the linear MAR model formulation, the
immediate idea would be to remove the history dependency with a linear model,
which we implement as rLFP. But in practice, we encountered a couple of
problems with this method. First is induced by the curse of dimensionality. MAP
model estimation performs well with a variable number lower than 10, but with
the increase of recording sites, the number of coefficients to be estimated in the
MAR model scales with n2. With a lower dimensional latent space, namely, when
the dimension is less than recording sites, the model is identifiable. However, it’s
not easy to recover the high dimensional latent space.

Here we have a high dimensional model, i.e., the multicompartment model
with noise coming at each compartment, together with Kirhoff’s law of current
conservation and fast axial conductance, the transfer matrix AV in equ.2.5 is
dominated by the capacitive effect. When Vm maps to the observational recording
data, it projects the high dimensional Vm data to the lower dimensional F data
in a distance-dependent manner. Therefore, whitening by fitting an AR model
would largely account for Z1 and Z2 in equ.2.10. The regression model might
also benefit from knowing the shape of the MAR coefficient and some reasonable
parameterization.

Here we also would like to emphasize the benefit of operating event discovery in
the re-scaled or temporally whitened time series. Oscillation detection has been
known to suffer from the power-law-shaped spectrum (Mitra & Pesaran, 1999).
Previous works have employed whitening to remove the effect of power-law
baseline for better oscillation detection (Sirota et al., 2008). In the frequency
domain, methods have been developed to explicitly separate narrow band os-
cillatory signal from baseline power-law shape (Donoghue et al., 2020) in the
spectrum. But notice the fact that all these methods are based on fitting a linear
model to remove the history-dependent part of the data as shown in equ.2.10.
In practice, the model fitting is ambiguous, especially in high-density recording
data. Fitting a single AR model with an arbitrary channel would work for the
purpose of revealing the high-frequency pattern. However, the same AR model
won’t capture the true coefficient at each recording site, which could also be seen
by the change of power law slopes across the recording sites (Gao et al., 2017).
However, if we fit an AR process for each and every recording site, the potential
synaptic or membrane property information is lost with whitening 1.

Therefore, we use temporal differential data for the analysis in this chapter.
Other pre-processing methods help to improve the sparsity of the signal and
enhance the separability, but they distort the time series of data, even when
some distort in a predictable way. Whitening with one single channel generally
preserves the relative temporal pattern between channels, and it largely enhances

1But notice the argument about AR model difference applies only in local signals. In terms of
contribution from far-field signals, the difference between recorded channels should be negligible
(see chapter 5).
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the separability in some of the very difficult sessions. Fitting the MAR model
also helps in some of the very difficult scenarios, but in general, we are at risk of
losing some temporal information. Temporal differential data, on the other hand,
is model-free and easy to apply. It could also be compared to extracting large
synaptic events with Haar wavelets (Fernández-Ruiz & Herreras, 2013).

An alternative would be to fit the entire LFP generation model like in equ.2.10.
This could be performed as a state space model (SSM), where the low dimen-
sional source space is first mapped into the high dimensional multicompartment
membrane potential space and then reduced into the observational LFP record-
ing space. However, the identification of the SSM depends on the independent
sampling of the source, without which the model would be much more complex
and need to incorporate more steps. The identifiability of the system depends
on how much the model matches the data generation process. Resolving it in
the temporal domain appears to be complicated. Therefore, in the simplified
linear regime, we seek to capture the impulse-response of the linear system in
the following chapter 3 and 4.

2.4.2 Identifying Inter-neuron

In the simulation, we show the potential to separate the inhibitory synapses and
identify their synaptic content by the typical slower GABAergic time scale. This
benefits from our simulation settings. Here we consider GABAergic synaptic
inputs arriving at the given theta phase (Mizuseki et al., 2009). Because of the
chloride gradient in neurons established by the potassium chloride co-transporter
KCC2 (Payne et al., 2003), in the hippocampus of adult animals, the reversal
potential EGABA is usually maintained below or equal to the resting membrane
potential, leading to membrane hyper-polarization (Ben-Ari, 2002, Klyachko &
Stevens, 2006) or shunting inhibition (Bartos et al., 2007), respectively. In terms of
shunting inhibition, the membrane potential pattern would be heavily affected
by excitatory input, which makes them generally inseparable. Therefore we only
consider GABAergic inputs, which cause inhibitory postsynaptic currents that
hyper-polarize neurons.

However, identifying interneuron components is much more complex in real data.
First of all, the time scale of the GABA receptor is 20 ms, sitting within the range
between the excitatory AMPA and NMDA receptor, which is 2 7 ms and 60
ms, respectively (Grienberger et al., 2017). And the time constant of excitatory
pathways is further modulated by Ih current (Magee, 1998). So it’s impossible to
decide which synapse without further information.

Moreover, future work should simulate the inhibition in a network to validate
the separation of the afferent synaptic inputs from the local oscillation. Although
in our setting, manually injecting the correlated inputs with a constant delay
is more statistically dependent and theoretically should acerbate the situation.
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That means if the inhibitory input is successfully separated in this case, it should
be easier to separate in the real case. However, we still need to validate the
recurrently connected network and see if causal direction analysis would apply.

2.4.3 Analysis of Local Pathway Dynamics

Here we separate and analyze the basic dynamics of each component. Un-
like other large-scale recordings, the high-density probe parallel to the somato-
dendritic axis provides a closer look at the dendritic processes. Analyzing the
LFP profile allows for an intermediate step to connect microscopic synaptic distri-
bution to the macroscopic time scale analysis with fMRI signals (Gao et al., 2020)
by fast spatially resolved LFP signal. Proved with the simulation data, the mixed
signal at each recording site consist of a mixed time response from all the nearby
pathways. Unmixing reveals the dynamics of a single pathway and it’s easy to
infer the synaptic properties when the pathway activity contains only one type
of synapse, The large time constant observed in the l.m. component, compared
to all the other hippocampal components, indicates a longer integration time
likely contributed by a large NMDA/AMPA ratio and balanced by Ih currents
(Otmakhova et al., 2002, Magee, 1998). Further analysis would include explor-
ing the impact of different dendritic conductance and reconciling the abundant
research on dendritic integration with the extracellular recordings.

The unmixing of signals also allows for the assessment of connections between
areas carried by each pathway. The closer the component time series resemble
the input time series, the better we can tell the directional connections projecting
to local circuits. When the components are contaminated by cohesive input or
nonlinear dendritic integration, it leads to spurious directional connections. Inter-
estingly, in the simulation data, where only passive conductance is considered,
the spurious causal direction is not symmetric and is biased to the radiatum
input towards the l.m. component, which means the activity of radiatum input
helps to predict the time series of l.m. component response. This might due to
radiatum inputs has higher activity and stands in the way of currents passing
from distal dendrites toward the soma. On the other hand, we find no directional
connection from radiatum input towards the l.m. component in the passive
neuron simulation with dLFP based separation, which agrees with ground truth
and indicates less cross-contamination. However, in the real data, the connection
shows up from the l.m. component towards radiatum (fig.2.12 clu.1.1 to clu.1.5).
Together with this, we find both the radiatum and l.m. component, representing
the post-synaptic dynamics, is influenced by a fast, in terms of its synaptic time
constant, and orient-located component, which receives input mainly from the
CA3 component (fig.2.12 clu.1.2). This might reflect the inhibitory regularization
by multiple different CA1 inter-neurons, including VIP cells regulated disinhi-
bition on basket cells as well as OLM cells (Turi et al., 2019). Since this is the
first time this pathway is revealed by LFP causal analysis, further validation by
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manipulation is needed in the future.

The strong connection from the m-mol layer component to the str. l.m. component
raises multiple concerns about the causal analysis in local recordings. First, one
needs to keep in mind that the components reflect the transmembrane currents
in the population, which says many of them come from synaptic origin. The
whole local information processing system (fig.1.1), could be simplified into a
graph (fig.3.9), as we will mention in the next chapter. That means when a
directional link is established, it means information that comes to the upstream
area is processed and projected to the downstream area. However, at the same
time, there is no clue whether the downstream neuron would fire or be effectively
recruited by the upstream area. The connection is established because of the
physical synaptic connection, which might go through certain plasticity but would
generally always be there during the recording. This is also shown by the wide
band directional connection, e.g., from EC layer III to l.m. component (fig.2.13 1.1
to 2.6) and many others. To study the connection between areas, instead of talking
about frequency band limited cross-regional interaction, it would be beneficial to
separate the whole process into 2 steps, namely the synaptic projection and the
dendritic integration.

Secondly, the causal analysis always benefits from including potential compo-
nents to the data (Peters et al., 2017). Therefore, a consistent discovery of the
components over sessions is important, and one needs to be cautious about
components thrown out from the analysis. Here we benefit from simultaneous
recording in both the entorhinal cortex and hippocampus and discover the clear
uni-directional connection from the entorhinal to the hippocampus from LFP,
which agrees with anatomy data (Mizuseki et al., 2009). However, we also find a
strong directional connection from the m-mol component to the l.m. component.
This connection is not explained away by including EC layer II and III compo-
nents or the CA3 component. This indicates that the interaction between the
hippocampal projecting population in the entorhinal cortex is not fully captured
by their major dendritic inputs. The connections through other mechanisms, e.g.,
through inter-neuron in the same layer (Winterer et al., 2017) would be reflected
in their output, which would be later captured by the synaptic currents at m-mol
layer and CA1 distal dendrites. Previous work has reported a small subset of EC
layer III pyramidal cells fire in phase with EC layer II population and shows the
strongest theta phase-locking (Mizuseki et al., 2009). The connection from the EC
layer III component to the m-mol component might resemble the projection from
EC layer II cells to the EC layer III subnetwork, while neurons from the same
population also project to the DG m-mol layer. One further possibility is the link
resembles the feed-forward inhibition from layer II island cell that activates the
interneurons targeting distal dendrite and conjugates layer III inputs (Kitamura
et al., 2014). Whether this synchronization comes from the input level strong
mutual connection (fig.2.13 2.4 and 2.6), or if other mechanisms are involved
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could be further explored. By jointly conditioning on all the components seen in
the local circuit, we find the interaction happens at different levels, be it dendritic
mechanism or population-level perisomatic interaction. Another very interesting
direction would be to involve the population activity analysis in the causal in-
ference, similar to what we do in the simulation data. This way, we could easily
have a fine-grained understanding of how the dendritic integration works over
multiple areas in freely behaving animals.

Finally, we want to emphasize that even when both pre- and post-synaptic
population firing could be recorded, it’s still helpful to combine LFP into the
analysis. LFP not only provides information about the synaptic property, as we
have shown here, but it also allows a simple and close to a linear readout of the
cross-area influence, while causal influence at the level of population activity
could be nonlinear with synaptic integration and local oscillation, and these
processes are modulated by behavior states in a much more complex manner.
Moreover, a lot of causal analyses suffer from reciprocal connections (Peters et al.,
2017). Tell apart the synaptic input from the population activity would help to
infer cross-regional connectivity.
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Table 2.2: Summary of Cable Parameters.

variable meaning size

Basic scales:

N number of compartments

M number of recording sites

K number of pre-synaptic
pathways

h number of classes of active
channels

Membrane Properties:

V(x) or V(kT) membrane potential scalar at x or N ⇥ 1

Imembrane(x) or Imembrane transmembrane currents scalar at x or N ⇥ 1

gl or Gl passive membrane
conductance

scalar at x or N ⇥ 1

Cm or Cm capacitive effect scalar at x or N ⇥ 1

ga axial conductance scalar at x

Synaptic inputs:

{Gaj(x,V)} active conductance type j scalar at x

{Ai(x)} synaptic distribution of
pathway i

scalar at x

As synaptic distribution N ⇥ K

h or E(kT) Presynaptic activity K ⇥ 1

{ti(x)} or At synaptic time constants of
each pathway i

scalar at x or K ⇥ K

LFP parameters:

F(x) or F(kT) local field potential scalar at x or M ⇥ 1

H distance dependent
mapping from Imembrane to

LFP

M ⇥ N

B⇤ mapping from V to LFP
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Chapter 3

Impulse Response of Passive Neuron

With the high-density recordings developed in recent years, we are able to
characterize the spatial profile of local field potential. In the last chapter, we’ve
shown the advantage of separating pathway-specific contributions from LFP
data. A stable separation would help to understand better the pathway dynamics.
However, selecting biophysical meaningful components from ICA generally
requires expertise in LFP analysis. When the components are contaminated, the
unsupervised method cannot tell a physiologically plausible component from
the others, even though sometimes its spatial profile is clear according to the
anatomy of the recording arrangement. The spatial profile of LFP is determined
by the morphology of local neurons (Sterratt et al., 2011b). Therefore, in this
chapter, we ask the question: how could we efficiently model the LFP patterns?
Especially the LFP impulse response of the local population when some of the
neural morphology information is given.

Detailed biophysical modeling helps to understand and characterize the extracel-
lular fields generated by neural dynamics. The forward modeling framework with
multi-compartment modeling is well-studied (Hagen et al., 2016) and applied
to inverse modeling of current generators underlying recorded signals (Einevoll
et al., 2013, Pesaran et al., 2018, Ness et al., 2015, Głąbska et al., 2016, Gratiy et al.,
2011, Cserpan et al., 2017).

The impulse response of neuron membrane potential highly depends on the
geometry of the dendritic tree structure. Modeling work based on cable theory
closely resembles neuronal membrane dynamics (Rall, 2011, Carnevale & Hines,
2006). Numerical modeling as a forward model is an effective way to simulate
complex dynamical interactions between different factors, e.g., synapses, active
conductance, and so on. However, it’s difficult to make the inference with
the feed-forward simulation (Pesaran et al., 2018). Current inverse problems
typically study the transmembrane current distribution that generates the local
field potential (Pettersen et al., 2006, Buzsáki et al., 2012), without considering
the constraints brought by the dendritic morphology (but see (Gratiy et al., 2011,
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Buccino et al., 2018, Cserpan et al., 2017)).

When passive membrane properties are considered, analytical solutions could be
conducted using Green’s function method (Butz & Cowan, 1974, Koch & Poggio,
1985, Abbott et al., 1991, Gratiy et al., 2011). It simplifies the integration process
of membrane potential dynamics into a linear convolution with a time-invariant
filter. Green’s function is widely used to characterize the dendrite computation
on different tree structures, or coupling by gap junctions (Timofeeva et al., 2013).
The passive membrane condition could be further extended to the quasi-active
membrane, i.e., with resonant membrane dynamics (Coombes et al., 2007).

Previous work connecting the cell morphology to extracellular potential mainly
focuses on the extracellular action potential (EAP). The wave-shape of recorded
EAP appears to depend on the location of recording sites (Gold et al., 2006).
Therefore, EAP contains information about the size and location of dominant
current sources located around the soma. The inverse problem is been modeled
with the point neuron model (Chelaru & Jog, 2005, Kubo et al., 2008) or dipole
model (Mechler & Victor, 2012, Mechler et al., 2011). Recent works solve the
inverse model with detailed modeling and deep neural networks to account for
complex spatial-temporal patterns (Lueckmann et al., 2017, Buccino et al., 2018).
However, compared to the shape and discrete events of the action potential, in
LFP modeling, we are facing continuous signals capturing the slower and noisy
presynaptic inputs. Therefore we need to find an easy way to characterize their
temporal properties.

Here the aim is to establish a framework for modeling the LFP spatial-temporal
pattern with known neuronal morphology. This work is aiming to prove the
concept, therefore, we constrain ourselves to the passive cable. We discuss a
flexible yet efficient way to capture the heterogeneous population response. We
show the multi-compartment-based feed-forward simulation (MFF) catches the
membrane impulse response dynamics and is comparable with other analytical
solutions. A simple parameterized model is provided, and a lower dimensional
representation of the LFP component based on the model is discussed. Finally,
we show the model inversion. These demonstrate the frequency domain repre-
sentation effectively bridges the cell morphology with its dynamics. This could
be a good candidate for developing pattern recognition methods for LFP data.

3.1 Greens Function

3.1.1 Greens Function: Impulse Response in the Frequency Do-
main

The impulse response of neurons is described by the neural cable theory (Rall,
2011). According to Kirchhoff’s current law, The cable equation is written as ref.
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(Dayan & Abbott, 2001, Sterratt et al., 2011b, Carnevale & Hines, 2006):

2pwCm
∂V
∂t

= gl(El � V) + ga
∂2V
∂x2 + Ij, (3.1)

When a passive membrane is considered, the dendritic responses would be linear
and time-invariant.

As one can appreciate from the cable equation 4.1, the spatial pattern of the
neuronal response evolves with time. In other words, here, the space and time
are not independent (Gratiy et al., 2011), instead of the commonly assumed
spatial-temporal independent response pattern (Makarov et al., 2010) or spa-
tially fixed rank-1 response pattern (Einevoll et al., 2007) (signal Xi could be
composed by rank-1 vectors Ai, Si, written as Xi = A0

iSi. The dependency is
induced by the interplay of axial current (spatial Laplacian) and trans-membrane
resistor–capacitor-currents.

On the other hand, when transformed into the frequency domain, the convolu-
tionary neuronal response becomes multiplicative, which means in the frequency
domain, the impulse response is a rank-1 matrix of space and time. This could
be seen in the frequency domain cable equation:

i2pwCmṼ + glṼ � ga
∂2Ṽ
∂x2 = Ĩj, s.t. Ṽ = (i2pwCm + gl I � gar2)�1 Ĩj. (3.2)

With the linear operation, the frequency domain impulse response directly cap-
tures the return current pattern of the neuron given any arbitrary input distri-
bution. Because of the inversion, the spatial pattern in the right-hand side of
equation3.2 varies across frequency. This corresponds to the time-dependent
spatial pattern in the temporal domain. It would also induce a low-pass effect
of membrane signal to add to the power-law effect observed in extracellular
recording (Pettersen et al., 2014, Gratiy et al., 2011).

Here we set out to capture the LFP signal with Green’s function method. Green’s
function is the impulse response of the neurons given the close-end condition of
dendritic trees and initial conditions. Due to the linearity of the passive cable
equation, the input is a sum of delta functions, and so the resulting LFP pattern
would be the superimposing of Green’s function response to the input delta
functions.

To characterize how the responses of neural membrane potentials are affected
by the morphology of the dendrite tree, Green’s function methods have been
utilized (Butz & Cowan, 1974, Abbott et al., 1991, Coombes et al., 2007). Based
on the analytical solution of current injection in the infinite long cable, Green’s
function of membrane potential impulse response at any given recording point
along the arbitrary dendritic tree has been well established. Recently, Green’s
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function methods have been extended to gap-junctions (Timofeeva et al., 2013),
and network dynamics (Yihe & Timofeeva, 2016).

Instead of continuous temporal domain analytical solutions of membrane po-
tential, here we stay in the complex frequency domain for it’s more flexible to
model extracellular fields, especially when there are multiple inputs. The goal is
to establish Green’s function as the basis for inverse modeling of LFP recordings.
We first describe Green’s function formulation of both transmembrane current
source and local field potential based on multi-compartment models. Then we
introduce multiple simplifications and parameterize the system for further inverse
modeling.

3.1.2 Green’s Function for Homogeneously Distributed Inputs

Membrane potential modeling with Green’s function has long been proposed
to study the effects of dendrite morphology before numerical methods based
on multi-compartment models took its place. However, the modeling of local
field potential appears to be much more complicated. To get the membrane
potential, one needs to solve the linear system described by the cable equation.
But to calculate the extra-cellular potential, we need to further integrate over
the continuous membrane with the inverse of its distance with regard to the
recording sites. Meanwhile, utilizing the idea of a multi-compartment model,
as proposed early in (Koch, 2004) and later work by Gratiy (Gratiy et al., 2011)
simplified this problem by descritizing the neuron and resolve Green’s function
as in a linear system, getting the membrane potential response as well as the
trans-membrane currents response at each compartment, and calculate local field
potential by standard LFP methods. In the frequency domain, this appears as
just another linear operator adding on top of the membrane potential Green’s
function. Here we employ the same idea to build the base functions used in a
general inference framework.

By discretizing the dendritic tree, the membrane potential impulse response
(Green’s function) is easily achieved for the linear system. Here we start with
the frequency domain Green’s function in response to the unit d input at a given
depth.Along with the Neuron simulation, we could adopt the same tree structure
in both numerical simulation and Green’s function reconstruction. In the detailed
neuron model, the dendrites of the neuron are subdivided into smaller segments
to enhance the precision of numerical integration (Carnevale & Hines, 2006, Cuntz
et al., 2010). For many interested brain areas, the passive parameters of cells
with detailed morphology reconstruction could be found in online open-source
libraries like NeuroMorpho (http://neuromorpho.org/).

The input is modeled as a current injection. Notice that the resonant (quasi-
active) current could also be modeled in the same manner (Koch & Poggio, 1985).
Starting from the simplistic scenario, suppose that we have a single compartment
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that receives a uniformly distributed unit current impulse d. This will lead to an
abrupt change in the local membrane potential, and the difference in electrical
potential will drive the ions into the neighboring compartments.

In the frequency domain, the corresponding Green’s functions of transmembrane
currents at any segments G̃h could be estimated by a linear system simplification:

i2pwCmṼ + glr2Ṽ = Ĩj, Ĩm = �MṼ, (3.3)

G̃h(w) = Ĩm(w) = M(Y(w)� M)�1) Ĩs = M(Y(w)� M)�1)Ĩj(w), (3.4)

where M =r2. Here Y(w) is the passive membrane property which depends on
frequency w.

After we get the Green’s function of transmembrane currents, the Green’s function
of LFP produced by this segment at frequency w could be written as:

G̃(w) = BG̃h(w), 8w. (3.5)

Here we could use point approximation or line source approximation to generate
LFP, and B denote the field potential generated by Im at each compartment (Holt
& Koch, 1999). The mapping B is linear, and it is determined by the relative
position c of the cell with regard to the recording shank (see figure3.1 C). The
information of the neuron population thus could be inferred from B, which we
will discuss in the following session.

Notice here the LFP signal recorded at any arbitrary site is approximated by a
homogeneous resistive extracellular field (Nicholson & Freeman, 1975, Lindén
et al., 2014), but the inhomogeneous extracellular impedance (Pettersen et al.,
2006) or frequency filtering effect of extracellular field (Bédard et al., 2004) could
also be captured by this model. In this case, we need to measure the impedance of
the extracellular space and then replace the B with a complex impedance matrix
Bi. For simplicity, we limit our discussion here to an isotropic conductance-based
extracellular environment.

The single neuron frequency domain Green’s function could be easily extended
to the population level. Assuming the inputs from specific pathways i will
target the postsynaptic population in a depth-dependent manner, e.g., with a
spatial distribution y, we could model the mean field response of the population
transmembrane currents as a linear summation of all the inputs.

To simplify the modeling, we assume the current is distributed according to
f within each laminar perpendicular to the recording shank and distributed
according to yi dependents on the depth i parallel to the recording shank. Similar
to the current source bases kernel current source density method, we can go one
step further, forming the laminar Green’s function bases for currents injected into
given depth layer i (fig.3.1 A). Given a input base li, the corresponding Green’s
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function bases of CSD G̃ci is:

G̃ci = Â
j

lj ˜Ghj, li =

(
f (zj) j 2 layeri

0 otherwise
(3.6)

where f could be any function describing the input synaptic distribution. The
overall LFP produced by the column of neurons is the summation over all the
laminar G̃c = Âi yiG̃ci is discussed in the next section.

