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Abstract:

In this thesis we deal with three instances of multiscale phenomena in, on a first glimpse, very distinct
areas of theoretical physics: We consider the quantum statistical physics of Bose gases, the behaviour
of classical field theories in the vicinity of cosmological singularities and the behaviour of gravity in
extreme situations. In those treatments, the concept of infinite renormalization will be a leitmotif,
since our approaches are all motivated by different aspects of renormalization theory. Especially we
will see, how techniques and ideas which are standard in some areas of theoretical physics can lead
to new perspectives and surprising results in other areas.

In particular we will do the following:

– We will analyse the thermodynamic limit of an ideal Bose gas by QFT-inspired methods that
rely on infinite renormalization and techniques from ζ-regularization. Thereby we will obtain
as a new insight, that the phase structure of this system is interwoven with the singularity
structure of the grand canonical potential and that the thermodynamic properties in the ther-
modynamic limit are encoded by asymptotic expansions that resemble heat kernel expansions.
This structure was not described previously and especially suggests a new approach to weakly
interacting Bose gases.

– We will cure the infinities which plague a classical scalar field theory in the vicinity of the big
bang singularity by distributional techniques that are inspired by the Epstein-Glaser-approach
to renormalization. This shows especially that renormalization ideas do not only apply on
quantum field theories but are also of use in the context of classical field theories. Moreover
this treatment suggests that the benign behaviour of quantum field theories in the vicinity of
cosmological singularities that was observed in the literature could be merely a property of the
classical background than a quantum feature.

– Motivated by the idea that the laws of gravity could be scale-dependent, we analyse and re-
view the behaviour of general relativity in extreme situations. We thereby obtain as an in-
teresting result, that the geodesics in the vicinity of the FLRW singularity exhibit some kind
of ultrarelativistic behaviour, which was not described before. Moreover we give convincing
arguments that this is a coordinate-invariant feature. In addition we will point out various oc-
currences in literature, where gravity exhibits a similar ultrarelativistic behaviour in extreme
situations. This motivates the claim that gravity could be described by an ultrarelativistic field
theory on microscopic scales.

– To understand better which gauge symmetry groups could be relevant for ultrarelativistic the-
ories of gravity, we will analyse the universal geometric structures and associated symmetries
of microscopic tangent light cones. Thereby we will reveal surprisingly rich structures hid-
den in the theories of relativity and especially we will discover a microscopic symmetry group
which contains infinitely many Lorentz groups and resembles structurally and conception-
ally the well-known Bondi-Metzner-Sachs group. By this we have discovered a previously
unknown fundamental microscopic symmetry of pseudo-Riemannian geometry.

Moreover, we will explain the relation of those investigations to the existing literature and will com-

ment on possible drawbacks, implications, open questions and consecutive directions of research.
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Zusammenfassung:

Die vorliegende Arbeit beschäftigt sich mit drei Instanzen von Vielskalen-Problemen in verschiede-
nen und auf den ersten Blick sehr unterschiedlichen Teilbereichen der theoretischen Physik: Wir be-
trachten die statistische Physik des idealen Bose-Gases, das Verhalten von klassischen Feldtheorien
in der Umgebung kosmologischer Singularitäten und das Verhalten der Gravitation in extremen Sit-
uationen. In diesen Untersuchungen wird das Konzept der Renormierung ein Leitmotiv sein, da all
unsere Herangehensweisen durch verschiedene Aspekte der Renormierungstheorie motiviert sind.
Insbesondere werden wir sehen, wie Techniken und Ideen, welche in bestimten Bereichen der Physik
zum Standardrepertoire gehören, zu neuen Perspektiven und verblüffenden Resultaten in anderen
Bereichen führen können.

Wir werden uns in dieser Arbeit konkret mit dem Folgenden beschäftigen:

– Wir werden den thermodynamischen Grenzfall eines idealen Bose-Gases mit Methoden un-
tersuchen, welche von Ideen aus der relativistischen Quantenfeldtheorie inspiriert sind. Ins-
besondere werden wir hierfür unendliche Renormierungen und ζ-Regularisierungsmethoden
verwenden. Dabei werden wir verstehen, dass die Phasenstruktur dieses Systems eng mit den
Singularitätseigenschaften des großkanonischen Potenials zusammenhängt und die thermo-
dynamischen Eigenschaften dieses Systems durch asymptotische Entwicklungen ausgedrückt
werden können, welche sogenannten Heat-Kernel-Entwicklungen ähneln. Diese Strukturen
wurden zuvor nicht beschrieben und motivieren eine neue Herangehensweise an das Problem
des schwach wechselwirkenden Bose-Gases.

– Wir behandeln die Unendlichkeiten, die im Kontext einer klassischen skalaren Feldtheorie
in der Umgebung der Urknallsingularität auftreten können, mithilfe von distributionellen
Techniken, welche durch die Epstein-Glaser-Renormierungstheorie motiviert sind. Dies zeigt,
dass Renormierungstechniken nicht nur im Kontext von Quantenfeldtheorien auftreten, son-
dern auch im Kontext klassischer Feldtheorien nützlich sein können. Darüber hinaus legt
diese Untersuchung nahe, dass das gutartige Verhalten von Quantenfeldtheorien in der Umge-
bung kosmologischer Singularitäten, welches in den letzten Jahren von verschiedenen Autoren
beschrieben wurde, eher eine Eigenschaft der klassischen Hintergrundtheorie sein könnte.

– Motiviert durch die Idee, dass die Gesetze der Gravitation skalenabhängig sein könnten, analy-
sieren wir das Verhalten der Allgemeinen Relativitätstheorie in extremen Situationen. Hierbei
erhalten wir als ein interessantes Resultat, dass die Geodäten in der Umgebung der FLRW-
Singularität ein ultrarelativistisches Verhalten aufweisen, welches zuvor noch nicht beschrieben
wurde. Darüber hinaus präsentieren wir überzeugende Argumente, dass dieses Verhalten eine
koordinateninvariante Eigenschaft dieser Raumzeiten sein könnte. Außerdem weisen wir auf
mehrere in der Literatur beschriebene Situationen hin, in welchen die Gravitation ein ähnliches
ultrarelativistisches Verhalten in extremen Situationen aufweist. Diese Beobachtungen mo-
tivieren für uns die Behauptung, dass die Gravitation auf fundamentalen Skalen durch eine
ultrarelativistische Feldtheorie beschrieben werden könnte.

– Um besser zu verstehen, welche Eichsymmetriegruppen relevant für ultrarelativistische Grav-
itationstheorien sein könnten, analysieren wir die universellen geometrischen Strukturen und
die assoziierten Symmetriegruppen mikroskopischer Tangentiallichtkegel. Hierbei werden
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wir überraschend reichhaltige Strukturen aufdecken, welche auch eine mikroskopische Sym-
metriegruppe umfassen, die unendlich viele Lorentz-Gruppen beinhaltet und konzeptionell
wie strukturell der bekannten Bondi-Metzner-Sachs Gruppe ähnelt. Somit haben wir eine
bisher unbekante fundamentale mikroskopische Symmetrie innerhalb der pseudo-Riemann’schen
Geometrie entdeckt.

Außerdem werden wir erklären, wie das Verhältnis dieser Untersuchungen zur bereits existierenden

Literatur ist und kommentieren außerdem problematische Aspekte, mögliche Implikationen, offene

Fragen und konsekutive Forschungsrichtungen.
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1. Introduction

One of the most striking insights of physics is so basic and old, that its importance and fasci-
nating nature are easily overseen: The laws of nature exhibit an extreme scale-dependence.
Theories and models, which describe the universe at different scales, differ in so many as-
pects from each other, that it is a priori hard to understand how those descriptions should
be connected to each other and how laws of nature on larger scales emerge from their mi-
croscopic siblings. This thesis deals with some instances of such multiscale phenomena in
several and on a first glimpse very distinct areas of theoretical physics: We will consider
the quantum statistical physics of Bose gases, the behaviour of field theories in the vicinity
of cosmological singularities and the behaviour of gravity in extreme situations. Although
those topics seem to be barely interrelated, we will see that they share some common fea-
tures on conceptional and on technical levels. A leitmotif in our treatment will thereby be
the concept of renormalization, which can be understood as a formalization of the scale-
dependent behaviour of physical theories and will be explained thoroughly in chapter 2.
Indeed, our approaches to the above mentioned scenarios are all motivated by different
aspects of renormalization theory. Especially we will see thereby, how techniques which
are standard in some areas of theoretical physics can lead to new perspectives or new ap-
proaches in other areas.

In this chapter we want to motivate our treatment and will present concisely the corre-
sponding ideas and results. Therefore we will review in section 1.1 how a scale-dependent
behaviour occurs in the different branches of physics that are of importance for this thesis.
In section 1.2 we will then present concisely and informally the key ideas and results of
this thesis and will link them to the broader context presented in section 1.1. In 1.3 we will
then give an overview over the organization of this thesis while in 1.4 we will introduce the
employed notation and conventions.

1.1. On scale dependence

In this thesis we define multiscale phenoemena as situations, which exhibit a scale dependence
in their theoretical description. Hereby, a scale should be understood as a characteristic pa-
rameter of the system which will be, depending on the situation, for example a length scale,
the number of particles or a time scale. From a modern perspective (cf. e.g. [10]) one could
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1.1. On scale dependence

distinguish between two categories of such scale-dependent behaviour. One the one hand
it is broadly accepted, that one needs different fundamental laws at different scales. For ex-
ample, the fundamental laws of quantum mechanics hold on microscopic scales, while the
laws of general relativity hold on cosmological scales. The laws on different scales are then
sometimes related by some kind of limiting procedure: For example, the laws of general rel-
ativity reduce to Newtonian gravity in the Newtonian limit (cf. [44]), and under the classical
limit h̄→ 0 classically allowed trajectories become dominant in path-integral approaches to
quantum mechanics (cf. [54]). On the other hand, scale-dependence of physical laws can
be caused by a phenomenon, which is commonly named as complexity. In those cases, the
fundamental laws are known, but the considered systems are so complex, that it is a very
hard question to predict the collective behaviour of the system1. Examples for this cate-
gory are given by collective phenomena in condensed matter physics, chaotic systems or
systems with non-linear behaviour. In those cases, the behaviour of the system at whole can
show unexpected features which are not directly obvious from the fundamental descrip-
tion, which is a phenomenon that is commonly denoted as emergent behaviour (cf. [76]). In
the following we want to explain concisely, how the scale dependence arises in the different
branches of physics, that are of relevance for this thesis – i.e. in statistical physics, quantum
field theory and spacetime geometry.

The case of statistical mechanics: Statistical mechanics should be understood as a physi-
cal framework for the derivation of thermodynamic equilibrium properties of a macroscopic
system from the microscopic properties of its constituents (cf. [101]). The multiscale as-
pect of this formalism is thereby usually formalized by the thermodynamic limit, which
marks the transition from finite-sized systems to macroscopic systems. Under this limit, the
microscopic properties of the system – as N-particle wave functions or trajectories in a 6N-
dimensional phase space – get more and more irrelevant, while thermodynamic equilibrium
properties emerge as an effective, macroscopically relevant description.

An interesting aspect of statistical mechanics is the occurrence of phase transitions, which
are commonly understood as abrupt changes in the macroscopic physical properties of a
system under a variation of external parameters as the pressure or the temperature (cf.
[64, 101]). Within the formalism of statistical mechanics, those phase transitions mani-
fest themselves by discontinuities or singularities of thermodynamic functions and their
derivatives, which predict the dependence of thermodynamic quantities on external param-
eters. At a first glimpse, this sounds strange since the microscopic laws of physics – as the
Schrödinger equation or Hamilton’s equations of motion – are usually continuous and hence
one should expect, that the macroscopic behaviour of such systems should be continuous,
too. But this is not the case, which is a beautiful example, how complex systems can exhibit
unexpected properties on macroscopic scales. The reason for this is, that although all occur-
ing thermodynamic functions are analytic for finite sized ensembles, their limit under the

1For a more complete discussion of definitions of complexity, consult [119].
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1.1. On scale dependence

thermodynamic limit has not to be analytic, since limits of analytic functions are in general
not necessarily analytic (cf. [101, 81]). This breakdown of analyticity can be understood as a
multiscale phenomenon, since on microscopic scales the analyticity properties of thermo-
dynamic functions are of no direct relevance, while on macroscopic scales they obviously
determine the qualitative thermodynamic behaviour of the system to a great extent.

Infinite renormalization in relativistic quantum field theory: While the multiscale aspects
of statistical physics are intuitively plausible, since is generally known that macroscopic sys-
tems are composed out of many individual microscopic constiuents, it is less obvious how
they come into the game in relativistic quantum field theory. Nevertheless, from a modern
perspective (cf. [182]) the multiscale aspects of QFT are closely intertwined with a phe-
nomenon which was once one of the biggest problems of quantum field theory, namely the
occurrence of infinities associated with divergent integrals appearing in the calculation of
observables. Those infinities are usually caused by the assumption, that arbitrarily high mo-
menta are allowed in the occuring integrals. Consequently, if one introduces an additional
cut-off parameter Λ which marks the maximum frequency up to which one is allowed to
integrate, then all observables are finite for the sake of depending on this additional param-
eter. Since Λ is a momentum scale, the introduction of a cut-off obviously brings a multiscale
aspect into the game, although this appears a priori neither natural nor profound.

But indeed, a lot of wisdom is hidden in this cut-off procedure. This can be understood by
recalling, that it is neither known how spacetime behaves on microscopic scales – i.e. for
very high momenta – nor it is understood how a putative ”most fundamental field theory”
could look like or if such a theory even exists. Hence one should expect, that any quantum
field theoretic model should be subject to some modification for momenta larger than some
momentum scale that specifies the domain of validity of this model. The interesting aspect
is now, that quantum field theoretic models can be classified by their properties under vari-
ations of the cut-off Λ: For some models (so called renormalizable models) the Λ-dependence
can be entirely absorbed by a numerical redefinition of the occurring couplings, while for
other theories (so called non-renormalizable models) infinitely many new couplings have to
be introduced to absorb the Λ-dependence completely. Pictorially spoken one could say,
that renormalizable models exhibit a self-similarity on all scales while non-renormalizable
models appear on different scales catastrophically different. Since the couplings should be
determined by experiment anyhow, we see that in the former case the parameter Λ is of
no relevance: In a colloquial language, renormalizable models have hence the property that
their macroscopic behaviour is in some sense ignorant of putative microscopic modifica-
tions. Hence, for such theories, one can safely send the cut-off to infinity, as long as one
absorbs the Λ-dependence of the observables simultaneously in adequate numerical redefi-
nition of the couplings.

This procedure, which is standard in quantum field theory, goes under the name of infinite
renormalization and due to its importance for the understanding of this thesis, we will explain

13



1.1. On scale dependence

it more thoroughly in chapter 2. But by the present discussion it should have become clear,
that it encodes some important multi-scale aspects of quantum field theory.

Relativistic quantum field theory and distributions: A different perspective on the infini-
ties occurring in quantum field theory comes from the Epstein-Glaser formalism (cf. e.g.
[159, 148]) which identifies an incorrect treatment of distributional quantities as a cause for
the infinities which occur in the standard formalism of quantum field theory. Indeed, if one
looks more carefully on the integrals which occur in quantum field theoretic calculations,
one observes that they are not integrals over smooth functions but should be understood
in a distributional sense. A correct treatment of those distributional quantities leads then
to finite quantities, but – due to a fundamental indeterminacy on the level of distributional
products and extensions – also to some freedom in the choice of certain parameters. Those
parameters can then be identified with the renormalized couplings in the usual picture.

On a first glimpse, the multiscale aspect has hence disappeared if one looks at QFT from this
perspective. But on a second glimpse, it is still present, since distributions themselves can
be understood as an instance of a multiscale phenomenon. To understand this claim, recall
that distributions – which go under the name of generalized functions, too – are continuous
functionals of smooth functions2 and as such they can be always approximated by sequences
of smooth functions. Take for example the famous δ-distribution, which is defined as

δ[ f ] =
∫

R
dx δ(x) f (x) := f (0).

This distribution can be, for example, approximated by δ[ f ] = limΛ→∞ δΛ[ f ] with the latter
being defined as

δΛ[ f ] :=
∫

R
dx

√
Λ
2π

e−
1
2 Λx2

f (x) =
1√
2π

∫
R

dye−
1
2 y2

f
(

y√
Λ

)
,

where we have performed the substitution y =
√

Λx. If we consider x ∈ R as some kind
of position variable, then Λ can be understood as a momentum cut-off. What happens now,
if we take Λ to be very high but still finite? Then y/Λ should be very small and we could
expand f (y/

√
Λ) into a Taylor series which yields a series expansion

δΛ[ f ] = f (0) + a1Λ−
1
2 + a2Λ−1 +O(Λ−3/2) (1.1)

with a1, a2 being some constants. We then see that in this case the cut-off Λ is irrelevant,
since it produces error terms that vanish for Λ → ∞. If we imagine now, that δΛ appears
as an expression for some quantum field theoretic observable, we then understand that this
observable is indeed insensitive for the ”physics” at high momentum scales, since the Λ-
dependent error terms in (1.1) get irrelevant for Λ→ ∞.

2If you are not familiar with the theory of distributions, please consult appendix A.
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1.1. On scale dependence

Hence, a correct treatment of the distributions that occur in quantum field theoretic calcu-
lations can be itself understood as an aspect of QFT’s multiscale behaviour, since it corre-
sponds to a correct manipulation of distributional limits under removal of the cut-off.

The case of spacetime geometry: If one tries to quantize general relativity by the usual
strategy, one obtains that the corresponding quantum field theory is non-renormalizable (cf.
e.g. [109]). Along above lines this means, that this theory is only valid up to a finite mo-
mentum cut-off of the order of the Planck scale (cf. [58]). Hence, this specific quantum field
theory is not able to give reliable predictions on very small scales and one expects that a yet
unknown theory of quantum gravity should provide an UV-completion of general relativity.
Consequently, the multiscale aspects of gravity manifest themselves in the problem, that
nobody knows how gravity acts on the Planck scale, although the macroscopic behaviour
of gravity is well understood. Hence one expects, that the theory of gravity – and possibly
also the geometric structure of spacetime – should change its appearance on smaller scales.
And indeed, a lot of research has been performed in the previous decades to understand
how this change could look like, which lead to a plenty of different theories and findings.

In some approaches, the structure of general relativity was explicitely modified on micro-
scopic scales and one tried then to understand a posteriori, if the modified UV-theory is
capable to imply general relativity on macroscopic scales. Examples for such strategies are
given by string theory (where one assumes that particles are indeed 1-dimensional entities
on Planckian scales) or Hořava–Lifshitz gravity (where an anisotropy is introduced on mi-
croscopic scales). In other approaches, the classical structure of gravity was left unchanged
but the quantum theory was tried to be analysed by alternative methods. Such strategies
are for example the asymptotic safety program (where general relativity is analysed by the
utilization of exact renormalization group methods) or by loop quantum gravity (where
the classical structure of general relativity is left unchanged but its behaviour under a non-
standard quantization is analysed). And there exist also approaches, as causal dynamical
triangulations or causal sets, where the spacetime is discretized by hand on microscopic
scales. For more information on different approaches to quantum gravity, consult [109].

As we see, the problem of quantum gravity was tackled from many different directions, but
unfortunately none of those strategies were completely satisfactory. On the other hand, all
those approaches carry some information on possible properties of putative UV-completions
of general relativity and one could ask if there are some unifying threads. In addition one
could ask, if already classical general relativity could tell us something about its small-scale
behaviour. And indeed, in a series of essays (cf. e.g. [42]) Steven Carlip pointed out, that
many approaches to quantum gravity predict some kind of dimensional reduction on mi-
croscopic scales. Moreover he explained, that this behaviour is also classically present in the
vicinity of the Kasner singularity. By this argumentation, a fascinating ”universal” multi-
scale aspect seems to be hidden in general relativity, as a scale-dependent dimensionality is
predicted by so many different approaches.
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1.2. Informal presentation of the key ideas and results

1.2. Informal presentation of the key ideas and results

After having explained, how scale-dependent behaviour arises in the different branches of
physics that are of importance for this thesis, we now want to explain concisely what we
will do in this thesis and how our approaches are motivated. Therefore we will present in
this section the key ideas and findings of this thesis in an informal way and will relate them
to what we have learned about scale-dependence in the last section. Please note, that we
will give a more in-depth introduction to those topics at the beginnings of the respective
chapters. In addition, the results of this thesis are presented from a more formal perspective
in chapter 7.1.

Bose-Einstein condensation by QFT-inspired methods: If one analyses the phase struc-
ture of an ideal Bose gas, one obtains as a result that this system exhibits two phases in
the thermodynamic limit. One of those phases is then distinguished by the property that
the quantum mechanical ground state is macroscopically occupied, which goes under the
name of Bose-Einstein condensation. Although the ideal Bose gas is a well studied system,
whose behaviour was already analysed by Bose and Einstein (cf. [33, 66]) almost 100 years
ago and whose treatment can be found in any textbook on statistical physics, the gener-
alization of this analysis to more realistic, interacting scenarios remained a major obstacle
for many years. This situation changed, when Lieb and Seiringer proved the occurrence of
Bose-Einstein condensation for dilute Bose gases ([124, 123]). But nevertheless, the under-
standing of interacting Bose-gases is still limited and this topic constitutes a vivid area of
research (cf. [170]).

The complicated situation in the interacting case also stimulated a lot of research in the non-
interacting case. A hope thereby could be, that new insights into the behaviour of ideal Bose
gases could also lead to a new perspective on the much more difficult interacting case and
our treatment of chapter 3 should be understood from this perspective, too: The aim of the
analysis of chapter 3 is, to reexpress the thermodynamic limit of an ideal Bose gas in a way
which suggests a certain stability of the results under inclusion of interactions.

Our treatment is motivated by so called heat kernel techniques and especially by the fa-
mous Minakshisundaram–Pleijel theorem (cf. [27, 45]), which states that the trace of the
Heat kernel on general compact n-dimensional Riemannian manifolds exhibits an universal
asymptotic behaviour

tr
(

e−t∆
)
∼ 1

(4π)
n
2

∞

∑
m=0

amtm− n
2 (1.2)

as t → 0+ for ∆ being the Laplacian, independent of the concrete geometry of the manifold
under consideration. In this formula, all geometric information is encoded in the constants
am, which are consequently geometric invariants of the considered manifold (cf. [45]). Now,
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the partition function of a grand canonical ensemble can be written as

Z(β, µ) = tr
(

e−β(H−µN)
)

,

which resembles obviously in some sense the trace of the heat kernel. Consequently one
could wonder, if the grand canonical partition sum exhibits a similar ”universal” asymp-
totic behaviour. In the case of the β → 0 limit this was shown for ideal Boses gases by
Klaus Kirsten in [110, 112, 111], but we are interested if this behaviour is also present in the
thermodynamic limit. In analogy to the geometric case, where the qualitative form of (1.2)
remains unchanged under smooth deformations of the geometry, there is then a legitimate
hope that an asymptotic expansion of the partition sum could exhibit a similar stabilty under
an inclusion of weak interactions. If in addition the occurence of Bose-Einstein condensa-
tion could be traced back to qualitative properties of this asymptotic expansion, one could
be optimistic that this strategy could tell us something about Bose-Einstein condensation in
the case of weak interactions.

The analysis of chapter 4 should be understood as a first step of this research program. We
will show there by the use of QFT-inspired ζ-regularization methods, that the grand canoni-
cal potential, which is proportional to the natural logarithm of the partition function, has an
asymptotic expansion under the thermodynamic limit which resembles the form of above
mentioned heat kernel expansions. Moreover we will see there that the form of those expan-
sion differs drastically between the two phases: In the non-condensation phase it exhibits –
similar as the heat kernel expansion – a singularity of finite order, while in the condensation
phase it exhibits a singularity of infinite order. The value of the thermodynamic observables
in the thermodynamic limit is then encoded in the coefficients of those expansions, but due
to the singular behaviour of the expansion in the condensation-phase, the observables di-
verge in this case. But we will see then, that those divergencies can be cured by an infinite
renormalization of the chemical potential, which goes in full analogy to the renormalization
procedure in quantum field theory and causes the system to exhibit condensation.

Renormalizing the initial singularity in classical field theory: Now to something com-
pletely different. It is commonly accepted, that cosmological singularities constitute a seri-
ous conceptional problem of general relativity since they mark portions of spacetime, where
the basic geometric entities of spacetime break down (cf. [91]). Consequently, those objects
are one of the major motivations for the need of quantum gravity, since it is expected that
they should not be present in a more complete theory of gravity.

Hence, cosmological singularities are an important testing ground for theories of quantum
quantrum gravity and a lot of research was published concerning their properties in various
different approaches to quantum gravity. But one could look at them also from a different
perspective: Instead of getting rid of them by modifying general relativity, one could ask if
they can be probed by any realistic experiment at all. Since all matter theories are known
to be quantum field theories one could ask, if either the quantum non-commutativity or the
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field-character of matter could wash out the singular character of cosmological singularities.
This perspective was for the first time adopted by Horowitz and Marolf in [100] where they
have shown that certain timelike curvature singularities appear non-singular when probed
by quantum mechanical test particles. Those results were then extended by Schneider and
Hofmann (cf. [96, 97]), who showed that the Schrödinger wave functional of a scalar quan-
tum field behaves benignly in the vicinity of the Schwarzschild and the Kasner singularity,
and by Ashtekar and Schneider (cf. [15]), who showed that the FLRW singularity is tame
when probed by quantum field theoretic operator valued distributions.

Nevertheless, those investigations which analysed the impact of cosmological singularities
had one caveat: It is not clear, if the tameness of the quantum fields is really caused by
the quantum aspects of the theory or already a property of the classical theory which was
used for quantization. Our analysis of chapter 4 should be understood as a first step to
answer this question by analysing the properties of a classical scalar field in the vicinity
of the big bang singularity. The main motivation for our treatment comes thereby from
the aforementioned publication [15] by Ashtekar and Schneider. There they had shown,
that the big bang singularity appears tame when probed by operator valued distributions
in the context of scalar quantum field theory, where the tameness is associated with the
distributional properties of the field operators. But distributions are in no sense tied to
quantum field theory and one could also wonder, if distributional quantities in the context
of classical field theory could show a similar behaviour.

We will therefore analyse the existence and the properties of distributional solutions to the
conformally coupled Klein-Gordon equation in the vicinity of the singularity of an radiation
dominated FLRW spacetime. We will thereby obtain as a result, that distributional solutions
exist and that they are related to the usual smooth solutions by a procedure which resembles
the above mentioned Epstein-Glaser approach to infinite renormalization. Moreover we
show, that those solutions define distributional states on the algebra of multilocal classical
Wick polynomials which have the property that all higher order observables stay finite on
the singularity. Consequently the renormalized, distributional classical field theory shows
a higher regularity than its non-renormalized, smooth cousin. Those results hence show on
the one hand, that renormalization procedures are not only tied to quantum field theory but
can also be of use in the context of classical field theories. On the other hand they make
it plausible, that the tame behaviour of quantum fields in the context of [15] is a property
which is also shared by the classical background theory.

Unfortunately our analysis has also some undesirable properties. Especially we will see
that it relies on the neglection of back-reaction effects which is problematic in this context.
Moreover we will understand, that the renormalization procedure brings a high amount of
indeterminacy into the game, whose role has to be investigated by future research.
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Ultrarelativistic behaviour of gravity in extreme situations: Another perspective on cos-
mological singularities is given by their geodesic geometry. Especially we are interested in
the properties of freely falling classical test particles in singular spacetimes. Thereby we
will encounter an interesting behaviour in the vicinity of the big bang singularity in section
5, which was to our best knowledge not described before: Time- and spacelike geodesics
behave increasingly lightlike as they approach the singularity. Especially, the short-time
asymptotics for time- and spacelike geodesics in the vicinity of the big bang singularity is
dominated by the corresponding asymptotics of null geodesics, which is a sign for an ultra-
relativistic behaviour on those short time-scales.

Motivated by this finding we will ask the question, if this behaviour is special to the con-
crete situation or a more general feature of gravity in extreme situations. And indeed, by
reviewing the literature we will point out, that there are various situations in which gravity
seems to exhibit an ultrarelativistic behaviour which accompanies the aforementioned di-
mensional reduction. Moreover we will see, that causal relations can be understood as an
effective description of lightlike relations since two spacelike events are causally related if
and only if they are related by a – possibly very large – chain of lightlike relations. Motivated
by those thoughts we will then rise the question, if it could be that gravity is described by
some sort of ultrarelativistic theory on microscopic scales.

The microscopic ultrarelativistic symmetries of spacetime: Motivated by the question, if
gravity could be described by some sort of ultrarelativistic theory on microscopic scales we
rise the consecutive question, by which microscopic gauge symmetry groups such a theory
could be ruled. To answer this question at least partially, we will investigate in chapter 6
the symmetries of microscopic tangent light cones. The motivation for this investigation is
twofold: On the one hand, a pseudo-Riemannian spacetime together with the additional
constraint that all particles have to move on lightlike paths constitutes a very simple model
for an ultrarelativistic spacetime. On the other hand, the behaviour of geodesics in the vicin-
ity of FLRW spacetimes motivates the idea, that tangent spaces could degenerate to tangent
light cones on very small scales.

But before we are able to investigate the symmetries of microscopic tangent light cones, we
first have to understand their geometric structure. Thereby we will obtain as a result, that
the metric tensor, although it is degenerate thereon, restricts to a kind of distance metric on
infinitesimal tangent light cones. This metric, together with other more elementary geomet-
ric structures, constitutes then a set of universal geometric structures which are present on
any microscopic tangent light cone, independent of the macroscopic behaviour of the grav-
itational field. Moreover, those structures can be understood as an instance of a weak ultra-
relativistic Carroll structure (cf. [61]) and resemble the universal structures at null-infinity
that appear within the Bondi-Metzner-Sachs-analysis (cf. [13]).

We will then analyse the symmetries of those ultrarelativistic geometric structures, where
we have to distinguish between two cases: The case of isometry and the case of conformal
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invariance. We then obtain as a result, that the conformal symmetry group of the afore-
mentioned geometric structures has a rich mathematical structure since it contains infinitely
many Lorentz subgroups which are parametrized by so called crossed homomorphisms.
The isometry group appears then as one of those Lorentz subgroups and is a non-trivial
representation of the original Lorentz group. Although it is induced by the original linearly
represented Lorentz group on the full tangent space, its restricted action to the light cone
has a non-trivial appearance: It acts in terms of conformal transformations on the space of
null-directions and simultaneously rescales the length of null-vectors.

An important question is then of course, how the occurrence of infinitely many Lorentz
subgroups should be interpreted. Fortunately, there exists a quite picturesque interpreta-
tion. To understand this, we first have to recall that it is often said, that there exists no
meaningful length-notion for null vectors, since the metric tensor is degenerate on the light
cone. In this context meaningful is usually understood as synonymous to Lorentz invariant.
But we will see, that there exist meaningful length notions for null vectors, if one assumes
them to be just Lorentz covariant. The conformal automorphism group then comprises all
possible transformation laws for such covariant length notions and each Lorentz subgroup
corresponds to a Lorentz covariant length notion for null vectors.

We have already mentioned above, that the universal geometric structures which are present
on infinitesimal tangent light cones resemble those at null-infinity in the context of the
Bondi-Metzner-Sachs (BMS) analysis. We will see then, that this analogy can be taken fur-
ther since the mathematical structure of the conformal symmetry group resembles the struc-
ture of the original BMS group to a great extent. Moreover, both groups have a similar in-
terpretation: While the original BMS-group is tied to geometric structures on a macroscopic
null surface associated with asymptotic flatness, our symmetry groups are affiliated to mi-
croscopic null surfaces associated with the equivalence principle. Moreover, the conformal
symmetry group as well as the isometry group are both eligible as gauge groups for the
bundle of null vectors, which qualifies them as microscopic symmetry groups of a putative
ultrarelativistic gravitational theory.

Especially we have shown thereby, that BMS-like groups constitute not only macroscopic,
asymptotic symmetry groups in cosmology but describe also a microscopic and apparently
unknown microscopic symmetry of pseudo-Riemannian geometry.
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1.3. Outline of the thesis

We now want to give a concise overview over the outline of this thesis:

– In chapter 2 we will review the principle of (infinite) renormalization from different
perspectives. Therefore we will explain in section 2.1 how this formalism makes its ap-
pearance in the standard formalism of quantum field theory. In section 2.2 we will ex-
plain, that infinite renormalization is not only of importance in quantum field theory,
but can also appear in other branches of physics as quantum mechanics, electrostatics
or even classical mechanics. In section 2.3 it is then reviewed, how infinite renormal-
ization can be formalized from a distributional perspective in the context of quantum
field theory while in section 2.4 we will explain, why infinite renormalization can be
understood as a multi-scale phenomenon.

– In chapter 3 we will investigate the thermodynamic limit of an ideal Bose gas by QFT-
inspired methods and especially we will show thereby that this situation is an instance
of infinite renormalization within the framework of quantum statistical mechanics.
Therefore we will give in section 3.1 a more in-depth introduction to the motivation,
ideas and concepts of our investigation. In section 3.2 we will then review the basics
on the quantum statistics of the harmonically trapped ideal Bose gas, which will be
the starting point of our analysis. In section 3.3 then the asymptotic expansions of the
grand potential are calculated for the different phases by utilization of ζ-regularization
methods. In section 3.4 we will then analyse the thermodynamic limit of this system
by utilization of those techniques. Thereby we will see, that an infinite renormalization
of the chemical potential is needed in the condensation phase. In section 3.5 we will
conclude this chapter by giving a concise summary and a short outlook on further
research.

– In chapter 4 we will explain, how a classical field theory can be renormalized in the
vicinity of the initial singularity by utilization of distribution theory. Therefore we
will review in 4.1 the basics regarding cosmological singularities and completeness
concepts. Moreover we will present the motivation and the ideas behind our treatment
more thoroughly. In section 4.2 we will then review the basics of a classical massless
scalar field in a radiation dominated big bang spacetime. In section 4.3 we will then
reformulate this field theory in terms of an algebraic language. In section 4.4 then the
renormalization procedure is performed on the level of classical solutions, classical
n-point functions and classical states. Finally we conclude this chapter in section 4.5
by summarizing it, giving an outlook to more general situations and pointing out the
drawbacks of our investigation.

– In chapter 5 we will present some evidence, that gravity behaves ultrarelativistically in
extreme situations and formulate the claim, that it could be described by an ultrarela-
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tivistic field theory on fundamental scales. Therefore we will investigate in section 5.1
the qualitative behaviour of geodesics in FLRW background and will show thereby,
that they exhibit an ultrarelativistic behaviour in the vicinity of the singularity. In
chapter 5.2 we will present some evidence from the literature, that gravity exhibits
a dimensional reduction and an ultrarelativistic behaviour in extreme situations. In
chapter 5.3 we will then conclude this section and formulate the above mentioned
claim.

– In chapter 6 we will investigate the symmetry groups of microscopic tangent light
cones. In section 6.1 we will give an in-depth introduction to our treatment and will
explain its features and its relation to the literature. In section 6.2 we will then intro-
duce the light cone bundle as the basic geometric entity of our study and will investi-
gate its universal geometric structures. In section 6.3 then the automorphism groups
of a single microscopic tangent light cone are derived while in section 6.4 the mathe-
matical structure of the conformal automorphism group is analysed. In section 6.5 on
the other hand it is explained, how the isometry subgroup arises as a special Lorentz
subgroup of the conformal automorphism group. In section 6.6 we then explain, how
the occurence of infinitely many Lorentz subgroups can be interpreted. In section
6.7 we will then show, that the identified automorphism groups are eligible as gauge
groups for the light cone bundle, while in section 6.8 we will explain their relation to
the original BMS analysis. In section 6.9 we will then discuss possible implications of
the present investigation and in section 6.10 we will present a short summary.

– In section 7 we will conclude this thesis by giving a concise summary and by com-
menting on promising directions of further research.

1.4. Notation and conventions

Finally we want to present concisely the notation and conventions for those chapters where
it is needed.

Conventions for chapter 2: In chapter 2 we will use the metric signature (+1,−1,−1,−1),
in contrary to all other parts of the thesis. The reason for this is, that this metric signature is
better suited to those quantum field theoretic computations which are performed in section
2.1.

Conventions for Chapter 4 and Appendix D: We use in those chapters the following
conventions, which equal the conventions used in [44]. The metric signature is given by
(−1,+1,+1,+1) and the Levi-Civita connection is for vector fields X = Xµ∂µ, Y = Yµ∂µ ∈
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X(M ) given by

DX(Y) = XµDµ (Yν∂ν) = Xµ
(

∂µYσ + YνΓσ
µν

)
∂ν =: Xµ

(
DµYσ

)
∂σ

where we have set Dµ := D∂µ
and defined the Christoffel symbols

Γσ
µν∂σ := Dµ∂ν.

Moreover, the Christoffel symbols are given by the Koszul formula

Γσ
µν =

1
2

gσρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
and the Riemann curvature tensor is for vector fields X, Y, Z ∈ X(M ) defined as

R(X, Y)(Z) = DXDYZ− DYDXZ− D[X,Y]Z.

Its coordinate expression is given by

Rρ
σµν∂ρ := R(∂σ, ∂µ)∂ν

and can be calculated in terms of Christoffel symbols as:

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ

The Ricci tensor is given by Rµν := Rλ
µλν and the Ricci scalar is given by R = Rµ

µ.

Conventions for chapter 6: Throughout this chapter, M denotes a time- and space-orientable
spacetime with pseudo-Riemannian metric g of signature (−1,+1,+1,+1). η will denote
the Minkowski metric η = diag(−1,+1,+1,+1). We will denote the tangent bundle of M

by TM and the tangent space at p ∈M by TpM . Moreover, we will write TU for the restric-
tion of TM to an open set U ⊂M . The space of vector fields over an open set U ⊂M will
be written as X(U) and X ∈ X(M ) denotes the global timelike vector field that describes
the time orientation of M . We assume in addition, that X is normed, i.e. g(X, X) = −1,
and denote the restriction of X to TpM by Xp. We denote the proper orthochronous Lorentz
group by SO+(1, 3) and the group of all complex 2× 2 matrices with unit determinant by
SL(2, C). Unit elements of matrix groups will be denoted by 1. Due to orientability of M ,
the structure group of TM is reduced to SO+(1, 3), i.e. there exist bundle atlases for TM

whose transition functions lie in SO+(1, 3). Let C be an open cover. We will then denote in
the sequel by A = {(U, ψ)|U ∈ C} an atlas consisting out of local trivializations

ψ : TU → U ×R4
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that are induced by vielbein frames. I.e. for each (U, ψ) ∈ A there is an associated vielbein
frame (U, (Eµ)µ=0,...,3) with Eµ ∈ X(U) satisfying

g(Eµ, Eν) = ηµν

g(E0, X) = −1

such that for any v = vµEµ ∈ TpM with p ∈ U

ψ(vµEµ) = (p, (vµ))

holds. We will denote in the sequel vielbein frames just by (U, Eµ) or (Eµ). We will write
the restriction of g to TpM as gp. Let p ∈ U. The restriction of (U, ψ) to TpM with p ∈ U
will be written as

ψp : TpM → R4, vµEµ 7→ (vµ),

where (Eµ) is the vielbein associated to (U, ψ). The restriction of Eµ to p ∈ U will just be
denoted by Eµ. The euclidean norm on R3 will be denoted by | · |. Moreover we define the
2-sphere S2 ⊂ R3 as

S2 :=
{

ê = (ê1, ê2, ê3) ∈ R3
∣∣∣|ê| = 1

}
and denote the Riemann sphere by C∞ := C ∪ {∞}. Coordinate expressions in R4 will
always be written as (vµ) and vectors in R3 by ~v or (vi). Unit vectors in R3 will be denoted
by v̂. For a 4-vector (v0, v1, v2, v3) we define ~v := (v1, v2, v3) = (vi). All structures affiliated
with the Riemann sphere will be introduced in the main text when they are needed and
are additionally reviewed concisely in appendix C.1. Finally, we define R+ := (0, ∞) and
denote the set of positive valued smooth functions on C∞ by C∞(C∞, R+). Smooth functions
associated with other domains are denoted analogously by C∞(·, ·). Products of smooth
functions and numbers will be denoted by ·.
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2. On renormalization

Renormalization is one of the key techniques in quantum field theory and statistical physics.
But despite of its importance, its interpretation and validity can be hard to grasp. Since a
good understanding of this concept will be of great importance in this thesis, we want to
review it concisely from different perspectives: In section 2.1 we will review how infinite
renormalization makes its appearance in the standard formalism of relativistic quantum
field theory. Therefore we will consider a simple example and explain the philosophy of
renormalization within this framework. In section 2.2 we will then see, that infinite renor-
malization does not just appear in relativistic quantum field theory, but in many branches of
physics. In 2.3 we will then take a more mathematical perspective and will explain thereby
how renormalization in quantum field theory can be interpreted in the context of distribu-
tions. Finally, we will then explain in section 2.4 how infinite renormalization complies with
the concept of multiscale phenomena.

2.1. Perturbative renormalization in quantum field theory

When a physics student encounters the concept of infinite renormalization in quantum field
theory for the first time, this can be a disappointing or shocking experience. The calculation
of higher order observables in quantum field theories as QED or QCD includes divergent
integrals, which negates on a first glimpse the predictive power of such theories. The stan-
dard textbook treatment of this problem is then a rather dubious procedure in which the
occuring infinities are absorbed in redefinitions of coupling constants, which finally leads
to finite observables (see e.g. [144]). The validity, consistency and interpretation of this pro-
cedure is often left unclear, and the student is left with the choice of either digging deeper
or accepting this unsatisfactory situation by getting used to it. It is important to point out,
that even the grandfathers of quantum field theory had big problems with accepting this
procedure. Richard Feynman wrote for example in [74]:

It is what I would call a dippy process. Having to resort to such hocus-pocus has pre-
vented us from proving that the theory of quantum electrodynamics is mathematically
self-consistent.
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And Dirac said in [53]:

This is just not sensible mathematics.

On the other hand, this renormalization procedure is obviously a great success, since it leads
to correct predictions for measurable quantities. In this section we want to review this pro-
cedure and will therefore present a simple toy example: The φ4-model up to first order in
perturbation theory. The calculations of this section follow [128] and we choose – only in
this section – the signature (+,−,−,−) as a convention for the Minkowski metric.