Figure 3.1: Green’s Function Model of the impulse response of a neuron. A. The
Green’s function of a given cell with a given input pattern y. The Green’s function
is presented as a 3-dimensional tensor with regard to the frequency w in the
horizontal axis, the recording depth in the vertical axis, and the input distribution
y in the 3rd dimension. Color map indicates the phase of the Green’s function
basis Gc at input layer i. B. Parameterization of the input current distribution
as a mixture of Gaussians. The yellow input pattern is linearly constructed by
the red and blue gaussian shapes. C. Parameterization of the B matrix in the 1D
recording. The 1D recording shank is assumed to be placed in the middle of a
neuron column and the top channels of the shank are regarded as 0 depth. The
neuron column with length S is placed at c. Its radius is r.

3.1.3 Infer the Input Current Distribution

In the previous session, we described how to construct the Green’s function for
a given afferent pathway. In this session, we consider the inverse problem, i.e.,
how to infer the input pattern as well as the cell property when observing an
LFP pattern. Starting with the 1D recording, we ask the question: if the cell
morphology and the relative position of the cells to the recording site are given
or measurable, can we infer the input distribution from the data?
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We formulate the inference as a maximum likelihood problem. Assuming that the
evoked pattern F̃n is the ideal impulse-response pattern Gn with some Gaussian
noise N(0,s), the likelihood would thus be:

p(An) = Ān ’
w

exp(�
��F̃n(w)� Gn(w)

��
2s2 ), (3.7)

where Ān is the scaling factor. Then frequency domain response Gn is matched
to the observed measurements F̃n.

Here, Gn is parameterized as current input y placed at a unit-length homoge-
neous neuronal column, which is then scaled with s and shifted with an offset
c regarding the unit length linear probe (see figure.3.1). Given the geometry of
the recording probe, the goal is to simultaneously infer the parameter of the
neural ensemble, including the relative location of the neurons, the length, and
offset of the neurons, and the synaptic distribution, as well as the power in all
the frequencies. To do this, we first model the laminar current source density
(fig.3.1 Gci in equ.3.6) in response to input layer i : i 2 1, ..., N, as described in the
last session (fig.3.1 layer i). Then the total CSD pattern is a linear summation over
all the input layers weighted by the synaptic distribution y = [y1, ...,yN ]T:

Gc =
N

Â
i

yiGci (3.8)

Notice the spatial pattern, unlike the power of activity, is assumed to be constant
in all the frequencies.

To simplify the input inference and enhance the smoothness of the input
shape, we use a mixture of Ng Gaussian kernels to model the input shape
y := Â

Ng
i=1 wiN(µi, 1/bi) since Gaussian mixture is widely used to model arbitrary

smooth distributions.By using loglikelihood, the loss function is equivalent to the
Euclidean Norm of the difference between the fitted from the observed pattern
and henceforth the problem could be written as:

argminQ L = Âw

��F̃(w)� G(w)
�� ,

subject to y > 0

c < 1

Â wm = 1

(3.9)
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where the G(w) is computed as:

G(w) = B ⇤ (
N

Â
i

Gci(w)yi). (3.10)

B = B(x, s,r, c) (3.11)

y =
Ng

Â
m

wm ⇤ exp(�(l � µm) ⇤ bm) with l = linspace(0,1, N) (3.12)

and
Ng

Â
m

wm = 1 (3.13)

According to equ.2.6, B is fitted with relative length s and offset c compare to the
known electrode (figure 3.1). In the 1D case, the contribution of current sources
layer i at the recording site at x it could be written as:

B = B(x, s,r, c) =
D
2s

✓q
(c + ais � x)2 + r2 � |c + ais � x|

◆
(3.14)

In this work, the current source layer a is chosen to preserve the same segmenta-
tion as the input current layers l (see figure3.1 A). Pattern fitting with equation
3.9 could be conducted in the real domain or complex domain.

3.2 Simulation Methods

3.2.1 Numerical Simulation

The multi-compartmental simulation is performed within NEURON (Carnevale
& Hines, 2006). We use the time step of dt = 0.02ms.The intracellular resistivity
was set to Ri = Wcm and the membrane resistance was set to Rm = 15kWcm2. The
membrane capacitance was set to Cm = 1µFcm2. The reversal potential for leaking
current was set to Vleak = �65mV.

Its morphology is shown in fig.3.2 A. The membrane potential Vm and transmem-
brane currents Imem at each segment are recorded for further analysis.

The impulse response of NEURON simulation is the deconvoluted version of the
membrane potential Vm or transmembrane currents Imem. Since convolution is
multiplication in the frequency domain, the deconvolution is achieved by Fourier
transform of Vm or Imem divided by Fourier transform of input currents Iin.

3.2.2 Temporal Domain Green’s Function Methods

To connect to theoretical approaches for studying the dynamics of the neuron
membrane potentials, here we also compute the temporal domain Green’s func-
tion of the same simple passive cable model as in the NEURON simulation,
shown in fig.3.2 A.
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Here we applied the sum-over-trips method (SOT, or path integration method)
first introduced to resolve the membrane potential in arbitrary branching den-
drites (Abbott et al., 1991) and simplified later with optimized trip selection and
matrix-based methods (Cao & Abbott, 1993, Caudron et al., 2012). The core of
the method is to use a Feynman-Kac representation of the solution in terms of
random walkers on a dendritic tree of arbitrary geometry (Abbott et al., 1991).
In other words, the method represents Green’s function as a sum over all the
possible "trips" along the dendritic tree starting at one given point x on segment i
(e.g., input site), cross over and ends up at y on segment j (e.g., recording site).
The traveling rule at terminals takes care of the boundary conditions.

The SOT will converge to the true Green’s function Gx,y When all the possible
trips are considered. With a finite number of trips in the sum, Green’s function
will be dominated by the shortest path through x to y. However, in the long time
limit, SOT will converge to ground truth (Abbott, 1992). It’s worth mentioning
that Green’s function here is computed for each pair of input-recording sites
(interchangeable due to the symmetry of the dendritic tree) because the trips are
determined by the location of the pair.

Later works include systematically optimizing the integration of trips (Abbott,
1992, Cao & Abbott, 1993, Caudron et al., 2012). The matrix method of (Caudron
et al., 2012) is used here for the simple model in fig.3.2 A. Briefly, the idea is to
group all the trips according to their lengths. A modified direct edge adjacent
matrix could be used to compute the sum of coefficients of trips of a given length.
Then adding trips is nothing more than a multiplication of the edge-adjacency
matrix. Detail of this algorithm could be found in (Caudron et al., 2012) section
Matrix Method.

To compare with the frequency domain Greens function forward model, the
impulse response of the analytical SOT method is obtained by Fourier transform
of the time domain spatial-temporal pattern. Same to the NEURON simulation,
the deconvolution is achieved by Fourier transform of Vm or Imem divided by
Fourier transform of input currents Iin.

3.2.3 Greens Function with Neuron Reconstructions

Green’s functions of any given neuron are based on multi-compartment models
with anatomically reconstructed morphology. Passive capacitors C and resistors R
could be computed accordingly (Sterratt et al., 2011b) or directly by the standard
NEURON implementation (Carnevale & Hines, 2006). Here we provide two
alternative ways to reconstruct the neuron, based on python simulation and
the NEURON toolbox (Hines & Carnevale, 2001, Lindén et al., 2014) or the
MATLAB-based TREEs toolbox (Cuntz et al., 2010).

The reconstruction with NEURON is based on the parameters computed and used
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in the numerical simulation. For multi-compartmental model with anatomical
reconstructions, to ensure good numerical precision and capture the transient
membrane response, we use the lambda_ f (100) rule in NEURON to determine
the number of segments (Hines & Carnevale, 2001). The compartmentalization
was done so that no dendritic compartment was larger than 1/30 of the electronic
length at 100Hz. The mapping from transmembrane currents to LFP recording
with line-source approximation or point-source approximation could be obtained
from LFPy simulation. In the comparison between the NEURON simulation
and Feed-Forward modeling, we use the point-source approximation in both
situations.

The MATLAB-based TREEs toolbox could also effectively reconstruct the multi-
compartmental geometry of the dendritic trees with the same d � lambda rule at
100 Hz. The detailed dendrites segmentation is slightly different from NEURON
reconstruction (Cuntz et al., 2010), but clamping at the same lambda frequency
forces the algorithm to optimize the geometry to render a competitive electrical
response. Therefore, these differences would barely affect multi-electrode extra-
cellular recording. With all the passive parameters, the impulse response of a
neuron is calculated according to equ.3.4 and equ.3.5 at each given frequency. Af-
terward, the current-LFP matrix B is generated with point source approximation.
The Greens’ functions of heterogeneous hippocampal neurons are obtained with
this method.

3.2.4 Multi-compartment based Forward Simulation

With the passive membrane assumption, we can easily simulate the impulse
response of a given neuron or a homogeneous neural population with frequency
domain feed-forward simulation. Here in the forward modeling, the system
impulse response is modeled by its Greens’ function multiplied by the Fourier
transform or wavelet transform of the input I(w). This is possible because,
in the linear system, the convolution in the temporal domain is equivalent to
multiplication in the frequency domain. This technique is frequently used in
temporal convolutions or filtering because it simplifies the recursive multiplication
to a linear operation.

3.3 Results

3.3.1 Frequency Domain v.s. Temporal Domain Green’s Function

To validate Green’s function-based feed-forward simulation, we compare it with
well-established analytical solutions and numerical solutions in a simple dendritic
tree model. The model illustrated in fig.3.2 is constructed based on the dendritic
system studied in (Butz & Cowan, 1974, Abbott et al., 1991). Here we create
two levels of symmetric brunching to explore: 1. how the branching affects the
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membrane voltage 2. how the voltage evolves with regard to the relative distance
from the input site. Considering the cyclical symmetry, the input is injected at
the middle of primary, secondary, and tertiary dendrites as an instantaneous
delta impulse current(fig.3.2), or a sinusoidal wave (fig.3.3). The membrane
potential and transmembrane currents are recorded at each segment in NEURON
simulation and the frequency domain-based forward simulation (FF). With the
SOT method, the membrane potential is recorded at two sites, one at the middle
of the secondary branch and the other at the tertiary branch(fig.3.2A, r1,r2).

The membrane potential spreading in the dendritic cable and the peak membrane
potential at each segment decreases as a function of distance from the input
site(fig.3.2B, C). Both Neuron simulation and the FF modeling based on the
frequency domain Green’s function captures the flow of ions. The largest peak
appears less than 0.1ms, and the power decreases fast because of leaking currents.
The largest discrepancy between NEURON and FF simulation appears at .1ms,
due to high-frequency transient response, especially around the input segment.
The membrane potential in the two recording sites has similar responses (fig.3.2E),
which could be summarised in the frequency domain (fig.3.2 F and G).

Then the SOT analytical solution for each input-recording pair is also computed.
To guarantee that the SOT solution converges, we compute Green’s function for
k = 4 ⇥ 10[0:4] trips. Here the difference is measured by the area between curves
normalized by the area under the membrane potential response of k = 4 ⇥ 104.
Because the trips in the matrix method are selected based on the basic four classes
of trips (Abbott et al., 1991), which is much more effective than randomly selected
trips, the algorithm converges fast, and the error is close to 0 when the number
of trips is larger than 1000 (fig.3.2 E inset). We use k = 4 ⇥ 104 in the following
analysis. Multi-compartment-model based simulations, frequency domain based
forward (FF) simulation, and SOT generally match each other.

The largest disagreements between the SOT of both NEURON simulation and FF
modeling appear around 0.1ms(fig.3.2D). This could partially be due to the not
perfect delta impulse input current used in the multi-compartment model. But
the impulse response functions are still close to each other (fig.3.2E).

To have a closer look at the spatial-temporal pattern of Green’s functions, we
also transfer the SOT and NEURON simulation into the frequency domain and
compare to the frequency domain FF model, both amplitude and phase at two
recording sites are shown in fig.3.2 F and G respectively. The Green’s functions
at each recording site match each other, especially in the slower frequency. While
recordings obtained from different sites are distinguishable from each other. We
also observe the error increase with frequency. For frequency above 2000Hz,
there appears to be a large difference between the Green’s functions. This also
contributes to the difference of transient response in fig.3.2D.

To assess the difference between multi-compartmental model-based modelings to
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the analytical SOT solution, we compute the amount of mismatch normalized by
SOT response, as DSOT = Areamismatch

AreaSOT
in fig.3.2H. The amount of DSOT of NEURON

simulation is similar to FF modeling. Due to numerical integration, NEURON
fits better when the recording sites are close to the input (R2). While the distant
recordings R1 in FF have similar precision as the close one R2 ( fig.3.2 left). The
average DSOT is comparable between these two methods.

Figure 3.2: Comparison of Green’s function methods. A: Model schematic.
The color indicates inputs and recording sites at different branching levels. B.
Example impulse response with NEURON simulation. Input at lv.2 brunch and
membrane potential recorded at three connected brunches, including the input
brunch and two recording brunches, indicated by color on the left. C. Same
as B but for frequency domain based forward (FF) simulation. D. Difference
between NEURON and FF simulation. Upper: Difference of impulse response in
B and C, Lower: NEURON and FF recordings each compare to Sum-Over-Trips
solutions. Color code is the same for E, F, and G. E. Temporal domain impulse-
response recorded at r1 and r2. Inset is the convergence performance of SOT
Green’s function pattern when the number of trips increases. F, G Frequency
decomposition of impulse response in F power and G phase, respectively. H.
DSOT NEURON and FF simulation compare to the SOT solution. Left: DSOT for
each method at proximal recording site R2 and distal recording site R1. Right: for
all the input sites, compare average DSOT obtained by NEURON and FF method.

Next, we look at the transmembrane currents’ response to oscillatory inputs. LFP
is generated by the transmembrane currents (see equ.2.9 and section.2.1.2), and
blurred with volume conduction The transmembrane currents’ spatial-temporal
response from the NEURON simulation is similar to the FF simulation (fig.3.3B).
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The injected current is considered part of the transmembrane current in the FF
model but not so in the NEURON simulation, so we didn’t plot the transmem-
brane current at the input segment in FF simulation (white line). The phase
lag from the input current increases with distance from the input (see appendix
fig.C.1). Again take the lv.2 input site as an example, the recording site at adjacent
brunch r2 shows a small phase lag while r1 at the distal brunch has a much
larger phase lag (fig.3.3C). Here the histogram of the demodulated phase shows
only one peak. The phase lag estimated by FF simulation indicated by the red
cross agrees with the mode of demodulated phase. Summarized in fig.3.3 E,
the resultant length of the phase difference between demodulated phase and
FF phase is close to 0 and smaller in the closer r2 than the more distal r1. The
wavelet transform of the transmembrane current illustrates the spectral profile
of the response, both simulations again follow the inputs, but the power of FF
at r2 is smaller than the NEURON simulation, similar to the results of impulse
response (fig.3.3 D).

Figure 3.3: Comparison of Simulation with Oscillatory Inputs. A. Model
schematic, B. Trans-membrane current(imem) for NEURON (upper) and Frequency
domain based Forward simulation (lower) at all the segments sorted by their
brunching level on the left. Same color scale. C. The demodulated phase around
input frequency was recorded at r2 and r1. D. Wavelet transform of the imem at r2
and r1. E. Phase difference between FF estimation and demodulated NEURON
simulation. Same color scale. F Recorded temporal trace plot against input
current.
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In the complex multi-compartment model, we could also use the frequency
domain Forward modeling to establish a fast LFP response pattern 3.4. We
simulate a realistic CA1 pyramidal neuron with random inputs in NEURON. In
neuron simulation, the inputs are simulated with a conductance model (synaptic
conductance) instead of the current injection in a linear system. This means
the driving force of the synaptic current would be influenced by the membrane
potential change. We compare the NEURON simulation with the frequency
domain Forward simulation. To obtain the temporal domain LFP pattern of the
FF model, we first compute the frequency domain complex wavelet transform
of synaptic conductance, multiply it with the Green’s function (fig.3.4B), and
then use inverse wavelet transform ([60,2000]Hz) to get the temporal domain LFP
trace.

The linear FF simulation generally matches the nonlinear conductance-based
model (fig.3.4D). However, we also notice the FF simulation responds faster to
the inputs while the conductance model is slower, therefore smoother than the
FF model (fig.3.4C). This is due to the change of driving force in the conductance-
based input model. Same as in the simple model, here Green’s function also
shows a larger portion of return currents at the distal apical dendrites in high
frequency compared to the slow frequency (fig.3.4B) due to the linear cable
filtering effect. We also observe that FF simulation has a larger return current
locally in the distal dendrites compared to the NEURON simulation. This could
be caused by compartmentalization or numerical integration and should be
explored more when applied to realistic scenarios.

Overall, we demonstrate here the FF simulation closely matches the NEURON
simulation, and the Green’s function from all the methods matches each other.
Green’s function estimated in the frequency domain is fast and provides an easy
way to summarize the spatial-temporal pattern dictated by dendritic morphology.
In this section, we study in fine detail whether the membrane potential at each
segment generated by each method matches each others. While in the following
analysis, we will look at a relatively coarser measure: the LFP signals. Further-
more, the discussion here could be of interest for cell localization on high-density
EAP recording. However, how active conductance adds to the impulse response
needs to be established in further works. We’ll discuss this at the end of this
chapter.

3.3.2 Similarity under Heterogeneity

Next, we use the FF Green’s function to study the LFP pattern generated by
different morphology. For this purpose, we use a CA1 pyramidal cell data set
from http://neuromorpho.org (adult male Sprague-Dawley rat hippocam-
pus, Achieve Name: Chen, n = 47). The digital reconstructions were performed
with Neurolucida (MBF Bioscience Williston, VT, USA). We choose this data set

http://neuromorpho.org%20
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Figure 3.4: Realistic multi-compartment model simulation. A. Schematic of the
multi-compartment model. Blue dots label synapse-targeted branches. Red dots
on the linear probe indicates the location of channel 5,15,25 in C. B, The frequency
domain Green’s function in phase and magnitude. C. Normalized LFP trace
([60,2000]Hz) generated by NEURON or FF simulation from three channels. The
trace is normalized by their variance. D, Normalized LFP traces ([60,2000]Hz)
cross channels.

because of the large number of cells and the complete dendritic tree reconstruc-
tion.

Green’s function is computed for all the reconstructed cells. Here we assume a
passive membrane with a resistance of 50000Wcm2, axial resistance of 150Wcm,
and a membrane capacitance of 1µFcm2. LFP is approximated by assuming
transmembrane currents homogeneously distributed within each depth layer in a
50µm column. To assess the similarity of Green’s function profiles, the input is
distributed according to the depth parallel to the neuronal dendritic tree axis.

We find that the LFP Green’s function profile is determined by the input depth.
Fig.3.5A shows two examples of neurons with different morphology. The magni-
tude of impulse response will always peak around the input layer. Their LFP GF
response is similar for especially basal and proximal inputs. When the input is
located at distal dendrites, we find a larger return current towards soma in cell 2,
which has more proximal branches. But the return currents tend to be more local
in higher frequencies in all the scenarios.

To assess how much the heterogeneous morphology affects the GF profile, we
look at the similarity between GF from different cells (fig. 3.5B, C). For each
frequency, the phase and magnitude of Green’s function from each cell are
compared to others with the same input layer. Results across all the input layers
are summarized in B and C for phase and magnitude, respectively. The phase is
more sensitive to morphology change while the magnitude pattern is very close
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Figure 3.5: Comparison of Green’s function from Heterogeneous Population. A,
Green’s function of two example pyramidal neurons. Lower panel: input currents
are injected at �105µm, 145µm, and 295µm. The color plot shows the normalized
magnitude of LFP Green’s function profile at each frequency band. The y-axis
indicates the recording depth. B, Histogram of the pairwise similarity of LFP
response patterns from the different neurons. The Phase of Green’s function from
each cell is compared to others with the same input layer at a given frequency.
Each frequency row sums up to one. C, Same as B but for magnitude. D, Average
phase similarity between Green’s function response with different input layers at
6.2Hz(upper) and 200.7Hz(lower). E, Same as D but for magnitude.
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to each other. This is because of the large peak around the input site and the
low-pass spreading pattern of the neural dendrites. Magnitude is dominated by
the input site, while phase captures the "spreading" pattern of the current flow,
which is influenced by the branching patterns especially when the frequency is
low (fig.3.5B). But they are generally similar to each other, and the similarity is
close to 1.

The Green’s function response from different layers, on the other hand, tends to
be different from each other(fig.3.5D, E). Compared to the high similarity within
layers, the similarity between layers is much lower depending on the distance
between the input layers. In lower frequencies, sometimes the input above and
right below the soma layer could have a similar dipole shape because of the
return currents (notice in this analysis we don’t distinguish the dipole sign). But
this tendency again shows less in the high-frequency data because of the locality
of return currents. The magnitude of the GF also shows a sharper peak in high
frequency due to the low-pass filtering of neuronal cable. The block on the upper
right corner (> 400µm) is due to a few dendrites extending to this distance. This
would give little magnitude similarity and no phase difference.

Green’s function representation of LFP allows an easy grasp of how the other
parameters affect the response (fig.3.6). Here to see how the heterogeneity
of cell morphology affects the LFP response and how the effect dependents
on the distance of recording shank with regard to the neuron ensemble, we
simulate the Green’s function of each at each depth layer. The corresponding
Green’s function is then normalized to unit variance and projected to the first
3 principle component of the generated data set(fig.3.6A). The real part of their
Green’s function is shown in fig.3.6 B. Input depth, indicated by color in fig.3.6A,
is the major dimension that contributes to the distribution of LFP patterns.
The difference brought by heterogeneous morphology is almost orthogonal to
the difference caused by input depth. When we step away from the center of
the ensemble, the pattern at the edge of the ensemble is still very similar to
the center(fig.3.6A 2nd column). When the distance is more than 1mm, the
contribution of the spatial heterogeneity is almost ignoble, however, the input
layer depth still could bring difference(fig.3.6A 3rd and 4th column). Plotting all
the components together shows the effect of input depth(fig.3.6C). The far-field
signal could contribute to recordings in neighboring areas, this contribution could
be simplified by the current dipole approximation.

Another example is to use Green’s function to study how the geometry of layers
affects the LFP signal. Here we simulate the grid recording of Dentate Gyrus,
which is known to have a curved layered configuration (Fernández-Ruiz et al.,
2013). Dentate Granular Cell(GC) from previous mice study (Schmidt-Hieber
et al., 2007)(Achieve Name: 95960, cell_10 is used for simulation for it has
complete morphology) and only the dendritic tree is considered here. Input is
injected at the inner, middle, and outer parts of the dendritic tree to resemble the
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CA3 commissural input, MEC layer III, and LEC layer II impulse respectively.
To demonstrate the concept, we implement a simple symmetric architecture
with two parallel layers and a half circle connecting them at x = 0µm. GC
cells are distributed at the gray circles indicated in fig.3.6 E, 1 � D LFP and
CSD is recorded at 5 positions to resemble the multi-shank recordings (left side
indicates the current sink, and the right side is the current source). When the
recording shank crosses the dentate structure, the amplitude is about 40 fold
larger than the first shank. The amplitude of LFP response is amplified by
the symmetric architecture of the layer (Fernández-Ruiz et al., 2013), and we
find they are further amplified by the irregular dentate curvature. A simple
second-order derivative along the linear probe close to the curvature (fig.3.6 E,
3rd shank,x = 20µm) shows a much larger current sink than at the parallel layer
(fig.3.6 E, 4th shank,x = 180µm). This calls for caution when analyzing the LFP
pattern in irregular structures.

To summarize, here we use Green’s function to illustrate how the heterogeneity of
cell morphology affects the LFP pattern they generate. The detailed morphology
affects the LFP pattern generated by a single cell, especially when the recording
sites are close to the cell. However, the input layer depth explains more of the
variance of the LFP pattern than the cell morphology fig.3.6. This suggests that
we could use Green’s function as a template to distinguish pathway response
terminating at different laminar depths, which we would use in the next chapter.
We also demonstrate the utility of the frequency domain method to explore the
influence of complex layer geometry. This method is fast and the result is compa-
rable to the NEURON simulation. It could provide an easy first understanding of
the signal and could be easily adapted to modeling and inference. With this, we
demonstrate one way to parameterize the model and infer useful properties in
the next section.

3.3.3 Model Inversion with Frequency Domain Green’s Function

We fit the FF simulated LFP profile with our model. The ground truth LFP
profile is generated with the frequency domain forward model. Here the model
fitting is nonlinear, it consists of two major parts: input current fitting and the
CSD-LFP mapping matrix: B matrix fitting for cell location(fig.3.7). To assess the
performance, we directly look at the square error of the field potential profile.
The fitted pattern is a significantly better match to the ground truth(medianerror =
0.036) than the shuffled null distribution(medianerror = 0.248, fig.3.7A). With the
same Green’s function template, the algorithm could recover exactly the true input
distribution and the position of the cell, even when the cell is small compared to
the recording shank(fig.3.7A, B).

Next, we ask how would different biophysical properties contribute to the model
fitting. We set off to see the influence of the template on model inversion. From
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Figure 3.6: Green’s Function Based Representation of heterogeneous impulse-
response. A. Effect of the distance between recording sites and neural column. To
study how the spatial profile change with input depth and neuromorphology, we
plot the normalized Green’s function of laminar current injection from an online
dataset. The components are estimated by assuming a random average on x � y
plane. LFP is generated by a neural column (r = 10µm ) within which currents
are homogeneously distributed in the x � y plane for each cell and each laminar
injection. The recording shank are locate at the center (rec = 1µm), boundary
(rec = 10µm), and outside (rec = 100µm or rec = 1000µm) of the column. The color
indicates the depth of the current injection. All the impulse response profiles
are projected to their first 3 components. The gray manifold on later subplots is
the distribution of (rec = 1µm) and is plotted for contrast. B. The example real
part of components from A, generated by laminar injection at 10. C. Plotting
manifolds together shows heterogeneity has a smaller effect when the recording
distance is large. But there is a dimension that components distribution varies
according to the injection depth. D. Simulation of Dentate Gyrus populations.
The current distribution according to the somatodendritic axis is plotted on an
example Dentate Granule cell. DG curvature is modeled as two parallel layers
and a half circle connecting them at x = 0µm. 2 D LFP profile is indicated by color.
5 linear shanks are put at different positions of the DG curvature. The recorded
LFP is plotted in gray, and the current source density by spatial Laplacian is
plotted in black.
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the last section, we proved that population LFP Green’s function profile within
the same cell category is generally similar even when the detailed morphology is
different. But how would this affect the model inversion? To answer this question,
we fixed the cell location and generated target LFP patterns with randomly
distributed weights from all Green’s function patterns with the input depth. We
fit sample patterns with the average template(fig.3.7D) or the Green’s function
from the last cell in the data set, denoted as the single cell template. Fitting with
one cell or average template captures the current distribution, while the average
template match closer to the target randomly constructed cell patterns. The
fitted current lying around the diagonal indicates that the peak of fitted currents
matches the ground truth. The fitting based on the average template appears
to match better narrow input current pattern(fig.3.7E lower). In general, the
fitting with the average template (E(loss) = 0.027) fits better than the single cell
template(E(loss) = 0.049, p < .001 Wilcoxon signed rank test ). Furthermore, when
single cell template is considered, the performance depends on how closely the
template resembles the ground truth while the average template is usually close
enough to the ground truth that release this dependence (fig. 3.7 F). However, we
could see that the model inversion suffers most from the extreme distal inputs
regardless of which template is chosen (fig.3.7F). Therefore, in practice, it would
be helpful to use a template as close as possible to the generator of the target LFP
pattern, but a template with similar morphology could already give a fair first
estimation.

Next, we look at how the cell position affects model inversion. Here we find
when the whole cell is within the recording range, the fitting generally matches
the ground truth(fig.3.8C, D). However, the error rate is significantly larger when
the cell crosses outside the recording range(fig.3.8D, p < 0.001 Wilcoxon rank
sum test). We find simultaneously fitting the Green’s function from multiple
frequency bins improves the fitting (fig.3.8B). It reduces the depth of spurious
local minimum in the complex energy landscape (fig.3.8E a:1 bin, b:16 bins).
Within the recording range, pattern fitting normally has a nice global minimum
(fig.3.8E.c). But when the cell is too far from the recording shank, it’s difficult to
reconstruct the current(fig.3.8E.d). This also indicates for cells aligned with but
much deeper than the recording shank, it would be difficult to determine precise
cell scales, a current dipole approximation could be used here.

Overall, we demonstrate here Green’s function model inversion and how the
different aspects of the model affect model inversion. We find the fitting does
not heavily depend on the exact cell morphology, an arbitrary cell from the same
category could be used to fit the model. But a better fitting would be achieved
with an average neuron response pattern. Instead of fitting with one frequency
band, we find simultaneous fitting with multiple frequency bands would help to
improve model inversion. This method works best when the neuron is within
the recording range, and the performance decreases when the cell is outside the



3.3. Results 77

Figure 3.7: Demonstration of Green’s Function Fitting: Effect of the Cell Template.
A: Schema of frequency domain forward modeling. The current input target at a
unit length neuron according to the depth in the somatodendritic axis. Afterward,
the neuron is mapped to a recording probe according to the right inset. Right
inset: The position and the scale of the neuron are parameterized according to a
unit length recording linear probe. B. The error of Green’s function fitting is less
than the error given by unit variance gaussian current injection at random depth
(n = 100,⇤⇤⇤p < 10�10 Wilcoxon signed rank test). C. Example fitting performance.
The FF simulation is fitted with the same cell template, emulating the situation
when cell morphology is accessible. The color map depicts the real part of
the fitted profile (Fitted) and the ground truth (GT). The fitted (cross) current
distribution and cell position match the ground truth (circle). The fitting is plotted
w.r.t. the unit-length recording probe with markers depicting input layers in A
(see method 3.1.3). D. Fitted transmembrane currents and LFP Green’s function
w.r.t. input at each input layer at low (top, 10.0 Hz) and high (bottom, 199.3
Hz) frequency. Green’s function is normalized to a unit norm at each input
position, and the real part is plotted. The transmembrane currents’ LFP profile
is much more localized at higher frequencies. (n = 100) E. Fitted input currents
distribution and its contribution to LFP with regard to input at each input layer.
The FF simulations (n = 100) consist of randomly weighted neurons from the
same dataset at r = 1000µm (unscaled) and are fitted with a single cell template
or the average cell template. Both the input current distribution and its LFP
profile are normalized to a unit norm at each input position. F. The fitting error
plot against the similarity between the template used for fitting and the randomly
mixed Green’s function. Color depicts the input layer of FF simulation.
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recording range because more alternative solutions would give rise to similar
LFP recording patterns.

Figure 3.8: Demonstration of Green’s Function Fitting: Effect of Cell Positions. A.
Schematic of how to parameterize the current distribution by unit length current
scaled with S and shift with offset C, w.r.t. unit length linear probe. B. Error of
fitting with one frequency band is compared to fitting with 16 frequency bands
(n = 24, ⇤⇤p = 0.019). C. Fitting errors with single or multiple frequency bands
are shown according to the offset and scale of FF simulation. D. Fitting error with
different frequency bins grouped by cell position within, crossing, or outside of
the unit length probe reporting range. E. Example optimization landscape for 1
frequency bin (a) or 4 frequency bins (b-d). a, b. Example fitting of FF simulation
crossing the recording range. Fitting with one frequency bin in (a) has multiple
local minimal, while fitting with 4 bins in (b) reduces the spurious local minimal.
c. There is a clear global minimal when the input profile is within the recording
range. d. When the input profile is outside of the recording range, the fitting fails
because the optimization landscape is too flat.

3.4 Discussion
To summarize, we revisit the compartmentalized Green’s function method for
multi-compartment model forward simulation. By implementing and comparing
different forward modeling methods, both on the level of membrane potential and
LFP, we demonstrate that compartmentalized Green’s function method effectively
captures the spatiotemporal response pattern of the passive neural dendritic tree.
Alongside the linear separatable properties in the frequency domain, the feed-
forward Green’s function framework would also speed up simulation by replacing
the integration with frequency domain linear multiplication. Replacing the
dendritic integration with some simpler kernel formulation has been developed
and discussed recently (Hagen et al., 2022). In practice, it provides an easy and
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fast estimation of how complex cytoarchitecture affects recorded LFP signals. One
step further than forward modeling, we proposed a model to infer anatomical
properties and distribution of input currents from impulse response based on
laminar Green’s functions.

The question we are interested in is how to effectively construct a biophysical
model that connects the synaptic integration with laminar LFP recording for the
purpose of probabilistic inference. We have demonstrated the utility of Green’s
function model in passive neuron settings. Amongst all the factors modulat-
ing synaptic integration, distance-dependent resistance change and capacitance
change could bring interesting local effects. However, as a linear effect, it could be
directly accounted for by the Green’s function (Tuckwell, 1988). The progressive
increase in synaptic conductance with distance from the soma could also be
directly formalized into the linear multiplicative weight of synaptic distributions
(Magee & Johnston, 1997).

However, it has been suggested that multiple active mechanisms participate in
signal processing along dendrites (Magee, 2000). In the following section, we’d
briefly discuss their impacts and suggest how to further incorporate them into
modeling.

3.4.1 Nonlinear Effects

FVmtreeV̄mgSS

gA C

N

Figure 3.9: Schematic of the simplified mechanistic LFP model based on the
microscopic level neural signals. S stands for the upstream inputs to local
networks. The post-synaptic conductance gs response to their corresponding
neurotransmitter and changes local membrane potential Vm. The change of Vm
together with the calcium concentration C influence a consecutive response of
voltage- and ligand-regulated active conductance gA. The calcium concentration
C, also confined by the intercellular mechanisms, is much more complicated and
usually has a slower time constant compared to the passive mechanism, hence
being modeled in parallel. The N plates denote the compartmentalization by
common inputs. The V̄m is introduced here for computational convenience. LFP
F is then generated by the transmembrane currents, which is determined by
membrane potential Vm.

Active Na+ and K+ dependent conductance play important roles in shaping
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the dendritic computation (Magee et al., 1998, Cash & Yuste, 1999). Here we
just name a few with typical spatial profiles affecting the electrical response
patterns of the dendrites. Na+ channels are uniformly distributed throughout
the dendritic arbor (Magee, 2000). Besides voltage-gated channels, the ratio
between the fast AMPA receptor and the slower voltage-dependent NMDA
receptor variate according to the distance from the soma, regulating the dendritic
excitatory postsynaptic potentials (EPSP) response pattern (Nicholson et al.,
2006). On the other hand, the impact of active Na+ channels is compensated by
active K+ channels (Cash & Yuste, 1999). The density of A-type K+ channels on
dendrites increases according to the distance from the soma, generating outward
current and regularizing the dendritic excitability (Hoffman et al., 1997). Ih
current, produced by Hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels, also increases from the soma to the distal apical dendrites in CA1
pyramidal neurons as well as cortical pyramidal neurons (Magee, 1998). It acts as
a slow component to dampen dendritic excitability (Magee, 1998) and plays an
important role in dendritic resonance (Hu et al., 2009, Stark et al., 2013).

The function of active channels in shaping the EPSP profile depends on the
precise channel distribution of the cell, and it could be modeled as current inputs
on top of passive neuronal dendritic trees (fig.3.9). In practice, many of the active
currents could be linearized, which yields a quasi-active description of active
channels (Koch, 1984, Wybo et al., 2015). While in general, resonance, which also
takes a large part of nonlinear cell response, could be implemented by a bandpass
linear filter term in each compartment, as far as the density is known, and this
could be further fitted as an extra term (Coombes et al., 2007, Hutcheon & Yarom,
2000, Cook et al., 2007).

The Ca2+ is another important mechanism that regularizes signal processing
in dendrites (Gasparini et al., 2004). The Ca2+ signals are mediated by influx
through both NMDA receptors and voltage-gated Ca2+ channels (VGCCs). It
regulates multiple active conductances, participate in synaptic plasticity (Magee
& Johnston, 1997, Bi & Poo, 1998), and nonlinear dendritic processing, e.g.,
associate with local dendritic Na+ spikes when inputs are concurrently activated.
The intracellular Ca2+ homeostasis is regularized and compartmentalized by
endoplasmic reticulum (Karagas & Venkatachalam, 2019), which makes the
modeling much more complex (Borg-Graham, 1999, Hay et al., 2011).

Increasing evidence has converged to show that functional relevant compart-
mentalization (Losonczy & Magee, 2006, O’Hare et al., 2022, Otor et al., 2022)
determined by channel distribution and dendritic morphology serve as compu-
tational units. Therefore, we propose to process these active conductances in
functional dendritic subunits (Polsky et al., 2004), denoted by the N plates with
local membrane potential V̄m, and potentially in some slower time scale compared
to the passive dendrites, while modeling their LFP contribution according to the
passive dendritic tree with Vm. Membrane potential dynamics for each plate in
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this nonlinear case could be very complicated, but the LFP pattern would likely be
captured by a limited number of kernels (Głąbska et al., 2016). Volterra series or
Gaussian process methods could also account for higher-order nonlinear terms in
the impulse-response transfer function (Wybo et al., 2015, Turner & Sahani, 2014).
In terms of biophysical parameter fitting and compartmentalization, previous
works have demonstrated the usage of a multi-objective cost function to reduce
the dendritic compartments while keeps multiply key features of their somatic
and dendritic firing (Keren et al., 2005). How to optimally compartmentalize the
neuron dendrites would be a very interesting topic in the future.
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Chapter 4

Biophysics Based Source Separation

Local field potential, compared to EEG recordings, shows a spatial profile shaped
by the morphology of local neurons, the ion distribution, and their synaptic
distribution next to the recording sites (Gold et al., 2006, Einevoll et al., 2013,
Łęski et al., 2013, Næss et al., 2021). The feed-forward model of LFP generated by
the local neuron population is comparably well studied (Lindén et al., 2014).

In the previous chapter, we present a model that connects the microscopic
postsynaptic activity to the macroscopic population level local field potential.
The model is based on the frequency domain transfer function of the passive
neural membrane cable model. That is to say, the model aims to capture the fast
first-order linear response of the neural membrane, which means, compared to a
simple dipole model describing the far field potentials, this model will effectively
capture the dipole shape field potential generated by current injection at any
arbitrary point of dendrites.

Motivated by the previous chapter, we explore the possibility of adding the
biophysical constraints as a prior into the probability model of LFP and helping
to separate the sources in the frequency domain. Frequency domain signal
separation is widely applied, especially in the signal processing community
(Adali et al., 2008, Anemüller et al., 2003). As with many other methods, it
comes with blessings and curses. In general, frequency domain time-frequency
representation or spectrogram formalization allows for spatial-temporal pattern
recognition. It connects to the temporal patterns separation, e.g., empirical
mode decomposition (Huang et al., 1998, Lopes-dos Santos et al., 2018, Mijović
et al., 2010), spatial-temporal ICA (Głąbska et al., 2014) or probabilistic time-
frequency analysis (Turner & Sahani, 2014, Song et al., 2021), which resolves the
underdetermined source separation problems, where recording sites is less than
the potential number of sources. But at the same time, accurate estimation of time-
frequency representation is still an unresolved problem due to Heisenberg–Gabor
uncertainty principle (Moca et al., 2021), and noise (Mitra & Pesaran, 1999).
Grouping components from different frequency bands requires prior knowledge
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about the wave-shape and signal patterns (Anemüller et al., 2003, Sirota et al.,
2008). But since time-frequency representation allows for sparse and unbiased
signal representation (as we’ll discuss in the following sections), and it’s easy
to incorporate the prior knowledge of dendritic transfer function, we set off
formalizing signal separation in the frequency domain.

Biophysical constraints help to separate highly correlated signals by utilizing the
spatial profile separated in independent frequency bands. We propose a method
to cluster the components with the help of biophysical modeling. We further
formalize the biophysical constraints into a probabilistic model and show how
to separate components by maximizing the neg-entropy. In the simulation of
passive neurons, it helps to cluster and refine the components. In the real data,
we show frequency domain LFP components clusters represent pathway-specific
signals.

4.1 Source Separation Model

4.1.1 LFP Source Mixing in Frequency Domain

The impulse response of neuron is described by the neural cable theory (Rall,
2011). According to the Kirchhoff’s current law (Dayan & Abbott, 2001, Sterratt
et al., 2011b, Carnevale & Hines, 2006), The cable equation is written as:

2pwCm
∂V
∂t

= gl(El � V) + ga
∂2V
∂x2 + Ij, (4.1)

When passive membranes are considered, the dendritic responses would be linear
and time-invariant.

As one can appreciate from the cable equation4.1, the spatial pattern of the
neuronal response evolves with time. In other words, here, the space and time
are not independent (Gratiy et al., 2011), instead of the commonly assumed
spatial-temporal independent response pattern (Makarov et al., 2010) or spa-
tially fixed rank-1 response pattern (Głąbska et al., 2016) (signal Xi could be
composed by rank-1 vectors Ai, Si, written as Xi = A0

iSi. The dependency is
induced by the interplay of axial current (spatial Laplacian) and trans-membrane
resistor–capacitor-currents.

On the other hand, when transformed into the frequency domain, the convolu-
tionary neuronal response becomes multiplicative, which means in the frequency
domain, the impulse response is a rank-1 matrix of space and time. This could
be seen in the frequency domain cable equation:

i2pwCmṼ + glṼ � ga
∂2Ṽ
∂x2 = Ĩj, s.t. Ṽ = (i2pwCm + gl I � gar2)�1 Ĩj. (4.2)

The spatial pattern in the right-hand side of equation4.2 varies across frequency.
This corresponds to the time-dependent spatial pattern in the temporal domain. It
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would also induce a low-pass effect of membrane signal to add to the power-law
effect observed in extracellular recording (Pettersen et al., 2014, Gratiy et al.,
2011).

The frequency domain formulation resembles the linear separation of ICA X = AS,
where the mixing matrix A correspond to the spatial input-response pattern and S
to the input activity Ĩj. On the other hand, brain communication usually exhibits
specific frequency patterns (Mizuseki et al., 2009, Bastos et al., 2015).Therefore
we are seeking to separate the signals in the frequency domain.

The separation in the frequency domain is a general result, and it applies to both
membrane potentials as well as extracellular recordings. As we have shown in
equation 3.5 in the Green’s function section, the extracellular potential, generated
by the trans-membrane currents, is a spatial-dependent linear transform from
the membrane potential. That means it’s also just a linear combination of input-
response patterns in the frequency domain and could be separated into F̃ =
Â F̃j Ĩj.

4.1.2 Complex ICA use Entropy Bound Minimization

To perform the decomposition, we first need to select a proper cost function
(Comon, 1994). There’s plenty of evidence showing the neuronal activity in
the brain is skewed (Buzsaki & Mizuseki, 2014). Therefore we use independent
component analysis to explore the non-Gaussian nature of the signal (Hyvärinen
& Oja, 2000).

Complex ICA is closely related to real ICA but has a richer family of possible
probability density functions. ICA based on maximum-likelihood estimation,
information maximization, negentropy, or non-Gaussianity maximization is inti-
mately related (Cardoso, 1998, Adali et al., 2008). Still, the performance would
depend on the nonlinear functions used in density matching. Therefore here
we use the complex ICA by entropy bound minimization (ICA-EBM) (Xi-Lin Li
& Adali, 2010), which is based on the principle of maximum entropy. The pdf
of a complex random variable is defined through the joint density, consider the

mapping CN 7! R2N such that s̄ = W̄x̄ where x̄ = [xT
R, xT

I ]
T and W̄ =

"
WR �WI

WI �WR

#

since W = WR + jWI . By the computation of Jacobian as

pX(x) = |det(W̄)|pS(Wx) (4.3)

where pS(Wx) = pS(s) = pS(s1, s2, ..., sN). Therefore, the mutual information is
given as equation 1 in (Xi-Lin Li & Adali, 2010):

I(s1; ...; sN) =
N

Â
n=1

H(sn)� log|det(W̄)|� H(X) (4.4)
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where according to the definition, det(W̄) = det(WWH) makes log|det(W̄)| =
2log|det(W)|. H(x) := �E(log(p(xR, xI))) stands for the entropy of x.

In the complex ICA-EBM, entropy is estimated by bounding the entropy of es-
timates. Instead of directly estimating the H(s), it is approximated by finding
the maximum entropy distribution as the entropy bound. Henceforth, maximiz-
ing the independents is obtained by minimizing mutual information between
independent sources sn to minimize the entropy bound we found in the first
step. The maximum entropy estimation finds the best approximation for the
underlying distribution, and the entropy bound minimization pushes the sources
as independent as possible.

Two types of entropy bound is used, accounting for two widely used families
of bi-variate distributions. In the Entropy Bound I, a linear decomposition
[sR, sI ]T = W[u,v]T is considered, where W is a 2 ⇥ 2 nonsingular matrix, and
[u,v] are a pair of zero mean random variables since s is zero mean. The upper
bound for H(s):

H(s) = log|det(W)|+ H(u,v)

 log|det(W)|+ H(u) + H(v) = H[bound,I](s,W)

where the equation holds iff u and v are statistically independent and the bound is
uniquely determined by B. In the Entropy Bound II, the decomposition [sR, sI ]T =
W[u,v]T = Wr[cosq, sinq]T is considered where r and q are the magnitude and the
argument of u + jv, respectively, leads to the entropy bound:

H(s) = log|det(W)|+ H(u,v)
= log|det(W)|+ E[logr] + H(r,q)
 log|det(W)|+ E[logr] + H(r) + H(q)

 log|det(W)|+ E[logr] + H(r) + log(2p)

= H[bound,I I](s,W)

where the first equality hods iff r and q are statistically independent, and the
second one holds if q is uniformly distributed in [�p,p), i.e., u + jv is circular.
The H[bound,I I](s,W) again is uniquely determined by W.