The φ4-model: The φ4-model is one of the simplest interacting quantum field theoretic
models and its action on flat spacetime is given by

S[φ] =
∫

R4
d4x

(
1
2

∂µφ∂µφ− 1
2

m2φ2 − λ

4!
φ4
)

. (2.1)

The corresponding Hamiltonian is then H = H0 + λHI with

H0 =
∫

R3
d3x

1
2

[
Π2 + (∇φ)2 + m2φ2

]
being the free Hamiltonian and

HI =
∫

R3
d3x

1
4!

φ4

being an interaction term, where Π denotes the momentum conjugate to φ.

The divergency structure at first order in perturbation theory: As a warm-up, we first
consider the expression for the 2-point function in momentum space up to first order in
perturbation theory. I.e. we want to expand

〈Ω|T {φ(x)φ(y)}|Ω〉 =
〈

0
∣∣∣∣T{φ(x)φ(y)exp

[
−i

λ

4!

∫
d4zφ4(z)

]}∣∣∣∣0〉
up to first order in λ, where |Ω〉 denotes the ground state of H and |0〉 denotes the ground-
state of H0. By the usual machinery (cf. e.g. [144, 128]), this is given by the following sum
of Feynman graphs:

x y + x y
z

.

We now consider the second graph, whose expression in position space is given by the
integral

x y
z

=
(−iλ)

2

∫
R4

d4zDF(x− z)DF(0)DF(z− y)
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and which is called a tadpole-graph. The associated expression in momentum space is then,
after Wick rotation and after amputation of external legs, given by

− iλDF(0) =
(−iλ)

2

∫
R4

d4k
(2π)4

1
k2 + m2

which diverges. By the introduction of an euclidean momentum cutoff Λ > 0 this can be
reexpressed as

−iλDΛ
F (0) =

(−iλ)
32π2

(
Λ2 + m2 log

(
m2

Λ2 + m2

))
and hence we see, that the 2-point function at 1-loop level exhibits a logarithmic and a
quadratic divergence as Λ → ∞. To make the connection of this tadpole-graph to observ-
able quantities clearer, we now resum the 2-point function at 1-loop order. That means, that
we consider the ”dressed” propagator

DR(p) = + + + · · ·

=
i

p2 −m2
0 − λDΛ

F (0)
. (2.2)

By comparing (2.2) with the free Feynman propagator, that is associated with the non-
interacting Hamiltonian H0 and is given by

i
p2 −m2

0
,

we observe, that the resummation of the tadpole graph has the effect to change the mass
from m2

0 to an effective mass of m2
0 + DΛ

F (0). Since it seems reasonable that the mass of a
particle is a measurable quantity, we can define the mass as ”predicted” by the φ4-model to
be

M(Λ) : = m2
0 + λDΛ

F (0)

= m2
0 +

λ

32π2

(
Λ2 + m2log

(
m2

Λ2 + m2

))
, (2.3)

which obviously diverges under removal of the cutoff. On the other hand, the 2 → 2 scat-
tering amplitude is non-divergent at O(λ), since it contains no loop. It is just given by

MΛ
2→2 =

p1

p2

k1

k1

= −iλ
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and is hence especially Λ-independent.

The idea behind infinite renormalization: If we regard the mass of a particle – as modeled
by the pole of the resummed propagator – as an observable, the result of the last section
is indeed unsatisfactory: It seems, that a naive calculation predicts an infinite value for
the mass, which puts the validity of the φ4-model into question. But this problem can be
resolved, if one understands the action (2.1) not as the valid microscopic description of a
physical system, but merely as a tool for the construction of a reasonable theory by taking
an appropriate limit. Thereby the first step will be, to consider the action (2.1) only as valid,
as long as a finite cutoff Λ > 0 is present. In this case all observables are finite and de-
pend explicitely on Λ. Since one is ultimately interested in the limit Λ → 0, one could then
use this family of physical systems, parametrized by finite cutoffs Λ > 0, to approximate
a limiting system with vanishing cutoff. The results of the last paragraph imply then, that
the naive limit, where all physical parameters are assumed to be fixed as Λ varies, does
not yield a meaningful limiting theory. But one could consider more complicated limit-
ing procedures by demanding, that the parameters of the theory, i.e. λ and m in our case,
should depend explicitely on the cut-off Λ, too. Maybe, as Λ → 0, one could then approx-
imate non-trivial limiting theories, which have the property, that all observables stay finite
as Λ → 0, while the initial parameters λ, m degenerate as Λ → ∞. From this point of view,
one can understand the procedure of infinite renormalization as a tool for the investigation
of the boundary of the family of theories parametrized by the cutoff Λ and the occuring
couplings.

The remaining question is then, how the form of those Λ-dependent couplings should be
guessed. To answer this question we will consider for a moment a more general situation in
which the action S depends on n couplings g1, ..., gn and where a general regulator Λ > 0 is
present, that is not necessarily a cutoff but could be an inverse lattice spacing, for example.
Then recall, that the ultimate goal of any physical theory is to make numerical quantitative
predictions for all possible experiments, as long as the free parameters of the theory were
already fixed by measurement. The predictive power of the theory is thereby encoded in the
property, that a finite amount of initial measurements should be enough to fix all parameters
of the theory which determine then all other experimental outcomes. In the present situa-
tions we have n couplings and hence it is reasonable, that n observables should be enough
to determine their values. Hence assume, that we have n observables O1, ..., On which were
measured by some experimentalist to have a numerical value v1, ..., vn ∈ R. Within the
framework of our theory, those observables then can be calculated in terms of the action
S and thus depend explicitely on the couplings g1, ..., gn and the regulator Λ. Hence, they
are given by functions Oi(g1, ..., gn; Λ). One could then define the Λ-dependent couplings
implicitly as those functions gi(Λ) which satisfy

Oi(g1(Λ), ..., gn(Λ), Λ) = vi (2.4)
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for all i = 1, ..., n. Then, the observables obviously reproduce the measured values vi in the
limit Λ→ ∞. Such conditions, which fix the Λ-dependence of the bare couplings gi in terms
of measurable quantities vi are called renormalization conditions. Please note, that one could
also use more general renormalization conditions of the form

lim
Λ→∞

Oi(g1(Λ), ..., gn(Λ), Λ) = vi, (2.5)

which just fix the asymptotic behaviour of the Λ-dependent couplings gi(Λ) as Λ → ∞.
The renormalizability of the theory is then encoded in the statement, that one just needs a
finite amount of renormalization conditions to render the limits of all reasonable observ-
ables finite as Λ → ∞. This encodes also the predictive powe of the theory: Just a finite
amount of measurements is needed to fix the functional or the asymptotic behaviour of the
Λ-dependent couplings in terms of renormalized couplings vi and to render all observables
finite as Λ → ∞. In addition, the observables do not depend on the microscopic couplings
gi anymore, but on the renormalized couplings vi.

The renormalization procedure: As explained in the last paragraph, it is the objective of
the renormalization conditions to connect the initial parameters of the theory with measur-
able, experimentally accessible quantities, such that the latter fix the asymptotic behaviour
of the former under the limit Λ → 0. Hence we have to decide which observables in the
context of the φ4-theory should be used in those conditions. Although it would be desirable
to choose observables which correspond directly to measurable quantities, it is often more
practicable from a theoretical perspective, to choose to choose some sort of ”intermediate
parameters” (cp. [137]) as renormalized couplings, which are easily calculable in the the-
oretical model and experimentally accessible, although not directly measurable. This also
shows that renormalized parameters are no true constants of nature, but only valid in the
context of the specific models (cp. [137]).

M2→2 as a scattering amplitude is directly measurable and it is hence instructive to use it
in the renormalization conditions. On the other hand, the tadpole graph DF(0) does not
even depend on external momenta and hence it seems unreasonable that it can be directly
measured. But the effective mass (2.3) should be experimentally accessible and hence we
want to utilize it in the renormalization conditions, too. Let us assume hence that our ex-
perimentalist has measured some quantities from which we can extract numerical values of
the scattering amplitudeM2→2 and the effective mass M. Consequently we have have

lim
Λ→∞

M(Λ)
!
= m2

R and lim
Λ→∞

iMΛ
2→2

!
= λR

as renormalization conditions, where mR and λR are numerical values extracted from exper-
iments which are called the renormalized mass and the renormalized coupling, respectively.
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2.2. Some non-standard examples for infinite renormalization

More explicitly, those renormalization conditions are given by

lim
Λ→∞

[
m0(Λ)2 +

1
32π2

(
Λ2 + m0(Λ)2log

(
m0(Λ)2

Λ2 + m0(Λ)2

))]
!
= m2

R (2.6)

and

lim
Λ→∞

λ0(Λ)
!
= λR,

which fixes the asymptotic behaviour of m0(Λ) and λ0(Λ) as Λ → ∞ (cf. [128]). In this
case, the coupling λ is not renormalized at first perturbative order, i.e. λ0(Λ) = λR +O(Λ).
But the renormalization condition (2.6) means, that we have to choose the Λ-dependent
coupling m0(Λ) in such a way, that it cancels1 the divergency in the effective mass M(Λ).
Under this renormalization, the limit Λ → ∞ is then well-defined and any observable is
calculable up to first order in perturbation theory and depends on λR and mR.

On renormalizability and non-renormalizability: Perturbative renormalizability then means
in essence, that the procedure of the last paragraphs can be performed, at least in principle,
for all possible Feynman diagrams up to any order in perturbation theory, under the require-
ment, that finitely many bare couplings in the initial action are sufficient for the absorption
of all occurring divergences. This means especially, as said before, that renormalizable the-
ories have predictive power and are in principle valid up to arbitrary high energy scales:
Finitely many measurements are sufficient to determine the free parameters (i.e. the renor-
malized couplings or the cut-off dependent bare couplings) of the theory, which fixes then
the experimental outcomes of all other measurements.

On the other hand, non-renormalizable theories, for which above procedure fails, should be
regarded as either just valid up to some energy scale or as theories without predictive power:
For such theories, infinitely many bare couplings have to be introduced in order to absorb
the occurring infinities under removal of the cut-off. Hence, infinitely many measurements
are needed to fix the free parameters of the theory and consequently it looses its predective
power. Nevertheless, non-renormalizable theories are perfectly fine as low energy effective
theories. We will comment on this again in section 2.4.

2.2. Some non-standard examples for infinite renormalization

After having explained thoroughly the philosophy and the formal machinery behind infinite
renormalization we now want to make contact to some simple examples to illustrate our
gained knowledge. People often think, that infinite renormalization is a technique which

1Actually, in the context of perturbative renormalization, this cancellation has to happen in a way that is com-
patible with the perturbative expansion in λ, which gives rise to some subtleties. Nevertheless, we won’t
bother with this, since we do not deal with perturbative renormalization in this thesis. More information on
this can be found in [51].
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2.2. Some non-standard examples for infinite renormalization

just occurs in quantum field theory. But this is not true: There are many examples from many
different branches of physics which fit into the template presented in the last section. In this
section we will present a simple example from quantum mechanics more thoroughly and
will comment at the end of the section on other examples from other branches of physics.

A non-standard example from quantum mechanics: We present a simple example of a
2-state quantum system, which is due to [137]. We therefore consider the 2-dimensional
Hilbert space C2 and define the Hamiltonian

HΛ = H0 + g0VΛ, (2.7)

where g describes a coupling, Λ > 0 is a regulator and H0 and VΛ are given by the matrices

H0 =

(
0 0
0 ω

)
, VΛ =

(
−1 Λ
Λ 0

)
.

Here the unperturbed Hamiltonian H0 describes a situation of a 2-state system with ground
state energy 0, whose excited state has excitation energy ω. VΛ can be interpreted as an
external potential. Now imagine, that some experimentalist has prepared a 2-state system
with excitation energy ω subject to some external potential in his lab and we are ultimately
interested in the question if the Hamiltonian (2.7) describes this system in the limiting case
Λ→ ∞. We therefore calculate now the energy eigenvalues of HΛ, which are understood as
the only two observables of this system and are given by

E±Λ =
1
2

(
ω− g0 ±

√
(ω + g0)2 + 4g2

0Λ2

)
.

Obviously, those observables diverge in the limit Λ → ∞. Now imagine, that the experi-
mentalist has measured the ground state energy E− to have the value E−m . I.e. we have the
renormalization condition

lim
Λ→∞

E−Λ = E−m .

Choosing the Λ-dependent bare coupling g0(Λ) to be

g0(Λ) = gRΛ−1 (2.8)

we then obtain
lim

Λ→∞
E−Λ =

1
2

(
ω−

√
ω2 + 4g2

R

)
!
= E−m ,

which can be solved for gR. Then the renormalized model gives the excited energy E+ as a
prediction:

lim
Λ→∞

E+
Λ =

1
2

(
ω +

√
ω2 + 4g2

R

)
(2.9)
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2.2. Some non-standard examples for infinite renormalization

Hence the system is renormalizable: One measurement is needed to fix the renormalized
parameter gR – i.e. the precise form of the Λ-dependent coupling (2.8) – which determines
then the numerical value of all other observables – i.e. in this case just the excitation energy
(2.9). In this example we can also perform the limit on the level of the Hamiltonian, since

HΛ = H0 + g0(Λ)VΛ → H∞

as Λ→ ∞, where H∞ is defined as

H∞ =

(
0 gR

gR ω

)
.

By comparison with section 2.1 we then understand, that this situation complies with the
template presented there.

Other examples: Another well-studied quantum mechanical system which constitutes an
example for the occurrence of an infinite renormalization is the two-dimensional Schrödinger
equation subject to an attractive delta potential. This enlightening example was studied
many times (e.g. [168, 24, 105, 82, 131, 102, 129, 7]) and is one of the standard examples
for the usage of renormalization techniques in quantum mechanics2. In addition, there exist
also examples for infinite renormalization in other branches of physics as electrostatics ([47])
or classical mechanics ([73]).

2A good reference for this is given by [102], although there is a typo in the definition of the Hamiltonian: The
potential term in this reference is given by δ(x)2 which makes no sense since the delta distributions cannot
be squared. The potential term should hence be replaced by δ(x).
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2.3. A distributional point of view

2.3. A distributional point of view

In this section we want to give an alternative perspective on infinite renormalization in
the context of quantum field theory by utilization of the theory of distributions3. Thereby
we will understand that the infinities which plague quantum field theory in its standard
formulation are caused by an inadequate treatment of distributional objects.

A simple example: As a prelude we will consider the function

f (x) = θ(x)x−1

where θ is the Heaviside step function. This example is covered in [150] and we will review
their treatment here. Unfortunately, f does neither define a tempered distribution in S ′(R)

nor a distribution in D′(R) since ∫ 1

0
f (x)dx

diverges. But it defines a distribution in S ′(R \ {0}) and we could ask the question, if there
exist extensions of it in S ′(R), i.e. distributions χ ∈ S ′(R) which satisfy

χ(h) =
∫

R
dx f (x)h(x)

for all h ∈ S(R \ {0}). And indeed, it is easy to show, that, for any M > 0,

χM(h) :=
∫ M

0

f (x)− f (0)
x

+
∫ ∞

M

f (x)
x

(2.10)

defines a distribution in S ′(R) which extends the distribution in S ′(R \ {0}) defined by f .
Since the distribution χM is a distributional extension of the original distribution, χM − χN

should vanish on R \ {0} for all M, N > 0 and hence the distribution χM − χN should have
distributional support {0}, which is indeed the case as one easily calculates

χM(h)− χN(h) = −ln
(

M
N

)
δ(x).

By this we see, that there is a suitable freedom in the process of extending a given distribu-
tion: Any distribution

T =
m

∑
α=0

cα∂αδ (2.11)

could be added to χM and the resulting distribution χM + T would still be an extension to
the distribution defined by f . Hence it seems that there is an infinite parameter freedom
in the choice of an extension. But indeed, this freedom can be reduced to a 1-parameter

3The basics of distribution theory are recapitulated in appendix A.
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freedom by the observation that f really defines a distribution on

{ f ∈ S| f (0) = 0}.

The extensions in S ′(R) of this distribution are then just given by the family (χM)M>0. To
understand this, let f ∈ { f ∈ S| f (0) = 0} with f ′(0) 6= 0. It then follows, that

δ′( f ) 6= 0

and hence we cannot add a distribution of the form (2.11) with m ≥ 1 to χM to obtain an-
other distributional extension. Consequently, there is a 1-parameter family of extensions in
S ′(R) of the distribution defined by f , which are called renormalizations of this distribution.
We will understand soon, that the renormalization procedure in quantum field theory can
be understood along similar lines: Divergences occur, since distributions are evaluated on
functions for which they are ill-defined. The renormalization procedure corresponds then
to an analysis of adequate distributional extensions and renormalized couplings correspond
then to the residual freedom in the choice of distributional extensions analogous to the 1-
parameter freedom parametrized by M > 0 in the above example.

Extensions of distributions: In the last paragraph we have understood how an elementary
distribution can be extended from S ′(R \ {0}) to S ′(R). In this paragraph we now want to
review concisely the general theory of distributional extensions.

Therefore let U ⊂ V ⊂ Rn denote two open sets and let χ ∈ D(U) be a distribution on U.
Then a distribution χ̃ ∈ D(V) is called an extension of χ, if

χ̃(h) = χ(h)

holds for all h ∈ D(U) (cf. appendix A). Of special importance in quantum field theory are
thereby so called point extensions, which are distributions in D(Rn) which extend distribu-
tions inD(Rn \ {0}). As the most general distribution inD(Rn) with distributional support
{0} can be written as

T = ∑
|α|≤m

cα∂αδ (2.12)

with α being a n-dimensional multi-index (cp. Thm. 2.3.4 of [98]), one expects – in analogy
to the simple example of the last paragraph – that two point extensions of a given distribu-
tion should differ by a distribution of the form (2.12). Hence it seems that there is an infinite
parameter freedom in the choice of point extensions. But this freedom can be further re-
stricted by considering the so called scaling degree. Therefore define first a scaling map on
test functions by

R+ ×D(Rn), (λ, h) 7→ λ.h := λ−nh(λ−1 · )
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whose induced action on distributions reads as:

R+ ×D′(Rn), (λ, χ) 7→ λ.χ := χ[λ. · ].

For a distribution χ f (h) :=
∫

Rn dnx f (x)h(x) induced by a smooth function f ∈ C∞(Rn) this
action is for example given by:

(
λ.χ f

)
(h) =

∫
Rn

dnx f (λx)h(x).

We then define the scaling degree of a distribution χ as

sd (χ) := inf
{

ω ∈ R

∣∣∣∣ lim
λ→0+

λω · (λ.χ) = 0
}

.

The relevance of the scaling degree can be understood if one considers a distribution in
D(R) which is induced by the function |x|−n. It is then easy to show, that the scaling degree
of |x|−n is given by n and hence the scaling degree measures in some sense how fast a
distribution inD′(Rn \ {0}) ”diverges” in the vicinity of 0. Hence one could expect, that the
scaling degree controls the extendability of distributions which is indeed the case as stated
by the following theorem:

Theorem 1 (cf. [98, 75, 4])
Let χ ∈ D′(Rn \ {0}). Then:

1. If sd(χ) < n, then sd(χ) has a unique extension χ̂ ∈ D′(Rn) with same scaling degree.

2. If n ≤ sd(χ) < ∞, then there exist distributional extensions χ̂ ∈ D′(Rn) with the same
scaling degree. Moreover, two such extensions differ by a distribution of the form

T = ∑
|α|≤sd(χ)−n

cα∂αδ. (2.13)

which is supported at the origin.

By this we have reviewed the essentials regarding the theory of distributional extensions,
which are necessary to understand its role in quantum field theory. More information on
this important topic can be found in [98].

A distributional interpretation of the divergences in QFT: We now want to understand,
how the divergences occuring in relativistic QFT can be interpreted and cured in the context
of distribution theory. Thereby we will focus in this section just on the concepts and ideas
and will adopt a qualitative reasoning. Our main source for this is [75], while more technical
and complete treatments are for example given by [159, 148].
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We therefore consider the diagram

x1

x2

z1 z2

y1

y2

whose expression in position space is proportional to

∝
∫

R4
d4z1

∫
R4

d4z2DF(x1 − z1)DF(x2 − z1) [DF(z1 − z2)]
2 DF(z2 − y1)DF(z2 − y2)

and which we will rewrite as∫
R4

d4z
∫

R4
d4uDF(x1 − z)DF(x2 − z) [DF(u)]

2 DF(z1 − u− y1)DF(z1 − u− y2).

This expression is not well-defined from a distributional perspective, since it contains the
square of the Feynman propagator. To see that this is really a problem, recall that we have
the asymptotics (cf. [75])

DF(u) ∼
1
u2 (2.14)

as u→ 0 and hence the integral ∫
R4

d4xDF(u)2h(u) (2.15)

diverges for any test-function h ∈ D(R4) with 0 ∈ supp(h). This tells us, that DF(u)2

does not define a distribution in D′(R4). But nevertheless DF(u)2 defines still a distri-
bution in D′(R4 \ {0}), since the integral (2.15) converges for any function h ∈ D(R4)

with 0 6∈ supp(h). This motivates a redefinition of distributional products in QFT: In-
stead of taking the naive ill-defined product, we take the product of two distributions on
the maximal domain where it is well-defined and analyze then its distributional extensions.
This will be done by application of theorem 1 and the occuring renormalization constants
which parametrize the non-uniqueness of the distributional extension correspond then to
the renormalized couplings of the theory. To make this explicit, we first recall (cf. [75]) that
the scaling degree of D2

F is explicitely given by

sd(D2
F) = 4

which is not surprising due to the asymptotic behaviour (2.14). Hence, by theorem 1 and
especially by equation (2.13) it then follows, that distributional point extensions of D2

F exist
and that two such extensions differ by a distribution of the form cδ. By this argumentation,
the expression for the above graph gets finite and a 1-parameter renormalization freedom
appears. The parameter which parametrizes this renormalization freedom corresponds then
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to a renormalized coupling and has to be fixed by experiment.

2.4. Renormalization and physics at different scales

In the past sections of this chapter we have looked from different perspectives on the concept
of infinite renormalization. In this section we want to explain, why infinite renormalization
can be understood as an instance of a multiscale phenomenon.

Infinite renormalization in QFT as a multiscale problem: When we have reviewed the
formalism of infinite renormalization as it appears in relativistic quantum field theory in
section 2.1, we have sketched a more mathematically footed intuition behind this procedure
by saying that infinite renormalization corresponds to non-trivial approximations of ”real”
systems by model systems. In this paragraph we want to give a more physical perspective
by which we will understand, why infinite renormalization can be understood as an instance
of a multiscale phenomenon.

As a starting point we will take the observation, that currently there exists no single theory
of everything: Any known physical theory, no matter if classical or quantum, has its specific
domain of validity and in particular some energy or momentum scale Λ up to which it can
be trusted. Especially, the modern viewpoint on QFT is (cf. e.g. [182]) that any quantum
field theory should be understood as a low energy effective theory, valid up to a momentum
scale Λ. By this, the cut-off Λ as introduced in section (2.1), has a physical meaning: It
should be understood as the energy scale up to which one can trust the physical theory
under consideration and above which the theory should be matched to a more complete
theory.

But how can the concepts of renormalizability and non-renormalizability then be under-
stood in this context? Therefore observe that in the context of a renormalizable theory, the
renormalization condition 2.4 implies that the energy scale Λ can be entirely absorbed into
a redefinition of the microscopic couplings. This means, that a variation of the energy scale
Λ would not affect the form of the action, for example by addition of extra terms and by the
introduction of new couplings, but would just redefine the values of the existing couplings.
In this sense, for a renormalizable theory, the value of the energy scale Λ up to which the
theory can be trusted is irrelevant for the theory itself, since it enters the theory just in terms
of numerical redefinition of the couplings, which should be determined by measurement
anyhow. By this argumentation, the cut-off can also be removed: Since it is irrelevant for
the theory, we can safely send it to ∞ without modifying the experimental predictions of
the theory. Nevertheless, this does not mean, that the theory has to be indeed valid up to
arbitrary high momentum scales. For example, QED is renormalizable but nevertheless it
gets embedded into the electroweak theory at higher energy scales. Renormalizability hence
does not forbid the modification of the theory at high energy scales, but just says that the
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theory could be in principle valid up to arbitrary high energy scales. Non-renormalizability
on the other hand means in this context, that the cut-off Λ should enter the theory as an
extra parameter which determines the length scale up to which the theory should be trusted
and above which new physics is expected to occur, which yields then a renormalizable UV-
completion of the theory. In this sense non-renormalizable theories should be regarded as
low-energy effective theories and are perfectly valid as such. If we calculate for example
(cf. [182]) the four-Fermion amplitude in the non-renormalizable Fermi theory of the weak
interaction, we obtain that the cross section has the behaviour

M∼ G + G2Λ2

for G being the Fermi coupling. By this we see, that the ”error term” G2Λ2 is small, if
G2Λ2 � 1 but gets relevant at scales where Λ reaches G−

1
2 . By this argumentation one

should understand, why the procedure of infinite renormalization as depicted in section
2.1 could be understood as a multiscale problem since it indeed mediates between different
scales and formalizes the statement, to which extent quantum field theories can be under-
stood as effective low energy theories.

On renormalization groups: Another instance of the multiscale aspect hidden in renor-
malization is formalized by so called renormalization groups, which formalize the scale-
dependence of quantum field theories in a more quantitative way. In the context of pertur-
bative quantum field theory, a starting point for the introduction of renormalization groups
is the aforementioned observation that a variation of the cut-off corresponds to a numeri-
cal redefinition of the couplings. Renormalization groups formalize then, how those cou-
plings vary as the cut-off or the momentum scale varies. This change of parameters along
a redefinition of the theory scale is then called a renormalization group flow. By this it
becomes apparent, that a quantum field theory can change to some extent along the renor-
malization group flow: Some couplings – and the corresponding terms in the action – could
become more and more relevant while other become less relevant as the momentum scale
increases or decreases. Consequently, the renormalization group flow formalizes the scale-
dependence of the theory. Since renormalization groups are not used in this thesis, we refer
the interested reader to the literature (cf. [144]). Nevertheless, a qualitative understanding
of this concept will be helpful to understand the motivation behind chapters 5 and 6.
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3. Bose-Einstein condensation by

QFT-inspired methods

In the last chapter we have reviewed the technique of infinite renormalization from different
perspectives. In particular, we have seen in section 2.2 that the concept of infinite renormal-
ization does not only make its appearance in relativistic quantum field theory, but is also of
relevance in other branches of physics as quantum mechanics or electrostatics. In this sec-
tion we will present another application of the technique of infinite renormalization, namely
in the context of quantum statistical physics: We will reformulate the thermodynamic limit
of an ideal Bose gas as an infinite renormalization procedure. Thereby some interesting
aspects of this physical system will be revealed, which remain hidden in the conventional
treatment and which could possibly serve as a starting point for a generalization to weakly
interacting gases.

More concretely, we will analyse the thermodynamic limit of this system by the use of
asymptotic expansions of the grand canonical potential, which are derived by QFT-inspired
ζ-regularization techniques. Herewith we will then show, that qualitative aspects of those
expansions are directly interwoven with the phase structure of the system: In the non-
condensation phase the expansion has a form that resembles usual heat kernel expansions.
In contrast, the expansion exhibits a singularity of infinite order above a critical density
and a renormalization of the chemical potential is needed to ensure well-defined thermody-
namic observables in this case. Moreover, this renormalization procedure causes the system
to form a Bose-Einstein condensate. Characteristic quantities of the system, like the critical
density or the internal energy, are in both cases entirely encoded in the coefficients of the
asymptotic expansion.

The outline of this chapter, which is based on the author’s publication [175], is as follows:
In section 3.1 we will present the key ideas and the motivation of our approach. In section
3.2 we will then review the basics of the confined ideal Bose gas. In section 3.3 we will cal-
culate the asymptotic expansions of the grand potential for different ranges of the chemical
potential µ by utilization of ζ-regularization methods. In section 3.4 we will analyse the
thermodynamic limit by utilization of those expansions. Thereby we will understand, that
an infinite renormalization of the chemical potential is needed in the condensation phase.
In section 3.4 we will then conclude this chapter by giving a short summary as well as an
outlook to further research.
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3.1. Introduction

It is not often the case that the frontier of contemporary research is present in our daily life.
Whenever one cooks water, enjoys snow or uses a magnet, one could ask, how the rich qual-
itative collective properties of complex systems emerge from the relatively simple properties
of its constituents and especially how different macroscopic phases of matter are connected
to its microscopic description. But due to the vast complexity of macroscopic systems, the
precise answer to those question is unknown in most cases. A good illustration for the large
gap between the understanding of microscopic and the determination of macroscopic phe-
nomena is the phase structure of Bose gases, since, despite of their elementary microscopic
description, a rigorous understanding of their phase structure is still lacking in the most
realistic scenarios.

On Bose-Einstein condensation: Bose gases usually exhibit two phases. One of them is
distinguished by a macroscopic occupation of the ground state, what goes under the name
of Bose-Einstein condensation (BEC). The corresponding phase transition occurs at low tem-
peratures or high densities and has been experimentally realized in different physical sys-
tems (cp. [9, 48]), which is intriguing and fascinating by its own, since it constitutes a macro-
scopic quantum phenomenon where the quantum concept of indistinguishability becomes
apparent in the macroscopic world. The occurence of BEC was predicted by Bose ([33])
and Einstein ([66, 67, 68]) almost 100 years ago. They analyzed a non-interacting case and
argued that the system exhibits a macroscopically occupied ground state below a critical
temperature. Nevertheless, a rigorous demonstration of the occurrence of a phase transition
in a realistic, interacting scenario was lacking for over 70 years. This changed drastically in
2002, when Lieb and Seiringer proved the occurence of Bose-Einstein condensation in the
thermodynamic limit of a dilute Bose gas ([124, 123]), which marked a huge progress in the
understanding of the phase structure of continuous Bose systems. However, a rigorous un-
derstanding in other realistic regimes or for general interactions has still not been achieved.
For a good review on this issues see also [170].

The difficult situation in the interacting case also continuously stimulated research in the
much tamer non-interacting case. The hope could be that a new perspective on the non-
interacting case also leads to valuable insights concerning the interacting case. Besides the
textbook treatment, which usually utilizes integral approximation techniques (cf. [34]), no-
table other approaches are the loop gas technique (cf. [136, 23]) as well as a recent method
which uses insights from algebraic quantum field theory (cf. [39]). Another method for
the investigation of the phase structure of ideal bose gases is the method of asymptotic ex-
pansions developed in [110, 112, 111]. In those articles ζ-regularization techniques are used
for the investigation of the small-β limit of trapped Bose gases. In the present document we
will complement those results by an analysis of the thermodynamic or open-trap limit using
similar techniques.
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Motivation for our approach: Our motivation for the choice of this technique relies on
the fact that in other situations the form of such expansions has been proven to be very
robust with respect to smooth perturbations of the system. If one considers for example
heat kernel expansions on manifolds, the qualitative form of the expansion is insensitive to
the geometry of the manifold and its coefficients are calculable entirely in terms of geometric
invariants, which are both non-trivial statements (cf. [169]). Hence, a hope could be that an
asymptotic expansion of a characteristic thermodynamic quantity like the grand potential
exhibits a similar robustness under perturbations of the system by smooth, repulsive 2-
body interactions and that the occurrence of condensation could be traced back to simple
qualitative properties of this expansion. Therefore, a first step is the investigation of the non-
interacting case, which is achieved in this chapter. For the derivation of the asymptotics of
the grand potential under the open-trap limit we utilize ζ-regularization techniques, which
are mainly used in finite-temperature relativistic quantum field theory (cf. e.g. [70, 40, 71])
and are rarely applied to problems in non-relativistic quantum statistical mechanics. In
particular, we will use the Mellin-Barnes integral representation and the spectral ζ-function
of the 1-particle Hamiltonian to extract information on the behavior of the grand canonical
partition function under the thermodynamic limit. At this stage we would like to phrase the
point, that the utility of spectral ζ-functions in the current situation relies on their capability
to translate qualitative properties of the eigenvalue distribution of an operator into precise
analytic properties.

Informal presentation of the main ideas: We now want to present the key ideas of this
chapter in a non-technical manner. The starting point for our investigation is a grand canon-
ical treatment of the ideal Bose gas in v dimensions confined by an harmonic trap with oscil-
lator constant κ. The limit κ → 0 corresponds then to the open trap limit and Λ = κ−1 should
be understood as an IR-cutoff. Moreover, this limit should be understood as a thermody-
namic limit in this situation, since the expectation value for the particle number diverges as
κ → ∞. If one considers then the grand canonical potential Ω(v)(κ; β, µ), where β denotes
the inverse temperature and µ the chemical potential, one observes that this object diverges
in the limit κ → 0

lim
κ→∞

Ω(v)(κ; β, µ) = ∞.

Moreover, the usual hermodynamic observables, calculated in terms of derivatives of the
grand potential, diverge, too. This is not surprising, since extensive quantities should di-
verge in the thermodynamic limit and hence one shas to consider densities as proper ob-
servables in the current context. To densitize a given thermodynamic observable – as e.g.
the average particle number 〈N〉 – one has to multiply it with κv. This follows, since κ−1 has
dimension of length and hence κ−v can be understood as the characteristic volume of the
harmonic trap1. For example, the average density in the thermodynamic limit is given by
limκ→0 κv〈N〉.

1For this viewpoint, see also [136, 23].
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We then observe that for µ ≤ 0 no pathologies appear: By utilization of ζ-regularization
methods one derives

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) +O(κ). (3.1)

as an asymptotic expansion for the grand potential. This expansion then entirely describes
the behaviour of the system under the thermodynamic limit in terms of finitely many con-
stants {a(v)−k (β, µ)|k = 0, ..., v}. This follows, since the terms proportional to κ−k can be un-
derstood as dominant contributions under the limit κ → 0, while the terms in O(κ) are
negligible in this limit. Consequently, those constants should determine the values observ-
ables in the thermodynamic limit, too. And indeed, one calculates for example

κv〈N〉 = κv

β

∂

∂µ
Ω(v)(κ; β, µ) =

1
β

∂a(v)v (β, µ)

∂µ

as an expression for the average particle density.

If one tries then to analyse the case of positive chemical potential by the same techniques,
one obtains that the asymptotic expansion of the grand potential has suddenly infinitely
many singular terms and exhibits additionally some kind of logarithmic singularity. I.e., as
we will see later, it is of the form (cf. equation (3.24))

Ω(v)(κ; β, µ) =
∞

∑
k=0

κ−ka(v)−k (β, µ) + f (κ) +O(κ), (3.2)

where f (κ) is the logarithmic singularity, which is not written out at the present stage to
increase readability. A priori this is unacceptable, since it implies also divergent quantities
for densitized thermodynamic observables. For example, one calculates for the average
particle density in this case:

κv〈N〉 = κv

β

∂

∂µ
Ω(v)(κ; β, µ)→ ∞(κ → 0).

The crucial observation is then, that this situation is very similar to the situation in relativis-
tic quantum field theory as depicted in section 2.1, if one regards Λ = κ−1 as a (IR)-regulator.
This motivates then the idea, that an infinite renormalization of the chemical potential along
the lines of section 2.1 should cure this divergent behaviour and we will see in section 3.4
that this is indeed the case: If one chooses

µρ̄(κ) = E(v)
0 (κ)−

[
ρ̄− ρ

(v)
c (β)

]−1
κv +O(κv+1)

as a κ-dependent chemical potential µ(κ), then all singularities of order higher than κ−v

in (3.2) are cancelled. In this expression, ρ̄ corresponds to the experimentally accessible,
macroscopic average particle density and should be considered as the renormalized chemi-
cal potential. Moreover ρ

(v)
c (β) denotes the critical density in this case. Consequently, all
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3.2. The confined ideal Bose gas

densitized thermodynamic observables are then rendered finite. If one analyses then finally
the ground state occupation, one observes, that this renormalization procedure causes the
system to exhibit Bose-Einstein condensation.

A mathematical perspective: From a mathematical perspective, the asymptotic expansion
(3.1) can be understood as a statement about eigenvalue asymptotics: The grand canonical
potential is initially given by a sum

Ω(v)(κ; β, µ) =
∞

∑
n1,...,nv=0

∞

∑
N=1

zN

N
exp

[
−βE(N)

n1,...,nv(κ)
]

, (3.3)

where {E(v)
N;n1,...,nv

(κ)|N, ni ∈ N0} is the set of eigenvalues of the full ∞-particle Hamilto-
nian. The divergence of the grand potential under the thermodynamic limit then is caused
by the fact, that the energy gap between two energy eigenvalues goes to zero as κ → 0. The
asymptotic expansion (3.1) then makes it precise, how exactly the asymptotic behaviour of
the eigenvalues translates into an asymptotic behaviour of the sum (3.3). Thereby, the transi-
tion from the sum (3.3) – which is actually a power series in z – to the asymptotic expansion
(3.1) – which is a Laurent series in κ – is then basically an analytically non-trivial reorder-
ing of the sum (3.3) along powers of κ. This reordering is accomplished by ζ-regularization
methods (see section 3.3) and constitutes, from the perspective of analytic number theory,
basically an inverse Mellin transform which relates a Dirichlet series to a power series. From
a physical perspective, this transition then corresponds to the extraction of those features of
the system, which become relevant in the thermodynamic limit and especially translates the
microscopic properties of the eigenvalue asymptotics into the macroscopically relevant proper-
ties of the grand potential with the latter being entirely encoded in the coefficients of the
asymptotic expansion. This is a wonderful example how the beauty of mathematics enters
physics: The macroscopic features of the model, which are encoded in the collective be-
haviour of the summands of (3.1), can be extracted by a standard technique from analytic
number theory and are then concisely encoded in the coefficients of an asymptotic expan-
sion.

3.2. The confined ideal Bose gas

After having presented the main ideas and the motivation behind our treatment, we will
now introduce the technical foundations for our analysis. Especially, we will now review the
necessary prerequisites regarding the quantum statistics of the isotropic harmonic oscillator
potential. We therefore consider an ideal Bose gas in v ≥ 1 dimensions confined to an
harmonic oscillator trap. The 1-particle Hamiltonian is given by

Tκ := −∆ + κ2|~x|2
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3.3. Asymptotic expansions by ζ-regularization methods

where κ > 0 is the considered oscillator constant and can be understood as an infrared cutoff
modeling the finite size of the trap. The eigenvalues of this operator are then given by (cf.
[167])

E(v)
n1,...,nv(κ) = 2κ

[
v

∑
i=1

ni +
v
2

]
for n1, ..., nv ∈ N. The full many-body Hamiltonian is then given by the standard second
quantization (cf. [11, 34])

Hκ := dΓ(Tκ)

on the bosonic Fock space. The grand canonical potential of the harmonically trapped Bose
gas is then given by (cf. [34])

Ω(v)(κ; β, µ) = ln
[
tr
(

e−β(Hκ−µN)
)]

, (3.4)

where N is the bosonic number operator, β is the inverse temperature and µ is the chemical
potential. The expression (3.4) is well-defined for the parameter ranges β > 0, κ > 0 and
−∞ < µ < E(v)

0 (κ), as it can be shown by application of Prop. 5.2.27 of [34]. Here E(v)
0 (κ) =

κv denotes the lowest energy eigenvalue of the 1-body Hamiltonian Tκ. As the starting
point of our investigation we will then use a sum representation of (3.4) which is obtained
by expanding the logarithm and utilizing the trace formula (cf. Thm. 5.11 of [11])

trF (H) (Γ(R)) = ∏
λ∈σ(R)

1
1− λ

for second quantized operators on Fock space:

Ω(v)(κ; β, µ) =
∞

∑
n1,...,nv=0

∞

∑
N=1

zN

N
exp

[
−βNE(v)

n1,...,nv(κ)
]

(3.5)

Here we have defined the rapidity z := eβµ, that will be used in the sequel as an equivalent
replacement for the chemical potential µ. Please note, that (3.5) constitutes a power series in
z.

3.3. Asymptotic expansions by ζ-regularization methods

We now want to expand the infinite sum (3.5) in an asymptotic expansion in the trap param-
eter κ. This will be realized by utilization of ζ-regularization methods. The starting point is
the Mellin-Barnes integral representation (cf. [111])

e−a =
1

2πi

∫ σ+i∞

σ−i∞
a−sΓ(s)ds (3.6)
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3.3. Asymptotic expansions by ζ-regularization methods

which is valid for |arg(a)| < π
2 − δ with δ ∈ (0, π

2 ] and σ > 0. But before we apply the inte-
gral formula (3.6) on the sum representation (3.5), we want to investigate a simpler situation
in order to make the procedure clear (cf. section 6 of [111]).

A simple example: Consider the more elementary sum

S(κ) =
∞

∑
l=1

e−κl (3.7)

which could be understood as the partition sum of a simple quantum mechanical system
with energy eigenvalues En(κ) = κn. By application of (3.6) we then can write (3.7) as:

S(κ) =
∞

∑
l=1

1
2πi

∫ σ+i∞

σ−i∞
(κl)−s Γ(s)ds (3.8)

Now recall that the Riemann ζ-function is represented for Re(s) > 1 by the convergent sum
(cf. [55])

ζR(s) =
∞

∑
l=1

l−s.

Hence, by demanding σ > 1, we are allowed to interchange the sum and the integral in (3.8)
and obtain:

S(κ) =
1

2πi

∫ σ+i∞

σ−i∞
κ−sΓ(s)ζR(s)ds (3.9)

As explained by [111], the strategy for finding the small-κ behavior is then to shift the inte-
gration contour to the left. By the residue theorem, crossing the singularities of the integrand
gives then polynomial contributions in κ−1. In the case of (3.9), the rightmost pole of the in-
tegrand is given by the pole of ζR(·) at s = 1 and the other poles can be found at s = −2n
with n ∈N. We therefore shift the integral contour to σ̃ ∈ (−1, 0) and obtain

S(κ) = κ−1 − 1
2
+ Sres(κ), (3.10)

where we used Ress=1(ζR(s)) = Ress=0(Γ(s)) = 1 and where the residual term Sres(κ) is
given by:

Sres(κ) =
1

2πi

∫
γ(σ̃)

κ−sΓ(s)ζR(s)ds

Here γ(σ̃) denotes a path in the complex plane which goes from σ − i∞ to σ + i∞, but
intersects the real line at σ̃ ∈ (−1, 0). This term gives contributions in O(κ) and is hence of
no relevance for us, since we are only interested in the small-κ behavior. Thus, we neglect
the concrete form of this contribution and obtain the following asymptotic expansion:

S(κ) = κ−1 − 1
2
+O(κ)

We now use the same strategy to derive expansions of the form (3.10) for the grand potential
(3.5). Thereby we will see that we will need two different strategies for the cases µ ≤ 0 and
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3.3. Asymptotic expansions by ζ-regularization methods

µ > 0.