To determine the bound for H(u), H(v), and H(r), similar to the idea of varia-
tional inference, complex ICA-EBM seeks to find a distribution q best describes
the underlying distribution from a wide range of bi-variate distributions summa-
rized by a set of functional forms. By whitening and constraining the demixing
vector for each source to be unit length, i.e., E[u] = E[v] = 0, E[u2] = E[v2] = 1,
E(GI

1(u)) = µI
G1

and E(GI
2(v)) = µI

G2
, where GI

1(u) and GI
2(v) are the measuring

functions captures the higher order moments of non-Gaussian distributions. Since
q(sR, sI) =

1
det(W)q(u)q(v), the maximum entropy distribution q of Entropy Bound

I could be constructed in the general form of q(u) = A1exp[�a1u2 � b1u� c1GI
1](u)
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and q(v) = A2exp[�a2v2 � b2v � c2GI
2](v). The Entropy Bound I is thus written

as:

H[bound,I](s,W) =log|det(W)|+ log(2pe)

� VI
1

n
E
h

GI
1(u)

io

� VI
2

n
E
h

GI
2(v)

io

where VI
1
�

E
⇥
GI

1(u)
⇤ 

and VI
2
�

E
⇥
GI

2(v)
⇤ 

are neg-entropy, they could be nu-
merically calculated and would never be negative. The optimization of Entropy
Bound I is a weighted linear combination of two statistical independent variable
u and v, hence the distribution it gives belongs to the family of weighted linear
combination distribution (Johnson & Tenenbein, 1981). Similarly the Entropy
Bound II is also defined with a q(r) whose E(r) = 1, E(r2) = 2 and E(GII(r)) = µI I

G ,
therefore q(r) = A3rexp[�a3r2 � c3GII(r)]I(r � 0). The bound would be

H[bound,I I](s, B) = log|det(W)|+ log(2pe)� VII(µI I
G )

VII(µI I
G ) = 1 + logA3 � 2a3 � c3µI I

G

Among all these possible entropy bounds, the tightest one is used as the final
estimate of H(s), i.e.,

H[bound,I]
k1,k2

(s) = min
W

H[bound,I]
k1,k2

(s,W)

H[bound,I I]
k (s) = min

W
H[bound,I I]

k (s,W)

Ĥ(s) = min( min
1k1,k2K[I]

H[bound,I]
k1,k2

(s), min
1kK[I I]

H[bound,I I]
k (s)). (4.5)

The entropy bound is given by comparing the density matching over several
potential families of distributions (analog to functional in variational methods,
see Appendix), which accounts for various possible distributions.

Complex ICA is performed on wavelet-transformed data. In contrast to sources
in EEG or MEG recording (Anemüller et al., 2003), LFP is dominated by local
dipoles. Assuming a slow plasticity rate of the synapses results in a static spatial
loading and a consistent change of components’ spatial loading according to
their frequency bands. In other words, each local component will have a share
in all the frequency bands, and the spatial loading at each frequency band is
similar, as illustrated in figure 2. Here in the simulation, the source activity tiles
the entire spectrum, and the corresponding LFP components appear in all the
frequency bands. But in reality, the source activity usually reflects large local
synchronized activities and thus typically oscillates within specific frequency
bands (Sirota et al., 2008). Complex ICA could be applied to each frequency band
independently and grouped with post-hoc clustering methods (Anemüller et al.,
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2003). If one assumes a constant frequency pattern, which implies a constant ratio
across all the frequency bands, then frequency-embedding could be applied on
windowed data (Sirota et al., 2008). Here we want to keep the method as flexible
as possible such that 1) it deals with continuous activity and 2) it doesn’t assume
any temporal pattern apriori. Henceforth due to the frequency-dependent term
in the input-response4.2, we decide to decompose the signal at each frequency
and, at the same time, optimize the components coming from the same pathways
according to the reconstructed Green’s function, which would be discussed in
the following section.

4.1.3 Complex Component Extraction Regularized by Biophysi-
cal model

Here we propose to bring the biophysical model to bridge the components
in different frequency bands. Briefly speaking, we are trying to find for each
frequency fi a set of complex components S f i = W f iX f i that are independent of
each other and match a set of input current distributions yj that are shared in all
frequencies. This writes as:

L = Â
i
(I(s f i

1 ; ...; s f i
N) +

N

Â
j

a|A f i
j � G̃j|2Fro) (4.6)

= Â
i
(

N

Â
n=1

H(s f i
n )� glog|det(W̄ f i)|� H(X f i) + a

N

Â
j
|A f i

j � G̃j|2Fro) (4.7)

The independence of components at fi is obtained by minimizing mutual in-
formation I f i between independent sources S f i according to equ.4.4. For the
biophysical model, we assume for the source activities we want to separate, and
there exists more than one observable frequency band FI (in terms of discrete
frequency bands in spectrogram) that they are independent or their occurrence is
sparse. Notice the assumption is normally fulfilled in electrophysiology record-
ings where information is transferred in broad frequency bands. On the other
hand, this assumption is, in fact, a necessary but not sufficient condition for inde-
pendence in temporal domain (Zhang & Chan, 2006), which has been explored
to enhance the sparsity of signal separation by extracting subband independent
components when the Independence assumption is not fulfilled with adaptive
filter (Cichocki & Amari, 2002, Tanaka & Cichocki, 2004, Zhang & Chan, 2006)
or wavelet decomposition (Kisilev et al., 2003). Notice here the assumption of
the adaptive filter doesn’t hold since the mixture matrix depends on frequency
because of the cable effect. Therefore, we separate signals on each frequency
band of the wavelet transformed coefficient, respectively.

In the second part, we use biophysical models as a constraint to group compo-
nents from different frequencies and enhance separation on dependent frequency
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band FD. Blind source separation in biomedical data typically faces the problem
of feature selection and overfitting, which would hopefully be helped by incorpo-
rating biophysical models as constraints (Makeig et al., 2012). As discussed in
the last chapter, we propose to use Green’s function of multi-compartment cells
as a prior of the mixing matrix.

The concerns come in two folds. First of all, the impulse response of neurons
typically has a multi-pole shape due to the cable effect, which would be easily
captured by linear operation with Green’s function basis. The basic Green’s
function basis is easily adaptable to any brain areas of interest by finding example
cells in the target region from the online neuromorphic dataset. Then there comes
the second concern, because of the heterogeneity of neurons, which will almost
surely bring variation to the impulse response. To keep the method as general
and robust as possible, we don’t want to rely too much on Green’s function basis
of selected neurons. Therefore, we add this as a regularization term instead of
using Green’s function basis to fit the signal like in previous work (Gratiy et al.,
2011). This regularization term is guaranteed to be positive, except for when the
input is exactly generated by some linear transform of the Green’s function basis.
In that case, this regularization term is guaranteed to be zero. Another advantage
of this formulation is to separate the optimization of temporal independence
from approximating the component with a potential biophysical plausible pattern.
This way, the loss function L could easily be optimized in a parallel manner.

The other way to look at the biophysical-based constraint, as we design it, is to
think of that in a constrained optimization problem, where:

min L = Â
i

I(s f i
1 ; ...; s f i

N) = Â
i
(

N

Â
n=1

H(s f i
n )� glog|det(W̄ f i)|� H(X f i)

(4.8)

s.t. A f i = inv(W̄ f i), 8j,9G̃j, s.t. A f i
j = G̃j (4.9)

Which says the whole signal is assumed to be a mixture of some components or
pathways with impulse response G̃j, whose inverse W̄ f i will unmix the signal
and render the most mutually independent activities for each of the pathways.
With this formulation, it’s clear that equ.4.6 is just the Lagrangian function of
equ.4.8 where a is the corresponding Lagrange multiplier.

Apart from the biophysical feasibility of the template, we also have some tech-
nique concerns when we design the constraint term. Like the real domain ICA,
the complex domain ICA also suffered from the indeterminate phase of the
component. We use the squared Frobenius norm between normalized compo-
nents and their aGFs. On the one hand, it measures the difference between each
normalized component A f i

j and the best possible approximate Green’s function
G̃j (aGF) by fitting to the cluster of components, respectively. We could easily see
that this measure is equivalent to the log-likelihood of observing A f i

j with the
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generative model of:

A f i
j = G̃j + e, where e ⇠ CN(0,sIn) (4.10)

Since the entropy of each source is H(Sj) := �E(log(p(Sj))), then to add the
spatial prior of Sj is �log(p(e)) = g|A f i

j � G̃j|2Fro, where g > 0 is a constant that
also accounts for the effect of noise variance s. On the other hand, the squared
Frobenius norm could also align with the complex ICA neg-entropy optimization
algorithm and could be easily optimized based on Wirtinger calculus (Adali et al.,
2008).

In previous ICA works, adding regularization to the ICA has been used to
incorporate prior knowledge to the blind source separation (Cichocki & Georgiev,
2003). This is also closely related to the regularizes used in dictionary learning,
but normally the prior is put on every entry of the mixing matrix, like l1 or l2 or
more complex l1�2. Our prior is composed of biophysically plausible models,
which are inherently characterized by their dipole shape and smooth loading.
Notice, here again, we are just proposing one potential way to compute the spatial
prior, or kernel of the LFP transfer function, but this could also be achieved by
simulation (Hagen et al., 2018; 2022).

In practice, the gradient of the spatial constraint is calculated as the following.
Considering the entropy estimator is given in equ.4.6 and the constrain that
|W̄ f i

n | = 1, the cost function leads to the following constrained optimization
problem,

min L = Â
i
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Â
n=1

H(s f i
n )� glog|det(W̄ f i)|� H(X f i) + a

N

Â
j
|A f i

j � G̃j|2Fro)

(4.11)

s.t. ||W̄ f i
n || = 1. (4.12)

where sn = wH
n x. The detailed derivative of the gradient of entropy bound could

be found in complex-EBM algorithm (Xi-Lin Li & Adali, 2010), here we simply
list out the gradient of the biophysical constrain Lp = Âi ÂN

j |A f i
j � G̃j|2Fro as in

equ.4.11.
∂Lp

∂W̄ f i⇤ is written as follow:
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∂W̄ f i⇤

=
∂
⇥
tr(A f i A f i H)� tr(ḠA f i H)� tr(A f iḠH)
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where iP f i is the inverse of the Eigen matrix given by PCA of the original
covariance matrix. H indicates the complex conjugate transpose. Henceforth, we
have A f i = iP f iW̄ f i�1, and it maps lower dimensional signal space back to the
original space. Here we ignore the w for convenience.

4.2 Algorithm and Results

4.2.1 Overview of the Biophysically Constrained Method

In fig.4.1 we show the workflow of the algorithm. The algorithm takes multi-
electrode recording time series as input (fig.4.1 B).

We first apply complex wavelet transformation (CWT) to each channel and get
a 3 way tensor of the size Nchannel ⇥ Nt ⇥ Nw, where Nchannel is the number of
recording sites on the linear shank, Nt is the number of time points, and Nw

is the number of frequencies. Complex ICA is then applied to each frequency,
and here we get the unmixing matrix Wwi and mixing matrix Awi for each
frequency wi (fig.4.1 D). We then cluster all the components from the mixing
matrix Awi, i 2 1, ..., Nw into Nclus clusters, written as Aw

n ,n 2 1, ..., Nclu (fig.4.1
E). As we will discuss later, it’s critical to find clusters with meaningful spatial
loadings, especially in real data. We then fit the Green’s function G̃n to each
cluster Aw

n , respectively. Nclu is generally larger than the number of components
in each frequency, and we keep clusters with small average fitting lost (fig.4.1E
red square).

The loss function contains the neg-entropy of the entropy classes and the loss of
Green’s function fitting (equ. 4.13). The mixing matrix is updated according to
the loss function (equ. 4.11). If the change of the loss function is smaller than a
given precision, then the best mixing matrix Aw and unmixing matrix Ww are
kept, and the unmixed signal at each frequency is computed.
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Figure 4.1: The workflow of the template-based complex ICA (tcICA) of the
LFP signals. A. The workflow. A-D. The separation procedure was applied to
raw LFP traces simultaneously recorded by a high-density multichannel silicon
probe across the hippocampal CA1 layers in a single recording session. First, the
complex morlet wavelet transform is applied to data B. Then, the wavelet signals
C at each frequency w were decomposed by EBM complex ICA in D. Components
from all frequencies are pooled together and form clusters in E, each cluster has
at most one component from each frequency. A Green’s function G̃n is fitted to
each cluster. Then every component is assigned to one cluster according to its
spatial profile. After the assignment, the loss is computed according to equ.4.13,
and the gradient is computed. When the separation fails at some frequencies, the
component will be reinitiated with the fitted clusters. The process continues until
it converges.
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Figure 4.2: Clustering of complex components. A. The real part of normalized
and aligned components are projected at their first 3 principal components. The
indexes of the clusters shown next to them are the same as in D. Color indicates
the result of clustering on the components. Their spatial profile is shown at
the inset next to each cluster. The black line indicates the model fitting to the
components. The red square shows the selected clusters. The number on the
title of insets indicates Ri| f ittingcost, where Ri =

Ni
Nw

is the amount of frequency
bands have components from this cluster i. B. a) The distribution of components’
spatial profile. The probability density of the spatial profile on the ball is re-
scaled according to its maximum value and colored on a grayscale. The original
components is plotted on top of it, and the color indicates the frequencies they
come from. b) The neg-entropy I plotted against the resulted Amari distance
to the ground truth at each frequency, respectively. a) and b) share the same
frequency scale. C. Clustering is reinitialized for 10 times, and the average model
fitting cost for each of them is plotted against the similarity of each cluster to
their closest ground truth component. The red dotted line is the threshold we use
(.0058). D. Hierarchical clustering based on the distance between their centroids
of the 7 clusters shown on A.
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4.2.2 Clustering and Distribution of Spatial Patterns

Grouping components from different frequency bands have been an unsettled
problem in the complex ICA studies (Anemüller et al., 2003). Here we cluster
the components according to their spatial loadings (fig.4.2). All the components
are normalized to unit variance and are rotated according to the largest absolute
loading site. As we discussed in the last chapter, the impulse response of a
passive dendrite is generally spatially localized around the input site, especially
in the higher frequencies range. But notice this assumption would be violated if
the synapses from the same input cover more than half of the membrane surface
or if there is some special arrangement of membrane conductance. In terms of
active conductance, when it’s large enough to over-dominate the input currents,
it would be classified into active local processes and treated as another source,
e.g., action potentials around soma far away from the dendritic inputs.

There is generally three properties that define the LFP impulse response at each
frequency, aka response kernel, the spatial pattern, the amplitude, and the phase.
The input response to a unit step input is usually considered in a linear system.
However, to simplify the computation, we use the normalized spatial pattern, i.e.,
normalizing the components’ spatial loading to unit variance.

By normalizing the spatial loading, we are able to focus on the spatial pattern
produced by the dendritic trees. And interestingly, we could capture the distribu-
tion of smooth impulse response by projecting them into a unit ball spanned by
the first 3 principle components (fig.4.2 B.a) grayscale indicates the probability,
here it’s scaled by the largest probability). In the passive scenario, for example,
the components show clear local peaks corresponding to pathways targeting
different dendritic locations (fig.4.2 B.a) two peaks corresponding to the two
selected components in fig.4.2 A, scatter plots shows Awi, i 2 1, ..., Nw, the color
of the scatter plots indicates w according to the color bar shared in fig.4.2 B.b)).
As discussed in the previous section, components from higher frequencies are
more localized and cluster around the peak. The contaminated components sit
between the clusters and share less probability because they are most likely not
so consistent across frequencies as the independent ones. Nevertheless, when
inputs are not independent, the spurious components will appear across multiple
frequency bands and could even form small clusters (fig.4.2 A).

Components usually separate better in higher frequencies (fig.4.2 B.b)). The
components are sparser and more separable in higher frequencies, resulting
in smaller neg-entropy. But when it comes to lower frequencies in highly co-
activation scenarios, lower neg-entropy doesn’t necessarily indicate a better
separation. Optimizing the entropy would result in contaminated components.
However, clusters close to the ground truth usually better fit the biophysically
based templates (fig.4.2 C). Therefore, we only keep component clusters below
a threshold (.0058) of average fitting costs (threshold of fitting cost is possible
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because we use the normalized components).

In practice, components form large contaminated clusters when inputs are highly
co-activated, therefore we select clusters as separable as possible. To achieve this,
we apply hierarchical clustering to the centroid of clusters (fig.4.2). Then a given
number of clusters is selected according to their distance from each other.

To summarize, we propose multiple criteria to ensure stable clustering over
multiple frequency bands. We cluster components Aw based on the normalized
spatial loading. The average cost of fitting and hierarchical clustering are used
afterward to select meaningful components.

4.2.3 Sources Separation in Simulated Data

We then apply the algorithm to the simulation data, where the Schaffer collateral
path and the perforant path are projected to the passive CA1 dendritic trees.
To illustrate the result, we present an example separation in fig.4.3. The inputs
are generated as a Poisson process with coincidence = 0.2473. The stimuli time
series Sstim are then computed by integrating the binary spike trains with a
time constant of t = 2ms to proximate the synaptic currents used in NEURON
simulation, which is generated by the double exponential function of t1 = .01ms
and t2 = 2ms (fig.4.3 A). The Schaffer collateral path starts 500ms earlier than the
perforant path.

The components separated by the ICA are contaminated in the high coincidence
scenario (fig.4.3 B). We could also appreciate the contamination from the spatial
profile of the separated components (fig.4.3 D. blue trace in lower panel) But
the template-based method helps constrain the components’ spatial loading
and reduce the cross contamination (fig.4.3 C, E). It also vastly improves the
separation of complex ICA by clustering the components and optimizing with
spatial constraint (fig.4.3 F). The cross-contamination is computed as the IC
activities explained by the integrated stimuli, i.e., cov(Ŝ,Sstim)

cov(Sstim,Sstim)
. This means for

the perforant path ICA component, for example, apart from the stimuli of the
perforant path, the Schaffer collateral path also helps to explain the activity with
a coefficient of 0.3283. While for the perforant path tcICA component, apart from
the perforant path stimuli, the Schaffer collateral path only helps to explain the
activity with the coefficient of 0.0183. Therefore, each pathway’s activities are
mainly explained by its own stimuli.

tcICA reinitializes components according to their clusters and then optimizes
with constraints according to the loss function (equ.4.6). To understand how
the regularization affects the solutions, we apply tcICA with different hyper-
parameters. The regularization hyper-parameter g of glog|det(W)| is chosen from
g = 10�3,10�2,10�1,1. The regularization hyper-parameter a of a|A f i

j � G̃j|2Fro
is chosen from a = 10�2,10�1,1,10. We simulated data with an average spike
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Figure 4.3: Comparison of ICA methods. Example separation on highly co-
activated (coincidence = 0.2473) data. A. time series of two stimuli, the input of
Schaffer collateral starts 500ms earlier than the perforant path and ends 500ms
earlier as well. Their continuous wavelet transform (CWT) of the time series
at the beginning and end of the simulation is shown on the upper panel and
indicated by the thick black line on the lower panel. B. the time series of the
independent components given by ICA, the components are flipped so that the
largest absolute value loading is always positive. The components are aligned to
the ground truth by their spatial loading. CWT of the two components is shown
on the upper panel. C. same as B but with template-based complex ICA. D. The
spatial profile of the components. Schaffer collateral component on the upper
panel and perforant path component on the lower panel. The components at
multiple evenly sampled frequency is shown. Red: model fitted to the tcICA
components, green: the tcICA component, black: the ground truth, blue: the
ICA component. E. the cross-contamination of the components. Upper panel:

ICA, reads:

"
0.7403 0.0597

0.3283 0.6991

#
lower panel: tcICA, reads:

"
0.6708 0.0409

0.0183 0.6591

#
. F. the

Amari distance of ICA unmixing matrix with regard to ground truth at each
frequency indicated by color. x � axis is components by plain complex ICA,
y � axis is components by tcICA. dotted line indicates x = y.
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Figure 4.4: Optimization depends on the weighting of regularization. A, C.Effect
of glog|det(W)| over pooled result for all the a|A f i

j � G̃j|2Fro for A: high co-
activated data and C:low-co-activated data. To characterize the distribution,
we plot the cross-contamination, the explained value by reconstructed inputs, and
the 50% and 85% Amari distance of components over all the frequencies for each
trail. The results of temporal ICA are plotted along with tcICA and labeled as "r"
for "real". Amari distance for complex ICA is also plotted with "c". B,D. Effect of
a|A f i

j � G̃j|2Fro over pooled result for all the glog|det(W)| for B: high co-activated
data and D:low-co-activated data. The subplots are arranged the same as in A.
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coefficient of 0.1750 ± 0.0096 for high-coincident data and 0.1003 ± 0.0165 for
low-coincident data (fig.4.4). We find much less cross-contamination of tcICA
compared to the temporal ICA (fig.4.4A-D, cross-c.). But at the same time,
the explained value by the reconstructed stimuli is not as good as temporal
ICA, partially due to the transfer between temporal and frequency domain
(fig.4.4A-D, explained value.). The Amari distance, on the other hand, confirms
that tcICA helps to reduce cross-contamination, especially in frequencies bands
challenging to separate (fig.4.4A-D, Amari 50% for "easy" compared to Amari
85% for "difficult|. Temporal ICA r stays the same.). This shows the general
effect of moving the components according to their clusters.

Apart from the clustering, the weights of regularization also affect the solutions
depending on the input coincidence levels. We find that in the high-coincidence
scenario, a larger a would help to add the impact of the spatial constraint
(fig.4.4B). Slightly reduced glog|det(W)| would also allow the components to
release the orthogonality constraint (fig.4.4 A). But in the low-coincidence scenario,
orthogonality helps to reduce the cross-contamination (fig.4.4 C). According to
the results, we choose g = 10�1 and a = 10�2 in the real data.

4.2.4 Source Separation in Real Data

We validate the complex ICA on the real data where optogenetic stimulation is
given at contra-lateral CA3 areas.

Applying tcICA to the real data, we first need to decide the number of compo-
nents. The real data is much more complex than the simulated passive neurons
(fig.4.2B.a) two clusters). In the slower frequencies, low-pass filtering of the neural
membrane and various slow nonlinear active processes like [Ca2+] increase the
contamination of mixed signals. While in the higher gamma-range frequencies,
the dimension of data is spanned on around 7 � 15 components (fig.4.5A.b.).
In other animals, we also observe similar lower-dimensional manifolds. The
components found by temporal domain PCA also suggest about 8 components
(fig.4.5A.c.). In the frequency domain, to determine the number of clusters, we
plot the spatial profile of components to a unit ball spanned by their first 3
principle components, as discussed in the previous chapter.

Components of various origins dominate in different frequency bands respectively
(fig.4.5 C.). In the lower frequencies, the dendritic components are prominent. The
str.l.m.component (fig.4.5 B, C, D. red cluster) stably appears in all the frequencies.
With Its spatial loading getting contaminated in the cICA components in higher
frequencies, we can see that l.m. input is closely related to the CA1 pyramidal
cells(Fernández-Ruiz et al., 2017). The peak has the same polarity as the l.m. sink,
indicating a depolarization instead of a hyper-polarization when the l.m. inputs
arrive. This component shows the strongest theta-gamma modulation at around
80 � 100Hz before the optogenetic stimuli are applied. On the other hand, the
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pyramidal layer component (fig.4.5 B, C, D. yellow cluster) has less share below
100Hz and consistently appears in higher frequencies, especially in the ripple
frequency band. It shows theta-gamma modulation at around 100 � 200Hz. The
other prominent component is the str. rad. component (fig.4.5 B, C, D. green
cluster). This component, as we expected, is highly influenced by the correlation
of pathways and other nonlinear effects of dendritic integration (fig.4.5 C, D).

With the complex ICA, we also find another two components. One has a peak
at the end of the CA1 area (fig.4.5 B, C, D gray cluster). In contrast to the other
components from the CA1, it has a strong real part but doesn’t show a complex
spatial pattern at CA1, which is usually produced by currents flowing in the
dendritic tree. The lack of imaginary part indicates that this component doesn’t
come from CA1 neuron but volume conducted from the Dentate Gyrus (DG),
which is reported to be large in power because of the folded cytoarchitectonic
feature of DG granular cells(Fernández-Ruiz et al., 2013).

Another cluster of components shares a similar complex pattern that appears
to be spatially flat and rarely theta modulated (fig.4.5 B, C, D blue cluster).
This component is more prominent in higher frequencies compared to lower
frequencies (fig.4.5 C blue cluster). Its imaginary part is almost zeros at any
recording site. We attribute this component to EMG noise or other far-field noise
sources which volume-conducted to the local recordings. We’ve discussed this
component in temporal domain ICA in chapter 2, and in chapter 5 we developed
a toolbox to detect and remove this component automatically.

The complex ICA components bring input-response temporal information di-
rectly into the components’ spatial profile. We then ask the question of how to
group them across frequencies. The simple clustering provides evidence that
components appear across contiguous frequency bands (fig.4.5 E). But we also
find high contamination between components (e.g., fig.4.5 D red cluster). Smooth-
ing in single frequency domain harms the sparsity in both spatial and temporal
dimensions, especially in the high coherence scenarios like awaking states(Sirota
et al., 2008). Therefore, we use tcICA to optimize components over all frequency
bands simultaneously.

In tcICA, we punished the dependency of components and encourage a unitary
unmixing matrix (unitary rotation after first PCA whitening) by glog|det(W)|, at
the same time punish the inconsistency of the components spatial loading over
frequencies by a|A f i

j � G̃j|2Fro. As an example realization, the clusters usually
start with spatially similar components (fig.4.6 D, initiate). But each cluster has
components not perfectly separated in some frequency bands. The contaminated
components lead to large cost values at the beginning of optimization (fig.4.6 A,
summarized optimizations, the cost value above 104 are cutoff for illustration.
Also B for one realization). During the optimization, components will move
towards the selected centers of clusters or peaks of distributions (fig.4.6 C).
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When the algorithm converges, we find similar clusters around the centroid of
cICA components clusters (fig.4.5 D black line). These components are quali-
tatively similar to the temporal domain ICA (see appendix D.2). Transferring
back to the temporal domain, we find the str. rad. component shows the most
significant stimuli-triggered response to contra-lateral CA3 simulations (fig.4.6
D. component 7 c and d). The peak of str. rad. component triggered response is
about one magnitude larger than all the other components. With the triggered-
average spatial profile, we can see a current sink appear at 6ms.

The str. l.m. component (fig.4.6 D.component 4 ) has the largest power (68.2%
of total power) and has the most significant theta-gamma modulation before
the stimuli, same as simple cICA (fig.4.5 E), and the theta-gamma modulation
decreases after stimuli stopped. The ripple band modulation of the pyramidal
layer component (fig.4.6 D.component 6 ) also shows a decrease after the stimuli.

Interestingly, we also observe an increase in the imaginary content of the com-
ponents in the real data compared to the simulation with passive dendrites.
The imaginary part, after shifting the phase to make the largest loading of the
component to its real part, indicates how the spatial-temporal pattern change
within the oscillatory cycle. In our setting, the imaginary part shows how the
peak loading "spread" along the somatodendritic tree (see appendix D.1 for a
detailed simulation and discussion). We use hA = Ai

Ar
to capture the rich temporal

evolution of the spatial profile. In the passive simulation, we find a ratio of
0.0364 ± 0.0432 and 0.0864 ± 0.0938 for the str. rad. component and the str. l.m.
component, While in the real data the ratio increased significantly, making it
0.1598 ± 0.0109 (p < 10�3 Wilcoxon rank sum test) and 0.1929 ± 0.0161 (p < 10�3

Wilcoxon rank sum test), respectively.

To summarize, we separate the components in the frequency domain with tcICA
and validate with optogenetic stimulation. Frequency domain patterns appear to
be richer and more complex in the realistic data compared to passive neuron simu-
lation. The algorithm yields interesting spatiotemporal spreading patterns which
could not be captured by temporal domain ICA that assumes spatial-temporal
independence. These observations suggest active conductance is involved in
dendritic integration. We’ll further discuss this point in the discussion.

4.3 Discussion

In this chapter, we present a method that combines prior knowledge of spatial
profiles with statistics-based source separation by utilizing the input response
of dendritic trees. The method is designed aiming to provide a simple and fast
approximation of response patterns confined by smoothly distributed current
sources transferring through dendrites. Similar to a dipole model for EEG data,
our model is for LFP recording. Unlike previous works, we first separate the
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Figure 4.5: Complex ICA in real data in high frequencies. A. The number
of dimensions variate across frequencies.a, number of components shared by
all the periods. b. dVar of explained variance over all the periods for each
frequency. c. dVar of explained variance for temporal domain data. B. Clustering
of components on the unit ball. a. the distribution on a unit ball. b. the same
unit ball as in a but rotate p along the z axis. c. the unit ball spanned onto the
2D space with tSNE. C. the distribution of clusters of components over different
frequencies band. Shown on the same 2D space as in B. The red circle indicates
the result of clustering, the black circle indicated the top 95% most likely regions.
D. example consistent components. red: str.l.m.component; gray: LEC inputs.
green: str. rad. component yellow: deep str. pyr. component. blue: EMG
noise component. E. Theta gamma modulation in terms of MI. before. after.
contra-lateral CA3 stimulation



102 Chapter 4. Biophysics Based Source Separation

Figure 4.6: Template-based optimization of complex ICA in real data. A. Example
random trails of optimization. B-D. Example trail of optimization. B. The cost
function. C. The distribution of components’ spatial profile evolves with the
optimization. The first subplot shows the distribution of complex ICA across all
the frequencies (see fig.4.5). The number above each following subplot indicates
the step of the optimization. D. The best result achieved at step 19. a. the initial
clusters at step 1. The spatial profile is flipped as the largest loading is positive. b.
the final clusters’ spatial loading. c. the average activity triggered at contra-lateral
CA3 stimulation. The stimuli are given at 0ms. d. The spatial profile of the
stimuli triggered average. e,f. Theta gamma modulation in terms of MI. e. before,
f. after contra-lateral CA3 stimulation
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components and fit the response with a Gaussian input pattern. This way,
we constrained the input distribution to be local and smooth. But the pattern
still depends on the statistical independence or sparsity of the components.
The framework includes both spatial and temporal objectives, hence is not a
convex optimization problem. Here we discuss some technique and biophysical-
modeling-related concerns that call for further exploration.

4.3.1 Concerns about the Component Separation

Since we don’t have further prior knowledge of input locations, finding the
right clusters of components is the most critical step. When the input is highly
correlated, finding the right cluster and re-initialize the optimization usually
bring the optimization out of the local minimal corresponding to contaminated
components. The major problem is that it’s hard to decide which one to keep
when multiple clusters all correspond to the same pathway (for example, in 4.2).
Therefore, we use the distance between the centroids as well as the fitting cost as
criteria. We also tried to select clusters by the distance between the input currents
distribution fit at each cluster, but it didn’t improve the selection.

Here the current distribution is fitted at every step, but the clusters are not
fixed. We redo the cluster every N steps (n = 10 here) because components
are better separated, and new components join and form better clusters as the
optimization proceeds. This way, we can learn the patterns in an unsupervised
manner. A further prior of input current distribution might be used in the future,
and optimization would be initialized close to the optimum imposed by the
experimenter. It might sacrifice the freedom of the algorithm but speed up the
convergence.

Currently, there are still many problems to be solved. The first is how to select the
correct number of components. The components would be contaminated when we
give the wrong number of clusters. However, the number of strong components
varies with frequency. We use the gamma band where the components are most
consistent (fig.2.8). Another solution would be to embed all the frequencies and
separate them based on the amplitude of components (Sirota et al., 2008). The
rationale for this would be that synaptic input or active currents come with some
spectrum pattern, like gamma burst. Then the general power change of each
pattern could be captured by a 1 ⇥ Nt time series. If the phase is considered, then
the time series doesn’t have a clear meaning unless a time series is fitted at each
frequency band.

The other problem is it takes a long time to separate components. This is because
components are jointly optimized at multiple frequencies. When the number of
components increases, it takes much longer for the algorithm to converge. We
reduce the time of joint optimization by initiating the components with cICA
independently applied at each frequency. Further engineering at gradient would
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be helpful. Another possibility would be to down-sample the frequency bands
because the frequency domain change is generally smooth, and many of the
further analyses could be conducted directly in the frequency domain, even
though transferring back to time domain might be problematic.

4.3.2 Concerns about the Biophysical Models

In real data, we find the component profile can not be fully explained by passive
conductance. For example, in the CA1 l.m. component, We find a generally larger
imaginary part at CA1 rad. layer compared to the passive setting. Linear cross-
contamination could not explain this large imaginary part because its response to
contra-lateral CA3 stimulus is much less than both CA1 rad. component. The
large imaginary part of l.m. component towards the soma implies facilitation of
the inputs from distal dendrites. One possible explanation is that it reflects the
nonlinear effects, e.g., the Ca2+ dynamics, that enhance the dendritic integration,
especially for the distal dendrites (Nicholson et al., 2006, Jarsky et al., 2005). It
would be interesting to validate the mechanisms involved in the process. After all,
decomposition in the frequency domain allows us to extract the spatial-temporal
pattern of LFP input response that has been ignored by linear temporal domain
source separation.

4.3.3 Extension to LFP Probability Model

In this chapter, we explored how to implement the biophysical constraints to the
statistics-based component separation. The regularization comes in two folds, the
first is to calibrate the components in the same cluster and fit a shared current
input to them, and then is to optimize according to the shared pattern.

The second optimization step is generally stable. The fitting depends on the
weights of the spatial and temporal penalty. But the optimization works in a
wide hyperparameter range (fig.4.4). Another concern is how much the fitting
should rely on the template. Our experience is when the components are severely
contaminated, a fitted pattern will improve the separation because of the sparse
input location constraint, especially fitting the current distribution with only one
Gaussian kernel. The fitting is fast, not necessarily precise, but useful in cluster
selection and forcing the components to jump out of previous local minimal.
But when it comes to fine-tuning the spatial profile, it’s better to allow the
components in the cluster to follow their centroids, respectively. Optimization
with a fitted pattern usually slightly harms the high-frequency pattern in our
passive neuron simulation, while fitting with independence criteria is enough in
the highly sparse region. Therefore, we can control how much the optimization
relies on the constructed LFP basis. In future work, it might be useful to design
the optimization landscape using the template to create a smoother large sink
while the likelihood or entropy as a narrower and deeper one sitting on it.
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The problem generally comes from cluster assignment and selection, especially
during the first several iterations. Here we provide multiple criteria to select
clusters, aiming to find biophysically meaningful clusters from the unsupervised
learned components. This whole process could be optimized further. An alterna-
tive would be to use non-parametric hierarchical Bayesian methods, where the
components’ number and frequency range could be parameterized and modeled
(Bishop, 2006). Experimenters could use further assumptions of both the spatial
profile and temporal distribution. For example, the abundant works about chan-
nel density distribution along the somatodendritic axis, as well as anatomical
studies about pathways, would be useful in constructing the priors (Migliore
& Shepherd, 2002, Spruston, 2008). Moreover, for example, the whole system
could be modeled by a probabilistic time-frequency analysis (Turner & Sahani,
2014, Klein et al., 2021) or dynamic causal models (Pinotsis et al., 2017). Our
formulation for complex impulse response based on the principle of maximum
entropy would be helpful in the probability formulation. This could be explored
in future work.
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Chapter 5

EMG Artifacts Removing

5.1 EMG Noise in Electrophysiology Recordings

Intracranial extracellular recording has been widely used to probe the microscopic
level of local neural network dynamics. Multi-site high-density electrophysiology
recording has the advantage of monitoring large-scale unit activity, and sub-
threshold neuronal activities in high spatial and temporal precision (Buzsáki
et al., 2012). However, local field potential, like EEG, is often contaminated by
various artifacts. These artifacts with neural or non-neural origin also inevitably
affect the interpretation of local signals. Some commonly observed artifacts
have a special spatial or temporal profile in extracellular recordings. In this
chapter, we explore characterizing and correcting multiple non-local artifacts in
LFP recordings with the help of their spatial-temporal properties.

One significant artifact visible from the LFP recording is the far field signal
generated by electrical signals in the nearby brain areas and spreading over
through volume conduction (Sirota et al., 2008). They would mainly reflect the
mean field activity of neurons in the source area. These volume-conducted signals
would be picked up by local field recording and affect the interpretation of the
local signals. When the channel map is known, these types of signals could be
reduced by applying current source density analysis (Potworowski et al., 2012).
However, when the channel map is not given, these noises would remain and
add to the baseline of the local signal.

Another major physiological noise comes from the electromyographic (EMG)
artifacts of the animals, especially when they are moving or chewing. The activity
of muscles in the scalp, face, and neck, activities associated with respiration,
and the muscles related to blinking et al., would be read from the intracranial
recording via volume conduction (Attiah et al., 2017, Watson et al., 2018). Like
human EMG artifacts, the muscle activity has a spectrum highly overlapped with
gamma band local neural signal (Attiah et al., 2017, Muthukumaraswamy, 2013,
Van Boxtel, 2001, Shackman et al., 2009, Watson et al., 2018).
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The shape and amplitudes of EMG noise in EEG or MEG data are nonstation-
ary and depend on the muscle contraction. But generally, EMG sources are
assumed to be linearly mixed signals which allow for linear segregation of
these artifacts from physiological signals (Muthukumaraswamy, 2013, Urigüen
& Garcia-Zapirain, 2015). Regression or electroocular (EOG) correction denoise
ocular artifacts with the help of simultaneous recording of reference electrodes or
EOG channels (Gratton et al., 1983, Croft & Barry, 2000). While empirical mode
decomposition (EMD) and wavelet ICA are employed to separate artifacts from
single-channel recordings (Mijović et al., 2010), blind source separation based
methods have been proposed to remove the stochastic muscle activities with
distinguishing spatial profiles (Jung et al., 2000, Delorme et al., 2007, Urigüen &
Garcia-Zapirain, 2015). However, the extracted artifacts come from distributed
muscle contractions and sometimes are ambiguous. Recent works explore features
of various artifacts sources and develop strategies to improve the classification of
artifacts from the physiological signals (McMenamin et al., 2010, Mognon et al.,
2011, Chaumon et al., 2015, Li et al., 2021).

Compared to the EEG and ECoG recording (Hipp & Siegel, 2013, Chaumon
et al., 2015), where the electrodes are placed at the skin or scalp, the myogenic
artifact observed in the LFP recording is still visible (Watson et al., 2018) but
has less spatial information and generally has different power contain than the
extra-cranial recordings (see equ.5.3). Though we don’t reconstruct a 3D head
model of muscle distribution with regard to the extracellular recording site, the
large distance compares to the distance between recording sites smooths out the
spatial variation of myogenic sources. Similar to the far-field sources, we expect a
flat local component with minimal spatial information. This allows us to detect
EMG artifacts based on their spatial profiles.

Other artifacts include power line noise. The power-line noise originates from
utility company equipment. It usually is caused by a spark or arcing across some
power-line-related hardware or current flows between two conductors in a gap.
Previous works employed notch filtering (Luck, 2014) or spectrum estimation to
remove the power-line band signal (Mitra & Pesaran, 1999). On the other hand,
since the power line noise is generally additive, it is therefore well suited to be
detected as an independent noise component (Barbati et al., 2004, Delorme et al.,
2007, de Cheveigné & Parra, 2014). LFP recording sits close to the physiological
generators compare to EEG data. Hence we expect a more significant signal-to-
noise ratio in extracellular recording and better separability of equipment noise
sources. Therefore, we also explore removing the power-line artifact using its
independent nature in LFP data.

Here we propose a method based on ICA that automatically identifies and
removes EMG artifacts and far-field signal contamination. We first show the
workflow of EMG-denoising and propose flatness as a criterion for automatic
EMG noise detection in local field potential recording. Then we discuss the
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properties of EMG artifacts in LFP recording and show the advantage of detecting
EMG components on the artifacts-enriched data. Multiple methods are designed
to enhance the EMG noise component separation. Finally, we apply this method
to LFP recordings to separate gamma band signals from noise. In addition, we
also remove the line noise artifacts during the preprocessing. The preprocessing
pipeline could be found in an open source EMG denoising toolbox at https:
//github.com/YY535/EMG_removing.git

5.2 Method

5.2.1 Electromyographic Artifacts Detection by ICA

Here we assume the electromyographic artifacts or other far-field volume con-
ductive signals have a fixed spatial pattern and denote as FEMG. The recorded
LFP is modeled as a mixture of linearly superimposed local neural activity with
the EMG component activity and other noise sources Fnoise with loading Anoise,
which are independent of the physiological signals. The general model writes as:

F = AneuralFneural + AsFEMG + AnoiseFnoise (5.1)

In reality, Fneural is usually high dimensional, which is contributed by multiple
pathways as well as high dimensional local activities. These could be seen from
the unstable source estimation across different periods or the continuously de-
creasing Eigen spectrum of LFP data (Stringer et al., 2019). Generally speaking,
this is an overcomplete ICA problem (OICA), namely, the number of the sources
is more than the sensors (Hyvärinen & Oja, 2000). In this case, the classic ICA
algorithms pre-processing with PCA or whitening would pick up a subset of
components according to their power. The following unmixing will then depend
on the independency or non-Gaussianity of the source activity. When the signal
sources have sparse (super-Gaussian) marginal distributions and are approxi-
mately uncorrelated ("quasiuncorrelated"), that is, they are roughly orthogonal
to each other, then they would be identified with ICA. Therefore, once the com-
ponent is independent of others and picked up by the algorithm, it is possible
to remove it from the data. The task here would be to enhance the possibility of
picking up the artifact components.

The EMG components we deal with are generally considered independent from
the local intracranial signals with a long-tail spectrum. On the other hand, their
spatial loading usually lacks dipole shape and is easily distinguishable from the
local components (Watson et al., 2018). These properties make EMG components
separatable from the rest of the local signals. However, they are usually hidden by
the large slow-frequency activities, which share a linear spatial loading. And the
separation is also contaminated by the large local events, which generate a large
oscillatory baseline. Therefore, to improve the discovery of the EMG component,

https://github.com/YY535/EMG_removing.git
https://github.com/YY535/EMG_removing.git
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the key step is to find the EMG enriched period and reduce the amount of neural
activity sharing in the data F̂neural. We’ll discuss this in the following subsection.

To separate the EMG components, we apply non-Gaussian fastICA (Hyvarinen,
1999) to F̂neural. The rationale is this algorithm would iteratively find indepen-
dent components from the rest of the data, and it’s enough to separate noise
components from the subspace of neural activity. This would also allow the
algorithm to be easily scaled with a larger dataset. After the mixing model is
found, we apply a post-hoc feature selection and find the component that best
fits the spatial pattern of the far-field signal.

For any electric charge Q far away from the recording sites, the spatial decay of
the field is close to linear and flat:

dF
dr

= � Q
4psr2

r!•! 0 (5.2)

And for a system where the current sink and source are balanced, the dipole term
dominates in the far-field approximation (Nunez et al., 2006):

F(R) =
Cmonopole

R +
Cdipole

R2 +
Cquadrupole

R3 ...

where Cdipole
R2 = 1

4ps
|p|cosq

r2

there f ore dF
dr = � 1

2ps
|p|cosq

r3
r!•! 0

(5.3)

Therefore, we propose a flatness score to capture the spatial pattern of the far-field
signal. There are various ways to measure flatness, here we combine two of them.
The first is to fit a 1D affine function to the spatial loading, that is:

SRE = min
a,b

��Ai � (a�!x + b)
�� (5.4)

where �!x is the given recording channel map. The inverse of the SRE (squared
residue error) is computed and used as the first criterion. Notice we use an affine
function here and allow for a non-zero slope a.The slope is designed to capture
the inclined shape of the volume conducted field signal in the nearby region. The
component generated by nearby areas typically shows a linear decay instead of a
dipole shape (Herreras et al., 2015, Krull et al., 2019).

To avoid picking up components reflecting large dipoles, we multiplied the
inverse of SRE in equ.5.4 by the absolute value of the vector sum:

f latnessi =
|Ai|1
SREi

. (5.5)

where kAik2 = 1 is the mixing matrix normalized to unit l2 norm. It can be
shown that the l1 norm of Ai (the |Ai|1) is maximized when the component is
flat, namely, when every entry of Ai is equal to 1p

n (see B.3.1).
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The flatness score is expected to be very high because of the small SRE after
fitting. We threshold the flatness with the number of channels because when the
components are flat |Ai|1 would be proportional to the square root of channel
number

p
n. Usually, only one component stands far beyond the threshold (see

figure.5.3 A,B). This component would be picked up as an EMG component.
In practice, when the component with the largest flatness is too close to the
threshold, the small flatness score usually indicates a small effect of EMG artifact
in the period. The components extracted in those periods would be spurious.

After the EMG component is identified, the EMG activity is obtained by projecting
the original wide band to the component. In the EMG_removing toolbox we
provide, EMG components are fitted in concatenated long periods. It takes
care of data non-stationarity. The ICA components are undetermined with
scale, so we compute the unit-variance activity EMG_au and their variance is
accounted by mixing matrix As or unmixing matrix Ws. So the contribution of
EMG components could be written as:

FEMG = AsFEMG_au where FEMG_au = W̄sF (5.6)

and then the cleaned signal is given by:

Fclean = F � FEMG. (5.7)

To put the fitted EMG segments together, which could be used in further analysis,
we could project the uni-variance EMG activity EMG_au back to the original data
space of F:

FEMG = AsFEMG_au ) F̄EMG = ĀsFEMG_au (5.8)

and the average EMG artifact over all the channels of FEMG is given by F̄EMG.
Notice although the sign of ICA component loading is indeterminate, the pro-
jection back to the original space will cancel out the indeterminacy and have a
determined sign. To collect data from all the periods, we compute the average
EMG contribution over all the channels, which is equivalent to multiplying the
uni-variance EMG activity EMG_au with the mean of its spatial loading Ās and
the average signal is saved for further analysis (right-hand side of equ.5.8).

5.2.2 High Muscle Tone Period Detection

To achieve reliable EMG components, we apply multiple pre-processing steps
to enhance the power content of the EMG artifacts in the model training data.
These include temporal whitening of the data and a pre-selection of high EMG
artifact-contaminated periods.

EMG signal covers a wide frequency range and heavily overlaps with local
neural activity (Attiah et al., 2017, Muthukumaraswamy, 2013, Watson et al.,
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2018). However, it has been shown that EMG contains the data much more
severely in the higher frequency, 10� to 200�fold differences in the power of
frequencies above 20Hz (Whitham et al., 2007). Therefore, we keep the wide-band
signal while enhancing the high-frequency part of the spectrum by temporally
whitening the data (Mitra & Pesaran, 1999). The whitening is done by fitting an
AR(2) autoregressive model to the data and removing the signal fitted by the
autoregressive model. This procedure largely leaves out the slower frequency
synchronized activity and enhances the EMG share in the data.