The case of negative chemical potential: We will now derive the small-κ asymptotics
of the grand potential (3.5) in the case µ < 0 or equivalently in the case |z| < 1. There-
fore, we apply the Mellin-Barnes integral representation (3.6) on the exponential in (3.5) and
obtain:

Ω(v)(κ; β, µ) =
1

2πi

∞

∑
n1,...,nv=0

∞

∑
N=1

zN

N

∫ σ+i∞

σ−i∞
β−sN−sE(v)

n1,...,nv(κ)
−sΓ(s)ds (3.11)

In contrast to the situation depicted before, the Riemann ζ-function is not sufficient for the
analysis of this expression. Instead we need the Barnes ζ-function (see section 2.2 of [111]),
which is a multidimensional generalization of the Riemann ζ-function and whose conver-
gent sum representation is for v ∈N, s > v, c > 0 and r > 0 given by

ζ
(v)
B (s, c|r) = ∑

n1,...,nv∈N0

[c + r (n1 + ... + nv)]
−s

for c 6= 0 while, if c = 0, the sum ranges just over (n1, ..., nv) 6= (0, ..., 0). In addition, we
need the polylogarithm, which is for |z| < 1 and any complex order r ∈ C given by the
absolute convergent sum ([55])

Lir(z) =
∞

∑
N=1

zN

Nr .

If we demand σ > v, we are then allowed to interchange the sums and the integral in (3.11)
and obtain the following expression for the grand potential:

Ω(v)(κ; β, µ) =
1

2πi

∫ σ+i∞

σ−i∞
κ−sβ−sLis+1(z)ζ

(v)
B (s, v|2)Γ(s)ds. (3.12)

Now, the location and residues of the poles are known for all functions appearing in the inte-
grand. In particular, Lis+1(z) has no poles for |z| < 1 (cf. [55]) and Γ(s) has, as before, simple
poles at −N0. The Barnes ζ-function has poles at z = 1, ..., v (cf. [111]) with residues

Ress=k

(
ζ
(v)
B (s, c|r)

)
=

(−1)v+k

(k− 1)!(v− k)!
r−vB(v)

v−k(c, r).

Further, its value at zero2 is given by (cp. [111])

ζ
(v)
B (0, c|r) = (−1)v

v
r−vB(v)

v (c, r).

Here B(v)
m (c, r) denotes generalized Bernoulli polynomials defined as

e−xt

(1− e−rt)v =

(
−1
r

)v ∞

∑
n=0

(−t)n−v

n!
B(v)

n (x, r).

2We will see in section 3.4, that only this value of the Barnes ζ-function is of relevance for us.
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3.3. Asymptotic expansions by ζ-regularization methods

By shifting the contour to the left we can write in analogy to (3.10) equation (3.12) as

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) + Sres(κ; β, µ), (3.13)

where the coefficients a(v)k (β, µ) are given by

a(v)−k (β, µ) =

β−kLik+1(z)Γ(k)Ress=k

(
ζ
(v)
B (s, v|2)

)
k ∈ {1, ..., v}

Li1(z)ζ
(v)
B (0, v|2) k = 0

(3.14)

and the residual term Sres(κ; β, µ) is given by

Sres(κ) =
1

2πi

∫
γ(σ̃)

κ−sβ−sLis+1(z)ζ
(v)
B (s, v|2)Γ(s)ds. (3.15)

Here γ(σ̃) denotes a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes from σ− i∞
to σ + i∞.

Vanishing chemical potential: The case µ = 0 (or equivalently z = 1) goes in complete
analogy to the case µ < 0. The only difference is that the sum over N in (3.11) reduces
now to a Riemann ζ-function. By this we obtain the following integral representation of the
grand potential for µ = 0:

Ω(v)(κ; β, µ = 0) =
1

2πi

∫ σ+i∞

σ−i∞
κ−sβ−sζR(s + 1)ζ(v)B (s, v|2)Γ(s)ds

Here, as before, σ > v is required. And also as before, one then shifts the contour to the left
and obtains the following small-κ asymptotics:

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) + Sres(κ; β, µ)

The coefficients a(v)−k (β, µ) are here given by

a(v)−k (β, µ) =

β−kζR(k + 1)Γ(k)Ress=k

(
ζ
(v)
B (s, v|2)

)
k ∈ {1, ..., v}

Ress=0 (ζR(s + 1)Γ(s)) ζ
(v)
B (0, v|2) k = 0

(3.16)

and the residual term Sres(κ; β, µ) is given by

Sres(κ; β, µ) =
1

2πi

∫ σ̃+i∞

σ̃−i∞
κ−sβ−sζR(s + 1)ζ(v)B (s, v|2)Γ(s)ds, (3.17)

where γ(σ̃) denotes again a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes from
σ− i∞ to σ + i∞.
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3.3. Asymptotic expansions by ζ-regularization methods

Positive chemical potential: If the chemical potential is postive, or equivalently if |z| > 1,
the previous strategy does not work. The reason for this is twofold. On the one hand, the
allowed parameter range for the chemical potential in (3.4) is µ ∈ (−∞, E(v)

0 (κ)) and hence
one has to choose a κ-dependent µ, i.e. a map

µ : κ ∈ (0, ∞) 7→ µ(κ) ∈ (0, E(v)
0 (κ)),

in this case. On the other hand, the sum representation of the polylogarithm ∑∞
N=1 zN N−s−1

is in general not convergent for |z| > 1 and hence one is not allowed to interchange the sums
and the integral in (3.11).

To circumvent this problem, we will derive a different sum representation of the grand po-
tential by expanding the exponential that contains the chemical potential. Afterwards, we
will then apply the same strategy as before on the remaining spectral functions. This gives
a small-κ asymptotics where the coefficients are given as power series in the κ-dependent
chemical potential. The motivation for this strategy relies on the observation, that for a
positive, κ-dependent chemical potential the thermodynamic limit corresponds to a weak
coupling regime, since µ(κ) → 0 as κ → 0. When an adequate representation of the κ-
dependent chemical potential as a series in κ is given – which will be derived in section 3.4 –
this should be reinserted into the expression for the grand potential, yielding again a small-κ
asymptotics.

But before turning to this program, we have to perform some preliminary steps. First, the
occuring spectral functions will be much more convenient, if we perform a redefinition of
the chemical potential and the energy eigenvalues by subtracting the zero point energy. We
hence define

µ̃(κ) := µ(κ)− E(v)
0 (κ) and Ẽ(v)

n1,...,nv(κ) := E(v)
n1,...,nv(κ)− E(v)

0 (κ).

In addition, we set z̃(κ) = eβµ̃(κ). Please observe, that this implies µ̃(κ) < 0 and z̃(κ) < 1.
Since we are interested in the phenomenon of Bose-Einstein condensation, we further split
up the grand potential by separating the ground state contribution Ω(v)

0 from the contribu-
tion of the excited states Ω(v)

1 :

Ω(v)(κ; β, µ(κ)) = Ω(v)
0 (κ; β, µ(κ)) + Ω(v)

1 (κ; β, µ(κ))

Ω(v)
0 and Ω(v)

1 are then explicitely given by

Ω(v)
0 (κ; β, µ(κ)) =

∞

∑
N=1

N−1 exp (βNµ̃(κ))
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and

Ω(v)
1 (κ; β, µ(κ)) =

∞

∑
N=1

∑
(n1,...,nv) 6=(0,...,0)

N−1 exp
(
−βN(Ẽ(v)

n1,...,nv(κ)− µ̃(κ))
)

. (3.18)

Note that in this case the ground state contribution can also written as

Ω(v)
0 (κ; β, µ(κ)) = − ln (1− exp (βµ̃(κ))) ,

since z̃(κ) < 1 holds. For the treatment of Ω(v)
1 we then expand

exp (βNµ̃(κ)) =
∞

∑
m=0

1
m!

βmNmµ̃(κ)m

and insert this into (3.18), which gives

Ω(v)
1 (κ; β, µ) =

∞

∑
m=0

∞

∑
N=1

∑
(n1,...,nv) 6=(0,...,0)

1
m!

βmNm−1µ̃(κ)m exp
(
−βNẼ(v)

n1,...,nv(κ)
)

. (3.19)

We then apply, as before, the Mellin-Barnes integral (3.6) on this expression which gives

Ω(v)
1 (κ; β, µ) =

∞

∑
m=0

µ̃(κ)m

m!

∫ σm+i∞

σm−i∞
βm−sκ−sζR(s + 1−m)ζ

(v)
B (s, 0|2)Γ(s)ds,

where σm > max{v, m} is required, since otherwise we were not allowed to interchange the
sums over N and (n1, ..., nv) in (3.19) with the occurring integrals.

We then apply the same strategy as before. By shifting the integral contour to σ̃ ∈ (−1, 0)
one obtains polynomial contributions in κ−1. As before, the remaining integrals are then
collected in Sres(κ; β, µ(κ)). By ordering the resulting expression along powers of κ we obtain
then the small-κ asymptotics

Ω(v)
1 (κ; β, µ) =

∞

∑
k=0

κ−ka(v)−k (β, µ(κ)) + Sres(κ; β, µ(κ)),

where the coefficients a(v)k (β, µ(κ)) are given as power series in µ̃(κ). Explicitely we obtain
for those coefficients:

a(v)0 (β, µ(κ)) =− ln(β) +
∞

∑
m=1

µ̃(κ)m

m!
βmζR(1−m)ζ

(v)
B (0, 0|2) (3.20)

+ Ress=0 (ζR(s + 1)Γ(s)) ζ
(v)
B (0, 0|2)

and

a(v)−k (β, µ(κ)) =
∞

∑
m=0,m 6=k

µ̃(κ)m

m!
βm−kζR(k + 1−m)Ress=k(ζ

(v)
B (s, 0|2))Γ(k)
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+
µ̃(κ)k

k!
Γ(k)Ress=k

(
ζR(s + 1− k)ζ(v)B (s, 0|2)

)
for k = 1, ..., v and

a(v)−k (β, µ(κ)) =
µ̃(κ)k

k!
Γ(k)ζ(v)B (k, 0|2) (3.21)

for k ≥ v + 1. All together we have then obtained the small-κ asymptotics

Ω(v)(κ; β, µ(κ)) = Ω(v)
0 (κ; β, µ(κ)) + Ω(v)

1 (κ; β, µ(κ))

Ω(v)
0 (κ; β, µ(κ)) = − ln (1− exp (βµ̃(κ)))

Ω(v)
1 (κ; β, µ) =

∞

∑
k=0

κ−ka(v)−k (β, µ(κ)) + Sres(κ; β, µ(κ)) (3.22)

for the case of a positive, κ-dependent chemical potentials, where the coefficients a(v)k (β, µ(κ))

are given by (3.20) – (3.21) and the residual term is given by:

Sres(κ; β, µ(κ)) =
∞

∑
m=0

µ̃(κ)m

m!

∫
γ(σ̃)

βm−sκ−sζR(s + 1−m)ζ
(v)
B (s, 0|2)Γ(s)ds (3.23)

Here γ(σ̃) denotes, as before, a contour that intersects the real axis at σ̃ ∈ (−1, 0) and goes
from σ− i∞ to σ + i∞.

At the first glimpse, the apparent singularity of infinite order in the asymptotic expansion
(3.22) seems to be unphysical, since it suggests that also all observables should exhibit a
singularity of this type. The resolution of this problem relies on a good choice of the κ-
dependent chemical potential µ(κ) ∈ (0, E(v)

0 (κ)). This will be discussed in section 3.4 and
onwards.

Summary: We want to give a short, qualitative summary of the asymptotic expansions
derived in this section. In the cases µ < 0 and µ = 0, the asymptotic expansion has the
form

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) + Sres(κ; β, µ),

while in the case µ > 0 one has to consider a κ-dependent chemical potential κ ∈ (0, ∞) 7→
µ(κ) ∈ (0, E(v)

0 (κ)) and the asymptotic expansion exhibits a singularity of infinite order:

Ω(v)(κ; β, µ(κ)) = − ln (1− z̃(κ)) +
∞

∑
k=0

κ−ka(v)−k (β, µ(κ)) + Sres(κ; β, µ(κ)) (3.24)

The coefficients are explicitely given by (3.14) for the case µ < 0, by (3.16) for the case
µ = 0 and by (3.20) – (3.21) for the case of positive, κ-dependent µ. The residual terms are
explicitely given by (3.15), (3.17) and (3.23).
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3.4. Thermodynamic limit and renormalization of the chemical potential

3.4. Thermodynamic limit and renormalization of the chemical

potential

We will now utilize the small-κ asymptotics of the grand potential as derived in the last
section for the analysis of the phase structure of an ideal Bose gas in the thermodynamic limit
κ → 0. As said before, the declaration of the open trap limit κ → 0 as the thermodynamic
limit is adequate, since the average particle number 〈N〉 diverges as κ → 0. We now will
first calculate the thermodynamic quantities in the non-condensation phase, before we will
treat the condensation phase, where a renormalization of the chemical potential is needed.

Thermodynamic quantities in the non-condensation phase: We will now investigate the
behaviour of some thermodynamic quantities under the limit κ → 0 for fixed, negative
chemical potential µ < 0 and arbitrary inverse temperature β > 0. The average particle
number and the average energy are given by their standard expressions

N(v)(κ; β, µ) := 〈N〉κ,β,µ = β−1 ∂

∂µ
Ω(v)(κ; β, µ),

E(v)(κ; β, µ) := 〈Hκ〉κ,β,µ = − ∂

∂β
Ω(v)(κ; β, µ).

By applying those relations on the small-κ asymptotics (3.13) we obtain small-κ asymptotics
for those quantities:

N(v)(κ; β, µ) =
v

∑
k=0

n(v)
−k (β, µ)κ−k +O(κ), (3.25)

E(v)(κ; β, µ) =
v

∑
k=0

e(v)−k (β, µ)κ−k +O(κ). (3.26)

Here the coefficients n(v)
k (β, µ) and e(v)k (β, µ) are explicitly given by

n(v)
−k (β, µ) :=

(
1
β

∂a(v)−k (β, µ)

∂µ

)
, (3.27)

e(v)−k (β, µ) :=

(
−

∂a(v)−k (β, µ)

∂β

)
. (3.28)

By utilizing the identity (cf. [178])

d
dx

Lin(x) =
1
x

Lin−1(x)

and applying it on the expressions for the coefficients a(v)−k (β, µ) given in (3.14) we see, that

the coefficients n(v)
−k (β, µ) and e(v)−k (β, µ) of above expansions are all well-defined and non-

zero for k ∈ {0, ..., v}. Especially we obtain that the average particle number (3.25) and the
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3.4. Thermodynamic limit and renormalization of the chemical potential

average energy (3.26) exhibit a singularity of order κ−v. This is not surprising, since in the
thermodynamic limit the particle number (and hence also other extensive quantities) should
diverge. The meaningful quantities in this regime are hence governed by densities. For this
we consider the inverse trap parameter κ−1 as the characteristic length scale of the problem.
This makes it plausible to think of κ−v as the characteristic volume of the harmonic trap (for
this viewpoint, see also [136, 23]). This motivates us to define the particle- and the energy
density as3:

ρ(v)(κ; β, µ) := κvN(v)(κ; β, µ)

ρ
(v)
E (κ; β, µ) := κvE(v)(κ; β, µ)

We see then, that under the thermodynamic limit κ → 0 the expressions for the average
density and the average energy are directly given by the coefficients n(v)

−v(β, µ) and e(v)−v(β, µ)

in (3.27) and (3.28). If one inserts the expressions for the coefficients a(v)−v one then obtains:

ρ(v)(β, µ) := lim
κ→∞

ρ(v)(κ; β, µ) = 2−vβ−vLiv(z).

ρ
(v)
E (β, µ) := lim

κ→∞
ρ
(v)
E (κ; β, µ) = v2−vβ−v−1Liv+1(z).

Finally we want to show, that no condensation occurs for µ ≤ 0 . Therefore consider the
average ground-state occupation density given by (cp. [112]):

ρ
(v)
0 (κ; β, µ) =

κv

β

∂

∂µ
Ω(v)

0 (κ; β, µ) = κv
(

1− exp[−β(E(v)
0 (κ)− µ)]

)
Hence, ρ

(v)
0 (κ; β, µ)→ 0 as κ → 0 for µ ≤ 0.

The critical density: In the last section we have analysed the case of µ ≤ 0. Since the
function

µ ∈ (−∞, 0] 7→ ρ(v)(β, µ)

is strictly monotonically increasing we can easily calculate the maximum density ρ
(v)
c (β)

that can be attained in this phase:

ρ
(v)
c (β) := sup

µ<0
ρ(v)(β, µ) = lim

µ→0
ρ(v)(β, µ).

This maximum density will be called the critical density. By recalling Liv(1) = ζR(v) (cf.
[178]) we then obtain:

ρ
(v)
c (β) = 2−vβ−vζR(v).

3A more physical approach would have been to consider the quotient ρ̃
(v)
E (κ; β, µ) = 〈N〉−1〈E〉. But since 〈N〉

diverges as κ−v, this would have been qualitatively the same and would just correspond to a change of the
renormalization prescription.
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3.4. Thermodynamic limit and renormalization of the chemical potential

This is finite for v ≥ 2, infinite for v = 1 and is equivalent to the results of [23] if one takes
their different conventions into account. Hence one has to choose an adequate positive, κ-
dependent chemical potential to obtain higher densities. This causes the system to exhibit
condensation as we will see in a moment.

Renormalization of the chemical potential: We consider from now on the case v ≥ 2. We
have seen, that the critical density ρ

(v)
c (β) is finite in this case and hence one has to use a κ-

dependent, positive chemical potential to obtain higher densities ρ̄ > ρ
(v)
c (β). If one recalls

the form of the small-κ asymptotics (3.24) it is a priori not clear, that such κ-dependent
chemical potentials exist which imply meaningful results for thermodynamic observables
in the limit κ → 0. Nevertheless, as discussed before, this situation corresponds to a weak
coupling regime where the κ-dependent chemical potential satisfies µ(κ) ∈ (0, E(v)

0 (κ)) with
the zero-point energy behaving as E(v)

0 (κ) → 0 as κ → 0. This suggests, that taking the
thermodynamic limit corresponds to the consideration of arbitrary small neighborhoods
around µ = 0 and hence the asymptotic expansions obtained for κ → 0 should not differ so
drastically in the two cases µ ≤ 0 and µ > 0. We now want to analyse, if there exist such κ-
dependent chemical potentials which imply a finite density ρ̄ in the limit κ → 0 and which
regularize the small-κ asymptotics, such that it exhibits only a singularity of finite order.
More precisely stated, the question is hence if there exists for any ρ̄ > ρ

(v)
c (β) a κ-dependent

chemical potential
µρ̄ : κ ∈ (−∞, 0) 7→ µρ̄(κ) ∈ (0, E(v)

0 (κ))

which satisfies the following conditions, which will be called renormalization conditions in
the sequel and resemble the form of the renormalization condition (2.5) from section 2.1:

1. limκ→0 µρ̄(κ) = 0.

2. limκ→0 ρ(v)
(

β, µρ̄(κ)
)
= ρ̄.

3. For all k > v it holds, that the coefficient a(v)−k (β, µρ̄(κ)) in (3.24) lies in O(κk+1).

Before we show that there exist such µρ̄(κ), we would like to draw a more explicit analogy
to the renormalization procedure in quantum field theory as presented in section 2.1. There-
fore recall first from there, how observables in quantum field theory are calculated: A theory
is specified by a Lagrangian, which contains several microscopic (”bare”) parameters, as the
mass or the coupling. If one tries naivly to calculate observables by the evaluation of Feyn-
man diagrams, one obtains divergent integrals. To cure this problems one then follows a
two-step strategy. First, an UV-regulator, say a cut-off frequency Λ, is introduced to render
the observables finite. In a second step, which is called the renormalization, the microscopic
parameters are chosen to be regulator-dependent in a way specified by certain renormal-
ization conditions, which ensure, that all occurring divergences in the observables are can-
celled. After this procedure, the theory is reparametrized: The parameters of the theory are
not given by the microscopic parameters anymore, but by renormalized, physical parame-
ters determined by the remaining degrees of freedom of the renormalization prescription.
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3.4. Thermodynamic limit and renormalization of the chemical potential

Apparently, our situation is quite similar. Therefore one has to view the trap-parameter κ

as an IR-regulator and the chemical potential µ as a microscopic (”bare”) parameter of the
system. If one tries then to calculate observables in the condensation phase (µ > 0) in a
naive way, one obtains that all observables diverge as the IR-regulator is removed (i.e. as
κ → 0). The reason for this is that the grand potential exhibits a singularity of infinite or-
der, as it is apparent by the asymptotic expansion (3.22). Our strategy is then to choose a
regulator-dependent (i.e. κ-dependent) chemical potential µ(κ) which cancels all occurring
divergences in the observables. As before, the precise form of this regulator-dependence is
determined by certain renormalization conditions, namely in our case by above conditions
(i) - (iii). After this renormalization procedure, the observables do not depend on a micro-
scopic parameter µ anymore – especially we see, that a fixed, positive µ is not a meaningful
parameter in the condensation phase – but on the macroscopic parameter ρ̄ which can be
understood as a renormalized coupling. In our case, this parameter is defined as the out-
come of a density measurement and should be called the renormalized chemical potential.
Hence we see that a choice of a κ-dependent µ, as determined by above conditions (i) - (iii),
resembles the procedure of infinite renormalization as presented in section 2.1.

Now we are ready to perform this procedure. Therefore we will first show in the next para-
graph, that κ-dependent chemical potentials that satisfy the renormalization conditions (i)
and (iii) indeed exist. Consequently, they cure the singularity of infinite order in the asymp-
totic expansion of the grand potential. Afterwards we will show, that those κ-dependent µ

satisfy the second renormalization condition, calculate additional thermodynamic observ-
ables and show that the system exhibits condensation.

Renormalized asymptotic expansions in the condensation phase: The first renormaliza-
tion condition is trivially satisfied, since µρ̄(κ) ∈ (0, E(v)

0 (κ)) while the last renormalization
condition ensures, that the small-κ asymptotics exhibits only finitely many singularities. We
show in this paragraph, that there exists a renormalized chemical potential µρ̄(κ), which
satisfies the first and the third renormalization condition. The second renormalization con-
dition will then be analysed afterwards.

We therefore guess the form of the κ-dependent chemical potential as:

µρ̄(κ) = E(v)
0 (κ)−

[
ρ̄− ρ

(v)
c (β)

]−1
κv +O(κv+1). (3.29)

Since E(v)
0 (κ) → 0 as κ → 0, the κ-dependent chemical potential (3.29) trivially satisfies the

first renormalization condition. We have further, by recalling (3.21), that a−k(β, µ(κ)) is for
k > v given by

a−k(β, µρ̄(κ)) = k−1
(

µρ̄(κ)− E(v)
0 (κ)

)k
ζ
(v)
B (k, 0|2)

and hence lies inO(κvk). Consequently, the first and the third renormalization condition are
satisfied. By this we obtain that the form of the asymptotic expansion of the grand potential
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3.4. Thermodynamic limit and renormalization of the chemical potential

attains the following form in the condensation phase, if a κ-dependent chemical potential
(3.29) is inserted:

Ω(v)(κ; β, µρ̄(κ)) = Ω(v)
0 (κ; β, µρ̄(κ)) + Ω(v)

1 (κ; β, µρ̄(κ)), (3.30)

Ω(v)
0 (κ; β, µρ(κ)) = − ln(1− z̃ρ̄(κ)),

Ω(v)
1 (κ; β, µρ̄(κ)) =

v

∑
k=0

κ−ka(v)−k (β) +O(κ). (3.31)

Here, the coefficients a(v)−k (β) are given by

a(v)−k (β) = β−kζR(k + 1)Γ(k)Ress=k (ζB(s, 0|2)) (3.32)

for k = 1, ..., v and
a(v)0 (β) = − ln(β) (3.33)

for k = 0, where we have dropped the contributions in O(κ). We hence see, that the small-κ
asymptotics of Ω(v)

1 almost completely resembles the form of the small-κ asymptotics in the
case µ = 0, if one inserts a κ-dependent chemical potential of the form (3.29).

Thermodynamic quantities in the condensation phase: We now perform an analogous
analysis as in section 3.4. Thereby we will show, that the renormalized chemical potential
(3.29) implies finite expressions for the considered thermodynamic quantities and hence
especially satisfies the second renormalization condition from section 3.4. As in section 3.4,
the average particle density and the average energy density are given by:

ρ(v)(κ; β, µρ̄(κ)) = κvβ−1 ∂

∂µ
Ω(v)(κ; β, µρ̄(κ))

ρ
(v)
E (κ; β, µρ̄(κ)) = −κv ∂

∂β
Ω(v)(κ; β, µρ̄(κ))

If one inserts the small-κ asymptotics (3.30) – (3.31) together with the expressions for the
coefficients (3.32) and (3.33) in those expressions, one obtains the following expression for
the densities in the thermodynamic limit:

ρ(v)(β, ρ̄) := lim
κ→0

ρ(v)(κ; β, µρ̄(κ)) = ρ̄

ρ
(v)
E (β, ρ̄) := lim

κ→0
ρ
(v)
E (κ; β, µρ̄(κ)) = ρ

(v)
E (β, 0)

Finally we want to show that the system exhibits condensation. As in section 3.4, the ex-
pression for the average ground-state occupation density is given by

ρ
(v)
0 (κ; β, µρ̄(κ)) =

κv

β

∂

∂µ
Ω(v)

0 (κ; β, µρ̄(κ))
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and one obtains hence by a direct calculation, that the system exhibits condensation:

lim
κ→0

ρ
(v)
0 (κ; β, µ) = ρ̄− ρ

(v)
c (β) (3.34)

3.5. Conclusion

In the last sections we have understood, how the thermodynamic limit of a ideal Bose gas
can be understood as a renormalization problem. In this section we now want to conclude
this chapter by giving a summary and giving an outlook to possible directions of further
research.

Summary: The most important observation of this section is, that there exist asymptotic
expansions of the grand potential Ω(v)(κ; β, µ) as κ → 0. Those expansions hence encode
precisely the aspects of the system, which get relevant in the thermodynamic limit κ →
0. Hence, values of densitized thermodynamic observables are entirely determined by the
coefficients of this expansion in the thermodynamic limit. Although asymptotic expansions
were also used in [110, 112, 111] for the analysis of the ideal Bose gas in the β→ 0 limit, the
present investigation represents the first attempt to apply this technique on the analysis of
a thermodynamic limit. Moreover we have gained as a result, that those expansions differ
drastically between the condensation and the non-condensation phase: As said before, in
the former case it exhibits a singularity of finite order, while in the latter case the occurring
singularity is of infinite order. This structure was not described before, which is surprising
since the thermodynamic limit of an ideal Bose gas is a very well-studied system. Finally
we have shown that the thermodynamic limit corresponds in the condensation phase to
a renormalization problem, since an infinite renormalization of the chemical is needed to
render the densitized thermodynamic observables finite in this phase.

Universality, general traps and weakly interacting gases: A starting point for a possible
generalization of the present analysis to more general traps or to weakly interacting systems
is motivated by the observation, that all qualitative predictions of our analysis – as the exis-
tence of the thermodynamic limit, the occurence of condensation, etc. – rely on qualitative
properties of the asymptotic expansions which seem quite universal. For example all results
regarding condensation should generalize directly to all grand potentials whose asymptotic
behaviour is given for µ ≤ 0 by

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) +O(κ)

and for µ > 0 by

Ω(v)(κ; β, µ(κ)) = − ln (1− z̃(κ)) +
∞

∑
k=0

κ−ka(v)−k (β, µ(κ)) +O(κ)
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with coefficients satisfying very general constraints, as for example differentiability and
boundedness in µ. This makes it plausible, that small smooth distortions of the eigenvalue
spectrum should not alter the qualitative predictions of the present analysis. A first step of
an analysis of this intuition could be then inspired by [171], where only general regularitiy
properties of eigenvalue sequences where used for the analysis of qualitative properties of
spectral zeta functions. Analogously, one could analyse which qualitative properties eigen-
value sequences of Hamiltonians should satisfy, such that the above form of the asymptotic
expansion of the grand canonical potential remain unaltered. Afterwards one should then
check to which extent more general traps or the incorporation of 2-body interactions pre-
serve or modify those properties. Moreover, motivated by the formal analogy between in-
finite renormalization and the thermodynamic limit in the present situation, one could ask,
if renormalization group methods could be applied to this problem. From a Wilsonian per-
spective (cf. section 2.4 one could then consider the IR-regulator κ as a realistic entity, since
any system is indeed finite. But those questions lie beyond the scope of the present analysis
and should be a subject of future research.
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4. Renormalizing the initial singularity in

classical field theory

After having explained how renormalization can be used to eradicate infinities in physical
models and having illustrated this concept by a few examples and a QFT-inspired treat-
ment of Bose-Einstein condensation, we could now ask if there are other infinities in physics
which are needed to be cured. One of the most prominent infinities in physics is the kind
of infinity which arises at cosmological singularities. One could hence ask the question:
Is it somehow possible to ”renormalize a cosmological singularity”? This question will be
analysed in this section and we will show that it is indeed possible to define renormalized
states for a classical field theory in a big bang background which have the property that a
large family of observables stays finite. This renormalization procedure is thereby based on
point extensions of distributions, which gives an interesting application of the techniques
presented in section 2.3.

The outline of this section is as follows: In section 4.1 we will review the basics regarding
cosmological singularities. Moreover, we will present the most prominent completeness
concepts and will explain how the analysis of this chapter fits into the existing literature.
In section 4.2 we will then review the standard formalism for the massless classical scalar
field in a big bang background, whereby we will have a special emphasis on its behaviour
in the vicinity of the initial singularity. In section 4.3 we will then reformulate the earlier
presented classical field theory in an algebraic language, which is the foundation for the
renormalization procedure which we will perform section 4.4. In section 4.5 we will then
conclude this chapter by giving a summary and by commenting on drawbacks of the present
analysis as well as on possible generalizations and the comparison with the quantum case.

4.1. Cosmological singularities and completeness concepts

Cosmological singularities are one of the most prominent predictions of Einstein’s theory of
general relativity and as such they seem to mark a severe problem of the theory. In broad
terms, a singularity is a portion of a spacetime where the most fundamental object of gen-
eral relativity, the metric tensor, breaks down and hence the notion of spacetime itself gets
problematic. Since singular solutions to Einstein’s field equation exist, it hence appears, that
general relativity predicts its own breakdown.
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On cosmological singularities: Soon after Einstein’s theory of general relativity was pub-
lished in its final form (cf. e.g. [69]) and Schwarzschild found the famous solution which
carries his name ([160]), cosmological singularities attracted the attention of mathematicians
and physicists. For example, Hilbert discussed the singular behaviour of the Schwarzschild
solution in [94] and also formulated there a first attempt for the definition of a cosmological
singularity (cf. [94]):

[Es erweisen sich bei der Schwarzschild-Lösung] r = 0 und [...] auch r = α als solche
Stellen, an denen die Maßbestimmung nicht regulär ist. Dabei nenne ich eine Maßbes-
timmung oder ein Gravitationsfeld gµν an einer Stelle regulär, wenn es möglich ist,
durch umkehrbar eindeutige Transormation ein solches Koordinatensystem einzuführen,
dass für dieses die entsprechenden Funktionen g′µν an jener Stelle regulär d. h. in ihr
und in ihrer Umgebung stetig und beliebig oft differenzierbar sind und eine yon Null
verschiedene Determinante haben.

Nevertheless, it took many years till it was really understood how cosmological singularities
can be properly formalized and till it was shown that they are an inevitable consequence of
the gravitational field equations and not only an artefact caused by oversimplifying assump-
tions as a high degree of symmetry. The difficulties connected with the analysis of cosmolog-
ical singularities are mostly intertwined with the problem of coordinate-invariance: Even if
the metric appears singular – e.g. along the lines of the definition provided by Hilbert from
above – in one given set of coordinates, it is hard to show that it appears singular in all pos-
sible coordinate patches. For example (cf. [63]) it took over 15 years, till it was shown by
Georges Lemaı̂tre, that the r = 2M singularity of the Schwarzschild spacetime was merely
a coordinate artefact.

One of the key insights for a proper treatment of cosmological singularities was their def-
inition in terms of geodesic incompleteness. Thereby spacetimes are classified in terms of
the behaviour of geodesic curves: A spacetime should be called geodesically incomplete, if
there exist geodesics which are inextendible and have finite affine length (cf. [174]). De-
pending on the nature of the geodesics one can distinguish hence between timelike, spacelike
or null geodesic incompleteness. Since any spacetime can be made incomplete by removing
any subset from the initial spacetime, one should apply those criteria only to inextendible
spacetimes, i.e. spacetimes which cannot be isometrically embedded into another spacetime.
Moreover, since no known objects travels on spacelike curves one usually only considers
null and timelike geodesic completeness. Along this line of argumentation, an inextendible
spacetime which is null or timelike geodesically incomplete should be called singular (cf.
[174]) and the endpoints of the corresponding inextendible geodesics can be considered as
elements of the singularity, i.e. as singular points. Those insights can then be used as a start-
ing point for a further classification of singular spacetimes by analysing the behaviour of
spacetime curvature along such an inextendible geodesic of finite length (cf. [174, 91]):
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1. The spacetime has a (scalar polynomial) curvature singularity, if scalars constructed as
polynomials of Rαβγδ, gµν and covariant derivatives thereof are unbounded along an
incomplete geodesic.

2. The spacetime has a parallelly propagated curvature singularity if no such scalar is un-
bounded along an incomplete geodesic, but if components of Rαβγδ in a parallely
propagated vielbein frame (or covariant derivatives thereof) are unbounded along an
incomplete geodesic.

3. The spacetime has a non-curvature singularity if it is singular but neither (1.) nor (2.)
holds.

The Friedmann-Lemaı̂tre-Robinson-Walker (FLRW) spacetime, which will be mainly consid-
ered in the next two chapters of this thesis, is an example for the occurence of a scalar poly-
nomial curvature singularity since the Riemann scalar R blows up at its singularity. On the
other hand, plane gravitational waves (cf. [117]) exhibit singularities which are of the sec-
ond type. Finally, the Taub-NUT spacetime is an example for a singular spacetime which
falls into the third category (cf. [91]).

By utilization of this definition, it then finally was shown1 by Penrose and Hawking (cf.
[141, 90]) that singularities are an inevitable consequence of Einstein’s theory of gravity
and that they can occur in realistic scenarios. The details of this proof and the different
variants of the Penrose-Hawking singularity theorem are interesting by their own, but since
those are not needed in this thesis, we encourage the reader to consult [91, 181] for further
information.

Other completeness concepts: In the last paragraph we have explained, how cosmologi-
cal singularities are defined in terms of geodesic incompleteness. One interesting aspect of
this definition is, that it can be easily generalized to other classes of curves whereby it gets
evident that the definition of cosmological singularities depends on the considered class of
curves. For example, there exist spacetimes which are geodesically complete but which are
incomplete if one considers timelike curves of bounded acceleration (cf. [91]). Colloqui-
ally spoken, such spacetimes currespond to situations where freely falling objects don’t get
affected by a singularity, while a rocket that accelerates in a benign and realistic way can
ultimately hit a singularity after a finite amount of eigentime.

This argumentation shows that the concept of (in)completeness is not solely a property of
the spacetime under consideration, but a property which is also interconnected with the
behaviour of the considered class of experiments which probe the spacetime. For exam-
ple, a singular spacetime whose singularity cannot be probed by any realistic experiment
shouldn’t be problematic. Since geodesic (in)completeness – as any completeness criterion

1It is important to note that the famous Penrose-Hawking singularity theorems had many precursors which
are nowadays less known but equally important from a historical perspective. More information on this can
be found in [63].
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which is based on curves – is based on classical point particles, one could ask if this point
of view is not merely an oversimplification. This motivates then the question if cosmolog-
ical singularities could change their face when probed by more realistic experiments. An
interesting analogy for this idea is given by the Hydrogen atom. This system is modeled
by a negative point charge in a background potential given by V(r) ∝ r−1 which obviously
exhibits a singularity at r = 0. It is then a well known fact, that the classical description
of this system fails: An electron, modeled as a classical point charge orbiting in a perfect
circle, would hit the singularity after a very short amount time due to its radiated energy as
predicted by classical electrodynamics (see also the discussion in [121]). One could say, that
the Coulomb potential is incomplete when probed by charged classical point particles. On
the other hand the system is quantum mechanically stable, i.e. it is complete when probed
by a charged quantum mechanical point particle (cf. [122]).

One could hence ask, if a similar argumentation could apply on cosmological singularities
if probed by quantum objects. This idea was for the first time investigated by Horowitz and
Marolf in [100], were timelike curvature singularities in static spacetimes where analysed
by quantum mechanical probes. Thereby it was shown that under this circumstances the
quantum dynamics of a point particle is well-defined and free from ambiguities. Never-
theless, their argumentation has only a very limited range of validity, since it applies only
on static spacetimes with timelike singularities and cannot be generalized to more realistic
singularities as the Schwarzschild or the FLRW singularity. Another direction of research
was performed by Hofmann and Schneider in [96, 97], where the quantum field theoretic
completeness properties of Schwarzschild and Kasner spacetimes were analysed by utiliza-
tion of the Schrödinger formalism. Thereby it was shown that the wave functional of a
scalar quantum field exhibits vanishing support towards the singularity and has a bounded
norm in ints vicinity. This formalism was then later also applied on null singularities (cf.
[155]) and lead also to a more mathematical perspective on quantum completeness by the
investigation of smeared field operators and energy momentum tensors (cf. [15, 16, 17]).

Completeness and classical field theory? The thoughts of the last section motivate alterna-
tive completeness concepts which depend on the nature of the probe that is used to analyse
a given singular spacetime. An interesting question is hereby if it is possible to formulate a
completeness criterion in the context of classical field theory. This question is of particular
interest, since any quantum field theory needs a classical background theory which is used
as a starting point for the quantization. This rises then the question if the quantum com-
pleteness of singular spacetimes as depicted in the last paragraph is really a property of the
quantum theory or just a property of the classical background around which the theory was
quantized. Although the asymptotic behaviour of classical solutions to the wave equation
in singular backgrounds was already analysed in literature (see e.g. [152, 153]), this was
not done from a perspective which is valuable in the context of completeness concepts and
which allows for a comparison to the situation in quantum field theory. The reason for this
is, that divergent solutions of classical field equations do not imply a priori any result on the
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4.2. The massless scalar field in a big bang background

level of experimental accessible quantities, since the field itself should be merely considered
as a bookkeeping device. Moreover, since the formalism of quantum field theory is based
on operator algebras it is not clear from the outset, how the behaviour of classical solutions
is connected to regularity properties of the associated quantum field theory.

Renormalizing classical field theory in the vicinity of the initial singularity: As a first step
towards a more complete investigation of the completeness properties of singular space-
times in classical field theory and their connection to the regularity properties of the asso-
ciated quantum field theory we perform in this chapter an algebraic analysis of a classical
scalar field theory in a singular big bang background. Especially we will formulate the clas-
sical field theory at the level of observable algebras and will understand how the occurring
classical vacuum states could be renormalized. Our treatment is thereby highly inspired
by the publication [15] which deals with a consistency analysis of a scalar quantum field
theory in radiation dominated and dust filled FLRW universes. In the publication [15] it
is especially shown, that operator valued distributions, 2-point functions and the energy
momentum tensor of a such a theory remain well-defined throughout the initial singularity.
Thereby, in the case of the radiation dominated universe, also a renormalization procedure is
implicitely performed that is based on the extensions of occuring distributions on the singu-
lar hypersurface. Our treatment should be understood as a complementary analysis: In [15]
this kind of renormalizability was considered as a quantum field theoretic property, tied to
the distributional nature of the occuring operator valued distributions. Moreover, the renor-
malization procedure in [15] was performed rather implicitly and was not understood as a
renormalization. In the present analysis on the other hand, we show that this behaviour is
not solely a feature of quantum field theories but can be traced back to a modification of
the associated classical field theory. To ensure comparability with [15], we hence focus on
radiation dominated spacetimes and compare our results finally with the results of [15].

Outline of this chapter: We want to describe concisely the organisation of this chapter. In
section 4.2 we will review the classical theory of a massless scalar field in a general big bang
spacetime. In section 4.3 we will then reformulate this theory from an algebraic perspective.
Finally we will then perform the renormalization procedure in section 4.4, by which we
will analyse the distributional extendability to the singular hypersurface of the occuring
n-point functions and classical solutions. In section 4.5 we will then conclude this section
by summarizing its results and by comparing them to the results of [15]. Moreover we
will discuss there the case of more general models as well as the drawbacks of the present
analysis.

4.2. The massless scalar field in a big bang background

In this section we want to review the well-known theory of a conformally coupled classical
scalar field on a spatially flat FLRW spacetime. The treatment of this section folllows the
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line of argumentation of many textbooks (compare e.g. [28, 135]). Thereby we will allow for
general scale factors in this and the next section. From section 4.4 on we will then focus on
the case of radiation dominated FLRW spacetimes.

Preliminaries: We consider a FLRW spacetime M ∼= R4 with pseudo-Riemannian metric

ds2 = a(η)2(−dη2 + dx2 + dy2 + dz2)

and smooth scale factor a(η) satisfying a(η) 6= 0 for η 6= 0 and a(0) = 0 (cf. e.g. [44]). The
coordinates η, x, y, z are assumed to lie in R and the hypersurface

X := {(0, x, y, z) ⊂M |x, y, z ∈ R}

is called the initial singularity of M , since the metric is degenerate thereon. The submanifolds
M± := {(η, x, y, z) ⊂ M | ± η > 0} correspond to the big crunch and big bang epochs,
respectively. We will define further the bulk spacetime

M ◦ := M \X

and will call M the extension of M ◦.

We want to probe this spacetime with a conformally coupled, real scalar field, while we will
neglect backreaction effects. This simple system is chosen, since we want to focus merely
on conceptional ideas than on technicalities. Nevertheless we will comment on more gen-
eral models in section 4.5 and will comment there also on the question, if the neglection of
backreaction is a reasonable assumption or not. The considered action is given by (cf. [28])

S[φ] =
1
2

∫
M

dVol(x)
[
−gµν∂µφ(x)∂νφ(x)− ξRgφ2] ,

where Rg is the Ricci scalar associated with g. We consider the case of conformal coupling
i.e. the case of ξ = 1

6 . In this case the equation of motion is given by (cf. appendix B.2):

1
a(η)3 [∂

2
η − ∆]a(η)φ = 0 (4.1)

To avoid IR-problems, we are – as it is common in literature – solely interested in solutions
to (4.1) which have the property, that they are compactly supported on any Cauchy surface.
Moreover we will define the differential operator appearing in (4.1) for later use:

P :=
1

a(η)3 [∂
2
η − ∆]a(η)
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4.2. The massless scalar field in a big bang background

Solving the equation of motion: The equation of motion (4.1) is obviously solved by any
φ ∈ C∞(M ◦) which can be written as

φ = a(η)−1φM

with φM ∈ C∞(M ) being a solution of the flat space Klein-Gordon equation[
∂2

η − ∆
]

φM = 0. (4.2)

The property, that φ should be compactly supported on any Cauchy surface in M translates
then to the property that φM should be compactly supported on any Cauchy surface in
Minkowski spacetime. Especially we have then that φM is a smooth function in C∞(M ) and
in addition bounded and compactly supported on the singular hypersurface X , since this
is just a regular Cauchy surface in Minkowski spacetime. A Fourier decomposition of 4.1
leads then to the statement, that any solution φ of 4.1 can be written as a mode expansion

φ(η,~x) =
∫

R3
d3k
(

z(~k)X(η,~k)ei~k~x + z∗(~k)X∗(η,~k)e−i~k~x
)

(4.3)

with X(η,~k) being a solution of the mode equation[
∂2

η +~k2
]

a(η)X(η,~k) = 0,

which can be explicitly checked by inserting (4.3) into (4.1). Under the mode expansion (4.3),
regularity requirements on φ are then translated to regularity requirements on z(~k) (cf. e.g.
[85]). The mode equation (4.3) is then solved by any function X(η,~k) of the form

X(η,~k) =
B1

(2π)
3
2

1√
2|~k|

ei|~k|η

a(η)
+

B2

(2π)
3
2

1√
2|~k|

e−i|~k|η

a(η)

with B1, B2 ∈ C. The mode functions X(η,~k) span hence the solution space of the differential
equation (4.1). The solution space of (4.1) can moreover be endowed with a symplectic form
explicitely given by (cf. [108, 28])

(ψ1, ψ2) := −i
∫

R3
d3xa(η)2

(
ψ1(η0,~x) ∂η

∣∣
η=η0

ψ2(η,~x)− ψ2(η0,~x) ∂η

∣∣
η=η0

ψ1(η,~x)
)

which is defined for any η0 ∈ R \ {0} and does not depend on the specific choice of η0 (cf.
[28]). This antisymmetric, bilinear form can then be used to normalize the mode functions
X(η,~k). By setting ψ~k(η,~x) := X(η,~k)ei~k~x we obtain (see appendix B.2)(

ψ~p, ψ∗~q

)
= δ(~p−~q)
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4.3. An algebraic perspective

for |B1|2 − |B2|2 = −1. We then choose the solution associated to B1 = 0 and B2 = 1
since this gives the mode functions which are conformally related to the usual choice in
Minkowski spacetime. Hence our choice of mode functions (which equals the choice in
[15]) is given by:

X(η,~k) =
1

(2π)
3
2

1√
2|~k|

e−i|~k|η

a(η)
(4.4)

From a more intrinsic perspective one could say, that ∂η is a conformal Killing vector field
compatible with the natural orientation on M , which determines hence a natural set of
positive frequency solutions (cf. [44]) given by (4.4).

Behaviour towards the singularity: A prototypical solution φ to the wave equation (4.1)
has the asymptotic behaviour

φ(η,~x) ∼ a(η)−1

towards the singularity, i.e. as η → 0. Hence, for a scale factor which behaves asymptotically
as a(η) ∼ ηc, the solutions diverge towards the singularity. This is a hint, that the field
theory behaves badly in the vicinity of the singularity. Nevertheless, the field φ should
just be considered as a bookkeeping device and it is a priori not clear if a divergence of φ

manifests itself in terms of a malign behaviour on the level of observables. For example, if
we take as an observable a smeared field

F[φ] :=
∫

M
dVolg(x) f (x)φ(x)

we see, that F[φ] is finite even if the interior of the support of f intersects the singularity,
i.e. if Int (supp( f )) ∩X 6= ∅ holds. This is due to the damping induced by the volume
element

dVolg(x) = d4x a(η)4.

To quantify the behaviour of the scalar field in the vicinity of the singularity, we hence would
like to analyse it on a sufficiently large observable algebra. Especially we are interested in the
question, which observables are infinite if they probe solutions to the equations of motion,
and if one can cure this problem by some sort of renormalization procedure. But therefore,
as a preliminary step, we have to embed the theory of the classical scalar field as presented
in this section into a larger, algebraic context.

4.3. An algebraic perspective

For our purpose it will be convenient to use an algebraic framework, since then the con-
sidered completeness problem and the occurring renormalization procedures can be formu-
lated very naturally. Moreover, in this formulation it will be easy to compare our results
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4.3. An algebraic perspective

with the results from [15]. The idea behind the algebraic formalism as presented in this sec-
tion is, to consider observables as elements of a suitable algebra of real valued functionals
on the configuration space. Elements of the configuration space correspond then to pure
states in classical field theory and evaluations of the functionals on elements of the config-
uration space correspond then to specific outcomes of measurements. This will be made
precise in this section and we will demonstrate then at the end of this section, to which
extent the theory of a conformally coupled scalar field in a big bang spacetime is classi-
cally incomplete. Please note that the formalism presented in this section is standard in the
literature associated with algebraic quantum field theory. Our main sources are given by
([125, 107, 78, 85, 86]). Moreover, the adaption of this formalism to FLRW spacetimes was
already performed thoroughly in [85, 86], whose results are used in this section, too.

The off-shell configuration space and observables: We define the space of off-shell field
configurations as

C = {φ : M ◦ → R|φ ∈ C∞(M ◦)} .

This means that we assume field states to be smooth on M ◦ but allow for singular behaviour
on the singularity X . The space C should be understood as the space of all possible (off- and
on-shell) field configurations and especially we see, that solutions to the equation of motion
(4.1) lie in C. The space C can be endowed with a suitable topology and a natural candidate
for this is given by the Fréchet-topology induced by the family of semi-norms

pα,K : C → (0, ∞), f 7→ sup
x∈K
|∂α f |

for α being a multi-index and K ⊂ M ◦ being a compact set (cf. [179]). An observable is then
a continuous, real valued functional

F : C → R,

which is often assumed to be smooth in addition. Thereby, to simplify matters, we call a
functional F : C → R smooth, if its n-th directional derivative

C∞(M )n → R, ( f1, ..., fn) 7→
dn

dλ1...dλn
F

(
φ +

n

∑
i=1

λi fi

)

exists as a compactly supported, symmetric distribution on M n for all n ∈ N and all φ ∈ C
(cf. [125, 107, 78]). Anyhow, we will focus in our discussion on observables of the form

F : C → R, φ 7→
∫

M m
dVolg(x1)...Volg(xm) f (x1, ...xn)φ(x1)

n1 · · · φ(xm)
nm (4.5)

defined for suitable compactly supported functions f ∈ C∞
c (M ◦n), for which smoothness

follows directly. We will call observables of this form multilocal Wick monomials on M ◦ and
will denote the algebra spanned by all such observables as the algebra of multilocal Wick
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4.3. An algebraic perspective

observables on M ◦ denoted by W[M ◦]. Of course, one could try to topologize this algebra
and analyze its closure. But this is not necessary for the present discussion and we just
consider it as a (unbounded) ∗-algebra. Also we would like to remark that one usually
focuses on a larger algebra, in which the smearing functions f are replaced by distributions
satisfying certain regularity requirements (cf. e.g. [78, 5]). Anyhow, for the present analysis
this is not necessary.

The solution space: We define the solution space V as the space of solutions to the wave
equation (4.1) which satisfy the condition, that they have compact support on spacelike
hypersurfaces (cf. [108]), i.e.:

V := {φ ∈ C|Pφ = 0 and for any Cauchy surface Σ ⊂M ◦ : supp(φ) ∩ Σ is compact }

By the results of the last section there is a 1-to-1 correspondence between the solution space
of the Klein-Gordon equation on Minkowski spacetime and V . To formalize this correspon-
dence let VM denote the space of solutions to the flat space Klein-Gordon equation ∂α∂αφ = 0
which have compact support on spacelike hypersurfaces. We then have:

V ∼=
{

φ = a(η)−1φM

∣∣∣φM ∈ VM

}
.

The space of solutions V will play an important role in the sequel, since we interpret it as
the space of pure classical vacuum states (cf. [85]).

States and n-point functions: In algebraic approaches to quantum field theory and quan-
tum statistical physics, states are defined as positive and normalized linear functionals on
∗-algebras (cf. e.g. [78]). In our situation (cf. [125]) we define a state on a observable algebra
A as a linear functional

ω : A→ C

which is normalized if A is unital, i.e. ω(1) = 1, and positive, i.e. ∀A ∈ A : ω(A∗A) ≥ 0.
Moreover, a state ω is called pure if it is not possible to write it as a convex combination of
other states. An important class of pure states in our situation is given by elements of C by
associating the evaluation functional

evφ : A→ R, F 7→ evφ(F) := F(φ)

to any φ ∈ C (cf. [125]). Of special importance are then evaluation functionals of above form,
for which φ lies in the solution space V , since those will be considered as the pure classical
vacuum states of interest. For states on the Wick algebra (4.5), we can then associate to a
state ω its n-point functions. Those are distributions ω(n1,...,nm;m)(x1, ...xm) which satisfy

ω[F] =
∫

M m
dVolg(x1)...Volg(xm) f (x1, ...xn)ω

(n1,...,nm;m)(x1, ...xm)
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4.4. Renormalized states for the classical field theory

for any F of the form (4.5). Obviously, in the case of this algebra, a state is entirely described
by its n-point functions.

Behaviour at the singularity: We now want to investigate, in which sense the algebraic
classical field theory defined so far exhibits a lower regularity at the singular hypersurface
X . Therefore set now a(η) = ηc and let φ be a solution to the equations of motion, which
means, that φ can be written as

φ(x) = a(η)−1φM(x)

with φM(x) being a solution to the massless flat space wave equation (4.2). Hence φ(x) ∼
η−c as η → 0. We then have consequently, that the higher order observable

φn
f [φ] =

∫
M

dVolg(x) f (x)φn(x) (4.6)

evaluated on any classical vacuum state φ ∈ V diverges for f ∈ D(M ) and (4− n)c ≤ −1.
This shows, that the considered classical field theory in an FLRW background is less regular,
than its cousin on flat spacetime: In the latter case, the observables (4.6) evaluated on the
corresponding classical vacuum is finite for any n ∈ N. Also, the considered classical field
theory is hence less regular on the singularity X than on the bulk M ◦.

Statement of the renormalization problem: The lower regularity of the classical field the-
ory in the vicinity of the singularity as presented in the last paragraph can be understood
in terms of the statement that the classical vacuum solutions φ are well-defined on M ◦ but
are not defined on M . Moreover, the associated vacuum states are well-defined states on
W[M ◦] but not well-defined on the algebra W[M ]. Here we have defined the algebra W[M ]

in almost the same way as the algebra W[M ◦], with the only difference that the smearing
functions are now allowed to lie in C∞

c (M n). The question, if the infinities which arise at
the singularity can be renormalized, is hence associated with an extension problem. This
extension problem can be summarized in terms of the following two questions:

1. Is there for any φ ∈ V an associated distributional extension φ̂ ∈ D′(M )?

2. Is there an extension of the vacuum states ω = evφ from W[M ◦] to W[M ] for φ ∈ V?

Those questions will be answered in the next section.

4.4. Renormalized states for the classical field theory

In the last section we have presented an algebraic formalism for classical field theory and
explained within this framework, to which extent the theory of a classical conformally
coupled, massless scalar field in a FLRW background is less regular than its cousin on
Minkowski spacetime. The question is now, if the divergences which characterize this less
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4.4. Renormalized states for the classical field theory

regular behaviour, can be somehow ”renormalized” along the lines of the end of the last
section. This will be analysed in this section. To simplify the comparison of our results with
[15], we will thereby concentrate on the case of the radiation dominated universe. I.e., we
will focus in this section solely on the scale factor a(η) = η.

Distributional reinterpretation of the equations of motion: In this section, we want to
analyse the equation of motion (4.1) in a distributional sense. I.e. we want to analyse, if the
partial differential equation Pφ = 0 with P being defined as

P :=
1

a(η)3

[
∂2

η − ∆
]

a(η)

has distributional solutions in D′(M ). We therefore recall (cf. [72]), that a distribution
φ ∈ D′(M ) is called a distributional (or weak) solution to Pφ = 0, if∫

M
dVolg(x)φ(x)Pb(x) = 0

holds, since P is self-adjoint2. We then see, that φ ∈ D′(M ) solves (4.7) if it can be written
as

φ(x) = t(η)φM(x)

with φM ∈ C∞(M ) being a smooth solution to the flat space Klein-Gordon equation (4.2)
and t ∈ D′(R) being a distributional solution to

a(η)t(η) = 1. (4.8)

The latter means, that t is a distributional inverse to a(η) = η, i.e. that t satisfies

t[a(·)b(·)] =
∫

R
dηb(η)

for any test function b ∈ D(R). Since η−1 is the smooth inverse to a(η) = η one could
expect, that t should be given by a distributional extension of η−1 from R \ {0} to R. Since,
as discussed before, extensions of distributions are in general not unique, one should expext
that there are several ways to extend η−1 from R \ {0} to R. The most obvious one would
be, to generalize the procedure applied on θ(x)x−1 (cf. eq. (2.10)) in section 2.3. Neverthe-
less, we will use a different strategy for the sake of comparability with [15] and define the
distribution

t : b ∈ D(R) 7→ t(b) := −
∫

R
dη ln(|η|) b′(η). (4.9)

2A concise calculation under utilization of Volg(x) = a(η)4d4x shows, that for f , g ∈ D(M ) indeed∫
M

dVolg(x)(P f )(x)g(x) =
∫
M

dVolg(x) f (x)(Pg)(x) (4.7)

holds.
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4.4. Renormalized states for the classical field theory

This is motivated by the fact that the derivative of ln(|η|) is given by η−1. It is then easy to
show (cf. theorem 3), that t indeed defines a distribution in D′(R) and is a distributional
extension of η−1. We now show, that this t solves (4.8) in a distributional sense. Therefore
let b ∈ D(R). We then have:

−
∫

R
dη ln(|η|) d

dη
(ηb(η)) =

∫
R

dη η−1ηb(η) =
∫

R
dη b(η).

From theorem 1 one now knows, that there is a certain freedom in extending η−1 and hence
one expects, that there should be also a freedom in finding distributional solutions to (4.8).
Especially one expects, that two solutions to (4.8) should differ by a linear combination of
derivatives of delta distributions as in (2.13). Fortunately, this freedom can be limited to a
1-parameter freedom. To see this, observe first that∫

R
dη ηb(η)δ(η) = 0

holds, but for n > 1 ∫
R

dη ηb(η)δ(n)(η) 6= 0

holds. For example, we have∫
R

dη ηb(η)δ′(η) = −
∫

R
dη
(
b(η) + ηb′(η)

)
δ(η) = −b(0)

which is non-zero in general. Hence it follows, that the distribution

tK : b 7→ t(b) + Kδ[b],

with t being defined as in (4.9), is for any K ∈ R a distributional solution to (4.8).

Since φM as a smooth solution to the flat space Klein-Gordon equation is smooth, we can
multiply it unambigously with tK and obtain, that

φ(x) = tK(η) · φM(x)

solves Pφ = 0 in a distributional sense. Moreover, it is easy to show, that φ defined as such
is a distributional extension of the associated smooth solution from D′(M ◦) to D′(M ). As
it was the situation in section 2.3, the 1-parameter freedom in K corresponds to an additive
renormalization freedom. Since we are in this section merely interested in the existence of
renormalized states and especially in the comparison with [15], we will set K = 0 in the
sequel but will comment on the role of the renormalization constants again in section 4.5.

Space of distributional solutions: Motivated by the outcomes of the last paragraph we
define a distributional space of solutions as

V̂ := {t(η) · φM(x)|φM ∈ VM} , (4.10)
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where t is defined as in (4.9). By this we have a 1-to-1 correspondence between distributional
solutions φ̂ ∈ V̂ and smooth solutions φ ∈ V . Of course it would be desirable, to obtain a
more complete picture by defining a distributional space of solutions with some kind of
compact spacelike support in full analogy to the original definition to V . But since we are in
the present situation merely interested in performing a proof of concept and comparing the
classical theory with the situation in [15], we use the instructive definition (4.10)3.

Renormalized n-point functions: The n-point functions ω
(m1,...,mn;n)
φM

(x1, ..., xn) which de-
scribe a classical vacuum state evφ with φ = a(η)−1φM are explicitely given by

ω
(m1,...,mn;n)
φ (x1, ..., xn) =

φM(x1)
m1 · · · φM(xn)mn

a(η1)m1 · · · a(ηn)mn

for φM being a solution to the flat space Klein-Gordon equation. We will now focus for a
while on the case n = 2 and (m1, m2) = (m, 1) to keep things simple. But the general case
follows analogously.

The 2-point function ω(m,1;2)(x1, x2) is explicitely given by

ω
(m,1;2)
φ (x1, x2) =

φM(x1)
mφM(x2)

a(x1)ma(x2)
.

and obviously we have∫
M 2

dVolg(x1)dVolg(x2) f (x1, x2)ω
(m,1;2)
φM

(x1, x2) < ∞ (4.11)

for all m ∈ N for f ∈ D(M o2). We will then see in a moment, that the renormalization of
states corresponds to an extension of the n-point functions towards the singularity, i.e. to
the situation where (4.11) holds also for test-functions f ∈ D(M 2). It is then clear, that for
this a generalization of the distributional extension (4.9) to higher powers η−n is needed.

We can define this extension in a straight forward way as (cf. [15])

t(n) : b ∈ D(R 7→ t(b) := − 1
(n− 1)!

∫
R

dη ln(|η|)b(n)(η), (4.12)

which is motivated by the fact that

(−1)n−1

(n− 1)!
dn ln(|η|)

dηn = η−n

holds. It is then easy to show (cf. theorem 3), that t(n) defines a distribution in D′(R) and is
a distributional extension of η−n. Since φM is smooth, we can unambigously (cf. appendix
A.2 and A.4) define the product t(n) · φn

M and the tensor product distribution
(

t(m) · φm
M

)
⊗

3And in general, uniqueness results are for weak solutions often harder to obtain than for smooth solutions.
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(t · φM) and by this we define a distribution

ω̂
(m,1;2)
φ (x1, x2) =

(
t(m)(η1) · φm

M(x1)
)
⊗ (t(η2) · φM(x2)) .

One can then show easily, that ω̂
(m,1;2)
φ is a distributional extension of ω

(m,1;2)
φ . Therefore let

b1, b2 ∈ D(M o) be two bump functions. We then have∫
M 2

dVolg(x1)dVolg(x2)b1(x1)b2(x2)ω̂
(m,1;2)
φM

(x1, x2)

=
1

(m− 1)!

∫
R4

d4x1ln(|η1|)
dm

dηm
1

(
a(η1)

4b1(x1)φM(x1)
m
)

·
∫

R4
d4x2ln(|η2|)

d
dη2

(
a(η2)

4b2(x2)φM(x2)
)

and since a(η)4bi(x)φM(x) is in D(M o) this can be written as∫
R4

∫
R4

dVol(x1)dVol(x2)η
−m
1 η−1

2 φM(x1)
mφM(x2)b1(x1)b2(x2).

Hence ω̂
(m,1;2)
φ is a distributional extension of ω

(m,1;2)
φ . The general case follows then analo-

gously. By this we have obtained for any smooth solution φ to (4.1) a family of distributional
n-point functions ω̂

(m1,...,mn;n)
φ which extend ω(m1,...,mn;n) − φ in the sense depicted above. Fi-

nally we want to note, that this distributional extension is, as before, not unique. Especially
one can show that the distributional equation

ηnχ = 1

is solved by any distribution of the form (cf. also theorem 3)

χ = t(n) +
n−1

∑
i=0

Kiδ
(i).

Hence for higher order observables there is a high degree of indeterminacy in the present
analysis. We will comment on this again in section 4.5. Nevertheless, since we are merely
interested in performing a proof of concept and comparing the classical theory with the
situation in [15], we set all renormalization constants to zero for a while.

Renormalized states: We now want to show, that the family of renormalized n-point func-
tions which we have obtained in the last paragraph defines a state on the algebra W[M ].
We therefore define for any φ ∈ V a map

êvφ : W[M ]→ C
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by setting

êvφ(F) =
∫

M m
dVolg(x1)...Volg(xn) f (x1, ...xn)ω̂

(m1,...,mn;n)
φ (x1, ...xn)

for an observable F given by

F[φ] =
∫

M n
dVolg(x1)...Volg(xn) f (x1, ...xn)φ(x1)

m1 · · · φ(xn)
mn

with f ∈ C∞
c (M n) and extending this to the whole algebra W[M ] by linearity. By the argu-

mentation of the last paragraph, the map êvφ(F) is hence well-defined defined on W [M ].
Positivity follows, since êvφ has, as evφ, the desirable property that

êvφ(F∗F) = êvφ(F∗)êvφ(F)

holds. To see this, take – in analogy to the example of the last paragraph – the observable F
which is defined as

F[φ] =
∫

M 2
dVolg(x1)Volg(x2) f (x1, x2)φ(x1)

mφ(x2).

We then have, that

(F∗F)[φ] =∫
M 4

dVolg(x1)Volg(x2)dVolg(x3)Volg(x4) f (x1, x2) f (x3, x4)φ(x1)
mφ(x2)φ(x3)

mφ(x4)

=

(∫
M 2

dVolg(x1)Volg(x2) f (x1, x2)φ(x1)
mφ(x2)

)2

holds and it then can be showed easily, that

êvφ(F∗F)

=
∫

M 4
dVolg(x1)Volg(x2)dVolg(x3)Volg(x4) f (x1, x2) f (x3, x4)ω

(m,1,m,1;4)
φ (x1, x2, x3, x4)

=

(∫
M 2

dVolg(x1)Volg(x2) f (x1, x2)ω
(m,1;2)
φ (x1, x2)

)2

holds as well. The claim for general observables follows analogously. Moreover, since the
n-point functions ω̂n1,...,nm;m

φ (x1, ..., xm) are distributional extensions of the n-point functions
ωn1,...,nm;m

φ (x1, ..., xm), for any F ∈W[M ◦]

êvφ(F) = evφ(F) (4.13)

holds. Hence one can think of êvφ(F) as an extension of evφ(F) from M ◦ to M . In order to
understand if the renormalized states exhibit a higher regularity than the unrenormalized
states we consider now the higher order observable φn

f defined in equation (4.6) with f ∈
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D(M ). We then have

∣∣∣êvφ(φ
n
f )
∣∣∣ = ∣∣∣∣ 1

(n− 1)!

∫
R4

d4x
dn

dηn

(
η4 f (x)φM(x)4

)
ln(|η|)

∣∣∣∣
≤
∥∥∥∥ dn

dηn

(
η4 f (x)φM(x)4

)∥∥∥∥
∞

∫
supp( f )

d4x |ln(|η|)|

< ∞

for all n ∈N and hence the claim is shown. By this we have obtained a renormalized, finite
field theory on the singular FLRW spacetime, which extends the unrenormalized field the-
ory in the sense, that (4.13) holds. Moreover this theory has the same regularity properties
as its analogue on flat spacetime, since êvφ(F) is finite for any observable in F ∈W[M ].

4.5. Conclusion

In this section we want to conclude the chapter. Especially we will summarize its findings,
compare the results to the results of [15] and will discuss its drawbacks.

Summary: In this chapter we have shown, that there exist distributional solutions and
distributional states for a conformally coupled classical scalar field on a radiation domi-
nated FLRW spacetime. Those states, which are called renormalized states, extend the usual
smooth states and have the property that all smeared higher order observables are finite,
whereas this is not the case for the non-renormalized states. Moreover, the regularity prop-
erties of the renormalized theory resemble hence those of the corresponding theory on flat
spacetime. By this we have especially shown, that the infinities which occur in the context
of a classical field theory in the vicinity of a cosmological singularity can be renormalized
by a renormalization scheme which is based on point-extensions of distributions.

More general situations: We want to explain concisely, how the results of this section could
be generalized to more general situations. Therefore note, that the case of more general scale
factors a(η) = ηc with c > 0 can be analysed in full analogy since distributional inverses
to ηc can be defined unambiguously (cf. [99]). Also the case of non-minimal coupling or
the massive case can be analysed in a similar manner. In those cases, the solutions are of
course not just given by a product of the inverse scale factor with flat space solutions. In
those cases one has to analyse the scaling behaviour of the occurring differential equations
by which one should be able to estimate the Steinmann scaling degree (cf. section 2.3) of
their distributional solutions. By this one should then be able to analyse the distributional
extensions towards the singular hypersurface.

Comparison to the quantum case: We want to compare our results concisely with the
results of [15]. There it was shown among other things, that the smeared field operators, the
smeared 2-point functions and the smeared energy-momentum tensor remain well-defined
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throughout the singular hypersurface if one considers scalar quantum fields in radiation
dominated and dust filled FLRW spacetimes. Thereby, singularities of the form η−n were
replaced by distributional expressions given by the distribution t(n) defined in (4.12). This
was then considered as a property of the distributional nature of quantum fields. Although
the analysis of [15] is very interesting and rich of deep insights, the present analysis shows,
that this property is not a property of quantum fields but already present at the classical
level. Especially this suggests, that the tameness of the quantum field theory in the vicinity
of the initial singularity as analysed in [15] could be merely inherited from the behaviour of
its classical counterpart which was used for quantization. Moreover our analysis suggests,
that one could define two inequivalent classical field theories in singular spacetimes, which
are based on smooth and distributional solutions, respectively.

Drawbacks of the present analysis: Unfortunately, the present analysis has several seri-
ous drawbacks. For example, we have discarded the renormalization constants, since we
were merely interested in a proof of concept and in the comparison with [15], where the
renormalization constants were discarded, too. Nevertheless, discarding the renormaliza-
tion constants is highly ambiguous, since – as it was depicted in chapter 2 – they correspond
to free parameters of the theory which should be fixed by experiment. Now there are sev-
eral ways how one could deal with those renormalization constants. The most obvious way
is, to pose further restrictions on the form of the occuring distributional extensions. For
example, one could demand, that the distributional extensions t(n) should satisfy certain al-
gebraic relations – as e.g. ηt(n) = t(n−1) – by which they would mimick properties of η−n.
This fixes then the freedom in the renormalization constants to some extent. Another seri-
ous drawback of the present analysis – as well as of the analysis in [15] – is that it relies on
the assumption that back-reaction effects can be neglected. This assumption is problematic,
since one could expect that the energy density of the classical solutions exhibits even in the
renormalized case a behaviour which violates this assumption.

How to do it better: A consecutive step of the present analysis would be a thorough
analysis of the renormalized classical energy momentum tensor. Thereby one should un-
derstand, to which extent the occuring renormalizaion constants are physical and if the as-
sumption that backreaction effects are negligible is appropriate. Another consecutive step of
the present analysis would be, to analyse if the renormalized and non-renormalized classical
theories define inequivalent quantum field theories with different completeness properties.
Although the comparison of the present investigation with the results of [15] suggests that
this is indeed the case, it is not shown explicitely that the resulting quantum field theories
are mathematically inequivalent. Finally one should try to understand, if the present renor-
malization formalism can be also applied on the level of an realistic model for a classical
field-theoretic measurement apparatus traversing the initial singularity. Moreover, it would
be desirable to develop a measurement theory in the context of classical field theory and to
apply this on cosmological singularities. We will comment on this again in section 7.2.
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5. It from null?

In the last chapter we have analysed a singular FLRW spacetime in the context of classical
field theory. Thereby we have obtained as a result, that the occuring states can be renormal-
ized whereby the occurring infinites disappear. In this chapter, on the other hand, we will
first perform in section 5.1 a geometric analysis of the same FLRW spacetimes by consider-
ing the qualitative behaviour of geodesics in the vicinity of the singularity. This will lead
to an interesting observation: Qualitatively, time- and spacelike geodesics behave more and
more lightlike as they approach the singularity. We will then complement this observation
in section 5.2 by discussing various examples from the literature which suggest, that grav-
ity exhibits in extreme situation a dimensional reduction and an ultrarelativistic behaviour.
Motivated by those observations we will then rise in section 5.3 the question, if it could
be, that lightlike directions are more fundamental than time- or spacelike directions, i.e. if
the relativistic spacetime could be merely a effective description of a microscopically purely
lightlike geometry. This idea will then be the starting point for the analysis of the next chap-
ter, where the microscopic ultrarelativistic symmetries of spacetime will be analysed.

5.1. Qualitative behaviour of geodesics in FLRW backgrounds

In a colloquial language, the Riemann curvature tensor measures the deviation of a curved
geometry from a flat pseudo-Riemannian model geometry (cf. [44, 161]). Hence, the diver-
gent Riemann scalar of singular FLRW spacetimes should be understood as a symptom of
the breakdown of the pseudo-Riemannian model in the vicinity of the singularity. Usually,
this is interpreted as a sign that geometry itself breaks down at the singularity. But one
could wonder also, if this point of view is not too pessimistic and if it could not be that
the singularity marks merely a change of the geometric model. To gain a better geometric
intuition for the FLRW singularity, we will analyse in this section the qualitative features of
geodesic motion in its vicinity. Thereby we will see, that all geodesics behave more and more
lightlike as they approach the singularity. This rises especially the question, if the pseudo-
Riemannian model should be replaced by some ultrarelativistic model in the vicinity of the
singularity. In section 5.2 we will then complement the results of this section by reviewing
some situations in which gravity exhibits a similar behaviour.
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5.1. Qualitative behaviour of geodesics in FLRW backgrounds

A first glimpse at the equations of motion in FLRW backgrounds: We consider FLRW
spacetimes given by the metric

ds2 = −dt2 + b(t)2(dx2 + dy2 + dz2)

in coordinates (t, x, y, z) with t > 0 and (x, y, z) = (x1, x2, x3) ∈ R3. We demand, that
b(t) > 0 holds for t 6= 0 and that b(0) = 0. The hypersurface at t = 0 is then called the
singularity of this spacetime. An interesting aspect of such FLRW spacetimes is, that – due
to their large symmetry – the motion of a test particle can be analysed without referring to
the geodesic equations. Especially, the motion of a test particle is fully determined by the
conserved momenta Pi associated with the Killing vectors ∂i for i ∈ {1, 2, 3} and by the
condition gµν ẋµ ẋν = σ, which fixes an affine parameter for time- and spacelike geodesics
in the case of σ 6= 0 or corresponds to the constraint that the path should be null in the
case σ = 0. By some effort (cf. appendix B.4) we obtain the following ordinary differential
equations, which determine the motion:

dt
dλ

=

√
P2

b(t)2 − σ (5.1)

dxi

dt
=

Pi√
P2b(t)2 − σb(t)4

(5.2)

Here we have set P2 := ∑3
i=1
(

Pi)2. Already at this stage, some interesting aspects occure.
Let therefore be from now on P > 0. Then, since b(t) → 0 as t → 0 we see, that in both
equations the terms proportional to σ under the square-root are damped as t → 0. To
see this, multiply (5.1) and (5.2) with b(t) and perform then an expansion in b(t) around
b(t) = 0:

b(t)
dt
dλ

=
√

P2 − σb(t)2 = P− b2 σ

2P
+O(b4)

b(t)
dxi

dt
=

Pi√
P2 − σb(t)2

=
Pi

P
+ b2 Piσ

2P3 +O(b4)

By observing, that the equations (5.1) and (5.2) read in the case of null geodesics (σ = 0) as

b(t)
dt
dλ

= P

b(t)
dxi

dt
=

Pi

P
,

we observe, that the equations of motion (5.1) and (5.2) are at the leading order determined
by the behaviour of the null geodesics at the singularity. Finally, the case P = 0 is only
allowed for timelike geodesics (see appendix B.4), i.e. for σ < 0, and the equations reduce
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5.1. Qualitative behaviour of geodesics in FLRW backgrounds

in this situation to

dt
dλ

=
√
−σ,

dxi

dt
= 0.

Consequently the geodesic motion is in this case given by

t(λ) =
√
−σ(λ− λ0) + t0, (5.3)

xi(t) = xi
0. (5.4)

Solutions to the geodesic equations in FLRW backgrounds: We now want to get a little bit
more concrete and present the solutions of the equations of motion in the case b(t) = b0tγ

for γ ∈ (0, 1) with initial conditions t(0) = 0 and xi(0) = 0. We then have that the null
geodesics are given by

t(λ) =
[
(γ + 1)

P
b0

λ

] 1
γ+1

, (5.5)

xi(t) =
Pi

Pb0(1− γ)
t1−γ, (5.6)

while the spacelike (i.e. σ > 0) and timelike (i.e. σ < 0) geodesics are given for P > 0 by the
somewhat messy expressions

λσ(t) =
b0tγ+1

P(1 + γ)

[
2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)]
, (5.7)

xi
σ(t) = ei

[
t1−γ

(1− γ)b0
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)]
, (5.8)

where (5.7) determines t(λ) for non-null geodesics implicitely as the inverse of λ(t) and
equations (5.6), (5.8) determine the graph of null and non-null geodesics, respectively. For
P = 0 the solution is given by (5.3) and (5.4). To gain a better intuitive understanding
of those equations, please recall from the last paragraph that the equations of motion for
non-null geodesics seem, as long as P > 0, to be dominated by null behaviour towards the
singularity. Hence we expect, that this behaviour should also be represented by the solutions
of the equations of motion. To see that this is really the case let from now on be P > 0 (we
will comment on the case of P = 0 again at the end of this section). We then invert (5.5),
which yields:

λ(t) =
1
P

b0

1 + γ
t1+γ.
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Now let λ?(t) and xi
?(t) be the inverse parametrization and the graph of null geodesics

emanating from the singularity, respecitvely, i.e.:

λ?(t) =
1
P

b0

1 + γ
t1+γ, (5.9)

xi
?(t) =

Pi

Pb0(1− γ)
t1−γ (5.10)

We then can express the functions λσ(t) and xi
σ(t) given by (5.7) and (5.8) as

λσ(t) = λ∗(t)G̃
(γ)
σ,P(t), (5.11)

xi
σ(t) = xi

?(t)H̃(γ)
σ,P(t), (5.12)

with

G̃(γ)
σ,P(t) = 2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)
,

H̃(γ)
σ,P(t) = 2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)
.

Here 2F1(a, b, c; z) is the Gaussian hypergeometric function, which is explicitly defined by
the series

2F1(a, b, c; z) =
∞

∑
n=0

(a)n(bn)

(c)n

zn

n!

for |z| < 1, where (q)n denotes the rising Pochhammer symbol

(q)n :=
Γ(q + n)

Γ(q)
,

and analytic continuation elsewhere. Hence we have that, for a sufficiently small neighbor-
hood of the initial singularity at t = 0, the functions (5.11) and (5.12) can be written as:

λσ(t) = λ∗(t)
[
1 +O

(
b(t)2)] ,

xi
σ(t) = xi

?(t)
[
1 +O

(
b(t)2)] .

By recalling, that λ?(t) and xi
?(t) as defined in (5.9) and (5.10) are the (inverse) parametriza-

tion and the graph of null geodesics, we see that time- and spacelike geodesics are (as long
as P 6= 0) for small t dominated by the behaviour of null geodesics.
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Qualitative behaviour towards the singularity: After all those abstract thoughts it is now
the time for some pictures. Therefore we switch now to conformal coordinates where a new
time coordinate η defined as

η(t) =
∫ t

0
dt′

1
b(t′)

.

is introduced. This leads then to the metric

ds2 = a(η)2 (−dη2 + dx2 + dy2 + dz2) . (5.13)

We now choose b(t) = b0tγ with b0 = (1 − γ)−γ and γ = (1 + c)−1c as a scale factor,
which implies a(η) = ηc. Since the metric (5.13) is conformally equivalent to the Minkowski
metric, null relations are the same as in Minkowski spacetime and especially the graphs of
null geodesics are the same as in Minkowski space. We consider the same initial conditions
as before and obtain then, that null geodesics are given by

λ?(η) :=
1
P

[
1− γ

1 + γ

]
η

1+γ
1−γ ,

xi
?(η) := eiη + xi

0,

while the non-null geodesics are given, for P > 0, by

λσ(η) = λ∗(η)G
(γ)
σ,P(η)

xi
σ(η) = xi

?(η)H(γ)
σ,P(η)

with

G(γ)
σ,P(η) := 2F1

(
1
2

,
1
2

(
1 +

1
γ

)
,

1
2

(
3 +

1
γ

)
;

σ

P2 η
2γ

1−γ

)
,

H(γ)
σ,P(η) := 2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

;
σ

P2 η
2γ

1−γ

)
,

where σ > 0 corresponds to affinely parametrized spacelike geodesics and σ < 0 corre-
sponds to affinely parametrized timelike geodesics. It is valuable to note, that the hyperge-
ometric function seems to assume a much simpler form if one sets γ = 1/n for n ∈ N. E.g.
we have with Mathematica for γ = 1

2

H(γ)
σ,P(η) =

P arcsin η
√

σ
P

η
√

σ
= 1 +

σ

6P2 η2 +O(η4)

and for γ = 1
3 :

H(γ)
σ,P(η) = −

2P2
(
−1 +

√
1− ησ

P2

)
ησ

= 1 +
σ

4P2 η +
σ2

8P4 η2 +
5σ3

64P6 η3 +O(η4).

81



5.1. Qualitative behaviour of geodesics in FLRW backgrounds
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Figure 5.1.: Geodesics in the η-x1-plane for γ = 1/3 emanating at the singularity η = 0 with
initial condition xi = 0 and printed in the interval η ∈ (0, 1]. Timelike geodesics
are orange, null geodesics are dashed and spacelike geodesics are green. For
the timelike geodesics the momenta are, from the center to outside, given by
P = 0, 1

20 , 5
20 , 10

20 , 15
20 , 1. For the timelike geodesics, the momenta are, from the

center to the outside, given by P = 15
20 , 10

20 , 5
20 , 1

20 .
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Figure 5.2.: Timelike geodesics (orange) are plotted for the same momenta, as in figure 5.1,
but this time for different ranges of η: In the left picture we have η ∈

(
0, 1

10

)
, in

the middle picture η ∈ (0, 1) and in the right picture η ∈ (0, 30). Thereby one
realizes, how the timelike geodesics approach for P 6= 0 more and more the light
cone towards the singularity.

In figure 5.1 we have now plotted the graphs of various geodesics in the η-x-plane for the
case γ = 1

3 . One observes that all geodesics behave approximatively as null geodesics in
the vicinity of the singularity, while for larger times their respective time- and spacelike be-
haviour gets more and more dominant. This is also apparent from figure 5.2 where we have
plotted timelike geodesics for different regions around the singularity. Observe, that this be-
haviour matches the discussion of the previous paragraphs. This also suggests a way, how
normal neighborhoods degenerate towards the initial singularity: If one approaches the ini-
tial singularity, normal neighborhoods of points getting more and more deformed towards
the light cone. Also, as it gets apparent from the pictures, an interesting ”discontinuity”
occurs: Although all geodesics for P > 0 approach the light cone in the vicinity of the singu-
larity, the timelike geodesic with P = 0 is just a straight line. If one imagines the situation,
where an observer falls into a big crunch singularity along the geodesic with P = 0, the
observer experiences a situation where any other observer moving at non-vanishing mo-
mentum P > 0 gets accelerated to the speed of light under approaching the singularity.
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5.1. Qualitative behaviour of geodesics in FLRW backgrounds

Towards a coordinate-invariant statement: In this section we have analysed the qualita-
tive behaviour of geodesics in the vicinity of the initial singularity in a spatially flat FLRW
spacetime. Thereby we obtained as a qualitative result, that the motion of non-null geodesics
approaches for non-zero momenta more and more the motion of null geodesics. This obser-
vation rises then immediately the question, if this behaviour is coordinate-invariant and if
it can be encoded in terms of a coordinate-invariant, quantitative statement.

Fortunately, the present analysis has several features which indeed suggest, that the be-
haviour found in this section is a coordinate-invariant feature of FLRW spacetimes. For
example, the equations (5.7, 5.8) and (5.11, 5.12) suggest, that the behaviour of space- and
timelike geodesics – and especially their deviation from null geodesics – is entirely encoded
by two scalar functions

2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)
and 2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)
which are especially bounded and non-zero on the whole spacetime including the singular-
ity, since they both approach 1 as t→ 0.

This statement has then also a tensorial analogue on the level of tangent vectors. There-
fore let xµ

σ,~P
(λ) be an affinely parametrized geodesics corresponding to momentum ~P =

(P1, P2, P3) and σ 6= 0 defined. Let now xµ

?,~P
(λ) be a null geodesic with momentum ~P 6= 0.

We then can write for the respective tangent vectors

∂xµ

σ,~P

∂λ
= Aµ

ν[σ, ~P]
∂xν

?,~P

∂λ
(5.14)

with

(
Aµ

ν[σ, ~P]
)
=


√

1− σ b(t)2

P2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


which especially satisfies (

Aµ
ν[σ, ~P]

)
→ 14×4 as t→ 0.

This statement has now various interesting aspects. Most importantly, the tensor field
Aµ

ν[σ, ~P] approaches the identity tensor towards the singularity and makes thereby the state-
ment precise that the velocity vectors of time- and spacelike geodesics with non-vanishing
momentum approach the velocity vectors of null geodesics. Moreover, this statement is ob-
viously covariant and is defined in terms of invariantly defined objects: The tensor A relates
the velocity vector of time- and spacelike geodesics with non-vanishing momentum to their
null counterparts with the same momentum. Since the quantities σ and ~P are invariantly
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defined, this statement is hence independent of the considered coordinate system, which
suggests indeed that the behaviour found in this section is a coordinate-invariant feature of
FLRW spacetimes. Finally observe, that the tensor Aµ

ν[~P] is a tensorial quantity which is
defined on the full spacetime including the singularity and is especially non-zero thereon.
Since it encodes, how non-null geodesics differ from null geodesics, this corresponds to the
statement, that – although the metric is degenerate on the singularity – the deviation of
non-null geodesics from null geodesics is a well-defined quantity on the whole spacetime.
Moreover if one inverts above equation (5.14) and considers the case P = 0 one obtains as a
result, that timelike geodesics with P = 0 approach zero as compared to null geodesics.