The high EMG period is selected according to the local signal power and cor-
relations between distant channel pairs. High EMG periods typically coincide
with arousal states where the general spectrum power is high(fig.5.1 B, C ). But
rapid-eye-movement (REM) sleep and large events like a spindle or sharp wave
ripple in non-REM sleep also have large baseline power generated by the local
physiological activity. At the same time, the EMG artifacts should be minimal
in these periods. Applying ICA to sleep periods usually generates spurious
components (see fig.5.1 C). Therefore, we must tell high EMG contaminated
periods from the high local activity period.

To do this, we consider the correlations between distant channel pairs within
consecutive time windows 16ms, similar to EMG extraction in (Watson et al.,
2018). However, instead of selecting channel pairs in different shanks in the paper,
we use the total covariance between randomly selected channel pairs within one
shank. The aim is to find the periods with large power as well as large pairwise
correlation. We use ICA to rotate the joint distribution of total variance and
pairwise correlation and set a threshold to get high EMG periods (see fig.5.3).

After detecting the high EMG period, ICA is applied to whitened data in these
periods to fit the EMG components. Notice we are pretty conservative in high
EMG period selection to guarantee the existence of EMG artifacts. But it doesn’t
affect the periods we finally remove the EMG artifacts. Instead, the removal of
EMG artifacts is performed on the whole session of the wide band or high-pass
filtered data (a high-pass filter is an option in the toolbox. The slow frequency of
local activity would add to the baseline of LFP data and sometimes contaminate
the flat EMG component. We suggest leaving the slow frequency signal unaffected
and removing the EMG signal in the higher frequency band above 20 or 30 Hz).

5.2.3 Line Noise Detection

Line noise components could also be detected and removed by ICA. However, the
spatial pattern of line noise depends on channel impedance and other conditions
and is generally not predictable over animals (see fig.5.3 C). Therefore, we
don’t have any presumption about its spatial pattern. Instead, we use the
definition of line noise and select components based on the average spectrum
power ratio within harmonics of local power-line frequency Fline ( { fline} 2
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[Fline ⇥ n � 5, Fline ⇥ n + 5] Hz, for all n = 1, ... where Fline ⇥ n is lower than
Nyquist frequency) compare to all the other frequencies, written as follow:

Rline =
Ei2{ fline}(Pi)

Ej/2{ fline}(Pj)
. (5.9)

The power-line noise is removed before we fit the EMG component because
the spatial pattern of line noise could also be comparably flat, affecting the
EMG component detection. Unlike EMG artifacts, the power-line noise is barely
affected by the animal behavior, so the detection is applied to the whole data.
When there is strong power line noise, Rline would be more than 10 folds. We
detect the line noise components only when the power ratio Rline is higher than
the threshold set arbitrarily as 1.8 (see figure.5.3 D).

However, the line noise would depend on the electrical connection and other
factors. Sometimes there is no component passed the threshold, which indicates
a small influence of the power-line noise. In this case, the separated components
would share a fair amount of neural signals. So We suggest not removing
these components but keep them for further analysis or remove with spectrum
estimation (Mitra & Pesaran, 1999).

5.3 Results

5.3.1 Nonstationary EMG Content

To test and optimize the EMG correction algorithm, we use multi-electrode
recording data in the rat (RS1218) LFP was recorded via a 16-tungsten wire
bundle (insulated 12µm diameter, California Fine Wire, Co.) attached to a 200 µm
diameter optic fiber (optrode), implanted above dCA1. The spatial arrangement of
the recording sites (resulting from a diagonal cut) enabled coverage of the entire
CA1 region in depth (from stratum oriens to stratum lacunosom moleculare).
The LFP data is down-sampled at 1000 Hz. We use theta band ([6.5,13]Hz) to
non-theta band ([2,6.5) [ (13,20] Hz) power ratio to indicate different brain states
(Sirota et al., 2008).

The theta band signal in the pyramidal layer is related to the arousal level of
animals. During running, the pyramidal layer signal typically shows a large
theta power ratio, while in the slow wave sleep (SWS) period, the spectrum is left
with slower oscillation. During shorter rapid eye movement (REM) sleep periods,
the theta ratio is also high, while the muscle tone is highly reduced during this
period(fig.5.1 E).

To assess the reliability of EMG detection, we first extract EMG components in
every 17s window. In each window, we perform fastICA separation on wideband
signal and find the flattest component according to equ.5.5. We repeat this process
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for 10 times and collect all the flat components.

Figure 5.1: State dependency of EMG Compo-
nents. A. Variance of flat components estimated
in sliding windows, inset: left: the similarity
of components plot against temporal distance,
right: the violin plot for the Varloading at differ-
ent theta states, i.e., Rq > 0 or Rq < 0, respec-
tively. Spatial non-smoothness is the L1 norm
of spatial Laplacian. B. Theta to non-theta (< 20
Hz) power ratio at pyramidal layer Rq. C. EMG
components power in wideband signal(w.b.) or
whitened high passed signal(w.h.). D. Variance
of estimation at each channel. E. Spectrogram of
pyramidal layer channel.

The variance of the flat
components at each channel
across the time windows is
summarized as loading vari-
ance Varloading in fig.5.1 A.
Varloading tells whether ICA al-
ways finds the same flat com-
ponent. Varloading keeps a low
level during most of the strong
theta period while the variance
increases when the theta band
signal is lower(fig.5.1A inset
right). Interestingly, during
the short strong theta period
between SWS periods, we also
observe large Varloading. Since
the EMG noise detected here
comes from various origins,
the large Varloading could be ac-
counted for by the REM sleep
period, where muscle tone is
reduced.

Deeper channels close to the
dentate gyrus show a larger
spatial variance compares to
the superficial CA1 channels
(fig.5.1 D). The components
also have more spatial struc-
tures(fig.5.1 A spatial non-
smoothness), which is brought
by local neural signals, Where
the signals in deeper chan-
nels are amplified by the sym-
metric spatial arrangement of
granular cells (Fernández-Ruiz
et al., 2013). In contrast to
sleeping periods, the spatial
loading of components is flat-
ter in awakening periods, espe-
cially when there is more high-
frequency muscle tone (fig.5.1
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A, B, D). This suggests detecting the EMG components from high muscle tone
periods, especially during awakening, instead of training in the whole data
session.

A simple threshold-based method is developed and described in the method
session to select a high muscle tone period (fig.5.3E, F for the method and G
for detected high EMG period in an example time window). This method seeks
periods with heavy activity (large variance) across all the channels with little
spatial structure (large co-variance between randomly selected large-distance
channel pairs). This method is comparable to the EMG detection in (Watson et al.,
2018).

To further check the reliability of EMG components during the awakening period,
we compute the similarities between components as a function of their temporal
distance(with log scale up until 5000ms, fig.5.1 inset left). Only the periods with
Rq > 0 are included in the analysis. The shadowed area indicates the 25 and
75 percentile of the similarity for all time window pairs with a given temporal
distance. The similarity is close to one for nearby EMG estimation. However,
when the distance is long, the similarity drops. Therefore, we chunk the whole
data session into smaller periods to fit EMG components (example shown in the
appendix fig.E.1).

Next, we ask whether decomposition in the EMG noise dominant high-frequency
data Ah would be different from the one in wide-band signal A. To do this, we
first temporally whiten the signal with AR(2) model (Mitra & Pesaran, 1999) and
then high-pass above 100Hz. The separation is applied to high theta periods, and
the first two flattest components from each training set are shown in fig.5.2, the
left column from the wide band and the right column from EMG enriched signal,
respectively. The flattest component in EMG enriched signal fAh1 = 307 (fig.5.2 B)
is slightly flatter than wide band signal fA1 = 196 (fig.5.2 A). The cleaned wide
band signal obtained by subtracting the contribution from each component with
(equ.5.6 and equ.5.7) are shown in fig.5.2. The large artifacts at 80s are removed
With the flat component from EMG enriched signal. However, projecting to the
wide-band trained component only partially reduces the artifact.

5.3.2 Spatial Spreading of EMG Components

To check the spreading of the EMG signal, we use animals with two high-density
linear probes, one in the Medial-Entorhinal Cortex (MEC) and the other in the
hippocampus. The animal is recorded for 8 consecutive days, and the analysis
is performed independently for each day only in awake periods. In addition
to whitening, we also enhance high-frequency signals with two other methods:
regression (rLFP) or taking the derivative of signals (dLFP, see section2.2.3). The
power spectrum of the components’ activity and the coherence between MEC
and Hippocampal flat components are computed for each session. To emphasize
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Figure 5.2: EMG removal example with wideband and preprocessed LFP. A.
Denoising by removing the flattest component separated from wideband raw lfp.
Bottom: The normalized activity (EMG a.u.) of the component with the highest
flatness score (green line) is plotted parallelly to the normalized raw and denoised
LFP signal from one channel. The denoised signal is obtained by subtracting the
component share from the normalized raw LFP. The color map is the spectrogram
of the denoised signal for the same period. B. Denoising by removing the flattest
component separated from the preprocessed lfp. The component activity is
obtained by projecting the raw LFP to the separated component. The same
channel is used to demonstrate the performance. C. same as A but for the 2 nd
flattest component from raw LFP. D. same as B but for the 2 nd flattest component
from preprocessed LFP.
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Figure 5.3: EMG and LineNoise artifacts extraction. A. Unit norm spatial loading
of all the components in one session. The Red line indicates the EMG component.
B. Flatness score of all the components in A. circle indicates the EMG component
the algorithm selected. Linear shank here has 64 recording/channels. Most
components have small flatness scores and sit less than the threshold. C. Unit
norm spatial loading of the Line-Noise component in the same session. D. Power
ratio of all the components in C. E. The variance and average co-variance between
channel pairs in each sliding window for two randomly picked sessions. The
yellow color indicates the period clustered into high EMG periods. F. The variance
and co-variance plot in E is projected to the first 2 ICA components of each session.
G. Example LFP recording linear profile for high EMG period detection. 0 is close
to the CA1 orient layer, and channel 60 is in the dentate gyrus. Green crosses
indicate clustering result: green crosses sit on the upper line indicates the period
is high EMG period. (rat: APP3)
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the high-frequency bias of wLFP, the components are not projected back to the
original LFP but stay with the whitened signal. But this would not affect the
coherence estimation since it’s normalized at each frequency band. Because the
component power contains variate cross days, we separate them into two clusters:
lower contains when the explained variance is less than 20%, and otherwise high
contains, plot them in fig.5.4A, C or B, D respectively.

All the flat components have a fair amount of high-frequency share(fig.5.4C,D,F).
However, when the power of the component is larger, those from high frequency
enhanced data show an even larger gamma band share compared to slower band
signal(fig.5.4E), while LFP components show the opposite trend, namely more
theta than gamma(fig.5.4E, blue). This indicates the LFP component intends to
pick up more slow-frequency activity than high-frequency ones.

Even though the two shanks are recording at different areas, their EMG activity
is highly coherent with each other(fig.5.4A, B). When the EMG signal is large,
the phase difference is close to 0 in wLFP, especially for higher frequencies,
suggesting a mainly resistive extracellular conductivity there (Einevoll et al.,
2013). Coherence is large for the high-frequency enhanced data, especially in
the gamma band(fig.5.4A, B wLFP), but it never reaches 1, which indicates the
component activity might be a distance-dependent mixture of multiple muscle
sources. The coherence shows a similar frequency bias as in the spectrum. While
the whitened signal also has high coherence at a slower frequency, the theta-
to-gamma ratio is significantly larger in the LFP components (p = 0156). This
again indicates a better separation in higher frequency with wLFP compare to
separation in original LFP data.

To summarize, we find the EMG components are not stable and are often con-
taminated by slow local activities. One must be cautious about EMG-slow wave
contamination during training, especially in freely moving animals. We find
temporal whitening and separation at a high muscle tone period improve the
separation. A pre-processing pipeline is developed accordingly (see algorithm
1). The process of correcting EMG noise in the toolbox can be summarised in
figure5.5.

5.3.3 EMG Component Validation

In LFP recording, we usually don’t have a ground truth of EMG artifact. Ad-
ditional EMG electrode was used by many to indicate the share of artifacts in
EEG or MEG recordings (Li et al., 2021, Gross et al., 2013). However, since the
LFP signal receives an electrical field generated by widely distributed muscle
contractions, any one channel outside would hardly capture all the contributions.
So in the toolbox, we decided to validate the components from their spatial and
temporal characteristics, as discussed in previous sessions.
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Figure 5.4: EMG components from two shanks. A, B Coherence between EMG
components from the hippocampal shank and MEC shank, color indicate phase
in [�p,p] C, D spectrum for EMG components from hippocampal shank in red
and MEC shank in blue, respectively. A, C is for sessions EMG components
power accounts for more than 20% of the total power. C, D is for sessions EMG
components account for less than 20% of the total power. For A-D left is based
on the LFP signal, and the right is on wLFP. E. log Theta (q [4,12] Hz) to Gamma
(g [40,200] Hz) band power ratio plot against component power.F. log q � g
coherence ratio plot against the log q � g power ratio. G. Distribution of log
q � g power ratio. The black line indicates p < .0005 by Wilcoxon signed rank
test. H. Distribution of log q � g coherence ratio. The black line indicates p < .05
by Wilcoxon signed rank test.
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Figure 5.5: General workflow of the ICA-based removal of EMG noise from the LFP
signals. A-F. The denoising procedure was applied to raw LFP traces simultaneously
recorded by a multichannel silicon probe across the hippocampal CA1 layers in a single
recording session A. First, global periods with an elevated occurrence rate of EMG noise
in the session were detected. Then, the LFP signals from these periods were decomposed
by an independent component analysis (ICA) resulting in a set of ICA components each
with a temporal activation B and spatial voltage loading C. We quantified the flatness of
voltage loading profiles of all ICA components D. and identified the one with the highest
flatness (in red) as the EMG component. Eventually, we reconstructed the denoised LFP
signal E. by removing the EMG component from the raw data. The removed EMG traces
reconstructed from only the EMG component are shown in F. G. Top, power spectra for
the example raw (black) and denoised (red) LFP traces and the removed EMG (green)
from the channel l � 3 in A, E, and F. Bottom left, a color-coded joint distribution of
spectral power as a function of frequency and channel calculated for the raw LFP traces.
Bottom right, same as in the middle, but for the denoised LFP traces. Note the reduced
power in the high (> 100 Hz) frequency range, corresponding to the removed EMG noise.
H. Top, coherence between the raw LFP and the EMG traces (black) and between the
denoised LFP and the EMG traces (red) from the channel l � 3 in A, E, and F. Bottom left,
a color-coded joint distribution of coherence between the raw LFP and the EMG traces
as a function of frequency and channel. Bottom right, same as in the middle, but for
the denoised LFP and EMG traces. Note the reduced coherence in the high (> 100 Hz)
frequency range, corresponding to the removed EMG noise.
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First reporting figure is generated by EMG_rm_report.m for each periods(fig.5.5,
see appendix for reporting fig.E.1). First, the EMG component’s spatial loading is
shown against all the other components in fig.5.5 D. Its flatness is emphasized
by a red circle. At this step, a single and large flatness score indicates good
separation. The power spectrum density (PSD) of a selected channel is shown in
fig.5.5G Top, together with the PSD of denoised signal and EMG noise. A good
separation would typically have a higher power in the gamma band, agreed with
experimental reports (Whitham et al., 2007). The cleaned signal would normally
have less high-frequency content than the original signal. General optimization
of non-Gaussian or independence measures would not guarantee independence
in frequency domain decomposition. However, we would expect little coherence
in all frequencies. This becomes our next validation plot fig.5.5 H Top, which tells
how much the coherence between the original signal and EMG activity is reduced
by removing the artifact with our method. Lastly, We also plot the spatial loading
and Rline in equ.5.9 of the line-noise component.

With EMG_rm_viewnoise.m we plot an example period of high EMG noise con-
tained LFP signal in black and the cleaned signal in red (see appendix for
reporting fig.E.2). The detected high EMG contamination periods are also shown
in green.

In EMG_rm_viewspec.m one could find all the frequency domain summaries of
detected EMG components of all the channels (see appendix for reporting fig.E.3).
The PSD, as well as the coherence between EMG to raw or denoised data, is
computed for all the channels to show their spatial profiles (fig.5.5 G Top, H Bot-
tom right). Inspired by the observation and suggestion of (Muthukumaraswamy,
2013), the spectrogram of the original LFP signal, detected components, and the
denoised LFP signal are plotted, respectively.

5.3.4 Removing of the High-frequency Artifacts in Gamma De-
tection

Then we use the EMG removing toolbox to denoise the 32 channel linear recording
signal in freely running animals. In contrast to frequency band limited oscillation
patterns, the EMG component appears to be the major contributor to the broad-
band high-frequency activities5.6. The large stripes and "patchy" looking response
in the spectrogram ( 5.6 A), usually caused by animal movements, are corrected
by the toolbox (5.6 B), and the physiological signals become visible afterward (5.6
C).

The EMG components are reliably detected in awakening animals. To avoid
overfitting, we applied EMG detection only to the awake period. Among 53
sessions of 13 animals, on average, 60% of the awaking period is detected as a high
EMG period and used in component fitting (fig.5.7 D). To assess the goodness
of the separation, we compare the flatness of the EMG-related components
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Figure 5.6: Spectrograms for the example LFP segment before and after EMG
noise removal. A. Top, example spectrogram of the raw LFP signal, revealing the
presence of high-frequency EMG noise. Two vertical black dashed lines depict a
2-sec long segment shown in an expanded format in B. Middle, same as at the
top, but for the EMG component removed from the raw LFP trace at the top as a
result of denoising. Bottom, same as at the top, but for the denoised LFP. Note
the reduced power in the high (> 100 Hz) frequency range, corresponding to the
removed EMG noise. B. Top, expanded spectrogram of the 2 sec long segment
marked with the black vertical lines in A. Middle and bottom, same as at the
top, but for the EMG component and the denoised LFP. C. Top, raw LFP trace
from the 2 sec long segment marked with the black vertical lines in A. Note the
increased amplitude of high-frequency EMG noise at the end of the trace. Middle
and bottom, as at the top, but for the EMG component and the denoised LFP.
Note that the high-frequency EMG noise present at the end of the raw LFP trace
is now gone.
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to non-EMG ICA components. The detected EMG-related components have
a significantly higher flatness score (median = 170.9) than the non-EMG ICA
components (median = 1.8,Wilcoxon rank sum test p < 0.001. fig.5.7 A). The
average power spectra of the EMG component is generally increasing with the
frequency (fig.5.7 C) and by removing the EMG component, the largest power
reduction happens in high frequency, especially in the ripple band (fig.5.7 D ).

Figure 5.7: Group statistics on the effect of EMG noise removal. (A) Averaged
flatness of the EMG-related ICA component (median=170.9) was significantly
higher than that of all other (non-EMG) ICA components (median=1.8) (n=53
sessions from 13 animals, Wilcoxon rank sum test, Z=-8.8714, ***p<0.001). The
flatness of all non-EMG ICA components was averaged first across all such
components within the individual sessions and then – across the sessions. On
each box plot, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers, and the outliers
are plotted individually using the ’+’ marker symbol. (B) Averaged fraction of
time within individual sessions, which was actually denoised (median=0.63, IRQ
= 0.37-1.00, n=53 sessions from 13 animals). (C) Session-specific (gray lines) and
the averaged (black solid line) power spectra of the EMG component (median
and interquartile range, n=53 sessions from 13 animals). (D) Same as in (C), but
for the difference between power spectra of the denoised and raw LFP signals
(median and interquartile range, n=53 sessions from 13 animals).

Next, we ask how EMG removal affects gamma burst detection. Gamma burst
has been shown to implicate the time window of long-range coupling between



124 Chapter 5. EMG Artifacts Removing

areas (Sirota et al., 2008). Here we detect gamma burst events as isolated local
maximums in the Nchannel ⇥ Nf requency ⇥ Nt 3D spectrogram. The bursts too close
to each other (threshold of [nchannel,n f requency,nt] is [3,5,8]) are excluded to avoid
double detection. To our surprise, the occurrence rate of bursts at frequencies
(> 150Hz) is increased after the EMG noise removal (fig.5.8 A, B). It can be
explained by the fact that after we remove the high-power far-field contamination,
the bursts detected in the denoised LFP are better localized in the time-frequency-
anatomical layer space and, correspondingly, more bursts passed our selection
criteria (for example, in fig.5.7).

On the other hand, the burst power distributions computed for the raw (but not
for the denoised) LFP clearly diverged at frequencies above 100 Hz between the
sleep states (SWS, REM) and the locomotion state (RUN) (fig.5.8 C. top). The
power of the preserved bursts after the EMG noise removal becomes, however,
lower and comparable with the power of bursts recorded during the sleep states.
Given the number of detected bursts increases with, on average less power, we
ask whether the detected bursts are physiologically meaningful.

We use cross-frequency coupling to validate the physiological property of the
detected gamma bursts and observe a general increase in theta-gamma modu-
lation (fig.5.8 D). Theta–gamma coupling (TGC) is a neurophysiologic measure
associated with organizing local oscillation within the information processing
time window provided by theta cycle (Sirota et al., 2008, Mizuseki et al., 2009,
Schomburg et al., 2014). Note the increased theta modulation strength of, for
example, the CA1pyr bursts at 150 � 200 Hz and CA1lm bursts at 70 � 100 Hz
after the EMG noise removal (fig.5.8 D Bottom).

The EMG noise removal consistently improves high-frequency oscillation burst
detection. Here we plot the impact of EMG removal in a frequency-resolved
manner at each session for different layers (fig.5.9 A for CA1 l.m. layer and
appendix fig.E.4 for all layers). The denoising process generally positively impacts
detecting gamma bursts with better theta-gamma modulation. Instead of showing
a lower TG.mod. strength which would be expected from a lower signal-to-noise
power ratio, we find a better theta modulation when the average burst power
is largely reduced(fig.5.9 B), which implies a large reduction of EMG-related
far-field signals. Interestingly, the difference in burst power correlates with an
increase in the theta-gamma modulation (fig.5.9 B) when the power difference
is small. We further explore the spatial and frequency domain profile of the
improvement of gamma burst detection in the denoised data. Rescuing more of
the smaller power gamma bursts significantly correlates with a better average
theta modulation in the ripple band, especially around CA1 pyramidal layer and
Dentate Gyrus (spearman rank correlation, fig.5.9 C).