This means: If one looks at the initial singularity from a perspective, where the inertial frame
is not given by vielbein frames – i.e. tangent vectors of orthonormal time- and spacelike
geodesics – but by the tangent vectors of a family of null geodesics, then the infinitesimal
geometry exhibits apparently a well-defined limit at the singularity. This limit corresponds
then to a situation where all time- and spacelike geodesic tangent vectors with P 6= 0 ap-
proach the light cone while the timelike geodesic tangent vector with P = 0 approaches zero
(as compared to null geodesics), i.e. the apex of the light cone.

Nevertheless this observation still rises some questions. For example one should analyse
precisely, to which extent it is stable with respect to coordinate transformations which de-
generate on the singularity. Moreover one should make it mathematically more precise, e.g.
in the context of geodesic sprays, and should analyse, how far it really corresponds to a
change of the geometric model in the vicinity of the singularity. We will comment on this
again in section 7.2.

5.2. On dimensional reduction and ultrarelativistic effects in

gravity

In the last section we have analysed the geodesic geometry of the FLRW singularity and
obtained as a qualitative result, that the geometry seems to behave ultrarelativistically as
one approaches the singularity. In addition, since the 4-dimensional tangent space seems
to be deformed towards the 3-dimensional light cone, one could be tempted to think that
some dimensional reduction takes place in the vicinity of the singularity. In this section we
will see, that this kind of behaviour is not exclusively tied to FLRW spacetimes but occurs
in many situations, in which gravity is probed under extreme circumstances. In this section
we will present some of those scenarios. Our main reference for this section is given by [42]
while other references are stated when needed1.

1We want to note, that the ultrarelativistic behaviour in those stiuation was mostly not noticed by the literature,
in contrast to the dimensional reduction which is a commonly observed phenomenon.
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5.2. On dimensional reduction and ultrarelativistic effects in gravity

The Kasner spacetime: The most obvious question raised by the analysis of the last sec-
tion is to which extent the results presented there can be generalized to other curvature
singularities. Of special interest is hereby the Kasner singularity, since, as we will see later,
it has an important application within the BKL conjecture and appears also in the context of
the short distance Wheeler-DeWitt equation.

The Kasner spacetime is a vacuum solution to Einstein’s equation which is given by the met-
ric

ds2 = −dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2

with real Kasner exponents (p1, p2, p3), which have to satisfy the Kasner conditions

3

∑
i=1

pi = 1, (5.15)

3

∑
i=1

p2
i = 1. (5.16)

Since (5.15) describes a plane (the so called Kasner plane) in R3 and (5.16) describes a sphere
(the so called Kasner sphere), the Kasner conditions can be understood as the statement, that
the parameters pi have to lie on the intersection of the Kasner plane with the Kasner sphere.
An important property of the Kasner exponents is, that the 3-tuple (p1, p2, p3) is (up to per-
mutations) either (0, 0, 1) or contains always one negative and two positive exponents.

As it was the case for the FLRW spacetime, the vector fields ∂i with i ∈ {1, 2, 3} are Killing
vector fields. The geodesics are in this case determined due to the high amount of symmetry
by the equations

dt
dλ

=

√√√√ 3

∑
i=1

t−2pi(Pi)2 − σ,

dxi

dt
=

Pit−2pi√
∑3

i=1 t−2pi(Pi)2 − σ
.

Here σ ∈ R with σ = 0 corresponds to null geodesics, while σ > 0 corresponds to spacelike
and σ < 0 corresponds to timelike geodesics.

On the one hand, the Kasner geodesics show a similar behaviour towards the singularity
at t = 0 as compared to the FLRW metric. To see this, consider first the case (p1, p2, p3) =
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(1, 0, 0). In this case the geodesic equations read

t
dt
dλ

=
√
(P1)2 + [(P2)2 + (P3)2 − σ] t2

t
dx1

dt
=

P1√
(P1)2 + [(P2)2 + (P3)2 − σ] t2

dxj

dt
=

Pj√
(P1)2t−2 + (P2)2 + (P3)2 − σ

whose small-t behaviour is given by the following expansions:

t
dt
dλ

= P1 +
(P2)2 + (P3)2 − σ

2P1 t2 +O(t4)

t
dx1

dt
= 1− (P2)2 + (P3)2 − σ

2(P1)2 t2 +O(t4) (5.17)

dxj

dt
=

Pj

P1 t− Pj

2P1

(
(P2)+(P3)2 − σ

)
t3 +O(t5) (5.18)

We then see directly, that σ is again irrelevant up to leading order in t. Hence, qualitatively
spoken, it seems that timelike, spacelike and null geodesics have again the same limiting
behaviour towards the singularity.

But as an additional feature as compared to the FLRW case we have here a more severe
dimensional reduction. To see this, observe that in above expansions (5.17 - 5.18), up to
leading order in t, only P1 is of relevance. Moreover observe, that ẋj ∼ 0 for j 6= 1 while
ẋi ∼ t−1 up to leading order in t, where the dot denotes the derivative with respect to t. This
could be interpreted as a sign of dimensional reduction in the vicinity of the singularity (cf.
[42]).

We now want to analyse, if those features are also present for more general Kasner expo-
nents. Therefore let without loss of generality p1 ≥ p2 > 0 > p3. Set moreover p1 = a,
p2 = b and p3 = −c and observe, that then a ≥ b holds. Then the geodesics are in this case
determined by:

ta dt
dλ

=
√
(P1)2 + (P2)2t2(a−b) + (P3)2t2(a+c) − σt2a,

ta dx1

dt
=

Pi√
(P1)2 + (P2)2t2(a−b) + t2(a+c)(P3)2 − σt2a

,

t2b−a dx2

dt
=

P2√
(P1)2 + (P2)2t2(a−b) + (P3)2t2(a+c) − σt2(a−b)

,

t2c−a dx3

dt
=

P3√
(P1)2 + (P2)2t2(a−b) + (P3)2t2(a+c) − σt2(a+c)

.

Hereby we see again, that the terms proportional to σ are damped and the structure of the
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equation suggests also a dimensional reduction. Hence, qualitatively, the Kasner geodesics
shows a similar behaviour in vicinity of the singularity as the FLRW geodesics, with the
difference that additionally a more severe dimensional reduction occurs. More information
on Kasner geodesics can be found in [89] and more information on dimensional reduction
in Kasner spacetimes can be found in [42].

The BKL-conjecture and the Kasner singularity: In the last paragraph we have seen, that
Kasner geodesics exhibit in some sense a ultrarelativistic behaviour in the vicinity of the
singularity, since the behaviour of time- and spacelike geodesics equals the behaviour of
null geodesics up to leading order in time. In this paragraph we want to present another
aspect of the Kasner singularity which is also connected to ultrarelativistic behaviour.

Belinski, Khalatnikov and Lifshitz analysed in the 1960 in a series of papers (cf. e.g. [26])
generic spacelike singularities in general relativity and presented some powerful arguments
supporting a claim, which goes today under the name of the BKL-conjecture. Roughly said,
the BKL-conjecture states, that as one approaches a generic spacelike singularity, spatial
points decouple and as a consequence timelike derivatives in Einstein’s equations dominate
over spacelike derivatives which finally leads to a reduction of Einstein’s equations to a set
of ordinary partial differential equations with respect to a single time variable (cf. [93, 18,
25]). This conjecture then lead also to the claim, that the behaviour of any spacetime in
the vicinity of a cosmological singularity is described by a sequence of (generalized) Kasner
spacetimes (cf. [92]).

This conjecture has multiple aspects, which are notable in the context of the present analy-
sis. The most obvious aspect is, that it suggests that the Kasner singularity is in some sense
the most general cosmological singularity, which motivates the conjecture that the type of
ultrarelativistic behaviour that we have encountered previously is indeed a general feature
of cosmological singularities. Moreover, field equations with dominant timelike derivatives
are a feature of so called ultralocal field theories (cf. [114, 115] ) which are also the natural
field theories in ultrarelativistic contexts. Especially, field theories with Carrollian (i.e. ultra-
relativistic) symmetry (cf. [19]) are often ultralocal or have an ultralocal sector (cf. [154, 20]).
This suggests that the BKL-conjecture itself incorporates the statement that general relativity
reduces to an ultrarelativistic field theory in the vicinity of cosmological singularities.

Short distance Wheeler-DeWitt equation, Strong gravity and stuff like that: If one tries
to quantize gravity canonically, one obtains the famous Wheeler-DeWitt equation which
reads as [

−16π`2
PGijkl

δ

δqij

δ

δqkl
+

1
16π`2

P

√
det(q)R(3)

]
Ψ[q] = 0,

where q = qij is the spatial metric on a given Cauchy surface, R(3) is its Ricci scalar and

Gijkl =
1
2

1√
det(q)

(
qikqjl + qilqjk − qijqkl

)
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is the so called DeWitt supermetric (cf. [127, 42]). If one performs the strong coupling limit
`P → ∞, which can be understood as the limiting behaviour on small scales where the
Planck length gets relevant, then obviously the second term of above equation drops out.
As it was pointed out by Isham in [104] (cf. also [42]), this limit is an ultralocal limit since the
second term, which contains spatial derivatives in the metric, drops out. As an interesting
fact, this theory of strong gravity is indeed solvable (cf. [145, 146]). In this context one then
obtains as a result (cf. [77]) that the quasiclassical approximation for the evolution of wave
functionals towards the initial singularity is dominated by asymptotic scatterings of Kasner
wave functions, which is riminiscent of the BKL behaviour as presented in the last section.
Moreover, since the Planck length is given by

`P =

√
h̄G
c3 ,

the limit `P → ∞ corresponds obviously to an ultrarelativistic c → 0 limit. Since the c → 0
limit of the Poincaré group is the ultrarelativistic Carroll group (cf. [19]) and since classical
ultrarelativistic gravity corresponds to a contraction of the Poinacré group to the Carroll
group (cf. [49, 88]), this suggests a speculative connection between small-scale quantum
gravity, the BKL-conjecture and an ultrarelativistic ”sector” of gravity.

Effective relativity from microscopic null geometry: In the last paragraphs we have pre-
sented some evidence, that gravity exhibits an ultrarelativistic behaviour in several extreme
situations. This motivates the idea, that gravity could be described on fundamental micro-
scopic scales by some sort of ultrarelativistic field theory. Pictorially spoken this corresponds
then to a situation where microscopically anything moves at the speed of light. Since our
macroscopic world obviously differs from this picture, this rises the question how causal
relationships should emerge from a microscopic setting where only lightlike geometry is of
relevance.

To answer this question we would like to note, that it was already realised by Penrose and
Kronheimer in the 60s that null relations (so called horismus relations) are enough to deter-
mine the causal structure of strongly causal spacetimes (cf. [118, 133]). Let therefore (M , g)
be a time-oriented 4-dimensional pseudo-Riemannian spacetime with metric g. Let the time-
orientation be modelled by a timelike vector field X ∈ X(M ) satisfying g(X, X) < 0. We
then call a smooth curve

γ : (a, b)→M

with tangent vector field γ̇ timelike if g(γ̇, γ̇) < 0, causal if g(γ̇, γ̇) ≤ 0, null if g(γ̇, γ̇) = 0,
spacelike if g(γ̇, γ̇) > 0 and future-pointing if g(γ̇, X) < 0. By this one defines the following
standard relations on M (cf. [134]):

• x chronologically precedes y, written x � y, if there is a future-pointing timelike curve
from x to y.
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• x strictly causally precedes y, written x < y, if there is a future-pointing causal curve
from x to y.

• x causally precedes y, written x ≤ y, if x < y or x = y.

• x horismos y, written2 x ⇀ y, if there exists a future directed null curve from x to y or
if x = y.

It follows then that in a large class of realistic spacetimes the causal relations are generated
by null relations. Therefore we say, that x is connected to y by a horismos chain, written x � y,
if and only if there is a finite sequence (called the horismos chain) (zn)1≤n≤N such that

x = z1 ⇀ z1 ⇀ ... ⇀ zN = y (5.19)

holds. It then can be shown (cf. [118, 133]) that for strongly causal spacetimes (and hence
especially for globally hyperbolic spacetimes) x ≤ y holds if and only if x � y holds. It
is important to notice, that the number N, which determines the length of the horismus
chain (5.19) that connects x and y, must allowed to be arbitrarily large for this statement
to hold. Pictorially spoken, one could hence understand causal relations as some sort of
”thermodynamic limit” of horismos relations.

By this we see that a macroscopic causal geometry can indeed emerge as an effective de-
scription of a microscopically lightlike geometry. Another evidence which supports this
picture comes from [32]. Here it was shown, that any map which maps all light cones of
Minkowski space onto themselves is necessarily (up to a scale factor) an inhomogeneous
Lorentz transformation. This means, that special relativity is entirely fixed by the null prop-
erties of Minkowski spacetime without the need to consider time- or spacelike relations.

5.3. Conclusion

In this chapter we have presented some examples, which provide – together with the re-
sults of the first section of this chapter – evidence to the claim, that gravity exhibits an
ultrarelativistic and dimensionally reduced behaviour in extreme situations. For the sake
of completeness we want to note, that the list of situations presented in this thesis is not
exhaustive. For example, as we pointed out before, ultrarelativistic behaviour seems to be
interconnected with the causal decoupling of nearby points. This phenomenon goes in re-
lated situations also under the name of asymptotic silence and arises on microscopic scales
indeed in many different approaches to quantum gravity, as spin foam models ([43]), causal
sets ([65]), Planckian scattering in string theory (cf. [42] and references cited therein) and
loop quantum cosmology ([132]).

2In the literature one usually write x → y for the horismos relation. But to avoid confusion with limits, which
are regularly used in this thesis, we have decided for a different notation
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5.3. Conclusion

The results of this section then raise the question, if it is possible to describe gravity on
fundamental scales by some type of ultrarelativistic field theory. The results of the last para-
graph can be hereby understood as a first plausibility analysis: If spacetime is on micro-
scopic scales dominated by some sort of ultrarelativistic behaviour, then causal and space-
like relations should be merely an effective description of null relations, what is indeed the
case as we have explained there. Of course, the most important question is then if such
an ultrarelativistic field theory exists which implies general relativity on macroscopic scales
and what its features are. Since symmetries are usually a good guiding principle for the
building of physical theories, a first preliminary step could be to analyse the possible micro-
scopic ultrarelativistic symmetry groups, which could be eligible as gauge groups of such a
theory. This will be done partially in the next chapter.
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6. The microscopic ultrarelativistic geometry

of spacetime

In the last chapter we have presented some evidence that gravity shows an ultrarelativistic
behaviour in extreme situations. Motivated by this observation we have formulated the
claim that gravity could be described by an ultrarelativistic field theory on microscopic
scales. In this section we will perform a first step for the analysis of this claim: We will
analyse the microscopic ultrarelativistic symmetries of a 4-dimensional pseudo-Riemannian
spacetime, to understand which symmetry groups could be used for the construction of such
a theory. This will be done by investigating the universal geometric structures on infinitesi-
mal tangent light cones together with an analysis of their symmetry groups. As we will see,
this will lead to surprisingly rich structures hidden in the theories of relativity. Especially,
two natural microscopic symmetry groups will arise: a non-trivially represented Lorentz
group and an infinite dimensional group, that resembles the famous Bondi-Metzner-Sachs-
group. Those two groups encompass a rich mathematical structure, since the latter contains
the former as a non-canonical subgroup, next to infinitely many other Lorentz subgroups.
Moreover we will understand, that the non-trivially represented Lorentz group can be un-
derstood as the ultrarelativistic, Carrollian symmetry group of the infinitesimal light cone,
while the other, BMS-like group is the corresponding conformal extension. In addition, we
will compare our investigation with the classical BMS analysis and will understand thereby,
that the microscopic BMS-like group is indeed conceptually and structurally a microscopic
analogue of the BMS group. Finally we will show, that both symmetry groups are gauge
groups for the bundle of null vectors and will discuss the intuition behind those symmetry
groups. Also, our results imply, that BMS-like groups arise not only as macroscopic, asymp-
totic symmetry groups in cosmology, but describe also a fundamental and apparently un-
known microscopic symmetry of pseudo-Riemannian geometry. This chapter is based on
the author’s publication [176] and an outline of this chapter can be found at the end of the
introduction (i.e. section 6.1) of this section.

6.1. Introduction

In the last chapter we saw, that lightlike relations are in some sense more fundamental than
causal relations, since two points are causally seperated if and only if they can be connected

91
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by a curve that is piecewise a null geodesic. This picture motivates then an elementary,
though speculative, idea how a spacetime which is ultrarelativistic on microscopic scales
could be described by relativity on macroscopic scales: If we assume, that microscopically
only null curves are permitted and if we allow those curves additionally to ”scatter” on
a very small, say Planckian, scale, then effectively such a motion should be described by
a timelike curve. Kinematically, this model would be characterized by the constraint that
the velocity vectors of all curves had to lie on the microscopic tangent light cones while
dynamical laws should then control the scattering on Planckian scales. Although it is of
course not clear from the outset, that meaningful dynamical laws exist which would imply
general relativity on macroscopic scales, this picture makes it clear that any such dynamical
theory should respect the symmetries of the kinematical arena, i.e. the symmetries of the
bundle of microscopic tangent light cones. From a more physical perspective this picture
could also be understood as a scale-dependence of the considered inertial frames: Although
macroscopically inertial frames are given by vielbein frames – since all timelike directions
can be generated on a macroscopic scale by scattered null curves – microscopically only
null directions are allowed and hence microscopic inertial frames should be described by
frames adapted to microscopic tangent light cones. This idea then motivates the study of
the universal geometric structures and the symmetries of microscopic tangent light cones,
which we will perform in this section.

On ultrarelativistic structures and symmetry groups: A situation in which all motion is
constrained to be lightlike can be also seen from a different perspective, namely that of
ultrarelativistic geometric structures. Historically, the study of ultrarelativistic structures
started with the paper [120] by Jean-Marc Lévy-Leblond and was continued in the better
known paper Possible kinematics [19] by Henri Bacri and Lévy-Leblond, where in some sense
all possible 4-dimensional kinematic symmetry groups where derived (cf. also [62]). Next
to well-known examples as the Galilei, the Lorentz or the de-Sitter groups, also more exotic
groups arose and especially the ultrarelativistic Carroll group was described.

The Carroll group can be understood as a Wigner-Inönü-Contraction (cf. [157, 103]) of the
Poincaré group under the limit c → 0 (cf. [120]). It hence should be understood as an
ultrarelativistic symmetry group, describing situations where anything moves at the speed
of light. It is opposed by the well-known Galilei-group which arises on the other hand as a
contraction of the Lorentz group under the limit c → ∞. The Carroll group was named by
Lévy-Leblond after Lewis Carroll, the author of the book Alice’s Adventures in Wonderland,
due to its miraculous properties. E.g. Lévy-Leblond writes in [120]:

Le comportement d’un éventuel Univers qui serait régi par le groupe d’invariance ici
n’est pas sans rappeler celui du ”Pays des Merveilles”. L’absence de causalité est partic-
ulièrement claire dans les aventures d’Alice ainsi que la valeur arbitraire des intervalles
de temps (cf. en particulier le chapitre 7, ”Un thé de fous”). C’est pourquoi il ne nous a
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pas paru déplacé d’associer le nom de L. Carroll à cette nouvelle limite non-relativiste du
groupe de Poincaré.

Despite of its interesting properties, it took several decades till Carrollian groups found ap-
plications in modern theoretical physics. A starting point for a renewed interest in this struc-
ture was the observation (cf. [60]), that the famous Bondi-Metzner-Sachs group, which ap-
pears in the description of gravitational waves at null infinity, is the conformal extension of
the Carroll group. This finding lead then to various applications of Carrollian groups in the
context of holography (cf. e.g. [57]) and is less suprising than it appears on a first glimpse:
The Bondi-Metzner-Sachs group is a symmetry group associated with null infinity, which
can be understood as a natural macroscopic null surface associated with asymptotically flat
space times. As a null surface, null infinity can be endowed with ultrarelativistic geometric
structures, whose symmetry groups should then be variants of the Carroll group.

Since microscopic tangent light cones, which are the objects of our interest, are certainly
ultrarelativistic objects, too, we expect, that those geometric entities have similar properties.
And indeed, we will understand lateron that their geometric properties resemble those of
null-infinity to a such a great extent, that the analysis of this chapter could be understood as
a microscopic analogue of the Bondi-Metzner-Sachs analysis. Therefore we will recapitulate
the Bondi-Metzner-Sachs analysis concisely in the following.

The Bondi-Metzner-Sachs framework: In their seminal works from 1962 (cf. [30, 156, 31])
Bondi, Metzner, van der Burg and Sachs derived among other results, that the asymp-
totic symmetry group of asymptotically flat spacetimes at null infinity is not given by the
Poincaré group, but by an infinite dimensional generalization, that goes today under the
name of the Bondi-Metzner-Sachs (BMS) group. This discovery not only laid the foundation
for a coordinate invariant analysis of gravitational waves (cf. [30, 156]), but stimulated a lot
of research till today: It found application in numerical relativity (cf. [180, 29]), led more
recently to the formulation of celestial holography (cf. e.g. [139]) and even triggered deep
insights into the structure of gauge theories on asymptotically flat spacetimes ([165]). In a
modern language (cf. [13, 14]), the original BMS-analysis can be most easily understood by
performing a conformal compactification ([140]) of the considered spacetime. In this sce-
nario, null infinity becomes a 3-dimensional null manifold which represents a boundary
of the compactified bulk spacetime. As such, it inherits several universal geometric struc-
tures from the bulk, that are independent of the specific spacetime under consideration.
The symmetry group of those structures is then given by the BMS-group, which describes
the asymptotic symmetries that are encompassed by all asymptotically flat spacetimes (cf.
[13, 14]).

The classic BMS group can hence be understood as a macroscopic symmetry group. It en-
codes, how spacetimes behave asymptotically at the largest scales. But one could also won-
der about the microscopic asymptotics and could hence ask the opposite question: Is there
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a microscopic analogue of the BMS group which describes, how spacetimes behave asymp-
totically at microscopic scales? On the first glimpse, this question seems to be trivial. The
Einstein equivalence principle (cf. e.g. [44]) tells us directly, that every spacetime behaves
microscopically like flat Minkowski space. Hence, the microscopic symmetry group of gen-
eral relativity should be given by the Lorentz group. This is of course true in some sense
and can be formalized in terms of the vielbein formalism (cf. e.g. [44]), where the Lorentz
group appears as a microscopic gauge freedom in the choice of local inertial frames. But if
one compares this with the classic BMS analysis, one will realize, that this is not the correct
microscopic analogue the original BMS analysis.

In the original BMS analysis, solely null infinity was analysed (cf. [13, 14]), since gravita-
tional waves are assumed to travel along null rays. Spacelike or timelike directions were
discarded. Hence, a microscopic analogue of the classical BMS-analysis should also focus
just on microscopic null directions and should consider a microscopic analogue of null in-
finity. Or more precisely: One should identify the universal structures, that are induced
on a natural microscopic null surface that is common to all spacetimes and determine their
symmetry group. But which natural microscopic null surface exists in any spacetime? Here
again the Einstein equivalence principle comes in, as it states, that any spacetime behaves
microscopically (or better, infinitesimally) like Minkowski space. This criterion could hence
be understood as a microscopic analogue of asymptotic flatness, since it says, that any space-
time behaves in the microscopic limit asymptotically like flat spacetime. And precisely, as
(macroscopic) asymptotic flatness singles out null infinity as the natural macroscopic null
surface for the classic BMS analysis, the Einstein equivalence principle, interpreted as a mi-
croscopic asymptotic flatness criterion, singles out infinitesimal tangent light cones as nat-
ural candidates for a microscopic BMS analysis. Consequently, one can ask in full analogy
to the macroscopic case: Which universal structures on infinitesimal tangent light cones are
common to all spacetimes satisfying the Einstein equivalence principle, what are the sym-
metries of those structures and what is the structure and the interpretation of the occuring
symmetry groups? Those questions will be answered in this article and thereby we will un-
cover some interesting structures hidden in the theory of relativity. Especially, we will show
as a main result, that a microscopic symmetry group appears, whose structure resembles the
original BMS group and which is eligible as a gauge group for the bundle of null vectors for
a generic spacetime.

Informal explanation of our work: After this overview of the motivation and philosophy
behind our work, we would like to present now its line of argumentation in a concise way.
Therefore recall first, that usually the set of null vectors is ”identified” with its space of
directions, which is commonly denoted as the celestial sphere. Under this identification,
the Lorentz group is isomorphic to the Möbius group of conformal automorphisms of the
Riemann sphere (cf. e.g. [143, 138]). Nevertheless we will see, that null vectors transform
under Lorentz transformations not only by a change of their direction, but also by a rescal-
ing of their ”length”. This behaviour is discarded by the common ”identification” of the
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set of null vectors with the celestial sphere and one could ask, if there is some non-trivial
information hidden in those rescalings. At a first glimpse, one might be tempted to think,
that no non-trivial coordinate invariant information could be encoded in the length - and
consequently also in rescalings - of null vectors, since the metric is degenerate for them.
Moreover, the above mentioned isomorphism between the Lorentz and the Möbius group
suggests, that there is no interesting information left, which could be encoded in non-trivial
rescalings. But this intuition is only partially correct: We will see, that the metric constitutes
a kind of distance function on each tangent light cone, although it is degenerate thereon.
Metric degeneracy translates then to the statement, that the distance between two null vec-
tors pointing in the same direction is zero. This distance function can then be related to
a degenerate Riemannian metric on each tangent light cone and constitutes, together with
other, more elementary properties inherited from the ambient tangent space, a set of univer-
sal geometric structures existent on any infinitesimal light cone. Those structures are then
a microscopic analogue of the macroscopic universal structures at null infinity identified in
the original BMS analysis.

One can then start to analyse those automorphisms of tangent light cones, which preserve
the identified universal structures and thereby a basic question appears: How should the
metric, that appears along above lines on any infinitesimal tangent light cone, be inter-
preted? As a fixed degenerate metric or as a representative of a conformal equivalence class
of degenerate metrics? The former interpretation will lead to a group of isometries, while
the latter will give rise to a conformal automorphism group. More or less surprisingly, the
non-trivial rescalings of null vectors will appear again if one analyses the isometry group:
Those rescalings are needed to compensate the appearing conformal factor in the metric on
the light cone, which is induced by the action of Möbius transformations on the Riemann
sphere.

If one analyses then the mathematical structure of the conformal automorphism group,
some interesting properties appear: It can be written as a semidirect product of the Möbius
group with a group of smooth, real valued functions on the Riemann sphere, which re-
sembles the structure of the original BMS group. Moreover, it incorporates infinitely many
Lorentz subgroups. The isometry group constitutes then just one of those Lorentz subgroups
and can be shown to be induced by the standard representation of the Lorentz group on a
single tangent space. By investigating those Lorentz subgroups more thoroughly, one re-
alizes, that each Lorentz subgroup singles out a class of length gauges for null vectors, i.e.
they set a scale for null vectors. For example, the subgroup of isometries is associated with
the 3-length of null vectors in a vielbein frame. But this seems unsatisfactory: As said before,
by metric degeneracy there is no preferred notion of length associated with a single null di-
rection and by this, no structure on the light cone should single out a scale for null vectors.
This suggests, that intrinsically no Lorentz subgroup of the conformal automorphism group
is preferred and by this it seems, that the conformal automorphism group is intrinsically the
more natural symmetry group for tangent light cones. From this point of view, we will then
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get also a different perspective on the conformal automorphism group: If one tries to intro-
duce meaningful notions of length for null vectors, one necessarily has to enlarge the class
of allowed coordinate systems, such that all possible length gauges are included. By doing
so, also the symmetry group gets enlarged to the conformal automorphism group, which
describes then rescalings of null vector lengths and associated Lorentz transformation laws
in an invariant way. But by this, the original Lorentz group action on null vectors looses its
distinguished role and infinitely many Lorentz transformation laws appear. This is a way,
in which the microscopic BMS-like conformal automorphism group could be interpreted.

Now one could ask, what benefit one could draw from the existence of such a group. There-
fore we will show finally, that the isomtery group and the conformal automorphism group
are suitable as gauge groups for the bundle of future pointing null vectors. By this we have
especially identified a geometric entity, that exists on the bulk of any spacetime and is asso-
ciated with a BMS-like group. The benefit of this structure has of course to be proven in the
future, but motivated by the various applications of the original BMS group we think, that
this finding could have interesting implications: On the one hand, the existence of the BMS-
like gauge group on the bundle of tangent light cones could lead to a bulk counterpart of the
original BMS-anaylsis of gravitational waves and rises in addition questions regarding the
fundamental symmetry group of gravity. On the other hand, given the recent discovery of
connections between the BMS group, soft theorems and memory effects denoted commonly
as the ”IR-triangle” [166, 165], our findings motivate the question, if there could exist an
analogous ”UV-triangle”.

Finally we would like to mention, that the original BMS analysis incorporated of course not
only the investigation of universal structures at null infinity and their symmetries, but also
the examination of induced higher order structures, dynamical considerations and the anal-
ysis of gravitational waves. The microscopic analogues of those questions are not analysed
in this article and will be, as sketched in the last paragraph, an object of future research.

Organization of the section: In section 6.2 we will introduce the light cone bundle of
a generic spacetime and will identify the universal geometric structures that are induced
on infinitesimal tangent light cones by the ambient spacetime geometry as motivated by
Einstein’s equivalence principle. Thereby we will also explain concisely, how null vectors
rescale under standard Lorentz transformations and moreover we will explain in which
sense those geometric structures are ultrarelativistic. In section 6.3 we will then analyse
those automorphisms of a single infinitesimal tangent light cone that preserve the univer-
sal structure either up to isometry or up to conformal equivalence. In section 6.4 we will
analyse the structure of those automorphism groups thoroughly. Especially we will show,
that the conformal automorphism group can be written as a right semidirect product group
that contains infinitely many Lorentz subgroups. Thereby we will also explain, how those
Lorentz subgroups can be parametrized. In section 6.5 we will then explain how the sub-
group of isometries arises as a specific Lorentz subgroup. Moreover we will explain in
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section 6.6, how Lorentz subgroups correspond to length gauges for null vectors and why
this motivates the claim that the conformal automorphism group could be a more natural
symmetry group for tangent light cones than any Lorentz subgroup. Dually we will un-
derstand thereby, that the conformal automorphism group could be interpreted as a group
which encodes all possible length gauges for null vectors as well as their Lorentz transfor-
mation properties. In section 6.7 we will then show that the conformal automorphism group
and its isometry subgroup constitute gauge groups for the light cone bundle. In section 6.8
we will compare our analysis with the original BMS analysis, which will justify, why the
conformal automorphism group is called a microscopic analogue of the BMS group. In sec-
tion 6.9 possible implications as well as remaining open questions are discussed, while in
section 6.10 a summary will be given. In appendix C we will review some basic facts on the
Riemann sphere and its automorphisms. Moreover we will derive a convenient representa-
tion of coordinate systems of the light cone and will derive a transformation law (including
rescalings) for null vectors under Lorentz transformations. In appendix D we will review
some prerequisites from group theory.

6.2. Tangent light cones and their universal geometric structures

In this section, we will introduce the basic geometric entity of our study, namely the bundle
of future pointing light cones associated with a spacetime M , and will analyse, which uni-
versal geometric structures are present on its fibers, as induced by the microscopic geometry
of the generic spacetime M . Therefore, we will first define the notion of tangent light cones
as well as the light cone bundle. In addition, we will establish a bundle atlas for the light
cone bundle, that is induced by the bundle atlas A of TM (cf. section 1.4) and is hence
associated with vielbein frames. Moreover, we will sketch briefly, how transition functions
look like for this bundle, and thereby we will understand qualitatively how null vectors
behave under Lorentz transformations. Afterwards we will then investigate, which univer-
sal geometric structures on infinitesimal tangent light cones are induced by the microscopic
geometry of M , independently of the macroscopic behaviour of the metric g.

The light cone bundle: We define the pointed future1 tangent light cone at p ∈M as

L+
p M := {v ∈ TpM |gp(v, v) = 0 and g(Xp, v) < 0}

and by this, we define the future light cone bundle as the following sub-fiberbundle of
TM :

L+M :=
⊔

p∈M

L+
p M ⊂ TM

1The analysis presented in this article goes completely analogous for past light cones and the associated past
light cone bundle. Since M is time orientable, we focus hence without loss of generality solely on future
light cones.

97



6.2. Tangent light cones and their universal geometric structures

For any open set U ⊂ M we will denote the restriction of L+M to U by L+U. We now
introduce a class of suitable coordinate systems for L+M which are induced by the bundle
charts (U, ψ) ∈ A of TM . We will then see especially, that the typical fiber of L+M is
diffeomorphic to C∞ ×R+, i.e. for any p ∈M

L+
p M ∼= C∞ ×R+

holds, where C∞ is the Riemann sphere (cf. 1.4). Here, C∞ will be interpreted as a space of
null directions and R+ as a ”length” for null vectors. Therefore let (U, ψ) ∈ A be a bundle
trivialization of TM and let (Eµ) be the associated vielbein. We then have for v ∈ L+

p M , that
its coordinate representation ψp(v) = (vµ) satisfies v0 = |~v|, where we set ~v := (v1, v2, v3).
By this we can write (vµ) = |~v| · (1, v̂), where we have defined v̂ := |~v|−1~v. Since v0 = |~v| >
0 and v̂ ∈ S2, we get therewith an identification

ψ̃+
p : L+

p M → S2 ×R+, vµEµ 7→ (v̂, |~v|),

of the tangent lightcone at p with S2 ×R+. This gives then rise to a smooth bundle trivial-
ization

ψ̃+ : L+U → U × (S2 ×R+), vµEµ ∈ TpM 7→ (p, (v̂, |~v|)) .

We now utilize the stereographic projection defined as2

ρ : S2 → C∞, v̂ 7→ ρ(v̂) :=
v̂1 + iv̂2

1− v̂3 ,

which constitutes a diffeomorphism. By this we get an identification

ψ+
p : L+

p M → C∞ ×R+, v 7→
(

zψ
p (v), λ

ψ
p (v)

)
(6.1)

explicitely given by:

zψ
p (vµEµ) := ρ(v̂) =

v1 + iv2

v0 − v3

λ
ψ
p (vµEµ) := |~v| = v0. (6.2)

This induces a smooth bundle trivialization

ψ+ : L+U → U × (C∞ ×R+), v ∈ TpM 7→
(

p, (zψ
p (v), λ

ψ
p (v))

)
. (6.3)

By this we have constructed a bundle atlas

B := {(U, ψ+)|(U, ψ) ∈ A}

2We adopt the convention from [143], which differs from the convention that is usually used in literature.
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6.2. Tangent light cones and their universal geometric structures

for the fiber bundle L+M , where for any (U, ψ) ∈ A, the trivialization ψ+ is given by the
associated map (6.3). For p ∈ U, the restriction of any trivialization (U, ψ+) ∈ B to L+

p M

will be denoted by ψ+
p as given by (6.1) and we will denote the set of all such restrictions by

Bp. Since Lorentz transformations preserve light cones, it is easy to show, that the transition
functions of B are indeed smooth and preserve the fibers of L+M . Unfortunately, at the
present stage we are not able to derive the precise form of the transition functions of B in a
convenient representation. Nevertheless, we want to sketch already briefly the result, since
it is illustrative for the understanding of the paper, although not absolutely necessary. The
full discussion will then follow in sections 6.3 and 6.7 as well as in appendix C.3. Hence,
an impatient reader can also jump directly to the next paragraph. Now let p ∈ U, set v =

vµEµ ∈ L+
p M and w = Λµ

νvνEµ. Define in addition

(z, λ) := ψ+
p (v), (6.4)

(z′, λ′) := ψ+
p (w). (6.5)

One can then show by utilization of the standard isomorphism between the Lorentz group
SO+(1, 3) and the automorphism group of C∞ (cf. appendix C.3 or [138, 143]), that there is
a unique automorphism (i.e. a Möbius transformation, cf. appendix C.1) ZΛ : C∞ → C∞ of
C∞ associated to Λ s.th.

z′ = ZΛ(z) (6.6)

holds. By utilization of (6.2) we have naivly

λ′ = Λ0
µvµ,

which is not a very helpful representation, since it does not depend explicitely on z and λ.
But by some more advanced techniques (cf. appendix C.3) one can indeed show, that there
is for each Lorentz transformation Λ ∈ SO+(1, 3) an associated function fΛ ∈ C∞(C∞, R+)

such that
λ′ = fΛ(z)λ (6.7)

holds. In this form, this is to the best of our knowledge an original result of this article. The
concrete form of the function fΛ is not of importance now and will be understood in sections
6.3 and 6.5. At the present stage, just a qualitative understanding of equations (6.6) and (6.7)
is sufficient: They state, that a Lorentz transformation acts on null vectors by a conformal
transformation (6.6) on their space of directions C∞, together with a non-trivial, direction
dependent rescaling (6.7) of their ”length”. The latter can be understood by recalling, that

λ = |~v| = v0

λ′ = |~w| = w0

hold by (6.4 - 6.5) . We will understand later on, which non-trivial information is encoded in
those rescalings.
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6.2. Tangent light cones and their universal geometric structures

Universal structures on tangent light cones: We now want to analyse the geometric struc-
tures that are, independently of the macroscopic behaviour of the gravitational field, in-
duced on tangent light cones L+

p M by the geometry of their ambient tangent spaces TpM .
Those universal structures are linked to Einstein’s equivalence principle, that is commonly
stated as (cf. [44]):

In small enough regions of spacetime, the laws of physics reduce to those of special rel-
ativity; it is impossible to detect the existence of a gravitational field by means of local
experiments.

This statement should be understood as an asymptotic statement: In the infinitesimal limit
(and hence, strictly speaking, not locally3), any spacetime behaves asymptotically like flat
spacetime. Geometrically, this is formalized by the linear structure of any tangent space
TpM and by the property, that the metric g reduces to an inner product gp on TpM which
can be brought to Minkowski form η by choice of a vielbein frame. Hence the question of
this section will be: What universal structures are induced on L+

p M by the linear structure
of TpM and by the inner product gp? And what are the coordinate expressions of those
structures in the coordinate systems Bp?

For the analysis of those questions, choose a p ∈M and let ψ+
p ∈ Bp be a coordinate system

of the form (6.1). Observe then first, that L+
p M inherits, as a subspace of the tangent space at

p, a topology and a smooth structure, that can be equally characterized by the observation,
that (6.1) is a diffeomorphism:

(S1) L+
p M ∼= C∞ ×R+ as a differentiable manifold.

Moreover, although L+
p M ⊂ TpM is no linear subspace, it is a linear cone and as such it

inherits a notion of multiplication with scalars from TpM :

(S2) L+
p M is a linear cone, in the sense, that for all α > 0 and all v ∈ L+

p M

α · v ∈ L+
p M

holds.

Please notice at this point, that any coordinate system ψ+ ∈ B respects this cone structure,

3Although ”local” and ”infinitesimal” are often used synonymous in the context of general relativity, there is a
difference between those concepts: Infinitesimal objects are associated with the infinitesimal limit, i.e. with
tangent spaces, while local objects are associated with (small) open sets and local coordinate systems. Those
notions are hence not equivalent: For example, infinitesimally, one can always find vielbein frames in which
the metric has Minkowski form, while it is not possible to find a local coordinate system with this property
for a generic curved spacetime, cf. [147]. The latter can especially be formalized in terms of Riemann normal
coordinates, cf. [147, 44] and section 6.1.
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6.2. Tangent light cones and their universal geometric structures

since for all α > 0 also

zψ
p (α · v) = zψ

p (v),

λ
ψ
p (α · v) = α · λψ

p (v)

hold. In addition, there is a kind of complex structure, which is induced by the complex
structure on C∞ under the identification of L+

p M with C∞ ×R+:

(S3) There is a set Zp that includes exactly all surjective maps

zp : L+
p M → C∞

which satisfy the requirement, that

zψ
p ◦ z−1

p : C∞ → C∞

is a biholomorphic automorphism of C∞ and hence a Möbius transformation.

Please consult appendix C.1, if you are not familiar with the notion of Möbius transforma-
tions. Finally we want to analyse, which structure on L+

p M is induced by the metric g.
Prima facie, one could be tempted to think, that no interesting structure on L+

p M is induced
by the metric, since the latter is degenerate on thereon. But we will see, that this is not true.
Therefore we will first introduce the inverse of the stereographic projection ρ, which will be
denoted by ε̂ := ρ−1, and is explicitely given by (cf. [143] or appendix C.1)

ε̂ : C∞ → S2, z 7→ ε̂(z) := (ε̂1(z), ε̂2(z), ε̂3(z))

with:

ε̂1(z) =
z + z̄
zz̄ + 1

,

ε̂2(z) =
1
i

z− z̄
zz̄ + 1

,

ε̂3(z) =
zz̄− 1
zz̄ + 1

.

We will then write the inverse of ψ+
p for convenience as θp := (ψ+

p )
−1 and express it in terms

of the inverse stereographic projection explicitely as

θp : C∞ ×R+ → L+
p M , (z, λ) 7→ λ · ε̂µ(z)Eµ,

where we set ε̂0 := 1. By this we can then define a map

hp : (C∞ ×R+)× (C∞ ×R+)→ [0, ∞) (6.8)
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6.2. Tangent light cones and their universal geometric structures

as the negative of the pullback of gp along θp, i.e.:

hp ((z1, λ1), (z2, λ2)) := −gp(θp(z1, λ1), θp(z2, λ2))

As a somewhat surprising result we obtain then, that hp is explicitely given by

hp ((z1, λ1), (z2, λ2)) =
2λ1λ2|z1 − z2|2

(|z1|2 + 1)(|z2|2 + 1)
,

which is just

hp ((z1, λ1), (z2, λ2)) =
λ1λ2

2
d2(z1, z2) (6.9)

with d being the chordal distance (cf. (C.5) and (C.6)) on C∞ given by:

d : C∞ ×C∞ → [0, ∞), (z1, z2) 7→
2|z1 − z2|√

|z1|2 + 1
√
|z2|2 + 1

. (6.10)

Hence, although the metric is degenerate on L+
p M , it carries non-trivial information, since it

describes a kind of distance function4 (6.9) thereon, which is related to the chordal distance
on C∞. We now can ask, if the distance function (6.9) is related to some kind of Riemannian
metric on the manifold C∞ ×R+. And indeed, one can show easily, that

√
hp is the distance

function induced by a degenerate Riemannian metric qp on L+
p M , which is given in any

coordinate system ψ+
p ∈ Bp by:

ds2 = 2λ2 dzdz̄
(1 + zz̄)2 (6.11)

I.e. we have:

(S4) There exists a degenerate metric qp on L+
p M whose coordinate expression in any co-

ordinate system ψ+
p ∈ Bp is given by

ds2 = 2λ2 dzdz̄
(1 + zz̄)2 .