Overall, we find more spatial-temporally localized gamma bursts in the EMG-
denoised data. These bursts were shadowed by the large EMG noise. By removing
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Figure 5.8: Effect of the EMG noise removal on high-frequency oscillation (HFO)
bursts for an example session. A. Top, for example, the color-coded joint distribu-
tion of the HFO burst occurrence rate (Hz) as a function of burst frequency and
power calculated for bursts detected in the raw LFP from the CA1 str. radiatum
during the RUN state recorded in a single session. Red and blue colors indicate
the maximum and the minimum rate values correspondingly. The solid black line
depicts the mean burst power as a function of burst frequency. Middle, same as at
the top, but for the bursts detected in the denoised LFP. Bottom, the color-coded
difference between the two joint distributions above, computed for the raw and
denoised LFP. B. Top, example distributions of the HFO burst occurrence rate (Hz)
as a function of burst frequency calculated for the same bursts as in (A), detected
in the raw (black) and denoised (red) LFP. Bottom, the difference between the two
distributions above, computed for the raw and denoised LFP. Counterintuitively,
the occurrence rate of bursts at frequencies > 150 Hz increased after the EMG
noise removal. (C) Top, example distributions of the HFO burst power as a
function of burst frequency calculated for the same bursts as in (A), detected in
the raw LFP during RUN (solid black), denoised LFP during RUN (solid red),
raw LFP during SWS sleep (dashed green), and raw LFP during REM sleep
(dotted green). All the distributions were normalized by their integral. Bottom,
the difference between the two distributions above, computed for the raw and
denoised LFP during RUN. (D) Top, example color-coded joint distribution of the
strength of HFO burst locking to the theta phase as a function of burst frequency
and anatomical layer calculated for the bursts from the same session as in (A),
detected in the raw LFP. Red and blue colors indicate the maximum and the
minimum rate values correspondingly. The strength of theta phase locking was
quantified by the length of Rayeigh’s resultant vector (see Methods). Middle,
same as at the top, but for the bursts detected in the denoised LFP. Bottom, the
color-coded difference between the two joint distributions above, computed for
the raw and denoised LFP.
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Figure 5.9: Effect of the EMG noise removal on high-frequency oscillation (HFO)
bursts. A. Difference between the frequency-resolved burst power (a.u.) pro-
files (top) or the theta phase modulation (TG mod.) strength profiles (bottom)
computed for the denoised and raw LFP (solid black – the averaged (median)
profile, different colors – the raw session-specific profiles). The burst power
difference is normalized by the power of raw data for pooling across sessions.
Same as in the appendix (fig.E.4) where different rows show data for different
hippocampal layers. This example comes from the CA1 l.m. bursts. B. Example
color-coded joint probability distribution of the profile samples from A top and
bottom collected across the sessions (n = 53 from 13 animals) as a function of
the absolute change in burst power and change in burst theta phase modulation
strength after the EMG denoising. This example map was computed for the CA1
l.m. bursts with the frequency of 150 � 190 Hz. Color depicts the number of
profile samples in each map bin (blue - minimum, red – maximum values). C.
a) Color-coded map of the rank (spearman) correlation between the absolute
change in burst power and change in theta phase modulation strength after the
EMG denoising, computed for the bursts from the given anatomical layer and
from the given frequency bin. The rank correlation coefficient was computed
for the sample pairs collected across the sessions (n=53 from 13 animals). Color
depicts the correlation strength (blue - zero, red – maximum values). b) Same
color-coded map as in a), but for the p-values (log), corresponding to the rank
correlation values in a).
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noise, the smaller power gamma burst is rescued, especially in the ripple band
near the somata layer. Including them leads to better theta phase modulation,
which confirms their physiological origins. Removing EMG with our toolbox
helps to improve the physiological signals.

5.4 Discussion
In summary, we explored EMG cleaning with blind source separation in freely
moving animals. We find that low-frequency local brain activity affects the
detection, and training the components in the high-frequency enhanced data
would help to improve the noise separation. Similar to previous observation
(Artoni et al., 2012), training EMG detection in high noise periods would improve
the separation. Therefore we train the detection only in the awake periods with
high correlations between randomly selected channels. With these processes, we
are able to separate EMG-related far-field signals and reduce the influence of
slow physiological oscillations or large global events like sharp waves (Buzsáki,
2015).

Taking advantage of local high-density recording, we propose the flatness score
as a criterion for automatic component selection and provide a toolbox for
noise detection and removal. In practice, we find a better flatness score usually
indicates the existence of large EMG noise, and the separated component is less
contaminated by the large synchronization in local areas. We provide various
reporting figures for the users to assess the separation performance. As a general
pre-process toolbox, power line noise removal is also included in the toolbox.

With the freely moving animal experiments, we show that EMG noise constantly
presents and dominates the high-frequency signal bands (Sirota et al., 2008). By
removing the EMG-related far-field component, we are able to rescue the over-
shadowed local physiological signals. This way, we also save the signals which
would otherwise be discarded in practice due to high EMG noise contamination.
We find that automatic detection works reliably in awake animals. This could be
used as a pre-processing toolbox for high-density recordings (Buzsáki, 2004, Jun
et al., 2017).

5.4.1 Non-stationarity and Reliability of Artifacts Extraction

In practice, ICA based method suffers from cross-contaminations, especially
from spatially similar components. This is also a problem we face in real data,
especially when there are large global synchronizations or when the EMG noise
is negligible, e.g., in head-fixed animals. In these cases, the flattest component
will also be selected, but normally, the flattest components estimated over nearby
time windows are not stable compared to periods with EMG artifacts (fig.5.1 D).
This could be developed into a local criterion for the users to decide whether to



128 Chapter 5. EMG Artifacts Removing

discard the component.

Apart from the large local synchronization, we sometimes find contamination
from the local slow signals, indicated by the coherence power of denoised LFP
signal and EMG signal at slow frequencies, especially lower than 20 Hz. They
could come from general theta oscillation in the Dentate Gyrus, whose power
overdominance the CA1 recordings (fig.5.1 D). Removing the signal will intro-
duce spurious signals, especially in the hippocampal recording sites. Besides,
the slower frequency band signal is hardly affected by the EMG noise (Muthuku-
maraswamy, 2013). Therefore, in practice, we suggest performing EMG removal
on the signals above 30 Hz.

5.4.2 Flat Components vs. CSD

An alternative method to remove the far-field components, or in general vol-
ume conduction, is to compute the current source density (CSD) of LFP data
(Nicholson & Freeman, 1975). As pointed out by later works (Pettersen et al.,
2006), the CSD computed by simple or smoothed spatial Laplacian is limited
by the noise in the recording. Therefore, recent works use a smooth current
source basis to fit the underlying current sources, like inverse CSD or kernel
CSD (Pettersen et al., 2006, Potworowski et al., 2012). However, this way, the
method also introduces the smoothness assumptions into the data. Moreover,
noise from a short period of broken channels could influence the interpretation
of CSD without careful examination. Our method, on the other hand, focuses
on removing far-field volume conducted signals and utilize the assumption that
EMG-related far-field signal should be independent of the local signals. The EMG
component is generally independent of any other noise sources with localized
spatial profiles. By removing the component, we get rid of a flat component that
shares the least dependence with any of the rest components and the signal space
spanned by them. And Compared to removing the spatial average of the signal,
ICA components could adapt to current data and account for small differences in
the channel impedance.

Our method also removes large stripe-like noise (fig.5.6) as well as line noise
which doesn’t have a stereotypical spatial profile (see in appendix fig.E.1)). The
EMG-removal toolbox could be used as a pre-processing step before applying
CSD analysis.

Another problem is whether this method is useful in other recordings, for ex-
ample, tetrode assembly (Nguyen et al., 2009), where there is no clear pairwise
distance between recording sites. In this case, we hypothesize our method should
still be useful because the spatial difference within the same bundle is small,
and the phase difference between recording shanks appears to be generally very
small (fig.5.4). The other problem is how to detect high EMG periods, which
appears to be critical in finding the right component. Recordings in the same layer
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could be enrolled in low-frequency oscillations (Sirota et al., 2008). But this step
could be improved by using recordings from other areas or setting up an EMG
recording channel. Therefore it’s worth further validating whether extracting a
"flat" component from these data would help to clean the data.
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Algorithm 1 EMG removing
Input: data x, size nchannel ⇥ nt, line noise ratio threshold linethrd
Output: denoised data xnew and unit variance EMG activity EMG_au, as well
as its mixing and unmixing matrix As and Ws
STEP 1: Cluster Periods: detect high EMG period EMG_thrd with
EMG_Cluster_s.m and chunck the long data session into n sug_period.
Denoise: Initialized the denoised data with xnew = 0, with high density probe
channels:
for i = 1 to n do

Temporal whiten the signal and get the whitened signal wx
STEP 2: Power Line Noise:
Detect the line-noise A_rm_line with largest power_ratio on wx
if power_ratio > line_thrd then

Remove line noise from both x and wx.
end if
STEP 3: EMG Noise:
High pass filter wx and get hx
[A,W] = f astica(hx)
Select EMG_comp with largest flatness equ.5.5, denote its mixing and un-
mixing matrix as As and Ws.
if denoise_ f requency_lowerbound > 0 then

EMG_au = f ilter(x ⇥ W 0
s,denoise_ f requency_lowerbound,0 highpass0).

else
EMG_au = x ⇥ W 0

s.
end if
Smooth the EMG traces at the ends of each period.
Remove EMG noise from x by xnew = x � EMG_au ⇥ As

end for
Copy all the other channels to xnew and save data to .l f pd.
Save A_rm_line, W_rm_line, A, W and EMG_au into a separate .mat file.
Generating report figures.



Chapter 6

Discussion

Understanding the dynamics of the brain and the communication between brain
areas has been a fundamental question in neuroscience. With the recent advance
in neuroanatomy, it has become possible to ground the functional connectivity on
the structure connectivity (Honey et al., 2009). LFP is an intermediate stage for
connecting the macroscopic scale signal to microscopic neuron-level dynamics.
This thesis aims to provide solutions to bridge the biophysics and the electro-
physiology recording and combine the anatomical-prior to signal interpretation.

In Chapter 2, we start with the unsupervised segregation of pathway-specific LFP.
Deriving from the cable equation, we demonstrate that temporal derivative or
linear model fitting reduces the capacitive effect and biases the LFP signal to its
input. We find that operating on the temporal differential data emphasizes the
high frequency where the signal is sparser and better localized to its synaptic
inputs, leading to a more stable separation while preserving the broadband
temporal structure. This approach also reveals high-frequency patterns hidden
by the dominant low-frequency signals. With the broadband signal, we fit the
average synaptic response time constant to the spectral baseline. The longer time
constant observed on pathway target at the apical dendrites could be explained
by a higher NMDA/AMPA ratio. Multiple hippocampal components exhibit
high coherence with entorhinal superficial layer components (fig.2.11). We find
directional connections that agree with previously known anatomy by applying
Granger causality to remove the confound of the indirect influences. Interestingly,
the directional connection within the hippocampus or entorhinal cortex shows
strong slow frequency content, meaning the slower frequency of the signal is
better predicted by inputs from the same region. However, we find the cross-area
long-range connection shows a strong peak at the higher frequency.Compared to
high-frequency oscillations, causality strength in the slower frequency range is
highly influenced by short-range (local) connections, indicating that instead of
being a pure afferent copy from the upstream area, slow frequency components
of the oscillatory signal also relie on local mechanisms and involve local nonlinear
integration.
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Next, in chapter 3 we propose a simple parametric model to capture the input-
response of passive morphologically detailed neurons. Instead of studying
membraine integration using multicompartmental numeric simulation, this model
aims to establish a simple and fast approximation of the input current’s impulse
response at any arbitrary dendritic site and, effectively, provides a closed-form
solution of the cable equation for a specific neuron. The model captures the
dendritic filtering effect and provides an easy solution allowing one to explore
how the cytoarchitecture of neuron population affects the LFP spatial profile. We
show that the laminar impulse response of a heterogeneous population could
be captured better by its average laminar Green’s function, but when the actual
cell morphologies are not accessible, it could still be captured with an arbitrary
pyramidal cell morphology with less precision. This analytical framework sets
the foundation for our model-based blind source separation approach.

Based on the modeling in chapter three, we propose a biophysical model reg-
ularized frequency domain source separation framework. This method cluster
components across frequencies into different pathways. It uses the laminar ap-
proximations to fit a biophysical plausible spatiotemporal profile for each cluster
in the more independent or sparser frequency range and then rescues the compo-
nent separation in the slower and more contaminated frequencies. We validate the
method with optogenetic stimulation and find this method captures interesting
spatiotemporal dynamics of CA1 distal dendrites. However, this method is still
slow and needs to be optimized for practical usage. Nevertheless, it shows the
potential to build a physiologically inspired probabilistic model capturing the
spatiotemporal pattern of the LFP.

Finally, throughout the analysis, we find strong EMG noise contamination, es-
pecially in the high frequency (> 100 Hz). Therefore we developed an EMG-
removing toolbox that automatically detects and removes EMG and power-line
noise for high-density recording. The method discovers the EMG component
by separate sources in noise-enriched data segments. Inspired by previously
found EMG signal frequency profile (Muthukumaraswamy, 2013), we enhance
the EMG content by temporal whitening the data.According to the far-field nature
of EMG noise, we propose flatness as a measure to automatically detect the noise
component. This method works reliably in freely moving animals and greatly
improves analysis of the high-frequency oscillatory activity.

Beyond the current stage of the Green’s function based LFP model, there is a
large space for improvement. Here I name a few of them. First, besides the
current pyramidal neuron models in the hippocampus CA1 area, we need to
extend Green’s function laminar basis with more cell types in other regions,
including granule cells and stellate cells. The granule cell in the Dentate Gyrus
has a characteristic cone-shaped tree of spiny apical dendrites. This would lead to
a different dipole shape from the typical pyramidal cell dipole shape, especially
around the soma. The stellate cells in the entorhnial cortex typically have a
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star-like shape formed by similar-length dendrites radiating from the cell body.
This type of dendritic tree hardly forms a large dipole that could be detected afar,
but they will contribute to the local electrical field (Tang et al., 2014, Gratiy et al.,
2011).

Second, when we consider the LFP recording across multiple regions, there are
some other concerns. In this case, if the independency or sparsity is fulfilled, the
temporal independence will help separate components. Our fitting would still
work since it has already parameterized the scale and offset of the latent neurons
for each cluster, respectively (see chapter 3.1.3). However, when different cell
types are included, the cell type selection needs to be implemented with sparsity
or with a categorical distribution for the probabilistic model. But the situation
could be more complex when we consider arbitrary cytoarchitecture, e.g., the
folding of dentate gyrus (Fernández-Ruiz et al., 2013). In this case, both blades
of the Dentate Gyrus should be modeled, and a ratio of synaptic distribution
should fit the suprapyramidal blade to the infrapyramidal blade axis. Another
concern is the highly overlapped dendritic trees in the cortical superficial layers.
Take the entorhinal cortex as an example: while the cell body of layer II and layer
III pyramidal cells are spatially segregated, their dendritic trees both extend to
layer I, making it very hard to separate them from each other. Future work could
explore whether including prior knowledge of the cell anatomy might help the
separation and identification of superficial layer LFP components.

Furthermore, various inhibition patterns play an important role in information
processing in local networks, regulate local oscillations (Fishell & Kepecs, 2020,
Wang, 2010), and the postsynaptic currents induced by inhibitory synapses also
contribute to LFP (Teleńczuk et al., 2017). But due to their dendritic profile and
cell body alignment, the contribution of the interneuron dipole is usually ignored.
Further work could also explore how to involve them in the modeling framework
properly.

Our analysis in chapter 4 also depicted a general involvement of active conduc-
tance in LFP signals. We need to validate the nonlinear mechanism underlying
these component dynamics by pharmacology and chemical manipulation of
presynaptic nuclei in the future (Benito et al., 2014). The subthreshold nonlinear
conductance should be carefully treated in constructing the LFP impulse-response
kernels. Besides, it would be interesting to explore in future work how much
the spatio-temporal profile from source separation could tell about the active
conductance properties, especially in the state-dependent manner (Hasselmo &
Stern, 2014).

In chapter 2, we have used the hippocampus example to show the potential
of separating afferent pathways from local recurrent circuits and study their
interaction with causal analysis. It will be essential to validate the component
identity and the directional link with experiments in future work. Optogenetic
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perturbation, including MEC and LEC perturbation, could be applied to validate
the identity of the afferent pathway, as well as the cross-regional connection
(Fernández-Ruiz et al., 2021). The casual discovery reduces the effect of indirect
connections and, therefore, generally tells more than simple coherence analysis.
But our current analysis is based on a multivariate linear model that might suffer
from nonlinear interactions, for example, the nonlinear dendritic integration. It
would also be interesting to tell apart how much of the local oscillations come
from afferent copies of the upstream dynamics versus from the local recurrent
E-I network (Schneider et al., 2021) Rigorous validation of the causal inference
with the above-mentioned experiments would be important.

Lastly, we want to put a few more words about how can our LFP analysis help to
mediate the dialogue between the study of microscopic scale cellular-level pro-
cesses and macroscopic scale circuits-level neurodynamics. Various network has
been explored to map the cellular-level processes to macroscopic scale recording
systems (Wang, 2022). However, considering the complex processes involved in
local neuron level and network level integration, the inverse problem is generally
ill-posed, and the activity accounted for by current models is still limited. Here
we propose a model-matching framework to simplify the complex system with a
mechanistic model, which can be explored in future work. Generally speaking,
the point is to separate the dendritic integration from the point neuron model
and simplify the former by compartmentalized integration modules. This way,
a mean-field model with compartmentalized dendritic modules defined by the
synaptic target profile could directly incorporate structure information, with the
compartment segmentation informed by the receptor expression and the synaptic
efficacy modeled as a function of neural modulation. The modeled variables
could be read out and therefore matched by multiple mesoscopic level recording
techniques, like LFP and calcium imaging (fig.6.1).

This framework aims to integrate many advances in neurobiology. In more
realistic situations, nonlinear process plays an important role in the dendritic
integration (Magee, 2000), to make it more complex, the channels are modulated
by the brain state (Delmas & Brown, 2005, Arnsten et al., 2012, Hasselmo & Stern,
2014, Shine et al., 2019) with complex spatiotemporal patterns (Lohani et al., 2022).
This requires adding the neuromodulator systems and their signaling pathways
to the model. Here we use a hierarchical Bayesian framework to illustrate the
idea.

Instead of assuming two homogeneous cell classes and including variables or
channels directly in the mean-field neuron mass model, the model needs to take
care of the heterogeneity of local populations informed by their intrinsic proper-
ties and structure connectivities (Cembrowski & Spruston, 2019). This could be
achieved by incorporating anatomical priors and calibrating the model by adding
these intermediate steps, like modeling the LFP profiles. Recent works provide
various useful neuroanatomy knowledge like the spatial profile of Cyto-, myelo-,
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Figure 6.1: Schematic of the simplified mechanistic modeling framework. S
stands for the upstream inputs to local networks. The post-synaptic conductance
gs response to their corresponding neurotransmitter and changes local membrane
potential Vm. Here we mainly consider the calcium-related second messager
system. The change of Vm together with the calcium concentration C influence
a consecutive response of voltage- and ligand-regulated active conductance gA,
which is further regulated by the neuromodulator systems Smod. The N plates
denote the compartmentalization of dendritic integration by common inputs
and intracellular calcium buffering, and the complex and slower calcium concen-
tration C is modeled in each module accordingly. The V̄m for local membrane
potential, with a mean field approximation, is introduced here for computational
convenience. The membrane potential Vm is then computed by V̄m, and action
potential is generated accordingly, denoted as Sout. LFP F is determined by
membrane potential Vm. Neurovascular coupling then links the transient neural
activity Sout to the subsequent change in cerebral blood flow Vves, which leads
to the fMRI signals. Every component here is vector-based, and the dark notes
mark the observable variables (table 6.1).

receptor- and synaptic architecture within local region (Palomero-Gallagher &
Zilles, 2019, Shine et al., 2021, Gao et al., 2020, Cembrowski et al., 2018) and the
structure connectivity (Honey et al., 2009, Majka et al., 2020) between regions
and combined (Harris et al., 2019). LFP spatial patterns would naturally pick
up the synaptic connection and the receptor profile, and the receptor kinetics
could be modeled into their impulse response spatio-temporal patterns confined
by dendritic morphology. To capture the nonlinear input integration, we need
to consider the intercellular signaling, including Ca2+ dynamics and the sec-
ond messagers systems (fig.6.1 plates). It should be quantitatively validated in
future works how much of the compartmentalization by synaptic distribution
would agree with the compartmentalization by the intercellular process like Ca2+

(O’Hare et al., 2022). When proper compartmentalization is found, then their
dynamics would be further captured by a few analytical functions (Brunton et al.,
2016, Rudy et al., 2019, Hasani et al., 2022). Various neuromodulators Smod also
influence the local dynamics by modulating the active conductances. With these
steps, we could model how the multiple inputs S to the local network are inte-
grated, which would be read out by the electrophysiology signals (fig.6.1). Then
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Table 6.1: List of Observation techniques.

Variable Observation Techniques

Vm: membrane potential juxacellular recording (Pinault, 1996)

F: field potential LFP (Buzsáki, 2004), EEG (Nunez et al., 2006)

Sout: population activity Utah arrays (Dickey et al., 2009), Neuropixels (Jun et al., 2017)

Ves: vesicular coupling fMRI (Logothetis, 2008)

C: [Ca2+] calcium imaging (Grienberger & Konnerth, 2012)

Smod: [Neuromodulators] Genetically encoded sensors imaging (Sabatini & Tian, 2020)

the output: the elicited population firing Sout, with another layer of dynamical
modeling from Vm, could also be detected by electrophysiology measurements,
and they would further lead to the subsequent change in cerebral blood flow,
which causes the signals measured by fMRI recording (table 6.1). Overall, the
idea is to integrate the anatomical information and fit the model with multiple
objectives calibrated by different recording techniques (fig.6.1 and table 6.1).

Grounded on the microscopic level priors, the model will help to understand how
different mechanisms jointly modulate brain circuits at the mesoscopic scale. With
the explicit mechanistic modeling of the local circuits, we can capture the fast time
scale nonstationary coupling of neural populations, which helps to understand
the flexible brain cognitive functions (Fries, 2015). Since the recordings generally
sample in different spatial and temporal scales, a detailed simulation frame-
work would suffer from a great amount of computation. Therefore we turned
to summarize the system response steps with a few spatio-temporal patterns.
Formulating the general multi-objective model with simpler impulse-response
filters of proper compartmentalization at different levels or even conducted in
the frequency domain might be interesting to explore in the future.



Appendix A

Linear model discretization

Here we derive the details of discretizing the state space model.

A.1 State Space Model of Membrane Potential

According to equation 2.3 we first discretize the continuous membrane model
into the multi-compartment model:

∂V
∂t = C�1

m

⇣
�GlV + GAV � Âh

j Gaj(x,V)(V � E⇤
Ga,j)� Âk

i Ai(x)si(V � E⇤
i )
⌘

∂S
∂t = �tiS + ni.

(A.1)

where at each compartment, Vi = Vi � El, and {E⇤
Ga,j} and {E⇤

i } are relative
reversal potentials of each channel type compare to the El.

Here we only consider the low synaptic inputs scenario. Therefore, we consider
only the linear part of the system and drop the effects of active channels. The
synaptic currents are also considered as current injections in the region of the
low synaptic inputs. The full matrix form of equation A.1 could be reduced to:
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3
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(A.2)

Considering of the slower changing of the synaptic conductance compared to the
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fast membrane conductance, for a small period T, we have:

V(T) = eAxTV(0) +
R T

0 eAx(T�t)C�1
m AsS(t)dt

= eAxTV(0) + eAxT R T
0 eAx(�t)C�1

m AsS(t)dt

= eAxTV(0) + eAxT R T
0 eAx(�t)dtC�1

m AsS(0)

= eAxTV(0) + eAxT(�e�AxT A�1
x + A�1

x )C�1
m AsS(0)

= eAxTV(0) + (eAxT � I)A�1
x C�1

m AsS(0)

where Ax = C�1
m (GA � Gl)

(A.3)

the third line is because synaptic conductance S(t) changes much slower than the
membrane conductance so we could assume it to be constant during the interval
from 0 to T.