Please note, that qp is really a degenerate Riemannian metric on the manifold L+
p M , as (6.11)

is a degenerate Riemannian metric on the manifold C∞×R+. This is in contrast to the metric
g, which is a pseudo-Riemannian metric on M and gives as such rise to an inner product
gp on T+

p M . As such, gp induces then the distance function (6.9) on L+
p M ⊂ TpM , whose

infinitesimalization is then given by (6.11), which describes qp in the coordinates ψ+
p .

Hence we have all together the following universal structures on L+
p M :

(S1) L+
p M ∼= C∞ ×R+ as a differentiable manifold.

4Please note, that neither hp nor
√

hp constitute (pseudo-)metrics, since they do not obey the triangle equality.
Nevertheless, they can be interpreted as distance functions in the present situation, since they are induced
by a degenerate Riemannian metric on L+

p M and are related to the chordal distance on C∞. Therefore we
call them distance functions in the sequel.
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6.3. Automorphism groups of tangent light cones

(S2) L+
p M is a linear cone, in the sense that for all α > 0 and all v ∈ L+

p M

α · v ∈ L+
p M

holds.

(S3) There is a set Zp which includes exactly all surjective maps

zp : L+
p M → C∞

that satisfy the requirement, that

zψ
p ◦ z−1

p : C∞ → C∞

is biholomorphic for any coordinate system ψ+
p = (zψ

p , λ
ψ
p ) ∈ Bp and hence a Möbius

transformation.

(S4) There exists a degenerate metric qp on L+
p M , whose expression in any local coordinate

system ψ
ψ
p ∈ Bp is given by the metric q̃p on C∞ ×R+ explicitely given by

ds2 = 2λ2 dzdz̄
(1 + zz̄)2 . (6.12)

In the next section we want to analyse the set of automorphisms of L+
p M , which preserve

those universal geometric structures.

A Carrollian perspective on the universal structures: We now want to explain, why the
universal structures discovered so far can be understood as features which encode the ul-
trarelativistic geometry of microscopic tangent light cones. Therefore recall from [61] that a
weak d + 1 dimensional Carroll manifold is given by a triple (C, g, ξ) where C is a smooth
d + 1 dimensional manifold and g is a twice-symmetric positive tensor field thereon whose
Kernel is generated by a nowhere vanishing vector field ξ. We then see, that each tangent
light cone L+

p M can be understood as a weak Carroll manifold whose degenerate metric is
given by qp and where the vector field ξ is determined by the cone structure (S1).

6.3. Automorphism groups of tangent light cones

In this section we will determine the automorphisms of L+
p M which preserve the universal

structures (S1) - (S4) in a certain sense. As explained in the introduction, the crucial ques-
tion is how to interpret the structure (S4): Should it be understood as a single degenerate
metric or as a representative of a conformal equivalence class on L+

p M ∼= C∞ ×R+? The
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6.3. Automorphism groups of tangent light cones

former will lead to a group of isometries, while the latter will give a conformal automor-
phism group. There are arguments for both positions and we will comment on this more
extensively in section 6.5 . But in this section, we won’t bother with this question and just
determine the respective automorphism groups for both interpretations. Therefore we will
explain some generalities regarding automorphism groups of L+

p M and will especially anal-
yse, how the structures (S1) - (S3) already fix the form of suitable automorphisms to a great
extent, independent of the interpretation of (S4). Moreover, we will review in this section
some basics regarding Möbius transformations and metrics on the Riemann sphere, which
are needed in the sequel. Finally we will then determine the group of isometries and the
conformal automorphism group. Please note in addition, that due to the similarity of the
universal geometric structures on L+

p M with the structure of a weak Carroll manifold, the
isometry group should be understood as a Carrollian symmetry group while the conformal
automorphism group can be understood as its conformal extension.

Generalities: An automorphism group of L+
p M is a set of all maps

Πp : L+
p M → L+

p M

which preserve the universal structures (S1) - (S4) in a specific sense, together with the
composition ◦ as a group operation. By choosing an arbitrary but fixed coordinate sys-
tem ψ+

p ∈ Bp, one notices, that a map Πp preserves the structures (S1) - (S4) in a specified
sense if and only if the associated coordinate representation of Πp given by

ψ+
p ◦Πp ◦ θp : C∞ ×R+ → C∞ ×R+

preserves the induced universal structures on C∞ ×R+ in the analogous specified sense.
Here we set again for convenience θp := (ψ+

p )
−1. Additionally, the group multiplication law

◦ is preserved under conjugation with ψ+
p and hence any automorphism group of L+

p M is
naturally isomorphic to the corresponding automorphism group of the induced structures
on C∞ ×R+. Hence, we can define the automorphism group L+

p M equally as a group of
automorphisms of C∞ ×R+ together with ◦ as a group operation and this is what we will
do in the sequel, since it is more convenient in the present situation.

As said before, there are two different ways, how one could interpret the structure (S4): Ei-
ther as a degenerate metric on L+

p M or as a representative of a conformal equivalence class
thereon. Each of those two interpretations yields then its respective automorphism group.
In the former case, the automorphisms constitute isometries of L+

p M , while in the latter case
they correspond to conformal automorphisms of L+

p M . Hence, we will obtain two distinct
automorphism groups: The group of isometries Iso+

p of L+
p M and the group of conformal

automorphisms Con+
p of L+

p M . Nevertheless, both automorphism groups should preserve
the universal structures (S1) - (S3) in the same sense, since those structures are indepen-
dent of the interpretation of (S4). Therefore, we will discuss now first the requirements on
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6.3. Automorphism groups of tangent light cones

automorphisms as induced by (S1)- (S3). For this, we write first a generic map

Φp : C∞ ×R+ → C∞ ×R+ (6.13)

in full generality as

Φp : (z, λ) 7→ (Z(z, λ), Y(z, λ)).

We then have first and foremost the following two requirements for Φp, which are induced
by (S1) and (S2) respectively:

(R1) Φp is a diffeomorphism.

(R2) Φp is homogeneous in the sense, that for all α > 0 and all (z, λ) ∈ C∞ ×R+

Z(z, α · λ) = Z(z, λ) (6.14)

Y(z, α · λ) = α ·Y(z, λ) (6.15)

should hold.

Those both requirements fix the form of Φp already to a great extent: Equation (6.14) and
requirement (R1) are together equivalent to the statement, that Z is a smooth automorphism
of C∞ which does not depend on the λ-coordinate. Moreover, equation (6.15) and (R2) hold
together if and only if there exists a smooth function Y ∈ C∞(C∞, R+) such that

Y(z, λ) = Y(z) · λ

holds for all (z, λ) ∈ C∞ ×R+. Consequently, we can write any map (6.13) satisfying the
requirements (R1) - (R2) as

Φp : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (Z(z), Y(z) · λ)

with Y ∈ C∞(C∞, R+) and Z being a diffeomorphism Z : C∞ → C∞. Now, the complex
structure (S3) is preserved if and only if Z is a biholomorphic conformal automorphism of
C∞, i.e. a Möbius transformation. This gives the following requirement:

(R3) Z is a biholomorphic automorphism of the Riemann sphere C∞, i.e. a Möbius trans-
formation.

All together, any automorphism of C∞ ×R+ which preserves the structures (S1) - (S3) and
satisfies consequently the requirements (R1) - (R3) is given by a map

Φp : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (Z(z), Y(z) · λ) (6.16)
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6.3. Automorphism groups of tangent light cones

with Z being a Möbius transformation and Y ∈ C∞(C∞, R+). Moreover we see, that two
automorphisms are equal if and only if their associated Möbius transformations and smooth
functions Y are equal, respectively.

In the sequel we will need some basic facts regarding Möbius transformations. Hence, we
will recapitulate those facts concisely now, while a more complete account of the corre-
sponding theory is presented in appendix C.1. Therefore recall first, that any Möbius trans-
formation Z can be written as

Z : C∞,→ C∞, z 7→ az + b
cz + d

for complex numbers a, b, c, d ∈ C satisfying ad− bc = 1. By this, any matrix A ∈ SL(2, C)

given by

A =

(
a b
c d

)
(6.17)

defines an associated Möbius transformation ZA specified by

ZA(z) :=
az + b
cz + d

. (6.18)

Moreover, two matrices A, B ∈ SL(2, C) define the same Möbius transformation if and only
if A = −B. This defines then an isomorphism between PSL(2, C) := SL(2, C)/{±1} and
the Möbius group, that is explicitely given by

[A] ∈ PSL(2, C) 7→ ZA

with ZA as defined in (6.18). We will use in the sequel the notions Möbius group and
PSL(2, C) interchangeably. In addition, we will denote equivalence classes [A] ∈ PSL(2, C)

just in terms of one of their representatives, i.e. by slight abuse of notation [A] = A. Now
recall further, that C∞ is a Riemann surface and is hence especially endowed with a natural
conformal structure (cf. [106]), that can be described in terms of a conformal equivalence
class of Riemannian metrics. One representative of this conformal structure is given by the
Riemannian metric

ds2 =
4

(1 + zz̄)2 dzdz̄

on C∞, which is also the Riemannian metric associated with the chordal distance (6.10).
The pullback of this metric along a Möbius transformation ZA as specified by (6.18) is then
explicitely given by

ds2 = KA(z)2 4
(1 + zz̄)2 dzdz̄, (6.19)

where the conformal factor KA(z) associated with a matrix A ∈ PSL(2, C) as specified by
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(6.17) is explicitely given by

KA(z) =
(1 + zz̄)

(az + b)(āz̄ + b̄) + (cz + d)(c̄z̄ + d̄)
, (6.20)

as one can easily calculate. Finally recall, that the Möbius group and the proper orthochronous
Lorentz group are isomorphic, i.e. PSL(2, C) ∼= SO+(1, 3), as said before and as described in
appendix C.3 (cf. also [143, 138]). The corresponding isomorphism will be written as

Λ ∈ SO+(1, 3) 7→ AΛ ∈ PSL(2, C).

The isometry group: We now want to find all maps

Φp : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (Z(z), Y(z) · λ)

of the form (6.16), such that the following requirement holds:

(R4a) Φp is an isometry, i.e.
Φ∗pq̃p = q̃p

is satisfied, where q̃p is the metric (6.12) on C∞ ×R+ that is induced by the metric qp

on L+
p M , cf. (S4).

Recall from (S4), that q̃p is given by:

ds2 = 2λ2 dzdz̄
(1 + zz̄)2

Then its pullback Φ∗pq̃p can be easily calculated by the utilization of (6.19) and is explicitely
given by

ds2 = 2Y(z)2λ2KA(z)2 dzdz̄
(1 + zz̄)2 , (6.21)

where KA is the conformal factor (6.39). Hence we obtain directly, that Φp is an isometry if
and only if

Y(z) !
= KA(z)−1

holds. We now define
f A := (KA)−1 (6.22)

and by this
Y(z) !

= f A(z)
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should hold for Φp being an isometry. By this we have, that the isometry group of the
infinitesimal light cone consists out of all maps ΦA

p of the form

ΦA
p : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (ZA(z), f A(z)λ),

where A is any matrix A ∈ PSL(2, C), together with the composition as the group multipli-
cation law. This group will be denoted in the sequel as:

Iso+
p =

(
{ΦA

p |A ∈ PSL(2, C)}, ◦
)

.

We see already, that it is isomorphic to PSL(2, C) as a set, and hence also isomorphic to the
Lorentz group SO+(1, 3) as a set. We will understand in section 6.5, that they are also isomor-
phic as a group, and that Iso+

p is induced by local Lorentz transformations acting on TpM .
By this, it is also not a coincidence, that the function (6.22) and the function fΛ which deter-
mines the rescalings (6.7) of null vectors under Lorentz transformations are both denoted by
the same letter. Indeed, they are the same mathematical object, as we will understand then,
too.

The conformal automorphism group: We now want to find all maps

Ψp : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (Z(z), Y(z) · λ)

of the form (6.16), such that the following requirement holds:

(R4b) Ψp is a conformal automorphism, i.e. there exists a function Ωp ∈ C∞(C∞ ×R+, R+)

s.th.
Ψ∗pq̃p,(z,λ) = Ωp(z, λ)2q̃p,(z,λ) (6.23)

holds for all (z, λ) ∈ C∞ ×R+. Here q̃p denotes, as before, the metric (6.12) on C∞ ×
R+ and q̃p,(z,λ) denotes its pointwise evaluation on the tangent space T(z,λ)(C∞ ×R+)

of C∞ ×R+ at (z, λ).

Observe, that, due to the form (6.16) of Ψp, it follows directly, that the conformal factor must
be of the form Ωp(z) with Ωp ∈ C∞(C∞, R+). We have namely as in (6.21)

Ψ∗pq̃p,(z,λ) = Y(z)2KA(z)2q̃p,(z,λ),

which says, that the conformal factor Ωp as defined in (6.23) is explicitely given by:

Ωp(z) = Y(z)KA(z)

By this, the group of conformal automorphisms of the infinitesimal light cone consists out
of all maps

Ψ(A,Y)
p :C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (ZA(z), Y(z) · λ),
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with A ∈ PSL(2, C) and Y ∈ C∞(C∞, R+), together with the composition as the group
multiplication law. This group will be denoted in the sequel as:

Con+
p :=

(
{Ψ(A,Y)

p |A ∈ PSL(2, C) and Y ∈ C∞(C∞, R+)}, ◦
)

.

We see already, that it is isomorphic to PSL(2, C) × C∞(C∞, R+) as a set. Its non-trivial
group structure will be understood in section 6.4.

We want to remark finally, that the condition (R4b) can be rephrased in a different but equiv-
alent manner. Therefore observe first, that the metric q̃p from (6.12) is compatible with the
linear cone structure (S2) of L+

p M in the sense, that

q̃p,(z,αλ) = α2q̃q,(z,λ)

holds for all α > 0. This behaviour is induced by the compatibility of the distance function
hp (6.8) with the cone structure. If one would like to define a conformal equivalence class
of metrics on L+

p M , all metrics in this class should have this property, because otherwise

they would not be compatible with (S2). Hence, two metrics q(1)p and q(2)p on L+
p M should

be called conformally equivalent, if there exists a positive valued, smooth function Ωp ∈
C∞(C∞, R+) independent of λ, such that their coordinate expressions q̃(1)p , q̃(2)p satisfy:

q̃(1)p,(z,λ) = Ωp(z)2q̃(2)p,(z,λ)

The conformal structure on L+
p M is then the set of all metrics that are in this sense confor-

mally equivalent to the metric (6.12). One can then see easily, that the requirement (R4b) is,
due to the requirement (R2), equivalent to the statement, that any conformal automorphism
of L+

p M should preserve this conformal structure under pullback.

Summary: In this section we have found two natural automorphism groups for L+
p M . The

first is the group of isometries Iso+
p , whose underlying set is given by

Iso+
p = {ΦA

p |A ∈ PSL(2, C)}

with

ΦA
p : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (ZA(z), f A(z)λ),

together with the composition ◦ as the group operation. Here f A(z) is defined by (6.22). The
other is the group of conformal automorphisms Con+

p , whose underlying set is given by

Con+
p = {Ψ(A,Y)

p |A ∈ PSL(2, C), Y ∈ C∞(C∞, R+)}
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6.4. Structure of the conformal automorphism group

with

Ψ(A,Y)
p : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (ZA(z), Y(z) · λ), (6.24)

together with the composition ◦ as the group operation. In the next section we will under-
stand their mathematical structure and their interrelation.

6.4. Structure of the conformal automorphism group

In the last section we have determined two different automorphism groups of L+
p M : A

isometry group Iso+
p and a conformal automorphism group Con+

p . In this section, we want
to understand their structure of the conformal automorphism group better. Thereby we will
understand, that it constitutes a semidirect product of the Möbius group with the group of
positive valued smooth functions on the Riemann sphere. Afterwards we will then show,
that the conformal automorphism group contains infinitely many Lorentz subgroups, and
explain, how those subgroups can be parametrized in terms of so called crossed homomor-
phisms. In the next sections we will need some prerequisites from group theory as adapted
to our situation. Especially the notions of right semidirect products and crossed homomor-
phisms are needed. To increase readability, we have outsourced their discussion to appendix
D. Please note, that we will denote from now on the element in PSL(2, C) associated with a
Lorentz transformation Λ ∈ SO+(1, 3) by AΛ ∈ PSL(2, C) and the corresponding Möbius
transformation by ZΛ := ZAΛ .

Structure of the conformal automorphism group: Let G be the (right) semidirect product
group (for a definition of this notion see appendix D.1)

G := PSL(2, C)nκ C∞(C∞, R+),

where the group antihomomorphism

κ : PSL(2, C)→ Aut(C∞(C∞, R+)), A 7→ κA (6.25)

is defined as:
κA : C∞(C∞, R+)→ C∞(C∞, R+), Y 7→ Y ◦ ZA (6.26)

This means in particular, that G ∼= PSL(2, C)× C∞(C∞, R+) as a set and that the product of
(A1, Y1), (A2, Y2) ∈ G is defined as:

(A1, Y1)(A2, Y2) = (A1A2, Y1 ◦ ZA2 ·Y2). (6.27)

We will show in this section, that the group Con+
p of conformal automorphisms is isomor-

phic to G and moreover, that the action of Con+
p on C∞ ×R+ can be described in terms of a
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6.4. Structure of the conformal automorphism group

faithful left group action ? : G y C∞ ×R+. The latter means, that G is indeed a transfor-
mation group (cf. [87]) acting on R+ ×C∞.

Therefore observe first, that obviously Con+
p and G are isomorphic as sets in terms of the

bijection
(A, Y) ∈ G 7→ Ψ(A,Y),

with Ψ(A,Y) ∈ Con+
p being defined as in (6.24). Let now (A1, Y1), (A2, Y2) ∈ G. Then their

product in G is given by (6.27), while we have on the other hand:

Ψ(A1,Y1) ◦Ψ(A2,Y2) = Ψ(A1 A2,Y1◦ZA2 ·Y2)
p .

Hence the map
G → Con+

p , g 7→ Ψg
p

is indeed a group isomorphism. Define now a faithful left group action of G on C∞ ×R+

? : G y C∞ ×R+, (g, (z, λ)) 7→ g ? (z, λ) (6.28)

as:
(A, Y) ? (z, λ) = (ZA(z), Y(z)λ).

Let now (z, λ) ∈ C∞ ×R+. Then one can show easily:

∀g ∈ G : Ψg
p(z, λ) = g ? (z, λ).

Hence we have shown, that Con+
p is isomorphic to G and acts on C∞ ×R+ in terms of the

faithful group action ?. Therefore we will use the notions G and Con+
p synonymously, while

we prefer the former in situations, where we focus on the mathematical structure of the
conformal automorphism group, and use the latter, when we refer to its interpretation as a
group of automorphisms of L+

p M .

Lorentz subgroups in terms of crossed homomorphisms: Let now

c : SO+(1, 3)→ C∞(C∞, R+), Λ 7→ cΛ

be a crossed homomorphism (see appendix D.2), i.e. c satisfies

cΛ1Λ2 = cΛ2 · cΛ1 ◦ ZΛ2 .

By isomorphy of the Lorentz group SO+(1, 3) and the Möbius group PSL(2, C), this induces
a Lorentz subgroup ic(SO+(1, 3)) ⊂ G as specified by the associated embedding

ic : SO+(1, 3) ↪→ G, Λ 7→ (AΛ, cΛ), (6.29)
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and moreover, any Lorentz subgroup of G is of this form. This is a general property of
semidirect product groups, as explained in appendix D.2. We now want to give two exam-
ples for classes of crossed homomorphisms in the present situation. For both classes, there
exist elementary examples, that we have encountered already without noticing it or that oc-
cur later on. A complete classification of crossed homomorphisms is not important for the
present discussion and will be a question of further research, cf. section 6.10. For the first
class, let L ∈ C∞(C∞, R+) be a smooth function. It is then easy to see, that the associated
map

c(L) : SO+(1, 3)→ C∞(C∞, R+), Λ 7→ L ◦ ZΛ

L
constitutes a crossed homomorphism and hence, the associated embedding

SO+(1, 3) ↪→ G, Λ 7→
(

AΛ,
L ◦ ZΛ

L

)
defines a Lorentz subgroup of G. For the second class of crossed homomorphisms, we have
to introduce so called projective coordinates for C∞ (cf. appendix C.1 or [143]). Those are
obtained by labeling points z ∈ C∞ not by a single complex number, but by a pair of complex
numbers (ξ, η) ∈ C2 that are allowed to take any value other than (0, 0) and specify a point
z ∈ C∞ in terms of the quotient

z = ξ/η.

They are often more convenient, since any point on C∞ can be labeled in terms of projective
coordinates by two finite complex numbers, e.g. ∞ = ξ/0. Also, the action of Möbius
transformations on projective coordinates can be conveniently expressed (by slight abuse of
notation) as:

ZA(ξ/η) = A

(
ξ

η

)
Please note, that two tuples (ξ, η) and (αξ, αη) specify the same z ∈ C∞ for any α ∈ C \ {0}.
Therefore, they are called projective coordinates.

A different kind of crossed homomorphisms can then be defined, if Q is a homogeneous,
positive valued polynomial of degree d in C×C, i.e. a map

Q : C×C→ R+, (ξ, η) 7→ Q(ξ, η)

which satisfies Q(αξ, αη) = αdQ(ξ, η) for all α ∈ C \ {0}. It is then easy to show, that the
associated map (where C∞ is now coordinatized in projective coordinates)

c(Q) : SO+(1, 3)→ C∞(C∞, R+), Λ 7→ c(Q)
Λ :=

Q(AΛ · )
Q(·) ,
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which should be understood as

c(Q)
Λ (z = ξ/η) =

Q(AΛ(ξ, η)T)

Q (ξ, η)

gives a well defined crossed homomorphism. Hence, the associated embedding

SO+(1, 3) ↪→ G, Λ 7→
(

AΛ,
Q(AΛ · )

Q(·)

)
defines then a Lorentz subgroup of G.

6.5. Characterization of the subgroup of isometries

In the last paragraph we saw, that G comprises infinitely many Lorentz subgroups. In this
section we will show, that the group of isometries Iso+

p is one of those Lorentz subgroups,
and that it is induced by the usual representation of the Lorentz group on TpM . Especially,
we will first present the crossed homomorphism to which the inclusion Iso+

p ⊂ Con+
p is

associated and then we will explain, how the group Iso+
p is induced by the action of the

Lorentz group on TpM associated with a local vielbein.

Intrinsic characterization Recall, that we have defined in (6.22) a map f A associated to an
A ∈ PSL(2, C) as the inverse of the conformal factor KA from (6.20). By the use of projective
coordinates, this map can be conveniently written as

f A : C∞ → C∞, z = ξ/η 7→

(
ξ̄ η̄

)
A∗A

(
ξ

η

)
(

ξ̄ η̄
)(ξ

η

) .

This representation makes it then easy to show, that f defines indeed a crossed homomor-
phism

f : PSL(2, C)→ C∞(C∞, R+), A 7→ f A,

by checking either
f A1 A2 = f A1 ◦ ZA2 · f A2

explicitely, or by realizing, that this map is, under the isomorphism SO+(1, 3) ∼= PSL(2, C),
an example of the second class of crossed homomorphisms as presented in section 6.4. The
latter holds especially, because the map

Q : C×C→ R+, (ξ, η) 7→
(

ξ̄ η̄
)(ξ

η

)
= ξξ̄ + ηη̄
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is a positive valued homogeneous polynomial of order 2 on C × C. By the isomorphism
SO+(1, 3) ∼= PSL(2, C), this defines then a crossed homomorphism

f : SO+(1, 3)→ C∞(C∞, R+), Λ 7→ fΛ := f AΛ . (6.30)

Recall now from section 6.3, that the isometry group Iso+
p is explicitely given by

Iso+
p =

(
{ΦA

p |A ∈ PSL(2, C)}, ◦
)

with

ΦA
p : C∞ ×R+ → C∞ ×R+, (z, λ) 7→ (ZA(z), f A(z)λ).

Hence,
ΦA

p = Ψ(A, f A)
p

holds, where Ψ(A, f A)
p ∈ Con+

p denotes the conformal automorphism associated with (A, f A) ∈
G, as given by (6.24). Hence,

Iso+
p
∼= i f (SO+(1, 3)) ⊂ G

is satisfied, where i f is the embedding (6.29) associated with the crossed homomorphism f ,
i.e.:

i f : SO+(1, 3) ↪→ G, Λ 7→ (AΛ, fΛ). (6.31)

Consequently, Iso+
p is isomorphic to the Lorentz subgroup of G that is specified by the

crossed homomorphism (6.30).

Extrinsic characterization: We now want to show, how the group Iso+
p arises equally in

terms of the representation of the Lorentz group SO+(1, 3) on TpM associated with a local
vielbein. Let therefore (U, ψ) be a local trivialization with p ∈ U and (Eµ) be an associated
vielbein. We then obtain an associated action of SO+(1, 3) on TpM defined as

Λv :=
(
Λµ

νvν
)

Eµ

for any vector v = vµEµ ∈ TpM . Let now

ψ+
p : L+

p M → C∞ ×R+, v 7→
(

zψ
p (v), λ

ψ
p (v)

)
be the coordinate system in Bp that is induced by (U, ψ). We then have by the results of
appendix C.3 and especially by (C.16-C.17), that for any null vector v ∈ L+

p M

ψ+
p (Λv) = (AΛ, fΛ) ? ψ+

p (v)
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holds, with (AΛ, fΛ) ∈ G, fΛ being defined by (6.30) and ? being the group action (6.28). By
the results of section 6.4 and 6.5, this can then equally be written as

ψ+
p (Λv) = ΦAΛ ◦ ψ+

p (v).

Moreover we have for Λ1, Λ2 ∈ SO+(1, 3):

ψ+
p (Λ1Λ2v) = ((Λ1, fΛ1) · (Λ2, fΛ2)) ? ψ+

p (v).

And by this we see, that the action of SO+(1, 3) on TpM induces the group Iso+
p . This can

be equally understood by observing, that for all Λ ∈ SO+(1, 3) and all v, w ∈ TpM

g(Λv, Λw) = g(v, w)

must hold. Hence, the restriction of any Lorentz transformation Λ ∈ SO+(1, 3) to L+
p M

constitutes an isometriy for the induced metric q on L+
p M from (S4).

6.6. On length gauges and Lorentz subgroups

In this section we want to gain a better intuition for the physical interpretation of the group
Con+

p
∼= G and its Lorentz subgroups. Therefore we now want to make the structure and

the interpretation of Con+
p more lucid by explaining, how any Lorentz subgroup of Con+

p

seems to define a Lorentz-covariant notion of scale for null vectors. By this we will argue,
that Con+

p could be a more natural automorphism group for L+
p M than any of its Lorentz

subgroups.

To do so, we will now adopt a ”passive” point of view and try to understand, which coordi-
nate systems for L+

p M are induced, if one composes conformal automorphisms Ψ ∈ Con+
p

with a coordinate system ψ+
p ∈ Bp. But first, we take one step back and ask in full generality,

if and how one could define meaningful notions of length for null vectors in L+
p M .

On the one hand, one could be tempted to think, that no such notion exists, since the inner
product gp is degenerate on L+

p M and hence√
gp(v, v) = 0

holds. On the other hand, L+
p M is a linear cone and thus it is still possible to define mean-

ingful notions of length as homogeneous, positive definite maps

λp : L+
p M → R+, (6.32)
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which mimick hence the properites of vector space norms in the present situation. We will
call in the sequel such a map (6.32) a length gauge for L+

p M .

Now consider first a map ψ+
p ∈ Bp with associated vielbein (Eµ). This map can be written

as (cf. 6.1)
ψ+

p : L+
p M → C∞ ×R+, v 7→

(
zψ

p (v), λ
ψ
p (v)

)
(6.33)

with
λ

ψ
p (vµEµ) = v0 = |~v| =

√
(v1)2 + (v2)2 + (v3)2. (6.34)

Here, λ
ψ
p as given by (6.34) is obviously a length gauge for LpM and hence, any map

ψ+
p ∈ Bp determines a length gauge for L+

p M as the 3-length (or equivalently as the 0-
component) of a null vector in the associated vielbein frame. Hence, the class of coordinates
Bp (or equivalently the bundle atlas B) singles out a class of length gauges for L+

p M , namely
exactly those, that are associated to vielbein frames, as specified by (6.34).

At this stage, at least the author feels a bit uncomfortable: The 3-length (or equivalently the
zero component v0) associated to a vielbein frame is not a Lorentz invariant quantity. Why
should it be hence a preferred notion of length for null vectors? For example, Penrose writes
in [143]:

The extent of a null vector cannot be characterized in an invariant way by a number, nor
can null vectors of different directions be compared with respect to extent. The ratio of
the extents of null vectors of the same direction is meaningful, being just the ratio of the
vectors.

Here, Penrose calls it ”the extent of a null vector”, what we call the 3-length as given by the
length gauge (6.34). Hence, the length gauges (6.34) as singled out by the class of coordinates
Bp don’t seem to be meaningful quantities. Now, there are two strategies, how one could
deal with this insight. Either one could discard length gauges completely, what leads to the
usual ”identification” of a future pointing light cone with the celestial sphere, together with
the corresponding well known theory (cf. [143]). But instead of doing so, one could adopt
a different strategy: Instead of discarding length gauges completely, one could consider
contrarily the set of all possible length gauges as an invariant geometric structure associated
with L+

p M and analyse its properties. And we will see now, that this is exactly what we did
in this paper. Especially we will understand, that the group G describes all possible length
gauges together with their transformation properties under Lorentz transformations.

Therefore consider again a coordinate system ψ+
p ∈ Bp as given by (6.33). Now let (1, Y) ∈ G

and consider the map ψY
p := Ψ(1,Y) ◦ ψ+

p = (1, Y) ? ψ+
p . This map will be explicitely written

as

ψY
p : L+

p M → C∞ ×R+, v 7→
(

zY
p (v), λY

p (v)
)
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and by the very definition of the group action ? (or equivalently by the action of conformal
automorphisms as presented in section 6.3) we have then:

zY
p (v) = zψ

p (v),

λY
p (v) = Y(zψ

p (v))λψ(v). (6.35)

And hence, since Y ∈ C∞(C∞, R+), any length gauge is induced, if we act with group
elements g ∈ G on coordinate systems in Bp. I.e. any length gauge (6.32) can be written
as (6.35) for a suitable Y ∈ C∞(C∞, R+). Consequently, group elements g ∈ G of the form
g = (1, Y) could be understood as pure length gauge transformations. In addition one can
now enlarge the class of coordinates Bp to a larger class Rp which incorporates all those
possible length gauges, i.e.:

Rp = {(1, Y) ? ψ+
p |Y ∈ C∞(C∞, R+) and ψ+

p ∈ Bp}. (6.36)

Now, by the results of section 6.5, we have, that for any two ψ+
1,p, ψ+

2,p ∈ Bp there exists
exactly one g ∈ Iso+

p ⊂ Con+
p , s.th. ψ+

1,p = g ? ψ+
2,p holds. Hence, we have

Rp = G ? ψ+
p

for any ψ+
p ∈ Bp. And moreover, it follows then, that G acts simply transitive on Rp and

hence parametrizes all possible coordinate systems for L+
p M that incorporate all admissible

length gauges thereon.

But how do the various Lorentz subgroups enter the game now? This is maybe the most
subtle and interesting aspect of the present discussion. Therefore consider first again maps
ψ+

p ∈ Bp as given by (6.33). As explained above, the associated length gauges λ
ψ
p given by

(6.34) are 3-lengths induced by vielbein frames. And as such, there is an associated transfor-
mation law under Lorentz transformations, explicitely described by

ψ+
p (Λv) = (AΛ, fΛ) ? ψ+

p (v)

as presented in section 6.5. But if one enlarges the class of coordinates, such that all length
gauges are allowed, i.e. if one makes a transition from Bp to Rp as defined in (6.36), then
there exists no single, preferred Lorentz transformation law anymore. Instead, there are
infinitely many possible Lorentz transformation laws as described by the various Lorentz
subgroups of G. Moreover, if we consider again the group antihomomorphism κ from (6.25),
we see, that it is not possible to absorb any crossed homomorphism other than the trivial
one in the group composition law. I.e. we can’t define

κA : C∞(C∞, R+)→ C∞(C∞, R+), Y 7→ cA ·Y ◦ ZA

for cA 6= 1, since otherwise κA(1) = cA 6= 1 and hence, G would not constitute a group.
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This means, that from a group theoretic perspective, no non-trivial Lorentz subgroup of G
could be preferred in terms of an alternative multiplication law for G. Especially we see,
that the crossed homomorphism A 7→ fA seems completely arbitrary from this perspec-
tive. Conversely, any Lorentz subgroup of G singles out a subclass of length gauges and a
corresponding Lorentz transformation law, which is again unsatisfactory in the light of the
discussion above surrounding the quote of Penrose. Hence it seems, that no Lorentz sub-
group of G and especially not its subgroup of isometries is intrinsically preferred. By this
argumentation, G could be considered as a more natural automorphism group for L+

p M

than any of its Lorentz subgroups.

6.7. The automorphism groups as gauge groups for the light cone

bundle

In this section we want to sketch concisely, how the microscopic BMS-like group G, as well
as its subgroup of isometries, constitute gauge groups for the bundle of future pointing null
vectors. Therefore observe first, that the results of section 6.2 generalize in a straightforward
way to the full light cone bundle. I.e., the bundle L+M is equipped with the following
universal structures:

(F1) F = C∞ ×R+ is the typical fiber of the fiber bundle L+M , i.e. L+
p M ∼= F.

(F2) Each fiber L+
p M is a linear cone.

(F3) There is a family (Ui, zi)i∈I of surjective maps

zi : L+Ui → Ui ×C∞

whose transition functions are well defined and valued in the Möbius group. Here
(Ui)i∈I is an open cover for M .

(F4) There exists a degenerate metric qp on any fiber L+
p M . Moreover, the map

p ∈M 7→ qp

is smooth.

This allows then, as common in fiber bundle theory (cf. [162, 22, 87]), the definition of
adapted bundle atlases that preserve those structures in a certain sense. The matching con-
ditions of overlapping charts are then described in terms of transition functions that are
valued in a structure group and, as before, the question thereby will be, how (F4) should be
interpreted: As a fixed degenerate Riemannian metric on L+

p M or as a a representative of a
conformal structure thereon? The former will yield a SO+(1, 3)-structure for the lightcone
bundle, while the latter gives rise to a G-structure.
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Consider first the case, where qp is interpreted as a fixed degenerate Riemannian metric on
any generic fiber L+

p M . Then the bundle atlas B as constructed in section 6.2 is made up of
smooth local trivializations (U, ϕ) given by maps

ϕ : L+U → U × F

which preserve the cone structure and have the property, that the metric qp is in each chart
represented by

ds2 = 2λ2 dzdz̄
(1 + zz̄)2 (6.37)

and whose transition functions lie, by direct generalization of the results of sections 6.3 and
6.5, in Iso+

p
∼= SO+(1, 3). More explicitely, the latter means that for two local trivializations

(U1, ϕ1), (U2, ϕ2) ∈ B with U1 ∩U2 6= ∅ the transition function

ϕ2 ◦ ϕ−1
1 : (U2 ∩U1)× F → (U2 ∩U1)× F

can be written as
ϕ2 ◦ ϕ−1

1 (p, (z, λ)) = (p, i f (Λp) ? (z, λ)),

where
Λ : U1 ∩U2 → SO+(1, 3), p 7→ Λp

is a local Lorentz transformation, i f is the embedding

i f : SO+(1, 3) ↪→ G

defined in (6.31) and ? is the group action (6.28). In this sense, B constitutes a SO+(1, 3)-
structure for L+M , where the Lorentz group is non-trivially represented in terms of the
crossed homomorphism f .

We now interpret qp as a representative of a conformal equivalence class of metrics on a
generic fiber L+

p M . Then the structures (F1) - (F4) induce an adapted bundle atlas, whose
smooth trivializations (U, ϕ) given by

ϕ : L+U → U × F

have the property, that the metric qp is in each chart (U, ϕ) represented by

ds2 = 2λ2Ωϕ
p (z)2 dzdz̄

(1 + zz̄)2 (6.38)

for an associated smooth conformal factor

Ωϕ : U ×C∞ → R+, (p, z) 7→ Ωϕ
p (z), (6.39)
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and whose transition functions lie hence in G. The latter means, that for two such local
trivializations (U1, ϕ1), (U2, ϕ2) with U1 ∩U2 6= ∅ the transition function

ϕ2 ◦ ϕ−1
1 : (U2 ∩U1)× F → (U2 ∩U1)× F

can be written as
ϕ2 ◦ ϕ−1

1 (p, (z, λ)) = (p, gp ? (z, λ))

for
g : U1 ∩U2 → G, p 7→ gp

being a local smooth5 G-gauge transformation. In this sense, those local trivializations form
a G-structure for L+M , which we call R. Please note, that such an G-structure R indeed
exists and can be constructed explicitely in terms of the atlas B, by applying smooth G-
valued maps locally on coordinate systems in B. I.e. we define

R =
{
(U, g ? ψ+)

∣∣(U, ψ+) ∈ B and g ∈ C∞(U, G)
}

where g ? ψ+ is defined as:

g ? ψ+ : L+U → U × F, v ∈ L+
p M 7→

(
p, gp ? ψ+

p (v)
)

By this, it follows directly, that the restrictions of maps in R to TpM are given by Rp as
constructed in section 6.6.

In this sense, we have identified two extremal natural gauge groups for the bundle L+M :
The Lorentz group SO+(1, 3) forms a kind of minimal gauge group, while the microscopic
BMS group G constitutes some sort of maximal gauge group. By the argumentation of sec-
tion 6.6, the former can be understood as a gauge group, which carries already information
on the embedding L+M ↪→ TM , while the group G seems to be preferred by the intrinsic
geometry of L+M . Nevertheless, there should be some hard criterion, by which one can
answer the question, which of those gauge groups is the ”correct one”. We will comment
on this again in section 6.9. Please note in addition, that, by the results of this section, we
have now all necessary ingredients for a SO+(1, 3)- and a G-gauge theory on L+M . I.e. one
could define associated principal fiber bundles and analyse connections thereon.

Finally we would like to note, that there are also groups H which satisfy

SO+(1, 3) ( H ( G

and could be also understood as possible gauge groups for L+M . For example, one could
restrict the class of the allowed conformal factors Ωϕ

p (z) from equation (6.38). Also, any

5Of course, one has to specify, which notion of smoothness is meant exactly, since G is infinite dimensional.
But since we just want to sketch the ideas in the present discussion, we won’t bother with this question here.
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of the Lorentz subgroups of G should induce a corresponding bundle atlas. A more rigor-
ous mathematical investigation of those structures as well as their geometric interpretations
would be desirable, and we will comment on this question again in section 6.10.

6.8. Relation to the BMS analysis

In this paragraph, we want to compare the original BMS analyis at null infinity with our
microscopic analogue. Especially, we will first compare our methodology with the original
BMS methodology. Afterwards we will compare the structure of G with the structure of
the original BMS group. The similarities between those situations will then justify, why we
call G a microsocpic analogue of the BMS group, as will be summarized at the end of this
section.

Methodology We want to review concisely the original BMS analysis of asymptotically
flat spacetimes in a modern language. Our main sources for this are [79, 13, 14]. To un-
derstand the original BMS analysis of asymptotic symmetries, it is instructive (cf. [13, 14]),
to perform a conformal compactification (cf. [140]) of the asymptotically flat spacetime un-
der consideration. Then null infinity I becomes a 3-dimensional submanifold of Einstein’s
static universe, which can be regarded as a part of the topological boundary of the con-
sidered ”physical” spacetime and as such, it inherits several universal geometric structures
from the physical spacetime. Those structures (cf. [13]) consist out of a degenerate metric
qab with signature (0,+,+) and a complete vector field n on I , which is defined in terms of
the conformal factor Ω that was used for the conformal compactification:

nµ = ∇µΩ

Here, ∇ denotes the Levi-Civita connection on the compactified spacetime. In addition,
there is a remaining freedom for admissible conformal transformations of the physical space-
time given by smooth redefinitions of the conformal factor Ω of the form

Ω′ = ωΩ.

Here, ω is a smooth function on the compactified spacetime (including its boundary) that is
nowhere vanishing on I . One can restrict this ”gauge freedom” further by allowing solely
conformal factors, that satisfy∇µnµ = 0. One can then show (cf. [13, 14]) that smooth factors
ω preserve this condition if and only if their Lie derivative along n vanishes, i.e. Lnω = 0,
under restriction to I . Under such ”gauge transformations”, the universal structure (qµν, nµ)

transforms as follows:

q′µν = ω2qµν n′µ = ω−1nµ (6.40)
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One then calls two tuples (qµν, nµ) and (q′µν, n′µ) equivalent, if they are related to each other
by a conformal transformation of the type (6.40). The BMS group can then be understood
as the group of all transformations on I, which preserve this universal structure, i.e. map
tuples (qµν, nµ) to equivalent tuples.

The relation to our analysis becomes apparent, if one realizes, that all objects appearing in
the original BMS analysis have direct microscopic analogues in our analysis. Consider first
asymptotic flatness. In the case of the original BMS framework, the property of asymptotic
flatness was exactly described in terms of decay conditions for the metric along null rays
towards infinity (cf. [126]). As explained in sections 6.1 and 6.2, our analogue to asymptotic
flatness is given by Einstein’s equivalence principle. As sketched in footnote 3, Einstein’s
equivalence principle demands flatness in an infinitesimal limit, which can be quantified in
terms of Riemann normal coordinates: Around any point p ∈ M there exists coordinate
patch (xµ) around p (i.e. xµ(p) = 0) in which the metric assumes the form (cf. [35, 164])

gµν(x) = ηµν −
1
3

Rµανβ(0)xαxβ +O(|x|3),

where Rµανβ is a coordinate expression for the Riemann tensor. In this formulation, Ein-
stein’s equivalence principle is quantified in terms of a microscopic asymptotic decay con-
dition and hence resembles the role of asymptotic flatness in the BMS framework. Consider
now null infinity: It is a natural macroscopic null surface associated with any asymptotically
flat spacetime and can be represented as the union of a pointed past and a pointed future
light cone in Einstein’s static universe. Moreover, it is diffeomorphic to C∞ × R. Analo-
gously, the past and future tangent light cones L+

p M are natural microscopic null surfaces
associated with any spacetime satisfying Einstein’s equivalence principle and are diffeo-
morphic to C∞ ×R+. In the BMS analysis, the geometry of the bulk spacetime induces a
degenerate metric q and a complete null vector field nµ on null infinity. In our situation, the
geometry of TpM together with the psuedo-Riemannian metric g induces also a degenerate
metric as given by (S4) on L+

p M . The analogue to the complete null vector field nµ is then
given by the linear cone structure of L+

p M . The microscopic analogue to the gauge condi-
tion Lnω in the original BMS-analysis is the requirement, that conformal transformations
should preserve the compatibility of the induced metric with the linear cone structure, as
depicted at the end of section 6.3. The group Con+

p is in our situation then the group which
preserves the linear cone structure and the conformal structure on L+

p M up to conformal
equivalence, analogously as the BMS group preserves the universal structure in the sense
depicted above.

Group structure In this section we will compare the structure of G with the structure of
the original BMS group. Thereby we will see, that some subtile differences appear, although
the structure of G and the structure of the original BMS group are still very similar. Our
main source regarding the structure of the original BMS group will be the modern review
[8]. Classic sources on this topic are [156, 41, 130]. Null infinity can be coordinatized in
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Bondi coordinates by (z, u) ∈ C∞ ×R (cf. [138]) and in [8] a general BMS transformation
thereon is given by (cf. Formulas 5.15a and 5.15b of [8])

z→ z′ =
az + b
cz + d

(6.41)

u→ u′ = K(z, z̄) [u + α(z, z̄)] (6.42)

where K is the conformal factor given by

K(z, z̄) =
1 + zz̄

(az + b)(āz̄ + b̄) + (cz + d)(c̄z̄ + d̄)
, (6.43)

and α ∈ C∞(C∞, R+) is a supertranslation. Observe now, that the formulas (6.41 - 6.42) are
very similar to the coordinate expression of a transformation of L+

p M that corresponds to an

iterative application of a generic element ΦA
p ∈ Iso+

p and an element Ψ(1,Y)
p ∈ Con+

p , since

Ψ(1,Y)
p ◦ΦA

p (z, λ) =
(

ZA(z), Y(z) f A(z)λ
)

.

holds, what means, that (z, λ) transforms under Ψ(1,Y)
p ◦ΦA

p ∈ Con+
p as

z→ z′ =
az + b
cz + d

(6.44)

λ→ λ′ = K(z, z̄)−1Y(z)λ (6.45)

with the conformal factor K given by (6.43). The important differences between (6.44 - 6.45)
and (6.41 - 6.42) are, that our analogues of supertranslations do not act by addition, but
by multiplication, and that our analogue of the conformal factor, given by the crossed ho-
momorphism fA, is exactly the inverse of K. The former can be easily understood, since
automorphisms of the form Ψ(1,Y) are multiplicative ”superrescalings” of null vectors. The
occurence of the inverse conformal factor in (6.45) can be understood in the present situ-
ation, if one derives the Lorentz-Möbius correspondence not as we will do it in appendix
C.3, but in terms of Bondi coordinates. Then one obtains, that the advanced coordinate
u = t + r rescales under Lorentz transformations exactly under the inverse prefactor as the
radial coordinate r. This is for example presented in sections 4.2.1 and 4.2.2 of [138].

In all articles, which we have mentioned above, the structure of the original BMS group is
described as a semidirect product of the Lorentz group SO+(1, 3) with the group of super-
translations C∞(C∞, R). In this sense our group G resembles the structure of the original
BMS group. Especially in [8], also the original BMS group is constructed as a right semidi-
rect product, which resembles our construction of G as performed in section 6.4. But if one
digs deeper in the mentioned articles, an important difference will appear: In [8, 80], the
group action which is utilized for the definition of the semidirect product includes the con-
formal factor K. In particular, for a supertranslation α ∈ C∞(C∞, R) and a Lorentz group
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element Λ ∈ SO+(1, 3), the group action is defined as (cf. eq. 6.14a-b of [8]):

σΛ(α) = K−1 · α ◦ ZΛ. (6.46)

Adapted to our situation, the corresponding modification of the group action κ specified by
(6.25 - 6.26) would be

κ : PSL(2, C)→ Aut(C∞(C∞, R+)), A 7→ κA (6.47)

with:
κA : Y 7→ fA ·Y ◦ ZA (6.48)

But this would not be appropriate in our situation. If we had adopted the group action (6.47
- 6.48), we would have had especially

κA(1) = fA 6= 1.

Hence κA would not constitute an automorphism of C∞(C∞, R+), since it would not pre-
serve the unit element. Hence G would in this case not constitute a proper group (cf. also
the discussion at the end of section 6.6). Therefore we think, that fA must be excluded from
the definition of the semidirect product in the present scenario. In the case of the original
BMS group, this ambiguity does not appear, since it is additive. Hence its unit element is
given by 0 and fortunately the action (6.46) satisfies σΛ(0) = 0.

Conclusion We think, that the present discussion shows, that the original BMS group and
the group G are very similar: Both appear as conformal automorphism groups of natural
null surfaces endowed with similar universal geometric structures and both can be written
as right semidirect products of the Lorentz group (or equivalently the Möbius group) with
a group of smooth functions on the Möbius sphere.

6.9. On possible implications

As said in the introduction, the original BMS group found various applications in different
branches of modern gravitational and high energy physics. Motivated by this success and
by the similarity of the microscopic BMS-like group G presented in this article as compared
to the original BMS group, we ask the question, if the group G together with its associated
geometric structures could have similar applications. Therefore we will sketch three direc-
tions of research, that are motivated by the findings of the present article and by applications
of the original BMS group. The scenarios depicted in this subsection will be investigated in
a subsequent series of publications.
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A bulk description for gravitational waves? The original BMS analysis of universal struc-
tures and associated symmetries at null infinity was a conerstone of the proof, that gravi-
tational waves indeed exist in general relativity (cf. [126]). The reason for this is, that the
description of gravitational radiative degrees of freedom simplifies drastically, if one for-
mulates them in terms of induced higher order quantities on null infinity (cf. [12, 13, 14]).
Given the similarity of the group G with the original BMS group and the similarity of the
universal structures on L+

p M with the universal structures on null infinity, one could ask, if
an analysis of G-connections on the light cone bundle L+M could also lead to a simplified
description of radiative degrees of freedom on the bulk. I.e., in a more colloquial language,
if infinitesimal light cones could serve as convenient probes for gravitational waves on the
bulk. This could be indeed meaningful, since the equivalence classes of connections which
appear at null infinity (cf. [12, 13, 14]) could correspond in our scenario to a single gauge
equivalence class of G-connections on L+M as induced by several inequivalent Levi-Civita
connections on TM . Consequently, also quantities like the Bondi news tensor or the lead-
ing order Weyl tensor (for both cf. [13]) could have analoga for G-connections. Finally, the
tangent bundle of null infinity could be understood as an arena for boundary values of the
bulk light cone bundle. By this, the description of radiative degrees of freedom on null in-
finity should correspond directly to boundary values for G-connections, which could define
soliton-like vacuums solutions.

An ”UV-Triangle”? Recently, a deep interconnection between the original BMS group, soft
theorems in quantum gauge theory and memory effects in gravitational physics was discov-
ered, going under the name of the IR-triangle (cf. [165]). Given the structural similarity of
the group G and the BMS group, one could ask the question, if there could be a similar in-
terrelation between G and the UV-structure of gauge theories. This seems appealing: Due
to the infinite dimensionality of G, there could exist infinitely many charges associated with
G. Similarly, as the charges of the original BMS group imply soft theorems in terms of their
Ward identities, one could ask, if identities associated with G could constrain scattering
amplitudes non-perturbatively in the deep UV. Moreover, the existence of distinct Lorentz
subgroups of G could be related to a microscopic gravitational memory effect: A bypassing
gravitational wave could link two Lorentz subgroups of G to each other, resembling the sit-
uation at null infinity, where gravitational radiation links distinct Minkowski vacua to each
other, which are otherwise related by supertranslations (cf. [166, 13, 14]).

An extension of the fundamental gauge group of gravity? Finally we would like to
propose a speculative scenario, in which G (or maybe also a subgroup of G that is strictly
larger than the subgroup of isometries) could constitute a fundamental gauge group for
a full theory of gravity. But before doing so, please note first, that G could indeed already
arise as a gauge group for a specific, very realistic sector of general relativity: In the situation,
where all test particles are assumed to be massless, the tangent bundle can be safely replaced
by the light cone bundle and especially all gravitational quantities should influence such
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test particles only in terms of their induced quantities on L+M . One could then analyse, if
Einstein’s equation (or equivalently the Einstein-Hilbert action) can be reexpressed entirely
in terms of induced quantities on L+M . By doing so, one should especially understand,
which gauge freedom is dictated by the action principle (or equivalently by its canonical
formulation) for the induced connections on L+M : Is the gauge freedom described by G
or is it described by the subgroup of isometries? The discussion of section 6.6 makes it
plausible, that the gauge group is indeed enlarged to G in this scenario, but of course, this
has to be investigated. But however, a careful analysis of this situation should shed in any
case some light on the the question regarding the ”correct” gauge group for the light cone
bundle, as raised in section 6.7. Please note also, that this scenario is also closely connected
to a hypothetical bulk description of gravitational waves as sketched above: Both scenarios
aim towards a simplification of general relativity by considering solely its effects on massless
test particles.

After sketching this realistic scenario regarding a subsector of general relativity, we now
want to propose a speculative, in which G could constitute a gauge group for a full theory of
gravity. Therefore recall, that we have shown in section 6.4, that G contains infinitely many
Lorentz subgroups. By the argumentation of section 6.6 one can realize in addition, that
two distinct Lorentz subgroups are related by some kind of length gauge transformation.
Moreover, all Lorentz subgroups are (trivially) isomorphic to each other and especially iso-
morphic to the subgroup of isometries. This finding resembles to some extent the situation
in spontaneously broken gauge theories and hence one could ask, if a Higgs-like mechanism
could break the gauge symmetry of a G-gauge theory to an arbitrary Lorentz subgroup. By
this, general relativity could constitute a low-energy approximation of such a theory, where
the Higgs-like field is near to its ground state. Interestingly, everything should move at the
speed of light in situations, where the Higgs-like field is not in its ground state. Please note
in addition, that the subgroup of isometries is, although not intrinsically preferred, induced
by the standard representation of the Lorentz group on R4. By this, the subgroup of isome-
tries seems natural from the perspective of any spontaneously choosen Lorentz subgroup of
G, although it seems unnatural if one considers G as a fundamental gauge group.

Finally note, that those scenarios seem to be plausible from different perspectives. There are
various hints (cf. chapter 5), that gravity behaves at fundamental scales in a 2-dimensional
way (cf. [42]). In addition, the BKL-conjecture (cf. [26]) suggests, that gravity behaves at
fundamental scales in an ultralocal way, which is also a property of ultrarelativistic field the-
ories (cf. [50, 113]). Note, that those properties would be directly imprinted into any theory
associated with L+M and G: The light cone bundle is infinitesimally a 2-dimensional space
and hence the dimensional reduction at microscopic scales would be manifest in a G-gauge
theory on the light cone bundle. Moreover, tangent light cones are obviously ultrarelativistic
objects and the group G should thus, analogously to the situation in [60, 59, 61], be related to
some ultrarelativistic symmetry group. Hence, also the ultralocal behaviour at microscopic
scales should be manifest. This could be summarized in a picturesque way by saying, that a
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G-gauge theory on the light cone bundle should describe a situation, where fundamentally
everything moves at the speed of light and where timelike causality relations are emergent
by some yet to be invented mechanism. As argued above, this mechanism could be maybe
a spontaneous symmetry breaking or a ”gauged holographic principle”.

6.10. Conclusion

Finally we want to conclude this chapter. Therefore we will first summarize the results of the
present analysis and will comment then on further open questions other than those raised
in the last section.

Summary: In this chapter we have performed a thorough analysis of the universal struc-
tures that are induced on the infinitesimal tangent light cones of a generic spacetime obeying
Einstein’s equivalence principle. Thereby, we obtained as a main result, that those structures
single out two natural microscopic symmetry groups, that arise as automorphism groups:
A non-trivially represented Lorentz group as their isometry group and a group G as their
conformal automorphism group. We investigated the mathematical structure of the group
G and showed, that it can be described in terms of a right semidirect product of the Lorentz
group (or equivalently the Möbius group) with a group of smooth, positive valued func-
tions on the Riemann sphere. We further showed, that G contains infinitely many Lorentz
subgroups which are parametrized in terms of crossed homomorphisms. We have demon-
strated, how the isometry group arises as a non-canonical subgroup of G and argued, that
no Lorentz subgroup seems to be intrinsically preferred from a geometric and a group the-
oretic perspective. Especially, we realized thereby, that G encodes all possible length gauge
choices for null vectors and that any Lorentz subgroup corresponds to a subclass of such
length gauge choices together with an an associated Lorentz transformation law. We also
compared our methodology and results with the classic BMS analysis, and justified by this,
that G can be called a microscopic analogue of the BMS group. Finally, we have sketched,
how G and the isometry subgroup could constitute gauge groups for the bundle of null di-
rections. By this we have identified a geometric structure which exists on the bulk of any
spacetime obeying Einstein’s equivalence principle and which is associated with a BMS-
like group. This implies especially, that BMS-like groups do not only describe macroscopic
asymptotic symmetries in general relativity, but also constitute a fundamental and, to the
best of our knowledge, unknown microscopic symmetry of Lorentzian geometry/ This sym-
metry encodes in an invariant way, how null vectors interfere with Lorentz transformations.
In addition we would like to mention three results of this article, that lie not in the mainline
of argumentation, but are still worthwhile to be mentioned explicitly:

• We gave a convenient representation for the rescalings of null vectors under Lorentz
transformations, cf. (6.7) or section 6.5. This transformation law was derived by a
reinterpretation of the implicit definition of the inverse stereographic projection (C.3),
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which is convenient for the calculation of null vector rescalings, cf. appendix C.3.
Although it was of course realized all over literature, that null vectors transform under
Lorentz transformation not only by a change of their direction, but also by a rescaling
of their length (cf. e.g. [143, 130, 156]), the representation (6.7) as well as its derivation
in appendix C.3 are to the best of our knowledge new.

• We have shown in section 6.2, that the square root of the negative standard Minkowski
inner product constitutes a kind of distance function on the light cone of Minkowski
vector space. Moreover we have shown, that this distance function is related to the
chordal distance on the Riemann sphere. Although this result seems very elementary,
it is, to the best of our knowledge, not present in the existent literature. Nevertheless,
a related reasoning was performed in [142].

• The occurence of infinitely many Lorentz subgroups of the conformal automorphism
group can be equally understood by the statement, that there seems to be no distin-
guished Lorentz transformation law for length gauges anymore, if one considers all
possible length gauges for null vectors, cf. the end of section 6.6. I.e. if one enlarges
the class of coordinate systems as described at the end of section 6.6, then the sub-
group of isometries together with its associated Lorentz transformation law seem to
loose their preferred role, and infinitely many Lorentz transformation laws emerge.

Finally, we want to remark, that it is in the view of the author interesting, that the group
G carries no obvious canonical structure that singles out a non-trivial Lorentz subgroup.
Usually, structure groups in fiber bundle theory are some kind of ”group theoretic mirror”
of the geometry under consideration, since they encode geometric properties of the fiber
bundle (and its base manifold) in terms of group theoretic properties (cf. [22, 162]). In the
present scenario, the metric (6.37) is a distinguished geometric object on L+

p M , since it has
constant positive curvature. But as discussed at the end of section 6.6, the associated Lorentz
subgroup of isometries seems not to be preferred from a group theoretic perspective. This
could be interpreted as a hint, that the structure of G favours a conformal interpretation of
the induced metrics on L+

p M .

G from the perspective of mathematical gauge theory? We have sketched in section 6.7,
how the group G constitutes a gauge group for the light cone bundle. It could be an interest-
ing question, if there exist manifolds, which admit a G-structure for a fiber bundle of linear
tangent cones, but don’t admit a pseudo-Riemannian metric. A further interesting question
going in the same direction would be, how G-structures on the lightcone bundle interfere
with spin structures on the manifold under consideration. Also, one could ask, as sketched
concisely in section 6.7, how subgroups of G that are strictly larger than the isometry sub-
group are related to geometric properties. Finally, it could be interesting to analyse, how the
structures described in this article are related to global geometric and topological questions
in pseudo-Riemannian geometry, by investigating the topology of the light cone bundle as
well as its invariants (cf. [162]).
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Towards a BMS geometry? It was shown in [60, 59], that a certain conformal Carroll
group of the macroscopic Minkowski light cone is given by the BMS-group. In contrast,
we have shown in this article, that the conformal automorphism group of the infinitesimal
light cone is given by G. The geometric relation of the original BMS group to the group G
resembles hence in some sense the relation of the Poincaré group to the Lorentz group: The
BMS group acts on the macroscopic light cone, as the Poincaré group acts on the macro-
scopic Minkowski space, and the group G acts on infinitesimal tangent light cones, as the
Lorentz group acts on infinitesimal tangent Minkowski spaces. Now recall, that pseudo-
Riemannian geometry can be written as a Cartan geometry (cf. [161]) based on the Poincaré
and the Lorentz group. Although the structural interrelation of the group G and the BMS
group seem to forbid the formulation of a Cartan geometry based on those two groups, one
could still ask the question, if above geometric picture could be interpreted in similar lines,
giving rise to a kind of general BMS geometry in a, possibly extended, Cartan geometric
framework.

The mathematical structure of G? As said in section 6.4, a general classification of crossed
homomorphisms c : SO+(1, 3) ↪→ G would be desirable. On the other hand, the existence
of infinitely many Lorentz subgroups of G suggests, that each of those subgroups could
encode in some sense the microscopic transformation properties of some geometric or phys-
ical object. A better qualitative understanding of crossed homomorphisms associated with
Lorentz subgroups could hence yield also a better understanding of the interpretation of
the occuring Lorentz subgroups. Moreover, it would be very important in the context of
the discussion of section 6.6, to understand, if the crossed homomorphism f that defines
the isometry subgroup is in some sense intrinsically preferred by the structure of G or just
extrinsically induced by the linear representation of the Lorentz group on TpM .
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7. Conclusion and outlook

In this chapter we will conclude this thesis. Especially we will concisely summarize its
findings in section 7.1 and comment on promising directions of further research in section
7.2.

7.1. Summary

In this section we present concisely the results of this thesis from a formal perspective. A
presentation which is more focused on qualitative and conceptual aspects can be found in
section 1.2, while for a more in-depth treatment one should consult the conclusions of the
respective chapters.

Bose-Einstein-condensation by asymptotic expansions and spectral ζ-functions:

The treatment of chapter 3 is based on the author’s publication [175]. We have obtained
there the following results:

• We have shown, that there exist asymptotic expansions for the grand potential of the
harmonically trapped, non-interacting Bose-Gas under the open-trap limit κ → 0.
Here κ denotes the oscillator constant of the harmonic trap.

• Those asymptotic expansions resemble heat kernel expansions and differ drastically
between the two phases:

– In the non-condensation phase the asymptotic expansion is of the form

Ω(v)(κ; β, µ) =
v

∑
k=0

κ−ka(v)−k (β, µ) +O(κ)

and hence exhibits a singularity of finite order.

– In the condensation phase the asymptotic expansion is of the form

Ω(v)(κ; β, µ) =
∞

∑
k=0

κ−ka(v)−k (β, µ) + f (κ) +O(κ) (7.1)
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and hence exhibits a singularity of infinite order. Here f (κ) represents a logarith-
mic singularity, cf. (3.2).

Those two expansions hence encode entirely the aspects of the system that get domi-
nant in the thermodynamic limit κ → 0.

• Under a renormalization of the chemical potential, which is given by the κ-dependent
coupling

µρ̄(κ) = E(v)
0 (κ)−

[
ρ̄− ρ

(v)
c (β)

]−1
κv +O(κv+1),

the asymptotic expansion (7.1) attains a form which exhibits only a singularity of finite
order and which marks the presence of condensation, cf. (3.30 - 3.31) and (3.34). Here
ρ
(v)
c (β) marks the critical density of the system.

• Moreover, characteristic quantities of the system, as thermodynamic observables or
the critical density, are encoded in the coefficients of the asymptotic expansion.

Those structures were to our best knowledge not described before in the literature and mark
a novel contribution to the theory of Bose gases.

Renormalization of a classical field theory in the vicinity of a cosmological singularity:

We have obtained the following results in chapter 4:

• The conformally coupled massless Klein-Gordon equation on a radiation dominated
big bang spacetime has distributional solutions which are distributional extensions
of the ordinary smooth solutions. In the concrete case of the conformally coupled
massless scalar, those extensions are related to the Cauchy principal value distribution,
which extends the inverse scale factor.

• The distributional solutions exhibit a 1-parameter renormalization freedom, since the
coordinate expressions of two such solutions differ by a multiple of a delta distribution
with support on the singular hypersurface (i.e. by a distribution proportional to δ(η−
0) in conformal coordinates for conformal time η).

• The classical n-point functions can be renormalized in a similar manner, which gives
renormalized distributional n-point functions. Those n-point functions define then
renormalized, distributional states on the algebra of multilocal Wick Polynomials.
Both, states and n-point functions, can be understood as distributional extensions of
their smooth counterparts.

• The renormalized, distributional states have a higher regularity than their non-renormalized,
smooth counterparts. For example, for smooth solutions φ the expression∫

M
dVol(x)φn(x) f (x)
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diverges in the radiation dominated universe for n ≥ 5, while it is finite for all n ∈ N

in the distributional case. Hence, the renormalized, distributional field theory exhibits
a similar regularity as a classical field theory on Minkowski spacetime.

• Under comparison with [15] our analysis reveals, that the tameness of quantum field
theoretic operator valued distributions at the initial singularity is a feature which is
shared by the associated classical field theory and not a property tied to the quantum
case.

• Nevertheless our analysis has several drawbacks:

– It relies on the neglection of backreaction, which is a questionable requirement in
the present situation.

– It affects only high order Wick observables, whose conceptual importance is ques-
tionable.

– The renormalization of higher order observables introduces a high degree of in-
determinacy due to the occurring renormalization constants.

Anyhow, this treatment shows that renormalization procedures are not only of use in the
context of quantum field theory but can also have applications within classical field theory.
Moreover this treatment suggests, that quantum completeness properties could be induced
by the classical background.

Ultrarelativistic behaviour of gravity in extreme situations:

In chapter 5 we have obtained the following results:

• Qualitatively, time- and spacelike geodesics behave increasingly lightlike as they ap-
proach the singularity of spatially flat FLRW spacetimes . This can be either seen at the
level of the geodesic vector fields in general cases or at the level of the geodesics them-
selves in the case of a scale factor a(η) = ηc given in conformal coordinates. Moreover
we have conjectured, that this is a coordinate-invariant behaviour and have proposed
an associated quantitative, putatively coordinate-invariant statement.

• We have pointed out, that in several situations present in the literature, where the
behaviour of gravity in extreme situations is analysed, some kind of ultrarelativistic
behaviour seems to be present. Especially we have discussed the Kasner singularity,
the BKL-conjecture, the short distance Wheeler-deWitt equation and the case of strong
gravity.

Although those results are only of qualitative nature, they led us to the conjecture that grav-
ity could behave ultrarelativistically on fundamental scales.
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The microscopic ultrarelativistic geometry of spacetime:

In chapter 6, which is based on the author’s publication [176], we have obtained the fol-
lowing results:

• We have shown, that microscopic tangent light cones are endowed with universal ge-
ometric structures that are independent of the macroscopic behaviour of the gravita-
tional field. Explicitly, those structures are given by (cf. section 6.1):

1. The microscopic future tangent light cone L+
p M is isomorphic to C∞ × (0, ∞) as

a smooth manifold, where C∞ denotes the Riemann sphere. Hereby the direction
of a null vector is identified with z ∈ C∞ while its euclidean length is identified
with λ ∈ (0, ∞).

2. L+
p M is a linear cone.

3. L+
p M is endowed with a sort of conformal structure.

4. There exists a degenerate metric on L+
p M which is induced by the metric tensor.

• Moreover, those structures can be identified as the structures of a weak Carroll mani-
fold (for the definition of the latter cf. [61]).

• The conformal automorphism group of those structures is given by a right semi-direct
product PSL(2, C)oκ C∞(C∞, (0, ∞)). It has infinitely many Lorentz subgroups which
are parametrized by so called crossed homomorphisms (cf. section 6.4).

• The isometry group of above universal structures is a non-trivially represented Lorentz
group which is induced by the original representation of the Lorentz group on T+

p M .
Any proper orthochronous Lorentz transformation Λ ∈ SO+(1, 3) acts then on an ele-
ment (z, λ) ∈ C∞ × (0, ∞) of L+

p M as

(z, λ) 7→ (ZΛ(z), fΛ(z)λ)

with ZΛ being the Möbius transformation associated with Λ and fΛ being a non-trivial
rescaling factor which constitutes a crossed homomorphism (cf. section 6.5 and ap-
pendix C.3). This shows especially, that the euclidean length of null vectors is a non-
trivial, Lorentz covariant quantity, although it is not Lorentz invariant.

• We have introduced the notion of a length gauge for null vectors, which is a Lorentz-
covariant map λp : L+

p M → R+. We have then explained, that the conformal auto-
morphism group could be understood as the group which encodes the transformation
properties of all possible length gauges.

• We have shown, that the conformal automorphism group and the isometry group are
both eligible as gauge groups for the bundle of null vectors.
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• We have shown, that the structure and the interpretation of the conformal automor-
phism group resemble those of the original BMS group to a great extent.

By this analysis we have revealed some surprisingly rich and previously undiscovered struc-
tures hidden in the theories of relativity. Especially we have shown, that BMS-like groups
arise not only as asymptotic symmetry groups in the context of cosmology, but describe also
a fundamental and apparently unknown microscopic symmetry of pseudo-Riemannian ge-
ometry.

7.2. On promising directions of further research

In this section we want to present concisely some directions of further research that are mo-
tivated by the results of this thesis and which are promising from our point of view. Partly,
those research ideas were already presented in the conclusions of the respective chapters.

Asymptotic expansions, universality and weakly interacting gases: As already explained
in chapter 3, we think that the benefit of the analysis presented there is that it relates the
phase structure of Bose gases to qualitative features of asymptotic expansions, which are
robust under perturbations in formally similar geometric situations. The analysis of chapter
3 should be hence understood as a starting point for more general treatments. Especially we
suggest the following directions of research:

• One could analyse on very general grounds, which ”number-theoretic perturbations”
of eigenvalue distributions and eigenvalue asymptotics would leave the qualitative
structure of the asymptotic expansions invariant. Similarly one could analyse, to
which extent one is allowed to deform the qualitative structure of the asymptotic ex-
pansions without modifying the resulting thermodynamic properties of the system.

• One should analyze the case of general traps by methods inspired by [171, 172]. There
very general properties of eigenvalue sequences are related to properties of the respec-
tive spectral ζ-functions.

• One should try to tackle the weakly interacting case by analysing, how the eigen-
value distributions are qualitatively modified under the inclusion of weak interac-
tions. Especially one should understand, to which extent the qualitative properties
of the asymptotic expansions are universal properties of this system.

• The formal analogy between infinite renormalization in the context of quantum field
theory and the treatment of the chemical potential in the analysis of chapter 3 sug-
gests the question, if one could apply some kind of renormalization group analysis
on this problem, although – contrary to the case of quantum field theory – the cut-off
constitutes an IR-regulator in our case.
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Classical field theory in the vicinity of cosmological singularities – consecutive questions:

Although the treatment of section 4 was an interesting first step in the investigation of the
properties of classical field theories in the vicinity of cosmological singularities, it had some
serious drawbacks as depicted there. Nevertheless we think that the present results are in-
teresting enough to anticipate, that also classical field theories could have interesting physi-
cal aspects in the vicinity of cosmological singularities. Especially we suggest the following
directions of research:

• First and foremost one should understand the physical meaning of the occurring renor-
malization constants. Therefore a careful analysis of the distributional classical energy
momentum tensor should be performed (cf. [21] for a similar situation).

• One should find more realistic scenarios for the investigation of the completeness
properties of classical field theories in the vicinity of cosmological singularities. Es-
pecially one should answer the question, if any malignity associated with cosmologi-
cal singularities could be probed by a measurement apparatus that is associated with
classical field theory. Therefore one should either develop a realistic model for a field
theoretic measurement apparatus or one should develop a general measurement the-
ory for classical field theory (cf. [52] for a first step in this direction). This should then
be applied on cosmological singularities.

• In chapter 4 we have shown, that distributional solutions to classical field equations
show a different physical behaviour than their smooth counterparts in the vicinity of
cosmological singularities. Hence one could wonder, if there are also other situations
where distributional classical field theory and smooth classical field theory show a
different behaviour. Hence one should understand, to which extent smooth and dis-
tributional classical field theory differ from a physical perspective.

• One should analyse a classical field theory in the vicinity of cosmological singularities
by the use of Colombeau algebras (cf. [83, 84]). The benefit of Colombeau algebras in
the present situation is given by the fact, that they can be used for a distributional treat-
ment of general relativity, which is not possible with standard distributions (cf. [163]).
Hence one should analyse, to which extent matter fields and gravitational fields can be
investigated in a mutual framework, possibly under the consideration of backreaction
effects.

Classical vs. quantum completenes – more rigorous results: One of the aspects of chapter
4 was, that our analysis suggested that the benign behaviour of quantum fields in the vicin-
ity of cosmological singularities as found by [15] is indeed already present at the classical
level. Nevertheless, our results are still not concrete enough to allow a confident answer to
the question, to which extent the completeness properties of quantum fields are caused by
the properties of the associated classical field theories. Especially we suggest the following
directions of research:
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• The results of chapter 4 suggest that distributional and smooth classical field theory
are from a physical perspective inequivalent at cosmological singularities. One should
understand if the corresponding quantum field theories are also mathematically in-
equivalent, i.e. if the associated quantum states define inequivalent representations of
the quantum field theoretic observable algebra (cf. [173]). Moreover one should make
it precise, how the behaviour of classical observables is connected to the behaviour
of quantum observables. Maybe this could be done by a deformation quantization
argument.

• The quantum completeness results of [96, 97] are based on the quantum field theoretic
Schrödinger formalism, in which the role of the classical background is – at least for the
author of this thesis – not very clear. Hence one should understand how the complete-
ness aspects of classical field theory are related to quantum completeness properties
of the Schrödinger functional.

• The distributional treatment of chapter 4 suggests, that one should be able to extend
the propagators of the classical field theory by an analogous procedure. Thereby it is
expected, since the wave front (cf. appendix A) set of the Cauchy principal value dis-
tribution and the delta distribution should violate the microlocal Hadamard condition
(cf. [38, 78]), that the Hadamard condition has to be modified on the cosmological sin-
gularity. Since the Hadamard criterion is of great importance for the construction of
quantum field theoretic models in curved spacetime, one should analyse if this mod-
ification of the Hadamard criterion is admissible or not, which should lead to some
kind of microlocal completeness criterion.

Understanding the ultrarelativistic aspects of singularities: In section 5.1 we have shown,
that the geodesics exhibit qualitatively some kind of ultrarelativistic behaviour in the vicin-
ity of the initial singularity. Moreover we have explained in section 5.2 among other things,
that the geodesics of the Kasner singularity show a similar behaviour. Although we have
conjectured that this is a coordinate invariant statement, we did not prove this there and
hence we suggest especially the following directions of research:

• It should be proven, that the aforementioned ultrarelativistic behaviour of time- and
spacelike geodesics is really a coordinate-invariant property of FLRW and Kasner
spacetimes. Especially this should be done by the strategy suggested around equa-
tion (5.14).

• One should understand, to which extent this ultrarelativistic behaviour corresponds
to a modification of the geometric model. For example, this could be done in the con-
text of Cartan geometry (cf. [161]). Especially one should understand, if the pseudo-
Euclidean model geometry should be replaced by some putative ultrarelativistic model
in the vicinity of the singularity, and if this change of the microscopic geometry is
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enough to explain the occurrence of a curvature singularity or even to yield a geomet-
ric completion.

• If the ultrarelativistic behaviour of geodesics in the vicinity of FLRW and Kasner sin-
gularities represents a coordinate invariant property, then one should understand to
which extent this property can be generalized to general singularities. Especially one
could analyse, if this property follows on general grounds in the context of singularity
theorems, e.g. from the existence of closed trapped surfaces.

Can horismos replace causality? At the end of section 5.2 we have reviewed the fact, that
causal relations are in some sense effective descriptions of horismos (i.e. null) relations, since
two points are causally related if and only if they are related by a chain of null relations. This
motivates the following directions of research:

• One should analyse to which extent horismos relations can replace causal relations in
approaches to quantum gravity which rely on fundamental discretizations of space-
time, as causal dynamical triangulations and causal set theory. I.e. one could analyse
under which conditions horismos dynamical triangulations and horismos sets could be
defined. Moreover one could construct a version of Regge calculus where only null
relations are allowed. Please note, that this was already suggested by [133] and a pre-
liminary step was performed in [158].

• One should analyse the properties of a constant speed random walk, where all particles
move with constant speed but are allowed to change the direction randomly. This
situation would then be a toy model for some kind of Brownian motion on a spacetime
where microscopically only null directions are allowed.

Applications of µBMS? In section 6 we have revealed some rich structures hidden in the
theories of relativity, which especially comprised a microscopic analogue of the BMS-group.
Motivated by the various applications of the original BMS group, one could ask if the mi-
croscopic BMS group has similar properties. Especially we suggest the following directions
of research:

• One should understand, if the microscopic BMS group allows for a simplified Bulk
description of gravitational waves on the light cone bundle. In addition one should
understand, if it is interrelated to some kind of microscopic or infinitesimal memory
effects on the level of tangent spaces.

• One should understand if the microscopic BMS group is associated with UV- or IR-
properties of (quantum) field theories, in analogy to its macroscopic cousin. A possible
starting point for this could be given by the concept of a length gauge as presented in
section 6.6: Since length gauges are dual to null vectors they could be understood
as very general Lorentz-covariant (re)definitions of momenta. One could then try to
understand how scattering amplitudes behave under such momentum redefinitions.
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• One should understand, to which extent general relativity can be entirely re-expressed
in terms of objects that are related to the light cone bundle. In addition one should
understand how a gauge theory associated with the µBMS group looks like.

Structural properties of µBMS: Although we have performed a thorough structural anal-
ysis of the µBMS-group, still many questions associated with this group are unanswered.
Especially we suggest the following directions of research:

• One should understand, how the crossed homomorphisms which parametrize the
Lorentz subgroups can be classified. One possible attempt for this would be to classify
them in terms of their invariance properties under subgroups of PSL(2, C).

• One should understand – from the perspective of mathematical gauge theories – if
there are manifolds which allow for a µBMS-structure but cannot be endowed with a
pseudo-Riemannian metric. Generally spoken it would be also interesting to under-
stand, if the various subgroups of the µBMS group are related to geometric properties
of the manifold under consideration.

• In chapter 6 it was mentioned, that the µBMS-group and the original BMS group
share a relationship which is reminiscent of the relation between the Lorentz and the
Poincaré group. Since the Minkowski space can be written as the quotient of the
Poincaré and the Lorentz group one could ask, if the µBMS- and the original BMS-
group can be also used for the construction of some geometric model.

µBMS, singularities and other symmetries: One of the motivations for the investigation of
the symmetries associated with microscopic tangent light cones was the observation made
in section 5.1, that the geodesic geometry behaves increasingly ultrarelativistic in the vicinity
of the initial singularity. While in the case of the FLRW spacetime this corresponds quali-
tatively to a degeneration of the tangent spaces towards microscopic tangent light cones,
the picture is less clear in the Kasner case sketched in section 5.2. We hence propose the
following direction of research:

• One should analyse the behaviour of geodesics in vicinity of the Kasner singularity.
Are the geodesics constrained to some kind of dimensionally reduced light cone in the
vicinity of the singularity? If so, one should investigate the microscopic symmetries of
this geometric entity.

• Motivated by the observations, that all geodesic tangent vectors approach the light
cone in the vicinity of the initial singularity and that the light cone is associated with
a BMS-like group, one could ask if an asymptotic BMS-like symmetry group could be
associated with universal geometric structures present on cosmological singularities.

139





A. A concise introduction to distribution

theory

Since distributions will be of great importance in chapter 4 and 2, we want to give a concise
introduction to their theory. Our main source will be [36], while other standard resources
are comprised by [151, 149, 98, 179].

A.1. Basic notions regarding distributions

The space of distributionsD′(Rn) is defined as the dual space of the space of compactly sup-
ported smooth functions D(Rn) := C∞

c (Rn), where the latter is endowed with its standard
locally convex topology (cf. e.g. [179] or section V of [151]). As such, distributions can be
understood as natural generalizations of linear functionals of the form

χ f : D(Rn)→ R, h 7→
∫

Rn
dnx f (x)h(x)

with f ∈ C(Rn) being a continuous function. This is the reason, why distributions are often
called generalized functions. If one wants to check explicitely, if a linear map

χ : D(Rn)→ R, h 7→ χ(h) (A.1)

is a distribution, one has to show, that χ is continuous in the topology of D(Rn), which is
equivalent to the statement (cf. section V of [151]), that for any compact set K ⊂ Rn there is
a constant C and an integer j s.th.

|χ(h)| ≤ C ∑
|α|<j
‖∂αh‖∞

holds, where α is a multi-index (cf. [151]). We will also need the notion of compactly
supported distributions. We therefore define the distributional support of a distribution
χ ∈ D′(Rn) as the set of all x ∈ Rn s.th. for any open neighborhood x ∈ Ux ⊂ Rn the
restriction of χ to Ux is non-zero. One can then show, that compactly supported distribu-
tions, i.e. distributions in D(Rn) with compact distributional support, form the dual space
of the space of all smooth functions E(Rn) := C∞(Rn) equipped with its standard topology.
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Hence we denote the space of compactly supported distributions by E ′(Rn). Please note,
that obviously E ′(Rn) ⊂ D′(Rn) holds.

As the topological dual of D(Rn), the space of distributions is equipped with a natural
topology which has especially the property, that a sequence of distributions (χn)n∈N ⊂
D(Rn) converges to a distribution χ ∈ D(Rn) if and only if for any bump function b ∈
D(Ω)

lim
n→∞

χn(b) = χ(b)

holds. In addition we have the useful property, that D(Rn) can be continuously embedded
into D′(Rn) by

D(Rn) ↪→ D′(Rn), b 7→ χb

with χb defined as in A.1. Moreover, in terms of this embedding, D(Rn) ⊂ D′(Rn) is a
dense subset, i.e. any distribution can be approximated by a sequence of bump functions.
This means, that for any distribution χ ∈ D′(Rn) there exists a sequence of bump functions
(χn)n∈N ⊂ D(Rn) such that

χ(b) = lim
n→∞

χn(b)

holds for any b ∈ D(Rn). This property is extremely useful since it means that any distribu-
tion χ can be written as

χ(b) = lim
n→∞

∫
Rn

dnx fn(x)b(x)

for a sequence ( fn(x))n∈N of compactly supported smooth functions. For example, the fa-
mous delta distribution can be defined as

δ(b) = lim
n→∞

∫
Rn

dx
[√

n
2π

exp
(
−n

2
x2
)]

b(x).

A.2. Some elementary operations on distributions

For later use we also want to introduce some elementary operations which can be performed
on distributions, namely the restriction of a given distribution, the multiplication with a
bump function and the distributional Fourier transform. More complicated operations (as
products, extensions or tensor products) will then be introduced later.

Restrictions of distributions: We therefore define, for a distribution χ ∈ D(Rn) and an
open set U ⊂ Rn, the restriction of χ to U, denoted as χ|U , as the distribution in D′(U)

which satisfies
χ|U (b) = χ(i(b))

for all b ∈ D(U). Here i : D(U) ↪→ D(Rn) is the canonical injection induced by the embed-
ding U ⊂ Rn.
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Multiplication of distributions with smooth functions: Further we want to define the mul-
tiplication of a distribution with a smooth function, which can be easily defined as

f · χ = χ · f := χ( f · )

for a smooth function f ∈ C∞(Rn) and a distribution χ ∈ D(Rn).

Derivatives of distributions: Distributional derivatives are easily defined in a way, which
is motivated by partial integration. Let therefore χ ∈ D(Rn) be a distribution and α be a
multi-index. We then define:

∂αχ := (−1)|α|χ (∂α · )

Extensions of distributions: Extensions of distribution are also easily defined as the opera-
tion reverse to restrictions: Let U ⊂ V ⊂ Rn be open sets and χ ∈ D(U). Then an χ̃ ∈ D(U)

is called an extension of χ to V, if
χ̃|U = χ

holds. Although this definition is very lucid, the operation of extending a given distribution
is a very subtle procedure. We will give a concise treatment of this important topic in section
2.3.

The Fourier transform: Finally we want to define the distributional Fourier transform.
Unfortunately, the Fourier transform cannot be defined for all distributions in D′(Rn), but
just for so called tempered distributions. Those are defined as members of the dual space
S ′(Rn) of the Schwartz space of rapidly decreasing functions. The details of tempered dis-
tributions are not of importance in the present discussion and we refer to the literature (e.g.
[151]) for their precise definition. For a tempered distribution χ ∈ S ′(Rn) we can then define
its distributional Fourier transform as

F (χ)(b) := χ(F (b))

which defines again a tempered distribution. Since E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn) holds,
the distributional Fourier transform is especially defined for distributions of compact sup-
port.

A.3. The singular support and the wave front set

We now want to understand better, to which extent distributions differ qualitatively from
functions and especially we want to understand, how a certain distribution can be charac-
terized by its singular behaviour. We therefore define first the so called singular support of a
distribution χ ∈ D′(Rn), which is, in a colloquial language, defined as the set of all points
in Rn on which χ cannot be represented in terms of a smooth function. More precisely, a
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point x ∈ Rn lies not in the singular support sing supp(χ) of a distribution χ ∈ D′(Rn), if
and only if there is a open neighborhood x ∈ U ⊂ Rn s.th. the restriction of χ to U is can be
written as

χ|U (b) =
∫

U
dnx f (x)b(x)

for a smooth function b. For example, the singular support of the delta distribution is given
by sing supp(δ) = {0}. A more refined criterion for the singular structure of distributions
is given by the concept of the wave front set, which characterizes, in a colloquial language,
how a distribution differs from a smooth function in momentum space. Before defining it,
we first state the following variant of the famous Payley-Schwartz theorem, which charac-
terizes precisely, when compactly supported distributions can be represented in terms of
compactly supported smooth functions. This will serve as a motivation for the definition of
the wavefront set.