Due to system time invariance the same expressions are obtained for any time
interval from kT to (k + 1)T, the discretized model of membrane potential could
be written as:

V((k + 1)T) = AVV(kT) + BVS(kT)

where AV = eC�1
m (GA�Gl)T

and BV = (AV � I) (GA � Gl)
�1 As

(A.4)

As 2 RN⇥K is the synaptic distribution of all the pathways.

The synaptic activity could also be discretized in the same way:

S((k + 1)T) = ASIS(kT) + BSE(kT),

where ASI = eAtT

and BS = (ASI � I)A�1
t .

(A.5)

Here At represents the time-constant matrix of the synapses. E stands for the
pathway-specific inputs.

A.2 Auto-Regressive Model of LFP
The LFP is the observable variable of the system, in the multi-compartment model,
for simplicity here, we ignore other noise current sources and only consider the
pathway contributions. The LFP signal could be derived from membrane potential
as:

FkT = HOV(kT). (A.6)
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To derive the state space equation of LFP, i.e., FkT, we multiply both sides of
equation A.4 with B⇤ = HO:

B⇤V((k + 1)T) = B⇤AV B̃

"
B⇤

B⇤/

#
V(kT) + B⇤BVS(kT)

namely F((k + 1)T) = B⇤AV B̃

"
F(kT)

F⇤/(kT)

#
+ B⇤BVS(kT) (A.7)

where B⇤ maps membrane potential to LFP. But remember that B⇤ 2 Rm⇥n so it
is full row rank, we define B⇤/ to span the orthogonal complement space of B⇤

and for any B⇤/, we have a B̃ to make sure that B̃

"
B⇤

B⇤/

#
= IN⇥N.

From A.7 we could also find that parts of the information span in B⇤/ and
captured by F⇤/(kT) is lost due to the down-sampling of the space.

We could write A.7 as:

F((k + 1)T) = AF

"
F(kT)

F⇤/(kT)

#
+ BFS(kT) (A.8)

where AF = B⇤AV B̃ and BF = B⇤BV

For simplicity, we assume a full column rank of BF, i.e., the number of sources is
equal to the number of recording sites. Moving the LFP terms to the left-hand
side, we obtain the relationship between F and S.

S(kT) = B+
F

 
F((k + 1)T)� AF

"
F(kT)

F⇤/(kT)

#!
(A.9)

Where B+
F is the pseudo-inverse of BF which fulfill B+

F BF = IK⇥M.

Putting A.8 and A.5 together, we could further write the LFP into a multivariate
auto-regressive model:

2

Â
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where F⇤/ span the orthogonal complement space of F.
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Appendix B

ICA on Ill-condition Scenarios

B.1 Non-Gaussian Brain Signal
Claim: (non-Gaussian brain signal) Sparse input inducts the synaptic activity
distribution will not be Gaussian. Here we define sparse as the dynamics region
where the activated synapses are far from saturation.

Proof. we use the result of chapter 4.3 in (Tuckwell, 1989). In constraint of sparse
input, the response of a group of unsaturated synapses could be described as
Stein’s model (chapter 4.1 of (Tuckwell, 1989)). In particular, input is modeled as
a jumping process with amplitude as an independent variable drawn from f, and
there will be exponential decay with a certain time constant between consecutive
jumps. There exist a close form solution given stationary input process f. The
characteristic function of membrane potential pdf p is given by:

p̃(w, t) = exp
⇢Z w

we�t

✓
f̃(w0)� ai

w0

◆
dw0

�
p̃0(we�t), (B.1)

where ai denotes the time constant of the exponential decay of open synapses. In
the equation,denotes jump amplitude distribution which is strictly positive for
any synapses. f(x) = d(x � cE)

In the condition of a limited amount of synapses, there is no close-form solution
as we noticed. We refer to (Destexhe et al., 1998) for a numerical solution by
simulating synaptic transmission as Markov process. Therefore, the distribution
of post-synaptic activity is determined by presynaptic inputs.

On the other hand, (Parra & Spence, 2000) proved that non-stationarity justifies
higher-order criteria. In particular, assuming signal x is draw from a zero
mean stochastic process z Pz modulated by a independent scale s Ps, namely:
x(t) = z(t) · s(t), then kurtosis K[x] of long term distribution of x is given by
K[x] = K[z] E(s4)

E(s2)2 � K[z]. The equality holds if and only if s is fixed to an arbitrary
constant, s.t. x(t) is a stationary process proportional to z(t).
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The neuronal input is usually assumed to be Poisson distributed or lognormal
distributed. Kurtosis in both case is larger than 3. We could use Kurtosis for
a gaussian distribution is 3, but the modulated one is larger than 3. Overall, a
neuronal input with nonstationary scaler modulation should be nongaussion
with sparser distribution. And as we proved in eq.B.1, the arisen synaptic activity
is also non-gaussian.

To summarize, the overall proof can justify widely used non-Gaussian source
separation on EEG signals or other imaging methods which have non-stationary
inputs, even when the input process could be approximated by non-stationary
Gaussian.

B.2 ICA under Partially Synchronized Scenario

Here we look at the convergence of ICA under a partially synchronized scenario.
The convergence of independent sources follows the Theorem 8.1 of (Hyvärinen
& Oja, 2000). We consider the case where the independent sources s = [s1; s2]
is affected by a synchronised source s3, makes s̃ = [s1 + a1s3; s2 + a2s3]. This
resembles occasional strong synchronizations of multiple pathways.

Theorem 8.1 Assume that the input data follows the ICA model with whitened
data: z = VAs where V is the whitening matrix and that G is a sufficiently smooth
even function. Then the local maxima (resp.minima) of E{G(WTz)} under the
constraint ||W|| = 1 include those rows of the mixing matrix VA such that the
corresponding independent component si satisfy

E{sig(si)� g0(si)} > 0(resp. < 0) (B.2)

where g(.) is the derivative of G(.), and g0(.) is the derivative of g(.).

This theorem shows that any non-quadratic function G could be used to perform
ICA.

Denote by H(w) the function to be minimized/maximized, E{G(wTz)}. Make
q the orthogonal change of the coordinates. Then the gradient of ∂H(q)

∂q =

E{sg(qTs)} and the Hessian as ∂2H(q)
∂q2 = E{ssTg0(qTs)}. Without loss of gen-

erality, we look at s̃ = [s1 + a1sm; s2 + a2sm; s3; ...; sn] at the point q = e1, where
e1 = [1,0,0...,0]. Assume the independent sources s = [s1, s2, ...] fulfills theoremB.2,
The gradient and the Hessian at point q = e1 is:

∂H(e1)
∂q

= e1E{s̃1g(s̃1)} (B.3)
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Making a small perturbation e = [e1,e2, ...] we obtain:
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because ||e1 + e|| = 1 we get e1 =
q

1 � e2
2 � e2

3 � 1. Due to
p

1 � g = 1 � g/2 +

o(g), the higher order term could be neglected and so is the term with e2
1, e2

2 and
e1e2,

H(e1 + e) = H(e1) +
1
2
[E{g0(s̃1)}� E{s̃1g(s̃1)}]Â

i>1
e2
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Since e2
i > 0, here the e1 should be a extreme point. It turns out to be very similar

to the independent case, the only difference is here we look at s̃ instead of s.
When the shared signal sm is small or sparse enough, the distribution of s̃ still
assembly the distribution of original s. In this case when the local extreme is
deep enough, s.t. [E{g0(s̃1)}� E{s̃1g(s̃1)}] > 0 or (resp. <0) the extreme point
should still be valid.

Figure B.1: ICA Convergence under the partially synchronized scenario. A.
mutual information with different rotations(in degree). B. data distribution
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Here we demonstrate with an example(fig.B.1). In the example, the random sam-
ple is drawn from a super-Gaussian distribution as x3 where x ⇠ N(0,1)(fig.B.1
B). Here we use mutual information as G When the alpha is small, mutual infor-
mation shows local minimal at n ⇥ 90,n = 0, ... When alpha is too large, the sm
start to dominate the optimization landscape.

B.3 Basic Proofs

B.3.1 Flatness

Theorem: For any unit L2 vector ~x 2 Rn⇥1, where k~xk2 = 1, then Â~x 
p

n, with
equality when ~x is a flat line with all the entries equal to 1

sqrt(n) .

Proof: We consider when the vector ~x is not flat, then there exist entries k and
n such that Vkn := x2

k + x2
n = 1 � Â

6=k,n
x2

j . We fix all the other entries of ~x and Â~x

could be written as:

Â~x = Â
6=k,n

xj + xk + xn,

= Â
6=k,n

xj + xk +
q
(Vkn � x2

k),

 Â
6=k,n

xj + 2
q
(Vkn/2),

with equality when xk ⌘ xn using Jensen’s inequality. ⌅

B.4 Reliability Test
Here we briefly summarise the core idea of isctest(Hyvärinen, 2011). Under
H0, the mixing matrix Ak = [ ~a1k, ..., ~ank] of the kth session will have the same
distribution as A0Uk, where Uk is a random rotation matrix uniformly distributed
in all possible rotation directions, and A0 is a fixed arbitrary matrix. The test,
however, doesn’t estimate A0 or Uk for each mixing matrix Ak. But instead, it
defines the similarities of two vectors ~aik and ~ajl as:

gij,kl =

��aT
ikRajl

��
q

aT
ikRaik

q
aT

jlRajl

(B.5)

where R = E0D�
0 1ET

0 is the projection into the global dominant eigenspace of all
the vectors {~a} over all the sessions, given by:

C =
1
nr Â

ik
~aik~aT

ik with C = EDET (B.6)
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the dimension of D0 and E0 is fixed as the same n as the dimension of components
in each data session. The similarity g is related to the Mahalanobis similarity.
According to Theorem 1 in (Hyvärinen, 2011), under H0, each g follows the
distribution of the absolute value of an element of an orthogonal matrix uniformly
distributed in the set n ⇥ n of orthogonal matrices. Then according to Theorem 2
for any entry u in a random matrix U 2 Rd⇥d, the transformed variable t:

t =
u
p

d � 1p
1 � u2

(B.7)

follows a Student’s t-distribution with d-1 degrees of freedom, and u2 follows a
beta distribution with parameters (1

2 , d�1
2 ).

Knowing the distribution of t and u2 under the null hypothesis, a test for picking
up components with a controlled false-positive rate (FPR) could be defined. To
correct for multiple testing, isctest uses false discovery rate (FDR) proposed by
(Benjamini & Hochberg, 1995) and the corrected significance level is given by :

acorr
FD = aFD

ng

m
, (B.8)

where ng is given by Simes’ procedure.

Next, the false positive rate for clusters is estimated to infer the existence of
a consistent cluster of components. Isctest uses a Bonferroni correction TO
CONTROL THE FPR of the clusters. The corrected threshold acorr

FP is given as:

acorr
FP =

aFP
m

, (B.9)

where the degrees of freedom is m = n2r(r�1)
2 .

B.5 Supplimentary Figures
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Figure B.2: Frequency domain functional connection between clusters. Black dots
indicate the frequency where flow in one direction is significantly dominated
(two-sided Wilcoxon signed rank test p<.05 corrected by Bonferroni correction).
Component labels are the same as in fig. 2.12
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Figure B.3: Frequency domain functional connection between layers. A, fre-
quency domain Granger causality between MEC III LFP and LFP signal from the
hippocampus. Black dots indicate the frequency where flow in one direction is
significantly dominated (two-sided Wilcoxon signed rank test p<.05 corrected by
Bonferroni correction). B. frequency domain Granger causality between MEC III
LFP and LFP signals from the hippocampus.
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Figure B.4: Example simulation data LFP and rLFP in lower dimension.(projected
to their first two principle dimension respectively.)
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Figure B.5: Coherence between all the dLFP components from Hippocampus and
MEC. Component labels are the same as in fig. 2.12
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Appendix C

Greens Function

C.1 Comparison of Transmembrane Current Re-
sponse Simulation

Here we show the comparison of transmembrane current response estimated
by NEURON simulation versus Green’s function method at each segment dur-
ing oscillatory input simulation. The simulation model and the response at
representative recording sites have been included in figure 3.3 A and B.
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Figure C.1: Comparison of Transmembrane Current Response to Simulation with
Oscillatory Inputs by The Demodulated Phase. 1-35: The demodulated phase
around input frequency was recorded at the center of each compartment segment.
Oscillatory currents are injected at compartment 7. The phase difference at 7 is
because we count current injection as transmembrane currents in the forward
modeling, but NEURON doesn’t. The polar histogram shows the distribution of
the signal phase demodulated by the current input. The red cross is the phase
estimated by the forward model. The last figure shows the phase difference
between demodulated phase and the estimated phase at a neighbor brunch
(comp. 13 in red) and a further brunch (comp. 33 in blue). The phase difference
at the transmembrane current level is small between the NEURON simulation
and the forward modeling. And the phase difference depends on the distance
from the injection site to the recording site. The label is the same as in fig. 3.3
A, B. Brunches with: lv.1: 1 � 5, lv.2: 6 � 10, r2: 11 � 15, lv.3: 16 � 20, black
brunch between lv.2 and lv.3: 21 � 25, black brunch between r1 and r2: 26 � 30,
r1: 31 � 35.
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Green’s Function Constrained
Complex ICA

D.1 Complex-valued Signal Unmixing
Here we use simulation to assess the performance of complex-valued signal
unmixing. Particularly, signal generating process happens in the complex domain,
i.e., the mixing matrix A 2 CNr⇥Ns is complex-valued, and so is the source activity
S 2 CNs⇥Nt , where Nr is the number of recording sites, Ns is the number of
independent sources, and the Nt is the number of time samples we recorded.
Notice when S only has a real value part or complex value part, then the problem
is reduced to real-valued ICA because the complex part of the mixed activity
in both cases could be ignored, and the signal would be fully unmixed with
unmixing matrices corresponding to the real part of A in the first scenario and
complex part of A in the latter scenario, respectively. On the other hand, mixing
matrix A with pure real part or purely complex part will follow the same logic.
In these scenarios, real-valued ICA is enough to unmix signals, and the algorithm
will even benefit from fewer parameters to be estimated. Therefore, here we ask
the following questions: how will complex ICA help signal separation? How
is the performance depends on the phase of the A matrix? And how does the
number of underlying components affect the unmixing?

We set off to address these questions by comparing the performance of complex
ICA and simple time domain ICA with simulation as follows:

A = Ar + ihAi, (D.1)
S = Sr + iSi, (D.2)

X = AS. (D.3)

Where every entry of Ar or Ai is uniformly distributed, i.e., ⇠ U[0,1]. h regulates
how much the entry deviates from a zero-phased complex value or real value. We
choose this expression to allow for variations in spatial loading amplitude at each
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recording site. Here the activity of S, or Sr and Si, are generated independently
as log-normal distribution ⇠ Lognormal(0,1) (Buzsaki & Mizuseki, 2014). For
simplicity, here we set Nr = Ns. To compare the results, we set hA = Ai

Ar
for the

ground truth mixing matrix A and hÂ = Âi
Âr

for estimated mixing matrix Â. Both
A and Â are rotated so that the largest loading has zero complex phases for a
fair comparison. We use Amari distance to assess the unmixing performance. We
repeat 100 random sessions for each condition.

Figure D.1: Complex-valued signal unmixing: comparing cICA and ICA. A. Com-
pare log(hA) with log(hÂ), color indicates number of components. B. Contour
plot shows the distribution of log(hÂ) against given log(hA). C. the difference
of Amari distance plot against log(hA). The color indicates the number of com-
ponents in separation. D. Performance grouped by initial h measured by the
median of difference of Amari distance log(dICA)� log(dcICA). E. Amari distance
of cICA and ICA plot against each other. Color indicate log(hA).

Basically, we find the performance depends on the complex to real ratio hA. When
hA is larger than 10�2, cICA generally unmixes the signals well (fig.D.1B), even
when the number of components is large (fig.D.1A). But When hA is smaller than
10�2, the unmixing fails first in large components simulations. This is because the
estimation error accumulates as the number of parameters increases. In the end,
the advantage of cICA is diminished with smaller h (fig.D.1 C, D). Starting from
h = e�7, the unmixing performance of cICA is not significantly better than ICA
with some component conditions (n = 2: median = �0.0002, p = 0.0900; n = 3,
median = 0.0002, p = 0.2896 Wilcoxon signed rank test). But in general, even in
the low h scenario, where the mixing matrix is very close to pure real value, the
separation is generally good (median = 0.0051 for all h  e�7).

Next, we ask where the biophysical impulse response patterns sit in the parameter
space. Here we give two representative examples. Firstly, we look at the ground
truth transfer function pattern of simulation we conducted throughout the thesis
(see chapter 2.2.1 and fig.2.2). In the simulation, we stimulate two pathways: the
Schaffle collateral path and the perforant path. In the passive membrane scenario,
hA increases monotonically with frequency for both pathways (fig.D.2 A, B). The
hA describes how the currents are spreading along the cable, and it depends
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on the position of synapses with regard to the dendritic tree. The hA is 0.0011
at 4 Hz for the Schaffle collateral path (fig.D.2 A,C) and 0.0030 at 4 Hz for the
perforant path (fig.D.2 B,D).

We also examine the transfer function of dendrites with active channels. We use
the channel distribution from the same model with the same cell morphology
(Grienberger et al., 2017). Here the current is scaled to induce subthreshold inputs,
i.e., the synaptic depolarizations are small enough such that no spike is induced.
To our surprise, we have much more complex patterns at lower frequencies. But
the real part of the spatial profile doesn’t change too much (fig.D.2 C, D). This
partially explained the complexity of the spatial profile we observed in real data.

Figure D.2: Ground-truth spatial loading of the simulated data in passive (blue)
or active (red) dendrites. A. hA of Schaffle collateral path components at each
frequency plot against frequency. B. hA of perforant path components at each
frequency plot against frequency. C. The spatial profile of the Schaffle collateral
path component is plotted by its real (solid line) and complex (dotted line) parts.
D. The spatial profile of the perforant path component is plotted by its real (solid
line) and complex (dotted line) parts.

D.2 Temporal Domain ICA Result for Optogenetic
Stimulation

For the sake of comparison, here we show the components, their stimulus trig-
gered average, and their cross-frequency modulation of LFP � ICA (fig.D.3) and
btLFP � ICA (fig.D.4), respectively. The labels are defined in chapter 2.2.3.
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Figure D.3: Comparison to temporal ICA in real data: trained on wide band LFP.
a. the initial clusters at step 1. The spatial profile is flipped as the largest loading
is positive. b. the final clusters’ spatial loading. c. the average activity triggered
at contra-lateral CA3 stimulation. The stimuli is given at 0ms. d. The spatial
profile of the stimuli triggered average. e,f. Theta gamma modulation in terms of
MI. e. before, f. after contra-lateral CA3 stimulation
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Figure D.4: Comparison to temporal ICA in real data: trained on high pass
filtered LFP. a. the initial clusters at step 1. The spatial profile is flipped as the
largest loading is positive. b. the final clusters’ spatial loading. c. the average
activity triggered at contra-lateral CA3 stimulation. The stimuli are given at
0ms. d. The spatial profile of the stimuli triggered average. e,f. Theta gamma
modulation in terms of MI. e. before, f. after contra-lateral CA3 stimulation
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Appendix E

EMG Removing Toolbox

E.1 Reporting Figures
The EMGremoving toolbox is a MATLAB toolbox for removing high-frequency
EMG artifacts from the multichannel extracellular recording with ICA.

Removing EMG signal from LFP recording is generally an overcomplete ICA
problem since the number of potential signal sources is much larger than the
recording sites. A lower frequency physiological signal is going to affect the
separation.

The current version uses spectrum whitening to emphasize the high-frequency
EMG tone (EMG_rm_main.m). The cleaned signals will be saved in .l f pd files and
the EMG activity in .emg. The EMG signals (EMG_au) and the EMG components
AW. As is saved in FileBase.EMG_rm.mat.

We generate the following figures to assess the performance of EMG cleaning
(fig.E.1 for general information and component profile, fig.E.2 for visualizing
EMG removing in short or selected periods, and fig.E.3 for the power spectra
of the raw and the denoised LFP signals and EMG signals plotted for all the
predefined periods.).

The preprocessing pipeline could be found in an open source EMG denoising
toolbox at https://github.com/YY535/EMG_removing.git

https://github.com/YY535/EMG_removing.git
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Figure E.1: Example EMG component report by EMG_rm_report.m. A. The spa-
tial profile of EMG component (red) is plotted with all the other ICA components
(gray). B. the flatness of voltage loading profiles of all ICA components. The
circle indicates the selected EMG component. C. High EMG period selection.
The distribution of log envelope of the high-pass filtered signal, as an alterna-
tive measure of high-frequency power, is compared between the selected higher
EMG period (blue) and the other periods (red). D. The power spectra for the
raw (black) and denoised (red) LFP traces and the removed EMG (green) from
the channel Nchannel � 3. E. The coherence between the raw LFP and the EMG
traces (black) and between the denoised LFP and the EMG traces (red) from the
channel Nchannel � 3. F. The spatial profile of the line noise component (red) is
plotted with all the other ICA components (gray). G. The power ratio of power-

line frequency Fline versus other frequency bands Rline =
Ei2{ fline}

(Pi)

Ej/2{ fline}
(Pj)

(equ.5.9) is

plotted for all the components. The power-line frequency Fline is defined as
{ fline} 2 [Fline ⇥ n � 5, Fline ⇥ n + 5] Hz, for all n = 1, ... where Fline ⇥ n is lower
than Nyquist frequency. Notice here none of the components is detected as a
power line noise component because none of them reach the given threshold of
1.8.
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Figure E.2: Example EMG component: view noise by EMG_rm_viewnoise.m. Top.
raw LFP traces. The green cross larger than 0 indicates the detected high EMG
noise period. Bottom. The denoised LFP traces (red) after removing the EMG
traces (blue).
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Figure E.3: Example EMG component: view the power spectra of signals in all
the predefined states by EMG_rm_viewspec.m. A. The power spectra of signals
from all the channels in one linear probe for raw (a) and denoised (b) LFP traces
and the coherence between EMG activity and denoised data at each channel(c),
computed for all the predefined states in each column labeled by state names. B.
Left: the same as A. c) plotted for one channel. Right: the power spectra of EMG
traces in each state. C. The spectrogram of denoised (dlfp) and raw LFP traces of
one channel. We also show the spectrogram of the removed EMG signal.
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E.2 Cross-Frequency Coupling of Gamma Bursts
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Figure E.4: (A) Difference between the frequency-resolved burst occurrence rate
(Hz) profiles computed for the denoised and raw LFP (solid black – the averaged
(median) profile, different colors – the raw session-specific profiles). Different
rows show data for different hippocampal layers. (B) Same as in (A), but for the
difference between the frequency-resolved burst power (a.u.) profiles. (C) Same
as in (A), but for the difference between the theta phase modulation strength
profiles.
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