Theorem 2 (cf. Chapter 8.1 of [98])
A compactly supported distribution χ ∈ E ′(Rn) is given by a compactly supported function b ∈
D(Rn), i.e.

∀ f ∈ E(Rn) : χ( f ) =
∫

Rn
dnxb(x) f (x),

if and only if its distributional Fourier transform χ̂ ∈ C∞(Rn) satisfies the following decay property:

(DP) For all N ∈N there is a CN > 0 s.th. |χ̂(k)| ≤ CN (1 + |k|)−N holds for all k ∈ Rn.

The core message of this theorem is, that the difference between smooth functions and dis-
tributions is given by their UV-behaviour: A compactly supported distribution is precisely
then a compactly supported smooth function, when its Fourier transform decays sufficiently
fast. This motivates then a refined criterion for the characterization of the singular structure
of distributions as compared to the singular support: Instead of collecting just the points
x ∈ Rn at which a distribution fails to be a smooth function, one could in addition look
at the directions in momentum space, at which its Fourier transform (localized at x) does
not decay sufficiently fast. This is precisely the intuition behind the wavefront set, which
will now be defined precisely. Therefore let χ ∈ D′(Rn) be a distribution and x ∈ Rn.
Then define the singular fiber Σx(χ) of χ at x as the complement of the set of all tuples
(x, k) ∈ Rn ×Rn \ {0} satisfying the property, that there is a bump function b ∈ D(Rn) s.th.
the Fourier transform of b · χ decays according to the decay property (DP) of theorem 2 in
an open cone around k. Then the wave front set of χ is defined as:

WF(χ) := {(x, k) ∈ Rn ×Rn \ {0}|k ∈ Σx(χ)}
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A.4. Products of distributions:

After having understood how to characterize the singular structure of distributions, we now
want to explain how they can be multiplied. We will present two types of product opera-
tions for distributions: We first introduce the tensor product and will then explain, when
distributions can be multiplied, extending the usual multiplication of smooth functions.

Tensor products of distributions: Let X1, X2 be two open subsets of Rn and let χi ∈ D′(Xi)

be two distributions for i = 1, 2. Then there is a unique distribution χ1 ⊗ χ2 ∈ D′(X1 × X2)

s.th. for all test functions b1 ∈ D(X1) and b2 ∈ D(X2)

u1 ⊗ u2 (b1 ⊗ b2) = u1(b1) · u2(b2)

holds, where b1⊗ b2(x) := b1(x) · b2(x) is the usual tensor product of smooth functions. The
distribution χ1⊗ χ2 is then called the tensor product (distribution) of χ1 and χ2. Moreover, the
wave front set of χ1 ⊗ χ2 satisfies:

WF(u⊗ v) ⊂ [WF(u)×WF(v)] ∪ [(supp(u)× {0})×WF(v)] ∪ [WF(u)× (supp(v)× {0})] .

Products of distributions: The multiplicability of distributions is described by Hörmanders
theorem (cf. thm. 8.2.10 of [98]). Therefore let X ⊂ Rn be open and χ1, χ2 ∈ D′(X). Then, if
there is no (x, k) ∈ WF(χ1) s.th. (x,−k) ∈ WF(χ2), we can define the product χ1 · χ2 as the
pull-back of the tensor product χ1 ⊗ χ2 along the diagonal map

X ↪→ X× X, x 7→ (x, x).

Moreover, the wave front set of χ1 · χ2 is in this case given by

WF(χ1 · χ2) ⊂ (WF(χ1) ∪ (X× {0}) + (WF(χ2) ∪ (X× {0}) .
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B. Calculations for FLRW-spacetimes

In this chapter, all calculations in the context of FLRW spacetime are collected that are
needed in this thesis.

B.1. The metric, christoffel symbols and curvature tensors

We consider the spacetime M ∼= R4 with metric

ds2 = a(η)2 (−dη2 + dx2 + dy2 + dz2)
and a : R→ [0, ∞) satisfying a(η) > 0 for all η 6= 0.

Inverse metric: The inverse metric is given by

gµν = a(η)−2ηµν

since
a(η)−2a(η)2ηµρηρν = δ

µ
ν

holds.

Christoffel symbols: The Christoffel symbols are given by the famous Koszul formula

Γσ
µν =

1
2

gσρ
(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
which reads in our case as

Γσ
µν =

∂ηa(η)
a(η)

[
δ0

µδσ
ν + δ0

νδσ
µ − ησ0ηµν

]
Hence 10 components of the Christoffel symbols are non-vanishing and those are explicitely
given by:

Γ0
00 = Γ0

ii = Γi
0i = Γi

i0 =
∂ηa(η)

a(η)
(B.1)
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Ricci tensor and Ricci scalar: Since we don’t need the Riemann tensor, we will directly
compute the Ricci tensor for FLRW spacetime. We therefore express first the Ricci tensor in
terms of Christoffel symbols:

Rµν = Rλ
µλν = ∂λΓλ

µν − ∂νΓλ
λµ + Γρ

µνΓλ
λρ − Γρ

λµΓλ
ρν.

Since all Christoffels other than (B.1) vanish, it can be easily shown that the Ricci tensor is
diagonal, what follows also from symmetry considerations (cp. [183]). We now calculate the
diagonal elements:

R00 = ∂λΓλ
00 − ∂0Γλ

λ0 + Γρ
00Γλ

λρ − Γρ
λ0Γλ

ρ0 = 3
[

ȧȧ− äa
a2

]
Rii = ∂λΓλ

ii − ∂iΓλ
λi + Γρ

iiΓ
λ
λρ − Γρ

λiΓ
λ
ρi =

[
ȧȧ + äa

a2

]
With this we can now easily calculate the Ricci scalar as

R = gµνRµν = a−2 (−R00 + R11 + R22 + R33) = 6
ä
a3 .

B.2. The wave equation and associated calculations

From the action
L =

1
2

√
−det(g)

[
−gµν∂µ∂νφ− ξRgφ2]

we can derive the equation of motion for φ by utilization of the Euler Lagrange equations.
But before doing so, we first insert the expressions for the geometric quantities. By recalling
the results from the last section and observing, that det(g) = −a(η)8 we obtain:

L = −1
2

a2ηµν∂µφ∂νφ− 3ξaäφ2

The Euler lagrange equations ∂µ
∂L

∂(∂µφ)
− ∂L

∂φ = 0 read then, since

∂µ
∂L

∂(∂µφ)
= −∂µ

(
a2ηµν∂νφ

) ∂L
∂φ

= −6ξaäφ

holds as

−∂µ

(
a2ηµν∂νφ

)
+ 6ξaäφ = 0. (B.2)

By utilization of
∂µ

(
a2ηµν∂νφ

)
= a2

[
−∂2

η + ∆
]

φ− 2aȧ∂ηφ,
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where the Laplacian ∆ is – as usual – defined as ∆ = ∑3
i=1 ∂2

i we can write the equation of
motion (B.2) as:

a2
[
∂2

η − ∆
]

φ + 2aȧ∂ηφ + 6ξaäφ = 0 (B.3)

We now introduce, as common in FLRW spacetimes (cp. [28, 135]), a scalar field χ defined
as:

χ := a φ

We then obtain an equation of motion for χ by inserting φ = a−1χ in (B.3). By utilization
of

∂2
η

(
a−1χ

)
=
−aχä− 2aȧχ̇ + 2χȧ2 + a2χ̈

a3 , (B.4)

∆
(

a−1χ
)
= a−1∆χ,

∂η

(
a−1χ

)
=

aχ̇− ȧχ

a2 , (B.5)

we can then write (B.3) as
a
[
∂2

η − ∆
]

χ + (6ξ − 1) äχ = 0

or equivalently as
a
[
∂2

η − ∆
]

aφ + (6ξ − 1) aäφ = 0. (B.6)

We now introduce the d’Alambertian

� =
1√
−det g

∂µ

(√
−det ggµν∂ν

)
,

which can be written in our FLRW spacetime as:

� =
1
a2 ηµν∂µ∂ν − 2

ȧ
a3 ∂η

= a−2
[
−∂2

η + ∆
]
− 2

ȧ
a3 ∂η

We will now see, that the equation of motions (B.2), (B.3) and (B.6) can be considered as
equivalent to the wave equation. Therefore consider the massless wave operator

P = [−�+ ξR]

which can be hence written as

P = a−2
[
−∂2

η + ∆
]
− 2

ȧ
a3 ∂η + ξ6

ä
a3 .

By utilization of the formulas (B.4) - (B.5), we can write the wave operator equivalently as

P = a−3
[
−∂2

η + ∆
]

a + (6ξ − 1)
ä
a3 .
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B.2. The wave equation and associated calculations

Hence the wave equation Pφ = 0 is equivalent to the equations of motion (B.2), (B.3) and
(B.6). In the case of conformal coupling ξ = 1

6 , the wave operator is then given by

P = a−3
[
−∂2

η + ∆
]

a (B.7)

and the wave equation is given by

a−3
[
−∂2

η + ∆
]

aφ = 0. (B.8)

Obivously, the equation of motion (B.6) is equivalent to the wave equation Pφ = 0 as given
by (B.8) with the wave operator P being defined as in (B.7).

Finally we want to show, that (
ψ~p, ψ∗~q

)
= δ(~p−~q)

holds for ψ~k(η,~x) := X(η,~k)ei~k~x with

X(η,~k) =
B1

(2π)
3
2

1√
2|~k|

ei|~k|η

a(η)
+

B2

(2π)
3
2

1√
2|~k|

e−i|~k|η

a(η)

and B1, B2 ∈ C satisfying |B1|2 − |B2|2 = −1. As before we define

(ψ1, ψ2) := −i
∫

R3
d3xa(η)2

(
ψ1(η0,~x) ∂η

∣∣
η=η0

ψ2(η,~x)− ψ2(η0,~x) ∂η

∣∣
η=η0

ψ1(η,~x)
)

.

Then observe first, that we can write(
ψ~p, ψ∗~q

)
= −i

∫
R3

d3xa(η)2ei(~p−~q)~x (X(η0,~p)Ẋ∗(η0,~q)− Ẋ(η0,~p)X∗(η0,~q)
)

= −i
∫

R3
d3xa(η)2ei(~p−~q)~x W|η=η0

[X(·,~p), X∗(·,~q)],

where we have defined the Wronskian

W[y1, y2] = y1ẏ2 − ẏ1y2.

It is now easy to show, that
W[gy1, gy2] = g2W[y1, y2]

holds and by this we have(
ψ~p, ψ∗~q

)
= −i

∫
R3

d3xei(~p−~q)~x W|η=η0
[T(·,~p), T∗(·,~q)]

for
T(η,~q) =

B1

(2π)
3
2

1√
2|~k|

ei|~k|η +
B2

(2π)
3
2

1√
2|~k|

e−i|~k|η .
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B.3. Distributional extensions

Now observe, that by the famous identity

1
(2π)3

∫
R3

d3xei(~p−~q)~x = δ(~p−~q)

we have (
ψ~p, ψ∗~q

)
= −i(2π)3δ(~p−~q) W|η=η0

[T(·,~p), T∗(·,~q)].

It then can be easily calculated that this reduces to:

(
ψ~p, ψ∗~q

)
= −(2π)3δ(~p−~q)

(
|B1|2 − |B2|2

(2π)3

)
.

And hence the claim is shown.

B.3. Distributional extensions

We prove the following theorem:

Theorem 3
Let n ∈N. Then:

1. The map

t(n) : b ∈ D(R) 7→ t(b) := − 1
(n− 1)!

∫
R

dη ln(|η|)b(n)(η)

is a distribution in D′(R).

2. t(n) extends η−n ∈ D′(R \ {0}) and moreover ηnt(n) = 1 holds in a distributional sense.

3. Any T(n) with ηnT(n) = 1 is given by

T(n) = t(n) +
n−1

∑
i=0

K(n)
i δ(i)

Proof. 1.) Let b ∈ D(R). We then have

∣∣∣t(n)[b]∣∣∣ ≤ (∫
supp(b)

dη ln(|η|)
)∥∥∥b(n)

∥∥∥
∞

and hence the claim is shown, since ln(|η|) ∈ L1
loc(R).

2.) Let b ∈ D(R \ {0}). Then we have by integration by parts

t(n)(b) =
∫

R
dη η−nb(η)
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B.4. Geodesics

which is integrable since 0 6∈ supp(b). Moreover, for b ∈ D(R), one can show easily that
t(n)[ηnb] =

∫
R

dη b(η).
3.) We first show, that T(n) satisfies ηnT(n) = 1. Therefore observe, that for any 0 ≤ i ≤ n− 1

∫
R

dη ηnδ(i)(η)b(η) = (−1)i
∫

R
dη δ(x)

di

dηi (η
nb(η))

= (−1)i
∫

R
dη δ(x)

(
i

∑
j=0

(
i
j

)
n!

(n− j)!
ηn−jb(i−j)

)
= 0.

holds. And hence ηnT(n) = 1 holds. Now assume, that T(n) ∈ D′(R) satisfies ηnT(n) = 1.
It then follows, that T(n) restricts to η−n on R \ {0}. Hence it differs from t(n) by a linear
combination of derivatives of delta distributions. But we have that η(n)δi(η) 6= 0 for i ≥ n
and hence the claim follows.

B.4. Geodesics

We want to analyze the qualitative behaviour of geodesics in an FLRW background given
by the metric

ds2 = a(η)2 (−dη2 + dx2 + dy2 + dz2)
with scale factor a(η) = ηc and η > 0.

Other coordinate system: As a matter of fact, the geodesic equations are more convenient,
if analysed in coordinates, in which the metric has the form

ds2 = −dt2 + b(t)2 (dx2 + dy2 + dz2) (B.9)

with b(t) = b0tγ and t > 0. The both coordinate systems are related in terms of the coordi-
nate transformation

η(t) =
∫ t

0
dt′

1
b(t′)

, (B.10)

since one obtains then easily:

ds2 = −dt2 + b(t)2 (dx2 + dy2 + dz2)
= −

(
dt
dη

)2

dη2 + b(t(η))2 (dx2 + dy2 + dz2) = −b(t(η))2 (−dη2 + dx2 + dy2 + dz2)
Hence we have

a(η) = b ◦ t(η)
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B.4. Geodesics

with t(η) defined as the inverse function of (B.10). If we set b(t) = b0tγ and a(η) = ηc we
obtain, that those scale factors are related as

γ =
c

1 + c
and b0 = (1− γ)−γ.

since (B.10) reads then

η(t) =
1
b0

1
1− γ

t1−γ.

Especially we have, since c ∈ (0, ∞), that γ lies in (0, 1). The non-vanishing Christoffel
symbols for the metric (B.9) are then given by

Γ0
ii = b(t)∂tb(t) and Γi

0i = Γi
i0 =

∂tb(t)
b(t)

,

which read in the case of b(t) = b0tγ as

Γ0
ii = γb2

0
t2γ

t
and Γi

0i = γ
1
t

.

The geodesic equations: The geodesic equations

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0

read in those coordinates hence as

d2t
dλ2 + b(t)ḃ(t)

3

∑
i=1

(
dxi

dλ

)2

= 0 and
d2xi

dλ2 +
ḃ(t)
b(t)

3

∑
i=1

dt
dλ

dxi

dλ
= 0.

Moreover we have, that the vector fields ∂i are Killing vector fields for i ∈ {1, 2, 3} and hence
we have associated constants of motion, which are given by

b(t)2 dxi

dλ
= Pi. (B.11)

Moreover we have the condition

−
(

dt
dλ

)2

+ b(t)2
3

∑
i=1

(
dxi

dt2

)2

= σ. (B.12)

Here, the case of σ < 0 corresponds to affinely parametrized timelike geodesics, 0 corre-
sponds to affinely parametrized null geodesics and σ > 1 corresponds to affinely parametrized
spacelike geodesics.

Differential equations for the parametrization and the graph: Now observe, that, due to
the high amount of symmetry, we don’t need the geodesic equations to solve the equations
of motion. We just need equations (B.11) and (B.12). We then insert first equation (B.11) into
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B.4. Geodesics

(B.12), which gives:

b(t)−2
3

∑
i=1

(
Pi
)2

= σ +

(
dt
dλ

)2

.

By setting P2 := ∑3
i=1
(

Pi)2 we can write this as

dt
dλ

= ±
√

b(t)−2P2 − σ, (B.13)

which is a ordinary differential equation, that determines the parametrization of the geodesics.
We then can write equation (B.11) as

dxi

dλ
= Pib(t)−2

which determines xi(λ) in terms of t(λ). This gives a set of two ordinary differential equa-
tions, that determine the motion completely:

dt
dλ

=

√
P2

b(t)2 − σ

dxi

dλ
=

Pi

b(t)2

Please note, that the sign of the square root (B.13) was here choosen in a way which ensures,
that the tangent vectors of our curve are future pointing.

But in the present situation, we are more interested in the graph xi(t) of the geodesics. We
therefore rewrite the second differential equation as

dxi

dt
dt
dλ

=
Pi

b(t)2 ⇔
dxi

dt

√
P2

b(t)2 − σ =
Pi

b(t)2

and hence we have:
dxi

dt
=

Pi√
P2b(t)2 − σb(t)4

And hence our differential equations for the parametrization and the graph are

dt
dλ

=

√
P2

b(t)2 − σ, (B.14)

dxi

dt
=

Pi√
P2b(t)2 − σb(t)4

. (B.15)

The equations of motion as integral equations: We now want to solve the equations of
motion in the case b(t) = b0tγ. We therefore write first (B.14) and (B.15) as integral equations.
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B.4. Geodesics

We therefore write (B.14) as
1√

P2

b(t)2 − σ

dt
dλ

= 1

which gives after integration

∫ t(λ)

t(λ0)
dt

1√
P2

b(t)2 − σ
= (λ− λ0).

This yields hence an implicit definition of the function t(λ). Integrating (B.15) gives on the
other hand:

xi(t)− xi(t0) =
∫ t

t0

dt
Pi√

P2b(t)2 − σb(t)4

Now consider the case b(t) = b0tγ. Then the integral equations read in this case:

∫ t(λ)

t(λ0)
dt

1√
P2

b2
0t2γ − σ

= (λ− λ0), (B.16)

xi(t)− xi(t0) =
∫ t

t0

dt
Pi√

P2b2
0t2γ − σb4

0t4γ
. (B.17)

Null geodesics: In the case of null geodesics, the equations of motion can be easily solved.
The integral equations read in this case:

∫ t(λ)

t(λ0)
dttγ =

P
b0
(λ− λ0),

xi(t)− xi(t0) =
Pi

Pb0

∫ t

t0

dtt−γ.

By recalling, that γ ∈ (0, 1), those equations can be easily solved and we obtain:

t(λ) =
[
(γ + 1)

P
b0
(λ− λ0) + t(λ0)

γ+1
] 1

γ+1

,

xi(t) =
Pi

Pb0(1− γ)

[
t1−γ − t1−γ

0

]
+ xi(t0).

Since we are interested in the geodesics which emanate from the singularity we set λ0 = 0
and t(λ0) = t0 = 0 and obtain:

t(λ) =
[
(γ + 1)

P
b0

λ

] 1
γ+1

,

xi(t) =
Pi

Pb0(1− γ)
t1−γ + xi(0).
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B.4. Geodesics

Adapting the integrals for time- and spacelike geodesics: For σ 6= 0, solving the equations
of motion is more complicated. For this, we need Euler’s integral representation of the
Gaussian Hypergeometric function, which is given by the formula (cf. [177])

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

sb−1(1− s)c−b−1

(1− sz)a ds (B.18)

for Re(c) > Re(b) > 0, c 6∈ {−m|m ∈N} and z 6∈ [1, ∞).

We now have to bring the integrals in a form, such that this formula is applicable. We first
start with (B.16). We therefore set first for convenience A2 = P2/b2

0 and write

∫ t(λ)

t(λ0)
dt

1√
P2

b2
0t2γ − σ

=
1
A

∫ t(λ)

0
dt

tγ

√
1− σA−2t2γ

− 1
A

∫ t(λ0)

0
dt

tγ

√
1− σA−2t2γ

.

We hence now want to calculate the integral

I1(t) :=
1
A

∫ t

0
dx

xγ

√
1− σA−2x2γ

.

We then make the substitution
x(s) = ts

1
2γ

by which we can write

I1(t) =
tγ+1

2γA

∫ 1

0
ds

s
1

2γ−
1
2√

1− (σt2γ A−2) s
,

where we have used
dx
ds

=
t

2γ
s

1
2γ−1.

We then have by application of (B.18)

2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; z
)
=

Γ
(

3
2 +

1
2γ

)
Γ
(

1
2 +

1
2γ

) ∫ 1

0
ds

s−
1
2+

1
2γ

√
1− sz

which reduces by Γ(1 + x) = xΓ(x) to

2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; z
)
=

γ + 1
2γ

∫ 1

0
ds

s−
1
2+

1
2γ

√
1− sz

.

And with this we obtain finally

I1(t) =
tγ+1

A(1 + γ)
2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σA−2t2γ

)
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and hence all together:

(λ− λ0) = I1(t(λ))− I1(t(λ0))

=

[
b0tγ+1

P(1 + γ)
2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)]t(λ)

t(λ0)

We now want to obtain a solution for equation (B.17). We therefore write

∫ t

t0

dx
Pi√

P2b2
0x2γ − σb4

0x4γ
=

Pi

Pb0

∫ t

0
dx

x−γ

√
1− σA−2x2γ

− Pi

Pb0

∫ t0

0
dt

x−γ

√
1− σA−2x2γ

,

where we set again A2 = P2/b2
0. We hence now calculate the integral

I2(t) :=
Pi

Pb0

∫ t

0
dx

x−γ

√
1− σA−2x2γ

.

Again we make the substitution
x(s) = ts

1
2γ

which leads to:

I2(t) =
Pi

Pb0

t1−γ

2γ

∫ 1

0
ds

s
1

2γ−
3
2√

1− (σA−2t2γ) s

We then have with (B.18)

2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; z
)
=

Γ
(

1
2γ + 1

2

)
Γ
(

1
2γ −

1
2

) ∫ 1

0
ds

s
1

2γ−
3
2

√
1− sz

which reduces by Γ(1 + x) = xΓ(x) to

2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; z
)
=

1− γ

2γ

∫ 1

0
ds

s
1

2γ−
3
2

√
1− sz

.

And hence we have

I2(t) =
Pi

Pb0

t1−γ

1− γ
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)
which leads to:

xi(t) = xi(t0) +

[
Pi

Pb0

t1−γ

1− γ
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)]t

t0

Now observe finally, that, since P2 = ∑3
i=1
(

Pi)2, we have, that the vector ê defined as

ê =
(

e1, e2, e3
)

:=
(

P1

P
,

P2

P
,

P3

P

)
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lies in S2, i.e. ê · ê = 1. We hence can write xi(t) as:

xi(t) = xi(t0) + ei
[

t1−γ

(1− γ)b0
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)]t

t0

And hence we have all together the following solutions:

(λ− λ0) =

[
b0tγ+1

P(1 + γ)
2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)]t(λ)

t(λ0)

xi(t) = xi(t0) + ei
[

t1−γ

(1− γ)b0
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)]t

t0

Again, for λ0 = 0 and t0 = 0 those solutions read then:

λ(t) =
b0tγ+1

P(1 + γ)

[
2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)]
xi(t) = xi(t0) + ei

[
t1−γ

(1− γ)b0
2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)]

Solutions in conformal coordinates: We now want to transform the solutions of the equa-
tions of motion to conformal coordinates. This is done by recalling, that the relationship
between conformal time η and t is in our case given by

η(t) =
1
b0

1
1− γ

t1−γ ⇔ t(η) = [b0(1− γ)η]
1

1−γ

with b0 = (1− γ)−γ and γ = c
1+c . We then have for the null solutions:

η(λ) =

[
1 + γ

1− γ

] 1−γ
1+γ

[Pλ]
1−γ
1+γ ,

xi(η0) = ei [η − η0] + xi(η0).

We now consider the time- and spacelike solutions. We have

λ− λ0 =

[
1
P

1− γ

1 + γ
η

1+γ
1−γ 2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
;

σ

P2 η
2γ

1−γ

)]η(λ)

η(λ0)

,

xi(η) = xi(η0) + ei
[

η2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

;
σ

P2 η
2γ

1−γ

)]η

η0

,

which gives for λ0 = 0 η0 = η(λ0) = 0:

λ(η) =
1
P

[
1− γ

1 + γ

]
η

1+γ
1−γ 2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
;

σ

P2 η
2γ

1−γ

)
,

xi(η) = xi(η0) + ei
[

η2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

;
σ

P2 η
2γ

1−γ

)]
.
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A unifying form for the geodesics: We now continue working in conformal coordinates
with λ0 = 0 and η0 = η(λ0) = 0. We first write the null geodesics as:

λ?(η) :=
1
P

[
1− γ

1 + γ

]
η

1+γ
1−γ ,

xi
?(η) := eiη + xi

0.

Let now σ 6= 0. We can then write the corresponding time-/spacelike geodesics as

λσ(η) = λ∗(η)G
(γ)
σ,P(η),

xi
σ(η)− xi

0 =
[

xi
?(η)− xi

0

]
H(γ)

σ,P(η),

with

G(γ)
σ,P(η) := 2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
;

σ

P2 η
2γ

1−γ

)
,

H(γ)
σ,P(η) := 2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

;
σ

P2 η
2γ

1−γ

)
.

This discussion holds also for the other set of coordinates. We have:

λσ(t) = λ∗(t)G̃
(γ)
σ,P(t)

xi
σ(t)− xi

0 =
[

xi
?(t)− xi

0

]
H̃(γ)

σ,P(t)

with

λ?(t) =
1
P

b0

1 + γ
t1+γ

xi
?(t)− xi

0 = ei 1
b0(1− γ)

t1−γ

and

G̃(γ)
σ,P(t) = 2F1

(
1
2

,
γ + 1

2γ
,

1
2

(
3 +

1
γ

)
; σ

b2
0

P2 t2γ

)
H̃(γ)

σ,P(t) = 2F1

(
1
2

,
1
2

(
1
γ
− 1
)

,
1
2

(
1
γ
+ 1
)

; σ
b2

0
P2 t2γ

)
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C. The Lorentz-Möbius correspondence as

adapted to our situation

In this section we want to explain the correspondence between the Lorentz and the Möbius
group as adapted to our situation. Most of the results are adapted straightforwardly from
literature, but some results are in the present form also new. To keep this section self-
contained, we first review all basic facts on the Riemann sphere that are required for the
understanding of this article, although they were partially already presented in the main
body. This will be done in section C.1. In section C.2 we will derive a useful interpretation
for bundle trivializations in B. In section C.3 we will then utilize this representation for the
derivation of Lorentz transformation properties (6.6, 6.7) of null vectors.

C.1. The Riemann sphere and Möbius transformations

We review the basic theory of the Riemann sphere. Our main source for this section is given
by [143]. The Riemann sphere is defined as the extended complex plane, i.e.

C∞ := C∪ {∞}

and is coordinatized by complex numbers z ∈ C∞. But for the derivation of the Lorentz-
Möbius correspondence a different set of coordinates will be more convenient. Those coor-
dinates are given by tuples (ξ, η) ∈ C2 which are allowed to take any value other than (0, 0)
and will be called projective coordinates. A point z ∈ C∞ on the Riemann sphere is then
specified by the quotient

z = ξ/η.

Observe, that two tuples (ξ1, η1), (ξ2, η2) represent the same z ∈ C∞ if and only if there is an
α ∈ C \ {0} such that (ξ1, η1) = (αξ2, αη2) holds. This is the reason, why those coordinates
are called projective coordinates (cf. [143]).

The Riemann sphere C∞ is diffeomorphic to the standard 2-sphere S2 in terms of the stereo-
graphic projection

ρ : S2 → C∞, v̂ 7→ ρ(v̂) :=
v̂1 + iv̂2

1− v̂3 ,
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C.1. The Riemann sphere and Möbius transformations

where we wrote a generic unit vector v̂ ∈ S2 as v̂ = (v̂1, v̂2, v̂3). The inverse of the stereo-
graphic projection will be denoted by ε̂ := ρ−1 and can be explicitely written as

ε̂ : C∞ → S2, z 7→ ε̂(z) :=
(

ε̂1(z), ε̂2(z), ε̂3(z)
)

with (cf. [143]):

ε̂1 (z = ξ/η) =
z + z̄
z̄ + 1

=
ξη̄ + ηξ̄

ξξ̄ + ηη̄
(C.1)

ε̂2 (z = ξ/η) =
1
i

z− z̄
zz̄ + 1

=
1
i

ξη̄ − ηξ̄

ξξ̄ + ηη̄

ε̂3 (z = ξ/η) =
zz̄− 1
zz̄ + 1

=
ξξ̄ − ηη̄

ξξ̄ + ηη̄
(C.2)

By introducing the Pauli matrices (σµ)µ=0,...,3 defined as

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
.

and setting ε̂0(z) = 1, we can write the relations (C.1) - (C.2) conveniently as

ε̂µ(z)σµ =
2

ξξ̄ + ηη̄

(
ξ

η

)(
ξ̄ η̄

)
(C.3)

for z = ξ/η (cf. [143]). We now want to introduce Möbius transformations as biholomorphic
automorphisms of C∞ that are given by (cf. [143, 106, 56, 116])

Z : C∞ → C∞, z 7→ az + b
cz + d

for complex numbers a, b, c, d ∈ C satisfying ad− bc = 1. Strictly speaking, the requirement
ad− bc = 1 is not necessary, but it is convenient, since it makes the structure of the Möbius
group more lucid. Now, there exists a canonical surjective homomorphism (cf. [143]) be-
tween the group SL(2, C) = {A ∈ C2×2|det(A) = 1} and the Möbius group, which asso-
ciates to a matrix

A =

(
a b
c d

)
∈ SL(2, C) (C.4)

the Möbius transformation
ZA(z) :=

az + b
cz + d

.

One can then see easily, that two matrices A, B ∈ SL(2, C) define the same Möbius trans-
formation, i.e. ZA = ZB, if and only if A = ±B. Having this in mind, writing matrices A
instead of Möbius transformations ZA is often more practical and one gets by this an isomor-
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C.1. The Riemann sphere and Möbius transformations

phism between the Möbius group and the group PSL(2, C) := SL(2, C) \ {±1}. Therefore,
we denote the Möbius group often just by PSL(2, C). Moreover, we denote an equivalence
class of matrices [A] in PSL(2, C) just by one of their representatives, i.e. [A] = A by slight
abuse of notation. Observe in addition, that the action of a Möbius transformation can be
easily expressed (by slight abuse of notation) in terms of projective coordinates as

ZA (ξ/η) = A

(
ξ

η

)
,

which will be useful for the derivation of the Lorentz-Möbius correspondence. Finally we
want to introduce a distance function on C∞ given by

d : C∞ ×C∞ → [0, ∞), (z1, z2) 7→
2|z1 − z2|√

|z1|2 + 1
√
|z2|2 + 1

. (C.5)

This distance function makes C∞ to a metric space and is the so called chordal distance (cf.
[95]). It is induced by the corresponding euclidean distance of the associated points on S2:

d(z1, z2) = |ε̂(z1)− ε̂(z2)| (C.6)

The chordal distance is moreover related to a Riemannian metric on C∞ that is explicietly
given by:

ds2 =
4

(1 + zz̄)2 dzdz̄ (C.7)

This metric is compatible with the natural conformal structure that C∞ carries as a Riemann
surface (cf. [106]). The pullback of the metric C.7 under a Möbius transformation ZA speci-
fied by a matrix C.4 can be easily calculated as

ds2 = KA(z)2 4
(1 + zz̄)2 dzdz̄

where the conformal factor KA is given by:

KA(z) =
1 + zz̄

(az + b)(āz̄ + b̄) + (cz + d)(c̄z̄ + d̄)

It can be written equivalently as

KA(z) =
1 + zz̄

1 + ZA(z)ZA(z)

1
(cz + d)(c̄z̄ + d̄)
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or by the utilization of projective coordinates as:

KA(z) =

(
ξ̄ η̄

)(ξ

η

)
(

ξ̄ η̄
)

A∗A

(
ξ

η

)

C.2. Spin representation of light cone bundle trivializations

We now want to utilize the results of the last section, to derive a convenient representa-
tion for local trivializations (U, ψ+) ∈ B (for the definition of B consult section 1.4). This
representation is an original construction of this article and is especially a reinterpretation
of the relation (C.3). It will then allow a very fast computation of null vector rescalings
under Lorentz transformation and will hence be useful in the next subsection, where we
finally present the Lorentz-Möbius correspondence as adapted to our situation. Therefore
let (U, ψ) ∈ A be a local trivialization of TM associated to a vielbein (Eµ) and let

ψ+ : L+U → U × (C∞ ×R+), v ∈ TpM 7→
(

p, (zψ
p (v), λ

ψ
p (v)

)
(C.8)

be the associated bundle trivialization of L+M as defined in (6.3). I.e. we have explicitely:

zψ
p (vµEµ) = ρ(v̂) =

v1 + iv2

v0 − v3 ,

λ
ψ
p (vµEµ) = |~v|.

Let p ∈ U. As before, we denote the restriction of ψ+ to L+
p M by

ψ+
p : L+

p M → L+
p M , v 7→ (zψ

p (v), λ
ψ
p (v)). (C.9)

We now want to generalize the relation (C.3), such that we can use it as an implicit definition
of such bundle trivializations. Therefore observe first, that by (C.3) any null vector v ∈ L+

p M

given in the vielbein frame (Eµ) by v = vµEµ can be written as

vµσµ = v0 2
ξξ̄ + ηη̄

(
ξ

η

)(
ξ̄ η̄

)
(C.10)

for a unique tuple (z = ξ/η, v0) ∈ C∞×R+. This follows just by multiplication of (C.3) with
v0 and by |ε̂(z)| = 1. Note, that the mentioned projective freedom in the coordinates (ξ, η)

does not spoil the uniquenes of the representation (C.10), due to the occurence of the factor
(ξξ̄ + ηη̄)−1 on the right hand side of (C.10). Equation (C.10) gives hence a correspondence
between L+

p M and C∞ ×R+ associated to a vielbein frame (Eµ). In this formulation, one
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realizes, that (C.10) is an implicit definition of the map ψ+
p from (C.9). I.e. one could have de-

fined the diffeomorphism (C.9), and hence also the bundle trivialization (C.8), equivalently
by demanding, that

vµσµ =λ
ψ
p (v)

2
ξp(v)ξ̄p(v) + ηp(v)η̄p(v)

(
ξp(v)
ηp(v)

)(
ξ̄p(v) η̄p(v)

)
(C.11)

should hold for all v ∈ L+
p M with v = vµEµ. Here, we have set zψ

p (v) =: ξp(v)/ηp(v). This
relation (C.11) will be called the spin representation of the local bundle trivialization (C.9)
and will be very useful in the next subsection.

C.3. The Lorentz-Möbius correspondence and associated null

vector rescalings

We now present the well known correspondence between the Lorentz group SO+(1, 3) and
the Möbius group PSL(2, C) as adapted to our situation. The ideas of this section come
from [143] but are of course adapted to our situation. However, the utilization of the spin
representions (C.3) and (C.11) for the derivation of null vector rescalings under Lorentz
transformations is, to the best of our knowledge, an original development of this article.
Therefore we fix again a p ∈M and a vielbein frame (Eµ) associated to a local trivialization
(U, ψ) ∈ A with p ∈ U. Let now v ∈ L+

p M be a null vector with v = vµEµ. Then, as
explained in the last subsection, the induced coordinate system

ψ+
p : L+

p M → C∞ ×R+, v 7→
(

zψ
p (v), λ

ψ
p (v)

)
given by (C.9) is implicitely defined by the relation (C.11). Now forget first about the right
hand side of (C.11). The well known correspondence between the Lorentz- and the Möbius
group states then (cf. [143, 138]), that there is 1-to-1-correspondence between Lorentz trans-
formations Λ ∈ SO+(1, 3) and matrices AΛ ∈ PSL(2, C) such that

(
Λµ

νvνσµ

)
= AΛ

(
vµσµ

)
A∗Λ (C.12)

holds for any (vµ) ∈ R4. The map Λ 7→ AΛ constitutes then the isomorphism SO+(1, 3) ∼=
PSL(2, C) (cf. [138, 143]). By considering now again the right hand side of (C.11), we are
then able to derive, how an active local Lorentz transformation induces a transformation on
C∞ ×R+. Therefore let Λ ∈ SO+(1, 3) be a Lorentz transformation and set w = wµEµ ∈
L+

p M with:
wµ = Λµ

νvν

165
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Set further zψ
p (v) = ξ/η. We then can write by (C.11) and (C.12):

(
wµσµ

)
= λ

ψ
p (v)

2
ξξ̄ + ηη̄

AΛ

(
ξ

η

)(
ξ̄ η̄

)
A∗Λ (C.13)

Set now (
ξ ′

η′

)
:= AΛ

(
ξ

η

)
.

Then, (C.13) can be equally written as:

wµσµ =

(
λ

ψ
p (v)

ξ ′ ξ̄ ′ + η′η̄′

ξξ̄ + ηη̄

)
2

ξ ′ ξ̄ ′ + η′η̄′

(
ξ ′

η′

)(
ξ̄ ′ η̄′

)
This gives then, by defining the Möbius transformation ZΛ := ZAΛ :

zψ
p (w) = ZΛ(z

ψ
p (v)) (C.14)

λ
ψ
p (w) = λ

ψ
p (v)

ξ ′ ξ̄ ′ + η′η̄′

ξξ̄ + ηη̄
(C.15)

Define then for each A ∈ PSL(2, C) the map

f A(z) :=

(
ξ̄ η̄

)
A∗A

(
ξ

η

)
(

ξ̄ η̄
)(ξ

η

) ,

which is just the inverse of the conformal factor (6.39), i.e. f A(z) = KA(z)−1. We then can
write (C.14-C.15) equally as

zψ
p (w) = ZΛ(z

ψ
p (v)) (C.16)

λ
ψ
p (w) = λ

ψ
p (v) fΛ(z

ψ
p (v)) (C.17)

where we have defined
fΛ(Z) := f AΛ(z).

By this we have derived transformation formulas for coordinate systems ψ+ ∈ B under
local Lorentz transformations. Now recall, that λ

ψ
p (w) = w0 = |~w| and λ

ψ
p (v) = v0 = |~v|. By

this we then can summarize this finding in a more colloquial language: Any active Lorentz
transformation

vµEµ 7→ (Λµ
νwν)Eµ

corresponds to a unique Möbius transformation

z 7→ ZΛ(z)
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C.3. The Lorentz-Möbius correspondence and associated null vector rescalings

on the Riemann sphere, together with a direction dependent rescaling

v0 7→ w0 = v0 fΛ(ρ(v̂)).

As it stands, it seems a little bit surprising, that the function f A which determines the rescal-
ing is just the inverse of the conformal factor (6.39), i.e. fA(z) = K−1

A (z). But the reason for
this was explained in section 6.5.
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D. On right semidirect product groups

We introduce some concepts from group theory, that are needed for our investigation. Es-
pecially we will introduce the notion of right semidirect product groups in section D.1 and
will explain in section D.2, how certain subgroups of right semidirect product groups can
be parametrized in terms of so called crossed homomorphisms.

D.1. Right semidirect product groups

We first introduce the appropriate notion of a semidirect product of groups. Let P, Q be two
groups and let

κ̃ : P→ Aut(Q), p 7→ κ̃p

be a group antihomomorphism. The latter is equivalent to the statement, that κ̃ defines a
right group action of P on Q that acts on Q in terms of automorphisms. We then define the
right semidirect product of P and Q with respect to κ̃, denoted by P nκ̃ Q, as follows (cf.
[46, 6, 2]):

1. The underlying set is given by the cartesian product P×Q.

2. The group operation is given by:

(p1, q1)(p2, q2) = (p1 p2, κ̃p2(q1)q2)

3. The identity element is given by (eP, eQ), where eP and eQ are the respective identity
elements of P and Q.

4. The inverse element of (p, q) is given by (p−1, κ̃p−1(q−1)).

Left and right semidirect products are equivalent, in the same way as left and right actions
are equivalent (cf. [6]). Nevertheless, a right semidirect product will be more instructive in
the present situation. Please note in addition, that it is of greatest importance, that κ̃ acts
on Q in terms of automorphisms and especially, that κ̃p preserves the unit element of Q for
any p ∈ P, since otherwise P nκ̃ Q would not even constitute a group. For later use, we also
want to define the canonical projection

πκ̃ : P nκ̃ Q→ P, (p, q) 7→ p.
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D.2. Crossed homomorphisms

Let P denote an arbitrary group, let Q denote an abelian group and let P nκ̃ Q denote their
right semidirect product with respect to an antihomomorphism κ̃ : P → Q. Then one can
show (cf. [3, 1] and p. 88 of [37]), that crossed homomorphisms1, defined as maps

c : P→ Q, p 7→ cp

which satisfy
∀p1, p2 ∈ P : cp1 p2 = κ̃p2(cp1)cp2 ,

parametrize homomorphic sections of the canonical projection

πκ̃ : P nκ̃ Q→ P.

This means, they parametrize injective group homomorphisms

ic : P ↪→ P nκ̃ Q

which satisfy πκ̃ ◦ i = id (i.e. homomorphic embeddings of the group P into the semidirect
product P nκ̃ Q) by sending:

ic : P ↪→ P nκ̃ Q, p 7→ (p, cp)

By this, there is a 1-to-1-correspondence between subgroups P ⊂ Pnκ̃ Q and crossed homo-
morphisms c (cf. [3, 37]).

1Our definition of a crossed homomorphism is adapted to the occuring right semidirect product. Actually, it
should be called a crossed antihomomorphism.
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was ich von Dir lernen durfte. Auch möchte ich an dieser Stelle Wojciech Dybalski herzlich für
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Diese Doktorarbeit wäre außerdem nicht möglich gewesen, ohne die vielen Menschen, die mich in
dieser Zeit im privaten Rahmen unterstützt haben. Ein besonderer Dank gilt hierbei meinen Fre-
unden Haike Dietrich und Tobias Drewelius. Auch möchte ich mich bei Christian Koke für die
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